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OPTIMAL NUMERICAL METHODS FOR INVERSE HEAT TRANSFER AND INVERSE 
DESIGN SOLIDIFICATION PROBLEMS  

Abstract 

 
by Kei Okamoto, Ph.D. 

Washington State University 
DECEMBER 2005 

 
 
 

Chair:  Ben Q. Li 
 
 The optimization methods for the inverse heat conduction and solidification problems are 

discussed. Three different methods, the Tikhonov regularization method, the singular value 

decomposition (SVD) method, and the Levenberg-Marquardt method, are discussed and their 

performance is assessed comparatively in the inverse heat conduction problems. Several schemes 

for choosing the optimal regularization parameters are also discussed. These schemes include the 

maximum likelihood method (ML), the ordinary cross-validation method (OCV), the generalized 

cross-validation method (GCV), the discrepancy principle (DP), and the L-curve method. 2-D 

steady-state heat conduction problems are used for the case studies. Parameter estimation and 

function estimation for the optimal solution are also discussed and compared using 1-D transient 

heat conduction problems. In the inverse design solidification problems, on the other hand, the 

regularization method along with the L-curve method is discussed. The design algorithm is 

applied to determine the appropriate boundary heat flux distribution to obtain prescribed solid-

liquid interfaces in a 2-D cavity. A new finite difference scheme for determining the sensitivity 

coefficients is proposed in the inverse steady-state solidification problems. A sequential method 

and a whole time-domain method are used and evaluated in the inverse design of solidification 

processes. 



 v

 Based on the cases studied for the inverse heat conduction problems, the regularization 

method and the SVD method are comparative with the Levenberg-Marquardt method with a 

trust-region strategy. It is also found that the discrepancy principle (DP) gives the best estimate 

of choosing the regularization parameters. As for the inverse design solidification problems, the 

L-curve based regularization method is reasonably accurate to control the solid-liquid interfaces. 

The proposed finite difference scheme is found to be superior to the conventional finite 

difference scheme in determination of the sensitivity coefficients for the inverse steady-state 

solidification problems. The results of the inverse design of solidification processes show that the 

sequential method is comparative to the whole time-domain method if the diffusion time of the 

heat flux is carefully considered. 
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CHAPTER ONE 

INTRODUCTION 
 

1.1 BACKGROUND 

 Inverse problems are encountered in various branches of science and engineering. 

Engineers, mathematicians, statisticians, and specialists of many other fields are all 

interested in inverse problems, each with different applications in mind. The applications 

of the inverse problem include biomedical imaging [Horacek et al., 1997], 

thermotherapy, metabolism modeling, spline smoothing [Wahba, 1985], 

electrocardiography [Johnson et al., 1998], and image reconstruction [Demoment, 1989; 

Galatsanos et al., 1992].  

In particular, inverse heat transfer problems arise from thermal system design 

considerations. These problems are concerned with the estimation of the heat flux and/or 

temperature distribution on a boundary using the temperature measurements at some 

points in the interior or with both temperature and flux specified over the same portion of 

the boundary [Martin et al., 1996]. For example, the direct measurement of heat flux at 

the inside surface of a wall subjected to fire, at the outer surface of a reentry vehicle, or at 

the inside surface of combustion chamber is extremely difficult. These problems need to 

be solved using inverse computational algorithms. While inverse problems are physically 

feasible, they are mathematically ill-posed, which is manifested by the fact that noises 

present in the measured data can cause instabilities in the estimated heat fluxes. Proper 

numerical treatments are needed to overcome these instability problems. This paper 

discusses three popular methods for the inverse heat transfer calculations: the 

regularization method, the singular value decomposition method, and the Levenberg-
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Marquardt method, as well as the schemes for estimating the optimal parameters for the 

first two methods.  

  Solidification is a well-known process, which contains a phase transformation of 

liquid and solid. Transient heat transfer problems involving solidification are important in 

many engineering applications. These applications include the making of ice, the freezing 

of food, and crystal growth. Solidification is also a widely used manufacturing process 

that is a very economical way to form components. The solution of the solidification 

process is inherently difficult because the interface between the solid and liquid phases is 

moving as the latent heat is absorbed or released at the interface. However, knowledge of 

liquid-solid interface morphology during solidification processing is of paramount 

importance to the microstructure formation in solidified materials. Because often the 

solid-liquid interface position is unknown a priori, the problem of finding the interface is 

classified as moving boundary problems. The widespread use of solidification principle 

in materials processing systems has resulted in both theoretical and experimental studies 

on the subject. A wide variety of numerical models have been developed for virtually 

every kind of solidification processing systems. Both the fixed grid and moving grid 

methods have been used to model the solidification phenomena. The fixed grid method 

involves the use of enthalpy-based formulation in which the latent heat is factored into an 

effective heat capacity. The moving grid method, however, tracks the solidification front, 

that is, the solid-liquid interface continuously by deforming the grids or elements.  There 

are alternatives that involve a level set field variable to mark the solid-liquid interface. 

Model developed using these techniques have been applied mainly to answer the question 

concerning the interface position and morphological development for given operating 
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conditions and specified geometric constraints. However, to assure the quality and 

reliability of a casting, the ability to control the solid-liquid interface morphology is 

important. Thus, inverse computational algorisms are used to solve the design 

solidification processing systems. In practice, a desired solidification microstructure in 

the final products dictates a certain type of solid-liquid interface front morphology. Thus, 

question often arises of how the boundary heat flux distribution needs to be specified in 

order to obtain the desired solid-liquid interface during solidification processing. For this 

purpose, the regularization method along with the L-curve method is used to solve the 

inverse design of solidification processes in this paper. 

 

1.2 LITERATURE REVIEW  

Various inverse algorithms including the regularization schemes for heat transfer 

calculations have been summarized in two monographs [Sawaf et al., 1995; Trujillo et 

al., 1989]. The subject has received continuous interest owing to its wide range of 

applications including the estimation of thermophysical properties and the estimation of 

the unknown source functions. The Levenberg-Marquardt method is discussed in detail to 

solve inverse problems [Sawaf et al., 1995; Kim et al., 2003]. More (1977) proposed a 

robust and efficient implementation of the Levenberg-Marquardt method using a trust-

region framework. Martin and Dulikravich (1996) used the regularization method 

combined with the boundary element method (BEM), but the procedure to choose the 

regularization parameter was limited to special cases. Trujillo and Busby (1989) used the 

regularization method and the generalized cross-validation (GCV) method in their study 

of inverse heat transfer problems. There are also other methods, such as the conjugate 
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gradient method (CGM), which are either less general or less easy to implement and are 

not included in the present study.  

 One of the crucial aspects associated with the regularization method is the 

appropriate selection of optimal regularization parameters for inverse estimation. Several 

approaches have been reported. The maximum likelihood (ML) method was presented by 

Wahba et al. (1985) from the standpoint of the statistical inference [Fitzpatrick et al., 

1991]. The ML method was found to yield a regularization parameter somewhat smaller 

than the optimal regularization parameter [Galatsanos et al., 1992]. The ordinary cross-

validation (OCV) method was proposed as another approach to obtain optimal 

regularization parameters [Allen, 1974; Golub et al., 1979]. In order for the OCV method 

to remain invariant after transformation, the generalized cross-validation (GCV) method 

is needed and used in other engineering fields [Yoon et al., 2000]. It has been reported 

that the GCV method gave poor accuracy in some cases. The L-curve method proposed 

by Hansen and O’Leary (1993) can be applied to the linear and non-linear inverse 

problems [Reginska, 1996; Tautenhahn et al., 2003] and was used in the BEM-based 

inverse elasticity problems [Martin et al., 2003]. One possible limitation of the L-curve 

method is the difficulty of accurately determining the corner point. The discrepancy 

principle (DP) was proposed to relate input errors (measurement errors) to the computed 

parameter [Morozov et al., 1984]. Hollingsworth and Johns (2003) showed that the DP 

method was reliable when measurement errors were observed correctly. Some of these 

techniques have been applied in transient inverse heat transfer analyses; their 

performance, however, for steady-state inverse heat transfer analyses, is not well 

appreciated. The truncated SVD method has been considered a very useful technique for 
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inverse calculations, and yet there has not been a systematic approach to select the 

singularity threshold value, which is critical for the accurate solution.  

It is, however, conceivable that inverse free boundary problems can be more 

complex in general than inverse heat conduction problems. One of the applications of the 

inverse problems for solidification processing systems is the determination of the 

boundary condition by utilizing either experimental measurements (inverse solidification 

problems) or prescribed conditions (optimal design solidification problems). The inverse 

solidification problems have been attempted in literature. Krishnan and Sharma (1996) 

found casting/mold interfacial heat transfer coefficients using experimental temperature 

measurements for casting solidification problems. They used the finite difference method 

(FDM) combined with the Beck’s method for their inverse algorithm. O’Mahoney and 

Browne (2000) combined their inverse algorithm with the integral-derivative method to 

find interfacial heat transfer coefficients using temperature measurements. Xu and 

Naterer (2001) found temperature distribution using the prescribed solid-liquid interface 

location and heat fluxes. Hale et al. (2000) used the Global Time Method (GTM) for their 

inverse algorithm to find heat flux distribution in the boundary of both liquid and solid 

phase using the prescribed temperature and heat flux in the liquid-solid interface. In their 

approach, the solid and liquid regions are treated as two distinct inverse heat transfer 

problems. Dulikravich et al. (2003) found optimal magnetic fields on the boundary by 

specifying desired magnetic field lines and temperature distribution. Zabaras et al. (1990, 

1993, 1995) have studied the inverse solidification problems both with and without fluid 

flow being considered. They reported various algorithms including the Beck’s method, 

the steepest descent method (SDM), and the conjugate gradient method (CGM). Most of 
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the work up to date has been limited to conduction mode only and few have considered 

the fluid flow effects. In addition, the solid-liquid interfaces to control in the inverse 

solidification problems are limited to the simple shape such as a straight line. 

 

1.3 OBJECTIVES 

The objectives of this research consist of two parts. One is solving inverse heat 

transfer problems. The other one is solving inverse solidification problems. 

The regularization method, the singular value decomposition method (SVD), and 

the Levenberg-Marquardt method are used and evaluated in the inverse heat transfer 

problems. We also consider the schemes for estimating the optimal parameters for the 

regularization method and the SVD. The discrepancy principle is used for determining 

the truncated threshold for the SVD method. The selection of optimal parameters is 

considered for Tikhonov regularization solutions of inverse heat transfer problems. For 

this purpose, the five popular methods including the maximum likelihood (ML), the 

ordinary cross-validation (OCV), the generalized cross-validation (GCV), and the L-

curve methods, as well as the discrepancy principle (DP) are evaluated in detail.  The 

testing cases include 1-D and 2-D inverse steady-state heat conduction problems where 

analytic solutions are available. Both the Tikhonov regularization method and the 

truncated SVD method, with optimal parameters determined, are compared with the 

Levenberg-Marquardt method. In addition, a parameter estimation and a function 

estimation approach are also used and assessed by using 1-D inverse transient heat 

conduction problems. As a last example of the inverse heat conduction problems, the 
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inverse algorithm is applied to estimate the heat flux experienced due to the spray cooling 

of a 3-D microelectronic component with an embedded heating source. 

In the inverse solidification problems, on the other hand, we use the regularization 

method along with the L-curve method. The algorithm is applied to determine the 

boundary heat flux distribution for prescribed solid-liquid interfaces in a 2-D cavity for 

both steady and transient problems. We specify not only a straight line but also sine 

functions for the solid-liquid interfaces. We also discuss the finite difference scheme for 

computing sensitivity coefficients by using the inverse steady-state solidification 

problem. In addition, a sequential method and a whole domain method are used and 

evaluated for the transient problems.   

 

1.4 OVERVIEW OF THE THESIS 

 In this thesis, the direct and inverse algorithms of heat conduction problems and 

solidification problems are presented.  

In Chapter 2, the direct problems of the heat transfer and solidification processes 

are formulated and discussed. The concept of the well-posed and ill-posed problems is 

also discussed. Chapter 3 describes the inverse calculation methods of the heat transfer 

and solidification problems. In Chapter 4, the formulation of the cases studied is 

presented and the results are discussed. Finally, the results of the present study are 

summarized in Chapter 5. 
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CHAPTER TWO 

DIRECT PROBLEMS 
 

 In this chapter, we first formulate heat conduction problems and address the 

solution to facilitate subsequent discussions. We then revise and discuss the concept of 

direct and inverse heat conduction problems in the context of the well-posedness and ill-

posedness of problems. We formulate solidification (phase-change) problems and address 

the solution of the problems. Validation of our FEM code is also discussed using the 

experimental measurements, which were previously conducted. 

 

2.1 HEAT CONDUCTION PROBLEMS 

Heat conduction is the mode of heat transfer in which energy exchange takes 

place in solids or fluids from the region of high temperature to the region of low 

temperature. The direct heat conduction problem is mainly concerned with the 

determination of the temperature distribution within solids. In this section, we present the 

problem formulation and the solution of the heat conduction problems. 

 

2.1.1 Problem formulation 

 For direct heat conduction problems, the temperature inside a domain Ω is sought 

using conditions prescribed along the entire boundary (see Figure 2.1a). Mathematically, 

a direct heat conduction problem is formulated as follows:  

QT
t
TC +∇=

∂
∂ 2κρ  ∈ Ω      (2.1.1) 
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In the above equation, ρ is the density, C is the specific heat, T is the temperature, t is 

time, κ is the thermal conductivity, Q is the heat generation rate. The above equation is 

subject to the following boundary conditions: 

  1TT =  ∈ ∂Ω1        (2.1.2) 

  2{n} qT =∇⋅− κ   ∈ ∂Ω2     (2.1.3) 

Here it is important to note that the temperature or flux can be prescribed on either of the 

boundaries but not both. 

 

2.1.2 Problem solution 

 Many existing techniques can be employed to solve the direct heat conduction 

problems.  In this paper, the Galerkin finite element method is applied, which discretizes 

the governing equations in a matrix form: 

  [ ][ ] [ ][ ] [ ]FTKTN =+&
T                                           (2.1.4) 

where the matrix elements are calculated by  

∫Ω
= dVC T

T }}{{] θθρ[N , ∫Ω
∇⋅∇= dVT}{}{[K] θθκ      

  ∫∫ ΩΩ∂
+∇⋅= dVQdST }{}{{n}[F] θθκ     (2.1.5)  

            

2.2 WELL-POSED AND ILL-POSED PROBLEMS 

The concept of well-posed and ill-posed problems is crucial to formulate and 

solve field problems. In this section, the well-posed and ill-posed problems are revised 

using heat conduction problems. 
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2.2.1 Well-posedness 

According to the theory of partial differential equations (PDE), a problem is well-

posed if and only if all of these three conditions are satisfied: (1) its solution exists, (2) 

the equation has one and only one solution, and (3) a small change in the data (such as 

prescribed boundary conditions, source strengths, coefficients in the PDE, etc.) produces 

only a small change in the solution [Nagle et al., 1993]. The second condition requires 

that the solution, if it exists, is unique; the third requires that the solution is stable. The 

existence of the solution can be easily proved by noticing that a Green’s function is 

constructed, and the solution can be obtained by the superimposition principle. To see the 

uniqueness of the solution, we consider a steady-state heat conduction problem. We 

construct two solutions, T1 and T2, which each satisfies the above equation and the 

boundary conditions. With the new variable, 21 TT −=Φ , the governing equations 

becomes,  

Φ∇⋅∇= κ0         (2.2.1) 

  0=Φ  ∈ ∂Ω1        (2.2.2) 

  0{n} =Φ∇⋅− κ   ∈ ∂Ω2     (2.2.3) 

Integration of Eq. (2.2.1) with respect to Φ, followed by the use of Green’s theorem, 

yields, 

( ) dVdV 2)(0 Φ∇−Φ∇Φ⋅∇=Φ∇⋅∇Φ= ∫∫ ΩΩ
κκκ  

( ) dVdS 2)({n} Φ∇−Φ∇Φ⋅= ∫∫ Ω∂Ω∂
κκ                         (2.2.4) 

Thus, along with Eqs. (2.2.2) and (2.2.3), immediately leads to the following result: 

( ) ( ) 0{n}{n})(
21

2 =Φ∇Φ⋅+Φ∇Φ⋅=Φ∇ ∫∫∫ Ω∂Ω∂Ω∂
dSdSdV κκκ   (2.2.5) 
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Thus, Φ=0  or T1 = T2, that is, the above problem has a unique solution. Also, any small 

change in conditions (source, boundary conditions, etc.) will not affect the above result. 

Therefore, the direct heat conduction problem is well-posed. Note that if the whole 

boundary is prescribed with flux, the solution is also unique, albeit an arbitrary additive 

constant. The constant may be determined by requiring that the integration of boundary 

flux be zero. The problem is still well-posed. 

 

2.2.2 Ill-posedness 

 An ill-posed problem violates any or all conditions required for well-posedness. 

Consider the above problem but with both temperature and fluxes chosen on part of the 

boundary, say ∂Ω1, but no conditions on ∂Ω2.  In this case, the second integration 

involving ∂Ω2 in Eq. (2.2.5) is not necessarily zero, and thus the solution may not be 

unique. If a solution exists, it may not be continuously dependent on the boundary data; 

otherwise the stability condition is violated. To illustrate this point, we consider the 

following heat conduction example with constant κ :  

T∇⋅∇=0  ∈ Ω = [0, 1] x [0, 1]      (2.2.6) 

  0)0,( =xT  and  )/sin()0,( δδ xxTy =∇⋅− n      (2.2.7) 

By the principle of separation of variables, the following solution may be 

obtained, which satisfies the above two equations: 

  )/sinh()/sin(),( 2 δδδ yxyxT =      (2.2.8) 

With δ = 0 or finite, T(x, y) is well-behaved. However, if δ → 0±, the solution is 

unbounded, 
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   ±∞=
±→

)/sinh()/sin(2

0
δδδ

δ
yximl      (2.2.9) 

Thus, a very small change in yxT ∂∂ /)0,(  leads to an arbitrarily large change in the 

solution. That is, the solution is unstable. This example illustrates the nature of an ill-

posed problem. 

 

2.2.3 Inverse problems 

 In inverse heat transfer problems, temperatures at some interior points are known, 

while some of the heat fluxes are unknown and need to be part of the solution (See Figure 

2.1b). A statement of inverse heat transfer problems involving the need to determine the 

boundary heat flux distribution may be made as follows: 

QT +∇⋅∇= κ0   ∈ Ω                 (2.2.10) 

subject to the following boundary conditions: 

  1TT =  ∈ ∂Ω1                         (2.2.11) 

  2n}{ qT =∇⋅− κ   ∈ ∂Ω2               (2.2.12) 

and also to the known temperature information at the discrete interior points, 

  iTT =){r}(  {r}∈ ∂Ω2                       (2.2.13) 

where q2 is the unknown heat flux to be determined. The inverse heat conduction 

problem is ill-posed.  To see this, we consider Eq. (2.2.8) again, with T(x,0) =0, 

2)0,( =∂ xT and heat flux is to be sought on other boundaries. If further a value of 

T(0.5,0.5) = 2 is measured, then we can show that =∂=∂ ),1(),0( yTyT constant would be a 

solution, and thus the solution is not unique. Beck et al. (1985) also show that the 

solution to inverse heat conduction problems is unstable. The solution to an inverse heat 
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conduction problem is thus the most probable and most stable solution among all the 

solutions available. Any inverse algorithm in general would need to incorporate 

stabilization schemes to obtain the solution to inverse heat conduction problems.   

 

2.3 SOLIDIFICATION PROBLEMS 

Solidification problems, also called moving boundary problems, are important in 

many engineering applications including crystal growth and the solidification of metals in 

casting. The solution of such problems is inherently difficult because the interface 

between the solid and liquid phases is moving and its location is not known a priori. 

Many solidification problems have appeared in the literature, but the exact solutions are 

limited to a number of idealized situations. When exact solutions are not available, 

numerical methods can be used to solve the solidification problems. In this section, we 

address the problem formulation of the solidification problems. Then we present the 

numerical methods of the solidification problems used in the present study. 

 

2.3.1 Problem formulation 

Figure 2.2 shows a 2-D cavity for the solidification problem under consideration. 

The top and bottom walls are thermally insulated. The temperature on the left wall is 

fixed at a constant temperature above the melting point, while the right wall is subjected 

to cooling. The melt, which is initially above the melting temperature, starts to solidify as 

a result of cooling at the right wall.  The fluid flow and heat transfer in the system are 

governed by the continuity equation, the Navier-Stokes equations, and the energy 

equation. For the melt flow, the standard Boussinesq approximation, 
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( )[ ]mTT −−= βρρ 10 , is used.  The governing equations for the problem are given as 

follows: 

0}u{ =⋅∇           (2.3.1) 

   )(}g{}u{}u{}u{}u{
0

2
mTTp

t
−−∇+−∇=∇⋅+

∂
∂ βρµρρ  (2.3.2)  

TkTC
t
TC 2}u{ ∇=∇⋅+

∂
∂ ρρ       (2.3.3)  

t
sHTknTkn sl ∂

∂
=∇⋅−∇⋅ ρ|}{|}{      (2.3.4)    

The no slip condition is specified at the walls.  The boundary conditions are as follows: 

  {u}=0  at all boundaries     (2.3.5) 

  0=
∂
∂

y
T  at y=0 and y=h      (2.3.6) 

  T=To  To>Tm at x=0      (2.3.7) 

  T=TL or q=q0 Tm>TL  at x=l      (2.3.8) 

The solid-liquid interface is to be obtained for the direct problem or the well-posed 

problem. For the inverse problem, however, the solid-liquid interface shape is specified, 

and the cooling condition on the right wall is to be obtained.  

 

2.3.2 Problem solution 

The governing equations described above along with the boundary conditions are 

solved using the deforming Galerkin finite element method.  The stiffness matrix is 

obtained by using the Galerkin’s method of Weighted Residuals. The formulations and 
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relevant benchmark tests were detailed in a series of papers published earlier [Shu et al., 

2002; Li et al., 2003; Song et al., 2002]. Thus, only a brief summary is given here. The 

governing equations are recast in integral forms, and the field variables are interpolated 

using shape functions over the computational domain. With appropriate algebraic 

manipulations, the following set of equations are obtained: 

PU ∫∫ ΩΩ
−=∇⋅ )()( dVdVi T

i
T ψψεφψ

)
     (2.3.9) 

PUu
U

∫∫∫ ΩΩΩ
∇⋅−∇⋅+ )ˆ() ()( dVidV

dt
d

dV T
i

TiT φψφρφρφφ    

j
T

i
T dVjiUdV U))ˆ)(ˆ(()( ∫∫ ΩΩ

∇⋅∇⋅+∇⋅∇+ φφµφφµ  

∫∫ Ω∂Ω
⋅⋅=−+ dSiTTgdV m

T φτρβφθ ˆ))(( n                (2.3.10) 

∫∫∫∫ Ω∂ΩΩΩ
−=∇⋅∇+∇⋅+ dSqdVkdVC

dt
ddVC T

TTT θθθθθρθθρ TTuT )()()(        (2.3.11) 

 Once the form of shape functions φ, θ, and ψ for velocity, pressure, and scalars are 

specified, the integrals defined in the above equations can be expressed in matrix form. 

Combining the momentum and energy equations into a single matrix equation gives rise 

to the following element stiffness matrix equation: 

  







=

















+
++

+














 −

TTT

T
T

p

T G
F

T
U

LUD
BEEMKUA

T
U

N
M

)(0
)(

0
0 11

ε
&

&
             (2.3.12) 

Note that in constructing the above element matrix equation, the penalty formulation is 

applied, and P in the momentum equation is substituted by UEM T
p
11 −

ε . The assembled 



16 

global matrix equations are stored in the skyline form and solved using the Gaussian 

elimination method. The coefficient matrices of Eq. (2.3.12) above are calculated by 

∫Ω
= dVT

p ψψM , ∫Ω
= dVC T

T θθρN , ∫Ω
= dVk TθθM , dVi T

i φψ∇⋅= ∫ Ω

)
E , 

∫Ω
∇⋅∇= dVT

T θθL , ∫Ω
∇⋅= dVTθρφ uUA  )( , ∫Ω

∇⋅= dVC T
T θθρ uUD )( , 

∫Ω
= dVT

T φθρβgB , ∫ Ω∂
Γ−=

 
 dqTT θG , ∫ Ω∂

Γ⋅= dτφnF , 

∫∫ ΩΩ
∇⋅∇⋅+∇⋅∇= dVjidV T

ii
T

ij )ˆ)(ˆ()( φφµδφφµK             

To implement the deforming finite elements to model the dynamic change of the moving 

interface, i.e., solidification front between the liquid and solid, a quasi-Lagrangian 

description is adopted.  By this method, a region that covers the solidifying liquid and 

solid is defined, and the nodes within the region are allowed to move in accordance with 

the interface movement.  These additional velocities that result from the mesh movement 

are added to the velocity field as given in the above equations.  The energy balance 

equation describing the latent heat release and interface change is directly integrated 

within the context of weighted residuals,  

∫∫∫ Ω∂ΩΩ
Γ

∂
∂

−=∇⋅−∇⋅ d
t
sHdVnkdVnk s

T
l

T θρθθθθ TT )ˆ()ˆ(             (2.3.13) 

which is applied as a surface energy source to the total thermal energy balance equation, 

and added to the right-hand side of Eq. (2.3.12). The above equation systems are solved 

iteratively. Separation of the moving interface boundary coordinates from the global 

finite element solutions for field variables, however, requires the convergence of both 

moving interface coordinates and field variables in two related loops.  The interface 
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tracking strategy used in the present study involves an iterative procedure that entails 

applying the energy balance equation along with the interface as a surface source and 

searching for the interface position coordinates based on each converged field 

calculations.  The updated interface positions are then fed back to the field calculations 

until both the interface position coordinates and field variables are converged within a 

preset criterion, which is set at 1 x 10-4 (relative error) for the results presented below. 

 

2.3.3 Validation of the direct solidification problem 

Shu (2003) conducted an experimental and numerical study of solidification in a 

square mold. Figure 2.3 shows the velocity fields at t=40minutes of (a) the experimental 

measurements and (b) the FEM calculations. As seen in figures, they found good 

agreements of the experimental measurements and the numerical simulations. Their FEM 

code is utilized for the design solidification problems. Thus, the FEM calculations of the 

solidification processes in the present study are considered to be accurate. 
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Figure 2.1. Illustration of (a) direct and (b) inverse heat conduction problems.
 

(a)

(b)
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Figure 2.2. Schematic of solidification in a 2-D cavity  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Velocity fields at t=40 minutes of (a) experimental measurements and (b) 
FEM calculation for solidification of succinonitrile (SCN). The boundary 
conditions are TL=334.12K, TR=328.61K, Tm=331.23K, and the upper and 
bottom wall is kept adiabatic. Figures courtesy of Y. Shu (2003) 
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CHAPTER THREE 

INVERSE PROBLEMS 

 

In this chapter, the inverse problems are discussed. We formulate the inverse heat 

conduction problems and inverse design solidification problems. Various methods are 

presented to solve the inverse problems. The numerical algorithm is then summarized. 

 

3.1 INTRODUCTION 

 A common approach to formulating the inverse problems is to seek the 

distribution of the unknown parameters such that the difference between the observations 

and calculated parameters at given points is minimized. The least-squares criterion is 

solidly grounded in statistics, as we show below. Let the discrepancies between model 

and observation in a general data-fitting problem be denoted by ε, that is, 

),( jjj txy φε −=        (3.1.1) 

It is often reasonable to assume that the εj’s are independent and identically distributed 

with a certain variance σ2 and probability density function gσ. Under this assumption, the 

likelihood of a particular set of observations yj, j=1,2,….,m, given that the actual 

parameter vector is x, is given by the function, 

)),(()()/(
11

jj

m

j
j

m

j

txyggyp φεσ σσ −== ∏∏
==

    (3.1.2) 

Since we know the value of the observations y1, y2, ….., ym, the “most likely” value of x 

is obtained by maximizing p(y/σ) with respect to x. The resulting value of x is called the 
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maximum likelihood estimate of the parameters. When we assume that the discrepancies 

follow a normal distribution, we have 

)
2

exp(
2

1)( 2

2

2 σ
ε

πσ
εσ −=g       (3.1.3) 

Substitution in Eq. (3.1.2) yields 

[ ]









 −
−= ∑

=

−
m

j

ijm txy
xyp

1
2

2
2/2 ),(

2
1exp)2(),/(

σ
φ

πσσ    (3.1.4) 

For any fixed value of the variance σ2, it is obvious that p is maximized when the sum of 

squares is minimized. Thus, the minimization problem may be mathematically stated in 

terms of the objective function: 

  [ ]












−= ∑
=

2

1
),(min),(

m

j
j txytxF φ       (3.1.5)  

   

3.2 INVERSE HEAT CONDUCTION PROBLEMS 

Using the concept described above, the inverse heat conduction problem may be 

mathematically stated in terms of the objective function: 

  [ ]












−= ∑
=

2

1
})q({min})q({

M

i
uiiu TTF             (3.2.1) 

where Ti({qu}) is the calculated temperature at {r} and is a function of unknown heat 

fluxes {qu}.  To find the unknowns, one resorts to the least square procedures by 

differentiating the above equation with respect to {qu}, 

  [ ] 0
}q{
})q({})q({

}q{
})q({

1
=

∂
∂

−=
∂

∂ ∑
= u

ui
M

i
iui

u

u TTTF               (3.2.2a) 

or 
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  })}({qT]{[J})}q({T{[J] u=u                 (3.2.2b) 

where }q{})q({ uuiT ∂∂  is the element of the sensitivity coefficient matrix [J] and is in 

general a rectangular matrix and singular,  

  
T

j

u
T

i
ij q

TJ












∂
∂

=
})q({        (3.2.3)  

If a forward difference is used, the sensitivity coefficient matrix with respect to qj is 

approximated by  

  
j

NjiNjji
ij q

qqqqTqqqqqT
J

λ
λ ),....,,.....,,(),....,,......,,( 2121 −+

≅   (3.2.4) 

where λ is a small number.  

 

 3.2.1 The regularized inverse method 

 For ill-posed heat transfer problems given by Eq. (3.2.1), direct use of either the 

Levenberg-Marquardt method or the SVD method sometimes does not give satisfactory 

answers because of their insufficient control of the instability associated with the 

problems. In these cases, the regularization method offers a viable alternative. The 

popular approach is Tikhonov regularization, by which the minimization function is 

augmented as follows: 

   [ ]








+−= ∑∑
==

N

j
j

M

i
uiiu qTTF

1

2

1

2})q({min})q({ α     (3.2.5) 

where α is the regularization parameter. The above function represents a trade-off 

between two optimization processes: (1) agreement between the data and solution and (2) 
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smoothness or stability of the solution. The parameter α regulates these two processes. 

Using the index notation, one has  

  jjiiii qqTTTTF α+−−= ))((})q({ u      (3.2.6) 

Again the differentiation with respect to qj will give rise to the following matrix equation: 

  [ ] 02})q({
})q({

2
})q({

u
uu =+−
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qTT
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α    (3.2.7) 

In terms of the sensitivity coefficients Jij, Eq. (3.2.7) becomes 

  [ ] jii
T

ij qTTJ α=− })q({ u       (3.2.8) 

For linear inverse problems, the sensitivity matrix is not a function of unknown 

parameters. Thus, we have 

  })q({})q({})q({})q({ 00u ijijij

T

j

u
T

i
i TqJTq

q
TT +=+













∂
∂

=     (3.2.9) 

where Ti({q0}) is the estimated temperature when {q}=0. With this relation substituted in, 

Eq. (3.2.8) becomes 

  [ ] jijiji
T

ij qTqJTJ α=−− })q({ 0               (3.2.10) 

or in matrix notation, 

  [ ]}})T({q{}T{[J])[I][J]J]([}q{ 0
T1T

u −+= −α              (3.2.11) 

where [J] is the sensitivity coefficient matrix and [I] is the identity matrix. For the above 

method to be successful, an appropriate choice of the regularization parameter α needs to 

be chosen. While there has been much research on choosing the best regularization 

parameter in an a priori manner, most schemes depend in some way on the data and/or 

constraints placed on the solution, and thus are problem dependent.  In the next sections, 
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several different techniques for selecting α for inverse heat transfer calculations are 

evaluated. 

              

3.2.1.1 Maximum likelihood method 

As stated earlier, a solution to an inverse problem is the most probable solution. 

The maximum likelihood method is used to determine the optimal regularization 

parameter such that the solution is most probable from the given set of experimentally 

measured temperature data. The method is based on the use of a priori information on the 

parameters to be estimated, which is added to the information provided by the data. In a 

statistical context, the a priori information on {q} is expressed in the form of a priori 

probability distribution p({q}). Bayes’ rule allows us to combine it with the information 

contained in the data to obtain the a posteriori distribution [Demoment, 1989], 

})T({/})q({})q/{}T({})T/{}q({ pppp =                (3.2.12) 

Here })q/{}T({p  denotes the probability distribution of the data based on the real solution 

{q}. The solution is completely determined by the knowledge of models and noise 

distribution. Since })T({p is constant, the above equation can be expressed as 

})q({})q/{}T({})T/{}q({ ppp ∝               (3.2.13) 

The regularization method is then written as 

  [ ] [ ] })q{}q{})}q({T{}T{})}q({T{}T{(arg}q{ TTMin α+−−=             (3.2.14) 

The above equation is tantamount to maximizing the a posteriori distribution, 

})T/{}q({p ,  

  )}T{}q{(arg}q{ / pMax=                (3.2.15) 
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where   

 [ ] [ ]{ }( )}q{}q{})}q({T{}T{})}q({T{}T{exp})T/{}q({ TTp α+−−−=    (3.2.16) 

The measured temperature data { T } is of the form   

}ε{})}q({T{}q]{J[}T{ 0 ++=                      (3.2.17) 

Assuming that {ε} follows a normal distribution N(0,σ2), we obtain the following 

probability function [Bartoszynski, 1996]: 

2/
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2 )
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1()},q/{}T({ Mp
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     (3.2.18) 

where M is the number of thermal sensors. According to the Bayesian theory, the prior 

distribution of {q} should follow a normal distribution. Thus, combining equations 

(3.2.13), (3.2.16) and (3.2.18) yields the following expression for the distribution: 
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πσ
σα           (3.2.19) 

where N is the number of unknown components of {q}. The most commonly used 

maximum likelihood approach consists of maximizing a marginal likelihood, which is 

obtained by integrating the object out of the problem [Galatsanos et al., 1992], 

dqppdqpLT ),/}q({)},q/{}T({})T{},q({),( 222 σασσα ∫∫
+∞

∞−

+∞

∞−
==             (3.2.20) 

which means the probability of {T} falling in a short interval of length ∆ near { T } 

[Pitman, 1993]. This approach can be considered as a special case of the expectation-

maximum likelihood (EM). The analytical expression for ),( 2σαTL is given in Appendix 

A. Taking the derivative of ),( 2σαTL with respect to σ2 and setting it equal to zero yields 
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  )()1(2 ασ R
M

⋅=                 (3.2.21) 

where [ ] [ ][ ]})}q({T{}T{)](A][J[]I[})}q({T{}T{)( 00 −−−= αα TR . Substituting the above 

equation into Eq. (3.2.20), one has the error indicator as a function of α,  
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α
−

−−−
=             (3.2.22) 

where TT ]J[])I[]J[]J([)](A[ 1−+= αα .  Thus, the optimal α corresponds to the minimum 

of the error indicator. 

 

3.2.1.2 Ordinary cross-validation (OCV) and generalized cross-validation (GCV) 

methods 

The OCV and GCV methods are widely recognized methods in the field of 

statistical data analysis. The essence of the method, when viewed in the current context, 

is to first find the vector of So(α,k) that minimizes the cost function, 
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iio qTTkS
1

2
2

1
),( αα                (3.2.23) 

with the kth values of measured and computed temperatures ( kT  and Tk) omitted from the 

calculation. In this sense the ordinary cross-validation technique is also referred to as “the 

leaving-one-out method.” 

Having arrived at So(α, k) that minimizes the cost function, we evaluate the 

effectiveness of this vector in predicting the value of kT  that was “left out'' of the 
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calculation of the cost function. We denote the predicted value of kT  by Tk (α, k). The 

ordinary cross-validation function V0(α) is then defined in order to measure the success 

of this prediction when the “leaving-one-out'' process is repeated for all the available data 

points kT  (i.e., for k=1 to M). The ordinary cross-validation error indicator is thus defined 

by 
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For linear problems, the following equation is derived (See Appendix B for the detailed 

derivation): 
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where [B(α)]= [J]([J]T[J]+α[I])-1 [J]T 

 The ordinary cross-validation technique described above may fail in cases where 

the matrix [B(α)] is close to diagonal. It is clear that if [B(α)] is diagonal, then the cross-

validation function V0(α) given above reduces simply to (1/M)║{ T }║2 which is entirely 

independent of the choice of α. Therefore, the use of the GCV method is based on the 

argument that any good choice of α should be “invariant under rotation of the 

measurement co-ordinate system''. The error indicator for the GCV method can be written 

as, 
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The detailed derivation is shown in Appendix B. 

 

3.2.1.3 The L-curve method  

As discussed above, the method of regularization represents a balance between 

the data-solution agreement and smoothness of solution. Thus, an appropriate choice of α 

should give an optimal balance. This idea has led to the development of the L-curve 

method (Fig.3.1), which was first proposed by Hansen (1993). This method locates the 

‘corner’ on a plot of the function of the norm of computed heat fluxes, ║{q}║, versus the 

norm of the difference between sensor temperatures and computed temperatures, ║{ T }-

{Tcomputed}║. Let Ψ be a monotonically increasing function and define the curve, 

  { }0:)}T{}T{(),}q{((
22 >−ΨΨ= αcomputedL              (3.2.27) 

Often Ψ is chosen to be one of the functions, 

  tttt =Ψ=Ψ )(,)( , or tt 10log
2
1)( =Ψ ,t>0              (3.2.28) 

 

3.2.1.4  Discrepancy principle (DP) 

The method for a priori parameter selection, such as the GCV, the ML and the L-

curve methods, requires no knowledge of the random errors (noise) in the experimental 

data. A posteriori method such as the discrepancy principle does require an estimate of 

sensor errors [Morozov, 1984]. The discrepancy principle demands that the problem is 

solved so that the residual norm is the same as the norm of errors δ in the measurements. 

That is, 

  δ=− }T{}T{ computed                 (3.2.29) 
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 The value of α is selected as the optimal regularization parameter. This method demands 

a good estimate of the experimental errors. 

 

3.2.1.5 Yagola’s discussion  

Yagola et al. (2002) mentioned that L-curve method was mathematically inapplicable for 

the solution of an ill-posed problem. In fact, they pointed out that the error must be 

known prior to the calculations to solve the ill-posed problem. Therefore, in their theory, 

GCV is also inapplicable because GCV doesn’t use the prior information of the error. 

Their algorithm is as follows: 

 

Consider 

uAz = , Zz ∈ , Uu ∈     

hAAh ≤− , δδ ≤− uu  

 

To find the approximate solution means to be able to construct a regularizing algorithm. 

The Regularizing algorithm implies 

1. brings an element zhδ=R(h,δ,Ah,uδ) into correspondence with any data (h,δ,Ah,uδ), 

0≥h  , 0≥δ , ),( UZLAh ∈ , Uu ∈δ of the problem (I); 

2. has the convergence property uAzzh
+=→δ as  0, →δh , ⊥⊕∈ )()( ARARu       

   

(I) 
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Theorem  

Let R(Ah, uδ) be a map of the set UUZL ⊗),(  into Z.  If R(Ah, uδ) is a regularizing 

algorithm (not depending explicitly on h,δ), then the map uAuAP +=),(  is continuous on 

its domain  ))()((),( ⊥⊕⊗ ARARUZL  

 

The theorem above shows that R(Ah, uδ) is for well-posed problem because R(Ah, uδ) is 

continuous (stable) on the domain. However, the theorem above is based on the 

regularizing algorithm. In our cases, the second condition, which is convergence as 

0, →δh , is not guaranteed. Therefore, the theorem does not prove that the L-curve is not 

applicable for the ill-posed problem of our algorithm. It is worth using and evaluating the 

L-curve method or GCV for the estimation of the regularization parameter in the 

computational optimization of the inverse heat conduction problems. 

 

3.2.2 Singular value decomposition method (SVD) 

One popular method to solve Eq. (3.2.2b) is to use the singular value 

decomposition (SVD) method. Using this method, Eq. (3.2.2b) is solved in the following 

manner. First the temperature is linearized, 

  }q{[J]})}q({T{})}q({T{ 0 =−                 (3.2.30) 

with T(q0) being the temperature field at {q}=0. Substituting into Eq. (3.2.1), we have the 

following expression: 

  




















−−= ∑∑

==

2

1
0

1
u })q({min})q({ jij

N

j
ii

M

i
qJTTF              (3.2.31) 



31 

The SVD procedure to solve the above equation is to choose a solution vector {q} such 

that it minimizes the above error function.  The procedure gives the following expression: 

  }g{}q]{A[ =                  (3.2.32) 

with [A ]=[J]T[J] and [ ]}})q({T{}T{]J[}g{ 0−= T . Note that F({qu}) measures the 

distance from the point {g} to the point [A]{q} in the column space. In the case of matrix 

[A] being singular or degenerate, as is often the case in inverse heat transfer problems, 

the solution to Eq. (3.2.32) chosen by the SVD process has the smallest distance, that is, 

{q}T{q} = minimum.  According to the theory of linear algebra, an M×N matrix [A] can 

be written as the product of an M×N column-orthogonal matrix, [U], an N×N diagonal 

matrix [S] with positive singular values, and the transpose of an N×N orthogonal matrix 

[V]. Therefore, 

  TU][S][V][[A] =                 (3.2.33) 

The singular values, s1, s2, …. sN, are the squares of the eigenvalues of the matrix 

[A]T[A]. Also, [U][U]T= [U][U]-1 = [I] and [V][V]T= [V][V]-1=[I], with [I] being the 

identity matrix. Thus, the matrix [A] can be readily inverted, 

T111T1 [U][V][S][U][S][V][A] −−−−− ==  and the unknown flux vector may be calculated as 

follows: 

  })g{]U([]S][V[}q{ 1 ⋅= − T                (3.2.34) 

In a well-conditioned matrix [A], the singular values are roughly of the same 

order of magnitude. As the matrix becomes ill-conditioned, that is, singular, these values 

become more dispersed. Formally, the condition number of a matrix is defined as the 

base 10 logarithm of the ratio between the largest to the smallest of the sj’s. For ill-

conditioned [A], the solution vector, {q}, when pre-multiplied by the inverse matrix of 
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[A], results in a very poor approximation to the force vector {g}. This can be particularly 

true when some of the singular values are zero or very small.  One remedy to the problem 

is to use the truncated SVD by which a judicial decision is made to throw away the 

singular values smaller than a singularity threshold value, that is, to set 1/sj = 0 if 

τ<max/ ssi  (j=1,2,…,N).  

From the experience of selecting the regularization parameters, we propose the 

use of the discrepancy principle to choose the singularity threshold value. Thus, we have 

δτ =− )}(T{}T{                  (3.2.35) 

This approach eliminates the ad hoc guess for the threshold value τ. The testing cases 

below show that this method produces a consistently good estimate. 

 

3.2.3 Levenberg-Marquardt method 

3.2.3.1 Ozisik’s implementation 

The minimization problem can be solved using the Levenberg-Marquardt method, which 

in essence is a modification of the Gauss-Newton algorithm that more dynamically mixes 

the Gauss-Newton algorithm and gradient-descent iterations. The method is iterative in 

nature [Sawaf et al., 1995]. This method uses the second order derivative of F with 

respect to {q}, that is, the Hessian matrix or the curvature matrix, which is given by 

[J]T[J]. Thus, Eq. (3.2.2b) may be solved using Newton’s method,  

  }q{[J]J][}T{J][T][J][0 TTT ∆+−=               (3.2.36) 

The Levenberg-Marquardt algorithm for the solution of the above equation stabilizes the 

Hessian matrix by adding to an adjustable parameter term )]J[)]J(([ kTkk diagµ and the 

resultant iterative procedure is thus as follows: 
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1
u )J][)J](([J][)]J([}q{}{q −+ ++= kTkkkTkkk diagµ  

[ ])}}T({q{}T{)J]([ u
kTk −⋅              (3.2.37) 

where diag means taking the diagonal terms of the matrix in the bracket and µ is a 

positive scalar damping parameter whose magnitude is dynamically adjusted to condition 

the iterative process. The superscript k denotes the iteration number. The calculation 

starts with an initial guess for {qu}, and the temperature distribution is predicted and 

compared with the measured data. If the error increases during updating, then µ is 

increased, often by a factor of 10.  On the other hand, if the error reduces, then µ is 

decreased, often by a factor of 10 [Marquardt, 1963].  The iteration convergence and the 

objective function F({qu}) are both used as stopping criteria [Ozisik et al., 2000], 

1
1

u ||}q{}q{|| γ≤−+ k
u

k                 (3.2.38) 

2
1

u )}q({ γ≤+kF                 (3.2.39) 

( ) [ ] 3)}}q({T{}T{]J[ γ≤− k
u

Tk               (3.2.40) 

where γ1, γ2, γ3 are pre-chosen constants. The Levenberg-Marquardt algorithm has proved 

to be an effective and popular way to solve nonlinear least squares problems.  It can also 

be used to solve linear problems. 

 

3.2.3.2 More’s implementation (trust-region strategy) 

The Levenberg-Marquardt method can be described and analyzed using the trust-

region framework. More proposed a robust and efficient implementation of the 

Levenberg-Marquardt method using a trust-region strategy [More, 1977]. The solution 



34 

for the estimation of the N unknown parameters Pj, j=1, ….,N, is based on the 

minimization of the ordinary least squares norm given by 

[ ] [ ]})}P{}x({T{}T{})}P{}x({T{}T{})P({ +−+−= TS             (3.2.41) 

We utilize a trust-region strategy for our calculation. That is, the objective function above 

has a constraint of 

  ∆≤}P{                      (3.2.42) 

where ∆ is a trust-region radius. Using the Lagrange function 

         [ ] [ ] })P{}P{(})}P{}x({T{}T{})}P{}x({T{}T{ 2 TT −∆−+−+−=Ψ µ    (3.2.43) 

In the above equation, µ is a Lagrange multiplier. To minimize the Lagrange function 

given by equation (3.2.43), we need to equate to zero the derivatives of Ψ({P}) with 

respect to each of the unknown parameters [P1, P2,….., PN], that is, 

[ ] 0P}{)}P}{x}({T{}T{)P}({J][)P}({ =++−−=Ψ∇ µT              (3.2.44) 

where  
TT









∂

+∂
=

P}{
)}P}{x}({T{)]P}({[J . In the linear inverse problem, the following 

relation holds: 

    J]{P}[)}P}({T{)}P}{x}({{T +=+                (3.2.45) 

The resulting expression is rearranged to yield the following procedure to obtain the 

vector of unknown parameters {P}: 

   [ ] [ ])}P}({T{}T{[J]I][[J][J]{P} 1
−+=

− TT µ               (3.2.46) 

The complementarity condition of this problem is 

0){P}( =∆−µ                  (3.2.47) 
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The Lagrange multiplier µ is called a damping parameter for the Levenberg-Marquard 

method. To find an optimal damping parameter for the calculation, the following function 

is utilized: 

[ ] [ ] ∆−−+=∆−=
− )}P}({T{}T{[J]I][[J][J]{P})( 1 TT µµφ             (3.2.48) 

If 0)0( ≤φ , then µ=0 is the required parameter. Otherwise, the following procedure is 

utilized. Let [J]=[U][S][V]T be the singular value decomposition of [J], then 

  {P}P}{{P} 2 T=  
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where s1, ….., sn are the singular values of [J]. Equation (3.2.49) is 
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Notice that the above equation is expressed as 
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a)(                  (3.2.51) 

Therefore, φ(µk+1)=0 if 
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The function )(µφ′  is derived in the following form: 
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In the above equation, the following equations are utilized: 
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3.3 INVERSE SOLIDIFICATION PROBLEMS 
 

The inverse solidification problem seeks the heat flux distribution {q} that leads 

to a given solidification interface distance { d }. The inverse solidification problem 

belongs to the class of a nonlinear inverse problem. Therefore, the SVD method, which is 

used for the inverse heat transfer problem, is not applicable in the nonlinear problem. In 

addition, the Levenberg-Marquardt algorithm is not effective based on the cases studied 

in the inverse heat transfer problems. The regularization method seems like a viable 

choice for nonlinear inverse problems. In this section, we present the regularization 

method for the inverse solidification problem. Then, a new method for computing 

sensitivity coefficients is addressed. The L-curve method, sequential and whole domain 

methods, scaling, and piecewise polynomial functions are also presented.  

 

3.3.1 The regularization method 

3.3.1.1 Steady-state problems 

The inverse solidification problem seeks the heat flux distribution {q} that leads 

to a given solid-liquid interface shape { d }. Note that solidification interface distance, 
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{d}, is defined as the length between the left wall and the solid-liquid interface (See Fig. 

2.2). For the purpose of numerical analysis, the unknown {q} is discretized into N 

different values, qj, j=1, …, N. Thus, the inverse solution is to estimate the N unknown 

parameters qj (j=1, …., N) by minimizing the following objective function: 
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2})q({})q({ α        (3.3.1) 

where {q}T= [q1,q2, …,qN] is the vector of unknown parameters, di({q}) is the estimated 

solidification interface position, id  is the ideal solidification interface position, N is the 

total number of unknown parameters, and M is the total number of controlled 

solidification interface position, where M ≥  N.  In the above equation α is the 

regularization parameter. Equation (3.3.1) can be written in matrix form, 

  [ ] [ ] }q{}q{})}q({d{}d{})}q({d{}d{})q({ TTS α+−−=    (3.3.2) 

To minimize the least squares norm given by Equation (3.3.2), the derivatives of S({q}) 

with respect to each of the unknown parameters [q1, q2,….., qN] are set to zero, that is, 
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This necessary condition for the minimization of S({q}) can be expressed in matrix 

notation by setting the gradient of S({q}) to zero, that is, 

[ ] 0}q{2})}q({d{}d{
}q{
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Defining the sensitivity coefficient matrix, 
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To approximate the sensitivity coefficients, the finite difference scheme is used (See the 

next section). Equation (3.3.4) becomes 

  [ ] }q{})}q({d{}d{})]q({J[ α=−T      (3.3.6) 

For non-linear problems, when the sensitivity coefficients depend on the vector of 

unknown parameters {q}, the problem is referred to as non-linear inverse problems. By 

the Taylor series expansion, 

)}q{}q({)]}q({J[)}}q({d{)}}q({d{ 11 kkTkkk −+= ++    (3.3.7) 

Equation (3.3.6) becomes 

[ ] 111 }q{)}}q({d{}d{)]}q({J[ +++ =− kkTkT α     (3.3.8) 

Using Equation (3.3.7) for the non-linear equation, Equation (3.3.8) becomes  

[ ] 111 }q{)}q{}q({]J[)}}q({d{}d{)]}q({J[ +++ =−−− kkkkkTk α   (3.3.9) 

and then 

[ ] [ ]kkkTkkTkk }q{]J[)}}q({d{}d{)]J([]I[]J[)]J([}q{ 1111 +−+= +−++ α       (3.3.10) 

Further assuming [J{qk+1}] ≈ [J{qk}], we have the following estimation for the unknown 

heat flux distribution: 

[ ] [ ]kkkTkkTkk }q{]J[)}}q({d{}d{)]J([]I[]J[)]J([}q{ 11 +−+=
−+ α            (3.3.11) 

 

3.3.1.2 Transient problems 

The inverse transient solidification problem seeks the heat flux distribution q(y,t)  

that leads to a given solidification interface distance ijd for time and space. For the 

purpose of a numerical analysis, we consider the unknown function q(y,t) to be 

parameterized in the following form: 
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where ),( tyf j  (j=1, …., N) are known trial functions. This approach is categorized to the 

parameter estimation approach. The inverse solution is to estimate the N unknown 

parameters qj (j=1, …., N) by minimizing the following objective function: 
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where qj is the unknown parameters, jid  is the ideal solidification interface distance at 

time and space, dij({q}) is the estimated solidification interface distance corresponding to 

the same time and space as jid , L is the number of controlled solidification distance for 

time, M is the number of controlled solidification distance for space, and N is the total 

number of unknown parameters.  In the above equation, α is the regularization parameter. 

Equation (3.3.13) can be written in matrix form, 

[ ] [ ] {q}q}{)}q}({d{}d{)}q}({d{}d{)q}({ TTS α+−−=              (3.3.14) 

where {q}T =[q1,q2,…qi, … ,qN] , 

[ ] [ ]TLMijM
T

Li dddddd LLLLL 211121121 }d{}d{}d{}d{}d{ == , 

[ ] [ ]TLMijM
T

Li dddddd LLLLLL 211121121 }d{}d{}d}{d{}}q{d{ ==)( . 

 Notice that equation (3.3.14) is identical to equation (3.3.2). Thus, we can solve the 

inverse transient problem using the same procedure as the steady-state calculations 

described above. We use equation (3.3.11) to estimate the heat flux solutions. In addition, 

we use the following equation for computing the sensitivity coefficients: 
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3.3.2 Finite difference approximation for determining sensitivity coefficients 

It is common knowledge in the inverse community that the following finite-

difference approximation for determining sensitivity coefficients (Eq.3.3.5) is used in the 

inverse problem. If a conventional forward difference approximation 
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where λ is a small number. Different values of λ were selected by authors. In the inverse 

heat transfer problem, Ozisik and Orlande (2000) used λ=10-5 or 10-6, and Beck and 

Blackwell (1988) used λ=10-4. As for the inverse solidification problem, Ruan (1990) 

used λ=10-3 in the regularization method, and Zabaras (1990) used λ=10-3 in the steepest 

descent method. In this conventional scheme, the perturbed values, λqj , with constant 

λ depend on unknown parameters qi. Therefore, the perturbed values vary in the each 

calculated sensitivity coefficient. This finite difference scheme works well if the 

unknown parameters, {q}, do not distribute in a wide range. However, if the unknown 

parameters are in a wide range, especially, in the case where the values are crossing zero, 

the calculations to find the optimal solution may be unstable. More specifically, we 
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consider truncation error. The truncation error results from the neglected terms in the 

Taylor series expansion of the perturbed function. The Taylor series expansion of 

),.....,,.....,,( 21 Njji qqqqqd ∆+ can be written as 
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The truncation error of the leading term for the forward-difference approximation is 
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Any arithmetic operation among floating numbers introduces an additional fractional 

error. This type of error is called round-off error. Round-off errors accumulate with 

increasing amounts of calculation. The total error (Errtotal) of the forward-difference 

approximation is the combination of the truncation and the round-off errors, which is 

given as 

)()( jroundjTruntotal qErrqErrErr ∆+∆=                (3.3.19) 

If the conventional forward-difference scheme is used, the perturbed values, λqj, vary 

with the unknown parameters. This leads to the disparity of the truncation error in the 

sensitivity coefficient. That is, if the unknown parameter is large, the truncation error also 

becomes large. Thus, the ratio of the truncation error to the total error is large. On the 

other hand, if the unknown parameter is small, the ratio of the round-off error to the total 

error is large. This discrepancy in each sensitivity coefficient causes the unstable and 

inaccurate solution of the inverse problems. 
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As an example, we consider the case where unknown parameters are ranging 

000,1000,1 ≤≤− q  , and we have q1=0.001 and q2=1,000. If the conventional finite 

difference scheme (Eq.3.3.16) is used, the perturbed value for the sensitivity coefficient 

J1j equals to λ⋅1q =0.001x0.001=1x10-6. Similarly, the perturbed value for J2j is 

λ⋅2q =1,000x0.001=1. In the former case, the perturbed value is very small, which is 

1x10-6. Thus, the ratio of the truncation error to the total error is very small. On the other 

hand, the perturbed value for J2j , which is 1, is large compared to the last case. Thus, the 

ratio of the truncation error to the total error is smaller than that in the last case. This 

discrepancy of the error in the sensitivity coefficients causes unstable and slow 

convergence. To overcome this drawback, the following forward difference scheme is 

proposed: 
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              (3.3.20) 

where ε is a small number, and Max(qk) is a maximum value of {q}.  In this proposed 

method, the same perturbed value, )( kqMax⋅ε , is used for all of the sensitivity 

coefficients no matter what values we have for the unknown parameters. This scheme 

removes the drawback of the conventional forward difference method since the ratio of 

the truncation error has the same level in each sensitivity coefficient. This modification 

results in the stable and fast convergence.  

 

 

3.3.3 L-curve method 
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It is well known that the success of the regularized minimization method 

described above depends on an appropriate choice of the regularization parameter. Note 

that since the problem is non-linear, the Ordinary Cross-Validation (OCV), the 

Generalized Cross-Validation (GCV), and Maximum likelihood method (ML) methods, 

which were discussed in Chapter 3.2 for the inverse heat conduction problems, are in 

general ineffective to find the optimal regularization parameter. In addition, the 

discrepancy principle based on the measurement error is not utilized because error may 

not be easily specified. The L-curve method is considered a viable choice for this 

purpose. The L-curve method is based on an algorithm that locates the ‘corner’ of a plot 

of the function of norm of computed heat fluxes, ||{q}||, versus norm of the difference 

between computed solidification distance and prescribed solidification distance, 

}{}{ dd −  (Figure 3.1). Let Φ be a monotonically increasing function, we may define 

the curve, 

{ }0:)}d{}d{(),}q{(( >−ΦΦ= αL               (3.3.21) 

where Φ  is chosen to be one of the following functions:  

tttt =Φ=Φ )(,)( , or tt 10log
2
1)( =Φ ,t>0             (3.3.22) 

 

3.3.4 A sequential method and a whole domain method 

The time domain in which the inverse problem is calculated may be another way 

to classify the methods of solution. Several schemes have been proposed for the time-

dependent inverse problem. A whole domain method and a sequential method are useful 

methods for a parameter specification inverse problem. The whole domain method 
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utilizes the whole part of the time domain to compute unknown parameters in the inverse 

algorithm. On the other hand, the time domain in the sequential method is split into some 

parts of the time domain. Then unknown variables in each time domain are calculated 

separately and independently. The final conditions that are calculated in each time 

domain are carried over to the next time domains for the initial conditions. In the 

regularization method, the most of the computation time is spent for computing the 

sensitivity coefficient matrix. All of the time steps must be considered to form the 

sensitivity coefficient matrix for the whole domain method. Therefore, the whole time 

domain method is computationally expensive and time-consuming. On the other hand, 

each time domain has the smaller number of the time steps in the sequential method. As a 

result, the smaller number of the sensitivity coefficients is calculated. Therefore, the 

sequential method allows us to store small space of a computer memory. In addition, the 

computation time of the sequential method is faster than that of the whole domain 

method. The whole domain method, however, may be suitable for the problems where 

variables in the early time domain affect the controlled parameters in the late time. These 

problems include the solidification process in which the effect of diffusion and latent heat 

is considered. We use both the whole domain and sequential methods in the present 

research. 

 

3.3.5 Scaling 

We use a polynomial approximation for the trial functions (Eq. 3.3.12) to find 

optimal heat flux solutions. When variables of the polynomial function are either in a 

small or large range, scaling needs to be performed for the variables of the polynomial 
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functions. Scaling is a transformation of the polynomial function in order to obtain an 

optimal solution of the inverse calculations. The poorly scaled functions make the 

solution unbalanced. For example, when a second order polynomial function, 

q(x)=a1x2+a2x+a3 ( 01.00 ≤≤ x ), is used for approximating an optimal solution, the 

coefficient a1 for x2 has very small effect compared to a2 and a3 because x2 is a very small 

value in 01.00 ≤≤ x . In other words, q(x) is less sensitive to small changes in a1 than those 

in a2. Thus, the sensitivity coefficients Ji1 (Eq. 3.3.15) for a1 become very small. When 

these sensitivity coefficients are used to find the optimal solution, we obtain the solution 

in which the value of a1x2 is small and negligible. That is, the solution using this 

polynomial function has a strong linear relationship between x and q. For overcoming this 

drawback, the polynomial function should be changed to 

3
2

2
24

1 )10()10()( axaxaxq +⋅+⋅= −−                         (3.3.23) 

Since the variables (10-4 x2, 10-2 x, and 1) are linearly independent and generate a second 

order polynomial function, no loss of generality is incurred by the use of the scaled 

polynomial function. In addition, the scaled function makes the solution more balanced. 

 

3.3.6 Piecewise functions 

In the whole domain method, we use the piecewise approximation for an optimal 

heat flux solution. The final time tf is given in the calculation. We split the time domain 

into (n+1) domains as follows: 

  fn ttttt =<<<<= .......0 210                 (3.3.24) 

Piecewise functions Pi(t) are defined as 
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  )(tPi   1+<< ii ttt   1,.....,1,0 −= ni              (3.3.25) 

 

 

3.4 SUMMARY OF THE NUMERICAL ALGORITHM 

In this section, the computational algorithm for the inverse heat conduction 

problems and the inverse solidification problems described above are summarized. 

 

3.4.1 Inverse heat conduction problems 

Suppose that the temperature measurements )(}T{ 1 MTT L= , the norm of 

measurement error δ, and the standard deviation of measurement error σ are given. 

Unknown heat flux {q} is computed as follows. 

3.4.1.1 The regularization method and the SVD 

Step 1. Set a perturbation value λ=δq=0.01. 

Step 2. Set {q}={q0}=(q1, q2, ……., qN}=(0,0,….,0). 

Step 3. Solve the direct problem given by equations (2.1.1), (2.1.2), (2.1.3) in order to 

compute )(})}q({T{ 10 Mi TTT ′′′= LL using {q0}=0. 

For j=1,N 

Step 4. Set qj=δq. q1=q2= …=qj-1=qj+1...=qN =0. That is, {q’’}=(q1, q2, …qj,.., 

qN}=(0,…0,δq, 0,...0) 
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Step 5. Solve the direct problem given by equations (2.1.1), (2.1.2), (2.1.3) in order to 

compute )(})}q({T{ 1 Mi TTT ′′′′′′=′′′′ LL using {q’’}. 

For i=1,M 

Step 6. Compute the sensitivity coefficients, 
j

ii
ij q

TTJ
δ

′−′′
= . 

End for i  

End for j 

Knowing [J], })}q({T{ 0 , }T{ , the regularization method and the SVD are computed as 

follows: 

i) The regularization method 

Step 7. Set α=1 

Step 8. Compute {q} using Eq. (3.2.11). 

Step 9. Compute the value of ML, OCV, GCV, DP, L-curve using Eq. (3.2.21), (3.2.22), 

(3.2.25), (3.2.26), (3.2.27), (3.2.29) 

Step 10. Replace α by 0.9α, and return to Step 8 until α<10-20 

 

ii) SVD 

Step 7. τ=1 

Step 8. Compute {q} using Eq. (3.2.34). 

Step 9. Compute the value of DP using Eq. (3.2.35) 

Step 10. Replace τ by 0.9τ, and return to Step 8 until τ<10-20 
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3.4.1.2 The Levenberg-Marquardt method 

(a) Ozisik implementation 

Step 1. Set k=1, λ=0.01, µ=0.001. 

Step 2. Take an initial guess for the heat flux, {q0}= ),,,( 000
1 Ni qqq LL . 

Step 3. Solve the direct problem given by equations (2.1.1), (2.1.2), (2.1.3) in order to 

compute )()}q}({{ 1
1

Mi
k TTTT ′′′=− LL using {q}k-1= ),,,( 111

1
−−− k

N
k
j

k qqq LL  

For j=1,N 

Step 4. Set {q’’}= ),,,( 1111
1

−−−− + k
N

k
j

k
j

k qqqq LL λ . 

Step 5. Solve the direct problem given by equations (2.1.1), (2.1.2), (2.1.3) in order to 

compute )(})}q({T{ 1 Mi TTT ′′′′′′=′′′′ LL . 

For i=1,M 

Step 6. Compute the sensitivity coefficients, 1−

′−′′
= k

j

ii
ij q

TTJ
λ

. 

End for i 

End for j 

Step 7. Compute {q}k+1 from Eq. (3.2.37). 

Step 8. Compute F({q}k+1).  

 If F({q}k+1) ≥ F({q}k), replace µ by 10µ and return to Step 7. 

 If F({q}k+1)<F({q}k), accept the new estimate {q}k+1 and replace µ by 0.1µ. 

Step 9. Check the stopping criteria given by Eq.(3.2.38-40). If any of the criteria is 

satisfied, stop the calculations; Otherwise, replace k by k+1 and return to Step 3. 

 

(b) More’s implementation 
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We consider a linear inverse heat transfer problem in this algorithm. 

Step 1. Set µ0, ∆0, {q0} , λ, m=0 

Step 2. Compute {T0}, [J] using the direct problem given by equations (2.1.1), (2.1.2), 

(2.1.3). 

Step 3. k=0 

Step 4. Compute {P(µk)} using the equation(3.2.46). 

Step 5. Compute {T({P})}={T}m+[J]{P(µk)} 

Step 6. Evaluate )( kµφ and )( kµφ′ using the equations (3.2.48) and (3.2.53) 

Step 7. If 0)( ≈kµφ , then accept the step {P}. Set {q}m+1={P}+{q}m, {T}m+1={T({P})}, 

∆m+1=λ∆m, and go to step 10. Otherwise go to step 8. 

Step 8. Obtain µk+1 using equation (3.2.52).  

Step 9. If µk+1<0, then set µ0 = µ0 x0.01 and go to step 4. Otherwise set k=k+1and go to 

step 4. 

Step 10. If ∆m+1 is small enough, stop the calculation. Otherwise replace m by m+1 and 

go to step 3. 

 

3.4.2 Inverse solidification problems 

Step 1. Set k=1, λ=0.01, α=1 

Step 2. Set the ideal solidification distance, ),,(}d{ 1 Mdd L= . 

Step 3. Set the initial guess of heat flux, {q0}= ),,,( 000
1 Nj qqq LL . 

For j=1,N 
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Step 4. Solve the direct problem given by equations (2.3.1) to (2.3.8) in order to compute 

the solidification distance ),,,,(d}{ 111
1

−−−= k
M

k
i

k ddd LL  using 

1q}{ −k = ),,,( 111
1

−−− k
N

k
j

k qqq LL  

Step 5. Set {q’’}= ),,,( 1111
1

−−−− + k
N

k
j

k
j

k qqqq LL λ . 

Step 6. Solve the direct problem given by equations (2.3.1) to (2.3.8) in order to compute 

the solidification distance ),,,(}d{ 1 Mi ddd ′′′′′′=′′ LL using }{q ′′ . 

For i=1,M 

Step 7. Compute the sensitivity coefficients, 1

1

−

−−′′
= k

j

k
ii

ij q
ddJ

λ
. 

End for i 

End for j 

Step 8. Compute {q} using Eq. (3.3.11). 

Step 9. If ω≤−+ kk }q{}q{ 1  is satisfied, replace α by 0.8α and go to Step 3 until α<10-30; 

Otherwise, replace k by k+1 and return to Step 4.
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Figure 3.1. Illustration of determining optimal α using the L-curve method in 
the case of (a) the inverse heat conduction problems and (b) the 
inverse solidification problems 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 
 

We address and discuss the formulations and results of the inverse heat 

conduction problems and the inverse solidification problems in this chapter. 

 

4.1 INVERSE HEAT CONDUCTION PROBLEMS 

In this section, various schemes presented for the selection of optimal 

regularization parameter α are discussed in a comparative fashion for the inverse heat 

transfer calculations.  The results are then compared with those obtained using the SVD 

and Levenberg-Marquardt methods. The examples used steady-state 2-D problems. A 

parameter estimation and a function estimation approach are also evaluated using 

transient 1-D problems. The direct problems are calculated using the Galerkin finite 

element method. The detailed formulation and accuracy of the calculation were given in 

early publications [Song et al., 2002]. As an application, the heat flux distribution 

calculated using the inverse heat transfer algorithm described above is also presented. 

In general, error of the temperature measurement is assumed to follow a normal 

distribution. Thus, in the example problems, the input error is the normally distributed 

random number generated in the following scheme. Let z1 and z2 be independent 

uniformly distributed random number in [0,1]. Then the random variables 

)2cos(ln2 21 zz πξ −=        (4.1.1) 

are independent and distributed according to the standard normal distribution, N(0,1). If 

the temperature distribution follows N(T,σ), then the temperatures are determined in the 

following forms: 
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  σξ+= analyticsensor TT        (4.1.2) 

Regularization parameters for the analytic solution are determined by finding the 

minimum points of the following sum of square errors in the computed heat flux {q(α)}: 

2

1
, ])([)( ∑

=

−=
M

j
analyticjj qqS αα       (4.1.3) 

In the above equation, qj, analytic is the heat flux for the analytic solution, and qj(α) is the 

computed heat flux. The value of S(α) indicates the accuracy of the heat flux using the 

inverse algorithm. Equations for the ML, OCV, and GCV methods are shown in 

equations (3.2.22), (3.2.25), (3.2.26), respectively.  The minimum points of these 

functions indicate the optimal regularization parameter. The regularization parameters by 

the L-curve method were found in the corner points. Since the variance σ2(α) found using 

the maximum likelihood method is found in equation (3.2.21), the variance is compared 

with the input error variance σ2. The regularization parameters were then found by 

minimizing 

MLvariance(α)=│σ2(α)-σ2
analytic│     (4.1.4)  

Similarly, utilizing equation (3.2.29) for the discrepancy principle, the regularization 

parameters were found by utilizing 

DP(α)=│δ-║{ T }-{Tcomputed(α)}║│     (4.1.5) 

where δ is the norm of input noise in the sensors, { T } is the sensor temperature, and 

{Tcomputed}is the computed temperature depending on α . The same equation is used to 

find the optimal singularity threshold for SVD. These functions are examined for a range 

of α and τ varying between 10-15 and 1. 
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4.1.1 Steady-state problems  

4.1.1.1 2-D heat conduction with a rectangular region 

First, we consider a 2-D inverse heat conduction problem over a rectangular 

region (0≤x≤1m, 0≤y≤1m) with and without heat generation. The boundaries at y=0 and 

y=1m were insulated. The boundary at x=0 was kept at 10K, and the heat fluxes at x=1m 

are to be determined using the inverse algorithm. The problem is schematically shown in 

Figure 4.1.1. Three different cases are considered, which are given in Table 4.1.1. The 

analytic solution is obtained using the prescribed temperature of 110K. The “measured” 

interior sensor temperatures are generated by tempering the analytic solution with 

different noise levels. The inverse calculations used the regularization parameters 

selected by the maximum likelihood (ML), the ordinary cross-validation (OCV), the 

generalized cross-validation (GCV), and the L-curve methods, as well as the discrepancy 

principle (DP).  As a comparison, the problems are also solved using the SVD.   

The results for the case where 6 sensor points with σ=0.9 are plotted in Figure 

4.1.2. Table 4.1.2 shows that the regularization parameter chosen in each method and its 

corresponding least square error. From Figure 4.1.2a and Table 4.1.2, we can see that the 

DP gives the best estimate of α, and the OCV and GCV give the next best estimate, 

though not as good as the DP. As shown in Figure 4.1.2b, the L-curve plots form the L-

curve shape, but the regularization parameter at the convex point, which is taken as an 

optimal parameter, is smaller than in the analytic solution. The ML and ML-variance do 

not perform very well. Once again, from Figure 4.1.2c, the DP gives a good estimate of 

the singularity threshold value in comparison with S(analytic). 
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For other cases with the different number of sensors and error level, the DP is 

consistently the best estimate for choosing the regularization parameter. For some cases 

of the OCV and GCV, two local minimum points are shown. But overall, the OCV and 

GCV are the second and third best methods to find α. In all of the cases, the ML, ML-

variance, and the L-curve find the smaller value than in the analytical solution. 

Calculations with sensors located at different positions were also made. Two 

extreme cases are presented in Figure 4.1.3.  In Figure 4.1.3a, the sensors are distributed 

evenly around the center of the square, and the SVD method outperforms the 

regularization method. In the case of the regularization method, the total net heat balance 

still holds, though the heat flux is not distributed symmetrically. In Figure 4.1.3b, on the 

other hand, the sensors are placed at the middle plane horizontally, and the regularization 

method performs much better than the SVD method. 

 

4.1.1.2 Axisymmetric over-specified problems 

 This problem is concerned with an annular, homogeneous, isotropic, planar region 

between two concentric circles (see Fig.4.1.4) with nondimensionalized radii, where ρa = 

0.5 and ρb = 1.2 is considered.  This problem is chosen to test the algorithms for the 

problems with over-specified boundary conditions on the outer boundary.  The 

discretization uses linear elements with l=10 along the azimuthal direction and m=24, 36, 

48 in the radial direction.  

 The analytic solution for the well-posed problem, where ua=0.5 and ub=1, gives 

the results of qa = -1.142, and qb = 0.4759 [Martin et al., 1996]. For the numerical inverse 

solution, the outer boundary was over-specified with both constant temperature and flux 
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boundary conditions taken from the analytic solution of the well-posed problem, while 

nothing was specified on the inner circular boundary. We use the case with m=36 and 

σ=0.05 in the following results of the Levenberg-Marquardt method, the regularization 

method, and the SVD. 

 

Results of the Levenberg-Marquardt method 

We use both the Ozisik’s implementation (Sec. 3.2.3.1) and the More’s 

implementation (Sec. 3.2.3.2) for the Levenberg-Marquardt method. The Ozisik’s 

implementation diverges and fails every time. On the other hand, the More’s 

implementation, which is used for the first time in the inverse heat transfer problems, is 

likely to converge to the optimal solution.  

The behavior of our algorithm is shown in Table 4.1.3. We chose ∆0=3.3 and λ 

=0.5. The initial estimate of the heat flux is set at q0=0. Selecting the appropriate ∆0 and λ 

is critical to obtain an optimal heat flux solution. If ∆0
 is too small or λ is too large, the 

algorithm may miss a chance to reach an optimal solution. On the other hand, if ∆0
 is too 

large or λ is too small, the solution may be far from the optimal solution. Table 4.1.3 

shows that the complementarity condition (Eq. (3.2.47)) holds at every iteration. The 

damping parameter, µ, increases as the trust-region radius, ∆, is gradually reduced. This 

result mathematically makes sense because )(µP  is a decreasing function. In the 

Ozisik’s implementation for choosing the damping parameter, the parameter is gradually 

reduced as the iteration procedure advances to the optimal solution. This decreasing 

damping parameter is considered one of the reasons for the divergence of the calculation, 

which occurs likely in the Ozisik’s implementation, because +∞=→ )0(µP in the ill-
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posed problems. However, the Ozisik’s implementation may work well if the problem is 

well-posed. In this example problem, we find that the problem is ill-posed because 

0min =s . Table 4.1.3 also shows that our calculation is efficiently performed to converge 

to the solution. 

 

Results for the regularization method and the SVD 

Table 4.1.4 shows the regularization parameters chosen in each method and the 

corresponding least square error. The error indicators for the regularization parameter are 

shown in Figure 4.1.5a. It is clear that the regularization parameter chosen by the DP 

method is close to that chosen by the analytical solution S(α). The parameter chosen by 

OCV and GCV is closed to the optimal parameter, and its corresponding least square 

error is reasonably small. The regularization parameters selected by ML(α), and its 

variance, MLvariance(α), are smaller than the optimal regularization parameter selected by 

S(α). The regularization parameter corresponding to the corner points in the L-curve (Fig. 

4.1.5b) is α=3.64x10-3, and that is far from that given by S(α) or DP(α). Similar results 

were found for m=24, 36, and 48 and other conditions. Figure 4.1.5c shows the error 

indicator for the singularity threshold. For this problem, the minimum points of the 

discrepancy principle (DP) match well with the analytic solution.  

 

Comparison of the accuracy of the three methods 

 Figures 4.1.6a, 4.1.6b, and 4.1.7c plot the errors associated with the heat fluxes 

and the inner temperatures with m=36 and σ=0.05 calculated in the Levenberg-Marquardt 

method with the More’s implementation, the regularization method and the SVD method 
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using the optimal α and τ, determined using the DP. The SVD method outperforms the 

regularization method and the Levenberg-Marquardt method in both the inner 

temperatures and inner heal flux solutions. The solution of the regularization method has 

the same level of accuracy of the Levenberg-Marquardt method. We note that the 

parameters chosen in each method play a central role of the comparison of the accuracy. 

 

4.1.2 Transient problems 

In this section, the inverse transient heat transfer calculations are discussed. We 

first use an example problem where the analytic solution is available. Then we consider 

another case where heat flux solution contains discontinuities and sharp corners. Toward 

this end, both function estimation and parameter estimation are used for the inverse 

calculations. We also consider the case where the sensor temperatures have measurement 

errors. The accuracy of the computational solution is then discussed. 

 

4.1.2.1 Example problem 1 

Direct problem 

Solutions to the diffusion equation (the Fourier equation) 

02

2

=
∂
∂

−
∂
∂

x
T

t
T α        (4.1.6) 

are obtained in the spatial interval 0.11.0 ≤≤ x , with boundary conditions 


















−−==

∂
∂ tc

x
T 2

2
exp)05.0sin(22 παππ  at x=0.1                       (4.1.7a) 

and  

 2=T   at x=1                (4.1.7b) 
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Initial conditions are chosen to be 

)5.0cos(42 xxT π+=        (4.1.8) 

This problem has the following exact analytic solution [Fletcher, 1991]: 


















−+= txxT

2

2
exp)5.0cos(42 παπ .    (4.1.9) 

First, the direct problem of the above example is solved. For this purpose, the Galerkin 

finite element method is used to discretize with linear elements. The FEM calculations 

are then compared to the exact analytic solution (Eq.4.1.9). Note that assessing the 

accuracy of the FEM calculations is not the objective of the present research. However, 

we use the FEM calculations for computing the sensitivity coefficients for both the 

regularization method and the SVD. The truncation error and the round-off error of the 

FEM calculations may cause a significant error to the inverse calculations. Thus, the 

FEM calculations should have a good agreement with the exact analytic solutions for the 

accurate calculations of the inverse problem. In the FEM calculations, we use ∆t=0.01, 

∆x=0.1, and α =1 to compute the temperature distribution in the above example problem. 

We utilize the following RMS error to assess the accuracy of the FEM calculations: 

2/1

1

2
,, /)( 
















−= ∑

=

NTTRMS
N

i
computedianalyticierror             (4.1.10) 

where N is the number of nodes, Ti,analytic is  the temperature for the analytic solution 

(Eq.4.1.9), and Ti,computed is the computed temperature. At t=2s, the RMS error is 

410368.4 −× . Thus, the FEM calculations with ∆t=0.01 and ∆x=0.1 are considered to be 

accurate enough to be utilized for the inverse calculations.   
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Inverse problem 

We utilize the above direct problem for formulating the inverse calculations and 

assessing the accuracy. First, we assume that the boundary condition at x=1 is not 

specified. However, the temperatures (sensor temperatures) in the interior domain are 

specified using the analytic solution (Eq.4.1.9). Then, the heat flux at x=1 is found using 

the inverse calculations. 

The mesh discritization (∆t=0.01 and ∆x=0.1) is the same as the one used in the 

direct problem. Sensor temperatures are located at x=0.1, 0.4, and 0.7, which are 

specified at every 0.1 seconds. The sensor temperatures are computed using the analytic 

solution (Eq.4.1.9). The final time is set at t=2s. Therefore, the total number of sensor 

temperatures in the inverse calculations is 60 ( 320× ) points. We also examine the case 

where the sensor temperatures have measurement errors. We assume that the 

measurement errors of the sensor temperatures follow a normal distribution N(T,σ). Thus, 

the sensor temperatures are determined using Eq.(4.1.2). The standard deviation σ is set 

at σ=0.01 in the inverse calculations. The heat flux at x=1 is computed using the 

temperature (Eq. 4.1.7b) at x=1, the initial temperatures (Eq.4.1.8), and the sensor 

temperatures located at x=0.1, 0.4, 0.7. To this end, we use the regularization method and 

the SVD along with the function estimations and the parameter estimations. The accuracy 

of the heat flux solutions are then assessed using the analytic solution shown in 

Eq.(4.1.7a). 
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Function estimation and parameter estimation 

There are two methods for estimating the inverse solutions: a parameter estimation and a 

function estimation approach. The function estimation is the method that has no use of 

functions. In other words, the function estimation is an estimation approach in an infinite 

dimensional space of functions. Therefore, the function estimation is time-consuming and 

computationally expensive, but often accurate. On the other hand, in the parameter 

estimation, functions such as polynomial functions are used for approximating the 

solution. In general, the parameter estimation is expressed in the following linear form: 

)()(
1

tCPtg
N

j
jj∑

=

=                 (4.1.11) 

where Cj(t), j=1,….,N are known trial functions. The N unknown parameters Pj , j=1, …., 

N, are estimated in the inverse calculations. In the parameter estimation, appropriately 

chosen trial functions are required to obtain an accurate solution; however, the 

calculation time and computer’s memory usage is drastically reduced.  

We use four approaches to estimate the heat flux solutions in the above example 

problem. 

 

Approach 1. Function estimation (200unknowns) 

No function is assumed prior to the calculations. Therefore, each time step has a different 

heat flux. Since the number of time step is 200, we find 200 unknown heat fluxes in the 

following manner: 

  q1   for 01.00 ≤≤ t  

  q2   for 02.001.0 ≤≤ t  

  M   
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  q200   for 0.299.1 ≤≤ t  

 

 Approach 2. Function estimation (20 unknowns) 

To reduce the calculation time and also stabilize the inverse calculations, the number of 

unknown parameters in approach 1 is reduced to 20 using the following assumption: 

q1 =q2=q3=….=q10    for 1.00 ≤≤ t  

q11 =q12=q13=….=q20    for 2.01.0 ≤≤ t  

   M  

q191 =q192=q193=….=q200   for 0.29.1 ≤≤ t  

 

Approach 3. Parameter estimation (Cubic polynomial approximation) 

Polynomial functions are well-known trial functions to approximate solutions for any 

engineering problems. Ozisik (1993) used the cubic polynomial function to approximate 

the temperature distribution for the integral methods of the direct heat conduction 

problem. His experience has shown that there is no significant improvement in the 

accuracy of the solution to choose a polynomial greater than the fourth degree. However, 

when the solution contains discontinuities and sharp corners, the polynomial functions 

may not be a proper choice for approximating the solution. The reason is obvious. We 

use the following cubic polynomial representation to approximate the heat flux solutions: 

3
4

2
321 tqtqtqqq ×+×+×+=               (4.1.12) 

where t is time. The parameters, q1, q2, q3, q4, are found using the inverse calculations. 
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Approach 4. Parameter estimation (Prior knowledge of the function) 

This time, we assume that the form of the function for the analytic solution is known 

prior to the inverse calculations. Since the analytic solution is available in Eq. (4.1.7a), 

we use the exponential equation for an approximate solution. Thus, the parameters (q1, 

q2, q3) are estimated in the following equation: 

)exp( 321 tqqqq ×+=                 (4.1.13) 

This equation is not a linear form of the parameter estimation shown in Eq. (4.1.11) 

because two unknown parameters coexist in the second term in the right hand side of Eq. 

(4.1.13). This second term causes the nonlinearity of the inverse calculations. Note that 

based on the definition of the nonlinear inverse problem, the sensitivity coefficients have 

some functional dependence on unknown parameters q. The sensitivity coefficients are 

computed as 
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the change of q2 varies with the value of q3. Thus, the sensitivity coefficient Ji2 is 

dependant on the value of q3. Similarly, the sensitivity coefficient Ji3 is dependant on the 

value of q2. Hence, the parameter estimation with Eq. (4.1.13) will be a nonlinear inverse 

problem. In the nonlinear problem, the SVD is not applicable since the SVD is utilized 

only for the linear inverse problem. 
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Results for example problem 1 

Results with no input error  (σ=0) 

First, we consider the case where the sensor temperatures are the same as the 

exact analytic solutions (Eq.4.1.9) (σ=0). Figure 4.1.7a shows the heat flux solution using 

the regularization method for the function estimations (Approach 1 and Approach 2) and 

the parameter estimations (Approach 3 and Approach 4). Figure 4.1.7b shows the 

corresponding percentage errors to the analytic solution. The function estimation with 

200 unknowns (Approach 1) is less accurate than the one with 20 unknowns (Approach 

2). Too many unknown parameters are considered to make the calculations unstable. We 

also find that the parameter estimation with the exponential function (Approach 4) has 

the best accuracy, and the cubic polynomial function has moderate accuracy (Approach 

3). 

Figure 4.1.8a shows the heat flux solution using the SVD. Figure 4.1.8b shows the 

corresponding percentage errors to the analytic solution. Note that the SVD with the 

exponential function (Eq.4.1.13) is not applicable (See section of Approach 4). Similar to 

the results of the regularization method, the parameter estimation with the cubic 

polynomial function is better than the function estimations.  

Table 4.1.5 shows the sum of the square errors for each approach of solution with 

respect to the regularization method and the SVD. The sum of the square errors is 

calculated as 

2

1
, ])([)( ∑

=

−=
M

j
analyticjj qqS αα                (4.1.14) 

where M is the number of the time step, qj,analytic is the analytic heat flux, and qj(α) is the 

computed heat flux. As seen in Table 4.1.5, the accuracy of the heat flux solutions for the 
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SVD is largely the same as the regularization method. Thus, the SVD is comparative to 

the regularization method when there is no measurement error at the sensors. 

 

Results with input data noise σ=0.01 

In this case, the sensor temperatures have measurement errors of σ=0.01. Figure 

4.1.9a shows the heat flux solution using the regularization method. Figure 4.1.9b shows 

the corresponding percentage errors to the analytic solution. Figure 4.1.10a shows the 

heat flux solution using the SVD. Figure 4.1.10b shows the corresponding percentage 

errors to the analytic solution. Table 4.1.6 shows the sum of the square errors for each 

approach of solution with respect to the regularization method and the SVD. As seen 

from Fig. 4.1.10a, the heat flux solution of the function estimation with 200 unknowns 

(Approach 1) in the SVD exhibits oscillatory behavior. The SVD is comparative to the 

regularization method when the parameter estimation with the cubic polynomial function 

(Approach 3) and the function estimation with 20 unknowns (Approach 2) are used. The 

function estimation with 20 unknowns (Approach 2) works better than 200 unknowns 

(Approach 1) in both the regularization method and the SVD. In addition, the parameter 

estimations are more accurate than the function estimations.  

Figure 4.1.11 shows the error indicators that show the optimal regularization 

parameter. Figure 4.1.12 shows the discrepancy principle (DP) for the SVD to choose the 

optimal singularity threshold. Note here that the vertical axis means the error indicator, 

but not the true errors. The minimum point of each curve shows the optimal 

regularization parameter or the optimal singularity threshold chosen by the each method. 

The accuracy of the each calculation is assessed and compared using the analytic 
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solution. As seen from Fig.4.1.11, the regularization parameters at the minimum points of 

discrepancy principle (DP) and the OCV are located close to that of the analytic solution. 

Thus, the discrepancy principle (DP), the OCV, and the GCV are the best methods to 

choose the optimal regularization parameter. The minimum point of the variance based 

on the maximum likelihood method indicates that α=1x10-5 is an optimal parameter. 

However, this value is much smaller than that of the analytic solution. The regularization 

parameters selected by ML(α), and its variance, MLvariance(α), are smaller than the 

optimal regularization parameter. As for the singularity threshold (Fig. 4.1.12), the 

minimum points of the DP are located at τ<2.5x10-1, which match well with the analytic 

solution. Similar results are found for other cases for the regularization parameters and 

the singularity threshold values. 

 

4.1.2.2 Example problem 2 

 
We then consider the case where the heat flux solution contains discontinuities 

and sharp corners. We use the same geometry as in the example problem 1. This time, 

however, no exact analytic solution is available. We consider the diffusion equation 

(Eq.4.1.6) in the spatial interval 0.11.0 ≤≤ x  with the following boundary conditions: 
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Initial conditions are 
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  2=T                    (4.1.16) 

First, we solve the above direct problem using the FEM calculations. Because the exact 

analytic solution of this problem is not available, we cannot assess the accuracy of the 

FEM calculations. But we verified that our FEM calculations were accurate in the 

example problem 1. In addition, we choose the same discritization (∆t=0.01, ∆x=0.1, and 

α =1) as in the example problem 1. Therefore, the temperature distribution obtained by 

the FEM calculations is considered accurate.  

In the inverse calculations, the problem formulation is the same as the example 

problem 1. That is, we assume that heat flux distribution at x=0.1 is not specified prior to 

the calculations. However, the sensor temperatures at x=0.1, 0.4, 0.7 are specified every 

0.1 seconds. In this case, the sensor temperatures are found by the FEM calculations 

since the exact analytic solution is not available. We use the temperature (Eq.4.1.15b) at 

x=1, the initial temperatures (Eq.4.1.16), and the sensor temperatures for our inverse 

calculations. Then the heat flux at x=0.1 is found by the regularization method and the 

SVD. We use the same approaches for estimating the solution as in the example problem 

1, which are Approach 1 and 2 for function estimations and Approach 3 for the parameter 

estimation.  

 

Results for example problem 2 

Figure 4.1.13 shows the heat flux solution for the regularization method with no 

input error (σ=0). The figure shows that the function estimations (Approach 1 and 2) are 

superior to the parameter estimation (Approach 3). Since the analytic heat flux solution 

(Eq. 4.1.15a) contains discontinuities and sharp corners at t=0.7 and 1.3, it is 
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mathematically impossible to obtain an accurate solution if the cubic polynomial function 

is utilized.  Tables 4.1.7 and 4.1.8 show the sum of the square errors for the each 

approach in σ=0 and σ=0.01 respectively. The regularization method is comparative to 

the SVD in all of the solution approaches except for the function estimation with 200 

unknowns with the noisy sensor temperatures (σ=0.01). This result holds true for the 

example problem 1. We also examine the error indicators for the optimal regularization 

parameter and the discrepancy principle (DP) for the singularity threshold. The similar 

results to the example problem 1 are found. 

 

4.1.3 Heat flux for 3-D spray cooling of electronic components 

 With the knowledge gained above and the regularization inverse algorithm, we 

have studied the inverse heat transfer that occurs during the cooling of a microchip by a 

liquid droplet stream sprayed from a nozzle above the microprocessor. Microthermal 

sensors were embedded in the microprocessor package at various locations, and readings 

are recorded (Figure 4.1.14). The details of the design and experimental setup are given 

in a recent paper [Schwarzkopf et al., 2004]. The boundary conditions are as follows: 
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where h is a heat transfer coefficient. With the measurements and locations known, the 

above inverse heat transfer scheme is then applied to determine the heat flux distribution 

over the surface (4.2mm<x,y<16.8mm, z=0.15mm) upon which the droplet sprays are 

impinged. The inverse heat transfer model is 3-D. The FEM mesh used in the calculation 

is shown in Figure 4.1.15. Approximately 30 temperature points are measured in each 

case. The heater is located in 8.4mm<x,y<12.6mm, at z=0mm. Note that the number of 

sensors and the rate of the heat capacity of the heater vary with the cases. One hundred 

unknown parameters for the heat flux are computed in inverse calculations. For this 

practical problem, the Levenberg-Marquardt method is not applicable because the proper 

values of ∆0 and λ cannot be estimated. The regularization method and the SVD method 

are utilized to find the heat flux distribution on the cooling surface. Results from the 

regularization method and the SVD method, with both the regularization parameter α and 

the singularity threshold τ determined using the discrepancy principle (DP), give the 

same heat flux distribution. Figure 4.1.16, for example, shows the scheme to choose the 

singularity threshold. The singularity threshold corresponding to the minimum point is 

chosen as an optimal parameter. One typical heat flux distribution calculated by this 

algorithm is shown in Figure 4.1.17a.  Figure 4.1.17b shows a comparison of the 

experimentally measured and inversely computed results for temperature distribution at 

the centerline.  

 

4.2 INVERSE DESIGN SOLIDIFICATION PROBLEMS 

The regularization method is implemented for the inverse design of solidification 

processes. The design problem is set up to find optimal heat flux solutions for controlling 
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the solid-liquid interface. The inverse steady-state solidification problems are first 

discussed and solved using the function estimation analysis. Then, the inverse transient 

solidification problems are solved with the parameter estimation approach. 

4.2.1 Steady-state solidification problems 

The direct and inverse algorithms described above enable the prediction of solid-

liquid interface shape for a set of given boundary conditions and of the heat flux 

distribution along the boundaries for a prescribed interface movement. We consider a 

steady-state solidification problem with natural convection in a square cavity. We test 

four different cases using the material properties shown in Table 4.2.1. The cavity 

geometry and the mesh discretization are shown in Fig. 4.2.1. In addition, gravity force, 

9.8 m/s2, is applied downward.  

 

Case 1. Direct Problems 

Let us first consider a simple case where solidification occurs in a square cavity 

( mx 02.00 ≤≤ , my 02.00 ≤≤ ) under the prescribed conditions along the wall. Quadrilateral 

linear elements, 4422× , are used in each solid region and liquid region (Figure 4.2.1). 

The cavity is thermally insulated at the top and bottom.  The left wall is fixed at a 

constant temperature (T=2280K) above the melting point (Tm=2243.15K), while the right 

side wall is fixed at T=2220K. Figures 4.2.2 illustrate the quasi-steady state velocity and 

temperature fields in the cavity. For this problem, it is shown that the moving interface is 

strongly affected by the convection in the cavity. If the natural convection were not 

present, a vertical solidification front would have been achieved.  
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Case 2. Inverse calculation: prescribed vertical interface 

In this case, the location of the solid-liquid interface is specified as a vertical 

straight line. The interest is in the prediction of heat flux distribution required to achieve 

this interface. Boundary conditions are the same as those in Case 1 except for the heat 

flux at the right side. Theoretically, this means that heat flux distribution is designed and 

tuned such that the effect of natural convection on solid-liquid interface is eliminated. 

The inverse computational model described above is used to obtain the desired heat flux 

distribution at the right side wall. More specifically, we use the regularization method 

along with the appropriately selected regularization parameter using the L-curve method. 

For this problem, the interface position is set at x= 0.01m from the left wall. We use the 

proposed finite difference scheme (Eq. 3.3.20) for computing the sensitivity coefficients 

in this case. Since this problem is a nonlinear regularization problem, convergence rates 

of the calculations are investigated, which are shown in Figure 4.2.3. We use the 

following norm of error of the solidification distance as a convergence criterion: 
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where Sl is the norm of error of the solidification distance, di is the calculated 

solidification interface distance, id  is the ideal solidification interface distance, and M is 

the total number of controlled solidification distance. The figure shows that the smaller 

the regularization parameters are, the slower but more accurate the convergence is. The 

figure also shows that after the third iteration, the reduction in norm of error is slower. 

Thus, we consider that the inverse calculation reaches its convergence in the first three 



72 

iterations. To determine the appropriate parameter α for this problem, simulations are 

made to generate the L-curve plots following the procedures described in section 3.3.3. 

Figure 4.2.4 plots the L-curve, which clearly shows a turning point in the error chart. 

Corresponding to the turning point is the optimal α for this problem. Thus, the 

regularization parameter α of 5 x 10−20 is chosen for an optimal regularization parameter.  

Figures 4.2.5a and 4.2.5b show the inversely calculated heat flux distribution and the 

percentage error distribution of solidification distance for this problem. Heat fluxes found 

in the regularization parameter are considered to be accurate, because the percentage 

errors of solidification distance are very small, which are within ± 0.2%. The predicted 

heat flux distribution varies strongly from the bottom to the top. The temperature 

distribution and fluid flow field calculated by this heat flux distribution are plotted in 

Figures 4.2.5c and 4.2.5d.  It is shown that a vertical solid-liquid interface is achievable 

and the natural convection effect is balanced by the inversely determined heat flux 

distribution.   

 

Case 3: Inverse calculation: prescribed sine curve 

As another example, a solid-liquid interface is specified as a sine curve shown in 

Figure 4.2.6. We first compare the proposed finite difference scheme (Eq. 3.3.20) to the 

conventional finite difference scheme (Eq. 3.3.16) for computing the sensitivity 

coefficients. Figures 4.2.7a and 4.2.7b show the convergence rate for two methods: (a) 

the conventional finite difference scheme with λ=0.01 and (b) the proposed finite 

difference scheme with ε=0.01. The figures show that the convergence rate for the 

conventional method is unstable and less accurate than the one for the proposed method. 
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The regularization parameter α of 5 x 10−20 is chosen as an optimal regularization 

parameter using the L-curve method for the proposed finite difference scheme (Fig. 

4.2.8). The calculated heat flux distribution along the right side wall is depicted in Figure 

4.2.9a. The heat flux is distributed in a wide range, and there are four points at which the 

heat flux is crossing zero. This heat flux distribution is considered causing the unstable 

and inaccurate convergence for the conventional finite difference scheme (Figure 4.2.7a). 

Figure 4.2.9b shows the percentage errors between the calculated and prescribed 

solidification distance. It is shown that the percentage error between the prescribed 

solidification distance and the calculated solidification distance is within ± 0.15%.  This 

percentage error is largely the same as in the case2. The calculated fluid flow and 

temperature distribution using the inversely determined heat flux distribution are given in 

Figures 4.2.9c and 4.2.9d.  These figures show that the solid and liquid regions are 

separated with the prescribed sinuous interface, and our calculated heat flux distribution 

is feasible to control the solid-liquid interface. 

 

Case 4: Inverse calculation: prescribed sharp sine curve 

We prescribed another sinuous solid-liquid interface (Figure 4.2.6). This time, the 

frequency of the sine curve is double of that of the case 3. That is, this curve has sharper 

bending curve than that in the case3. First, we study the convergence rate (Figure 4.2.10) 

with respect to different values of the regularization parameter using the proposed finite 

difference scheme. When the regularization parameter is less than 1x10-18, the 

convergence of the inverse calculation becomes unstable. One of the reasons of the 

unstable convergence stems from the infeasible heat flux solution. Figure 4.2.11 shows 
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the temperature distribution obtained by using the heat flux solution at the second 

iteration of α=1x10-18. This figure shows that the temperature distribution above the 

melting point (Tm=2234.15K) is observed in the solid region (right side). Since we 

specified in the FEM code that the right side is a solid region, this temperature 

distribution is not acceptable. That is, the heat flux solution in the calculation is not 

practical. This unpractical heat flux distribution is used in the next iteration (third 

iteration) for calculating the sensitivity coefficients. The calculation results in 

discontinuous sensitivity coefficients. Figure 4.2.12 shows that the sensitivity coefficients 

Ji,20 in the second iteration of α=1x10-17 and 1x10-18. Note that the sensitivity coefficient 

Ji,20 is derived as
20

20, q
dJ i

i ∂
∂

=  where q20 is heat flux located at y=8.864x10-3m in the right 

wall, and di is controlled parameter (solidification distance). There are the discontinuous 

sensitivity coefficients for α=1x10-18, whereas the sensitivity coefficients for α=1x10-17 

are continuous. The same holds true for other sensitivity coefficients. The unpractical 

heat flux solution leads to the discontinuous values, and ultimately to the unstable 

convergence for α=1x10-18. Figure 4.2.13 shows the L-curve plots. These plots do not 

form the L-curve shape. Thus, we cannot use the L-curve method to select the optimal 

regularization parameter. We select the regularization parameter α of 5x10-18, where the 

sum of the square errors of the solidification distance is minimum. The calculated heat 

flux distribution along the right wall is depicted in Figure 4.2.14a. Figure 4.2.14b shows 

the percentage errors between the calculated and prescribed solidification interface 

distance. The maximum percentage error, 1.5%, in this case is ten times lager than in 

case3. This shows that the sharp bending curve for the prescribed solid-liquid interface is 
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more difficult for the inverse algorithm to control than the case where the slowly bending 

curve is specified. The calculated fluid flow and temperature distribution using the 

inversely determined heat flux distribution are given in Figure 4.2.14c and 4.2.14d.  

These figures show that the heat flux solution is feasible to obtain the prescribed sinuous 

solid-liquid interface. 

 

4.2.2 Transient solidification problems 

In this section, an inverse design of solidification processes with natural 

convection is solved to find the optimal heat flux solution for the solid-liquid interface 

specified to move at a constant velocity. The regularization method along with the L-

curve method is implemented for the inverse design solidification problem.  

We address the direct transient solidification problem with convection and briefly 

discuss the effects of convection on the solid-liquid interface (Sec. 4.2.2.2). Finally, we 

consider the inverse design of solidification processes (Sec. 4.2.2.3). In particular, the 

initial conditions of the transient solidification problem is obtained using the inverse 

steady-state solidification problem without convection (Sec.4.2.2.1) 

In the direct and inverse problems, we consider a solidification process for pure 

aluminum confined in a square mold ( mx 02.00 ≤≤ , my 02.00 ≤≤ ). The properties of 

aluminum are shown in Table 4.2.2. Quadrilateral linear elements, 4422× , are used in 

the solid and liquid phases (Figure 4.2.1).  

 

4.2.2.1 The inverse steady-state solidification problem without convection 
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First, the inverse steady-state solidification problem without natural convection is 

solved. The cavity is thermally insulated at the top and bottom.  The left wall is fixed at 

T=1220K above the melting temperature (Tm=933K). The gravity force is not applied. 

The locations of the desired solid-liquid interface for the case 1 and case 2 are specified 

in Figure 4.2.15. We find the optimal heat flux solution on the right wall required to 

achieve the prescribed solid-liquid interfaces. The direct problem is then solved to find 

the temperature distributions (Figure 4.2.16). These temperature distributions will be 

used for the initial conditions for the transient solidification calculations. 

 

4.2.2.2 The direct problem for transient solidification processes with convection 

The direct problems for transient solidification processes were studied extensively 

in [Shu et al., 2002; Li et al., 2003; Song et al., 2002]. Our objective to present the direct 

problem in this paper is to see how much the initial vertical straight solid-liquid interface 

moves and deforms at a certain time by the effect of natural convection. The initial 

temperatures are given in Figure 4.2.16a. Thus, the solid-liquid interface for the initial 

state is located at x=0.015 vertically. The top and bottom walls are kept adiabatic. The 

temperature of the left wall is fixed at 1220K, which is above the freezing temperature 

(Tm=933K). The right side wall is imposed with heat extraction (q=-4x106 W/m2), which 

will cause the solidification to occur. The gravity force, 9.8m/s2, is applied downward. A 

constant time step ∆t=0.02s is selected with the final time of 0.6s. Figure 4.2.17 shows 

the velocity distribution at t=0.6s. For this problem, it is seen that the solid-liquid 

interface at t=0.6s is strongly affected by the convection in the cavity. If the natural 
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convection were not present, a vertical solidification front would have been achieved. We 

also see that solidification occurs, and the solid-liquid interface moves leftward. 

 

4.2.2.3 The inverse design of solidification processes 

We tested two cases for the inverse design of solidification processes. In the case 

1, the initial solid-liquid interface is a vertical straight line located at x=1.5E-2. The case 

2 has a sinuous solid-liquid interface in the initial state shown in Figure 4.2.15. Initial 

temperatures in the case 1 and case 2 are given in Figure 4.2.16a and 4.2.16b, 

respectively. The top and bottom walls are kept adiabatic. The temperature of the left 

wall is fixed at 1220K. In addition to the above initial and boundary conditions, we also 

desire that solidification occurs with the prescribed growth conditions where a desired 

solid-liquid interface moves leftward with a prescribed constant velocity, 1.17x10-2m/s. 

To this end, we specify the every node points at the solid-liquid interface in every 0.04 

seconds for our inverse calculations. Note that the interfacial velocity must be constant 

for a non-uniform microstructure in the final casting. The gravity force, 9.8m/s2, is 

applied downward. A constant time step ∆t=0.02s is selected with the final time of 0.6s. 

Our interest is to find the optimal heat flux distribution on the right wall in order to obtain 

a prescribed solid-liquid interface. To evaluate the accuracy of our inverse algorithm, the 

standard deviation is utilized in the following equation: 

( )
2
1

2

1




















−

=
∑

=

M

dd
M

j
ijij

iσ        (4.2.2) 



78 

where M is the number of controlled solidification distance for space. First, we use the 

parameter estimation with fourth order polynomial functions for time, t, and space, y. We 

also use the technique of scaling (See section 3.3.5). Thus, the approximate heat flux 

solution is  
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The parameters, q1, q2, q3, q4, q5, q6, q7, q8, q9, are found in the regularization method 

with the L-curve method. If this inverse problem were solved in the function estimation 

(without using the function approximation), the number of unknowns would be 1,320 

because there would be 44 unknowns for space and 30 unknowns for time. Thus, the 

parameter estimation with the polynomial function results in the significant reduction of 

the calculation time and computer memory.  

We first examine the convergence for the non-linear regularization method. 

Figure 4.2.20 shows the convergence rates with respect to different values of the 

regularization parameter. Two iterations are enough for the regularization method to 

converge the calculations. Figure 4.2.19 shows the L-curve plots for this problem. There 

is a convex point located at α=1x10-22. Thus, we select 1x10-22 as an optimal 

regularization parameter. Figure 4.2.20 shows that the heat flux solution using α=1x10-22. 

Figure 4.2.21 is the standard deviation σ (Eq. 4.2.2) in each time step by using the heat 

flux solution. As seen from the figure, the error reaches the lowest point at t=0.28 and 

then shoots up until final time. Figure 4.2.22 shows the percent errors of the solidification 

distance at t=0.6s. The maximum percent error at t=0.6s is 5 %. Since only nine unknown 
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parameters for the polynomial functions are solved, the heat flux distribution (Figure 

4.2.20) found by the regularization method is a smooth and simple curve. To control the 

solid-liquid interface accurately, more complex curve of the heat flux distribution needs 

to be obtained. To this end, we use the sequential method and the whole time-domain 

method with the piecewise polynomial functions. These two methods make the inverse 

calculations more accurate, but time-consuming. 

 

4.2.2.4 Sequential method 

Due to the diffusion time between the boundary and the interface, it is critical to 

choose appropriate time domain for the sequential method. After doing numerical 

experiments, we found that 0.2 seconds was enough time to calculate the optimal heat 

flux solution. Thus, we divide the time domain into three parts. The first time domain 

ranges from 0 to 0.2s followed by the second time domain ( sts 4.02.0 ≤≤ ) and the third 

time domain ( sts 6.04.0 ≤≤ ). Each domain is calculated independently by using the 

regularization method. Thus, three calculations of the regularization methods are solved 

in a sequential manner. At the boundaries of the time domains (t=0.2s and 0.4s), the 

temperature and velocity distributions are carried over to the next time domains. That is, 

the temperature and velocity distributions at t=0.2s calculated in the first time domain are 

used for the initial conditions in the second domain. The same holds true for the 

conditions at t=0.4s for the second and third time domains. The following fifth-order 

scaled polynomial functions for time and space are used to find the optimal heat flux 

distribution: 
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where 02.00 ≤≤ x , 2.00 ≤≤ t . Nine unknown parameters, q1, q2, q3, q4, q5, q6, q7, q8, q9, 

are computed in the inverse calculations for the each time domain. Thus, totally 36 

unknown parameters are solved in the sequential method. 

 

4.2.2.5 Whole time-domain method with piecewise polynomial functions 

The piecewise polynomial functions are used to find the optimal heat flux 

solution. In the whole time-domain method, the following scaled piecewise polynomial 

functions are used:  
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where 02.00 ≤≤ x , 
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In the above equation, 36 coefficients of the polynomial function, q1, q2, …., q36, are 

solved by the regularization method. Note that we use the same-scaled function as in the 

sequential method using Eq. (4.2.4). Thus, when the whole time-domain method is 

compared to the sequential method, the effect of scaling is neglected. 

 

4.2.2.6 Convergence rate 
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We first examine the convergence for the sequential method and the whole time-

domain method of the calculations of the regularization method. Figures 4.2.23 and 

4.2.24 show the convergence rates for the first time domain in the case 1 for the 

sequential method and for the whole time-domain method with the piecewise polynomial 

function, respectively. In the sequential method, the calculations of the regularization 

method reach the convergence in the second iteration. The whole time-domain method 

needs as little as three iterations to reach the convergence. 

 

4.2.2.7 L-curve method 

To find an optimal regularization parameter, the L-curve method is used for our 

calculation. Figure 4.2.25 shows the L-curve plots for the first time domain of the 

sequential method in the case 1. Figure 4.2.26 shows the L-curve plots for the whole 

time-domain method with the piecewise polynomial function in the case1. These figures 

show the turning points, which are considered the optimal regularization parameters. The 

regularization parameters, α=1x10-24 and 1x10-25, are selected in the sequential method 

and the whole time-domain method, respectively. For other cases, the L-curve plots are 

also taken, and the optimal regularization parameters are chosen in the same manner.  

 

4.2.2.8 Optimal heat flux solutions  

Using the optimal regularization parameter found in the L-curve method, the 

optimal heat flux solutions are found for the case 1 and case 2 in both the sequential 

method and the whole time-domain method with the piecewise polynomial function. 



82 

Figures 4.2.27a and 4.2.27b show the optimal heat flux solutions in the case 1 for the 

sequential method and the whole time-domain method. These heat flux solutions are 

almost identical. Figures 4.2.28a and 4.2.28b show the optimal heat flux solution in the 

case 2 for the sequential method and the whole time-domain method. As seen from the 

figures, the heat flux solution for the whole time-domain method is almost identical to the 

heat flux solution for the sequential method. Since we divide the time domain for the heat 

flux solution into three parts, we have non-smooth functions with kinks for the heat flux 

distribution at the boundaries of the time domain (t=0.2s, 0.4s).  

 

4.2.2.9 Validation of the inverse design solutions and comparison of the sequential 

method and the whole time-domain method 

Figures 4.2.29 (a) and (b) show time history of the standard deviation σ (Eq. 

4.2.2) for the error of the solidification distance in the case 1 and case 2, respectively. 

The standard deviation in the earlier time stage of each time domain (t=0.2,0.4s) is found 

to be less accurate in the sequential method. This is because the heat flux on the right 

wall diffuses toward the solid-liquid interface, and the diffusion time is required for a 

thermal front to penetrate the solid domain and reach the solid-liquid interface. Thus, it is 

physically difficult to control the solid-liquid interface immediately after the initial time. 

The error of the whole time-domain method with the piecewise polynomial functions is 

more damped and slightly accurate than that of the sequential method. Overall, the 

standard deviations for the error of distance in both the sequential and the whole time-

domain method are small enough to consider that our inverse algorithm is reasonably 

accurate to control the solid-liquid interface. Figures 4.2.30 is the percent errors of the 



83 

solid-liquid distance at t=0.6 for the sequential method for case1. The percent errors of 

the sequential method are ten times smaller than in the whole time-domain method with 

nine unknowns (Figure 4.2.22). Figure 4.2.31 shows percent errors of the solidification 

distance at t=0.6 for the whole time-domain method in the case 2. The percent errors are 

less than 1%. Figures 4.2.32 and 4.2.33 show the velocity and temperature distributions at 

t=0.2, 0.4, 0.6 in the case 1 and case 2 for the sequential method by using the optimal 

heat flux distributions. The cold temperature distributions are shown at the upper right 

corner to eliminate the effect of natural convection. We also find that the solid-liquid 

interface moves leftward at a constant velocity as we specified in our calculation. 
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Figure 4.1.1. Illustration of the 2-D inverse heat conduction problem. 
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Figure 4.1.2. Inverse calculations for the 2-D heat conduction problems: (a) Error 
indicators vs. optimal regularization parameter, (b) L-curve method for 
optimal regularization parameter and (c) discrepancy principle 
determination of the singularity threshold for truncated SVD method. 
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Figure 4.1.3. Dependence of inversely calculated heat flux distribution on the distribution 

of sensor locations: (a) randomly spread sensors, and (b) specially 
organized sensors 
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Figure 4.1.4. Schematic of concentric problem with over-specified boundary conditions. 
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Figure 4.1.5. Inverse calculations for over-specified heat conduction in a concentric 
geometry: (a) Error indicator vs. optimal regularization parameter (b) L-
Curve method and (c) Discrepancy principle determination of the 
singularity threshold for the truncated SVD method. 

 
 

α=3.64E-3



90 

0 1 2 3 4 5 6
Circumferential location (Radians)

-10

-5

0

5

10

15
P

er
ce

nt
er

ro
r(

%
)

Sensor temperatures
Inner temperatures
Inner heat fluxes

 
(a) 

 

0 1 2 3 4 5 6
Circumferential location (Radians)

-15

-10

-5

0

5

10

15

20

P
er

ce
nt

er
ro

r(
%

)

Sensor temperatures
Inner temperatures
Inner heat fluxes

 
(b) 



91 

0 1 2 3 4 5 6
Circumferential location (Radians)

-10

-5

0

5

10

15

P
er

ce
nt

er
ro

r(
%

)

Sensor temperatures
Inner temperatures
Inner heat fluxes

 
(c) 

 
 

Figure 4.1.6. Comparison of the inverse calculations by the regularization and truncated 
SVD methods: (a) Percent errors for the Levenberg-Marquardt method (b) 
Percent errors for the regularization method and (c) Percent errors for the 
truncated SVD. 
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Figure 4.1.7. Inverse calculations for transient heat conduction (Example problem1 with 

σ=0) using the regularization method: (a) Heat flux solution. (b) Percentage 
errors of the heat flux 



93 

0 0.5 1 1.5 2
Time (s)

1

1.2

1.4

1.6

1.8

2

H
ea

tf
lu

x
(W

/m
2)

Exact solution
Approach 1
Approach 2
Approach 3

 
(a) 

0 0.5 1 1.5 2
Time (s)

-10

-5

0

5

10

15

P
er

ce
nt

ag
e

er
ro

r(
%

)

Approach 1
Approach 2
Approach 3

 
(b) 

 
Figure 4.1.8. Inverse calculations for transient heat conduction (Example problem1 with 

σ=0) using the SVD: (a) Heat flux solution. (b) Percentage errors of the 
heat flux 



94 

0 0.5 1 1.5 2
Time (s)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

H
ea

tf
lu

x
(W

/m
2)

Exact solution
Approach 1
Approach 2
Approach 3
Approach 4

 
(a) 

0 0.5 1 1.5 2
Time (s)

-30

-20

-10

0

10

20

P
er

ce
nt

ag
e

er
ro

r(
%

)

Approach 1
Approach 2
Approach 3
Approach 4

 
(b) 

 
Figure 4.1.9. Inverse calculations for transient heat conduction (Example problem1 with 

σ=0.01) using the regularization method: (a) Heat flux solution. (b) 
Percentage errors of the heat flux 
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Figure 4.1.10. Inverse calculations for transient heat conduction (Example problem1 with 

σ=0.01) using the SVD: (a) Heat flux solution. (b) Percentage errors of the 
heat flux 
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Figure 4.1.11. Error indicators for the 200 unknown 
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Figure 4.1.12. Discrepancy principle (DP) for the SVD for the 20 unknowns 
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Figure 4.1.13. Heat flux solution for the regularization method (Example problem 2, σ=0) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.14. Schematic of spray cooling of electronics. 
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Figure 4.1.15. The FEM mesh used for the analysis of the spray cooling. 
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Figure 4.1.16. Discrepancy principle determination of the singularity threshold for the 
truncated SVD method, which is used for the inverse prediction of heat 
flux distribution in spray cooling of electronics. 
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Figure 4.1.17. Inverse calculations of heat flux during spray cooling of electronics for 
different spray angles: (a) 3-D view of the heat flux on the cooling surface 
of the die and (b) Comparison of calculated and measured temperatures – 
dots: measurements and lines: inverse calculations. 
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Figure 4.2.1. The deforming FEM quadrilateral linear elements used in the example 
problem. 
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Figure 4.2.2. Direct solution of the solidification problem: (a) Velocity distribution. (b) 
Temperature distribution. The natural convection has a strong effect on the 
solidification interface shape. Boundary condition used: 2280 K at the left 
wall and 2220K at the right wall. The melting point is 2243.15 K. 
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Figure 4.2.3. Norm of error of the solidification distance versus the number of iteration 
for the regularization method with respect to the regularization parameters 
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Figure 4.2.4. L-curve plots for case2. The regularization parameter α of 5 x 10−20 is 

selected. 
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Figure 4.2.5.  Inverse solution of solidification problem for case2.  The interface position 
is prescribed as a vertical line at x=0.01. Other conditions are the same as in 
Figure 4.2.2.  (a) Inversely predicted heat flux distribution. (b) Percentage 
errors in interface positions. (c) Velocity distribution and (d) Temperature 
distribution. 
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Figure 4.2.6. Prescribed solid-liquid interfaces for case3 (x=-0.001cos(50π(y-0.02))+0.01)  and 
case4 (x=0.0005cos(100π(y-0.01))+0.0105).  
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Figure 4.2.7. Norm of error of the solidification distance versus the number of iteration 

with respect to the regularization parameters (a) The conventional finite 
difference scheme (b) The proposed finite difference scheme 
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Figure 4.2.8. L-curve for case 3 using the proposed finite difference scheme for the 

sensitivity coefficient. 
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Figure 4.2.9. Inverse solution of solidification problem for case3.  The interface position 
is prescribed as a sine curve (Figure 4.2.6 case3) Other conditions are the 
same as in Figure 4.2.2.  (a) Inversely predicted heat flux distribution. (b) 
Percentage errors in interface position. (c) Velocity distribution and (d) 
Temperature distribution. 
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Figure 4.2.10. Norm of error of the solidification distance versus the number of iteration 
with respect to the regularization parameters. 

 
 
 

  
 
 

Figure 4.2.11. Temperature distribution by using the heat flux solution at the second 
iteration of α=1E-18. The infeasible temperature distribution is observed 
in the right corner. 
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Figure 4.2.12. Sensitivity coefficients Ji,20 at the third iteration of α=1E-17, 1E-18. 
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Figure 4.2.13. L-curve plots for the case 3 using the proposed finite difference scheme for 
the sensitivity coefficient. 
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Figure 4.2.14 Inverse solution of the solidification problem for the case 4.  The interface 
position is prescribed as a sharp sine curve Other conditions are the same as 
in Figure 4.2.2.  (a) Inversely predicted heat flux distribution. (b) Error in 
interface position. (c) Velocity distribution and (d) Temperature 
distribution. 
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Figure 4.2.15. Prescribed locations for the solid-liquid interface in the case 1 and case2. 

Case1 is a vertical straight line (x=0.015). Case 2 is a sine curve (x=-
0.001cos(50π(y-0.02))+0.015). 
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Figure 4.2.16. Temperature distributions for the inverse steady solidification problem for 

(a) the case1 and (b) the case2. These temperature distributions will be 
initial conditions for the transient calculations. 

 
 

 
 
 
 

Figure 4.2.17. Velocity distribution at t=0.6s for the direct solidification problem. The 
initial solid-liquid interface was located at x=1.5E-2m vertically. 
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Figure 4.2.18. Convergence rates for the whole time-domain method with 9 unknowns in 
the case 1 
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Figure 4.2.19. L-curve plots for the whole time-domain method with 9unknows. 
α=1Ε−22 is selected for the optimal regularization parameter. 
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Figure 4.2.20. Heat flux solution using the whole time-domain method with 9 unknowns 
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Figure 4.2.21. Standard deviation for the whole time-domain method with 9 unknowns 
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Figure 4.2.22. Percent errors of the solidification distance at t=0.6 for the whole time-

domain with 9 unknowns 
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Figure 4.2.23. Convergence rate for the first time domain in the case 1 for the sequential 
method 
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Figure 4.2.24. Convergence rates for the case 1 for the whole time-domain method 
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Figure 4.2.25. L-curve plots for the first time domain in the case 1 for the sequential 
method. The regularization parameter α=1Ε−24 is selected for the 
optimal solution. 
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Figure 4.2.26. L-curve plots for the case 1 for the whole time-domain method. The 
regularization parameter α=1Ε−25 is selected for the optimal solution. 
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Figure 4.2.27.Optimal heat flux solutions in the case 1 for (a) the sequential method and 
(b) the whole time-domain method with the piecewise polynomial 
function.  
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Figure 4.2.28. Optimal heat flux solution in the case 2 for (a) the sequential method and (b) the 

whole time-domain method with the piecewise polynomial function 
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Figure 4.2.29. Standard deviations σ (Eq.4.2.2) for the error of the solidification distance for (a) 

the case 1 and (b) the case 2 
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Figure 4.2.30. Percent errors of the solid-liquid distance at t=0.6 for the sequential method for 
the case1 
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Figure 4.2.31. Percent errors of the solid-liquid distance at t=0.6 for the whole time-domain 
method for the case2 
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Figure 4.2.32.  Velocity (left) and temperature (right) distributions at times t=0.2, 0.4, 0.6 for 
the case1 
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Figure 4.2.33. Velocity (left) and temperature (right) distributions at times t=0.2, 0.4, 0.6 

for the case2 
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Table 4.1.1 Input heat generation and heat flux at x=1m 

 
 

Heat generation (W/m3) Heat flux (W/m2) at x=1m 
 

   Case1  0              100 
 

   Case2  1    95 
 

   Case3            100    50 
 
 
 
 
 
 

Table 4.1.2 The regularization parameters chosen in each method and the 
corresponding least square error for the 2-D problem 

 
 

               α      computedanalytic qq − 2 

   Analytic  3.52X10-3  7.17x101 

   DP   1.44x10-3  8.59x101 

   OCV   2.42x10-4  1.25x102 

   GCV   1.55x10-4  1.43x102 

   ML   8.51x10-6  6.33x103 

   ML-variance  1.06x10-5  4.34x103 

   L-curve  5.07x10-5  3.48x102 
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Table 4.1.3 Behavior of the Levenberg-Marquardt method using the More’s 
implementation for axisymmetric over-specified problems: m=36, 
σ=0.05  

 
 

    Iteration           µ         ∆      }{P              }{}{ TT −     }{}{ computedexact qq −  

 
1 6.187E-01 3.300E+00 3.300E+00 2.683E+00 3.554E+00 
2 6.518E-01 1.650E+00 1.650E+00 1.434E+00 1.907E+00 
3 7.183E-01 8.250E-01 8.250E-01 8.244E-01 1.086E+00 
4 8.517E-01 4.125E-01 4.125E-01 5.388E-01 6.810E-01 
5 1.120E+00 2.063E-01 2.063E-01 4.126E-01 4.844E-01 
6 1.656E+00 1.031E-01 1.031E-01 3.589E-01 3.906E-01 
7 2.732E+00 5.156E-02 5.156E-02 3.357E-01 3.461E-01 
8 4.884E+00 2.578E-02 2.578E-02 3.253E-01 3.247E-01 
9 9.188E+00 1.289E-02 1.289E-02 3.204E-01 3.143E-01 
10 1.780E+01 6.445E-03 6.445E-03 3.181E-01 3.092E-01 
11 3.502E+01 3.223E-03 3.223E-03 3.169E-01 3.067E-01 
12 6.946E+01 1.611E-03 1.611E-03 3.164E-01 3.054E-01 
13 1.383E+02 8.057E-04 8.057E-04 3.161E-01 3.048E-01 
14 2.761E+02 4.028E-04 4.028E-04 3.159E-01 3.044E-01 
15 5.516E+02 2.014E-04 2.014E-04 3.159E-01 3.043E-01 
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Table 4.1.4 The regularization parameters chosen in each method and the 

corresponding least square error for the axisymmetric problem 

 
 

               α      computedanalytic qq − 2 

   Analytic  1.59X10-2  1.66x10-1 

   DP   1.16x10-2  1.73x10-1 

   OCV   4.50x10-3  3.06x10-1 

   GCV   4.05x10-3  3.33x10-1 

   ML   3.23x10-4  4.19 

   ML-variance  1.91x10-4  8.23 

   L-curve  3.64x10-3  3.63x10-1 
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Table 4.1.5 Sum of square errors in calculated heat flux values in σ=0 for 

example problem 1 
 
 
                 Regularization        SVD  
 

         Approach 1         0.24985   0.36176 
 
      Approach 2         0.13214               0.13214 
 
     Approach 3         0.06138              0.06138 
 
      Approach 4         0.01602                N/A 
 
 
 
 

Table 4.1.6 Sum of square errors in calculated heat flux values in 
σ=0.01for example problem1 

 
 

                 Regularization       SVD  
 

        Approach 1  2.38464  119.978 
 
     Approach 2  0.35157  0.35157 
 
      Approach 3  0.06349  0.06349 
 
       Approach 4  0.01695     N/A 
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Table 4.1.7 Sum of square errors in calculated heat flux values in σ=0for 

example problem2 
 
 

                Regularization       SVD  
 

      Approach 1  0.22678  0.22717 
 
      Approach 2  1.11153  1.11153 
 
      Approach 3  24.4941  24.5335 
 
 
 
 
 

Table 4.1.8 Sum of square errors in calculated heat flux values in σ=0.01for 
example problem2 

 
 
            Regularization       SVD  
 

      Approach 1  3.08138  125.073 
 
        Approach 2  1.37455  1.37812 
 
        Approach 3  24.4729  24.4953 
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Table 4.2.1 Thermal properties used in the example problem 
 

 

                      Symbol Value        Units 
 

Heat conductivity in solid     KS          10        W/mK 
 

Heat conductivity in liquid     KL             5         W/mK 
 

Specific heat  in solid      cs         390         J/kgK 
 

Specific heat  in liquid      cL         1000         J/kgK 
 

Latent heat      H           1.97x109              J/kg 
 

Density       ρ              4300              kg/m3 
 

Viscosity       µ               0.04              Ns/m2 
 
     Thermal expansion coefficient      β           2.70x10-5               1/K 

 
Melting temperature       Tm           2243.15                  K 
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Table 4.2.2 Thermal properties of aluminum 
 
 
                     Symbol        Value       Units 
 

       Heat conductivity in solid  KS        218        W/mK 
 
      Heat conductivity in liquid  KL        100        W/mK 

 
        Specific heat  in solid  cs        897        J/kgK 

 
       Specific heat  in liquid  cL        897        J/kgK 

 
             Latent heat   H      3.97x105         J/kg 
 

Density   ρ        2700        kg/m3 
 

Viscosity   µ      3.39x10-3            Ns/m2 
 
Thermal expansion coefficient  β      2.25x10-5              1/K 

 
       Melting temperature  Tm        933           K 
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CHAPTER FIVE 

CONCLUSIONS 
 

In this section, the conclusions of the inverse heat conduction problems and the 

inverse design solidification problems are addressed. 

 

5.1 INVERSE HEAT CONDUCTION PROBLEMS 

 This paper presented a numerical study on inverse heat conduction problems. 

Three different methods, the Tikhonov regularization method, the SVD method, and the 

Levenberg-Marquardt method, were discussed and their performance was assessed 

comparatively. Five different schemes for choosing an optimal regularization parameter 

α for inverse heat transfer calculations were also discussed and evaluated using 2-D 

steady-state heat conduction cases. In addition, parameter estimation and function 

estimation were discussed using 1-D transient heat conduction problems. It is found that 

the discrepancy principle (DP) gives the best estimate of α based on the testing of the 2-

D problems with various conditions. The ML method is very stable but always estimates 

smaller regularization parameters than in the analytic solution. The L-curve method is 

similar to the ML method. In many cases, the OCV and GCV perform well, but not as 

good as the DP; in a few cases, however, they specify more than one parameter. Based on 

the regularization case studies, the DP was used to estimate the singularity threshold 

value for the SVD method, and good results were obtained for all the cases studied.  For 

all the cases tested except the simple cases, the Levenberg-Marquardt method with the 

Ozisik’s implementation did not perform well; however, the method with the More’s 

implementation has the same accuracy of the regularization method if the trust-region 
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radius is carefully chosen. For the cases studied, the truncated SVD method with the 

threshold value determined by the DP appears to be the best, although in many cases it 

gave results very comparative with the regularization method. As for the cases studied in 

the 1-D transient problems, the parameter estimation is superior to the function 

estimation when the optimal heat flux solution has a smooth curve. On the other hand, 

when the heat flux solution contains discontinuities and sharp corners, the function 

estimation is superior to the parameter estimation. The inverse algorithms were also 

applied to estimate the heat flux experienced due to droplet spray cooling of a 

microelectronic processor.  The truncated SVD and regularization methods give almost 

identical results. 

 

5.2 INVERSE DESIGN SOLIDIFICATION PROBLEMS 

This paper also presented a computational algorithm for the inverse steady-state 

solidification problem and the inverse design of solidification processing systems. The 

algorithm entails the use of the Tikhonov regularization method, along with an 

appropriately selected regularization parameter based on the L-curve method. The direct 

solution of the moving boundary problem was solved using the deforming finite element 

method. The direct and inverse formulations were presented. The new finite difference 

scheme for determining the sensitivity coefficients was also proposed in the inverse 

steady-state solidification problems. The determination of the optimal regularization 

parameter α using the L-curve method was also given. The design algorithm was applied 

to determine the appropriate boundary heat flux distribution to obtain prescribed solid-

liquid interfaces in a 2-D cavity. The whole time-domain method and the sequential 
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method were used to approximate the optimal heat flux solutions in the inverse design of 

solidification processes. Based on the cases studied, the proposed finite difference 

scheme is superior to the conventional finite difference scheme in determination of the 

sensitivity coefficients for the inverse steady-state solidification problems. The results of 

the inverse design of solidification processes show that the sequential method is 

comparative to the whole time-domain method if the diffusion time between the 

boundary and the interface is carefully considered. We also find that the L-curve based 

regularization method is reasonably accurate for both the inverse steady-state 

solidification problem and the inverse design of solidification processing systems. 
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APPENDIX A 

DERIVATION OF MAXIMUM LIKELIHOOD METHOD 

 

In this appendix, we show that maximizing )},/{}({ 2σqTL  in Eq. (3.2.20) yields 

Eq. (3.2.21), and is equivalent to minimizing Eq. (3.2.22). The integrand in Eq. (3.2.20) 

is equal to 
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Integrating Eq. (A.1), we have 
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where the following relation has been used, 
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Taking the logarithm of both sides of Eq. (A.5) yields 
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Taking the derivative of Eq. (A.7) with respect to σ2 and setting it equal to zero, one has  

  )(R)1(2 ασ ⋅=
M

       (A.8) 

The above σ2 is proposed as the estimate of the noise variance. Substituting Eq. (A.8) into 

Eq. (A.5) 
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To maximize Eq. (A.9) with respect to α, we consider the following function: 
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With the relations, 
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and 

det α[I]=αM        (A.12) 

Eq. (A.10) is expressed by 
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Maximizing the likelihood function (A.13) can be obtained by minimizing the following 

equation, 
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APPENDIX B 

DERIVATION OF OCV AND GCV 

 

In this appendix, the derivation of OCV and GCV function is shown. To do that, 

we write the cost function given by Eq. (3.2.23) as 

[ ] [ ] }q{}q{}T{)}(T{}T{)}(T{),(0
TT kkkS αα +−−=   (B.1) 

where the vector of the measured temperature )}({ kT  is given by 

[ ]Mkkk
T TTkTTTTk ,,),,(,,,)}(T{ 1121 ⋅⋅⋅⋅⋅⋅⋅= +− α   (B.2) 

The solution that minimizes S0(α, k) is given by  

( ) })})({T{)}(T({]J[]I[]J[]J[)},(q{ 0
1

qkk TT −+=
−

αα   (B.3) 

We write the vector of estimated temperature as 

=+= })}q({T{)},(q]{J[)},(T{ 0kk αα  

})}({{})})({T{)}(T({]J[])I[]J[]J]([J[ 00
1 qTqkTT +−+ −α  

})}q({T{})})q({T{)(T)]({(B[ 00 +−= kα    (B.4) 

where the matrix [B(α)] is given by [J]([J]T [J]+α[I])-1[J]T. This relationship, when 

written in full, takes the form 
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where bij are the components of matrix [B(α)]. From Eq. (B.3), the corresponding set of 

estimated temperature can be written as, 

  })}q({T{})})q({T{}T)]({(B[})}q({T{)}(q]{J[)}(T{ 000 +−=+= ααα .  (B.6) 

When written in full, this relationship can be expressed as 



























+



























−

−

−

−



























=



























M

k

MM

kk

MMMM

kmkk

M

M

M

k

T

T

T
T

TT

TT

TT
TT

bbb

bbb

bbb

bbb

T

T

T
T

0

0

02

01

0

0

022

011

21

21

22221

11211

2

1

)(

)(

)(
)(

M

M

M

M

L

MMM

L

MMM

L

K

M

M

α

α

α
α

  (B.7) 

From the above two matrix expressions a relationship between Tk (α, k) and Tk (α) 

obtained. It follows that 

L+−+−= )()(),( 02220111 TTbTTbkT kkk α  

kMMkMkkkk TTTbTkTb 000 )()),(( +−++−+ Lα   (B.8) 

and also that 

L+−+−= )()()( 02220111 TTbTTbT kkk α  

kMMkMkkkk TTTbTTb 000 )()( +−++−+ L    (B.9) 

Taking the difference between these two equations then shows that 

kkkkkkk YbTkTb −=− )(),()1( αα     (B.10) 

It therefore follows, after some algebra, that 
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This enables the expressions for the ordinary cross-validation function V0(α) given by 

equation (3.2.24) to be written as 
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Substituting Tk(α) from Eq. (B.6), we may write Eq. (B.12) as 

2
0 )})}q({T{}T)])({(B[]I]([C[1)( −−= αα

M
Vo   (B.13) 

where [C] is the diagonal matrix whose entries are 1/(1-bkk). Note that V0(α) is not a 

function of either {q} to be restored or the noise but a function of [J] the sensitivity 

matrix, { T } the measured temperature and α the regularization parameter. 

The singular value decomposition (SVD) of the matrix [J] gives the relationship 

{T }=[J]{q}+{T({q0})}+{ε} in the form 

   }ε{})}q({T{}q{]U][S][V[}T{ 0 ++= T    (B.14) 

Since the unitary matrix [U] has the property [U]T[U]=I, pre-multiplication of Eq. (B.14) 

by [U]T results in 

   }ε{]U[})}q({T{]U[}q{]S][V[}T{]U[ 0
TTTT ++=   (B.15) 

This equation describes the relationship between the “transformed'' temperature 

}T]{U[}T~{ T=  and the “transformed'' heat flux }q{]V[}q~{ T= as described in [Barnett, 

1990]. This equation is further transformed by pre-multiplication by the matrix [W], 

which has the ikth entry given by 

   Mjik
ik e

M
W /21 π= , i, k=1,2,.....,M    (B.16) 

where 1−=j . The matrix [W] is a unitary matrix ([W]T[W]=[I]). Premultiplying [W],  

Eq. (B.15) becomes 

 })}q({T{]W][U[}q{]W][S][V[}T{]U][W[ 0
TTT +=  }ε{]U][W[ T+   (B.17) 
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The transformed model is thus written as 

   }ε{}})q({T{}q]{J[}T{ 0 transtranstranstranstrans ++=   (B.18) 

where }T̂{]W][U[}T{ T
trans =  is the vector of transformed measured temperature, 

}q{]V][W[}q{ T
trans =  is the vector of transformed source strengths, 

}ε{]U][W[}ε{ T
trans =  is the vector of transformed noise components and 

T
trans ]W][S][W[]J[ = .  

The procedure adopted by Golub et al. (1979) is then to apply ordinary cross-

validation to this transformed model. Firstly, the transformed influence matrix [Btrans] is 

defined by [Btrans] = T
transtrans

T
transtrans ]J[])I[]J[]J]([J[ 1−+α . Replacing the terms by terms 

with those subscripted by trans in the ordinary cross-validation function (i.e. Eq. (B.13)) 

and noting that [Btrans] is a circulant matrix and thus its diagonal terms are the same and 

constant, we can write the generalized cross-validation function as 
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where Tr denotes the trace (sum of diagonal entries) of a matrix. By expressing V(α) in 

terms of the eigenvalues of [Btrans] and noting that these are the same as the eigenvalues 

of [B(α)] also, the generalized cross-validation function can be written as 

   [ ]2
2
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In comparison with Eq. (B.12), we see that the general cross-validation function V(α) is a 

weighted version of the ordinary cross-validation function V0(α), that is, 
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where wkk is interpreted as the weighting function, 
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