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 The present study presents new algorithms that are developed on the basis of the 

boundary element method discontinuous or finite element formulation for the 

computation of thermal radiation problems. Since the external and internal thermal 

radiation problems are described using different mathematical formulations, based on the 

two different control equations of surface radiation exchanges (external thermal radiation) 

and radiative transfer in a medium (internal thermal radiation), the discontinuous 

boundary/finite element methods are developed to solve these two different type 

problems. The corresponding algorithms of thermal radiation for different geometries and 

applications are developed, and the coupling problems are also presented. 

A Galerkin boundary element numerical method for surface radiation exchange has been 

developed in this study, which includes 1) two dimensional geometries without/with 

blockages and 2) three dimensional geometries without/with blockages. The parallel 

algorithm for boundary element method is also developed by PVM (Parallel Virtual 

Machine). For integral radiative heat transfer problems, the discontinuous finite element 
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method is implemented to solve one-dimensional and multidimensional problems. These 

include 1) one-dimensional problems with emitting, absorbing, and/or scattering effects. 

2) Two dimensional and three dimensional problems with emitting, absorbing, and/or 

scattering effects. 3) Axisymmetric problems with emitting, absorbing, and/or scattering 

effects. For internal radiative heat transfer problems, the parallel computation techniques 

are also developed for discontinuous finite element method. 4) Numerical simulations of 

radiative transport in laser hyperthermia. 

The techniques we developed for calculating the external and internal radiation 

problems are proved more accurate and faster, compared with the techniques being used 

commonly, and the methodologies are easy to couple with calculations of heat transfer 

and fluid flow. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Thermal Radiation is becoming more important in a wide range of engineering research 

and applications. This importance arises from several areas: combustion processes, high-

temperature phenomena in hypersonic flows, energy transfer in propulsion systems, solar 

energy devices, space station power systems, energy leakage in cryogenic systems, high 

temperature single crystal growth processes, and laser applications, and many others. 

[Modest, 1993]. The importance of the thermal radiation has motivated the need to 

develop useful engineering tools with which information on energy transport can be 

obtained for system design and energy performance improvement. The radiation 

problems can be divided into two different categories, the first one is the thermal 

radiation exchange between surfaces that are separated by vacuum or by a transparent 

medium. The examples include crystal furnaces, solar energy devices, etc. The second 

category is radiative transport in an absorbing, emitting, and/or scattering medium. 

Examples in the heat transfer area include the burning of any fuel, rocket propulsion, 

nuclear explosions, and laser transport in biological materials. The former is referred to 

as external radiation, while the latter is internal radiation. The mathematical formulations 
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are different for these two cases, which naturally lead to the use of different approaches 

to their solutions. 

Surface radiation exchanges play an important role in many high temperature 

materials processing systems. Some of these processing systems involve complex 

geometric arrangements that either are designed to obstruct radiation exchanges or are an 

integral part of an overall thermal system design. Accurate prediction of surface radiation 

exchange phenomena and their effects on other heat transfer modes in these processing 

systems is of vital importance, since it is the fundamental understanding of the physics 

that controls the processes, and it is the development of guidelines for optimizing the 

performance of the existing processes and designing the new generation of energy 

efficient processing systems. 

Radiative transport in medium describes the energy transport in an intervening 

medium that directly affects the radiation transfer via mechanisms of absorption, 

emission and scattering, this kind of radiation is also named internal radiation. For the 

problems of radiative transfer in a participating medium, the absorption, emission and/or 

scattering effects must be considered in order to provide an accurate estimate of thermal 

energy transfer in the system [Modest 1993].  

The intention of this study is to describe the algorithms that are developed on the 

basis of the boundary element or discontinuous Galerkin finite element formulations for 

the computation of thermal radiation problems. Since the external and internal thermal 
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radiation problems are described using different mathematical formulations, based on the 

two different control equations of surface radiation exchanges and radiative transfer in a 

medium, the discontinuous boundary/finite element methods are developed to solve these 

two different type problems. The corresponding algorithms of thermal radiation for 

different geometries and applications are developed, and the coupling problems are also 

presented. 

In this study, the boundary element numerical method developed for surface 

radiation exchange is presented, which includes 1) two dimensional geometries 

without/with blockages 2) three dimensional geometries without/with blockages. The 

parallel algorithm for boundary element method is also developed by PVM (Parallel 

Virtual Machine) language. For radiative heat transfer in media problems, the 

discontinuous finite element method is implemented to solve one-dimensional and 

multidimensional problems. These include 1) one dimensional problems with emitting, 

absorbing, and/or scattering effects. 2) Two dimensional and three dimensional problems 

with emitting, absorbing, and/or scattering effects. 3) Axisymmetric problems with 

emitting, absorbing, and/or scattering effects. For internal radiative heat transfer 

problems, the parallel computation techniques are also developed for discontinuous finite 

element method. 4) Simulation of laser transport in laser hyperthermia. 

The techniques we developed for calculating the internal and surface radiation 

problems are proved more accurate and faster, compared with the techniques being used 
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commonly, and the methodologies are easy to couple with calculations of heat transfer 

problems and fluid flow. 

1.2 LITERATURE REVIEW 

An accurate determination of radiation energy exchange among surface elements 

in an enclosure is of crucial importance for a wide range of engineering applications that 

involve heat transfer, illumination design and applied optics. Examples of these 

applications include combustion processes, high-temperature phenomena in hypersonic 

flows, energy transfer in nuclear propulsion systems, high temperature single crystal 

growth processes, etc. [Modest 1993, Siegel et al. 1992].  The importance of the thermal 

radiation exchange has motivated the need to develop useful analytical and numerical 

techniques to enhance our understanding of the fundamentals governing the surface 

energy radiation exchanges and to provide rational guidelines for process improvements 

and system optimization.   

In order to calculate the energy exchange in an enclosure, there are several 

different techniques have been developed in last decade. Sparrow (1960) developed a 

variational method to solve the surface heat exchange problems.  Monte Carlo method 

developed by Howell and Perlmutter (1964) is the first numerical technique to solve the 

radiation heat exchange problems, and Naraghi and Chung (1984) extended Monte Carlo 

method by using statistical theory to diffuse and specular surfaces. Based on an 
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assumption that the surfaces of enclosure are flat and the temperature of surface is 

constant, Hottel (1931) introduced a net radiation method. The basic idea is that the net 

radiant heat flux between two surfaces of enclosure is constant, and which is only 

decided by the temperature and emissivity of the surface and the relative geometric 

position of these two surfaces. In the calculation of surface radiation exchange, the 

quantity used to describe the geometric position between surfaces is named view factor, 

or angle factor. By discretizing the surfaces of enclosure, the view factor between 

discretized surfaces can be calculated numerically or analytically. Due to the difficulty to 

analytically calculate view factor of complex geometries in engineering applications, the 

numerical methods are widely used in the engineering community, and several different 

numerical techniques to solve view factors have been developed and proved to work well.  

Since the calculation of view factor is a geometric problem, several numerical 

schemes have been derived from computer graphics area. Nusselt (1928) developed unit 

sphere method which is from computer graphics applications. Emery et al. (1987) first 

developed a numerical scheme to solve view factor for the intrusion geometries by using 

computer graphics techniques. Finite element method is another great technique to 

calculate view factors in last several years. Chung and Kim (1982) used finite element 

method to directly solve radiant heat exchange based on net flux, but their method is 

based on the assumption that the temperature of surface is constant, which can not solve 

real problems in engineering. Breitbach et al. (1990) introduced a finite element solution 



6

 

for view factor based on the variational theory, but slow convergence speed and the error 

increased with increasing the order of integration. Kuppurao and Derby (1993) developed 

a Galerkin finite element to solve view factor to solve diffuse grey surface radiation, but 

they didn’t consider the most important and difficult problems in the calculation of view 

factor, blocking.  

The boundary integral formulation represents a natural approach to surface 

radiation exchange calculations in that the energy exchange takes between the surface 

elements and requires the information along the surface only.  The use of the boundary 

element method for this purpose has been explored recently by Blobner et al. (2001).  

Their studies presented a traditional boundary element integral formulation for the 

thermal radiation heat transfer and coupled it with conduction for 2-D geometries.  In 

their algorithm, as in many others, extreme caution has been exercised in treating the 

kernel function, which experiences abrupt discontinuity when a ray of radiation emitted 

from one surface to another is blocked by a geometric obstruction. In their studies, a 

coupled solution is also presented for a problem that involves a mixed mechanism of 

conduction and surface radiation. One critical drawback associated with the application 

of the traditional boundary element method for this type of calculations is the detection of 

the geometric obstruction may not be exclusive in some complex geometric arrangements, 

thereby causing numerical errors in the calculation of the kernel function and hence the 

prediction of the energy exchanges. Nonetheless, their work has clearly demonstrated that 
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the boundary element method can be a very powerful tool for thermal radiation 

interchange calculations.     

In this study, a novel algorithm for the prediction of surface radiation energy 

inter-exchanges between gray surfaces is presented.  The work is motivated by the need 

to further improve the computational efficiency by taking advantage of updated 

development in both computer hardware and software algorithms.  It also constitutes part 

of effort in developing integrated solutions to engineering problems arising from 

materials processing and manufacturing systems that involve multi-physics and multi-

time and multi-length scale phenomena. Unlike the Blobner’s (2001) method, the 

approach we developed is based on the Galerkin boundary element method, which 

improves the traditional method, and allows a full detection of any geometric blockages 

between any two points at two surfaces involving the radiation exchange.  The method is 

further enhanced with an efficient searching and sorting algorithm developed based on 

the accumulated experience with suitable data structure (Bastian and Li 2002), and 

computer graphics (Rogers 1998, Foley 1997, Zhang 2001, Honda et al. 2001) to increase 

the computational efficiency for blockage detection, which turns out to be the most CPU 

consuming part of all the calculations.  It is stressed here that the Galerkin, rather than 

traditional, boundary integral formulation, is essential to ensure that the geometric 

obstruction is fully detected in any complex geometries. In what follows, the Galerkin 

boundary integral formulation is presented, along with the design of shadowing 
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determination algorithm, based on sorting and searching schemes used in advanced 

computer graphics. The coupling of the Galerkin boundary element method with the 

Galerkin finite element method for the solution of heat transfer problems involving mixed 

mechanisms such as conduction, convection and surface radiation is presented. The 

algorithm we developed should form a strong basis to study the principles of surface 

radiation exchanges and will help engineering designs involving surface radiation heat 

transfer.  

Internal thermal radiation is a significant mode of heat transfer, which describes 

the energy transport in an intervening medium that directly affects the radiation transfer 

via mechanisms of absorption, emission and scattering. Some of the engineering thermal 

systems in which thermal radiation plays a crucial role include the growth of optical 

single crystals from high temperature melts [Song and Li, 2003], the particle laden high 

temperature fluidized bed combustion systems, and the space crafts upon re-entry. 

Radiation heat transfer is not only important in high temperature applications, but also in 

remote sensing, laser measurement, and the applications in which the energy transfer is 

interacting with participating media.  

Thermal radiation in participating media is governed by the radiation transfer 

equation of hyperbolic type, which describes the optical energy balance along a thermal 

ray. Owing to the importance of internal radiation transfer in thermal engineering 
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applications, many numerical techniques have been developed to predict the phenomena 

and to assist in thermal designs involving radiative heat transfer.  

Monte Carlo [Steward and Cannon, 1971] is one of the most accurate methods to 

solve the radiative heat transfer problems. This method is based on one-dimensional 

differential equations of RTE. By solving the intensity along arbitrarily oriented rays, the 

radiative heat transfer problems can be solved very accurately, but a lot of computational 

times and memory are needed, these disadvantages limit Monte Carlo method 

applications, and not popular in engineering community. 

One of the early used numerical algorithms is the two-flux method, which was 

introduced by Schuster (1905) and Schwarzschild (1906) for solving one-dimensional 

radiative heat transfer problems. The two-flux method approximates the radiation 

intensity with two directions in one-dimensional problems. In multiple-dimension 

problem, intensity is approximated in each of coordinate direction, and kept the same 

positive or negative sign with coordinates. Based on this approximation, the intensity is 

uniform in every flux direction. By using this method, the Radiative Transfer Equation is 

reduced to two ordinary differential equations, which can be easily solved analytically or 

numerically. Apparently the accuracy of this approximation is not good, since in real 

radiation problems, the intensity is anisotropic in every direction, but this method is very 

simple and easy to understand.  
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Since the two-flux method is not accurate to solve radiative heat transfer problems, 

Chandrasekhar (1960) proposed the discrete-ordinates method, which was developed 

from neutron transport applications. Fiveland (1982) first reports the discrete-ordinates 

method to solve radiative heat transfer problem in axisymmetric enclosure, and after that, 

a lot of research on the discrete-ordinates method were reported. The discrete-ordinates 

can be considered as the extension of the two-flux method, since instead of limited 

number of directions in the two-flux method, the discrete-ordinates method divided the 

π4  solid angles to much more ordinates. The number of ordinates can be arbitrary, but in 

convenience to integrate, the control angles usually are set a quadrature set, which is a 

collection of the discrete ordinate directions and the corresponding weight, and the 

quadrature set will affect the accuracy of simulations [Lathrop and Carlson, 1964, 

Fiveland, 1991]. The discrete-ordinates method reduces RTE to by a set of coupled 

differential equations at the discrete ordinate directions; therefore, the accuracy is better 

than the two-flux method. 

The finite volume method is originally designed to solve fluid mechanic and 

convective heat transfer problems, and Raithby and Chui (1990) developed the finite 

volume model for radiative heat transfer problems. The finite volume method is based on 

the control volume method, the basic idea is to discretize the RTE in every control 

volume and control angle so that radiation energy can keep conservation. The finite 

volume method is the similar to the discrete ordinates method, both of them can be also 
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considered as an extension of the two-flux method. The difference is the finite volume 

method can use arbitrary control angle discretization, but the discrete ordinates method 

has to choose a certain quadrature set.  

Discontinuous Galerkin finite element (DFE hereafter) methods, also called 

discontinuous Galerkin methods, have undergone rapid development recently and 

become increasingly popular in the numerical computational community. A 

comprehensive review of the history, development and current trends of discontinuous 

finite elements has been presented by Cockburn, et al. (2000). The DFE methods have 

some very attractive properties that make them good alternatives to the existing methods 

for diffusion-type problems and can be particularly powerful for pure convection or 

hyperbolic problems as those encountered in describing the thermal radiation intensity 

distribution in absorbing and scattering media. These properties include the high order 

local approximation, ease of parallelization and incorporating adaptivity strategies, 

element-wise conservation and geometric flexibility of conventional finite elements. 

In this study, a discontinuous Galerkin finite element method for the solution of 

the internal radiation heat transfer problems and its integration with the continuous (or 

conventional) Galerkin finite element method for mixed heat transfer problems involving 

conduction and radiation is presented. It is noted that discontinuous finite element 

methods have been used for the solution of the Boltzmann integral-differential equations 

to study the neutron transport phenomena in nuclear engineering design systems 
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(Asadzadeh 1998).  To my best knowledge, there appears to be very limited information 

on the use of the DFE method for the solution of internal radiative heat transfer problems, 

and its coupling with the conventional finite element method for those involving mixed 

heat transfer modes. More importantly, its numerical performance for radiative heat 

transfer in participating media and for mixed heat transfer calculations is largely 

unknown.   

In this study, the discontinuous finite element formulation is presented for internal 

radiation heat transfer in participating media.  The examples are given for a pure internal 

radiation problem and for a mixed heat transfer problem involving heat conduction, fluid 

flow, and internal radiation. The solutions are compared with analytical solutions 

whenever available.  The convergence rate and adaptive algorithm in one dimensional 

problems for the DFE formulation are also discussed.   

1.3 OBJECTIVES OF PRESENT RESEARCH 

The Galerkin boundary element method to solve the external radiation exchange 

problems has been developed. Started with the basic concept of external radiation, an 

integral representation of the surface energy exchange mechanisms has been developed. 

The use of the Galerkin method for the solution of the integral equation is then discussed 

for 2-D and 3-D geometries. One of the most important parts of the algorithm 

development for the numerical solution of the external radiation is the accurate estimation 
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of kernel functions, which would require the detection of a third party blockage in 

complex geometric arrangements. These algorithms are very efficient schemes. Based on 

the algorithm for two dimensional geometries without blockage, the algorithm to detect 

and calculate the shadowing in two dimensional geometries is developed. After finishing 

the algorithm for two dimensional geometries, the algorithms are extended to three 

dimensional geometries. The algorithms for all two different geometries are tested under 

different benchmark problems, and the results of the algorithms agree very well with 

analytical solution or the results from literatures. The numerical solution of the mixed 

heat transfer problems involving conduction, convection and surface radiation exchanges 

is also discussed.  

The internal radiative transport is the other type of radiation. A discontinuous 

finite element method to solve internal radiation in different dimensions is developed, 

and this technique has not been used by others so far. The discontinuous finite element 

method works very well in one-dimensional, two-dimensional, three-dimensional, and 

axisymmetric geometries, The nonscattering, isentropic scattering, and anisotropic 

scattering are also implemented by the discontinuous finite element method. Since this 

method is new in the radiation area, the error analysis and convergence are also discussed 

in one-dimensional problems. The coupling problems which involve internal radiation, 

heat conduction, and fluid flow are also presented. 
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The laser interactions with biological materials have attracted a great deal of 

interest in recent years, particularly for applications in biomedical treatment and 

diagnostics, such as optical tomography, laser surgery, photodynamic therapy, and low-

power interstitial laser hyperthermia. Fundamental to these laser applications is the 

determination of laser transport in tissues, which influences the rate of heat generation, 

energy distribution of laser, heat conduction, optothermal properties, and the safety and 

quality of laser treatment and surgery. Based on the numerical method and algorithm we 

developed for internal radiation, simulation of the laser transport in the biological 

materials is presented. 

1.4 SCOPE OF PRESENT RESEARCH 

In the present study, eight major sections are discussed. Complete mathematical 

statement of physical phenomena in external and internal radiation problems are listed in 

Chapter 2. In Chapter 3, the radiation heat transfer between grey surfaces in two-

dimensional geometries is discussed, and the detailed formulation derivation and results 

are presented. In Chapter 4, the formulations of boundary element method for three-

dimensional problems are presented, and a new parallel searching and detecting 

algorithm for complex three-dimensional geometries are discussed. The coupling of 

external radiation and heat conduction and Maragoni flow is also discussed, and several 

computing results are presented. Chapter 5 discusses the one dimensional radiative heat 
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transfer problem and a new numerical simulation technique, the discontinuous finite 

element method is presented. In Chapter 5 the convergence and adaptive refinement 

techniques of the discontinuous finite element are also discussed. Chapter 6 is the 

extension of Chapter 5, in this section, the discontinuous finite element method for 

solving radiative heat transfer in absorbing, emitting, and scattering media in two-

dimensional or three dimensional enclosures is discussed, and detailed formulations of 

the problems are also presented. The parallel computing algorithm for this problem is 

also discussed. In Chapter 7, the discontinuous finite element method for axisymmetric 

enclosure is introduced, and a new mapping of control angle algorithm is also discussed. 

The coupling problem of other type of heat transfer and fluid problem is also presented, 

and several different computing results are presented. In Chapter 8, the laser 

hyperthermia application in cancer treatment and the radiative heat transfer model in laser 

hyperthermia are introduced. The new numerical techniques we derived to solve laser 

hyperthermia problems is also discussed, and some simulation results are presented. 
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CHAPTER 2 

PROBLEM STATEMENT 

2.1 RADIATION HEAT EXCHANGE BETWEEN GREY SURFACES 

Surface radiation exchanges play an important role in high temperature materials 

processing systems, for instance, the melt growth of semiconductor and oxide optical 

single crystals and the metals refining and remelting processes. In some of theses 

processing systems, complex geometric arrangements that either are designed to obstruct 

radiation exchanges or are an integral part of an overall thermal system design. Accurate 

prediction of surface radiation exchange phenomena and their effects on other heat 

transfer modes in these systems is of vital importance to the fundamental understanding 

of physics that controls the processes and to the development of guidelines for optimizing 

the performance of the existing processes and for designing a new generation of energy 

efficient processing systems.  

Unlike the diffusion-type problems where the field lines bend by diffusion around 

internal geometric obstructions, the surface exchange problems are concerned with the 

energy balance based on the thermal rays emitting from one surface that are intercepted 

by the other surface elements.  Since these thermal rays travel in straight lines, an internal 

geometric object may block the rays from reaching other surface elements.  The boundary 
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integral formulation for diffusion-based and the surface radiation exchange problems is 

similar in form. In fact, except for the difference in kernel function evaluation, the basic 

calculations are the same when internal geometric obstructions are absent. However, the 

kernel functions for surface radiation calculations can have abrupt discontinuities when 

the blockage of the thermal rays occurs in complex geometries. This is in sharp contrast 

with the boundary integral formulation for diffusion-based problems, where the kernel 

function is smooth and singularity may be treated analytically.  Detection of these 

geometric obstructions can be extremely difficult and computationally intensive, despite 

the simple form of the kernel functions, and must be an integral part of any emerging 

numerical schemes for thermal radiation exchange calculations. 

A detailed examination of the surface radiation problem formulations suggests 

that this type of calculations is well suited for parallel computation and thus the modern 

computer hardware architecture may be exploited to expedite the computations. 

Moreover, an accurate estimation of kernel functions requires a computational procedure 

that is capable of performing complex and tedious geometric checking. This may be 

facilitated by improving upon some of the best ideas (algorithms and data structures) 

developed over the past several decades for computer graphics applications.       
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Figure 2.1 

Figure 2.1 Schematic of thermal radiation exchange between two surfaces Ai and Aj.  

Let us now consider the radiation exchange among surfaces that form an 

enclosure, as illustrated in Figure 2.1. It is assumed that there is no radiation absorbing or 

scattering media in the enclosure. Surface element j emits the energy to the other surfaces 

of the enclosure and also receives the energy from these surfaces.  The heat flux q(ri) is 

supplied to the surface element j to sustain the radiation heat transfer and is determined 

by the heat balance on element j involving incoming and outgoing radiation energy fluxes.  
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Referring to Figure 2.1, the general expression for the heat flux is given by the following 

integral for two-dimensional and three-dimensional geometries, 
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where the radiation intensity emitted from surface j is defined by, 
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In the above equations, λ  is the frequency, I  the radiation intensity, ε  the 

emissivity, ρ  the reflectivity, θ  the angle between the surface outward normal and the 

radiation exchange direction, and ϕ  the azimuthal angle. Note here that subscript b refers 

to the blackbody radiation and thus by its definition the radiation intensity is directionally 

independent. Subscript r  refers to the reflected radiation.  Also, jr ,θ  is the angle between 

the normal of surface j  and the direction of the reflected radiation at surface j  and 

jr ,ϕ  the azimuthal angle similarly defined. 

While the above formulations are general, for most engineering applications the 

surfaces of an enclosure can be well approximated as gray, diffuse surfaces. Within the 

framework of these approximations, the integration over the wavelength λ  can be carried 
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out analytically. After these analytical operations and rearranging, one has the following 

boundary integral formulation for the radiative heat flux ( )rq  at the surface of an 

enclosure, 
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where Eb is the blackbody emissive power and is calculated by the integration of 

the blackbody radiation intensity over the entire spectrum of wavelengths, 
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with σ  being the Stefan-Boltzmann constant.  Here use has been made of the spectral 

distribution of the Plank’s blackbody radiation, 
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where h is the Plank constant, c0 the speed of light and k the Boltzmann constant. Notice 

that the subscript i on ri has been dropped out and rj replaced by 'r  to simplify the 

notation.  This will remain true hereafter unless indicated otherwise.  Also, in the above 

equation, K(r,r’) is the kernel function for the integral, which takes the following form,  
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where χ  assumes a value of one when the surface element I sees the surface element J as 

illustrated by the ray connecting i to j, and otherwise it is zero if the ray is blocked.  Thus 

the parameter χ is a strong function of geometric configuration and makes the kernel 

function highly irregular for a geometrically complex enclosure. 

2.2 INTERNAL RADIATION HEAT TRANSFER 

The radiative transport equation describes the distribution of the radiant intensity ( )sr,I , 

which is a function of both coordinates r  and direction s  [Modest, 1993].  

 

Figure 2.2. Schematic representation of internal radiation heat transfer. 

The governing equation is derived based on the local balance of radiation energy, 

as shown in Figure 2.2. For a steady state, which is often the case for radiative heat 
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transfer applications, the transient effects may be neglected and we have the integral-

differential equation for the distribution of radiation intensity, 
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where β(r) is the extinction coefficient, κ(r) is the absorption coefficient, σ(r) is 

the scattering coefficient, and Ω(s) is the solid angle associated direction s, with 

dΩ=sinθ dθ dϕ being the differential solid angle. The phase function satisfies the 

following condition, 
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where 's  denotes the incident intensity from other directions.  

The term in Eq (2.8) )',( ssΦ  is named scattering phase function, which is used to 

describe scattering effects. Scattering effects are usually classified into isotropic 

scattering and anisotropic scattering. The former scatters energy to all other directions 

with the same energy distribution, whereas anisotropic scattering scatters radiation 

energy to different directions with various energy distributions. The isotropic scattering 

function is simple and easy to calculate by Eq. (2.9), 

1)',( =Φ ss                                                            (2.9) 
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Anisotropic scattering is more complex and certainly needs more calculation time 

since the scattering function is direction dependent, and every direction needs to be 

calculated. There are two different models being used for anisotropic scattering functions, 

this is, forward scattering and backward scattering. The forward scattering means more 

energy is scattered into the forward directions than the backward directions. The 

backward scattering means just opposite, that is, more energy is scattered into backward 

direction. The scattering functions, either forward or backward, may be described by the 

following generic expression [Kim and Lee, 1988],  
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and jP  is the Legend’s polynomial, which can be calculated by Eq (2.12) 
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The RTE is solved subject to the different boundary conditions on I(r,s), which 

includes an opaque diffuse surface boundary condition, symmetry boundary condition, 

perodic boundary condition, and collimated boundary condition, 

The opaque diffuse surface boundary describes the incoming intensity at 's  

direction ( 0' >⋅ns ) is reflected evenly to all directions s  with 0' <⋅ns , and plus the 

contribution of blackbody radiation of boundary at the direction s , as shown in Fig 2.3. 

The opaque diffuse surface boundary condition can be expressed with the following form; 
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Figure 2.3.  Schematic illustration for opaque diffuse boundary condition 

The symmetry boundary condition is very useful in computing radiative heat 

transfer problems in a symmetric enclosure. By taking symmetric boundary condition, the 

only half of computation is needed. The systemic boundary condition is shown in Figure 
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2.4, in which the magnitude of intensity in *s  is equal to the magnitude of intensity ins . 

Therefore, if we obtain the value of intensity at s , the computation for value of intensity 

at *s  can be saved.  

 

Figure 2.4 Schematic of symmetric boundary condition 

The symmetric boundary condition can be described as below,  
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where the s* is the symmetric radiation direction of s respect to the tangent of the 

boundary, with both s and s* lying on the plane of t-n (see Figure 2.4). 
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Figure 2.5 Schematic illustration of periodic boundary condition 

Periodic boundary condition describes the intensity varies periodically, especially 

for internal radiation problems in axisymmetric enclosure. As shown in Fig. 2.5, the 

intensity in s  direction at position r  is equal to the intensity in 's  at position 'r , and the 

point r  can be rotated from point 'r  around point o, viz.. The symmetric boundary 

condition can be expressed in below, 

rRr ′= ][  (2.15) 

Where [ ]R  is the rotation matrix. The normals of two boundaries n  and 'n , and 

the directions s  and 's  at which the intensities emit from the boundaries also have the 

following relations [Moder et al., 2000], 

nRn ′= ][  (2.16)  
sRs ′= ][  (2.17) 

As a result, the intensities in the directions s  and 's  are equal, 
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)'()( ss II =  (2.18) 

Once the distribution of radiation intensity is known, various quantities of interest 

to internal radiation heat transfer can be calculated. Two of the most important quantities 

are the heat fluxes and their derivatives, which are determined by Eqs. (2.19) and (2.20), 

∫ Ω⋅=⋅
π4

)()( dIq nssr,nr  (2.19) 

))(4()(
4

4 ∫ Ω−=⋅∇
π

σκ dITq sr,r  (2.20) 

 

 

 



28

 

CHAPTER 3 

TWO-DIMENSIONAL SIMULATION OF SURFACE RADIATION EXCHANGE 

BETWEEN GREY SURFACES 

3.1. INTRODUCTION 

The boundary integral formulation represents a natural approach to the surface 

radiation exchange calculations in that the energy exchange takes between the surface 

elements and requires the information along the surface only.  The use of the boundary 

element method for this purpose has been explored recently by Blobner et al. (2001).  In 

their studies, Blobner et al. has presented a traditional boundary element integral 

formulation for the thermal radiation heat transfer and coupled it with conduction for 2-D 

geometries.  Here the word traditional is used in contrast with the Galerkin method to be 

discussed in this thesis.  In their algorithm, as in many others, extreme caution has been 

exercised in treating the kernel function, which experiences abrupt discontinuity when a 

ray of radiation emitted from one surface to another is blocked by a geometric obstruction. 

In their studies, a coupled solution is also presented for a problem that involves a mixed 

mechanism of conduction and surface radiation. They also suggested an adaptive 

algorithm for an accurate integration of kernel functions for complex 2-D geometries.  

The adaptive algorithm, however, was not used in their examples; instead a precise 
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determination, based on the geometric consideration, of third party blockage is used.  One 

critical drawback associated with the application of the traditional boundary element 

method for this type of calculations is that the detection of the geometric obstruction may 

not be exclusive in some complex geometric arrangements, thereby causing numerical 

errors in the calculation of the kernel function and hence the prediction of the energy 

exchanges.  This point will be illustrated in the section below concerning the detection of 

third party shadowing.  Nonetheless, their work has clearly demonstrated that the 

boundary element method can be very powerful tool for thermal radiation interchange 

calculations. 

In this chapter, a novel algorithm for the prediction of surface radiation energy 

inter-exchanges between gray surfaces in two-dimensional geometries is presented.  The 

work is motivated by the need to further improve the computational efficiency by taking 

advantages of updated development in both computer hardware and software algorithms.  

It also constitutes part of effort in developing integrated solutions to engineering 

problems arising from materials processing and manufacturing systems that involve 

multi-physics and multi-time and multi-length scale phenomena. Present approach is 

based on the Galerkin boundary element method, which improves upon the traditional 

method and allows a full detection of any geometric blockages between any two points at 

two surfaces involving the radiation exchange.  The method is further enhanced with an 

efficient search and sorting algorithm developed based on the accumulated experience 



30

 

with computer graphics [Zhang 2001, Honda et al. 2001] and suitable data structure 

[Bastian and Li, 2002] to increase the computational efficiency for blockage detection, 

which turns out to be the most CPU consuming part of the entire calculations.  It is 

stressed here that the Galerkin, rather than traditional, boundary integral formulation, is 

essential to ensure that the geometric obstruction is fully detected in any complex 

geometries.  In what follows, the Galerkin boundary integral formulation is presented, 

along with the design of shadowing determination algorithm, based on sorting and 

searching schemes used in advanced computer graphics.  Examples are given to illustrate 

the usefulness of the method for surface energy exchange calculations.  The coupling of 

the Galerkin boundary element method with the Galerkin finite element method for the 

solution of heat transfer problems involving mixed mechanisms such as conduction, 

convection and surface radiation is also discussed.  It is thought that the algorithm 

described in this chapter should form a strong basis upon which valuable numerical tools 

can be developed to study the basic principles of surface radiation exchanges and to help 

engineering designs involving surface radiation heat transfer.  



31

 

 

Figure 3.1: Schematic of thermal radiation exchanges: exchange among surfaces in an 

enclosure. 

3.2. PROBLEM STATEMENT 

Let us now consider the radiation exchange among surfaces that form an enclosure, as 

illustrated in Figure 3.1. The surface I emits the energy to other surfaces of the enclosure 

and meantime receives the energy from other surfaces as well.  The heat flux )( irq  is 

supplied to the surface element I  to sustain the radiation heat transfer and is determined 

by the heat balance on element I  involving incoming and outgoing radiation energy 

fluxes.  Referring to Figure 2.1, the general expression for the heat flux is given by the 

following expression,  
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where the radiation intensity emitted from surface j is given by the following 

expression, 
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In the above equations, λ  is the frequency, I  the radiation intensity, ε  the 

emissivity, ρ  the reflectivity, θ  the angle between the surface outward normal and the 

radiation exchange direction, and ϕ  the azimuthal angle. Note here that the subscript r 

refers the reflected radiation and the subscript b refers to blackbody radiation and thus by 

definition the radiation intensity is directionally independent. 

While calculations using the above formulations can be performed for general 

conditions, for most engineering applications the surfaces of an enclosure can be well 

approximated as gray, diffuse surfaces.  Within the framework of the approximation, the 

integrations over the wavelength λ  and angle θ  can be carried out analytically.  

Moreover, for a 2-D geometry, the kernel function can be further integrated analytically 

in the z-direction.  Collecting the results from these analytical operations and rearranging, 
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we have the following boundary integral formulation for thermal radiation energy 

exchange between surfaces in an enclosure, 
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where Eb is the blackbody emissive power and is calculated by the integration of 

the blackbody radiation intensity over the entire spectrum of wavelengths, 
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with σ  being the Stefan-Boltzmann constant and use has been made of the 

spectral distribution of blackbody radiation, 

[ ]1)exp(
2),( 5

2

−
=

kThc
hcTI

o

o
b λλ

λλ  (3.5) 

Notice that the subscript i  on ir  has been dropped out and jr  replaced by 'r  to 

simplify the notation.  This will remain true hereafter until indicated otherwise.  Also, in 

the above equation, ),( 'rrK  is the kernel function for the integral, which for 2-D 

problems takes the following form,  
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where χ  assumes a value of one when the surface element I sees the surface 

element J+1 as illustrated by the ray connecting i to j+1, and otherwise it is zero as 

indicated by the ray connecting i to j, as appear in Figure 3.1.  Thus the parameter χ  is a 

strong function of geometric configuration and makes the kernel function highly irregular 

for a geometrically complex enclosure. 

Eq. (3.3) involves the integration over the surface only and thus the boundary 

element method can be applied naturally to discretize the domain for a numerical solution.  

Following the general procedures described by Brebbia et al.(1984), the surface can be 

discretized and both Eb and q can be interpolated over each of the boundary elements by 

use of shape functions, i.e., 
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Substituting the above expressions into the boundary integral equation, one has 

the following equation, 
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Here the subscript i denotes the ith global nodal point and the superscript j the jth 

boundary element.  The subscripts 1…Ne refer to the nodal points local to element j.  

Applying the above equation to every nodal point of the cavity and summing up the 

results, one has a final matrix form that allows the temperature (or Eb ) or the heat flux q 

to be calculated for every nodal point.   

This traditional boundary element approach should work very well if the kernel 

function, ),( 'rrK , is a smooth function, as demonstrated repeatedly in the traditional 

boundary integral solution of a wide range of engineering problems [Brebbia et al., 1984; 

Song and Li, 1999]. Unfortunately, for most practical applications involving surface 

thermal radiation exchanges, the kernel function is not smooth and may experience 

abrupt disruptions or discontinuities due to various types of geometric obstructions, 

which can be either the third party blocking or self-blocking of the view between point i 

and a point of element j.  Physically, an occurrence of obstruction means that the 

radiation intensity emitted from surface element j is intercepted by other bodies and 

hence does not reach point i.  This geometric effect poses a serious problem for 

accurately calculating the kernel functions in general. Blobner et al. (2001) illustrated this 

point by use of the traditional boundary element approach for 2-D thermal radiation 

calculations. In their solution, care has been taken to group elements in order and to use 

other techniques to improve the efficiency. However, their algorithm suffers from an 

important drawback, which is in essence intrinsic with the traditional boundary integral 
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formulation. In some cases, the triangles constructed to determine the shadowing effects 

can potentially miss a possible third party shadowing element when it is located very 

close to the element associated with point i, thereby resulting in an error in their 

calculations.  

3.3. THE GALERKIN BOUNDARY ELEMENT METHOD 

Here the Galerkin boundary element method is applied to ensure a full detection 

of any possible blockages in an enclosure involving thermal radiation exchanges. This 

approach forces the global residuals to zero by use of orthogonality condition, thereby 

minimizing the error that possibly arises from the integral stated in Eq. (3.3). More 

importantly, this approach enables to be detected the shadowing elements that could be 

missed by the traditional boundary element method.  By the Galerkin method, Eq. (3.3) is 

integrated once again over the entire surface with shape functions used as the weighting 

functions, viz., 
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Now with the boundary discretized and shape functions chosen as described 

above, followed by some algebraic manipulations, one has the final matrix equation, 

[ ]{ } [ ]{ }bEBqA =  (3.10) 
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where the elements of matrices A  and B  are calculated by the following 

expressions, 
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Depending on the boundary conditions, Eq. (3.8) can be rearranged into a 

standard matrix form, 

[ ]{ } { }FuK =  (3.13) 

where [ ]K  is the global matrix, { }u  the unknowns and { }F  the force vector. 

3.4. THE SEARCHNG AND SORTING ALGORITHM 

To accurately calculate the kernel function ),( 'rrK , it is required to determine if a 

radiation ray emitted from a surface element is able to reach its destination point at the 

other surface element, as shown in Figure 3.1.  Two mechanisms can prevent a radiation 

ray from reaching its designated destination and must be identified in the algorithm.  In 

the first case, the surface element does not see at all the destination point the ray is 

supposed to reach.  This is essentially the case of self-blocking.  In the second case, the 
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ray is blocked by a third party element due to geometric configuration, which is called the 

third party blocking.  In both cases, the kernel function is zero.  The blockage of a ray can 

also be differentiated into partial blocking and total blocking, which requires different 

treatments. Our algorithm of integrating the kernel function entails a four-step searching 

and sorting procedure, which has been applied effectively in 3-D computer graphics for 

detecting and removing of hidden lines or hidden surfaces for thermal and fluid flow data 

visualization (Zhang 2001, Honda et al., 2001), coupled with an adaptive integration 

scheme, to minimize the numerical errors.  The procedure is discussed below.   
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Figure 3.2: Geometric relations between mutually seen and unseen elements: radiation 

emitted from point i can reach point j but is unable to reach point j’ because of the self-

blockage by the element J’. 

Before starting the search and sort procedure, a list of elements actively engaged 

in thermal radiation with element I from which radiation emits is created and initialized.  

This list is updated as the procedure proceeds. The first step tests the signs of the 

product of the surface normals of the two elements (e.g. elements i and j) with the vector 

connecting the two elements (i.e. R  in Figure 3.2). This is equivalent to testing the sign 

of ( ) ( )''' rrnrrn −⋅−⋅ .  If the sign of ( ) ( )''' rrnrrn −⋅−⋅ is positive, the two elements can 

see each other.  If ( ) ( )''' rrnrrn −⋅−⋅  is zero or negative, the two elements are 

considered not seeing each other.  Based on this sign test convention, elements i and j can 

see each other, whereas elements i and j’ can not, as shown in Figure 3.2.  After this test, 

the elements that are unseen by element i are discarded from the list.  The kernel 

functions for them are set to zero and no further considerations are given for them in 

terms of thermal radiation exchange with element I. 
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Figure 3.3: Primary and second clip windows for screening out third party shadowing 

elements for blocking the radiation exchange between elements I and J. 

For those remaining in the list, test is conducted to determine the blockage. The 

procedure involves additional three steps, the basic idea of which is illustrated in Figure 

3.3. Again before the test is started, another list of third party elements is created and 

initialized for each pair of mutually seen surface elements, determined as described in the 

previous paragraph. The algorithm here consists of the coarse screening and the detailed 

checking.  First, a primary window of rectangular shape is set up using the maximum and 

minimum coordinates of the pair of mutually seen elements, i.e. elements I and J (see 

Figure 3.3).  For this purpose, the standard clip algorithm routinely used in computer 
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graphics for clipping objects, proved to be extremely effective, is thus directly applied 

(Zhang 2001). The elements lying outside the window are deleted from the list of 

blocking elements.  This check will throw out a majority of unblocking third party 

shadowing elements from the list of blocking elements. Those screened through this 

check are further clipped out and discarded from the list of blocking elements, if they lie 

outside the irregular window defined by 1’2’12.  The algorithms used to clip out the 

elements out of the irregular window, such as 1’2’12, are more involved and 

computationally intensive.  However, the basic procedure is the same as for clipping 

against a triangle (see below), which is performed during the integration.  Thus, the 

elements are discarded from the list if they lie outside the window 1’2’12.  And those 

lying partially or completely inside the window are further checked for blocking while 

integration is performed.   
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Figure 3.4. Three geometric arrangements for third party obstruction of radiation 

exchange between point i and element J in relation with the testing triangle: (a) no 

obstruction, (b) total obstruction and (c) partial obstruction. 

Numerical integration is performed to compute Aij and Bij for each pair of 

mutually seen elements I and J, while checking for blockage by each remaining element 

in the list of partial blocking elements attached to the pair. Some of these partially 
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blocking elements may or may not block every ray between the two elements. To 

determine if a third party element actually blocks a ray between elements I and J, the 

third party element is first checked against a triangle formed by an integration point on 

element I and element J.  The detailed algorithm for clipping against the triangle is given 

in Figure 3.4, where three different scenarios are depicted.  For the case 4a, the third 

party element K lies outside the triangle and thus integration along element J from point i 

is not affected.  As a result, numerical integration is carried out for element J and point i 

without further checking.  For case 4b, the third party completely blocks a ray from point 

i to any points on element J.  Thus, the kernel function is set to zero and no integration is 

carried out for element J. For case 3.4c, which is most common, the third party element is 

partially blocking and therefore every ray from point i to any integration point on element 

J needs to be further checked (see next paragraph for detail).  To determine to which case 

the third party element K belongs, the following rule based on the geometric 

considerations is applied.  The nodes of the triangle formed from point i and element J 

are numbered anti-clockwise, which allows to determine the surface normal, sn , of the 

triangle as positive when pointing out of the paper.  Two vectors are created by 

connecting one point of element K, say a’ (see Figure 3.4c), to two end points of one side 

of the triangle, e.g. 1 and 2 .  The cross product of the two vectors, 12 × , is then dot 

with the surface normal sn  of the triangle.  If the dot product is positive, then the element 

K is inside the triangle and belongs to the category of Figure 3.4c.  If both 12 ×⋅sn  
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and 34 ×⋅sn  are positive and i (i=1..4) is formed from the same side of the triangle, 

then the third party element K belongs to the category of Figure 3.4a.  If both 12 ×⋅sn  

and 34 ×⋅sn  are positive and i (i=1..4) is formed from two different sides of the 

triangle, then the element K belongs to the category of Figure 3.4b, which totally blocks 

the point to element J. 

 

Figure 3.5: Detailed testing of blockage of radiation between points i and j by a third 

party element K. 

For the case illustrated in Figure 3.4c, an adaptive integration algorithm is applied, 

while the ray connecting point i to an integration point on element J is checked for 

blockage as illustrated in Figure 3.5. In this case, the interception point P is calculated by 

simultaneously solving the two linear equations describing lines a’b’ and ij.  The 

blockage occurs if P lies on line a’b’ or element K; otherwise line ij is not blocked.  In 

applying the adaptive integration, two successive numerical integrations, with twice as 
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many integration points in the current step as those in the preceding one, are employed. 

The error between the two successive integrations is checked and the calculation is 

considered converged, when it is smaller than a preset value.  Our experience indicates 

that a preset value of 0.001 as a relative error with respect to the diagonal term yields a 

reasonably fast convergence with sufficient accuracy.   

 

Figure 3.6. Comparison of strategies for detecting third party shadowing by the 

traditional and Galerkin boundary element methods. The traditional method uses the 

triangle formed by 1’12, where the Galerkin used triangle 1’12 and other triangles such 

as a12. 

At this point, it may be constructive to revisit the treatment of the third party 

blockage when the traditional boundary element method is applied.  The drawback 

associated with the traditional method is the possible miss in detecting the third party 

shadowing in some special cases.  This is illustrated in Figure 3.6.  Because the numerical 
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integration is carried out between the nodal points (1’ or 2’) and element J, and point a is 

not participated in integration (see Eq. (3.7)), the shadowing effect of element L, a third 

party element that actually blocks partially the view between elements I and J, is not 

accounted for, thereby resulting in numerical errors. The Galerkin boundary element 

method, however, requires the double integration of elements I and J, which in turn 

requires the use of internal points on either elements, and thus will be able to detect the 

existence of element L.     

3.5. RESULTS AND DISCUSSION 

The above Galerkin boundary element computational methodology, enhanced with the 

advanced computer graphics algorithm for sorting and searching permits the prediction of 

surface heat flux and temperature distributions between gray, diffuse surfaces. Computed 

results were obtained for a wide range of conditions.  A selection of the results is 

presented below to illustrate the usefulness and effectiveness of the algorithm. 

Figure 3.7 compares the heat flux distributions along the surface of a simple 2-D 

cavity, which are calculated using the analytical method and the Galerkin boundary 

element scheme using 32 constant elements or 32 linear elements. The linear boundary 

element mesh is also shown and the constant elements are defined such that the quantities 

such as heat flux and emissive powers are evaluated at the center of the element. The 

numerical calculations used 5 integration points, which seem to be a reasonable choice, 
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and result in the worst error of less than 0.001% in identity, which means all radiation 

leaving point r  must be intercepted by the enclosure surfaces, 

1)'()',( =Γ∫ rrr dK  (3.14) 

For this simple problem, one integration point gives an error about 3~5%.  Larger 

erros occur near the corner.  Inspection of these results shows that the numerical results 

using both types of elements are in good agreement with the analytical solutions.  We 

note here also that the analytical solutions used the view factor and assumed a constant 

heat flux along one side.  As such, the analytical solutions should be viewed as an 

approximation or a reference with which numerical solutions are compared.  The further 

check on the overall heat balance gives a relative error of 0.02% for constant element, 

here the error being measured as the difference of the analytical solution and the average 

of the numerical heat fluxes along one wall, divided by the analytical value.  The 

negative sign for the heat flux indicates that the heat flows into the surface or out of the 

square enclosure.  These results are consistent with the physical processes. For instance, 

the fluxes are higher near edges of the bottom wall and lower at the center, which is 

attributed to the fact that the edges are influenced more by the side walls at higher 

temperatures.  This is seen in the computed results by both linear and constant elements.  

The results from the linear elements, however, show discrepancies at the corner where 
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the heat flux is physically discontinuous because of an abrupt change in curvature from 

one side to the adjacent one.  The accuracy of the linear element approximation, seen 

poorly at corners, can be improved, and in fact the discrepancy can be completely 

removed, by use of various established methods for corner treatment, such as 

discontinuous elements, double corner treatment and double flux treatment (Li and Song, 

1999).          
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Figure 3.7: Boundary element mesh and comparison of numerical and analytical solutions 

of thermal radiation exchange in a simple 2-D geometry: (a) heat flux along bottom wall, 

(b) along side wall and (c) along bottom wall.  Parameters used for calculations: ε =0.5 

for all the walls, L=3m, and other conditions and boundary discretization are shown in 

the insert of figure 3.7(a).  

 

 



51

 

 

Figure 3.8. Heat flux distributions for a 2-D cavity with three protrusions that result in 

partial or total blocking of radiation between some surfaces of the enclosure.  Parameters 

used for calculations: ε  = 0.5 for all walls, T=400 K at, left side and bottom walls, and 

T=900 K at the rest. 

The computer code was also applied to calculate the surface radiation exchange 

involving complex internal blockages.  One of these calculations for a 2-D geometry with 

various blockage areas is shown in Figure 3.7, along with the boundary element meshes 

used for calculations. The calculations used 64 constant boundary elements and adaptive 

integration algorithms were invoked to treat the kernel function for the elements that are 

partially shadowed by the third party elements.  The normalization factor is also checked 

for this computation and the error for is less than 0.5%.  The calculated results are 
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consistent with thermal radiation heat transfer principles and the temperature distribution 

along the left side wall shows a perfect symmetric profile (Modest, 1993, Siegel and 

Howell, 1992).   
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CHAPTER 4 

THREE-DIMENSIONAL SIMULATION OF SURFACE RADIATION 

EXCHANGE BETWEEN GREY SURFACES 

4.1 INTRODUCTION 

In Chapter 3, a Galerkin boundary element method for solving surface radiation exchange 

between grey surfaces is discussed. This chapter presents a parallel Galerkin boundary 

element method for the computation of thermal radiation interchanges between surface 

elements in general, complex 3-D geometries and its coupling with the Galerkin finite 

element method for the multi-mode heat transfer calculations.  The Galerkin boundary 

integral is derived from the direct boundary formulation of problems, and such a 

derivation is based on the need to ensure a full detection of geometric blockages or 

shadowing effects caused by configuration arrangements rather than as an alternative 

formulation for surface radiation problems. The computational algorithm is enhanced 

with a creation of appropriate data structure and with the recent development and 

implementation of some ideas used in hidden line removal algorithms for 3-D computer 

graphics applications. The parallel scheme, implemented in the UNIX/PVM environment 

and its performance for surface radiation calculations are discussed.  To the best of our 

knowledge, there appears to have been very few, if any, computational procedures that 



54

 

fully explore the computer-graphics based search and adaptive integration scheme for the 

evaluation of kernel functions with 3rd party element blockages, enhanced with parallel 

computing algorithm, for 3-D thermal radiation calculations. The coupling of the 

Galerkin boundary element calculations for surface radiation interchanges with the 

Galerkin finite element method for the bulk convective and conduction transfer is also 

given.   Computational examples for complex 3-D geometries are presented. 

The equations used in Chapter 3 can be extended to three-dimensional problems 

in this chapter. In order to save some space, the equations (3.1-3.9) in Chapter 3 will not 

be repeated in this chapter; instead the algorithm is presented directly. 

4.2 SHADOWING ALGORITHM  

Perhaps, the most important computational aspect of surface radiation exchanges is the 

design and implementation of a shadowing algorithm that allows an efficient and 

effective detection of the geometric blockage by the third parties of the thermal rays or 

electromagnetic waves traveling from point i on element I to point j on element J, as 

shown in Figure 2.1.  This is also the most difficult, time consuming, and error-prone part 

of a computational scheme for thermal radiation exchange calculations, without which 

the computations are basically trivial using essentially any integration algorithms 

available. This can be particularly true for surface radiation exchange calculations in 
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complex 3-D geometries.  An accurate estimation of the kernel function ),( rr ′K   

requires determining the portion of radiation rays emitted from a surface element that is 

able to reach its destination point at the other surface element. Three types of blockages 

may be differentiated and are represented by the kernel function factor χ .  The factor χ  

is unit if there exists no blockage between two mutually involved elements I and J. The 

kernel function is zero if the light ray from surface element I cannot reach any point in 

surface element J, or the ray is totally blocked by a third party element due to geometric 

configuration.  In the last cases, the foreign element just blocks a portion of radiation rays 

between elements I and J, and the integration of the kernel function is then determined by 

the portion unblocked.  This third case is often referred to as the partial blocking by the 

third party elements. 

The algorithm of integrating the kernel function entails a 

sorting/clipping/searching procedure, which has been applied effectively in part of 3-D 

computer graphics for detecting and removing hidden lines or hidden surfaces for thermal 

and fluid flow data visualization, and an adaptive integration scheme to minimize the 

numerical errors. The algorithm involves four major procedures: sorting by sign, primary 

clipping, secondary clipping and adaptive integration with final checking. It is noted here 

that while the kernel evaluation can be done by integration with final checking alone for 

every pair of elements, this brutal force approach can be prohibitively expensive, 
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especially for large-scale calculations involving complex 3-D geometries. Our idea 

presented here is to eliminate all those elements that are not needed and to perform only 

on those elements that are absolutely necessary for the time intensive integration. This 

concept is realized by the sorting, clipping or searching and adaptive integration 

algorithm, along with the data structure based on the creation and updating of the element 

lists to optimize the computing performance, which are discussed below.   

SORTING BY SIGN 

Prior to the four-step procedure, a list of elements actively engaged in thermal radiation 

exchange with element I from which radiation emits is created and initialized. This list, 

labeled as the main list, may be taken as the entire set of surface elements if there exists 

no prior information on inter-element relations, which would be the case with I=1. The 

list initiated may be shorter starting with I ≥ 2, because information obtained from the 

previous testing can be used to preclude some elements from the list to speed up the 

computations.  For example, if elements I=1 and I=2 are not seen each other, then 

element 1 would not be included in the list for element I=2 when the list is created for 

I=2. Once it is created, the list is updated as the searching/sorting procedure proceeds. As 

the first step, elements are sorted by testing if two elements can see each other at all. To 

do that, we consider the signs of the dot product of the surface normals of the two 
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elements (e.g. elements I and J) with the vector connecting the two elements (i.e. ijR  in 

Figure 2.1). This is equivalent to testing the sign of ( ) ( )''' rrnrrn −⋅−⋅ .  If the sign is 

positive, the thermal rays may reach each other between the two elements or the two 

elements can see each other. If ( ) ( )''' rrnrrn −⋅−⋅  is zero or negative, the thermal rays 

emitted from either element cannot reach the other element or the two elements can not 

see each other. Based on this sign test convention, elements I and J can’t see each other 

(see Figure 4.1). 

 

Figure 4.1 unseen surfaces 

After this test, the elements that are unseen by element I are discarded from the 

main list. The kernel function related to them is set to zero and no further considerations 

are given for them in the procedures ensuing. 

PRIMARY CLIPPING 
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The elements remaining in the main list are considered mutually seen and primary 

clipping is performed to determine the foreign elements for the potential third party 

blockage of surface radiation exchanges between an element pair of element I and one 

other element (say element J) selected from the main list. The basic idea of the primary 

clipping is illustrated in Figure 4.2. Again before the test is started, another list of third 

party elements, or the blocking list, is created and initialized for each pair of mutually 

seen surface elements in the list. This third party or blocking list is a subset of the main 

list excluding, but attached to, the pair of mutually seen elements, i.e. elements I and J.  

To begin, a primary window of brick shape is set up using the maximum and minimum 

coordinates of the element pair. The elements in the blocking list are checked against the 

primary window. For this purpose, the standard 3-D clip algorithm routinely used in 

computer graphics for clipping objects, proved to be extremely effective, is thus directly 

applied (Zhang et al., 2001). The elements lying outside the window can not possibly 

block the thermal rays traveling between elements I and J, and thus are deleted from the 

blocking list. This check will throw out a majority of unblocking third party shadowing 

elements from the blocking list. For example, as shown in Figure 4.2, this procedure will 

eliminate element L from further consideration but still keeps element K, which is 

considered a potential candidate for a third-part blockage. Depending on the relative 

geometric positions of mutual elements I and J, a good portion of elements can be 
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eliminated, thereby reducing the computational burden for the most tedious ray-tracing 

checking and adaptive integration.  

 

Figure 4.2 3rd blocking out of primary clipping window 

SECONDARY CLIPPING 

 The next step involves the secondary clipping, which eliminates the elements not 

blocking any ray from element I to element J from the active list. This is done as follows. 

A pyramid is formed by selecting a corner point, say point i, of element I and connect it 

to all the corners of element J.  A third party element remaining or active element in the 

blocking list is now checked against the pyramid. The detailed algorithm for clipping 

against the pyramid is given in Figure 4.3, where three different scenarios are depicted. 

For case 4.3(a), the third party element K lies outside the pyramid. For case 4.3(b), the 

third party totally blocks a ray from point i to any points on element J. For case 4.3(c), 
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which is the most common scenario, the third party element is partially blocking and 

therefore every ray from point i to any integration point on element J needs to be further 

checked, that is, the final checking is required during detailed integration.   

To determine which of the three cases the third party element K belongs to, the 

following rule based on the geometric considerations is applied.  A pyramid is formed by 

four lines, which all originate from point i, and each connect to a different vertex of 

element J. Each of these four lines may pass through the plane defined by element K. One 

of these lines, marked by i-j is illustrated in Figure 4.3(c).  By the similarity rules of plane 

triangles ∆ipq and ∆icr, we have the following relation, 

JicJijipic tt nrrnrrmrrrrm ⋅−⋅−=+=−= )()(,,)(  (4.1)      

where p is the interception point of line ij with element J and jn is the outnormal of 

element J. Note that pq = | Jij nrr ⋅− )( |, which is the distance between point i and plane J. 

Thus, if 0 < t < 1 or t < 0, then element K lies outside the pyramid, that is, either above 

element J or below point i. The element is then eliminated and a new check for a different 

element is started. The 3rd party element or element K blocks the ray from point i to 

element J if the following two conditions hold for any one of the four lines connecting 

point i to the four corners of element J,  

  t > 1 and p  is inside element J. 

To test if p is inside element J, the algorithm as illustrated in Figure 4.4 is 
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employed.  The nodes (1,2,3,4) of element J is set up anti-clockwise, and two vectors are 

created by connecting the interception point p to two nodes of one side of element J, e.g., 

p1 and p2.  The cross product of the two vectors, p1×p2, is then dotted with the surface 

normal Jn  of element J.   

The above procedure, however, cannot surely determine cases illustrated in 

Figures (4.3b) and (4.3d), which show that element J may either totally or partially blocks, 

even if all interception points lie outside element K. Thus for all those elements whose 

intersection points are all outside but 0 < t <1, additional checking is required. This check 

involves calculating the intersection point k with element K by line ij. Point k can be 

calculated by simply exchange the corresponding points of element J with element K, or 

KijKicikij tt nrrnrrmrrrrm ⋅−⋅−=+=−= )()(,,)( 11
 (4.2) 

Thus, element K or blocks between the view from point i to element J, if 0 < t < 1 

and k is inside element K. Of course, the same procedure sketched in Figure 4.4 can be 

used to determine if k is inside element K.  

It is noted that the purpose of this secondary check is to establish the active list of 

partial blocking elements and can be expensive since all the corners of the elements must 

be checked. Hence if either p or k is considered blocking during checking then element K 

remains in the active list for final integration and a new check is started again for another 

element in the rest of elements still waiting to be checked. After this secondary checking 
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procedure, the active list contains only those elements that will most likely block the 

view between elements I and J. Whether or not they indeed block will be checked during 

final integration, which is to be described below.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.3. Four different scenarios of third party element blockage of thermal rays 

emitted from point i to element J : (a) no third part blocking; (b) total third part blocking; 

(c) and (d) partial third part blocking. 

 

Figure 4.4. Check if P is in the plane 
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ADAPTIVE INTEGRATION WITH FINAL CHECK  

After the secondary clipping of partial blocking elements as described above, the 

actual integration over elements I and J is now performed, along with the detailed final 

check of the third party element blockage of the thermal ray originating from an 

integration point on element I to another on element J (see Figure 4.5). In this study, the 

Gaussian integration quadrature is used. Other integration rules can also be applied. If the 

blocking list is empty or no active element is in the list, the integration is carried out 

without further checking. Otherwise, final checking of blockage is performed for those 

elements active in the blocking list, when integration is taken over element J.  In this case, 

each line (or light ray emitting from integration point i on element I and ending at 

integration point j element J) is checked against all partially blocking elements active in 

the blocking list determined from the secondary clipping. If the ray connecting two 

integration points of respective elements I and J is blocked by the third–part element K, 

the value of integration is set to zero. If not this integration is calculated. The idea of 

determining various scenarios of the third party blocking during final numerical 

integration is illustrated in Figure 4.5(a). Here a line is constructed between points i and j, 

and the interception point k of the line with the third party element K is calculated b by 

substituting relevant parameters into Eqs. (4.2). The interception point k is then tested 

using the same procedure as illustrated in Figure 4.4 to see if it lies inside element K.    
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(a) 

 

(b) 

Figure 4.5 Procedures used to determine the blockage of the thermal ray emitted from i  

to j  by element K : (a) element K  is not parallel 0≠⋅ knm  to the thermal ray ij and k  

is the interception point between the thermal ray and element K ; and (b) third party 

elements are parallel 0=⋅ knm  to the thermal ray ij , and element K  blocks thermal ray 

ij  , but element L  does not. 
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When the line ij is parallel (i. e., Knm ⋅  = 0) to the 3rd party element (see Figure 

4.5(b)), Eq. (4.2) is no longer applicable.  In this case, care is taken to ensure that the line 

passes through the element and the interception points between the plane edges and the 

line are calculated. If one of these interception points is between points i and j, then the 

3rd party element blocks.  If none of these points lie on the line between points i and j, 

then the 3rd party element does not block. 

In order to obtain an accurate value of integration, an adaptive integration is 

applied. Two successive numerical integrations, with twice as many integration points in 

the current step as those in the preceding one, are employed in the present study.  Other 

ways of refinement are also possible; for instance, two successive orders of numerical 

integration may be used instead.  The error between the two successive integrations is 

checked and the calculation is considered converged, if the error is smaller than a preset 

value.  Our experience indicates that a preset value of 0.001 as a relative error with 

respect to the diagonal term yields a reasonably fast convergence with a sufficient 

accuracy.   

The Galerkin formulation requires surface integration over both elements I and J. 

This mandates that the above search and integration algorithm is carried out for 

integration of element J with every integration point i on element I and then integration of 

element I with every integration point j on element J.    
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The above procedure continues until the initial list associated with element I is 

exhausted.  Then a new surface element is selected and a list of candidate elements is 

created.  The three-step searching and integration computational process is followed.  

This is repeated until every surface element is calculated.  The outline of the shadowing 

detection and adaptive integration algorithm is illustrated in Figure 4.6. 

It is important to note that there are similarities between the secondary clipping 

and final check during integration for blockage during adaptive integration, though the 

latter is more involved. Thus some procedures described in the secondary clipping are 

applicable the final check.  Additional checks as shown in Figure 4.5 are also employed 

in this final check stage to ensure all blockages are detected accurately. Since both 

procedures can be very time consuming, the secondary clipping helps to save time if the 

integration points per element exceed the number of corners of the element. For relatively 

simple geometries and relatively few elements, few integration points are needed and 

thus the secondary clipping may not necessarily speed up the calculations significantly.  



68

 

 

Figure 4.6 Flow chart for the searching and adaptive integration algorithm used for 

surface radiation calculations. 
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For complex geometries, partial blocking occurs very frequently and often the 

number of integration points needed to accurately integrate the kernel functions is 

significantly larger than the number of corners. For these cases, the secondary clipping 

provides a useful means to shorten the list to be checked during integration and thus 

allows savings in CPU times. 

4.3 PARALLEL COMPUTING ALGORITHM AND ITS IMPLEMENTATION 

The calculation of the double integral in surface radiation problem is overwhelmingly 

time consuming, especially for complex geometric configurations with various third party 

element blockages. In order to increase computational speed, a parallel computation 

algorithm may be used to take advantage of the modern parallel computer architectures. 

Indeed, careful examination of the above computational procedures indicates that the 

Galerkin boundary integral formulation represents perhaps an idealized scenario for 

parallel computing.  This is because the integral between two elements is decided only by 

the geometric configurations associated with them.  Thus the integral can be carried out 

independently of the similar calculations for other pairs of elements. This feature is 

particularly suitable for a parallel computation algorithm with the data structure based on 

the various lists described above, because sending and receiving information between 

slave processes are not required, which is a bottleneck of many parallel computation 
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applications.   

Here we discuss some of the very basic ideas implemented in the parallel 

computing strategy for surface radiation exchange applications.  

 

Figure 4.7 Schematic of master–slave communication in parallel processing. 

Figure 4.7 shows the parallel computing algorithm incorporated into the Galerkin 

boundary element formulation, which is designed by following the master-slave concept 

common in parallel computing software development. The master processor broadcasts 

all data, which are required in calculating view factor between two elements, to every 

slave processor, and receive the results that are calculated by every slave processor by 

performing the actual computations for searching and integration. For a given problem, 

the boundary discretization yields the total number of element.  Based on the number of 

processors available, the total number of elements is divided into subgroup of elements, 

as evenly as possible, so that each slave processor is loaded with the same number of 

element pairs for calculations. This will minimize the waiting time for any slave 

processors. The master then collects the results from each of the slave processors and 
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assembles them into global matrices A and B .  

 

Figure 4.8 Illustration of geometry of furnace 

After the data from the last slave processor are assembled, the master processor 

then performs the matrix inversion, say via LU decomposition, to obtain the solution to 

the unknowns.  This is the other time consuming part of surface radiation, if the number 

of elements in mesh is large. This part may also be parallelized as well.  Our experience 

shows, however, that if the number of elements is not very big, a parallel LU computation 

is even slower than a serial code, due to the large overhead associated with data 

communication between processors. The matrix inversion by itself has been an important 

subject of intensive research in the parallel computing community. It is thus not 

elaborated here.  We have both in-house and commercial parallel matrix solvers that can 

be used for this purpose.    
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4.4 COUPLED WITH FE FOR MIXED MODE HEAT TRANSFER PROBLEMS 

In most engineering applications, surface radiation often is not the only heat transfer 

mechanism, and other phenomena also coexist, such as heat conduction, fluid mechanics, 

melting, phase changes, etc. Thus it is required to couple the Galerkin boundary element 

method, with the finite element method to solve the problems involving mixed heat 

transfer mechanisms. We discuss the coupling procedure in the context of an example of 

a 3-D thermal and fluid flow system, in which the surface radiation, heat conduction and 

Marongani flow are all present. Figure 4.8 shows the finite element meshes used to model 

the furnace. The system consists of a chamber with a cylindrical roof and a block 

protruded from one side into the inside of the cavity.  The roof is fixed at a higher 

temperature and by radiation the liquid pool below is heated up. The outside of the 

chamber is at the room temperature and the system loses heat to the environment through 

radiation and conduction through the wall, which follows the Stafen-Boltzmann law. 

Because of the free surface of the metal is exposed to the radiation and temperature on 

the surface of the liquid is not uniform, the Marangoni convection and buoyancy flow 

arise due to the surface tension and gravity effects. The melt flow and heat transfer are 

governed by the Navier-Stokes equations and the energy balance equations within the 

solid wall, the melt and circumstance. The governing equations for the fluid flow and 
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heat transfer phenomena are given as follows, 

0=⋅∇ u   1Ω∈  (4.3) 
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where u  is the velocity, ρ  the density, T  the temperature, µ  the viscosity, β  

the thermal expansion coefficient, g  the gravity, pC  the specific heat and k  the thermal 

conductivity. The above equations, along with Eq. (3.9) describing the surface radiation 

exchanges in the enclosure formed by the liquid surface and the surfaces of the furnace 

which faces the liquid.  The boundary conditions for the problem are:  

)( 44
∞−−=∇⋅ TTTkn δσ                                                          1Ω∂∈         (4.6) 

T
dT
dn ∇⋅=⋅⋅ tt γτ                                                                   2Ω∂∈  (4.7) 

0=⋅ nu                                                                                    2Ω∂∈  (4.8) 

HTT =                                                                                      3Ω∂∈  (4.9) 

Where γ  is surface extension, 1Ω∂  the outer surface of furnace, 2Ω∂  the top of 

liquid surface and 3Ω∂  the top inner surface. Note that Eq. (4.7) represents a shear stress 

balance along the interface, which causes a fluid motion when the surface temperature is 

not uniform.  This type of flow is often referred to as Marangoni flow or surface tension 

driven flow. The finite element discretization for the solution of convection and 
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conduction heat transfer leads to the following matrix equations [Song and Li, 1998], 
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where ε  is the penalty number. This matrix equation is then solved together with Eq. (3.9) 

to obtain information on fluid flow and temperature distribution in the system.  The 

elements of the matrices are calculated using the following expressions, 
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In this multi-mode heat transfer problem, the surface radiation occurs between the 

liquid surface and the surfaces of the furnace surrounding it. The heat transfer in the solid 

wall of the surface is governed by heat conduction and heat loss to the outside 

environment is by radiation to free space.  In the liquid, non-uniform surface tension 

induces a Marangoni flow, which transports the thermal energy by convection in the 

liquid pool.  The convection is combined with surface radiation and conduction to govern 

the overall heat balance in the liquid.  The coupling of surface radiation calculations (Eq. 
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(3.9)) with the finite element calculations is represented by term TG .  Here Tq  for the 

liquid is calculated by Eq. (3.9).  In the calculations presented below, an iteration method 

is applied to couple the surface radiation and finite element calculations, although direct 

coupling is also possible.  For the problem under consideration, additional speed can be 

gained by calculating BA 1−  once using the LU decomposition method and storing it in 

memory or on disk, due to fact that the surface properties are constant.   

4.5 RESULTS AND DISCUSSION 

The Galerkin boundary element methodology, coupled with the efficient 

searching and sorting and adaptive integration scheme, and enhanced by a master-slave 

parallel computational algorithm, has been applied to solve various surface radiation 

exchange problems encountered in thermal engineering system designs.  All the 

computations were done on a Compaq GS80 UNIX platform, which has 8 alpha 

microprocessors with 8 GB Ram, capable of high performance parallel computing. A 

selection of the computed results is given below. 

CASE 1. A CHECK WITH SIMPLE 3-D CONFIGURATION 

To test the algorithm described above, calculations are first checked for a simple 

geometry, where the analytical solutions are readily available.  The results are given in 

Figures 4.9, along the boundary element meshes used for calculations. To obtain the 
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analytical solutions, a constant heat flux is prescribed along a side or a face and 

consequently, the analytical solution offers only a reference checkpoint. The comparisons 

are also further confirmed by checking the relative error on the overall heat balance for 

both cases as well as the identity condition, 

1)'()',( =Γ∫Ω∂ rrr dK  (4.11) 

Figure 4.9 compares the heat flux distributions along the surface of a simple 3-D 

cavity, which is calculated using the analytical method and the Galerkin boundary 

element scheme. The calculations used 600 quadrilateral constant elements. Clearly, the 

analytical and numerical solutions are in reasonably good agreement.  The numerical 

calculations used 55×  integration points, which seem to be a reasonable choice, and 

result in the worst error of less than 0.001% in the identity condition [Minkowycz et al. 

1999].  For this simple problem, one integration point gives an error about 3~5%.  In 

light of the fact that the analytical solutions used the view factor and assumed a constant 

heat flux along one side, the analytical and numerical solutions are in reasonably good 

agreement.  The further check on the overall heat balance, which perhaps is a more 

reasonable reference point, gives a relative error of 0.03%, here the error being measured 

as the difference of the analytical solution and the average of the numerical heat fluxes 

along one wall, divided by the analytical value.  The negative sign for the heat flux 

indicates that the heat flows into the surface or out of the cavity.  These results are 
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consistent with the physical processes in that the fluxes are higher near edges of the 

bottom wall and lower at the center, which is attributed to the fact that the edges are 

influenced more by the side walls at higher temperatures.   

One of the important advantages of the Galerkin boundary element formulation is 

that higher order elements such as linear or quadratic elements may be selected for 

computations to improve the accuracy, when geometric configurations are not complex. 

This overcomes the limitation of the commonly used view factor formulation, which is 

essentially the same as the use of constant elements in the Galerkin formulation.  In 

applying the higher order elements, caution has to be exercised ensure accuracy by 

account for the discontinuity of heat fluxes around a 3-D edge where an abrupt change in 

curvature occurs from one face to the adjacent one.   It is noted that while higher order 

elements are possible, they are rarely used for cases where geometric configuration 

involves complex 3rd party blockages.  

 

(a) 
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(b) 

Figure 4.9 (a): Boundary element meshes. (b): calculated heat flux distribution on the top 

wall for a 3-D enclosure (dimensions: 2m x 1m x 0.5m).  Parameters used for 

calculations: ε =0.5 and T=700 K for top wall; ε =0.5 and T=300 K for all side walls, and 

ε =0.1 and T=400 K for bottom wall.  The analytically calculated heat flux for the bottom 

wall is -466.4129w/m2. 

4.6 CALCULATION IN COMPLEX 3-D GEOMETRY 

The computation of surface radiation exchanges in a somewhat complex 3-D enclosure, 

where an obstructing block is placed, is now considered.  The mesh distribution used for 

the calculations is given in Fig. 4.10 where 1032 quadrilateral elements are used. The 

boundary condition is kept relatively simple such that the obstructing block is fixed at a 

temperature of 1400 K and the surrounding surface at 1700K.  The surface emissivity of 
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both internal block and the enclosure is set at 0.8. It is noted that because of the 

symmetry associated with the geometry and boundary conditions, a quarter model may 

also be used to perform the calculations.  Here the whole model is used for the purpose of 

testing the effectiveness of the methodology.  The computed result of heat flux on one of 

the surfaces is given in Fig. 10. It is seen that the calculated heat flux shows a perfect 

four-fold symmetry, as expected.  The heat flux is high at the center and rapidly 

decreases towards the 4 edges. This heat flux distribution is consistent with the heat 

transfer principle in that the center region of the surface is affected much more by the 

internal block which is at a lower temperature and the exchange of the heat flow between 

the surface and the block decreases as the distance between the surface and the block 

increases, as revealed by the kernel function.   

 

(a) 
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(b) 

Figure 4.10 Surface radiation in an enclosure with one internal obstruction. Conditions 

used for calculations: the temperature of outer enclosure is at 1700 K, the inner block is 

at 1400 K, the emissivity of all surfaces is 0.8; the outer enclosure is 1.2 × 1.2 × 1.2 m3, 

the temperature used to normalize the heat flux is 1400 K, and the inner block is 0.4 × 0.4 

× 0.4m3 located at the centre of the enclosure. The front surface is removed for the 

purpose of illustration. 

The next example considers the surface radiation exchange in a rather complex 3-

D closure with several internal blocks of various heights.  The boundary element meshes 

and boundary conditions used for computations are given in Figure 4.11.  Note that the 

surface temperatures of the side surfaces of the internal obstructions are varied from 400 

to 1700 K.  Also, to show the inside of the enclosure, the front side, which is also 



81

 

discretized using quadrilateral elements and set at 1700 K, is removed.  The computed 

results are selectively plotted in Figs. 4.11a and 4.11b.  To check the calculations, the 

identity condition is also calculated and the error is less than 5%.  Detailed analysis 

shows that a major portion of the error comes from the integration between two surface 

elements that are very close together.  The error can be reduced with further refinement 

of mesh sizes. It is worthy noting that in some calculations reported in the view factor 

calculations, a error of as high as 70% in identity condition was reported, when much less 

complex blockages are placed [Dupret et al., 1990].   

 
(a) 
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(b) 

 

(c) 

Figure 4.11. Surface radiation calculations in a complex 3-D geometry: (a) meshes and 

thermal conditions used for calculations; (b) heat flux on the left lateral surface of the 

enclosure; and (c) heat flux on the top surface of the enclosure. The dimension of the 

enclosure is 1.2 × 1.2 × 1.2 m3 and the temperature used to normalize the heat flux is 
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1400 K. Emissivity of all surfaces is 0.5 and side surface temperatures of the internal 

obstructions vary from 400 to 1700 K. The front surface is removed for the purpose of 

illustration. 

PARALLEL COMPUTATION RESULTS 

To test the parallel computing performance, the problem given in Figure 4.10 is 

considered. Figure 4.12(a) shows the average CPU times against the number of 

microprocessors used, this figure shows the effectiveness of parallel computation since 

the average CPU times is almost equal to T1/n, where T1 denotes the time being used in 

calculation by a single processor, and the n denotes the number of microprocessors in 

calculations. In other words, the more microprocessors are used, the less time is required 

in calculations.  

The tests of this and other problems show that the sorting and clipping/searching 

requires an overwhelmingly major portion of CPU time.  The testing result of this 

problem is shown in Figure 4.12(b).  Clearly, any further algorithm development should 

be in the direction of improving efficiency of 3rd party element blockages. Examination 

of Figure 4.12 also indicates that the increase in the CPU time follows the relation, T2/T1 

≈ (n2/n1)3, where T2 and T1 denote the CPU times corresponding to the two different 

numbers of meshes, n2 and n1, for the same geometric configuration. Therefore, as the 



84

 

mesh doubles in size, the CPU time increases by a factor of 8.  
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Figure 4.12. Performance of parallel computations for the 3-D surface radiation exchange 

problems: (a) CPU time (log time in s) vs the number of processors used with different 

numbers of elements; and (b) expense budget of CPU times for searching and numerical 

integration. The CPU times exclude those used for matrix inversion by the LU 

decomposition. The geometry and thermal conditions used for the computations are given 

in Figure 4.10(a). 
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MIXED HEAT TRANSFER CALCULATIONS 

As the last example, calculations involving combined heat transfer modes are presented. 

The radiation algorithm described above has been successfully integrated with our in-

house finite element code, which is capable of performing steady state and transient fluid 

flow and heat transfer calculations for both 2-D, 3-D and axisymmetry geometries. The 

computed results for an industrial processing system are shown in Figure 4.9, where the 

coupling of conduction, convection and radiation is considered.  The calculations used 

25,984 brick finite element elements, which are determined to be the “optimal” mesh for 

the simulation after grid independence check [Cui et al., 2002], as shown in Fig. 4.8. 

There a total of 25,984 boundary elements for surface radiation calculations. Other 

parameters used for the calculations are given in the figure caption.  The solution is 

obtained using the successive substitution method.  Because of bE  is proportional to the 

fourth power of local surface temperature, a relaxation parameter of 0.1 was used to 

obtained converged results.  For this problem, the criterion for nonlinear convergence is 

set such that the relative error is less than 41.0 10−× .   

The calculated results are plotted in Figs. 4.13a-4.13d, where the overall 

temperature distribution, the particle tracing and the velocity fields in a few cutting 

planes are given. The metal surface is heated up by the radiation from the cylindrical roof 

at a higher temperature.  As a result, the temperature at the middle of the surface is lower 
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than that at the sides of the surface.  This temperature field creates a surface force field 

such that a higher pulling force exists at the middle of the surface, which pulls the fluid 

particles on the surface from the side towards the center.  Because of the mass 

conservation, a recirculating flow pattern develops, which is clearly revealed in the 

cutting plane representations.   

In general, coupling of boundary element formulation and finite element 

formulation for engineering applications can be achieved either directly or iteratively.  

Our numerical experience indicates that the coupling may be as tedious as it gets or as 

easy as one would like, depending on the strategies to be implemented [Song and Li, 

2001].  The direct coupling involves incorporating the boundary element matrix BA 1−  

into the finite element global matrix by treating the entire boundary integral as one macro 

finite element. The implementation of this direct procedure can be very cumbersome as it 

requires to perturb the finite element global matrix structure [Suping and Li, 1999].  For 

linear problems with a moderate boundary size, this approach is favored in that the 

increase in the bandwidth of the global matrix is relative small and the results can be 

obtained directly without iteration. On the other hand, for highly nonlinear problems with 

a large boundary size, the direct coupling greatly increase the finite element global matrix 

bandwidth and the iterative solution is more effective and also easy to implement. The 

iteration would involve the solution of the heat fluxes from the boundary element 
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solution assuming the temperature is known along the boundary and the calculated heat 

fluxes are fed back into the finite element program to obtain the updated temperature 

fields for the next iteration.  For cases falling in between, experience is key to obtain 

faster solutions.   

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 
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Figure 4.13. Calculated results of mixed mode heat transfer in an industrial furnace using 

the coupled Galerkin boundary/finite element method: (a) temperature distribution in the 

furnace; (b) body-cut view of temperature distribution; (c) body-cut view of velocity 

distribution in the liquid pool—maximum velocity is 1.9 mm/s; and (d) particle trajectory 

plot. Parameters for calculations: liquid pool is 0.15 × 0.3 × 0.3 m3 and filled with Ga 

melt. The top surface temperature is 340 K and the environment is at 295 K. The 

emissivity of all surface is 0.5 and the thermal conductivity and specific heat of the 

furnace walls are 10 W/m K and 130 kJ/kg K, respectively. The gravity is in the opposite 

x-direction (see Figure 4.9). 

4.6.  CONCLUDING REMARKS 

This chapter has presented a parallel Galerkin boundary element method for the solution 

of surface radiation exchange problems and its coupling with the finite element method 

for mixed mode heat transfer computations in general 3-D geometries. The computational 

algorithm is enhanced with the implementation of ideas used in hidden line removal 

algorithms for 3-D computer graphics applications and with data structures involving 

creating and updating various element lists optimized for performance. The shadowing 

detection scheme design entails a four-step procedure involving sorting by sign, primary 

clipping, secondary clipping and adaptive integration with final check, which has 
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substantially curtained the time required for the evaluation of kernel functions in complex 

3-D geometries. The computational efficiency is further improved by implementing a 

parallel scheme based on the master-slave concept.  Examples from both simple and 

complex 3-D geometric configurations have been presented. Numerical experiments 

show that a majority of computational time is spent on the detection of foreign element 

blockages and parallel computing is ideally suited for surface radiation calculations.  The 

decrease of the CPU time approaches asymptotically to the inverse rule, that is, inversely 

proportional to the number of microprocessors used.  For large scale computations 

involving complex 3-D geometries, an iterative procedure is preferred for the coupling of 

Galerkin boundary and finite elements for mixed mode heat transfer calculations.  
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CHAPTER 5 

ONE-DIMENSIONAL RADIATIVE HEAT TRANSFER IN PARTICIPATING 

MEDIA 

5.1 INTRODUCTION 

Internal thermal radiation describes the energy transport in an intervening medium that 

directly affects the radiation transfer via mechanisms of absorption, emission and 

scattering.  Some of the engineering thermal systems in which thermal radiation plays a 

crucial role include the growth of optical single crystals from high temperature 

applications in industry. Owing to the importance of internal radiation transfer in thermal 

engineering applications, many numerical techniques have been developed to predict the 

phenomena and to assist in thermal designs involving radiative heat transfer. In this 

chapter, a new numerical technique is introduced to solving radiative heat transfer in 

participating media problems. 

 

Figure 5.1 Schematic illustration of one-dimensional radiative heat transfer problems 
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Discontinuous Galerkin finite element (DFE hereafter) methods, also called 

discontinuous Galerkin methods, have undergone rapid development recently and 

become increasingly popular in the numerical computational community. A 

comprehensive review of the history, development and current trends of discontinuous 

finite elements has been presented by Cockburn, et al. (2000).  The DFE methods have 

some very attractive properties that make them good alternatives to the existing methods 

for diffusion-type problems and particularly powerful for problems of pure convection or 

hyperbolic problems such as those encountered in describing the thermal radiation 

intensity distributions in absorbing and scattering media. These properties include the 

high order local approximation, ease of parallelization and incorporating adaptivity 

strategies, elementwise conservation and geometric flexibility of conventional finite 

elements. 

This chapter presents a discontinuous Galerkin finite element method for the 

solution of the internal radiation heat transfer problems in one-dimensional geometries, 

and its integration with the continuous (or conventional) Galerkin finite element method 

for mixed heat transfer problems involving conduction and radiation. It is noted that 

discontinuous finite element methods have been used for the solution of the Boltzmann 

integral-differential equations to study the neutron transport phenomena in nuclear 

engineering design systems [Asadzadeh, 1998].  To our best knowledge, there appears to 
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have very limited information on the use of the DFE method for the solution of internal 

radiative heat transfer problems, and its coupling with the conventional finite element 

method for those involving mixed heat transfer modes. More importantly, its numerical 

performance for radiative heat transfer in participating media and for mixed heat transfer 

calculations is largely unknown.   

In what follows, the basic ideas for discontinuous finite element method are 

discussed for a simple linear hyperbolic (or pure convection) problem. The application of 

this method to internal radiation heat transfer is then given, along with the examples for a 

pure internal radiation problem and for a mixed heat transfer problem involving both heat 

conduction and internal radiation.  The solutions are compared with analytical solutions 

whenever available.  The convergence rate and adaptive algorithm are also discussed.   

5.2 DISCONTINUOUS FINITE ELEMENT FORMULATION 

The discontinuous Galerkin finite element formulation of a boundary value problem 

follows a very similar procedure to that used for the conventional Galerkin finite element 

treatment.  It starts with the Weighted Residuals integration, followed by the use of the 

Galerkin interpolation for the weighted functions. The essential difference between the 

conventional and the discontinuous finite element formulations lies in the treatment of the 

inter-element boundary conditions.  In the former, the inter-element variables such as 
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fluxes and field variables are strongly enforced. This enforcement requires the use of 

interpolations functions from the complete finite element space, although non-confirming 

elements that passing patch tests are also possible for certain applications.  In the latter, 

however, the field variables and their fluxes are only weakly imposed or a jump in these 

quantities is assumed to across the inter-element boundaries. As a result, the interpolation 

functions need to be selected from the finite element broken space [Oden et al. 1998].  It 

has been demonstrated that the discontinuous finite element formulation is particularly 

powerful for the convection-dominated problems where the solutions develop sharp 

fronts and also for the hyperbolic type of problems [Cockburn et al., 2000]. 

 

Figure 5.2. Discretization of 1-D domain with jump conditions across the inter-element 

boundaries 

In this chapter, a discontinuous finite element formulation for a 1-D radiative 

transfer problem is developed. To start, the domain is discretized into a collection of 

finite elements (see Figure 5.2), as done for the conventional finite element applications. 

Unlike for the other applications where the solid angle integration is treated using the 

discrete ordinates, here the solid angle treatment is also performed with the framework of 
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the discontinuous finite elements so that the conservation laws are observed.  Let us take 

the element defined by [ ]1, +∆ jjj xxx , Eq. (2.7) in Chapter 2 is integrated with respect to a 

weighting function ( )x,Ων , 

( )∫ ∫∫ ∫
∆ ∆Ω∆Ω ∆

Ω+−=Ω
∂
∂
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dxdSIvddx
s
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Eq. (5.1) is now integrated by parts with the result, 
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where n  is the outnormal and the use has been made of Green’s formula,  

∫∫∫
∆∆

∇⋅=∇⋅−⋅
VVA

IdVdVIdAI φφφ ssns  (5.4) 

to convert the domain integral into the boundary integral.  Note that s  is the unit vector 

of the direction of radiation intensity ( )sr,I  and is independent of the volume. In the 

conventional finite element formulation, the terms on the boundary disappear when they 

combine with neighboring elements.  In the discontinuous formulation, however, these 
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terms do not go away when elements are assembled.  Instead, the following limiting 

values are used (see Figure 5.2), 

)(xIimI
jxx

j
→+
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If the elements are now assembled, the boundary terms will experience jumps 

across the element boundaries and these jumps are often denoted by, 

−+ −= jjj III ][  

These jumps may also be modeled by the generic numerical fluxes that are single 

valued at the boundaries and are a function of field values across the inter-element 

boundaries. For the problems under consideration, the simplest and effective choice is to 

use the upwinding value, which in the discontinuous finite element literature is some 

times referred to as inflow boundary value,  
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We may now use appropriate interpolation functions, which are chosen from the 

finite element broken space that requires no continuity across the inter-element 

boundaries.  A natural choice for the internal radiation applications is to take the delta 

function for the solid angle and a polynomial function for spatial variation, 
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( ) ( )φν ldx Ω=Ω, .  Substituting this testing function into the integral expression, one has 

the following expression, 
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Following the standard procedures for element calculations, we obtain the matrix 

equation for each element, 
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where the matrices are calculated by the following expressions, 
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Note that for simplicity we assume the medium is not scattering and for a 

scattering medium, additional source term ( )lS sr,  needs to be considered, which is 

straightforward.   

The calculation starts with a selected direction and those associated with a 

boundary element, where the boundary condition is imposed as follows, 
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It continues element by element until the entire domain and all directions are 

covered.  Because of the boundary conditions, iterative procedures are required.  The 

successive substitution method seems to work well for this problem. 

Before the numerical results are presented, a few points may deserve a discussion.  

First, if the jump condition is set to zero in Eq. (5.3), which means that the inter-element 

continuity is enforced, we have the conventional finite element formulation. Second, if 

the zeroth order polynomial is chosen as the spatial interpolation function, then we have 

the common finite difference (or volume) formulation [Chai and Partankar, 2000].  Thus, 

in this sense, the finite volume method is a subclass of the discontinuous finite element 

method, and uses the lowest order approximation to the field variables. 

5.3. COUPLING OF CONVENTIONAL AND DISCONTINUOUS FINTIE 

ELEMENTS 

The conventional finite element formulations have been well established for the solution 

of a wide range of heat transfer problems such as heat conduction and convection.  Thus, 

it is natural to test the idea of coupling the conventional and discontinuous finite element 

formulations for the mixed heat transfer calculations that involve internal radiation and 

conduction/convection.  To illustrate the idea of this coupled approach, we again consider 

a 1-D mixed heat transfer problem that involves both conduction and internal radiation in 
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a gray medium. The differential heat balance equation governing the conduction and 

radiation may be readily written out, 

''')( qqTk
t
Tc rp +−∇⋅∇=
∂
∂ρ  (5.11) 

with the term rq⋅∇ calculated using the radiative transfer equation as described above.  

The coupling entails the use of the conventional method for heat conduction and the 

discontinuous method for the internal radiation calculations.  Since the radiation heat flux 

contribution appears as a divergence term in the source part of the heat balance equation, 

it opens up two possibilities of coupling the discontinuous and conventional finite 

elements for the mixed heat transfer calculations.  Depending on which approach is taken, 

the radiative heat flux on the boundary may or may not be needed explicitly.  The two 

coupling approaches are described below. 

In the first approach, the heat balance equation is formulated following the same 

procedure as used in conventional finite element method.  This will lead to a global 

matrix equation with the nodal temperatures as the unknowns.  To incorporate the 

internal radiation effect, rq⋅∇  is calculated over a finite element where the internal 

radiation takes place and then coupled to the global matrix equation as a source term.  

This represents a simple and direct approach.  In this way, the boundary condition on 

cqn ⋅ is required, which of course must satisfy the total heat flux balance along the 

boundary [Lan et al., 2003]. 
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In the second approach, which is often taken by many researchers using the finite 

volume formulations for temperature calculations, the term rq⋅∇  is integrated out and 

rqn ⋅  at the element boundaries are used.  If this approach is taken for the conventional 

and discontinuous finite element coupling, then one would have the following expression 

embedded in the conventional finite element formulation for the heat balance equation, 

dVdSdV r

ii

rr

i

qnqq ∫∫∫
ΩΩ∂Ω

⋅∇−⋅=⋅∇ φφφ  (5.12) 

Thus, this approach requires the information on rq  in the interior of a element 

and along the domain boundaries.  By this approach, a specification of total heat flux 

( rqn ⋅  and cqn ⋅ ) at the boundary term is required, which is more convenient for 

different phases [Chan et al., 1983]. It is remarked here that rq⋅∇  is not calculated using 

a numerical differentiation of rq  and thus there is no loss in numerical accuracy if 

rq⋅∇ is used. It is noted also that if the shape function φ  chosen as a delta function, the 

volume term on the right hand side vanishes and the formulation reduces to the popular 

finite volume formulation.   

By either of the approaches, the combined heat conduction and radiation 

calculations require iterative procedures. In a typical iteration process, the temperature 

distribution is calculated using the conventional finite elements while the internal 

radiation intensities are by the discontinuous finite elements. The iteration starts with the 
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calculation of temperature without radiative heat transfer.  The solution of the intensity 

distribution and hence the divergence of heat fluxes are then calculated using the 

temperature information. The radiation heat flux divergence is then treated as a heating 

source and the temperature distribution is updated. This process repeats itself until a 

convergence on temperature is obtained.  

As a last note, we stress that the discontinuous finite element method may be 

directly used to solve the heat conduction problem in place of the conventional finite 

element method.  This can be done by first splitting the second order heat conduction 

equation into two first order differential equations with T  and q  as independent 

variables and then following the above DFE procedure to solve T  and q  simultaneously.  

In doing so, however, appropriate numerical fluxes must be designed; otherwise the 

discretized equation will not satisfy the consistency condition, that is, the discretized 

equation will not converge to the differential equation as the mesh size reduces to zero.  

Numerical studies further show that while this splitting procedure is possible and indeed 

gives satisfactory results when correct numerical fluxes are used, it is ineffective in 

comparison with the conventional finite element method for the heat conduction or 

elliptical problems, because it requires solving more unknowns ( T  and q )  [Hughes et 

al., 2000].  Thus for the mixed heat transfer calculations, a coupled approach involving 

the conventional and discontinuous finite elements appears to be a better choice than the 
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use of either of the two methods alone.   

5.4. RESULTS AND DISCUSSION 

In this section, the discontinuous finite element algorithm and the coupled conventional 

and discontinuous algorithm discussed above are applied to solve internal radiation 

problems and mixed heat transfer problems. Here, only one-D problems are considered 

and whenever possible the numerical results will be compared with the available 

analytical solutions. Also, the convergence rate of the discontinuous finite element 

method and the implementation of the local mesh adaptivity for the numerical solution of 

radiative transfer problems are discussed.  The gray participating media are used for all 

the cases presented below. 

Internal Radiation Problem 

 The problem is schematically illustrated in Figure 5.3, where the thermal radiation takes 

place in a gray slab filled with an absorbing and scattering medium. Figure 5.4 shows the 

distribution of radiation intensity along its traveling path from the bottom to the top, 

obtained from analytical solutions [Modest, 1993; Siegel and Howell, 1992], by the 

discontinuous Galerkin finite element method described above, and by the popular two-

flux model [Koenigsdorff et al., 1991]. The analytical solutions for the problem are 

relatively straightforward and for convenience of comparison they are reproduced here 
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[Modest, 1993], 

 

Figure 5.3 Thermal radiation in a slab filled with an absorbing and scattering medium. 
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where I+ and I- refer to the intensity associated with 0>u  and 0<u , respectively. τ  is 

the optical thickness, LL βτ =  and θcos=u . 
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Figure 5.4. Radiation intensity distributions calculated by analytical solutions, two flux 

model, and the discontinuous finite element method with linear and constant elements.  

Parameters used for calculations: two 1-D plates, T2=T1=0 K, the emissivity of the 

plates=1.0, κ =1.0, σ =0.   The temperature of media is 100 K.   

In most of the internal radiation calculations reported so far, the results of the heat 

flux were considered only, because of its interest to heat balance. Our calculations 

indicated that the intensity offers a better comparison in terms of numerical accuracy, 

because the intensity is the directly calculated result. For the results shown in Figure 5.4, 

the numerical solution used 20 linear elements and scattering coefficient is set to zero for 

simplicity. Clearly, excellent agreement exists between the numerical and analytical 

solutions, suggesting that the discontinuous finite element method is useful for this type 

of problems.  It is noted, however, that the two-flux model gives an averaged value in the 

half sphere, and thus it lies in between the intensities at different directions. The 

computed results for the distribution of heat fluxes and heat flux divergence obtained 

from the two-flux model and DFE are also plotted in Figure 5.5, along with the analytical 

solutions, which were calculated using Eqs. (2.19), and (5.13).  Examination of these 

results illustrates that the DFE results with linear elements match well with the analytical 

solutions and are more accurate than either the two-flux model [Koenigsdorff et al., 1991] 

or those by constant elements denoted by FVM. 
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(b) 

Figure 5.5. (a) Computed results for the distributions of heat fluxes and (b) divergence of 

radiative heat fluxes (divq). The parameters used for calculations are the same as in 
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Figure 5.4.  

Convergence Rate and Consistency 

Consistency and convergence rate are two important issues for a numerical algorithm. 

The former ensures that a discretized equation converges to the governing differential 

equation as the mesh size reduces to zero, while the later is concerned about the rate at 

which this convergence takes place and is also useful for the design of mesh adaptive 

algorithms.  For the error analyses, the L2-norm is often used to measure the error, e.g., 

the difference between the exact solution u and DFE solution uh. With this measure, the 

analysis of the discontinuous finite element formulation shows that the convergence of 

numerical solution to the exact solution is expressed by [ Johnson, 1987], 

10 +
≤−

n
n

h uChuu  (5.14) 

where h is the size of the maximum element, and for a 1-D problem, h is the 

length of largest element.  In literature, Eq. (5.14) is also referred to as the a priori error 

estimate.  In Eq. (5.14), n is the order of convergence rate, which takes a value of one for 

a non-uniform mesh and 2 for a nearly uniform mesh [Lin, 2000]. || ||m denotes the mth 

order norms [Oden and Carey, 1983], 
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where the subscript (m) denotes the mth order derivative and m=0 is referred to as 

the L2-norm.  By this definition, Eq. (5.13) requires that the third order derivative of the 

exact solution must be continuous when n=2. Also, from Eq. (5.13), it is clear that the 

consistency condition is satisfied, because the numerical solution uh approaches to the 

exact solution as h goes to zero. 

Numerical experiments are carried to validate the relation expressed by Eq. (5.13) 

by varying the mesh sizes. Both uniform and non-uniform mesh distributions are 

considered. The results are plotted in Figures 5.6, which show that for the problem under 

consideration, the convergence rate (n) is always equal to 2, whether the mesh 

distribution is uniform or not.  At first, our results seem to be inconsistent with the 

conclusion given by Eq. (5.14) for non-uniform meshes.  However, detailed analyses 

further showed that for elements with 90o inner angles such as rectangles, a 

superconvergence rate (n=2) is possible even for a non-uniformly distributed mesh 

[Lasaint and Raviart, 1974 ], which is supported by our numerical results here.   
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(b) 

Figure 5.6. Convergence rate of the discontinuous method, measured by L2-error norm vs. 

the mesh size with (a) uniform mesh distribution (b) non-uniform mesh distribution.  

Parameters used for calculations: T2=T1=0 K, the emissivity of both plates is 1.0. κ =1.0, 

σ =0. The temperature of media is 100 K in case (a), but T=100*(z-0.5)1/2 in case (b). 
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Mesh Adaptive Algorithm 

Perhaps, one of the most attractive features of the DFE method is that the calculations are 

element-wise and thus a local mesh adaptive algorithm can be designed to enhance the 

numerical performance. A general approach to mesh refinement requires the use of the a 

posteriori error estimate as well.  Various techniques for the a posteriori error analyses 

have been discussed in a recent monograph [Ainsworth and Orden, 2000]. Three different 

mesh adaptive strategies, e.g., r-adaptivity, h-adaptivity and p-adaptivity, are often used 

in numerical analyses. These strategies may be applied separately or in a combined 

fashion. To demonstrate the ease of incorporating adaptivity in the DFE formulation, a 

local h-adaptive algorithm is considered here.  

If our objective is to make the relative L2-norm percentage error η less than a 

targeted value η , or η <η , then it is desirable to distribute the error among all elements. 

The total error permissible for the numerical analysis is 0uη .  In the case where an 

analytical solution is not possible, it may be approximated by 0uη ≈ 2/12
0

2
0 )ˆ( eu +η , 

where û  is the best estimate or smoothed value and 2
0e  is the a posteriori error 

[Zienkiewicz and Taylor, 1989].  The global error 2
0e  is related to error for each element 

by the following expression according to the definition of the L2-norm, 

∑
=

=
N

i
iee

1

2
0

2
0  (5.16) 
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where i refers to individual elements and N is the total number of elements.  In 

order to evenly distributed error, it is required for each element to satisfy the following 

error criterion, 

2/12
0

2
0

0

ˆ












 +
≤

N
eu

ei η  (5.17) 

To design the next mesh refinement to satisfy the above criterion, the a priori 

error estimate (Eq. (5.14)) may be used, i.e., 2
0 ii he ∝ for the 1-D case under 

consideration. Taking this into consideration, we have the required new mesh size 

determined by 

2/12
0

2
01

0
22 ˆ

−

−













 +
≈

N
eu

ehh inew η  (5.18) 

To test the idea, the temperature distribution is specified for the 1-D slab,  

 0.5)-100()( 1/2zzT =  (5.19)  

The numerical results were obtained using the DFE formulation with the h-

adaptive refinement described above. Here a more convenient quantity to use for mesh 

adaptivity would be the irradiation GP = ∫ Ω
π4

),( dsrI . The numerical results and analytical 

solutions are given in Figure 5.7, for which the error criterion is set to 1.0 x 10-6. The 
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process started with 4 linear elements, which gave significant numerical errors.  The local 

h-adaptive refinement is then made on the elements that have larger errors than the 

desired and the new errors are calculated for a new mesh distribution. This mesh 

refinement process continues until 22 linear elements are used. By then, the global error 

is approximately evenly distributed and the error criterion is met, as shown in Figure 5.7.  

It is noteworthy that the final 22 linear elements are not evenly distributed and the 

element sizes are adaptively adjusted so that the errors are evenly distributed. 
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Figure 5.7. Mesh convergence for the local h-adaptive mesh refinement for radiative heat 

transfer calculations.  Parameters used for calculations are as same as Figure 5.6(b). 

Effects Of Scattering 

One of the important phenomena in radiative transfer processes is the scattering 
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effect, which changes the local energy balance.  If the participating media is scattering, 

the source term of the radiative transfer equation is altered such that the radiation 

intensity in one direction at a certain point is affected by the intensities in all directions at 

the point. The scattering effect can be rather easily handled by the DFE method as a 

source term S(r,s) and normally requires an iterative procedure. Some calculated results 

obtained using the DFE formulation for a 1-D radiation slab filled with isotropic 

scattering media are shown in Figure 5.8. Inspection of these results shows that for a 

medium with a larger scattering coefficient, the scattering effect on the radiation intensity 

increases as the intensity is further away from the boundary at which it originates and the 

largest effect occurs when the intensity reaches the other boundary.  In fact, for the 

intensity at θ =0, the value of the intensity is reduced by 40% when it reaches at the 

upper boundary with the scattering coefficient σ =1. The effect at the lower boundary 

at which I(θ =0) originates, however, is rather small. As a result of scattering, the heat 

flux (absolute value) is smaller; however, the distribution is symmetric, as expected.  

Figure 5.8(d) compares the results of the boundary fluxes calculated using the DFE 

method and the analytical solution [Modest, 1993] for different scattering coefficients.  

Clearly, good agreement is obtained.   
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(c) 

 

(d) 

Figure 5.8. Effect of scattering on the radiative heat transfer in participating media 

between two infinite long plates: (a) intensity distribution, (b) heat flux distribution, (c) 

divergence of heat flux distribution and (d) boundary heat flux distribution.  Parameters 

used for calculations are same as Figure 5.4, but the σ  varies with different cases.  In (d), 

The results of DFE are compared with the reported results in [Siegel, 1992], where 
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)/( 44
sgr TTqQ σσ −=  is the non-dimensionalized radiative heat flux and ω  is the 

scattering albedo. The parameters are used in this case Tg=100 K, T1 = T2 = Ts = 0K, the 

emissivity of both plates is 1.0. 

Mixed Heat Transfer 

Let us now consider a combined heat transfer problem that involves heat conduction and 

internal radiation. The problem is again 1-D, similar to that shown in Figure 5.3 but with 

the wall set at different temperatures so that heat conduction is required to predict the 

temperature distribution.  Here the first approach is taken to couple the discontinuous and 

conventional finite element methods for the combined calculations and the divergence of 

the radiation heat fluxes is treated as volumetric source. Thus, the boundary condition for 

temperature analysis no longer involves the radiative heat flux, as it is reconciled from 

the internal heat transfer calculations.  The calculated temperature distributions across the 

1-D slab are depicted in Figure 5.9 as a function of radiation numbers.  Shown also in the 

figure are the analytical solutions taken from [Modest, 1993].  Once again, for the entire 

range of the radiation parameter, the comparison between the analytical and numerical 

solutions is excellent; validating the combined discontinuous /conventional approach. It 

is noted that the coupled thermal system, however, represents a highly nonlinear system, 

and appropriate relaxation parameters are required to obtain converged results. Our 
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experience shows that selection of these parameters is often dependent on the radiation 

numbers. For the calculations shown in Figure 5.9, a relaxation value of 0.04 was used, 

when the radiation number is 0.001 
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Figure 5.9.  Dependence of temperature distribution across the slab on the radiation 

number N.  Combined heat conduction and internal radiation are considered. The 

parameters used for calculations as the same as in Figure 5.4, except that T(0)=1, 

T(L)=0.5. 

5.5. CONCLUDING REMARKS  

This Chapter presents a discontinuous Galerkin finite element formulation for the 

numerical solution of internal thermal radiation problems. The essential idea of the 

discontinuous algorithm is that the field variables are allowed to be discontinuous across 
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the internal inter-element boundaries.  This treatment is shown to be particularly useful 

for the integral-differential equations used to describe thermal radiation in 

absorbing/scattering media. Mathematical formulation using the discontinuous Galerkin 

method for internal radiation heat transfer calculations and its computer implementation 

were given. The convergence rate and local mesh adaptivity were also discussed. Two 

approaches for coupling the discontinuous with the conventional finite element method 

for mixed heat transfer calculations were presented. Numerical results are compared well 

with analytical solutions whenever available. 
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CHAPTER 6 

A DISCONTINUOUS FINITE ELEMENT FORMULATION FOR MULTI-

DIMENSIONAL RADIATIVE TRANSFER IN ABSORBING, EMITTING AND 

SCATTERING MEDIA 

6.1 INTRODUCTION 

In the previous chapter, we presented a discontinuous finite element formulation for one-

dimensional problems of thermal radiation in absorbing and scattering media. The 

underlying idea of the formulation is that field variable values across an inter-element 

boundary are allowed to be discontinuous. There it was shown that the discontinuous 

finite element method combines the salient features of both finite element volume and 

finite elements and has several important advantages over the numerical methods 

currently in use today, including the finite volume and finite element methods, for the 

thermal radiation problems. It is a local method with a higher order accuracy and 

geometric flexibility. Also, the program can be fairly easily combined with either the 

existing finite element method or the finite volume method for the mixed heat transfer 

calculations, which was demonstrated using 1-D examples in Chapter 5. In addition, it is 

fairly straightforward and easy to implement within a parallel computing framework, 

because of its localized nature of formulation. This last feature can be very useful for the 
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computation of thermal radiation problems in multidimensional domains, as these types 

of computations can be very time consuming, especially when absorbing and scattering 

media are considered.  

In this chapter, the discontinuous finite element method is extended to the 

solution of multi-dimensional thermal radiation problems that involve absorbing, emitting 

and scattering media. Both 2-D and 3-D computations are considered. As with other 

applications, 2-D and 3-D calculations for internal thermal radiation problems are much 

more involved than 1-D computations. The calculations use unstructured meshes, though 

structured meshes can also be used. Mathematical formulations and essential numerical 

details are given for 2-D and 3-D linear elements. The implementation of parallel 

algorithm and its computational performance are also discussed. Examples of various 

degrees of difficulty are given and are compared with available solutions reported in 

literature obtained using the other methods.  

6.2 THE DISCONTINUOUS FINITE ELEMENT FORMULATION 

In this chapter, the application of the discontinuous finite element method to the 

solution of radiative heat transfer problems in multiple-dimension is discussed. The 

radiative heat transfer problem in three-dimension can be shown in Fig. 6.1.  
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Figure 6.1 Schematic representation of radiative transfer in a participating medium and 

definition of the direction of radiation intensity and symmetry boundary condition.  

As with other methods, the domain is first discretized into a collection of finite 

elements. In this study, unstructured meshes are used, with triangular elements for 2-D 

problems and tetrahedral, hexahedral et al. elements for 3-D problems. Let us consider 

the ith element in a 2-D mesh, as shown in Figure 6.2. 
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(a) 

 

(b) 

Figure 6.2. Illustration of discontinuous finite-element formulation for 2-D internal 

radiation transfer in absorbing and emitting media using unstructured triangular meshes: 

(a) element i, its boundary normals, and its neighboring elements; (b) local node number 
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and side number of a typical triangular element (or ith element).  

First the formulations will be derived in two dimensional geometries, and will be 

extended to three dimensional geometries later. Integrate Eq. (2.7) in Chapter 2 over the 

element i  in Figure 6.2(b) respect to a weighting function ( )xv ,Ω ,  

( )( )∫ ∫∫ ∫
∆ ∆Ω∆ ∆Ω

Ω+−=Ω∇⋅
A lA l

dAdSIdAdI ),(),( srsrrs βφφ  (6.1) 

where jyix ˆˆ +=r  and ( )sr,S  is the source function defined by  

∫ ΩΦ′+=

π
π

σκ
4

')',()(
4

)()()(),( dIIS b sssr,rrrsr
 (6.2) 

Integrating by parts gives the following expression, 

( )( )∫ ∫∫ ∫∫ ∫
∆ ∆Ω∆Ω Γ∆ ∆Ω

Ω+−=ΓΩ⋅+Ω∇⋅
− AA ll

dAdSIddIdAdIs ),(),(][ srsrrsn βφφφ  (6.4) 

where n  is the outnormal and use has been made of the divergence theorem,  

∫∫∫
∆∆

∇⋅=∇⋅−⋅
VVA

IdVdVIdAI φφφ ssns
 (6.5) 
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Figure 6.3: Schematic sketch of discontinuous finite-element broken space. 

To convert the domain integral into the boundary integral. Note that s is the unit 

vector of the direction of radiation intensity ( )sr,I  and is independent of the volume. In 

the conventional finite element formulation, the terms on the boundary disappear when 

they are combined with neighboring elements or [ ]I  = 0. In the discontinuous 

formulation, however, these terms do not go away when elements are assembled. Instead, 

the following limiting values are used, 

 )( j
j

j IimI r
r +Γ→

+ =  and )( j
j

j IimI r
r −Γ→

− =  

If the elements are now assembled, the boundary terms will experience jumps 

across the element boundaries as shown in Figure 6.3 and these jumps are often denoted 

by, 
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 −+ −= jjj III ][  

These jumps may also be modeled by the generic numerical fluxes that are single-

valued at the boundaries and are a function of field values across the inter-element 

boundaries [Cui and Li, 2004a]. For the problems under consideration, the simplest and 

yet effective choice is the upwinding, which in the discontinuous finite element literature 

is some times referred to as the inflow boundary value,  

0
0

][
>⋅
<⋅







= +

−

sn
sn

if
if

I
I

I
j

j
j  (6.6) 

We may now use the appropriate interpolation functions, which can be chosen 

from the finite element broken space that requires no continuity across the inter-element 

boundaries [Moder et al. 2000]. A natural choice of shape functions for the internal 

radiation applications is to take the delta function for the solid angle and a polynomial 

function for spatial variation, ( ) ( ) ( )xxxv φψ ,, Ω=Ω . Here  ( )x,Ωψ  is the step function 

and ( )xφ  the shape function. Substituting this testing function into the integral expression 

and re-arranging, one has the following relation, 

∫ ∫∫ ∫ ∑
∆Ω −Γ∆Ω ∆ =

ΓΩ⋅−+Ω∇⋅
l

w

l lA

Nd

j
jj ddIdAdI )]([)(

1

sns φφφ            

( )∫ ∫
∆Ω ∆

Ω++−+++−=
l lA

ddASSSdAIII )()( 332211332211 φφφφφφφφβ r  (6.7) 
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where Nd is the number of nodes per element.   

Before the numerical implementation is considered, a few points are worthy 

noting. First, if the jump condition [ ]I  is set to zero in Eq. (6.4), which means that the 

inter-element continuity is enforced, then the conventional finite element formulation is 

recovered. Second, if the zeroth order polynomial is chosen as the spatial interpolation 

function, then we have the common finite volume formulation. Thus, in this sense, the 

finite volume method is a subclass of the discontinuous finite element method, and uses 

the lowest order approximation to the field variables. 

6.3 NUMERICAL IMPLEMENTATION 

In this section, we discuss below the numerical implementation of the general 

discontinuous finite element formulation described above for both 2-D and 3-D 

calculations and give the analytical expressions for the elemental calculations for 2-D 

linear triangular elements and 3-D linear tetrahedral elements. Although the derivations 

are presented for unstructured meshes, the numerical procedures are equally applicable to 

structured meshes.   

2-D calculations 

We consider again the ith element and its neighbors as shown in Figure 6.2(a).  

For the sake of discussion, the inter-element boundaries are plotted separately. The nodal 
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values of the variable are defined within the element. Since the discontinuity is allowed 

across the element boundaries, the common geometric node does not have the same field 

variable value. This is an essential difference between the conventional and the 

discontinuous finite element formulations.   

For a 2-D linear triangular element, the shape functions may be written in terms 

of natural coordinates,  
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 (6.8) 

Here pλ  (p=1,2,3) is defined by the area ratio,  

e

p
p A

A
=λ

 

where eA  is the area of the element and pA  the sub-triangular area formed from 

two vertices and point p  inside the element (see Figure 6.2(b)).  With relevant global 

coordinates substituted in to pλ , the shape functions take the following form,  
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where jiij xxx −=  and jiij yyy −=  (i, j = 1, 2, 3). 

The radiation intensity inside the element is interpolated using the above shape 
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functions, 

332211);,( φφφ IIIsyxI ++=  

Substituting the above equation to Eq (6.7), and noting that the intensity with 

control angles is constant, one has the following expression, 
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where wn is the outward normal of the ith element. For a 2-D triangular element, 

the above integration can be carried out analytically. Taking the derivative of the shape 

functions,  
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and making a dot-product of it with the unit direction vector, 

kθjθiθ ˆcosˆsinsinˆcossin ++= ϕϕs , one has 
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With the above two equations, the first integral in Eq. (6.7) can be expressed as 
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The second integral in Eq. (6.10) represents the jump condition (or numerical 

fluxes) across the boundary of the ith element and its neighbor (see Figure 6.2). For a 

linear triangular element, it is split into three terms, one for each side of the element,  
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The line integration associated with the element can be carried out analytically. 

For side 1, 03 =φ , and 121 =+φφ , we therefore have 
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where 1L  is the length of side 1. The term involving the solid angle integration 

can also be treated analytically, 

∫
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To simplify the notations, from here on ∫
∆Ω

Ω⋅− dwj )( sn  is denoted by NDSij, with I 

refers to the ith element and j the jth side of the element. In the discontinuous finite 

element treatment, the jump terms have to be selected depending on the sign of sn ⋅− 1w . 

This is different from the conventional finite element formulation in which the across-

element continuity is enforced.  One treatment that works effectively with linear elements 

is the upwinding scheme. By this scheme, 
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By the same token, the calculations for other two sides can also be performed 
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analytically.  The results are summarized below for convenience,  
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where 1kCofB  is the cofactor of matrix B, which is defined by 
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The first term on the right hand side of Eq. (6.10) may be calculated analytically 

when ( )rβ  is a constant with the result, 
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Assembling all these discritized terms together, the equation for the element can 

be written in terms of the following matrix form, 
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}{}]{[ fIK =  (6.20) 

where the expressions for the matrix elements are summarized as follows, 
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The calculations will start with those associated with a boundary element, where 

the boundary condition is imposed for a gray boundary as follows, 
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and Eq (6.24) is for the symmetry boundary condition, 

),(),( *
ll II srsr =−  (6.24) 

Here *s  is the symmetric direction of s  respected to the boundary, and can be 

calculated by Eq (2.14) in Chapter 2. Note that Eq (6.21) can be obtained for each 

element and its neighbors and the calculations are then performed element by element. 

Thus, with Eq. (6.21), the calculation for the ith element starts with selecting a direction 

and continues element by element until the entire domain and all directions are covered. 

Because of the boundary conditions, iterative procedures are required. The successive 
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substitution method seems to work well for this type of problems. In the above, it is 

assumed that the medium is not scattering and thus the source term is set to zero. When 

the source term is known, it can be readily calculated using the Gaussian integration and 

included in the force vector { }f . 

6.4 3-D CALCULATIONS 

The above procedures are applicable to 3-D calculations. The element arrangement for 3-

D calculations is shown in Figure 6.4. For a 3-D element, the area integral above is 

replaced by a volume integral and the boundary line integral above by a surface integral, 

respectively. For a linear tetrahedral element, the integrations can be carried out 

analytically. 

 

(a) 
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(b) 

Figure 6.4. Illustration of discontinuous finite-element formulation for 3-D internal 

radiation transfer in absorbing and emitting media using unstructured tetrahedral meshes: 

(a) element i, its surface normals, and its neighboring elements; (b) local node number 

and side number of a typical tetrahedral element (or ith element). 

In an analogy to a 2-D triangular element, the shape function for a tetrahedral 

element has the following form when written in the global coordinate system, 
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where the definition of elements in Eq(6.25) is following, 
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rest of them can be defined by same way, except the sequence of i,j,k is defined 

anticlockwise.  

The radiation intensity within a tetrahedron is interpolated by, 

44332211
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i
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=

 (6.26) 

Substituting into the general formulation Eq. (6.4), we have 
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Once again, the derivative of the shape functions can be obtained analytically 

with the following result, 
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where 
V

J
6
1

=  is the Jacobin of tetrahedral element. This will allow us to 

analytically integrate the volume terms in Eq. (6.27). Following the same procedure as 

for the 2-D calculations, we have the following result for the 3-D tetrahedral elements, 
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The consideration for the solid angles and sign of sn ⋅− 1w  is also the same as for 

the 2-D case discussed above. The calculations give the final result as follows, 
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where klCofC  is the cofactor of matrix C, which is defined by 
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Again, the above equations for 3-D calculations can be summarized in the same matrix 

form as given by Eq. (6.20). 

6.5 PARALLEL ALGORITHM 

The iterative process associated with the DFE (discontinuous finite element) 

solution of radiation problems can be overwhelmingly time consuming, especially for the 

cases where the temperature of media is not constant. In order to increase the 

computational speed, a parallel algorithm may be used to take the advantage of the 

modern parallel computer architectures and the localized formulation presented above 

(see Eq. (6.2)). Parallel computing has been a subject in the radiative heat transfer 

community and has been successfully along with other numerical methods. Burns and 

Christon (1997) reported a domain-based parallelism with the Discrete Ordinates method 
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to solve radiative heat transfer problems. Cumber and Beeri (1998) discussed the parallel 

strategy for radiative transfer using the finite volume method. Here, a parallelization of 

DFE computations is considered. Since the calculation of radiation intensity of internal 

radiation involves both space and direction, the parallel strategy for the DFE calculations 

can be implemented in two different ways. One is based on domain partition, and the 

other is based on control angle partition, as shown in Figure 6.5. By the first approach, 

the spatial domain is partitioned into several sub-domains, and each sub-domain is 

calculated by a different microprocessor at the same time. Once one round iteration is 

completed, the microprocessors communicate the results among themselves, update the 

information in memory and then start the next iteration. The shortcoming of this parallel 

scheme is that considerable time will be spent in sending and receiving the information 

between slave processors. The other parallel approach entails partitioning the solid angle 

to several sub-angles, and the intensity distribution over the entire domain is calculated 

by a different microprocessor for each sub-angle. By this approach, the slave processors 

do not have to communicate the information among themselves, after a convergence is 

achieved instead of every single iteration step. This seems to require less time on sending 

and receiving data, in comparison with the spatial domain partitioning as taken by the 

first approach [Kim and Lee, 1998; Wiscombe, 1980]. To demonstrate the parallel 

implementation of the DFE solution, this study adopts the second approach. 
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(a) 

 

Figure 6.5 Two types of partitioning for parallel computation of internal radiation transfer 

problems: (a) domain decomposition; (b) solid-angle decomposition. 
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Figure 6.6  Master-slave concept used for parallel implementation of discontinuous finite 

element formulation for internal radiation transfer problems. 

Figure 6.6 shows the parallel computing algorithm designed by following the 

master-slave concept common in parallel computing software development. The 

algorithm is based on the solid-angle partitioning strategy. Here the master processor 

broadcasts all data, which are required in calculating intensity of elements, to every slave 

processor, and receive the results calculated by every slave processor that perform the 

actual DFE computations in a given sub-solid-angle domain. For a given problem, the 

entire control angle space is divided into several subgroups based on the number of slave 

processors, as evenly as possible, so that each slave processor is loaded with 

approximately the same number of control angles for calculations. This will minimize the 

waiting time for any slave processors. The master processor distributes the loads among 

slave processors, collects the calculated data from them, calculates the heat fluxes using 

the data from slave processors and checks the final convergence. If the convergence is 
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not yet achieved, further iterations will be performed using the previous data that are 

redistributed by the master processor.  

6.6 RESULTS AND DISCUSSION 

In this section, the discontinuous finite element algorithm and its parallel 

implementation are applied to solve the problems of thermal radiation heat transfer in 

participating media. Both 2-D and 3-D problems are considered and whenever possible 

the numerical results are compared with the available analytical solutions. The 

calculations may use either structured or unstructured meshes, though the results using 

the latter are presented below. The convergence rate of the discontinuous finite element 

method and its parallel computational performance are also discussed. The gray 

participating media are used for all the cases considered here. Unless otherwise indicated, 

all the data are nondimensionalized. 

Case 1. Radiative transfer in non-scattering media 
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(d) 

Figure 6.7.  (a) Illustration of temperature distribution and boundary condition of two 

dimensional case. (b) Unstructured mesh for two dimensional case, which consists of 

1,142 triangle elements. (c) Schematic illustration of angular space discritization. 

πθ ≤≤0 , πφ 20 ≤≤ , kθjθiθ ˆcosˆsinsinˆcossin ++= ϕϕs . (d) The heat flux xq  
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distribution respect to Lx /  obtained by DFE method is compared with analytical 

solution at various extinction coefficients β =0.1,  β =0.5 and β =1.0.    

Let us first consider a 2-D problem of internal radiative heat transfer, which is 

schematically illustrated in Figure 6.7(a). Here thermal radiation takes place in a square 

domain which is filled with an absorbing medium of k =1.0. The medium is non-

scattering, σ = 0. At x =0 and x =1 the boundaries are black cold wall, and symmetry 

boundary conditions are applied at y =0 and y =1. The temperature is assumed to vary 

from the left to the right and the variation is described by x))0.75sin(2100(1  y)T(x, π+= . 

Since the symmetry boundary condition is applied at the top and bottom walls, and the 

temperature varies only with the x coordinate, the analytical solution for the problem can 

be obtained by integrating the radiative transfer equation with the following result 

[Modest, 1993], 
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where the En(x) is the exponential integral function [ zisikO , 1973], 
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This case is solved in a 2-D unstructured triangular mesh consisting of 1,142 
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elements, as shown in Figure 6.7(a). The angular space is discretized into is 2 8θ φ× = × , 

that is, the angular space is divided into 2 in the azimuthal direction (θ ) and 8 in the 

polar direction ( φ ), which is shown in Figure 6.7(c). The distribution of the 

nondimensionalized radiative heat flux )/( 4*
xx Tqq σ=  at boundary y=0.0 is computed for 

various conditions and is plotted in Figure 6.7(d), along with the analytical solution and 

the solution obtained using the two-flux method. Apparently, excellent agreement is 

obtained between the analytical and the discontinuous finite element solutions for various 

different  parameters.  

Case 2. Radiation in an irregular 2-D geometry 

For this case, we consider a quadrilateral domain filled with an absorbing and 

emitting medium with k =1.0 at a constant temperature Th. Again, the scattering effect is 

neglected. All boundaries are black and cold wall, the domain is defined by the vertices 

in anticlockwise order (0.0, 0.0), (2.2, 0.0), (1.5,1.2) and (0.5, 1.0). The calculations used 

an unstructured triangular mesh, as shown in Figure 6.8(a), which consists of 2473 

triangular elements, and using 2 x 12 solid angles. The calculated heat flux along the wall 

y =0.0 is plotted in Figure 6.8(b), along with the solution obtained using the ray tracing 

method reported by Murthy and Mathur (1998b). From Figure 6.8(b), it is seen that the 

discontinuous finite element calculations are in excellent agreement with the results 
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obtained by the ray tracing method. 
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(b) 

Figure 6.8. (a) Schematic illustration of unstructured mesh for 2-D irregular domain, 

which consists of 2473 triangle elements. (b) Comparison of heat flux on the boundary 

y =0.0 between DFE method and Ray tracing method at different absorption coefficients 
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k =0.1nd k =1.0. 

In this case, the physical boundary of control domain is not aligned perfectly with 

the global coordinate system, and hence the control angle overlap problem will occur, 

thereby causing error in radiation calculations if not treated [Cumber and Beeri, 1998]. 

This is because the integration Ω⋅−∫∆Ω
dw )( 1 sn  is not accurate when the perfect 

alignment between the physical and global coordinates is not the same. Chui and Raithby 

(1993) reported an approach to solve control angle overlap problem and Murthy and 

Mathur (1998b) extend the method the approach by diving control angles to some smaller 

sub-control angles in their finite volume-based approaches. The basic idea is to divide the 

control angle into several sub-control angles, over each of which the integration is 

calculated and the results are then added together. This approach is also taken here and 

implemented in the DFE method presented, the only difference being that the nodes on 

the boundary are considered, instead of the boundary element as used in the finite volume 

method. This approach is sometimes referred to as pixlation, which gives a more accurate 

result for the integration Ω⋅−∫∆Ω
dw )( 1 sn .  

Case 3. Radiation in 3-D geometry  

Here, a cube with a dimension of 1x1x1 is chosen. It is discretized into 2,313 

unstructured tetrahedral elements, as shown in figure 6.9(a). The control angles used in 
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this problem is 4x8, and the temperature of medium is set at hT =constant. In order to 

compare the accuracy of DFE method in 3-D calculation, the following boundary 

conditions are specified in this problem so that analytical solution can be obtained for 

comparison. In this problem, the top and bottom surfaces are set to black and cold wall, 

but all four lateral surfaces are applied with symmetry boundary condition. As we did in 

the two dimensional case, the analytical solution of this case is also derived by 

integrating RTE equation, and has the same expression as Eq. (6.30). From Figure 6.9b, it 

is clear that the DFE method gives good results compared with analytical solutions for a 

wide range of k  values. 
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(b)  

Figure 6.9. (a) Schematic illustration of unstructured mesh for the 3-D case, which 

consists of 2313 unstructured tetrahedral elements. The temperature of media T is 

constant and all walls are black and cold. (b) Comparison of heat flux *
zq  respect to x/L at 

middle line of top surface Ly / =0.5, and Lz / =1.0. The extinction coefficient varies 

from β =0.1nd β =1.0. 

Case 4. Scattering in 3-D geometry 

If some particles exist in media, the scattering effect must be considered, because 

the particles scatter the radiation of a given direction into all other directions. Also, the 

radiation in other directions is scattered into the given direction in a scattering medium. 

Scattering effects are usually classified into isotropic scattering and anisotropic scattering. 
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The former scatters energy to all other directions with the same energy distribution, 

whereas anisotropic scattering scatters radiation energy to different directions with 

various energy distributions. The isotropic scattering function is simple and easy to 

calculate by Eq. (6.35), 

1)',( =Φ ss                                                            (6.35) 

Anisotropic scattering is more complex and certainly needs more calculation time 

since the scattering function is direction dependent, and every direction needs to be 

calculated. There are two different models being used for anisotropic scattering functions, 

this is, forward scattering and backward scattering. The forward scattering means more 

energy is scattered into the forward directions than the backward directions. The 

backward scattering means just opposite, that is, more energy is scattered into backward 

direction. The scattering functions, either forward or backward, may be described by the 

following generic expression,  

∑
=

=Φ
Ns

j
jjPcss

1

)(cos)',( ϖ                                                 (6.36) 

where ϖ is calculated by  

)'cos()'cos1)(cos1('coscos 2/122 φφθθθθϖ −−−+=                            (6.37) 

 



149

j F1 F2 B1 B2 
0 1 1 1 1 
1 2.53602 2.00917 -0.5652 -1.2 
2 3.56549 1.56339 0.29783 0.5 
3 3.97976 0.67407 0.08571   
4 4.00292 0.22215 0.01003   
5 3.66401 0.04725 0.00063   
6 3.01601 0.00671    
7 2.23304 0.00068    
8 1.30251 0.00005    
9 0.53463     
10 0.20136     
11 0.0548     
12 0.01099       

Table 6.1 the expansion coefficients for the phase functions 

For the calculations given here, the values of coefficient jC  in Eq(6.37) are taken 

from Kim and Lee’s work (1998), who gave the coefficients of polynomial for different 

models by slightly modifying Mie coefficients [Wiscombe, 1980]. The four different 

scattering functions are depicted in Figure 6.10(a). 
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(d) 

Figure 6.10 (a) Illustration of scattering functions of different models. (b) Comparison of 

heat flux *
zq  distribution on the top surface of cube y/L=0.5, and z/L=1.0 with isotropic 

scattering between DFE, FVM and Monte Carlo method. The scattering coefficient is 0.5. 

(c) Comparison of heat flux qz* distribution on the top surface of cube y/L=0.5, and 

z/L=1.0 with anisotropic scattering between DFE and Monte Carlo method. The different 

scattering functions are chosen and extinction coefficient is 1.0. (d) Comparison of heat 

flux *
zq  distribution on the top surface of cube y/L=0.5, and z/L=1.0 with anisotropic 

scattering between DFE and Monte Carlo method. The different scattering functions are 

chosen and extinction coefficient is 2.0. 

Eqs. (6.36) and (6.37) describe the dependence of the scattering function on the 
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directions for anisotropic scattering phenomena. In calculations, the angular space is 

discretized into finite number of control angles. Often an averaged scattering function 

over a discretized control angle is used [Chui and Raithby, 1993]. While the scattering 

function at the axis direction of control angle may be used as average scattering function, 

a better approach is to average the scattering function over each control angle using the 

following expression [Chai and Partankar, 2000], 

∫ ∫
∫ ∫

∆Ω ∆Ω

∆Ω ∆Ω

ΩΩ

ΩΩΦ

=Φ

'

'

'

')',(

)',(
dd

ddss

ss                                                (6.38) 

The above procedure and scattering functions can be readily incorporated into the 

discontinuous finite element formulation. The calculated results for isotropic scattering 

are shown in Figures 6.10b to 6.10c and those for anisotropic scattering are given in 

Figures 6.10d. The same unstructured mesh as in Case 3 is used for these computations. 

The present calculations are also compared with those obtained using the Monte Carlo 

method and the finite volume method. The comparison between the DFE results and 

those reported is gratifying, suggesting that the DFE method is useful for the radiative 

heat transfer calculations. 

Case 4. Mixed mesh for 3-D geometry 
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In this case we consider a cube enclosure filled with a purely emitting and absorbing 

medium. The cube has a length L=1. The control angles used in this problem are 4 x 8, 

that is, the angular space is divided into 4 in the azimuthal direction (θ ) and 8 in the 

polar direction (ϕ ). The temperature of medium is set at Tref = constant, and all the 

boundaries of enclosure are black (ε = 1) and cold (Tw = 0). The cube is discretized into 

three different types of elements, as shown in Fig. 6.11(a) (the cube is discretized into 

3072 tetrahedral elements, 1024 wedge elements and 512 hexahedral elements or 736 

mixed elements including hexahedral and wedge elements.  

The radiative heat flux along the center line on the top surface (y/L=0.5, z/L=1.0) 

can be obtained by using three different types of elements respectively, as shown in Fig. 

6.11(b). In Fig. 6.11(b), the radiative heat flux is calculated with κ = 0.1 and κ = 1.0, and 

the results of three different types of elements agree very well with analytical solutions.  

In order to show the accuracy of the DFE method, we compared the results of 

DFE method and finite volume method, which is one of widely used method. For 

comparison, the same mesh with 512 hexhadral elements and same angular space 

discretization (4x8) are used. The radiative heat flux along the center line (y=0.5, z=1.0) 

is plotted in Fig. 6.11(c) κ =10.0. Examination of the results shows that the DFE gives a 

better accuracy than the finite method when the same discretizations are used. This is also 

observed for other cases with different κ values.  
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For convenience the radiative heat flux in this chapter is non-dimensionalized as 

4
*

ref

r

T
q

q
σ

= . Numerical experiments show that more accurate results are obtained with a 

finer discretization, as expected. For the same number of elements, the DFE method in 

the present implementation requires roughly the same CPU time and the same number of 

iterations as the finite volume method. If numerical integration is used in the element 

calculations, the CPU time is expected to increase. However, our experiences further 

show that for the same accuracy, the DFE requires fewer elements, which would actually 

result in a shorter CPU time.   
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(c) 

Figure 6.11 3-D discretization and calculated radiative heat flux q* along the middle line 

of top surface y/L=0.5, and z/L=1.0. (a) The cube is discretized with 3072 tetrahedral 

elements, or 1024 wedge elements, or 512 hexahedral elements or 736 elements of mixed 
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hexahedra and pentahedra. (b) Comparison of radiative heat fluxes calculated using 

different meshes shown in (a). The absorption coefficient varies from κ = 0.1 toκ =1.0. 

(c) Comparison of the DFE and the Finite Volume methods for the solution of RTE for 

κ = 10. 

Performance of parallel computation 

From all three cases, the DFE shows it is powerful and easy to apply method. As 

mentioned earlier, for three-dimensional problem, the computation is very time 

consuming, and thus the parallel algorithm can be used to facilitate the computations. 

Below, we briefly discuss the performance of parallel algorithm implemented as 

discussed in the last section. 

One three-dimensional case and one two-dimensional case are used to test the 

parallel algorithm. The three-dimensional problem is as same as described above, which 

is concerned with the radiative transfer in a 111 ×× cube discretized into 2,313 

unstructured tetrahedral elements. The two-dimensional problem is as same as in Case 2 

above, which is 11×  square with black and cold walls. For both cases, the control angle is 

discretized into 242×  and the medium is κ =1.0. All the computations were done on a 

Compaq GS80 UNIX platform, which has 8 alpha microprocessors with 8 GB Ram, 

capable of high performance parallel computing. The CPU time for different number of 
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CPUs used in parallel computations is shown in Figure 6.12. Clearly, the more numbers 

of CPUs are used, the less time is required for computation. But if the time for every 

CPU is added together, the total time for computation is almost the same as for a single 

CPU, indicating that there is a very little overhead. These results show that the present 

parallel algorithm gives almost an idealized parallel performance one can ever hope for, 

cpu
parallel N

TT 1=                                                          (6.39) 

that is, the time by each CPU equals the time by using 1 CPU divided by N. This 

means that the intercommunication between the processors is minimized to a negligible 

level. In the cases studied here, the results agree very well with Eq. (6.41). This is 

attributed to the fact that on angular space partition the load of different CPU is 

distributed rather evenly. It is noted here that the above results are encouraging but some 

preliminary as only very few processors are used for the purpose of testing the parallel 

algorithm.  A more detailed study using massive parallel processors is apparently needed 

to verify the above results. Nonetheless, the ease with which the parallel algorithm can be 

incorporated into the discontinuous finite element formulation is clearly demonstrated 

through these examples. 
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Figure 6.12 The CPU time respect to the number of CPUs in parallel computation. 
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CHAPTER 7 

A DISCONTINUOUS FINITE ELEMENT FORMULATION FOR RADIATIVE 

TRANSFER IN AXISYMMETRIC FINITE CYLINDRICAL ENCLOSURES AND 

COUPLING WITH OTHER MODE HEAT TRANSFER  

7.1 INTRODUCTION 

In chapter 5 and Chapter 6, we discussed radiative heat transfer in 2-D and 3-D 

dimensional enclosure. But radiative heat transfer occurs in engineering thermal systems 

such as furnaces, combustion chambers, boilers, gas turbines and optical crystal growth 

furnaces, many of which can be considered as finite-length cylindrical enclosures. Under 

practical conditions, an axisymmetric approximation often may be made to predict the 

thermal performance of these cylindrical systems. An important implication of this 

approximation is that the axisymmetric and periodic conditions associated with these 

systems can be applied and thus fully three-dimensional calculations may be replaced by 

the corresponding two-dimensional calculations, thereby resulting in savings in both 

computational cost and storage requirement. 

The main objective of this study is to present a discontinuous finite element 

computational methodology for solving the radiative transfer equation in axisymmetric, 

finite length cylindrical enclosures. This is intended to be complementary to the 1-D, 2-D 
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and 3-D DFE formulations discussed in previous chapters. An axisymmetric radiative 

transfer equation is essentially three-dimensional when written in cylindrical coordinates 

and hence can be solved directly using the 3-D formulation [Cui and li, 2004b]. However, 

as shown below, a DFE formulation, combined with the azimuthal mapping method 

[Chui and Raithby, 1992; Fernandes and Francis, 1982], can be applied to compute the 

radiative transfer in axisymmetric enclosures over a 2-D mesh only. The success of the 

mapping method has been demonstrated in the framework of the finite volume method 

[Chui and Raithby, 1992]. However, an integration of the mapping into the DFE 

formulation for axisymmetric radiative heat transfer does not appear to have yet been 

considered elsewhere. In what follows, mathematical formulations and numerical 

procedures are given. Both unstructured and structured meshes are used for computations 

to demonstrate the flexibility of the method. The coupling of the DFE method with the 

existing finite element method for the fluid flow and heat transfer calculations is also 

discussed. Case studies including absorbing, emitting and scattering media are presented 

and results are compared with those reported in the literature using other methods 

whenever available.  An example is also included to illustrate the coupling of semi-

transparent melt flows and radiative heat transfer in a cylinder under slow rotation, with 

flow driven by a combined action of surface tension and buoyancy forces. 
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7.2 INTERNAL RADIATION HEAT TRANSFER 

 

 

Figure 7.1. Radiative transfer in axisymmetric geometry and the cylindrical coordinate 

system used for numerical analysis. 

For radiative transfer in axisymmetric cylindrical enclosures, the temperature and 

radiative properties vary only in the r and z directions, but not in the azimuthal direction 

cϕ .  Here, cϕ  is the azimuthal angle in the cylindrical coordinate system and independent 

of azimuthal direction angle ϕ . With the coordinate system shown in Figure 7.1, the 

radiative transfer equation can be written as 
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where θ  is the polar direction of radiation intensity. From the geometric relation 

shown in Figure 7.1, it is clear that ϕϕ +c  = constant along s . It is important to note 

here that for an axisymmetric problem, the radiation intensity also depends on the polar 

(i.e. ϕ ) direction. However, as shown below, the axisymmetry and periodic conditions 

intrinsic within an axisymmetric problem may be used to map the quantities at any cϕ  

using the data at cϕ =0, thereby making the calculations possible over a 2-D mesh.  

To solve the governing equation given by Eq. (7.1), boundary conditions are 

required. For an opaque diffuse surface the thermal balance gives the following equation:  
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Symmetry boundary conditions are also used in the computations and are given 

below [Moder et al., 2000]  
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where the *s  is the symmetric radiation direction of s with respect to the tangent 

of the boundary, with both s  and *s  lying on the plane of nt −  (see Figure 2.5). 
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For the axisymmetric problems under discussion, periodical boundary conditions 

also exist. Referring to Figure 7.1(c), point r  can be rotated from point 'r  around point o, 

viz., 

rRr ′= ][  (7.4)  

where [ ]R  is the rotation matrix. The normals of two boundaries n  and 'n , and 

the directions s  and 's  at which the intensities emit from the boundaries also have the 

following relations [8], 

nRn ′= ][  (7.5)  

sRs ′= ][  (7.6) 

As a result, the intensities in the directions s  and 's  are equal, 

)'()( ss II =  (7.9) 

7.3 THE DISCONTINUOUS FINITE ELEMENT FORMULATION 

Here, we intend to develop a discontinuous finite element formulation for the 

axisymmetric problem on a two-dimensional mesh defined on the r-z plane, as shown in 

Figure 7.1. Strictly speaking, the solution of the problem defined by Eq. (7.1) requires the 

use of a three-dimensional domain, which for the present case is generated by rotating the 

two-dimensional mesh on the r-z plane with a prescribed angle 2/ϕ∆±  along the 

azimuthal direction. In this sense, the 2-D mesh serves as the generating plane for the 3-D 
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mesh. Thus, a three-dimensional slice is formed by the two planes aa′o′o and cc′o′o 

passing through the axis of symmetry. A third plane, boo′b′, that is, the r-z plane, bisects 

the angle formed between the planes abco and a′b′c′o′. The arrangement of these planes is 

given in Figure 7.2a. As a result of rotation, a 2-D mesh is mapped into a 3-D mesh 

consisting of 6-node pentahedra, 5-node polyhedra, and 4-node tetrahedra. The 

pentahedra are generated by rotating the corresponding triangular elements, lying outside 

the z-axis, of the two-dimensional mesh on the r-z plane. The triangular generating 

elements with one side lying along the r=0 axis give rise to 4-node tetrahedra. The 

elements with one node lying on the r=0 axis give 5-node polyhedra. The elements 1, 2 

and 3, as shown in Figure 7.2b are the pentahedon, tetrahedron and polyhedron generated 

as described above.  



166

 

 

(b) 

Figure 7.2 Domain and element types used for axisymmetric radiative transfer 

calculations: (a) the 3-D domain generated by the rotation of the axisymmetry plane and 
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(b) three types of 3-D elements used for the discontinuous finite element formulation. 

Because of the term cII ϕϕ ∂−∂=∂∂ // , we consider the integration over a 

volume element (a pentahedron, a tetrahedron or a polyhedron), as shown in Figure 7.2b. 

Integrating Eq. (7.1) over the volume element and the solid angle ∆Ωl with respect to a 

weighting function ( )Ω,rν , we have 

( )( )∫ ∫∫ ∫
∆Ω∆Ω

Ω+−Ω=Ω∇⋅Ω
eV leV l

dVdSIvdVdIv ),(),(),(),( srsrrrsr β  (7.10) 

where eV  is the volume of the element under consideration (i.e. the ith element), and  

( )sr.S  is the source function defined as  
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π
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Applying integration by parts once to Eq. (7.10), we have, 
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 (7.12) 

where the superscript + means taking the value outside the element boundary. Applying 

integration-by-parts again to Eq. (7.12) yields the following expression: 
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where n  is the outnormal of the element boundary and use has been made of the 

divergence theorem,  

∫∫∫ ∇⋅=∇⋅−⋅
Γ eVeV

IdVdVIdAI φφφ ssns  (7.14) 

to convert the domain integral into the boundary integral in both Eqs. (7.13) and 

(7.14). Here, in order to apply the divergence theorem, we have used the definition, 

drdzrddV cϕ= . Note that in the conventional finite element formulation, the terms on 

the element boundary disappear when they are combined with neighboring elements or 

[ ]I  = 0. In the discontinuous formulation, however, these terms do not cancel when 

elements are assembled. Instead, the following limiting values are used: 

)( j
j

j IimI r
r +Γ→

+ =  and )( j
j

j IimI r
r −Γ→

− =  (7.15) 

where the superscripts + and – denote the front side and back side of the normal vector, 

respectively. By this convention, the values denoted by superscript “-” are inside the 

element and those by “+” are outside the element (see Figure 7.3a). This definition is 

slightly different from the one-D case [Cui and Li, 2004a] but the essential idea is the 

same. The above treatment assumes that the two values +
jI and −

jI across the element 
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boundaries are not the same, and these jumps are often denoted by, 

−+ −= jjj III ][  (7.16) 

These jumps may also be modeled by the generic numerical fluxes that are single-

valued at the boundaries and are a function of field values across the inter-element 

boundaries [Cui and Li, 2004a, b]. For the problems under consideration, the simplest 

and effective treatment of the jump condition is by using the upwinding procedure, which 

in the discontinuous finite element literature is sometimes referred to as the inflow 

boundary value,  
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(b) 

Figure 7.3. (a) Schematic illustration of the mesh of DFE formulation for radiation in 

absorbing and emitting media. (b) Local node number and side number of a typical 

triangular element used for discontinuous finite element formulation of internal radiation 

transfer problems  

Appropriate interpolation functions now may be chosen from the finite element 

broken space that does not demand continuity across the inter-element boundaries. A 

natural choice of shape functions for internal radiation applications is made by taking a 

step function for the solid angle and a polynomial function for the spatial variation, 

( ) ( ) ( )xxv l φψ ∆Ω=Ω, . Here ( )l∆Ωψ  is the step function of the solid angle differential 

centered at lΩ  and ( )xφ  is the shape function of the spatial coordinates. Substituting this 

testing function into the integral expression and re-arranging, one has the following 

relation: 
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which is the final form of the integral presentation of the radiative transfer equation. It is 

noted that Eq. (7.18) reduces to the finite volume formulation if a constant shape 

function )(rφ  is used, and to the finite element formulation when [ ]I  = 0 across the 

element interface is enforced. From this perspective, Eq. (7.18) represents a general 

integral formulation for all these integral-based methods. 

Because the step function is used to approximate the solid angle, the surface 

integration term can be separated into terms involving the surfaces perpendicular to the 

axisymmetry plane and into terms along the cϕ  direction, 

ΩΓ⋅+ΩΓ⋅=ΩΓ⋅ ∫ ∫∫ ∫∫ ∫
∆Ω Γ∆Ω Γ∆Ω Γ

ddIddIddI
ll pl

snsnsn ][][][
ϕ

φφφ
 (7.19) 

Note that the surface ϕΓ  is obtained by simply rotating the 2-D element, such as 

the top surface (surface 4-5-6, at 2/ϕϕ ∆=c  and bottom surface (surface 3-2-1, at 

2/ϕϕ ∆−=c ) as appears in Figure 7.3b. pΓ  is the lateral surface such as the surfaces 1-2-

5-4, 2-3-6-5, 3-1-4-6 in Figure 3b. The integration over the surface ϕΓ requires the use of 

the axisymmetry and periodic conditions. The numerical implementation of the above 

integral formulation is given below. 
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7.4. NUMERICAL IMPLEMENTATION 

Let us consider a typical element, that is, the ith triangular element and its neighbors, as 

shown in Figure 7.3a. Remember that this 2-D triangular element generates a 

corresponding 3-D element by rotating around the z-axis by a prescribed angle. For the 

sake of discussion, the inter-element boundaries are plotted separately. The nodal values 

of the variable are defined within the element, to conform to the rule of selecting 

interpolation functions from the finite element broken space. Because the discontinuity is 

allowed across the element boundaries in the discontinuous formulation, the common 

geometric node does not have the same field variable value. This is a crucial difference 

between the conventional and the discontinuous finite element formulations.   

For a 2-D linear triangular element located on the r-z plane, the shape functions 

may be constructed as follows:  
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 (7.20) 

where eA  is the triangular area on the r-z plane and the elements of the matrix in Eq. 

(7.20) are calculated by, 
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The radiation intensity inside the element is interpolated using the above shape 

functions, 

),()(),()(),()();,( 332211 rzIrzIrzIrzI φφφ ssss ++=  (7.22) 

Substituting the above equation into Eq. (7.18), and noticing that the intensity 

with control angles is constant due to a step function approximation, one obtains the 

following expression: 
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Volume integration 

Let us consider the first term in Eq. (7.18), which involves the volume integration over a 

3-D element generated by the ith triangular element. Taking the derivative of the shape 

functions,  
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and noticing that iφ∇ (i=1,2,3) is independent of the area integral, one has the following 

result: 
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where s  is calculated by the expression, 
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and ijA  is a vector given by 
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Here the integral is evaluated numerically using the Gaussian quadrature, cϕ∆  is 

the rotation angle of the 3-D slice shown in Figure 7.3a, and Ng is the number of 

integration points. Also, J is the Jacobian. 
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The first volume integral on the right hand side of Eq. (7.18) may be calculated 

numerically with the result, 
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where the matrix element Bij is calculated by 
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4.2 Surface integration over pΓ   

The second integral in Eq. (7.18) represents the jump condition (or numerical fluxes) 

across the boundary of the ith element and its neighbor (see Figure 7.3a). For a linear 

triangular element, the second integral is split into three terms, one for each side of the 

element,  
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where L1, L2, and L3 are the lengths of the corresponding three sides of the 
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triangular element on the symmetry plane (see Figure 7.3b). The surface integrals can be 

evaluated numerically, 
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where the matrix elements are calculated by the following numerical integration, 
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Also, Cof(4 - k, 4 - k) (k=1,2,3) means the matrix C, whose in which the (4-k)th row 

and the (4-k)th column are changed to zero; for example, Cof(3, 3) means forming the 

matrix by setting the elements in the 3rd column and the 3rd row of the matrix C to zero. 

Note that the above expression has been written for a curved element. For a linear 

element, the Jacobian J is a constant, which can be taken out of the summation sign. 

In the DFE treatment, the jump terms have to be selected depending on the sign 

of sn ⋅j . This is different from the conventional finite element formulation in which the 

across-element continuity is enforced, and the inter-element boundary terms cancel each 

other such that a jump condition does not arise. One treatment of these jump terms that 

works effectively with linear elements is the upwinding scheme [Cui and Li, 2004a, b]. 

This scheme is also used here, 
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By the same token, the calculations for the other two sides can also be performed 

analytically. Note that ElemijNBj II )()( +=  by definition (see Figure 4b and also Eq. 

(7.16)).  

Integration over ϕΓ   

The surface integration over ϕΓ  makes the evaluation of the following two terms,  
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where tΓ  and bΓ  denote the top and bottom surfaces, respectively (see Figure 7.2b). For 

an axisymmetric problem, the surface normals for these two surfaces are calculated by 

the following expressions: 

ji cct
ˆ)2/cos(ˆ)2/sin( ϕϕ ∆+∆−=n ,   ji ccb

ˆ)2/cos(ˆ)2/sin( ϕϕ ∆−∆−=n  (7.35) 

Examination of the above integrals shows that the surface integrals can be carried 

out over the triangular element on the r-z plane. Consequently, we have the following 
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expressions: 
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where the matrix element ijD  involves a pure 2-D calculation and may be calculated 

numerically using the standard Gaussian quadrature, 
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Here zr−Γ  means the area on the r-z plane is used. Note that for a linear triangular 

element, the above expression may also be evaluated analytically, as shown in the 

Chapter 6.  

The jump conditions across the element interface can be also treated using the 

upwinding scheme also for both the top and bottom surfaces. The use of this scheme 

leads to the following expressions: 
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Here only one neighboring element exists for the top or bottom surface, as shown 

in Figure 7.4. 

 

Figure 7.4. Illustration of axisymmetric and periodic conditions used in mapping 

procedure for axisymmetric radiative transfer calculations. 

Mapping 

An important assumption implied in the above calculations is that the intensities are 

needed only at the nodal points of the triangular element on the r-z plane. The quantities 
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are stored in memory during calculation. The intensities at any other location in the entire 

cylinder can be obtained from the intensity values stored at the triangular element 

through an appropriate mapping procedure. The mapping procedure exploits the 

symmetry and periodic conditions associated with the axisymmetry of the problem. If the 

angle of the rotation cϕ∆  is appropriately selected, then the intensities in the neighboring 

elements along the ϕ  direction can be mapped from those at nodes P1, P2, and P3, 

respectively. This procedure will allow the 3-D calculations to be performed using the 2-

D mesh on the r-z plane only.  

The mapping procedure was studied by Chui and Raithby (1992) and Murthy and 

Mathur (1998a) for finite volume analysis of radiative heat transfer. Here a similar idea is 

applied to incorporate the mapping into the DFE formulation to facilitate the radiative 

heat transfer calculations over a 2-D mesh only. As shown in Figure 7.4, the rotation 

angle is deliberately chosen as to be the same as the control angles in the ϕ  direction, 

which equals ϕπ N/2  where ϕN  is the number of discretization of angular space in the 

ϕ  direction. From Eq. 7.23, it is clear that when the upwinding procedure is used, 

intensity values at the adjacent elements are needed in order to calculate the in-flow 

contributions from either the top or the bottom surface. Since the intensity is stored at the 

nodal points of the element on the r-z plane, the intensity field at the neighboring 

elements may be obtained using the axisymmetry and periodic conditions. As shown in 
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Figure 7.4, the element a-b-c-d is on the middle (or r-z) plane, and a-b-ct-dt is the element 

that shares the same boundary with the top surface a-b-c-d, while the element a-b-cb-db 

shares the same boundary with the bottom surface a-b-c-d. The angle between the lines 

P1P2 and P1t P2t, and that between the lines P1P2 and P1b P2b is equal to ϕ∆  and - ϕ∆  

respectively, because of the angular discretization. 

Because the radiative intensity possesses axisymmetry or rotational symmetry, 

one thus has the following relation for the intensities at the three elements under 

consideration, 

jNiIII cicici ,....,1)()()0( =∆==∆−=== ϕϕϕϕϕ  (7.39) 

where ϕN  is the number of discretized azimuthal angles. The indices on i+1 and 

i-1 are cyclic such that i+1 → 1 if i= ϕN  and i-1 →  ϕN  if i=1. Thus, all the intensities on 

the other planes are the same as those on the symmetry (i.e. r-z) plane with an appropriate 

rotation. Also, to comply with the condition of axisymmetry, the net radiation energy flux 

across any plane passing through the r=0 axis should be zero. Thus, the following relation 

among the intensities at cϕ  =0 is, 

)0()0( 1 === +− ϕϕ ϕ iNi II  (7.40) 

This condition implies that to avoid numerical errors Nϕ needs to be an even 

number, which imposes a constraint on the way the polar angle discretization is made. 
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While this constraint may be a nuisance, it is beneficial in that only half of the directions 

need be solved, thereby speeding up the computations. 

With reference to Figure 7.4, the intensity in the direction 1 at cϕ  = 0 is parallel to 

that in the direction 2 at cϕ = - ϕ∆  and also to that in the direction 6 at cϕ  = ϕ∆ . This 

periodic condition should hold true for other corresponding directions as well. This 

condition, in combination with the axisymmetry condition discussed above, allows us to 

obtain information on the intensities at the top tΓ  and bottom bΓ  from those saved at the 

element defined at the r-z plane. To see that, we first consider the intensity It2 of direction 

2 at the top surface. The quantity It2 is mapped from the known values at the r-z plane as 

follows: 

)0(22 ==−
ct II ϕ and )0()( 112 ==∆==+

cct III ϕϕϕ  (7.41) 

The same relation applies to the intensities at the other directions. The mapping 

can be applied in a similar fashion to the intensities at the bottom surface with the results, 

)0(22 ==−
cb II ϕ and )0()( 332 ==∆−==+

cct III ϕϕϕ  (7.42) 

Clearly, the same relation can be used for the other directions as well. Here to be 

consistent with our notations, the subscript + refers to the outside of the elements.  

Treatment of the scattering term 
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It is known that particles present in a medium will scatter the radiative intensity 

traveling in one direction into all other directions. Likewise, the radiation in other 

directions may also be scattered by the particles into the given direction in a scattering 

medium. Scattering effects are usually classified into isotropic scattering and anisotropic 

scattering. The former scatters energy to all other directions with the same energy 

distribution, whereas anisotropic scattering redirects radiation energy to different 

directions with varying energy distributions. The isotropic scattering function is simple 

and easy to calculate by Eq. (7.43), 

1)',( =Φ ss  (7.43) 

Anisotropic scattering is more complex and certainly needs more computing time 

since the scattering function is directionally dependent. There are two different models 

being used for anisotropic scattering functions: the forward scattering and backward 

scattering. The scattering functions, either forward or backward, may be described by the 

following generic expression:  
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where ϖ  is calculated by  
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and Pj is the Legendre polynomial, which can be calculated by Eq. (7.46), 
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For the calculations given here, the values of coefficient cj in Eq. (7.44) are taken 

from Kim and Lee (1988), where the coefficients of the polynomial for different models 

are obtained by slightly modifying the Mie coefficients [Wiscombe, 1980). The four 

different scattering functions are shown in Figure 7.7(a). 

Eqs. (7.45) and (7.46) describe the dependence of the scattering function on the 

directions for anisotropic scattering phenomena. In calculations, the angular space is 

discretized into a finite number of control angles. While the scattering function at the 

axial direction of a control angle may be used as the average scattering function, a better 

approach is to average the scattering function over each control angle using the following 

expression [Chai and Partankar, 2000]: 
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The above procedure and scattering functions can be readily incorporated into the 



185

discontinuous finite element formulation as a source term. The integration of the source 

term may be made using the integration quadrature rules, 
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where subscript i refers to the node number local to the element. The force, calculated as 

described above, is then added to the ith node of the element. 

Summary 

Assembling all these discretized terms together, the equation for the ith element 

can be written in terms of the following matrix form: 

}{}]{[ fIK =  (7.49) 

where the expressions for the matrix elements are summarized as follows: 
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with Nd being the number of boundaries associated with the ith element. 

For those elements associated with a boundary element, where the boundary 
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condition is imposed as follows if the boundary is gray: 
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The following equation is used for the symmetry boundary condition: 

),(),( *
ll II srsr −+ =  (7.53) 

Here *s  is the symmetric direction of s  with respect to the boundary, and can be 

calculated by Eq. (7.4). Eq. (7.49) can be obtained for each element and its neighbors, 

and the calculations are then performed element by element. Thus, with Eq. (7.49), the 

calculation for the ith element starts with selecting a direction and continues element by 

element until the entire domain and all directions are covered. Because of the boundary 

conditions, iterative procedures are required to reach convergence criteria. Experience 

suggests that the successive substitution method seems to work well for these types of 

problems.  

7.5. RESULTS AND DISCUSSION 

In this section, the above formulation is applied to study several cases of radiative 

transfer in participating medium with and without scattering. The coupling of the 

discontinuous and conventional finite elements for the mixed-mode heat transfer 
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calculations including conduction and convection is discussed in the last example. In the 

results plotted below, the nondimensionalized radiative heat flux 

)/()()( 4*
refsTqq σrr −=   is used as the vertical axis and a positive  ( )r*q  means the wall 

flux goes into the wall. This definition is used in order to compare with results reported in 

literature. Here the radiative heat flux ( )rq  from the wall into the medium is calculated 

either by 

∫ Ω⋅=⋅=
π4

)()()( dww Iq nssr,nrqr  (7.54) 

or equivalently by 
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where wn  is the wall normal pointing into the medium. 

Case 1: Radiative transfer in a finite cylinder 

As the first example, the DFE formulation is applied to compute the radiative 

transfer in a cylindrical enclosure filled with an emitting, absorbing, and non-scattering 

medium. The temperature of the medium is set at a constant Tref =100 K. The height and 

radius of the cylinder are 2m and 1m, respectively. All the walls are black ( wε =1) and at 
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Tw=0 K. This is perhaps an unproclaimed benchmark problem against which many 

different numerical schemes are checked [Murthy and Mathur, 1998]. For this case, the 

DFE calculation used a structured mesh consisting of 400 linear triangular elements and 

an angular discretization of ( ) ( )ϕθ 88 × . Figure 7.5a compares the results of 

dimensionless heat flux along the side wall of the cylinder obtained by the DFE method 

with the calculations using the ray tracing method for three different absorption 

coefficients. The radiative heat flux attains a maximum at the middle of the side wall and 

a minimum at the top and the bottom of the cylinder. This is attributed to the fact that 

more energy is emitted into the wall at the middle than at the end walls, or the sum of the 

intensities is largest and decreases as it gets closer to the ends. The heat flux is also 

affected by the absorption coefficient of the medium. As suggested by the term ( ) ( )rr bIκ  

in Eq. (7.1), a more absorbing medium also emits more energy to the wall, thereby 

leading to a larger wall heat flux. These characteristics of thermal radiative transfer are 

predicted very well by the DFE method, as appears in Figure 7.5a. As seen from the 

figure also, good agreement exists between the present and reported results [Murthy and 

Mathur, 1998], with the error in the maximum *q  being of 0.46% and 3.01% and 1.67% 

for κ  =0.1, κ =1.0 and κ  =5.0.  

It is known from experience that for radiative transfer calculations, the angular 

space and volume space discretization affects the numerical accuracy. Simulations were 
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performed to determine these discretization effects and some of the results are given in 

Figure 7.5b, where the wall heat flux is plotted as a function of angular discretization. As 

expected, a better numerical accuracy is obtained when a finer control angle 

discretization is used. It is noted that the errors are enlarged by using a different vertical 

range to display the effect of angle discretization. Although not shown, the element size 

also affects the numerical accuracy, but to a much smaller degree if a finer mesh is used. 

Further calculations also confirm that the azimuthal angle must be discretized evenly so 

that the heat flux in any plane in the cϕ  direction is zero. An uneven discretization of the 

control angle would produce poor accuracy in the calculated heat fluxes.  

 

(a) 
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(b) 

Figure 7.5 Computed non-dimensional heat flux distribution along the sidewall of a finite 

cylinder: (a) comparison with the results reported in the literature at κ =0.1, κ  =1.0 and 

κ  =5.0 and (b) effects of angular discretization on calculated wall heat flux distribution. 

Case 2: Radiation in an irregular enclosure 

In this case the geometry is a quadrilateral domain filled with an absorbing and 

emitting medium with κ  =1.0 at a constant temperature Tref = 100 K, and the scattering 

effect is neglected. All boundaries are black and cold, the domain is defined by the 

vertices in an anticlockwise order, (0.0, 0.0), (2.2, 0.0), (1.5, 1.2) and (0.5, 1.0). The mesh 

used in this case is given in Figure 7.6(a), which consists of 400 triangular elements, and 
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84 ×  ( )ϕθ ×  solid control angles. The calculated heat flux along the side wall from (0.5, 

1.0) to (1.5,1.2) is plotted in Figure 7.6(b) as a function of the medium optical thickness, 

along with the solutions obtained using the finite volume method, the two agree very well 

for the range of absorption coefficients studied. 

 

(a) 

 

(b) 
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Figure 7.6 Radiative transfer in an irregular quadrilateral of axisymmetry: (a) structured 

mesh consisting of 400 structured triangular elements and (b) comparison of heat flux *q  

on the wall (defined by points (0.5, 1.0) and (1.5, 1.2)) calculated by the DFE and finite 

volume methods for different absorption coefficients, κ =0.1, κ =1.0 and κ =5.0. 

Case 3: Pure scattering problem 

The geometry is the same as that in Case 1, but the medium is purely scattering, 

that is, the scattering albedo is ω =1.0. The optical thickness is fixed at Rβ =1.0. The 

medium is cold, i.e., Tref = 0 K. The wall of the enclosure is black, with its two ends 

being cold and the side wall kept at a constant temperature, Tref = 100K. Figure 7.7 

depicts the net radiative heat flux distribution along the side-wall of the enclosure as a 

function of scattering phase functions F2, F3, B1, and B2. The coefficients of the phase 

function are taken from Kim and Lee [1988] and Jendoubi and Lee (1993). The results 

calculated by the DFE method once again compare well with the results reported in 

Jendoubi and Lee (1993). Once again, the basic radiative transfer characteristic is also 

predicted correctly in that near the hot wall the medium with a stronger back scattering 

function irradiates more energy into the wall, which in turn results in a smaller heat flux 

into the wall (see Eq.7.54). The opposite is true when the medium scatters strongly in the 

forward direction.  
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(a) 

 
(b) 

Figure 7.7. Computed results for radiative transfer in a cylinder filled with scattering 

media: (a) scattering phase functions and (b) comparison of heat flux distribution on the 

side wall between DFE and Discrete Ordinates method for different scattering phase 

functions (Isotropic, F2, F3, B1, and B2). Conditions used for calculations: β =1.0 and 
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ω =1.0. 

Case 4: Mixed heat transfer in a rotating cylinder 

As the last case, we consider a mixed heat transfer involving conduction, 

convection and radiation in a cylindrical container of axisymmetry under a given rotation. 

This case is just used to illustrate the coupling of the discontinuous and convection finite 

element methods for mixed mode heat transfer calculations. The container is filled with a 

high temperature semitransparent melt, which is absorbing and emitting in the infrared 

range, and as such the radiative heat transfer must be considered along with conduction 

and convection, as shown in Figure 7.8a. The equations governing the momentum and 

thermal transport processes are the Navier-Stokes and the energy balance equations, 

''')( qTkTc
t
Tc rpp +−∇⋅∇=∇⋅+

∂
∂ quρρ  (7.56) 

0=⋅∇ u  (7.57) 

( )Tp
t

)( uuuuu
∇+∇⋅∇+−∇=∇⋅+

∂
∂ µρρ  (7.58) 

where ),,(),( zcr uuuzr ϕ=u is a function of r and z only. Cp is specific heat at 

constant pressure, k is thermal conductivity, ρ  is density, µ  is viscosity, t is time, and 

p  is pressure. The radiative heat transfer is described by Eq. (7.1) and the radiative heat 

source is calculated by Eq. (2.20). These boundary conditions are also given in Figure 

7.8a.  
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(a) 

 

(b)                                                                     (c) 
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(d)                                                                    (e) 

Figure 7.8. Coupled FE/DFE calculation of mixed-mode heat transfer in a rotating 

cylinder filled with semi-transparent melt: (a) schematic representation of the mixed 

mode problem involving swirling flows, (b) and (c) distribution of the temperature field 

and flow field for κ =0.1 m-1, (d) and (e) distribution of the temperature field and flow 

field for κ =10 m-1. Conditions used for calculations are as follows: rotating speed 

ω =0.05, R=0.05m, and H= 0.05m. All the boundaries are black. The side wall (R=0.05m) 

temperature is fixed at T=1300 K, and the bottom surface (H=0m) temperature is 1250K. 

The ambient temperature is Tamb = 1240 K and ε m=1. The material properties are: 

ρ =4073 kg/m3, k=4.0 W/m·K, µ =0.046 kg/s·m, and Cp=687.0 J/kg·K. 

To obtain information on the temperature and fluid flow distribution in the melt, 

the Navier -Stokes equations need to be solved along with the energy and radiative 
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transfer equations. In the present case, the Navier-Stokes and thermal energy balance 

equations are solved using the conventional finite element method, while the radiative 

transfer equation is solved using the discontinuous finite element method described in 

this work. The solution of the Navier-Stokes and thermal transport equations is well 

documented elsewhere [Song et al., 2003; Lan and Howell, 2003], including numerical 

accuracy and code verification, and is thus omitted.  

Since the radiation heat flux contribution appears as a divergence term in the 

source part of the heat balance equation, two approaches may be applied to couple the 

discontinuous and conventional finite elements for the mixed heat transfer calculations. 

In the first approach, the heat balance equation is formulated following the same 

procedure as used in the conventional finite element method. This will lead to a global 

matrix equation with the nodal temperatures as the unknowns. To incorporate the internal 

radiation effect, rq⋅∇  is calculated over a finite element where the internal radiation 

takes place and then coupled to the global matrix equation as a source term.  This 

represents a simple and direct approach.  A boundary condition on cqn ⋅ is required, 

which must satisfy the total heat flux ( cq + rq ) balance along the boundary [Bennett, 

2003; Shu and Li, 2004]. It is remarked here that rq⋅∇  is calculated using the angular 

integration and thus there is no loss in numerical accuracy. 

The second approach is often used within the context of the finite volume 
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formulations for temperature calculations. When used for the conventional and 

discontinuous finite element coupling, this approach requires the use of the following 

integration-by-parts to transfer the divergence operation onto the shape function: 

dVdSdV r

ii

rr

i

qnqq ∫∫∫
ΩΩ∂Ω

⋅∇−⋅=⋅∇ φφφ  (7.59) 

Thus information is required on rq  in the interior of an element and along the 

domain boundaries. A specification of total heat flux ( rqn ⋅  and cqn ⋅ ) for the boundary 

term is required, which is more convenient for problems involving different phases [Shu 

and Li, 2004].  

Either of the two approaches described above for the combined heat conduction 

and radiation calculations requires an iterative computational procedure. The two 

approaches described above give the same result. In this study, the first approach is taken.  

 

In a typical iteration process, the temperature distribution is calculated using the 

conventional finite elements while the internal radiation intensities are determined by the 

discontinuous finite elements. The iteration starts with the calculation of the fluid flow 

and temperature without radiative heat transfer. The solution of the intensity distribution 

and hence the divergence of heat fluxes are then calculated using the temperature 

information. The radiation heat flux divergence is then treated as a heating source and the 
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temperature distribution is updated. This process repeats itself until a convergence on the 

fluid flow, temperature and intensity is reached. For the results presented here, a relative 

error of 10-4 is set as the convergence criterion for all variables.  The selection of 

relaxation parameters for the mixed mode calculations is discussed in Shu and Li, (2004). 

The results obtained by the coupled conventional/discontinuous finite element 

method for the temperature and fluid flow field distributions are compared in Figures 

7.8b for two different absorption coefficients. The buoyancy forces drive the recirculating 

melt flow, which goes upward along the sidewall where temperature is high and comes 

downward along the centerline. The flow field exerts a strong effect on the temperature 

distribution. The calculated results also show that both the flow and temperature fields 

are affected by the internal radiative heat transfer. An increase in the absorption 

coefficient causes a change in the temperature distribution, which in turn increases the 

flow intensity in the melt. This is consistent with other reported studies [Kobayashi et. Al., 

1997; Shu and Li, 2004]. 

7.6. CONCULLUDING REMARKS 

This chapter has presented a discontinuous finite element (DFE) formulation for 

the numerical solution of internal thermal radiation problems in axisymmetric enclosures. 

The radiative transfer computation over an axisymmetric geometry is essentially three-
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dimensional. However, an appropriate mapping procedure based on the use of the 

axisymmetric and periodic conditions associated with the enclosures can be applied to 

perform the 3-D calculations over a 2-D mesh only. This feature is important in that it 

leads to a significant reduction in both computing time and memory storage requirement. 

The discontinuous finite element formulation and numerical implementation for 

axisymmetric internal radiation heat transfer calculations were given. A detailed 

discussion was made to illustrate the procedures for incorporating the mapping in the 

discontinuous formulation to convert an essentially 3-D calculation into a 2-D calculation. 

Several case studies for radiative heat transfer in absorbing, emitting and scattering media 

were presented and the results compare well with the solutions reported in the literature 

using other numerical schemes. The effects of both solid-angular and spatial 

discretization were discussed. The numerical simulations confirm the theory that an even 

discretization of a solid angle is important to ensure an adequate numerical accuracy. The 

last example discussed the coupling of the discontinuous and conventional finite element 

methods for mixed heat transfer calculations, including swirling flow, conduction, 

convection driven by buoyancy and radiation in participating media. 
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CHAPTER 8 

NUMERICAL SIMULATIONS OF RADIATIVE HEAT TRANSFER IN LASER 

HYPERTHERMIA  

8.1. INTRODUCTION 

Hyperthermia is a heat treatment method for cancer. The basic idea is to use a certain 

energy source to heat local tissue or the whole body, so that the local temperature of the 

tissue being heated is increased. The body of a human being maintains a stable 

temperature around 37 co , and can sustain and survive of a body temperature of up to 

42 co . However, the tumour is more sensitive than normal tissue to temperature, and is 

easily damaged by high temperature. Based on this fact, hyperthermia gives at least three 

benefits in cancer treatment [Sturesson, 1998]. The first is direct kill, which uses high 

temperature to kill tumour cell. In clinical trial, hyperthermia is applied to the tumour 

cells directly and the temperature is maintained until the tumour is killed. The second 

benefit is indirect killing of tumour cells. The tumour will be destroyed due to the 

microvasculature. The third benefit is the increase of sensitization of other cancer 

treatments, such as radiology and chemical treatment. But if the temperature of cells is 

increased to above 50 co , the difference of sensitization  of tumour cells and normal cells 

is disappeared. This means the normal cells will be destroyed with tumour cells at the 
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same speed.  

The cells destroyed or damaged by heat are affected in several different ways. 

First, when the temperature of cells is increased, the protein structure of the cells change 

due to the hydrogen bonds breaking and the ionic interactions disturbing [Leper, 1984]. 

This effect is dependent on the pH value of cells, and tumour cells usually have a lower 

pH value than normal cell, which causes the tumour cells to be more sensitive than 

normal tissues [Gerweck, 1985]. The second effect is the blood supply. As we know, 

excessive heat in tissue is dissipated or transferred by blood circulation and blood 

circulation in tumour is more restricted, so it takes longer time for tumour dissipates the 

heat than normal tissue. As a result, the tumour will be kept at a higher temperature than 

normal tissue.  

As many researchers have presented, tumour cells are more sensitive to heat than 

normal tissue. If the body temperature is increased, the tumour cells are more vulnerable 

than healthy cell. This fact provides a selective ways to target the tumour cells in normal 

tissues. In addition, research also shows that the tumour undergoing hyperthermia is more 

sensitive to other treatments, such as chemical treatment or radiology, since the cancer 

cells is hard to distinguish from normal tissues. The hyperthermia causes minimal 

damage to healthy cells. Therefore, if we can target tumour cells precisely, we will 

provide an effective cancer treatment with a very limit side effect. 
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Hyperthermia can be applied to the whole body, larger religions, or specific 

locations. The whole body hyperthermia is used to treat the cancer which has spread to 

multiple large places of body. Usually a thermal chamber is used to increase the 

temperature of the whole body, but the body temperature of the patient must be kept 

under 42 co . The hyperthermia applied to larger religions is usually induced by 

microwave, radiofrequency, ultrasound, or laser beam. For the specific locations, 

hyperthermia can be induced externally or by using probe to reach tumour, and laser 

beam is widely used. All these methods of hyperthermia can be categorized into external 

methods, since these methods apply energy to the external of body or not deep from skin. 

Compared with external hyperthermia methods, the internal methods raise the body 

temperature by using some medicine to induce fever, or to use thermal chamber to 

elevate the patient’s body temperature. The internal methods are treatments to the patient 

with spread cancer.  

Several methods have been used in local position cancer treatment. The most 

widely used methods are laser beam, microwave, radiofrequency, ultrasound, and 

magnetic fluid. The microwave and laser beam usually are used in both superficial and 

deep-seated tumours. For the superficial tumours such as skin cancer, the laser beam or 

microwave is applied on the tumours directly, for some deep-seated tumours, such as 

lung cancer, the diffusing fiber is used. Radiofrequency is another method for 
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hyperthermia or tissue ablation [Mcgahan, 1990]. The idea of radiofrequency 

hyperthermia is to deliver a high frequency electric current to tumours through a needle 

electrode. The name of radiofrequency comes from the frequency of electric current, 

which is about 480 KHz, and this frequency is in the range of radio transmission. Since 

the electric current changes direction with a high frequency, the ions in the tissues around 

the needle electrode also changes direction with a high frequency. This causes heat 

generation due to friction between the ions and tissues. Therefore, the tissues will be 

heated and temperature of the tissues will arise. Radiofrequency method is also an 

external method, and the effective range of this method is about 4.5-5 cm sphere around 

the tip of electrode. [Nazir, et al., 2003] 

Magnetic fluid hyperthermia is induced by injecting nanoparticles into tumours, 

and then applies alternating magnetic fields. The magnetic nanoparticles rotate due to 

magnetic force, and heat will be generated by nanoparticles in an alternating magnetic 

fields due to hysteresis loss [Shinkai, et al., 1994] and friction created by the movement 

of nanoparticles [Hergt et al., 1998]. However, the heat generated by friction is much less 

than from hysteresis loss. The tumours being injected nanoparticles is heated due to 

magnetic field and then the temperature of tumours arises, but the normal tissues can 

keep normal temperature since no nanoparticles are in it.  

Laser has several unique features, such as high intensity, coherence, 
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monochromaticity [Sturesson, 1998]. Due to these unique features, laser has been widely 

used in many different areas after it was invented in 1960. Lasers are used in surgery for 

many types of cancers [Stanford cancer center], since these types cancers need treatments 

with some special requirements. Laser can satisfy these special requirements. One 

example is that some tumours are hard to reach, and only a small area needs to be heated. 

Laser can reach these tumours by using fibers.  These cancers include Skin, Breast, 

Cervical, Vocal cord, Vaginal, Lung, Vulvar, Penile, Palliative surgery.  

The advantages of laser hypothermia 

The laser hypothermia has the following advantages over other methods: 

1. Lasers are very precise; therefore, the laser will cause less damage to 

healthy tissues, less blood, less scars, and less infection. 

2. Since laser hypothermia will not cut and burn the tissues of body, the 

patients will feel less pain. 

3. The laser hypothermia will take less time for patient to heal after surgery. 

Basically, lasers are electronic magnetic waves as same as microwaves. But the 

biggest difference is that they have different wave lengths. Laser has been deployed in 

hyperthermia field, since their energy is high and easy to control. Laser can be absorbed 

by normal tissues and tumours, but the absorption of energy varies due to different 
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wavelengths. Since the absorption and scattering effects of tissues are pretty strong, a 

laser is hard to reach deep-seated tissue and tumours. Among all different type of lasers, 

the near-infrared laser is the one which can comparatively deeply penetrate into tissues, 

and it has been used in clinical treatment of oesophageal cancer [Pietraffita and Dwyer, 

1986]. In laser hyperthermia, the collateral damage to normal tissue is inevitable, since 

the laser is always absorbed by the normal tissues above tumours. As the results, how to 

avoid this problem and obtain better treatment result are very important. 

In order to enhance the effect of laser hyperthermia, some new technologies have 

been implemented in laser hyperthermia. Hirsch et. al (2003) and O'Neal (2004) 

presented a new idea to enhance treatment effects of laser hyperthermia, and obtained 

very good results. Their basic idea is to inject metal nanoshells which are a class of 

nanoparticles with tunable optical resonances into tumours. Since these nanoparticles 

have strong absorption and scattering effects to near infrared light (NIR), the most of the 

energy of the light will be absorbed by these nanoparticles and then transferred to 

tumours. Therefore, the temperature of tumours is higher than normal tissues. Based on 

this idea, lower doses of NIR light is used in treatments and the collateral damage will be 

decreased.  

The penetration of light in tissues can be described by Radiative Transport theory, 

and the calculation can be approximated by Radiative Transport Equation [Ishimaru, 
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1978], although for some specific cases, such as ablation of tissues by ultra short laser 

pulses, needs a wave propagation theory to approximate [Guo and Kim, 2003].  The 

modeling of laser transport in tissues has been developed with several of numerical 

schemes, and the most widely used numerical method is Monte Carlo scheme. Flock et al. 

(1989) presented their Monte-Carlo modeling of light propagation in highly scattering 

tissues, and compared with diffusion theory.  Boas et al. (2002) developed a three-

dimensional Monte Carlo model for photon migration through complex heterogeneous 

media. Guo et al. (2000) also presented their work of the radiation transport of lasers in 

scattering media for multi-dimensional problems. The discrete-ordinates method is 

another scheme used to simulate the light transport in tissues. Guo et al. (2003) presented 

their discrete-ordinate method for simulation of the laser propagation in heterogeous 

tissues, and they obtained reasonable results [Guo and Kim, 2003]. 

The discontinuous finite element method presented in the previous chapters is 

another good numerical scheme to solve laser propagation in tissues. The advantages of 

discontinuous finite element make it a good choice to solve this kind of problems. Since 

the laser propagation in tissues usually needs three-dimensional model to simulate, the 

ability of parallism of discontinuous finite element method can speed up the calculation if 

a multiple CPU machine is available.  

The formulation of discontinuous finite element method for the laser transport in 
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tissues can be expressed as Eq. (6.1). Since lasers are induced from outside of tissues, and 

the light will be reflected on the interfaces between air and surface of tissues, therefore 

the reflection effect has to be considered in calculation. If the surfaces of tissues are 

considered with grey surface and the incidence intensity of laser beams is denoted by cI , 

the boundary condition for the intensity at the same direction can be described as follows, 
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where ε  is the emissivity of boundary and wρ  is the reflectivity of the boundary. 

ww ερ −= 1 . 

8.2. RESULTS AND DISCUSSION 

In this section, an idea case is used to show the application of the discontinuous 

finite element method in solving radiative heat transport in tissues caused by NIR laser 

beams, and some primary results will be presented. 

 In order to test our methodology, the following idea case will be used for 

simulations. Figure 8.1 shows a bulk of normal tissue, and there is a small bulk of tumour 

in it. The dimension of the normal tissue is 4.0 x 4.0 x 4.0 cm3, and the dimension of 

cancer is 1.0 x 1.0 x 1.0 cm3. The tumour is right at the center of the normal tissue. 

Although the real problem is much more complex than this idea case, the main object of 
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this chapter is to show the application of discontinuous finite element method in laser 

hyperthermia. 

 

Figure 8.1. Schematic illustration of tumour, normal tissue and laser beams 

In this study, in order to observe the heating effects of laser beam to the normal 

tissue and the tumour, several different optical properties and number of laser beams are 

adopted in calculation. Since we have known by injecting nanoparticles into tumours, the 

optical properties of the tumour can be dramatically changed. According to Hirsch et al.’s 

research (2003), the parameters of nanoparticles can be changed by using different 

production processes.  
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Figure 8.2. Illustration of ideal model for numerical simulation. 

In Figure 8.2, the dimension of the tumour is 1.33 x 1.33 x 1.33 cm3, and the 

dimension of the normal tissue is 4.0 x 4.0 x 4.0 cm3. The tumour is right at the center of 

the normal tissues, and the coordinates system is as shown in Figure 8.2. The laser beams 

are induced on the top surface (z = 4cm) of the tissue. In this study, the boundary 

conditions of tissues are set as a diffuse grey surface boundary condition so that we can 

concentrate the main object of this study. Based on the above assumptions, the following 

mathematical model is established, 
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where inΓ  denotes the portion of top surface which is applied with laser beam, 

and bΓ  denotes the other portion of boundary surfaces. In this study, the following 

parameters are used, the top surface reflectivity is 0.12, and the emissivity of all surfaces 

is 0.2. 

In the first case, the intensity of one laser beam is set to 10000 2

w
cm sr

, and the 

absorption and scattering coefficient of cancer is 1.0, and only one beam in used to heat 

the tissue and tumour. The model in Eq. 8.2 is solved by discontinuous finite element 

method developed in Chapter 6. The heating effect can be displayed by the radiative heat 

flux divergence (Divq), which is the source term in heat conduction equation, and it 

denotes the heating effect directly. The radiative heat flux divergence is expressed by the 

following equation,  

))(4()(
4

4 ∫ Ω−=⋅∇
π

σκ dITq sr,r  (8.3) 

The calculation results are plotted by program FLOWVI developed by Dr. Ben Q. 

Li’s lab. In order to clearly show the heat generation inside of the normal tissue and the 
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tumour, plane section display is used to show the contour of the radiative heat flux 

divergence. 

At first, two cases are used to show how the different optical parameters of 

normal tissue and tumour give different results. The first figure is used to show the 

divergence of radiative heat flux distribution in the normal tissue and the tumour if their 

optical parameters, absorption coefficient and scattering coefficient, are the same; both 

scattering coefficient and absorption coefficient are 1.0 m-1. As shown in Figure 8.3, it 

clearly shows the energy from laser beam penetrates the normal tissue and the tumour, 

and heat generation in both places are almost the same. This is not good for laser 

hyperthermia, since when the tumour is heated and destroyed by laser, the normal tissue 

will be also damaged or destroyed, this result is what we want to avoid in clinical trail.  

 

Figure 8.3 Radiative heat flux divergence at both absorption and scattering coefficients of 
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tissue and cancer are 1.0m-1. 

The second result is the distribution of divergence of radiative heat flux when the 

optical parameters of the normal tissue and the tumour are different. In this case, the 

absorption coefficient of normal tissue is 0.5m-1, and the scattering coefficient is 1.0m-1; 

the absorption coefficient of the tumour is 1.0m-1, and the scattering coefficient is 10.0m-1. 

The intensity of incident laser beam is 10000 2

w
cm sr

. The calculation result is shown as in 

Figure 8.5. In this case, we can see the energy of laser beam absorbed by the tumour is 

much more than absorbed by normal tissue. This result proves the different optical 

parameters affect the effect of laser hyperthermia. 

 

Figure 8.4 Distribution of the radiative heat flux at the following optical parameters: The 

absorption coefficient of skin is 0.5m-1, scattering coefficient is 1.0m-1; the absorption 

coefficient of cancer is 1.0m-1, scattering coefficient is 10.0m-1 
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From the above two cases, we have known optical parameters affect the laser 

hyperthermia greatly. Although the energy absorbed by normal tissue is less than 

absorbed by the tumour, as shown in the above cases, the normal tissue is still heated by 

laser beam; especially the absorption coefficient and scattering coefficient of the normal 

tissue and the tumour are at the same magnitude. In order to decrease the energy absorbed 

by the normal tissue, instead of using one high power laser beam, we can focus multiple 

lower power laser beams to tumours, just like convex lens effect. By author’s knowledge, 

this idea has not been found in other references so far. As shown in Figure 8.1, two laser 

beams are used to heat the tumour. The laser beams are not vertically applied on the top 

surface of the tissue, but with a certain angle so that they can focus at the center of the 

tumour. In the following cases, one, two, and four laser beams are applied on the top 

surface of the normal tissue respectively and the radius of laser beam is 0.3 cm. The 

distribution of radiative heat flux divergence will be calculated based on the different 

laser beam schemes. 

The following cases show the effects of different number of laser beams in laser 

hyperthermia. In these cases, the optical parameters of normal tissue are from Guo’s 

work (2000),  the absorption coefficient of normal tissue is 0.01cm-1 and scattering 

coefficient is 10 cm-1。 The absorption coefficient and scattering coefficient of tumour 

are set to 5 times of parameters of the normal tissue. The intensity of incident laser beam 
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is 10000 2

w
cm sr

 for one beam, 5000 2

w
cm sr

 for each of two laser beams, and 2500 2

w
cm sr

 

for each of four laser beams. The distribution of the radiative heat flux divergence is 

shown in Figure 8.5 (a), (b), and (c). 

 

(a) 

 

(b) 
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(c) 

Figure 8.5 Vertical and horizontal section plane display of the distribution of the radiative 

heat flux divergence for three different laser beam schemes; the absorption coefficient of 

the normal tissue is 0.01cm-1, and the scattering coefficient of the normal tissue is 10 cm-1; 

the absorption coefficient of the tumour is 0.05 cm-1, and the scattering coefficient of the 

tumour is 50 cm-1.  (a): one laser beam, and the intensity of is 10000 2

w
cm sr

. (b) two laser 

beams, and the intensity of each laser beam is 5000 2

w
cm sr

; (c) four laser beams, and the 

intensity of each laser beam is 2500 2

w
cm sr

. 

Comparing the results of above three different laser beam scheme, we can find the 

radiative heat flux divergence in the tumour keeps almost the same in three different laser 

beam schemes, and the maximum values in three different schemes are close to 290 3

w
cm

. 

But the radiative heat flux distributions near the incident point of laser beams are clearly 
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different. In the one-beam scheme, the value at the incident point of laser beam is the 

highest in the three schemes; four-beam scheme gets the lowest value, and two-beam gets 

the value in the middle of one-beam results and four-beam results. The above results 

prove that the idea of multiple low power laser beams scheme works. 

Besides the above simulations for different laser beam schemes, more simulations 

with different optical parameters have been done. Figure 8.6 shows the distribution of 

divergence of radiative heat flux with three different laser schemes at the condition that 

the absorption coefficient and scattering coefficient of the tumour are 25 time of the 

coefficients of the normal tissue.  

 

(a) 



218

 

(b) 

 

 (c) 

Figure 8.6. The distribution of the divergence of radiative heat flux for three different 

laser beam scheme; the absorption coefficient of the normal tissue is 0.01 cm-1, and the 

scattering coefficient of the normal tissue is 10 cm-1; the absorption coefficient of the 

tumour is 0.25cm-1, and the scattering coefficient of the tumour is 250 cm-1.  (a) one laser 
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beam, and the intensity of is 10000 2

w
cm sr

. (b) two laser beams, and the intensity of each 

laser beam is 5000 2

w
cm sr

; (c) four laser beams, and the intensity of each laser beam is 

2500 2

w
cm sr

. 

Compared with Figure 8.5, the maximum radiative heat flux divergence in Figure 

8.6 is higher than the maximum radiative heat flux divergence in Figure 8.5. The 

maximum of radiative heat flux divergence in Figure 8.5 is 290, but in Figure 8.6, the 

maximum is 1457. The reason is the absorption coefficient and scattering coefficient in 

Figure 8.6 is greater than the coefficients in Figure 8.5, which means more energy is 

absorbed by the tumour. 

8.3 CONCLUSION REMARK 

This chapter presented a discontinuous finite element (DFE) modeling for the 

laser hyperthermia. The laser transport in a 3-D geometry model is calculated. The 

computation results explained the reasons of great effects of injecting nanoparticles into 

tumour. This is a very important application in laser hyperthermia. The discontinuous 

finite element model and numerical implementation for laser hyperthermia calculations 

were given. A new idea of using multiple lower power laser beams in laser hyperthermia 

was introduced, and detailed discussion and computation results of different laser beam 

scheme were presented. The computation results show the new idea gives a good result in 
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laser hyperthermia, and it has a great potential in real applications. 
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