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Chair:  Rafik Itani 
 

Aerodynamic analysis is of primary consideration in designing long-span bridges. 

Theoretical models as well as experimental tools have been developed, which resulted in 

Wind tunnel tests becoming the fundamental design tool.  

 

Recent researches focus on alternative methods to assess the wind response of 

suspension bridges. These include the computational Fluid Dynamics (CFD) method, 

which is based on finite element analysis. Theoretically, this method is capable of solving 

different types of fluid-structure-interaction (FSI) problems. 

 

This research discusses the flutter analysis of open-truss stiffened suspension bridges, 

with an emphasis on the Second Tacoma Narrows Bridge. The scope is to assess the wind 

response of the bridge using analytical tools. The approach suggested here is to 

synthesize the wind derivatives based on previous studies of a similar deck configuration. 

Then the equation of motion and the synthesized aerodynamic forces are solved to find 

the critical wind speed. 
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 In order to conduct an aerodynamic analysis, the frequencies and the mode shapes 

of the bridge should be determined. Therefore, a frequency analysis is conducted using a 

detailed finite element model. The results are compared with an ambient study of the 

bridge, and found to be similar and accurate. 

 

The solution procedure and assumptions of the approach are verified using the 

Golden Gate Bridge flutter analyses, where the experimental aerodynamic coefficients of 

the bridge are applied in the proposed procedure and compared with the analysis based on 

the synthesized coefficients. The results of both cases agree with the results in the 

literature. The analysis procedure is then conducted for the Second Tacoma Narrows 

Bridge to estimate the critical wind speed is found to be less than the flutter criteria of the 

bridge. 
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CHAPTER 1 
INTRODUCTION 
 
 
1.1 Overview 

Wind is the critical design component of suspension bridges. The failure of the First 

Tacoma Narrows Bridge, in November 1940, drew the attention of the impact of wind on 

these types of bridges. After the catastrophic failure of the bridge, wind tunnel testing 

became a standard method to assess the aerodynamic response of long-span bridges. 

Recent researches focus on analytical methods to evaluate the wind response of the 

bridge superstructures. The intention is to investigate alternative methods that estimate 

the critical wind speed. 

 

The “Second” Tacoma Narrows Bridge, opened in October 1950, is designed using 

wind tunnel testing. The bridge is shown in Figure 1.1.  The preliminary design 

configuration suggested installing open-grates, shown in Figure 1.2, along the bridge 

deck. This indeed improves the aerodynamic characteristics of the bridge. The United 

States Federal Highway Administration (USFHWA) and the Washington States 

Department of Transportation requested closing the open-grates to remodel the traffic 

lanes. Closing the gates will change the aerodynamic characteristics of the bridge. This 

research is conducted to assess the possibility of closing the open-grates of the bridge 

without adverse impact on the bridge aerodynamic stability. 

 

The aerodynamic characteristics of the bridge under consideration are unknown. 

There is a need to analytically estimate the possibility of closing the open-grates of the 
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bridge without physically testing the bridge’s superstructure. Two uncommon analytical 

approaches are suggested here to solve the problem: 

 1- To synthesize the aerodynamic coefficients of this type of superstructure and 

validate its appropriateness. 

 2- To use the fluid-structure-interaction procedure to estimate the wind response of 

the bridge and find its aerodynamic characteristics, , Bathe, K.J. and Zhang, H. 

(1999), Zhang, H. and Bathe, K.J. (2001) and Zhang H. (2003). 

 

The first approach is extensively discussed here. The Theodorsen function is 

correlated to the aerodynamic derivatives of the open-truss stiffened decks. The approach 

is verified based on previous flutter analysis of the Golden Gate Bridge and is then 

applied to the bridge under consideration. 

 

Figure 1.1: The Second Tacoma Narrows Bridge 
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Figure 1.2: The open grates of the Second Tacoma Narrows Bridge 

 

The computational fluid dynamic approach was tested, using ADINA-F. Two bluff 

body models were chosen to verify the procedure, namely, a cylinder and an H-shape. 

The effort to capture the behavior of the vortex shedding phenomena and the response of 

an oscillating cylinder did not lead to any accurate results. Extensive effort was also spent 

to obtain the response of an H-shape section in wind, as described in Barriga-Rivera 

(1973), using this approach. The oscillatory response was significantly different from 

those of the experiments.  

 

Moreover, this approach is found not to be completely robust and convergence is not 

always guaranteed. Several issues should be considered to account for the high degree of 

nonlinearity in solving the coupled fluid-structure systems. These include some modeling 

considerations such as discretization of the domain and the solution time step. The cost of 

running a two dimensional model with moderately fine mesh is very expensive. For 
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example, the time required to run one step of the H-shape problem, Barriga-Rivera 

(1973), using an Intel Centrino Duo® processor, with two cores 3.2 GHz speed, and 

sufficient RAM, is around 4 minutes. The appropriate time step is 1*10-5 second and the 

solution should be run for at least 10 seconds. Nevertheless, a three dimensional analysis 

is require, which makes the solution infeasible. While this approach was explored 

extensively in this research, it was later abandoned because of feasibility, software and 

hardware limitations issues. 

 

For any type of aerodynamic analysis, the structural frequencies and the mode shapes 

of the bridge are important parameters in the method of analysis. In order to obtain these 

parameters a frequency analysis is required. In this research, a detailed finite element 

model of the bridge is developed to obtain an accurate estimate of the frequencies content 

of the structure. 

 

 

1.2 Objectives 
This research develops alternative analytical methods to supplement the wind tunnel 

testing, for estimating the critical wind speed of a bridge section with open-truss stiffened 

superstructure. The developed approach will be applied to the Second Tacoma Narrows 

Bridge to assess the flutter condition of the bridge after closing the existing deck grates. 

 

 

1.3 Outline 
This research is divided into two sections: 
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A-  The first section discusses the theory of suspension bridges and their behavior. 

B-  The second investigates the classical flutter analysis and a method to solve the 

equation of motion of flutter. In each part the analysis theory is discussed first and 

then followed by the bridge’s case study. A brief listing of the coming chapters 

and their content is as follows: 

 

Chapter two starts with a historical review of the theory of the suspension bridges, 

starting from early attempts in 1800’s and the several bridge catastrophes, to the 

evolution of the theory of suspension bridges and the aeroelasticity, and ending with the 

contemporary advancements in long-span bridges analysis and construction. The purpose 

of the chapter is to give an introductory review of the engineering experience in the 

development of suspension bridges. 

 

Chapter 3 includes a discussion of the theory of suspension bridges with the structural 

analysis methods of cables. The emphasis is on the catenary cable profile and the 

associated modeling issues, such as the methods to evaluate the initial internal forces and 

the unstretched profile of cables. A finite element formulation of the three-dimensional 

centenary cable is investigated in detail. The chapter is concluded by a discussion of the 

frequency analysis of cabled structures. 

 

The frequency analysis of the Second Tacoma Narrows Bridge is discussed in 

Chapter 4. The detailed finite element model developed and its structural components are 

described. The natural frequencies of the bridge and the mode shapes are compared with 
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previous analytical and experimental frequency analyses. The results are utilized in the 

flutter analysis. 

 

Part two of the research starts by a literature review of the previous aerodynamic 

theories as discussed in Chapter 5. Various aerodynamic phenomena are described, 

highlighting the differences between them and presenting the pertained phenomenon to 

the problem under consideration. The pervious studies done on the aerodynamic 

coefficients of open-truss stiffened and plate-like superstructures are discussed. The 

discussion is then extended to synthesize the flutter derivatives of these types of decks 

based on the Theodorsen function. This is useful since the Theodorsen function provides 

a closed form solution of the flutter derivatives, as discussed in Appendix E. The 

derivation of the equation of motion of flutter condition for a two degrees-of-freedom 

system is shown. This chapter is concluded by a case study to verify the derived equation 

and the methodology that will be used in the following chapter. 

 

Chapter 6 discusses the flutter analysis of the Second Tacoma Narrows Bridge. The 

synthesized flutter derivatives are listed and applied to the current bridge.  A previous 

study done on the Golden Gate Bridge is used to verify this approach. 
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CHAPTER 2 
THEORY OF SUSPENSION BRIDGES 

 

 
2.1 Introduction 

The construction of suspension bridges is well defined and such structures have been 

in use for decades. Simple suspension bridges, for use by pedestrians and livestock 

transportation, were constructed in the ancient Inca Empire, around year 1200 in South 

America, where ropes and wood were used to build bridges. Modern versions of 

suspension bridges started with iron chain bridges and then developed to use steel cables. 

This type of bridge is naturally aesthetic. Its catenary curve is the essence of its distinct 

identity and beauty. The use of suspension bridges emerged due to their enormous 

capacity to span long distance.  

 

The advances made in the structural system and analysis methods of suspension 

bridges allowed constructing longer spans with better serviceability. Modern bridges are 

capable of carrying relatively heavy loads such as vehicles and light rail. The modern 

design procedures of suspension bridges are very advanced. However, there are accounts 

of success and failure that lead engineers to study the behavior of suspension bridges and 

their interaction with nature. The failure of the first Tacoma Narrows Bridge in 1947 is 

considered the pivotal point that changed the design of suspension bridges. 

 

Modern suspension bridges are conceptually very similar. Typically, a suspension bridge 

consists of main towers that carry the main cables. The cables carry the deck loads via the 

 7
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hangers, which connect the deck to the cables. The main cable transforms the vertical 

loads to tension load along its profile. Anchorages, at each side, provides the required 

support for the cables. Suspension bridges, however, might vary in detail, such as the 

number of spans, the type of anchorage, the type of deck, the configuration of hangers 

and cables, and the material used in construction. Figure 2.1 shows a schematic sketch of 

a typical suspension bridge, showing its main components. 

 

 
Figure 2.1: Suspension Bridges Components Chen and Duan (1999) 
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2.2 Needs and Uses 
There are several advantages that justify the use of suspension bridges over other 

types of bridges. Considering ambient limitations, suspension bridges center span may be 

made very long in proportion to the amount of materials required, which is unlike other 

types of multi-span bridges. This is due to the fact that the center span weight is all 

suspended on the cable itself, which delivers the imposed loads it to the ground. This 

allows the bridge to economically span very wide canyons or waterways without the need 

to build intermediate supports or construct extremely deep middle span. Moreover, since 

the main towers are naturally required to be massive and tall to account for cable sag and 

to carry cable forces, it can be built high over water to allow the passage of very tall 

vessels, without significant increase in construction cost. Therefore, most of the bays and 

narrows nowadays are magnificently bridged with this type of structures. 

 
Ambient limitations are not only a restriction for the structural layout but also for 

construction methods. If a structure is built over water, especially if deep, then it is 

required that neither temporary central supports nor access from beneath is required for 

construction. Construction of suspension bridges, as it will be briefly shown later, does 

not require any of the previous construction methods. 

 
From a structural point of view, a suspension bridge uses the axial stiffness of cables. 

This type of structural elements has membrane stiffness, which increases the stiffness 

with increase of applied load. This allows carrying relatively heavy load with more 

utilization of the material. However, cables, as major structural elements, do not provide 

high overall stiffness to the structure. This has an advantage of being relatively flexible 

so the structure can flex under severe wind and seismic conditions, whereas a more rigid 
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bridge would have to be made much stronger and probably much heavier. One 

disadvantage of flexible structures is that they may become unusable in strong wind 

conditions and may require temporary closure to traffic. 

 
 
2.3 History and Development 

The attempt to erect suspension bridges goes back to the seventeenth century, where 

iron chain bridges were used. This was followed by the use of advanced structural 

elements such as cables. Accurate analysis theories related to the theory of structures and 

aerodynamic analysis was later applied after the collapse of Original Tacoma Narrows 

Bridge, in 1940. The introduced methods developed for long-span bridges led to the 

design of longer spans and more stable bridges. 

 

The following is a brief review of the major suspension bridges and the development 

of analysis, design and construction techniques. 

 
James Findlay (1756-1828) designed the first modern examples of long span bridges 

in the US. He introduced the Jacob’s Creek, main span of 70ft, and Deer Island, main 

span of 240ft. However, in Findlay’s days the theory of suspension bridges was not quite 

developed. Thus, he depended on some testing and on the basics of the elastic theory to 

analyze his structures. He developed bridges with relatively large stiffening truss, which 

were seemed over design. 

 

Sam Brown (1776-1852) built a series of bridges in Britain, such as Union Bridge at 

Berwick with a main-span of 449ft, and the first long-span bridge in Britain to carry 
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heavy traffic. This achievement was possible because of his invention of using flat 

wrought iron eyebar to construct the main chain. He also introduced the first multi-span 

suspension bridges in Brighton and Firth of Forth in England. However, he wasn’t 

successful in designing many bridges such as the Brighton Pier Bridge because of its 

collapse in wind. At that time, it was recorded by Russell that slender structures are 

susceptible to oscillation and he advised using diagonal stays and stiffening trusses to 

solve the issue. 

 

Brunel (1806-1859), the designer of the Clifton Bridge with main span of 702ft, 

addressed the differences between catenary and parabola in cable profile. Up to that era 

suspension bridge theory was very primitive. Fundamental issues related to the real 

behavior of bridges components such as, the secondary or geometric stiffness of cables, 

were not properly appreciated. The Clifton Bridge oscillated under wind load and 

required retrofit work to stabilize it. 

 
During that time French engineers were working on developing a new technology for 

the construction of suspension bridges. The Seguin brothers developed the use of wire 

rope to fabricate cables instead of links and chains. Vicat had first used a method to spin 

wire cables in-site. This new technology made the construction of the Fribourg Bridge in 

1834 with a main span of 870ft, possible. The Fribourg Bridge was the longest 

suspension bridge in Europe until 1900. 

 

The experience developed in France was then invested by the Americans to build 

their long-span bridges. Charles Ellet (1810-1862) considered the additional geometric 
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stiffness due to the gravitational load. He designed the wheeling bridge with main span of 

1010 ft, which later failed in wind due to its low torsion stiffness. The bridge was rebuilt 

later by John Roebling (1806-1869).  Roebling paid attention to the need of stiffness in 

the truss, although the concept of torsional stiffness was not clearly comprehended, until 

Rankine’s theory was developed, which emphasized the importance of torsional stiffness 

in the design of suspension bridge superstructure. Roebling designed his bridges based on 

his intuitive engineering sense, before Rankine’s theory, and his last accomplishment was 

Brooklyn Bridge with a main span of 1395ft, in 1883. 

 
Other important theories were then developed and adopted in the design of 

suspension bridges. In 1888 Melan introduced the deflection theory which accounts for 

the effects of nonlinearity. Melan’s theory is more logical than the Elastic theory to 

analyze cable deflection. The use of this theory built confidence for using high loads to 

stiffen the structure. 

  

Leon Moisseiff adopted the deflection theory to design the Manhattan Bridge in 1909. 

The use of the deflection theory allowed him to design relatively long span bridges. 

Moisseiff then started to argue the possibility of building long span bridges with 

relatively slender superstructure, claiming that the stretched cables under the gravity load 

provide the adequate stiffness. Moisseiff implemented his thought in designating the first 

Tacoma Narrows Bridge with a main span of 2800 ft. His judgment was right regarding 

to the vertical stiffness; however, it ignored the importance of torsional stiffness. Besides, 

the H-shaped used in constructing the deck is quite undesired from aerodynamic 

perspective, an issue which was not understood at that time. 
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The bridge collapsed in wind, in November 1940. Although it was not the first 

suspension bridge to fail in wind, the failure of the first Tacoma Narrows Bridge invoked 

the need of understanding wind load on long-span bridges. The collapse of the first 

Tacoma Narrows Bridge took place with the evolution of aerodynamics research and the 

emerging aeronautical engineering science, in addition to wind tunnel testing, which was 

a newly applied technology in designing aircraft in the Second World War. This 

technology was transported to bridge engineering and used after 1950 as a standard 

requirement to test and design long-span bridges. 

 

The preliminary conclusion of this implementation was the understanding of the 

importance of torsional stiffness of the superstructure. Plate girders and flat decks were 

avoided. The stiffening truss was the only superstructure configuration used in 

constructing suspension bridges, due to its substantial torsional stiffness. Consequently, 

the Second Tacoma Narrows Bridge was then built with 33ft stiffening truss in 1950. 

Other bridges were later constructed using stiffening trusses to provide sufficient 

torsional stiffness such as, the Forth Road Bridge in Scotland, 1958. The Golden-gate 

Bridge built in 1936 in San Francesco, with main span of 4200 ft, was later retrofit to 

improve its torsional resistance, where diagonal elements were added to connect the 

bottom cords of the truss.   

 

The wind tunnel study done on the second Tacoma Narrows Bridge in 1950 by 

University of Washington proved improvement in aerodynamic characteristics of the 
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bridge when open-grates were used along the superstructure. Open-grates became the 

solution to improve deck aerodynamics. Another improvement of the truss aerodynamics 

was the introduction of a vertical stabilizer running longitudinally in the deck. This 

improvement was recently applied in the Great Belt Bridge and the Akashi-Kaikyo 

Bridge. 

 

The shape of the superstructure was not appreciated until the first Severn Bridge was 

built in U.K, 1966, with main span of 5240ft. The original design used a stiffing-truss to 

support the deck. The model was destroyed by an accident in the wind tunnel. The 

designers then suggested using box-girder instead for testing for fast testing in the wind 

tunnel. The deck box section obtained was relatively streamlined, to reduce the drag and 

lift components. The wind tunnel test proved the merits of streamlined box-girders, which 

became the very first case to introduce closed-box section as tentative option of long-

span superstructures. 

 

After the 1970’s the theory of suspension bridges and bridge aeroelasticity become 

more established. Construction techniques of casting caissons and steel fabrication of 

cables and tower elements improved significantly. This allowed building longer spans 

such as the Humber Bridge in England, 1981, with main span of 4626ft and the Great 

Belt Bridge built in 1986 with 5250 ft center span in Denmark, which is now considered 

to be the second longest span in the world. 
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Improving steel capacity made the Akashi-Kaikyo Bridge, built in Japan with 6558 ft 

main span, possible. The steel capacity was increased 10% more than the normally used 

steel for cables which is (260 ksi or 1800 MPa). In fact, ninety percent of the stress in the 

main cable of the Akashi-Kaikyo Bridge is due to its own weight. This implies that the 

design of longer spans is getting uneconomical, however, this opens the door for 

innovation in designing and optimizing bridge sections. 

 

The awaited cutting-edge suspension bridge is the Messina Bridge in Italy, expected 

to be opened in 2012, that if completed will be about 2 miles long, that is around 60% 

longer than the current longest span in the world, the Akashi-Kaikyo Bridge. The 

optimized deck shape will allow this bridge to span that distance and carry six traffic 

lanes. 

 

This shows that building a stable long suspension bridge depends on three factors, 

namely, the shape of the superstructure, the separation between the natural frequencies, 

and the material capacity used in construction. 
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CHAPTER 3 
ANALYSIS METHODS FOR CABLED STRUCTURES 
 
 
 
3.1 Introduction 

A Cable is a structural element that can only resist tension forces. Applied vertical 

forces are transmitted to the cables as axial forces along their profile. The Geometry of 

the main cable is described by the final sag, which forms due to the cable self-weight and 

other sustained loads. The cable profile is, therefore, correlated to the applied external 

forces and the resulting internal forces. 

 

Several theories were developed to investigate the actual shape of the main cable and 

to mathematically solve its parameters, such as internal forces and deflections. Earlier 

theories suggested a parabolic shape to map the shape of cables, loaded with a uniformly 

distributed gravity load. Catenary profile is, however, found to be the actual profile. 

 

Classical theory of suspension bridges includes three formulations to estimate cable 

deflection and stiffness based on the elastic theory, linearized deflection theory, and the 

deflection theory. Other theories have been incorporated with other formulations to 

discretize the development of the force – displacement relationship and implement that 

relationship in finite element methods. 

 

The following is a brief discussion of the classical theories and the modern analysis 

methods. 
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3.2 Theory of Cable 
 

3.2.1 Cable Profile 
To simplify the concept of a continuous cable element consider the free body diagram 

of a cable, which has the same shape as the actual cable and is mounted on simple 

supports, as shown in Figure 3.1.  The load “w” has vertical and horizontal reactions at 

support A and a vertical reaction at B, where A is a hinge and B is a roller. The horizontal 

reaction HA and the stabilizing force HB are equal, and their magnitude is H. The cable 

profile must result a zero bending moment at any point on the cable.  

 

Figure 3.1: Rigid Cable Load 
 

 
Based on these assumptions and by applying equilibrium and boundary conditions, 

the initial derivation of cable profile, under uniformly distributed gravity load, w, was 

found to be parabolic: 
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where, s is the sag, L is the span length of the parabola, w is the total gravity load 

distributed uniformly allover the cable length, and x and y are the horizontal and vertical 

distances, measured according to the reference point shown in Figure 3.2. 

 

However later, it was realized that the real shape exhibited by cables, under gravity 

load, is the catenary shape. Schematic sketch of both profiles is shown in Figure 3.2. The 

reason that cables have catenary shape, rather than a parabolic shape, is that the weight 

should be uniformly distributed over the element length. This is more accurate than the 

assumption made in the derivation of Equations 2.1, where it was assumed that the 

infinitesimal weight resultant is distributed over its projection. Obviously, the catenary 

shape is the optimal shape taken naturally by the system to minimize its strain energy. 

 

The catenary shape, as a mathematical expression, is some sort of hyperbolic 

sinusoidal function, or its equivalent exponent function, as expressed in Equation 2.2. For 

cables hung between two supports, with the same elevation y, the algebraic expression is 

: 
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where, a is the shape parameter, needed to be calibrated to obtain the profile shape. 

Note if the target profile is known, an iterative procedure is required to obtain a. The 

coordinate system, x and y, is set up as shown in Figure 3.2. The cable profile and the 
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internal forces of the Second Tacoma Narrows Bridge are discussed in Chapter 3, 

showing the difference between both profile shapes. 

 
 

Parabolic 

 

Figure 3.2: Catenary versus parabolic cable profile 
 

3.2.2 Classical Theories 
The first theory of suspension bridges was published by Rankine in 1858. The theory 

assumptions were made based on an abstraction of suspension bridges system, that is, a 

bridge comprising a straight and horizontal roadway slung from suspension cables and 

stiffened in some measures by longitudinal girders at the road level. The theory assumes 

that under total dead load the cable is parabolic and the stiffening girder is unstressed. 

Any partial or concentrated load on a platform must, by means of the girder, be 

transmitted to the “chain” in such a manner as to be uniformly distributed on the chain. 

 
Rankine’s idea implies that the tension in the hangers should be the same under any 

type of loading, and that is, in a free-body diagram of the girder the hanger forces are 

assumed to be a uniformly distributed load along the span and acting upward. To achieve 

this assumption the girder should be sufficiently deep. This might be economic and 

Catenary y 
L/2 

 s 
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feasible for relatively short spans, that is, a few hundred feet long; but would be 

uneconomic for relatively longer spans. 

 

The above assumptions were, mainly, applied to two well-known theories, the elastic 

theory and the deflection theory. The difference between them is whether cable deflection 

resulting from live load is considered. The bending moment equation along the stiffening 

girder and after applying the live load is evaluated and employed in the strain energy 

equations to derive the force – displacement relationship along the bridge span. This 

difference leads to a major discrepancy in both theories. 

 

The inclusion of deformation in the deflection theory yields two main differences 

from the elastic theory. The first is that it reduces the bending moment of the stiffening 

girder. The second is that the derivation will be nonlinear and recursive, that is, the 

parameters of the strain energy equation is a function of its results. The nonlinearity of 

the deflection method makes the principle of superposition and influence line analysis 

inapplicable. Therefore, another theory was introduced to linearize the deflection theory 

by assuming that the ratio of the live load to the dead load is very small. This implies that 

the deflection is constant and is due to the dead load only. 

 

Figure 3.3 shows a schematic sketch of the deflection-load ratio relationship 

estimated by the three theories. Note that the elastic theory over estimates the deflection, 

and the deflection theory has a very reasonable trend, while the linearized deflection 

theory lies somewhere between the two estimates. 
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Deflection 

 

Figure 3.3: Deflection-load ratio relations among the theories 
 

The out-of-plane forces are assumed to be transferred from the stiffening girder to the 

main cables. This analysis was first established by Moisseiff who assumed that the main 

girder always has larger deformation than the main cables. 

 

Although these theories succeeded, to some extent, in designing the suspension 

bridges in mid 50’s and until early 70’s, finite element procedures became the powerful 

state-of-the art analysis method of suspension bridges.  

 

 

3.2.3 Finite Element Analysis 
 

The development of the finite element methods eliminated the restriction on the 

analysis of suspension bridges, and allowed accurate and detailed analysis. The cable 

Linearized Deflection Theory 

Elastic Theory

Deflection Theory 

Live Load / Dead Load
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element is no longer assumed as a continuous element, the hangers are included as 

discrete entities, even the elements of the stiffening girders are modeled explicitly, three-

dimensional analysis is possible, and all geometric and material variations along the span 

are accountable. 

 
 
3.2.3.1 Modeling Issues 

Modeling of suspension bridges can be done using a combination of different types of 

finite element modules and different analysis procedures. This depends on the type of the 

structural element being modeled, such as beam, cable or shell, the elasticity 

assumptions, the type of analysis required, such as dynamic, static or P-∆ analysis, and 

the stage of construction being modeled, such as, the initial construction stages or the 

final as-built analyses. The following discussion considers linear elastic finite element 

analysis of suspension bridges with an open-truss stiffening girder at the final, as-built, 

configuration. The discussion is mainly made to develop a finite element model to 

estimate the dynamic response of a bridge. 

 

The level of modeling sophistication varies from a very simplified spine model, 

where the superstructure and the towers are lumped in discrete beam elements, called 

spine elements, to complete detailed finite element models, where every single element is 

explicitly modeled. The first approach was the most desirable in the early 70’s and mid 

80’s, when the computer resources were very limited. A detailed model, however, is 

possible nowadays. A detailed finite element model of the Second Tacoma Narrows 

Bridge is discussed in the coming chapter. The frequency analysis results are compared 
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with frequencies obtained experimentally and with frequencies obtained from a previous 

study, done with less detail. 

 

Detailed models are more accurate than condensed models. Detailed models are more 

capable of estimating stiffness and mass distributions along the structure. Spine models 

should be avoided in relatively flexible superstructures. That is because the estimation of 

the torsional stiffness of a spine element base on the cross sectional properties of the 

original configuration, is usually inaccurate especially when a segment of a space truss is 

being condensed.  A magnification factor of the computed properties is usually applied to 

calibrate the element response. Another issue associated with the use of spine models is 

the difficulty of modeling the location of the center of mass and the center of rigidly of 

the element, which might affect the accuracy of a dynamic analysis.  

 
Beam elements or truss elements can be used to model stiffening-truss girders. This 

depends on the type of joints connecting the elements. It is acceptable to model a truss 

using beam elements provided that all loads and masses are lumped at the joint, the 

stiffness of the elements is relatively close to one another, the bending stiffness of each 

element is relatively small compared to its axial stiffness and compared to the total 

bending stiffness of the truss, and the angles between the elements are not very large, less 

than 130°. 

 

For elastic analysis, the conventional beam element, derived based on beam theory, is 

appropriate. The beam element could be used to model the superstructure elements and 
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the towers. Since the tower legs are usually substantial in dimensions, offsets or rigid 

links might be used to model the rigid joint effect at element intersections. 

Modeling of cables requires special attention to two main issues. The first is the 

formulation of the element, and the second is the initial condition of the element. Cables, 

as described earlier, have unique nonlinear force – displacement behavior. The stiffness 

matrix of a cable element should be formulated accordingly, that is, to account for the 

geometric nonlinearity. The different ways to formulate a cable element are described in 

the coming section. 

 

Since the stiffness of a cable element is a function of its internal forces, initial internal 

forces should be calculated. These forces are due to the deflection due to the self-weight 

of the cable and/or the total sustained load. The initial profile of a simply supported 

cable, under its own weight, will sag to its final or target profile due to the application of 

the sustained gravity loads. A shape-finding process is usually required to estimate the 

final shape of a cable and its associated internal forces. A brief discussion of this process 

is conducted in this chapter. 

 

It is definite that the static analysis procedure of suspension bridges is nonlinear, 

where iterative procedures should be conducted to reach equilibrium at the final sag. 

Frequency analysis is usually conducted based on linear Eigenvalue analysis, where the 

initial conditions assigned are used in stiffness estimation. However, due to the 

considerable difference in the flexibility of the bridge components, such as the main cable 
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and the superstructure, the Ritz method is strongly recommended to eliminate local 

modes of vibrations, Chopra (2001).  

 
 
3.2.3.2 Finite Element Formulation 

The formulation of a cable element could be done in two different ways. The first one 

is based on the equivalent truss element, where the stiffness is derived by minimizing the 

strain energy of a line element, assuming linear shape function and non-linear second 

order strain function, Przemieniecki (1968). The result is a stiffness matrix which is 

function of the external deflections, i.e., the internal force in the element. The local 

tangent stiffness matrix of the equivalent truss element is: 

32

312
Lw

T
L

EAKt +=  2.3 

where, A is the cable cross section area, E is the modulus of elasticity, L is the length. 

The first term in the above equation is the elastic stiffness and the second term is the 

geometric stiffness due to sag. Elements developed based on this formulation are called 

linear cable elements. 

 

These types of elements are suitable to model straight tendons or cables with high 

tension, where the cable profile is almost linear. A cable with large sag or vertical 

deflection has a catenary profile, and thus an element formulated based on a linear shape 

function is not the best modeling choice. 

 

For cables with large sag or large vertical deformation a catenary element should be 

used. The fundamentals of this element are discussed in Irvine (1981). Kim and Lee 
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(2001) briefly discussed the derivation of a two-dimensional catenary cable. The 

following is a detailed derivation of a three-dimensional elastic catenary cable.  

 
 

The cable shown in Figure 3.4 is originally defined with unstretched length L0 and 

two points i and j, defined in the fixed coordinate system x, y and z. Assume that in the 

initial equilibrium configuration the cable is subjected to six forces, Fo
1 to Fo

6. The initial 

length of the cable is L0 and the cross section is A0. The cable translation and a stretching, 

to i’ and j’, is defined by the six displacements u1 to u6, which is accompanied with six 

forces F1 to F6. The Lagrangian (curvilinear) coordinate of an arbitrary point P on the 

cable element is s for the unstretched length, and p for the stretched length.  

 

 

 
   Figure 3.4: Catenary Cable Element subjected to nodal displacement 

In this configuration of the cable element, the geometric constraints and the 

equilibrium conditions for tension forces, for infinitesimal length of the cable, are, 
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where, w is the weight of the cable per unit length. This implies the following, 
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The nodal forces equilibrium and displacement compatibility conditions are, 
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The relationships between the undeformed Lagrangian coordinate s and Cartesian 

coordinate are, 
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A constitutive relation that is a mathematically consistent expression of Hooke’s law 

is 
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Therefore, from Equations 2.5 and 2.9, the following could be derived, 
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Substituting the Equations 2.10 in 2.8 and integration with respect to s gives, 
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which are equivalent to, 

  { } {[ ]TFTwsF
w
F

EA
sFsx +−++−−= 33

1

0

1 lnln)( }  
2.12 

 
Working out for the other directions, 
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The boundary conditions at the cable ends are, 

  x = 0, y = 0, z = 0, p = 0 at s = 0 
 x = lx, y = ly, z = lz, p = L at s = L0 

2.15 

 
Applying the boundary conditions gives the following, 
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To implement the finite element procedure, the nodal forces have to be expressed 

with respect to the global nodal displacements of the element. Note that the above 

nonlinear relations satisfy this requirement. Applying an incremental procedure using the 

first order Taylor expansion, with respect to the unknowns F1, F2, and F3 the following 

expression is obtained, 
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Or in matrix form 
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Where F is the nodal flexibility matrix, defined as follows: 
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The forces are equal to  
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where K is the nodal stiffness matrix. 
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The components of the flexibility matrix in the above equations are, 
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It should be reemphasized that tension elements are different from those of cables. 

Modeling suspension bridges requires software with the catenary element formulation. 

There are very few structural analysis packages that adopt the above formulation. 

MIDAS – Civil developed by MIDAS Information Technology Co., Ltd. is used in this 

research due to its ability to properly model cable elements. The software also has an 

optimization procedure that estimates the initial tension in the cables of suspension 

bridges and cable stayed bridges. 
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3.3 Shape-Finding 
The cable element is the most difficult part in the modeling process of suspension 

bridges. The initial internal forces in the cable are of importance.  If an as-built bridge is 

being modeled, such as the problem in this research, the internal forces in the cable, due 

to the sustained loads, should be estimated. In order to do so, an iterative procedure 

should be conducted to evaluate the internal forces at equilibrium when full dead load is 

applied. There are several ways to find the target profile of a cable and to estimate the 

initial tension force. The forward incremental method and the backward-loading method 

are discussed here. 

 

The forward incremental method is the simplest, yet the least accurate method to 

estimate the final profile. In this method, dead load is applied incrementally on the target 

profile. At each increment deflection and internal forces are computed and then the cable 

is modified to a new profile, by trial and error, to restore the original sag under the 

applied load increment. A new increment starts with accumulating the computed internal 

forces. This procedure would not reach an exact solution. However, sufficiently small 

load increments might yield to an acceptable solution.  

 

An improved analytical procedure of the incremental equilibrium equation is 

proposed by Kim and Lee (2000). The Newton-Raphson method is used to find the target 

configuration of cable-supported structures under dead loads. Linearized equilibrium 

equations of the catenary cable element, which includes the nodal coordinates and the 

unstrained length as unknowns, are formulated using analytical solution of the elastic 

catenary cable. 
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The backward-loading method is also an incremental method. The procedure is 

conducted in a reversed iterative manner, unlike the typical incremental method. A full 

model of the bridge is initially modeled without any loads being assigned. Approximated 

but realistic initial tensions are initially assigned. These values could be obtained from 

simplified calculations using the elastic theory, where dead load is fully applied. The 

segments of the superstructure are then removed stage by stage, in a symmetric and 

systematic fashion. At each stage the equivalent gravity load of the removed panel is 

substituted by an upward force on the main cable. The process is continued and the stress 

and deflection computed in each stage are accumulated to the next stage. The procedure 

is repeated until all the elements of the superstructure are being removed. The outcomes 

of this process are the initial sag of the main cable and the initial setback of the main 

towers. The results can be refined by subtracting the residual internal tension forces, after 

removing the whole deck elements, from the initially assumed tensions. Then the 

difference is assumed to be the initial tension force and the process is repeated. This 

method requires software with a cable element formulation and stage-construction 

features, as in MIDAS-Civil. 

 
 
3.4 Frequency Analysis 

Frequency analysis is conducted to estimate the frequencies of the different modes of 

vibration of the structure and the associated mode shapes. The different frequencies are 

used in solving the equation of motion at critical condition. The mode shapes are 

important to identify the direction of the vibration, such as torsional or vertical vibration, 

and to estimate the generalized properties of the structure which represent the equivalent 
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single-degree-of-freedom effect of a certain mechanical property, such as mass or 

stiffness. 

 

3.4.1 Eignvalue analysis 
The developed detailed model of this research has more degrees of freedom than 

needed for accurate frequency analysis. Including numerous number of degrees of 

freedom connecting relatively flexible elements generates local modes of vibration. A 

traditional procedure to solve the Eigenvalue problem of the equation of motion will 

yield a local mode of vibration in the solution, and thus a large number of modal vectors 

should be solved to reach the desired set of global response. 

 
In order to eliminate this issue, the Ritz vectors procedure, which is based on the 

Rayleigh-Ritz method, is used. The Ritz method estimates certain numbers of mode 

shape vectors and then estimates the natural frequencies using the estimated vectors. A 

load vector should be assigned to depict the spatial distribution and direction of the 

fundamental mode shape. The initial Ritz vector is obtained using static linear analysis of 

the assigned Ritz load vector. The other vectors are estimated based on the initial vector 

using mass orthonormality (see Chopra (2001)).  

 
 

3.4.2 Averaged Mechanical Properties 
Structural properties, such as mass or stiffness, could be averaged, at a certain mode i, 

by using the mode shape φi, along the structure, as shown in Equation 2.22. 
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where me is the equivalent property of m(x) along the structure length. This formula is 

useful when the mass distribution is not uniform over the structure length. Having the 

mass as approximately uniformly distributed over the distance x, the average distributed 

mass per unit length is the same as m(x) per unit length.  

 

The average mass moment of inertia Ie could be calculated using the width of the 

superstructure as follows, 
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Coupling between modes might take place in random vibration and self-induced 

forces. The coupling co-efficient between mode i and mode j with respect to mode j is 

expressed as follows 
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The product Ci
ijCj

ij represents the potential of a mode, i, to be coupled with another 

mode, j, when the lower mode is excited. The potential of having two modes to be 

coupled is represented by the magnitude of the coefficient. The value of the coupling 
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coefficient is always assumed to be positive, since the sign of a mode shape vector can be 

reversed. 

 

A MATLAB code is developed to calculate the coupling coefficient of vertical and 

torsional modes, see Appendix B.1. 
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CHAPTER 4 
ANALYSIS OF THE TACOMA NARROWS BRIDGE 
 

 

4.1 Problem 
The frequency analysis of the bridge is required to be used in the flutter analysis. The 

frequencies and the mode shapes are essential parameters in the aerodynamic analysis. 

This analysis is also required if the research topic is expanded to include health 

mentoring analysis or computational fluid dynamic. A detailed finite element model is 

developed to conduct the analysis. 

 

The structure is assumed to operate within the elastic limit. Therefore, linear elastic 

material is assumed, and only geometric nonlinearity is considered. This chapter 

summarizes the procedure taken to develop and calibrate a detailed finite element model 

for the existing bridge and includes the frequency analysis results. 

 

The formulation and the analysis used here are to provide methodologies for 

assessing wind response of bridges. The model is used to assess the impact of structural 

alterations such as closing the open-grate segments along the deck without adversely 

affecting the wind response characteristics. While these alterations affect the 

aerodynamic characteristics, the structural properties, such as frequency content, remain 

significantly unchanged. 
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4.2 Previous Research 
Several studies were conducted on the existing Tacoma Narrows Bridge by 

universities and engineering firms. A wind tunnel testing of the bridge in its initial design 

stages was conducted by Farquharson in 1954. The study investigated the aerodynamic 

effect of closing the grates in the bridge deck. It was concluded that open-grates improve 

the behaviour of the bridge. Although the study did not recommend closing all the grates, 

no specific critical wind speed was investigated. 

 

Arvid Grant Associates and OPAC Consulting Engineers (1993) developed a finite 

element model. The study includes complete calculations of the geometric properties of 

the structural elements and estimations of the initial forces in the cables.  SAP 2000 was 

used in the development of the model. 

 

Arvid Grant Associates and OPAC-Geospectra (2003) conducted a supplemental 

study on seismic evaluation of the Tacoma Narrows Bridge. The study included 

identification of seismic hazards at the bridge site, identification of the response 

frequencies, analysis of the bridge under ground motion and identification of structural 

deficiencies. Ambient vibration measurements, which provide experimental frequencies 

and estimations of the structural damping, are incorporated. These studies were found to 

be very useful to verify the results obtained in this research.  

 

 

4.3 Description and Specifications 
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The Second Tacoma Narrows Bridge is a suspension bridge with main span of 2800 ft 

and two side spans of 1100 ft each, spanning the eastern shores of Puget Sound and 

Kitsap Peninsula with a four-lane roadway, with total width of 60 ft. The bridge is a 

segment of the state highway route 16, in Washington State, traveling east-west. 

 

The structure is made of steel, except for the roadway deck and the anchors which are 

made of concrete. The superstructure is made of a stiffening truss which is 33 ft deep and 

is strengthened by diagonal bracings. A series of floor trusses, running along the span, 

carry the roadway deck and transfer the load to the hangers. Figure 4.1 shows the main 

structural elements of the superstructure, demonstrating the mentioned components. 

Elements are displayed in sequence to avoid view congestion. The roadway is not 

modeled in this study as explained later in this chapter. 

 

Figure 4.1:  Section of the Second Tacoma Narrows Bridge Suspended Structure. 
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The two main towers, 467.04 ft high, support the main cable, which sags 280 ft. Both 

of them stand on top of the retrofitted piers of the collapsed structure, which is dug 

embedded over 200 ft in the narrows basin. 

 

Figure 4.2 shows the elevation view of the structure, split into two parts for clarity. 

The structure consists of (viewed from west to east, i.e.  from left to right), the following 

components: one 162.5 ft west anchorage, three 150 ft steel deck girder approach spans, 

1,100 ft cable suspended steel side span, 2,800 ft cable suspended steel main span, 1,100 

ft cable suspended steel side span, 45’-2-1/2” reinforced concrete T-beam approach span, 

42’ 5” reinforced concrete T-beam approach span, 45 reinforced concrete T-beam 

approach span, 45’ reinforced concrete T-beam approach span and 185 ft east anchorage. 

The total length of the suspended structure is 5,000 ft. 

 

Figure 4.2: Existing Tacoma Narrows Bridge Elevation View. 
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The deck width is 46’-8 1/8” which includes four 9 ft lanes separated by 2.75 ft 

slotted wind grates and 1’-7” wind grates separating the roadway from the sidewalks. In 

addition there are two 3.5 ft sidewalks, one on each side of roadway, and the width 

between the suspension cables is 60 ft, as shown in Figure 4.5. The two main cables are 

20.25 inches in diameter. 

 

The tower’s total length is 467.04 ft, measured from the pier face. The tower’s legs 

are made of steel segments, which are made of built-up sections of five rectangular 

chambers arranged in cross-shape.  The tower legs are tapered. The first 141.5 ft have a 

parabolic tapering, 0.001x2 (ft), and the other segments are linearly tapered up to the top 

of the tower. The legs are connected with lateral and diagonal bracings. Figure 4.4 shows 

the elevation and the side views of the main tower. 

 

The stiffening trusses are connected to the main tower legs at two points as shown in 

the side view in Figure 4.4.  A diamond-shaped truss element assembly embraces a giant 

damper which is embedded inside each tower leg and connected to the upper cord of the 

stiffening truss. Another assembly of truss elements connects the lower cord of the 

stiffening truss to the face of the tower leg via a viscous damper. Both assemblies are 

designed to dissipate any excessive excitation along the longitudinal direction of the 

stiffening truss. The stiffening trusses are also connected to the middle part of the tower 

via the horizontal upper chord bracings which connect the site of the upper cord to the 

stiffening trusses. A “windshoe” is designed at the point where the upper chord bracings 

are connected to the main tower lateral beam. The windshoe is simply a gap element 
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which allows movement along the bridge deck and around the tower axes. The other 

displacements in the other degrees of freedoms are restrained. 

 

The side spans have a linear slope of 3%. The main span is parabolic with 21 ft 

difference in elevation between its ends at the towers and its mid span. It consists of 88 

bays spaced at 30’ – 10 5/8” along the center span. The spacing of bays along the side 

spans is 30’ – 3 3/8”. 

 

 

4.4 Finite Element Model 
The choice of the finite element procedure is very important issue in the analysis of 

suspension bridges. There are very few computer software packages that explicitly 

support catenary cable element formulation. Procedures that do not support this feature 

require special analysis procedure to obtain relatively close results. 

 

The SAP 2000 was initially used for this purpose. However, the results from the 

dynamic and the static analyses were inaccurate. It is found that SAP2000 does not 

support explicit features to handle catenary cable elements and only supports non-linear 

truss elements. Therefore prior to conducting frequency or dynamic analyses, it is 

required to conduct a shape-finding analysis to determine the unstrained profile, followed 

by a static stage construction analysis to build up the nonlinear geometric stiffness. 

Furthermore, special constraints should be artificially added to the model to prevent local 

instability.  
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A detailed finite element model is developed using MIDAS-Civil. The software has 

very specialized features for cable elements and modeling of a suspension bridge. As-

built-configuration was successfully used with pre-calculated initial tension to account 

for the geometric stiffness and to conduct the dynamic analysis. 

 

 

 

Figure 4.3: The Detailed Finite Element Model of the Tacoma Narrows Bridge 
 

Figure 4.3 shows a general view of the finite element model with pull-outs for the 

main tower, the west tower and the superstructure. Note that the approaches, shown in 

Figure 4.2, are not included. The main cable is extended to where it terminates at the 

anchorage. The V-shape element, in the middle of the main tower, made of two rigid 

elements connecting the top cord of the superstructure with the tower.  
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4.4.1 Towers 
The cross sectional properties of each segment are calculated and assigned to the 

finite element model. The software used to model the bridge, MIDAS-Civil, supports 

tapered section calculation. The cross section properties calculations proposed in the 

OPAC Consulting Engineers (1993) study were adopted to develop the model.  
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All elements are modeled based on their centrelines. Therefore, offsets are assigned to 

diagonal and lateral beam bracings to account for the rigid end effect. 

 

4.4.2 Stiffening Truss 
The stiffening trusses are parallel two-plane-trusses that span along the bridge length, 

as shown in Figure 4.1. In the bridge under consideration, they are divided into three 

spans, a main span with 2800 ft in length and two side spans with 1100 ft in length. The 

stiffening truss elements are modeled using beam elements. The properties of the cross 

sections are calculated and compared with OPAC (1994) study and are found to be 

accurate. 

 

4.4.3 Floor Truss 
In suspension bridges, floor trusses are used to connect the stiffening trusses and to 

support the roadway deck. Previous studies condensed the structural properties of the 

floor truss into a single beam element, or a spine element, which was used in the global 

model. While this approach reduces the number of the degrees of freedom, the accuracy 

of the solution is also slightly diminished. Figure 4.5 shows the geometric configuration 

of the floor truss. 

 

In this study the floor beams are considered in detail. For simplicity in modeling and 

to guarantee stability in the numerical procedure of the finite element analysis, the floor 

truss elements are treated as beam elements. This assumption is verified using a separate 
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model, such that, the maximum difference in axial load in each element due to the 

sustained loads is measured. The difference was found to be around 8%. 

 

The roadway stringers, which carry the roadway slab and transfer its load to the floor 

truss, are eliminated. It is assumed that their contribution to the superstructure stiffness is 

negligible. However, they contribute to the gravity load and the mass. Removing these 

elements from the finite element model reduces the computational effort substantially. 

Their weights and masses are lumped on the nodes of the upper cord of the floor truss. 

 

 
Figure 4.5: Tacoma Narrows Bridge Floor Truss. 

4.4.4 Main Cable 
Three main issues are considered in modeling the main cable, namely, sectional 

property, shape or profile finding and internal forces. The last two issues are interrelated, 

since the internal tension force is a function of the cable sag, which in turn determines the 

profile of the cable. 
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The main cable is made of bundles of 19 strands with each strand consisting of 464 

wires. The total cross sectional area of the cable is found by summing up the total area of 

the wires in the cross section. A 1.773 ft^2 net cross sectional area is used to model the 

main cable, with a modulus of elasticity of 29,000 ksi.  An alternative approach is to use 

the gross area and modify the modulus of elasticity of the cable elements.  

 

The cable profile is determined by the sag and the span length. In this study the final 

sag is known to be 280 ft and the mid span length is 2800 ft. There are two types of cable 

profiles, the catenary profile and the parabolic profile. Although it is known that a cable 

element has a catenary profile, both profiles are calculated here and are compared as 

shown below. 

 

The parabolic profile of the bridge is expressed as follows: 

22
2 7000

1
2800

2804 xxy =
×

=
 

4.1 

This equation applies on both the side-span and the main-span cable profiles such that 

the coordinate system is set at the vertex of the polynomial. Derivation of the side-span 

profile is discussed in Appendix C. 

 

The catenary profile of the bridge is found by trial and error and is expressed as 

follows: 

)1)3545.708/.(cosh(3545.708 −= xy  4.2 
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where, x and y are measured in feet. The coordinate system, x and y, set up is shown 

in Figure 4.6. 

 

Figure 4.6: Catenary versus parabolic cable profile 
 

Figure 4.6 shows a schematic sketch for the two cable profiles, showing one half of 

the main cable profile. The difference between the parabolic and the catenary profiles is 

very small and scaled sketch barely depicts the discrepancy. Figure 4.7 shows the 

difference between the two profiles. It is assumed that the catenary cable is the base line 

profile and the difference, in feet, is calculated along the span length as shown in Figure 

4.7. The maximum difference between the two profiles is 0.905 ft at 989 ft from the span 

centerline. If the maximum difference of the two profiles is normalized based on the sag, 

then it could be shown that the difference between the two profiles is negligible. 

 

To estimate the average load of the superstructure, a single panel of the deck was 

modeled. It is found that the average uniformly distributed dead load (w) is 10.4 kips/ft, 

that is 5.2 kips/ft per cable. Thus the total dead load carried by each cable is 15,162 kips. 

The Maximum tension expected based on the parabolic profile formulation is 19,602 

Parabolic 
Catenary y 

x 

Symmetry 

L/2 

 s 
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kips. From the finite element analysis it is found that the maximum tension is 20,277.1 

kips, which is 3% greater than the estimated value. The horizontal forces are estimated to 

be 18,200 kips based on the parabolic profile formulation. From the elastic first order 

finite element analysis it is found to be 18,948.72 kips, which is around 4% greater than 

the estimated value. 

 

The difference between the estimated values based on the parabolic formulation and 

the finite element analysis is not considerable. This verifies the estimation of the internal 

forces and the profile shape.  The estimation of the cable internal forces has significant 

effect on the stiffness of the cables and thus the overall accuracy of the frequency 

analysis. Figure 4.8 shows the distribution of the ratio of the tension force in the cable to 

the total weight of the superstructure along half of the cable span. 
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Figure 4.7: Difference between catenary profile and parabolic profile along the main 
span length  
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Figure 4.8: Normalized tension in main cable 
 

While in suspension bridges, gravity loads are transferred to the main cable via 

discrete hangers and hence applied as concentrated load, it is assumed here that the load 

carried by the hanger is a uniformly distributed gravity load in order to determine the 

shape of the cable. 
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All elements are modeled based on member’s centreline. Offsets can be used to 

model the rigid joint effects. 

 

4.4.5 Hangers 
Hanger forces are estimated by iterative finite element analysis, using detailed finite 

element model. Figure 4.9 shows a schematic sketch of a section along the bridge of the 

model used to estimate the hanger forces. The main cable is removed and the hangers are 

supported with hinges along the cable profile. Initially the hangers are assumed to be 

truss elements. A linear static analysis is conducted based on that assumption. The truss 

elements are then converted to cable elements and the internal forces estimated in the 

truss elements are used as initial forces in the cable elements. 

 

Iterative procedure is conducted to estimate 

the hanger forces using the initial forces guess. 

Figure 4.10 shows the values and the 

distribution of the hanger forces. The two solid 

lines in the graphs represent the location of the 

main towers. It could be seen that the final 

iteration has a smoother force profile along the 

main span. These values are assigned to the 

hangers in the global detailed finite element 

model. 

Hangers 

 

Figure 4.9: Hanger Force Model  

Stiffening truss 
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4.4.6 Material 
 According to the Tacoma Narrows Bridge specifications the steel properties used are 

based on the ASTM A7-46, with a modulus of elasticity of 29,000 ksi for all elements.  
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 Figure 4.10: Hanger Force 
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4.4.7 Section Properties 
 The calculations done by OPAC (1994) are adopted. The OPAC model considers 

spine element for the floor truss, and lump its sectional properties. This study, however, 

includes each floor truss element with its actual properties modeled.  

 

4.4.8 Boundary Conditions 
The boundary conditions used include the support system of the towers and the 

equivalent stiffness of the approaches.  

  

The main towers are fixed on two massive caisson foundations, which are imbedded 

in the basin of the narrows. In the finite element model, the tower legs are assumed to be 

ended at the surface of the pier. A general spring, with six degrees of freedom, is 

assigned at each tower leg to simulate the soil-structure interaction. The values of the 

initial foundation stiffness are obtained from the study done by Geospectra, in August 

1993. 

 

The stiffness of soil-structure interaction of the Tacoma Narrows Bridge is found to 

be high but has insignificant effect on the frequency analysis of the bridge, if compared 

with fixed support condition. Analysis was conducted for the fully fixed and partially 

fixed conditions such that the main towers are totally constrained and then they restrained 

with the linear elastic springs. Six springs are assigned to each tower leg. The properties 

of the springs are adopted from OPAC (1994). Frequency analysis is conducted for both 

cases. Neither the frequencies nor the mode shapes were changed significantly. However, 

the modal participation factor of the first 20 models showed a change by around 8%. For 
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more accuracy analysis, the equivalent linear springs of the initial foundation stiffness 

were used. 

 

The effect of removing the approaches is modeled as linear elastic springs. The 

equivalent stiffness of the west approach is added as three linear springs distributed on 

the top beam of tower number 3. The approach is modeled separately, such that static 

forces are applied to determine the equivalent stiffness values which were estimated at 

226570 kips/ft and 73.2 kips/ft for the longitudinal and the transverse directions, 

respectively. The east tower is very short in length and made of concrete. The east 

approach is assumed sufficiently rigid and it is modeled as hinge support. The east 

approach is also excluded from the model. This will not have a significant effect on wind 

analysis, and will not influence the frequency content.  

 

The two anchors, supporting the main cables and transferring their internal forces to 

the ground are modeled as hinges, at their corresponding locations. The anchors may 

experience slight movement in case of earthquakes, but their displacements are negligible 

if wind loading is considered. 

 

4.4.9 Nonlinear elements 
According to a field investigation, the tower top chord damper installed inside the 

tower were found to be leaking. These dampers are never replaced because of 

impracticality. It is difficult to estimate their response based on the provided 

 53



specifications in the original drawings. The AGA and OPAC (1994) study provided a 

force-velocity relationship for the tower damper, which is: 
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where F is in kips, V is the velocity of the piston in inch/second. The OPAC study 

utilized this relationship to establish the equivalent linearly elastic viscous damped truss 

element. The bottom chord dampers, installed on the tower face, have been rebuilt and 

are performing properly. The locations of the dampers are shown in Figure 4.4. 

 

From the above relationship the tower dampers will not be activated until a relatively 

large change in the displacement along the stiffening trusses occurs. Other dampers 

installed in the structure are more sensitive to slower motion. Explicit modeling of these 

dampers is ignored here. It is assumed that the modal damping measured in the ambient 

study accounts for the dampers.  

 

 54



side span stiffening truss main span stiffening truss 

 

Figure 4.11: Modeling of Windshoe – top view at deck level 

 

The nonlinear damper is modeled based on the relation shown in Equation 4.3 for V > 

31.5 in/sec. Midas-Civil supports such a quadratic damping relationship and a small 

stiffness of 1 kips/ft, is assigned to the visco-elastic damper element. 

 

The nonlinearity of the windshoe is modeled using a combination of gap and hook 

elements. Figure 4.11 shows a schematic top view of the joint connecting the stiffening 

truss and the main tower.  The windshoe is connected to the bracing which ends at the 

mid-span of the lateral beam connecting the tower legs. There is one windshoe for each 

span, (i.e. two windshoes at each tower). The hook element has zero stiffness unless it is 

stretched a distance of 1.25 ft. When its stiffness is engaged, it will act as a rigid link due 

to the assigned high stiffness. The same mechanism applies for a gap element but in the 

other direction. 

 

Tower leg 
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Hook element 
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4.4.10 Load and Mass Estimation 
In this stage only sustained loads are estimated. The sustained loads are due to the 

structural elements, such as, stiffening and floor trusses; and the non-structural elements, 

such as, the deck and the handrails. Traffic load and live load are ignored in the 

frequency analysis. 
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Figure 4.12: First Mode Period vs Normalized Density 

 

Since all structural elements are included in the model and their gross cross-sectional 

properties are assigned, the self weight is then used to estimate the gravity load. 

However, the actual structural elements are not solid through out the length of the 

members and thus the gross area is not suitable for body force calculations. Therefore, the 

density assumed may need to be calibrated accordingly. 

 

For this purpose, a parametric study is conducted to find the effect of changing the 

material density on the dynamic response. A steel density of, 0.49 kips/ft3 is used as a 

baseline. Figure 4.12 shows the change in the structural frequency due to the change in 

 56



density. While the numerical values shown in this relationship are for the first mode, 

other values of other modes are within 10% of these values. It could be seen that the 

change in the structural period is not very sensitive to the change in density. Thus the 

steel density is used for the gravity load and for the inertial masses computations in all 

degrees of freedom. 

 

The superstructure slab, its supporting stringers and the handrails are not explicitly 

modeled. It is assumed that they have negligible contribution to the overall stiffness. The 

weight of these elements are averaged and applied as concentrated loads and masses on 

the joints of the upper cord of the floor truss. They are then adjusted, by trial and error 

procedures, to reach the measured frequencies. It was found that the load on the inner and 

outer joints are 12.91 kips and 10.34 kips, respectively. The gravity loads are used to 

calculate the equivalent concentrated masses of the deck in the three translation 

directions. 

 

The average weight of the deck per span length, including the non-structural 

elements, is estimated to be 10.3 kips/ft. This value is estimated as follows. The detailed 

model is restrained by hinges at the hanger’s joint, and then the reactions are calculated 

and averaged over the span length. This value is helpful to carry out the generalized 

properties of the structure. 
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4.4.11 Estimation of Mass 
A mass is distributed based on tributary area. MIDAS-civil has the capability to lump 

the mass based on the section properties and the material density of each element. 

Roadway slab mass is lumped at each node based on a tributary area.  Translational mass 

and rotational mass in the three directions are both considered in the analysis. 
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Figure 4.13: Effect of Eliminating Tower Contribution to Frequency Content 

 

A parametric study is conducted to evaluate the effect of modeling the tower on the 

frequency content. The tower mass is calculated based on the assigned density and the 

cross sectional area. The density of the tower is set at zero to eliminate its effect on the 

frequency content. Figure 4.13 shows the percentage difference between the frequency of 

the bridge with and without the tower contributions. It could be shown that the tower 

effect is less the 1%, up to the 30th mode. The effect of the tower on the modal analysis is 

critical after the 100th mode, where the model analysis is cut off. Moreover, it is found 
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from the modal analysis that the frequencies related to the superstructure oscillation are 

found between the first and the fiftieth modes. 

 

The parametric study verifies that uncertainty in the tower modeling is not of concern 

for wind analysis of the bridge superstructure. It is evident that the frequencies governing 

the tower vibration are beyond those of the superstructure. 

 

The finite element model is used to estimate the uniformly distributed weight over the 

span length of the deck such that the reactions of the hangers are summed and distributed 

over the span length. The uniformly distributed load over the span length is estimated to 

be around 8433.7 lb/ft (255.8 slug/ft), which is equivalent to a uniformly distributed mass 

of 12,451.5 kg/m. 

 

 

4.5 Frequency Analysis 

4.5.1 Ambient Study 
Ambient vibration measurements were taken by the Johns Hopkins University under 

the supervision of Dr. Nicholas Jones in 1993. The mode shapes and the damping ratios 

of the bridge are derived from the data generated. The ambient study comprised both 

transient vibration and ambient vibration measurements. The transient measurements are 

the vibrations recorded after a sudden release of energy, such as impacting the structure 

with a large load. This approach is used to estimate the frequency of the superstructure. 

Ambient measurements are the vibrations produced by traffic and wind. This approach is 

useful to estimate both the deck and the towers frequencies. For best transient 
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measurement analysis, the records should be taken when the ambient vibrations are 

minimal. 

 

The transient measurements captured the first mode of vibration, 0.074 Hz.  The 

second mode was not captured. The third mode, predominantly vertical mode; the fourth 

mode, center-span lateral mode; the fifth mode, center-span vertical and the sixth mode, 

center-span lateral mode, are also captured by the transient analysis. The ambient 

measurements revealed the first 9 vertical, 1 torsional and 12 lateral natural frequencies.  

 

The damping ratio was determined to be in the range of 0.3% to 3.5% and the study 

concluded that the average damping is 1.3%, which is a reasonable number and close to 

the true value for the size of the Tacoma Narrows Bridge when operating within the 

elastic range. The results of the natural frequency are shown with the frequency analysis 

results are presented below. The average damping ratio of the bridge is relatively small in 

magnitude. Therefore its influence on the damped natural frequency is insignificant and 

could be considered equal to the undamped natural frequency.  

 

 

4.5.2 Eigenvalue Analysis 
In the analysis, 100 Ritz vectors are generated, that is, one hundred modes and 

frequencies are estimated. The mode shapes and frequencies obtained from the analysis 

are found to compare reasonably well with experimental studies as shown in Table 4.1.  

 

 60



4.5.3 Model Calibration and Analysis 
The following procedure was used to calibrate the model: 

1. Pre-modelling Phase: 

a. Evaluation of the bridge detailed drawings. 

b. Review previous studies on the bridge. 

c. Develop a 3-D CAD model for the bridge geometry. 

2. Structural Modelling Phase: 

d. Transfer the CAD model to the structural analysis program (MIDAS-

Civil). 

e. Calculate gross cross sectional properties. 

f. Compute the weights of non-structural elements. 

g. Estimate boundary condition of foundations and the approaches.  

h. Approximate the initial tension in the main cable and hangers, using the 

elastic theory. 

i. Iterate the cable forces. 

j. Solve Eigen value problem, using the Ritz theory method. 

3. Model Calibration 

k. Calibrate the estimated sustained loads and re-evaluate the cable initial 

tension. 

l. Calibrate boundary condition. 

m. Calibrate selfweight, by tuning the material density. 

n. Evaluate the modal response and reiterate, as needed. 
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4.6 Results 
Table 4.1 lists the bridge frequencies. Experimental frequencies are obtained from the 

ambient vibration taken by the Johns Hopkins University in September, 1993. The 

analytical results are estimated using MIDAS-civil. Ritz vector is used in the Eigenvalue 

analysis. The table shows the results of the OPAC (1994) study. The error percentage 

shown is the analytical results, obtained in this research, to the corresponding 

experimental frequency. 

 

Table 4.2 shows thirteen modes of vibration for the Tacoma Narrows Bridge. The 

identified modes are only those vertical, transverse and torsional modes of vibration. 

Appendix A shows complete identification of the bridge mode shapes and their locations. 

Periods after the 50th mode are found to be relatively very small, less than 1.5 second, for 

wind analysis. 
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Table 4.1: Comparison between the experimental and the analytical frequencies 
Longitudinal Modes 

Analytical Results Location Field Freq. 
Hz 

OPAC-1994 
Hz Value - Hz Error Mode Number 

0.187 0.186 0.1565 -20% 3 Center Span .262 0.232 0.2071 -26% 5 
 
Transverse Modes 

Analytical Results Location Field Freq. 
Hz 

OPAC-1994 
Hz Value - Hz Error Mode Number 

0.074 0.067 0. 07102 -4% 1 
0.33 0.314 0. 3401 +3% 18 
0.358 0.339 0. 3481 -3% 19 
0.386 0.364 0. 3962 +3% 21 

Center Span 

0.496 0.477 0.4824 -3% 29 
 
Vertical Modes 

Analytical Results Location Field Freq. 
Hz 

OPAC-1994 
Hz Value - Hz Error Mode Number 

0.162 0.143 0. 1565 -5% 3 
0.25 0.232 0.2490 -1% 7 
0.30 0.252 0.3248 +8% 15 Side Span 

0.362 0.317 0. 4012 +10% 25 
0.162 0.143 0. 1565 -4% 3 Center Span 0.30 0.252 0. 3248 +8% 14 
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Table 4.2: Modal Frequency Identification of the TNB 

 Mode 
Frequency 

(rad/sec) 

Frequency 

(Hz) 
Shape Location  Symbol Key 

1 1 0.446236 0.0710206 L_HS MS  L Lateral Mode 

2 2 0.908061 0.1445223 V_HS MS  V Vertical Mode 

3 3 0.983197 0.1564806 V_FS MS  T Torsional Mode 

4 4 1.167195 0.1857648 L_FS MS  HS Half Sinusoidal 

5 7 1.564752 0.2490380 V_(FS+HS) MS  FS Full Sinusoidal 

6 15 2.04103 0.3248400 V_2HS MS+SS  MS Mid Span 

7 19 2.186997 0.3480713 L_FS C+S  SS Side Span 

8 20 2.372891 0.3776573 T_HS S  SC Side Span Cable 

9 21 2.489505 0.3962170 (L+T)_(FS+HS) S  MC Mid Span Cable 

10 22 2.520852 0.4012060 V_2FS MS  TW Tower 

11 36 3.604311 0.5736439 V_(2FS+HS) MS  C All Cables 

12 37 3.721043 0.5922223 (L+T)_FS MS  S All Span 

13 41 3.928639 0.6252623 T_FS MS  

 

 

 

 

Mode 1: Lateral 

 

 

Mode 20: Torsional 
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Mode 2: Vertical 

 

 

Mode 21: Lateral-Torsional 

 

 

Mode 3: Vertical 

 

 

Mode 22: Vertical 

 

 

Mode 4: Lateral 

 

 

Mode 36: Vertical 
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Mode 7: Vertical 

 

 

Mode 37: Lateral-Torsional 

 

 

Mode 15: Vertical 

 

 

Mode 41: Torsional 

 

 

Mode 19: Lateral 

 

Figure 4.14: Mode shapes of Identified Modes 
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The coupling coefficients are shown in Table 4.3. The underlined modes are those 

with high coupling potential. 

 

Table 4.3: Coupling Coefficients of the Tacoma Narrows Bridge 
Set No Mode i Mode j Ci Cj CiCj 

1 2 20 1.075 0.9167 0.985453 
2 2 21 1.2257 0.7599 0.931409 
3 2 37 0.258 0.2876 0.074201 
4 2 41 0.0304 0.0266 0.000809 
5 3 20 0.3222 0.3489 0.112416 
6 3 21 0.438 0.3448 0.151022 
7 3 37 0.7335 1.0383 0.761593 
8 3 41 0.0595 0.0661 0.003933 
9 7 20 0.2551 0.2108 0.053775 
10 7 21 0.1126 0.0676 0.007612 
11 7 37 0.0522 0.0564 0.002944 
12 7 41 0.0836 0.0709 0.005927 
13 15 20 0.6886 0.6078 0.418531 
14 15 21 0.937 0.6013 0.563418 
15 15 37 0.2921 0.337 0.098438 
16 15 41 0.0125 0.0113 0.000141 
17 22 37 0.4059 0.5636 0.228765 
18 22 41 0.4325 0.4716 0.203967 
19 36 37 0.0978 0.1274 0.01246 
20 36 41 0.9684 0.9911 0.959781 

 

It is expected according to the coupling coefficients, that the critical condition might 

be due to the coupling between the second and the eighth mode, the second and the ninth 

modes or the eleventh and the thirteenth modes. This conclusion is supported by the 

flutter analysis conducted on the bridge, in Chapter 6, using the suggested coupling 

patterns above. 
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(a) Vertical modes 
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(b) Torsional modes 
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(c) Lateral modes 

Figure 4.15: Normalized modes of vibration 
 

All the shown modes of vibration are symmetric about the span centerline, except, the 

second lateral mode of vibration (mode 19). This mode is coupled with the longitudinal 
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mode which transports the effect of the asymmetric boundary condition to the lateral 

mode. It could be noted that the curve amplitude attenuates from left to right and the 

curve matches with the point of symmetry at the centreline of the mid-span. This is due to 

the effect of the eastern boundary condition (at the right-hand-side side-span), which is 

stiffer than the boundary condition at the other end of the western side-span. 

 

 

4.7 Discussion 
Table 4.1 shows the frequencies obtained from the ambient analysis, OPAC (1994) 

study and this research. Note that the frequencies evaluated using the proposed 

methodology are relatively accurate when compared with the experimental results. The 

error in the transverse and the vertical modes is not more than 10%. This error is very 

acceptable. However, the frequencies of the longitudinal direction are less accurate. 

 

Unlike the superstructure transverse and the vertical modes of vibration, the 

longitudinal mode of vibration of the deck interacts with the tower and the approaches 

boundary conditions. In other words, the modeling of these two components reflects on 

the accuracy of the superstructure frequencies in that direction. A 26% error in the 

frequency is not faulty results for the following reasons. The tower and the approaches, 

most likely, will not interact with the deck movement, because the windshoe and the 

expansion joints provide enough separation. Moreover, the longitudinal mode shapes are 

not significant in wind. The deck is assumed to be sufficiently rigid along its axis and 

only excitations in the transverse, vertical and rotational are considered. The frequencies 

in this direction shall be further calibrated if seismic analysis is required.  
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The results obtained here are more accurate than those of the OPAC (1994) study. 

Note that most of the section properties, boundary conditions and mass estimations used 

in this research are based on the OPAC study. The study, however, used linear cable 

element instead of catenary cable element. This proves that using catenary cable element 

with appropriate initial tension estimation is essential for accurate frequency analysis. 

 

There are several factors that affect the frequencies of the structure. The most 

important factors include mass estimation and distribution, element stiffness and initial 

tension in the cables. Boundary conditions and soil structure interaction are of less 

significance. The towers have small influence on the low structural frequencies, and their 

effects are significant only after the 50th mode. Thus, the superstructure and cable 

properties have the most impact in the lower frequency range. 
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CHAPTER 5 
BRIDGE AEROELASTICITY 
 
5.1 Background 

The failure of the Original Tacoma Narrows Bridge was a pivot point in the history of 

suspension bridges, as it coincided with the evolution of aeronautical engineering. Thus 

the failure was justified, unlike prior bridge catastrophes. Vortex-induced and flutter 

forces become well-recognized as the main phenomena responsible for long-span bridge 

collapse. 

 

Classical aerodynamic theories of wind forces are based on steady-state expressions 

such as Bernoulli’s equation, and solved using the quasi-static approach. However, this 

type of formulation is insufficient to describe the rapid time-varying forces that develop 

at higher speeds. Moreover, steady-state functions will not allow expressing the self-

induced forces, resulting from the change in deformations or deflections due to time. 

Therefore, it was necessary to develop more general theories to account for time 

variation. Theories that followed the quasi-static approach were based on transient 

dynamic analysis. Earlier tests started on airfoil in laminar wind flow followed by studies 

of bluff bodies. 

 

 

5.2 Earlier Aeroelasticity Theories 
The first insightful view into self-induced forces was investigated by Wagner (1925), 

using thin aerofoil with various angles of attack. He proposed a very illustrative indicial 

function to express lift force for thin airfoil undergoing a step change in the angle of 
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attack in incompressible flow. Theodorsen (1934) presented his function which was later 

considered as a fundamental function in unsteady aerodynamics on oscillating thin airfoil 

in incompressible flow. The function is described in complex terms with respect to time-

frequency domain. The function is considered as a reference in developing flutter 

formulation for a bluff body, as described by Scanlan and Tomko (1971). Kussner (1936) 

then presented the theoretical bases of flutter forces and guest penetration for a thin 

airfoil . Garrick (1938) investigated the foregoing theories and found the relations among 

them using Fourier transformation. He thus proved the interrelation among all of these 

theories of non-stationary flows. Sears (1941) proposed an admittance function named 

after him which is now a well-known function in the frequency domain analysis. In 1941, 

Von Karman and Sears investigated flutter of a thin airfoil moving into a sinusoidal 

vertical velocity (gust) filed. Sears problem shows the fundamental difference between 

the results obtained on an oscillating airfoil in angle of attack and an airfoil moving 

through an oscillating vertical velocity field, where the latter results in a non-uniform 

angle of attack over the airfoil chord. The Sear’s function is formulated in the frequency 

domain, similar to the Theodorsen function (1934). 

 

The Theodersen Function is applicable in many cases of both fixed-wing and 

rotating-wing aerodynamics. However, they are less capable in other problems where 

time is an important parameter where the velocity of the elastic body is not usually 

constant. Thus, the reduced frequency term (K=UB/ω) becomes very ambiguous in this 

case, where U is the oncoming wind velocity, B is the characteristic geometric parameter 

(usually the width of the elastic body) and ω is the circular frequency of motion. Theories 
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formulated in time-domain are more general as they account for the varying or arbitrary 

velocity of the solid body in the flow. However, as mentioned before, Wagner (1925) 

obtained a solution for the indicial lift on a thin-airfoil undergoing a step change in the 

angle of attack in incompressible flow. He introduced terms that represent the flow taking 

into account the effect of time-history change of the angle of attack on the lift. 

 

Sisto published a paper on stall flutter of airfoil while Liepmann (1952) applied the 

forgoing theories in conjunction with statistical concepts to outline the random buffeting 

problem of aircraft lifting surfaces, considering the Sears admittance function in that 

process. 

 

 

5.3 Early Bridge Aeroelasticity Theories 
After the collapse of the Tacoma Narrows bridge in 1940, a board of engineers 

consisting of O.H. Ammann, T. Von Karman and G.B. Woodruff issued a detailed report 

concerning the catastrophic failure . The report included a paper by Louis G. Dunn 

explaining the phenomenon of vortex-shedding with the equation of motion, and giving a 

detailed account of some of the earliest deck sections that collapsed, in particular those 

that have negative aerodynamic damping and torsional flutter. 

 

The explanation by Dunn was followed by an analysis of bridge flutter. Bleich (1948) 

and Bleich (1949) used the Theodersen theory for flat plate for the analysis of bridge 

flutter. The results, however, were not applicable to unstreamlined bridge decks. The 

reason is that the Theodersen function was derived for thin flat plates. An alternative 
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approach, originally recommended by Dunn in the Tacoma Narrows Bridge case, 

emerged suggesting that if motional force coefficients (flutter derivatives) are obtained 

experimentally, they might be useful in the analysis. This idea was widely adopted and 

used in the investigation. It became the fundamental idea in the theory of bridge 

aeroelasticity. Davenport (1962) adopted steady-flow formulation flowing Liepmann’s 

approach and the Sears admittance function to analyze bridge buffeting. 

 

 The theory of bridge aeroelasticity was established late in the 60’s with most of the 

effort undertaken in the US and Japan. In the US, most of the research was attributed to 

Scanlan, who outlined the flutter theory based on measured motional aerodynamic 

derivatives. Scanlan’s contribution in aeroelasticity started in 1951 by investigating 

aircraft vibration and flutter. In 1967, Scanlan and Sabzevari presented a conference 

paper revisiting the analysis of bridge flutter based on experimental flutter derivatives. 

Meanwhile, Ukeguchi, Sakata and Nishitani released a study on bridge flutter based on 

the experimentally measured flutter derivatives theory, proposed by Scanlan and 

Rosenbaum. Another contribution was made by Tanaka and Ito (1969) on the 

characteristics of the aerodynamic forces of self-excited oscillations of bluff structures.  

 

The concept proposed by Bleich (1948) to use the flat plate theory in bridge 

aeroelasticity was revisited in 1971. Flutter derivatives of streamlined bodies were 

experimentally investigated and compared to the theoretical flutter derivatives of airfoils, 

so that the former will be applied to bridges. Sakata (1971) found that the thin airfoil 

flutter theory was reasonable to apply on streamlined bridge deck sections. He 
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recommended his findings to the design of the Severn Bridge, which was the first ever to 

be constructed with thin streamlined deck. However, Scanlan and Tomko (1971) tested 

sets of flutter derivatives for bridges and compared them to the airfoil derivatives. They 

concluded that bridge flutter derivatives are significantly different from airfoil 

derivatives. Accordingly flutter derivatives of bridges are not accurately expressed by 

analytical or mathematical solutions and experimental data is needed to characterize 

them. 

 

Another research approach was pursued to solve the equation of motion in 

conjunction with the self-excited forces. The need to link the frequency domain with the 

time domain was realized by Scanlan and Budlong (1972), where the Fourier 

transformation was used to link the bridge deck flutter derivative and the distinct 

aerodynamic force functions that were functions of both time and frequency. Thus the 

right-hand-side of the equation of motion of self-induced forces became a function of the 

frequency and the response. 

 

Flutter is one of the oscillation regimes of solid bodies in wind.  It accounts for one 

component of instability, where wind is assumed to be laminar. Buffeting, is another 

component that might contribute to the stability of a solid body in wind. There are other 

different aeroelastic phenomena such as vortex-induced motion, that are explained below. 

 

 

5.4 Wind Forces on Bridges 

 75



Modern aeroelasticity classifies wind forces on solid bodies into a number of models 

each having a different mathematical model. This is based on the type of the interaction 

that occurs between wind and a solid body. Some of the theories are recognized from 

early theories conducted on flat plates and airfoils and applied to bluff-bodies. 

Aeroelastic phenomena are vortex-shedding, cross-wind galloping, wake galloping, 

torsional divergence, flutter and buffeting.  

 

Modern long-span bridges wind response is basically due to three main components, 

namely, Flutter, buffeting, and vortex shedding components. y. The flutter component 

which is the most substantial instability component is described with respect to the 

average laminar wind speed while the buffeting component stochastically estimates the 

variable wind speed on the deck motion. The vortex shedding component is the least 

potentially destructive instability component . 

 
The other aeroelastic instability phenomena, 

across-wind galloping and wake galloping, are of 

less importance on the global response of bridges 

and more related to cables and hangers oscillation. 

Cross–wind galloping takes place when the main 

cable has received a coating of ice under conditions 

of freezing rain. Wake galloping occurs when a 

bluff body is located in the wake of another bluff 

body. This occurs when a bundle of hangers is grouped in four cables as shown in Figure 

5.1. As the length of the hanger increases its frequency becomes very small and it 

 
Figure 5.1: Grouping of Hangers 
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becomes vulnerable to wind. Those hangers in the windward are susceptible to vortex-

induced motion and will shed a wake that extends to the leeward hangers, which become 

susceptible to wake galloping. 

 

This phenomenon might also be of interest in the case of two bridge decks being 

closely separated and located nearly at the same level. The wake of the upstream deck 

might induce violent oscillation in the downstream one. A New Tacoma Narrows Bridge 

is currently under construction next to the exiting one. A wind tunnel experiment is done 

by Rowan Williams Davies & Irwin Inc. (2003) to check the galloping effect. The report 

concluded the safety of both bridges. The following is a summary of the most important 

three aeroelasticity phenomena vortex-shedding, self-induced vibration, and buffeting.  

 

 

5.4.1 Vortex-shedding  
The very first observation on flow-structure-interaction was published by Vincenz 

Strouhal in 1878. Strouhal observed that there is a relation between the natural frequency 

of an Aeolian wire and its vibration frequency induced by wind flow. He concluded that 

the sound of the wire would be substantially magnified when the frequency of the 

vibration approaches the natural frequency of the wire. Strouhal came up with a non-

dimensional quantity, known as Strouhal Number (S) that concludes the regularity of 

vortex-shedding phenomena of a bluff body. 

U
DNS S=  5.1 
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Where Ns is the frequency of a full vortex shedding cycle, that is, the shedding 

frequency, D is the characteristic dimension of the body projected on a plane normal to 

the laminar oncoming flow velocity, U. Strouhal Number is constant for certain-cross 

sectional shapes.   

 

Wake behavior in certain Reynolds number range is found to be remarkably regular. 

Benard, in1908,and Theodore Von Karman, in1911, reported the behavior of vortex 

shedding behavior of flow around a two-dimensional cylinder. They investigated the 

separation of the flow around the cylinder and noticed alternating vortices shed from the 

cylinder and form a clear recurring “vortex trail” downstream. The fine details behind 

this phenomenon were not quite investigated and many theoretical and experimental 

studies were conducted to find an explanation. 

 

Abstractly, vortex-shedding is a phenomenon that takes place subsequent to the 

separation of the boundary layer as a result of the interaction between oncoming fluid 

flow and a bluff body. Depending on the bluff body’s shape at certain Reynolds number, 

the boundary layer might experience unsteady separation that leads to a repeating pattern 

of eddies, called the Von Karman vortex trail. 

 

For a certain shape, the mechanism of vortices is function of Reynolds number. For 

example the flow around a cylinder looks symmetric and with no separation in the 

boundary layer at Re ≈ 1. Separation is initiated at Re ≈  20, where two symmetric eddies 

start forming next to the solid body and extend downstream. Up to this limit, drag force is 
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mainly generated due to the viscosity of the fluid and the skin friction of the solid body. 

Pressure around the solid body is symmetric, and hence the lift force is negligible. The 

two eddies grow the Reynolds number increases, Re ≈ 30 to 5000, and the flow starts 

shedding a staggered, well-defined, alternating arrangement of vortices that travel 

downstream at a velocity fairly less than  that of the surrounding fluid. Transition to 

turbulence in the wake and large separation in the shear boundary layer downstream 

occur as the Reynolds number increases, Re ≈ 5,000 to 200,000. In this range three 

dimensional patterns start forming and transition to turbulent flow occurs in the wake as 

the Reynolds number decreases along the wake from that closer to the cylinder surface to 

that downstream, and the clear vortex-shedding disappears. In high Reynolds number 

flow, Re > 200,000, the wake narrows substantially resulting in considerable reduction in 

the drag. Analogues vortex-shedding behaviors are also observed for other types of bluff 

bodies, such as, triangles, squares, prisms and I- and H-shape sections. 

 

When vortex shedding takes place the positive/negative pressure distribution around 

the body alternates with time. This creates oscillatory motion across the flow. The 

frequency of the shedding, Ns as shown in Equation 5.1, determines the frequency of the 

solid body oscillation. If the shedding frequency matches the natural frequency of the 

body resonance takes place. The dynamic system is only a function of the across flow 

degree of freedom. If other degrees of freedom are included in the system, flutter will 

take place. Distinction between vortex-shedding motion and flutter will be discussed in 

the self-induced forces section. For a high Reynolds number, the Strouhal number could 
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be averaged and considered to be constant for a specific shape. It is found that for 

cylinders Strouhal number is 0.2 and for an I-beam it is around 0.12. 

 

Experimental tests for different bluff bodies showed that at a certain range of  

Reynolds number depending on the tested shape the frequency of shedding remains 

unchanged and equal to the natural frequency of the structure. This is known as the Lock-

in phenomena, where the stored energy equals the damped energy, and thus excessive 

response is manifested. 

 

Vortex shedding vibration could be ignored in most of the current long-span 

instability problems. Vortex-shedding induced vibration is significant when the deck 

section has blunt shape and has relatively low structural frequency. However, some 

earlier bridges such as the Original Tacoma Narrows Bridge were very susceptible to 

vortex-induced forces as they have a very slender low frequency H-shape deck. 

 

Vortex shedding force is important to be checked for the local instability of individual 

elements, such as beam, truss or cable elements. Generally, vortex-induced forces of 

individual elements, such as the I-beam, T-beam and L-beam, add significant change to 

the stored energy in the whole structure which may turn the load estimate by building 

codes to be less conservative, Grant and Barnes (1981). Hangers and cables are the most 

susceptible structural elements for vortex-induced forces. Hangers located in the wake of 

other hangers will be more vulnerable to high vibration amplitudes. This depends on the 

angle of attack of the wind and the spacing between the hangers, Cigada et. al. (1997). In 
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the Second Tacoma Narrows bridges clasps were used to brace the hangers against 

vortex-shedding vibration. 

 
In summary, vortex-induced forces are, most probably, not the critical component 

in bridge global response, but it onsets motion or vibration that might lead to anther type 
of aeroelastic instability, which is flutter (self induced forces). 
 
 

5.4.2 Self-induced Forces 
For a cross-wind single degree-

of-freedom bluff body system, 

vortex-induced motion is most 

likely to occur. In a multi-degree of 

freedom system, however, vortex-

shedding might induce the first 

across wind mode. The structure 

might switch to a higher mode of vibration depending on the amount of energy stored in 

the system and the structural frequencies. A good example of that is the First Tacoma 

Narrows Bridge, as mentioned before. Vortex shedding initially induced vertical motion. 

At wind speed 42 mph the bridge switched from pure vertical oscillation to pure torsional 

vibration. Assuming that the Strouhal number for the First Tacoma Narrows Bridge is 

0.12, based on I-beam shape experiments, (see “Wind Forces on Structures,”Trans. 

ASCE, 126 (1961)), the wind speed at collapse is 62 ft/sec and the girder depth is 8 ft, 

then the shedding frequency, based on Equation 5.1 will be around 0.9 Hz. The frequency 

of the destructive mode, 0.2 Hz, was neither a natural mode of the isolated structure nor 

the frequency of bluff-body vortex shedding of the bridge at that wind speed. The 

 
Figure 5.2: Torsional Oscillation of the First 
Tacoma Narrows Bridge. 
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justification lays in understanding flutter, where the aerodynamic forces and the excited 

structural frequency are mutually developing to an extent where instability takes place at 

a combination of modes of vibration. 

 

Flutter is classified into different categories. Classical flutter is originally recognized 

in aerospace applications and applied to thin airfoils, and later applied to long-span 

bridges. It indicates an aeroelastic phenomenon in which two degrees of freedom of a 

structure, mainly torsional and vertical translation, couple in a flow-driven, unstable 

condition. The coupling of modes is the characteristic sign of the classical flutter. Other 

types of flutter are stall flutter or single-degree-of-freedom flutter, where oscillation of 

the solid part is driven by nonlinear characteristics of lift or torsional forces, such as, 

sudden loss of lift. In the structural sense, flutter is analogous to buckling, where a small 

magnitude of perturbation could be sufficient to be the incipient of the critical mode. The 

analytical models developed to solve the flutter problem assume oncoming wind in a 

steady-state condition. 

 

 

5.4.3 Buffeting 
Buffeting force is the aeroelastic component that accounts for the unsteady wind 

component to the instability of slender structures in wind. The fundamental ideas to 

estimate buffeting of line-like structures by atmospheric turbulence are set up by 

Liepmann (1952) and Davenport (1961). Most of the theories are developed based on 

statistical models to synthesize a random periodic function which simulates the 
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fluctuating wind component. Several assumptions and simplifications are used to 

simplify the buffering analysis of line-like structures. These assumptions are: 

a) The oscillations of the structure in each responding mode are very small and, i.e., 

aerodynamic behavior of the structure is linear; b) The squares and products of the 

velocity fluctuations are negligible with respect to the square of the mean velocity and  

c) The static force coefficients are independent from the frequency in the range 

considered. Thus it is assumed that the buffeting force is based on a quasi-steady theory 

and is not function of frequency as the case with the flutter force. This inconsistency 

requires superimposing the buffeting forces and the self-exited forces simultaneously 

assuming harmonic response of the structure to give the total aerodynamic force. 

 

 Buffeting response of suspension bridges is not discussed in this research and only 

flutter analysis is considered. This does not necessarily imply that the critical response is 

underestimated or that the critical wind speed is overestimated. In fact tests done on an I-

beam, a cylinder and a square sections show that increasing the turbulence intensity of 

the oncoming wind diminishes the amplitude of oscillation of the bluff-bodies at a given 

average wind velocity, Barriga-Rivera (1973). 

 

Diana et al (1993) concluded, based on quasi-static analysis, that for a box shape deck 

the effect of turbulence is correlated to the degree of nonlinearity of the wind derivative, 

where a sudden divergence in the angle of attack due to flutter instability, might cause 

change in the response due to high degree of wind turbulence intensities. In some cases 

the turbulence of wind, when considering the sign couple derivatives, reduces the 
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effective torsional stiffness of the bridge deck, causing excessive rotational displacement 

at flutter. It does however damp out the torsional acceleration response. Diana et al 

(1993) also concluded that in the case of low turbulence flutter velocity does not change. 

In case of strong turbulence with more than 0.2 turbulence intensity, it is difficult to settle 

the flutter velocity because oscillation amplitudes are already high because of large wind 

force. 

 

 

5.5 Analytical Models of Flutter  
Motion-induced, or self-excited, forces play an important role in the design of 

suspension bridges. When wind velocity reaches a speed at which the input energy from 

the self-induced motion is equal to the dissipated energy by mechanical damping, flutter 

occurs and the wind speed is called critical flutter wind velocity. 

 

Flutter analysis could be accomplished using experimental and/or analytical 

techniques. Wind tunnel is the standard experimental method where a prototype 

resembling the whole structure is modeled and tested.  Analytical methods are derived 

based on time and frequency domains. The frequency domain method is adopted by most 

researches since it requires less computational effort than the time domain analysis 

method. Thus it became the attractive traditional method in the absence of efficient 

computer resources, Scanlan (1988). To provide reduced computational efforts, 

researchers used to consider multi-mode analysis instead of full-mode analysis, also 

known as the direct method. In the multi-mode analysis modal superposition is employed 

to sum up the effect of dynamic properties and represent coupling between frequencies.  
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Full-mode analysis requires explicit representation of all the degrees-of-freedom required 

along the structure, and then solving the equation of motion to fine the critical flutter 

condition. 

 

Several modes of vibration are involved in suspension bridges. Coupling of two 

modes namely the vertical and the torsional modes usually takes place when the structure 

starts to reach its critical vibration frequency. Multi-mode behavior, with more than two 

degrees-of-freedom, becomes more significant with the increased center-span length. 

Multi-mode flutter is likely to occur when the location of the maximum deflections of 

two modes coincide with each other. Most of the studies suggest coupling of the vertical 

and the torsion modes of vibration.  

 

 

Ge and Tanaka (2000) proposed a study that investigates these issues and provides a 

numerical approach for multi-mode and full-mode aerodynamic flutter analysis. There 

are two issues associated with the multi-mode frequency domain analysis where the 

assumption includes dynamic coupling between natural modes and the self-excited 

aerodynamic forces. The first issue involves the number and kind of natural modes 

participating in the instability of the structure. The second issue involves the mode 

combination which is only an approximate expression of flutter and thus the result of the 

modal superposition will not necessarily be always accurate. Still the results of both types 

of analysis are sufficiently close considering the accuracy required in engineering 
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applications. Multi-mode analysis is adopted in the research. The following is a 

discussion for the solution process.  

 

 

5.5.1 Equation of Motion 
The equation of motion of a bridge with a two-degree-of-freedom section could be 

written as follows: 

aehh Lhkhchm =++ &&&  5.2-a 

aeMkcI =++ ααα αα &&&  5.2-b 

where: m is the mass per unit length, I is the mass moment of inertia per unit length, 

cα and ch are the coefficients of viscous damping, h and α are the vertical and the 

rotational displacements, as shown in Figure 5.3, and Lae and Mae are the self-exited 

aerodynamic lift and Moment forces about the rotational axis per unit span, respectively. 

 

The above equation requires that the center of mass be located in the vertical plane of 

the center of rotation. This is typical in suspension bridges where the deck is symmetric 

about its vertical axis. It is, however, not necessary that the two centers match along the 

vertical axis. The above equation can also be rewritten as a function of frequency: 

( ) aehhh Lhhhm =++ 2ωωξ &&&  5.3-a 

( ) aeMI =++ αωαωξα ααα
2&&&  5.3-b 

Where: ξh and ξα are damping ratios-to-critical, and ωh and ωα are the natural circular 

frequencies in the h and α degrees-of-freedom, respectively. 
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For a certain wind speed, the force functions, Lae and Mae, are function of time, 

frequency and response as discussed in the coming section. The solution of this equation 

is not easy, as in the Duhamel integration or in other classical time domain analysis. The 

solution is in both the frequency and the time domain with one domain having to be 

transformed to the other. The next section discusses the solution of the equation of 

motion of the self-induced forces. 

 

 

5.5.2 Self-induced Forces 
For steady motion of thin symmetrical airfoil across a uniform airflow at an angle of 

attack α, the lift force based on the potential flow theory is given by: 

 

α
dα

dCBρUL L2
2
1=  5.4 

 
where, U is the incoming flow velocity with no turbulence and B is the plate width. 

CL is the coefficient of lift per unit span, dCL/dα is the coefficient of lift gradients. 

 

Although flutter in its details involves nonlinear aerodynamic behavior, it has been 

possible in a number of instances to treat the problem successfully by linear analytical 

approaches. The justification for the linearization of flutter analysis is that the structure 

response is usually treatable as linearly elastic and follows exponentially modified 

sinusoidal oscillation. Moreover, the stable and the unstable regimes are separated by an 

incipient condition that may be treated as having small amplitude to onset it, Simiu and 

Scanlan (1996). 
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Scanlan and Tomko (1971) established the fundamentals of aerodynamic flutter of 

bridge decks. Sinusoidal motion is assumed to obtain the components of the aerodynamic 

flutter forces as indicated by: 
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where: h, p and α are the vertical, lateral and twist deflections, ρ is the air density, U 

is the mean cross-wind velocity, B is the deck width, K=Bω/U is the reduced frequency, 

and ω is the circular frequency of oscillation. Hi, Pi and Ai are flutter derivatives, which 

are defined in the next section. The dot superscript indicates the first derivative with 

respect to time. Figure 5.3 shows the aeroelastic forces and their corresponding 

displacement for a three-degree-of-freedom bridge section. 

 

Coupling of mode of vibration is significant in flutter analysis of long span bridges. 

Katsuchi H. and et al (1998), conducted multi-mode frequency domain flutter and 

buffeting analysis on the Akashi-Kaikyo Bridge, in Japan. The study considered coupling 

of modes to determine the aeroelastic response. It was concluded that the lateral flutter 

derivatives are significant in initiating flutter for very long-span bridges. 
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Displaced Configuration, Lae at time t 
Mae 

Figure 5.3: Flutter forces on a three degrees-of-freedom bridge section. 
 

 

5.5.3 Flutter Derivatives  
Flutter derivatives, also known as aerodynamic derivatives, are coefficients of the 

mathematical model of the aeroelastic force and are indicated by  the H’s, A’s and P’s 

terms in Equations 5.5. They portray the variation in the wind force due to the alteration 

in the boundary layer with respect to the induced frequency and the wind speed 

simultaneously. The geometry of the solid body has the primer effect. These coefficients 

are function of the reduced frequency K, or alternatively the reduced velocity Ur: 

 

rU
2  

U
n)B(2 

U
B K ππω

===  
5.6

where: U is the oncoming laminar wind speed, B is the deck width, ω and n are the 

angular and the natural frequencies of the deck. 
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Research has recently been conducted to extract wind derivatives based on theoretical 

bases. Most of the recent advances done in this regard are adopt from aeronautical 

engineering. Traditionally, aerofoil or extremely thin-plate were the typical sections to be 

studied. The understanding of airfoil flutter and its derivatives in incompressible flow 

was reached through the potential-flow theory, done independently by Kussner and 

Theodorsen, and then applied to a flat plate. 

 

Wagner (1925) proposed a formulation for the left force as a function of time for a 

theoretical flat plate airfoil due to an impulsive change in the angle of attack. Wagner 

used superposition integral to estimate the indicial lift function. Theodorsen (1935), 

however, determined the lift and the moment forces based on sinusoidal oscillating airfoil 

in a uniform airflow. Theodorsen introduced a complex circulation function, which is 

function of the frequency of oscillatory motion (refer to Appendix E)  

 

Bridge engineering researchers investigated the possibility of applying the 

Theodorsen function on bluff bodies. Although it is found that there is a fairly close 

parallelism in form between the problems of the aerodynamic instability of suspension 

bridge decks and flutter of airfoils, the latter should not be carried beyond its logical 

usefulness and must be used only as a guide in the study of bridge flutter, Scanlan et. Al 

(1971). Early experiments on extracting flutter derivatives for bridge decks were 

conducted by Ukeguchi, Sakata, and Nishitani (1966). 
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For a full mode analysis there are six lateral terms for each of the (P’s) (H’s) and 

(A’s) for flutter derivatives, as shown in Equations 5.5. These coefficients can be 

extracted using sectional wind tunnel tests such that only a representative segment along 

the span length is modeled and tested. The lateral wind coefficients are unlike other 

flutter coefficients since they are found to be correlated to the static drag coefficient. 

Thus, they do not need to be extracted using oscillating model in wind tunnel.  

 

The following is a discussion of the flutter derivatives. Extraction methods are briefly 

discussed. A comprehensive discussion of the behavior and the significance of the flutter 

derivatives is incorporated. Examples, based on pervious studies are included to help in 

defining the range and the shape of the aerodynamic derivative curves. The results of the 

coming discussion are employed to synthesize flutter derivative curves for closed-grates 

stiffened-truss deck. This will be utilized in the flutter analysis of the Second Tacoma 

Narrows Bridge wind response analysis. 

 

 

5.5.3.1 Extracting Flutter Derivatives 
Aerodynamic derivatives of bluff bodies can be extracted from wind tunnel tests, 

using a prototype section of the superstructure. There are three procedures for 

accomplishing such a task: 

 1) Conducting vibration tests by giving prescribed vertical and torsional 

displacements to the bridge deck and then the aerodynamic derivatives are determined 

based on the transient behavior that occurs after releasing the bridge deck.  
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2) Applying the forced oscillation and using pressure measurements at number of 

pressure taps on the model.  

3) Conducting buffeting tests where the behavior of the superstructure is observed 

under variable wind velocities.  

 

Scanlan et al (1971) introduced an experimental setup with the basic theory and 

technique needed to extract flutter coefficients experimentally. The research tested a 

standard airfoil, NACA 0012, and compared the results with the theoretical values based 

on the Theodorsen function and exponentially modified sinusoidal harmonic response. 

Flow regime is assumed to be a low-speed low-turbulence incompressible flow. Figure 

5.4 shows the results obtained by the experiments and the corresponding theoretical 

curve. Note that discrepancies from the theory exist. The experimental A2 coefficient is 

reduced by a factor equal to 4.54, to match with the theory. Experimental values of H1 

and H2 show considerably deviation from the Theodorsen function. The disagreement in 

H1 is due to some limitation in the proposed experimental procedure as the torsional 

motion is initially blocked rather than permanently restrained. This causes the torsional 

motion to increase due to the inherently large coupling between the vertical and the 

torsional motion. This affects the calculation of H2 and H3 as well since both of them are 

function of H1. 

 

Experimental computations of the aerodynamic derivatives involve some 

uncertainties that influence the quality of the results. Curve fitting seems acceptable, but 
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need not to be accurate in for bridge decks which have non-uniform curves for their 

aerodynamic coefficients Sarkar (1986). 

  

Figure 5.4: NACA-0012-Airfoil test results, for H’s and A’s, by Scanlan and Tomko 
(1971) 

Brar et al (1996) established a theoretical basis to determine flutter derivatives 

directly from an indicial function without using Theodorsen-like circulation function. He 

employed Wanger’s function in combination with the expression flutter oscillatory 

motion proposed by Scanlan and Tomko (1971). However the flutter derivative that 

relates to the non-circulatory effects was not appropriately estimated.  The study 

recommended further investigations to validate the method for bluff bodies. The bluff 

body aerodynamic derivatives, in Equations 5.5, written in terms of the Theodorsen 

coefficients for flat plates flutter analysis, are given in Equation 5.7. 
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Gu M. et. al. (2000) adopted spring-suspended section model and proposed a method 

to extract flutter derivatives based on Scanlan’s formulation. The study consolidates the 

damping and stiffness matrices of the governing equation of motion into a damping and 

stiffness matrices of the wind-bridge system. That is, the response variables in the self-

excited wind force function are combined with the damping and stiffness terms of the 

structure. The response of the bridge is approximated by the exponential function. Least 

square method is used to optimize the error based on the iterative procedure. The wind 

derivative is then computed based on the damping and stiffness matrices of the wind-

bridge system and those of the structure itself. The wind derivatives obtained by the study 

were positively comparable with those obtained by Scanlan’s theory. 

 

Extraction of the lateral flutter derivative is done by wind tunnel experiments. It is 

then correlated to the static wind coefficients, namely, the drag coefficient Singh et al 

(1996). The following relations given in equation 5.8 are suggested to find the first three 

lateral flutter derivatives: 
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where: K is the reduced frequency, CD is the static drag coefficient, and αw is the 

angle of incident of the wind. 
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The flutter derivatives theory is conceptually, well established. Experimental research 

done by Scanlan and other investigators are acceptable to evaluate the parameters of the 

linearized system of aeroelastic forces. A procedure to determine all of the 18 flutter 

derivatives in a single test, at each reduced frequency level, using three-degree-of-

freedom suspension and the application of a state-of-the-art system identification 

technique has been developed by Sarkar et al. (1994).  

 

The ongoing research of evaluating the values of flutter derivatives using analytical 

models, such as computational fluid dynamics are still under investigation. Thus, 

experimental tools are still essential to validate the new analytical method. 

 

 

5.5.3.2 Parametric Analysis 
Parametric studies have been conducted to examine the trends of flutter derivatives 

with respect to the bridges physical properties. These include deck shapes and 

configurations, and the wind properties such as turbulence intensity. 

 

Scanlan and Tomko (1971) extended their experiments to extract the flutter 

derivatives for different types of representative suspension bridge decks, including 

closed-box, H-sections and stiffening truss. The plots shown in Figure 5.5 are some 

selected results from the experiments done on truss-stiffened cross sections. 
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set A 

 

 
set B 

Figure 5.5 : Results for airfoil, Original Tacoma Narrows Bridge Deck, and six typical 
truss-stiffened bridge decks, by Scanlan and Tomko, (1971) 
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The aerodynamic coefficients depend on the ratio of the wind speed and the 

frequency excited. They are however, independent of damping. The curves shown in 

Figure 5.5 are function of the reduced velocity, which is the ratio of the oncoming 

laminar wind speed to the frequency excited, in Hertz, times the width of the 

superstructure. The shape or the magnitude of the curves is solely affected by the 

geometrical configuration of the model. 

 

If fluid-structure-interaction is considered, the wind derivatives could be 

contemplated as the reflection of the interaction of the wind boundary layer and the 

excited solid body. For example, in Figure 5.5 – set A, curve number one is for the 

original Tacoma Narrows Bridge deck is remarkably different from the other curves. This 

is due to the vortex-shedding behavior in the wind boundary layer, associated with the 

bridge motion, which has a significant effect on H-shape sections. However, this 

phenomenon is insignificant in the truss-stiffened cross sections shown. The curves are 

derived assuming that the lift force and the vertical deflection are both positive 

downward, and the twisting motion and moment are both positive with the windward 

edge upward. If this sign convention is reversed the terms H2, H3, A1 and A4 should be 

reversed in sign. This would not affect the flutter analysis results, as discussed later in 

this chapter. The following is a discussion of the first three aerodynamic coefficients for 

left Ai and moment Hi and Ai (i=1, 2 and3): 

 

The H1 Coefficient represents the response of the vertical motion with the torsional 

degree –of freedom initially blocked, i.e., (α (0) = 0). The figure shows that all bridges 
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with open-truss stiffened decks are close in response to an airfoil. However, the H-shape 

section, with its considerable side girders, diverts from the airfoil response. In most cases, 

the airfoil results are the lower bound, with a negative value, for the other opened truss-

stiffened bridges. 

 

The H2 and H3 coefficients represent the effect of the torsional oscillation on the 

buildup or decay of the vertical motion. For an example it is observed from experiments 

that for an H-shape the increase in the torsional oscillation frequency is associated with 

reduction in the vertical oscillation. This can be depicted by these two coefficients. For an 

example, curve 1 in Figure 5.5 increases with the increase of the reduced speed. Then it is 

swiftly reduced in the negative value causing a sudden reduction in the left force and thus 

a sudden increase in the torsional oscillatory frequency to converge in values with the 

structural torsional frequency. This behavior is not exhibited by other deck shapes. 

 

For open truss-stiffened decks the H2 lies well above the airfoil curve and is always 

positive. This implies the opposite behavior exhibited by the H-shape deck of the 

Original Tacoma Narrows Bridge. The H3 coefficient, however, shows similar behavior 

to the H-shape deck at a high reduced frequency. If these two aerodynamic coefficients 

reduce the aerodynamic vertical force at a high reduced wind speed, it is most probable 

that coupling between the heaving and torsional flutter will occur.  

 

The effect of the vertical motion on the torsional flutter usually is not significant as 

shown by the A1 curves of Figure 5.5. This coefficient may contribute to the response 
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when strong coupling between the two modes takes place at a certain frequency. At that 

point the term A1 increases suddenly and then decreases to a low value, as shown in 

curve 1. 

 

Generally A1 has a relatively negligible contribution to the flutter condition for most 

of the bridge decks investigated in the literature. The effect of the A1 coefficient on the 

stability behavior appears in airfoil and thin plates such that it induces the torsional 

branch-coupled flutter despite the adverse effect of A2 after the torsional motion is 

initiated. 

 

The A2 coefficient is an indication of the torsional stability of a bridge section having 

the vertical motion restrained, i.e. (h(t) = 0).  It is correlated to the torsional aerodynamic 

damping and the possibility to have torsional divergence. The A2 curve provides a very 

useful rule-of-thumb to judge and compare the aerodynamic stability, even though the 

contribution of the other aerodynamic derivatives might have considerable positive 

effects. A steep negative slope is an indication of torsional stability. As indicated in 

Figure 5.5, the airfoil and the bridge section number 4 are the most stable sections, while 

the Original Tacoma Narrows Bridge is the least stable section since the A2 coefficient is 

well-correlated to the vortex-shedding effect. Flat sections or streamlined bodies have 

close values to the A2 of airfoil. Moreover, grating-location, for plate-like decks with 

open grates, has significant effect on the A2 value. It is found that installing the open 

grates at the edge panels of the deck provides more aerodynamic stability, as shown in 

Figure 5.6. 
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The A3 coefficient reflects the difference between flutter and natural torsional 

frequencies, that is, the aerodynamic stiffening effect upon the critical torsional 

frequency. It is found that the flutter frequency and the natural torsional frequency are 

between 1% and 3%. For most of the tested sections A3 is found to be fairly close to that 

of the airfoil. 

 

It could be observed that each of the H’s and A’s coefficients portray a certain 

behavior of the self-exited forces. Thus the optimal design of suspension bridge decks 

could be depicted using these coefficients such that the use of an airfoil trend is the most 

preferable. The challenge is to find a section, mostly a bluff body, with satisfactory 

stiffness and aerodynamic properties. Different techniques are suggested to improve the 

aerodynamic characteristics of suspension bridge superstructures. Such techniques are 

streamlining the deck shape, as originally done in the Second Severn Bridge, installing 

flaps at both edges, or introducing grates in the superstructure, as in the case of the 

Second Tacoma Narrows Bridge. The Messina Strait Bridge, which is under planning in 

Italy, comprises all the above three techniques. This is would make its 2.05 miles (3300 

m) main span possible, Brancaleoni and Diana (1993). Several studies are done on each 

of the three techniques. 

 

The emphasis here is on studying the effect of altering the grates on the aerodynamic 

response of the bridge. It is of interest, for the purpose of the case study discussed in 

Chapter 6, to investigate the effect of deck grates on the aerodynamic behavior. A 
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comparison between the solid deck, open-grated deck at the sides and the Theodersen 

function is essential to deduce the general trend of the aerodynamic curves. This will be 

employed to synthesize wind derivative curves that substitute the deficiency in 

experimental data. 

 

Matsumoto et al (2001) conducted a parametric study, using a series of wind tunnel 

tests on plate-like bridge sections with five panels. The tests are conducted with three 

wind speeds of 5, 10 and 15 m/s (11.2, 22.4 and 33.6 mph). Matsumoto’s study discusses 

the influence of the opening ratio and the location of grating on flutter instability based 

upon their aerodynamic derivatives and flutter analysis. Different values of the opening 

ratio (OR) are suggested in the test, with OR varying from 20% to 100% with 20% 

increments. The different deck configurations and the aerodynamic derivatives for 

grating-installed with OR=40% are shown in Figure 5.6. 

 

For the Second Tacoma Narrows Bridge, the edge grates next to the sidewalks, are 

supposed to be open as in Type 2. Note that there are dissimilarities between the bridge 

deck configurations and the Matsumoto et al (2001) experiment sections. These 

differences are mainly due to the number of panels and the geometry of the open-truss 

stiffened decks which is different than that of the plate-like decks, as used in the 

experiments. The following conclusions are to be used along with the previous discussion 

to suggest a worst-case scenario for the H’s and A’s curves, relevant to the bridge 

problem. 
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Figure 5.6: The aerodynamic derivatives, H1, H3, A1 and A2 for grating-installed 
girders, with OR = 40% and α = 0° and α = 3°, Matsumoto et al (2001) 
 

Figure 5.6 shows two sets of curves with each set comprising four aerodynamic 

curves, H1, H3, A1 and A2, for the various deck configurations. For A1, H1 and H3, the 

Theodorsen function represents the average aerodynamic coefficients of type 2 and 

closed deck configurations with  α = 3°. 

 

For A2, the most critical aerodynamic coefficient, reversing the sign of the 

Theodorsen function gives an average value between the closed deck and Type 2 

configurations, for an angle of attack equal to 3°. Another comment on A2, as shown in 

Figure 5.6, is that having the grates placed at the middle panel, the aerodynamic stability 

is significantly reduced. The most optimal location of the grates is at the edge panels, 
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which is the scheme recommended to redesign the bridge deck of the second Tacoma 

Narrows Bridge.  

 

 
Figure 5.7: The Aerodynamic derivative, A2 for Type 3,  
Matsumoto et al (2001) 

 
The effect of the OR could be observed from Figure 5.7 which shows the A2 flutter 

derivative curves of different OR’s for Type 3 configuration. It could be observed that 

having the grates opened, with OR grater than or equal to 20%, the dispersion among the 

A2 curves is very small particularly for low values of the reduced velocity. It is of interest 

to note that with all grates closed the A2 is fairly close to the airfoil behavior. For an 

angle of attack of 3°, the A2 curves are rather scattered and the behavior of some curves, 

such as the closed grates, are reversed. For most bridges, the OR of the grates, is most 

likely to be between 20% and 40% as the case with the Second Tacoma Narrows Bridge 

(25.5%), See Appendix D. 
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  The lateral flutter derivatives of bridge decks, Pi, are not well-addressed in most of 

the flutter analysis studies. It is assumed that the coupling between the lateral and the 

vertical oscillations is negligible.  It is found that for suspension bridges with relatively 

long center-span, such as the Akashi-Kaikyo Bridge, the coupling of the lateral mode and 

the other modes is considerable, Katsuchi et. al. (1998). 

 

 
Figure 5.8: Lateral flutter derivatives of  Akashi-Kaikyo Bridge, 
Katsuchi et al. (1998) 

 
The most substantial coefficient among the later flutter coefficients is the P1. This is 

due to the negligible coupling between the torsional and the lateral modes of vibration.   

Coupling with the lateral mode occurs when higher modes of vibration are excited. In 

relatively short span bridges, coupling between the torsional mode and the lateral mode is 

not very probable. The second significant lateral aerodynamic derivative is the P3, which 

represents the effect of torsional motion on the lateral aerodynamic force. Figure 5.8 

shows five of the lateral aerodynamic coefficients of the Akashi-Kaikyo Bridge. The P4 is 

not shown in the figure, that is because there is not any theoretical expression for P4 and 

it was never previously determined before Singh et al. (1996), who experimentally 

determined this coefficient for the Tsurumi and Deer Isle Bridges. Singh et. al. (1996) 
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concluded that the P4 has a “stiffening” effect on the sway motion. It is however possible, 

as described in the pervious section, to at least calculate the terms P1, P2 and P3 if the 

static drag coefficient is known. 

 

Effect of turbulence is discussed by Scanlan and Lin (1978), Huston et al (1988), 

Diana et al (1993) and Sarkar et al (1994). It is found that for most of the eight flutter 

derivatives (A’s and H’s), the turbulent flow values differ only slightly from their smooth 

flow counterparts, such that the smooth flow values seems to represent the mean values 

about which the turbulent flow values fluctuate. It is found that H3 and A3 are less 

influenced by the turbulence of flow as they seem to match perfectly in both cases. It is 

generally determined that the effect of turbulence is very slight on the flutter derivatives, 

and thus on evaluating the aeroelastic forces. 

 

The aeroelastic behavior, represented by the flutter derivatives, is mainly driven by 

the geometry of the structure. There is critical dependence of the aeroelastic behavior on 

even minor details such as a deck railing Jones et al (1995). 

 

5.5.3.3 Solving for Flutter Condition 
5.5.3.3.1 Two-Degree-of-Freedom System 

Wind Critical Flutter condition is the state of motion at which the zero damping is 

attained and oscillation buildup is initiated. This could be noticed in wind tunnel testing, 

with prototype of the whole structure as the oscillation time history diverts at a certain 

wind speed and reaches resonance-like motion. Using the time history function the 

critical frequency could then be identified. The mathematical solution of the flutter 
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condition is however more complicated. The following discussion is limited to the two 

degree-of-freedom system such that the lateral motion is ignored. 

 

The vertical and torsional modes that couple in the flutter vibrations are described by 

Equation 5.9, 

)()(),(h tzxtx mξ=  5.9-a 
)()(),( tqxtx mαα =  5.9-b 

in which, ξm and αm are the vertical and the torsional modes that couple to produce 

flutter vibration along the deck axis, x. The z(t) and the q(t) are single generalized 

displacement of the vertical and the torsional displacement, respectively. 

 

Referring to the equations of motion in section 5.4.2 and the self-induced forces in 

section 5.4.3, and assuming that the vertical deflection, h, and the angular rotation, α, of 

the bridge deck follow complex exponential harmonic motion given by the following 

expression: 

ti
0eXX ω=   

The solution for this equation will be in the form of ω=ω1+iω2. The ω2, if greater than 

zero, represents decay of motion, and represents divergent if negative in value. Let the 

critical reduced frequency Kc be the value for which ω≈ω1, that is at the critical flutter 

condition (ω2≈0). 

 

The following is defined to help in the derivation of the flutter function: 

 

Recalling Equation 5.6, 
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U
BωK =   

K is the reduced frequency, U is the wind speed, B is a characteristic length, usually 

the deck width, and ω is the frequency. Therefore at flutter the following is assumed 

K=Kc, U=Uc and ω=ω1. For the reduced vertical structural frequency K=Kh and ω=ωh. 

For the reduced torsional structural frequency K=Kα and ω=ωα. 

B
Uts =  5.10 

where s is the reduced time (or distance), and t is time. Using the chain rule, the first 

derivative of a variable function of t, is as follows, 
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Operating Equations 5.11 and 5.12 on h and α, the equation of motion and the 

aeroelastic forces, Equations 5.3 and 5.5, respectively, the equation of motion are reduced 

to 
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Note that the left hand side and the right hand side are multiplied by B^2/U^2. 

 
Recalling the proposed solution form of the response,   
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where, h0 and α0 are initial response amplitudes. The derivatives of Equations 5.14 

are: 

iKsKehh 0
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0
'' −= 5.15-a 

iKsKe0
' αα = , and  iKseK 2

0
'' αα −= 5.15-b 

 

Equations 5.13 can then be reduced to, 
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Note that Equation 5.16 can be simplified in matrix form, as arranged. The critical 

condition would be the roots of the determinant of the matrix. Note that in the above 

equation no coupling term is added. It is however desired to add the coupling terms and 

use the generalized response, as described in Equation 5.17. 

 

Note that the coupling terms of the aerodynamic force are those associated with H2 

and H3 for the left and A1 and A4 for the moment. A non-dimensional coefficient could 

be added to represent the coupling effect, based on the mode shape, as shown in equation 

5.17-a. 

∫

∫
=

Deck
m

Deck
mm

dxx

dxxx
C

m )(

)()(

2ξ

αξ

ξ  5.17-a 

∫

∫
=

Deck
m

Deck
mm

dxx

dxxx
C

m )(

)()(

2α

αξ

α  
5.17-b 

 

 108



Mode coupling depends on the product CξCα of the non-dimensional coefficients, 

such that the mode shapes likely to couple give CξCα a value close to one, whereas those 

that are unlikely to couple will yield a value of CξCα close to zero. For example, mode 

coupling is impossible combining a symmetric vertical mode and an asymmetric torsional 

mode, that gives Cξ = Cα = 0. 

Divide Equation 5.13 by (Kξ)^2, and assume the following: 
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The following is obtained: 

   ( ) 0
2

)(
2

12 0
*
3

*
2

2
0*

4
*
1

2
2 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

Ω
−⎥

⎦

⎤
⎢
⎣

⎡
+

Ω
−+Ω+Ω− α

γγ
ζ ξ HiH

C
B
hHiHi

mm
h

m  5.18-a 

   ( ) 0
2

2)(
2 0

*
3

*
2

2
220*

4
*
1

2

=⎥
⎦

⎤
⎢
⎣

⎡
+

Ω
−+Ω+Ω−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

Ω
− α

γ
γγζ

γ ωωα
α AiAi

B
hAiA

C

II

m  
5.18-b 

 

The solution of flutter condition is obtained by setting the determinant of the 

coefficient matrix for Equations 5.18 to zero and separating the real and the imaginary 

parts. This gives a fourth order polynomial function with the following format: 
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The coefficients are identified as follows, see Appendix C: 
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Since the original forth order format of the imaginary polynomial has a zero constant, 

it is reduced to a third order equation. Note that the sign convention of the vertical 

motion, which preserves the sign of A1, A4, H2 and H3, does not change the solution of 

the flutter analysis. 

 

The normalized frequency Ω, or alternatively the frequency ω,that simultaneously 

sets Equations 5.19-a and 5.19-b to zero, represents the flutter condition. Equations 5.19 

are also function of the reduced frequency K, which is also a function of ω and U. It is 

not certain that there is a closed form solution for this condition.  

 

It is suggested to try several values of the reduced frequency (K) and plot the real 

positive roots of Ω, for both equations. The intersection point of the plotted imaginary 

roots and the real roots represents the critical flutter condition, that is, (Kc = f(ωc,Uc)and 

Ωc= f(ωc)). It is also possible to plot the reduced velocity, Ur, instead of reduced 

frequency K (see Equation 5.6). The critical frequency equals to ωc = Ωcωξ, and the 
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critical wind speed equals to Uc=bωc/Kc. If more than one intersection point is found in 

the selected range of K, the one with the lowest Uc will be the required solution. 

Therefore, a wide range of reduced frequencies should be tested to guarantee the lowest 

possible critical wind velocity. 

 

A MATLAB code is developed to carry out the procedure discussed above, (see 

Appendix B). The eight flutter derivatives, A’s and H’s, are expressed in a matrix format, 

such that for each K value, arranged in an ascending way, the eight flutter derivatives are 

assigned sequentially. The calculation will be repeated over a range of prescribed reduced 

frequencies. The imaginary and the real roots are then plotted. The flutter derivatives are 

input as data points at certain values of K and not as a mathematical function. The flutter 

derivatives are obtained using linear interpolation. For smooth curves more data points 

are needed to obtain accurate analysis. Only flutter derivatives of  a flat plate are 

programmed as a continuous function, based on the Theodorsen function. The program is 

tested using a case study of the Golden Gate Bridge. 

 
 
5.5.3.3.2 Verification Problem  

The flutter problem of the Golden Gate Bridge has been solved in several studies. 

Simiu and Scanlan (1996) introduced the problem in a simplified format and estimated 

the critical wind to be 50.9 mph (81.9 km/hr). Jain et al (1998) solved the multi-mode 

flutter problem taking into account the modal damping effect, different angles of attack 

and the first lateral flutter derivative P1. The flutter wind speed for a zero angle of attack 

is found to be 53.1 mph (86.1 km/hr), at 1.18 angular frequency. The lowest flutter speed 
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is found to be 49.21 mph (79.9 km/hr), at 1.19 rad/sec, for an angle of attack equal to 

+5°.  
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Figure 5.9: Flutter analysis for the Golden Gate Bridge 

 

The analysis is conducted using the approach discussed in the previous section and 

the critical wind speed is estimated to be 49.6 mph (79.81 km/hr), at a frequency equal to 

1.186 (0.188 Hz), for a zero angle of attack. This overestimates the flutter velocity by 4% 

if compared with Scanlan’s simplified calculations, and 7% if compared with Jain multi-

mode analysis. The critical condition is reached when the sixth mode of vibration, which 

is a vertical symmetric mode, coupled with the seventh mode, which is a torsional 

symmetric mode. Figure 5.9 shows the solution of Equations 5.18. The intersection of the 

imaginary and the real curves is the critical condition. The graph shows the relation 
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between ω and the reduced velocity Ur. Table 5.1 shows the parameters used in the 

analysis and the flutter derivatives are shown in Figure 5.10. 
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Figure 5.10: Flutter Derivatives of the Golden Gate Bridge Jain et al (1998) 
 
Table 5.1: Golden Gate Bridge flutter analysis parameters 

Parameter Value Parameter Value 
B 27.5 m ζξ 0.5% 
ρ 1.2 kg/m^3 ζα 0.5% 

ωξ (6th mode) 0.1638 Hz Iξ 5,208 kg 
ωα (7th mode)  0.1916 Hz Iα 3,680,000 kg.m^2 

Cξ 0.34 Cα 0.32 
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5.6 Flutter Criteria 
Suspended structures are usually designed to handle a certain design wind speed. 

Most of the design codes, such as ASCE-7-98, suggest basic wind speed of 3-second 50 

and 100-year return period wind speed with 95% confidence level, as a reference to 

calculate wind load. If flutter takes place in a slender suspended structure, the probability 

of failure will be extremely high. It is recommended, for such structures, to consider 

three-second gust 10,000-year return wind with 99% confidence level to establish the 

flutter criteria. An Nth-year return wind can be calculated as shown in the coming 

sections. This value should be averaged to hourly wind speed at the bridge deck 

elevation. 

 

Displacement and acceleration responses of suspended structures are not a major 

concern at flutter conditions, since this type of structure is not designed to operate in 

those conditions and facility closure is the common procedure to ensure public safety. 

The response of a bridge should be checked to guarantee its serviceability under average 

wind speed and service loads. The performance history of the Second Tacoma Narrows 

Bridge proves the bridge serviceability under average loading conditions. 

 

 

5.7 Estimation of Design Wind Speed 
The homogeneity of wind speed, generated in the atmospheric layer, is affected by 

two main factors, namely, the distance from the ground and the roughness of the 

surrounding terrain, which is known as the exposure. The wind speed used in the analysis 
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should reference these two factors in addition to the averaging time, which could be the 

average in one-minute, one-hour, highest gust. To account for wind variability and to 

obtain reasonable statistical wind analysis, the average wind speed should be calculated 

over a sufficient long period of time, which is statistically defined as the period along 

which the mean value of the fluctuating wind speed component equals zero, Dyrbye and 

Hansen (1997). 

 

The Tacoma Narrows is relatively an open water surface terrain surrounded by 

scattered grasslands and urban buildings, which corresponds to exposure C categories, as 

defined in the ASCE 7-98. Using Figure 6-1 in the standard, the nominal design 3-second 

gust wind at 33 ft (10m) above the ground for exposure C category is 85 MPH (38 m/s). 

This figure is calculated on an elevation that exactly matches the elevation of the bridge’s 

superstructure, and thus, no further corrections are needed to calibrate for the height. 

 

Generally, wind speed for the N-year period, UN, could be calculated using the 

following approximated equation: 

 
σ)577.0(ln78.0 −+= NUU mN  5.20 

where Um and σ are, respectively, the sample mean and the sample standard 

deviation of the largest yearly wind speeds for the period of the record. The standard 

deviation of the sampling errors in the estimation of UN can be expressed as:  

[ ]
n

NNUSD N
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5.21 
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where n is the sample size. The 95% and 99% confidence intervals of the calculated 

sample mean of the largest yearly wind speed can be established as follows, 

 

Confidence Level Wind Speed Interval 
95% UN±2SD(UN) 
99% UN±3SD(UN) 

 

The derivation of these relationships are based on Type I extreme value distribution 

and discussed in detail in Simiu and Scanlan (1996). 

 

Wind speed calculated at certain elevation, zr, on a specific terrain, can be 

extrapolated to other elevations, z, using the following relationship 
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where Ur is the wind speed at the reference elevation, U is the required wind speed 

and is a constant and α equals to 0.147. The above equation is called the wind profile 

power law. Terrain roughness could also be incorporated in this law, (see Simiu and 

Scanlan (1996)). 

 

The study conducted by RWDI Inc. (2003) on the existing and the new Tacoma 

Narrows Bridges, comprises the results of a statistical wind study of the narrows region. 

The study found that the 3-second gust 100-year return period wind equals to 91 MPH. 

The data used in the study is collected from three stations, namely, Tacoma Narrows 

Airport located 3 km west of the bridge site, McChord Air Force Base located 19 km 

southeast of the site, and Seattle Tacoma International Airport located 27 km northeast of 
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the bridge site. The data collected were 26, 24 and 35 years for the three stations 

respectively. The wind speed is also correlated to the bridge site elevation. A factor of 

1.36 is suggested to find the equivalent 3-second gust 10,000-year return period wind 

from the 100-year wind, that is, 123.8 MPH. The equivalent mean hourly wind speed is 

105.9 MPH. This value will be used as the flutter criteria of the bridge. 
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CHAPTER 6 
FLUTTER ANALYSIS OF THE SECOND TACOMA 
NARROWS BRIDGE 
 
 
 
6.1 Problem Statement 

The following is an application on the theory and the methodology discussed in 

Chapter 5. The purpose of this case study is to estimate the critical wind speed of the 

Second Tacoma Narrows Bridge based on the classical flutter analysis. 

 

The most systematic method to conduct this study is to use wind tunnel testing to find 

the aerodynamic derivatives of the bridge. However, this approach is not possible at this 

point because of unavailability of experimental data. The challenge is to synthesize the 

aerodynamic characteristics based-on the available experimental studies conducted on 

different configurations of the open truss-stiffened and plate-like decks. It is desired to 

suggest a set of wind derivatives that would produce the most severe aerodynamic 

loading using methodical judgment procedure. 

 
 
6.2 Assumptions and Parameters 

The following are the assumptions considered here for the flutter analysis. 

1. The oncoming wind is assumed to be uniform with negligible variable component 

in magnitude, direction, and with the angle of attack being equal to zero. 

2. Each vertical mode is assumed to be coupled with the higher torsional modes. 

This is acceptable if the vertical modes of vibration are usually invoked before the 

torsional mode is considered. 
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3. The structural and frequency properties of the bridge calculated in Chapter 3 are 

used here in the analysis. 

4. The wind parameters calculated in Chapter 4 are used in this chapter. 

5. It is assumed that the superstructure follows the general trend of open-truss 

stiffened and the plate-like decks, Scanlan (1971) and Matsumoto (2001). The 

aerodynamic derivatives synthesized are generated at certain reduced velocities 

and interpolated linearly through the analysis. 

6. The maximum reduced velocity is assumed to be 18. Since the lowest frequency 

of the structure is 0.44623 rad/sec and the maximum frequency included in the 

analysis is 3.9286 rad/sec, the assumed maximum reduced frequency covers wind 

speed range up to 208 mph. This range is very satisfactory compared with the 

maximum expected wind speed of 105.9 mph, as discussed in Chapter 4. 

 

6.2.1 Synthesizing Wind Derivative 
The created aerodynamic derivatives are used to estimate the wind response of the 

Tacoma Narrows Bridge. The modified superstructure is assumed to have grates at the 

edges and between the right lane and the sidewalks on each bound as suggested in the 

remodeling process. This also gives more reasonable assumption than considering the 

less stable cases that include the H-shape or the closed-grate deck sections. Conducting 

wind tunnel tests to verify this approach is needed for the bridge under consideration. 
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Table 6.1 summarizes the rules concluded from the discussion in Chapter 5 regarding 

the aerodynamic derivatives of stiffened open-truss and plate-like decks. The realization 

of these rules is shown in Figure 6.1. 

 

 

 
Table 6.1: Assumptions used to Synthesize flutter coefficients  
Coefficient Rule 
H1 Same as in the Theodorsen function 
H2 Same as in the Theodorsen function 
H3 Same as in the Theodorsen function 
H4-H6 Assume negligible effect 
A1 Same as in the Theodorsen function 
A2 Same as in the Theodorsen function with reversed sign 
A3 Same as in the Theodorsen function 
A4-A6 Assume negligible effect 
P1 2CD/K = 0.57/K, consider the maximum CD at α = –10° 
P2-P6 Assume negligible effect 
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Figure 6.1: Synthesized flutter derivatives 
 
 

6.2.2 Verification of the Synthesized Wind Derivative 
The Golden Gate Bridge case study, presented by Scanlan, is recalled here to verify 

the synthesized curves. The suggested flutter derivatives are applied on the Golden Gate 

Bridge to calculate the critical wind speed and critical frequency, as shown in Figure 6.2. 
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Figure 6.2: Flutter Analysis of the Golden Gate Bridge using the Flat Plate Theory  

 
 

The critical condition shown in the figure is at critical frequency of 1.181 rad/sec and 

critical reduced wind speed of 4.3375, that is, 22.42 m/s or 50.15 mph, which is close to 

the value of 49.6 mph as calculated in chapter 5. 

 

This verifies that the assumed aerodynamic coefficients represent the average trend of 

the stiffened-truss superstructures. 

 

 

6.3 Results 
The following are the results of the flutter analysis. This includes the critical 

frequency and the critical wind speed. 
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6.3.1 Critical Flutter Condition 
The solution of the flutter condition is shown in Figure 6.3. Table 6.2 shows the 

critical wind speed of the bridge, using the synthesized aerodynamic coefficients and the 

Golden Gate Bridge coefficients. 
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Figure 6.3: Synthesized flutter derivatives 
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Figure 6.4: Critical Frequencies versus critical reduced wind speed 
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Table 6.2: Flutter analysis of the Second Tacoma Narrows Bridge  

Synthesized Flutter Derivatives Golden Gate Flutter Derivatives 

Set No. Mode i Mode j Critical 
Frequency Ur 

Critical 
speed 
m/s 

Critical 
Frequency Ur 

Critical 
speed 
m/s 

1 2 8 2.348 7.3696 50.365 2.3615 7.7778 53.46 
2 2 9 2.4627 7.4155 53.154 2.4774 7.754 55.913 
3 2 12 3.6703 8.1684 87.262 3.701 7.5292 81.106 
4 2 13 3.874 8.2438 92.955 3.9072 7.5151 85.465 
5 3 8 2.3411 8.1147 55.294 2.3601 7.5404 51.798 
6 3 9 2.4565 8.0753 57.738 2.4761 7.5485 54.402 
7 3 12 3.6787 7.5763 81.122 3.7025 7.689 82.861 
8 3 13 3.8741 8.2404 92.919 3.9072 7.5157 85.472 
9 5 8 2.3407 8.1523 55.541 2.3601 7.535 51.761 
10 5 9 2.455 8.231 58.815 2.476 7.515 54.158 
11 5 12 3.6694 8.2406 88.012 3.7008 7.5147 80.946 
12 5 13 3.8741 8.2372 92.883 3.9072 7.5154 85.468 
13 6 8 2.3496 7.2216 49.387 2.3614 8.0721 55.481 
14 6 9 2.4656 7.1463 51.285 2.477 8.0818 58.267 
15 6 12 3.6712 8.1097 86.656 3.701 7.5416 81.24 
16 6 13 3.874 8.2436 92.953 3.9073 7.513 85.443 
17 10 12 3.6746 7.8709 84.182 3.7015 7.6086 81.973 
18 10 13 3.8787 7.9314 89.541 3.9079 7.584 86.264 
19 11 12 3.6708 8.1593 87.177 3.701 7.527 81.083 
20 11 13 3.9068 6.2016 70.52 3.911 9.1409 104.06 

 
 
 
 
6.4 Discussion 

Table 6.2 shows that using the synthesized derivatives the critical wind speed is found 

to be 49.387 m/s (110.48 mph), and using the golden gate aerodynamic derivatives it is 

found to be 51.761 (115.789 mph), which is around 5% higher. The closeness in the 

results between the two sets of flutter coefficients verifies the assumptions of the 

synthesized coefficients holding the average trend of aerodynamic coefficients of open-

truss stiffened decks. Note that the coupling of modes corresponding to the estimated 

critical wind speed does not match the expected coupling of modes based on CαCξ, as 
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described in Chapter 3, where Set No. one is considered to be the most critical mode. The 

critical wind speed estimated when modes 2 and 9 are coupled is 50.365 m/s. This value 

is only 2% higher than the minimum speed obtained. 

Figure 6.4 shows that the solution of the flutter condition lineup in four columns with 

approximate frequencies of 2.35, 2.46, 3.7 and 3.9 Hz. These frequencies are close to but 

less than the corresponding torsional frequencies used in the analysis which are for 

modes 20, 21, 37 and 41. This implies that the vertical mode has less significance on the 

response than the torsional mode. The critical case is that point located closest to the left-

bottom corner of the plot. 

 

Note that although the critical wind speeds of both analyses are found to be close, the 

coupled vertical and torsional modes are different in each case. For the synthesized 

coefficients coupling of modes 6 and 8, which is set 13, produced the critical condition, 

while with the Golden Gate Bridge coefficients coupling of modes 5 and 8, which is set 

9, invoked the flutter condition. This result further verifies the appropriateness of 

assumed coefficients as the two vertical modes are consecutive and have close 

frequencies. 

 

Hence using synthesized aerodynamic coefficients yields reasonable estimation of 

critical speed. However, the coupling of modes at flutter remains uncertain. Moreover, 

using different sets of aerodynamic derivative of  plate-like deck gave close estimation to 

the critical wind speed. This implies that the effect of the aerodynamic derivatives is very 

small compared to contribution of the mechanical properties of the structure.  
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The maximum wind speed estimated in the Tacoma Narrows area is 105.9 mph, as 

discussed in Chapter 4 as compared to 110.48 estimated here. Therefore according to this 

analysis the bridge is safe, since the estimated flutter speed is around 4% higher than the 

maximum expected wind speed. 
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CHAPTER 7 
CONCLUSIONS AND RECOMMENDATIONS 
 

The Second Tacoma Narrows Bridge frequencies have been successfully and 

accurately estimated. The analytical results show sound agreement with the experimental 

data. The transverse and the vertical frequencies are almost equal to the values obtained 

by the ambient testing. However longitudinal frequencies do not show an accurate 

agreement with the experimental results. The results are close to the experimental 

frequencies. 

 

The suggested modelling technique helped in concluding such results. Modelling 

of suspension bridges requires using centenary element formulation. A non-linear truss 

element is not quite acceptable to model cables. Detailed modelling of the superstructure 

is also recommended. Moreover, the Ritz method was very successful in estimating the 

structural frequencies and eliminating the local mode shapes. 

 

The frequencies associated with the longitudinal mode shapes, however, do not 

show high accuracy compared with the ambient study. However, this does not have a 

significant effect on the aerodynamic analysis; that is because of the fact that the 

longitudinal frequencies will not be excited by wind forces. Moreover, the torsional and 

the vertical modes are not coupled with the longitudinal mode.  

 

Flutter coefficients of open-truss stiffened superstructures are successfully 

synthesized based on the Theodorsen function. It is found that reversing the sign of the 
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torsional aerodynamic damping coefficient of the flat plate simulates the average value of 

this type of superstructures. This conclusion is not applicable for streamlined decks or 

superstructures susceptible to vortex induced motion, such as, H-shape decks. 

 

 

Recommendations 
According to the proposed procedure of synthesizing the flutter derivatives and 

the methods used to find the critical wind speed of stiffened truss decks closing the open-

grates of the Second Tacoma Narrows Bridge will not cause the bridge to reach the 

critical flutter condition. However, keeping the side grates opened ensures the safety of 

the bridge in severe wind conditions, Matsumoto et al (2001). 

 

The research on using computational-fluid-dynamics and fluid-structure-

interaction procedures in the flutter analysis of long-span bridges is still a novel field of 

study. Some computational-fluid-dynamics software packages and numerical procedures 

are still under development and investigation. The reliability of obtaining a valid solution 

depends mainly on the capabilities of the used software. The solution of the FSI problem 

may exhibit rational response, but may also involve inaccurate numerical values. For a 

more reliable analysis, it is recommend utilizing powerful computational resources with 

multi-processing capabilities and three-dimensional models, rather than a simplified two 

dimensional characterization. Future research may also consider applying turbulence 

models to account for the variable component of flow velocity 
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APPENDIX A 
ANALYSIS RESULTS 
 
A.1 Second Tacoma Narrows Bridge Frequency Analysis 
Mode No Frequency Frequency Period  Mode No Frequency Frequency Period 
 (rad/sec) (cycle/sec) (sec)   (rad/sec) (cycle/sec) (sec) 
1 0.4462 0.0710 14.0804  51 4.5488 0.7240 1.3813 
2 0.9081 0.1445 6.9193  52 4.6111 0.7339 1.3626 
3 0.9832 0.1565 6.3906  53 4.6783 0.7446 1.3430 
4 1.1672 0.1858 5.3831  54 4.7142 0.7503 1.3328 
5 1.3012 0.2071 4.8289  55 4.7865 0.7618 1.3127 
6 1.5073 0.2399 4.1686  56 4.8180 0.7668 1.3041 
7 1.5648 0.2490 4.0155  57 4.9101 0.7815 1.2796 
8 1.5988 0.2545 3.9300  58 5.0463 0.8031 1.2451 
9 1.8497 0.2944 3.3969  59 5.1340 0.8171 1.2239 
10 1.9034 0.3029 3.3010  60 5.2249 0.8316 1.2026 
11 1.9048 0.3032 3.2985  61 5.3256 0.8476 1.1798 
12 1.9052 0.3032 3.2979  62 5.3535 0.8520 1.1737 
13 1.9068 0.3035 3.2952  63 5.3751 0.8555 1.1690 
14 2.0315 0.3233 3.0929  64 5.7356 0.9128 1.0955 
15 2.0410 0.3248 3.0784  65 5.7517 0.9154 1.0924 
16 2.0913 0.3328 3.0045  66 5.8874 0.9370 1.0672 
17 2.1368 0.3401 2.9404  67 6.0325 0.9601 1.0416 
18 2.1479 0.3418 2.9253  68 6.2647 0.9971 1.0030 
19 2.1870 0.3481 2.8730  69 6.3285 1.0072 0.9928 
20 2.3729 0.3777 2.6479  70 6.5879 1.0485 0.9538 
21 2.4895 0.3962 2.5239  71 7.0892 1.1283 0.8863 
22 2.5209 0.4012 2.4925  72 7.1514 1.1382 0.8786 
23 2.6453 0.4210 2.3752  73 7.1681 1.1408 0.8766 
24 2.6681 0.4246 2.3549  74 7.5785 1.2062 0.8291 
25 2.6763 0.4259 2.3477  75 7.9893 1.2715 0.7865 
26 2.6847 0.4273 2.3404  76 8.1640 1.2993 0.7696 
27 2.9379 0.4676 2.1387  77 8.5155 1.3553 0.7379 
28 3.0175 0.4803 2.0823  78 8.9955 1.4317 0.6985 
29 3.0308 0.4824 2.0731  79 9.2453 1.4714 0.6796 
30 3.0338 0.4828 2.0711  80 9.3795 1.4928 0.6699 
31 3.1165 0.4960 2.0161  81 10.4664 1.6658 0.6003 
32 3.1500 0.5013 1.9946  82 10.7922 1.7176 0.5822 
33 3.3631 0.5353 1.8683  83 11.4814 1.8273 0.5472 
34 3.3785 0.5377 1.8598  84 11.8388 1.8842 0.5307 
35 3.4433 0.5480 1.8247  85 12.8915 2.0517 0.4874 
36 3.6043 0.5736 1.7432  86 13.9077 2.2135 0.4518 
37 3.7210 0.5922 1.6886  87 14.5303 2.3126 0.4324 
38 3.7792 0.6015 1.6626  88 15.8278 2.5191 0.3970 
39 3.8121 0.6067 1.6482  89 16.3625 2.6042 0.3840 
40 3.8671 0.6155 1.6248  90 18.7194 2.9793 0.3357 
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41 3.9286 0.6253 1.5993  91 20.1433 3.2059 0.3119 
42 3.9916 0.6353 1.5741  92 22.8403 3.6352 0.2751 
43 4.0022 0.6370 1.5699  93 25.1582 4.0040 0.2497 
44 4.0450 0.6438 1.5533  94 28.7127 4.5698 0.2188 
45 4.0913 0.6511 1.5358  95 33.6017 5.3479 0.1870 
46 4.1292 0.6572 1.5216  96 39.9175 6.3531 0.1574 
47 4.3491 0.6922 1.4447  97 52.0059 8.2770 0.1208 
48 4.4390 0.7065 1.4155  98 70.6210 11.2397 0.0890 
49 4.5064 0.7172 1.3943  99 105.1965 16.7425 0.0597 
50 4.5150 0.7186 1.3916  100 379.7931 60.4459 0.0165 

 
Modal Participation Masses (%) 

Mode TRAN-X TRAN-Y TRAN-Z  Mode TRAN-X TRAN-Y TRAN-Z 
 MASS MASS MASS   MASS MASS MASS 
1 0 23.68 0  51 0 0.2 0 
2 0 0 3.23  52 0 0.08 0 
3 0.01 0 0  53 0 0.06 0 
4 0 0.01 0  54 0.12 0 0.03 
5 3.04 0 0  55 0 0.03 0 
6 0 15.12 0  56 0.89 0 0 
7 0 0 2.42  57 0 3.34 0 
8 0 9.64 0  58 0.05 0.67 0 
9 0 0 0  59 1.96 0 0 
10 0 0 0  60 0 0 0.01 
11 0 0 0  61 0 0 0.02 
12 0 1.99 0  62 0 0 0.01 
13 0 0 0  63 0 0 0.01 
14 0 0 0  64 0.16 0.01 0 
15 0.02 0 37  65 1.44 0 0 
16 0 0 0  66 0.67 0 0.04 
17 0 0 0  67 0 0.13 0 
18 0 0.37 0  68 0 0 0 
19 0 0.03 0  69 0.05 0 1.38 
20 0 3.05 0  70 0 0.03 0 
21 0 3.07 0  71 0.83 0 0.68 
22 1.31 0 0  72 0.06 0.01 1.67 
23 0 0.04 0  73 2.41 0.04 0.19 
24 0 0 0  74 0.37 0 0 
25 0.12 0 4.29  75 0 0 0.08 
26 0 0.03 0  76 0.06 0 0.15 
27 0 0.08 0  77 0.65 0.19 0 
28 0 0 0  78 0.1 0 0.52 
29 0 1.86 0  79 3.21 0.02 0.01 
30 0 0 0  80 0.05 0.02 0 
31 0 0.01 0  81 0.56 0 0.05 
32 0 0 0  82 0 0.01 0.01 
33 46.1 0 0.06  83 0.33 0.04 0.02 
34 0.03 0.89 0  84 0.01 0 0.45 
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35 0 0 0  85 0.01 0.01 0.06 
36 0.9 0 2.42  86 0 0 1.08 
37 0 0.02 0  87 0 0 0.75 
38 0.26 0 0.28  88 0 0.01 1 
39 5.9 0 0  89 0 0 6.64 
40 0 0.94 0  90 0.02 0.01 0.5 
41 0 0.02 0  91 0.11 0.02 0.22 
42 0 0 0  92 0 0 5.46 
43 0 0 0  93 0.07 0.01 0.51 
44 0 1.67 0  94 0.09 0.01 0.84 
45 0 0 0  95 0.05 0.01 1.16 
46 0 0.07 0  96 0.24 0.09 0.61 
47 0 0 0  97 0 0 9 
48 0 0.68 0  98 0 0.01 1.12 
49 0 0 0  99 0 0 13.95 
50 0 0 1.02  100 0 0 0.69 

 
Mode Shape Identification 
Mode  Freq. 

(rad/sec) Shape Location  Mode # Freq. 
(rad/sec) Shape Location 

1 0.446236 L_HS MS  27 2.937856 L_2FS C 
2 0.908061 V_HS MS  28 3.017497 L_4HS MC 
3 0.983197 V_FS MS  29 3.030805 L_2FS C 
4 1.167195 L_FS MS  30 3.033756 L C 
5 1.301158 V_FS SS  31 3.116474 L C 
6 1.50725 L_HS SS  32 3.15004 L SC 
7 1.564752 V_(FS+HS) MS  33 3.36308 V_3FS S 
8 1.598782 L_HS SS  34 3.378495 L SC 
9 1.849657 L_HS SC  35 3.443337 L SC 
10 1.9034 L_HS SC  36 3.604311 V_(2FS+HS) MS 
11 1.904833 L_HS MC  37 3.721043 L+T_FS MS 
12 1.905209 L_FS MC+TW  38 3.779155 V_(2FS+HS) SS+MS 
13 1.906756 L_FS MC+MS  39 3.812122 V_FS SS 
14 2.031485 L_FS SC+MC  40 3.867088 L C 
15 2.04103 V_2HS MS+SS  41 3.928639 T_FS MS 
16 2.091287 L_HS SC  42 3.991616 L SC 
17 2.136832 L_2HS C+S  43 4.002207 L MC 
18 2.147853 L_HS SC  44 4.045034 L C 
19 2.186997 L_FS C+S  45 4.091282 L C 
20 2.372891 T_HS S  46 4.129206 L_2FS C+MS 
21 2.489505 L+T_HS S  47 4.349058 T_HS SS 
22 2.520852 V_2FS MS  48 4.438963 T_HS SS 
23 2.645296 L_FS SC  49 4.506398 V SS 
24 2.668146 L_2HS SC  50 4.515044 V SS 
25 2.676282 V_HS SC  52 4.61109 T_HS SS 
26 2.684675 V_HS SC  
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Symbol Key 
L Lateral Mode 
V Vertical Mode 
T Torsional Mode 
HS Half Sinusoidal 
FS Full Sinusoidal 
MS Mid Span 
SS Side Span 
SC Side Span Cable 
MC Mid Span Cable 
TW Tower 
C All Cables 
S All Span 
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APPENDIX B 
MATLAB PROGRAMS 
B.1 Coupling Coefficient 
 
%FindGenProp 
% Find the Generelized Properties and Coupling Terms 
  
mMat=[2 8;3 8;5 8;6 8;  
      2 9;3 9;5 9;6 9; 
      10 12;11 12;10 13;11 13] 
       
for m=1:12 
mod1=mMat(m,1); 
mod2=mMat(m,2); 
[nr,nc]=size(Modeshp); 
  
Cx12=0;Cx11=0;Cx22=0; 
for i=1:nr-1; 
    Cx1=(Modeshp(i,modXi+1)+Modeshp(i+1,modXi+1))/2; 
    Cx2=(Modeshp(i,modA+1)+Modeshp(i+1,modA+1))/2; 
    Cx12=Cx12+Cx1*Cx2*Modeshp(i,1); 
    Cx11=Cx11+Cx1*Cx1*Modeshp(i,1); 
    Cx22=Cx22+Cx2*Cx2*Modeshp(i,1); 
end 
CXi=abs(Cx12/Cx11); 
CA=abs(Cx12/Cx22); 
CouplingResult(m,:)=[mod1,mod2,CXi,CA] 
end 
 
 

B.2 Flutter Analysis MATLAB Program 
% Uncoupled Flutter Solver 
clear 
clc 
stp=0; 
%ModesDataBase_FlatPlate 
% Xi index is for heaving, A index is for Rotation 
  
BrdgWidth=27.5; %meter 
AirDensity=1.2; 
  
OmegaXi=0.1285*2*pi; 
OmegaXi=0.1638*2*pi; 
OmegaA=0.1916*2*pi; 
  
ZetaA=0.005; % Damping ratio 
ZetaXi=0.005; 
  
CXi=.34; 
CA=.32; 
  
EffMassXi=5.2081e+003; 
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EffMassA=3680000; 
  
  
GamaW=OmegaA/OmegaXi; 
GamaM=EffMassXi/(AirDensity*BrdgWidth^2); 
GamaI=EffMassA/(AirDensity*BrdgWidth^4); 
CA=1.29; 
CXi=0.38; 
  
% Note: the generalized mass is calculated based on certain 
mode(dominated 
% mode) see GetGs.m 
for K=pi/4:.1:50 
    stp=stp+1 
    k=K/2;   % half cord     
    Ur=pi/k %Reduced Velocity 
%    GetFlutterDeriv_FlatPlate; 
    GGGetHsAs; 
%    GGGetGs; 
     
    R1=0; 
    R2=-GamaW^2-4*ZetaA*ZetaXi*GamaW-1-A3/(2*GamaI)-
GamaW^2*H4/(2*GamaM); 
    R3=ZetaA*GamaW*H1/GamaM+ZetaXi*A2/GamaI; 
    R4=1+H4/(2*GamaM)+A3/(2*GamaI)+(CXi*CA*A1*H2-A2*H1+H4*A3-
CXi*CA*A4*H3)/(4*GamaM*GamaI); 
    Rconst=GamaW^2; 
     
    I1=-GamaW^2*H1/(2*GamaM)-A2/(2*GamaI); 
    I2=-2*ZetaA*GamaW-2*ZetaXi-ZetaA*GamaW*H4/GamaM-ZetaXi*A3/GamaI; 
    I3=H1/(2*GamaM)+A2/(2*GamaI)+(H4*A2+H1*A3-CXi*CA*H3*A1-
CXi*CA*H2*A4)/(4*GamaM*GamaI); 
    Iconst=2*ZetaXi*GamaW^2+2*ZetaA*GamaW; 
    %Get A and B matrix then E matrix 
    RealRoot=roots([R4 R3 R2 R1 Rconst]); 
    ImgRoot=roots([I3 I2 I1 Iconst]); 
     
    RealRoot=sortrows(RealRoot); 
    ImgRoot=sortrows(ImgRoot); 
     
    PlotSolReal(stp,:)=RealRoot(:,1)*OmegaXi; 
    PlotSolImag(stp,:)=ImgRoot(:,1)*OmegaXi; 
    PlotUr(stp,1)=Ur; 
end 
  
plot(PlotUr(:,1),PlotSolReal(:,4)) 
Hold on 
plot(PlotUr(:,1),PlotSolImag(:,3),'--') 
Grid on 
legend('Real Roots','Imaginary Roots','sin(x-.5)') 
xlabel('Ur');ylabel('Angular Frequency'); 
Hold off 
  
Status = 'End of the Analysis' 
 
%GGGetHsAs 
As=[0   0   0   0   0 
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7.05E-01    -4.77E-02   -2.88E-03   2.26E-02    -8.21E-02 
8.38E-01    -1.29E-02   -1.69E-02   7.49E-03    -8.19E-03 
1.10E+00    -6.33E-02   -7.88E-03   1.84E-02    -6.08E-02 
1.39E+00    -1.89E-01   -4.17E-02   1.20E-02    -5.60E-02 
1.82E+00    -2.04E-01   -1.26E-01   1.20E-01    5.55E-02 
2.21E+00    -2.59E-01   -1.08E-01   1.97E-01    1.15E-01 
2.51E+00    -2.15E-01   -6.57E-02   2.67E-01    1.66E-01 
2.81E+00    -2.84E-01   -4.60E-02   3.17E-01    1.75E-01 
3.27E+00    -1.95E-01   3.29E-03    3.85E-01    3.27E-01 
3.88E+00    -1.43E-01   6.97E-02    4.29E-01    2.74E-01 
4.24E+00    -2.40E-01   1.20E-01    4.55E-01    3.06E-01 
4.79E+00    -2.40E-01   1.90E-01    5.13E-01    3.59E-01 
5.25E+00    -1.41E-01   2.70E-01    5.67E-01    2.70E-01 
6.31E+00    -3.98E-02   4.59E-01    6.77E-01    3.21E-01 
7.33E+00    5.64E-02    5.89E-01    6.70E-01    2.62E-01 
8.16E+00    1.16E-01    7.30E-01    6.93E-01    4.25E-01 
9.04E+00    4.73E-02    8.16E-01    7.33E-01    2.23E-01]; 
  
Hs=[0   0   0   0   0 
6.94E-01    -7.26E-02   2.49E-01    1.42E+00    1.41E-01 
8.39E-01    -3.73E-01   2.25E-01    1.54E+00    -9.63E-02 
1.09E+00    -4.52E-01   2.26E-01    1.76E+00    1.10E-02 
1.39E+00    -4.15E-01   3.81E-01    1.85E+00    -2.68E-01 
1.82E+00    -1.30E+00   5.92E-01    1.76E+00    -4.97E-01 
2.21E+00    -1.69E+00   5.13E-01    1.96E+00    -7.52E-01 
2.51E+00    -2.06E+00   3.29E-01    2.07E+00    -7.60E-01 
2.82E+00    -2.53E+00   2.93E-01    2.17E+00    -9.37E-01 
3.28E+00    -3.28E+00   2.78E-01    2.60E+00    -5.30E-01 
3.88E+00    -3.32E+00   1.43E-01    3.06E+00    -4.91E-02 
4.24E+00    -3.53E+00   1.66E-01    4.16E+00    4.54E-01 
4.79E+00    -4.40E+00   -6.80E-02   5.33E+00    4.85E-01 
5.25E+00    -4.38E+00   3.11E-01    6.72E+00    4.52E-01 
6.32E+00    -4.80E+00   9.51E-01    9.90E+00    1.09E+00 
7.34E+00    -5.55E+00   1.51E+00    1.30E+01    7.86E-01 
8.16E+00    -6.13E+00   1.78E+00    1.46E+01    1.01E+00 
9.03E+00    -6.73E+00   2.24E+00    1.68E+01    2.24E+00]; 
endloopHs=0; 
endloopAs=0; 
for i=1:18 
    if (Ur>=As(i,1))& ((Ur<=As(i+1,1)))&(endloopAs == 0) 
        c=2; 
        A1=(Ur-As(i,1))/(As(i+1,1)-As(i,1))*(As(i+1,c)-
As(i,c))+As(i,c); 
        c=3; 
        A2=(Ur-As(i,1))/(As(i+1,1)-As(i,1))*(As(i+1,c)-
As(i,c))+As(i,c); 
        c=4; 
        A3=(Ur-As(i,1))/(As(i+1,1)-As(i,1))*(As(i+1,c)-
As(i,c))+As(i,c); 
        c=5; 
        A4=(Ur-As(i,1))/(As(i+1,1)-As(i,1))*(As(i+1,c)-
As(i,c))+As(i,c); 
        endloopAs=1; 
    end 
    if (Ur>=Hs(i,1))& ((Ur<=Hs(i+1,1)))&(endloopHs == 0) 
        c=2; 
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        H1=(Ur-Hs(i,1))/(Hs(i+1,1)-Hs(i,1))*(Hs(i+1,c)-
Hs(i,c))+Hs(i,c); 
        c=3; 
        H2=(Ur-Hs(i,1))/(Hs(i+1,1)-Hs(i,1))*(Hs(i+1,c)-
Hs(i,c))+Hs(i,c); 
        c=4; 
        H3=(Ur-Hs(i,1))/(Hs(i+1,1)-Hs(i,1))*(Hs(i+1,c)-
Hs(i,c))+Hs(i,c); 
        c=5; 
        H4=(Ur-Hs(i,1))/(Hs(i+1,1)-Hs(i,1))*(Hs(i+1,c)-
Hs(i,c))+Hs(i,c); 
        endloopHs=1; 
    end  
end
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APPENDIX C 
C.1 Calculation of Side-Span Profile 
The figure shows a schematic sketch for the side-span cable profile. There points are 
known on the profile, and none of them are necessarily at the vertex. The following is the 
procedure taken to find the polynomial function (aX^2+bX+c) of the profile, assuming 
that the coordinate system is at one of the given points. The axes are then transformed to 
vertex and the final profile equation is found 
1.4  Find the profile with respect to point 1 (x0, 173.04) 

Vmat

0

5502

11002

0

550

1100

1

1

1

⎛
⎜
⎜
⎜
⎝

⎞

⎟

⎠

:=  Yvect

173.04

296.826

507.04

⎛
⎜
⎜
⎝

⎞

⎠
:=   ,  

Solve for the polynomial coefficients Y

Coeff Vmat 1− Yvect⋅:=  

Coeff

.14285619834710743801e-3

.14649454545454545457

173.04

⎛
⎜
⎜
⎝

⎞

⎠
→  (x0+550, 216.254) 

(x0, 173.04)

(x0+1100, 507.04) 

X x0
Then the vertex of the polynomial is at x 

Shift x-axis 

x0
Coeff1−

2 Coeff0⋅
:=  x0 512.73429906974591578−→  

y Coeff0 x + x0( )2
⋅ Coeff1 x x0+( )⋅+ Coeff2+:=

135.4836109594113018

 x

y

y simplify .14285619834710743801e-3x2
⋅ .13767288638859384044e-20x⋅+ 135.4836109594113018+→  

Shift y-axis 

y 8−:= y

x

 

Therefore the side-span cable profile is expressed as follows, 

y .14285619834710743801e-3 2
⋅:= x  

Which equal to that of the main-span 
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C.2 Derivation of Equations 5.19 coefficients 
Mathcad is used to find the complex polynomial of the coefficient matrix of the flutter 
condition equation. The real and imaginary coefficients are then separated. 
  

 
 

 

X

Ω
2

− 2 i⋅ ζh⋅ Ω⋅+ 1+
Ω

2

2 γm⋅
H4 i H1⋅+( )⋅−

⎡
⎢
⎣

⎤
⎥
⎦

Ca− Ω
2

⋅

2 γI⋅
A4 i A1⋅+( )⋅

Ch− Ω
2

⋅

2 γm⋅
H3 i H2⋅+( )⋅

Ω
2

− 2 i⋅ ζa⋅ γw⋅ Ω⋅+ γw
2

+
Ω

2

2 γI⋅
A3 i A2⋅+( )⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⎡⎢
⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥
⎥⎦

:=

ζh

X

 

:=DX X  

 

 
 

 
 

DX coeffs Ω,

γw
2

2 i ζa γw⋅⋅⋅ 2 i ζh γw
2

⋅⋅⋅+

1−
2 γI⋅

A3⋅ 1− γw
2

−
1

2 γm⋅
H4 γw

2
⋅⋅−

1
2

i
γI

A2⋅⋅−
1
2

i
γm

H1 γw
2

⋅⋅⋅− 4 ζh ζa γw⋅⋅⋅−

2−( ) i ζh⋅⋅
i
γI

ζh A3⋅⋅− 2 i ζa γw⋅⋅⋅−
i
γm

H4 ζa γw⋅⋅⋅−
1
γm

H1 ζa γw⋅⋅⋅+
1
γI

ζh A2⋅⋅+

1
2 γm⋅

H4⋅
1

2 γI⋅
A3⋅+

1
2

i
γI

A2⋅⋅
1
4

i
γm γI⋅

Ch Ca H2 A4⋅⋅⋅⋅⋅−
1

4 γm γI⋅⋅
Ch Ca H3 A4⋅⋅⋅⋅−+

1
4 γm γI⋅⋅

Ch Ca H2 A1⋅⋅⋅⋅+
1
2

i
γm

H1⋅⋅+
1

4 γm γI⋅⋅
H4 A3⋅⋅

1
4 γm γI⋅⋅

H1 A2⋅⋅−+
1
4

i
γm γI⋅

H1 A3⋅⋅⋅
1
4

i
γm γI⋅

Ch Ca H3 A1⋅⋅⋅⋅⋅−+
1
4

i
γm γI⋅

H4 A2⋅⋅⋅+ 1+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→
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APPENDIX D 
MISCELLANIES CALCULATIONS 

 

D.1 Calculations of the Grate Opening Ratio of Tacoma 
Narrows Bridge: 
 
The following calculation estimates the opening ratio (OR) of the grates of the Second 
Tacoma Narrows Bridge. 
 

 

Figure D.1: The Second Tacoma Narrows Bridge Grates 
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APPENDIX E 
PARAMETERS FOR AEROELASTICITY 
E.1 Wind Characteristics 

In aerodynamic analysis the wind parameters are calculated based on spatial 

considerations. The environment surrounding the structure has considerable effects on the 

atmospheric boundary layer. Wind flow becomes turbulent and nonlinear with space and 

time. This is due to several factors, such as friction with the terrain, temperature 

variations between the air at terrain level and that of higher altitudes, and the difference 

in pressure from one zone to another. 

 

Wind boundary layer is described by exponential profile of the mean wind speed and 

a variable component of the turbulent speed. There is no clear formulation to simulate the 

turbulent component of wind speed and stochastic method based on random functions 

which are used to generate this component analytically. 

 

For certain regions the average temperature, pressure and surface roughness are used 

to generate the shape of the boundary layer.  This is important for slender vertical 

structures such as high-raised buildings and towers. In suspension bridges, however, 

averaged values at the elevation of the superstructure are sufficiently acceptable to 

calculated wind characteristics, unless wind effects on the main towers is required. 

 

Averaged wind parameters are calculated in the following section. Most of these 

parameters, such as viscosity and density of air, are required for the fluid-structure-

interaction finite element analysis. For the classical flutter analysis, density of air is the 
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only wind variable required, and the interaction between the structure and the laminar 

wind flow is depicted by other coefficients determined experimentally, as described in 

Chapter 6. 

 

Another important wind parameter is the maximum averaged expected wind speed for 

a given number year return period at the structure site. This value is extracted using 

statistical methods, where the collected wind data is fitted to a cumulative density 

function.  The wind speed corresponding to a certain probability of occurrence is then can 

be obtained. 

 

The following is a brief discussion for the wind parameters and the methods used to 

numerically evaluate them for a given the bridge. 

 

 

E.1.1 Estimating Wind Parameters 
The number of air molecules in a micrometer is 2.5x1010 molecules, at sea level and 

standard temperature. In other words, the mean free path between molecules is 6.6x10-8 

meter. Therefore, wind within the atmospheric layer is considered continuum (Bertin, 

2002). This allows the gross behavior of air motion to be described using macroscopic 

properties, such as density, viscosity and temperature. 

 

Generally speaking, fluid is described by the following variables, namely, density, 

viscosity, specific heat at constant pressure, specific heat at constant volume, thermal 
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conductivity, rate of heat generated per unit volume, thermal expansion coefficient and 

bulk modulus of elasticity. However, in incompressible flows, with inconsiderable heat 

transfer, all the above mention parameters are ignored, except density and viscosity. Bulk 

modulus of elasticity is assumed very large, and specific heat at constant volume is 

assumed to be equal to the specific heat at constant pressure. 

 

The mentioned variables could be constants, time-dependent, temperature-dependent, 

deformation-dependent or a combination of these conditions. Although the constant 

material model is the simplest, it is the most applicable in civil engineering problems. 

Wind properties within few hundred feet above the ground could be considered constant. 

According to the U.S. Standard Atmosphere, 1976, the change in air density, between the 

ground surface and that at 2000 ft elevation above the ground level is less than 5% when 

the change in viscosity is less than 3% and  the change in pressure is less than 8%, see 

Bertin J, 2002.  

 

Air properties could be measured in several units based on the different unit systems. 

However, in computational fluid dynamics standard units are used, due to its standard 

definition. Temperature, in fluid mechanics, is usually measured in Kelvin (K), rather 

than Celsius or Fahrenheit. Kelvin is more appropriate temperature unit than the others 

since it is derived based on molecular motion. Air pressure is traditionally measured 

using standard atmospheric pressure units, which is based on mercury column length. 

However, in computational fluid dynamics it is more appropriate to use the force per unit 

area unit. The standard atmospheric pressure at sea level is 1.101325x105 N/m2. 
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Density of air does not have a unique value. Air continuum changes with respect to 

temperature and pressure. Therefore the mass per unit volume is a function of pressure 

and temperature. The equation of state of thermally perfect gases could be used to 

express the density of air as given by: 

 

RT
pρ =  

E.1

 

Where p is the pressure (N/m2), R is the gas constant, which is equal to 287.05 

N.m/kg.K in SI units, and T is the temperature in (K). Note that in fluid-structure- 

interaction analysis, pressure around the solid body changes due the motion of the solid 

body. However, the change in pressure between two points in the fluid flow is negligible 

compared to the absolute pressure value. Bertin J., 2002, suggests that the assumption of 

constant density is a valid approximation for velocities below 100 m/s (223 mph), which 

is higher than the maximum possible wind speed on structures. 

 

Viscosity is measured by coefficient of, µ, which is the ratio of the shear stress 

developed by the flow to the transverse gradient of velocity. Viscosity represents the 

transport of momentum in the direction of the velocity gradient. All fluids have viscosity, 

but not all flows are viscous.  
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For temperatures less than 3000 K, the coefficient of viscosity of air is independent of 

pressures (see Svehla 1962), and could be related to temperature only, using Sutherland’s 

equation: 

 

E.2
4.110

10458.1
5.1

6

+
×= −

T
Tµ   

where T is the temperature in Kelvin and µ is the coefficient of viscosity (kg/s.m). 

 

The ratio of the viscosity to the density is defined as the kinematic viscosity, ν, which 

is measured in square meter per second is given by: 

 

E.3
ρ
µν =  

 

The thermal conductivity of air is frequently used in turbulent flow models. It could 

be expressed in terms of temperature as flows: 

E.4
112

1076.4
5.1

4

+
×= −

T
Tk   

where k is in cal/m.s.K, and T is the temperature in Kelvin. The conductivity is also 

computed in J/m.s.K, where1 cal is 4.187 J (Bertin, 2002). 

 

Another property of air is the speed of sound, which reflects the disturbance of 

infinitesimal proportions propagating through fluid at rest. Generally, the speed of sound, 

a, is given: 
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E.5RTa γ=  

 

where γ is the ratio of specific heats (Cp/Cv = 1.4 for perfect gas), R is the gas 

constant and T is the temperature. Therefore for air the speed of sound (m/s) is 

Ta 047.20= , where T is in Kelvin. For a standard temperature the speed of sound is 

around (346.1 m/s).  It is suggested that air flow could be considered incompressible if its 

speed is less than 0.3 Mach (103 m/s or 230 mph), see Wanderley and Levi, 2002. 

 

Wind properties, as shown in the above equations, are mainly a function of 

temperature and pressure. These two variables are not deterministic and are considered 

stochastic variables. However, ignoring the variability in wind properties is accepted in 

this research, since the extreme values of wind speed are required and the critical flutter 

condition is to be evaluated, rather then a reliability assessment. Moreover, the variation 

in wind properties between 37 °F and 100 °F is around 20%. If the mean value of this 

temperature interval is considered then the variation would be around ±10%. Therefore, 

temperature and pressure will be assumed constants and air density and viscosity will be 

estimated accordingly as deterministic value. The pressure and temperature are assumed 

based on the average metrological measurements in the Tacoma area in months of 

maximum wind speed. 

 

The following table summarizes average values of air properties that will be used for 

analysis in this research. 
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Table E.1: Air parameters 

T 20 68 °C °F 
ρ 1.2 kg/m^3 4.335e-5 lb/in^3 

lbf.s/in^2 1.814e-5 kg/s.m = Pa.s 2.631e-4 µ 
a 346.123 m/s 1.363e-4 in/s 

 

 

E.2 Flat Plate Aerodynamics 
The Theodorsen function is derived from the basic principles of potential flow theory, 

where the expressions of the aerodynamic left and the moment forces are linear in the 

vertical and the torsional degrees-of-freedom and their first and second derivatives. The 

aerodynamic coefficients of this expression are defined in terms of two theoretical 

functions F(k) and G(k), where k is half of the reduced frequency, K, which equals to 

Bω/U, where B is the width of the airfoil cord, ω is the frequency of the motion and U is 

the average laminar wind speed. The Therodorsen aerodynamic coefficient C(k) is 

described as follows, 

)()()( kiGkFkC += , where 
 

( ) (
( ) (
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)2011
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1001)(
JYYYJ

YYJJkG
−++

+
=  

J0, J1, Y0 and Y1 are the Bessel functions, which are canonical solutions y(x) of 

Bessel's differential equation. 

 

The theoretical expressions for sinusoidally oscillating lift and moment on a flat plate 

airfoil are, respectively:  
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where, k and U are as defined above, ρ is the wind density, b is half of the length of 

the airfoil cord (B), a is the distance from the mid-chord to the rotation point and h and α 

are vertical and angular displacement, respectively. The dot and the double dots, appear 

over α and h, are the first and second derivative with time, that is, velocity and 

acceleration, respectively. 

 

For bluff bodies, and suspension bridge decks, a different expression is suggested. 

The expression is discussed in Chapter 6. In the expression of the aerodynamic forces of 

bluff bodies, displacement and velocity terms of each degree-of-freedom are correlated to 

separate aerodynamic coefficients. The above equations are equated to the aerodynamic 

forces of suspension bridges, and an equivalent expression to the flat plate aerodynamic 

forces, is obtained by evaluating the aerodynamic coefficients of the bluff body 

correspondingly. These coefficients are expressed in Chapter 5. 
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