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RELATIONSHIPS BETWEEN COMMUNITY, INTERACTIONS, AND WAYS OF 

KNOWING IN COLLEGE PRECALCULUS CLASSES 

 
Abstract 

 
 

by Jacqueline Rene Coomes, Ph.D. 
Washington State University 

December 2006 
 

Chair: Amy Roth McDuffie 
 

National standards for learning mathematics increasingly emphasize learning 

mathematics with understanding and students as agents of their own and others’ understanding. 

However, students may have limited experiences as agents of their own and others’ 

understanding, while classroom community and interactions may either foster or constrain roles 

and behaviors that could contribute to more connected, independent, and contextual knowing. 

This study examined the relationship between students’ ways of knowing in college precalculus 

classes and factors related to classroom social norms, instructor and student roles, and 

interactions related to mathematical activity.  

A qualitative two-case study approach was used to describe and analyze the development 

and nature of classroom community and interactions in two small community college classes 

during an eight-week summer quarter. Using Baxter Magolda’s (1992) framework for 

development of students’ ways of knowing in college, factors that were found to maintain 

students as absolute knowers included students’ expectations of their roles, their entering 

perceptions of mathematics and learning mathematics, and the maintenance of instructor and 

student roles that placed mathematical and intermediate authority with the instructors. Factors 
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that showed evidence of challenging students’ absolute ways of knowing included instructors’ 

explicit emphasis on understanding concepts, inclusion of real-life uses of mathematics, and 

portrayal of mathematics as uncertain. In addition, students’ ways of knowing appeared to affect 

their perception of what they meant when they claimed a mathematical idea made sense.  

The discussion includes a framework classifying evidence of students’ ways of knowing 

and evidence of constraints and affordances in instruction. When instructors and students are at 

the same level, students’ ways of knowing are maintained. However, when instruction is 

provided at levels higher than students evidence, it confirms and challenges students’ ways of 

knowing. Suggestions for supporting and challenging students’ growth as learners are included. 
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Chapter One: Introduction 

Influenced by constructivist theories of learning, national standards for teaching and 

learning mathematics emphasize the importance of fostering learning environments that 

encourage students’ sense-making (American Mathematical Association of Two Year Colleges 

[AMATYC], 1995; National Council of Teachers of Mathematics [NCTM], 1991). In particular, 

students may develop dispositions to become agents of understanding mathematics and persevere 

in solving problems in classroom communities where their mathematical ideas are valued and 

opportunities they have to listen to and respond to the ideas of others (NCTM, 1991). The 

purpose of this research was to examine the development and nature of community and 

interactions in two small community college precalculus classes, to understand the factors related 

to community and interaction that supported or constrained students’ roles in mathematical 

sense-making, and to understand how students’ ways of knowing were related to these factors. 

The first chapter of this dissertation lays the foundation for the study by providing 

background on students’ ways of knowing mathematics and characteristics of community and 

classroom interaction that influence students’ ways of knowing mathematics. I also discuss work 

experiences that aroused my interest in this topic. The second chapter reviews and synthesizes 

the literature related to learning mathematics, community, interactions, and students’ ways of 

knowing. The third chapter details the methods used to answer the research questions while the 

fourth and fifth chapters explicate the findings of the two cases. The final chapter discusses the 

findings in light of the questions. 

Ways of Knowing 

Hiebert et al. (1997) described “sense-making,” or learning mathematics with 

understanding as “… getting inside it and seeing how things work, how things are related to each 

 1



 

other, and why they work like they do” (p. 2). The authors added that to learn with understanding 

students need to reflect on their experiences and communicate; reflection provides opportunities 

for making connections between ideas, while communication includes sharing their ideas and 

critically listening to others’ ideas. By reflecting on and sharing their mathematical ideas, 

students become agents of their own and others’ understanding. 

However, some students may not know how to learn mathematics by sharing their ideas, 

listening to, and challenging others’ ideas. Their assumptions about the nature and certainty of 

knowledge may encourage them to be received knowers, learners who believe the teacher has 

knowledge and students’ roles are to gain it from them (Baxter Magolda, 1992; Belenky, 

Clinchy, Goldberger, and Tarule, 1997; Boaler & Greeno, 2000). To a received knower, the goal 

of learning is to “receive, retain, and return the words of authorities” (Belenky et al., p. 39). 

Consequently, they strive to memorize procedures without understanding. 

Baxter Magolda (1992) developed a hierarchy of college students’ ways of knowing, 

ranging from absolute knowers who believed all knowledge was certain and could be gained 

from authorities, to contextual knowers who believed knowledge was uncertain but that 

judgments could be made based on context. Contextual knowing is consistent with learning with 

understanding since students are expected to discuss and compare ideas, compare and evaluate 

solution processes, and authority rests with making sense rather than a declaration of right or 

wrong by the teacher. 

Community 

In their study of high school AP Calculus students in California, Boaler and Greeno 

(2000) found many students still experienced mathematics in traditional classrooms where the 

teacher was the only one who talked and students were not asked to make meaning or 
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connections. Students in these classrooms believed that mathematics must be learned this way 

and avoided pursuing higher mathematics because it did not fit their identities as agents of their 

own understanding. In these didactic classroom communities, social norms afforded students 

only a passive role in learning, relationships between members of the class were not valued, and 

students believed that mathematics was a rigid set of procedures that must be learned by 

memorization. Their ways of knowing mathematics were as receivers of knowledge from 

authoritative sources such as the teacher and textbook (Boaler & Greeno). 

In contrast, students in discussion-oriented classes were more likely to want to continue 

in mathematics because being agents of their own understanding fit their developing identities 

and they valued the relationships that formed in their classroom communities (Boaler & Greeno, 

2000). The social norms and values of the discussion-oriented classes offered students active 

roles in learning mathematics, mathematical authority resided in their own sense-making, and 

students believed mathematics was supposed to make sense as they constructed understanding 

supported by interactions with others in their class.  

However, Boaler and Greeno (2000) used only student interviews; they did not observe 

the classes to look for students in the didactic classes who explored and made connections 

independent of the teacher, understanding the mathematics through their own sense-making. Nor 

did they observe to determine if the teachers emphasized understanding concepts and making 

connections rather than memorization of procedures without understanding. Likewise, 

observations might have revealed students in the discussion-based classes who were dependent 

on received knowledge, writing down what others produced during group work and listening for 

what they would need to memorize during class discussions.  
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Interaction 

The Professional Standards for Teaching Mathematics (NCTM, 1991) elaborates on both  

teacher and student roles in discourse. Specifically, teachers should ask questions and orchestrate 

classroom discussions so that students offer their thinking, clarify their ideas, make conjectures, 

and listen to others. The questions teachers ask should elicit and challenge student thinking 

(NCTM, 1991). While examining student learning in an inquiry-based classroom, Yackel and 

Cobb (1996) examined the nature of discourse and social norms and developed the concept of 

sociomathematical norms, a type of social norm that relates to the evaluation of mathematical 

activity. Sociomathematical norms influence the types of discourse by focusing discussion on 

mathematical sense-making. 

The contrast between social norms and sociomathematical norms can be demonstrated in 

the way students provide an explanation. In any class students should be expected to explain 

their reasoning, a social norm. However, what constitutes an acceptable mathematical 

explanation is a sociomathematical norm (Yackel & Cobb, 1996). In the classroom studied by 

Yackel and Cobb, explanations had to describe actions on experientially real mathematical 

objects. For example, when one student explained how to add 12 and 13 by offering, “One plus 

one is two, and 3 plus 2 is 5” (p. 470), other students quickly challenged the procedural 

explanation and pointed out that the ones were tens and when they were added, totaled twenty. 

The mathematical objects in this case were the tens and ones.  

In contrast, Kazemi and Stipek (2001) gave examples of elementary school teachers who 

accepted procedural explanations. To model what she expected, one of the teachers shared a 

student’s explanation with the class, “First there were eight people and three brownies. We 

divided two brownies in fourths, and each person got ¼. And we divided the last one into 

 4



 

eighths, and we gave each person a fourth and an eighth” (p. 69). The sociomathematical norms 

of this classroom did not create an expectation that students should provide reasons why they 

divided the brownies the way they did (Kazemi & Stipek).   

Sociomathematical norms support communication that focuses students’ attention on 

mathematical concepts and provides occasion for them to continue thinking (Cobb, Boufi, 

McClain, & Whitenack, 1997). Brendefur and Frykholm (2000) distinguished types of 

communication as either supported by social norms or supported by sociomathematical norms. 

They suggested that social norms support the teacher as mathematical authority and transmitter 

of understanding, and contrast this idea with sociomathematical norms that support students’ 

agency as the source of their ways of knowing. Low levels of communication are characterized 

by teachers posing closed questions and students sharing solutions without deeper explorations, 

while high levels of communication are characterized by students listening to and exploring each 

other’s ideas. High levels of communication modify and illuminate students’ thinking (Brendefur 

& Frykholm).  

Problem Statement 

My university colleagues and I work to establish classrooms as communities where 

students explore, make conjectures, share their ideas, reflect on others’ ideas, and are expected to 

become agents of their own understanding. However, I have heard comments from our students 

such as, “The teacher makes it too hard; it doesn’t have to be that hard” and, “He doesn’t have to 

turn everything into a question; sometimes he could just tell us.” Another colleague related a 

story about a recent incident in class where, in response to a student’s question, she asked the 

class, “Well, what do you think?” A student at the back firmly said, “What do YOU think? We 

want to know what YOU think.” Clearly, not all college mathematics students value 
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opportunities to become agents of their own understanding, to explore and persevere, or to reflect 

on other students’ ideas.  

In another example, I watched a videotape of a graduate instructor teaching a small 

intermediate algebra class. While the graduate instructor was a relatively inexperienced teacher, 

she had incorporated good questioning and group work into her lessons. During this lesson, 

several of her questions were posed to initiate a high level of communication, and the problems 

on the group work handout were also at a high level. She had excellent wait time and looked 

around the room attempting to make eye contact with all the students. However, in spite of the 

level of the questions, very few students interacted at the level intended. After each question and 

a period of silence, a student contributed explanations that would indicate sense-making and 

satisfy Yackel and Cobb’s (1996) sociomathematical norm of what constitutes a good 

explanation. However, the same person answered each time and I believe he and a couple of 

other students were the only ones who benefited from the exchanges. When given the group 

work, all students except one pair worked alone while the instructor circulated and asked and 

answered questions. Most of the students’ questions were procedural. It was clear some students 

were not striving to understand how the procedure connected to the concept, although the teacher 

tried to direct their attention and ask for meaning. On occasion, she finally gave them a 

procedure.  

So, while teachers strive to create communities and interactions in which learners act as 

agents of their own and others’ understanding, their efforts frustrate some students. To avoid 

student frustration, when students seem unable to understand, a teacher may compromise their 

intentions for conceptual learning so the students can successfully complete the work (Confrey, 

1990). However, I have seen significant change in some students’ approaches over a term and 
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believe factors related to community and interaction can influence students’ willingness to make 

sense.  

Overview of the Study 

In order to describe and understand components of classroom community such as social 

norms, roles, and interactions, meaning and context are important and thus, a qualitative two-

case study design was employed (Merriam, 1998). In particular, an interpretivist perspective that 

coordinates interactionism with social constructivism was used to examine both interactions 

within the classroom and individual student responses (Cobb & Yackel, 1995). Interactionism 

was used to analyze the processes of joint meaning-making during classroom interaction, while 

social constructivism was used to analyze student interpretations (Cobb & Yackel).  

The setting for the study consisted of two small precalculus classes in community 

colleges in a medium-sized city in the northwest United States. Since precalculus courses are the 

first college-level mathematics courses for most students majoring in science, mathematics, or 

technology, understanding and being able to apply the concepts will impact further success. 

Precalculus classes will offer more variety in students’ responses than higher-level classes where 

students have successfully completed several mathematics classes. Since one goal of this study 

was to understand how community and interactions develop, instructors who seemed motivated 

to teach for understanding and who were reported to foster interactive classrooms were selected.  

Research Questions 

The research described and analyzed the nature of classroom community and interactions 

and the relationship of these factors to students’ ways of knowing. I employed a two-case study 

design to explore the development and continued negotiation of these characteristics in the 
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context of two small precalculus classes in community colleges. Specific questions guided the 

research: 

1. In the classes under study, what is the nature of the classroom community and how does 

it develop?  

2. In the classes under study, what is the nature of the instructors’ and students’ interactions 

related to mathematical activity? 

Significance of the Research 

Previous research presented evidence of the connection between community, interactions, 

and students’ ways of knowing. Boaler and Greeno (2000) described didactic and discussion-

based classroom communities, but did not observe the classes and did not describe how specific 

factors within the community develop, teacher purposes for fostering aspects of community, or 

students roles in its development. Specifically, Boaler and Greeno posited that the community 

affected students’ ways of knowing, but did not explore whether students’ current ways of 

knowing affected the community. Nor did they observe to discern the specific factors of 

community that affected students’ ways of knowing. Similarly, researchers have explicated the 

negotiation of sociomathematical norms in college classrooms, but in courses at a higher level 

than introductory college mathematics (Rasmussen, Yackel, & King, 2003; Yackel & 

Rasmussen, 2002). Instructors may initiate norms and interactions intending to support students’ 

sense-making, but college freshmen have had many years of experience learning mathematics 

and respond to opportunities to make sense of mathematics in a variety of ways. Some may 

continue to try to memorize procedures without making connections to concepts, while others 

seek to make connections. This study aids our understanding of how students respond to 

constraints and affordances to make sense of the mathematics they are learning. 
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The next chapter presents current theories of learning mathematics and the research 

literature related to learning precalculus, classroom communities, the nature of interactions, and 

students’ ways of knowing. The third chapter details the methods used in the study.  
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Chapter Two: Literature Review 

 This chapter contains a discussion of current theories of learning mathematics and 

describes existing research concerning student learning of precalculus concepts. In addition, it 

presents literature on aspects of the classroom community such as social norms and roles, 

interactions, and ways of knowing.  

Learning Mathematics 
 

Current student-centered theories of learning mathematics generally fall into one of two 

categories, constructivist and sociocultural, although there are variations within each of these 

categories that differ in their emphases. Cobb (2000) distinguishes between the extremes of these 

two categories: 

A key issue that differentiates these positions is the relationship between individual 

psychological processes and classroom social processes. At one extreme, researchers who 

take a strong psychological perspective acknowledge the influence of social interaction, 

but treat it as a source of perturbations for otherwise autonomous conceptual 

development…At the other extreme, sociocultural approaches in the Vygotskian tradition 

tend to elevate social processes above psychological processes. For example, it is argued 

in some formulations that the qualities of students’ mathematical thinking are generated 

by or derived from the organizational features of the social activities in which they 

participated [italics in original]. (van Oers, 1996, p. 309) 

Although there are variations of constructivism, most tenets of constructivism are 

attributed to Piaget and accept that students actively construct their mathematical knowledge 

(Cobb, 1988). In addition, Piaget’s constructs of assimilation and accommodation account for 

learning when new knowledge must be integrated into existing cognitive structures or when 

 10



 

existing structures need to be reorganized or expanded before new knowledge is integrated 

(Herscovics, 1996). Ernest (1996) provided the following list of ideas valued by mathematics 

educators subscribing to constructivism: 

1. Sensitivity toward and attentiveness to the learner’s previous constructions. 

2. “Diagnostic” teaching attempting to remedy learner errors and misconceptions, with 

perturbation and cognitive conflict techniques as part of this. 

3. Attention to metacognition and strategic self-regulation by learners. 

4. The use of multiple representations of mathematical concepts. 

5. Awareness of goals for the learner, and the dichotomy between learner and teacher 

goals. 

6. Awareness of the importance of social contexts. (p. 346) 

In contrast, sociocultural theorists differ from constructivists in their beliefs about the 

nature of mathematics and of learning mathematics. Van Oers (1996) describes mathematics as 

existing in formal and informal practices, and learning mathematics as enculturation, or “pupils’ 

and teachers’ pursuit of making sense of mathematics as it is embodied in various practices in the 

surrounding world” (p. 91). Vygotsky, the originator of many current sociocultural theories, 

argued that conceptual development is influenced primarily by social interactions and semiotic 

mediation (Cobb et al., 1997). Students use symbols such as written and oral language to think 

and their thinking is both enabled and constrained by their culture and the available symbols 

(Forman, 1989). Forman (2003) characterized culture as the relationships, motives, beliefs, 

norms, goals and values of the members, and asserted that certain higher mental functions 

necessary for learning mathematics such as selective attention, voluntary memory, and logical 

reasoning, are social processes.  
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While discussing the differences between radical constructivism, social constructivism, 

and sociocultural theories of learning, Confrey (1995) suggested that an alternative incorporating 

the constructivism and sociocultural theories might be possible. Cobb and Yackel (1995) 

developed such a theory, a type of social constructivism they called the emergent theory. This 

theory coordinates rather than combines sociocultural theories and constructivist theories of 

learning by examining the social interaction in classroom communities, the mathematical 

development of the community, and students’ individual mathematical constructions (Cobb & 

Yackel). I used the emergent perspective to guide the design of the current study. 

Numerous mathematics educators have described the nature of students’ mathematical 

knowledge. Skemp (1987) categorized mathematics learning as instrumental or relational. A 

student who knows what they are doing and why has relational knowledge, while a student who 

applies rules and procedures without understanding why has instrumental knowledge. 

Instrumental knowing is still a common form of knowing mathematics in the United States. For 

example, in their study of AP Calculus students in California, Boaler and Greeno (2000) 

reported, “The majority of students interviewed from the traditional classes reported that the goal 

of their learning activity was for them to memorize the different procedures they met” (p. 181).  

Instruction may be designed to encourage relational knowing or instrumental knowing. 

Pesek and Kirshner (2000) compared a group of students who received relational only instruction 

(R-O) on area and perimeter with a group of students who received instrumental instruction 

before relational instruction (I-R). The R-O instruction was designed to encourage students to 

construct their own ways of finding area and perimeter, while the instrumental instruction 

focused on memorizing and applying the formulas. Although the I-R group received more time 

in instruction overall, the instrumental learning appeared to interfere with their ability to learn 
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relationally. Specifically, none of the I-R group could correctly explain why the formulas for the 

area of a rectangle or triangle worked, while the majority of students interviewed from the R-O 

group were able to give correct reasons. When solving problems, students in the R-O group used 

conceptual and flexible methods while students from the I-R group relied on the formulas they 

had memorized. The authors concluded that memorized procedures interfered with the 

development of relational understanding, and that teaching for relational understanding only took 

less class time than teaching formulas and procedures, followed by understanding.  

Instrumental teaching is the predominant form of teaching in the United States according 

to Smith (1996) who synthesized literature on teaching and learning mathematics and 

characterized teaching mathematics as demonstrating procedures and learning mathematics as 

practicing the steps shown by the teacher. In particular, he stated, “The answers to all 

mathematical problems are known and found in textbooks. Teachers who control and interpret 

texts are the intermediate authorities for students on mathematical truths” (p. 391). 

In contrast, Confrey (1990) suggested that constructivism imposes a duty on the teacher 

to promote powerful and effective constructions that she characterized as: 

1. A structure with a measure of internal consistency; 

2. An integration across a variety of concepts; 

3. A convergence among multiple forms and contexts of representation; 

4. An ability to be reflected on and described; 

5. An historic continuity; 

6. Ties into various symbol systems; 

7. An agreement with experts; 

8. A potential to act as a tool for further constructions; 
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9. A guide for future actions; and  

10. An ability to be justified and defended. (p. 111) 

In addition, she added that students often use only the seventh characteristic, agreement with the 

experts, by asking their teachers to determine if their work is correct. After considering current 

theories of learning mathematics, since the classes under study were focused on precalculus 

topics, it was also important to consider research on students’ learning of functions. 

Learning Precalculus 

The content included in the precalculus courses of this study included polynomial, 

rational, exponential, logarithmic, and trigonometric functions, systems of equations and matrix 

solutions, and graphs of polynomial functions. The students previously studied intermediate 

algebra, including simplifying and solving expressions and equations, and have had experience 

with functions and graphing. This section will review the research concerning the nature of 

students’ understandings of the main topic of precalculus, functions. 

 Researchers have found intuitions to be an important factor in student’s understanding of 

functions (Dreyfus & Eisenberg, 1983; Petitto, 1979). Leinhardt, Zaslavsky, and Stein (1990) 

describe intuitions as notions built through experiences before formal instruction. Dreyfus and 

Eisenberg studied college students’ intuitions about linearity, differentiability, and periodicity. 

Their findings suggested that students visualized function information when it was given 

graphically, but not when it was given algebraically. Petitto examined student strategies for 

solving rational equations and found some students relied on intuition while others relied solely 

on formal algorithms regardless of which approach was more efficient. The results suggested that 

mathematics educators must distinguish between intuitive and formal thinking and that either 

type of thinking alone is inferior to their combined and coordinated use. Many of the students in 
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Petitto’s study had no idea that their previous knowledge should inform their algebraic 

manipulations while others lacked the necessary understanding of the structure of the arithmetic 

operations they performed to be able to use them in algebraic operations.  

 Sfard (1992) characterized students’ conceptions of functions as structural or operational. 

At an operational level, students perceive an algebraic entity only as a process and tend to be 

limited to procedural actions, while conceptions at a structural level allow students to perceive 

and act on an algebraic entity as an object. Operational conceptions precede structural 

conceptions, but once students hold a structural conception, they can perceive functions as 

processes and flexibly move between the conceptions as necessary. Sfard found that some 

students tended to develop pseudostructural conceptions, that is, identify a function as a formula 

without meaning anything else, or consider a graph and its equation without connecting the two 

representations.  

Dubinsky and Harel (1992) examined the change in students’ process conceptions of 

functions in a study involving undergraduates in a discrete mathematics class. The researchers 

presented students with relations in a variety of representations, asked them to determine if they 

were functions and to explain their answers. The researchers described some students’ notions of 

functions as action conceptions, that is, they were limited to unconnected manipulations. 

Similarly, Carlson and Oehrtman (2005) interviewed over 40 precalculus students and those who 

consistently discussed functions as entities that accepted inputs and produced outputs 

successfully reasoned through a variety of function-related tasks while students who provided 

incorrect responses appeared to be applying memorized procedures. 

Researchers have found several common difficulties students have with functions, some 

of which can be traced to concept images formed from early experiences with functions. A 
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concept image is the set of all mental pictures and properties a person associates with the concept 

(Vinner, 1983). For example, one difficulty identified by researchers is that some students 

believe every function must be linear (Markovits, Eylon, &  Bruckheimer, 1988). The 

researchers concluded that this concept image resulted from students experiences since many 

students’ first encounter with functions include only linear functions. Students also assumed that 

functions must be manipulable, must consist of quantities, cannot be constant, and must be 

continuous (Dubinsky & Harel, 1992; Markovits et al.).  

Vinner compared 10th and 11th grade students’ concept definitions and concept images of 

functions. The purpose of the study was to find out whether students used concept images, 

concept definitions, or both when determining whether a given relation was a function. Some 

students recalled a definition that resembled the textbook definitions they had been given, but 

many recalled incorrect definitions. Other concept images imposed properties of regularity or 

symmetry on graphs of functions and imposed one-to-oneness on functions. In addition, some 

students believed functions must be determined by rules, especially formulas given algebraically. 

Confrey and Smith (1995) suggested students’ correspondence image of functions, functions 

given as algebraic rules, results from the domination of this approach to functions in curricula. 

As an alternative, Confrey and Smith suggested an approach in which students examine how 

sequences of the independent and dependent variables relate and change. Referred to as 

covariation, students focus on changes in number sequences in a tabular representation of a 

function. For example, with exponential functions an additive sequence of the independent 

variable results in a multiplicative sequence of the dependent variable.  

Slavit (1997) extended the object-oriented, correspondence, and covariance views of 

function, suggesting that the covariance and correspondence views were complementary and that 
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students may acquire an object-oriented view of functions by understanding properties of 

particular families of functions. He investigated students’ development of concept image of 

function based on the properties of the specific types of functions they had encountered. He 

posited that reification of function arises from property-noticing of one type of function to 

noticing whether any particular function has or does not have the property. 

Zaslavsky (1997) studied cognitive obstacles of 10th and 11th grade high school students 

and found five common obstacles that could be traced to prior learning of linear functions and 

quadratic equations. The five obstacles were: 1) The graph of a quadratic function was limited 

only to the visible part that was actually drawn. Some graphs did not indicate the y-intercept, so 

students assumed it did not have one. Some students also believed the parabola had vertical 

asymptotes; 2) Students constructed a quadratic function given its zeros and assumed the leading 

coefficient could be arbitrarily chosen. For example, they indicated that a quadratic function 

defined by one rule was the same as that defined by a constant multiple of the rule. Students 

sometimes gave quadratic equations when asked for an example of a quadratic function (cf. 

Knuth, 2000); 3) Students found the slope between two points to determine the leading 

coefficient in the general form of a quadratic function, the same procedure they used for finding 

the leading coefficient of linear functions. They also believed three points on a parabola could be 

collinear; 4) Students rejected a function as a quadratic function if the linear or constant term 

were zero; and 5) They used only the x-coordinate to determine the vertex and as a result decided 

two parabolas had the same vertex when one was a vertical translation of the other. The obstacles 

did not depend on teacher, mathematics ability, school, or time elapsed since completing the 

chapter on quadratic functions.  
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After finding that early cohorts of students had limited concept images of functions, 

Schwarz and Hershkowitz (1999) designed instruction so that ninth-grade students spent more 

time investigating a larger variety of functions and representations of functions. The curriculum 

did not offer students a definition of functions but consisted of problem situations for which they 

constructed functions. In the inquiry-based classroom students had graphing calculators and 

multirepresentational software available and could choose the representations they wanted to use 

while solving the problems. Students exposed to the new curriculum demonstrated a better 

understanding of the global attributes of functions than previous cohorts did.  

Other common problems with functions include students’ lack of understanding of the 

connections between algebraic and graphical representations of functions (Knuth, 2000; 

Markovits et al., 1988). In Knuth’s study of 284 college-prep high school students, the majority 

of students did not understand that a point is on the graph of a function if and only if it satisfies 

the corresponding equation. Students were largely unsuccessful if a translation task required 

them to use a graph to determine solutions to functions written in algebraic form. In contrast, 

researchers have found that technology can help students connect algebraic, numerical, and 

graphical forms of functions. Dugdale (1993) found that students who worked with function 

transformations in a graphical context better understood the connection between the algebraic 

and graphical representations of functions and found similar results for students using graphing 

calculators to graph trigonometric identities. In another case, Abramovich (2005) observed 

students in an inquiry-based trigonometry class. After students found four apparently different 

answers to a trigonometric equation, they were motivated to examine identities. Finding multiple 

solutions also prepared them to use technology to analyze their solutions to the equation and 

explore a generalized statement of the problem. 
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Esty (2005) reviewed applications of the concept of inverse functions and contrasted his 

results with the ways widely used precalculus texts, in sections devoted to inverse functions, 

addressed the concept. The textbooks each provided an algorithm for finding inverses 

algebraically, usually interchanging x and y, then solving for y. However, Esty determined this 

algorithm was not used in later applications or procedures involving inverse functions. Rather, 

future applications of the concept require understanding the idea of an inverse function as a 

function that reverses a process, or as a function that returns the original x’s when the original y’s 

are input. How students learn is also affected by the classroom environment. In the next section I 

describe research that examined the nature of classroom communities.    

Classroom Community 

 Traditionally, mathematics has been taught as a set of procedures to be memorized. Such 

classrooms are often characterized as “chalk and talk” classrooms; while teachers talk, students 

interact very little with each other or the teacher (Boaler, 1997; Boaler & Greeno, 2000).  Within 

the traditional communities described by Boaler and Greeno, students experienced mathematics 

as a set of procedures, disjointed from real life, and learning as “received knowing.” Students 

were not expected to discover or connect mathematical concepts on their own because 

mathematical authority belonged to the teacher and textbook. As a result, students often chose 

methods of solving problems based on non-mathematical cues from the textbook or teacher.  

Boaler and Greeno (2000) interviewed AP Calculus students in six California high 

schools and found that students in didactic classrooms believed the passive role afforded to them 

in the classrooms was the way mathematics classes were supposed to be. As a result, they did not 

strive to devise solutions and understandings beyond the procedures they were given. In many 

cases students decided they did not want to pursue mathematics further because it lacked 
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creativity and opportunities for deeper thinking; their roles as passive receivers of knowledge did 

not fit with their identities as thinking agents.  

In contrast, discussion-based classrooms are often characterized by small group and 

whole class discussions of open-ended problems as students solve problems and communicate 

their reasoning (Boaler, 1997). Angier and Povey (1999) used the metaphor of spaciousness to 

describe activities, social interactions, and mathematics within Angier’s discussion-oriented 

secondary classroom. They described spacious mathematics as characterized by open-ended 

challenging problems that allowed students to devise their own solutions and discover 

connections. The social norms of discussing solutions with classmates and finding multiple 

representations contributed to the spaciousness of mathematics. In this environment, students 

developed the confidence to correct the teacher and doubt the book, allowing authority to reside 

in students’ own understanding of the mathematics.  

 Similarly, in Boaler and Greeno’s (2000) study, students in discussion-oriented classes 

reported playing an active role in discourse by offering their understandings and solutions, which 

were used to develop understanding within the class. Students became relational agents, 

accountable for contributing to each other’s understanding. When teachers listened to and valued 

students’ ways of thinking and used this discourse to develop mathematical reasons for correct 

solutions, authority rested in mathematical reasoning and not teacher endorsement (Boaler, 1997; 

NCTM, 1991).  

However, asking questions and listening to students’ answers is not sufficient for 

relinquishing authority. Peressini and Knuth (1998) described a teacher who facilitated whole 

class discussion after giving students a task, but facilitated discussion to have students 

understand his process since he believed there was only one way to solve the problem. Teachers 
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have also been observed having students share solutions, but then not using those solutions to 

develop concepts (Stigler, Fernandez, & Yoshida, 1996). Stigler et al. concluded that teachers 

must value and use students’ contributions to foster students’ willingness to strive for sense-

making. In order to plan effectively to use student thinking, teachers must anticipate student 

thinking while they are planning and be open to student solutions that are different from their 

own. Students must be given the time to think and support to continue thinking, and how 

students think depends on their ways of knowing. 

Ways of Knowing 

Boaler (1997) and Boaler and Greeno (2000) suggested that students who learned 

mathematics in discussion-oriented and traditional classrooms have different ways of knowing 

mathematics. Boaler’s secondary mathematics students in open-approach classrooms described 

mathematics in the real world as being similar to school mathematics because they had to think 

and solve open-ended problems. In contrast, students in the traditional classrooms believed 

school mathematics was nothing like mathematics needed in the real world because they 

performed most of the procedures out of context. On examinations, traditionally taught students 

were not able to transfer their knowledge of procedures to situations that required interpretations. 

In contrast, students whose classroom practices included interpreting contexts were better able to 

interpret the situations on exams, understand mathematical relationships, and draw on 

appropriate procedures. 

Baxter Magolda (1992) interviewed university students and developed a hierarchy of 

college students’ ways of knowing, ranging from absolute knowers who believed all knowledge 

was certain and could be gained from authorities, to contextual knowers who believed 

knowledge was uncertain but that judgments could be made based on context. She built on the 
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seminal work of Perry (1970) who used interviews of college men to develop a similar scheme, 

and on Belenky et al. (1986/1997) who interviewed women, although not necessarily college 

women. Baxter Magolda found parallel tendencies for men and women.  

Baxter Magolda’s (1992) highest level of knowing, contextual knowing, is consistent 

with current recommendations by mathematics educators: students are expected to discuss and 

compare ideas, compare and evaluate solution processes, tasks should provide opportunities to 

use concepts in context, and authority rests with making sense rather than a declaration of right 

or wrong by the teacher (NCTM, 2000).  

Baxter Magolda (1992) included descriptions of several domains for each level of 

knowing, including role of the learner, role of peers, role of the instructor, evaluation, and the 

nature of knowledge. See Table 1 for descriptions of each level and corresponding roles of the 

learner, peers, and instructor. Baxter Magolda also found the majority of freshmen (68%) were 

absolute knowers, while 46% of sophomores, 11% of juniors, and 2% of seniors were absolute 

knowers. The percent of transitional knowers increased each year from 32% of freshmen to 80% 

of seniors. She found no independent knowers among freshmen and only 16% of seniors. There 

were very few contextual knowers in college: 1% of juniors and 2% of seniors, but the rate grew 

to 12% a year after college.  

Baxter Magolda (1992) suggested instructors must first teach responsively to students’ 

ways of knowing before they can help students develop more complex ways of knowing, but in 

order to advance students’ ways of knowing, instructors must contradict students’ ways of 

knowing. In fact, she gave an example of a young man who enjoyed learning from his mistakes 

in class but who noticed that the women in the class did not speak up. When he asked them why, 

they told him how they disliked learning in that way. Baxter Magolda used this as evidence that 
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teachers must balance validating students’ current ways of knowing with providing 

contradictions to their ways of knowing. That is, by demanding students adapt to a new way of 

knowing, teachers may lose opportunities to help students develop more complex ways of 

knowing.  

Baxter Magolda (1992) also introduced three principles to help students develop more 

complex ways of knowing: validate the student as a knower, situate learning in the students’ own 

experience, and define learning as jointly constructed meaning. The first principle, validate the 

student as a knower, implies that teachers must elicit and value students’ ideas so they begin to 

value their own ideas. It also implies that teachers must resist being an authority so that students 

can continue reflecting on their own ideas and the ideas of their classmates. In order to develop 

more complex ways of knowing, students must be willing to listen to other students’ refutations 

of their ideas and reflect and make judgments. However, teachers must still be willing to use 

their expertise and authority to encourage students to reflect when it appears students are not 

questioning their own and their peers’ ideas deeply enough (Baxter Magolda).  

The second principle is situating learning in the students’ own experience (Baxter 

Magolda, 1992). As part of this principle, tasks and examples should relate to students’ 

experiences whenever possible. This also implies that students should have opportunities to 

engage in mathematics during class and to discuss their experiences of doing mathematics. When 

students discuss how they thought about a problem and the false directions they took in a 

solution path rather than just relating a procedure, the experience becomes part of their story. 

Students’ reflections on their own stories may aid the development of a sense of authority 

(Baxter Magolda). This development of authorship must include an audience who listens and 

values their ideas. 
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However, Baxter Magolda (1992) mentioned that the academic content did not 

necessarily need to connect to students’ experiences. She supported this with the story of a 

teacher who came early to class to talk to students, suggesting that teacher roles such as being 

supportive and approachable were important in validating and advancing students’ ways of 

knowing. Specifically, when teachers evidenced caring attitudes and showed a willingness to be 

helpful to their students by answering questions, students tended to develop as knowers. “This 

caring attitude offers confirmation of students and their ideas and gives them a chance to know 

the professor better. Increasing recognition of the teachers’ humanness contradicts the notion that 

they and their knowledge are beyond the reach of students” (p. 274). Finally, Baxter Magolda 

suggested teachers provide opportunities for students to increasingly see knowledge as uncertain.  

Brew (2001) integrated the work of Baxter Magolda (1992) and Belenky et al. 

(1986/1997), whose framework was also used by Boaler and Greeno (2000). Brew used the 

developmental levels and domains provided by Baxter Magolda to study ways of knowing of 

women who had recently returned to school, specifically those in developmental mathematics 

classes. However, she also included another developmental level below absolute knowers, 

silence, from Belenky et al. Students exhibiting silence were often self-deprecating and did not 

believe understanding was important or possible. The difference between absolute knowing and 

silence is the extent to which students exhibiting silence depended on external authorities and 

had no voice of their own (Brew).  

 In summary, the affordances and constraints of classroom communities affect students’ 

beliefs about the nature of mathematics, students’ ways of knowing and identities as mathematics 

learners. While learning mathematics, students are learning about themselves: “both disciplinary 

knowledge and knowledge of the self co-evolve, and reflexively impact each other in their 
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development” (Middleton, Lesh, & Heger, 2003, p.406). Teachers influence students’ ways of 

knowing mathematics by creating spacious classroom communities in which they relinquish 

mathematical and intermediate authority and foster students’ ability to be active agents of their 

own and each others’ learning. While examining the nature of the community is important, it is 

paramount that the mathematical focus of the discussions and activities are considered, the 

subject of  the next section. 

Interaction Related to Mathematics 

Sociomathematical Norms 

Within spacious classroom communities, social norms, beliefs, and values help create and 

sustain types of interaction that promote conceptual and relational understanding; 

sociomathematical norms are classroom social norms that relate to evaluation of mathematical 

activity (Yackel & Cobb, 1996) and support student construction of mathematical understanding 

(Cobb et al., 1997). Because teachers are representatives of the larger mathematical community, 

their expectations are important in establishing and maintaining sociomathematical norms 

(Fraivillig, Murphy, & Fuson, 1999; Kazemi & Stipek, 2001; Yackel & Cobb, 1996). However, 

student beliefs and sociomathematical norms mutually influence each other (Kazemi & Stipek; 

Yackel & Cobb; Yackel & Rasmussen, 2002).   

Teachers may initiate a sociomathematical norm by providing feedback to students 

concerning the nature of an acceptable explanation (Kazemi & Stipek, 2001; Lampert, 1990; 

Yackel & Cobb, 1996). For example, in Kazemi and Stipek’s study of four elementary 

classrooms, teachers in high press classrooms pressed students to justify their solutions using 

mathematical concepts, while teachers in low press classrooms accepted solutions consisting of 

procedures. Sociomathematical norms in the second-grade classroom observed by Yackel and 
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Cobb required student explanations concerning actions on mathematical objects to relate to 

actions on representations of the mathematical objects. In another case, researchers found that 

students negotiated sociomathematical norms indicating acceptable justifications independent of 

the teacher. In Hershkowitz and Schwarz’s (1999) study of a middle school classroom, after two 

students entered formulas in a spreadsheet and found an answer recursively, they decided that a 

solution found inductively needed further justification. 

Simon and Blume (1996) studied the characteristics of a mathematical justification and 

developed a hierarchy of responses. In a task involving the area of a rectangle, preservice 

elementary education students justified the use of a formula by stating the formula was given by 

previous teachers. The instructor pressed students to justify mathematically and some students 

justified the formula for a particular case. When more sophisticated justifications were given, 

many students in the class were not able to distinguish how they were different and why some 

justifications were better than others. From this interaction, Simon and Blume created a 

hierarchy consisting of five levels: no justification at all, justification by authority of previous 

teachers or texts, demonstrations of particular cases, deductive reasoning in terms of specific 

cases, and deductive reasoning independent of specific cases.  

In an extension problem, the teacher asked students to make a conjecture about the area 

of the interior of a closed irregular shape. A student suggested they could use a string to measure 

the perimeter and then form the string into a rectangle; the rectangle would have the same area as 

the irregular shape. When another student gave a counterexample demonstrating that this method 

does not work in general, the other students did not give up the strategy. They did not understand 

that this counterexample refuted their hypothesis. The researchers concluded that it is very 
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difficult to change students’ strongly held beliefs about how mathematics is validated (Simon & 

Blume, 1996).  

Rasmussen, Yackel, and King (2003) contrasted acceptable explanations in two college 

differential equations classes. In one class, the teacher responded to a student’s question of how 

he found an answer by restating the rule; this justification was sufficient. In the other class, the 

teacher probed further when students offered procedural explanations, cultivating a 

sociomathematical norm that student explanations include connections to rates of change. For 

example, while investigating an equation that modeled the rate of change of a squirrel 

population, the teacher responded to a student answer with, “Tell us why you made that 

conclusion” (p. 152). The student responded with a procedural answer and the teacher continued 

to press for meaning, “and so what does that mean for us?” (p. 152). Responses from another 

student indicated students listened to each other’s explanations and the teacher’s responses, and 

contributed to the development of this sociomathematical norm.  

Similarly, Kazemi and Stipek (2001) observed teachers pressing students to make 

connections between mathematical concepts. For example, a high-press teacher in one classroom 

focused students’ attention on the mathematical differences between solutions to help students 

compare relationships among the strategies. In contrast, a teacher in a low-press classroom called 

on various students until one gave her the answer she was seeking. When a student pointed out 

that the accepted answer was equivalent to the one he gave, the teacher responded that his 

answer was not really what she was looking for. By asking all students to explore whether the 

two solutions were the same, the teacher could have used the event to initiate a norm that making 

connections between mathematical concepts is an important part of understanding mathematics 

(Kazemi & Stipek).    
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During whole-class discussions of solutions, teachers may ask students to contribute 

solutions different from those already given. A sociomathematical norm of what constitutes a 

different solution depended on how teachers and other students responded when a solution was 

offered (McClain & Cobb, 2001). Low-press teachers observed by Kazemi and Stipek (2001) 

accepted solutions that differed only superficially, but not mathematically, while high-press 

teachers directed students to explain how solutions differed. Similarly, the first-grade teacher 

observed by McClain and Cobb accepted all explanations when she requested different solutions 

early in the school year. When she decided to hold students accountable for contributing 

solutions that were different, her responses to their contributions and her notations to help her 

keep track of their contributions helped them distinguish solutions that were different. 

Afterwards, the sociomathematical norms of what counts as efficient or elegant solutions became 

easier to establish because students were listening for differences between solutions (McClain & 

Cobb). 

McClain and Cobb (2001) observed the development of a sociomathematical norm 

concerning what counts as a sophisticated solution. Sophisticated solutions are solutions that use 

a more conceptually advanced mathematical idea (Yackel & Cobb, 1996). In this class, the 

teacher initiated the norm by her response, which implicitly demonstrated greater value for one 

student’s solution than previous solutions. Other students contributed to the establishment of the 

norm by contributing solutions that could also be considered sophisticated. Lampert (1990) 

observed student use of efficient or elegant solutions without understanding them. In her fifth-

grade classroom, students used procedures offered by their peers to solve problems involving 

fractions because the procedures appeared to efficiently produce the correct answers. However, 
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Lampert insisted they use only the procedures they could connect to the representations they 

created.  

Sociomathematical norms also regulate arguments in discussion-based classrooms. High 

press teachers asked students their reasons for agreeing or disagreeing with others (Kazemi & 

Stipek, 2001), while in collaborative groups students were expected to reach a consensus through 

mathematical argumentation by listening and responding to their peers’ mathematical 

explanations (Yackel & Cobb, 1996). Cassel and Reynolds (2002) contrasted the arguments of 

two students in a second-grade classroom. One student offered her solutions, but would not listen 

to her peers’ responses to her explanation. The other student listened carefully to solutions and 

used the language of the other person as he argued. Wood (1999) suggested that student listening 

plays an important role in argumentation and that teachers can help students develop effective 

listening habits. 

Another sociomathematical norm relates to classroom responses to student errors. 

Responses that exploit the learning opportunities in errors provide students with a chance to 

change their understanding of the problem or to change strategies (Borasi, 1994; Kazemi & 

Stipek, 2001). Teachers in high press classes used student errors as an opportunity to have all 

students reinvestigate the problem (Kazemi & Stipek). Borasi suggested errors should be used as 

“springboards for inquiry” and described the use of a high school student’s solution, which the 

student believed to be wrong, to help the rest of the class understand why a unique circle could 

not be found using only two points. In addition to helping students refine their understanding of 

concepts, Borasi suggested that when students explored their errors, they gained a better 

understanding of the nature of mathematics. How students know they are in error may be guided 

by sociomathematical norms regarding mathematical representations. When investigating a 
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problem about the changing areas of rectangles, a middle school student observed by 

Hershkowitz and Schwarz (1999), reconsidered her reasoning when the graphical representation 

given by a computer contradicted her hypothesis.  

Cobb et al., (1997) described classroom discourse in which students’ mathematical 

activity subsequently became the object of discussion. In an activity of partitioning numbers, 

both the teacher’s question asking students how they knew they had all possibilities and the 

tabular record she used to keep track of their ways supported students’ reflection on their 

previous activity. Cobb et al. referred to this type of discourse as reflective discourse and 

suggested that it supported student’s mathematical disposition.  

 Similarly, a middle school teacher observed by Hershkowitz and Schwarz (1999) asked 

students to explain the process they used to develop a hypothesis concerning the maximum 

volume of a box. She then focused class discussion on the process of hypothesizing to help 

students understand that the quality of a hypothesis did not depend on whether it gave a correct 

solution, but on the reasons used to form it. The authors concluded that the discussion resulted in 

new classroom norms and affected student beliefs about mathematical objects.   

The sociomathematical norms presented above are thought to affect student learning: 

when students are expected to have a different solution than those already presented, they must 

listen to others’ explanations and compare them with their own solutions, providing an 

opportunity to reflect on their own solution and others’, a higher-level cognitive activity (Wood, 

1999; Yackel & Cobb, 1996). Discussion and arguments about mathematical concepts and 

practices may help students refine their understanding (Borasi, 1994), and errors give students a 

chance to reflect on their assumptions or rethink their solutions (Cassel & Reynolds, 2002). In 

addition, when students witness more conceptually advanced solutions than they have given, the 
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sociomathematical norm of what constitutes a sophisticated or “easy” solution may lead them to 

try more advanced ways of solving problems (Cobb, et al., 1997; McClain & Cobb, 2001; 

Yackel & Cobb). 

Sociomathematical norms related to justification of a solution require students to relate 

their justification to mathematical concepts and representations and defend their strategy 

(McClain & Cobb, 2001; Yackel & Cobb, 1996). As students prepare to justify and defend their 

thinking, they are often compelled to think deeper about their solution. This gives them an 

opportunity to consider their explanation as an object of reflection since they need to think about 

how others might make sense of it (Cobb et al., 1997).  

The initiation and maintenance of sociomathematical norms changes the culture of the 

classroom, the types of communication supported, and the beliefs of students about what 

mathematics is, how it is learned, and their roles in learning (Yackel & Rasmussen, 2002). Table 

2 summarizes the sociomathematical norms discussed. Sociomathematical norms affect the 

nature of communication (Brendefur & Frykholm, 2000); the next section considers 

communication in more detail.    

Communication 

Wertsch and Toma (1995) discussed each utterance in a classroom as having both a 

univocal and dialogic function. The univocal function has to do with conveying meaning while 

the dialogic function is concerned with generating new meanings. The authors emphasized, 

though, that certain patterns of communication in the classroom are either grounded in the 

univocal function or in the dialogic function. For example, in the pervasive Initiation-Response-

Evaluation (IRE) pattern documented by Mehan (1979) the primary purpose of a student’s 

response is to convey information to the teacher, a univocal function (Wertsch & Toma). In 
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contrast, when students engage in mathematical argumentation with each other and the teacher, 

they use each other’s statements as objects of reflection that can generate new meanings, a 

dialogic function.  

Whether communication is principally univocal or principally dialogic depends in part on 

the goals and beliefs of the teacher (Cazden, 1988/2001, Wertsch & Toma, 1995). Van Zee and 

Minstrell (1997) studied communication patterns in Minstrell’s physics class. Minstrell’s goal 

was to engage all students in reflecting on the ideas of their peers. In order to encourage students 

to think about their peers’ ideas, he responded to students’ answers in a neutral manner, and also 

shifted responsibility for thinking back to the students, a move the authors called a reflective 

toss. Minstrell strived to follow student thinking whenever it was appropriate. Similarly, Herbel-

Eisenmann and Breyfogle (1997) suggested interaction patterns should support the teacher’s goal 

of helping students make connections and use multiple representations. The dialogic function of 

communication was supported when a teacher used questioning to probe student thinking, ask 

students what they meant, and ask students if they agreed with others (Herbel-Eisenmann & 

Breyfogle; van Zee & Minstrell).  

Cazden (1988/2001) discussed shifting classroom communication away from teacher 

authority and toward more student-involved discussions focused on student ideas. This type of 

communication requires longer teacher wait-times (Cazden). Cazden also described scaffolding  

to provide a temporary support, but emphasized that students do not internalize knowledge 

exactly as the teacher suggested but may discover new processes: “there is a critical difference 

between helping a child somehow get a particular answer and helping a child gain some 

conceptual understanding from which answers to similar questions can be constructed at a future 

time” (Cazden, 1988, p. 108). 
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This difference was also the focus of Wood’s (1998) discussion of funneling versus 

focusing. Funneling occurs when a teacher takes on the cognitive aspects of a problem and asks a 

series of simple questions to guide a student to a correct answer. In this type of interaction, the 

student uses cues to determine the answer the teacher is looking for without engaging with the 

mathematical concepts of the problem. In contrast, focusing refers to the use of teacher questions 

to focus class attention on specific mathematical ideas and solutions provided by students 

(Wood). However, even when a teacher’s question is aimed at conceptual understanding, 

students may still not think about the concepts. Vinner (1997) described this type of behavior as 

pseudo-conceptual: “In mental processes that produce conceptual behaviors, words are 

associated with ideas, whereas in mental processes that produce pseudo-conceptual behaviors, 

words are associated with words; ideas are not involved” (p. 101).     

Sociomathematical norms support communication that focuses student attention on 

mathematical concepts and provides occasion for them to continue thinking (Cobb et al., 1997). 

Brendefur and Frykholm (2000) distinguished types of communication as either supported by 

social norms or supported by sociomathematical norms. They suggested that social norms 

support the teacher as mathematical authority and transmitter of understanding and contrast this 

idea with sociomathematical norms that support students’ agency as the source of mathematical 

ways of knowing. Table 3 illustrates the types of communication included in their framework.  

At the least interactive level, Brendefur and Frykholm (2000) described uni-directional 

communication as characterized by teacher lectures. This type of communication functioned 

univocally and included closed questions posed by teachers, but student answers did not provide 

information about student thinking and was not used by teachers to develop concepts. At the next 

level, also primarily univocal in function, contributive communication defined discussion that 
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emerged when the teacher or students assisted other students, or when students presented their 

solutions, but classroom social norms did not oblige students to listen to each other. Reflective 

communication referred to discussions in which the teacher and students reflected on ideas 

offered by students who used these as opportunities for deeper explorations. This happened as 

students attempted to justify or refute conjectures, and was supported by sociomathematical 

norms in which students were expected to listen to each other and respond thoughtfully. Finally, 

instructive communication occurred when teachers provided situations that stimulated students to 

reconsider their current understanding of the concepts, possibly modifying it. In addition, the 

resulting communication informed the teacher of students’ current conceptions and was used to 

further develop instruction. Reflective and instructive communication emphasize the dialogic 

function of communication. Yackel and Cobb’s (1996) experimental classroom provided many 

opportunities for instructive communication since the teacher posed situations that became 

problems for students because they were not given algorithms to find the answers.  

Students may also let teachers know what they are thinking by asking a question. A study 

of college students’ questioning of their instructors indicated that how receptive instructors were 

to students’ questions influenced the likelihood students would frame questions (Karabenick & 

Sharma, 1994). Student questioning showed students were engaged, but since so few students 

ask questions in college classes, the authors posited that students believed teachers did not want 

them to ask questions, and that students were afraid teachers would respond to their question 

with a question they could not answer. In a related idea, Walen (1994) found that high school 

students who did not receive direct answers from a teacher because the teacher wanted them to 

think found the approach frustrating, and indicated they believed that the teacher’s job was to 

provide clear answers.   
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Besides questioning to engage students in thinking, teachers may provide rich 

mathematical tasks during class. Although teachers presented tasks that encouraged students to 

reflect on and modify their current understandings, students’ implementation of the tasks in some 

cases did not maintain the level of cognitive demand intended by the task writers (Henningsen & 

Stein, 1997). For example, when students worked on tasks using memorized procedures without 

connection to concepts, the cognitive demand was low. Alternatively, when they work on a task 

by applying procedures meaningfully to concepts they understand, or by making and testing 

conjectures or framing problems, the cognitive demand remains high (Henningsen & Stein).  

In their examination of tasks used in middle school classrooms, Stein, Grover, and 

Henningsen (1996) documented classroom factors contributing to a decline in cognitive demand 

as students worked on the tasks. A major factor was the inappropriateness of the task for students 

because students lacked the necessary prerequisite understanding. Other times, when students 

seemed to be struggling, teachers would take over the more difficult parts of the task so students 

could complete it successfully. The study also found factors present when students maintained a 

high level of cognitive demand, including the appropriateness of the task in relation to students’ 

prior knowledge, appropriate amounts of allotted time, high-level performance modeled by the 

teacher or students, and sustained pressure for explanation and meaning through teacher 

questioning, comments, and feedback. 

However, (Lobato, Clarke, & Ellis, 2005) found that under certain circumstances, teacher 

telling could provoke student sense-making. Although telling has been perceived as 

characteristic to traditional teaching and indicative of teaching and learning as transmission of 

knowledge, Lobato et al. argued that the function, rather than the form, of a teacher’s utterance is 

what provokes student sense-making. They provided examples of questions that did not stimulate 
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productive thinking, such as those used in the funneling pattern, and examples of telling that 

generated sense making. Lobato et al. provided an example of a student who was trying to 

determine the rate a faucet was leaking given that it dripped 16 ounces of water in 24 minutes. 

After the student gave an incorrect answer with incorrect reasons, the teacher asked several 

questions to determine the student’s current understanding of division. The teacher then initiated 

by drawing a diagram with both units and explained the connection between partitioning and 

dividing; she did not provide the student with a procedure. Eventually the student was able to 

solve similar rate problems and explain her reasoning.  

Lobato et al. (2005) concluded the function of telling was determined by the teacher’s 

intentions when making the statements, the nature of the telling, and students’ interpretations of 

the statement. Furthermore, the researchers examined telling by considering whether the content 

was procedural or conceptual, and by considering the context of the statement with respect to 

recent interaction. They demonstrated that telling could promote students’ conceptual 

development and concluded that telling could fit into a constructivist view of learning by 

considering how students interpret the statements. 

Summary 

 Cobb and Yackel (1995) provided a connection between communities, interactions 

related to mathematics, and student learning. Specifically, the authors determined that social 

norms related to mathematical interaction could affect students’ beliefs about their roles and 

classroom social norms, and also provide learning opportunities as students reflected on their 

mathematical ideas and the mathematical ideas offered by their classmates. Brendefur and 

Frykholm (2000) extended the literature on sociomathematical norms by connecting them to 

particular types of communication, positing that social norms may contribute to lower-level 
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communication, while sociomathematical norms that focus on students’ explanations of 

mathematical concepts support higher-level communication. However, they did not research this 

idea (Brendefur & Frykholm). The present study endeavored to understand how social norms and 

sociomathematical norms affected types of communication. 

 While there is extensive literature on sociomathematical norms and the opportunities for 

learning they provide, most of the research on sociomathematical norms has been conducted in 

elementary and middle school classes. The research on sociomathematical norms were extended 

to college classes by Rasmussen, Yackel, and King (2003) and Yackel, Rasmussen, & King 

(2000) when they observed college differential equations classes. The authors provided careful 

descriptions of students participating in the sociomathematical norms; however, the researchers 

did not say if all the students in the class participated at the level described. The current study 

considered the participation of all students in the two classes who participated in the study. 

 The literature on sociomathematical norms also provide a connection between 

community and students’ ways of knowing since sociomathematical norms affect students’ 

beliefs about the nature of mathematics and their roles in learning with understanding (Cobb & 

Yackel, 1995). Students’ ways of knowing stem from their beliefs about the nature of 

mathematical knowledge, so affecting those beliefs change their ways of knowing (Baxter 

Magolda, 1992).  

 Baxter Magolda (1992) considered both Perry’s (1970) framework of male college 

student intellectual and moral development, and Belenky et al.’s (1986) framework of women’s 

ways of knowing when they created a framework of college students’ ways of knowing. Boaler 

and Greeno (2000) also used Belenky et al.’s framework to study successful high school 

mathematics students of both genders. Their study described students’ ways of knowing as 
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resulting from the constraints and affordances of their classroom communities. In their results, 

Boaler and Greeno described all classes as either discussion-based or didactic as perceived and 

reported by the students. Since classroom communities are complex places (Chazan, 2000), 

where much can be lost when described in dichotomous terms, a need existed to observe student 

interaction within classroom communities to discern how specific factors of community affected 

the students’ ways of knowing. In addition, Boaler and Greeno did not investigate students’ ways 

of knowing before their current mathematics classes. I used Baxter Magolda’s framework in the 

current study since she focused on college students of both genders and incorporated many of the 

ideas from Perry and Belenky et al. 

The emergent perspective was the guiding perspective of my research design, data 

collection, and analysis. This perspective combines symbolic interactionism, ethnomethodology, 

and social constructivism (Cobb & Bauersfeld, 1995; Cobb & Yackel, 1995). Symbolic 

interactionism and ethnomethodology were used to examine the development and negotiation of 

roles, social norms, and sociomathematical norms (Cobb & Yackel; Voigt, 1996) while social 

constructivism was used to interpret individuals’ knowledge as they constructed it in social 

interaction and through mathematical activities (Ernest, 1996). Ethnomethodology suggested the 

use of student surveys to interpret the conceptions students held of themselves as mathematics 

learners, their ways of knowing mathematics, and the use of interviews to understand how 

participants’ viewed their roles. In addition, ethnomethodology suggested case studies and 

observations to determine patterns of interaction (Krummheuer, 1995; Voigt). Symbolic 

interactionism suggested observations were necessary to analyze the negotiation of social and 

sociomathematical norms. A perspective of social constructivism also provides a reason to 
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observe interactions related to mathematics and to collect artifacts to examine students’ current 

conceptions of mathematical concepts. 
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Chapter Three: Methods 

 The intent of this study was to describe and analyze the negotiation and maintenance of 

community and ways of interacting in two small community college precalculus classes. A 

further goal was to examine the relationship between characteristics of the community and 

interactions and students’ ways of knowing. The following questions guided the collection and 

analysis of data. 

Research Questions 

1. In the classes under study, what is the nature of the classroom community and how does 

it develop?  

2. In the classes under study, what is the nature of teachers’ and students’ interactions 

related to mathematical activity? 

Research Design 

Participants 

The cases focused on two community college precalculus classes in a mid-sized city in 

the northwest United States during the eight-week summer quarter of 2005. The student body at 

Central Community College (all place and person names are pseudonyms to protect the identities 

of the participants) had around 15,000 students, consisting of 60.9% female, 39.1% male, 76.0% 

White, 2.9% African American, 5.4% Hispanic, and 3.2% Native Americans (Washington State 

Board for Community and Technical Colleges [WSBCTC], 2005). The student body at City 

Community College had around 10,000 students and consisted of 60.9% female, 39.1% male, 

80.6% White, 2.8% African American, 4.1% Hispanic, and 2.7% Native American (WSBCTC, 

2005).    

 40



 

My primary goals in selecting the case study classes were to find introductory college-

level classes taught by instructors who had an excellent understanding of the mathematics, and 

who valued community and encouraged interactions in their classes. I chose Precalculus I and II 

as the introductory classes since they were the first college-level mathematics classes of students 

who major in mathematics, science, or engineering fields, and afforded the greatest variety of 

student identities with regard to mathematics. I wanted introductory college-level classes because 

many developmental mathematics students have already decided they will not pursue higher 

mathematics and lack ability, while many students in higher mathematics see themselves as 

mathematically able. Since some science majors require only precalculus, some participants were 

also in their last mathematics class. 

The instructors, Mr. Reilly and Mr. Anderson, were selected because of their efforts to 

establish community and relationships with their students, level of classroom interaction, and 

their reputations for strong mathematical knowledge and standards. The teachers agreed to 

participate, understood the goals of the research project and signed consent forms indicating their 

understanding that participation was voluntary (Appendix A). Both instructors were involved in 

local and state efforts to create standards for students entering college-level mathematics prior to 

and during the study, and I attended meetings with them in this capacity.  

 Mr. Reilly and his class. Mr. Reilly’s education and experience consisted of a Bachelor of 

Arts in Mathematics Education, an M. S. in Mathematics, and eighteen years of teaching 

experience, most at Central Community College where he earned tenure, and a few years at a 

local high school. He had been a student at Central Community College and described a recently 

retired teacher there as instrumental in his choice to major in mathematics. Mr. Reilly’s students 

consistently evaluated his teaching as very effective. The entrance to his office and five other 
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offices were along the walls of a large study room containing many study tables and 

whiteboards. His office was in the center of one wall and students working at the tables easily 

approached him when his door was open. He taught two other classes daily during the term of 

the study, starting at 7:30, with no breaks between classes until after this class. He had office 

hours immediately after this class, at 12:30. 

Students and colleagues of the researcher who had taken classes from Mr. Reilly reported 

that his classroom was highly interactive, with most of the interaction teacher-to-student. One 

student reported that he was inspired to major in mathematics after taking a class taught by Mr. 

Reilly and described his reasons based on the relationship Mr. Reilly established with his 

students. When describing the teachers who made the biggest impact on his own teaching 

philosophy, Mr. Reilly related a story about a teacher who remembered his name two years after 

having him in class. When I observed Mr. Reilly teach prior to the present study, he seemed 

relaxed, made eye contact frequently with his students, joked with them, and appeared to really 

like his students.  

Using the textbook, Precalculus: Functions and Graphs, 9th ed. (Swokowski and Cole, 

2002) the course covered most of the sections in chapters five through seven, nine, and ten: 

Trigonometric functions, identities and formulas, applications of trigonometry, sequences and 

series, mathematical induction, the binomial theorem, conics, polar coordinates and parametric 

equations. Notes in the front of the text highlighted the features of the text: illustrations provide 

brief demonstrations of the use of definitions, charts give students easy access to summaries of 

properties, examples provide detailed solutions of problems similar to those that appear in 

exercise sets, step-by-step explanations, discussion exercises, graphing calculator inserts, 
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exercises, and real-life examples, “boxed guidelines enumerate the steps in a procedure or 

technique, to help students solve problems in a systematic fashion” (Swokowski & Cole, , p. xi).  

The summer quarter consisted of thirty class days, each an hour and a half; three days 

were used for taking exams, while one exam was taken in the Mathematics Lab. Students were 

assigned homework which was collected on exam days and awarded ten points as long as it was 

at least two pages long and had their names on it.  

 Eighteen students originally enrolled in the course, and fourteen agreed to be participants 

in the study, five female and nine male (see Table 4 for student demographics). One participant, 

Julie, dropped the course after the first two weeks. Participants ranged in age from 19 to 42 years 

old with a mean age of 26 and a median age of 25.5.   

 Mr. Anderson and his class. Mr. Anderson held tenure at City Community College. He 

had a Bachelor of Arts in Mathematics Education, an M. S. in Mathematics and six years of 

teaching experience. His student evaluations had always been excellent and he had a reputation 

among his former teachers as an excellent mathematician. Mr. Anderson and I were in graduate 

school together working on our master’s degrees and as graduate instructors for two years, and 

later worked together for a year as instructors at the same university before he moved to his 

present position as a full-time faculty member. His office was in a corner of a small grouping of 

offices; there were two desks with one chair each between the offices, and benches along the 

wall a few feet away. Mr. Anderson was very relaxed and friendly, and easy to engage in 

conversation about mathematics or approaches to teaching. He did not have office hours in the 

summer, but taught a lab class from 11:00 to 12:30 daily and invited students from this class to 

come see him for help at that time. 
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Mr. Anderson was well liked by students and colleagues. While he interacted with 

students during class, he also fostered student-to-student interaction. For example, as colleagues, 

Mr. Anderson and I worked together to create group projects for our Mathematical Reasoning 

classes. Mr. Anderson also valued relationships with students; one quarter when he had the office 

across the hall from me, he required all his students to come by his office early in the quarter to 

meet him and tell him something about themselves.  

 Mr. Anderson’s class used the textbook Precalculus: Mathematics for Calculus, 4th ed. 

(Stewart, Redlin, and Watson, 2002). While the course taught by Mr. Reilly focused primarily on 

trigonometric functions, Mr. Anderson focused on algebraic functions and their general 

characteristics. The course covered most of the first four chapters and parts of chapters eight and 

ten: review of solving equations, modeling with equations, inequalities, graphing, lines, 

functions, polynomial and rational functions, exponential and logarithmic functions, one section 

on matrices, introduction to sequences and series, mathematical induction, and the binomial 

theorem. During the study, both Mr. Anderson and Mr. Reilly taught mathematical induction, 

and discussed concepts common to trigonometric and algebraic functions such as inverse 

functions and transformations of functions. 

 The summer quarter consisted of thirty-one class days, each an hour and a half; five days 

were used for taking exams. Students were assigned homework, always odd problems, but it was 

not collected or graded. There were three twenty-minute quizzes throughout the quarter.  

 Fifteen students were enrolled in the class; students’ ages ranged from 17 to 37. One 

withdrew after the first exam, and the 17 yr-old was not a participant in the study, leaving 13 

participants: 5 women and 8 men, 12 white and 1 black, including a Russian immigrant and one 
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Pacific Islander (see Table 5 for student demographics). Participants ranged in age from 19 to 37 

and with a mean age of 24.6 and a median age of 22.  

 The researcher. My researcher role was best described as an observer as participant. 

Adler and Adler (1994) describe the observer as participant role as “those who enter settings for 

the purpose of data gathering, yet who interact only casually and nondirectively with subjects 

while engaged in their observational pursuits” (p. 380). Since I had a video camera set up and 

they signed consent forms, participants knew I was there as a researcher. I did not participate in 

class discussions, but had informal discussions in addition to semi-structured interviews with 

participants outside of class. 

My education and background consisted of a B.S. in Mathematics, M.S. in Mathematics, 

a secondary teaching certificate, three years experience teaching K-12 mathematics and 

computers, eight years experience as a college mathematics instructor teaching algebra, 

precalculus, calculus, mathematical reasoning, and content courses for preservice elementary 

teachers. I also supervised and coordinate graduated instructors and adjuncts teaching 

intermediate algebra, provided student support services to disadvantaged students through a 

TRIO grant, and worked with faculty members to provide professional development to K-12 

teachers. Prior to the present study I had worked on a Ph.D. in Education for three years and tried 

to incorporate many of the ideas from the literature into the classes I taught, such as using 

questioning strategies and having students communicate their reasoning orally and in writing. 

As a student, my undergraduate and graduate mathematics classes were almost 

exclusively traditional-lecture format. Some teachers asked questions during the lecture, but the 

same couple of students provided all the answers; I was usually one of them. The questions could 

usually be answered with a short answer and did not promote further discussion. My teachers 
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often explained and developed concepts, and concepts were developed in textbooks, so I did not 

attempt to memorize procedures without understanding concepts or making connections. Thus, I 

did not believe that the description ‘traditional’ necessarily means all students were memorizing 

procedures. However, I wonder if I would have chosen mathematics as a major if my earliest 

college teachers taught mathematics as procedures without understanding. In addition, I do not 

believe the nature of the mathematics I learned was as deep or connected as it could have been in 

more discussion-oriented environments. 

I do not remember a single instance of collaborative learning inside of class and very 

little interaction between students; I generally avoided working with others outside of class 

because of time management and because I did not believe it would be useful to me. I thought 

many of my teachers were very good teachers, but I did not believe my success or failure 

depended on their teaching. I adapted my learning strategies based on what the teacher had to 

offer. For example, my Calculus II teacher was a graduate instructor whose English was very 

poor and who talked to the board, so I read the book and did more problems than were assigned 

in each section. I knew how well I understood the mathematics and worked to understand it 

completely; “completely” meant I could do almost all of the problems in each chapter and knew 

what I was doing and why I was doing it. This knowledge was sufficient to maintain a high GPA 

and graduate with honors. 

My earliest teaching consisted of lectures in which I presented carefully sequenced 

examples, asked questions to make sure students were with me or to anticipate next steps, and 

encouraged students to ask questions. When students asked questions, I answered by explaining 

why I was doing what I was doing and how they could know what to do based on the problem 

situation, often making connections and distinctions between concepts. However, I did not ask 
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students to explain or to make connections, since I assumed they understood when I explained it 

to them. Over the years, I changed my teaching practices to provide more opportunities for 

collaboration by presenting problems for students to discuss in small groups, expanding the types 

of questions I asked, promoting discussions, and extending my wait time. Over the years I 

became more conscious of the importance of classroom community and strive to entice all 

students to actively participate in discussions. My goal has been to use students’ thinking to 

develop concepts, but I have not always achieved the character of teaching I sought.  

 Participant confidentiality. To maintain confidentiality, participants were assigned codes; 

the master list matching names was kept separate from the data. Participation was requested from 

all students on the first day of class through consent forms that sought permission to observe, 

collect copies of student work such as graded exams and quizzes, survey, and interview 

(Appendix B). 

Data Collection 

 The main source of data collection was classroom observations. However, student 

questionnaires and teacher interviews done in the beginning helped me understand participants’ 

goals and initial attitudes towards interaction in class. Teacher and student interviews throughout 

the study provided additional data regarding participant perspectives on interactions and how 

they related to students’ efforts to make sense of the mathematics they were learning. Appendix 

C provides a timeline of the research process indicating when data was collected. 

 Student Questionnaires. Student Questionnaires (Appendix D) were given to students on 

the first day of class. The questionnaires were field-tested in a precalculus class, adjusted, field 

tested in a different precalculus class and adjusted prior to the study. Items were altered when 

students’ responses did not net helpful information. For example, two items on the original 
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questionnaire targeted students’ beliefs about the roles of the teacher and students, but students 

only responded generally that their role was to learn and the teacher’s role was to teach. So, the 

word “role” was removed and items were rephrased to more specifically address what students 

and teachers could do to help students learn.  

The purpose of the questionnaire was to understand perceptions individual students had at 

the beginning of the quarter concerning how mathematics was learned and what they believed to 

be appropriate roles and interactions for the members of the mathematics classroom community. 

Other questions focused on students’ identities as mathematics learners. Information from the 

questionnaires was used to choose students to interview so that students with a variety of 

perspectives were included (Tobin, 2000). However, because of the short term and students’ 

availability I was only able to conduct three taped interviews although I had informal 

conversations with several other students. 

 Instructor interviews. Open-ended instructor interviews were conducted near the 

beginning of the quarter to understand instructors’ philosophies of teaching and learning 

mathematics, the roles they believed instructors and students should have in the classroom 

community, and what they believed about the nature of teacher-student and student-student 

interactions (Appendix E). Interview questions were field-tested on an instructor with similar 

teaching and educational background and questions added. Interviews were audio-taped, 

transcribed, and coded by the researcher (Tobin, 2000). Additional open-ended interviews took 

place later in the quarter to check my interpretations of teachers’ meanings.  

 Artifacts. Artifacts such as copies or digital photographs of student notes, teacher 

handouts, homework, exams, and quizzes were collected and stored with the research data. They 

were used to look for evidence of students’ sense-making or applying procedures without 
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understanding. Artifacts were also used to understand the types of tasks assigned by the teachers 

and the mathematical practices they targeted, the students’ interpretations of what was expected 

of them, and how the teachers responded. Analytic memos were written for each artifact (Tobin, 

2000). 

 Student interviews. Aligned with interpretivist perspectives, students were chosen for 

interviews on a dialectical principle. “To provide experiences that will advance understandings 

of the issues…. One criterion that often is employed is to choose someone who is most different 

from the first participant selected and studied…a dialectical principle is applied in the selection 

of participants so that the diversity of a given community is reflected in the data sources 

scrutinized during a study.” (Tobin, 2000, p. 489). Thus, I chose the most interactive students 

and the least interactive students to interview, students who attended every day and students who 

attended less often, students who enjoyed friendly relationships with the teacher or other 

students, and students who rarely interacted with the teacher or other students. Specific questions 

depended on why the particular student was chosen for an interview. Appendix F contains the 

Student Interview Protocol containing questions focusing on student perceptions of interactions 

and ways of knowing.  

The open-ended interviews were used to understand students’ perspectives of the nature 

of community, interactions, and the extent to which they were striving to make sense 

mathematically. Interviews were used to clarify my interpretations of students’ interpretations of 

the interactions, their dispositions toward learning mathematics, and to provide feedback on and 

promote reflection about what I observed. All interviews were taped, transcribed, and coded; 

analytic memos were written to provide thick description about student disposition and content 

of the interview.  
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 Classroom observations. Observations were used to address both research questions. I 

observed each class at least five times in the first two weeks of the term and at least twice a week 

throughout the rest of the term, for nineteen observations per class. Observations were 

videotaped and a classroom observation form (Appendix G) completed for each observation. 

Since a goal of the study was to understand the development of community, understanding 

teacher and student negotiations of social norms, authority, and roles was important. Thus, the 

first five videotaped observations in each class were transcribed. Thereafter, I videotaped the 

class and reviewed the tapes after each lesson while typing and adding to my field notes. I 

completed the classroom observation form as I reviewed each tape and used it to determine 

which parts of the videotape related to the identified themes and transcribed, coded, and analyzed 

those parts. Field notes were taken during each observation, with details added and analytic 

memos written while memories of the observation are still fresh (Tobin, 2000). Limitations on 

observations restricted most observational data to public discourse, communication intended for 

all members of the classroom to hear, so I did not hear most of the conversations between 

students. 

 The classroom observation form had four parts. The first part focused on the nature of the 

classroom community and contained data that evidenced the roles students and teachers 

negotiated, who or what had mathematical authority, students’ identities within the classroom, 

the significance afforded certain activities, and the social norms and relationships that evolved 

(Boaler & Greeno, 2000). The second part focused on the mathematical activities and the 

learning of mathematical practices and content (Henningsen & Stein, 1997; Yackel & Cobb, 

1996). The third part focused on the negotiation of sociomathematical norms as found in the 

literature (Cobb et al., 1997; Hershkowitz & Schwartz, 1999; Kazemi & Stipek, 2001; Yackel & 
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Cobb, 1996; Yackel & Rasmussen, 2002) while the fourth part concentrated on types of 

communication (Brendefur and Frykholm, 2000; Goos et al., 2002). Table 6 summarizes the data 

collection techniques and their relationship to the research questions. 

Data Analysis 

Data analysis began when the first data was collected and continued systematically 

throughout the quarter; this preliminary analysis helped me determine which students to 

interview, the questions that needed to be asked in interviews of teachers and students, and what 

interactions to examine (Tobin, 2000). An initial goal of analysis was to identify key topics and 

investigate their characteristics and the contexts in which they occurred, then to understand these 

topics from the perspectives of the participants (Woods, 1992). After each observation or 

interview I looked for ways the data fit into categories related to the research questions, modified 

categories when necessary, and created new categories and codes as they emerged (Strauss & 

Corbin, 1990). When new conceptual categories arose, previous data was reexamined to look for 

evidence and questions added to the interview protocols. I used data matrices and concept maps 

to understand the data within the categories (Miles & Huberman, 1994). Qualitative software 

was used to organize and analyze data in text form (N6, QSR, 2002).  

Analysis was also guided by sub-questions of the two research questions.  

Sub-questions of Research Question 1 included: 

a. What expectations concerning community did teachers and students have as the 

quarter started? 

b. What was the nature of social norms and how did they develop? 

c. What roles did instructors and students play in the community? 

Sub-questions of Research Question 2: 
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a.   What was the nature of sociomathematical norms and how were they negotiated? 

b.   What levels of interaction did instructors and students initiate and how were the 

levels maintained or reduced? 

c.   What was the nature of mathematical tasks and what practices did students employ 

while working on the tasks? 

d.   What did participants’ interactions indicate about their beliefs regarding 

mathematics and learning mathematics? 

To aid analysis, I maintained a journal and wrote analytic memos (Woods, 1992). Memos 

were used to illuminate and distinguish concepts and to note ideas for research strategies such as 

interview questions (Maxwell, 1996). Each memo was dated, coded and stored with the data.  

Since interpretive research seeks to understand the diversity of a community, early and 

systematic analysis of data allowed discrepant data to be sought and alternative explanations to 

be formulated (Tobin, 2000). I looked for evidence in observations that appeared to refute my 

initial conceptions.  

An important goal of this study was to examine the relationships between components of 

community, classroom interactions, and student learning using an emergent perspective. To 

accomplish this, both within-case and between-case data matrices to compare and contrast 

themes were employed (Miles & Huberman, 1994). Between-case matrices were used to contrast 

factors between the two classrooms and within-case matrices were used to examine connections 

between factors related to community, factors related to interaction, and students’ ways of 

knowing. In addition, it was important to understand the nature of the context of each interaction 

since the situation and perspectives within the situation relate reflexively (Woods, 1992). I 

analyzed and present data in ways that provided interpretations of participant interactions and 
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interpretations. This was accomplished by attempting to view the interactions as the participants 

did and by providing thick descriptions that may give insight regarding participants’ purposes 

(Schwandt, 1994).  

Figure 1 shows the categories used to code the data and Table 7 gives the descriptions of 

each category as used in N6 (2002). The categories and their descriptions were obtained from the 

literature and themes that arose during data collection. While most categories were used just as 

they were described in the literature, Boaler and Greeno (2000) described two types of 

mathematics classroom communities important to this study, “didactic” and “discussion-based,” 

each of which included several characteristics. “Didactic” included students watching teachers 

present procedures, then practicing alone, students were not expected or encouraged to discuss 

ideas, and the goal was for learners to memorize procedures (Boaler & Greeno). These 

characteristics were captured in other categories such as teacher role, mathematical authority, 

student role, listen, procedures, memorizing, student-student relationship, procedural, and 

instrumental. Likewise, “discussion-based” communities included student roles of discussing 

questions as a class and contributing to shared understanding; students were able to work with 

classmates and described relationships as central to their learning (Boaler & Greeno). Categories 

describing discussion-based communities included student role, active, discussion, student-

student relationship, student explanation, and relational. 

Quality and Ethics of Research 

One of the instructors was my friend, while the other was an acquaintance; I worked with 

both instructors on state-wide initiatives to improve high school students’ preparation for college 

mathematics. I feel indebted to both instructors for allowing me to study their classes and have 

imagined how I would feel if the teaching and learning within my classes were explored and  
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written about in detail. I did not want to alienate the teachers during the project, nor did I want to 

feel like I betrayed them when the project was finished. On the other hand, both teachers 

indicated they were interested in the findings and wanted to grow from the experience. In order 

to maintain an open-mind during analysis, I used analytic memos to explore how this issue  

affected how I collected and analyzed data, and used the insights gained to work toward fair-

mindedness. In addition, I used peer debriefing as mentioned later in this section; my advisor did 

not know the real identities of the teachers. 

Interpretivist frameworks include criteria and methods for establishing the quality of 

research including credibility, authenticity, transferability, and generalizability (Tobin, 2000). 

Credibility refers to the believability of the assertions and was established by multiple sources of 

data. I presented interpretations to participants to determine if their meanings were interpreted 

accurately, and included evidence of how existing literature was related to the study. Both 

researcher and participant views were included since these views provide readers with a more 

complete understanding of the interactions.  

Data was member-checked to test the accuracy of researchers’ interpretations (Tobin, 

2000). Both instructors affirmed that the evidence and analyses accurately represented the 

classes I observed. Member checks also provide evidence of authenticity (Tobin). I maintained a 

researcher journal that detailed how my understanding of the research changed throughout the 

study (Tobin). I worked closely with my dissertation advisor, Amy Roth McDuffie, to confirm or 

refute interpretations from data analysis. Her research program focuses on using qualitative 

research methodologies in mathematics education. Validity was also established by interviewing 

students with varying perspectives of the nature of the community and classroom activities. I 

helped students become comfortable telling me their perceptions by ensuring confidentiality and 
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I looked for evidence to contradict or support their perceptions in my observations. As part of my 

position prior to this study, I regularly engaged individual students in conversations about their 

classroom activities and instructors and they were usually able to be critical even if they liked the 

teacher.  

Case studies are not transferable in the sense that positivistic research has traditionally 

used the term to indicate broad transference to similar situations, but rather as depending on the 

reader to see the case as similar to their own situation (Tobin, 2000). To provide transferability I 

will provide sufficient description and detail of the contexts so that readers may determine 

whether the evidence and assertions apply to their situations (Tobin). 

The ethics of this proposed research concerns the protection of the reputations of the 

teachers and students. I chose these teachers because they have excellent reputations within the 

mathematics teaching community in this city and I hope to be able to learn how the community 

and interactions that develop in their classrooms were related to students ways of knowing 

mathematics. These teachers have less to fear than would teachers with poor reputations or 

teachers without tenure. They were assured of the confidentiality of the data and reports 

generated by this study since only pseudonyms will be used for the school and participants. The 

students will have no reason to fear repercussions from the teachers since their identities were 

kept confidential.   
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Chapter Four: Findings in Mr. Reilly’s Class 

Background 

Located on a quiet hall next the Math Lab, the classroom looked new and contained six 

neat rows of six or seven desks each. The rows were close together and pressed against one side 

wall and the back wall, leaving no room to walk around. The whiteboards and chalkboards 

looked cleaned each day.  

Several students usually gathered in the hall and talked before class as they waited for the 

door to be unlocked. Tim was often the first student there and I talked with him many times. 

Natalie was also usually early and willing to talk with me informally and in a taped interview. 

Fourteen of the eighteen students enrolled in this class agreed to participate in the study. 

Research Question 1: The Nature and Development of Community 

In the following sections, I address the expectations students had of their roles as they 

began the course and how they enacted their roles throughout the quarter. I characterize Mr. 

Reilly’s roles, how students and instructor negotiated and maintained social norms, and describe 

the nature of mathematics as it was portrayed during class. 

Students’ Expectations and Enactments of Their Roles  

Students completed the Student Questionnaire (see Appendix D) at the beginning of the 

first day of class. I discuss the results of the survey, which provide evidence of the types of roles 

students believed would help them learn, then describe how they maintained or changed those 

roles in response to affordances and constraints of the classroom environment. 

Students’ expectations of their roles. Six questions on the questionnaire specifically 

focused on the roles of students in the class (Questions 6, 7, 8, 9, 10, and 13). Question 6 

addressed what students do during class to help them learn. The majority of students responded, 
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“take notes” while some students included doing examples, watching the board, and practice 

outside of class (see Table 8). Only two students mentioned interaction with others: “Being 

attentive, ask questions, do the assignment (persistence)” (Mark Questionnaire, June 27), “Take 

really good study notes, have a study partner” (Shawna Questionnaire, June 27). Mark included 

asking questions of the instructor in his role, while Shawna valued having a study partner. 

However, most student ideas of their roles in mathematics classes were to transcribe the 

instructor’s ways of doing problems and then practice those problems or methods. Their 

responses strongly resembled the description provided by Smith (1996) typifying the learning of 

mathematics in the United States: “Students learn by listening to the teachers’ demonstrations, 

attending carefully to their modeling actions, and practicing the steps in the procedures until they 

can complete them without substantial effort” (p. 391).  

However, two questions on the questionnaire specifically targeted student ideas about the 

value of learning from and getting to know other students. When asked if they liked to work with 

a partner or in a group, four students responded they preferred to work alone, but of those who 

wanted to work with others, common reasons were to check answers or get help on their 

homework (see Table 9). The other question addressed whether they wanted to get to know other 

students in the class (see Table10), eight students responded affirmatively, “Yes, helps with 

studying” (Jake Questionnaire, June 27), although six students did not say why. Three students 

indicated they wanted to know the instructor but not other students. Their responses show the 

majority of students valued knowing each other but did not suggest they could learn new ideas 

by listening to each other or by trying to convince each other of the validity of their 

mathematical ideas, suggestions by the NCTM (1991) for students’ roles in discourse. 
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Three questions on the questionnaire related to students’ roles in class discussions. The 

majority of students wanted the instructor to involve the class in discussions (see Table 11), and 

when asked what types of input they would provide, most students responded they would ask 

questions (see Table 12), “I only ask questions if I don’t understand” (Ryan Questionnaire, June 

27). Only three students said they would also make suggestions or answer questions, “Yes, I ask 

questions and give some answers to questions” (Mark Questionnaire, June 27). Consistent with 

previously stated ideas, these responses resonated with the notion that students expected the 

instructor to provide clear explanations, and while they liked class discussions, most expected 

their roles during class discussion to be limited to asking questions when they did not 

understand.  

Another question related to students’ roles during class discussion addressed listening to 

other students’ questions and explanations (see Table 13). Four students specifically mentioned 

listening to other students’ questions as valuable to them, “Yes, most likely I’ll have the same 

question” (Natalie Questionnaire, June 27), while four students also mentioned they liked to hear 

other students’ ideas or explanations “Sometimes it helps if they have a different perspective on 

it” (Karen Questionnaire, June 27). Two students expressed concern that other students’ 

explanations might confuse them, “Sometimes – they confuse me as well” (Julie Questionnaire, 

June 27). In general, more students wanted to hear their peers engage in discussion than wanted 

to engage in it themselves, indicating a preference for hearing others’ ideas but not sharing their 

own to contribute to others’ learning or to test their ideas, the type of discourse recommended by 

the NCTM (1991) and that indicate contextual knowing (Baxter Magolda, 1992).  

One student’s responses in particular highlighted the contrast between an unwillingness 

to share their own ideas and wanting to listen to the instructor and peers. Karen’s response to 
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whether or not she liked the instructor to involve the class in discussion was, “No, I’d rather 

listen to the teacher,” and about offering input in class discussions, “No, I like to listen and take 

it in” (Karen questionnaire, June 27). These responses indicate Karen was as an absolute receiver 

(Baxter Magolda, 1992; Brew 2001). Her responses to other questions about understanding or 

memorizing mathematics also evidenced absolute knowing, since she replied that memorizing 

steps and formulas helped make it easy to learn, and replied, “I don’t need to understand where it 

comes from, I just do it” (Karen Questionnaire, June 27). In contrast, she wanted to hear other 

students’ explanations, “Sometimes it helps if they have a different perspective on it,” an 

indication of transitional knowing. Her role in class remained consistent with her stated 

preferences; she did not speak in class during my observations. 

Another student provided an example of one who did not behave consistent with his 

questionnaire responses. Jeremy responded to whether he liked the instructor to involve the class 

in discussion, “Yes, but math is not really discussion oriented; right or wrong answers,” and 

wrote that he did not usually speak up in class unless there was something he did not understand 

(Jeremy questionnaire, June 27). However, after the first few days of class Jeremy regularly 

volunteered ideas during problem solving discussions (e.g. Fieldnotes, July 6; Fieldnotes, July 

19; Fieldnotes, July 27; Fieldnotes, August 16). His questionnaire responses indicated his 

perception of mathematics as a set of procedures to find correct answers was not amenable to 

discussion, and his role in discussion would be limited to asking questions. However, it appeared 

this class affected this belief and as a result, he participated in ways he did not expect.  

In summary, student questionnaire responses regarding their roles of taking notes and 

practicing evidenced their experiences and expectations of mathematics classrooms as 

collections of individuals rather than mathematical communities, similar to the students in Boaler 
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and Greeno’s (2000) didactic classes and counter to recommendations of the NCTM (1991). 

Responses also indicated their belief that mathematical knowledge was certain, belonged to the 

instructor, and they could gain that knowledge by listening to him and practicing, a nature of 

knowledge and gaining knowledge characterized by Baxter Magolda (1992) as absolute. 

Although the majority wanted to get to know each other (see Table 10), the relationships were 

not valued for the chance to share and test ideas.   

Students’ enactments of their roles. Students’ roles in this class consisted mostly of 

listening to Mr. Reilly and answering and asking questions. They also listened to each other’s 

questions, but only once did I hear a student answer another student’s question during class 

(Fieldnotes, July 12). Students spoke up more frequently as the term progressed, probably 

because when they interrupted, Mr. Reilly responded respectfully (see Appendix H, lines 31-49). 

In this episode, Tim first suggested that the answers contradicted his understanding, however, 

Mr. Reilly did not understand Tim’s concern. When Tim persisted in explaining why he did not 

think the answers were correct, Mr. Reilly understood what he was saying, “I agree, you should 

be worried about that. And it's a good point…,” then rephrased the problem to the whole class. 

Mr. Reilly used Tim’s question as a “teachable moment” for the class; the format of discussion 

provided opportunities for student questions and comments affecting the direction of the focus 

on mathematics. However, the roles and social norms provided that Mr. Reilly directed 

discussion about the issue rather than have students debate the ideas. Tim’s questioning of Mr. 

Reilly’s solution showed evidence of higher ways of knowing since he did not just accept the 

solution without question. In their description of a spacious classroom, Angier and Povey (1999) 

also found students became confident enough to speak up when they thought their teacher was 

wrong. 
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Student participation in whole class discussion varied. One student, Susan, provided 

quick answers regardless of the situation, and many of her answers appeared to be guesses. She 

sat next to the camera, so all of her comments were audible to me while many were not audible 

to Mr. Reilly over other students’ answers closer to him. Several times she answered in a soft 

voice but was the only one to answer, and he asked her to repeat her answer. The following 

episode provides an example of her behavior; the goal of the discussion was for students to 

discover the range of values output by the calculator when using the inverse trigonometric 

functions.  

Mr. Reilly: What your calculator will do is it will take the easiest answer. So go ahead 

and do a point five, take the inverse sine of point five and see what the calculator says.  

Susan: Thirty. 

Mr. Reilly: Yep, from the calculator, okay, it will tell you the inverse sine of one-half is 

thirty degrees. Uh, inverse sine, from your calculator, of a negative one-half? [He writes 

these in a vertical list on the board; pause 6 seconds] there's a whole bunch of them too, 

let's see which one your calculator picks.  

Susan: Negative thirty. 

Mr. Reilly: Negative thirty, good, okay, sine inverse of one? 

Susan: Ninety [Observer Comment (OC): there was a 3-second pause before she 

answered. she's answering this and the next faster than the calculator could be used]. 

Mr. Reilly: Ninety, good, sine inverse of negative one? 

Susan: [immediately] Negative ninety. 

Mr. Reilly: Negative ninety, good, do you see what your calculator's doing? [steps back 

away from the board] It's pretending that the second and third quadrant don't exist; that's 
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the way it copes with it. Issue? I see no issue, what your calculator will do, anytime you 

hit that inverse sine button, notice that if you want to do the full range of sine, you go 

from bottom to top, that's all your heights… And when it said thirty that what it was 

really doing in a sense was giving you the reference angle. Make sense? Cosine, same 

thing. See what the calculator tells you about the cosine inverse of one-half. 

Susan: Sixty [very quickly, no more than one second]. 

Mr. Reilly: Good, sixty [he repeats quickly, most of the class is still putting it in their 

calculators]. Okay, inverse cosine of negative one-half. 

Susan: Negative sixty.  

Mr. Reilly: No [he had his chalk starting to write it, but pulls away]. 

Susan: No? I was just guessing. 

Mr. Reilly [laughs]: No, yeah, guesses is bad. It's right up there with the old assuming 

thing. 

Susan: One twenty, one twenty. 

Mr. Reilly: Okay, good, does everybody else see that? Calculator would say a hundred 

and twenty. If you were to ask for the inverse cosine of one? [pause 3 seconds] And 

basically what it's asking for is, who's a nice angle that has a cosine of one? 

Student: Zero. 

Mr. Reilly: Zero does, okay. If you were to do the inverse cosine of negative one? 

Student: One-eighty. 

Mr. Reilly: One-eighty, good. Where's the calculator looking now? 

Student: Reference. 

Mr. Reilly: Kind of, but,  
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Student: One and two. 

Susan: Two and three [talking low so he probably did not hear her]. 

Mr. Reilly: There you go; [responding to the students at the front] good, because the x-

axis could also be three and four. What the calculator is doing now, now cosine, unlike 

sine, sine is an up and down number, it's the y-coordinate. Cosine is on the x-axis, it's a 

left and right number. …okay. Oh, here lets see if we can reason through tan. 

(Observation, June 30)  

This episode lasted four and a half minutes. Although Mr. Reilly repeated several times that the 

answers were given by the calculators, Susan did not use a calculator and was trying to answer as 

quickly as possible. Her quick answers demonstrated her willingness to interfere with other 

students’ ability to participate in the way Mr. Reilly intended. However, since it was Mr. Reilly’s 

role to quickly respond to the first answer he heard, he inadvertently supported Susan’s efforts. 

Susan displayed this behavior on other occasions (e.g. Fieldnotes, August 10) but no other 

student appeared to behave this way.  

 While the preceding episode was intended to be an investigation to have students 

discover the ranges of the inverse trigonometric functions and highlight the idea that the 

trigonometric functions only have inverses if their domains are restricted, in each case, Mr. 

Reilly told them the answers. The investigation provided more opportunity for student 

engagement and more encouragement for student thinking than pure lecture, but students were 

not afforded the time and expectation to actually make the discoveries. In addition, students’ 

roles in this exploration also consisted of finding the answers posed by Mr. Reilly rather than 

designing the exploration, or even choosing the angles to help them determine the ranges of the 
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inverse trigonometric functions. Unlike “doing mathematics” as described by Henningsen and 

Stein (1997), students did not have opportunities to design their own investigations during class. 

 The preceding episode was typical in some ways and demonstrates students’ usual roles 

in this class were to answer closed questions with short answers and listen to Mr. Reilly. 

Students sometimes answered questions using the words or ideas Mr. Reilly had recently used, 

and these responses sometimes appeared to be guesses. In the aforementioned episode, the class 

first examined calculator outputs of the inverse sine function and Mr. Reilly told them the output 

of thirty was the reference angle. Then, when he asked for the range of output values for the 

inverse cosine function, specifically after asking about the inverse cosine of negative one, Mr. 

Reilly asked what the calculator was doing and a student answered “reference,” even though a 

one-hundred and eighty degree angle would not be considered a reference angle. While the 

question was meant to give students an opportunity to think, the student who answered appeared 

to be repeating Mr. Reilly’s previous reason rather than thinking. The quick pace of lecture may 

have contributed to this behavior.  

Several students indicated they were not striving to learn the concepts but their goal was 

to get through the course with a grade of a C, the minimum grade required for the course to 

satisfy their requirements. Susan mentioned she only wanted a C in this class (Fieldnotes, July 

27). Steve reported that he did not spend much time studying for this course because his 

programming class required so much of his time (Steve Interview, July 21), and in response to 

whether he wanted the instructor to involve the class in discussion, Ryan responded, “No, I am 

usually tired and don't care. I am not a math major, I just want to finish the requirement with a 

high grade” (Ryan Questionnaire, June 27). Ryan rarely contributed in class while Susan 

appeared to try to hurry the pace of the class. Another student, Shawna, claimed she only wanted 
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a C in the class (Fieldnotes, July 21), but her behavior indicated she was striving to learn. She 

exchanged phone numbers with Natalie early in the quarter and met with Natalie or Karen to 

study on several occasions (Fieldnotes, July 21). She participated in discussions and asked 

homework questions (Fieldnotes, August 10).  

In contrast to those who just wanted to pass the class, Natalie took the class as part of the 

requirements to teach mathematics (Natalie Questionnaire, June 27). She spent hours working on 

the homework, averaging four to five hours per day studying for exams (Natalie Interview, 

August 10), and came prepared with homework questions, sat at the front of the class, and asked 

and answered many questions. These examples indicate that students’ goals at the outset of the 

class may have influenced the level they were willing to participate.  

Students’ roles and ways of knowing. Students’ expectations of their roles as indicated by 

their questionnaire responses suggested they were predominantly absolute knowers (see Table 

14). Twelve of the fourteen students had more responses coded for absolute knowing than any 

other category. Tim had as many responses coded for absolute knowing as transitional knowing, 

while Shawna’s responses indicated she learned from peers and strived to understand, evidence 

of transitional knowing, but still expected the teacher to explain the ideas. Likewise, students’ 

roles supported absolute knowing since their main role was to listen and answer questions, and 

rarely included sharing their ideas (for exceptions see Observation, July 6) or responding to their 

peers’ ideas because there were no opportunities for group work or discussion between students 

during class. Thus, higher ways of knowing encouraged by peer interaction, such as contextual 

knowing, were not supported by the roles expected by and afforded to students.  
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The Nature of Mr. Reilly’s Roles 

 Questionnaire responses also indicated students’ preferences in a mathematics 

instructor’s role. In this section, I compare and contrast their preferences with the roles Mr. 

Reilly actually played in this class, and discuss students’ responses to those roles. Finally, I 

examine how Mr. Reilly’s roles matched and sometimes challenged students’ ways of knowing. 

Students’ expectations of Mr. Reilly’s roles. Three questions from the Student 

Questionnaire (Appendix D) elicited students’ expectations of a mathematics instructor’s role. 

When asked how they best learn mathematics (see Table 15), five students included the role of 

the instructor. Jake simply answered, “teacher” (Jake Questionnaire, June 27), while Reggie 

replied, “through being taught” (Reggie Questionnaire, June 27). Three others indicated that 

someone must show them: “Slowly, video tapes with instructor lecturing are good since you can 

pause and repeat many times” (Natalie Questionnaire, June 27).  

Question 5 specifically elicited responses about the instructor’s role by asking how an 

instructor could help them learn during class (see Table 16). Ten students replied s/he should 

work examples, while two suggested s/he should involve students, and one each replied that s/he 

should be clear and prepared, go slowly, show different ways to do problems, and create a 

relaxed classroom environment. Clearly, most students in this class believed a mathematics 

instructor’s role included showing them how to complete procedures successfully, roles similar 

to those played by teachers in the didactic classes described by Boaler and Greeno (2000). 

Responses attributing learning to the instructor demonstrate student stances as absolute knowers 

(Baxter Magolda, 1992). 

Mr. Reilly’s roles compared to students’ expectations. In contrast to student expectations, 

Mr. Reilly rarely worked examples, and when he did, he integrated them into the development of 

 68



 

concepts (e.g. see Appendix H). Students quickly became aware of the difference between this 

instructor and previous instructors. On the third day of class I overheard two students discussing 

the class as we waited for Mr. Reilly to arrive and unlock the door, “My precalc-one teacher 

would walk in and start putting examples on the board and not talk about anything; this is totally 

different" (Fieldnotes, June 29).  

Mr. Reilly lectured in a manner that was different from what students expected: class 

time included well-planned interactive discussions, with attention to conceptual development and 

making connections explicit. Boardwork was neat and intentionally placed. Mr. Reilly lectured 

by facing students, made eye contact, smiled and laughed often. While he stayed at the front of 

the class, he sometimes leaned his back against the board as he told a story or discussed an 

application, and moved over to the side when he wanted students to focus on a problem on the 

board. In addition, he used less formal language, personifying the mathematics (e.g. see 

Appendix I, lines 22 and 24), and sometimes used the word “ain’t.” These techniques may have 

helped make the mathematics less formal and remote for students.  

Mr. Reilly was energetic, interacting with students and attending to their listening 

capabilities by foreshadowing important ideas, interweaving stories into the lecture, and pointing 

out the significance of ideas. He often pointed out important ideas he wanted students to use. For 

example, as he introduced a problem of finding the trigonometric ratios of the angle formed by 

the line  and the x-axis, he suggested, “Keep in mind, little facts, little ideas that float 

around in trig, keep in mind the size is irrelevant” (Observation, June 29). And, as he introduced 

proving identities, he wrote, “don’t forget that algebra is still in play” (Fieldnotes, July 12). Such 

foreshadowing may have made it easier to follow his ideas and make the connections he 

intended.  

xy 2=
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After they discussed ideas, Mr. Reilly pointed out their significance. For example, after 

they found the trigonometric ratios of a 45-degree angle using the Pythagorean Theorem, he 

added, “And the reason they're such a big deal is this is one of the very, very, very few times 

where you know the angle and you know the ratio, and they're both nice; almost never happens. 

Here’s two others” (Observation, June 28). A few minutes later, after deriving the ratios, he 

expanded on why it was important: 

And again, the reason that’s a big deal is because I can’t do that for forty, I can’t do that 

for twenty, I can’t do that for fifty. If you ask me what the sine of fifty degrees is, I 

cannot tell you. I can’t, nobody else can, no box ever can. All you can do is try to get 

close. And for those bad angles like fifty degrees, that’s where you go to the magic box, 

because magic boxes have no life and they live for no more than to do stupid, menial 

tasks …Can I ever get it exact? No. Cuz it goes stinking forever, always changes, no 

pattern, no repetition, the dumb thing just goes forever, it’s disgusting and horrible. But 

then most practical people don’t care, four or five digits, usually I’m cool. But the 

mathematician in me, the mathematician in us, we always kind of look at this one with a 

little snear. The down side of error is this: if I get angles like thirty, forty-five, and sixty, I 

don’t have to worry about error because I’m perfectly right and anything I do with that 

number will continue to be perfectly right. The downside of error isn’t just that you’re 

wrong, but that error grows. If you’re wrong with one of your numbers in the beginning 

and you do twenty calculations, there’s a good chance you’re really wrong by the end, 

okay, really wrong by the end. So when we have to, we’ll use these and when we do, 

we’ll be really careful. (Observation, June 29) 
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In addition to highlighting the significance of knowing certain trigonometric ratios, this episode 

also includes an illustration of how he used language to include students, “the mathematician in 

us,” in an effort to include them in the community of mathematicians.  

Students appreciated the nature and content of the lectures. 

Wow, he has a passion to teach math and it comes across. I actually like coming to this 

class. … His fascination with what he talks about, you see that passion, and that makes 

you interested all of a sudden. Little did I know there was all that, I had no clue of all 

those things in math, you can actually teach the background of where it came from. 

There's books you can even read. Well nobody's ever done that in any math class I've 

ever had in my life. It's just this is math, this is what we do... I think it's wonderful, and 

that he's doing it at this level, and taking the time, because he doesn't have to, he could 

just give us all this, he could just make it very technical and he doesn't do that, so he 

obviously knows what works. (Natalie Interview, August 10) 

Natalie emphasized the lectures were different from any other mathematics class she had taken. 

In addition, the body language and behavior of other students indicated they were also engrossed 

in the lectures. Tim contrasted Mr. Reilly’s style of lecturing with a physics professor he had, 

“He didn’t need a class because he walked in and started talking to the board as he wrote” 

(Fieldnotes, July 19). So, while students did not get the clear examples and procedures they 

expected, the lectures contained elements that helped them value what they were learning.  

 Mr. Reilly’s role as supportive and available. Mr. Reilly also fostered roles as being very 

personable and supportive. Each day when class ended, he stayed and sat on a desk at the front of 

class while students approached him to talk. He made it clear he would gladly talk about 

mathematics any time he was available and he would be in his office for a couple of hours after 
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class (Observation, June 29), but would also take the time to talk about other things that 

interested them (Mr. Reilly Interview, August 10; Steve Interview, July 21). Natalie and Steve 

emphasized this aspect of making himself available were important to them (Natalie Interview, 

August 10; Steve Interview, July 21). While discussing how to teach responsively to students’ 

ways of knowing, Baxter Magolda (1992) found it was important for instructors to offer 

opportunities for students to get to know them. She added that absolute knowers wanted teachers 

to demonstrate helpfulness. Students in this class liked the opportunity to personally connect 

with Mr. Reilly.  

In addition to demonstrating his availability, Mr. Reilly made many supportive comments 

throughout his lectures. The natures of most of these comments were to encourage students to be 

persistent and to demonstrate understanding that students might feel overwhelmed.  

Unless you've done trig before, and are pretty good at it, you will be overwhelmed. There 

is no doubt about that, you'll get overwhelmed at some point in chapter five. If you hang 

in there and keep trying, you will be okay, I promise you. If you fall, I'll help you up, as 

long as you try. But it's something you want to be prepared for, is in chapter five there is 

a lot. (Observation, June 28) 

He regularly interjected similar comments throughout his lectures. They demonstrated Mr. 

Reilly’s alliance with his students and his belief they could learn the concepts, but they would 

need to work hard. He also told students when to expect a topic to be more difficult. I asked 

Natalie if the comments were helpful to her. 

What helps is that first you go in with an attitude it's going to be very hard, and then it's 

not that hard… I think that's good to prepare; you have to prepare and then you have your 

expectations. There's no surprises. (Natalie Interview, August 10) 
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Perhaps telling students when it was going to be difficult motivated them to work harder and not 

feel dumb when they did not immediately understand. It was clear Mr. Reilly did not want to use 

the course to “weed out” students and he believed success was based on persistence rather than 

ability. “A lot of it is impressions, a lot of it is associations. You know, get away from math as a 

mark of intelligence, math is an opportunity for failure” (Mr. Reilly Interview, August 10). 

Support also included the way he spoke to students during lecture and discussion. After 

describing previous mathematics instructors who made him “feel dumb” for asking questions, 

Steve described the current class: 

This one responds in a fairly respectful manner to all questions, which is fairly important 

I think because by doing that he's earning the respect and relationship of his students. 

(Steve Interview, July 21) 

Steve indicated Mr. Reilly’s respectful answers helped maintain a safe environment and made 

him more approachable. The nature of Mr. Reilly’s roles and lectures may have helped students 

persevere. Steve expressed, “And I feel very strong every time I leave his class and that’s one of 

the things I appreciate. I feel really strong about what he’s done” (Steve Interview, July 21). 

However, Steve struggled to make sense of the mathematics once he was alone but took 

responsibility for his difficulties since he had always struggled in mathematics and did not spend 

enough time during this quarter striving to learn it (Steve Interview, July 21).   

Mr. Reilly’s role during whole-class discussion. Rather than lecture, Mr. Reilly provided 

many opportunities for students to participate through whole-class discussion. In the following 

episode, which begins after he extended the definition of sine and cosine from ratios of sides of 

right triangles to y and x coordinates on the unit circles:  
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Mr. Reilly: First off, one-twenty in radians? 

Julie: Two-pi over three. 

Mr. Reilly: Two-pi over three; okay, the sine of one-twenty is going to be the y-

coordinate of this point. 

Tim: Negative one-half. 

Mr. Reilly: Careful, the y-coordinate; you’re a little early. 

Tim: Root three over two. 

Mr. Reilly: Because the y-coordinate is how far up you are, the y-coordinate of one-

twenty is root three over two, that’s the sine. The cosine is the x-coordinate of this point; 

x is negative because we’re looking to the left, how far to the left? One-half, so the cosine 

of one-twenty is negative one-half. Okay, all right? Good, so tangent would be? 

Student: Negative root three. 

Mr. Reilly: Negative root three, okay, cosecant? …[continued with two more]. Negative 

one over root three, okay, still good? All right, one more then. I’m going to go, oh, let’s 

say we go to this angle, but I’m going to go backwards. I’m going to go clockwise to this 

angle. In degrees, who is it? [pause], 

Jake: Negative one-twenty. 

Mr. Reilly: Close, you’re within a hundred or so. 

Jake: Oh, negative one-fifty. 

Mr. Reilly: You can see it from the symmetry, or realize that if I go from here to there, 

I’m thirty degrees short of one-eighty, that’s one-fifty in the negative and remember that 

ain’t just one angle, it’s one spot, but it’s a whole bunch of angles. So at this position 

here, I’m at a negative one-fifty. In radians what would that be? 
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Susan: Negative five-pi over six [she answered very quickly]. 

Mr. Reilly: Okay, why? 

Susan: Because it’s negative one-fifty and one-fifty is five pi over six. 

Mr. Reilly: It sounds to me like you’ve done some of this before. I mean, what I’m 

getting at is if you already know them – know them, then only answer a few. Because 

what I’m getting at is, how do you think it through while you’re waiting to memorize 

them? I mean, after while you just think it and it’s there, and that’s good. But while 

you’re waiting for that how would you think through that this is a negative five pi over 

six? 

Natalie: Isn’t it five times thirty to get there? 

Mr. Reilly: You could do that, five thirty’s to get there. 

Natalie: And then negative. 

Mr. Reilly: Yeah, you’re going clockwise so you’re automatically negative. What I like, 

yeah, there’s a couple ways to do it. One, I already know that thirty degrees is one-sixth 

of pi, and I’m one-sixth short of a full pi, so I have five-sixths of pi …There’s a lot of 

different ways to do it, I’m not going to force you to do one. Don’t stress; figure out 

something, because this is too much to memorize, you need something to pull it together. 

(Observation, June 30) 

The goal of this exchange was to have students use the new information about trigonometric 

values from the unit circle and give students an opportunity to use what they already knew about 

trigonometric functions, the unit circle, and the coordinate plane to find the values. Mr. Reilly 

gently let students know when they were wrong by responding “careful” and “close,” and when 
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they were correct by repeating the answers. However, by telling students when they were correct 

or not he accepted mathematical authority.  

In the preceding episode, most questions required only short answers and Mr. Reilly 

expanded on some answers to point out the connections. He asked Susan “why,” but since her 

reply indicated she had previously memorized the angles, he explained the purpose of the 

exercise was to find ways to think about the angles using the connections discussed in this class. 

Natalie responded with a way to think about it, which Mr. Anderson acknowledged, then 

discussed more ways to think about it, rather than have other students reflect on Natalie’s 

response. In general, he interpreted and explained mathematical concepts, made connections 

explicit, and suggested ways to think about the mathematics that he believed would be helpful, a 

role best described as an intermediate authority (Smith, 1996).  

Although Mr. Reilly and his students interacted throughout lectures and students 

interrupted with questions and comments, Mr. Reilly deliberately maintained social authority 

throughout class.  

I am a control freak; I gotta drive ... so part of that is premeditated, I'm grabbing control 

of the class and part of the way I'm grabbing control of the class is louder, more up, more 

energetic, so you don't have a chance to take control of the class from me… What is a 

positive way to maintain control? Cheerlead, motivate, because if I do all that, by golly, 

it's my class, you know which is why, the reform stuff, part of it is philosophical, part of 

it is I have a hard time giving up control. (Mr. Reilly Interview, August 10) 

Mr. Reilly’s teaching was very well-planned and intentional; he had spent many hours thinking 

about how he knew the mathematics, what connections could be made between concepts, and 

reading about the history of mathematics and etymology of words (Mr. Reilly Interview, June 

 76



 

29). He carefully motivated each concept and derived formulas, portraying the mathematics as a 

coherent, connected system of ideas.  

Baxter Magolda (1992) suggested that to help students develop more sophisticated ways 

of knowing, instructors must “situate learning in the students’ own experience” (p. 270). The 

characteristics pervading Mr. Reilly’s lectures and demeanor such as using language that 

included students in the community of mathematicians, and fostering personable and supportive 

relationships with students, situated learning in students’ experiences and supported students’ 

development of higher ways of knowing (Baxter Magolda, 1992). However, Mr. Reilly 

maintained roles as mathematical and intermediate authority rather than allow students to test the 

validity of their own ideas, listen to each other, and develop voice.  

The Nature of Social Norms  

Attendance was good throughout the quarter: Eighteen students originally enrolled in the 

class and one dropped within two weeks. Of the nineteen days I observed, there were 15-17 

students present fourteen days, 13 students present on one day and 14 present on the remaining 

days. Students seemed to value coming to this class. Class time consisted of lecture and whole-

class discussion; there was no group work or individual seatwork during class, although some 

students, such as Natalie and Shawna worked together outside of class (Fieldnotes, July 6). Other 

students also may have worked together outside of class since it was clear some students such as 

Tim and Jeremy, and Reggie, Nick, and Jake (Fieldnotes, June 28) knew each other before this 

term. Many students carried on conversations with their neighbors before and after class.  

Social norms of whole-class discussion. Whole-class discussion consisted of 

communication between Mr. Reilly and the students rather than discussion between all members 

of the classroom community (e.g. see Appendixes H & I). The volume and direction of students’ 
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answers indicated they intended their answers only for Mr. Reilly. He repeated correct answers 

for the rest of the class to hear, usually reworded to be clearer (e.g. Appendix H, lines 35 - 43) 

and sometimes appeared to ignore wrong answers (e.g. Observation, June 29). I observed one 

exception to his repeating correct answers when he remained quiet after several students 

provided correct answers, giving other students an opportunity to continue thinking (Fieldnotes, 

July 21). He evaluated correct answers with “good,” and wrong answers with “close” or “no,” 

and did not ask students to respond to their peers’ ideas. These evaluations may have limited the 

likelihood that students would listen and reflect on their peers’ ideas (van Zee & Minstrell, 1997) 

and restricted students’ responses to function univocally (Wertsch & Toma, 1995). 

Correspondingly, students' answers were usually short and needed further amplification, 

interpretation, or expansion. There were some exceptions when students provided longer 

responses (Observation, July 6; Observation, July 13).  

Much of the interaction early in the quarter when social norms were first negotiated 

included closed questions requiring recall as illustrated by the following exchange. 

Mr. Reilly: Sine of ninety? 

Student: Zero. 

Mr. Reilly: Careful.  

Several students: One. 

Mr. Reilly: Good. See the circle, okay, how high are you? That’s what sine is. So, sine of 

ninety is one. Cosine? 

Ss: Zero. 

Mr. Reilly: Zero, good, tangent? 

Student: Undefined. 
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Mr. Reilly: Undefined, okay, as you get more familiar, try to remember things like this, 

tangent is slope. Okay? What is the slope of a vertical line? 

Susan: Zero [OC: this is said so quietly that he cannot hear it]. 

Student: Undefined. 

Mr. Reilly: Undefined, good, so the tangent of ninety degrees makes sense to be 

undefined, because it doesn’t have a slope. Cosecant? 

Ss: One. 

Mr. Reilly: One, secant? 

Ss: Undefined. (Observation, June 30) 

There was very little time for all students to think before at least one student volunteered an 

answer and Mr. Reilly would say whether it was correct or not. This episode was typical in that 

Mr. Reilly pointed out connections that had already been discussed such as the sine of an angle 

as the y-value on the unit circle and the tangent of an angle as the slope of the line through the 

point and the origin. Mr. Reilly had previously discussed these concepts; the goal of this 

discussion was to help students use these connections to become proficient at finding the 

trigonometric ratios of the angles. In addition, Mr. Reilly usually continued the discussion as 

long as one person gave a correct answer, as if the entire class had given the correct answer. 

Although it is likely he did not hear Susan’s answer of “zero” in response to the slope of a 

vertical line, being able to use the connection he intended relies on students’ understanding of 

slopes of lines, which she may not have had.   

Purposes of Mr. Reilly’s questions. Mr. Reilly often posed questions meant to give 

students an opportunity to think and make connections. For example, when they were 

considering multiple measures for coterminal angle:  
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Mr. Reilly: How big is that angle? How many degrees? 

Student: Ninety. 

Mr. Reilly: Good, is that the only possible answer? 

Student: Two-seventy. 

Mr. Reilly: Two-seventy, well two-seventy? Not two-seventy [pause]. Uh, it's things 

you've done before plus a little kick. Yeah, it's true this could be a ninety-degree angle, 

that's right, but that's not the only way to do it, you could also do this [draws an arc 

indicating a four hundred and fifty degree angle], same picture, different idea, see it's not 

just a static picture like this, it's the motion you took to get there. And if I went from here 

to there, sure you turn ninety degrees, but I could also do this, puke, you know and go all 

the way around, but if I do that, then what I've got is ninety degrees plus three hundred 

and sixty degrees, I've got four hundred and fifty degrees. Or, if you know what, if I 

really have no social life at all, I could start turning around and go like this, what do you 

suppose we call that?  

Student: Negative two-seventy. 

Mr. Reilly: Negative two hundred and seventy degrees because I'm going two hundred 

and seventy degrees in the opposite direction. Remember, this is three; this is negative 

three, okay. Counterclockwise is positive, clockwise is negative, so this would be 

negative two hundred seventy degrees, so I'll ask you again, if I draw you this picture, 

what do you know about how big that angle is? 

Student: It could be anything. 

Mr. Reilly: It's almost that bad but not quite that bad. It couldn't be anything but it's 

definitely more than one thing. Can you describe for me all things it could be?  
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Student: Divisible by ninety. 

Mr. Reilly: No, no, because one-eighty is, so is two-seventy [pause]. This will be a pain 

in the neck forever [pause]. This angle is ninety degrees plus any multiple of three 

hundred and sixty. Every three-sixty is a lap, positive multiples of three-sixty are laps 

counterclockwise, negative multiples of three-sixty are laps clockwise, so anytime I draw 

that, this angle here, if somebody says, tell me about angle at A, all you know is that 

angle A is ninety degrees plus some integer multiple of three-sixty. (Observation, June 

27) 

The purpose of Mr. Reilly’s question was to get students to think about the situation and 

formulate a description of all angles with the same terminal side. While some students may have 

been thinking, they were not the first to answer and Mr. Reilly responded to the first answers, 

saying whether they were right or wrong. He continued to rephrase the question but did not give 

students much time to continue thinking, and finally provided the answer. Since this was the first 

day of class, this initiated a social norm that he would provide answers when students were not 

able to quickly come up with a correct answer. Also, when one student responded with a correct 

answer, it was acknowledged and used as if the whole class had given this answer.  

Mr. Reilly’s responses to student input. Mr. Reilly interpreted any student response as a 

signal to continue. On at least two occasions, Mr. Reilly asked if there were any questions and 

Susan quickly responded “no” (Fieldnotes, July 27; Observation, July 13) for the entire class. 

However, once when she responded for the whole class and Mr. Reilly continued, Mark 

interrupted to indicate he did have a question (Observation, July 13). Although Mr. Reilly 

lectured at a quick pace, Susan seemed to try to speed it up more with quick answers that often 

appeared to be guesses or by speaking for the whole class. Mr. Reilly discouraged this behavior 
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early in the term by pointing out that she should not speak up so quickly but give others a 

chance, “I mean, what I’m getting at is if you already know them – know them, then only answer 

a few” (Observation, June 30). So, Mr. Reilly seemed aware of the impact and had a strategy to 

handle it. 

Although many of Mr. Reilly’s questions required only short-answer responses and were 

conversational in nature, Mr. Reilly occasionally followed students’ answers with “how’d you 

get that?” as in this exchange where they were finding the period of ⎟
⎠
⎞

⎜
⎝
⎛ −=

2
3sin πxy  by setting 

up the inequality ππ 2
2

30 ≤−≤ x  and solving for x: 

Mr. Reilly: Two pi over three, excellent, how'd you get it? 

Reggie: The difference between them is four pi over six and I just reduced it. 

Mr. Reilly [speaking to entire class]: It's that easy and it's that hard. What's the period? 

How far is it from here to there [indicating final inequality] but unfortunately, you're used 

to living in a world like this [writes 61 << x ]. How long is that interval?  

Student: Five. 

Mr. Reilly: Five, good, see you’re used to those numbers and if somebody says how long 

is this period, you go, eh, five, cool, one to six is five. There is something about putting 

little Greek letters in that messes everybody up. Get used to it, accept it, then deal with it. 

How long is a period? It’s from here to there, [points to Reggie] subtract, reduce, two pi 

over three, okay. So, two pi over three. (Observation, July 5) 

While acknowledging Reggie’s contribution, Mr. Reilly expanded on it, making a connection to 

students’ previous understanding. He attributed the idea to Reggie, but also rephrased it. By 

repeating and expanding correct ideas, he maintained his role as authority. This teacher role does 
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not align with Baxter Magolda’s (1992) recommendations; she argued that in order to foster 

more complex ways of knowing, instructors must suppress their own authority and encourage 

students to provide ideas for their peers to consider (Baxter Magolda, 1992).   

At other times, Mr. Reilly provided reasons for students’ answers without asking them 

for an explanation, such as in this episode when he had just graphed xy sin= , 

Mr. Reilly: Mark this off in units of pi, forward and backwards. Oh, can you see the 

range of the function from here?  

S: Negative one to one. 

Mr. Reilly: Negative one to one, good, because I'll never go lower than negative one and 

I'll never go higher than one. When x is zero, I'm here, from zero to pi over two, sine goes 

from zero to one [he's referring to the unit circle as he graphs]. So, this is one and this is 

negative one, I go from zero to one. When you go from pi over two to pi, then I go from 

one to zero, okay. Here, third quadrant, pi to three pi over two, sine goes from zero to 

negative one. And the fourth quadrant it comes back again, and if you go the other way, 

you get the same shape here. (Observation, June 29) 

In general, Mr. Reilly asked questions to give students opportunities to think and to make 

connections. However, he explained the answers for the class; he stated that his rationale for this 

approach was that he could tell students far more connections than they could discover during 

class (Mr. Reilly Interview, August 10).  

Students appeared to appreciate opportunities to ask and answer questions throughout 

class. Near the end of the term, students interrupted with questions far more often than in the 

beginning of the term (Fieldnotes, July 26). This was a result of Mr. Reilly’s helpful responses 

when students interrupted (e.g. Appendix H, lines 37-65), and because they had gotten to know 
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him. Students had also gotten to know others who sat near them since there was much discussion 

between them before and after class (Fieldnotes, June 30). During class, however, 

communication remained between Mr. Reilly and the students rather than between all members 

of the class.  

Use of class time. There were no opportunities for individual or group work when I 

observed. Mr. Reilly had tried using group work in a previous class. He described a paired 

developmental/ study-skills course he co-taught with a study-skills instructor (Mr. Reilly 

Interview, June 29). The other instructor insisted on group work during class and Mr. Reilly 

agreed to include it as long as they used the time set aside for her portion of the class; he did not 

have the time to spare. The final grades for the top and middle students in that class were similar 

to the usual grades for the course, but the bottom group of students had grades about .5 higher on 

a 4.0 scale than usual (Mr. Reilly Interview, June 29).  

Mr. Reilly’s goal was to provide a structure by illuminating concepts, key connections, 

and important points. Natalie appeared to accept this purpose of lectures when I asked if she had 

changed the way she studied compared to previous math classes:  

[I’m] reading more, the book, going back over and, it’s funny, everything he says pops in 

my head, maybe two or three days later. And I got that, I think three days into the course, 

I realized it because, I realized, boy, listen to what he says, because he’s not just saying 

things to say things. (Natalie Interview, August 10) 

Mr. Reilly did not expect students to understand immediately, but only after they worked outside 

of class. Natalie realized she would not necessarily understand the connections made during the 

lectures until after she worked on her own. Her comments indicated that she strived to 

understand the mathematics outside of class. So, while students interacted with Mr. Reilly during 

 84



 

his lectures, he allotted no time for individuals and groups to make connections, discoveries, or 

“do mathematics” during class, but believed students should continue striving to understand 

outside of class. 

While the content of lectures may have challenged students’ beliefs about the nature of 

mathematics as concepts rather than procedures, the social norms did not challenge their beliefs 

about their roles as receivers of knowledge. The social norms supported Mr. Reilly’s role as 

intermediate authority in the classroom rather than provide expectations for each student to 

engage in mathematical practices during class. Unlike students in the class described by 

Rasmussen et al. (2003) whose beliefs about their roles changed because of their instructor’s 

explicit attention to social norms and roles, Mr. Reilly’s responses allowed students to maintain 

roles consistent with their previous experiences and expectations.   

How Mr. Reilly Portrayed Mathematics  

This section contains evidence of the way Mr. Reilly portrayed mathematics to students 

through stories about the history of mathematics, the usefulness of the mathematics they were 

learning, and the language he used to discuss mathematics. I also show that these factors affected 

students’ ways of knowing. 

Mathematics grounded in human history. Throughout the term, Mr. Reilly portrayed 

mathematics as concepts and tools devised by real people trying to solve practical problems. This 

representation included describing real life applications of mathematics and providing the origins 

of newly introduced words. For example, on the first day of class:  

Mr. Reilly: Trig is very, very old, we've been doing trigonometry for three, four, five 

thousand years, which means the people who do trig are practical people and they are 

theoretical people. It's kind of weird when we get those groups of people mixing and 
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talking about something. And here's a good an example of that, any body know what that 

word means? [underlines the word trigonometry] Anybody got any Greek to them? 

Tim: Trig, triangle. 

Mr. Reilly: Trig's for triangle, good, ometry? [Looks around, pausing] Measure. You're 

taking a course on measuring triangles, is what you're doing, okay, but you know how 

many people you can scare with that? You don't scare anybody. What'd you do today? 

Well, we spent an hour measuring triangles. No, it doesn't work. Because it's old, because 

it has a heritage, because it has a history, we tend to use old words, things like Greek, 

trigonometry; that means measuring triangles. Two, over the years, mathematics has 

achieved the status of intellectual elitism, so we like that, so we intimidate people. Part of 

the reason I say trigonometry is because it scares you, because it makes me smarter. If I 

can do trig, I'm a smart person, and you'll see that. There are things we do in trig, there 

are things we do in math because it's the right idea, there are things we do in math 

because we've always done it that way, there are things we do in math because it scares 

people and makes us feel smart. (Observation, June 27) 

Rather than introducing trigonometry as knowledge that exists, Mr. Reilly depicted it as 

developed by different people with different purposes. He did not imply that a person must be 

smart to be successful in mathematics, but portrayed some aspects as attempts to look smart and 

alienate others.  

Mr. Reilly told stories while developing concepts. The stories were not long and each had 

a purpose, usually to give historical context to the mathematics. As he introduced trigonometry 

with triangles, he developed the progression of ideas by using similar triangles, then using ratios 

of triangle side lengths. He next recounted a story of Thales measuring the height of a pyramid.  
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Mr. Reilly: The first example of I actually know of somebody doing this is an old Greek 

guy by the name of Thales, lived about five hundred b.c. He studied math, he's a little bit 

earlier than Pythagoras, and at some point, he takes the package tour of Egypt, and 

apparently when he was in Egypt, apparently he was talking himself up pretty good, I'm a 

great mathematician, I'm really smart, I'm Greek you know. And the Egyptians called 

him on it. The Egyptians said fine, if you're so blasted smart, here you go, there's a 

pyramid, find the height, okay. The reason this is a significant problem is, the simplest 

way to go get the height is to just go measure it. Go get a tape measure, go up from top to 

bottom, find out how long it is. What's the down side of that? 

S: Pyramid is huge. 

Mr. Reilly: Pyramid is huge, and it's made out of rock. In order to measure its height 

directly, you're going to have to dig a hole from the top of the rock to the bottom of the 

rock, and it's just not practical. So Thales uses our little triangle trick and comes at it 

indirectly, and this is what he does. He says all right, let's wait ‘til we get a nice sunny 

day, which in Egypt ain't that hard to do. So you wait until the sun is in position where 

you get a nice, nice, nice shadow. Now, notice that when I get a shadow of the pyramid 

here, what I've actually formed is a triangle. See it? The height to the ground forms a nice 

little right angle. By the way, I get another side of the triangle along the ground, and the 

third side of the triangle goes to the top of the pyramid. So there's one triangle. Thales 

said all you have to do is this. Go get a stick, I don't care how big the stick is, just go get 

a stick of some fixed height. So, let's say he gets a stick six feet tall, there it is, walk up 

and down until the shadow from the top of the stick matches the tip of the shadow from 

the top of the pyramid, and oh, hold it straight up because you want a nice little right 
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angle here. And notice what you have. You have one triangle here, this triangle I'm going 

to name ABC, and I'll write it over here (see Figure 2). ABC, with a right angle. Here, 

I've got a second triangle, ADE, I'll put that over here, ADE. (Observation, June 28) 

E C

B

A

D

 

Figure 2. Heights of a pyramid. 

As usual, Mr. Reilly faced students as he talked, drew a picture on the board, smiled, and 

modulated his voice so the story captivated listeners. The story depicted mathematics as 

developed by clever people to solve real problems.  

In his discussion of the history of mathematics, Mr. Reilly mentioned that 

mathematicians chose certain mathematical conventions for convenience and the conventions 

continued to be used after the convenience was obsolete. For example, while explaining the 

choice of 360˚ for a circle:  

And if you're doing math on your fingers, that's a nice number, sixty is good. Three-sixty 

is six sixties, everybody goes into three-sixty: two does, three does, four does, five does, 

six does; almost everybody goes into three-sixty. Well, were these people thinking about 

calculators? No. Great, we have calculators now; do you think we're going to change it? 

No, cause I ain't changing the books. It's old math, the reasons for doing it are all gone, 

but it's still going to be there. (Observation, June 27) 

In a similar vein, Mr. Reilly also discussed reasons for rationalizing denominators 

(Fieldnotes, June 30) and why degrees are decomposed into minutes and seconds (Fieldnotes, 
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June 27). The combined effects of these explanations was to portray conventions as human 

choices and ground mathematics in human history.  

A related technique was to discuss ambiguous notation: 

Be careful, the sine of alpha plus beta is not the sine of alpha plus the sine of beta. This is 

not a multiplication, it's a function, … beware of anything that makes you think it's like a 

product. Again, it's not your fault; we did that. When we decided not to put the 

parentheses there, we set you up for that, so watch for it. (Observation, June 29) 

With his warning to be cautious, he also indicated that the problem was with the notation and not 

the students. He again placed the blame on the mathematicians who developed the notation when 

he warned students that the notation for inverse trigonometric functions did not have anything to 

do with reciprocals (Observation, June 30; Fieldnotes, July 18). These warnings may have 

influenced students’ beliefs that their difficulties in mathematics were inherent in the notation 

and not in students’ abilities. It also added to the sense that Mr. Reilly was sensitive towards 

their struggle to learn.  

In addition, he spoke to students about the nature of mathematics, “Don’t think of math 

as this eternal unchanging entity completely divorced from opinion. Swokowski [text author] has 

one perspective, Cole [second text author] has another, and I have mine” (Observation, July 6). 

From this statement, it appeared that only experts such as mathematicians, mathematics 

instructors and text authors could have differing opinions. However, that different 

mathematicians may have different opinions introduced the idea of mathematical knowledge as 

uncertain which challenged absolute knowing (Baxter Magolda, 1992). 
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Mathematics as real life. Mr. Reilly often paused to tell students how the mathematics 

they were learning was used in real life. For example, after graphing xy sin= , he described its 

uses: 

Unintentional benefit, anything in the real world that does this, vibrates, cycles, repeats, 

uh, earthquakes, music, radios, heartbeats, anything that does this, this is what we use. In 

fact, we're so good at this, this is what a.m. radio is made out of, these. This is what f.m. 

radio is made out of, these. If you've ever heard a computer speak with a human voice, it 

is using some variation of this. Kind of a neat unintentional consequence, sine as a graph 

has a wave and that has lots of neat applications. (Observation, June 29) 

He leaned his back against the board, facing students and making eye contact while moving his 

hands to indicate a wave. Students appeared to enjoy the stories and explanations of real life 

applications. On his student questionnaire, completed at the beginning of the first day of class, 

Jeremy indicated that providing real life applications could help him learn (Jeremy 

Questionnaire, June 27). Both Natalie and Steve indicated in their interviews that the stories and 

real life connections made the mathematics much more interesting. Steve said,  

I appreciate hugely the fact that he takes the time to relate some of the stories that he's 

found over the course of his twenty years of teaching through reading. And they're really 

interesting to me. They're way more interesting than crunching numbers but yet they have 

to do with why we're crunching numbers. It gives you some background. To me that's the 

next best thing from coming out here and measuring the tree first hand, is the fact that 

he's doing that, he's telling stories about where these came from, or even little side notes 

of what you can do with what you've just learned. Oh, this is how this person took this 

tool and then measured, you know, an entire country with it, or figured out the distance to 
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Mars. It's awesome …As I told him before, what he's doing for me is a god-send, as far as 

I'm concerned.  From all the time that I've put into math classes that either I passed or I 

failed, and I hated them, or I wasn't interested, or I saw no application, or was bored out 

of my mind, and I knew that there was supposed to be something there, but I just couldn't 

apply it to anything. Now I can start to apply it to something. (Steve Interview, July 21)  

Steve valued knowing that the mathematics he was learning could be used to solve real life 

problems. This was clearly a different perspective of mathematics than he had before this class 

and was caused by Mr. Reilly’s portrayal of mathematics. By discussing the origin of words and 

telling stories that illuminated the historical development of the mathematics they studied, Mr. 

Reilly made it more accessible and tangible to students, and demystified it. The effect was to 

situate learning in students’ experiences by inviting them to share in the experiences, which 

encourages more complex ways of knowing (Baxter Magolda, 1992). 

As a result, Steve showed evidence of crossing between absolute knowing and 

transitional knowing. His questionnaire responses emphasized a need for clear, step-by-step 

procedures and heavy dependence on the instructor, demonstrating a predisposition of absolute 

knowing. However, his appreciation of Mr. Reilly’s attempt to encourage understanding showed 

evidence of transitional knowing. During our interview I asked Steve what he was going to do to 

get ready for the next test, he answered, 

[Laughed] All the things that have been taught to me in my previous math classes, which 

are probably all the things that I shouldn't be doing, because I've been kind of bred to do 

things a certain way. And I think he's trying to break that mold that I've been put in and I 

see that in him. But I'm not sure how to at this point unless I took the teacher home with 

me. Um, I know that I should, I know that I have to, in order to come into the real world 
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mathematics that he's trying to teach. But it's difficult, it's difficult when you've been, like 

I said, I've taken so many math classes and it's always the same thing, just go home and 

crunch numbers and just get upset, confused, angry, and a lot of times you need to sedate 

yourself just to sit there. I mean, I honestly get A's, almost straight A's through all my 

other classes, except for math. (Steve Interview, July 21) 

While Steve recognized and appreciated that Mr. Reilly expected him to learn differently in this 

class, he did not have strategies for learning in new ways. However, he approached me on the 

next class day I observed and made a point of telling me he tried a new study technique over the 

weekend: he rented the videos that go with the book and watched them with paper and pencil in 

hand, stopping and replaying as necessary (Fieldnotes, July 26). While this showed he was 

willing to try something new, he still relied on an authority. Thus, students may need support to 

study and learn in new ways while their current ways of knowing are contradicted. 

Mathematics as truth. Although Mr. Reilly portrayed conventions and the development 

of mathematics as human inventions and choices, he also believed deeper truths existed in 

mathematics: 

I think there's two perspectives to math. One is, math is something that belongs to truth 

and we discover math as we go along. Another is, math is something that is man-made 

and artificial that is a scaffolding that is used to approximate what you see out there. I 

like the former. The former is what is math? Math is what is. So the Pythagorean 

Theorem is true, and the only truths that are discovered by every culture, at every time, in 

every place, to me are essentially mathematical. So, I got that from Euclid,...Every time I 

do math I'm looking for a bigger truth... The notation is just the scaffold,,...The concept is 

that bigger, deeper, philosophical truth,… In terms of doing that [regarding incorporating 
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real life applications and stories], that was one of my goals and it was slow,…  reading 

those books, prepping lessons. (Mr. Reilly Interview, August 10) 

Mr. Reilly had examined his own beliefs about the nature of mathematics and his beliefs 

influenced the way he told stories and his reason for telling the stories. His passion for 

mathematics grew out of reading Euclid’s Elements and other mathematical books (Mr. Reilly 

Interview, June 29). He tried to portray the same image of mathematics to his students; finding 

the history and creating lectures that included history and real life examples was intentional and 

took a lot of time. 

In summary, Mr. Reilly portrayed mathematics through stories about the development of 

mathematics and real-life uses, and used language that personified mathematical objects, 

encouraging access to mathematics and situating learning in students’ experiences. Students 

valued these aspects and perceived this class as different from previous mathematics classes.  

Summary of Research Question One: Nature and Development of Community  

The majority of students entered this class as absolute knowers, believing mathematical 

knowledge to be certain. They believed the instructor had the knowledge and they obtained it 

from him; his role was to do many examples and explain clearly. The roles and social norms did 

not provide students opportunities to change this view since they were rarely asked for their 

ideas, were not expected to listen to each other, and Mr. Reilly sanctioned correct answers and 

explained, maintaining his roles as mathematical and intermediate authority. It follows that the 

nature of social norms and roles did not support students’ development of voice and 

opportunities for contextual ways of knowing in which students’ used their own sense-making to 

validate mathematics.  

 93



 

However, Mr. Reilly’s portrayal of mathematics through history and his comments about 

opinions in mathematics challenged student beliefs about the certainty of mathematical 

knowledge. Similarly, his emphasis on understanding concepts encouraged transitional knowing 

while his use of real life applications situated learning in their experiences. While those factors 

challenged absolute knowing, Mr. Reilly responded to the needs of absolute and transitional 

knowers by demonstrating a caring, supportive attitude and providing opportunities for students 

to know him. Responding to students’ needs in their current ways of knowing is essential for 

“heightening students’ interest in learning, strengthening their investment in that process, 

creating comfortable learning atmospheres, and developing relationships that foster 

understanding” (Baxter Magolda, 1992, p. 268). By confirming and challenging students’ current 

ways of knowing, Mr. Reilly encouraged more complex ways of knowing (Baxter Magolda, 

1992).  

Research Question Two: Interactions Related to Mathematics 

The following sections contain a discussion of the nature of classroom interactions as 

they related to mathematics, especially the nature of communication, sociomathematical norms, 

and of doing and learning mathematics.  

The Nature of Communication  

Communication in this class was through lecture and whole-class discussion. Table 17 

shows the percent of time spent on each of the communication types described by Brendefur and 

Frykholm (2000) for the first five days of class.  

Uni-directional communication. The nature of uni-directional communication in Mr. 

Reilly’s class varied from straight lecture, to conversational closed questions, such as “Anybody 

know what that word means?” (Observation, June 27). This type of question initiated a norm that 
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students should join in the conversation. Uni-directional communication also included recall 

questions or fill-in-the-blank statements to see if students could use meanings recently 

introduced. The following episode provides an example; Mr. Reilly had just introduced meanings 

for the sine, cosine, and tangent of an angle from a right triangle.  

Mr. Reilly: So if I go back over here, clear a spot, and grab my three, four, five, and call 

this alpha. From this triangle, sine of alpha would be? 

S: Four over, 

Mr. Reilly: Four over, 

S: Five. 

Mr. Reilly: Four over five; standing here at the angle, opposite is four, hypotenuse is five. 

So the sine of alpha here is four-fifths. Make sense? Next one up, is called cosine, sine's 

buddy, abbreviated cos, cosine is adjacent over hypotenuse. So, on this triangle here, the 

cosine of alpha would be? [pause] The adjacent side is, 

S: Three over five. 

Mr. Reilly: Three over five, good. (Observation, June 28)  

The episode contains closed questions to see if students could use the definitions just introduced. 

It also allowed students who wanted to be more active a chance to participate, while giving Mr. 

Reilly an opportunity to assess whether or not students could apply the information just given 

and slowed the pace of the lecture. When one student replied correctly, Mr. Reilly did not 

assume all students understood but explained why it was the correct answer. However, he also 

had very little wait-time and after asking for the cosine of alpha and a slight pause, asked a 

simpler question rather than asking a question to find out what students were thinking (Herbel-

Eisenmann & Breyfogle, 2005; Cazden 1988/2001). 
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Some uni-directional communication could best be described as funneling (Wood, 1998). 

After finding the angular velocity of the Earth, they address the next problem in the text 

(Swokowski & Cole, 2002): 

Mr. Reilly: Okay, forty-two [referring to the problem number in the text], the equatorial 

radius of the earth is about three thousand, nine hundred and sixty-three point three miles, 

uh, find the linear speed. Find the linear speed at the equator [laughs].  

S: That's an evil laugh. 

Mr. Reilly: Oh, yeah, actually, it's part of teacher training; you've got to have an evil 

laugh. All right, so what am I going to do? 

S: It doesn't give you anything. 

Mr. Reilly: Actually, it gives you everything you need. What do you have? 

Tim: Numbers, letters. 

Mr. Reilly: I got this [points to result from #41].  

Tim: Which equals seven hundred and [inaudible]. 

Mr. Reilly: It's bugs, that's all it is, bugs. Here's angular speed; here's the units I have, 

what are the units I want? [By “bugs” he is referring to the problem he used to introduce 

the distinction between linear and angular speeds.] 

S: Miles. 

Mr. Reilly: It's bugs, what are the units I want? What is linear speed measured in?  

S: Inches. 

Mr. Reilly: Inches? Miles? Feet? Length? So I need miles, so I want miles per second. 

So, what do I multiply by; what are the units? [pause] I cannot tell you how good this 
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trick is. What are the units I multiply by? Who dies? [The “trick” is dimensional 

analysis.] 

S: Miles over radians. 

Mr. Reilly: Radians die, who lives? Who rises? 

S:  Miles. 

Mr. Reilly: Good, miles per radians, give me an equivalence. (Observation, June 28)  

This episode of solving a homework problem started with a question aimed at eliciting a correct 

procedure, but a student responded that they did not have enough information. When Mr. Reilly 

argued and asked what information they did have, Tim gave a flippant answer, to which Mr. 

Reilly responded by funneling with shorter closed questions, and finally provided the answer he 

wanted. The nature of this episode was affected by the social norm that once a student gave an 

answer, Mr. Reilly answered it, by his role of providing correct answers when students did not.  

Mr. Reilly sometimes followed students’ answers with “why?” (e.g. Observation, July 6). 

In the following episode, he was finishing an explanation of a homework exercise that asked 

students to write tangent in terms of sine only. He asked why, but students’ responses were not 

helpful in promoting reflective communication, so he answered it himself.  

Mr. Reilly: Since sine squared plus cosine squared is equal to one, that means cosine 

squared is equal to one minus sine squared; and cosine squared is, well at least at first, 

plus or minus the square root of one minus sine squared. However, that one goes away 

[erases the minus sign] why? 

S: It can't be negative. 

Mr. Reilly: Cuz it can't be negative, and why can't it be a negative? 

S: Because it's a radical. 
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Mr. Reilly: Actually, it's outside the radical, though, so that's not the issue… What is 

cosine to you right now? [pause] …It's a ratio; it's one length divided by another length, 

and if you take one length, divide it by another length, can you get a negative ratio? 

S: No. 

Mr. Reilly: No, a positive divided by a positive is positive, and for right now, that's 

positive. (Observation, June 29) 

Mr. Reilly emphasized that there was a reason why the expression could not be negative, but the 

students’ answer “it can’t be negative” did not answer “Why?” so Mr. Reilly repeated his 

question more clearly. However, a student said “it’s a radical,” apparently associating radicals 

with “can’t be negative” so after mathematically refuting their answer, Mr. Reilly answered his 

own question, referring back to the only meaning of sine they had seen so far in class. This 

episode became an instance of uni-directional communication and declined in cognitive demand 

when Mr. Reilly allowed very little wait-time and then answered his own question. Henningsen 

and Stein (1997) implicated teacher taking over and lack of time as reasons for decline in 

cognitive demand. In addition, the classroom social norms and roles encouraged this type of 

communication since students could give short answers and Mr. Reilly responded by saying 

whether it was right or wrong until either a student gave the correct answer or he provided it.  

Through some uni-directional communication Mr. Reilly determined what students did 

not know and adapted his instruction. In the following episode, he was able to determine and 

address students’ current understanding of identities: 

Mr. Reilly: But before I get into that, a quick review of what an identity is. An identity is 

an equation that is not meant to solve, it's just meant to demonstrate. Here's an example, 

what's another way to say two times x plus y?  
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S: Two x plus two y. 

Mr. Reilly: Good, two x plus two y. Notice when I do that, I write that as an equality. 

That's not supposed to be an equation to solve, that's not the purpose of it; it's not a 

question. It's supposed to be a demonstration: see, this is the same as this. Likewise, 

something like this, x plus three, squared, is something like this, x squared plus six x plus 

nine. The whole point is not to solve it, in fact, if you did try to solve this, what would the 

answer be? [pause] Who works? [From fieldnotes: Mr. Reilly smiles and moves away 

from board; some students shake their heads no as if there is no value that “works”]. 

S: Irrationals. 

Mr. Reilly: Yeah, irrationals work, who else? [pause] And notice how many people are 

jumping up and down saying call on me, call on me, call on me. How many numbers 

work in this equation? [pause] Let me put it a different way: who doesn't work?  

S: Zero? 

Mr. Reilly: Eh, zero works. If you put zero in here, that's three squared, that's nine. If we,  

S: Negative three. 

Mr. Reilly: Negative three works, if you put a negative three in here, you get zero, if you 

put negative three here, you get nine minus eighteen plus nine, that's zero. Okay, cool. 

Who doesn't work? [pause] Well, I'm glad I brought this up. You've been doing this for 

two years by the way. Nobody fails; that's actually the point. It doesn't matter who x is, 

that's always true. You can make x three, four, the square root of twenty nine, you can 

make x pi, if you put that number here and put that number over here, it's the same thing. 

That's the value. And the reason you like identities so much is because they allow you to 

change questions. [Gives an example of solving an equation] …I have a whole handful of 
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identities, I know that these two are the same, so any time I get one of these, I can stick 

one of these in there. So, I can change the form of the question to this. And now it's a 

much nicer question that still has the same answer. That's the value of an identity, I can 

change the way it looks to make my life better. Okay? (Observation, June 29) 

Mr. Reilly continued emphasizing the meaning of an identity while considering each 

trigonometric identity. After deriving the Pythagorean identity , they checked 

its truth-value for 

1cossin 22 =+ θθ

30=θ º, 60=θ º, and 45=θ º. In this instance because no student 

demonstrated an understanding of identities, he spent time discussing their meaning. In this 

instance he used uni-directional communication, specifically closed questions, to determine 

students’ current understanding and adapt his instruction.  

Contributive communication. Communication that focused on making connections or 

discoveries, or prompted students to make sense of the mathematics, in addition to problem-

solving episodes could often be characterized as contributive. In the following episode, Mr. 

Reilly posed the problem intending for students to make a connection:  

Mr. Reilly: Keep in mind, little facts, little ideas that float around in trig, keep in mind the 

size is irrelevant. Here's an example of that, on the old x-y-plane, here's an x-axis, here's 

the y-axis. I'm going to draw the line xy 2= , which goes through the origin. Notice that 

when the line y equals two x passes through the origin it makes an angle with the x-axis, 

okay, right here. I'm going to call that angle theta. Question: Find sine theta, cosine theta, 

and tangent theta. [From the time he finishes this sentence until a student answers is 18 

seconds] You notice what I'm not asking you for; I'm not asking you for theta, we don't 

need it. What I want is the sine of theta. Ideas?  

S: Well, you can draw a line down, anywhere. 
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Mr. Reilly: Good, excellent. The problem with finding it right away is that you don't have 

a triangle. If you had a triangle, you'd do the opposite over hypotenuse, and that would 

give you sine of theta, so I'm going to make a triangle. And you're right, the idea, I'm 

going to take some point on the line, and drop, to make a right triangle, what point? 

S: Doesn't matter. 

Mr. Reilly: Doesn't matter, any point you want. So I'm going to pick any point on the 

line. I'll pick this one [labels (2, 4)]. If I pick the point two, four, I naturally make a right 

triangle, because, since the coordinates are two and four, this length here is two and this 

length is four. What about the hypotenuse? [pause 5 seconds] I keep saying something 

about that. 

S: Four. [Mr. Reilly waits, looking around and looking at the student who said four.] 

S: [a different student] Pythagorean. 

Mr. Reilly: Yeah, Pythagorean [smiles at student who said four]. The hypotenuse is going 

to be the square root of four squared plus two squared, which is the square root of twenty. 

Oh, and by the way, I won't get hung up about simplifying radicals, as long as you don't 

snitch on me, you don't go telling your next teacher, Reilly didn't make me clean up 

radicals…[questions to find side lengths of triangle]…Notice anything about tan? [pause 

4 seconds] I'm going to put this down here. For that line, tan of theta is opposite over 

adjacent, is four over two, is two. The tangent turns out to be two, but actually two is 

important for another reason [pause 6 seconds]. 

S: It's opposite over adjacent. 

Mr. Reilly: What's the slope of that line? Its slope? Opposite over adjacent is rise over 

run; it's the same thing. Tangent is slope. One of the things we're going to do this quarter 
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that's kind of interesting is, instead of trig being over here and algebra being over there, 

no, we're bringing trig to algebra. They're going to merge, they're going to talk to each 

other, sometimes they'll actually get along. The tan of the angle is the slope of the line, 

again because opposite over adjacent is rise over run. (Observation, June 29)  

This episode was slightly over four minutes. While solving this problem, Mr. Reilly had specific 

ideas he wanted to highlight: trigonometric ratios did not depend on the size of the triangle but 

on the ratio of the lengths of the sides, and the tangent of an angle is the slope of the line. One 

student offered an idea “draw a line down anywhere,” using the idea that size is irrelevant. 

However, near the end of the episode, a student gave an answer repeating what Mr. Reilly had 

already said, “It’s opposite over adjacent.” While Mr. Reilly introduced this problem to allow 

students to make a connection between tangent and slope, a social norm of this class was that if a 

student answered, Mr. Reilly evaluated the response and then gave the correct answer. This 

social norm constrained opportunities for students to make the connection. 

Some contributive communication arose from students’ questions and allowed Mr. Reilly 

to understand what students were thinking (see Appendix H). Mr. Reilly intended to engage and 

challenge students’ thinking with the initial posing of the problem, warned students on the 

necessity of thinking, and asked questions on the number of solutions and why. The episode 

started and ended with uni-directional communication (Lines 1-18 and 40-67), but contributive 

communication arose in this episode when Tim shared his ideas in the form of a question (Line 

30) that showed he had been trying to make sense of the solutions, which contradicted his 

understanding of the sine of an angle as its height on the y-axis. Mr. Reilly initially 

misunderstood Tim’s question (Lines 31-32) and Tim clarified what he meant (Lines 33-34). Mr. 

Reilly appreciated Tim’s contribution and reworded it for the rest of the class before 
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demonstrating that the solutions worked. This episode provided an opportunity for reflective 

communication since Mr. Reilly could have asked students to explore the question. However, 

because the roles and social norms emphasized Mr. Reilly’s role as intermediate authority, 

reflective communication was not likely. Mr. Reilly emphasized that students should ask similar 

questions and strive to make sense when they were studying outside of class.  

The above episode contained some elements of instructive communication in that Mr. 

Reilly posed the problem to encourage reflection (Brendefur & Frykholm, 2000), and Tim’s 

question illuminated his understanding of these solutions and the contradiction it presented with 

his current understanding of the sine of an angle, modifying instruction. It contained an element 

of reflective communication, since once Mr. Reilly understood what Tim was saying he 

rephrased Tim’s question so other students could also consider it, making it an object of 

discussion (Brendefur & Frykholm, 2000). However, the communication then returned to uni-

directional communication as Mr. Reilly asked, then answered his own questions.  

In summary, the discourse in this class consisted of uni-directional and contributive 

communication. Uni-directional communication was often interactive, allowing Mr. Reilly 

opportunities to assess students’ use of the concepts and adapt instruction. In addition, interactive 

lecture provided opportunities for students to be more active if they wanted. Although Mr. Reilly 

presented problems to give students opportunities to think, make sense of the mathematics, and 

make connections, roles and social norms constrained opportunities for higher communication 

types and positioned students much like the students Boaler (1999) observed in the traditional 

classes at Amber Hill. Boaler observed that teachers told students whenever they were stuck and 

did not foster peer relationships which would support different ways of knowing. 
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The Nature of Doing and Learning Mathematics  

This section begins with a discussion of students’ preconceptions on learning 

mathematics, then presents evidence of the way Mr. Reilly modeled and explicitly discussed 

ideas about doing and learning mathematics, then addresses other elements of doing and learning 

mathematics that emerged as sociomathematical norms.  

Students’ initial beliefs about mathematics. Two questions on the Student Questionnaire 

(Appendix D) targeted students’ beliefs about the nature of doing and learning mathematics. 

Their responses to the question, How do you best learn math? indicated they learned 

mathematics by following examples and by practicing step-by-step procedures (see Table 15). 

Eight students responded that practice was important, six students responded that being shown 

examples with step-by-step procedures helped, and five students indicated that the instructor 

must teach them. None of the students mentioned working with others, discussion, or exploring 

to this question, demonstrating they had a predominantly procedural approach to mathematics 

and were absolute knowers. 

A second question asked if students thought memorizing steps and formulas in 

mathematics was important (see Tables 18 & 19). A majority (9 students) thought it was 

important for at least some things, while those who said no said they would be able to look up 

what they needed. Students arrived in this class already believing that memorizing was important 

but later indicated that this course was different. Tim said this class was “really different from 

previous courses” because previous courses focused on memorization, "memorizing is shoved 

down your throat" (Fieldnotes, July 12). And, on his questionnaire, Steve said he best learned 

mathematics by being given a specific step-by-step method for attacking problems, and then 

practicing. He also said that memorizing steps was very important (Steve Questionnaire, June 
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27). However, after a few days of class he approached me and said the answers on his 

questionnaire would be different now (Fieldnotes, July 6). Later, in an interview he said, “The 

situation with trig functions is a little different because you can't put a step-by-step process to it. 

…. I don't know if I could learn the way I'm learning now with the trig functions and put it to the 

algebra functions” (Steve Interview, July 21). He appeared to believe that the nature of the 

mathematics he was learning now was different from what he had learned in the past and was the 

reason why the focus in this class was on concepts instead of procedures. Thus, while students 

arrived with beliefs that mathematics required memorization much like the students from the 

didactic classes discussed by Boaler and Greeno (2000), some changed their beliefs. 

Explicit messages about doing mathematics. Throughout the course, Mr. Reilly 

emphasized understanding and being able to use concepts rather than memorizing procedures. 

He did not show students procedures without first illustrating the concepts, and then connected 

the procedures to the concepts. On the first day of class, Mr. Reilly explained the nature of 

learning the content of this course:  

The other thing that's different is, precalc one, almost entirely analytical, it's almost 

entirely mechanical, it's almost all algebra. Okay, precalc two is that but it's also 

conceptual, it's also visual, it's also geometric. … most problems have multiple 

techniques. And your idea is you want to understand the tapestry, you want to understand 

what trig is, and then when you have a problem, you realize there are multiple ways to 

get from here to where you want to be, but you understand them well enough where you 

make that choice based on quality. (Observation, June 27) 
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Mr. Reilly had a clear map of how the concepts of trigonometry fit together and taught new ideas 

by connecting them to older ideas, carefully developing concepts from previously discussed 

concepts and deriving formulas they used. We discussed his conception of teaching: 

Yeah, I like the fact that I have a map. Uh, to me it's more a, more of a mantra to myself 

that everything needs a conceptual driver… You don't do things just to do them. Because 

once you get that bigger picture, not only do you anticipate results, but also you see it in 

other classes, in other disciplines, you see it in other places. Because you see the bigger 

picture, so you don't have to memorize stuff. Um, and I think that's the development, was 

first, everything should be there for a reason and some things should be questioned…But, 

the next step from there is that if everything is going to fit into the big picture, that means 

everything should have a conceptual driver... It should flow. (Mr. Reilly Interview, 

August 10) 

Mr. Reilly focused on concepts throughout each class period and used many opportunities to 

suggest the same to students. For example, when teaching transformations of trigonometric 

functions, he pointed out that the book had given them formulas but added that it was, “a waste 

of brain space, I wouldn't memorize anything, understand it” (Observation, July 6). Instructors’ 

emphasis on understanding are appreciated by transitional knowers (Baxter Magolda, 1992). 

Mr. Reilly often made comments regarding the nature of doing mathematics: “If you’re 

not thinking, you’re not doing mathematics” (Observation, July 5), and explicitly discouraged 

memorizing formulas, insisting students make sense of what they were doing. On the second day 

of class, after asking questions to see if they were familiar with arcs: 

Mr. Reilly: And what I'm curious about is, let's see how much you got, here's a circle of 

radius r, okay, I want to know how long that is. [Indicated the arc subtending an angle θ.]  
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S: Theta r squared. 

Mr. Reilly: Nope, and unfortunately you're working on what you remember rather than 

what you see, but you're on a different page. What I want you to do is I want you to think 

it through. All the way around would be?  

S: [very quietly] Two pi r. 

Mr. Reilly: Okay, if I want to go all the way around, from here all the way, the whole, 

one lap around this track would be, 

S: Two pi r. 

Mr. Reilly: Two pi r, okay, so I want to know, how big that would be. And what I want to 

do is, I’m going to give you two formulas that actually you won’t see again for a year and 

a half if you’re in math. … I don’t want you to memorize them. Because if you memorize 

them, you’ll forget them the day after the last test. I want you to see where they come 

from and where they come from is this: this is a fraction of the whole, right? It’s not the 

whole lap, it’s one fraction of the lap, what’s the fraction? What part of the circle am I 

talking about there?  

S: Theta over three-sixty. 

Mr. Reilly: Okay, theta over three-sixty. Theta over three-sixty; this is the fraction of the 

whole. Okay, does everybody see that? Okay. That was a really, really good idea, that 

was a really, really good idea but he’s just going to get absolutely punished for it. Um, 

but I’m going to go ahead and do it anyways to see why he gets punished and to see what 

we’re going to do about it. So, if the length, the arc length is going to be that fraction of 

the full circumference. Theta to three-sixty of two pi r, okay. And I could make that, I 
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could make that my arc length formula, it would be fine. I’m not going to though. Why’d 

you pick three-sixty?  

S: It’s the whole. 

Mr. Reilly: Two pi is also the whole. If I go in radians, two pi radians is a whole circle, 

why did you go to degrees instead of radians? 

S: The angle’s in degrees. 

Mr. Reilly: That’s because you did what we all did. Why do you measure in feet and 

inches instead of meters? Because you’re better at it. It’s harder, but you’ve been doing it 

for so long you’re better at it. … Theta out of,  

S: Two pi.  

Mr. Reilly: Two pi. Does this make this a tad bit nicer? Yeah, it does. See it? It goes bye-

bye now, you do this, bingo, that’s the arc length, that’s it, okay?... Now I want to do the 

same thing for area. Here, same thing, let’s do the whole thing again. The area of the 

whole circle, if I go all the way around, is pi r squared. Same thing, though, I want to get 

the area of this sector. I got a radius of r and an angle of theta, I’m going to use exactly 

the same thought process. Fraction of the whole, if I’m only looking at theta, what part of 

the whole do I have? [pause] I’ll give you a hint, it’s the same answer you had last time. 

[pause] The whole circle is how big?  

S: Three-sixty. 

Mr. Reilly: Not three-sixty, no, it’s forgivable, but I don’t like three-sixty. 

S: Two-pi. 

Mr. Reilly: Two-pi, good, and how much of that two pi do I have right here? 

 (Observation, June 28) 
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Mr. Reilly emphasized being able to derive, not memorize the formula. He bluntly said, “Nope” 

to the first answer, then added that he wanted them to “think it through,” and specifically 

addressed a weakness of memorizing. After funneling students through the derivation, he 

provided students an opportunity to use his reasoning on the next derivation. However, the 

student who answered “three-sixty” clearly did not understand his earlier point. Thus, while he 

emphasized reasoning and provided a specific way to reason through the derivation, there is 

evidence that students did not follow the reasoning.  

Mr. Reilly explicitly discussed metacognitive practices, reflecting on or asking students 

to reflect on both processes and results. For example, throughout verifying an identity, he asked 

students to give reasons why they selected certain procedures and emphasized they should have 

mathematical reasons (Fieldnotes, July 12). After verifying the identity, he asked “Could we 

have done it better? Let's do it again and see if we can do it better.” The next day, after verifying 

another identity using students’ suggestions, he said, "Look at and think about what you did," 

and pointed out where they had reversed a step on the first verification (Fieldnotes, July 13). His 

emphases on thinking about what they were doing and why directly contradicted some students’ 

beliefs that mathematics consisted of memorizing steps. 

The nature of solving problems. Students contributed during whole-class problem-solving 

episodes (see Appendix I). Throughout the interaction, Mr. Reilly emphasized problem-solving 

techniques of understanding the problem, having a plan, and reflecting on the answer. His stance 

at the beginning of the episode encouraged contributive communication, however he did not 

pursue suggestions that would be unproductive. While students offered several suggestions of 

sides and angles he could find, he said they needed to have a plan. As he used some of their 

suggestions to write a plan, he labeled the sides or angles without calculating, and pointed out 
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that while they could find certain lengths and angles, many of the results would not get them any 

closer to finding a solution to the problem. Finally, he reflected on the process by discussing the 

helpfulness of drawing a picture and Reggie’s suggestion of drawing a line. The goal of this 

activity was to explicitly discuss processes of mathematical problem-solving. 

Learning mathematics includes exploring. Mr. Reilly modeled and suggested that 

learning mathematics requires exploring. He used the word “play” several times in this context,  

But a lot of the name of the game in chapter five: go play, go play. These problems are 

good because they make you live in two or three different worlds [different 

representations]. And also too, even though that going to the graph didn't work, you now 

learned something; don't go to the graph on a problem like this, it didn't help. 

(Observation, July 30) 

The message to students was that they could learn from using several representations and that 

they could also learn when they were not able to solve a problem.  

 In our last interview, Mr. Reilly discussed his reasons for not incorporating more 

explorations into class time:  

For one thing, discovery learning took ten thousand years. No, I ain't going to do that. 

True discovery learning means going down the dead end… Um, reform, in high school, if 

it were done right, I could see by slowing it down to that one-third, one-half pace, you 

could take every other day and just get nowhere, just play, you know, go do this and 

connect some dots… But I go back to three hours per credit per week, so that’s fifteen 

hours a week. If you want me to do group work, you want me to do discovery, give me 

fifteen hours a week. That’s my philosophy, you give me fifteen hours a week with these 

kids, then you bet I’ll take them down discovery, I’ll figure out group work, But you 
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know, you took two-thirds of it from me, so my job is to motivate the other two. (Mr. 

Reilly Interview, August 10) 

Mr. Reilly saw time as a serious constraint; he had far too many concepts to illuminate and 

connections to make for students to make them all during class, so he would make sure he 

covered them knowing that students might not understand until later.  

I don’t think they have that many epiphanies in class. I think the best thing I can do is 

provide the continuity, provide the math, this is the way down the road, …[I] want them 

to go home and do it, absolutely; that’s where it happens. (Mr. Reilly Interview, August 

10) 

Mr. Reilly believed most student learning occurred outside of class when students were able to 

think at their own pace and study in ways they found helpful. 

Near the end of the quarter Natalie expressed a similar view:  

I was doing all these exercises yesterday and I’m going, I’m getting them but I don’t 

think I quite know what I’m doing. It’s working, but, and that bugs me because I want to 

go back ‘til I get it. I have done that, I’ve stayed all day on one problem. It was pathetic. 

It was one he went through in class, it was right in my book, but I refused to look at the 

book, that note. I wanted to get it on my own, my own way, all day, almost the whole 

day. But boy that process allowed me to get it and I won’t forget it. (Natalie Interview, 

August 10) 

Her assertion that she wanted to solve the problem in her own way and did not want to look at 

Mr. Reilly’s solution evidenced she wanted to think for herself, an indication of independent 

knowing (Baxter Magolda, 1992). However, another statement during the same interview, 

regarding going to the Mathematics Lab for help, “it’s just if there’s a teacher there, I’ll ask him, 
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an instructor, just because he knows” (Natalie Interview) demonstrated she believed 

mathematical knowledge to be certain and owned by authorities, and indicated absolute knowing 

(Baxter Magolda).  

Consistent with his belief that students should work outside of class, Mr. Reilly presented 

problems that they did not solve in class but were expected to do on their own. For example, he 

introduced a problem from Trigonometry for the Practical Man (1946), and did not solve it in 

class but told students there were many ways to do it and it would be on the test. He added that 

he wanted to see how they planned as they problem-solved and emphasized that they could not 

use any procedures they memorized earlier unless they had reasoning to back it up. In the hall 

before class Tim showed me the work he did trying to solve the problem; the page contained 12 

– 14 drawings, although there were no labeled points or words anywhere on the page (Fieldnotes, 

July 21). The exam question asked, “Describe how to find the distance from A to B. Remember 

that you can only measure angles and distances on your side of the river. Draw all necessary 

triangles and justify your steps” (Mr. Reilly Chapter 6 Test, July 25). The accompanying picture 

showed two points on one side of a river and a person on the opposite side, but included no 

numbers or angles. Students were expected to describe a plan for finding the distance.  

In an instance arising from a student question about a formula for 
2

tan u , Mr. Reilly used 

questioning to derive a formula (Fieldnotes, July 19). In the last step, the minus sign disappeared 

from in front of the radical sign, and he asked why. “How can they ignore that?” No one 

answered and he did not answer it, but he said he would put the question as a bonus on their next 

exam. Thus, Mr. Reilly modeled and discussed problem solving but expected students to practice 

solving problems outside of class and provided opportunities and incentives to do so. Susan 
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showed evidence of finding the answer to this question since she expressed a belief that the 

bonus points would bring up her exam grade (Fieldnotes, July 27).  

Mr. Reilly sometimes used students’ ideas to model mathematical practices and reflect on 

results. For example, after they derived a formula for α2cos , he presented the problem of 

finding the cosine of fifteen degrees. When asked what they wanted alpha to be, one student said 

“fifteen,” another said “thirty,” then someone repeated “thirty.” So, he used 30α =  until they 

arrived at a dead end. Then they replaced alpha with fifteen degrees and ended up with a square 

root preceded by plus or minus: "Do I really think that the cosine of fifteen degrees has two 

signs?" (Fieldnotes, July 18). In this episode he explicitly modeled going down a dead end so 

students could see what happened and reflected on the result. That is, he modeled and explicitly 

discussed the sense-making and “playing” he expected students to do outside of class.  

Emphasis on multiple representations. Mr. Reilly used and discussed the importance of 

using multiple representations to solve problems. While solving 
2
1sin =x , 

2
1sin <x , and 

2
1sin >x  on [ ]ππ 2,2− , he drew a unit circle and graphed xy sin= : 

Mr. Reilly: Thirty, okay. I've got thirty degrees here, I've got thirty degrees here, they 

want me in radians, but I'll take care of that when I get there. I kind of like degrees better. 

So, first picture is this, on the unit circle you're at two different places. On the wave, 

another way to think about it is, if the sine is equal to one-half, this is where the sine is 

equal to one. Sine is equal to one-half, half way up, so your answers are here, here, here, 

here, [he draws a dotted line at 
2
1

=y , intersecting the curve in four places]. And which 

kind of reinforces the first picture. If you're taking two laps on the circle, these two points 

are four solutions and on here, you actually get to see the four. Okay, your choice, name 
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the four, how do you want to do it? [pause] Who are they? [pause] And let me put it this 

way, would you rather think on the circle or think on the wave? 

Ss: Wave, circle. [Natalie and Shawna said “wave” first, and then at least two of the male 

students said “circle.”] 

Mr. Reilly: Okay, so let's do it this way; who's this? [points to one of the points 

intersecting the dotted line on the curve] See if you're on the wave, that's the way you're 

thinking, who's this? [Some students speak softly.] 

Shawna: Pi over six. 

Mr. Reilly: Pi over six, good. Where'd that come from? 

Natalie: A half. 

Mr. Reilly: Yeah, good, memorization, maybe a little bit of this [points to circle], and the 

bigger point is there are three pictures to trig: triangle, circle, wave, triangle, circle, wave, 

how many of them am I using right now?  

Susan: All of them. 

Mr. Reilly: All of them. That's trig. There are triangles, inside of circles, which create 

waves. And to really do trig, and to get comfortable with it, you want to get comfortable 

with the whole thing. (Observation, July 5) 

Consistent with Principles and Standards for School Mathematics (NCTM, 2000), Mr. Reilly 

valued mathematical practices such as exploring, reflecting on processes, problem solving, 

multiple solutions and multiple representations and discussed these practices explicitly with his 

class. He emphasized the need for them to engage in these practices when they studied but did 

not provide opportunities for students to engage in these practices during class. 
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Sociomathematical norms. Some aspects of learning and doing mathematics were less 

explicit and could best be described as sociomathematical norms since they were social norms 

related to the evaluation of mathematical activity (Yackel & Cobb, 1996). 

While Mr. Reilly valued understanding concepts and connections, one salient 

sociomathematical norm in this classroom was that acceptable answers used the reasoning or 

meaning that Mr. Reilly had in mind when he asked the question. This episode illustrates his 

very clear sense of how he wanted to develop certain concepts. I also noticed that the lengths he 

gave could not make a triangle; I do not know if any students realized this. 

Mr. Reilly: Everything in trig basically starts with one simple trick. Here it is, here's a 

triangle, I'm going to make that seven long, I'm going to make this five long, and I'm 

going to make that two long. And now I'm going to extend it, blow it up. For your 

generation, I'm going to zoom in. In another words, I'm going to make it bigger, but I'm 

not going to change the shape, so it's going to look like this. Same exact shape, just 

bigger. Uh, go with me, same shape. And, I'll tell you part of it. I will tell you this side 

here is twenty-one long, how big is x?  

S: Six. 

Mr. Reilly: Good, you know trig, that is trig, okay. How'd you get it? How'd you reason 

that through? 

S: Seven, three times bigger. 

Mr. Reilly: Good, that's it, hang on to ideas like that, from seven to twenty-one ratio, you 

notice that the triangle on the right is three times bigger than the one on the left. From 

that you assumed that that ratio extends to all pieces of the triangle. So x must be three 

times bigger than two, is six. The only thing you did wrong is you did it with common 

 115



 

sense, which you should know is just illegal in math. So now I'm going to make you fix 

it. Give me an equation that solves to be x equals six.  

S: [a couple of students answer] Twenty-one over [she stops]; seven over twenty-one is 

equal to two over x. 

Mr. Reilly: Good, seven is to twenty-one as two is to x. Okay, let's see if it works, cross 

multiply, seven times x is equal to forty-two, yeah, it works. Give me another one. That's 

actually not the one I wanted. [pause] It's kind of subtle, but that's not quite the equation I 

was looking for. Here, I'll give you the one I was hoping for. [Writes 
x

21
2
7
= .] That's the 

one I wanted. It's not your fault though. If you knew, it's probably because you already 

did trig. Um, but first, notice it works. Seven times x equals two times twenty-one, there's 

forty-two, and what do you know, I got six. Um, so apparently the only thing that was 

different between those two was the vision. What's different in what I'm seeing here 

versus here? 

S: Each side belongs to one triangle. 

Mr. Reilly: Perfect, perfect. Each fraction belongs to one triangle; that's what makes this 

one different. This belongs to the triangle on the left; this belongs to the triangle on the 

right. (Observation, June 28) 

The distinction between the equations was important since Mr. Reilly used the idea that once 

they have a ratio, they no longer need a second triangle. However, his statement that the 

student’s answer was “not the one I wanted,” implied his questions were usually intended to 

solicit specific best answers rather than students’ ideas. This sociomathematical norm allowed 

for more instructor control over the mathematical ideas that could be afforded significance. Mr. 

Reilly had a highly connected and rich understanding of the mathematics and he wanted students 
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to have the same understanding, but did not expect them to have it right away (Fieldnotes, July 

13; Mr. Reilly Interview, August 10).  

A related sociomathematical norm was that Mr. Reilly provided meanings or connections 

and then questioned students to facilitate their use. For example, while finding trigonometric 

values of angles around the unit circle, he asked for the tangent of : o150−

S: One over root three. 

Mr. Reilly: One over root-three, intuitively speaking, why should it be positive? 

S: They're both negative. 

Mr. Reilly: Yeah, but visually, visually, why, from the circle, why should tangent of 

negative one-fifty be positive?  

S: Slope. 

Mr. Reilly: Look at the slope, yep that line has a positive slope, and since tangent is 

slope, since this thing has positive slope, anybody in the third quadrant is going to have a 

positive tangent, because everybody in the third quadrant has a positive slope. It'll come 

from negative over negative. (Observation, June 30) 

Mr. Reilly wanted students to use the connection between tangent and slope. However, the 

answer, “they’re both negative” is also a good way to think about the tangent and could be 

considered intuitive or visual since any point in the third quadrant has negative x-and y-

coordinates. Mr. Reilly may have realized that when he added, “It’ll come from negative over 

negative,” but he asked the question to facilitate students’ use of the connection between tangent 

and slope, so his response initially focused on the connection he had in mind when he asked the 

question.  
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However, students appeared to heed Mr. Reilly’s regular comments that they needed to 

strive to understand and make sense of their answers. For example, although Tim interacted early 

in the quarter by giving memorized answers (e.g. Observation, June 28), and pushing Mr. Reilly 

to tell them how to do the problems (e.g. Observation, June 28), in the episode on July 13 given 

in Appendix H, he was clearly trying to make sense of the answers using meanings Mr. Reilly 

had focused on several times, that the sine of an angle is the y-coordinate on the unit circle (e.g. 

Observation, June 30; Observation, July 5).  

Another student showed evidence of striving to make sense during class. Although at the 

beginning of the term Julie responded to whether she found memorizing important, “Yes, it is the 

most important –because math is rules to follow to complete a problem,” (Julie Questionnaire, 

June 27) in the following episode, she was trying to make sense of the diagram on the board.  

Mr. Reilly: Find the inverse sine of one-half, okay, what they mean by that is this; what 

they mean by that is find a theta, and I'm going to say, find the theta for which sine of 

theta is equal to one-half. Okay, do trig backwards. What angle has a sine of one-half? 

[pause 4 seconds] this is how well you want to know the picture.  

Susan: Forty-five [quietly; Mr. Reilly did not appear to hear].  

S: Thirty [nearer the front]. 

Mr. Reilly: Thirty, good, I'll go thirty degrees. And here, I'll redraw the picture because 

this is definitely something you should see. The visual picture you have goes something 

like this; here's your unit circle, okay, again this is one, this is one, if sine is one-half, that 

means you are one-half up, your height is one-half. You said thirty degrees, thirty degrees 

is good, because if I draw a thirty-degree angle, then at this point on the circle I am one-

half up and that works, cool. What's the problem? [pause 4 seconds.] 
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Julie: Well that's a third isn't it and not a half? 

Mr. Reilly: One-third of the angle, but one-half of the axis. See, you're thinking this way, 

that's one-third of the way along the circle, 

Julie: Right. 

Mr. Reilly: But it's only halfway up. Sine's how high up you are and the angle is how far 

along the circle you are [pause]. You don't look convinced. See, if I say the sine of thirty 

degrees is one-half, okay, that means, or it might be even better, the way you're talking, it 

might be better to say the sine of pi over six is one-half. Angles are measured along the 

circle, so if I say pi over six radians, I literally mean that distance, 

Julie: That arc right there? 

Mr. Reilly: That arc length,  

Julie: Okay. 

Mr. Reilly: That's what a radian is. 

Julie: Okay. 

Mr. Reilly: The sine of the angle is that height, the y-coordinate, okay, that's what sine 

geometrically means is how tall are you? And what I've done is, basically asked, if your 

height is one-half what's the angle that got you there? And the answer I got was that for a 

height of one-half, pi over six or thirty degrees will get you there. So I'm really tempted 

to do this, the inverse sine of one-half is equal to thirty degrees. But, coming back to my 

issue, what's wrong with that?  

S: It's a function so it can't work in degrees. 

Mr. Reilly: What's that? 

S: It's a function so it can't work in degrees. 
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Mr. Reilly: Oh, okay. 

S: Is that what you meant? 

Mr. Reilly: Nope, but I'll take it though. Or thirty degrees, out of respect. Um, but I still 

have issues. 

S: It could be one-fifty. [This is the answer he was looking for.] (Observation, June 30) 

This episode was just under three and a half minutes long. The day before, Mr. Reilly drew 30º-

60º-90º and 45º-45º-90º triangles with hypotenuse lengths of one on a rectangular coordinate 

system and interactively developed the idea of sine and cosine as the y-and-x-coordinates on the 

unit circle, respectively. That meaning was not yet taken-as-shared although Mr. Reilly spoke as 

though it were, because Julie thought an angle whose sine is one-half would be halfway between 

the axes along the arc, an idea probably influenced by the symmetry of the circle. While this 

episode occurred early in the term, Mr. Reilly had already emphasized that they needed to try to 

understand and Julie’s question demonstrates she was trying to make sense. However, her 

cognitive conflict was not resolved by addressing what she saw but by appealing back to the 

previous day’s established meanings. In addition, other students who contributed were clearly 

trying to follow Mr. Reilly’s thinking and guess what answer he wanted. Thus, sense-making to 

Mr. Reilly meant being able to use the concepts and connections he introduced rather than 

students’ resolving their perceived inconsistencies. In addition, rather than ask Julie to explain 

further, he assumed he knew what she was thinking.  

Another sociomathematical norm was that Mr. Reilly did the mathematics. Since the 

social norms and roles provided that all discussion included him, and he evaluated answers, 

repeating correct ones and responding “no” to wrong answers (for exceptions see Fieldnotes, 

July 18, and Fieldnotes, July 6), he stayed at the center of every discussion and controlled its 
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direction. Appendix I provides an example of a problem-solving episode where he chose from 

among students’ suggestions, effectively maintaining control of the direction and pace of the 

solution process. This sociomathematical norm was strongly supported by his belief that there 

was not enough time for individual and group work during class and students should spend their 

out-of-class study time solving problems. However, as discussed earlier, he presented problems 

that he did not solve in class but he expected students to be able to solve on exams.  

A final sociomathematical norm related to the theme that procedures must be supported 

by mathematical reasons. When a student answered a question procedurally, Mr. Reilly 

sometimes asked them for their reasoning:  

Mr. Reilly:  How many minutes, I'll make it really nice, in three degrees? Nice question, I 

mean feel free to jump right to the answer. 

S: A hundred and eighty. 

Mr. Reilly: A hundred and eighty, good; how'd you do that? 

S: Multiplied. 

Mr. Reilly: Good, now why'd you multiply by sixty instead of dividing by sixty? and 

what told you that? I mean simple questions. 

S: Three groups of sixty. (Observation, June 27) 

As discussed earlier, this was consistent with his explicit message that students should 

understand the concepts and have mathematical reasons for their procedures (Observation, June 

27). Students occasionally invoked the textbook (Fieldnote, July 6), or a previous instructor 

(Observation, July 5) as their reasons but Mr. Reilly pointed back to mathematical reasons, 

sometimes asking students for the reason, but more often supplying the reason. Simon and 

Blume (1996) also found students who justified mathematics by referring to previous teachers 
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and the textbook as authorities and confronted them. Although he pointed to mathematical 

reasons, when Mr. Reilly explained the reasons he supported absolute knowing since absolute 

knowers believe it is the instructor’s responsibility to explain and to explain in a way they can 

understand.  “Maintaining an awareness of the knowledge level of the class helps keep 

explanations within reach of students’ understanding” (Baxter Magolda, 1992, p. 232). However, 

silencing his own authority and expecting students to provide the mathematical reasons would 

have challenged absolute knowing. 

Summary of Research Question Two 

Mr. Reilly was a clear and organized instructor who had planned each lesson carefully 

developing concepts by building on previously developed ideas. He modeled and discussed a 

disposition to do mathematics (NCTM, 1991) by solving problems in more than one way, 

discussing strategies, using multiple representations, and emphasizing the need to explore. He 

mentioned that completing the homework was not enough; if students knew the concepts well 

enough, they could do any problems using those concepts (Fieldnotes, June 27), suggesting that 

students should strive for a deep and connected understanding. Students such as Julie, Steve, 

Jeremy, and Tim behaved in ways consistent with more complex ways of knowing than they 

evidenced in their questionnaires. 

However, interaction in this class did not promote, and at times constrained, students’ 

own sense-making or individual agency to make sense of the mathematics since social norms and 

roles allowed students to offer short answers and guesses while Mr. Reilly did the mathematics. 

Social norms and roles constrained the level of communication to uni-directional and 

contributive, and sociomathematical norms implied that mathematics should make sense but that 

making sense was limited to the ideas provided by Mr. Reilly, rather than understanding 
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constructed by students. Mr. Reilly’s roles as mathematical and intermediate authority 

conformed to expectations of absolute knowers, who believed it was the instructor’s role to 

provide knowledge and theirs to accept it (Baxter Magolda, 1992; Brew, 2001). 
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Chapter Five: Findings in Mr. Anderson’s Class 

Background 

Three to eight students in Mr. Anderson’s first-quarter precalculus class waited each 

morning for the classroom to open as students and instructors walked through the wide hall lined 

with trapezoidal benches. Thomas sat on a bench working on his homework or reading a book 

each day I arrived and he was willing to chat with me most mornings, but declined when I asked 

him for an interview. I was also able to have informal conversations before class with Daniel, 

Carol, Sarah, Kevin, and Anthony. 

Mr. Anderson arrived promptly each day at 7:30 a.m. and unlocked the room. The 

classroom was very large and contained about sixty desks spread out in rows with ample space 

on all sides. Greg, a Russian immigrant, sat in the far back left corner by himself. Kathy and 

Anthony knew each other before this class and sat next to each other, seeming to enjoy working 

together whenever they had the chance. Two students, Sarah and Carol, already had bachelor’s 

degrees in education and took this class as part of a secondary endorsement in mathematics. 

They worked closely together all quarter although they did not know each other or sit together on 

the first day. Carol’s teaching certificate was in special education but she taught algebra at a 

local high school for three years before No Child Left Behind legislation required her to have a 

mathematics endorsement to teach mathematics (Fieldnotes, August 11). During the school year 

before this study she taught eighth-grade mathematics. Sarah worked as a substitute elementary 

teacher.  

I recognized both Kevin and Janet from my own institution; they also recognized me. 

Both had taken this course at least once before. Sheila was rarely in class so I have very little 

data on her. Thomas and Carol were present every day I observed, although Carol sometimes 
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walked in late. Kevin, Daniel, Sam, Sarah, Greg, and Brian each only missed a couple of days. 

Anthony and Kathy each missed several days, but usually when one was not present, the other 

one was. Janet started missing class after the first couple of weeks and then missed several days. 

Because of where I sat and who talked the loudest, I heard Carol, Sarah, Daniel, and Kenny the 

most often, although I rarely heard student-talk during group work. 

Research Question One: The Nature and Development of Community 

The following sections describe student expectations of their roles and Mr. Anderson’s 

roles. I also describe how participants negotiated and maintained roles and social norms, and the 

development of relationships within the classroom. Finally, I discuss how expectations of roles 

and social norms revealed students’ ways of knowing. 

Negotiating Mr. Anderson’s Roles  

Students’ expectations of Mr. Anderson’s roles. At the beginning of the quarter, most 

students indicated through their responses to the Student Questionnaires (Appendix D) that their 

mathematics instructor’s role was to show them procedures while explaining clearly. This idea 

threaded through responses to several of the questions. To the question, How do you best learn 

mathematics? the majority indicated they learned mathematics best when someone showed them 

how or explained (see Table 20). When asked specifically about things the teacher could do 

during class to help them learn, ten of the thirteen students indicated that the teacher should do 

examples or explain clearly or in detail (see Table 21). Daniel’s response, “Make sure they’ve 

answered my question so that I understand it” (Daniel Questionnaire, June 27) displayed the 

common idea that students’ understanding was a result of the instructor’s explanations.  

In response to what types of input they usually offered during class discussions, six 

students wrote they would ask questions, while only two responded they would offer other types 
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of responses (see Table 22). “Yes, ask questions about things I did not understand” (Sheila 

Questionnaire, June 27) was a typical response. These examples show that students expected to 

be able to ask questions and receive clear answers from Mr. Anderson. Responses to whether 

listening to other students’ questions or explanations helped them learn also indicated that 

students’ roles were to ask questions and the teacher’s role was to explain (see Table 23). Nine of 

the thirteen responses specifically indicated students liked to hear other students’ questions: 

“Listening to their questions and hearing the teacher’s explanation helps,” (Kathy Questionnaire, 

June 27). These responses indicate that although students may have appreciated the ideas 

introduced by other students’ questions, they wanted clear explanations from the teacher.  

Mr. Anderson’s conception of his roles. Mr. Anderson’s ideas about his role were 

consistent with students’ ideas. When asked if he thought of himself as a traditional or reform 

teacher, he said he had heard the words but did not really have a clear idea of what they meant. 

His image of a traditional instructor included one who did all the talking, so he did not think he 

was traditional. But he also thought that most mathematics instructors who lectured were more 

interactive than what he considered to be “traditional” because they provided opportunities for 

students to participate (Mr. Anderson Interview, August 16).  

He developed his conception of his roles as an instructor based on his experiences of how 

his students preferred to learn:  

A lot of times they don’t think they can, but they could try to read it, see it on the board, 

or somehow they got some, they see it, they read about it, how to do it, or they have a 

resource where it is shown to them. And then, practice, basically, as practical learning, 

that’s what I would think. And then as far as teaching goes, well, then I try to mimic that 
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even though they could read it out of the book, but most of them don’t like that for some 

reason. (Mr. Anderson Interview, July 5) 

While Mr. Anderson believed students could read and learn from the textbook, he realized that 

many did not like reading the book and preferred to have it explained, so he accommodated this 

preference. His use of the word “shown” indicates he believed students learn mathematics by 

seeing someone else perform procedures, pointing out connections or explaining meanings and 

definitions, and then practicing what they saw, able to use the meanings and definitions that were 

explained. Both the students’ and Mr. Anderson’s ideas of how students learn mathematics are 

strikingly similar to Smith’s (1996) characterization of common views of learning mathematics 

that lead to teaching by telling: “Students learn by listening to teachers’ demonstrations, 

attending carefully to their modeling actions, and practicing steps in the procedures until they 

can complete them without substantial effort. Solving problems is a matter of recalling and 

applying the procedure appropriate for a given problem type” (Smith, 1996, p. 391).  

Mr. Anderson’s response to students’ expectations. Mr. Anderson behaved consistently 

with his students’ expectations about the role of a mathematics teacher. Throughout each class 

period he presented concepts, examples, and problems, encouraged students to ask questions, and 

responded with thorough explanations. He provided time for students to work problems in class, 

listened to students, provided feedback, explained what they said they did not understand, and 

facilitated whole-group discussions. He showed his willingness to explain early on the first day 

when reviewing how to solve several types of equations:  

Mr. Anderson: Next one [writes ]. Okay, let’s try completing the square 

on this one. It may or may not factor, but let’s just try completing the square on it. 

Anybody remember? 

02082 =+− xx
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S: Yeah, x squared plus [sic] eight x plus something equals negative twenty. 

Mr. Anderson: Okay, right, you move the number over when you’re completing the 

square, so you have x-squared plus [sic] eight x, take the twenty and move it over, and we 

need to add something in here so that it’s a perfect square. You have to do one other step 

too, you have to double-check that your leading coefficient is one. If it was three, you’d 

have to divide everything by three and you’d get fractions. All right, so we have to figure 

out what we need to add to both sides here. 

S: Take half of eight and square it. 

Mr. Anderson: Half of eight and square it? Negative four squared is sixteen, so we want 

to add sixteen in right here; so that means we should add sixteen to the other side? Since 

we have an equal sign, we have to keep it balanced. So, now this is a perfect square 

[indicating left side of equation]; that’s why we chose the sixteen. Now, this actually does 

factor, [writes the binomial squared]. There’s actually a trick here if you remember it. So, 

[pointing to -8] we took half of this squared to get sixteen, but if you just paused halfway, 

when you took half of the eight, that’s what’s going to end up down here. So it’s a little 

trick, I almost do this first [pointing to -4] before you come up [pointing to 16]. You 

know what’s going to be in here, before you even write the sixteen. Okay, negative 

twenty plus sixteen is negative four. Okay, so we can take the square root of both sides. 

Take the square root of this, we’re just going to get x minus four. When we take the 

square root of negative four we need to put something in front. 

S: i. 

Mr. Anderson: We’ll get an i in the end because of the negative. 

S: Plus or minus. 
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Mr. Anderson: Plus or minus. The i comes from the negative, the plus or minus comes 

from we took the square root. Now, maybe we should pause for just a second [he walks 

over to a clean spot on the board]. Why do you need that? Everybody just look at this x-

squared equal to nine. Now, I know that we all know that three works there, but there’s 

another number that works too. 

S: Negative three. 

Mr. Anderson: Negative three works as well, so that’s kind of why you need that plus or 

minus when you take the square root. So the plus or minus comes from taking the square 

root…[finishes problem]. Four plus two i is one answer, four minus two i is the other 

answer. (Observation, June 27) 

This episode occurred on the first day of class, which consisted of a quick review of solving 

many types of equations covered in prerequisite courses. The first student answer was a 

statement of the result of an action with no reference to the action and no reason for it. Mr. 

Anderson responded to the answer by agreeing and rephrasing it to clarify that the student’s 

response meant that the 20 should be moved to the other side of the equal sign. His statement, 

“we have to figure out what we need to add to both sides…” suggested he wanted more than just 

the number; he wanted to focus on how they could determine what number to add. In response, a 

student indicated a process for finding the answer rather than just an answer. Additionally, Mr. 

Anderson addressed “why?” twice in the above episode, showing that he thought explanations 

were important, but that it was his role to explain. He continued to ask questions, repeat and 

expand on correct answers, and moved to another part of the board to explain why they needed 

positive and negative roots to the quadratic equation, a concept he expected them not to 

understand fully.  
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Mr. Anderson described the general format for each lesson he taught: introduce concepts 

followed by easier in-class practice, then assign homework which contained more challenging 

exercises and problems (Mr. Anderson Interview, August 9). The next day he answered 

homework questions fully. Students most likely expected this approach because it typifies U. S. 

mathematics teaching (Stigler and Hiebert, 1999). Homework did not count in students’ grades; 

Mr. Anderson did not collect it or check to see that students had attempted it, so some students 

may not have tried any of the exercises. However, several students usually had questions, and 

because he answered them completely with student input, answering homework questions at the 

beginning of the class period regularly took at least half an hour. This strategy provided students 

who attempted the homework a night or more to think about the new concepts and try the 

exercises and problems. 

 Mr. Anderson’s response to homework questions. See Appendix J for an example of a 

response to a homework question. Although Daniel stated he did not know what was being 

asked, Mr. Anderson did not probe further to find out what Daniel had tried, making this episode 

typical in that Mr. Anderson did not ask the student about the source of their confusion, 

(exceptions were noted on July 5 and July 19). The day before this episode Mr. Anderson had 

introduced composition of functions but had not presented an example similar to this one. 

Although the idea of using a point on the graph to be able to determine a function input and 

output had been emphasized several times earlier in the quarter, students did not seem to 

recognize this idea would be helpful in this case. After Mr. Anderson included the problem in 

whole-class discussion and refocused their attention on the meaning of the notation in terms of 

the graph (Lines 11-35), Daniel was satisfied he could finish the problems (Line 38). However, 
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other students wanted to see more examples, so Mr. Anderson demonstrated how to do the 

exercises by asking questions and eventually completed all of the exercises in class.  

Supporting students’ preferred ways of learning. Mr. Anderson’s role as explainer and 

his openness to students’ questions accommodated students’ preferred ways of learning, and 

conveyed a high degree of support. He encouraged students to ask questions by the length of 

wait-time he allowed after he asked if there were any questions. Usually the wait-time ended 

with a student question. For example, on July 27, he waited 43 seconds after asking if there were 

any more questions and the wait ended when Sam asked for a specific problem in the homework 

(Observation, July 27). Wait times near this length were not unusual in this class. In a study in 

college classes, Karabenick and Sharma (1994) suggested that students’ perceptions of teacher 

support for their questioning affected students’ motivation and the likelihood that they would 

formulate questions; support included providing opportunities for students to ask questions such 

as extended wait times and providing high-quality answers. 

In addition to their questionnaire responses indicating a preference for teacher 

explanations, students did not have to read the textbook; on his questionnaire, Kevin explained 

he needed to be shown how to do the mathematics since he could not read the book (Kevin 

Questionnaire, June 27). Only Thomas responded that he read the textbook (Thomas 

Questionnaire, June 27). In her interview, Sarah said she looked through the section to make sure 

he covered everything, but she tried to make her notes thorough enough so she did not need the 

book.  

I get enough from him, but I think I just kind of skim over it in case there's something he 

missed. Um, I think he does a very good job of going through the sections, but 

sometimes, uh, this book is more difficult to do on your own, so looking at it, you know, 
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as [Carol], the gal who sits next to me, said, it looks kind of foreign if you just look at it, 

where when he explains it then a light bulb kind of goes off. (Sarah interview, July 13) 

Sarah and Carol preferred Mr. Anderson’s explanations to reading the textbook since Mr. 

Anderson’s explanations were easier to understand. Daniel also did not like the textbook, but 

because it did not contain examples for each type of problem in the exercises. Because of this, he 

referred to the textbook as “tricky” (Observation, July 5). Students preferred a teacher who was 

open to questions and willing to interpret and thoroughly explain the mathematics, clearly 

indicating their positions as absolute knowers (Baxter Magolda, 1992; Brews, 2001).  

While his usual response was to explain, Mr. Anderson occasionally provided 

opportunities for students to continue thinking during class discussions and especially during 

seatwork. For example, while discussing symmetry, he wrote the equation on 

the board:  

9)3( 22 =−+ yx

Mr. Anderson: So x squared plus y minus three squared is nine [pause 6 seconds]. Maybe 

let's do this one differently; let's graph this one. What is this? 

Daniel: Parabola. 

Sarah: Circle. 

Mr. Anderson: I got parabola and a circle [pause 7 seconds]. Do you want to, 

S: Circle.  

Sarah: You've got a zero. 

Mr. Anderson: Circle, Yeah it's a circle, both of them are squared, you've got a zero here. 

If we didn't have one of the variables squared then it would be a parabola, but since both 

of them are squared, we have a circle. So where's our center? (Observation, June 30) 
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Mr. Anderson paused and waited after hearing two different answers, allowing the rest of the 

class time to consider (a similar instance was noted on July 7). While two students answered 

after the pause, Mr. Anderson explained why it was a circle and not a parabola, acknowledging 

Sarah’s contribution as meaning that the center of the circle had an x-value of zero. While 

waiting gave students the opportunity to continue thinking and to offer justification, Mr. 

Anderson’s role included providing a final correct answer. 

Although Mr. Anderson demonstrated his willingness to explain during whole-class 

discussions, he was less likely to explain and more likely to ask questions while talking to 

individual students about their work. In the following exchange, Carol was working on solving: 

“The sum of the squares of two consecutive even integers is 1252. Find the integers” (Stewart et 

al., 2002, p. 71). The following excerpt from their conversation illustrates Mr. Anderson’s 

questioning one-on-one: 

Mr. Anderson: Okay, now this is squaring the same thing twice; it's not, you need to 

square one number, and then the next number, so if this is like twelve or fourteen, what is 

the next number? Okay, right, if this is fourteen, this is sixteen, if this is twenty, this 

would be? Okay, in all of those cases, how many more is this one? Two more, so if this is 

x, this is? Close, not two x though. So, if this is an even number like eighteen, this is 

supposed to be the next even number, what would that next even number be? 

Carol: Oh, eighteen plus two. 

Mr. Anderson: Yeah, plus two, so it would be x plus two. 

Carol: Quantity squared? 

Mr. Anderson: Mhm. 

Carol: I was close. (Observation, June 28) 
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Mr. Anderson provided Carol with numerical examples to try to help her make sense of the 

situation and construct a correct equation. While both Mr. Anderson and Carol said she was 

“close,” her initial mistake was to use the same variable for two different unknowns, which was 

not close but a conceptual error indicating she lacked understanding of the role of unknowns in 

algebra. This was especially surprising since she had three years of experience teaching high 

school algebra.  

In summary, the most salient roles played by Mr. Anderson were to explain thoroughly 

and be supportive; his goal was to provide students with the tools they wanted to learn. Mr. 

Anderson strived to maintain a relaxed and comfortable environment, demonstrating support for 

students and their preferred ways of learning in spite of the short term and the number of topics 

they covered. Students clearly indicated they wanted to see examples, hear Mr. Anderson’s 

explanations and have opportunities to ask questions, and Mr. Anderson provided those. 

Rasmussen et al. (2003) studied two college differential equations classes, one in which students 

were expected to explain their answers to the other students in the class and listen to each other; 

the teacher specifically discussed norms and roles at the start of the term and then fostered these 

roles. In the other class, the teacher played a role similar to Mr. Anderson’s by affirming or 

refuting answers and being the only explainer in the class.  

Negotiating Students’ Roles  

Students’ roles in relation to their expectations. Students’ responses to the questionnaire 

indicated they expected limited roles in mathematics classrooms. When asked if they liked 

mathematics teachers to involve the class in discussions, eleven of the thirteen students indicated 

class discussions helped them better understand (see Table 24). However, when asked if they 

offered input during class discussions and what types of input they usually offered, only seven 
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students responded “yes,” but added that the type of input they offer is to ask questions (see 

Table 22). Four students responded they would not usually contribute during whole-class 

discussions while only Janet and Thomas indicated they would contribute anything except 

questions. Janet wrote she would contribute if she could "show that I know what is going on" 

(Janet Questionnaire, June 27), but Thomas did not describe the types of input he would be 

willing to provide (Thomas Questionnaire, June 27). So, while most students liked class 

discussions, fewer were willing to participate, and those who were willing perceived their roles 

as providing correct answers or asking questions, rather than offering ideas to be explored by 

their peers.  

Some students wrote they preferred not to join in whole-class discussions and rarely 

participated. Sam and Kathy responded that they would not usually offer input, and rarely 

contributed in class unless they were called on. Sam responded that he would ask after class if he 

had a question (Sam Questionnaire, June 27) and the only time I observed him ask a question for 

the whole class to hear was during a class period when Mr. Anderson told the class to take five 

minutes and explore the chapter to come up with questions (Fieldnotes, July 19). In response to 

whether she would participate in whole-class discussions, Kathy replied, “No, I have a hard time 

giving input in a math class” [underlining in her response] (Kathy Questionnaire, June 27). For 

the most part, she restricted her interactions in class to working with Anthony during 

opportunities for group work and asking Mr. Anderson to do homework problems. However, 

twice late in the quarter she offered short answers to closed questions (Fieldnotes, July 27; 

Fieldnotes, August 2). While Kathy originally responded emphatically that she would not 

contribute during a mathematics class, she supplied correct answers when it appeared no other 
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student was going to provide them. She may have been willing to contribute because it did not 

require much risk and she had become comfortable in this class. 

Impact of relationships on students’ roles. Anthony also responded he would not usually 

offer input in class, preferring class with lecture followed by whole-class discussion (Anthony 

Questionnaire, June 27) but did become involved in the discussions on several occasions. I coded 

his participation on six different days after July 11, each time with several contributions (e.g. 

Appendix K, Lines 26-32). So, while some students indicated on their questionnaires they 

preferred not to participate, they contributed when opportunities were provided. 

Some students who wrote they would participate in class discussions by asking questions 

(Student Questionnaires, June 27) remained quiet during whole-class discussions. I did not 

observe Greg or Sheila participate in whole class discussions other than to ask for homework 

solutions, and Brian volunteered responses to questions on only one day I observed (Fieldnotes, 

July 19). Requesting homework solutions was not coded as students’ questions or as 

participation. Each of these students worked alone when given opportunities to work with their 

peers. Greg sat at the back left of the room, away from other students, and I never observed him 

or Brian talk to other students. Sheila sat near the back middle of the room but was absent more 

than two-thirds of the classes and did not talk to other students when I observed. Although these 

three students responded they would be willing to participate, they did not. It may be that they 

did not have any questions, they waited for other students to ask similar questions, or they did 

not feel comfortable enough to ask. 

However, Mr. Anderson called on the quiet students several times throughout the quarter. 

An example of a typical episode: 
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Mr. Anderson: Okay, how about uh, g of negative seven? All right, you guys try to find g 

of negative seven and then we'll put the answer on the board [pause 20 seconds]. All 

right, Greg, what did you get? 

Greg: Twelve. 

Mr. Anderson: Twelve? Anybody else get twelve? Good, all right. Questions on that? 

(Observation, July 7) 

When Mr. Anderson called on students who had not volunteered, it was to answer closed 

questions after everyone had been given time to think. This practice set an expectation for all 

students to work on problems presented during class time. Mr. Anderson may have hoped by 

calling on these students, they might feel more willing to speak up without being called on in the 

future. However, Greg did not volunteer answers during my observations. 

Two students’ answers to whether they would offer input in whole-class discussions and 

what types indicated that how the students felt about themselves in the class determined whether 

they would contribute. Carol replied, “Sometimes, depending on confidence, questions” (Carol 

Questionnaire, June 27), and Kevin responded, “Usually not because I am a slow learner” (Kevin 

Questionnaire, June 27). Both responses implied the students would not contribute during class 

because they were concerned about others’ perceptions of them. However both students regularly 

contributed during class, providing evidence they felt safe in this classroom environment (e.g. 

Observation, July 27). Carol often worked with Sarah, and Kevin usually talked with Thomas 

during opportunities for group work. Perhaps being comfortable enough to talk to those nearest 

them helped students feel comfortable enough to speak up during whole-class discussions. 

Some students contributed often during whole-class discussion: Daniel, Carol, Sarah, 

Thomas, and Kenny, and to a lesser extent, Kevin, Anthony, and Janet. Other than Anthony, 
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these same students sat near each other and engaged in conversation regularly during 

opportunities for group work. Anthony worked with Kathy during group work. Students who did 

not speak to other students during opportunities for group work also did not contribute during 

whole-class discussion. Inversely, if students did speak to their peers during opportunities for 

group work, they also contributed at least occasionally during whole-class discussion. The 

criterion of talking to others nearby was a better indicator of students’ willingness to contribute 

during whole-class discussions than their responses to the questionnaires. That is, students’ 

willingness to participate in whole-class discussions may rely on the extent to which a 

community with their peers is formed. 

The nature of students’ participation. While many were willing to participate, their 

conceptions of the ways they should participate were limited. While every student wrote “yes” or 

“sometimes” to the question: Does listening to other students' questions or explanations help you 

learn? (see Table 23) only Kevin responded that other students’ ideas or solutions might be 

valuable; nine answers to this were “yes” but referred to other students' questions and the 

teacher's answers. “Yes, to questions; I don’t like it when students show how they do the 

problems” (Greg Questionnaire, June 27). Daniel added that other students' inputs could confuse 

him (Daniel Questionnaire, June 27). Greg and Daniel’s responses indicated they had been in 

classes where other students shared solutions or explained, but did not like it. This shows that 

while most students wanted whole class discussion, and even those who did not like to take part 

in class discussions wanted to listen to it, students wanted to hear explanations from the teacher.  

Correspondingly, students did not offer their ideas for other students during whole class 

discussion. Students’ questions and answers during whole-class discussions were intended for 

the teacher, not to contribute to other students’ learning. Thomas, Janet, and often Kenny, 
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sometimes spoke so quietly only Mr. Anderson and those nearest them could hear. It is likely 

that students who valued the teacher’s explanations above other students’ explanations may have 

believed other students would not want to hear their explanations, and Mr. Anderson’s practice 

of repeating correct answers and explaining enabled students to maintain their roles.  

Many of the questionnaire responses also indicated some students expected to have a 

passive role in class: the teacher should do examples, explain in detail and write clearly on the 

board. Students’ answers to what they could do during class that helped them learn included 

"take notes" for six students (see Table 25). Others referred to efforts outside of class such as 

"homework" and "examples, study groups” (Student Questionnaires, June 27). Mr. Anderson’s 

approach to teaching was helpful to those who valued taking notes since his work on the board 

was organized and he did not erase often. His slow pace gave ample opportunity for students to 

be able to write thorough notes.  

A couple of responses indicated that students wanted a more active role during class, 

“Attempt to work problems before teacher completes it” (Kenny Questionnaire, June 27) and 

“hands on examples” (Brian Questionnaire, June 27). Both responses indicated students wanted 

to be able to work problems in class rather than just watch the teacher work problems, an 

indication that they were absolute knowers with a mastery orientation (Baxter Magolda, 1992). 

Observation evidence indicates Kenny strived to meet this goal (see Appendix L, Lines 20 and 

22). In this example, he worked ahead of the class during discussion and either gave the answer 

to check its correctness with Mr. Anderson or to show what he knew. The answers were too brief 

to be helpful to other students and were expanded on by Mr. Anderson for the rest of the class. 

Thus, Kenny’s perception of his role in class did not include contributing to others’ learning, but 

rather making sure he could complete the procedures correctly.  
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Sarah, Kathy, and Carol all responded, “practice” to what they could do during class to 

help them learn (Student Questionnaires, June 27). Throughout the quarter Mr. Anderson offered 

many opportunities for students to practice with his feedback and with others around them. I 

have referred to these activities as seatwork and discuss them more in-depth in a later section.  

Students’ ways of knowing. Students’ ways of knowing could be inferred from their 

responses to their questionnaires and their behaviors in class (see Table 26). Carol’s 

questionnaire responses and behaviors provided evidence of absolute knowing; her comments 

and questions indicated she thought there was a specific procedure for any mathematics problem 

or question:  

Carol [to Mr. Anderson]: When you ask questions, like, I don’t know if there’ll be 

anything like this on the test, but range for the window, how exact are you? 

Mr. Anderson: Well I won’t ask, give me a range for your window.  

Carol: Okay, it seems silly. 

Mr. Anderson: What I’ll ask for is give me a nice graph with all the features…  

Carol: Number eleven. 

Mr. Anderson: Number eleven on one point nine? He reads it. [“Find an appropriate 

viewing rectangle for 2256 xy −= ” (Stewart et al., 2002, p. 112).] 

Carol: Yeah. 

Mr. Anderson: So, is your question the fourth-root part? 

Carol: I just didn’t know what to do with it. 

Mr. Anderson: Okay, to type it in or to get it to graph? Did you get it typed in your 

calculator?…[discussion continued until they finished graphing it.] 
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Carol: So we can just do that and draw the graph? I guess, I was trying to figure it out on 

paper. (Observation, July 5)  

It was apparent Carol had graphed it correctly, but she seemed to think there was a way to 

determine an exact viewing rectangle on paper. Mr. Anderson used –25 and 25 for x-min and x-

max of his viewing window while the solution in the back of the book showed a window with x-

values from –20 to 20, and y-values from –1 to 5. Earlier in the same class period, Carol and 

Sarah discussed a homework problem consisting of a graph students completed assuming it was 

symmetric about the x-axis. Carol said to Sarah, “I could figure this out, but I couldn't do it 

mathematically” (Fieldnotes, July 5). Carol’s comments indicated she was an absolute knower 

since absolute knowers believe that the nature of knowledge is certain and that students acquire 

knowledge from some authority, such as the teacher or textbook (Baxter Magolda, 1992). 

Absolute knowers also have difficulty discussing concepts and are unable to apply 

mathematics out of given contexts (Brew, 2001). In the following episode Carol asked Mr. 

Anderson if he would do a certain type of problem, which implied he must show them how to do 

each type of homework problem.  

Carol: Are you going to go over today, how to do problems like twenty-nine through 

thirty-eight? [“Find a polynomial with integer coefficients that satisfies the given 

conditions” (Stewart et al., 2002, p. 306). Each exercise included conditions of a degree 

and two or three zeros.] 

 Mr. Anderson:  Uh, we can. Which one are you interested in? 

Carol: Twenty-nine [degree two, and zeros i+1  and i−1 .]  
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Mr. Anderson:  Twenty-nine. So we want degree two with zeros one plus i  and one 

minus i . [Repeats as he write it on the board.] Okay, so if this is a zero, what's a factor? 

[8-second pause.] 

Carol: x minus one plus i ? 

Mr. Anderson:  Right. 

Carol: x minus one minus i . (Observation, July 27) 

Mr. Anderson addressed Carol’s question by asking a question to help her make a connection, 

although she did not answer quickly. This problem was not very different from a problem 

discussed in class two days before of finding all polynomials with 7 and 3 as zeros (Fieldnotes, 

July 25). In addition, just before Carol asked her question, the class discussed a problem finding 

the zeros of a fifth-degree polynomial, some of which were non-real, and writing the polynomial 

in factored form (Appendix K). However, the way Carol asked the question implied that she did 

not expect to be able to do these exercises unless Mr. Anderson explicitly discussed how to do 

them.  

Carol also asked questions she could check herself. For example, she wanted to check her 

answer to finding the equation of a circle given endpoints of a diameter. Mr. Anderson 

responded by explaining his process so Carol could compare hers, consistent with the roles of 

this class, rather than ask her to explain what she did and why (Observation, July 5). Carol could 

have checked that her equation satisfied the criteria by substituting in the ordered pairs or by 

using her graphing calculator, but she did not do this and Mr. Anderson did not suggest it. 

Consequently, Carol’s beliefs about an instructor’s role and Mr. Anderson’s acceptance of that 

role interfered with her development of agency to make sense of the mathematics. 
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Sarah also strongly evidenced absolute knowing since her questions indicated she 

believed learning mathematics consisted of learning rules (Brew, 2001). Several of Sarah’s 

questions indicated she was seeking a rule even when she could understand. In response to 

students’ request to give them a “tough one” to complete the square to put a quadratic function in 

the form , Mr. Anderson provided the example:  (Fieldnotes, 

July 13). After rewriting it in the form 

khxay +−= 2)( 724 2 +−−= xxy

7
2
14 2 +⎟

⎠
⎞

⎜
⎝
⎛ +−= xxy , Mr. Anderson explained by adding 

16
1  inside the parentheses, they subtracted 

4
1  from the right side since it is multiplied by 4− , 

thus they needed to add 
4
1  outside the parentheses to keep the same value. However, Sarah 

asked, “If it is positive, would we subtract on the outside?” (Fieldnotes, July 13). Rather than 

understanding and using reasoning each time to determine whether she would need to add or 

subtract, Sarah preferred to have a rule.   

Sometimes Sarah’s use of rules conflicted with new knowledge:  

And I think it was over, over today's stuff, when we were doing the vertex, how it's the 

negative, [pointing to  in her notes] well the three and the negative four. 

Well, I just assumed from circles, doing h, k, that it would be the opposite, so [the vertex 

would be at] three, four. So that's what I was thinking, and so when he first wrote that 

down I was like, well that doesn't make sense, but then after we wrote down what we 

needed to do to the parabola [shift right three and down four] then I was like, of course, if 

you're starting at zero, zero as your starting point and you move, you know, to the right 

three and then down four, and if I graph that, then that's where the vertex would be, so I 

had to write this down, yeah, cuz when he first said that I was like, well wait a second 

( ) 432 2 −−= xy
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that's kind of opposite from what we were doing with circles, cuz circles you do the 

opposite signs as the center. (Sarah Interview, July 13) 

Sarah initially compared the form of the quadratic function to a rule for locating the center of a 

circle from its equation, apparently connecting the use of the letters h and k. However, when the 

rule did not work and Mr. Anderson justified the location for the vertex using transformations, 

she said it made sense. That is, Sarah said it “made sense” when she knew which rule to choose 

based on Mr. Anderson’s explanation; she did not pursue her initial idea by questioning why the 

rule for equations of circles differed from the rule for transformations. Thus, “making sense” 

takes on different meanings for different ways of knowing. In Sarah’s case, it means knowing 

which rule to choose based on a single explanation from an authority whereas to contextual 

knowers, it means resolving perturbations in their own ideas while taking into consideration 

others’ ideas.  

Challenging students’ roles. While, for the most part, students’ roles were to ask 

questions and listen to Mr. Anderson’s explanations, early in the quarter Kenny answered 

Sarah’s question during a whole-class discussion:  

Sarah [to Mr. Anderson]: Um, I do not remember, but how can you tell, just by looking at 

the equation, whether it opens up or down? 

Mr. Anderson: Oh,  

Kenny [has eagerly raised his hand]: The sign of the leading coefficient.  

Mr. Anderson: Yeah, exactly, if you're talking about squared. (Observation, July 7) 

Mr. Anderson continued his explanation to include end behavior of polynomials in general. 

Kenny’s response was consistent with the idea that students speak up to “show what they know.” 

His answer was not complete enough for Sarah to use as a rule since he did not say how the sign 
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affected the direction of the parabola. Mr. Anderson affirmed Kenny’s answer and, although 

Sarah’s question was specifically about parabolas, discussed end behavior of polynomials in 

general. While this would have been a good opportunity to have all students explore why the 

sign of the leading coefficient affects the end behavior of the graphs of quadratic functions, Mr. 

Anderson’s response maintained his role as the primary explainer of mathematics in the 

classroom and students’ roles as accepting his authority.  

However, later in the same lesson when Mr. Anderson drew a graph on the board and 

asked the class to evaluate a function for a specific value, Mr. Anderson pressed Kenny to 

explain.  

Mr. Anderson: All right now, from this graph, let's see if we can find some things: like 

what is f of negative three? I don’t have a function rule to plug it into; I just have a graph. 

Kenny: Three. 

Mr. Anderson: It’s three! Excellent. How'd you get that Kenny?  

Kenny: f of negative three is three. 

Mr. Anderson: That's true f of negative three is three; how'd you get that, go ahead 

Kenny: Because, you said before that that's your y-value. [OC: Kenny seemed to be 

uncomfortable with the pressing.] 

Mr. Anderson: Yes, right this is the x-value; this is the y-value, so how'd you get that 

from this graph? 

Kenny: It's a point. 

Mr. Anderson: Okay, yeah, there's this point over here, negative three, three. That point's 

on the graph; that means that has to be the function value. [Observation, July 7] 
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It appeared Kenny did not want to give an answer beyond what he had volunteered. He 

continued giving answers that needed to be expanded to be useful to other students. Although it 

was only the seventh class day of the quarter, it was not the role of students in this class to 

explain for other students and Kenny resisted an attempt by Mr. Anderson to initiate this 

expanded role.  

How students believed they learn. Students’ questionnaire responses showed they 

believed learning mathematics consisted of memorizing procedures demonstrated in class and 

assigned for homework. According to their responses, eleven of the thirteen students believed 

memorizing steps and formulas was important in mathematics (see Table 27). Of the two 

students who wrote “no” to whether or not they found memorizing steps and formulas important, 

Daniel wrote, “no, formulas can always be looked up. Steps are good to memorize” (Daniel 

Questionnaire, June 27) while Carol responded, “No, notes help more” (Carol Questionnaire, 

June 27). In response to what they do to understand the ideas, where the formulas come from, 

and why they take the steps they do, two students replied they did not need to understand while 

eight other students responded they needed repetition and explanations (see Table 28). As their 

responses illustrate, the students in this class had a predominantly traditional view of learning 

mathematics (Smith, 1996).  

While Daniel indicated he relied on memorization to learn mathematics, there is evidence 

his memory was unreliable. In one instance, he said he would not be able to remember 

transformations of functions without looking at his notes (Fieldnotes, July 13). Also, when he 

needed to find the area of a triangle, he asked Mr. Anderson if he should use “a-squared plus b-

squared equals c-squared” (Observation, July 5). He recalled a formula he associated with 
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triangles, the Pythagorean Theorem, rather than with particular characteristics of triangles, 

demonstrating pseudo-conceptual behavior (Vinner, 1997). 

Mr. Anderson also emphasized knowing procedures; on the first day of class he told them 

if they could do all the homework problems without referencing the book or notes, they would 

do well on the exams:  

When you do the homework, there's two stages on the homework. The first time you're 

going through doing some of the problems and you're referencing your notes, the book, 

other people, tutors, whatever, but you gotta get to the level of doing the problems 

without referencing any of those things. So if you just do the first level without practicing 

the second level, you'll have trouble with the exams, okay. If you get to that second level, 

when you can do those problems without referencing anything, then you're good to go, 

that's kinda where you've gotta aim to be. (Observation, June 27) 

This warning could be interpreted as an encouragement to students to memorize each procedure. 

However, Mr. Anderson usually offered reasons for procedures he introduced indicating he 

thought understanding was important.  

 Summary of students’ roles. Students entered this class with experiences and preferences 

for their roles. Some believed their legitimate participation in this class should be limited to 

answering their instructor’s questions, asking questions, and working practice problems they had 

been shown how to do. Students did not expect to contribute to others’ learning during whole-

class discussion or that their ideas should be the focus of discussion. They did not value listening 

to their peers’ ideas during whole class discussions since it was Mr. Anderson’s role to explain 

the mathematics. For the most part, these ideas were not challenged. However, students did not 

remain true to their original preferences: if students interacted with their peers during seatwork 
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they were more likely to contribute during whole-class discussion, while if they did not interact 

with others, they rarely contributed during whole-class discussion, regardless of what they 

answered on the questionnaires. 

 The students in this class demonstrated absolute knowing on their questionnaires and 

through their behavior in class. Absolute knowers can be further categorized as receivers or 

masters (Baxter Magolda, 1992; Brew, 2001). In general, the students who rarely spoke up in 

class were receivers while the students who contributed often during whole-class discussion were 

masters. In either case, as absolute knowers, they believed that mathematical knowledge was 

certain, the instructor had the knowledge and their job was to obtain it. This implied Mr. 

Anderson’s role was to communicate his knowledge clearly and ensure that students understood 

it.  

 Baxter Magolda (1992) suggested that teachers need to teach responsively to students’ 

ways of knowing, but after building connections to students, teachers must balance this 

confirmation with contradiction of students’ ways of knowing. For example, to confirm students’ 

absolute ways of knowing, Mr. Anderson demonstrated helpfulness and support, roles absolute 

knowers expect of good instructors. However, to contradict students’ ways of knowing, Mr. 

Anderson could have included more opportunities for students’ ideas to be central to class 

discussion, encouraged students to listen to and respond to each other, and restrained his role as 

mathematical and intermediate authority. Such balance, according to Baxter Magolda, helps 

students develop more complex ways of knowing. 

Negotiating Social Norms of Whole Class Discussions 

 Class time was used in two ways: whole-class discussion and seatwork. In this section I 

describe classroom social norms during whole-class discussions and in the next section, social 
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norms during seatwork. In general, very little lecturing without input from students occurred in 

this class because the social norms and roles were that students should speak up whenever they 

had something to share or ask, and Mr. Anderson provided many opportunities with his 

questions, pauses, and wait-time.  

Mr. Anderson’s value of student participation. Mr. Anderson explained that his goal in all 

his classes was to maintain a relaxed and friendly atmosphere and the sense of a leisurely pace 

(Mr. Anderson Interview, August 16). He learned students’ names during the first week of class 

and used them throughout the quarter. He usually started class by answering homework 

questions thoroughly and slowly so students could work the problems with him. In addition, 

throughout the lesson he paused and encouraged questions. Mr. Anderson’s intent was to 

cultivate an interactive classroom. 

I like to have a very open environment where I hear a lot, you know, students are often so 

afraid to ask that question, but no, no, you have a question, you just gotta get it out there, 

because most likely half the rest of the class has the same question they’re just not asking 

as well. I try to be really open to questions and, and encourage interaction in my class. 

You know, we say we lecture, but, I don’t know, it’s more an interactive thing with me. I 

put it on the board, here. So, I like to do that where, like even just small problems, say, 

okay, what do we do next? Or after I do the first one, I say, okay you guys help me with 

the next one. So, it’s an interaction with the class. (Mr. Anderson Interview, July 5) 

Mr. Anderson knew most students wanted to leave class knowing how to do the homework and 

wanted opportunities to ask questions and receive clear explanations. He also believed that if one 

person had a question, others also wanted to hear the answer. Students’ responses to their 

questionnaires corroborated this idea (see Table 23) since nine of the thirteen students replied 
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they liked hearing other students’ questions and five specifically mentioned others asked 

questions they were thinking. Because he was responsive to students’ preferences, he continued 

to encourage questions and provide opportunities for students to participate as they chose. 

However, Mr. Anderson also explained he was not always able to get students to interact 

in class: 

Well, sometimes, yeah, for whatever reasons, you get a class that they do not want 

to interact like I would like to have my classes interact and then, then it's a struggle 

with, well, what do you do then? And some classes I just, like, three, four weeks 

into the quarter, if they're just going to be that way, then I just have to, I guess what 

I'm taking that as, maybe they do not want to learn through that interaction, they 

just want to learn through observing, then I'll change my style a little bit and not 

make it so interactive. Because, well it's for one, pretty tiring trying to pull answers 

from somebody who for four weeks has not opened their mouth with any words. It's 

fine, like, you know, I mean, the interaction for me is done to help them and if they 

don’t choose to take that. I mean, that's another thing you could say clear back on 

the philosophy is, it's my role as a teacher to give the tools to succeed, yet if the 

student doesn't want to use all those tools, that’s their choice at this level. (Mr. 

Anderson Interview, July 5) 

While Mr. Anderson valued interaction as a style of teaching possibly helpful to his students, if 

students did not want to interact, he did not believe it was his role to force them. He tried to teach 

in ways students expected and offered them what they needed, but it was up to the students to 

choose to use the opportunities in ways they believed would benefit their learning.  
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I also asked him to describe a particularly successful class and explain what made it 

successful: 

I think they did a lot of things, they put the effort in outside of class, and maybe 

that came from enjoying what we were doing in class, not necessarily just the work, 

but the interactions maybe. So, if they enjoy that, then they're willing to go home 

and do the work they need to do on it. Yeah, last year I had this group that followed 

me through precalc one and precalc two, and then a smaller core of that same group 

went calc one, calc two, but it was a very, very nice core group, that by the end, 

you know, we were taking three or four days to do what used to take us five days 

because they would just get into it. We could really cover the material. (Mr. 

Anderson Interview, July 5) 

When he had a group of students who became familiar with him, each other, and the social 

norms of the class, they interacted in ways that accelerated learning. It may be that these students 

had developed more complex ways of knowing since they were more advanced in school, or that 

the relationships they formed over time enabled better communication. 

Initiating participation. Mr. Anderson initiated a social norm for whole-group interaction 

on the first day of class by frequently asking questions and waiting until he heard an answer to 

proceed. At one point while solving an equation he paused and waited at the board quietly and 

then said, “I hope somebody's going to help me out with the rest of this.” A student responded 

with an answer, although it appeared students were quiet because they were each solving the 

equation by themselves (Fieldnotes, June 27). After that, there was a social norm that students 

tell him the next step without his asking when he was at the board and they were working 

procedures. Often, the pace of his speaking slowed or he paused, indicating to students that it 
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was a good time to ask a question or give an answer. Several students participated quickly in this 

social norm, indicating it was a social norm familiar to them. 

Students soon used any pause in the discussion to ask questions. On the first day of class 

during a long pause, Daniel asked, "Can you run through that again?" Mr. Anderson worked a 

related but simpler example, during which Daniel said, "Okay, I got it" (Observation, June 27). 

But Mr. Anderson finished the example, initiating a social norm that he would respond to 

students’ requests for explanations, but once he started explaining, the explanation was offered to 

all students and would not be stopped because the student who initiated the question was 

satisfied. This teacher behavior is consistent with what students expected of their teacher, since 

most students indicated on their questionnaires that they learned from listening to other students’ 

questions and the teacher’s answers (see Table 23).  

During whole-class discussion, Mr. Anderson usually responded to correct answers by 

repeating them as he wrote them, often nodding affirmatively, or saying “yeah” (e.g. 

Observation, July 11). Since many students’ answers were not loud enough for the whole class to 

hear, repeating them as he wrote on the board validated them, made them part of the whole-class 

discussion, and connected the symbols he wrote to the language he used. Early in the quarter, 

Mr. Anderson responded to wrong answers with “close,” (e.g. Observation, June 27), which 

appeared to encourage students to continue answering, while later some wrong answers were 

rejected with “no” or refuted with reasons. By determining whether answers were right or wrong 

during whole class discussion, Mr. Anderson accepted a role as mathematical authority. 

Students’ initiation of social norms. On the fourth day of class Daniel initiated a norm of 

asking for specific types of examples by asking to see a problem that required students to find 

the equation of a circle tangent to the x-axis (Fieldnotes, June 30). From Daniel’s response to his 
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questions, Mr. Anderson realized the idea of a circle tangent to the x-axis contributed to Daniel’s 

confusion, so he drew several circles both tangent and not tangent to the x-axis to help students 

understand the idea and then finished the problem with input from students. The accommodating 

way he responded to Daniel’s request encouraged students to ask for specific examples 

throughout the term and was consistent with his roles as explainer and supporter.  

Daniel also initiated a norm of asking questions to verify his thinking early in the quarter. 

On the fifth day of class, a whole-class discussion focused on finding the equation of a line 

through two points. Taking students’ suggestions, Mr. Anderson found the equation using the 

point-slope form of the equation. During the pause that followed, Daniel asked, “Can’t you also 

plug the negative seven and the eight into the y equals m x plus b, then solve for b?” Mr. 

Anderson replied by following this suggestion to demonstrate how the substitutions could also be 

used to find an equation. After asking if there were questions, he pointed to Kevin, who had not 

raised his hand but had a confused look on his face, and said, “Thinking about something?” to 

which Kevin responded, “We can just plug it into any of those equations?” Mr. Anderson then 

compared finding equations using each of the three different forms of linear equations, focusing 

on how many unknowns would be left and what type of information they had (Observation, July 

5). Other students also asked questions introducing new ideas (e.g. Observation, June 30; 

Observation, July 7) and Mr. Anderson responded with clear explanations. Thus, while students 

introduced ideas, they were usually in the form of questions and the social norm was that Mr. 

Anderson explained the mathematics.  

While most student input was in the form of questions, Daniel, and later others such as 

Carol and Sarah, also spoke out during whole-class discussions with comments or insights. In the  
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following episode, discussion focused on completing the square to rewrite a quadratic function in 

vertex form: ( ) 85442)( 2 −−++= xxxf  

Mr. Anderson: Okay, the four multiplied by the two is eight. So what we really did is we 

just added eight to this side, and then we subtracted eight. So what we've done is we've 

added eight and subtracted eight. 

Daniel: So we've done nothing. 

Mr. Anderson: We've done nothing to this side, right. Our goal is to not to change 

anything. We added eight so we subtracted eight, so we haven't changed it. (Observation, 

July 13). 

The social norms of this class allowed Daniel to check his thinking and clarify Mr. Anderson’s 

explanation. Mr. Anderson affirmed Daniel’s comment and repeated it to the rest of the class. 

While students were encouraged to contribute their thoughts and questions during whole-class 

discussion, students’ questions and comments were of a limited nature. This idea will be 

explored more in-depth in a later section. 

Students who remained quiet. When discussing student interaction with Mr. Anderson, I 

asked about Janet, mentioning that she was very quiet.  

Yeah, but she is on the ball, definitely pays attention to what we're doing. I think she 

likes to think about it. So she likes to take her time and really digest it and say okay, what 

do I need to do with it to get it to work, to understand, rather than bouncing ideas. So it's 

not necessarily a problem if they don't interact, you know, it's just a different way.” (Mr. 

Anderson Interview, July 5) 
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So, while Mr. Anderson valued interaction, he did not believe students who did not interact 

during whole-class discussion were not thinking and he respected their preference to stay quiet. 

In general, we discussed students who did not speak up much during class discussions:  

Yeah, or they might just have it inside, or sometimes if I can, if I hear somebody, like 

under their breath, I’ll like pull it out, like, okay, what was that? Say it louder so 

everybody can hear it, you know, if you can, but sometimes it’s hard when they’re spread 

out like that. (Mr. Anderson Interview, July 5) 

I observed an example of this on the second day of the quarter: Mr. Anderson asked if someone 

had simplified the expression on the board and he thought Kathy indicated yes by nodding. 

However, when he called on her she clearly did not want to answer (Observation, June 28). Mr. 

Anderson valued whole-class interaction, although he understood its limitations; some students 

may not want to interact, and being spread out may discourage some students from participating. 

Since students chose where they sat, some may have chosen to sit far away from the others to 

avoid participating or interacting with others.  

Nature of whole class discussion. During whole-class discussions, Mr. Anderson worked 

slowly with long pauses so students could work problems along with him. An episode on July 27 

(see Appendix K) illustrates the amount of time Mr. Anderson allowed for working homework 

problems. During this episode, Mr. Anderson did most of the talking and explaining. However, 

students were expected to work the problem along with him, to try to solve the problem by 

graphing the polynomial on their graphing calculators and try to understand as the problem was 

discussed. While they worked along with him, asking questions and offering answers, he did the 

math and affirmed answers. For example, when Sarah said “three,” Mr. Anderson followed with 

“Close, three,” and waited for someone else to finish. Also, while he gave Anthony a chance to 
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give his reason for knowing the exponent had to be odd, Mr. Anderson still clarified his answer 

for the rest of the class. In addition, Mr. Anderson mediated rather than facilitated discussion 

since each student statement or question was directed at him and he either explained, restated, 

rejected, or validated it, and he was the only one to speak to the students.  

Opportunities provided by whole-class discussion. The social norms of whole-class 

discussion provided students with opportunities to ask questions or make statements when they 

wanted further explanations. For example, on several occasions students asked Mr. Anderson to 

re-explain. On July 11, twice students spoke up to ask for either a review of a procedure, or for 

more explanation on an idea that was just introduced: Daniel asked for a review of finding the 

range, and then, while Mr. Anderson was introducing direct variation, Kevin spoke up to ask, “k 

is what again?” (Fieldnotes, July 11). To Kevin’s question about the constant of variation, Mr. 

Anderson produced an example of the circumference of a circle, a formula probably familiar to 

Kevin. Mr. Anderson’s responses generally encouraged these questions since he always 

answered them fully. 

As the quarter progressed, Mr. Anderson adjusted instruction whenever students 

indicated they were confused. The following episode happened near the end of the quarter after 

Mr. Anderson introduced mathematical induction by providing domino and ladder analogies, 

then presented an example: Prove )1(2...642:)( +=++++ nnnnP  is true for all natural 

numbers n. 

Mr. Anderson: We want to prove that this is true for all natural numbers n. …  

We’re going to assume that it’s true for n equal k. Kenny, you have a question? [From 

fieldnotes: both Kenny and Carol are visibly looking confused; Kenny put his pencil 
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down and leaned back and folded his arms as if he could not go on.] 

Kenny: Uh, your P sub two, 

Mr. Anderson: P of, you want to do P of two? Okay, before we do this, let’s do P two.  

Carol: Yeah, this is silly.  

Kenny: Wouldn’t your left-hand side be four? 

Mr. Anderson: No, our left-hand side would be six [Moves to the other board to write]. 

Okay, if you’re looking at, this is scratch work, 

Kenny: Six, I think that would be P-three, wouldn’t it? 

Mr. Anderson: No, no, okay, let’s look at P-two, our second statement. So we’re going to 

add on the left, two plus four plus, we’re going to end when n is two, so we’re going to 

do, our left-hand side, 

S: You have to add it up. 

Mr. Anderson: Is two plus four, is six. 

Kenny: Okay. 

Mr. Anderson: My right hand side is two times two plus one, which is also six. 

Kenny: Okay [he picks his pencil up and leans forward in his chair]. And so P-three 

would be twelve? 

Mr. Anderson: Let’s do P-three. Our left-hand side would be two plus four plus six. Why 

am I stopping at six? 

S: Because that’s your third term. 

Mr. Anderson: Because that’s our third term in our sequence. We’re supposed to do plus 

four; we’re supposed to stop when we get to two times three. (Observation, August 15)  
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Kenny and Carol clearly indicated their confusion after Mr. Anderson assumed the induction 

hypothesis. Mr. Anderson watched students’ reactions to try to determine when they were 

confused and was willing to explain and backtrack until students indicated they understood. In 

response to their frustration, Mr. Anderson stopped writing the proof and wrote each of the two 

statements on another part of the board, discussing their meaning. This social norm of asking 

questions whenever they were confused may have helped students who were trying to understand 

throughout each class period. Sarah discussed how this social norm helped her: 

I make sure that I understand it as I go along because I’ve learned from trying to take 

precal on my own before, that if don’t ask questions and I don’t understand before I go 

home and try to do it, that I’ll just be lost… and I think class size has a lot to do with that, 

and the instructor, feeling that I can approach him or ask him if he’s available. (Sarah 

Interview, July 13) 

Sarah suggested the nature of whole-class discussion, aided by a small class size and an 

approachable instructor helped her learn in a way she could be successful. She admitted she had 

few resources if she attempted to do problems at home before she understood. This was 

consistent with her response to how she best learns math: “practice and a good instructor” (Sarah 

Questionnaire, June 27) and consistent with absolute knowing since absolute knowers attribute 

their learning to their instructors (Baxter Magolda, 1992). 

Sarah also added why she felt comfortable enough to participate in this class:  

I think the small class size is also important, because I don’t think I would feel as 

comfortable if we had a large class, asking as many questions as I would, to try to 

understand something, …I just the think the way he introduces the topics in the class, I 

think he explains them very well, and he does multiple examples and that kind of helps 
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me learn. I mean, you can show me something, but I need multiple examples of how we 

get there before I feel comfortable doing so, right?… In fact, [Carol] today was like, ‘I 

know this is stupid but,’ he’s like, ‘no, no there’s no stupid question.’ And I think 

students are all, just by being a teacher, they also like, they don’t want to talk or ask 

questions because they think it’s a stupid question, … You know what, if I’m thinking it, 

then obviously maybe somebody else is thinking it, so I might as well ask it. When I 

haven’t asked questions that I’ve been thinking, somebody else will ask it.…. Another 

thing I like about him is he makes sure we all understand it before we move on. If 

somebody doesn’t understand it, he’s willing to show them so we can all move along as a 

class. (Sarah Interview, July 13)  

Several factors contributed to Sarah’s willingness to ask questions: her maturity, her identity as a 

teacher, the small class size, and Mr. Anderson’s openness to questions and thorough 

explanations. She also appreciated that Mr. Anderson wanted all students to understand and was 

willing to continue explaining or come up with examples until they indicated understanding.  

 Summary of social norms of whole-class discussion. The social norms of whole-class 

discussion supported discussion between the teacher and students rather than a discussion 

between all members of the class, students expected to be able to ask questions of Mr. Anderson 

and have them answered until they indicated they understood, and only those students who 

wanted to, participated. Also, students were more likely to contribute answers if they thought 

they had a correct answer, if they wanted to show what they knew, or if they had a question. 

Concomitantly, Mr. Anderson did the mathematics, approving or rejecting students’ answers. 

Because these social norms did not contradict their beliefs that the teacher had knowledge and 

could give his knowledge to them, their absolute knowing was not contradicted. 
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Social Norms of Seatwork  

The other major class activity is referred to as seatwork since it was both individual and 

group work depending on how each student participated. Seatwork occurred when Mr. Anderson 

assigned one or more problems and gave students time to work on them. He assigned seatwork 

on 14 of the 19 days I observed, and the times allotted for seatwork each day ranged from a few 

minutes to around fifty minutes. During seatwork, all but three students, Greg, Brian, and Sheila, 

regularly discussed mathematics with students near them.   

Initiating seatwork. On the first day he assigned seatwork, Mr. Anderson told students 

they were free to work together:   

All right, rather than me sitting up here and doing a bunch of these, I think on these types 

of problems what I want to do is just wander around and see where you're at. So, we're 

going to do multiples of twelve in section one-six. If you don't have your book, that's 

okay, you can just work together, just scoot your desk over, and look at somebody else's 

book. So, we're going to do multiples of twelve in section one-six, [writing on board] 

twelve, twenty-four, thirty-six, forty-eight, sixty, up to seventy-two [for assigned 

problems, see Appendix M]. So just use scratch paper, I'm not necessarily going to 

collect them. So if you get stuck raise your hand, I'll come around. You can work 

together. (Observation, June 28) 

Mr. Anderson had not done any examples for this section on modeling with equations. He 

assigned this seatwork so he could assess what students knew about solving problems in this 

section; opportunities for students to work together were secondary. By telling them he would 

help if they raised their hands, he demonstrated his helpfulness, important for absolute knowers 

(Baxter Magolda, 1992) but also retained authority.  
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 During this first opportunity for seatwork, Kathy and Anthony immediately moved their 

desks together, as did Carol and Sarah (Fieldnotes, June 28). Both pairs talked in low voices. 

During the next forty minutes, Mr. Anderson walked around the room looking at students’ work 

and responding to their questions. Also, as the time progressed, other pairs of students started 

working together, including Thomas and Kevin. Thomas also turned and talked to Sarah, Carol, 

and Kenny about the mathematics. All but four students talked to other students during this time 

(Fieldnotes, June 28). During this particular episode, Thomas asked Mr. Anderson a question:  

Mr. Anderson: First thing, I see sum, you did product. [Thomas erases something on his 

paper]. So, sum is going to mean add. … Now did we square the second number? There 

you go, now we have the sum of the squares. [Mr. Anderson continues walking around 

the room.] 

Carol [to Mr. Anderson]: Does that look right? 

Mr. Anderson: Yeah, that looks great, keep going.  

Carol: So now I just [inaudible]? 

Mr. Anderson: Yeah, now you can either factor it, or use the quadratic formula, or 

complete the square. [He continued to walk around]…Oh, oh not just two. Yeah, x plus 

two…Square, not square root. (Observation, June 28) 

Carol’s question exemplified the typical student question, “Am I doing this right?” Throughout 

seatwork Mr. Anderson answered their questions, asked questions, and pointed out their 

mistakes. Since this was the second day of the quarter, Mr. Anderson’s behavior may have been 

to establish his supportive role, and, as shown by their questions, what students expected of him. 

Since students could count on Mr. Anderson to tell them whether they were right or wrong they 

could maintain their absolute ways of knowing.  

 161



 

Mr. Anderson’s purpose for seatwork. Mr. Anderson and I discussed his practice of 

assigning seatwork and walking around to view student work.  

I try to, whenever I have time, to put problems on the board, or assign the problems, for 

them to work on…. I like it because you can see where each student is at, what they’re 

struggling with, cuz everybody’s at a slightly different place, some people need to go 

back more than this stuff, some people are good with that, you can just go on. (Mr. 

Anderson Interview, July 5)  

His goal during seatwork was to assess students’ current understanding so he could adapt his 

instruction. He added that in the present class he could easily see the work of each student since 

there were so few (Mr. Anderson Interview, July 5). However, he also valued students’ 

interactions with each other. 

I’ll put a problem on the board, or say work on this problem, work together if you want or 

bounce ideas off each other, or check your answers, convince each other that you’re right 

or wrong, sometimes I use that phrase, but sometimes they still want to get stuck in their 

little world, they interact with me, as a class, but they don’t, you know, they’re nervous 

about sharing with their fellow students… I kind of encourage them to do that because 

that’s something that maybe they can take outside the classroom and, you know, do 

homework. If they could form a study group it would be beneficial, so that kind of 

interaction, I try to encourage that in class too, but sometimes I don’t get them to. (Mr. 

Anderson, Interview, July 5). 

While he valued students’ interaction with each other and believed discussing mathematics and 

trying to “convince each other” would promote learning and independence, he acknowledged the 

difficulties in getting students to interact with each other. The difficulties stemmed from 
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students’ ways of knowing since absolute knowers believe the teacher has the knowledge and 

peers can only share what the teacher has provided (Baxter Magolda, 1992). In spite of valuing 

peer interaction and consistent with his philosophy that he could offer students tools they may 

not use, he did not require students to work together. In fact, students did not need to work 

together because Mr. Anderson answered their questions as he walked around. His role as 

responsive to students’ preferences may have allowed students to depend on him rather than 

build mutual accountability with their peers, and did not contradict their ways of knowing. 

Students’ preferences for working with peers. Students indicated on their questionnaires 

their preferences for working with others in the class. In response to the question, During math 

class, do you like to work with a partner or in a group? Why or why not? some students appeared 

to have interpreted this question as, If you had a choice between a partner and a group, which 

would you prefer? Ten of the thirteen students wrote they liked working with others (See Table 

29). Their reasons for wanting to work with others varied: Greg indicated, “easy interactions,” so 

it appeared to be social, while others indicated that students wanted to listen to other students’ 

explanations or ideas. Anthony wrote, “I like to work with a partner in order to bounce ideas off 

one another; also, there is more of a chance one of the two caught a point in class” (Anthony 

Questionnaire, June 27). While “bouncing ideas” evidenced Anthony’s openness to hearing other 

students’ ideas, the second part of his reply indicated the use of a peer as one who shares the 

teacher’s knowledge, evidence of absolute knowing (Baxter Magolda, 1992).   

In contrast, Janet and Thomas indicated that they would benefit if they could explain the 

math to a partner (Janet Questionnaire, June 27; Thomas Questionnaire, June 27). Thomas wrote, 

“I like to work by myself because I can understand the material better. Then I like to find 

someone who is struggling and help them” (Thomas Questionnaire, June 27). While he did not 
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express value for other students’ ideas, he realized he may know it better if he can explain it to 

someone else. He regularly discussed seatwork problems with Kenny, Carol, Sarah, and Kevin. 

Three students conveyed a preference for working alone; Kenny, Daniel, and Thomas all 

wrote that they preferred to work by themselves (Student Questionnaires, June 27), however, 

during the term all three worked with students nearby. Kenny’s location in the classroom made it 

convenient for Thomas or Janet to ask him questions and it seemed he usually understood what 

was going on and could explain it (e.g. Fieldnotes, August 3; Fieldnotes, August 16). Daniel 

regularly asked Carol and Sarah questions or joined in their discussions since they sat close 

enough to speak without moving their chairs. The day after Mr. Anderson introduced proof by 

mathematical induction, he assigned a proof as seatwork and Daniel immediately moved his desk 

to join Carol and Sarah (Fieldnotes, August 16). This move in the last week of the quarter 

showed he had changed his attitude about working with others over the term. So, providing 

opportunities for students to work together encouraged students to change their minds about the 

value of working with peers. 

Nature of social norms during seatwork. Most students used seatwork as opportunities to 

discuss the mathematics with their peers. In particular, Carol, Sarah, Daniel, Thomas, Kevin and 

Kenny discussed their work often; Anthony and Kathy also worked together whenever they were 

both present during seatwork. However, the large classroom size allowed some students to sit far 

from others and therefore these students never interacted with others when I observed (see Figure 

3). 
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Figure 3. Sociogram of Mr. Anderson’s class (not to scale). 

Most students worked together and asked each other questions, and some discussed 

conjectures independent of Mr. Anderson (Fieldnotes, August 9). In this way, Mr. Anderson’s 

class was more similar to the discussion-oriented classes described by Boaler and Greeno (2000) 

than the didactic classes. Yet, even students who worked together asked Mr. Anderson questions 

that placed mathematical authority with him (e.g. Fieldnotes, June 28). Since Boaler and Greeno 

used interviews but not classroom observations, it is not clear that the students who described 

discussion-based classes in their study did not also rely on their teacher to determine the 

correctness of their solutions.  

As Mr. Anderson walked around during seatwork, his conversations with students 

resembled communication described by Stigler, Fernandez, and Yoshida (1996) of American 

elementary classrooms in which the teachers acted more as tutors. The episode given in 

Appendix L, Lines 29-45, illustrates how Mr. Anderson questioned students, focusing each 

individual’s attention on their assumptions. In contrast, Stigler et al. described teachers in 

Japanese classrooms using the information they gained from looking at students work during 

seatwork as opportunities to discuss both right and wrong solution paths during whole-class 
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discussions. Mr. Anderson’s responses to students showed he wanted them to make sense of the 

procedure, but since he focused their attention on their incorrect assumptions, they did not have 

to use their own sense-making to better understand connections. That is, students depended on 

Mr. Anderson to determine the correctness of their answers and point out the source of their 

misunderstandings. In contrast, when he saw their mistakes he could have suggested that they be 

able to support their answers with another representation such as a table or graph, which may 

have fostered their ability to determine the correctness of their own work and make sense of the 

procedures they chose, while shifting intermediate authority away from him. 

Developing student-student relationships. In response to: Do you like to get to know your 

teacher and/or other students in the class? most students wrote yes, and those who explained 

why wrote getting to know others would make them feel comfortable asking questions (see Table 

30). However, Kevin and Kathy indicated they would like to know the teacher but not 

necessarily the other students: “Students – not really. Teacher – of course, he’s who I must really 

learn from” (Kevin Questionnaire, June 27). In spite of his initial response, Kevin regularly 

spoke to Thomas during seatwork, starting on the second day of the term. During the last two 

weeks of the quarter, Kevin arrived early to work with Thomas in the hall before class 

(Fieldnotes, August 9). This presents evidence that Kevin’s attitude and disposition towards 

knowing and learning from his peers changed because of opportunities to work together during 

class.  

Although she indicated on her questionnaire that she liked to work with others (Kathy 

Questionnaire, June 27), Kathy never spoke to any other student except Anthony while I 

observed; she knew Anthony before the quarter started since she worked in the daycare his 

daughter attended (Fieldnotes, July 19). Anthony wrote he wanted to know others but did not 
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want the teacher to force it (Anthony Questionnaire, June 27), indicating that teachers who 

require students to work with their peers may meet with resistance. Greg was the only student 

who responded he did not want to know others (Greg Questionnaire, June 27) and he did not talk 

to anyone except Mr. Anderson when I observed, and only when Mr. Anderson stopped by his 

desk. Thus, some students may not want a teacher to interfere with the way they intend to 

participate in the class. 

Brian responded, "Yes, it helps me feel comfortable asking questions," to whether he 

liked to get to know others. However, he rarely asked questions in class other than to request 

homework problems and he did not get to know anyone in the class, probably because he did not 

sit near others who wanted to talk and Mr. Anderson answered his questions as he walked 

around. He also did not show up early for class like several of the others, so he did not 

participate in conversations between students in the hall. Thus, some students who wanted to 

know others may not have because it was not expected or convenient. 

Sarah's answer indicated she wanted to get to know others (Sarah Questionnaire, June 27) 

and she moved to sit near Carol on the second day of class (Fieldnotes, June 28). Sarah and Carol 

worked together each time seatwork was assigned, and Sarah explained how she valued this 

relationship:  

When you’re in a class like this and you don’t know anyone and most people who take 

these level classes, they probably don’t know anyone; I think it helps to make a friend. 

We’ve exchanged phone numbers and she has a solution manual for the book, so when 

we were in the last chapter doing the word problems, which I don’t like at all, I couldn’t 

figure out one of the problems so I called her up and even if she couldn’t understand very 

well, she explained to me what the solutions manual said. So I just think sometimes two 
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brains are better than one, and we can work together to try to figure it out. (Sarah 

Interview, July 13) 

Sarah valued being able to call Carol and discuss the problems when she was stuck. However, 

the nature of these conversations was to convey solutions provided in the solutions manual, 

rather than discuss their own ideas, instantiating the idea that for absolute knowers, the role of 

peers was to “share what they have learned from authority figures” (Baxter Magolda, 1992, p. 

74). Additionally, Carol regularly asked Sarah questions during class instead of asking Mr. 

Anderson in front of the whole class, whispering during whole-class discussions or lecture (e.g. 

Fieldnotes, June 30). This appeared to make Sarah uncomfortable at times, but she still answered 

Carol’s questions, once by writing and showing it to her (Fieldnotes, July 19). On one occasion 

when Carol whispered to Sarah, Mr. Anderson paused what he was doing and asked Carol if she 

had a question. She answered, “Not one that I want to ask” (Fieldnotes, July 7). Mr. Anderson’s 

question was polite and the pair continued to whisper during discussions throughout the term. I 

did not see any signs their conversations bothered other students, probably because Mr. 

Anderson spoke loud enough to be heard over their whispering. Carol’s response to what she 

does to understand concepts was, “Discuss with others; ask the instructor” (Carol Questionnaire, 

June 27). Clearly, Carol and Sarah valued discussion with each other as a way to help them learn 

and used the many opportunities afforded in and out of class.  

Sam and Janet sat near each other and both indicated on their questionnaires that they 

liked working with a partner, and they did occasionally assist each other. However, they did not 

move their desks together and work in the same way that Carol and Sarah or Anthony and Kathy 

did. Janet’s reason for working with a partner was that she understood it better once she could 

 168



 

explain it to someone else (Janet Questionnaire, June 27). I think the main barrier to their 

working together was their shyness.  

Mr. Anderson offered opportunities for students to develop relationships within the class 

but did not require students’ to get to know others. Students also developed relationships outside 

of class; Sarah’s description of her value of working with Carol was similar to students 

interviewed by Boaler and Greeno (2000) in discussion-based classes. They described 

opportunities to discuss the mathematics with their peers, however, they did not say their 

teachers required them to work in ways they did not want to work. The evidence of this case 

suggests that while giving students opportunities to work together and get to know each other 

may change their values of working with peers and are necessary for them to become relational 

agents, it is not sufficient if their absolute ways of knowing are not contradicted. 

Opportunities to know Mr. Anderson. Ten of the thirteen students also indicated they 

wanted to get to know the instructor (see Table 30). Since Mr. Anderson did not arrive to class 

early, taught another class immediately after this one, and did not have office hours, 

opportunities to get to know him outside of class time were limited. However, he provided ample 

opportunities within class time. Mr. Anderson learned and used students’ names early in the 

term, and walked around to talk to individuals during seatwork. When he walked around on the 

first day of class, he sat at adjacent desks while talking to some students (Fieldnotes, June 27). 

There were several times students joked with him during class (e.g. Fieldnotes, June 30; 

Fieldnotes, July 11; Fieldnotes, July 12), demonstrating that students had become familiar with 

him. In addition, the slow pace of the class and opportunities to interact throughout each lesson 

provided opportunities for students to get to know him. 

Summary of Research Question One: Development of Roles and Social Norms 
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Similar to the students in didactic classes interviewed by Boaler and Greeno (2000), 

students in this class entered with the belief that learning mathematics required memorization, 

practice, and perseverance. In general, these notions were not challenged as Mr. Anderson 

provided opportunities for students to participate in ways they were comfortable. However, like 

the students in the discussion-based classes, they had opportunities to participate in whole-class 

discussions and group work, and in response some students provided more input than they 

expected while others interacted with peers more than they intended and in different ways than 

they expected. However, the opportunities to interact did not necessarily lead students to engage 

“in the process of validation with the teacher,” as suggested by Boaler and Greeno (2000, p. 172) 

of their discussion-based classes since members of the classroom community expected Mr. 

Anderson’s legitimate role to be mathematical and intermediate authorities of the mathematics.  

Roles and social norms also emphasized students’ roles as questioners, rather than as 

providers of ideas, and did not encourage students to listen to each other during whole class 

discussion. Students’ questionnaire responses indicated the roles and social norms of this class 

aligned with their experiences and preferences of roles in mathematics classrooms. The 

environment allowed for individual and relational agency if it was consistent with their ways of 

knowing, since students could persevere and solve problems on the homework, rather than 

waiting to have solutions presented to them in class and could discuss their ideas with peers 

during seatwork. However, the roles and social norms assisted students in maintaining their 

absolute ways of knowing by not challenging their conceptions of authorities as the source of 

knowledge. 

 In contrast to recommendations in the Principles and Standards for School Mathematics 

(NCTM, 2000) students were not required to listen to each other and think about the reasoning 
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offered, or attempt to refute or validate mathematical ideas offered by others, behaviors of 

contextual knowers (Baxter Magolda, 1992). Although Mr. Anderson expressed value for this 

ideal (Mr. Anderson Interview, July 5), roles and social norms did not foster it. 

Research Question Two: Interactions Related to Mathematics 

In the following sections I discuss classroom interactions as they related to mathematical 

activity. Specifically, I examine the nature of communication during whole-class discussion 

using a framework developed by Brendefur and Frykholm (2000), then consider classroom 

discourse as it focused on concepts versus procedures, the nature of tasks and their 

implementation, sociomathematical norms, the role of technology, and how students’ 

contributions influenced the direction of the lessons.  

The Nature of Communication  

Most of the communication in this class could best be described as uni-directional 

(Brendefur & Frykholm, 2000). See Table 31 for percent of coding at each level for the first five 

days of class. 

Uni-directional communication. On the first day of class, most of Mr. Anderson's 

questions required short-answers and the content focused on review and procedural fluency of 

solving many types of equations covered in intermediate algebra. After discussing the meaning 

of solving an equation, each example focused on the type of equation and what to do to solve it, 

such as clearing denominators of rational equations, isolating radicals before raising to powers, 

and knowing three algebraic ways to solve a quadratic equation.  

Mr. Anderson: Okay, so that’s a linear equation. The next type is quadratic [pause]. So a 

quadratic equation is something that, this linear has power one, quadratic means we’re 

going to have a square running around somewhere. Something like x-squared plus nine x 
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plus eight equals zero. [writes ]. There’s a quadratic equation. Now, there 

are three ways to solve your quadratic equations, anybody remember one of them? 

0892 =++ xx

S: Completing the square. 

Mr. Anderson: Completing the square, that’s one way. 

S: Factoring. 

Mr. Anderson: Factoring. 

S: Zero product property. 

Mr. Anderson: Okay, factoring combines to zero product rule. You factor it and then you 

use - that’s excellent terminology - then you use the zero product rule to actually find 

your answers. So we have completing the square and factoring and using zero product 

rule, and what else? 

Ss: Quadratic formula. 

Mr. Anderson: So there’s three ways you can do that. Will completing the square and 

quadratic formula always work? [pause] Factoring only works of course, if it can factor. 

We’ll do one of each type on the board. Anybody knows how this one factors? 

S: Eight and one. 

Mr. Anderson: Eight and one, yeah; x plus eight, x plus one. And now we got two things 

multiplied together gives us zero, we can use the zero factor or product property, 

whatever they’re calling it. So, one of these two things have to be zero, because if two 

things multiplied together gives you zero only happens if one of them is zero. What if 

that were ten over here, would that work [indicates replacing 0 with a 10)? [looks around 

smiling] No, there’s no ten-property rule, just a zero-property rule. Okay, so either x plus 

eight is zero or x plus one equals zero, so jumping right to the answers [pause], 
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S: Negative eight and negative one. 

Mr. Anderson: Negative eight and negative one [circles them after writing them]. We 

could check them if we want. Let’s check negative one, just to try it. Negative one 

squared, one, nine times negative one… gives us…, okay so it checks out. You can do 

this with any of these equations, equations you can always check your answer. 

(Observation, June 27) 

This illustration of uni-directional communication focused on reviewing a procedure for solving 

quadratic equations by factoring. Closed questions were usually followed by short answers from 

students, although in one instance above, Mr. Anderson did not wait for an answer. Sometimes, 

Mr. Anderson interpreted short answers as meaning more than what was said; he repeated and 

accepted “eight and one” as correct factors of the quadratic expression, but then reworded to give 

the factors of the expression. While Mr. Anderson discussed a reason for the zero-product 

property, there was no mathematical reasoning of why there was no “ten-product” property, 

allowing students to memorize that they must set the product to zero rather than understand why 

zero but no other number could be used. Thus, this instance of uni-directional communication as 

it related to mathematics facilitated completion of the procedure and demonstrated that Mr. 

Anderson would give reasons but did not expect students to give mathematical reasons.  

The first day of class was different from any other day I observed in the amount of 

material covered, the speed, and focus on procedural fluency. However, similar to other 

observations throughout the term, if the topic was review for students, communication focused 

on procedures. I discuss more about the focus on concepts versus procedures in a later section.  

On some occasions, uni-directional communication became funneling (Wood, 1998); for 

an example see Appendix J Lines 44-47. This type of questioning did not provide students 
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opportunities to think about what they were doing and why, or to organize their steps since 

funneling only required them to be able to answer simple questions.  

Shifts to contributive communication. Mr. Anderson presented a final example on the first 

day of class, during which communication shifted to contributive communication: 

Mr. Anderson: One more type, absolute value. All right, absolute value of three x plus 

two equals seven [writes 723 =+x ]. 

S: You're going to get two answers. 

Mr. Anderson: Yes, you're going to get two answers. 

S: Three x plus two is seven and three x plus two is negative seven. 

Mr. Anderson: [Writes 723 =+x  or 723 −=+x ] All right, now maybe this just comes 

from a memorized, that is the correct next line, and maybe that just comes from a 

memorized process. Does anybody want to explain why that line is true? [student has 

hand up] Yeah? 

S(1): Because two numbers make it true. 

S(2): Because absolute value is distance from zero. 

Mr. Anderson: Okay, because absolute value is distance from zero and, maybe you want 

to continue off that and say what you were saying about two numbers [points to first 

student]? 

S(1): You're just going to go both ways from zero. 

Mr. Anderson: Okay, right, this says I want to be seven away from zero, I could be seven 

to the right or I could have been to the left. So that's it. Does someone else have 

something to add to that? [pause] Those are all great. Good stuff. [pause] Maybe one 

more way for me to think about it is, we're looking for something to take the absolute 
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value of and get seven. Well, what could we do to do that? Well, we could have taken the 

absolute value of seven or we could have taken the absolute value of negative seven. It's 

the same thing, just a different way to think about it. (Observation, June 27) 

Although this was the first day of class, the social norm that students just speak out before Mr. 

Anderson asked a question was already established. Students’ initial answers were procedural 

only. However, Mr. Anderson provided students an opportunity to offer explanations; two 

students answered, and when Mr. Anderson asked the first student to expand, their response was 

more similar to the second student’s answer than their original answer, indicating that they may 

have listened to the other student’s idea. Mr. Anderson expanded on their answers and explained 

one more way to think about it. Thus, contributive communication focused communication on 

underlying mathematical concepts and demonstrated that there were multiple ways to think about 

the concept. In addition, while communication focused on a procedure, the interaction shifted 

from a focus on instrumental knowledge to relational knowledge. That is, discourse shifted to 

focus on knowing what to do and why rather than a procedure without reasons (Skemp, 1987).  

Pesek and Kirshner (2000) showed that students who learned relationally were better able to use 

the concepts flexibly to solve problems than students who learned instrumentally. The shift also 

indicated that Mr. Anderson valued understanding why based on concepts. 

The following episode shifted from contributive communication back to uni-directional 

communictions. The class was discussing domains of functions: 

Mr. Anderson: Uh, one more type of function you'll see a lot, how about this one [writes 

xxh 23)( −= ]. Root functions, square roots, actually fourth roots, not cube roots or 

fifth roots, but square roots, fourth roots, sixth roots, you gotta be a little careful because, 

what? 
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Thomas: Extraneous. 

Mr. Anderson: Yeah, probably, well extraneous would be like the solution that comes 

about when you're solving an equation.  

Sarah: You don't want a negative. 

Mr. Anderson: You don't want a negative under the square root. So we don't want x-

values that make this negative underneath here. So we need to find the x-values that keep 

that positive or perhaps make it zero. 

S: Has to be less than two. 

Mr. Anderson: Two? Let's see, two. Uh, if I plug in two, well two doesn't even work, 

because three minus two times two. 

Carol: Okay, less than two. 

Mr. Anderson: Okay, it definitely has to be less than two, but I don't even think one point 

nine works. You're thinking about like whole numbers, integers. Yeah, you're right, two 

doesn't work and bigger numbers than two don't work, just by looking at it, that's how I 

think you got that, by trial and error, maybe? [Carol nods yes.] We need to find that point 

though, that actual point, the boundary between numbers that work and don't work, and 

two's not it. 

Sarah: One point five. 

Mr. Anderson: One point five is it. How did you get that? 

Sarah: Well I just figured that whatever times two has to, 

Mr. Anderson: Whatever times two [pause], 

Sarah: Yes, has to equal three. 

Mr. Anderson: Is three, because if you subtracted it from three then you get, 
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Sarah: Zero. 

Mr. Anderson: Zero. So you're like setting this equal to zero? 

Sarah: Yes. 

Mr. Anderson: And solving? That's what you did, maybe you didn't know that. I want to 

do a different thing besides setting it equal to zero, though. We really want this stuff in 

here to be [indicates radicand]? To be able to take the square root, we want it to be either 

positive or zero, so that three minus two x is,  

S: Equal to, 

Mr. Anderson: Uh, close, do we want it to be greater than or less than?  

S: Less than. 

Mr. Anderson: I don't think we want it to be less than. 

S: Greater than. 

Mr. Anderson: We want it to be greater than zero and zero is okay, so greater than or 

equal to zero. So if you have a square root or fourth root. You guys had the right answer, 

numbers up to one point five, but a methodology is, you want, take that stuff from 

underneath, set it greater than or equal to zero; you solve this, one point five or three 

halves. (Observation, July 7) 

Mr. Anderson opened this episode with a closed question and quickly responded to Thomas’ 

answer “extraneous” by explaining how the word is usually used. The communication continued 

with Mr. Anderson refuting Carol’s answer with an example and suggesting what she must have 

been thinking. Sarah offered the correct answer and Mr. Anderson affirmed it and asked her how 

she found it. However, while Mr. Anderson perceived he was using a method similar to Sarah’s, 

that a student responded “less than” is evidence they were thinking about the solution set, which 
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was 
2
3

≤x , and did not understand what Mr. Anderson was doing with the radicand. This student 

may still have a process or action view of algebraic expressions (Sfard, 1992) and did not see the 

radicand as a single object whose value must be non-negative. This exchange demonstrates that 

during a teacher explanation students may be thinking about their own construction of what is 

going on rather than following the teacher’s way of thinking. While students contributed to the 

discussion and Mr. Anderson provided time for students to contribute a solution, he maintained 

his role of intermediate authority by validating and refuting students’ suggestions rather than 

letting other students respond to the ideas. Thus, social norms and roles affected the interaction 

as it related to mathematics since students could rely on Mr. Anderson to explain clearly and 

determine the correctness of their answers.   

In the following episode, a student’s question and Mr. Anderson’s response shifted the 

communication from uni-directional to contributive. The class was discussing a homework 

problem of finding a polynomial of degree 3 with zeros 1, -2, and 3, and with 3 as a coefficient 

of the quadratic term (Stewart et al., 2002, p. 278, #49). They began by engaging in uni-

directional communication while finding the three factors and multiplying them out to get 

. 652 23 +−− xxx

Mr. Anderson: We've actually taken care of this requirement [degree 3, zeros 1, -2, and 3] 

with the way we set it up. So the only thing left to do is to somehow take care of this 

requirement [3 as a coefficient of ]. We need this coefficient right here to be three. So, 

let's go back up to this polynomial here, and we kind of talked about this one day where I 

put other numbers like different exponents and different number multiplication on it and 

we still had the same zeros. In other words, I can multiply this by seven and I'd still have 

these two requirements.  

2x
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Daniel: So, you've got to multiply something through. 

Mr. Anderson: Right, you've got to pick your multiplier, so we're not going to pick seven, 

but we're going to pick our multiplier, whatever it's going to be, we just got to pick it to 

make this one three. So what are we going to multiply by, negative two by, to get three?  

Anthony: Negative three-halves. 

Mr. Anderson: Negative three-halves, so there's our multiplier. That's the tricky part on 

this one, is getting this requirement there. Does that make sense, Thomas? 

Thomas: Yeah, it was just that last part. 

Mr. Anderson: The last part, I figured as soon as I started going, but oh well, we'll do the 

whole thing anyways… [Recaps the problem.] Questions on this one? 

S: Can you explain how you get the negative three-halves? 

Mr. Anderson: How do we get to negative three-halves? Let's see, who said that,  

Anthony? [Anthony points to the non-participant, who explains what she did.]  

Mr. Anderson: Okay, so to cancel out the negative two, that's where this negative two is 

coming in, and then multiply by three, because that's, yeah, good. Anybody do it a 

different way? That's great though, that's just seeing it. One way to just kind of see it is, 

well, I've got to cancel that negative two, and then I gotta multiply by three, making it 

negative three-halves. Anybody do it a different way? 

Anthony: Well, I divided the number we had by the number we wanted. 

Mr. Anderson: Okay, so you divided, 

Anthony: Negative three. 

Mr. Anderson: The number we had by the number we wanted? 

Anthony: No. 
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Mr. Anderson: Other way around? 

Anthony: Yeah. 

Mr. Anderson: So, the number we wanted by the number we had? 

Anthony: Mhm. 

Mr. Anderson: Another way, great. You could actually do it equation-wise, if you 

thought of this as a, the multiplier, then our equation would be a times negative two 

equals three. We're going to take the a, multiply it by negative two and get three. So, 

there's three ways, hopefully one of them will help; grab on to one of them. You don't 

need all three, here. (Observation, July 26) 

When a student asked for further explanation, Mr. Anderson provided an opportunity for 

contributive communication by asking the student who originally gave the answer to explain. 

This implied he wanted students to listen to ideas from other students, a shift in classroom 

norms, although he repeated the ideas. Mr. Anderson continued to ask for other explanations 

then offered a third method, a method within reach of a student who may not “see” what needs to 

be canceled. He suggested Thomas choose just one method; understanding all three was not 

necessary. Providing an opportunity for students to share their ways of solving problems 

suggested there were different solution paths and learners could choose one they understood, 

which reiterated the idea that there is not always one best way and may encourage the 

development of students’ own voice. 

Although Brendefur and Frykholm (2000) described uni-directional communication as 

either lecturing or closed-questioning, the two formats may allow different opportunities for 

students. In this class, uni-directional communication was interactive lecture. Since the nature of 

interactive lecture encouraged some students to speak up with questions and comments, 
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contributive communication was more likely to occur, since students became comfortable 

enough to share solutions. In a later section we will see that Mr. Anderson used this form of 

communication to assess students’ current understanding and adapt his instruction. 

Mr. Anderson also asked open-ended questions that could give rise to contributive 

communication such as, "ideas?" (e.g. Fieldnotes, July 7; Fieldnotes, August 15). In each of 

these cases, students needed to organize their thinking rather than find a right answer using cues 

from the teacher. On some occasions when he asked it this way, he was met with silence, so he 

reworded his question. For example, after they had discussed exponential functions and the 

characteristics of their graphs using several examples for the base, he wrote  and asked, 

“Can you tell me a little bit about the graph?” He paused, and when no one offered a response, 

he asked for intercepts, asymptotes, domain, and range (Fieldnotes, August 2). Thus, while Mr. 

Anderson gave students opportunities to respond to open-ended questions, if students did not 

provide them, the expectations, roles and social norms of this class provided Mr. Anderson 

would give a complete answer or ask simpler questions.  

xey =

Higher forms of communication. As indicated on Table 31, there were no instances of 

reflective or instructive communication in the first five days of this class, and no instances were 

observed in later classes. Brendefur and Frykholm (2000) posited that reflective and instructive 

communication would not occur unless lower forms of communication happened first. However, 

there is no guarantee that if uni-directional and contributive communication occur, reflective and 

instructive will eventually follow. In fact, both reflective and instructive communication require 

students to be willing to share ideas, listen to each other and reflect on each others’ ideas, 

behaviors that indicate contextual knowing. Reflective and instructive communication are 

unlikely to happen when students do not value each others’ ideas and teachers do not suspend 
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their own authority so that students can begin to develop their own voice. In this class, students’ 

expectations of teacher explanations and their absolute ways of knowing, along with Mr. 

Anderson’s acceptance of his roles as intermediate and mathematical authorities precluded 

opportunities for higher forms of communication. 

Focus on Concepts and Procedures  

Communication in this classroom could also be distinguished as focusing on concepts or 

procedures, and discussion of procedures as either relational or instrumental (Skemp, 1987). 

Procedures included solving equations and inequalities, finding zeros of functions, and using the 

binomial theorem to expand powers of binomials. Concepts included multiple representations of 

functions, specifically polynomial, rational, exponential, and logarithmic functions, inverse 

functions, and composition of functions. 

Learning procedures. Communication more often focused on procedures, most of the 

time with reasons, but sometimes without reasons; procedures were usually connected to 

concepts when the procedures were new, but when reviewing procedures, communication 

usually focused on procedural fluency.  

Discussion on the first day of class focused on reviewing procedures of solving equations 

found in elementary and intermediate algebra; communication focused on procedural fluency 

and recognizing types of equations and how to solve them. For example, to solve the rational 

equation, 32
1

1
=−

− xx
, Mr. Anderson asked how they recognized it as a rational equation:  

Mr. Anderson: What do you see in that rational equation that we didn't have in the 

others?  

Kenny: An unknown in the denominator. 
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Mr. Anderson: Yeah, exactly, the variable in the denominator, the unknown in the 

denominator, that's the mark of a rational equation. It's not where you want it; you don't 

want it down below. You need to get it up above. So, how do we get rid of that variable 

in the denominator? 

S: Multiply both sides. 

Mr. Anderson: Exactly, multiply both sides by the?  

S(1): The x. 

S(2): The LCD. 

Mr. Anderson: Well not just the x, we're going to multiply by the x minus one as well, or 

as somebody said it, the LCD. So when I look at it, I find the LCD is x times x minus one 

and that's what I multiply by both sides. Multiply both sides by x, x minus one. Now 

when you do that, when you multiply it out, you won't have any variables left in the 

denominator. (Observation, June 27).  

They did not discuss any other method of solving rational equations or even suggest there were 

other valid methods. This was the only method discussed in the textbook and the reason given in 

the text for multiplying by the least common denominator was, “to simplify the equation” 

(Stewart et al., 2002, p. 54). Thus, if students knew other methods for solving rational equations, 

such as graphing, using tables, multiplying both sides of the equation by each factor in a 

denominator separately, or cross-multiplying after combining fractions, these methods were not 

discussed. However, as was his usual practice, Mr. Anderson gave a reason for multiplying by 

the least common denominator and it was more detailed than the explanation in the text.  
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Procedures with reasons. Seatwork often provided opportunities to reveal common 

mistakes in both procedures and concepts. For example, at the beginning of class on the day 

before the first exam, Mr. Anderson wrote three problems on the whiteboard for students:  

1) 04
3

1215
=+

−
−

xx
 

2) , solve for x.  ( )[ 632 =−−− xcba ]

3) x
x

x 3
2

4
−≥

+
. (Fieldnotes, July 5) 

Students worked at their desks, many together and some alone, for twenty-eight minutes while 

Mr. Anderson walked around and assisted individuals.  

Mr. Anderson [to Sam]: And then what I do is multiply by the LCD, multiply both sides 

by the LCD. [Sam responds inaudibly] Yeah, if there’s an equal sign, clear fractions. [As 

he gets to Carol, he looks at her paper] You can’t multiply by the, 

Carol: I know, because of the inequality, we don’t know when it’s negative. I wondered 

when I was doing it. [Mr. Anderson continues walking around addressing this 

issue]…Okay, you can’t lose your denominator. 

S: Why? 

Mr. Anderson: How did you get rid of it? 

S: Multiplied both sides by it. 

Mr. Anderson: So what did you do with this? Did you leave it the same or did change it? 

S: Left it the same. 

Mr. Anderson: How did you know the x plus two wasn’t negative? (Observation, July 5) 

Mr. Anderson’s discussion of the first and third problems focused on distinguishing between 

methods of solving rational inequalities and solving rational equations. While the purpose was to 
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perform these procedures correctly, students were expected to recognize why they could not 

multiply both sides of the inequality by an expression with an unknown. Of course, there are 

other procedures to solve rational inequalities that allow multiplication of both sides by an 

unknown, but the focus in this class was on the standard algorithm discussed in their precalculus 

text. The textbook presented a list of steps emphasizing isolating zero first, but no reasons were 

offered (Stewart et al., 2002, p. 81). Thus, the in-class discussion provided more opportunity for 

relational understanding than the textbook.  

Focus on concepts. In some instances, Mr. Anderson focused more on the concepts than 

the procedures, however, students’ responses indicated they were looking for a procedure. For 

example, when introducing inverse functions, he did not give them a procedure but discussed the 

concept with a graph and table. The nature of the communication was uni-directional but with a 

different purpose than the closed questions used when performing procedures. In the following 

episode he had written  and a corresponding table of values. 4)( += xxf

Mr. Anderson: Okay, so what we’re looking for, ultimate goal of this section, is 

something called an inverse function. What we think of as a function is, we think of 

inputting the x and getting a y. [Pointing to a row in the table] We think of inputting one, 

our output’s five. An inverse function is going to undo whatever we just did. In other 

words, it’s going to go backwards. So we want a function, based on this function here, 

that’ll flip-flop the roles of the x and y. Our goal is to say, okay, when the input is seven, 

we’re going to get three, when the input is five, we’re going to get one. That’s what our 

goal is; our goal is to get this new function that’s going to undo whatever we did. So, 

that’s kind of the big picture of what we’re looking at here. Let me do one more 

function…. g of x, just x squared [draws a table]. Now we can do the same thing with 
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this; we can make a table of values…[He makes a table of values for the function.] Now 

our big goal here again, is to get these inverse functions, which are supposed to be 

functions that go the other way. Well, we have a problem with this one if we try to make 

a function going the other way. Can anybody see the problem with just the values that 

I’ve got going on there? 

Daniel: You got a negative. 

Mr. Anderson: Uh, it’s not because it has a negative in it. 

Sarah: You don’t have negative y’s when you square it. 

Mr. Anderson: Okay, so that doesn’t actually cause a problem if there’s not a negative y 

here. I see what you’re saying; there’s not going to be a negative four on my list, or a 

negative nine on my list. That just means that negative four and negative nine are not 

going to be in the domain of the inverse, cuz they aren’t going to have that. That’s good. 

But there is a problem, even with these five function values I have on the board. So what 

we’re trying to do, 

Carol: Four. 

Mr. Anderson [pointing to Carol]: Ah, four is the problem. What happens with four as an 

input? 

Carol: You get two different answers. 

Mr. Anderson: You get two different answers. That’s not a function. A function is 

supposed to have, when I give it an input, I get the same output every single 

time.…[gives two examples from every day life: one a function (buying products in a 

grocery store), the other not a function (buying cars at a car dealership), then introduces 

one-to-one functions and horizontal line test, and notation of inverse functions]…and it’s 
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supposed to go backwards; whatever our input is here, it’s our outputs over there. So, just 

as some practice points here, here’s f of x, here’s a list of these, these are x’s, f of x’s 

[pointing to the table for 4)( += xxf ]. So this also says, for instance, that f of one is five, 

f of three is seven [writes 5)1( =f , 7)3( =f ]. That’s the same information I have 

contained on that table... let’s try f-inverse of seven, just using that function there. Now 

it’s not eleven. 

Daniel: It’s three. 

Mr. Anderson: It’s three, yes, what’s f-inverse of four? 

Daniel: Zero. 

Mr. Anderson: Zero, what’s f-inverse of two? 

Ss: Negative two. 

Mr. Anderson: Where are these coming from? What’s happening here? 

Daniel: You’re solving it backwards. 

Mr. Anderson: Yeah, you’re just reversing the roles. Over here, where I had the x-values 

and the y-values, x was our input, y was our output. Now we’re going the other way 

around. We’re taking what was our y-values over here, those are our inputs, those are our 

x-values over here, our y-values over here are what used to be the x-values. We’re 

interchanging the roles of x and y when we create this inverse function. 

Daniel: So, where does it get hard? 

Mr. Anderson: [talks about students’ difficulties determining whether a function is one-

to-one and proving it algebraically before finding an inverse] All an inverse function does 

is reverse the roles of,  
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Daniel: You’re still solving for x. You still have to, on the seven, you subtract the four 

over and, 

Mr. Anderson: Oh, okay. That’s excellent by the way; subtract the four over. Because 

what I want is, I want the f-inverse of x, I want that as a function rule; f of x is x plus four; 

I want to know what f inverse of x is, and by the way, you already said it there, you 

subtract four.  

Kevin: So you just gotta switch the sign. If it was negative you’d switch it to a positive? 

Mr. Anderson: Well, I wouldn’t think of it that way because like what if it was a 

multiplier, or what if there was more involved than just adding or subtracting? Certainly, 

if I just have x plus something, the inverse is going to be x minus that same thing. But if I 

have three times it, it’s actually going to be one-third times it.  

Daniel: I actually, I just put seven equals x plus four.  

Mr. Anderson: Exactly, okay, okay, 

Daniel: I didn’t do what you just put up there [referring to ]. 4)(1 −=− xxf

Mr. Anderson: You didn’t do this?  

Daniel: No. 

Mr. Anderson: Okay, you did, you plugged in the seven where the, [writes 47 += x ] 

because we had y equals x plus four, plug in the seven for the y? 

Daniel: Right, and just solve for x. 

Mr. Anderson: Exactly, that’s great. But what we want to do now is do that in general. So 

to do that in general we start with this and let’s solve it for x. Because that’s what you 

did, right, you plugged in the seven here? 

Daniel: Right. 
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Mr. Anderson: And then you solved for x, and you got three out of this; that’s where this 

came from. Let’s solve this for x in general, which in this case just means subtract four. 

So y minus four is equal to x [writes 4+= xy , then xy =− 4 ]. This is the inverse 

function. That’s a great way to think about what’s going on. (Observation, July 18) 

Mr. Anderson emphasized that they needed a function that would reverse the roles, or “undo” 

what the original function did. As the episode continued, Daniel described a process, “you’re 

solving it backwards,” and “You’re still solving for x…,” while Mr. Anderson’s first response 

focused on the idea of reversing roles. However, Kevin’s question indicated he was looking for a 

rule that would provide a correct answer, “So, you just gotta switch the sign?” Both students 

appeared to be looking for a procedure rather than an understanding of the concept. Students’ 

goals and ways of knowing during whole class discussion may influence their interpretations of 

the communication. In contrast, Mr. Anderson emphasized the conceptual ideas of an inverse 

function rather than provide students a procedure for finding one. Esty (2005) emphasized that a 

conceptual treatment of inverse functions was necessary for students to be able to use them the 

way they are used later in mathematics such as to solve equations like , and that the 

procedure of finding an inverse function given in most precalculus textbooks was rarely useful in 

later mathematics courses. The current precalculus book presented the idea of reversing roles of 

x and y but followed the presentation with a box containing steps for finding an inverse function 

(Stewart et al., 2002, p. 233). 

cx =sin

Mr. Anderson continued emphasizing the concept of an inverse function the next day 

when a student asked a homework question: “Use the Property of Inverse Functions to show that 

f and g are inverses of each other” (Stewart et al., 2002, p. 237, exercises 21-30). Mr. Anderson 

used  and xxf 2)( =
2

)( xxg = , and composed f and g algebraically, then expanded by discussing 
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what this meant in a way similar to the day before. They started by making a table for each 

function:  

x  )(xf   x  )(xg  

3 6  6 3 

5 10  10 5 
 

Mr. Anderson: We can know this after we know they're inverses even before we look at a 

function rule. Even if we didn't have this here [indicates rule for g, then f] or this here, if I 

tell you f and g are inverses and you know this point's on f, you know this point's on g. 

Does that make sense? Well, we'll see if it does tomorrow; I'll ask that question in 

words…So if you take something, plug it into f, take the answer, plug it into g, you're just 

going to get back to where you started…That's what these two things are saying [he 

points to the two compositions]. Although this is the technical part, this is how you 

technically prove that two functions are inverses of each other; it is not what I'm looking 

for for understanding. However, the understanding of the idea of these pairs reversing, 

that is what I want you to understand for inverse. And then the extension of that concept: 

you plug in something into here, you get an answer, you take that answer and you plug it 

in over here, you're going to get back to what you started with. That's what this is saying. 

(Observation, July 19) 

Rather than providing a procedure to find an inverse function Mr. Anderson emphasized 

understanding the meaning of an inverse function and focused on why composing a function 

with its inverse returned the input. The following question was on their exam the next day:  
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Suppose you know that the point (5, 12) is on the graph of )(xgy = . Find a point on each 

of the following functions (the one that (5, 12) goes to) and give a short explanation of 

how you found each point; (d) ( )xgy 1−= . (Exam 2, July 20)   

As promised, the item required students to explain in words and focused on the meaning of the 

inverse of a function.  

 The concept of inverse functions as functions whose x-and y-values have exchanged roles 

was also later used to introduce logarithmic functions as inverse functions of exponential 

functions using multiple representations (Observation, August 2). The connection was 

maintained as they discussed the characteristics of the graphs of logarithmic functions, and found 

function values and properties such as domain, range, asymptotes, and intercepts.  

 While many of the procedures were presented as if there was only one correct way to 

work them, Mr. Anderson explained reasons for the procedures at least as deeply as the textbook, 

and sometimes expected students to use the reasons when they worked exercises (e.g. 

Observation, July 5). Lobato et al. (2005) described teacher explanations with the intention of 

prompting students to make sense as initiating, and reported that initiating combined with 

eliciting to see how students interpreted the information could aid in conceptual development. 

See Appendix L for an example of an initiation followed by an elicitation; Mr. Anderson 

presented a problem which Kenny quickly answered. Mr. Anderson elicited by giving students a 

similar problem to see if they had made sense of the explanation. Lobato et al. pointed out that if 

the social norms of the class allow students to reproduce the teacher’s idea rather than respond 

with their own, the elicitation would not work to aid conceptual development. In this episode, 

students did not appear to understand that Kenny used the idea that if the point is on the graph of 

the function, he can replace x and y in the function with the values of x and y at the point to find 

 191



 

a. Several student instead replaced x with 2 in the second problem because x was replaced by 2 

in the first problem, rather than use the x-value that corresponded to the y-value they were given. 

These students tried to reproduce the procedure without making sense.  

The Implementation of Tasks  

Mr. Anderson provided opportunities for students to work on tasks by assigning 

seatwork, often from textbook problems (see Appendix M for text problems assigned as 

seatwork). I also discuss homework problems as tasks since they were assigned for students to 

work and could be categorized by features such as multiple representations, multiple solution 

paths, communicating, and reasoning (Henningsen & Stein, 1997) and categorized by cognitive 

demand. The cognitive demand of task features varied from memorization to “doing 

mathematics” (Stein, Grover, & Henningsen, 1996).  

Declining cognitive demand. Tasks introduced as seatwork included problem solving, and 

applications stressed interpretation. For example, Carol and Sarah worked together to find a 

linear model for the cost to build chairs, while Daniel worked alone but checked his answer with 

them (see Appendix M, section 1.10 #70 for a statement of the problem). They had found an 

equation to model the cost to manufacture chairs: 90013 += xy  when Mr. Anderson approached:  

Sarah: The thirteen is what it costs to make one chair? 

Mr. Anderson: Exactly, that's what it costs to manufacture or make one chair. So what 

does the nine hundred mean? 

Carol: I don’t know. 

Daniel: Where you break even? 

Mr. Anderson: No, let's think, if we make zero chairs, we'd still have to pay nine hundred 

dollars. What would you have to pay for? 
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Carol: Your store, it's your plant. 

Mr. Anderson: Yeah, maybe rent, maybe there's some employee you can’t lay off, you 

know, there's some manager who always gets his salary, some electricity you pay for 

whether you make a chair or not. 

Sarah: It's the same, [inaudible] number of things. 

Carol: Cost not directly related to producing chairs. (Observation, July 5) 

Consistent with the roles and social norms of this class, Sarah’s original question asked Mr. 

Anderson to validate her answer, which he did, but also followed with a question to interpret the 

y-intercept, increasing the cognitive demand. Carol did not appear to have a way to think about 

what the nine hundred meant, while Daniel may have had cost functions associated with a break-

even point, but was not thinking about the meaning of the function they had derived. Mr. 

Anderson’s next question used the meaning of the function, “if we make zero chairs, we’d still 

have to pay nine hundred dollars, what would you have to pay for?” decreasing the cognitive 

demand of the task. Students did not have to understand how their function modeled the situation 

to answer Mr. Anderson’s question. In general, while Mr. Anderson asked questions to help 

students continue solving the tasks, the nature of roles and social norms during seatwork ensured 

students would have a correct answer after Mr. Anderson stopped by their desks.   

The task in the following episode began as seatwork and can best be described as “doing 

mathematics” (Henningsen & Stein, 1997). After Mr. Anderson introduced sequences and partial 

sums; he asked students to find the third, seventh, and hundredth partial sums of the sequence 1, 

4, 7, 10, 13, 16, 19....:  

Mr. Anderson: Okay, let’s go back to one of our earlier sequences. Uh, a sub n is going to 

be three n minus two. Find s sub three, s sub seven, and s sub one hundred. …. This one’s 
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a challenge [indicating hundredth partial sum]. You should be able to get these two. [Mr. 

Anderson walks around while they work; he also writes the first eight terms on the 

board.] 

Daniel: You have to have a formula to find one hundred. 

Mr. Anderson: Yes, you’re going to try to get a formula. Now, if you got s sub three and 

s sub seven and you got those pretty easy but you’re having trouble with the formula, go 

back and do a couple more, like s sub four and s sub five, and try your formula out on 

those ones. Okay, so I’m giving you an idea on how to do the hundredth one. [It is quiet 

for 18 seconds.] 

Kenny [to himself but out loud]: Huh, I’m getting lost. [The class is quiet as Mr. 

Anderson walks around for twenty more seconds looking at each paper.] 

Mr. Anderson: Okay, this one was a challenge, if you don’t get the one hundred, that’s 

okay. I’ll come up with something on the board. You should at least get s sub three and s 

sub seven [quiet for 27 seconds]. Okay, let’s go with s sub three? 

S: Twelve. 

Mr. Anderson: s sub seven? 

S: Seventy. 

Mr. Anderson: Questions on either of those? So we got those okay? All right, maybe 

before we do s sub one-hundred, let’s do an easier one that’s kind of similar to this one, 

and then we’ll come back and do s sub one-hundred. So, here is a similar but easier 

problem; I want the sum of all the numbers from one to one hundred. You guys go, ‘wait 

a second, that doesn’t seem easier.’ Well, it’s easier to see what we’re going to do. So, 

what if I paired numbers starting from the outside? So I’m going to pair one and one 
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hundred, and add them up, what do I get?…[they find the sums of several pairs are each 

101]…Is there a pattern going up here? When I’m pairing from the outside in, I’m getting 

the same sum every time, of one hundred and one. So how many times am I going to get 

one hundred and one? 

Anthony: Fifty. 

Mr. Anderson: Fifty times, I stopped here at a hundred; I didn’t keep going [responding 

to a student who indicated infinite]. See if I kept going, yeah. Fifty, there’s fifty pairs I’m 

going to get, that are all a hundred and ones. So this sum, if you add it all up is, fifty 

times this, is five thousand fifty…Back here, did we have the one-hundredth term written 

down somewhere? 

S: Two ninety-eight. 

Mr. Anderson: What was it? Two ninety-eight? So if you use that same idea over there, 

the pairs are going to be one and two ninety eight, which is going to be two ninety-nine. 

How many pairs are we going to have? 

S: Fifty. 

Mr. Anderson: Fifty, yeah…So let’s take two ninety-nine times fifty is… [Finishes 

writing answer and tells a story about Gauss.] 

Daniel: To get two-ninety eight, you took a hundred times three and subtracted two? 

Mr. Anderson: Right.  

Daniel: So then why, why did you then go to two ninety-nine? 

Mr. Anderson [to the class]: Where did the two ninety-nine come from? 

Anthony: The first term. 

Carol: Yeah. 
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Mr. Anderson: Yeah, now I’m pairing the first, 

Daniel: Oh, okay. 

Mr. Anderson: And the hundredth, so one plus two ninety-eight is two ninety-nine, four 

plus two ninety-five is two ninety-nine, seven plus two ninety-two is two ninety-nine. 

Does that make sense? Good question.  

Kevin: So we took fifty times two ninety-nine? 

Mr. Anderson: Yeah, so we took fifty times two ninety-nine to give us fourteen thousand 

nine hundred and fifty. [Next they used the same method to make sure it also worked for 

the seventh partial sum.] (Observation, August 15) 

The task as written and set-up was “doing mathematics” because students were not given a 

method but expected to systematically explore and solve the problem. In fact, in response to 

Daniel’s assertion that they needed a formula, Mr. Anderson gave a suggestion on how to 

continue looking for a pattern to find a formula. But after students showed frustration, he said he 

would “do something on the board,” excusing them from trying any further. Students appeared to 

have no experience implementing tasks at this level and Mr. Anderson initially hinted it would 

be difficult, similar to the low-press teachers studied by Kazemi and Stipek (2001). Mr. 

Anderson then scaffolded by doing a similar problem, making connections which most students 

appeared to follow. At this point he could have asked them all to work the original problem in 

their groups or individually, and to be able to explain the mathematical reasoning behind their 

work, and if students understood the simpler problem, they could have completed the task as 

“procedures with connections.” However, Mr. Anderson did the problem by asking closed 

questions, allowing the task to decline completely as he did the problem. 
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 This was the only class day reserved for discussing sequences, partial sums, and 

introducing proof by induction, so lack of time and familiarity with the new concept of 

sequences were factors contributing to the decline in cognitive demand. Others factors included 

lack of expectation by Mr. Anderson that students could do the task, and students’ lack of 

perseverance, similar to middle school classrooms studied by Stein et al. (1996). In addition, 

rather than ask students to contribute what they did and what they learned from it, then use their 

ideas to finish solving the problem, Mr. Anderson used his ideas. Using students’ ideas while 

silencing their own is one way teachers can foster students’ development of more complex ways 

of knowing (Baxter Magolda, 1992).  

Students’ expectations of tasks. Students’ questionnaire responses did not indicate they 

had experience working on tasks that could be described as “doing mathematics,” although some 

students expressed a desire to work problems in class. For example, Kenny’s goal was to 

“attempt to work problem before instructor does” (Kenny Questionnaire, June 27) while Sarah 

and Carol wanted to be able to practice during class (Carol Questionnaire, June 27; Sarah 

Questionnaire, June 27). These answers indicate students wanted to practice doing procedures 

they had been shown how to do so they could either check their answers or get feedback from the 

teacher. 

 Some of the tasks originated in students’ homework and were brought into class 

discussion by student request. The nature of the homework tasks was typical of college 

precalculus textbooks; there were examples in the sections for the easier exercises, but later 

problems required students to make connections and extend the ideas. Daniel commented on this 

to Mr. Anderson, saying that the problems were tricky and there were no similar examples in the 

text (Fieldnotes, July 5). However, Mr. Anderson responded:  
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No it doesn't try to trick you. See precalc is starting to, instead of showing you 

everything, it’s starting to make you think, so, the further you go in math the more it 

happens where they show you something and then in the homework you have to extend 

those. (Observation, July 5) 

While Daniel’s comment indicated his belief that mathematics consisted of procedures and 

students must be shown how to do each type, Mr. Anderson suggested students must make 

connections and extend what they have learned. Mr. Anderson intended for students to struggle 

with problems they had not been shown how to do; he reported it was a teaching strategy of his 

to introduce new material with examples that were fairly easy, then let students work on the 

homework which would contain problems harder than the ones worked in class, followed by 

discussion of them the next day as students requested (Mr. Anderson Interview, August 9). Thus, 

he did not try to give students examples to follow for each type of problem so they could 

reproduce procedures.  

 In one notable episode (see Appendix J), the textbook problem required students to use 

an idea that had been focused on repeatedly in this class, that of finding a function value from a 

graph, and use it to find values for compositions of functions. When he asked Mr. Anderson the 

homework question, Daniel admitted he did not have any idea what the question meant. Mr. 

Anderson invited the whole class to join them in working this problem and began by focusing 

their attention on what information they could find from the graph, after which Daniel indicated 

he knew how to do it. However, Mr. Anderson offered to do the first problem and, as students 

asked for more, finally did them all. This classroom dynamic was similar to that described by 

Stein et al. (1996), in which students pressured teachers to reduce task complexity, and similarly 

reduced the cognitive demand. Mr. Anderson focused on the meanings of the objects, however, 
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his intention to be supportive reinforced students’ ideas about their roles and the nature of 

learning mathematics as reproducing procedures first modeled by the teacher, ideas characteristic 

of absolute knowers.  

Because of the roles in this class, Mr. Anderson solved many tasks during whole class 

discussion that had been assigned as homework problems. Students had the opportunity to work 

the problems on their own first, so some students may have spent time trying to figure out a 

problem, or may have decided quickly that they did not know how to do it and asked in class the 

next day since Mr. Anderson answered all homework questions completely. Thus, the value of 

homework problems as tasks was limited by the social norms and roles of this class and students’ 

ways of knowing.   

The Influence of Student Contributions  

Students used the many opportunities afforded them by Mr. Anderson’s wait-time and 

encouragement to ask questions and make comments during whole-class discussions and 

seatwork. This section examines the nature of students’ input and Mr. Anderson’s responses and 

the effects of students’ questions and comments on the lessons. 

Nature of students’ questions. While not frequent, some student questions asked about 

expectations, “will there be one like that on the exam?” (Fieldnotes, June 28). Other examples 

include, “On the test do you want us to work it out or can we just leave it like that?” (Fieldnotes, 

July 19) and, “What happens on a test if that's what I wrote down?” (Fieldnotes, June 28). Mr. 

Anderson did not respond directly to questions about what would be on exams, but worked the 

problems in whole-class discussion (Fieldnotes, July 19).  

Other questions from students could be coded in one or more of the categories: seeking a 

rule, seeking an explanation, checking their thinking, or expanding the discussion. The first three 
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categories describe students’ purposes for asking the questions, while the fourth category 

describes the nature of Mr. Anderson’s response, so some questions could be coded in more than 

one category. For example, if by checking their thinking, discussion was also expanded, it was 

coded in both categories.  

 Checking their thinking. Student questions coded at checking their thinking were often 

requests for validation as Mr. Anderson walked around during seatwork. However, some 

questions of this type could also be considered conjectures. After Mr. Anderson presented the 

class with a fifth-degree polynomial and asked them to find the zeros, Daniel interjected, “Does 

the x to the fifth tell you there’s going to be five?” (Observation, July 25). This idea had not yet 

been introduced, but Mr. Anderson discussed it in response to Daniel’s question as they found 

the zeros. Similarly, in the following episode Sarah’s question appears to be a conjecture; 

however Mr. Anderson’s response focused on the meaning of “even” instead of the conjecture. 

Students in the class had just used their graphing calculators to find the extreme values of 

. Mr. Anderson had introduced even functions earlier in the lesson, relating 

the concept to symmetry, which they had discussed previously in the quarter. 

xxxxh +−= 34 5)(

Mr. Anderson: Questions on that?  

Sarah: Will you only have an absolute minimum if it's an even function? 

Mr. Anderson: Yes. 

Sarah: Because I was thinking that it's kind of like that [Sarah continued talking but it 

was inaudible because Mr. Anderson talked over her to correct himself]. 

Mr. Anderson: Well not an even function, because this is not an even function, even 

highest power [he continued with an explanation of the difference between an even 
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function and a polynomial with even highest power]. Other questions? (Observation, July 

13) 

Sarah’s question indicated she expected Mr. Anderson to validate her thinking, but because of 

her misuse of the word “even” the focus became the distinction between even functions and 

functions of even degree, rather than the intent of her question. The class could have investigated 

Sarah’s question as a conjecture, and the distinction between even functions and even highest 

power most likely would have emerged during such a discussion, but it was not the social norms 

of this class. Rather, Mr. Anderson’s role was to clearly explain any misconceptions he 

perceived, acting to “[try] to clear up confusions as quickly as possible” (Chazan, 2000, p. 117).  

Other instances of checking their thinking involved students making connections. For 

example, while finding zeros of polynomials with real coefficients, Mr. Anderson mentioned that 

non-real complex zeros always come in pairs. Daniel asked “Is that because of the quadratic 

formula?” (Fieldnotes, July 27). Daniel realized that the quadratic formula resulted in two 

solutions when the discriminant was negative and connected the result of the process with Mr. 

Anderson’s statement. Similarly, after the class found complex zeros of a polynomial function, 

Carol asked, “How come that doesn’t show up on the graph? Because of the i?” (Observation, 

July 26). Both students appeared to be striving to make connections and wanted to check their 

thinking with Mr. Anderson. The social norms that students should ask a question or make a 

comment whenever they wanted to provided opportunities for more connections to be discussed. 

Seeking an explanation. Student questions coded seeking an explanation were often 

requests for the teacher to re-explain, indicating the student was still trying to understand the 

idea, but other times they were requests for something new. For example, at the end of a class 
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period, Mr. Anderson told them there were several parent functions they should be familiar with 

and directed them to look in their textbooks: 

Carol: What’s greatest integer?  

Mr. Anderson: Oh, okay, let’s look down there at that last one. That probably is a new 

one. All the others you can get through point plotting if nothing else. So, let’s look at f of 

x is the greatest integer function. This means find the greatest integer less than or equal to 

x. So, the words here are find the greatest integer less than or equal to x. Let’s try some, 

like what’s f of three point seven one? So, we need the greatest integer that’s smaller than 

or equal to three point seven one. So, think like whole number. 

S: Four. 

Mr. Anderson: So, four, four is the closest integer, but four is not less than three point 

seven one. It’s not four [pause]. So, I need integers less than three point seven one. Just 

tell me some integers that are less than three point seven one. 

S: Three [several students said it right away]. 

Mr. Anderson: Three, two, one, negative seventeen, negative five hundred. What’s the 

largest out of all of those?...[continues to give more numbers to evaluate the function 

including irrational and negative numbers; uses a number line.]…Now, if you were to 

graph this function, you get that picture on the bottom right on page one seventy four, 

you get these flat lines, and then you jump up a level, then go straight for a while, then 

you jump up to the next integer. So it’s also called, sometimes it’s called the step 

function. 

Carol: Is it always a closed circle at the left hand side? 
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Mr. Anderson: It’s always a closed circle at the left hand side and an open circle at the 

right hand side. And that has to do with, at five you’re going to get five, at five point one 

two you’re going to get five, at five point nine, nine, you’re still going to get five, but 

when we get to six, it’s not at the same level anymore, at six you jump up to the next 

level. 

Carol: I get it, okay. 

Mr. Anderson: Actually, step functions are very useful for modeling,  

Carol: Where? 

Mr. Anderson: For instance, phone airtime, is a step function. They take the nearest 

minute, but they don’t round down. 

Carol: They go up. 

Mr. Anderson: They go up, so they may be the least integer greater than. It’s a very 

similar thing, so a lot of things are modeled by step functions. (Observation, July 7) 

When asked about the greatest integer, a question clearly aimed at eliciting an explanation from 

the teacher, Mr. Anderson provided a definition and then asked questions to give students an 

opportunity to use the definition. He refuted a wrong answer with the reason and continued 

supporting understanding of the idea by having students evaluate the function at several different 

values and drawing a number line to help them think about it. Carol asked about the endpoints of 

the intervals, apparently seeking a rule, but Mr. Anderson’s response included the reason. There 

was no indication Carol tried to answer her own question before she asked it, although from 

observing her I believe she was capable of answering it. The nature of this question and Mr. 

Anderson’s willingness to respond maintained his intermediate authority as the expert who was 

able to understand and explain, so did not challenge students’ absolute ways of knowing. 
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However, he also used this opportunity to connect students to an unfamiliar function by 

describing a common use for it, a strategy that advances students’ ways of knowing (Baxter 

Magolda, 1992). 

 Seeking a rule. Students commonly asked questions indicating they were seeking a rule. 

In the following episode, several students asked questions indicating they wanted a rule. Mr. 

Anderson introduced piecewise functions and the example, . 
⎩
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Mr. Anderson: What happens in-between them, do they connect? Should we connect 

them? [Sarah shakes her head no] No, we don’t actually connect these lines.  

Sarah: One of the lines should have like an open? 

Mr. Anderson: Yeah, there should be open circles somewhere. Well, okay, let’s look, 

which one is going to get an open circle and which one, this one, it includes that 

endpoint, two, one. So that looks good, which means there probably should be an open 

circle down here, somewhere. Now the question is where should that open circle be? 

Well, here’s a little trick you can sometimes use: what if we did plug two in here? I know 

that for the f function, we’re supposed to put two up in there. But, what if we did plug 

two in here? Then we’d get negative six, so at two, negative six, that point though is not 

really there, though, so that’s why you’re going to get an open circle. There, there’s our 

graph. But if you plug in two point one for instance, we’re supposed to get negative six 

point three, or even if you plugged in two point zero, zero, zero one, you’ll get negative 

six point zero, zero, well, however many zeros, three, but you’re never going to get that 

negative six, though. Questions on that? 

Sarah: So if you had three piecewise, would you have three separate lines?  
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Mr. Anderson: Yeah, potentially, well, they don’t have to be lines, too, like we had that 

first one that we did, h, yeah; it could have had a squared part to it. But they could be 

three disjoint things. Now, sometimes they connect at that place so it doesn’t even look 

like there’s an empty circle there…[gives an example]. But yeah, you could have three, 

four, five pieces, whatever.  

Thomas: Will that trick for the open circle work for all of them or just this one? 

Mr. Anderson: I don’t know if it will work for all of them because, um, like some could 

be undefined at that place, like if we have, I don’t know that it works for all of them. You 

could always try and see. So what we’re talking about here is, two doesn’t really work in 

this one, but what if we plug two in? Does that work all the time? And, I don’t think it 

works all the time, but you could always try it, you know, plug that value in, if you get a 

value, most likely that’s the continuation of it. Other questions on this? 

S: So, when we’re doing our tables we could just do the five points close to negative one? 

Mr. Anderson: Well on the table, for this one, what would be really important, well 

looking right here, it’s really important, close to two, to try to figure out what happens. 

So, it looks like I ought to do two point one and I ought to do three. I get a lot of values 

close to the point where it changes for me, personally, to kind of get an idea…. If I were 

doing this calculator-wise [explains how to use graphing calculator to graph the function] 

… So you can use your calculator here to help you out.  

Kevin: So we can just graph the line and draw it for those conditions? 

Mr. Anderson: Yeah, exactly, you can just graph this line, and say okay, now let’s just 

pick the appropriate x value points on it. (Observation, July 7) 
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Several students, including Sarah, Thomas, Kevin, and another student all interjected questions 

meant to generalize procedures, and appeared to be seeking rules. Sarah’s question focused on 

what they should expect the graph of a piecewise function to look like, while Thomas wanted to 

know if the “trick” Mr. Anderson suggested worked in all cases, and Kevin wanted to know if 

they could always use their calculator to graph piecewise functions. The other student was trying 

to find a rule on which values to input before attempting to graph. This provides evidence that 

students were concerned with finding methods to ensure correct answers. In each case except 

Kevin’s, Mr. Anderson responded by explaining more analysis needed to occur, he could not say 

whether or not it would always work. However, he focused more on the topics addressed by the 

questions in later episodes, helping to clarify the distinctions.  

 Expanding the discussion. Mr. Anderson addressed Sarah’s issue a little later on the same 

day by assigning seatwork to graph 
, if  3 3
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. As he walked around and 

engaged in individual conversations, Mr. Anderson’s suggested which function values to find 

and focused students’ attention on reasons for closed and open circles (Observation, July 7). This 

seatwork related to Sarah’s question about having as many disjoint graphs as “pieces” of a 

piecewise-function. Mr. Anderson focused their attention on the fact the pieces connected and 

challenged generalizations students made about whether there was an open or closed circle on 

the graph. In general, students’ questions provided Mr. Anderson with information on their 

current understanding, and he used this information to introduce new problems and examples 

targeting the ideas in the questions, a component of instructive communication. Striving to 

understand and work from learners’ previous constructions and using examples to introduce 

perturbations are valued by teachers subscribing to constructivism (Ernest, 1996). While Mr. 
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Anderson did not claim to subscribe to constructivism, he did want to know what students were 

thinking so he could adapt instruction. 

There is evidence Carol understood the “trick” of finding where to place an open circle 

and was able to use it later in the quarter when they graphed a piecewise function: 

 . 
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Mr. Anderson: Now what happens, though, as we get closer to the x-values, um, closer to 

zero? [He’s indicating closer to zero from the right.] 

Carol: It’s an open circle at zero, negative one. 

Mr. Anderson: Okay, it’s an open circle, where at? 

Carol: Zero, negative one. 

Mr. Anderson: Yes, how did you figure out exactly where that was at? 

Carol: I know what I do, but I don’t know if it’s the right way. 

Mr. Anderson: That’s okay, just tell me. 

Carol: I go ahead and plug zero in even though it’s not equal to. 

Mr. Anderson: Yeah, even though zero doesn’t really work, go ahead and plug it in.  

Carol: All the pieces between zero and one do fit, so you gotta go all the way to the line. 

(Observation, July 19)  

Carol used the “trick” and understood why it worked and what it meant as evidenced by “all the 

pieces between zero and one do fit…,” although she did not think it was the “right” way to find 

the endpoint. Carol still believed there were certain right and wrong ways to do problems and did 

not trust her own sense-making as a valid way to justify mathematics. Although there was other 

evidence Carol did not think she was being mathematical unless she used a procedure, the 

terminology Mr. Anderson used, “trick,” may have added to that belief. Instead, he could have 
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indicated that sometimes there is no procedure, but that each situation can be analyzed, and 

presented the trick as a tool for analyzing function behavior near an x-value.  

At other times Mr. Anderson used opportunities presented by students’ questions to 

clarify ideas. When Daniel checked his thinking by asking about his interpretation of his answer 

in a reduced matrix, Mr. Anderson used it as an opportunity to ask about two other cases:  

Daniel: On thirty-nine, on my end matrix, the third row, I’ve got zero, zero, zero, zero, 

zero. So is that just zero equals zero?  

Mr. Anderson: And, does that tell you any new information? 

Daniel: I wasn’t sure. 

Mr. Anderson: Okay, so that last row, you’ve got. So my question is, [writes a row of 

zeros] that last row, does that tell us any new information? 

S: No. 

Mr. Anderson: No, we already knew zero equals zero, irregardless [sic] of that. 

Daniel: Okay. 

Mr. Anderson: So, you get to ignore the last row. On that one, on thirty-nine, since we 

have four variables, that means you’re going to get two of them with parameters since the 

last row is zero [pause 10 seconds]. What if it said this though? [changes last row to 

.] 0 0 0 0 1⎢ ⎥⎣ ⎦

Ss: No solution. 

Mr. Anderson: No solution, now it says zero equals one. What if it said that? [writes 

. ⎣ ⎦01000 ]

S: Then z would equal zero. 
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Mr. Anderson: Yeah, z would equal zero, whatever variable this was would equal zero. 

Good questions. Other questions? (Observation, August 15) 

Daniel wanted reassurance he was interpreting the result correctly and Mr. Anderson provided a 

reason for the interpretation. Then Mr. Anderson took the opportunity to ask two more questions, 

focusing on the meaning of the rows. The episode consisted of uni-directional communication, 

however communication focused on students’ current thoughts. Daniel’s need for reassurance 

demonstrates while he may have had an idea about the answer to his question, his evaluation of 

whether he was right or not rested on Mr. Anderson’s agreement. 

As previously discussed when explicating the social norms of this class, rather than ask a 

question about a specific concept or procedure, students sometimes requested examples of a 

specific type. In some cases, Mr. Anderson used the request as an opportunity to choose an 

exercise that was problematic. When Daniel asked for a transformation problem that included 

absolute value, Mr. Anderson chose xy −= 2  (Stewart et al., 2002, p. 195 #40). The first 

student answer to the effect of the two was “stretch.” The day before, Mr. Anderson had 

emphasized the idea of a factor stretching the graph vertically, anticipating students’ greater 

attention to the placement of numbers than to the operations (Fieldnotes, July 12). If Daniel had 

not asked for an absolute value example, this issue would not have arisen. However, Mr. 

Anderson capitalized on the opportunity to present a problematic task.  

Mr. Anderson listened to students and produced examples based on what their comments 

or questions indicated about their thinking: 
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Figure 4. Domain of a function given in graphical form. 

Mr. Anderson: What's the domain and range of this guy [see Figure 4]?  

Daniel: Negative infinity to, 

Ss: All real numbers. 

Mr. Anderson: All real numbers for the domain. 

Daniel: Same with the range. 

Kenny: Zero. 

Mr. Anderson: Okay, now let's look at this arrow right here. 

Daniel: It's going to keep going. 

Mr. Anderson: Yeah, it's going to keep going, and it's going to keep getting lower there, 

but it's a different arrow than like this arrow and this arrow [points to both arrows on the 

graph]. See, this arrow is indicating we're going down forever; this arrow looks like we're 

going up here.  

Kenny: That arrow's [getting closer to] the x-axis. 

Mr. Anderson: Right, but this arrow [points to the left] the way I've kind of drawn it there 

shows that we're never crossing the x-axis. But we're continuing to get closer and closer 

to it. So, actually for our range here, zero to infinity, and we don't actually ever get to 

zero. 

S: We're staying above it... [discussion continued]. 

Mr. Anderson: Let's do that for our last graph; f of x equals one over x squared.  

 210



 

[Mr. Anderson demonstrated how a function may continue to shrink but never reach zero 

by substituting values of x into the function.] 

Mr. Anderson: When x is a million, one over x-squared is a tiny number but it will still be 

positive. It will keep getting smaller and smaller and smaller. (Observation, July 11)  

In response to Daniel’s misinterpretation of the meaning of the arrow, Mr. Anderson presented 

an example whose graph behaved similar to the previous example but students could see from 

the symbolic form how large values of x resulted in function values that continued to decrease 

but never reached zero. This decision was consistent with Mr. Anderson’s perception of his own 

role of wanting to know what students’ confusions were so he could help them understand (Mr. 

Anderson Interview, July 5). That is, assessment played an important role in guiding Mr. 

Anderson’s actions. “The assessment-centered lens encourages the need to provide frequent 

opportunities to make students’ thinking and learning visible as a guide for both the teacher and 

the student in learning and instruction” (Donovan & Bransford, 2005, p. 13).   

In summary, the social norms and roles of this class afforded students many opportunities 

to ask questions and make comments, which provided opportunities for Mr. Anderson to assess 

their understanding and adjust his instruction. But the nature of student input reflected their 

positions as absolute knowers, and Mr. Anderson’s responses as intermediate authority may have 

helped support their positions. Social norms and roles constrained communication to lower levels 

of uni-directional and contributive. Mathematics educators suggest much more engaged and 

diverse roles for students in discourse, including trying to convince themselves and others of the 

validity of their mathematical ideas (NCTM, 1991).  
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The Nature of Sociomathematical Norms  

Sociomathematical norms affected by social norms. In Mr. Anderson’s class the social 

norms allowed ample opportunity for students to participate by asking questions or making 

comments. However, it was not a social norm that students explain their solutions or thinking. A 

sociomathematical norm related to whole-class discussion is that students’ explanations of 

procedures should be based on concepts (Yackel & Cobb, 1996). As discussed in earlier sections, 

students and Mr. Anderson agreed it was Mr. Anderson’s role to explain and their roles to ask 

questions and those roles limited possibilities for this sociomathematical norm of students’ 

explanations to develop. While Mr. Anderson asked students how they found their answers (e.g. 

Fieldnotes, July 7; Fieldnotes, August 3), students often responded by stating procedures too 

short or too vague to be useful for other students’ understanding. As discussed in earlier sections, 

Mr. Anderson acknowledged students’ answers by repeating them and explained for the rest of 

the class.  

The social norm described above supported a sociomathematical norm that mathematical 

ideas were validated when Mr. Anderson affirmed them. In the following episode from the fifth 

day of class, the purpose of Mr. Anderson’s questioning appeared to be to find out what students 

already knew about functions and to focus their attention on the idea that if , then (a, b) 

is an ordered pair on the graph of 

baf =)(

)(xfy = , an idea he focused on several times throughout the 

quarter. After introducing functions, he wrote: 
x

xxf 1)( 2 +=  . 

Mr. Anderson: We can do things like evaluate it and find f of one. How do we find f of 

one?  

Kenny: [He raised his hand before saying it] Put one in for all x-values.  
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Mr. Anderson: Right. Put one in for all the x-values. So it'll be one squared plus one over 

one, it'll be one plus one, which is, 

S: Two. 

Mr. Anderson: Two. What kind of information is contained in this? [points to 2)1( =f ]. 

There's a lot of information in there. What kind of information do we get out of this?  

Kenny: An x-value and a y-value. 

Mr. Anderson: Okay, which one's the x-value? 

S: One. 

Mr. Anderson: Which one's the y-value?  

S: Two. 

Mr. Anderson: Okay, so we have an x-value and a y-value. So, what we're really talking 

about is an ordered pair one, two. Now, what does that one, two, as far as,  

S: It's a point on the graph. 

Mr. Anderson: Okay, yeah, it's a point on the graph of this function. That's exactly what it 

is. (Observation, July 7)  

They continued with the lesson. Then much later in the lesson Mr. Anderson drew a graph on the 

board: 

Mr. Anderson: All right now, from this graph, let's see if we can find some things: like 

what is f of negative three? I don’t have a function rule to plug it into, I just have a graph. 

Kenny: Three. 

Mr. Anderson: It’s three! Excellent. How'd you get that Kenny?  

Kenny: f of negative three is three. 

Mr. Anderson: That's true, f of negative three is three; how'd you get that, go ahead. 
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Kenny: Because, you said before that that's your y-value [OC: Kenny seems to be 

uncomfortable with the pressing]. 

Mr. Anderson: Yes, right this is the x-value, this is the y-value, so how'd you get that 

from this graph? 

Kenny: It's a point. 

Mr. Anderson: Okay, yeah, there's this point over here, negative three, three. That point's 

on the graph; that means that has to be the function value. (Observation, July 7) 

Mr. Anderson did not expect students to easily find function values from a graph. He pressed 

Kenny to make the connection explicit for the rest of the class, but Kenny’s responses indicated 

that while he was comfortable in the role of giving a right answer, he was not comfortable in the 

role of expanding on his answer. Kenny also said the point gave x-and-y-values because Mr. 

Anderson said so earlier, but it was a student, not Mr. Anderson, who said it earlier. However, in 

the earlier exchange Mr. Anderson affirmed it, which was enough for Kenny to determine it was 

because Mr. Anderson said so. Mr. Anderson regularly affirmed students’ answers and the 

purpose appeared to be to reassure them that their thinking was correct, however, their 

interpretation appeared to be that they could determine the validity of mathematics based on 

what he said. While Mr. Anderson appeared to affirm students’ answers to help them feel more 

comfortable speaking up in class, it appeared to work against students’ willingness to provide 

further explanations.  

While students expressed discomfort at giving explanations in front of the whole class 

and some indicated they did not want to listen to other students' explanations (Student 

Questionnaires, June 27), students seemed more willing to explain their thinking when doing 

seatwork and they talked to Mr. Anderson alone or in a small group. In those situations students 

 214



 

sometimes gave explanations focused on the concepts, but the purpose was to check their 

reasoning, not to share ideas with the class. For example, while Carol was solving a rational 

inequality, Mr. Anderson walked next to her desk and looked at her paper:  

Mr. Anderson: You can’t multiply by the, 

Carol: I know, because of the inequality, we don’t know when it's negative. I wondered 

when I was doing it. (Observation, July 5) 

Carol was quick to give a reason, perhaps to make sure Mr. Anderson knew she knew why. 

However, she did not usually reveal her ideas during whole-class discussion.   

Another sociomathematical norm concerned the use of student errors. In classes with 

sociomathematical norms focused on students’ own sense-making, teachers may ask all students 

to investigate contradictions (Kazemi & Stipek, 2001) or use errors as springboards into deeper 

inquiry (Borasi, 1994), providing opportunities for students to continue thinking about the 

concepts. However, in this class, a sociomathematical norm related to procedural errors was that 

Mr. Anderson would immediately determine whether a student’s answer was right or wrong:  

Mr. Anderson: Okay, this is going to be u right here, but what's this? [slight pause, 

student voice can be heard] I mean, we're hoping it's going to be u squared. Is that true? If 

I were to square y to the one-third, is that y to the two-thirds?  

S: Yes.  

Mr. Anderson: Yeah, because power to a power, 

S: Add exponents.   

Mr. Anderson: Close, same base, you add them, power to a power,  

S: Multiply.                                     
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Mr. Anderson: Multiply. So one-third times two is two-thirds. The ‘add’ comes like if 

you had x to the tenth times x to the tenth, then you add them. Power to a power, 

multiply. So we got a review of exponents there. So this really is u squared like we 

wanted it to be. (Observation, June 27) 

As Mr. Anderson indicated, the rules of exponents were review; students should have gained a 

conceptual understanding of the rules when they were introduced at least two quarters before 

precalculus. In general, when students gave a wrong answer for a procedure, Mr. Anderson 

determined the correctness of students’ answers and then either told them the rule or explained 

the concept. However, most answers offered during whole-class discussion were correct while it 

was clear many students were confused about the concepts and procedures during seatwork, 

indicating that students usually only answered during whole-class discussion when they thought 

they were correct. Thus, many students were not willing to expose their misconceptions during 

whole-class discussions.  

 In the following episode, although the first student response was wrong, Mr. Anderson 

waited for more students to answer (Fieldnotes, July 7). They discussed the piecewise function 

⎩
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=
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xf : 

Mr. Anderson: All right, what about the domain here? [pause 5 seconds] What x-values 

can we use? [pause 19 seconds]. 

S: It'd be all real numbers. 

Mr. Anderson: So we got one vote for all real numbers. Anyone else, second that vote?  

Sarah: Um, well all numbers bigger than negative three. 

S: Positives.  
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Mr. Anderson: Positives? So we got positives, bigger than negative three, and all real 

numbers [continues with uni-directional communication to test a variety of input values 

inferred by the given domains]. (Observation, July 7) 

Mr. Anderson did not immediately refute the first answer, nor did he ask the student how he 

determined the answer (a similar instance noted on June 30). If the first answer offered had been 

correct, Mr. Anderson may not have offered the opportunity for students to continue thinking. 

However, his wait time of 24 seconds gave students an opportunity to think and offer ideas, but 

students resisted making themselves vulnerable and waited for the teacher to explain or ask 

questions to help them think through problems during the whole-class discussion. Pauses 

allowed opportunities for them to justify their answers, but they did not use them that way. 

Eventually, though, Mr. Anderson asked closed questions to guide students to the correct answer. 

As discussed earlier, when students appeared to be confused about a concept, Mr. Anderson 

refuted and told as was the norm, but then introduced examples or seatwork that provided an 

opportunity for students to use the concept. Thus, the sociomathematical norms related to student 

errors were affected by the social norm that Mr. Anderson would eventually provide the correct 

answer and an explanation. 

Mr. Anderson’s beliefs about mathematics were different from his students’ beliefs. On 

their questionnaires, eleven of thirteen students thought memorizing steps and formulas was 

important (see Table 27). However, when Mr. Anderson discussed his beliefs about mathematics, 

he still discussed the procedures, but liked the flexibility,  

Every problem that's out there, you got ten different approaches you could take. As long 

as, you have these few rules, and students sometimes take them out of proportion and 

think that all these things are rules, but it's really just built on these core rules and then as 
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long as you stay within that framework, you know you can take any approach you want, 

and I like that. (Mr. Anderson Interview, July 5) 

Mr. Anderson liked the flexibility and creativity offered by mathematics but realized that many 

students believed that mathematics was about following rules.  

Mr. Anderson modeled his thinking. As discussed in previous sections, another 

sociomathematical norm was that Mr. Anderson interpreted and did the mathematics. For 

example, Carol asked him to do a homework problem of finding the velocity a fish must swim up 

a river that flows at 5 mph to minimize their energy output, given by the function, 

5
1073.2)( 3

−
=

v
vvE  (Stewart, et al., 2002, p. 205).  

Carol: I don't think I put it in the calculator right.  

Mr. Anderson: [He typed it in his calculator.] Hm, that's interesting [pause of 25 seconds 

while he walks over to his text and rereads the problem]. Oh, okay, I think partly here, 

what we gotta do is understand what's going on with the situation. So, when I did my 

graph I get this picture that looks like it's going like this, and then it drops off, then it 

looks like it shoots back up.  

Carol: Mhm. 

Mr. Anderson: So, when I did my graph [he draws it on the board.] in a standard window 

I get this; if I got it graphed right (see Figure 5). 
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Figure 5. Graph of a rational function. 

Carol: That's what I got on my graph too; that's why I thought I did something wrong. 

Mr. Anderson: Okay, so, well, so first off, maybe we need to find out what's happening in 

here or maybe we need to find out what's happening to the right. [pointing to graph]. But 

now let's go back to the problem situation. So,  

Daniel: You find the minimum. 

Mr. Anderson: Yeah, actually this is going to go down to negative infinity; there's no 

minimum there. 

Carol: Yeah. 

Mr. Anderson: But, let's think about what's happening. The fish has gotta swim; it's trying 

to go upriver. 

Carol: Right. 

Mr. Anderson: Now the current is five miles per hour that way. 

Carol: Okay. 

Mr. Anderson: So to actually go upriver, what's the minimum speed the fish can go? 

Daniel: Five point one. 

Carol: Five point one. 

Mr. Anderson: Five point, uh one, yeah, five point something. In other words, none of 

these values that you see in here matter [He crosses out the graph to the left of x = 5]. 
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Carol: So greater than five, okay. 

Mr. Anderson: Cuz the fish has to be going more than five miles per hour to make any 

difference. In other words, we need to find out what's happening to the graph to the right 

of five. So what I did now is, I went to my table and I'm just arrowing down, six is five 

thousand eight hundred, seven is four thousand six hundred. So we need to be up in the 

five thousand range on my y-values. So on my window I'm going to change my y-values 

to, maximum, maybe seven thousand or something.  Yeah, and you can see the little, now 

ignoring this, the new graph shows up, again, I don't care what happens to the left of x 

equals five, [draws a new graph] but I have a graph that's doing this now, and we need 

that point [pause 8 seconds]. I just left my x's negative ten to ten. 
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Figure 6. Graph of a rational function, new window. 

Daniel: What did you put your y at? 

Mr. Anderson: I put my y-max up at seven thousand. 

Daniel: What did you do your min at? 

Mr. Anderson: Oh, it doesn't matter, zero; I left it at negative ten. So, a couple things 

happened there; the first picture you get [inaudible] what you do with that. So the second 

thing, on this one, since it was a story problem you had to return to the given information 

to figure out that we really needed x-values greater than or equal to five, actually greater 

than five. So we really needed the x-values to the right of five…[they finish the problem]. 

(Observation, July 18) 
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Mr. Anderson modeled his thinking and modeled sense-making throughout the preceding 

episode and did not appeal to rules or memorized procedures as mathematical authorities. 

However, since he worked the problem, students may conclude from repeated similar responses 

that teachers must be intermediate authorities for making sense of mathematics (Smith, 1996). 

Since it was a homework problem, students had the opportunity to think about it and try different 

strategies to solve it. However, some students may not have continued trying to solve problems 

when they encountered difficulties since they knew Mr. Anderson would do the problem if they 

asked about it. Thus, this sociomathematical norm may have helped maintain students’ absolute 

knowing. 

The impact of the graphing calculator. The use of graphing calculators was a salient 

feature of this classroom and influenced students’ ways of doing mathematics and ways of 

interacting. The standards for mathematics in two-year colleges, Crossroads in mathematics: 

Standards for introductory college mathematics before calculus (AMATYC, 1995) espoused the 

use of technology as “an essential part of an up-to-date curriculum” (p. 2). In this class, 

sociomathematical norms related to the use of graphing calculators included checking their 

thinking by using multiple representations and exploring ideas. 

Mr. Anderson required the use of a graphing calculator and did not limit its use. Mr. 

Anderson spent thirty minutes on the fourth day of class using examples to familiarize students 

with its features and keystrokes; only Kathy did not have one yet, but she moved closer to look 

on Anthony’s. Throughout the quarter, students used calculators to examine multiple 

representations of functions and both local and global characteristics of graphs (extrema, points, 

intercepts, increasing/decreasing, general shape, end behavior, and asymptotes). In addition, 

students used graphing calculators to help them factor polynomials. Mr. Anderson told the class 
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the calculator provided the same information they could obtain by hand, but the calculator did it 

faster, and the table and graph features should be used in combination to sketch a better graph; it 

was a tool, but they still had to think (Fieldnotes, June 30). He also suggested they use the table 

feature to determine good window parameters. Later, while graphing  

during seatwork:  

2015405 23 −+−= xxxy

Student to Carol: What did you use for your window? 

Carol: I have my window at y-minimum, negative three hundred, y-maximum, five 

hundred and sixty. 

S: Sheesh. 

Daniel to Carol: Negative three hundred and what? 

Carol: But I didn't go quite low enough. Go to your table and take a look at the values for 

y. 

Daniel: Oh, yeah. (Observation, June 30) 

Carol repeated Mr. Anderson’s suggestion to use the table to determine appropriate values for 

the viewing rectangle. Later, during other lessons, Daniel suggested using the table feature to 

verify points on the graph. For example, the class was determining intervals of increase and 

decrease for 23)( +−−= xxf and a student answered the interval of increase was . 

Looking at the graph on her calculator, Carol asked, “And three's okay even though it's not 

exactly three?” to which Daniel responded that the table verified that it was exactly three 

(Observation, July 11). Daniel found that the calculator could verify his thinking and had already 

checked to verify the point as belonging to the function when Carol asked her question. In fact, 

Daniel used the calculator to check rather than ask Mr. Anderson. This is very similar to the 

]3,(−∞
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sociomathematical norm found by Hershkowitz and Schwartz (1999) where students used 

technology to refute or confirm their ideas. 

Mr. Anderson also used the graphing calculator to have students explore. Assigned 

exercises from the text provided some explorations which students asked about in class 

(Fieldnotes, July 11), but in another instance Mr. Anderson asked students to explore and 

determine how each coefficient in a quadratic function affected the graph (Observation, July 13). 

Mr. Anderson valued the use of the graphing calculator to explore and gave students the 

opportunity although he indicated it was something extra and not part of the expectations of the 

course.  

Some students used the calculator to explore independent of Mr. Anderson. For example, 

during a seatwork assignment students worked to find a function of the form  that 

models the population of a certain rare species of bird over time; the given information included 

a graph containing the points (5, 3200) and (0, 1500) (Stewart et al., 2002, p. 392). Daniel, Carol, 

and Sarah discussed differences in their answers and decided the differences could be attributed 

to the number of decimal places they used for the value used for r. Daniel mentioned that when 

he used three decimal places instead of four, the answers differed by 80. However when he used 

seven decimal places instead of four, the answer differed by only three (Fieldnotes, August 9). 

This conversation took place independent of the teacher. 

rtentn 0)( =

Sarah and I discussed graphing calculators and she admitted she had not wanted to learn 

to use it because there were so many buttons, but after Mr. Anderson used a class period to help 

them learn to use it, she changed her mind. When I asked if she used it to explore, she replied, 

“Sometimes when I'm doing equations or whatever in homework, I'll either switch the, like a 

negative to a positive, and just kind of see what that does, and that's fun” (Sarah Interview, July 
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13). So, incorporating the graphing calculator into the course provided opportunities for 

individuals to explore when they were curious and fostered communication between students as 

they discussed their explorations.  

Summary of Research Question Two: Interactions Related to Mathematics  

Communication levels remained at uni-directional and contributive, since roles and social 

norms affected the possibilities for more complex communication. While social norms provided 

students many opportunities to ask questions and make comments, the nature of their input 

indicated they were absolute knowers and expected Mr. Anderson to be mathematical and 

intermediate authority. His responses did not contradict their expectations. 

Interactions in this class as they related to mathematical activity focused on concepts and 

procedures. However, while reasons for new procedures were provided, students were rarely 

expected to be able to explain those reasons. While students asked many questions and made 

comments throughout each lesson, Mr. Anderson used their questions and comments as 

opportunities to explain clearly and to devise new examples and seatwork to clear up their 

confusions.  

The sociomathematical norms of this class related to explanations and error emphasized 

intermediate authority with Mr. Anderson, while sociomathematical norms related to the use of 

graphing calculators encouraged students to explore and to verify their own ideas and 

encouraged the use of multiple representations. In addition, sociomathematical norms provided 

that Mr. Anderson did the mathematics while modeling his reasoning and sense-making. Roles 

and social norms affected the nature of the sociomathematical norms that developed so the 

evaluation of mathematical activity centered on whether Mr. Anderson validated or refuted it. 

Also, students’ questionnaire responses indicated they valued Mr. Anderson’s explanations over 
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their own or their peers, and so resisted giving thorough explanations during whole-class 

discussions. During my observations of whole-class discussions, five students did not speak up 

to answer even short-answer questions more than twice unless they were called upon. Pressing a 

student in front of the whole class seemed to violate Mr. Anderson’s goal of making the 

classroom environment comfortable. While Yackel and Rasmussen (2002) found that an 

instructor was able to initiate and sustain sociomathematical norms related to explanations in a 

college differential equations class, they emphasized that they discussed and then supported the 

formation of these roles with students. They did not say how many of their students participated 

in the way they were expected, although they demonstrated that some did. In the present study, 

Mr. Anderson did not discuss classroom norms and roles with students.  
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  Chapter Six: Discussion and Implications 

 As described in chapter one, this study was designed to investigate students’ ways of 

knowing in light of the development of community and interactions in their mathematics 

classrooms. I used a qualitative two-case study design to investigate the development and nature 

of classroom community and the nature of interactions related to mathematics in two community 

college precalculus classes.  

In this chapter, I summarize the results for each of the two research questions, then 

discuss the relationships between community, interactions related to mathematics, students’ ways 

of knowing, and student learning. In particular, I offer a refinement of Boaler and Greeno’s 

(2000) dichotomy of didactic versus discussion-based classes by examining how specific factors 

related to community and interactions affected students’ ways of knowing and opportunities to 

learn. Finally, the last sections provide implications for practice and further research. 

The Development and Nature of Community 

The first research question addressed the development and nature of community. In this 

section, I describe how the roles and social norms of the two classes developed and compare 

them.  

Students’ responses to the questionnaire given on the first day of class indicated their 

expectations for their roles and the instructors’ roles. Students in both classes started the term 

with similar expectations for their roles: they expected to practice, follow examples, and listen to 

the instructor explain. This description echoes the descriptions of didactic classes provided by 

students interviewed by Boaler and Greeno (2000). However, more students in the present study 

also responded that they wanted to work with their peers than wanted to work alone, and most 

students indicated they wanted instructors who involved the class in discussion, descriptions 
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similar to discussion-based classes (Boaler & Greeno, 2000). However, when asked specifically 

about their roles in discussion, students perceived their roles to ask questions and answer 

questions if they could offer the correct answer. Some responded that they would rather not 

participate in discussions although they wanted to listen to them. Consequently, students’ roles 

and classroom social norms were initially constrained by the conceptions they held of their roles 

and the teacher’s role.  

Students’ roles differed in some ways in the two classes. Mr. Anderson’s class was a 

discussion-based classroom community since he provided many opportunities for students to 

work together and discuss the mathematics with him in whole-class discussions (Boaler & 

Greeno, 2000). Because of this affordance, students asked many more questions in Mr. 

Anderson’s class than in Mr. Reilly’s class. Mr. Reilly did not allow group or seat work, but 

provided opportunities for students to interact with him throughout lecture, although with fewer 

opportunities to contribute than in Mr. Anderson’s class. Some students in Mr. Anderson’s class 

asked for specific examples and Mr. Anderson used these suggestions, student questions, and 

student work he observed during seatwork to inform the direction of instruction. In fact, students 

came to expect to be able to ask questions and that Mr. Anderson would slow down, provide new 

examples, and explain until they understood. Karabenick and Sharma (1994) found that 

providing opportunities for students to ask questions and providing high-quality answers such as 

detailed explanations, affected motivation and encouraged students to formulate questions. In 

Mr. Anderson’s class, students’ formulation of questions demonstrated a higher level of 

cognitive demand than simply asking for homework solutions.  

The opportunities Mr. Anderson provided for students to engage in group work also 

created a relational classroom community and increased the likelihood students would engage in 
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class discussions and discuss the mathematics with each other. Mr. Anderson’s classroom 

environment appeared to have encouraged two students, Kathy and Kevin, to change their 

perceptions of their roles and answer questions during whole-class discussions. In fact, 

participation in seatwork with others seemed to be the determining factor in whether students 

participated in whole-class discussions since those who worked with others during seatwork 

were more likely to speak up during whole-class discussion even if they responded on their 

questionnaires that they would not speak up in whole-class discussions. Opportunities to work 

together also influenced some students who initially responded that they preferred to work alone 

during class, such as Daniel, Kevin, and Kenny, to work with others.  

Yet, student roles in the two classes during whole-class discussion were more alike than 

different. In both classes, students gave short answers and almost no explanations, and most 

students usually only answered if they thought they knew the right answer. Student roles did not 

include sharing ideas with other students or listening to other students. The instructors supported 

these roles since they made very few attempts to encourage students to explain or to influence 

the nature of student explanations. They answered all questions with thorough explanations 

rather than shift the responsibility for thinking back to the students (van Zee & Minstrell, 1997). 

In addition, the instructors also interpreted and expanded on students’ short answers rather than 

ask the students what they meant.  

Student questionnaire responses indicated they had very little experience sharing their 

ideas or listening to other students share ideas. While a few students responded that they wanted 

to hear other students’ ideas, several specifically replied they did not want to hear other students’ 

explanations. This indicated they may have been in classes where students explained or shared 

solutions but did not yet know how to listen critically and learn from their peers. However, 
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providing opportunities for students to interact in whole-class discussion encouraged more 

interaction as the term progressed, so students became more comfortable participating in these 

classes, which allowed the classes to increasingly become relational.  

Instructor roles also contributed to the development of a relational community. Both 

instructors’ roles resonated with support and approachability, although Mr. Reilly made himself 

available to students outside of class while Mr. Anderson made himself available to students 

during class. Mr. Anderson repeatedly demonstrated helpfulness throughout class by establishing 

a comfortable classroom, providing extended wait-times and many opportunities for students to 

ask questions and receive feedback. He connected with students by walking around to talk to 

individuals and using students’ names. Mr. Reilly also graciously entertained questions although 

he did not provide as much time or as many opportunities for them. He demonstrated his support 

by empathizing with students and providing access to the mathematics through his use of 

informal language. He waited after class to spend time conversing with students who wanted to 

get to know him. 

While students perceived their instructors’ willingness to answer questions as supportive, 

Mr. Reilly and Mr. Anderson accepted all responsibility for responding to questions. As a result, 

whole-class discussions remained between instructors and students, rather than including 

student-to-student communication. Instructors approved, refuted, and expanded on students’ 

answers, maintaining their mathematical and intermediate authority. This instructor role 

constrained students’ formation of their own ideas and precluded the need to listen to their peers’ 

ideas. While building community is important, it was also important to consider the nature of 

interactions related to mathematics. 
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The Nature of Interactions Related to Mathematics 

Because the social norms and roles sustained intermediate authority with the instructors, 

communication in both classes remained unidirectional and contributive. This idea, posited by 

Brendefur and Frykholm (2000) was clearly shown in the present cases. Unidirectional 

communication in both classes included many closed questions and some lecturing. Contributive 

communication did not require students to listen to each other and students rarely responded to 

each others’ ideas during whole-class discussions.  

However, both of these communication types allowed the instructors to determine some 

students’ current conceptions of the mathematics and adjust their instruction, a component of 

instructive communication. Instructive communication includes communication through which 

instructors understand students’ current conceptions and alter their instruction to modify 

students’ conceptions. Mr. Anderson regularly adjusted instruction based on questions, answers, 

or comments from students, often introducing new examples to clarify the conceptions, while 

Mr. Reilly only adjusted when none of his students indicated understanding of mathematical 

identities. I did not consider these episodes in Mr. Anderson’s class instructive communication 

though, because students continued to rely on instructor explanations and did not necessarily 

modify their current understanding but accepted explanations without reconsidering their old 

conceptions. 

In spite of the lower-levels of communication, Mr. Reilly emphasized the importance of 

learning concepts and rarely demonstrated procedures. Boaler and Greeno’s (2000) description 

of didactic classes suggested that in classes that were individualistic, the mathematics necessarily 

focused on watching teachers demonstrate procedures which students later practiced alone, and 

that mathematics was dominated by rules to memorize. Mr. Reilly’s case is an example of an 
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individualistic class that focused on conceptual understanding. Both instructors consistently used 

multiple representations when explaining concepts, encouraged exploring, and discussed and 

modeled sense-making.  

Several tasks assigned by the instructors in these classes could be characterized as “doing 

mathematics” or procedures with connections (Henningsen & Stein, 1997). Mr. Reilly presented 

problems and suggested students needed to work outside of class to solve them, providing no 

time in class for students to work individually or with others to solve problems. While Mr. 

Anderson expected students to attempt homework problems when he had not discussed the 

procedures, believing students should make conceptual connections, he worked the problems in 

class when students indicated they could not do them. For the tasks he assigned in class, the 

social norms, roles, and students’ ways of knowing affected the implementation of the tasks so 

they were not implemented at the high level of cognitive demand intended. The interactions 

described above show that while the instructors valued students’ implementation of tasks at a 

high level, they either did not provide opportunities, or did not know how to support 

implementation at high levels.  

There was evidence that some students did not know what to do if they were not shown 

how to do problems in class. Sarah, in Mr. Anderson’s class, and Steve, in Mr. Reilly’s class, 

reported they did not know how to learn the mathematics when they were out of class and did not 

understand. Other students had goals of just passing their class and may not have been willing to 

spend the time and effort necessary outside of class to solve problems. This implies that 

providing students opportunities to work on tasks during class and supporting their 

implementation at the level of cognitive demand intended may be necessary to help students 

develop skills and dispositions crucial to developing as mathematics learners. 
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In general, a sociomathematical norm during whole-class discussion in both classes was 

that the instructors did the mathematics. The instructors stayed at the boards, drawing multiple 

representations and explaining their thinking and pointing out connections to help students 

follow their explanations. Mr. Anderson sometimes asked questions and followed students’ 

responses to perform procedures, but he only followed correct suggestions. This 

sociomathematical norm reinforced students’ ideas that their instructors’ roles were to interpret 

and show them the mathematics.  

Two sociomathematical norms observed in these classes may have contradicted students’ 

ways of knowing. Mr. Reilly’s insistence that students must have reasons for mathematical 

procedures and his explicit appeals to understand rather than memorize appeared to influence 

their perceptions of doing mathematics. In Mr. Anderson’s class, the use of graphing calculators 

supported students’ willingness to explore on their own and discuss differences in their solutions 

with each other. Both of these sociomathematical norms allowed students to think in context 

about mathematical ideas, and share their own ideas, which supported more complex ways of 

knowing (Baxter Magolda, 1992). 

Discussion 

In this section, I discuss how the development of community, students’ ways of knowing, 

and the nature of interactions related to mathematics were interrelated and affected students’ 

construction of mathematical concepts.  

The Nature of Community Affected Interactions Related to Mathematics 

The roles and social norms that developed in these classes affected the nature of 

interactions related to mathematics. Since the social norms and roles fostered intermediate 

authority with the instructors, they constrained opportunities for students to engage as members 
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of a mathematical community who engage in the types of mathematical discourse envisioned by 

current reformers (AMATYC, 1995; NCTM, 1991, 2000). Cobb and Yackel (1995) describe the 

relationship between the development of roles and social norms and students’ beliefs about the 

roles and social norms as reflexive. The students in their study reorganized their beliefs about 

their roles and classroom social norms as they renegotiated the roles and social norms initiated 

by their teacher. However, in the present study, since traditional roles and social norms were not 

challenged, students were able to maintain their beliefs about the instructors’ roles as authorities 

and their roles as recipients of knowledge. 

Boaler and Greeno (2000) suggested that students in discussion-based classes became 

relational agents, helping each other understand mathematical concepts. In Mr. Anderson’s class, 

students were able to work together but still asked Mr. Anderson if they were correct, and their 

questions of him were more procedural than conceptual. While I could not hear much of the 

conversations between students during seatwork, based on the types of questions they asked in 

class, it is likely that their discussions focused on using procedures correctly rather than 

deepening their understanding of the concepts. Unless tasks and whole-class communication 

challenge students’ conception of mathematics as procedures and rules used to produce correct 

answers, fostering a discussion-based class alone is unlikely to change the way they 

communicate with each other. However, fostering such a community may be necessary to help 

students feel comfortable enough in class to contribute during whole-class discussions.  

The social norms of whole class discussion and instructors’ roles as authorities 

encouraged funneling, guessing, students’ pseudo-conceptual behavior, and instructors’ 

acceptance of one correct answer as evidence the class understood. These factors tended to 

decrease cognitive demand. In addition, the social norms and roles constrained communication to 
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unidirectional and contributive communication, rather than providing opportunities for reflective 

and instructive communication. The nature of reflective and instructive communication consists 

of discourse in which students transcend sharing ideas or asking the instructor questions to 

listening to peers and striving to make sense of the mathematics in their own way (Brendefur & 

Frykholm, 2000). Sustaining these types of communication relies on classroom social norms that 

encourage students to listen to each other, and instructor and student roles that encourage 

students to author their own understanding.  

Relationships Between Community and Students’ Ways of Knowing 

Boaler and Greeno (2000) described discussion-based classes where students worked in 

groups and discussed mathematics with their teacher and peers. Students in these classes 

described the relationships they formed as central to their learning. The authors contrasted the 

affordances of this type of mathematical community with the constraints of didactic classrooms 

where the teacher demonstrated procedures which students were expected to practice alone. They 

concluded that the didactic community afforded only received knowing while the discussion-

based community supported more complex ways of knowing.  

In the present study, Mr. Anderson fostered a discussion-based community by providing 

ample opportunities for students to suggest ideas, ask questions, and work together. However, 

some students in Mr. Anderson’s class did not interact with peers, and during seatwork, students 

still appealed to his authority to determine the correctness of the mathematics instead of their 

own sense-making. These stances indicated their absolute ways of knowing. The characteristics 

of this case indicate that creating a relational community does not necessarily challenge students’ 

current ways of knowing. However, these roles and social norms confirm students’ ways of 

knowing. Baxter Magolda (1992) found that absolute and transitional knowers appreciated 
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instructors who entertained questions and provided ways for students to be active during class 

rather than solely listen to lecture, and this level of activity was a way to confirm students’ ways 

of knowing. Confirming students’ ways of knowing was important in “heightening students’ 

interest in learning, strengthening their investment in that process, creating comfortable learning 

atmospheres, and developing relationships that foster understanding” (p. 268). 

However, teachers must balance confirmation with contradiction of students’ ways of 

knowing to foster more complex ways of knowing (Baxter Magolda, 1992). Discussion-based 

communities are unlikely to support students’ growth in more complex ways of knowing unless 

teachers suspend their authority and challenge students’ current ways of knowing by challenging 

their roles as receivers of knowledge: “Students do not view themselves as knowers until the 

learning environment implies or states directly that they have something of value to say... Failure 

to validate the student reinforces absolute and transitional ways of knowing” (Baxter Magolda, p. 

273). 

Other factors of community that emerged in this study may also support growth in ways 

of knowing. Teacher roles of support and offering students opportunities to know them are 

important in fostering more complex ways of knowing (Baxter Magolda, 1992). In both classes, 

students I interviewed valued their instructors’ approachability and support in helping them 

understand. Baxter Magolda (1992) indicated these as factors that supported and appropriately 

confirmed students who were absolute and transitional knowers. Appropriate confirmation “sets 

the stage for students to participate in learning and to become creators of knowledge rather than 

recipients of it” (p. 269).   

Similar to freshmen in Baxter Magolda’s (1992) study, the majority of students in both 

classes started the term as absolute knowers, believing mathematics knowledge was certain and 
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the instructor had this knowledge and could impart it to them. However, some students were not 

freshmen, such as Carol and Sarah who both had bachelor’s degrees, and Tim, who graduated 

after completing this class, yet they were still absolute knowers in their mathematics classrooms. 

It is likely that the nature of mathematics as they had encountered it as students portrayed 

mathematical knowledge as certain.  

Interactions Related to Mathematics Affected Students’ Ways of Knowing. 

Interactions related to mathematics included sociomathematical norms, communication 

about mathematics, the use of technology, and the way the instructors portrayed mathematics. As 

discussed earlier, the social norms and roles constrained sociomathematical norms and 

communication that entail students’ justifying and explaining, sharing their own ideas, and 

making sense of mathematics by reflecting on their own and their peers’ mathematical 

arguments. Interaction of this nature evidences contextual knowing. Since community did not 

foster this type of interaction and Baxter Magolda (1992) found only 2% of college seniors to be 

contextual knowers, it is not surprising students in this study did not interact at this level. 

Some factors of interactions may have supported growth in more complex ways of 

knowing by situating learning in students’ experiences (Baxter Magolda, 1992). Mr. Anderson 

used student questions and comments to guide his instruction and provided opportunities for 

students to work problems in class. By connecting to students’ conceptions of the mathematics as 

they experienced it, he situated learning in their experiences.  

 Mr. Reilly situated learning in students’ experiences in different ways. He incorporated 

stories and real life applications into the lessons to motivate and connect the mathematics he was 

teaching to their experiences (Baxter Magolda, 1992). The students I interviewed clearly valued 

these elements and suggested it helped them connect to the mathematics. In addition, Mr. Reilly 
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specifically mentioned that his perspective of the mathematics differed from the authors’ of the 

textbook suggesting that mathematical knowledge is uncertain. Baxter Magolda recommended 

that instructors need to provide opportunities for students to increasingly see knowledge as 

uncertain: “Clarifying that the information presented comes from a particular perspective and is 

generated by other human beings is essential for students to begin to see themselves as capable 

of forming their own perspectives” (p. 278).  

Students’ Ways of Knowing Affected Learning  

The results of this study suggest that students who have different ways of knowing may 

have different criteria for making sense. For example, Sarah evidenced absolute knowing 

throughout the study. When I interviewed her, she described a procedure as making sense after 

the instructor explained how it connected to a concept they had just learned. Before his 

explanation, the procedure did not make sense to her because it conflicted with an earlier idea. 

She did not try to resolve the conflict, but was satisfied that the instructor’s explanation 

supported the new rule. Absolute knowers appreciate understanding but still believe most 

knowledge is certain, so they accept explanations from instructors without critically questioning 

them. Likewise, Carol doubted her own sense-making on several occasions and wanted Mr. 

Anderson to verify her answers.  

In contrast, by late in the term, Tim spoke up during whole-class discussion to challenge 

Mr. Reilly’s answers, explaining that the solutions to a trigonometric equation did not make 

sense because they produced the wrong signs. Although his questionnaire responses indicated he 

was an absolute knower at the beginning of the term, in this episode Tim showed evidence of 

contextual knowing. Contextual knowers make sense by thinking through problems, striving to 
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understand concepts in contexts, and comparing ideas (Baxter Magolda, 1992). This implies 

instructors should discuss and model what it means to make sense. 

Implications for Practice 

The results of this study suggest classroom environments described by mathematics 

educators for K-12 students also support more complex ways of knowing of college precalculus 

students. The NCTM (2000) proposed students make sense by looking for patterns, making 

connections, and by engaging in discourse where they listen to others and share their ideas. 

Similarly, contextual knowers learn by engaging with ideas in context, listening to their peers’ 

ideas and sharing their own; they believe the instructor’s role is to facilitate discourse that helps 

them integrate knowledge without occupying a role of mathematical authority (Brew, 2001). 

 Student and instructor ideas about the nature of mathematical knowledge and how 

mathematics is learned affect and are affected by community and interactions related to 

mathematics. Students’ expectations and the ways they participate in class evidence their ways of 

knowing, while instructors may maintain, confirm, or challenge students’ ways of knowing by 

the constraints and affordances they provide. Table 32 provides a framework containing 

evidence of instructor and student perspectives and roles in several domains similar to those 

discussed by Baxter Magolda (1992) and additional domains considered in this study. Domains 

at each level include the nature of mathematical knowledge, the nature of learning mathematics, 

role of peers/ social norms, relationships, interactions related to mathematics/ communication, 

and students’ ways of knowing. 

The framework is similar to one developed by Franke, Carpenter, Levi, and Fennema 

(2001) which described levels of teachers’ engagement with children’s thinking. The four levels 

in the framework in Table 32 correspond to students’ ways of knowing; lower levels correspond 
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to absolute and transitional knowing while higher levels correspond to independent and 

contextual knowing. When instructors and students are both at Level 1, absolute knowing is 

maintained. However, when instruction is provided at levels higher than students evidence, 

students’ ways of knowing are confirmed and challenged. In the rest of this section, I discuss 

each domain separately, including ways instructors may increase opportunities to challenge 

students’ ways of knowing, and describe the levels evidenced by Mr. Reilly, Mr. Anderson and 

their students for each domain. 

The nature of mathematical knowledge is a subset of Baxter Magolda’s (1992) domain of 

students’ beliefs about the nature of knowledge. Students’ beliefs about the nature of 

mathematical knowledge span a continuum of certain to uncertain, and are evidenced by their 

openness to multiple ways of solving problems, recognition of different perspectives, and their 

appreciation of real life applications of mathematics. The main difference between a Level 3 

student and a Level 4 student is that Level 4 students recognize they have a unique perspective of 

mathematical ideas. 

Instructor portrayal of mathematics can affect student beliefs about the nature of 

mathematical knowledge (Baxter Magolda, 1992). Instructors portray mathematics as certain 

when they divorce it from its development, history, and real life, or when they imply there is 

only one way to solve each problem. In contrast, they can challenge students’ belief in the 

certainty of mathematics by relating stories that help students understand the nature and history 

of the mathematics they study or by providing opportunities for students to engage in 

mathematical activities from which they can develop understanding. At the highest level, 

instructors foster and respect students’ individual construction of mathematical ideas.  
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Mr. Reilly intentionally and explicitly challenged the notion of mathematics as certain. 

He depicted mathematics as developed by people and useful in real life, discussed that authors 

and instructors can have different opinions, and suggested there were many solution paths to 

some problems. However, while sometimes suggesting students needed to find their own ways of 

thinking about the concepts, he more often implied students needed to adopt his reasoning. For 

these reasons Mr. Reilly portrayed the nature of mathematical knowledge at Level 3. In their 

interviews, two of his students, Natalie and Steve, reported that the stories and real life 

connections made the mathematics far more interesting and motivated them, demonstrating that 

Mr. Reilly’s efforts were enough to challenge their previous conceptions of mathematical 

knowledge.  

Mr. Anderson did not intentionally portray mathematics as developed by people 

throughout history and rarely connected the content to real life situations, but he supported the 

idea that there were many solution paths to the same problem and recognized and used student 

suggestions. However, while Mr. Anderson responded to student questions and mathematical 

ideas, there was no evidence the students tried to develop their own perspectives, but instead 

accepted explanations from Mr. Anderson without critical examination. Because he was willing 

to explain completely in response to their ideas, Mr. Anderson’s intermediate authority interfered 

with students’ development of their own perspectives. In order to support contextual knowing, 

instructors need to support students’ reflection on their own suggestions and questions by 

rejecting the role of authority. 

Students’ ideas of the nature of mathematical knowledge were not directly addressed in 

the Student Questionnaires, but in their responses to several questions, many students expressed 

a need to be told how to do the mathematics and expressed a need to see step-by-step examples 
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of how to complete procedures, evidencing Level 1. However, a couple of students indicated 

they wanted to see multiple ways of doing problems, and one student responded he wanted to see 

real life connections to the mathematics, evidencing Level 3.  

The second domain concerns the nature of learning mathematics, and descriptions 

include evidence of how students strive to learn mathematics. In general, the levels in this 

domain distinguish between those who try to learn procedures without understanding the 

underlying concepts, and those who strive to understand the concepts and develop procedural 

fluency. The domains span the four levels of cognitive demand described by Henningsen and 

Stein (1997): memorization, procedures without connections, procedures with connections, and 

doing mathematics. Distinctions between Levels 2 and 3 involve the extent to which students 

attempt to use understanding, since Level 3 students strive to understand and use explanations 

from authorities. Level 4 students gain insight through reflecting on their mathematical activities 

such as exploring and making and testing conjectures. Rather than accept explanations from 

experts, they compare them to their current understanding of concepts and reconstruct their 

understanding. 

The instructor column in the nature of learning mathematics presents evidence of the 

instructional strategies instructors employ. Level 1 describes the didactic classes referred to by 

Boaler and Greeno (2000) in which instructors focused on demonstrating steps and showing 

students how to successfully reproduce procedures. Higher levels in this domain stress 

understanding and providing opportunities for students to solve problems and apply their 

reasoning. In addition, instructors use student thinking to guide their instructional decisions. The 

difference between Level 3 and Level 4 is Level 4 instructors support students’ development of 

concepts through engagement with rich tasks, reflection on activities, and are able to support 
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students in maintaining the high cognitive demand. It is likely an instructor’s own understanding 

of the concepts and connections influences their ability to raise their level in this domain. 

In the present study, Mr. Reilly developed concepts and connections and discussed 

learning mathematics as conceptual. He presented tasks so students could make connections or 

engage in problem solving. However, since he did not provide opportunities for this activity 

during class, he could not respond to student thinking, nor provide scaffolding for reflection and 

communication. In addition, he sometimes expected students to make sense in a specific way 

rather than allowing them to construct their own understanding in a way that made sense to them. 

For these reasons, Mr. Reilly was a Level 3 in this domain. Mr. Anderson explained ideas to help 

students understand and connected new procedures to concepts. He often expected students to 

use conceptual understanding when employing procedures, a Level 3 indicator, but on occasion, 

when understanding was difficult, he allowed students to memorize, evidence of a Level 2. He 

also used student thinking to guide instruction, a Level 4 characteristic. He most often evidenced 

a Level 2 in this domain. 

Most students in both classes evidenced Levels 1 and 2 on their Student Questionnaires 

since they indicated they learned best by listening, being given step-by-step procedures, and 

following examples. Level 2 students want to hear explanations from their instructor and 

responses on the questionnaire indicated this was important to most students. Observational 

evidence indicate students in Mr. Reilly’s class remained at Levels 1 and 2, listening to questions 

and answers, and listening to Mr. Reilly’s explanations, although it was clear several times they 

did not understand some explanations. An exception to Level 1 and 2 evidence was when Tim 

pointed out what he thought was a mistake in Mr. Reilly’s solution (Appendix H). During this 
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episode, Mr. Reilly solved a problem but Tim argued that the solutions did not make sense 

because they contradicted his understanding, evidence of Level 4.   

The third domain, the role of peers and social norms, focuses on the value of student 

ideas to support and challenge their peers’ concept development and understanding. Students at 

the lowest level do not want to listen to peers because it may confuse them, while students at the 

highest level are willing to listen to their peers’ ideas and offer their own ideas for others to 

consider. At the highest level, students engage in mathematical argumentation with each other 

and determine correctness of the mathematics by the validity of the argument. For instructors, the 

domain encompasses their expectations of and ability to support students’ engagement in 

mathematical arguments. At Level 4, instructors realize they must reject roles of mathematical 

and intermediate authority so that students listen to their own and peers’ ideas and use reasoning 

rather than reliance on an authority to determine what makes sense. Higher levels are evidenced 

by sociomathematical norms like those found in Table 2.  

Absolute and transitional knowers need support in learning to listen critically to their 

peers and develop their own ideas. Instructors may provide this support by focusing during 

whole class discussions to help students listen to each other (Wood, 1998), and by rejecting the 

role of authority. In order to remove themselves from positions of authority, instructors can 

remove themselves physically from the center of discussions by requiring student presentations 

of solutions to the whole class and allowing presenters to field questions. In addition, group work 

allows more students to discuss and share ideas in a safer size group. 

In the present study, very few students responded on their questionnaires that they were 

willing to share ideas with the class. Of those who said they would, one reason they were willing 

to share was to show they knew the right answer. In fact, most students only answered questions 
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when they thought they knew the right answer. This behavior may have been encouraged by the 

implicit message students received when their instructors evaluated responses as right or wrong. 

Also, once instructors heard a right answer, they explained and moved on as if all students 

understood. Such teacher responses indicate instructors wanted right answers and that it was 

important to continue progressing through the material. 

Mr. Reilly evidenced Levels 1 and 2 in this domain most of the term since he stayed at 

the center of class discussions and did not allow group work, but occasionally evidenced a Level 

3 when he used student ideas to solve problems. Mr. Anderson primarily evidenced Level 3 since 

he provided opportunities for students to work together and used their ideas to inform his 

instruction but maintained intermediate authority. He attempted to have students listen to each 

other during whole class discussion on at least two occasions.  

Student questionnaire responses evidenced mostly Levels 2 and 3 in this domain since 

about two-thirds of students wanted to work with others, some to check answers and some to 

share ideas. In Mr. Anderson’s class, some students evidenced Level 3 during seatwork, but at 

this level, students still appeal to instructors’ final pronouncements of correctness. In this 

domain, since instructor levels were at or below student levels, the instructors did not challenge 

students’ ways of knowing. 

The fourth domain concerns relationships between learners and between learners and 

instructors. Evidence for students range from not wanting to know other students or the teacher, 

or wanting to know others to make the classroom more comfortable, to valuing relationships 

with peers because of their ability to challenge ideas and promote understanding. Evidence for 

instructors in this domain extend from establishing an environment that stifles relationships to 
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fostering an environment of collaborative learning. Higher levels increasingly include instructor 

support, opportunities to know the instructor, and opportunities for students to work together. 

Boaler and Greeno (2000) reported that students emphasized the importance of 

relationships when they described their discussion-based classes. The authors also suggested that 

when classroom communities did not foster relationships, students were constrained to received 

knowing. The present study supports the related idea that relational communities confirm 

students’ ways of knowing. However, in order to foster more complex ways of knowing, 

instructors must both confirm and challenge students’ ways of knowing (Baxter Magolda, 1992). 

The current research showed that instructors may maintain mathematical and intermediate 

authority in relational communities, demonstrating that fostering relationships is necessary but 

not sufficient to advance students’ ways of knowing. In order to advance students’ ways of 

knowing, instructors need to reject the role of authority and promote student reflection on their 

own and their peers’ ideas. 

Both instructors allowed students opportunities to know them and offered support at a 

Level 3, which students valued. However, Mr. Reilly demonstrated Level 1 characteristics 

because he did not allow students opportunities to work together in class. While Mr. Anderson 

provided plenty of opportunities for students to work together, he also allowed students to avoid 

group work by maintaining intermediate authority, evidencing Level 2. Students appreciated Mr. 

Reilly’s efforts to be available and their informal conversations with him. The idea that students 

valued this characteristic of their instructor was one of the more surprising findings for me, and 

one I have incorporated into my own teaching. Instructors may increase their levels in this 

domain by intentionally letting students know them and providing the types of tasks that require 

student collaboration.  
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Most students in both classes responded they wanted to get to know others, although a 

few wrote they only wanted to get to know the teacher. In both classes I observed there were 

silent students who did not work with others, who arrived as class started and left as soon as 

class ended, talking to no one. The two quietest students in Mr. Anderson’s class responded on 

their questionnaires they would work with others, however, they did not because they were 

physically isolated from others and Mr. Anderson answered their questions as he walked around.  

The final domain contained in the framework describes student and instructor evidence 

concerning interactions related to mathematics/ communication. This domain focuses on 

mathematical communication as described by Brendefur and Frykholm (2000) and the use of 

tools such as technology. Student evidence at the lowest level includes giving only short answers 

that are cue-based, indicate pseudo-conceptual behavior or memorized procedures. Students at 

this level ask questions seeking a rule and may use drill software to practice steps and follow 

examples. Student evidence at Level 2 includes joining in contributive communication but not to 

help their peers learn, so when forming their explanations they may not consider the way other 

students may interpret it. Students ask questions to elicit explanations from their instructor and 

use technology to illustrate multiple representations although they may not reflect on 

connections. Level 3 evidence includes students discussing their mathematical ideas more than at 

lower levels and using technology to explore. Finally, Level 4 students participate in reflective 

and instructive communication; if technology is used, it may be used to make and test 

conjectures independent of the instructor. Instructor evidence in this domain ranges from 

fostering only unidirectional communication to fostering reflective and instructive 

communication. Use of technology ranges from drill software to using technology to explore, 
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support conceptual understanding and sense-making, and make connections between multiple 

representations.  

Absolute knowers expect their instructors to provide clear explanations (Baxter Magolda, 

1992), so Level 1 and 2 students may become frustrated when instructors withhold them. 

However, Lobato et al. (2005) demonstrated that some explanations could evoke sense-making. 

Rather than provide a procedure when students asked for an explanation, instructors asked 

questions to determine students’ current understanding and then explained important concepts or 

connections students did not understand. Instructors followed the explanation with a challenge to 

students to use the new information to solve problems, although the authors found that often 

students were not able to use the ideas immediately. Nevertheless, in response to students’ 

request for explanations, rather than provide students with efficient ways to find correct answers 

without understanding, instructors may still satisfy this request and support students’ 

construction of understanding by initiating and eliciting (Lobato et al.). 

Mr. Reilly primarily evidenced Level 1 in this domain, although he sometimes asked 

students how they solved problems and their reasoning for some procedures, a Level 2 

characteristic. His students evidenced Level 1 most often, but evidenced Level 2 when they 

asked questions seeking explanations or explained their own reasoning. Mr. Anderson often 

attempted to foster interaction at Level 3 since he elicited student contributions and offered new 

problems based on his understanding of students’ current constructions, an element of instructive 

communication. He also required the use of a graphing calculator and suggested students use it to 

explore, which they did. Instructors may increase the levels of communication in their class by 

phrasing their questions carefully to elicit ideas and explanations, and responding carefully so 

that other students consider their peers’ ideas rather than the instructor’s response to the ideas.   
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Evidence at each level provides insight into students’ ways of knowing and evidence of 

the constraints and affordances provided by instructors. When students and instructors are at the 

same levels, students’ ways of knowing are maintained, while instructors who evidence higher 

levels than their students provide challenges to students’ ways of knowing. When instructors 

evidence lower levels than their students, students may become alienated by the lack of 

opportunities to develop and reflect on their own perspectives; Boaler and Greeno (2000) found 

that students who have more complex ways of knowing rejected math because the didactic 

classes did not provide opportunities to think.  

In the introduction, I described students who did not like being asked to think about 

concepts and share their ideas, and believed their teachers should explain in response to student 

questions. I described others who, when given opportunities to work together, chose to work 

alone. It is likely these students were absolute knowers who believed the instructor had the 

knowledge and should impart it when asked, and that their peers could not help them learn. 

Instructors attempting to interact at a Level 4 met with resistance. Instructors who want to foster 

Level 4 students will need to be aware of students’ conceptions in each domain and balance 

confirmation with challenges, and explicitly discuss their expectations and ways students may be 

successful at these new ways of learning. 

Implications for Further Research 

Studies connecting students’ ways of knowing in college mathematics classes to their 

learning are necessary; research should be conducted to determine if Level 4 classes lead to more 

powerful constructions of the mathematics than lower level classes.  In addition, research on 

difficulties instructors encounter as they attempt to establish a Level 4 class is necessary. 

Specifically, studies similar to the present one, but in which instructors attempt to foster student 
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engagement at a Level 4 could lend insight into ways students respond to expectations of their 

new roles and ways instructors may support student learning in new ways. The studies should 

include classes of college students at varying levels of college classes.  

Other areas of research could include expanding to more domains. Specifically, 

assessment is an area that affects students’ engagement and study strategies. Research could 

discern types and levels of assessment that maintain, confirm, or challenge students’ ways of 

knowing.  

 Further research could also delineate the roles of technology in promoting more complex 

ways of knowing. In addition to the use of graphing calculators and computer algebra systems to 

explore and solve problems, students’ use of software that allows explorations such as 

spreadsheets and geometry software may lend insight and challenges to their current ways of 

knowing. Document cameras and SmartBoards© may also be used to challenge absolute and 

transitional ways of knowing as students use them for presentations and instructors move away 

from the center of discussions. 

Previous researchers examining ways of knowing considered gender and noticed gender 

differences (Baxter Magolda, 1992; Benlenky et al. 1986/1997; Brew, 2001). Aware of this, I 

considered gender differences while collecting data. However, some students of both genders 

exhibited the ways of knowing of the other gender. For example, Greg exhibited signs of silence 

and received knowing while Carol, Sarah, and Natalie evidenced mastery knowing. Daniel and 

Kenny initially did not want to work with others, a male pattern, but discussed mathematics with 

Carol and Sarah. Because of the anomalies, I chose not to systematically analyze the data for 

gender differences in ways of knowing. However, this could be pursued closer in a study that 

analyzes each gender’s response to a Level 4 instructor.  
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 Also, the students in the present study indicated absolute and transitional knowing 

regardless of their year in school, probably because of the way mathematical knowledge is 

presented as certain in so many mathematics classes. This idea suggests a study to examine how 

students who have more complex ways of knowing in other contexts adjust to opportunities for 

independent and contextual knowing in mathematics class. 
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APPENDIX A 

TEACHER CONSENT FORM 

 
 

 
 
 

 
 
 



 

WASHINGTON STATE UNIVERSITY 
TEACHER CONSENT FORM 

RESEARCH ON INTERACTIONS IN MATHEMATICS CLASSES  
 
Researcher: Jacqueline Coomes, Department of Teaching and Learning, WSU, Pullman 
Researcher’s statement 
I am asking you to be in a research study. The purpose of this consent form is to give you the information 
you will need to help you decide whether to be in the study or not. Please read the form carefully. You 
may ask questions about the purpose of the research, what I would may ask you to do, the possible risks 
and benefits, your rights as a volunteer, and anything else about the research or this form that is not clear. 
When I have answered all your questions, you can decide if you want to be in the study or not. This 
process is called ‘informed consent.’ I will give you a copy of this form for your records. 
 

PURPOSE AND BENEFITS 
The purpose of the study is to examine community and interactions in college-level mathematics classes. 
It is hoped that the results will extend our understanding of the development of communities and 
interactions and the relationships between classroom dynamics and student learning. 
 

PROCEDURES 
Data collected will consist of student answers to a questionnaire, notes and videotape from observations 
of the classroom, interviews with the teacher, interviews with selected students, and examples of student 
work, and will preserve the confidentiality of all participants. Interviews may be up to an hour each. You 
may, at any time, ask questions of me, refuse to answer a question, or end the interview without penalty. 
The data I collect will be strictly confidential. Any articles from the research will use pseudonyms for the 
school, teachers, and students. I will tape-record interviews and transcribe the data. Since this research is 
a project consisting of data from one quarter, all data will be collected before the end of August 2005.  

 
RISKS, STRESS, OR DISCOMFORT 

All data will be kept confidential. Raw data will be kept in a locked filing cabinet in a locking private 
office for five years and then destroyed. There is a possibility of stress or discomfort from being observed 
and interviewed. 
 
   

 
Printed name of researcher Signature of researcher Date 
 
Participant’s statement 
This study had been explained to me. I volunteer to take part in this research. I have had a chance to ask 
questions. If I have general questions about the research, I can ask the researcher listed above. If I have 
questions regarding my rights as a participant, I can call the WSU Institutional Review Board at [509] 
335-9661. This project has been reviewed and approved for human participation by the WSU IRB. I will 
receive a copy of this consent form. 
 
 
Printed name of participant Signature of participant Date 
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APPENDIX B 

STUDENT CONSENT FORM



 

WASHINGTON STATE UNIVERSITY 
STUDENT CONSENT FORM 

RESEARCH ON INTERACTIONS IN MATHEMATICS CLASSES  
 
Researcher: Jacqueline Coomes, Department of Teaching and Learning, WSU, Pullman 
Researcher’s statement 
I am asking you to be in a research study. The purpose of this consent form is to give you the information 
you will need to help you decide whether to be in the study or not. Please read the form carefully. You 
may ask questions about the purpose of the research, what I would may ask you to do, the possible risks 
and benefits, your rights as a volunteer, and anything else about the research or this form that is not clear. 
When I have answered all your questions, you can decide if you want to be in the study or not. This 
process is called ‘informed consent.’ I will give you a copy of this form for your records. 
 

PURPOSE AND BENEFITS 
The purpose of the study is to examine community and interactions in college-level mathematics classes. 
It is hoped that the results will extend our understanding of the development of communities and 
interactions and the relationships between classroom dynamics and student learning. 
 

PROCEDURES 
Data collected will consist of student answers to a questionnaire, notes and videotape from observations 
of the classroom, interviews with the teacher, interviews with selected students, and examples of student 
work, and will preserve the confidentiality of all participants. Interviews may be up to an hour each. You 
may, at any time, ask questions of me, refuse to answer a question, or end the interview without penalty. 
The data I collect will be strictly confidential. Any articles from the research will use pseudonyms for the 
school, teachers, and students. I will tape-record interviews and transcribe the data. Since this research is 
a project consisting of data from one quarter, all data will be collected before the end of August 2005.  

 
RISKS, STRESS, OR DISCOMFORT 

All data will be kept confidential. Raw data will be kept in a locked filing cabinet in a locking private 
office for five years and then destroyed. There is a possibility of stress or discomfort from being observed 
and interviewed. 
 
   

 
Printed name of researcher Signature of researcher Date 
 
Participant’s statement 
This study had been explained to me. I volunteer to take part in this research. I have had a chance to ask 
questions. If I have general questions about the research, I can ask the researcher listed above. If I have 
questions regarding my rights as a participant, I can call the WSU Institutional Review Board at [509] 
335-9661. This project has been reviewed and approved for human participation by the WSU IRB. I will 
receive a copy of this consent form. 
 
 
Printed name of participant Signature of participant Date 
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APPENDIX C 

RESEARCH TIMELINE 



 

Timeline for research and writing 

April 1 – June15:  Confirm access; finish writing proposal 

June 15 – June 26: D1; IRB approval and community colleges approval 

June 20-26: Initial teacher interviews 

June 27: [First day of class]: Ask students for permission; have them sign consent forms;  

June 27 – August 18: Collect and analyze data, write analytic memos, initial data analysis 

August 19, 2005–September 2006: Analyze and write  
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APPENDIX D 

STUDENT QUESTIONNAIRE 



 

Student Questionnaire 
1. What is your major? 
2. What is your gender?   Ethnicity?  Age? 
3. What is the highest mathematics class you plan to take in college? 
4. How do you best learn mathematics? 
 

 
5. During math class, what are some things a teacher can do that help you learn? 

 
 

6. During math class, what are some things you do that help you learn? 
 
 

7. During math class, do you like to work with a partner or in a group? Why or why not? 
 
 
 

8. Do you like it when a math teacher involves the class in discussion? Why or why not? 
 

 
9. Do you usually offer input during class discussions? Why or why not?  What kinds of 

input do you usually offer [ask questions, make suggestions…]? 
 
 

 
10. Does listening to other students’ questions or explanations help you learn? Explain. 

 
 
 

11. Do you find that memorizing steps and formulas is important in mathematics? Explain. 
 
 

12. When learning new math concepts, what do you do to understand the ideas, where the 
formulas come from, and why you take the steps you do? 

 
 

13. Do you like to get to know your teacher and/or other students in the class? 
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APPENDIX E 

TEACHER INTERVIEW PROTOCOL 

 
 
 
 
 
 
 
 

 

  



 

Teacher Interview Protocol 

1. What is your philosophy of teaching and learning and how did you develop this 

philosophy? [beliefs about student learning] 

2. Is your philosophy different for different classes [precalculus vs. math reasoning or finite 

or calc III?]  

3. What constraints are imposed by the department, school, or other concerning the text you 

use, the content you cover, and the testing and grading procedures? 

4. What do you like about teaching? [Listen for what they value in the environment and 

interactions.] 

5. In thinking back to one of your best classes [over a quarter], what made it successful? In 

thinking about one of the worst classes, what made it unsuccessful?  

6. What are the characteristics of students who in perform well in you class? 

7. What can you say about the characteristics of students who are apt to fail your class? 

8. Describe the kind of environment you like to establish in your classroom. Why? What 

role do students play in developing this environment? Do all students participate right 

away? [Listen for characteristics of environment: social norms, students’ identities, 

values, beliefs, authority, activities]. 

9. Is the nature of the environment you establish different when the class is much larger? 

How? 

10. How would you describe the types of interactions you strive for with your students? Why 

do you foster these interactions? Can you describe times when students interacted the 

way that you intended? Can you describe times when students did not interact the way 

that you intended? How did you handle those situations? 

 267



 

11. How would you describe the type of relationship you prefer to have with your students? 

What do students gain? Do some students resist? 

12. What do you do, if anything, to help students get to know each other? What, if anything, 

do you think students gain by knowing each other? 

13. Do students in different courses [say elementary algebra, math reasoning, or calculus, as 

opposed to precalculus] respond in different ways to your efforts to establish 

environments, interactions, and relationships? If so, how? 

14. What characteristics do you think a student needs to have to enter calculus and be 

successful? [These are the characteristics we want students to leave precalculus with.]  

15. Do you have any particular goals for these students based on what math class they will be 

taking next? 
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APPENDIX F 

STUDENT INTERVIEW PROTOCOL 

 



 

Student Interview Protocol  

This protocol will be used throughout the quarter with individual students to gather data 

concerning students’ perceptions about the interactions and to understand the extent to which the 

interactions are influencing their ways of knowing. In addition, I will photocopy their classroom 

notes. 

1. What do you think you are expected to know from this day’s lesson? 

2. When you go back and look at your notes, what will you look for? 

3. What connections was the teacher trying to make? Did you understand these connections? 

How will these connections help you understand the new concepts? 

4. When the teacher [or other student] explained … did you think it was important to try to 

understand what they were saying? Did the explanation help you understand what to do or 

why you want to do it? Why or why not? Was it hard or easy to understand? Do you have 

your own way of understanding? Can you explain to me how you understand it now? 

5. What parts of today’s discussion will help you learn this material? 

6. Were there any parts of the discussion that you did not understand? How do you handle parts 

you do not understand? 

7. When Mr. ___ gave you a problem to work [or task to do; I will describe the specific 

instance and perhaps find it in their notes for reference during the discussion.], how did you 

approach it? Were you able to complete it before the class discussion? What insights about 

the problem did you gain, if any, from the class discussion? Would you do a similar problem 

the same way again, or would you change your tactic? Why? 
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APPENDIX G 

CLASSROOM OBSERVATION PROTOCOL 

 



 

Classroom Observation Form 

Teacher:      Date: 
I. Classroom Environment 

a. Physical Setting 

b. Demographics 

i. Number of students  

ii. Ages of students 

iii. Race/ethnicity composition 

iv. Gender composition 

v. Refer to attached seating chart to indicate who is interacting 

c. General description of community: 

i. Mathematical authority [Evidence of who/what has mathematical 

authority?] 

ii. What roles do students and teacher assume in the community?  

iii. What relationships form in the community?  

iv. What norms and rules structure the activities and interactions?  

v. What beliefs appear to be held about what mathematics is and how it is 

learned? 

vi. In what ways do the participants either implicitly or explicitly contribute 

to the development of social norms? 

II. Mathematics 

a. Goal of the lesson: 

b. Description of activity or task:  

i. What is the content focus? 

ii. What is the level of cognitive demand as set up? 

iii. What level of cognitive demand is implemented?  

iv. What factors contribute to the support or decline of cognitive demand? 

v. What mathematical practices are used?  

vi. What do their mathematical practices indicate about how they are striving 

to know the mathematics? 

III. Sociomathematical norms: 
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a. What counts as an acceptable explanation? 

b. Are different ways of explaining solicited or offered, and if so, how are they used 

by the teacher and students? 

c. In what ways were mathematical objects such as graphs, equations, definitions, 

proofs, hypotheses, justifications, etc, discussed and used to reflect on? 

d. Do students offer elegant or sophisticated solutions? What is the response from 

others? 

e. How are errors handled? 

f. If used, what is the nature of students’ work together?  

g. How and when do students participate in argumentation?  

h. What learning strategies do students appear to be employing? 

i. Do students initiate sociomathematical norms? 

j. During an activity [group or otherwise] what did the teacher do? How did 

students engage in the activity? Was it what the teacher intended? 

IV. Communication  

a. Types 

i. Uni-directional 

ii. Contributive 

iii. Reflective 

iv. Instructive 

v. Telling [Initiating and/or eliciting and/or other] 

1. Teacher’s apparent intent 

2. Students’ apparent interpretation 

3. Conceptual or procedural 

vi. Transactive [clarify meaning] 

vii. Metacognitive 

b. Who is not interacting? What are they doing?  

V. Observer comments:

 273



 

 

 

 

 

 

APPENDIX H 

OBSERVATION, MR. REILLY: JULY 13 

 
 



 

Observation, Mr. Reilly: July 13 

Context: They had solved 
2

12sin =β  for all solutions, then he writes on the board as he talks: 

find all solutions in the interval [0, 2pi)
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Mr. Reilly: Swokowski [text author] is an evil man; he knows when you get it and when you 

don’t get it, so he’ll do things like this: find all solutions in the interval; and I’ll use the same 

question. Because he knows everybody learns by mimicry first, they don’t think about it til 

later. I’ll start with simply this: how many are there?  

S: Three [very softly].  

S: Two [very softly]. 

Mr. Reilly: [Does not appear to hear them] Cuz, see, to answer the question here [walks over 

to point at the previous example where they had solved the equation for all solutions], the 

answer is, how many solutions? Zillions, see [he is pointing at the solutions], zillions, why? 

Cuz they could be anybody. Now, we're in this interval [walks back over to the current 

example] so you're not going to go round and round and round, you're only going to go 

around the circle once. How many answers are there when you go around the circle once? 

Ss: Two. 

Mr. Reilly: Yeah, you're wrong. Swokowski knew that, that's why he asked. He's like I knew 

you didn't get it, but better to tell you now than to tell you on the test. 

Susan: Once. 

Natalie: Four. 

Mr. Reilly: Yes, why? [she uses her hand to indicate forward one revolution and backwards 

one revolution.] 
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Mr. Reilly: No, because backwards is negative. No, no, remember the most common 

mistake? You forget to divide everybody by two. Here the answers are; everything else is 

something you were doing to get the answer. You have an answer of pi over eight. I'm not 

going in jumps of two pi anymore, I'm going in jumps of pi. Everything got contracted, and 

since I got contracted, I get somebody from third quadrant too. I get pi over eight, I also get 

nine pi over eight. That stupid two, remember, in the domain it has the opposite affect. Uh, 

three pi over eight, three pi over eight is right about here. And there's another here, do you 

know who that is? [He plotted all these solutions on a unit circle as he talked through.] 

S: Eleven pi over eight. 

Mr. Reilly: Eleven pi over eight. Is that it? Yeah? 

Tim: Aren't those, the nine pi over eight, be negative? Make the sine be negative? 

Mr. Reilly: No, I'm going forward. Now you're right, I could have gone negative too. What I 

did is, I went from pi over eight to nine pi over eight by going pi forward. 

Tim: But the sign of it, it wouldn't be same sign; it would make it a negative one over the 

square root of two. 

Mr. Reilly: Oh, I see what you're thinking. [This was genuine surprise and appreciation.] 

Susan: That's why I thought there was only two too.  

Mr. Reilly: Ah, yeah, yeah, tell you what, let's check. I agree, you should be worried about 

that. And it's a good point: wait a minute, isn't the sine of this negative, and come to think of 

it, don't all four of these angles have a different sine? The sine of this is that high, the sine of 

this is that high, the sine of this is that high, the sine of this is that high. Well, this is all 

screwed up. Well, I'll check one of them. I'll check the one that's negative. Check beta equals 

nine pi over eight. [Writes ⎟
⎠
⎞

⎜
⎝
⎛ ⋅

8
92sin π .] The sine of two times nine pi over eight is the sine 42 
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of nine pi over four. [pause] What quadrant is that? [pause] See, stupid two, messed 

everything up. You were never really in the third quadrant for sine, because when you 

double it, you're nine pi over four. What quadrant is that?  

Susan, Mark: Three. 

Mr. Reilly: First.  

Susan: First. 

Mr. Reilly: That's the first quadrant. Nine pi over four is here. And the sine of that is,  

S: Positive. 

S: One over root two.  

Mr. Reilly: One over root two. Yeah, you got it in the reverse order, you double the angle 

first and then you look at the sine value, see double first. So if you double pi over eight, 

you're here. Now look at the sine of it. Double nine-pi over eight, you're here, now look at 

the sine of it. If you double three pi over eight, you're here, then you look at the sine. If you 

double this angle, guess where you are? You're here, you double it, and after you double it, 

everybody has the same sine value. … I think that's part of what happens to students on the 

test, if you just see it as a mechanical process, it's really easy to think you've got it down 

cold, because you go through the motions and you match the back of the book. What you 

really want to do before you take the test is get really confused. Get the answer right, but 

confuse yourself with it. Why would four different points on a circle that are at different 

heights all be a solution to this? Then fight through it. That way you get confused when 

there's no risk involved.  
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APPENDIX I 

OBSERVATION, MR. REILLY: JULY 21 

 



 

Observation, Mr. Reilly: July 21 

“A cathedral is located on a hill, as shown in the figure. When the top of the spire is viewed from 

the base of the hill, the angle of elevation is 48º. When it is viewed at a distance of 200 feet from 

the base of the hill, the angle of elevation is 41º. The hill rises at an angle of 32º. Approximate 

the height of the cathedral.” (Swokowski & Cole, 2002) 

The drawing in Figure 7 is similar to the one Mr. Reilly drew on the board. The points A-E were 

not labeled in the textbook, and the point E, segment CE and segment DE were not included in 

his original drawing. [episode starts at 45:55 when he reads the problem and draws and labels the 

picture on the board. The transcribed part starts at 48:15] 

48
41

200' C

D

B

H

EA

 

Figure 7. Cathedral problem. 
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Mr. Reilly: I'm tired, I'm old, I'm tenured, you tell me what to do, I'll follow whatever it is, 

even if it's wrong.   

Susan: Name your points. 

Mr. Reilly: Name your points, I like that. Uh, cool. A, B, C, D, good enough? [pause 4 

seconds] Okay, silence means yes by the way.  

Susan: Okay, yes. 

Mr. Reilly: And then? 

Tim: Subtract one eighty from forty-eight. 
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Mr. Reilly: Okay, you want to get this angle here, and that little guy is one thirty two? [he 

draws it, apparently inferring from the suggestion where it should be.] 

Susan: Yeah. 

Mr. Reilly: All right? 

Natalie: Now you can get the top one at B. 

Mr. Reilly: Okay, I just have to ask: So?  

Natalie: So you can go get the sine. 

Mr. Reilly: I mean do you have a plan? 

Natalie: Yeah, to get the sine. 

Mr. Reilly: Well, I just want to know because I am lazy; I don't want to just go find an angle 

because I can. 

Susan: Then you can use the law of sines. 

Mr. Reilly: Oh, okay, so you want to go get this little guy here? And once you've got that 

little guy there, you've got?  

Natalie: The side. 

Mr. Reilly: You've got your ASA, which means you can find anybody on ABC, who was it 

you were planning on finding? 

S: BC. 

Mr. Reilly: BC? Okay, here let me write this down, because like I said, I've got a bad short-

term memory. [starts writing a list to the left of the drawing as he talks] So you want to go, 

you've got your one thirty two, so you want to find angle ABC and then use the law of sines 

to go get BC. Okay, once you get BC? [pause 4 seconds] 

Natalie: Find AC. 
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Reggie: Find the little tiny, the little angle, forty-eight from thirty-two, you can get that. 

Mr. Reilly: BCD? 

Reggie: Yeah. 

Mr. Reilly: [writing on the board on the list he is making] Okay, get BC, get angle BCD.  

Susan: Sixteen, sixteen degrees. 

Mr. Reilly: Sixteen degrees, okay [he writes it on the drawing] [pause 7 seconds] You see 

this is what I was worried about. 

Susan: Well, take your forty-eight-degree angle and subtract it from ninety to get, 

Natalie: Get the side first. 

Mr. Reilly: [points to Reggie] What you got? 

Reggie: I had another triangle. 

Mr. Reilly: What'd you draw? 

Reggie: From point D straight down at a ninety degree [is motioning with his hand]. 

Mr. Reilly: [as he draws it and labels the point] Okay, I think I'll call that E. 

Reggie: Okay, we know the angle at D now. 

Mr. Reilly: Okay, good, get CDE, I'll write this down here, get angle CDE [writes it on his 

list, then goes to drawing]. Okay, so I've got that one, I've got, okay, I've got that one. See 

I'm marking the ones that I can go get. 

S: CD. 

Mr. Reilly: CD, really? 

Susan: Well you can do the law of sines to get line AB, or, yeah, the distance from the top to 

the bottom of the hill.  

Reggie: You can get the angle. 
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Mr. Reilly: The angle? 

Reggie: Yeah, the angle at point D, the obtuse angle right there. 

Mr. Reilly: Oh, okay. 

Reggie: And then from there you can get the angle at the very top of the cathedral and then 

you can figure out h.  

Mr. Reilly: Okay, now I'm starting to feel better about this. All right, what I think I hear you 

saying is, the ultimate strategy is an ASA [marks it on the drawing]. That's the ultimate 

strategy, is an ASA. To get my little hands on that ASA, I've got sixteen, I figured that out. 

Uh, by the way, there's lots of ways to do this problem; there are lots of ways, with a right 

triangle, without a right triangle. There are lots of ways to do this. Um, I'm going to take the 

first one that works, though, okay. Uh, I got my sixteen, so I got my first A. Somebody, 

okay we already figured out that I could get BC, following this [indicates his list], and then 

how hard is it going to be to get this angle up here? [indicating angle CBD]  

[He goes on to talk about how much he likes this problem because their “life is a lot better 

because they have to draw a picture.” Then he recaps how the drawing of the vertical line 

suggested by Reggie helped by creating several right triangles.]  

Mr. Reilly: And then you come back and say, how does it sound? Does it sound right? How 

tall is that? Is that about right for a spire on a church? On a cathedral? 

Ss: It's pretty tall. [ends at 57: 35] 

 282



 

 

 

 

 

 

 

APPENDIX J 

OBSERVATION, MR. ANDERSON: JULY 18



 

Observation, Mr. Anderson: July 18 

 

Figure 8. Graphs of Two Functions. 

“Use the given graphs of f and g to evaluate the expression: 

23. (   24. )(0f go ) ( (0))g f    25. ( )(4)g fo    26. ( ” (Stewart et al., 2002, p. 225). (From 
Precalculus: Mathematics for Calculus, 4th edition by STEWART/REDLIN/WATSON. 2002. Reprinted 
with permission of Brooks/Cole, a division of Thomson Learning: 

)(0f go )

www.thomsonrights.com. Fax 800 
730-2215.) 
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Daniel: I had a question: how do you even, what they even want out of twenty-three through 

twenty-eight? (see Figure 8) 

Mr. Anderson: Okay, twenty-three through twenty-eight. Oh, they want a numerical value. 

Daniel: Okay. 

Mr. Anderson: Like, looking at the graph there, they have a graph picture of f and a graph 

picture of g.  

Daniel: Right. 

Mr. Anderson: They don't have a, like this is some function [pointing to an algebraic rule 

still on the board] written out in a formula. They don't have a formula for it. So, first off, 

let's just look at f for a minute; what is f of one? [more to the whole class] We're looking at 

page two hundred and twenty-five, that red line there is the graph of f. The question is, what 

is f of one? 

Sarah [and another student]: Negative one. 
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Mr. Anderson: Negative one. What is f of two? 14 
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Sarah: Negative two. 

Mr. Anderson: Negative two. Why is f of one negative one and f of two negative two? 

[pause] Those are correct. What does f of one mean? 

Sarah: When x is one. 

Mr. Anderson: [writes  on the board and points] f of one means x is one, find the y-

value. [pause 3 seconds] What's the y-value on the f function when x is one? It is negative 

one. We're just trying to get used to graphical pictures of functions, here. What is f of two in 

that picture?  

)1(f

S: Negative two. 

Mr. Anderson: Negative two. What is f of three? 

S: Zero. 

Mr. Anderson: No, not zero [looks at his book] Oh yeah, you're right. It came up [inaudible] 

Sorry about that; I thought it came up at the same slope, but it's steeper. How about f of 

four? 

Daniel [and others]: Two. 

Mr. Anderson: Yeah, so you're getting used to what they're telling you with these functions. 

Daniel: Okay. 

Mr. Anderson: So the points on function graphs actually tell you an input and an output 

value. So, we usually graph by, like if I give you a function, and if I give you f of x equal x 

squared, [inaudible] by graphing, you'd make your table and then you'd go graph. We're kind 

of going backwards here. 

Daniel: So you find g, if it's two, you go plug it into the f? 

 285



 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

Mr. Anderson: Exactly, so, uh, 

Daniel: I can do it now, so, 

Mr. Anderson: Yeah, let's do one for practice. 

Carol: Yeah, do it; I'm not sure [inaudible]. 

Mr. Anderson: Let's try twenty-four. Okay, twenty-four says g of f of zero. Oh, that's not a 

very interesting one, oh well. So start on the inside; what is f of zero? 

Ss: Zero. 

Mr. Anderson: Zero. So we need g of zero, which is,  

Ss: Three. 

Mr. Anderson: Three, so they're just getting you used to function notation, but they're giving 

you information in a different way than you're used to seeing it. You're used to seeing it this 

way. They're giving it to you graphical picture. But the graphical picture contains the same 

information, but a different way of representing it. Let's see, what else? 

Sarah: What about twenty-three?  

Mr. Anderson: Uh, twenty-three, f of g of two, sure. So, twenty-three, f of g of three? 

Sarah: Two. 

Mr. Anderson: Two. What do we start with, the f function or the g function? 

Ss [including Sarah]: The g. 

Mr. Anderson: g, right. Start on the inside; you need to find g of two; g of two looks like it's 

[pause] 

S: Five. 

Mr. Anderson: Five. So g of two,  

Sarah: Oh. 
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Mr. Anderson: Is five.  

S: Okay. 

Mr. Anderson: Yeah, the x-value is two, we're using the g function, the y-value is five. Now 

look at your picture and find f of five. [looking at his book] Two, three, five; it looks like 

four. [Carol and Sarah are speaking quietly to each other.] 

Carol: Can you do twenty-five too? [inaudible] twenty-six.  

Mr. Anderson: Sure, yeah, uh, [erases part of the board] twenty-five; g composed with f. 

Well, what does g composed with f mean? [pause 2 seconds; points to the expression he 

wrote as he said it] What does this mean? 

Daniel: It's the same as that. 

Mr. Anderson: Is it the same as this one or this one? [pointing to two of the earlier 

expressions] 

Daniel: The one on the right. [Carol is also saying something inaudible] 

Mr. Anderson: Yeah, g of f. So the first thing to do when you see it written this way is just 

rewrite it in the way that makes more sense [writes ]. ))4(( fg

Carol: Yeah, now it looks better; now I've got it. 

Mr. Anderson: You can get it from there? So, what would this one be, f composed with g of 

three? 

Carol: f of g of three? 

Mr. Anderson: f of g of three. I don't know if that works out, but, 

S: Well, so twenty-six would be f of g of zero? 
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Mr. Anderson: Exactly. Now sometimes you can do the first piece but not the second piece. 

Um, [looking at the page in his text] let me give you an example. How about g composed 

with f of, uh, six. So, I'm doing g composed with f of six. 

Daniel: Doesn't work. 

Mr. Anderson: Right, because if you try, it'd be g of f of six, f of six is no problem, [looking 

at the book] f of two, four, six, is six. This f of six is six. 

Daniel: There's nothing to relate it to on,  

Mr. Anderson: Right, but there is no point on the g graph with x-value six. What do we 

write? 

Ss: No solution. 

Mr. Anderson: Not no solution, we aren't solving an equation. 

Carol: I put no point on the graph. 

S: Undefined. 

Mr. Anderson: Undefined, yeah, [points to Carol] What did you put? No point on the graph? 

That works. [She laughs] Or, six is not in the domain of this composition function. 
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APPENDIX K 

OBSERVATION, MR. ANDERSON: JULY 27 



 

 

Observation, Mr. Anderson: July 27 
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Daniel: Fifty-three. 

Mr. Anderson: Fifty-three, okay. So, we have, our polynomial is [says it as he writes it; the 

polynomial is ] All right, our job is to find all zeros. 

So, if I was doing this just to find all zeros, I would start out with a graph. So, let's get a 

graph [28 seconds pass as he puts it in his calculator quietly; Most students also put it in 

their graphs except Sam.] And then you gotta use your graph to try to figure out what's 

going on. Where does it cross the x-axis? [pause 8 seconds] Most people are still typing it in 

[pause 15 seconds]. Got a guess? 

92728123)( 2345 −+−+−= xxxxxxP

Daniel: Well, it looks like it follows the x for the,  

Mr. Anderson: Okay, so let me give you a different window so that you can see it a little bit 

better.  

Daniel: Because I'm at negative two, two on the x and it looks like its, 

Mr. Anderson: Yeah, it follows along [Sam is getting his calculator out now.] 

Daniel: From point seven five to one point two five. 

Mr. Anderson: But it still crosses over at one particular point, and you can see it a little 

better if you do the graph from, uh, zero to two and from negative point two to point two on 

the y's. It's still kind of flat there, but it only crosses at one point.  

Daniel: So it looks like one. 

Mr. Anderson: It looks like one. So, it looks like one, so what we're going to do is one, then 

[sets up synthetic division] divide it out and see what we have left. Okay, so this part, just 

going to crank through it [does arithmetic silently] and, sure enough, it works. Okay, so we 
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have one as a zero. But now looking at your graph there, it looks like, well, there are no 

other graphs, no other x-intercepts. Well, let's think about it for a minute, here. Because what 

we now know, you know, when we're factoring, we'd have an x minus one here, maybe 

some other stuff. Okay, now we're used to just getting a power of one there. But maybe it's 

not one, what are the other possibilities? 

Daniel: Squared, cubed. 

Anthony: Cubed. 

Mr. Anderson: Squared, cubed, and Anthony says cubed but not squared 

Anthony: It's not squared. 

Mr. Anderson: Why not squared? 

Anthony: It would touch the x-axis. 

Mr. Anderson: It would touch it and come down if it were squared. 

Daniel: Oh, parabola. 

Mr. Anderson: So, we actually have three possibilities [he writes a 3 and 5 above the 1 

exponent on the factor ( )]. 1−x

Daniel: Cubed or fifth-root. 

Mr. Anderson: Yeah, we can't get higher than that because we're in the fifth degree. So if 

you don't have any other zeros. 

Daniel: It must be the fifth-root. 

Mr. Anderson: Then it must be one of these two, not just this one. So, in other words, let's 

try dividing out one again. We're dividing out x minus one again. And then, the trick is, you 

know how you commented that it was following along the x-axis? The more it does that, the 

flatter it is there, usually, the higher the degree on that zero, if you're on the factor portion of 
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the zero. So that flat part is actually a key; it kind of indicates that it's probably one of these 

other ones than a one. That's something we hadn't talked about, so I understand [quietly 

works through the synthetic division]. And there it is; it worked twice. But it can't be two, so 

it must work one more time [quietly works through synthetic division again]. And you could 

work through it one more time after that, but I don't think it's going to work. So, we know 

it's not one, it's either three or five now up here. But if you tried it again, just real quick, let's 

try one more time [quietly works through synthetic division again]. Nope, didn't work, 

Okay, so we don't really want that [indicates last one]. I did it in a different color, so ignore 

that. So what's the exponent have to be here? 

Ss: Three. 

Mr. Anderson: Three. Now, what's left as a multiplier? [several students respond inaudibly] 

This thing, what's this say [pointing to last line on synthetic division]? 

Ss: x-squared plus nine. 

Mr. Anderson: x-squared plus nine. Now that's not going to give real zeros which is why 

there's no other place that it crosses that we can see. So find the other zeros, we just need to 

look at x-squared plus nine. Looking at this portion here [points to the factor ]. So x-

squared equals negative nine. 

92 +x

Daniel: Three i. 

Mr. Anderson: Yes, plus or minus three i. So summarizing, our zeros are one, three times. 

So you can either write it three times or you can say with multiplicity three, or you could 

just put one; I'm not really too worried about that. I'm going to write it three times, and then 

three i, negative three i. Those are our zeros. [Points to factored form of polynomial] This is 

not completely factored yet. This right here, if you multiply these you would get this. To be 
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Sarah: x minus, 

Mr. Anderson: [Pointing to her] x minus, 

Sarah: Three, x plus three. 

Mr. Anderson: Close, three, 

Anthony: i. 

Mr. Anderson: i, and x plus three i. The completely factored form looks like this. Where's 

that coming from? [Pointing to list of zeros] That's x minus this, x minus this, x minus this, x 

minus this, x minus this, and x minus this, all multiplied together. That's what this says. 

Yeah, that was a good problem. Questions on that one? So, if it crosses over but it's flat, then 

chances are it's a higher power on the factor than one. Which means if it crosses over it has 

to be at least three. [10-second pause] Other questions this section? [They spent nine 

minutes on this problem. There is silence for another 47 seconds before Carol speaks up.]  
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APPENDIX L 

OBSERVATION, MR. ANDERSON: AUGUST 3



 

Observation, Mr. Anderson: August 3 

 

Figure 9. Exponential graphs. 

 (From Precalculus: Mathematics for Calculus, 4th edition by STEWART/REDLIN/WATSON. 
2002. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: 
www.thomsonrights.com. Fax 800 730-2215.) 
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Mr. Anderson: How about thirty-three; did you get that one? They give you a graph and 

want you to find the equation. No, you didn’t get that one? Let’s take a look at thirty-three. 

Now they give you two things, there. They give you this point, zero, three, and they give 

you this point, I think it’s two, twelve. And they say that this function is something like c, a 

to the x. So there’s two things you gotta find, you gotta find the c; you gotta find the a. All 

right, well if it were just this, for a minute, a to the x, the graph would be the same as this 

one here [indicating  graph of #25 which is still on the board] you know, our regular stuff, 

because the y-intercept is zero, one. Ignoring that graph for a second, if we have this graph 

here, what does this c do? [He has drawn the graph and labeled the points.] 

S: Vertical stretch. 

Mr. Anderson: Stretch, yeah, vertical stretch. So we stretched it and we went from zero, one, 

and we ended up at zero, three.  
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23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

Daniel: Plus two.  

Carol: Times, times. 

Mr. Anderson: Oh, that would be a shift. If it was a shift that would have been good, but,   

Carol: Multiplication; three. 

Mr. Anderson: Multiplication, so it’s a three. So the c value is three. So, for our equation, we 

just figured out that the c-value is three [pause 8 seconds]. So now, we know our function is 

three a to the x. 

Kenny: a is two. 

Mr. Anderson: And a is two? How’d you get that? 

Kenny: Uh, I used twelve. 

Mr. Anderson: Okay, [points to the labeled point on the graph] well twelve, if we get twelve 

right here, we’re supposed to get a two right there [writes ]. So what would you 

square, then multiply by three to get twelve? Or, differently, divide by three, a squared is 

equal to four, so a equals two. So, our equation is y equals three times two to the x. All right, 

so try thirty-four. [He stands at the front looking at his book while they work quietly for 90 

seconds. Then he starts walking around and I hear his side of each conversation. I can hear 

that a student has asked him a question.] Well, five a to the, no, a to the? Nope, not two, 

[pause 4 seconds] Why did I use two here? I didn’t use two just because [inaudible]. Where 

did this two come from? Where’s the twelve? There you go. [He has another similar 

conversation with another student.]  

2312 a=

Mr. Anderson: [to Daniel] Wait, now why did you put squared on that one? 

Daniel: You said a squared is four. 
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43 
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45 

46 

47 

48 

49 

50 

Mr. Anderson: Well, where did the square come from on that one? Why did I use a two 

there on that one? 

Daniel: Oh, because of the, okay, so that should be negative one. 

Mr. Anderson: Exactly, yeah, we’re not going to use a two every time. [To another student] 

Why is this one squared here? I have no idea why we have a two there. I have no idea why it 

would be. Is there something there that says we need a two for x? Sure, but my question is 

where did that two come from? Well, in general it’s x, … There you go. [More students are 

talking to each other so it is hard to hear conversations. Carol explains something to Daniel] 

So, you gotta use this point here… What does a to the negative one mean? … [to the whole 

class] So, five times,  

Carol: One-third. 

Mr. Anderson: One-third to the, 

Carol: x. 

Mr. Anderson: x. 

Kenny: I got five times three to the negative x. 

Mr. Anderson: That is actually the same equation!  
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APPENDIX M 

IN-CLASS PROBLEMS FROM TEXT, MR. ANDERSON 



 

In-class Problems From Text, Mr. Anderson 

Section 1.6 [June 28] (From Precalculus: Mathematics for Calculus, 4th edition by 
STEWART/REDLIN/WATSON. 2002. p. 71-74. Reprinted with permission of Brooks/Cole, a 
division of Thomson Learning: www.thomsonrights.com. Fax 800 730-2215.) 
Directions: Use the principles described in this section to answer the question posed. 

12. The sum of the squares of two consecutive even integers is 1252. Find the integers. 

24. During his major league career, Hank Aaron hit 31 more home runs than Babe Ruth hit 

during his career. Together they hit 1459 home runs. How many home runs did Babe Ruth hit? 

36. A box with a square base and no top is to be made from a square piece of cardboard by 

cutting 4-in. squares from each corner and folding up the sides, as shown in the figure [see 

Figure 10]. The box is to hold 100 in3. How big a piece of cardboard is needed?  

 

Figure 10. Box problem. 

 (From Precalculus: Mathematics for Calculus, 4th edition by STEWART/REDLIN/WATSON. 
2002. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: 
www.thomsonrights.com. Fax 800 730-2215.) 
 
48. A woodcutter determines the height of a tall tree by first measuring a smaller one 125 ft 

away, then moving so that his eyes are in the line of sight along the tops of the trees, and 

measuring how far he is standing from the small tree [see Figure 11]. Suppose the small tree is 

20 ft tall, the man is 25 ft from the small tree, and his eye level is 5 ft above the ground. How tall 

is the taller tree?  
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Figure 11. Tree problem. 

 (From Precalculus: Mathematics for Calculus, 4th edition by STEWART/REDLIN/WATSON. 
2002. Reprinted with permission of Brooks/Cole, a division of Thomson Learning: 
www.thomsonrights.com. Fax 800 730-2215.) 
 
60. After robbing a bank in Dodge City, the robber gallops off at 14 mi/h. Ten minutes later the 

marshal leaves in hot pursuit at 16 mi/h. How long does it take the marshal to catch up with the 

bank robber? 

 

Section 1.10 [July 5] Stewart et al., 2002. From Precalculus: Mathematics for Calculus, 4th 
edition by STEWART/REDLIN/WATSON. 2002. p. 124-127. Reprinted with permission of 
Brooks/Cole, a division of Thomson Learning: www.thomsonrights.com. Fax 800 730-2215.) 
 
14. Find an equation for the line whose graph is sketched. 

 

Figure 12. Graph of a line.  

(From Precalculus: Mathematics for Calculus, 4th edition by STEWART/REDLIN/WATSON. 2002. Reprinted with 
permission of Brooks/Cole, a division of Thomson Learning: www.thomsonrights.com. Fax 800 730-2215.) 
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28. Find an equation of the line that satisfies the given conditions: y-intercept 6; parallel to the 

line  0432 =++ yx

42. Find the slope and y-intercept of the line and draw its graph. 052 =− yx  

56. Find the area of the triangle formed by the coordinate axes and the line . 0632 =−+ xy

70. The manager of a furniture factory finds that it costs $2200 to manufacture 100 chairs in one 

day and $4800 to produce 300 chairs in one day. 

(a) Assuming that the relationship between cost and the number of chairs produced is linear, 

find an equation that expresses this relationship. Then graph the equation. 

(b) What is the slope of the line in part (a), and what does it represent? 

(c) What is the y-intercept of this line, and what does it represent? 
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Table 1 

Ways of Knowing (Baxter Magolda, 1992; Brew, 2001) 

Ways of knowing Description Roles of learner, instructor, peers 

Silence (Belenky, et 
al., as cited in Brew, 
2001) 

It is neither possible nor 
important to understand. 

Learner: Follow rules, stay quiet. 
Peers: Cannot learn from peers, 
so no role. 
Instructor: Teacher is authority; 
must show exactly what to do. 
  

Absolute Knowledge is certain and 
provided by authorities. 
Two types (descriptions 
follow). 
 

 

Absolute: Receiver Knowledge is certain and 
provided by authorities; 
minimal interaction with 
instructor; prefers 
comfortable environment; 
relationships with peers; and 
opportunities to demonstrate 
knowledge. 
 

Learner: listen and record 
information. 
Peers: Talk to create a relaxed 
environment. 
Instructor: Facilitate students’ 
reception of information. 
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Table 1 (continued).  

Ways of knowing Description Roles of learner, instructor, peers 

Absolute: Mastery Knowledge is certain and 
provided by authorities; 
prefer a verbal approach; 
critical of instructors; expect 
interactions that aid mastery 
of knowledge. 

Learner: Participate in interesting 
activities, show instructor student is 
interested. 
Peers: Quiz or debate to further 
learning. 
Instructor: Use interesting methods. 
 

Transitional: 
Interpersonal 

Believe some knowledge is 
uncertain (often contextual: 
e.g. humanities uncertain, 
chemistry certain). 
Interpersonal: focuses on 
uncertainty; resolves by 
personal judgment. 
 

Learner: Collects others’ ideas. 
Peers: Offer new ideas. 
Instructor: Creates rapport with 
students and allows student 
involvement and self-expression. 

Transitional: 
Impersonal 

Balances certainty and 
uncertainty of knowledge; 
resolves by logic and 
research. 

Learner: Strives to understand 
rather than memorize; exchanges 
views. 
Peers: Express opinions. 
Instructor: Focus on understanding 
and challenge students to think. 
 

Independent 
knowing: 
Two types: 
Interindividual and 
individual. 
Similar to 
Procedural 
(Belenky et al., 
1997) 
 

Knowledge is uncertain. 
However, this perception of 
knowledge may be 
contextual since examples 
were given of students who 
disliked classes for which 
they believed knowledge was 
certain such as physics. 

Learner: Thinks for themselves; 
shares views with others; creates 
their own perspective. 
Peers: Share views; serve as a 
source of knowledge. 
Instructor: Promote independent 
thinking and exchange of opinions. 

Contextual 
knowing 

Knowledge is uncertain but 
judgments are possible based 
on context. 

Learner: Integrates and applies 
knowledge; thinks through 
problems. 
Peers: Contribute quality ideas. 
Instructor: Promote application of 
knowledge in context, evaluative 
discussion of perspectives. 
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Table 2 

Sociomathematical Norms 

Sociomathematical 
norm  

Description Opportunities for student 
learning 

Characteristics of an 
acceptable explanation  
(Kazemi and Stipek, 
2001; Rasmussen et al., 
2003; Yackel and 
Cobb, 1996).  

Explanations must be based on 
actions taken on experientially 
real objects; Other students 
must be able to interpret 
(Rasmussen et al., 2003; 
Yackel and Cobb, 1996). 
 

Students must consider how 
others will interpret their 
explanation, so they must 
reflect on their explanation; 
learn to communicate 
mathematically (Cobb et al. 
1997). 
 

Nature of mathematical 
thinking involves 
understanding relations 
among multiple 
strategies (Kazemi and 
Stipek, 2001). 
 

Mathematical thinking 
involves understanding 
relations among multiple 
strategies (Kazemi and Stipek, 
2001). 

Opportunities to make 
connections. 

Characteristics of a 
different solution 
(McClain and Cobb, 
2001). 

Solutions must be 
mathematically different 
(Kazemi and Stipek, 2001; 
Yackel and Cobb, 1996). 

Solutions become objects of 
reflection as students 
determine if they are 
mathematically different.  
 

Reification of 
mathematical objects 
(Cobb et al., 1997). 

Shifts in which what the 
students and teacher do in 
action subsequently become 
explicit objects of discussion.  

Supports mathematical 
practices of exploring, 
mathematizing, framing 
questions, use of notation.  
 

Value and identification 
of easy, sophisticated,  
or elegant solutions  
(McClain and Cobb, 
2001). 
 

Tacit or implicit establishment; 
Representative of 
mathematical community 
(McClain and Cobb, 2001). 

Students try new methods of 
solving problems but only 
when they understand them 
(Lampert, 1990).  

Use of errors  
(Borasi, 1994; Kazemi 
and Stipek, 2001). 

Entire class investigates 
contradictions 
(Kazemi and Stipek, 2001). 

Conceptual refinement, 
accommodation, learn from 
disequilibrium. 
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Table 2 (continued) 

Sociomathematical 

norm  

Description Opportunities for student 

learning 

Expectations of small-
group collaboration  
(Goos et al., 2002; 
Kazemi and Stipek; 
2001; Yackel and 
Cobb, 1996). 

Students use transactive 
reasoning within the group; 
Accountability: All students 
must be able to give the 
explanation for the group, to 
give reasons for agreeing or 
disagreeing. 
 

Students must listen to and 
strive to understand the 
solutions of others 
(Rasmussen et al., 2003; 
Yackel and Cobb, 1996). 

Expectations regarding 
argumentation (Wood, 
1999). 

Knowing how and when to 
participate; students must 
listen to and make sense of 
each others’ arguments (Wood, 
1999). 
 

When students experience 
conflict with their prior ways 
of knowing, they have an 
opportunity to learn. 

The role of computer 
representations  
(Hershkowitz and 
Schwartz, 1999). 

The tool is a way to refute or 
confirm ideas.  

Students have a chance to 
rethink their ideas when the 
graphics calculator refutes 
their conjecture. 
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Table 3 

Types of Communication  

Type of 

communication 

Description 

Uni-directional 

 

Teacher dominated by lectures; questioning limited to closed 

questions (Brendefur and Frykholm, 2000). 

Contributive  Interactions are limited to assistance or sharing and are typically 

corrective in nature (Brendefur and Frykholm, 2000). 

Reflective Students share ideas, strategies, and solutions, and use these as 

springboards for deeper investigations and explorations (Brendefur 

and Frykholm, 2000). 

Instructive Teachers pose situations that lead to modification of students’ 

mathematical understanding and help teachers understand students’ 

thought processes (Brendefur and Frykholm, 2000). 
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Table 4 

Student Demographics: Mr. Reilly’s Class 

Name Major Gender Ethnicity Age 

Karen Pre-pharmacy F W 27 

Susan  (no response) F (no response) 20 

Nick Engineering M W 19 

Reggie Engineering M W 19 

Owen MET M W 26 

Jake Aerospace engineering M W 19 

Steve Computer engineering 

technology 

M W 32 

Jeremy Construction management M W 25 

Tim Construction engineering M W 23 

Ryan Finance/ Econ M Native American 22 

Mark Engineering M Grebo 27 

Julie Engineering F W 35 

Shawna Sports med. F W 28 

Natalie Education- math F W 42 
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Table 5 

Demographics: Mr. Anderson’s Class 

Name Major Gender Ethnicity Age 

Sarah Secondary math 

endorsement 

F W 26 

Sheila Mech. Eng. Tech F Pacific Islander/ W 19 

Brian Lib. Arts M W 19 

Janet Pre-med F W 20 

Greg DDS M W 21 

Daniel Business M W 29 

Kenny Physical Therapy M W 28 

Kathy Social work F W 20 

Anthony Biochem/biotech M (no response) 32 

Carol Graduate: math 

endorsement 

F W 37 

Sam Vet medicine M B 22 

Kevin Technology M W 28 

Thomas Airways science M W 19 
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Table 6  

Summary of Data Collection 

Timeframe 

Week starting 

Data form  Research 

questions 

addressed  6/27 7/4 7/11 7/18 7/25 8/1 8/8 8/15 

Student 

questionnaire 

(Appendix C) 

1  x        

Teacher 

interviews 

(Apendix D) 

1, 2  x x     x x 

Artifacts 2  x x  x x x x x 

Student 

interviews 

(Appendix E) 

1, 2    x x   x  

Observations: 

(Appendix F)  
1, 2  x x x x x x  x x 
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Table 7 
Conceptual Categories and Descriptions used in N6 

Category Definition or description 

Community A parent node to subcategories of different types of community and 
factors related to community such as roles, social norms, and 
relationships. 
 

Teacher role Illuminates the nature of the teacher's role in the community and 
includes subcategories of themes that emerged. 
 

Support Teacher indicates they will support students in learning. 
 

Listen Evidence the teacher listens to students. 
 

Mathematical 
authority 

When the teacher determines the correctness of a mathematical 
answer or statement by a student without giving mathematical 
reasons, or reason appeals to another authority such as the text. 
 

Intermediate 
authority 

When a teacher indicates that a student answer or comment is correct 
or incorrect based on a mathematical reason, or when a teacher 
explains and interprets the mathematics for students. 
 

Student role Indications of the students’ roles in the classroom community.  
 

Listen Evidence students' roles are to listen. 
Active Further subdivided into two categories:  

Student initiate: when a student asks a question or makes a statement 
with the intention of directing the discussion or getting a question 
answered. Agency: students' own actions to understand the math. 
 

Social norms Events initiating or maintaining social norms and participants' 
statements about social norms. 
 

Values Evidence the community values something. Time became a 
subcategory since there was evidence that decisions were made based 
on lack of time and also evidence that there was plenty of time. 
 

Beliefs about math Statements indicating participants' beliefs about mathematics. The 
following themes emerged and were used as nodes: 
Developed by people, real life, procedures, elitism. 
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Table 7 (continued). 

Category Definition or description 
Discussion-based Evidence of students participating or wanting to participate in 

discussion during class. Also, includes a subcategory of Spacious: 
Evidence of opportunities to discuss math with peers and contribute 
ideas in class. 
 

Beliefs about 
learning math 

Statements indicating participants' beliefs about mathematics. 
Themes emerged from questionnaire responses and participants’ 
statements and were used to code: examples, play, perseverance, 
memorizing, conceptual, practice, and discussion. 
 

Affective Comments and events with respect to feelings about mathematics. 
 

Teacher-student 
relationships 

Questionnaire results about or indications of teacher-student 
relationships. 
 

Student-student 
relationships 

Evidence of relationships between students in and out of class and 
questionnaire results of students' values of relationships with peers. 
 

Cases Three subcategories: Mr. Reilly, Mr. Anderson, and Researcher. All 
transcripts, fieldnotes, and questionnaires were quick-coded at either 
Mr. Reilly or Mr. Anderson to facilitate generating reports specific to 
their cases. Subcategories for each student were created below their 
respective teachers so reports could be generated on each student. 
 

Researcher Evidence that my presence affected students’ ways of participating, 
and memos of how the research affected my ways of thinking about 
my own teaching, or my thoughts on how the research was going. 
 

Interactions  Further subcategorized into four themes: 
Communication: see row communication in this table.  
Technology: any references to or use of calculators. 
Sociomathematical norms: see Table 2 for descriptions. 
Tasks: when students were given a task to work on. 
 

Communication Subcategories included: 
Brendefur and Frykholm’s (2000) four types of communication: see 
Table 3 for descriptions. 
 

Questions from 
students 

Further subcategorized into the four themes that emerged: check their 
thinking, seeking an explanation, expand the discussion, seeking a 
rule. 
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Table 7 (continued). 

Category Definition or description. 
Explanation Further subcategorized into two categories of student and teacher 

explanations so I could examine the nature of the explanations. 
 

Eliciting “An action intended to ascertain how students interpret the 
information introduced by the teacher” (Lobato et al., 2005). 
 

Mathematics The treatment or approach of the mathematics itself as well as the 
content. Subcategories in rows below. 
 

Relational Knowing what to do and why (Skemp, 1987). 
 

Instrumental Knowing procedures without knowing why (Skemp, 1987). 
 

Procedural Purpose of the discussion is to learn a procedure. 
 

Conceptual "By conceptual content, we refer to ideas, images, meaning, why 
a procedure works, one's comprehension of a mathematical 
situation, and connections among ideas" (Lobato et al.). 
 

Functions Nature of functions is discussed. 
 

Applications Applications that are worked in class (whether the teacher, 
students, or whole-class works on them). 
 

Explore/Play Purpose of discussion was to explore mathematics. 
 

Common mistakes Focus of teacher statement is about common mathematical 
mistakes. 
 

Mathematical 
conventions 

Discussion focused on conventions, such as how notation is used 
or how angles are named, etc. 
 

Make sense Participants' references to making sense and mathematical 
discussions focused on understanding why. 
 

Multiple solutions Multiple solutions were generated or it was suggested that 
multiple solutions were possible. 
 

Meaning-making When the goal of the statement is to convey the meaning of the 
mathematical object or process or when the communication 
indicates shared or not shared meanings. 
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Table 7 (continued). 

Category Definition or description 

Multiple 
representations 

More than one representation is used to discuss a problem, 
concept, or procedure. 
 

Ways of knowing Subcategorized using previous literature; see Table 1 for 
descriptions. 
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Table 8 

Questionnaire Responses: During Math Class, What Are Some Things You Do to Help 

You Learn? Mr. Reilly’s Class 

Responses Sample quotes Number of students 

Take notes “Take good notes, follow practice 
problems.” (Steve) 
 

7 

Out of class work “Lots of out of class work.” (Jeremy) 
 

4 

Do examples “Do many examples.” (Reggie) 2 

Attentive, listen, watch “Notes, listen, watch board.” 
(Natalie) 
 

2 

Follow teacher’s methods “Follow teacher and copy what he 
does.” (Julie) 
 

2 

Ask questions “Being attentive, ask questions, do 
the assignments. (persistence)” 
(Mark) 
 

1 

Work with a partner “Take really good notes, have a study 
partner.” (Shawna) 
 

1 

No answer (Nick) 1 

 
Note. Fourteen students responded to the questionnaire. The total number of students may be 

more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 9 

Questionnaire Responses: During Math Class, Do You Like to Work With a Partner or In 

a Group? Why or Why Not? Mr. Reilly’s Class 

Responses Sample quotes (see note) 

Number of 

students 

Either a partner or a 
group 

“I like to work with one or two other 
people to help get a good grasp on the 
math/homework.” (Shawna) 
 

5 

Partner, but not a group “Partner, because we equally can 
contribute and not get lost in a big 
group.” (Karen) 
 

4 

Alone “No, different learning techniques 
collide.” (Jeremy) 
 

4 

Alone or with a partner “I’d rather work alone or with only one 
other person because I always end up 
doing the work in a group situation.” 
(Susan) 
 

1 

Note. It appeared from their answers that some students thought they were being asked if they 

preferred working with a partner or with a group. Some referred to homework. 
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Table 10 

Questionnaire Responses: Do You Like to Get to Know Your Teachers And/or Other 

Students in the Class? Mr. Reilly’s Class 

 

Responses 

 

Sample quotes 

Number of 

students 

Yes “Yes helps discussions if comfortable with each 
other.” (Jeremy) 
Six students wrote “Yes” but did not explain. 
 

8 

Yes, teacher, but not 
necessarily students 

“I especially like to know the teacher, the class 
isn’t as important to me.”  (Karen) 
 

3 

Sometimes “Depends on the class and teacher, math I think is 
a more solo class.” (Ryan) 
 

2 

No (Tim) 1 

Note. Fourteen students responded to the questionnaire. The sum of the numbers of students may 

be more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 11 

Questionnaire Responses: Do You Like It When a Math Teacher Involves the Class in 

Discussion? Why or Why Not? Mr. Reilly’s Class 

Responses Sample quotes 

Number of 

students 

Yes  “Yes, helps teach the concepts.” (Jake) 
 
“Yes but math is not really discussion oriented; 
right or wrong answers.” (Jeremy) 
 

8 

No “No, I’d rather listen to the teacher.” (Karen) 

“No, I am usually tired and don’t care. I am not a 
math major, I just want to finish the requirement 
with a high grade.” (Ryan) 
 

3 

Depends “Yes, and no, it sometimes is helpful, but most 
time can be confusing.” (Julie) 
 

3 

Note. Fourteen students responded to the questionnaire. The sum of the numbers of students may 

be more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 12 

Questionnaire Responses: Do You Usually Offer Input During Class Discussions? Why or 

Why Not? What Kinds of Input Do You Usually Offer (Ask Questions, Make 

Suggestions,…)? Mr. Reilly’s Class 

Responses Sample quotes 

Number of 

students 

Yes, I will ask questions “Yes, I feel if you do not ask you will 
never learn and I am paying and I want to 
get the most out of it.” (Tim) 
 

9 

No  “Not usually, I just compare what I think 
to what others say.” (Nick) 
 

5 

Yes, I will answer 
questions  

“Yes, I will ask questions, make 
suggestions, answer problems, so forth.” 
(Susan) 
 

3 

Sometimes “Ask questions if I am really comfortable, 
otherwise I stay silent.” (Julie) 
“No, I like to listen and take it in. If I have 
a question, though, I’ll ask.” (Karen) 
 

2 

Note. Fourteen students responded to the questionnaire. The sum of the numbers of students may 

be more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 13 

Questionnaire Responses: Does Listening to Other Students’ Questions or Explanations 

Help You Learn? Explain. Mr. Reilly’s Class 

Responses Sample quotes 

Number of 

students 

Yes, no explanation 
given 
 

“Yes” 5 

Yes, their ideas “Yes; I learn new ideas from other students.” 
(Mark) 
 
“Sometimes it helps if they have a different 
perspective on it.” (Karen) 
 

4 

Yes, their questions “Yes, because they usually ask the same questions 
I have running through my mind.” (Susan) 
 

4 

Sometimes, but it 
may confuse me 

“Yes and no; if they can explain with pictures I 
can understand but if they just explain with words 
I have a hard time visualizing.” (Shawna) 
 

2 

Note. Fourteen students responded to the questionnaire. The sum of the numbers of students may 

be more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 14 

Students’ Ways of Knowing: Mr. Reilly’s Class (Baxter Magolda, 1992; Brew, 2001) 

Type Student Evidence 

Silence  “I don’t need to understand where it comes from, I just 
do it.” (Karen) 
Listening to others may be confusing (Julie). 
 

Absolute Karen 
Susan 
Nick 
Reggie 
Owen 
Jake 
Steve 
Jeremy 
Ryan 
Mark 
Julie 
Natalie 
(Tim) 

Ten responses in Table 16 indicating that the teacher 
should do examples and show students how to do 
problems.  
Five responses in Table 18 refer to memorizing steps 
and procedures as the way to do mathematics.  
Eight students in Table 19 referred to practicing and one 
added listening. Four more said they memorize steps. 
All of the responses in Table 15 except Owen’s answer 
of “visual.” 
Math is not discussion-oriented, right or wrong answers 
(Jeremy). 
All of the responses in Table 8. 
Mr. Reilly’s role as mathematical and intermediate 
authority. 
No opportunities for peer interaction during class. 
 

Transitional (Tim) 
Shawna 

Shawna’s statement, “Show different ways on how to do 
problems.”  
Mr. Reilly’s insistence on understanding concepts. 
 

Independent  Natalie discussed the importance of solving a problem 
on her own in spite of having the teacher’s solution 
nearby (Interview, August 10). 
 

Procedural 
(Belenky et 
al., 1997; 
Brew, 2001) 
 

 Mr. Reilly’s appeals to students to consider different 
ways of verifying identities and compare them to 
determine quality (Fieldnotes, July 12). 
 

Contextual/ 
Constructive 

 No evidence.  

Note. Students’ questionnaire responses were coded, if possible, by the ways of knowing they 
indicated. Students were placed in the category that most of their statements indicated. Tim is in 
both absolute and transitional because he had the same number of statements in both categories.
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Table 15 

Questionnaire Responses: How Do You Best Learn Math? Mr. Reilly’s Class 

Responses Sample Quotes Number of students  

Practice, repetition “By practicing constantly.” (Mark) 8 

Examples, step-by-
step procedures 
 

“Showing through examples step by step.” 
(Susan) 

6 

Teacher “Through being taught.” (Reggie) 5 

Visual “Visual.” (Owen) 1 

Note. Fourteen students responded to the questionnaire. The sum of the numbers of students may 

be more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 16 

Questionnaire Responses: During Math Class, What Are Some Things a Teacher Can 

Do That Help You Learn? Mr. Reilly’s Class 

Responses Sample Quotes 

Number of 

students  

Do examples “Examples, work through completely.” 
(Julie) 
 

10 

Involve students “Get students involved, not just lecture.” 
(Owen) 
 

2 

Multiple solutions “Show different ways on how to do 
problems.” (Shawna) 
 

1 

Be clear and prepared 
 

“Be clear and prepared.” (Steve) 1 

Go slowly “Go slowly.” (Natalie) 1 

Create a relaxed 
classroom 
environment  

“Make the classroom feel easy going without 
pressure.” (Susan) 

1 

Note. Fourteen students responded to the questionnaire. The sum of the numbers of students may 

be more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 17 

First Five Class Days: Communication Type by Percent of Text. Mr. Reilly’s Class 

Date Unidirectional Contributive Reflective Instructive 

June 27 86 14 0 0 

June 28 69 31 0 0 

June 29 58 42 0 0 

June 30 61 39 0 0 

July 5 69 31 0 0 
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Table 18 

Questionnaire Responses: Do You Find That Memorizing Steps and Formulas is 

Important in Mathematics? Explain. Mr. Reilly’s Class 

Responses Sample quotes 

Number of 

students 

Yes, that is how 
mathematics is learned 

 “Yes, it is the most important – because 
math is rules to follow to complete a 
problem.” (Julie) 
 

5 

Yes, for some things but 
not all 

“Yes for formulas because sometimes it is 
just necessary.” (Natalie) 
 

4 

No “No, because I will have my book to look 
everything up some day.” (Tim) 
 

3 

Remember through 
practice 

“Not really memorizing the information 
but using it repeatedly so that it becomes 
natural.” (Susan) 
 

1 

Not sure  “Yes/no not sure if I need them.” (Owen) 1 

Note. Fourteen students responded to the questionnaire. The sum of the numbers of students may 

be more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 19 

Questionnaire Responses: When Learning New Math Concepts, What Do You Do To 

Understand the Ideas, Where the Formulas Come From, and Why You Take the Steps You 

Do? Mr. Reilly’s Class 

Responses Sample quotes 

Number of 

students 

Practice  “By using them over and over.” (Owen) 8 

I memorize steps “I don’t need to understand where it 
comes from, I just do it.” (Karen) 
 

4 

Listen “Listen and practice hard (persistence)” 
(Mark) 
 

1 

Understand “Both, I like to know the concepts and the 
theory.” (Jake) 
 

1 

No answer (Shawna) 1 

Note. Fourteen students responded to the questionnaire. The sum of the numbers of students may 

be more than fourteen since some students’ answers could be categorized in more than one 

category. 
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Table 20 

Questionnaire Responses: How Do You Best Learn Math? Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Explanation from 
someone else 

“When a teacher explains everything 
and doing homework.” (Greg) 
 

7 

Practice “Practice and a good instructor.” (Sarah) 
 

4 

Examples “Hands on example.” (Brian) 
 
“Seeing it done.” (Anthony) 
 

4 

Book “Show up to class, read the book, then 
just sit down and do the work!” 
(Thomas) 
 

1 

Visual “Visual” (Sheila) 
 

1 

Group work “Practice/group work” (Carol) 
 

1 

No answer (Kenny) 
 

1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 21 

Questionnaire Responses: During Math Class, What Are Some Things a Teacher Can Do 

That Help You Learn? Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Explain “Explain every step.” (Greg) 6 

Do examples “Work problems explaining fully what 
is going on on the board.” (Kenny) 
 

5 

Give students 
opportunities to be 
active 
 

“Give us time to do examples and do 
multiple ones on the board.” (Sarah) 

2 

Understand the 
modalities of learning 

“Be knowledgeable! Clear and 
understand the modalities of learning.” 
(Carol) 
 

1 

Make class 
interesting, relaxed 

“Explain problems in detail and be 
funny and cool about it; keep class 
interesting.” (Sam) 
 

1 

Write clearly “Write clearly on the dry erase board.” 
(Anthony) 
 

1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 22 

Questionnaire Responses: Do You Usually Offer Input During Class Discussion? Why or 

Why Not? What Kinds of Input Do You Usually Offer (Ask Questions, Make 

Suggestions,…)? Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Yes, I’ll ask questions “Yes, I ask questions if I do not 
understand something.” (Brian) 
 

6 

No “No, I have a hard time giving input in a 
math class.” (Kathy) 
 

4 

Yes, I’ll offer other 
input 

“Yes, I will sometimes put input into the 
classroom.” (Thomas) 
 

2 

Sometimes “Sometimes, depending on confidence, 
questions.” (Carol) 
 

1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 23 

Questionnaire Responses: Does Listening to Other Students’ Questions or Explanations 

Help You Learn? Explain. Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Yes, their questions  “Listening to their questions and hearing 
the teacher’s explanation helps.” 
(Kathy) 
 

9 

Yes, their responses “Yes, helps if there are different ways of 
solving.” (Kevin) 
 

3 

Sometimes “Sometimes, other times it will just 
confuse things.” (Daniel)  
 

1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 24 

Questionnaire Responses: Do You Like It When a Math Teacher Involves the Class in 

Discussion? Why or Why Not? Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Yes “Yes, makes you stay alert and focused. 
Also, someone might say something that 
you’re thinking of.” (Sarah) 
 
“Yes because it makes you double- 
think your answer.” (Thomas) 
 

11 

No “No, not in math. I like direct lecture 
with Q/A to follow.” (Anthony) 
 

1 

Sometimes “Not really, but sometimes it may be 
helpful.” (Kathy) 
 

1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 25 

Questionnaire Responses During Math Class, What Are Some Things You Do to Help 

You Learn? Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Take notes “Take notes on how the teacher does his 
or her work.” (Thomas) 
 

6 

Practice “Practice the problems.” (Kathy) 
 

4 

Interact with others “Interactive, time to practice.” (Carol) 
 

2 

Outside of class work “Homework” (Daniel) 
 

2 

Look in book “Look in book while learning a concept, 
take notes and ask questions.” (Sheila) 
 

1 

Sit in front row “Sit in front row.” (Sam) 
 

1 

Ask questions “Look in book while learning a concept, 
take notes and ask questions.” (Sheila) 
 

1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 26 
 
Students’ Ways of Knowing: Mr. Anderson’s Class (Baxter-Magolda, 1992; Brew, 2001) 

Type Students Evidence 

Silence    “I don’t need to know where it comes from.” (Greg 
Questionnaire, June 27) 
 

Absolute  Sarah 
Brian 
Greg 
Daniel 
Kenny 
Kathy 
Anthony 
Carol 
Sam 
Kevin 
Thomas 

“I just memorize the material, the formulas come from class itself 
and the books” (Brian Questionnaire, June 27).  
“take notes on how the teacher does his or her work” (Thomas 
Questionnaire, June 27). 
Seven students in this class responded they learned mathematics 
best by having it explained (see Table 20); ten of the students said 
the teacher should do examples and/or explain clearly when asked 
what the teacher can do to help them learn the math (see Table 
21). Sarah calls Carol for help since Carol can read solutions from 
her solution’s manual (Sarah Interview, July 13). 
Mr. Anderson’s role as validator. 
 

Transitional Sheila Daniel’s attempts to understand where some ideas come from 
(e.g. Fieldnotes, July 27). 
Mr. Anderson’s demonstration of using understanding to explain 
procedures or solve problems (e.g. Fieldnotes, July 18). 
Several of Sheila’s answers on her questionnaire stressed that she 
was trying to understand (Sheila Questionnaire, June 27). 
 

Independent Janet Janet’s answers on the questionnaire indicated she believed she, 
rather than the instructor, was responsible for her learning (Janet 
Questionnaire, June 27).  
 

Procedural  No evidence. 

Contextual/ 
Constructive 

 No evidence. 
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Table 27 

Questionnaire Responses: Do You Find That Memorizing Steps and Formulas Is 

Important in Mathematics? Explain. Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Yes, it is essential to 
success in 
mathematics 

“Yes, it is impossible to proceed without 
them” (Brian). “Yes, memorization is 
important for me to remember the steps 
in a process” (Anthony). 
 

10 

Yes, for some things “No, formulas can always be looked up. 
Steps are good to memorize.” (Daniel) 
 

2 

No “No, notes help more.” (Carol) 1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 28 

Questionnaire Responses: When Learning New Math Concepts, What Do You Do To 

Understand the Ideas, Where the Formulas Come From, and Why You Take the Steps 

You Do? Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Explanations “Have someone maybe explain ideas 
more fully. Because I usually cannot 
read, then apply I must work problem 
after taking notes on the idea.” (Kevin) 
 

5 

Practice “Practice to perfection.” (Janet) 3 

Read the book “Read the book.” (Sam) 2 

I do not need to 
understand 

“I don’t need to know where it comes 
from.” (Greg) 
 

2 

Discussion “Discuss with others, ask instructor.” 
(Carol) 
 

1 

No answer (Kenny) 1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 29 

Questionnaire Responses: During Math Class, Do You Like To Work With a Partner or 

In a Group? Why or Why Not? Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Either partner or 
group 

“Yes, chances are someone will have an 
explanation of how to do a problem that 
you can understand.” (Sheila) 
 

7 

Partner only “Partner, it is difficult for me to study in 
a large group.” (Brian) 
 

4 

Alone “I like to work alone. I have to take the 
test alone, so I like to work alone.” 
(Daniel) 
 

3 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 30 

Questionnaire Responses: Do You Like to Get to Know Your Teachers And/or Other 

Students in The Class? Mr. Anderson’s Class 

Responses Sample quotes Number of students 

Yes “Yes, but in a natural way. Not forced 
by the instructor.” (Anthony) 
 

7 

Yes, I like to know 
the teacher 

“Students-not really. Teacher – of 
course, he’s who I must really learn 
from.” (Kevin) 
 

3 

Sometimes “Sometimes it just depends.” (Thomas)  2 

No “Not really.” (Greg) 1 

Note. Thirteen students responded to the questionnaire. The sum of the numbers of students may 

be more than thirteen since some students’ answers could be categorized in more than one 

category. 
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Table 31 

First Five Class Days: Communication Type by Percent of Text.  Mr. Anderson’s Class 

Class period Uni-directional Contributive Reflective Instructive 

June 27 90 10 0 0 

June 28 41 59 0 0 

June 30 66 34 0 0 

July 5 43 57 0 0 

July 7 58 42 0 0 
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Table 32 
Framework of Community, Interactions, and Students’ Ways of Knowing  

 
Domains 

 
Students 

 
Instructor 

Level 1  
Nature of 

mathematical 
knowledge 

 

Certain, one right way to think 
about it. Expresses a need to be 
told how to do the mathematics 
 

Portrays mathematics as certain and 
disjoint from real life. 

Nature of 
learning 

mathematics 

Memorize procedures and expect 
instructor to provide step-by-step 
directions. Learning requires 
listening and following examples. 
Practice to memorize steps and 
problem types. 
 

Demonstrates procedures without reasons 
or connections; may not have made sense 
of the mathematics themselves, and may 
believe students do not need to make 
sense. May give lists of steps and non-
mathematical ways to remember or to 
successfully reproduce procedures.  
 

Role of peers/ 
social norms 

No need to listen to other students, 
it may confuse. 
 

Does the math, evaluates student 
responses as right or wrong. Answers all 
questions and does not encourage 
students to listen to each other.  
 

Relationships Relationships with peers are not 
important, or are only important in 
making the class more 
comfortable. 
 

No intentional development of teacher-
student or student-student relationships. 
No opportunities provided during class 
for students to work together. 
 

Interactions 
related to 

mathematics/ 
Communication 

 

Answers with short answers. 
Responses may be cue-based, 
indicate pseudo-conceptual 
behavior, or memorized 
procedures. Asks questions that 
indicate they are seeking a rule. 
Uses technology to calculate but 
does not reflect on results to see if 
the answer makes sense. May use 
drill software to remember 
procedures and copy examples. 
 

Fosters only unidirectional 
communication. Closed questions include 
funneling. Responses to students’ 
incorrect answers may be to tell them the 
“right” way or remind them of a rule. 
Takes one student’s correct answer as 
evidence the class understands. 

Students’ ways 
of knowing 

 

Indicates silence or absolute 
knowing. 
 

Maintains absolute ways of knowing, 
especially received. 
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Table 32 (continued)  

Domains Students Instructor  
Level 2  

Nature of 
mathematical 

knowledge 

Mostly certain but accepts that 
instructors’ and authors’ 
approaches may differ. 
 

Portrays mathematics as certain, but 
indicates there may be several ways to 
solve the same problem. 
 

Nature of 
learning 

mathematics 

Listen to teacher explanations to 
increase understanding. May 
choose to memorize or understand 
when they practice, depending on 
the difficulty of the mathematics.  
 

Procedural fluency is the goal, explains 
more in an effort to help students 
understand why, however, may permit 
students to memorize if understanding 
is difficult.  
 

Role of peers/ 
social norms 

Listen to other students’ questions 
and the instructors’ answers. 
Students do not volunteer 
explanations and may resist when 
pressed. Students give answers to 
the instructor rather than to the 
class. 
 

Explains students’ answers for the rest 
of the class. Does not press students to 
explain their reasoning or accepts 
procedural explanations. Uses only 
correct student responses to 
demonstrate the math. Mediates whole-
class discussion. 
 

Relationships Getting to know each other makes 
the classroom more comfortable. 
Work in groups when convenient. 
Group work is valuable for 
checking answers or sharing 
knowledge gained from instructor. 
However, ask instructor to confirm 
answers.  
 

Provides opportunities for students to 
work together, but may also provide 
opportunities for students to avoid 
working in groups by maintaining their 
intermediate authority. Provides 
opportunities for students to know 
them. 

Interactions 
related to 

mathematics/ 
Communication 

Asks questions seeking an 
explanation. Only answer closed 
questions or contribute solutions 
when they think they know the 
right answer, but their answers may 
not be clear enough for other 
students to understand. If 
technology is used, may use it to 
illustrate multiple representations, 
but does not reflect on connections 
or meanings in ways different than 
suggested by instructor.  
 

Fosters unidirectional and contributive 
communication by asking students how 
they solved problems, but does not 
make connections between solutions. 
Takes one student’s correct answer as 
evidence the class understands. 
Provides opportunities for students to 
practice new techniques in class and 
receive feedback. 
 

Students’ ways 
of knowing 

Indicates absolute or transitional 
knowing. 

Maintains and affirms absolute and 
transitional knowing.  
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Table 32 (continued) 
Domains Students Instructor 

Level 3   
Nature of 

mathematical 
knowledge 

Sometimes uncertain, accept that 
authorities may have different 
perspectives, recognize there are 
different solution paths to the same 
problem, and that mathematics has 
real life connections. 
 

Portrays mathematical knowledge as 
useful in real life. Encourages multiple 
solutions to problems. Suggests there 
are different approaches and 
perspectives, but does not encourage 
students’ unique perspectives. 
 

Nature of 
learning 

mathematics 

Read textbook and listen to teacher 
to understand but do not critically 
examine and resolve contradictions 
that arise. Strive to understand 
concepts and reasons for steps 
when they solve problems or 
practice procedures. 
 

Develops concepts and connects 
procedures to concepts. Expects 
students to use understanding to solve 
problems they have not been shown 
how to do, but may expect them to use 
instructor’s reasoning.  
 

Role of peers/ 
social norms 

Listen to other students’ solutions 
and share theirs, comparing ideas, 
but may still rely on teacher to 
make final pronouncements of 
correctness. 
 

Uses student contributions and ideas to 
develop math, but still maintains some 
intermediate authority. Provides 
students opportunities to work together. 
 

Relationships Work in groups to listen to others 
and share ideas. Gets to know the 
instructor. 

Fosters own relationship with students, 
offers supportive comments that 
demonstrate they care about student 
learning. Provides opportunities for 
students to work together, but still 
maintains some intermediate authority. 
 

Interactions 
related to 

mathematics/ 
Communication 

Contributes explanations and 
listens to others, striving to 
understand and make connections, 
but still may seek instructor 
authority to determine correctness. 
Technology may provide ways to 
make connections and reduce 
reliance on instructor’s authority. 
 

Fosters contributive communication by 
asking students how they solved 
problems. Provides opportunities 
during class for students to solve 
problems and receive feedback based 
on conceptual understanding. May 
construct an understanding of students’ 
current understanding and offer new 
problems to help them understand the 
concepts.  
 

Students’ ways 
of knowing 

Indicates transitional knowing. Confirms and challenges absolute 
knowing; supports transitional and 
independent knowing. 
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Table 32 (continued) 
Domains Students Instructor  

Level 4   
Nature of 

mathematical 
knowledge 

Uncertain. Students appreciate 
their unique perspective and 
some solution paths may be 
better than others depending on 
the context. 

Portrays math as developed by humans 
throughout history, through discussions 
with others, and as still being developed 
and has real life connections. Encourages 
students to develop their own perspectives. 
 

Nature of 
learning 

mathematics 

Strive to understand concepts. 
Understand and flexibly apply 
procedures. Engages in “doing 
mathematics” and reflects on 
those activities. Strive to 
resolve dissonances. 

 

Develops concepts and connects 
procedures to concepts. Provides 
opportunities for students to engage in 
tasks at a high-level cognitive demand and 
supports implementation at a high level. 
Uses student ideas to develop concepts and 
student thinking to guide instruction. 
 

Role of peers/ 
social norms 

Peers provide ideas to reflect 
on and discuss. Students 
engage in mathematical 
argumentation with each other 
and determine correctness by 
the validity of the argument. 

Expects students to explain reasoning and 
uses focusing to encourage students to 
listen to others. Expects students to 
determine mathematical validity by 
argumentation – does not provide final 
pronouncements of correctness. Fosters the 
sociomathematical norms in Table 2. 
Rejects role of authority. 
 

Relationships Seeks to know peers because 
peers contribute ideas that can 
be used to reflect on; students 
listen to others to challenge 
their own ideas. Seeks collegial 
relationship with the instructor. 
 

Fosters relational community by allowing 
students opportunities to know them, 
providing support for learning, and 
providing opportunities and support for 
student collaboration.  
 

 Interaction 
related to 

mathematics/ 
Communication 

Communicates their 
mathematical ideas and 
critically reflects on others’ 
ideas. If technology is used, it 
is used to make connections 
and verify and test conjectures 
independent of the instructor.  

Fosters reflective and instructive 
communication. If technology is used, uses 
it to foster communication, conceptual 
understanding, exploring, refuting or 
supporting conjectures, making 
connections between multiple 
representations.  
 

Students’ ways 
of knowing 

Indicates independent and 
contextual knowing. 

Challenges absolute and transitional 
knowing, and fosters independent and 
contextual ways of knowing.  
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