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SOURCE APPORTIONMENT OF SPOKANE FINE FRACTION AIR POLLUTION

USING THE SPOKANE HEALTH EFFECTS DATABASE AND POSITIVE MATRIX

FACTORIZATION

Abstract

by Jennifer Lynn Hehl Shaltanis, Ph.D.
Washington State University

December 2006

Chair: Candis S. Claiborn

The Spokane PM database currently contains one of the largest continuous PM2.5

daily mass databases available. Coverage includes, but is not limited to: total carbon,

elemental and organic fraction carbon, particulate ions, and trace element information,

from 1995-2002, taken from an area of Eastern Washington subjected to agricultural,

industrial, urban, and rural pollution. Daily PM2.5 mass samples were analyzed with

several measurement methods: Kevex and Jordan Valley EDX-771 energy dispersive

spectrometers, Instrumental Neutron Activation Analysis, for trace element species; total

carbon by thermal manganese oxidation; total carbon, elemental and organic fractions by

thermal/optical transmittance; sulfate and nitrate by ion chromatography; and ammonium

by colorimetry. The data were modeled to identify pollution sources with the new

Positive Matrix Factorization (PMF) model, version 1.1, released by the United States

Environmental Protection Agency.
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The PMF models revealed seven source features, similar to profiles identified in

earlier work using various sets of the PM2.5 data. PMF analyses using the XRF data

yielded airborne soil, nitrate, biomass burning, chlorine-rich, metal processing, and

vehicle combustion features. INAA data yielded the seventh feature, a Cr-rich feature,

which was associated with elemental carbon. Bootstrapping and t test methods confirm

the features’ mass contributions to the overall ambient PM2.5 concentrations. Airborne

soil was associated with late summer dust events, with little to no carbon. Metal

processing contains organic carbon, whereas the Cl-rich source contained elemental and

light organic carbon. The Cl-rich source determined using Jordan Valley data is confused

with the vehicle exhaust and biomass burning sources, due in part to the lack of a

calibration standard for the instrument. These source features were tied to their specific

industrial sources, which can vary sporadically throughout the study period. Nitrate is

associated with domestic burning and increases in winter, with organic carbon

components. Biomass burning occurred in late fall or early spring, when fields were

burned for future growing seasons, and shares similar feature species with vehicle

exhaust, which was present consistently throughout the entire study period. Both biomass

burning and vehicle exhaust contain elemental and organic carbon; the exhaust exhibited

heavier organic compounds, and biomass burning, mostly lighter compounds.
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CHAPTER 1: INTRODUCTION TO THE SPOKANE DATA PMF MODELS

1.1 Introduction

Air pollution can harm health and welfare of all life on the earth. Minimizing the

exposure of such contaminants to living beings is a necessary task, and to do this task,

scientists need to understand pollutant origins. The United States Environmental

Protection Agency (US EPA) recognizes many pollutants as having significant health

effects, six of these are identified as the National Ambient Air Quality Standards

(NAAQS) criteria pollutants. One of the criteria pollutants, particulate matter (PM), has

been linked to respiratory distress, inflammation of pre-existing respiratory illnesses, and

in some cases mortality (Dockery et al., 1993; Norris et al., 2000). The specific exposure

threats of PM on human health are not clearly understood because of the complicated

relationship between physiology, human activity, and aerosol behavior (Phalen, 1998).

For regulatory purposes, the US EPA sets primary standards for PM and other criteria

pollutants, limits set to protect human health and welfare for the most sensitive

populations. PM can be divided into PM10 and PM2.5, particles of 10 microns or less and

particles of 2.5 microns or less, respectively. PM10, also known as coarse fraction PM,

has a 24-hour primary standard of 150 µg/m3, whereas PM2.5 has both a 24-hour primary

standard of 35 µg/m3 and annual primary standard of 15 µg/m3. PM is the only one of all

criteria pollutants which is heterogeneous in nature, and therefore it is difficult to

characterize. From this point on, unless otherwise specified, PM refers to both size

fractions.
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PM10 and PM2.5 have differing levels of penetration into the respiratory tract.

Most particles up to ten microns in diameter can easily enter the human nasal cavity. The

larger of these particles can be trapped by hair and mucus membranes in the nose; the

particles are effectively immobilized and do not pose a threat to health. The smaller of

these particles can penetrate such barriers and travel as far into the respiratory system as

the lower lungs; recent studies suggest that these intervals may not be the most

representative of the particle sizes that infiltrate the respiratory system and are under

review (Schwartz et al., 1999; Norris et al., 2000).

Eastern Washington is susceptible to violating the EPA primary standard for

particulate matter and the region has been out of compliance more than once (Villasenor

et. al, 2001). Contributing to these violations are weather/climate induced conditions and

anthropogenic activities (Claiborn et. al, 2000). The first of these situations is the high

wind events following dry weather that Eastern Washington can experience. The lack of

precipitation coupled with strong winds can generate windblown dust from agricultural

fields. These particles can remain suspended in the air for long periods; dust loading

dramatically increases ambient PM concentrations. Another condition is cooler weather

stagnation of the air. During fall and winter, the air in this region can become stratified,

creating inversions. These inversions, along with light winds, cause the air to become

stagnant, causing PM to become locally concentrated. PM2.5, or fine fraction PM,

concentrations can increase noticeably during these periods, in part because of the

increased use of wood burning stoves during the cold months. Another condition leading

to high PM levels occurs during post-harvest field burns. Fine PM of an organic

carbonaceous nature can increase as a result of the burning of crop stubble and grass.
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To address the unique pollution and health concerns of Eastern Washington, a

group of air quality and health researchers launched a massive field campaign to collect

PM, meteorological, and health data. Larger and more comprehensive than any of it

contemporaries, this research was a collaborative effort among Washington State

University, University of Washington, Spokane County Air Pollution Control Authority

(SCAPCA), the American Lung Association of Washington, the Mickey Leland Nation

Urban Air Toxics Research Center, and the Harvard School of Public Health. The

purposes of the study were to collect health and air pollution data during an extended

period in the area, analyze the data for connections between health and pollution, and to

potentially identify specific links between pollutants and human health effects.

The overarching goal of this collaborative research is extensive, both in terms of

understanding the nature of air pollution and its detrimental effects on human health.

Several tenant goals have grown out this blanket objective, including the unique

opportunities to characterize long-term shifts in PM pollution, the myriad effects multiple

instruments can have on data measurements, and the vast elemental coverage produced

by multiple measurement techniques. From an air quality research view point, this

database is a goldmine of information, more complete than any database before it, and

can lead to advanced PM source knowledge. The purpose of this thesis is to identify

PM2.5 sources in Spokane, Washington, for the entire study period, based on composite

XRF, carbon, INAA, and ionic measurements. The results of this thesis will serve to

further explain the air quality levels due to PM2.5 in Eastern Washington.
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1.2 Data Collection and Quality

Air quality and meteorological information were taken at a site in north Spokane,

from January 1, 1995 – May 15, 2002. A photo of the site and map of its location are

found in Figures 1 and 2. The choice of parameters measured were EPA criteria

pollutants and any environmental or weather conditions which may influence the nature

of the criteria pollutants. The site where data collection was performed was chosen

because of its downwind proximity to several established sources of air pollution. The

instruments were primarily automated; however, technicians visited the site regularly for

maintenance and quality assurance checks.

1.2.1 Data Collection and Analysis

Data were collected using a suite of instruments and methods. For this thesis,

research is focused on PM2.5 species and the instrumentation used for their

measurements. The instrument capabilities were intended to synergistically build a

composite picture of air pollution in Spokane, Washington, and are listed in Tables 1 and

2. Measurements include the ions: SO 2
4 , NH 

4 , NO 
3 ; and carbon species, including total

carbon, elemental carbon, and five organic fractions. Table 3 shows the coverage of

elements for the EPA Kevex and Jordan Valley Energy Dispersive X-Ray Fluorescence

(EDXRF) instruments, as well as the Instrumental Neutron Activation Analysis (INAA)

method. Instrumental Neutron Activation Analysis (INAA) and XRF overlap in the

majority of their elemental coverage, but INAA uniquely identifies eight other elements

(Sm, Ce, Eu, Hf, Ta, Th, U, and Yb). Included with the ion and carbon species,

instruments account for an overall coverage of approximately 62 species.
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1.2.2 Quality Assurance

Quality assurance practices are essential for ensuring published data are reliable

and the results based on that data are optimal. Several checks were performed to highlight

and address any problematic data. The main tasks performed to improve the quality of the

data were to fill in estimates for missing data and remove or replace questionable data

from within the dataset. PMF can handle some problematic data, but the wide scope of

analyses being done on this dataset requires the data to be in the best shape possible prior

to modeling. Models were run on the different treatments of suspect data, to determine

which protocol best serves the model and the results produced.

1.2.2.1 Missing Data

For particulate elemental carbon, organic carbon, nitrate, ammonium, and fine

fraction mass sampled by the Versatile Air Pollutant Sampler (VAPS) or Tapered

Element Oscillating Microbalance (TEOM), missing data were replaced with the

geometric mean values; corresponding uncertainties were calculated as the standard

deviation for the species concentration plus one-third of the limit of detection for the

species or a root mean square of the analytical uncertainties. XRF and INAA elements

reported either valid data or below detection, and their uncertainties were treated

accordingly prior to entering the database. The missing value substitutions are as follows:

OCECTC  (1a)

 
33

5.0 NOMDLNO (1b)
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 







n

i

i

n

SO
SO

1

2
42

4
(1c)


4

*5.04 NHMDLNH (1d)

5.25.2 TEOMVAPS  (1e)

xxx MDL
3

1
UNC   (1f)








  gravimetrysamplingVAPSUNC 22  (1g)

where MDL is the limit of detection for the specie, TC represents total carbon, EC is

elemental carbon, OC is the organic carbon, NO 
3 , SO 2

4 , NH 
4 are the nitrate, sulfate,

and ammonium concentrations, respectively, VAPS2.5 is the VAPS fine fraction

concentration, TEOM2.5 is the TEOM fine fraction concentration, UNCx is the uncertainty

calculation for the ions, and UNCVAPS is the uncertainty for the VAPS mass. The mean of

the sampling and gravimetric uncertainties used for VAPS is greater than that of the

TEOM, so it was used in lieu of the reported TEOM uncertainty. All of these quantities

were used to assess which samples would be kept in the dataset for PMF analysis and

which cases were to be modified before use.
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1.2.2.2 Below Detection Data

The limits of detection for carbon, ions, and trace elements were determined in

several ways. The limits of detection for elemental analyses were determined differently

for each method. Discussion of how XRF MDLs were derived is provided in Chapter 2,

within the methods for PMF analyses of XRF information. INAA MDLs are detailed in

Chapter 3, where PMF analyses for INAA and XRF are covered. Carbon and ion

detection limits were provided by previous laboratory analyses; if two MDL values were

determined by independent studies, the greater of the two numbers was used, in order to

maximize the resulting calculated uncertainty. The MDL values for carbon are: TCMDL is

2.26 μg/m3; ECMDL is 0.56 μg/m3; and OCMDL is 1.70 μg/m3. MDLNO3 is set at 0.035μg/m3

and the MDLNH4 value used is 0.15μg/m3. No previously derived MDL value was given

for SO 2
4 , so forty per cent of the geometric mean value of the dataset was used. The

geometric mean was used instead of the average because its calculation for uncertainty

produces the largest uncertainty value. These equations and substitutions are a composite

approach based on methods suggested by Polissar et al. (1998, 2001) and previous model

work on this dataset (private conversations with Dr. Eugene Kim, Clarkson University,

and Dr. Astrid Schreuder, University of Washington PM Center).

1.2.2.3 Data Filtering

As Air quality data were collected or analyzed, any equipment or sampling issues

were noted in a flag log file, and blanks were frequently tested for any systematic errors.

These flags are published with the data so users know to use the information with

caution. In addition to tracking filters during handling, the data were scrutinized post-
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analysis to pull out any other suspect points. One test performed was a time series plot of

each specie. These time series highlighted several points for many species as suspicious.

The majority of these of the suspect points had corresponding flags, and were either

thrown out, substituted, or their uncertainties increased.

A comprehensive PM2.5 reconstruction was performed for the Kevex data period

during the collection process, in order to ensure carbon, ionic and trace element

information correctly apportioned PM2.5 mass into its specie constituents. Details of this

reconstruction are given in the Appendix, which show the instrumental methods

reasonably accounted for fine fraction mass by species. Questionable samples accounted

for approximately 4% of the five year period, and were either subjected to increased

uncertainty or elimination. Primary causes for these unreliable samples were filter

contamination, instrumental failure, and/or operator error. Several of these samples were

taken from 1995; as the project matured, researchers gained working knowledge on how

to prevent future problems.

1.3 Source Apportionment Modeling: PMF

Researchers have used several techniques to speciate PM into specific sources, in

order to hypothesize about its origins. Each of these methods is individually important in

identifying the composition of PM; unfortunately, each also has its limitations of

analysis. Given the reality of current analysis techniques, scientists are faced with a

sometimes challenging task of translating analysis data into tangible air pollution sources.

Principal component analysis (PCA) is a technique to assign pollution factors to

the data. PCA methods rely on the patterns found within the data and do not assign



9

factors based on resemblance of data to chemical signatures, a method used by the

traditional chemical mass balance (CMB) approach, such as the study done on this

dataset by Hoffman (2002). Positive Matrix Factorization (PMF) is one successful PCA

method of source apportionment. PMF does not require any pre-existing knowledge of

the pollution sources, only the data itself and corresponding uncertainty. In essence, it

does not recognize the information is air quality data and that the factors are supposed to

reflect certain pollution fingerprints. Because a PMF model does not have internal

nudging to direct the results, a user must make intelligent decisions about how the results

represent pollution sources. PMF has successfully modeled several datasets, ranging from

general air quality studies to particulate matter specifically (Kim et al., 2003; Lee et al.,

1999; Song et al., 2001; Liu et al., 2003; Hien et al., 2004).

PMF is flexible in that it can handle information across a range of conditions.

This model can also accept values very close to zero, which makes it favorable to use

with instruments that have extremely high resolutions. The model does have a

nonnegative constraint, which is suited to the receptor approach. Because the model

concerns itself with pattern recognition and not strictly tied to concentrations, levels

below detection for the instrument can still be incorporated into the model. The assigned

uncertainty for each data point or the entire set can be altered as the user deems

necessary. The preparatory work done on the data and the flexibility of the PMF model

maximizes the amount of data one can analyze, while decreasing the emphasis on those

artificially supplied values. PMF is beneficial in that the user is allowed to make

decisions about data and work around the limitations of the measurement techniques.
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Given these liberties, PMF is still constrained by how well the instruments capture

pollutants or whether they detect them at all.

1.3.1 Governing Equations

The PMF model follows the general receptor modeling approach, which states

that the contribution to pollution by p independent sources to all species in a given

sample can be written as:

ij

p

k

kjikij efgx 



1

(6)

where xij represents the concentration of the jth specie and ith sample, gik is the particle

mass concentration for the ith sample due to the kth source, ƒkj is mass fraction of the jth

specie due to the kth source, eij is the residual for the ith sample of the jth specie, and p is

the total number of sources. To evaluate these values with the model, the data should be

arranged in matrices, with the following equation describing the overall calculations:

X = GF + E (7)

where X represents data in a n x m matrix, G contains n x p source contributions, F is a p

x m source profile matrix, and E is the n x m residual matrix. The array dimensions n, m,

and p, are the number of measurements, elements, and sources, respectively. Further

discussion of these equations can be found in PMF studies by: Henry (1987); Kim et al.

(2003); and Paatero (1997, 2000).
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The governing equations as given can produce an infinite number of solutions,

and therefore the model results are not definite. This problem is common in receptor

modeling, and has been addressed by Henry (1987, 2002); Hopke (1991); Paatero (1997,

2000); and Kim et al. (2003). The normal approach to deal with the non-uniqueness is to

run PMF in such a manner as to minimize an object function, Q(E). The object function is

derived from the uncertainties for the observations and is defined as:
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where gik, ƒkj, and xij are previously defined, and uij is the jth element uncertainty of the

ith sample. This minimization, in concordance with the non-negativity constraint, is

solved in an iterative manner using a weighted least squares calculation. The

minimization scheme is only a guide for the user. Judgment of a best solution should be

based on the results that produce the most realistic picture of pollution for the receptor

site; prior knowledge of an emission inventory or pollution-producing activities is useful

(Hopke, 1991; Paatero, 1997, 2000; and Kim et al., 2003).

A model solution is often not optimized in the first trial and there are several

methods to refine to the algorithm. Model output of the datasets used in this study

indicated slightly negative biases in the residuals so data were nudged by setting the

Fpeak value to non-zero values and the model rerun. The Fpeak option will direct the
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data either negatively or positively in response to a non-zero bias in the computed

residuals (Paatero, 2000).

1.3.2 EPA PMF version 1.1

In 2005, EPA released an interactive form of the model, PMF version 1.1. The

new version is favorable because it reduces the preparation time needed to initiate model

runs, can perform several continuous runs, and has bootstrapping programs to assess

uncertainties in model results. This version has a graphical user interface, or GUI, which

guides the user through the selection of input controls for running the model. It has the

capability of running several iterations with random starting points, which verifies the

robustness of a model. Description of this version are available in the program manual,

by Eberly (2005).

The new PMF version incorporates most of the traditional input parameters,

adjusting model runs quickly and generating more conclusive output. Unlike the

traditional PMF algorithms, the EPA method is based on the multilinear engine (ME), a

multidimensional form of PMF, introduced by Paatero (1999). The premise is similar in

concept: the model attempts to fit equations to measured data, by a system of factors with

estimates and residuals, reducing error by minimizing the deviation of measurements

from actual data, with consideration for uncertainties. The ME approach is more involved

because it allows for greater dimensions of equation arrays. The base equations are as

follows:

 
 


Km

k mkn
mnmmm efeyx

1

(9)
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where the subscript m indicates the number of equations to be solved, xm refers to the

data to be fitted to the linear regressions, ym are fitted values, em are the residuals. The

corresponding fn values are a vector which represent known and unknown factor

elements; this vector essentially corresponds to the scores and loadings in the traditional

PMF (G and F values). Additionally Km corresponds to p in PMF, the number of factors

produced. Nmk elements in Jmk sets represent n indexes of the kth product of the mth

equation; these subscripts would indicate one product of one equation.

The minimization of Q is also more detailed to allow weights to be assigned to

particular m equations. The Q values are based on how deviant the modeled values are

from the actual masses, with consideration for model weights. A best fit approach to

solving this equation is to minimize Q with respect to the vector f. Equations 10, 11a, and

11b detail how ME derives a minimal Q value, according to the following:
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The term wm represents weights assigned in the m equations, and σm, uncertainties for

each equation in the model, which are used to determine wm.



14

PMF 1.1 can handle several formats of data, and can incorporate unique

uncertainty constraints. Its greater ability to manipulate data decreases time between

model runs because adjustments to concentration and uncertainty files can be made

quickly. Its default settings are specifically designed to handle environmental data

(Eberly, 2005). The model is set to run in robust mode, using the error model 12, with an

allowance for a slightly negative concentration, another noteworthy difference from

traditional PMF. Environmental data should be run in robust mode because its dynamic

nature; the robust setting can adjust for sudden changes in variability (Kim et al., 2003).

In running models with the previous version, error model 12 almost unanimously

performed the best. EPA version 1.1 allows the user to choose one of several types of

uncertainty. As with the original form, the EPA version allows for direct point-to-point

uncertainties, which can be useful in treating specific samples. This version also has an

equation form of the uncertainty, which assigns values based on concentration, detection

limit, and some error (Equation 12). The first two inputs are values directly related to the

data. The error can be a calculated value or the modeler’s subjective measure of how well

a specie is captured by instrumental analysis.

2

2

100

%
MDLionconcentrat

error









 (12)

Once the concentration and uncertainty files are read by the engine, a modeler has

an additional opportunity to skew the model away from suspect species. The model

allows for characterizing the strength of each specie as “strong,” “weak,” or “bad.”

“Weak” and “bad” species are downweighted and eliminated, respectively. Adding to all
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of this pre-model setup, the modeler has one last chance to increase the uncertainty of the

whole file, which may help the model to converge and produce a reasonable χ2. This

version of PMF has one limitation over the previous, script version. The Fpeak function

is not included in possible manipulations, so any negative or positive skew in the data

cannot be resolved with this traditional function; however, in running the previous

version, small Fpeak values were used and were secondary in their influence, relative to

other input parameters. Overall, the EPA version 1.1 of PMF is powerful next generation

factor analysis tool which increases the efficiency and intelligence of source

apportionment.

1.4 Thesis Research

Research for this thesis consists of PMF evaluation of the Spokane PM2.5 data,

and is separated into three main emphases: XRF, XRF and INAA trace elements, and

detailed carbon information. Because this dataset is so large, both in terms of period

length and species coverage, source profile details, in terms of species coverage and

changes over time will be discussed, as well as instrumental uniquities that can be

assessed. The results published in the following chapters details these source features in

context of these issues, and provide a complete picture of particulate source features for

Eastern Washington.
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Specie
Measured

Instruments
Used

Sampling
Precision

Analytical
Precision

PM10 Tapered Element Oscillating Microbalance
(TEOM)

2.80 g/m3 0.5 g/m3

PM8 Versatile Air Pollutant Sampler (VAPS) NA ~2 g/m3

PM2.5 1. Versatile Air Pollutant Sampler (VAPS)
2. Tapered Element Oscillating Microbalance
(TEOM)

1.2.80
g/m3

2. NA

1.0.5
g/m3

2.~2
g/m3

Organic
Carbon

1. R & P Series 5400 Carbon Analyzer
2. Thermal Optical Transmittance (TOT) analyzer

NA NA

Elemental
Carbon

1. R & P Series 5400 Carbon Analyzer
2. Thermal Optical Transmittance (TOT) analyzer

NA NA

NO 
3

1. Dionex Model 4000I
2. Dionex Model DX-120

0.14 g/m3 0.05
g/m3

SO4 1. Dionex Model 4000I
2. Dionex Model DX-120

0.19 g/m3 0.1 g/m3

NH4 Technicon automated colorimeter 0.08 g/m3

Trace
elements

contained in VAPS filter samples 2.80 g/m3 0.5 g/m3

Table 1. Data collection Methods/Instrumentation.

Specie Analyzed Instruments used Analytical
Precision

PM8 Mass Gravimetry: Cahn Microbalance Model C-
33

0.5 g/m3

PM2.5 Mass Gravimetry: Cahn Microbalance Model C-
33

0.5 g/m3

PM2.5 and PM8 trace
elements

EDXRF: Kevex EDX-771 energy dispersive
spectrometer

0.1 ng/ m3

PM2.5 and PM8 trace
elements

X-ray fluorescence: Jordan Valley model 0.1 ng/ m3

PM2.5 trace elements Instrumental Neutron Activation Analysis:
WSU Nuclear Radiation Center

0.001 ng/ m3

Table 2. VAPS Filter Analysis Methods/Instrumentation.
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Element Kevex JV INAA Element Kevex JV INAA Element Kevex JV INAA
As X X Sb X X V X
K X X X Sc X X Mn X X
La X X Se X X X Cu X X
Na X X Sr X X X Ga X
Sm X Ta X Ge X
W X X Th X Y X
Au X X U X Mo X
Br X X X Zn X X X Rh X
Ba X X X Zr X X X Pd X
Ce X Yb X Ag X
Co X X X Al X X Cd X X
Cr X X Si X X Sn X
Cs X X P X X Te X
Eu X S X X I X
Fe X X X Cl X X Hg X
Hf X Ca X X Pb X X
Ni X X X Ti X X Mg X X
Rb X X X

Table 3. Elemental coverage by the XRF and INAA methods.
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Figure 1. Location of receptor site. VAPS are located on top of the building, with controls
housed inside the facility. The site is surrounded by a large road, residential neighborhood,
and a shopping district.

Figure 2. Map of Spokane and its surroundings. The industrial section of Spokane is east of
the city center. Farmland is all around the urban section of the city. The interstate traverses
east to west on the south side of the city and several major roads run north to south
throughout the city. The red star denotes the receptor site location.
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Figure 3. Abundance frequencies for XRF and INAA methods. The graphs indicate what fraction
of samples contained mass above the minimum detection limit, per specie.



CHAPTER 2

Determining Sources of Particulate Matter Air Pollution in Spokane, Washington,
with composite XRF Data and Positive Matrix Factorization

This chapter is presented as a paper that has been prepared for publication in a
peer-reviewed journal.
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Abstract

The Spokane Health Effects Study currently contains one of the largest continuous PM2.5

daily mass databases available. Coverage includes, among other things: total carbon,

particulate ions, and trace element information from 1995-2002, in an area of Eastern

Washington subjected to a plethora of agricultural, industrial, urban, and rural pollution.

Daily PM2.5 mass samples were analyzed with several measurement methods, including

but not limited to: the Kevex and Jordan Valley EDX-771 energy dispersive

spectrometers, for trace element species; total carbon by thermal manganese oxidation

and Thermal/Optical transmittance; sulfate and nitrate by ion chromatography; and

ammonium by colorimetry. The data were modeled to identify pollution sources with the

new Positive Matrix Factorization (PMF) model, version 1.1, released by the United

States Environmental Protection Agency. Kevex and Jordan Valley (JV) data were

modeled individually to create both a continuous profile of air pollution as well as

highlight the unique features that each instrument uncovered.

The PMF models revealed six sources, similar to a profile identified in earlier

work using the first three years of data. Kevex and JV models yielded airborne soil,

nitrate, biomass burning, chlorine-rich, metal processing, and vehicle combustion

sources. Nitrate, biomass burning, and vehicle exhaust features yielded the largest mass

contributions, collectively representing over three-fourths of the total source mass. In

general, airborne soil, metal processing, and Cl-rich sources provided less than 10% each.

However, short-term peaks produced individually high PM2.5 masses. Mass contribution

analyses by bootstrapping and statistical t test methods highlight key features in the

instrumental transition as well as changes in pollution over time. Airborne soil was
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seasonally associated to the post-harvest dry climate. Metal processing and Cl-rich

sources were tied to their specific industrial sources, which can vary sporadically

throughout the study period; nitrate was associated with domestic burning and generally

increases in winter. Biomass burning occurred mostly in late fall or early spring, when

fields were burned for future planting, but can share similar feature species with vehicle

exhaust, which is present consistently throughout the entire study period.

Keywords: PMF, source apportionment, XRF, trace elements, PM2.5

2.1 Introduction

Eastern Washington is susceptible to violating the EPA primary standard for

particulate matter and the region has been out of compliance more than once (Villasenor

et al., 2001). Contributing to these violations are weather/climate induced conditions and

anthropogenic activities. High wind events accompanying dry summer weather can beget

atmospheric dust loading and long periods of suspension. During cooler months,

stratification can occur, leading to inversions and stagnation in the air; stagnation,

coupled with wood-burning domestic heat, will concentrate PM2.5 levels. Post-harvest

field burns emit organic and mineral particles into the air (Haller et al., 1999; Kim et al.,

2003). In addition to these unique Eastern Washington attributes are vehicle traffic and

industrial processes in Spokane. Any of these scenarios can pose a potentially unsafe

environment for human health.

In 1995, the Spokane Health Effects Study began to address the unique pollution

and health concerns of Eastern Washington. This research was a collaborative effort
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among the Mickey Leland Nation Urban Air Toxics Research Center, Washington State

University, University of Washington, Spokane County Air Pollution Control Authority

(SCAPCA), the American Lung Association of Washington, and the Harvard School of

Public Health. The purposes of this umbrella study were to collect health and air

pollution samples in the area over an extended period, analyze the data for connections

between health and pollution, and identify specific links between pollutants and human

health effects (Kantamaneni et al., 1996; Norris, 1998; Claiborn et al., 1998; Haller et al.,

1999; Gauderman et al., 2000; Norris et al., 2000; Pope, 2000; Villasenor et al., 2001;

Hoffman, 2002).

This database represents one of the largest continual PM2.5 records available. Its

specie coverage complements its length, due to the numerous instrumental methods

applied, including carbon, ionic, and trace element species. In several of these cases,

more than one instrument was used for the same elements, which increases the likelihood

of producing quality measurements and ultimately characterization of the PM2.5

compositions. With the added benefits of multiple instruments, the database also provides

an opportunity to explore how instrumental differences can affect a source apportionment

model. The primary goal of building the database was to create a bank of information

with which researchers could figure out many aspects of PM; the added benefits of the

anthology would also lead to knowledge regarding instrumental features and long-term

shifts over time.

X-Ray fluorescence (XRF) has been used frequently for analyzing trace elements

(Chow et. al, 1994; Kim et. al, 2003). Trace elements can exist in very small

concentrations in PM2.5 but may have significant effects on health. XRF can provide the
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composition analysis needed with low detection limits and ample specie coverage.

Additionally, samples are unaffected by the XRF process, rendering them reusable for

future analysis if necessary. The XRF method is a valuable tool in furthering the

knowledge of PM2.5 composition.

The purpose of this research was to investigate and determine sources of

particulate pollution using positive matrix factorization, based on major PM2.5

constituents and the full XRF trace element analysis. Previous studies have used only

segments of the database and this work will continue the path of particulate knowledge

for the Spokane Health Effects data by completing the XRF study.

2.2 Methods

2.2.1 Collection and Species Measurement

Collection for the Spokane Health Effects study began on January 1st, 1995, and

ended on May 15th, 2002, with 2692 sampling dates available for specie analysis by

carbon, ion, and trace element instrumentation. Samples were taken over a 24 hour

period, at an ideal flow rate of 15 liters per minute (or an ideal total sample volume of

21.6 m3 per daily sample). Figure 1 shows the PM2.5 collected for the study. Lab and

field blanks were used with every filter preparation and exchange to assess instrument

drift and other operational issues. Four Versatile Air Pollutant Samplers, or VAPS

(Stevens et al., 1993; Sommerville et al, 1994) were used at the receptor site, three for

each 24-hour period and a fourth as a field blank, for an average site visitation of every

three days; in addition to regular site checks, monthly function and hardware checks were

also made. Exposed filters were returned to the laboratory, weighed and stored in a
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controlled environment until evaluation by the analysis instruments. A Tapered Element

Oscillating Microbalance (TEOM) was also used at the site for gravimetric PM data, to

verify VAPS masses (Rupprecht and Patashnick, TEOM series 1400a).

Two XRF instruments were used for trace analysis. The EPA Kevex Energy

Dispersive X-Ray Fluorescence (ED-XRF) instrument was chosen as a primary trace

element sampler, along with a newer ED-XRF instrument manufactured by Jordan Valley

(JV), model 6600AF, which was brought from EPA Region 10 and operated in the WSU

Laboratory for Atmospheric Research. The purpose of using a second instrument was to

shorten the wait time between sampling and analysis, as the Kevex instrument was

backlogged with samples. Using a second instrument would introduce issues regarding

instrument function and differing sensitivities; however these issues were considered

secondary to delaying the generation of species information for apportionment modeling.

To complete the specie analyses, carbon, SO 2
4 , NO 

3 , and NH 
4 , were added to

the trace element measurements. The carbon was measured with the thermal manganese

oxidation (TMO) and thermal optical transmittance (TOT) instruments, while ion

chromatography derived ion concentrations. These species, along the trace elements were

used in PMF analysis because they have been shown in previous Spokane Health Effects

studies to be major constituents of particulate pollution (Hoffman 2002; Kim et al.,

2003). Additionally, PM reconstructions calculated as part of laboratory quality checks

conclude these species, along with trace elements, account for nearly all PM mass.
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2.2.2 Source Apportionment Modeling

This apportionment research was carried out primarily using PMF, EPA version

1.1. The EPA version was written specifically to treat environmental data; thus many of

the settings that modelers have to establish before running the program are set as defaults,

decreasing preparation time. This model is based on the PMF model family released in

the 1990s and was received with acclaim in the apportionment field (Paatero, 1997;

Huang et al., 1999; Lee et al., 1999; Xie et al., 1999; Ramadan et al., 2000; Willis, 2000;

Polissar et al., 2001; Song et al., 2001; Henry, 2002; Paatero et al., 2002; Qin et al., 2002)

The EPA model uses the multilinear engine (ME) algorithm in lieu of the more traditional

PMF2, which relaxes the constraint of nonnegativity in the concentrations. In principle,

negative contribution to PM mass is not logical; small negative values in ME allow more

freedom for PMF to adhere a source profile to the data. The EPA version is also equipped

with more a flexible data format, batch runs using several random points to reach the χ2

minimum, external controls such as uncertainty down weighting and post-analysis

uncertainty bootstrapping, and analysis graphics. Some controls, such as Fpeak, are not

yet available in the EPA program, so the original model was used on the data as well, as a

quality standard of comparison. The results presented below are all produced by the EPA

version, with exception of the model-actual PM reconstructions, based on the original

PMF2 script version.

Kevex and JV data were calculated differently, and adjustments were made to

create data continuity for the PMF model. Jordan Valley data were not reported with

detection limits or uncertainties, but Kevex data contained uncertainty along with
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minimum detection limits (MDLs) (Kellogg, 1994). The JV uncertainties were

calculated, per specie, as follows:

xxx MDL
3

1
UNC  (1)

where UNCx is the uncertainty per sample, and σx and MDLx are the standard deviations

and minimum detection limits for a specie in the JV dataset. Equation 1 was used to

determine uncertainties for SO 2
4 , NO 

3 , and NH 
4 , also used in the model. Using this

equation for uncertainty brings into the uncertainty values instrument function and

sensitivity. Recall that the MDL values are calculated directly from the blank values, an

indirect measure of the instrumental sensitivity. When involving so many instruments, it

is important to recognize and address the underlying instrumental biases in the data.

While the ion uncertainties were calculated in the same manner, their ambient

concentrations were generally high enough not to be considered small source

contributors. The trace elements by nature, however, were more scarce in mass. As

discussed previously, several PMF model settings were tested to ensure a robust source

profile was determined, representative of the true nature of all species involved.

In addition to output differences, the JV detector also began to suffer deterioration

during the analyses, which decreased agreement between the two XRF data, and further

clouded how to build continuity in the data for the PMF model. Because of the detector

problem, MDLs were calculated directly from the data in lieu of instrument function, in

hopes of capturing the additional uncertainty from the hardware problem. MDLs were

taken as the average blank values, per specie; blanks and standards were regularly

included in the analysis, to limit instrument drift and treat detector degradation. Kevex

and JV compare well for many elements (see Table 1). Along with detector consideration
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embedded in the MDLs, two additional corrections were made to the JV data. Kevex was

used as a benchmark by which JV was standardized, so a step change factor was applied

to the JV data. The second correction was applied to correct for the detector shift seen in

standards, as the hardware began to fail. Both corrections were made per specie, not as

general blanket multipliers, and were meant to treat superficial influences, not alter the

source-inspired variability.

As with any dataset, the information used in this study is limited by instrumental

imperfections and assumptions. An important consequence of using an equation to

determine uncertainties in lieu of instrument-derived uncertainties is that it can decrease

variability and makes the job of a model more difficult to identify the origin of the

pollution. Instrumental corrections can also inhibit a model’s ability to separate variation

due to pollution sources from background noise. Use of multiple instruments often

introduces abrupt changes in data behavior. All of these design choices impose external

influence on what should be raw pollution data. In spite of the inherent issues with using

several instruments with varying capabilities, the methods set forth in this study have

provided unique apportionment information, because of the uniquely large continuous

PM mass and species data history, and particular strengths of more than one instrumental

method and how they affect one another.

2.2.3 Post-PMF Analyses

A series of bootstrap PMF programs were run after the main PMF model was

selected, to determine mass contributions from each source feature. The bootstrap

program provided in the EPA PMF model characterizes the uncertainties associated with
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the derived profile solution. Output indicates the confidence intervals for each source

mass contribution, as well as the amount of variation explained for each specie in these

source features. In lieu of using the given Kevex-JV data group split, data were separated

into five smaller groups. Using smaller groups of data would help track any changes in

the profiles, which could be due to shifts in the feature contributions over time, or

changes due to the instruments. Included in these datasets were the actual PM2.5 mass

measurements, with mass uncertainty down weighted thirty fold. The strong increase of

uncertainty would allow the PM2.5 masses to show up in the source feature profiles

without affecting their structure. The smaller groups (485-563 samples each) were

analyzed with PM2.5 mass by the bootstrap feature to characterize source feature mass

inputs to the overall PM2.5, while taking into account gradual changes in features over

time, as well as instrument shifts. The increased mass uncertainty effectively eliminates

PM2.5 influence on the source profile, and the net outcome signified how PMF separates

mass into its constituent features. The 95th percentile PM2.5 mass source uncertainties

were used as ranges of variability in mass contributions for each source feature and

helped qualify the overall Kevex and JV profiles.

In addition to bootstraps, independent t-tests were performed on the five

subgroups, to further clarify whether the subsets of data show any temporal or

instrumental anomalies beyond natural variations. The base information for these tests

originated from variances determined from the daily source masses, as well as variances

estimated by the 5 and 95th percentile confidence intervals produced by bootstrapping.

Ten tests were conducted for each source feature (all pair combinations), and the primary

hypothesis was whether average mass contributions for a given source by one data group
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was similar to that of another data group. A 95% confidence interval was the guideline,

and the following equations were used to verify or disprove the hypothesis:
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are the pooled standard variance, estimated variance of

the difference, and standard error of the difference. If the hypothesis is true, then the

range of values calculated should include 0; that is, the expected difference in averages

should show similar average masses, after consideration for variability. The t value

chosen was 1.96, based on a large sample size and confidence interval of 95%.

2.3 Results and Discussion

Based on previous work on the Spokane Health Effects study, it was hypothesized

the model would be optimized with 6-8 factors, using the following species: TC, NO 
3 ,

SO 2
4 , NH 

4 , Si, Cl, K, Ca, Mn, Fe, Zn, Cu, Br, and Pb. Species were chosen because of

their relative abundance and previous research indicating significant particulate

contribution. Figure 2 shows which species exhibit concentrations well above detection

level. Figures 3a and 3b show continuous data between the two instruments for the

chosen species; the spikes roughly halfway through the data represent the transition
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between Kevex and Jordan Valley. If too many factors are chosen, actual χ2 would be

smaller than expected χ2, residuals may have a positive or negative skew, and one or

more of the source features would not be identifiable. If too few factors are chosen, χ2

may be too large, a significant proportion of the variation would not be explained, and

poor correlation between the measured and model generated masses would result.

In spite of the corrections made to the JV data, initial models using the entire

combined Kevex-JV dataset did not produce reasonable PMF source features. Both DOS

and EPA version models could not effectively derive more than four of the original

source features, and much of the variation was left unexplained. Modeling the data as two

independent sets provided the clearest and representative source profile for the Spokane

data.

2.3.1 Kevex and Jordan Valley PMF Models

PMF was run on Kevex data, analyses spanning 1/1/1995-3/31/1999, and JV data,

from 4/1/1999-5/15/2002. The Kevex model relied on 1456 samples, approximately 94%

of available sampling dates. Of the 6% eliminated, many were found within the first year,

and were due to instrumental, contamination, or other operational errors associated with

establishing a new sample collection mission. The Jordan Valley dataset was comprised

of 1130 samples approximately 99% of available dates. The PMF models were run with a

choice of factors ranging from five to ten, with six factors producing the most physically

realistic results. PMF model settings were mostly defaults, because the EPA version is

designed to receive environmental data, and the Kevex data did not display any abnormal

distributions or instrument-induced problems. Initial work using the original PMF model,
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in which error model, uncertainty, Fkey, Fpeak, and factor number settings were

modified to test robustness, support these default choices.

The six factors produced yielded reasonable correlation scores between models

and actual mass concentrations, with maximum R2 values of 0.77 and 0.72, for Kevex

and Jordan Valley, respectively. Figures 4, 5, and 6 show the PMF generated PM2.5 data

versus the VAPS-TEOM measured fine fraction mass. Agreement between the model and

actual masses decreases with increase in mass. This spread emphasizes the need for a

large dataset; the influence of a single comparison between model and actual data would

lessen with a greater number of comparisons.

The six source features – vehicle exhaust, a chlorine rich source, airborne soil,

biomass burning, metal processing, and nitrate – generally agree with previous research

on this dataset (Hoffman, 2002; Kim et al., 2003; Schreuder et. al, 2006). The work by

Hoffman was a chemical mass balance study done for a subset of the database and served

primarily as a starting point for identifying major pollution sources. The work by Kim et.

al was a PMF study on the first three years only of carbon, ion, and Kevex XRF data, and

the Schreuder research was an epidemiology study using the entire time period. While

Schreuder et. al used all years of the database, simpler instrumental adjustments were

made between XRF instruments, other trace element data was used, and the focus was

primarily on the epidemiology aspects. The Kim and Schreuder studies concluded

additional sources, specifically sulfate, a specie which is tied into other sources for this

study. For Schreuder et. al, As-rich and marine sources were also found, based on trace

element data from another method. Among the three PMF studies, the corresponding

sources agree in structure and generally in mass contribution. The bootstrap uncertainty
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program performed on the model run chosen shows much of the variation is effectively

explained by the six factors presented here. The original version used to calculate mass

reconstruction also optimized the model with a choice of six source features, using the

“iterative least squares” error model (EPA default), and a minimal positive Fpeak value.

The nitrate source feature is seen in Figure 7, and is comprised of NO 
3 , NH 

4 ,

SO 2
4 , carbon, crustal elements, and Br. Nitrate can be due to a secondary formation in

the air; that is, its parent species are the pollutants emitted into the air. One can see

similarities in the presence of carbon, Pb, and Zn, with the addition of crustal elements to

the nitrate source feature. The nitrate source feature may be a second generation source

feature of vehicle exhaust combined with airborne soil. Production of this feature is fairly

consistent year to year, but increases during the warmer months, in congruence with the

nature of NO 
3 formation from NOx. Despite this formation process, nitrate is still

considered a unique feature, because it appears independently of other source features,

over time, and in composition. Nitrate, seen in Figure 7, shows the primary markers for

this feature: nitrate, sulfate, crustal elements, Pb, and Br, a composite of soil and vehicle

reintroduced into the air. Because Br is much higher than in Kevex, and only shows up in

two features, it may be tied to Pb which is related to soil and vehicle exhaust.

Metal processing, seen in Figure 8, is similar to the chlorine rich source feature in

that it is comprised, by relative specie contribution, of one significant specie. Nearly all

of the variation in copper in the Kevex and JV datasets is accounted for in this feature.

Supporting this conclusion are the patterns in the temporal analysis. By season and day of

week, this feature seems to remain relatively constant. Looking at the year, however, one

can see a noteworthy rise and fall for 1997. Coupled with that pattern are several peaks in
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the time-series plot, both of which agree with notion of increased and decreased

production at an industrial plant. The industrial processing shows strong agreement with

Kevex, and is seen in Figure 8. The primary input is copper, with secondary inputs from

carbon, ions, and some crustal elements.

Biomass burning is another common particulate source feature for Eastern

Washington (Figure 9). The high levels of carbon and K, both in relative source feature

and specie mass, suggest combustion of agricultural materials. Consistent input for every

year, but seasonal peaks in Fall and Winter (which corresponds to biomass burning)

support in time, what the species suggest in content. Pb and Br may be found in the

ground or could be debris from farming equipment. Biomass burning, seen in Figure 9,

has significant amounts of Br, K, carbon, SO 2
4 , NO 

3 , NH 
4 , and crustal elements. The

profile agrees with Kevex, except that it appears to include other types of combustion

(vehicle and municipal). Seasonal analyses, however, show similar peaks in cool months,

and fairly consistent emission by year.

The chlorine rich source feature has a prominent Cl component, with secondary

contributions by ions and carbon, indicating a high heat combustion feature. Figure 10

shows this feature. The municipal incinerator in Spokane emits chlorine, nitrates,

sulfates, and carbon. The JV chlorine rich feature does not have as clear a profile as for

the Kevex data, containing more geological elements than the earlier data. Both XRF

models show that the cooler months appear to have more concentrations by this feature.

Increased loading of solid waste during fall and winter could be the reason for increased

particulate loading, or meteorological conditions may enhance the loading at the receptor

site. Concentrations are fairly consistent from week to weekend days, suggesting a
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continual input of fuel. This source feature has a few episodes of extremely high relative

contributions to PM2.5 which may be of epidemiological concern. The JV data suggest an

increase in overall emissions in the later years, which may be due to increase solid waste

loads to the incinerator.

Vehicle exhaust is another common source feature of PM2.5. The presence of Pb,

Zn, carbon, and sulfate confirm this type of combustion. Figure 11 shows the source

feature as well as the temporal analysis. JV leaves out Zn and adds K in this source

feature, possibly due to different sensitivities of this trace element for the two instruments

or confusion of combustion types. The JV source feature also decreases input of SO 2
4 ;

sulfate standards were performed less frequently at the end of data collection, which may

have influenced concentrations. Some crustal elements also occur in this source feature,

but are, by relative specie contribution, small. These soil constituents may get tied into

exhaust and carried downwind to the receptor by vehicle interaction with road surfaces.

By year, traffic volume-induced pollution appears consistent, with a small dip in 1997

and rise in 1999, and small seasonal increases in winter. This particulate feature is

slightly more prominent during the work week, suggesting primary emissions may be due

to professional commuters in lieu of weekend traffic.

Airborne soil is a common source feature of particulate pollution throughout an

entire calendar year and the entire study, with significant seasonal fluctuations. Figure 12

shows the source profile and temporal analysis for this feature. Crustal elements are

prominent, both in relative feature and specie mass, while combustion and ion species are

less abundant, relative to their overall specie contribution. One can see the increase of

this feature in the summer months, corresponding to the dry, hot conditions Eastern
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Washington experiences during these months, which may aggravate PM2.5 levels.

Looking at the overall PM2.5 concentrations from 1995-2002, of which airborne soil is a

major component, the levels appear consistent throughout the study.

Overall, XRF data maintain the basic structure of the pollution features previously

identified (Hoffman, 2002; Kim et al., 2003). Lack of a distinctive sulfate source feature

is due to sulfate emulating carbon, in that it is present in all features. With the

improvement of pollution control strategies, sulfur combustion products may occur more

equally among all combustion features and not in a single concentrated process, a feature

that could also have affected the entire Kevex period (previous studies only modeled the

first three years of Kevex data). The differences in JV and Kevex models are likely due

the detector problems of the JV instrument and assumptions made about MDLs values

used in assigning uncertainty.

2.3.2 Validation of the Source Features with bootstrap and t tests

Bootstrap PM2.5 mass uncertainties and the corresponding mean contributions,

given in Table 2, highlight instrumental and temporal effects. The first values in Table 2

are the means, in terms of µg/m3 and per cent, and the parenthetic values are the limits of

variation, for the 5% and 95% confidence intervals. Table 3 shows the same results for

samples containing the highest twenty per cent masses, samples of most concern for

regulation. At first glance, it may look as though the more problematic Jordan Valley data

dominates Kevex at assigning contribution to PM2.5 by feature; however, recall that JV

data have uniform uncertainty, limiting the variation that PMF would use in modeling.

Table 4 shows the Pearson correlations for source features and species, values which
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clarify the relationship among the PM2.5 constituents. Understanding the nature of the

source feature is a combination of the contribution to mass by each feature as well as

understanding how the species interact.

The ranking of the features and the mean mass contributions may be more useful

to see how the groups compare to one another. Airborne soil seems to have the overall

smallest uncertainty. Soil is determined by several, large trace element quantities, so its

structure is not difficult for PMF to capture, as is seen by the significant positive

correlations to several crustal elements. For Kevex, metal processing and Cl-rich

incineration also have relatively small uncertainties, due to their unique presence in their

respective features. (Note also that these features have high correlations with single

specie contributors.) JV shows similar attributes for metal, but not for Cl. Even with all

the corrections made, JV had trouble accurately characterizing Cl; detector loss indicated

a considerable shift in raw output data, which has affected the PMF profile. Uncertainties

were amplified by several factors in an attempt to force a separation between Cl and the

exhaust markers, but no appreciable effect was observed. Another possible influence

would be that the Jordan Valley did not have a calibration standard available for Cl.

While an XRF measurement may have seemed reasonable in the raw concentration

output, relative to its fellow trace elements, Cl values may be inaccurate. In spite of the

noted problems, the model attempts to separate Cl (with some exhaust markers) into its

own source feature, a validation of the Kevex data and overall source feature. Vegetation

and nitrate have larger uncertainties because they are subject to seasonal and short event

emission increases and decreases. Unlike the other combustion sources, vehicle exhaust

should have smaller uncertainties because of its consistent emission; however, a temporal
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shift in pollutant composition, notably Pb, has changed the source profile over time,

affecting the PM2.5 estimate. The PM2.5 bootstraps suggest that seasonal and shorter term

source features can be more unpredictable in their PM contributions, while source

features with strong markers are easier to characterize effectively.

Mass contributions as reported by Kim et. al and Schreuder et. al generally agree

with the results found in this study. The Schreuder and Kim studies, along with these

results indicate similar rankings of mass contributions for vehicle exhaust, biomass

burning, metal processing, and Cl-rich environments. The biomass burning and vehicle

exhaust were among the highest contributors for PM2.5 mass, while metal and Cl-rich

environments yield the lowest mass (the Schreuder work did not conclude any significant

Cl). These results agree strongly with Kim et. al regarding airborne soil, while Schreuder

et. al contend a higher mass donation. The latter work also indicates a fairly high standard

deviation; different criteria for eliminating abnormally high PM samples could be

affecting the PMF models in this case. For nitrate, this work concludes a strong nitrate

mass input, whereas the prior publications indicate more moderate masses. This

discrepancy could be due to interference of Cl-rich mass into the nitrate source, in the

later, Jordan Valley data.

The t test results were useful in highlighting both temporal fluctuations and

instrumental variations in source feature behavior. Table 4 shows which group tests

yielded proven and failed hypotheses for agreement between group averages. As

previously mentioned, the JV detector began to degrade at the end of the study, slowly

shifting elemental measurement. The t test hypotheses failed in several comparisons of

the second JV dataset to other groups. The first and second Kevex groups did not
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correspond as well to other groups as did the third Kevex group. Reviewing the bootstrap

intervals (Table 2), a much larger variation was attributed to biomass burning (the largest

variation within the whole study period), suggesting a lot of mass variation was captured

by agricultural activities. Isolating so much of the variation By feature, Cl-rich, metal

processing, and nitrate had the highest incidence of passed t test hypotheses. These

source features are marked by exclusive species, which are easier for the model to

distinguish. Biomass burning and vehicle exhaust source features share several common

species; airborne share similarities with crustal elements, and like biomass burning, can

vary by season.

2.4 Conclusions

Eastern Washington is susceptible to particulate matter pollution violations, and

therefore correctly modeling the source features is essential in remedying the problem.

PMF models using a suite of XRF, ionic, and carbon species have found six definite

source features of pollution: motor vehicle combustion; chlorine-emitting combustion,

from the municipal incinerator; biomass burning, from agriculture; airborne soil, from

agriculture, traffic, and climate; metal processing, due to a downwind metal smelter; and

nitrate, from secondary processes associated with other source features. The Kevex and

Jordan Valley data treat the features somewhat differently as separate datasets; however,

the same markers can be found in these results and agree with earlier work. Kevex

produces slightly more defined profiles, due to the longer time period and reliable

instrument. In spite of the instrumental failures, the Jordan Valley model shows that the

present and previous Kevex analyses produce a correct, realistic profile of Spokane
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particulate pollution. The discontinuity suggests that more work needs to be done on

resolving the instrumental differences in species studied, either revisiting the correction

factors or using companion trace elements analyses as profile standards for JV. Future

work will include running PMF with carbon, ion, XRF data with more trace element

instrumental analyses data, as they are completed. All of these projects will be performed

with the intent of resolving the most accurate, representative picture possible of Eastern

Washington particulate matter air pollution.
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Minimum Detection Level UncertaintyXRF
Element Kevex JV Kevex JV

Si 0.0084 .0275 0.0499 0.1126
Cl 0.0050 .0161 0.0045 0.0245
K 0.0066 .0025 0.0099 0.0299
Ca 0.0094 .0006 0.0079 0.0124
Mn 0.0008 .0013 0.0008 0.0020
Fe 0.0008 .0069 0.0166 0.0374
Cu 0.0008 .0001 0.0031 0.0021
Zn 0.0010 .0004 0.0018 0.0040
Br 0.0006 .0007 0.0006 0.0011
Pb 0.0016 .0019 0.0015 0.0023

Table 1. Instrumental limits of detection (MDL) for the Kevex and Jordan Valley XRF.
Decrease in sensitivity in detection limits for JV data is accounted for with increased
uncertainty values.

Kevex Data Jordan Valley DataPM2.5

Source 1/1/95-5/25/96 5/26/96-11/10/97 11/11/97-3/31/99 4/1/99-10/28/00 10/29/00-5/15/02
Airborne

Soil
1.06 / 9.70
(0.89; 1.16)

0.53 / 5.0
(0.00; 0.665)

0.49 / 4.60
(0.07; 0.61)

1.71 / 19.9
(1.65; 1.86)

1.07 / 10.5
(1.01; 1.14)

Nitrate 2.96 / 27.0
(2.61; 3.46)

2.31 / 21.5
(2.09; 2.57)

1.81 / 17.0
(1.56; 2.07)

1.78 / 20.7
(1.63; 1.92)

1.66 / 16.4
(1.59; 1.74)

Cl-rich 0.905 / 8.20
(0.81; 1.04)

0.66 / 6.20
(0.60; 0.73)

0.12 / 1.00
(0.09; 0.12)

1.19 / 13.9
(1.13; 1.301)

4.70 / 46.1
(4.56; 4.81)

Metal
processing

0.55 / 5.00
(0.48; 0.60)

0.95 / 8.90
(0.85; 1.01)

0.44 / 4.20
(0.40; 0.49)

0.50 / 5.82
(0.47; 0.60)

0.40 / 3.92
(0.34; 0.42)

Biomass
burning

3.71 / 33.8
(3.33; 3.87)

2.66 / 24.9
(2.42; 2.88)

5.30 / 49.8
(5.10; 5.42)

1.04 / 12.1
(0.87; 1.06)

1.36 / 13.3
(1.26; 1.42)

Vehicle
exhaust

1.81 / 16.4
(1.52; 2.00)

3.60 / 33.7
(3.21; 3.78)

2.48 / 23.3
(2.37; 2.60)

2.37 / 27.6
(2.09; 2.58)

0.98 / 9.60
(0.59; 1.06)

Mass
Total

11.0 10.7 10.6 8.59 10.2

Table 2. Mean contributions and bootstrap confidence intervals for source features, for
each PMF bootstrap subset. Leading numbers are mean PM2.5 mass for each feature, in
µg/m3 as well as per cent, relative to overall source feature mass; parenthetic numbers are
5% and 95% bootstrap confidence intervals, respectively.



46

PM2.5

Source
INAA-Kevex INAA-JV

Airborne
soil

1.54 / 7.00
(1.35; 1.66)

1.85 / 9.83
(1.72; 1.97)

Nitrate 3.08 / 14.0
(2.52; 3.36)

2.65 / 14.1
(2.01; 2.93)

Cl-rich 1.21 / 5.50
(1.05; 1.63)

2.56 / 13.6
(2.39; 2.73)

Metal
processing

1.28 / 5.80
(1.10; 1.52)

0.38 / 2.00
(0.32; 0.44)

Biomass burning 8.95 / 40.6
(8.22; 9.71)

8.03 / 42.7
(7.87; 8.28)

Vehicle
exhaust

5.99 / 27.2
(5.20; 7.78)

3.35 / 17.8
(3.08, 3.88)

Mass
Total

22.05 18.82

Table 3. Mean contributions and bootstrap confidence intervals for source features, for
each PMF bootstrap subset, for the upper fifth mass fraction. Leading numbers are given
as mean PM2.5 mass / per cent of total source mass for each feature, in µg/m3; parenthetic
numbers are 5% and 95% bootstrap confidence intervals, respectively.
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PM2.5 Source
K1-
K2

K1-
K3

K1-
JV1

K1-
JV2

K2-
K3

K2-
JV1

K2-
JV2

K3-
JV1

K3-
JV2

JV1-
JV2

Airborne soil X X
Nitrate X X X X
Cl-rich X X X X

Metal processing X X X X X
Biomass burning X X X
Vehicle exhaust X X X

Table 5. Independent t-tests for determining whether PMF derived contributions are
representative of one another. An “X” indicates that the t score verified the hypothesis
that one group is similar enough to another to representative of one another. The null
hypothesis could be due to natural variability in the source features (such as strong source
emission events during one time period), or instrumental differences, such as step
changes between Kevex and Jordan Valley, or detector degradation in Jordan Valley.
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Figure 1. Fine fraction PM for Spokane, WA, from 1/1/1995 – 5/15/2002. Notice the
regular peaks in PM2.5 corresponding to summer time dust events and winter time
combustion.
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Elemental Abundance, as Analyzed by Kevex and JV XRF
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Figure 2. Abundance frequency for Kevex and Jordan Valley instrument analyses on
Spokane Health Effects data. This abundance helped determine which species were fit for
PMF modeling.
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Figure 3a. Time series plots for XRF elements analyzed by PMF. The maxima
lines in the middle of the graphs mark where Kevex and Jordan Valley meet.
Notice the changes in data vary by species, some nearly seamless and others are
more noticeable.
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Figure 3b. Time series plots for XRF elements analyzed by PMF. The maxima
lines in the middle of the graphs mark where Kevex and Jordan Valley meet.
Notice the changes in data vary by species, some nearly seamless and others are
more noticeable.
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Figure 4. PMF-generated PM mass for Kevex compared to the actual mass measured by
VAPS and TEOM instruments. The degree of correspondence is good, especially for
lower concentrations.

Figure 5. PMF-generated PM mass for Jordan Valley compared to the actual mass
measured by VAPS and TEOM instruments. The degree of correspondence is good,
especially for lower concentrations.
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Figure 6. A comparison of PMF-generated PM mass for the combined Kevex and Jordan
Valley dataset, to actual mass measured by VAPS and TEOM instruments.
Correspondence is fairly good, especially for lower concentrations. Data fan out more
noticeably here, indicating some disagreement between Kevex and Jordan Valley.
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Figure 7. Nitrate for Kevex (top) and JV (bottom) models.
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Figure 8. Metal processing for Kevex (top) and JV (bottom) models.
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Figure 9. Biomass burning for Kevex (top) and JV (bottom) models.
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Figure 10. Cl-rich source for Kevex (top) and JV (bottom) models.
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Figure 11. Vehicle exhaust for Kevex (top) and JV (bottom) models.
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Figure 12. Airborne soil for Kevex (top) and JV (bottom) models.



CHAPTER 3

PMF-derived PM2.5 Sources in Spokane, Washington, with emphasis on Trace
Metals Analysis

This chapter is presented as a paper that has been prepared for publication in a
peer-reviewed journal.
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Abstract

Data from the Spokane Health Effects Study were analyzed for several trace elements,

using the Kevex and Jordan Valley EDX-771 energy dispersive X-ray fluorescence spectrometers

(XRF) and Washington State University’s Instrumental Neutron Activation Analysis (INAA).

Pollution samples from 3/1/1996-9/10/2001 were amassed by Spokane Health Effects Study,

currently largest of its kind, and analyzed by the trace element methods. Data were modeled to

identify particulate sources with Positive Matrix Factorization (PMF), Environmental Protection

Agency version 1.1. 20 species chosen for source apportionment analysis were: total carbon,

NO 
3 , SO 2

4 , NH 
4 , As, Br, Ca, Cl, Co, Cr, Cu, Fe, K, Mn, Pb, Sb, Sc, Si, and Zn.

PMF analysis models were performed on INAA alone as well as INAA-XRF composite

datasets. An initial INAA model with carbon and ionic species was not sufficient to resolve most

components of the profile. INAA data were grouped with Kevex and Jordan Valley data, by date,

and evaluated with PMF using five to nine sources. The analyses revealed seven identifiable

sources of air pollution: airborne soil, metal processing, biomass burning, vehicle exhaust, nitrate,

and Cl-rich, and Cr-rich sources. These sources agree with previous, smaller studies using

Spokane Health Effects data, with exception of the Cr-rich and Pb-rich sources, features uniquely

characterized by these composite groups. Bootstrap analyses clarify the strengths of these sources

on the overall fine fraction load. INAA and XRF data together have provided an enhanced

temporal and instrumental analysis of the Spokane, WA air pollution profile.

Keywords: PMF, source apportionment, XRF, INAA, trace elements, PM2.5
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3.1 Introduction

Fine fraction particulate matter, PM2.5, stems from several sources of pollution,

with potential to cause a variety of potential health problems (Dockery et al., 1993;

1994). Chemical composition can vary and is unique for each locale. Species can be

associated with particle size and can have various influences on health. The current

National Ambient Air Quality Standard (NAAQS) for fine fraction PM has 24 hour and

annual limits, which are 35 and 15 µg/m3, respectively, and are based purely on total

concentration, not composition specific masses.

Health studies indicate that basing standards on mass concentration alone is

insufficient to improve the atmosphere for general health (Rizzio et al., 1999; Green et

al., 2002), and that health effects could be more accurately determined by PM

composition. Epidemiology studies have associated increased respiratory distress with

more prominent pollution particles, such as carbon and metals (Ghio et al., 1992, 1996;

Norris et al., 2000; Aarnio et. al, 2005). Ecological studies have shown that particles of

certain types can have varying degrees of damage to vegetation and indirect effects on

climate; ecological distress alone is a serious environmental problem, but it can, in turn,

have detrimental effects on human health (Dailey et al., 1997; Grantz et al., 2003).

Research has turned from studying overall PM mass to the composition of PM, in an

attempt to more accurately characterize what level of what type of PM is safe for human

health and welfare.

Spokane, WA, is a medium sized city, nestled in the Eastern Washington hills

surrounded by diverse agricultural lands with a moderate climate, and a history of
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moderate air pollution. The blend of urban, industrial and farming environments in the

region produce a variety of air pollution issues. Historically, Spokane has experienced

episodes of PM2.5 exceeding the EPA standards (Villasenor et al., 2001). Windblown dust

during the dry summer and fall and stagnation during fall and winter, as well as continual

occurrence of vehicle combustion and industrial processes, can be major contributors to

elevated PM2.5 concentrations. The Spokane Health Effects Study compiled a massive

pollution and health database for the 1995-2002 period, and was intended to provide

insight to the sources of air pollution and associated health effects (Kantamaneni et al.,

1996; Norris, 1998; Claiborn et al., 1998; Haller et al., 1999; Norris et al., 2000;

Villasenor et al., 2001; Hoffman, 2002).

Instrumental Neutron Activation Analysis, or INAA, effectively appraises

particulate concentrations because of its extreme sensitivity, proven reliability, and range

of elemental coverage. The low detection levels and coverage enable researchers to test

for several trace elements not available with other methods. Of the various instrumental

methods used in the Spokane Health Effects Database, INAA can identify 28 elements in

this database. Unlike other studies performed on the Spokane dataset, INAA adds

valuable details about unique species, which may increase knowledge about particulate

sources. Its many benefits to particulate identification are well known; INAA has been

used in numerous trace element analyses worldwide (Landsberger and Wu, 1995; Rizzio

et al., 1999; Farinha et al., 2001; Suarez et al., 2002; Cao et al., 2002; Almeida et al.,

2003; Bem et al., 2003).

The Spokane Health Effects study was a collaborative effort among the Mickey

Leland Nation Urban Air Toxics Research Center, Washington State University,
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University of Washington, Spokane County Air Pollution Control Authority (SCAPCA),

the American Lung Association of Washington, and the Harvard School of Public Health.

Among its extensive objectives to assess air pollution and its effects on human health,

one major goal was to amass PM data, for a long period of time using several

measurement techniques, in order to create an exhaustive, long-term PM dataset. The

purpose of this research was to create a more complete view of the particulate pollution

sources in Eastern Washington.

Previous research on the Spokane Health Effects data has involved only subsets of

the study period or instrumental analyses. Building on prior work using trace analysis by

X-Ray Fluorescence (XRF) and Positive Matrix Factorization (PMF), this research was

intended to enhance knowledge of trace elements and particulate sources. Previous

studies have successfully used INAA and XRF analyses in concert to resolve pollution

data (Bradley et al., 1995; Farinha et al., 2001; Almeida et al., 2003; Graney et al, 2004).

This research has used INAA, XRF, carbon, and ion analyses as part of a larger study to

resolve particulate sources using a more complete piece of the vast PM dataset.

3.2 Methods

Filters were collected from January 1st, 1995- May 15th, 2002, using a Versatile

Air Pollutant Sampler, or VAPS (Stevens et al., 1993; Sommerville et al., 1994). Quartz,

polytetrafluoroethylene (Teflon), and Nucleopore filters were exposed for a 24 hour

period, from midnight to midnight. Filters were kept at standard conditions before and

after exposure in desiccators before and after sampling, and quartz filters were purified of
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any carbon contamination before exposure by baking them for several hours above 800ºF.

Pre- and post-exposure weights were used to calculate VAPS masses. VAPS were

regularly checked for leaks, consistent flow rates, and other hardware problems; in

addition, VAPS masses were compared to data collected by a collocated Tapered

Element Oscillating Microbalance (TEOM) instrument (Rupprecht and Patashnick,

TEOM Series 1400a) for any suspicious samples. In previous research using only XRF

trace element, the entire data period was used, with replacements accounting for

approximately 2.5% of samples; replacements here would be less than 2.5%.

Samples included in this study were analyzed for carbon, SO 2
4 , NO 

3 , NH 
4 , and

trace elements. Carbon was measured with Thermal Manganese Oxidation (TMO) and

Thermal Optical Transmittance (TOT), for total carbon and carbon fractions. Sulfate and

nitrate were determined via ion chromatography of extracted quartz filter particles, and

ammonium ions were extracted from quartz filters with citric acid and measured with

colorimetry. Trace elements were analyzed by three methods, the EPA Kevex Energy

Dispersive X-Ray Fluorescence, or ED-XRF, instrument in Research Triangle Park, NC,

the Jordan Valley ED-XRF instrument operated at WSU Laboratory for Atmospheric

Research (LAR), and Instrumental Neutron Activation Analysis through the WSU

Nuclear Radiation Center (NRC).

Trace element data were taken from the measurement output and formatted for

PMF analysis. Trace element data were reported in terms of mass per square centimeter

or per filter and converted to mass concentrations, using the VAPS flow volume. The

Kevex instrument has clearly defined minimum detection limits (MDLs), as reported by

Kellogg (1994), as well as uncertainties. Uncertainties for INAA were published with
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concentration, but MDLs were not clearly defined. MDLs are often based on instrumental

method and the general ability of the instrument to discern concentration peaks from the

background noise. JV data were not reported with MDLs or uncertainties; therefore, the

average blank concentrations, per specie, were taken as the species MDLs, and

uncertainties were based on these MDLs and the specie standard deviations of the

samples, according to the following:

xxx MDL
3

1
E   (1)

Blanks are subjected to the same conditioning and are handled with the same level of care

as exposed filters. Salma and Zemplén-Papp (1999) used more detailed criteria for

determining MDLs; however, because the elements chosen for this study have strong

abundance frequencies coupled with reasonable uncertainties to be used in PMF, a

simpler, blanket rule is used in this study.

Positive Matrix Factorization (PMF) was used to model particulate sources of air

pollution using the Spokane Health Effects Database. The version 1.1 released by United

States Environmental Protection Agency is a user-friendly form, based on the original

script version accepted in the research community in the last decade. Its algorithm is

based on the multi-linear engine version of PMF, originally released in the 1990s

(Paatero, 1997; Huang et al., 1999; Lee et al., 1999; Xie et al., 1999; Ramadan et al.,

2000; Willis, 2000; Polissar et al., 1998; Song et al., 2001; Henry, 2002; Paatero et al.,

2002; Qin et al., 2002; Kim et al., 2003). The premise behind PMF is that factors derived

by the model can effectively explain the variability of data in terms of contaminant
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trends; essentially the factors are specific, identifiable sources of pollution. EPA’s

version supplements the proven method by adding on external controls to speed up the

iterative model process: by accepting several formats of data, providing graphical-user

interface selection of inputs, and adding post-analysis graphical and uncertainty

bootstraps. Its default settings are designed to treat the dynamic nature of environmental

data. For more information, the product manual by Eberly (2005) discusses the model

algorithms and advanced settings.

3.3 Results and Discussion

3.3.1 INAA Results

Preliminary PMF models were run on a dataset including total carbon, SO 2
4 ,

NH 
4 , NO 

3 , and INAA data, including trace concentrations, in order to determine

whether INAA data alone can support a conclusive PMF model or if XRF data are also

necessary. The dataset consisted of particles collected from 3/1/1996-9/10/2001, for a

total of 1914 samples, for 21 species, or approximately 95% of available dates. One of

many EPA PMF features is the ability to alter uncertainty between initial data

construction and modeling. Classifications of data as “weak” will downweight the data

by a factor of 3. This choice was selected for many elements which had poor signal to

noise ratios. Because many of these trace element exist in very small quantities,

quantifying the potential for error is especially important (Rizzio et al., 2000; Farinha et

al., 2001).

Selection of elements subject to apportionment modeling was based on abundance

frequency, which is defined as the recurrence of samples above instrumental detection,
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per specie. Carbon, SO 2
4 , NO 

3 , and NH 
4 are generally much higher in concentration

than trace element and have consistent abundance throughout the database. For trace

element, inclusion was based on Figure 1. This plot shows the fraction of samples above

detection level, per specie. An abundance criterion of 50% was set as the lower threshold

for inclusion. While some of these less frequent elements could have significant impacts,

the level of uncertainty imposed by instrumental detection limits and ability to separate

specie peaks from background noise was considered too influential on the final profile.

The sources found by INAA alone shows some agreement to previous studies on

this dataset (Hoffman 2002, Kim et al., 2003), but are incomplete due to absence of key

XRF species not available through INAA. The profile also shows unique features not

seen before with this data. For sake of article space, these results are presented only in

textual summary, not graphically. The INAA modeled data resolved airborne soil, vehicle

exhaust, nitrate, and possibly biomass burning. Unique factors included a somewhat

ambiguous factor, with chromium as a cornerstone and other species showing minimal

specie contribution. Nearly all species were present in this source, most notably sodium;

this proposed factor appears as a Na-rich source. In other studies, Na has been tied to a

sea salt source, not reasonable for a region 250 miles from the coast (Xie et. al, 1999).

Instead, this may actually be systematic contamination from skin contact on the filter.

3.3.2 INAA-XRF Results

With preliminary INAA models and previous XRF studies as guides, PMF models

were run on a composite data set containing INAA and XRF data, and SO 2
4 , NO 

3 ,

NH 
4 , and TC, in attempt to identify the INAA and XRF species important to the
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Spokane particulate profile. The addition of XRF data helped to clarify whether species

were legitimate source components or erroneous and negligible. Initial model runs for

both Kevex and JV data were used to determine individual significance of certain

elements. The questionable Na from the INAA model showed up ubiquitously in the

XRF-INAA profiles, which was sufficient to declare Na erroneous. No other species were

deemed as such, so the overall species coverage for the INAA-XRF models are: TC,

NO 
3 , SO 2

4 , NH 
4 , As, Br, Ca, Cl, Co, Cr, Cu, Fe, K, Mn, Pb, Sb, Sc, Si, and Zn.

INAA and XRF instruments overlap on key species – notably Fe, Br, Zn, K, and

As. A view of INAA and XRF agreement is seen in Figure 2. These plots represent

corresponding samples of Br, K, Fe, and Zn. For Fe and Zn, the instrumentation concurs

on relative terms. Br and K have more scatter; this disparity could be due to abundance

levels. Recall from Figure 1 that Zn and Fe are very abundant for all three instruments.

For K, INAA is below 50% in abundance frequency while the XRF instruments show

good detection of these elements; the opposite is true for Br. JV has known problems

with certain elements. A companion study carried out alongside this research investigated

XRF-produced sources, with consideration for instrumental step changes midway through

the 1995-2002 period, and detector degradation in the JV instrument affecting the latter

portion of the dataset. Those issues will not be addressed here; rather JV and Kevex data

will be treated separately, assuming JV corrections are sufficient for PMF modeling. Of

these common elements, the instrument with the greatest abundance in each was the

selected data for PMF modeling.

Current and previous XRF PMF models have found 6-7 sources, and the inclusion

of INAA data have supplemented these factors by supplying additional elemental details,
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as well as introducing an additional source. Previous XRF studies have determined the

following particulate profile: airborne soil, biomass burning, vehicle exhaust, a Cl rich

source, some form of nitrate and/or sulfate, and metal processing (Kim et al., 2003).

These INAA-XRF sources are given in that order in Figures 3-8. With inclusion of

INAA data, the composite INAA-Kevex model derived 7 sources, adding a unique Cr-

rich source. The Cr has small overall contribution, is episodic, and peaks in 1996, 1998,

and 2000, seen in Figure 9. INAA elements, Co and Sc, had abundance frequencies of

87% and 93% but did not have any influence on the source profile. INAA data added

valuable details, providing further explanation of previously determined sources,

highlighting new features, and dismissing other elements as insignificant.

Arsenic and Sb are common in the burning of fossil fuels and are often linked to

colder seasons (Beceiro-González et. al, 1997; Tsai et. al, 2003). The INAA-Kevex

shows a nice spread of As and Sb over the vegetative, vehicle sources, and nitrate, all of

which are due to combustion (seen in Figures 4, 5, and 7, respectively). For the INAA-

JV model, most of these species are tied into the biomass burning source, with a trace

amount of Sb found in airborne soil. A large amount of the vegetative and nitrate

contributions occur during fall and winter, corresponding to the association with cool

weather.

Bromine is often associated with burning of fuels and wear on the vehicle parts

(Shendell and Naeher, 2002; Pekney et. al, In Press). For the INAA-Kevex model, Br is

tied equally to the three fuel combustion sources — vegetation, vehicles, and nitrate

(Figures 4, 5, and 7), while the INAA-JV source associates the Br to airborne soil,
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biomass burning, nitrate, and vehicles (Figures 3,4,5, and 7). Unlike As and Sb, Br is not

known to have a seasonal appearance.

The addition of Cr signifies a potentially new industrial process for Spokane

which adds to the PM2.5 load. Cr is associated with metal smelting, either through the use

of high temperature cutting or molding of metallic alloys. The Cr source is seen in Figure

9. Included in this source are the time series contributions for each dataset. One can see

the distinctive maxima over time, indicating episodes of elevated Cr. The irregularity

supports the general association between Cr and specialty metal processing. Even though

Ni was not included in this overall study, a small PMF model was run again, for dates

during which Ni was above detection, in order to determine any association between Ni

and this Cr-source. Like Cr, Ni is a metal which can be tied to specialty metal processing.

No appreciable relationship was observed between the two elements or Ni with the

source feature.

Of the two major forms, Cr(III) and Cr(VI), hexavalent chromium can be deadly

to humans. While trace element analysis does not delineate between the two forms,

overall Cr content may be indicative of the dangerous form. Work by Talebi (2003)

suggests Cr(VI) can account for as much as 25% of overall Cr in industrial settings.

Considering the episodic nature of this Cr-rich source, the level of Cr(VI) may also be

sporadically high as well.

Because regulatory agencies are especially concerned with PM2.5 when it

approaches or breaches the primary standard, a small PMF model was run for the top fifth

(by mass) samples, to determine if the samples most concerning to control agencies

reflect what is given by all data. For the INAA-Kevex data, the approximately two
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hundred samples very closely resembled the source features given in this source profile.

For the INAA-JV data, most of the sources were identifiable, with soil being represented

by two distinctive features, while confusing the signal between Cl-rich and combustion.

In spite of this limitation, these results indicate the high level days can represent the

overall PM2.5 impacts and all source features would be of concern to regulatory agencies.

3.3.3 Tying in Sources to PM2.5 Mass

Confidence intervals were established by using PM2.5 mass in a second run of the

optimum PMF model and reviewing the bootstrapped uncertainties for this model. PM2.5

masses were downweighted by increasing their uncertainties by a factor of at least 30

(essentially, these points would have no effect on the source profile); the bootstrap

program in EPA’s version 1.1 determines uncertainty in the model result by looking at

variances in matching random starting point runs to the original model. Ideally the greater

the variation explained, with minimal spread in the random runs, the more “accurate” the

model. The 95th percentile was taken as the performance measure for this uncertainty

assessment; data are found in Table 1. Samples corresponding to the top fifth highest

masses are given in Table 2. These data would represent the days of most concern to

regulatory agencies. The first numbers listed are the bootstrapped variations, in µg/m3 for

each source, to show how accurately the sources represent PM2.5. The proceeding

numbers in parentheses represent the order of least to greatest variation by source, to

show how the sources fine fraction estimates compare to one another. Data are roughly

divided into four 500 point groups, two each of Kevex and JV data, by date, in order to

show any subtle time or instrument effects not found in the larger time period models.
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Cr- and Cl-rich sources are marked by episodes of increased PM2.5 due largely to

single species. For chromium and chlorine, the PM2.5 mass varies over time and

instrument, in response to single, intense peaks in the source profiles, individual events

that greatly affect the general PM representation. Lower rankings among the four data

groups correspond to periods in the data where these sources are not especially active and

their PM contributions do not vary greatly; likewise, higher variability is in response to

periods where background levels are intermingled with days of increased chromium and

chlorine. Additionally, Cl provided by the Jordan Valley method is problematic. The

detector suffered degradation, which affected its ability to accurately measure Cl; along

with the poor detector, the JV instrument does not have a calibration for Cl, which

inhibits it ability to effectively measure it in the presence of other trace elements. Based

on temporal trends, a lot of the mass attributed to the Cl-rich source in the JV bootstrap

data (Table 1) may be due to vehicle exhaust and biomass burning, given the correlation

between the Cl-rich source and Zn (Table 3).

Soil, nitrate, and metal processing are fairly consistent among instruments and

time, and represent medium variations in PM2.5. Metal processing has a slightly lower

average variation because its peak events are dependent on only one major specie that

does not have a large range of concentrations. Geological elements in soil and the ions

and carbon in nitrate can vary more significantly in concentration, affecting the PM2.5

mass.

Vegetation and vehicle exhaust are the most variable due to the nature of their

formation and transport. Each of these combustion sources can comprise a variety of

sites, which introduces a chance of contamination by different species of the combustion
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material (wood, grass, or other fuel sources), or gradual changes in fuel composition

(such as decrease of Pb in gasoline). Additionally, because these sources can be

transported from many locations, entrainment of other species can slightly alter the

profiles. This issue may be more prominent here than in the airborne soil profile, because

in the airborne soil, the geological elements exist in higher concentrations and are less

effected by subtle invasions.

3.4 Conclusions

Trace element analyses are essential to understanding particulate pollution. More

concentrated particulate matter, such as carbon and ions, only tell part of the story when

trying to determine what causes the PM2.5 to occur. The crustal elements, as a group, help

determine airborne soil, overall a small contribution to PM2.5, but with strong influence

during the summer. In spite of some instrumental limitations, Pb, Cl, and Cu differentiate

carbon rich sources into very different and significant anthropogenic pollution sources,

vehicles, municipal incineration, and metal processing. Similarly, Cr has proven to be a

singly significant identifier of a new source, most likely a specialty metal processing

plant, and its irregular emissions. Sb and As help discern mostly wintertime combustion,

nitrate, and biomass burning. While many of these elements are found only in trace

amounts, they can be diverse in origin and physiologically potent. The use of coupled

trace element analyses in source apportionment is a valuable tool in capturing the full fine

particulate landscape.

Future work with this data will include breaking down the carbon into organic and

elemental form, for the time period using the TOT instrument. The added carbon
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information will help in clarifying and separating agricultural, vehicle, and industrial

combustion into more specific sources. The addition of detailed carbon information will

be a final step in understanding the fine fraction particulate pollution in Spokane, WA.
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INAA-Kevex Data INAA-Jordan Valley DataPM2.5

Source 3/1/96-9/29/97 9/30/97-3/31/99 4/1/99-6/23/00 6/24/00-9/10/01
Airborne

Soil
0.74 / 7.80
(0.31; 0.85)

0.16 / 1.50
(0.00; 0.35)

1.63 / 20.0
(1.41; 1.89)

1.63 / 15.4
(1.41; 1.75)

Nitrate 0.83 / 8.70
(0.66; 0.98)

2.80 / 25.1
(2.39; 2.96)

0.81 / 9.90
(0.53; 0.91)

2.55 / 24.3
(2.02; 3.00)

Cl-rich 0.75 / 7.80
(0.64; 0.84)

0.16 / 1.40
(0.13; 0.17)

3.35 / 41.1
(2.83; 3.78)

0.55 / 5.30
(0.47; 0.92)

Metal
processing

0.77 / 8.10
(0.68; 0.86)

0.37 / 3.40
(0.29; 0.42)

0.25 / 3.10
(0.17; 0.44)

0.25 / 2.40
(0.16; 0.60)

Biomass
burning

2.29 / 24.0
(2.14; 2.54)

5.18 / 46.6
(5.04; 5.32)

0.34 / 4.20
(0.24; 0.44)

4.67 / 44.3
(3.71; 5.15)

Vehicle
exhaust

4.02 / 42.1
(3.66; 4.36)

2.38 / 21.4
(2.21; 2.50)

1.75 / 21.5
(1.53; 2.51)

0.00 / 0.00
(0.00; 0.08)

Cr-rich 0.16 / 1.60
(0.10; 0.20)

0.08 / 0 .70
(0.00; 0.12)

0.01 / 0.20
(0.00; 0.04)

0.87 / 8.30
(0.64; 1.44)

Mass
Total

9.56 11.13 8.14 10.52

Table 1. Mean mass contributions and 5 and 95 % bootstrap confidence intervals for each
source, for four time subsets of XRF data. Leading numbers are mean contributions, for
PM2.5 for each source, in µg/m3, as well as per cent of total source mass; parenthetic
numbers are 5 and 95% confidence intervals, also in µg/m3.
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PM2.5

Source
INAA-Kevex INAA-JV

Airborne
soil

1.00 / 4.82
(0.50; 0.1.15)

1.54 / 8.933 1.33; 7.71
(0.91; 2.20) (0.68; 1.55)

Nitrate 5.90 / 28.4
(5.41; 6.38)

2.09 / 12.1
(1.71; 4.07)

Cl-rich 1.56 / 7.51
(1.05; 1.69)

/
/

Metal
processing

0.54 / 2.60
(0.38; 0.60)

0.71 / 4.12
(0.53; 1.39)

Biomass burning 4.84 / 23.3
(4.59; 5.21)

3.92 / 22.7
(2.36; 5.30)

Vehicle
exhaust

5.88 / 28.3
(5.29; 6.32)

7.77 / 45.0
(6.41, 8.42)

Cr-rich 1.04 / 5.01
(0.93; 1.20)

1.22 / 7.07
(0.60; 1.48)

Mass
Total

20.76 17.25

Table 2. Mean contributions and bootstrap confidence intervals for source features, for
each PMF bootstrap subset, for the upper fifth mass fraction. Leading numbers are given
as mean PM2.5 mass / per cent of total source mass for each feature, in µg/m3; parenthetic
numbers are 5% and 95% bootstrap confidence intervals, respectively.
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Elemental Abundance, as Analyzed by INAAand XRF
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Figure 1. Elemental abundance frequency for INAA, Kevex XRF, and JV XRF. Plots
represent what fraction of data, per specie, are above detection for the respective
instrumental method.
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Figure 2. Comparison between INAA and XRF elements, showing how well they
correspond. These plots were used as indicators whether common elements could be used
interchangeably in the PMF or if models were best suited with specific instrument inputs.
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Figure 3. Airborne soil for INAA-Kevex (top) and INAA-JV data (bottom).
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Figure 4. Biomass burning for INAA-Kevex (top) and INAA-JV data (bottom).
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Figure 5. Vehicle exhaust for INAA-Kevex (top) and INAA-JV data (bottom).
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Figure 6. Cl-rich source for INAA-Kevex (top) and INAA-JV data (bottom).
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Figure 7. Nitrate for INAA-Kevex (top) and INAA-JV data (bottom).
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Figure 8. Metal processing for INAA-Kevex (top) and INAA-JV data (bottom).
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Figure 9. Cr-rich source for INAA-Kevex (top) and INAA-JV data (bottom); attached to
each source profile are the time series for the respective datasets. Note specific episodes
throughout the study period (1996, 1998, 2000).



CHAPTER 4

Sources of PM2.5 modeled by EPA PMF version 1.1 using Trace Elements and
Temperature-resolved Carbon

This chapter is presented as a paper that has been prepared for publication in a
peer-reviewed journal.
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Abstract

Detailed carbon PM data from the Spokane Health Effects Study were modeled with EPA

PMF version 1.1, along with, ionic data, and extensive trace element data provided by

Instrumental Neutron Activation Analysis (INAA) and X-ray fluorescence (XRF), to create an

exhaustive and long-term particulate profile for Eastern Washington. Pollution samples from

March 1st, 1996 – September 10th, 2001 were analyzed for carbon, ionic, and trace element

concentrations. Species included in this six year study were: elemental carbon (EC), organic

carbon (OC) — including five subgroups by mass, NO 
3 , SO 2

4 , NH 
4 , As, Br, Ca, Cl, Co, Cr,

Cu, Fe, K, Mn, Pb, Sb, Sc, Si, and Zn, for a total of 25 species.

Models were performed in a series of two studies, one using only total elemental and

organic concentrations, and one smaller study, focusing on elemental and five organic carbon

groups. PMF models evaluated data using a range of 5-9 sources, the number of sources

hypothesized to be 6-7, based on previous PMF models using this dataset. EC-OC models

revealed 7 identifiable sources of air pollution: airborne soil, metal processing with OC; biomass

burning with both EC and OC; vehicle exhaust with both; nitrate with OC; and Cl-rich and Cr-

rich sources with EC and OC, respectively. EC-OC fraction group models identified 6 plausible

sources, eliminating metal processing as a source, but otherwise agreeing with the EC-OC and

previous trace element sources. Clear OC markers include: OC2 and OC3 for biomass burning;

OC3 and OC4 for vehicles; OC5 for nitrate; OC1 for the Cl-rich source. These carbon details were

a final chapter in the fine fraction PM PMF analyses for the Spokane Health Effects Study,

providing a strong understanding of the Spokane, WA air pollution profile.

Keywords: PMF, source apportionment, carbon fractions, elemental carbon, organic carbon,

temperature-resolved carbon, XRF, trace elements, PM2.5
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4.1 Introduction

Carbon is a prominent feature of nearly all particulate pollution. Because of its

diverse and abundant existence, it can be found in many forms, forms which can help

identify specific pollution sources in concentration data. Specifically, carbon in PM can

exist in the form of elemental carbon (EC), or as organic carbon (OC). Both are important

because many forms pose potential threats to health and welfare of living organisms and

the environment.

Carbon encompasses myriad forms and can be used to pinpoint several origins of

particulate matter, specifically combustion such as domestic and agricultural burning and

fossil fuel combustion (Schauer et al., 1996; Schauer and Cass, 2000; Park et al., In

Press). Elemental carbon can be due to combustion of diesel fuels and coal and can

decrease visibility because of its ability to absorb incident light. It can also indirectly

weaken respiratory health in humans; diesel particles can synergistically interact with

bioaerosols, resulting in elevated allergen sensitivity (Parnia et al., 2002; Adhikari et al.,

2006). The complex and multiple natures of organic carbon can complicate the

understanding of particulate behavior and cloud assessment of the local air quality.

Organic carbon can stem from primary or secondary sources. The occurrence of OC may

influence the overall ability of an aerosol to form into a cloud droplet, directly affecting

aerosol concentration; scattering potential can also be affected, affecting visibility (Park

et al., In Press).

Studies using only total carbon or even incorporating the OC/EC split may not be

adequate to distinguish between certain combustion sources, especially gasoline and

diesel exhaust, two common and large particulate sources (Polissar et al., 2001; Song et
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al., 2001; Zhao and Hopke, 2006). Recent work has found associations between certain

OC and EC subgroups and gasoline and diesel sources, notably work by Kim and Hopke

(2004; 2004; 2005) and Kim et al. (2004), which suggest EC, OC3 and OC4, are tied to

gasoline, and EC, OC1 and OC2 to diesel. Common patterns were found in the carbon

profiles at differing sites, supporting the conclusions that diesel and gasoline can be

uniquely traced by these resolved fractions.

Spokane is a medium size city in the eastern hills of Washington, with a

distinctive environment, influenced by agricultural and natural settings, urban and

industrial inlets. Hotter months bring forth dry, dusty days, while cool transition months

have short periods of rain and temperatures that change quickly. Winter weather can last

for several months, with short days and winter precipitation. Diversity in climate and land

use can contribute to a variety of air pollution sources, historically creating a PM level

exceeding the Environmental Protection Agency (EPA) National Ambient Air Quality

Standards (NAAQS) limit (Villasenor et al., 2001).

Spokane’s variety of particulate air pollution has been shown to cause distress in

human health. Epidemiological studies have linked increased hospital visits for

respiratory distress with increased PM (Dockery et al., 1993; Norris et al., 2000).

Although these studies have not demonstrated ties between particular species and health

problems, others conclude higher toxicity from certain chemicals found in pollution,

suggesting some sources of particulate pollution are more dangerous than others (Green

et al., 2002; Adhikari et al., 2006).

The concern over air pollution in Eastern Washington and its possible negative

ramifications led to a massive campaign to collect weather, air pollution, and health data
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collection from 1995-2002, known as the Spokane Health Effects study. This study was

collaboration among the Mickey Leland Nation Urban Air Toxics Research Center,

Washington State University, University of Washington, Spokane County Air Pollution

Control Authority (SCAPCA), the American Lung Association of Washington, and the

Harvard School of Public Health. One tenant of this long-term research included creating

an exhaustive PM dataset, enabling researchers to comprehensively study fine fraction

PM and determine a very accurate and complete particulate profile for the region.

Previous particulate models using the Spokane Health Effects Study have

emphasized trace elements, SO 2
4 , NO 

3 , and NH 
4 , and total carbon (Kim et al., 2003),

which is a somewhat incomplete approach. Similar to the trace element analyses in the

Spokane dataset, which used more than one method, the Spokane Health Effects Study

used carbon information measured by both the Thermal Manganese Oxidation (TMO)

and the Thermal Optical Transmittance (TOT) instruments. The TMO method can

estimate elemental and organic carbon, while the TOT instrument is capable of

measuring the EC-OC split, further dividing the organic carbon into five mass grouped

organic fractions.

The purpose of this research was to determine the fine fraction particulate source

profile for Spokane, WA, using trace element, ionic, and carbon species, utilizing the

detailed carbon information provided by TMO and TOT, by correcting for the limitations

in instrumentation. It was hypothesized that the detailed carbon would not augment the

profile with new sources; rather the details would further clarify and define the trace

element and ion-derived sources in relation to OC and EC. This research would be a final
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step in a comprehensive study of the fine fraction Spokane Health Effects particulate

data.

4.2 Methods

From 1995-2002, ambient air and meteorological data were collected at a receptor

north of Spokane’s city center and downwind from a major road, to capture the essence

of particulate pollution in Eastern Washington. The approach for this research first

considered a full scope of the trace element and EC-OC study period, focusing on EC and

OC, followed by a narrower review of EC and carbon fraction data available for the latter

portion of the study.

Collection and most of the measurement methods were carried out by WSU

researchers, according to EPA reference or equivalent methods. Versatile Air Pollutant

Samplers (VAPS) collected 24 hour mass samples on quartz, polytetrafluoroethylene

(Teflon), and nucelopore filters. Quartz filters were purified in an 800 ºF furnace for

several hours, and stored in desiccators with the other filters prior to and after analysis to

prevent contamination and humidity effects. Mass was measured with Cahn 32 and Cahn

33 microbalances. Carbon analyses were first performed on quartz filters with TMO, for

samples from January 1, 1995 to September 20th, 1999, and were switched over to TOT

starting on September 21st, 1999. Carrier gas flows were carefully monitored and sugar

standards and lab blanks were included daily to minimize instrument error or drift. Trace

elements were analyzed on Teflon and nucleopore filters, by the EPA Kevex and Jordan

Valley Energy Dispersive X-Ray Fluorescence (ED-XRF) instruments and Instrumental

Neutron Activation Analysis. Ionic extraction chromatography (SO 2
4 and NO 

3 ) and
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colorimetry (NH 
4 ) were also performed on quartz filters. As with carbon analyses, all

methods incorporated standards and blanks to minimize any instrument error or drift.

Carbon information were taken from raw oxidation analyses, in terms of µg/cm2,

and converted to mass concentration. For all carbon data, raw mass was multiplied by a

factor of 11.34 cm2, the area of exposure for the VAPS quartz filter, and normalized by

quartz flow volume (m3). Uncertainty for OC-EC split data was calculated in the same

manner. For the OC fractions, uncertainty was not individually reported (only total OC

and EC were given), so the ratio of each fraction to total OC was used to factor out

uncertainty for each. That is, for each sample,

 
OC

OCi
i (1)

where σi represents uncertainty for OC1-OC5 and σ is the total OC uncertainty.

Corrections had to be considered when using the carbon analysis methods because

of known instrument limitations, the greatest of these being the step change in

instrumentation and error in analyzing the EC-OC split. Instrument change can be

addressed fairly easily when one of the instruments used is assumed accurate and/or a

reference method. Filter artifacts can be a more difficult problem to resolve. Tests

conducted by Jordan et. al. (2006) suggested that the presence of EC in samples could be

misrepresented, depending on the method and constraints surrounding that method. For

OC, Park et al. (In Press) and Chow et al. (2006), give thorough summaries of several

artifact studies (Eatough et al., 1990, 1993; McDow and Huntzicker, 1990; Tang et al.,

1994; Chow et al., 1994, 1998; Malm et al., 1994; Turpin et al., 1994, 2000; Gundel et

al., 1995; Andrews et al., 2000; Ding et al,., 2002; Mader et al., 2003; and Subramanian

et al. 2004), in which they conclude that artifacts can contribute an error of ~ 3-10 % in
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OC mass concentration. Several of the studies derived different schemes for correcting

biases. Raw data time series plots indicated that the problems with EC and OC would

pose a far smaller error than the instrument shift, and for this research, only the

instrument shift is addressed.

An instrument correction was imposed on TMO data, for the EC-OC study, using

TOT as the baseline. Time series data showed a step change within the TMO data,

roughly mid-February, 1998 (the shift was most likely due to detector wear) and one

starting September 21st, 1999, reflecting the TMO TOT transition. Total OC measured by

the TMO instrument is assumed correct in spite of its difficulty correctly assessing the

EC-OC split, which is validated by its seamless transition into TOT data. In addition,

roughly 100 TMO period samples were re-analyzed with TOT, which showed general TC

agreement to the TMO measurements. Several corrections were attempted to reconcile

TMO to TOT. The most realistic transition was made with the following equations:

TMOTOT TC

EC
average

TC

EC
averageEC 

















 (2a)

  ECTCECEC TMOTMOcorrTMO  * (2b)

where ΔEC represents the decrease in EC/TC proportion from TMO to TOT needed to

create a seamless EC concentration for the data period, (ECTMO)corr represents the new EC

concentrations. These values were calculated for the two groups of TMO data to create a

smooth transition among all TMO and TOT data. The corrected TMO EC data were

calculated with sample specific EC and TC values (not group averages) to maximize

variability and individual influence on PMF analysis.

Carbon information was analyzed by PMF, first for emphasis on elemental and

organic carbon with supplemental information from ions and trace elements, followed by
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separation of organic carbon into mass grouped fractions. For the EC-OC analysis, data

covered twenty species: EC, OC, SO 2
4 , NO 

3 , NH 
4 ; XRF elements Ca, Cl, Cu, Fe, K,

Mn, Pb, Si, Zn; and INAA elements As, Br, Co, Cr, Sb, and Sc, for a total of 1684

samples, from the period of March 1st, 1996-September 10th, 2001. Data are separated

into consecutive data groups, one by INAA-Kevex and one with INAA-JV. Separation of

data by the two XRF instruments is related to an issue with agreement between the two

XRF instruments (for discussion, please refer to the previous section, chapter 3). OC

fractions studies only covered the TOT portion of analysis, or 586 samples, from

September 21st, 1999-September 10th, 2001, during which time only the Jordan Valley

and WSU INAA methods were used for trace elements.

The choice of apportionment model was the EPA Positive Matrix Factorization

model, version 1.1. This model and its predecessors have been successfully used on the

Spokane Health dataset in prior work (Kim et al, 2003). Its algorithms are based loosely

on factor analysis principles found in classical statistics, with special constraints and

bootstrap features added to treat the dynamic and unique nature of environmental data.

The results found are reconstructed sources of the pollution, which are easily identified as

a specific pollution-emitting activity or group of activities. Detailed discussion of the

principles involved are found in: Paatero (1997); Huang et al. (1999); Lee et al. (1999);

Xie et al. (1999); Ramadan et al. (2000); Willis, (2000); Polissar et al. (1998); Song et al.

(2001); Henry (2002); Paatero et al. (2002); Qin et al. (2002); and Kim et al. (2003).

Details regarding the EPA version’s special features are available in the product manual

by Eberly (2005). Special corrections, instrument adjustment, and data filtering were
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done primarily before PMF analysis; PMF defaults were used with any exceptions noted

in the results.

4.3 Results and Discussion

4.3.1 EC-OC Study

The final PMF model used all defaults, with exception of a weak classification for

EC for both the INAA-Kevex and INAA-JV datasets. The weak classification in PMF v.

1.1 increases uncertainty by a factor of one-third and is used to treat species that may

have be very sporadic or linger near detection levels. The extra uncertainty was included

because the EC data are relatively small in concentration and have had a correction

applied to part of them. Looking at the EC-OC split raw data, one can see organic carbon

accounts for most of the total carbon sampled on the filters. In general, organic carbon is

responsible for 60-90% of the total amount (uncorrected), with elemental carbon making

up the remainder.

The PMF model derived 7 sources for the two datasets, in accordance with

previous work done on this dataset. As hypothesized, no additional sources were

distinctively found by the carbon split; rather they gave greater clarity to the known

sources, which are vehicle exhaust, nitrate, biomass burning, airborne soil, Cl-rich and

Cr-rich sources, and metal processing. Tables 1 and 2 list the mass contributions for each

source, for all data as well as samples in the highest twenty per cent mass group. Table 3

lists the Pearson correlations for the sources and species (only values above 0.30 are

given). In addition to the source profiles and mass contributions, these correlations help

identify which species and sources are closely related.
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Vehicle exhaust, nitrate, and biomass burning are results of different tyopes of

carbon-based fuel combustion, and therefore contribute the largest amount of carbon

particles. Vehicle exhaust, seen in Figure 1, shows little EC and some OC accompanying

the historical markers of Pb, Zn, and Br. Figure 2 shows nitrate, which is characterized

by NO 
3 , SO 2

4 , NH 
4 , geological material, and OC. The INAA-JV data also show

presence of EC, which the INAA-Kevex placed in soil. This shift in source profiles is

most likely due to XRF sensitivity; this type of discord was not easily solved in previous

work and is why the datasets remain separate. The more abundant, geological species are

associated with EC but the XRF instruments measure these dust fragments differently

which is what is motivating the PMF change. Likewise, biomass burning, seen in Figure

3, is marked by K, Sb, As, geological particles, OC, and, for INAA-JV, EC. Again here,

where there are dust fragments present in low amounts, their association with EC may

interfere with the soil profile, as analyzed by INAA-Kevex and PMF. K, As, Sb, and OC

confirm these sources as vegetative in origin. K and OC are connected to one another as

indicators of organic material burns, and As and Sb are also indicative of such

combustion, notably in the colder weather, as concluded by Beceiro-González et. al

(1997) and Tsai et. al (2003), which is when field burns take place.

Mechanical and industrial sources contain less, but specific carbon associations.

Airborne soil contains high quantities of crustal elements, small traces of ions, and some

EC, as seen in Figure 4. This source peaks in late summer or early fall, during which

time, bare soil have collected plant matter, road dust, and pollution deposits. The EC-OC

model using Kevex and INAA data indicate on average no mass is attributed to the

average PM2.5 mass; this result is likely due to the lack of carbon in the source. The
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source provides a moderate amount of mass to the profile, with noticeable peaks but

shadows in comparison to what carbon contributes. The Cl rich source contains Cl, some

crustal elements, and EC, and is seen in Figure 5. The increase of lesser species for the

INAA-JV profile suggests either Cl is not well defined by JV or it is a diminishing

source; the presence of EC and Cl together however, show Cl is its own distinctive

source. Figure 6 shows a Cr-rich source, characterized uniquely by Cr and virtually

nothing else. OC is minimal in both cases, suggesting the OC is a product of a carrier fuel

used in processing the Cr metal. EC also appears in the INAA-Kevex case; time series

contributions indicate more activity during these first years of study, whereas the INAA-

JC case shows only one distinct event (in this case, there may not be enough data to

accurately depict the carbon details for the Cr source). Metal processing, seen in Figure

7, reflects a similar situation as the Cr-rich source. This source is marked primarily by

one metal, with trace amounts of other species, including OC for INAA-JV and both OC

and EC for INAA-Kevex. In this case however, this source seems to increase activity

during the INAA-JV period, indicating the PMF model for INAA-Kevex could be

incorrect in its association of Cu and EC.

4.3.2 EC-OC fractions study

The PMF model used in this case applied weak classifications to EC, OC4 and

OC5. The weak EC factor is carried over from the large EC-OC study, and OC4 and OC5

are “weak” because they are the lightest of the fractions; while the OC4/OC ratio is not

one of the lowest, there are several points near 0. One limitation with PMF is that because

it is looking for patterns, it is not strictly tied to concentration; however, when the data in
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question contains values covering several orders of magnitude (i.e., very high highs and

very low lows), that freedom can become a limiting factor. The additional uncertainty

helps relax that constraint.

When looking at carbon fractions over time (displayed in Figure 8), one can see

both general trends and unique features in the data. Their relative contributions to OC, in

terms of average per cent, are: 26% for OC1; 25% for OC2; 17% for OC3; 21% for OC4;

and 11% for OC5. Standard deviations for OCi/OC ratios are consistently about 8-9%.

Looking at the fraction masses relative to overall organic mass, one can see that the

contributions are generally consistent. OC2 and OC3 tend to follow the same high and low

contribution pattern, with a small increase for mid- to late summer of 2000, and

sporadically elevated levels for 2001. OC1 and OC4 both decrease in their relative

contributions for summer of 2000, in contrast to OC2 and OC3. OC4 shows more

variability than OC1-OC3 in its contribution to overall OC, which may indicate a specific

source of OC4. OC5 can be due to a unique source but it is clouded by volatility; the

lighter masses associated with OC5 are more likely to be lost during sampling or storage,

affecting the true source profile.

The PMF model successfully identified 6 of the originally established sources,

with significant detail for elemental and carbon fraction influences. Table 4 lists the

Pearson correlations for the sources and species (only values above 0.30 are given).

Vehicle exhaust, nitrate, biomass burning, airborne soil, Cl-rich, and Cr-rich sources are

evident with unique carbon (or lack thereof). The first three are more are labeled

traditional combustion sources, where either a petroleum product or vegetative material is
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used as the fuel source, and the final three are industrial processes or mechanically

induced.

Combustion sources show distinct EC-OC fraction signatures, in which each

source accounts for the majority of at least one carbon group. Figure 9 shows vehicle

exhaust, with classic markers of Pb, Zn, Br, trace geological materials, and EC and OC.

This exhaust source specifically identifies EC and OC3 and OC4 as the primary carbon

inputs, which agrees with prior work by Kim and Hopke (2004). Unlike its predecessor,

this PMF model does not separate diesel and gasoline markers. This may be due to the

site location, which is downwind from a major highway that sustains both POV and

commercial traffic; perhaps if this road were either a residential road (primarily POV) or

interstate (higher concentration of commercial trucks), data could be separated further.

Like the work by Kim and Hopke, the primary markers are the carbon data; however,

these models also use Pb and Zn as identifiers. Pb is always available for vehicle

identification, especially in more recently collected data. Zn is found in trace amounts in

vehicle profiles which correspond to the findings here. Nitrate, seen in Figure 10, is

characterized by NO 
3 , NH 

4 , OC5 and trace amounts of geological materials. This source

is a wintertime feature, corresponding to domestic heating increases via wood burning.

Biomass burning is identified in Figure 11, containing Fe, K, SO 2
4 , small amounts of

EC, and OC2 and OC3. Time series plot shows this source is more influential in cooler

months, corresponding to post-harvest burns.

Industrial and mechanical sources include airborne soil, Cl-rich, and Cr-rich

sources, also containing specific carbon signatures, either fairly high or noticeably

lacking. Airborne soil (seen in Figure 12) contains the majority of geological elements,
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and very carbon, just a trace amount of OC2. This carbon is the second heaviest group of

organics, which could correspond to organic material caught up in small soil particles.

Airborne soil is at its peak during late summer or early fall, when post-harvest fields are

laden with bare soil and crop debris and exposed to the hot, dry weather. The Cl-rich and

Cr-rich profiles are not as clear as previous analyses, due to the shorter period of study

and their episodic behavior. The Cl-rich source, seen in Figure 13, does show co-

existence of Cl with OC1 and some EC and OC2. JV data shows a considerable

association of Cl to Zn, which is mitigated but not resolved by the carbon details. This

correlation is assumed incorrect, based on the Kevex profile, which links Zn to vehicle

exhaust and Pb, not Cl. The mass from the Cl-source using JV XRF data likely contains

some mass actually contributed by vehicle exhaust. Unfortunately the carbon information

is not significant enough to correct the instrumental inaccuracy. The Cr-rich source

shown in Figure 14, like soil, shows very little of any carbon, just small amounts of OC2,

OC3, and OC4. The organic carbon could be due to the fuel used to heat and process the

Cr, and are essentially secondary markers in this source; that is, their presence is

incidental and not indicative of the true nature of the source.

Metal processing is absent from this PMF analyses, likely due to its low overall

contribution to PM2.5 mass and small association with carbon. In the previous EC-OC

study, only a trace amount of organic carbon was present with the copper marker. During

peak emissions, still only a small percentage of mass is attributed to metal processing.

Carbon contributes more mass than any other particle type and it is most likely

overshadowing this smaller feature.
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4.4 Conclusions

The addition of EC and OC details confirm prior results using only total carbon,

ions, and trace elements, by maintaining their original structures, while adding valuable

EC-OC markers. In general, combustion sources gained mass and presence strength in the

profile, while features not highly correlated to carbon decreased in mass and profile

influence. As with many trace elements, particular EC and OC groups are surfacing in

research as markers for specific sources of pollution. Carbon can be difficult to quantify

and the concentration data are intrinsically tied to the method used for analysis. The

volatile nature of several organic compounds can lead to loss of sample and therefore a

skewed model, underestimating the true abundance of these species..

This research brings to the PMF work on the fine fraction Spokane data full

circle. What was started years ago with only partial datasets and some of the of

instrumentation is now joined by all the trace element analyses, ions, and carbon details

collected in the historical Spokane Health Effects Study. Future work includes adding on

weather and gaseous pollutant data, which would address several of the criteria pollutants

defined by EPA. Future work also includes moving on to coarse fraction and comparison

of those results to the fine fraction profile. Current and planned health studies will

investigate and conclude any epidemiological influences by the species found to be

significant source contributors in this and the trace element studies. Past, current, and

future work are meant to further knowledge about Eastern Washington air pollution and

its ramifications on human health and welfare.
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INAA-XRF-EC-OC Data INAA-XRF-EC-OC1-5 DataPM2.5

Source INAA-Kevex INAA-JV INAA-JV
Airborne soil 0.00 / 0.00

(0.00; 0.26)
1.51 / 15.5
(1.36; 1.60)

1.54 / 15.9
(1.26; 1.66)

Nitrate 4.71 / 45.9
(4.47; 4.97)

2.32 / 23.9
(2.23; 2.44)

2.02 / 20.7
(1.82; 2.13)

Cl-rich 0.19 / 1.90
(0.16; 0.20)

0.59 / 5.80
(0.50; 0.70)

1.29 / 13.3
(0.98; 1.71)

Metal processing 0.42 / 4.10
(0.40; 0.50)

0.31 / 3.20
(0.27; 0.40)

/
/

Biomass burning 3.36 / 32.7
(3.06; 3.42)

4.45 / 45.8
(4.28; 4.57)

2.26 / 23.3
(2.01; 2.38)

Vehicle exhaust 1.50 / 14.6
(1.23; 1.64)

0.46 / 4.70
(0.00, 0.55)

1.96 / 20.1
(1.46; 2.19)

Cr-rich 0.08 / 0.80
(0.04; 0.11)

0.07 / 0.70
(0.06; 0.09)

0.65 / 6.70
(0.57; 0.70)

Mass
Total

10.3 9.71 9.71

Table 1. Mean contributions and bootstrap confidence intervals for source features, for
each PMF bootstrap subset. Leading numbers are given as mean PM2.5 mass / per cent of
total source mass for each feature, in µg/m3; parenthetic numbers are 5% and 95%
bootstrap confidence intervals, respectively.
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INAA-XRF-EC-OC Data INAA-XRF-EC-OC1-5 DataPM2.5

Source INAA-Kevex INAA-JV INAA-JV
Airborne soil 1.00 / 4.82

(0.50; 0.1.15)
1.54; 1.33 / 8.93; 7.71

(1.36; 1.60)
1.54 / 15.9
(1.26; 1.66)

Nitrate 5.90 / 28.4
(5.41; 6.38)

2.09 / 12.1
(1.71; 4.07)

2.02 / 20.7
(1.82; 2.13)

Cl-rich 1.56 / 7.51
(1.05; 1.69)

/
/

1.29 / 13.3
(0.98; 1.71)

Metal processing 0.54 / 2.60
(0.38; 0.60)

0.71 / 4.12
(0.53; 1.39)

/
/

Biomass burning 4.84 / 23.3
(4.59; 5.21)

3.92 / 22.7
(2.36; 5.30)

2.26 / 23.3
(2.01; 2.38)

Vehicle exhaust 5.88 / 28.3
(5.29; 6.32)

7.77 / 45.0
(6.41, 8.42)

1.96 / 20.1
(1.46; 2.19)

Cr-rich 1.04 / 5.01
(0.93; 1.20)

1.22 / 7.07
(0.60; 1.48)

0.65 / 6.70
(0.57; 0.70)

Mass
Total

20.8 17.3 9.72

Table 2. Mean contributions and bootstrap confidence intervals for source features, for
each PMF bootstrap subset, for the upper fifth mass fraction. Leading numbers are given
as mean PM2.5 mass / per cent of total source mass for each feature, in µg/m3; parenthetic
numbers are 5% and 95% bootstrap confidence intervals, respectively.
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Figure 1. Vehicle exhaust source for INAA-Kevex (top) and INAA-JV (bottom). This source
is characterized by both EC and OC, as well as Pb, Zn, and Br.
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Figure 2. Nitrate source for INAA-Kevex (top) and INAA-JV (bottom). This source is
characterized by OC, ions, and geological material.
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Figure 3. Biomass burning source for INAA-Kevex (top) and INAA-JV (bottom). This source is
characterized by OC, maybe EC, K, As, Sb, and geological material.
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Figure 4. Airborne soil source for INAA-Kevex (top) and INAA-JV (bottom). This source is
characterized by possibly some EC, and geological materials.
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Figure 5. Cl-rich source for INAA-Kevex (top) and INAA-JV (bottom). This source is
characterized by EC, Cl, and geological materials.
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Figure 6. Cr-rich source for INAA-Kevex (top) and INAA-JV (bottom). This source is
characterized by possibly some OC and Cr.
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Figure 7. Metal processing source for INAA-Kevex (top) and INAA-JV (bottom). This source is
characterized by OC and possibly some EC and Cu.
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Figure 8. Organic carbon fractions over time. Note that OC1 and OC2 generally follow the same
pattern, as do OC3 and OC4 with small peaks unique to each. OC5 has its own trends, which
suggest specific sources.
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Figure 9. Vehicle exhaust source for INAA-JV with EC and OC fractions. This source is
characterized by a little EC, OC3, OC4, some OC5 and OC1, and Pb, Br, and Zn.

Figure 10. Nitrate source for INAA-JV with EC and OC fractions. This source is characterized by

a little EC, OC2, OC4, and a lot of OC5, with NO 
3 , SO 2

4 , NH 
4 , and K.



127

Figure 11. Biomass burning source for INAA-JV with EC and OC fractions. This source is

characterized by EC, OC2, OC3, and SO 2
4 , NH 

4 , K, and some geological materials.

Figure 12. Airborne soil source for INAA-JV with EC and OC fractions. This source is

characterized by a little OC2 and OC4, SO 2
4 , and geological materials.
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Figure 13. Cl-rich source for INAA-JV with EC and OC fractions. This source is characterized by
EC, OC1, OC2 a little OC4, and Cl.

Figure 14. Cr-rich source for INAA-JV with EC and OC fractions. This source is characterized by
a little OC1, OC3, and OC4, Cr and geological materials.
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CHAPTER 5: SUMMARY AND CONCLUSIONS

The preceding chapters stress several important facets of PM2.5 source

apportionment of a large, instrumentally-intensive dataset. Each level of specie detail

provides uniquely significant features of the PM2.5 profile. Each instrument confirms

realistic attributes given by other measurements, and contributes new levels of

information to the overall profile. Every measurement technique required specific input

information, specifically the Jordan Valley data, and sensitivity to corrections and

detection limits. Kevex was a reliable source of many trace elements, on which the bulk

of the source profile features was based. The INAA method was especially useful for

detecting very low quantities of trace elements. Detailed carbon information provided

insight into what types of combustion are associated with the source features.

XRF, INAA, ionic, and carbon species in conjunction with PMF describe seven

definite source features of pollution: motor vehicle combustion; chlorine-emitting

combustion, from the municipal incinerator; biomass burning, from agriculture; airborne

soil, from agriculture, traffic, and climate; metal processing, from a metal smelter; nitrate,

primarily a winter time feature; and a Cr-rich source, likely from an industrial metal

plant. Table 1 summarizes all the PMF results discussed in chapters 2-4. The Kevex and

Jordan Valley data treat the features somewhat differently as separate datasets; however,

the same markers can be found in these results and agree with earlier work. The addition

of INAA data clarified the discrepancies between the two XRF instruments and added

valuable information to the profile, including the introduction of the Cr-rich source.
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Several species were key in identifying source features. The crustal elements

helped determine airborne soil, an especially strong feature during the late summer. Pb,

Cl, and Cu separate carbon rich sources into very different and significant anthropogenic

pollution sources — vehicles, municipal incineration, and metal processing. Similarly, Cr

has proven to be an exclusive identifier of a new source, a specialty metal processing

plant. Sb and As assist in determining mostly wintertime combustion, nitrate, and

biomass burning. While many of these elements were found only in trace amounts, they

can be diverse in origin and physiologically detrimental. Combining trace element

analyses in source apportionment is a valuable tool in capturing the full fine particulate

landscape.

The addition elemental and organic carbon details (EC and OC, respectively)

confirmed prior results by adding valuable EC-OC markers. Metal processing and nitrate

were found to have organic carbon, while biomass burning, vehicle exhaust, Cl-rich and

Cr-rich sources were found to contain both organic and elemental carbon. There was no

considerable carbon at all with airborne soil, generally in accordance with the previous

trace element studies. For the major combustion sources, the organic fractions provided

further clarification for carbon in the source features. OC2 and OC3, lighter mass groups,

were present for biomass burning, as was the case for the Cl-rich source, which showed

OC1 in its profile. Vehicle exhaust and nitrate contained heavier organic fractions, OC3

and OC4, and OC5, respectively. These specific mass groups give indication of what the

carbon fuel sources were, and helped confirm whether sources were correctly identified

by the previous trace element models.
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In spite of the information each chapter has added to the overall profile, some

problematic data were not resolved. The Jordan Valley Cl was subjected to several

uncertainty calculations and instrumental corrections, none of which effectively separated

its confusion with the vehicle exhaust. The addition of INAA and carbon data helped

clarify some of its influence on the profile and identify it as its own feature; however, the

Cl feature isolated some mass most likely attributed to exhaust. This limitation of the

Jordan Valley does not hamper the overall effectiveness of concluding a Spokane PM2.5

profile, but JV data should be used in concert with other trace element analyses in order

to recognize this and other possible instrumental hindrances.

In future studies, this work could be enhanced by adding several complementary

studies. Several parameters collected in the dataset were not used for this thesis, because

of the narrow scope for this research. All National Ambient Air Quality Standards

(NAAQS) criteria pollutants were measured during the study period, and this thesis

focused only on PM2.5. An appendage to this particulate study could be a look at how the

other criteria pollutants track with the PM2.5 data. The gaseous criteria pollutants – SO2,

CO, NO2, and O3 – could be included in conditional probability function studies in order

to investigate co-existence of pollutants, and their transport downwind from sources to

the receptor.

One special aspect of this criteria pollutant project would be to add a PM10 source

study, which would investigate the features of a coarse fraction profile. There is a

relationship between coarse and fine fraction particles (Hien et. al, 2004). To what extent

this relationship exists for the Spokane dataset is not known. Understanding the

relationship between the two size fractions could be useful in helping researchers draw
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conclusions from more limited data resources such as smaller collection projects,

historical data, or current PM monitoring stations. The larger fraction study would also

complement the fine fraction research by adding another layer of detail about many PM

constituents (such as the criteria pollutant Pb, or other toxic elements). In addition to its

similarities to fine fraction PM, this companion project could also determine what unique

sources there are in the coarse fraction range. While PM2.5 is recognized as the size

fraction more influential on health, PM10 can interfere with visibility, quality of life, and

economic welfare for those in an affected area.

Another possibility includes incorporating the latest carbon measurement methods

into the dataset for a third-tier carbon comparison. Thermal/Optical Reflectance is similar

to TOT, and is regarded favorably in the air quality field (El-Zanan et. al, 2005; Ye et. al,

2003). While this study included two types of instruments for total carbon and the

elemental/organic split, it did not address any instrument shifts in the organic fraction

computations. The introduction of a newer method could be useful in overcoming

instrumental limitations in fully resolving the elemental and organic carbon data.

Daily weather conditions can also shed light onto why profiles may fluctuate as

they do. This thesis focuses only on the source profile as seen at the receptor site. One

potentially large modifier of the ambient PM is the weather it encounters between

emission and collection. Consideration for daily weather may clarify the relationship

between emission and potential for exposure. Other PMF air quality studies have

incorporated weather parameters to help identify sources of pollution and to clarify

pollutant behavior (Hien et. al, 2002; Juntto and Paatero, 1994; Paatero and Hopke,
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2002). Given such a wealth of information in this dataset, the potential knowledge gained

from adding these parameters is significant.

Research into PM2.5 for Spokane has successfully disclosed several details about

particulate air quality. The results from this body of work indicate several features in the

particulate profile, with unique details regarding vast instrumental methods employed,

and identify both temporal shifts and long-term trends in pollution. This study, while

complete in its own form, is but one piece of the puzzle that is Eastern Washington air

quality.
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APPENDIX

The appendix contains supplemental information not required for submission of a

research proposal, but is deemed relevant for consideration of the research. This

additional information will help clarify research details for those who have little or no

prior knowledge of these pollution modeling tools or the unique aspects of the dataset.

Summary statistics were calculated during the quality filtering and are included in

Table A1. The statistics summarize the arithmetic and geometric means, as well as the

frequency of each specie below its respective detection level, which were subject to

modification before being modeled with PMF. The Kevex and Jordan Valley (JV)

instruments have similar levels of abundance for the species presented in this study. For

Kevex, chlorine, manganese, bromine, and lead are the species with the lowest

abundance, all of which are present above detection for the majority of the study. For

Jordan Valley, bromine and aluminum have relatively poor abundances above detection

relative to other species; in the case of aluminum, the element is not present above

detection the majority of the time. In spite of these limitations, ample data is available to

characterize sources of pollution in Spokane and understand the changes in analysis due

to instrument transition.

For the XRF data, minimum detection limits (MDLs) were taken from previously

published values or determined in the laboratory. The MDL values for the Kevex species

given in Appendix Table A2 are taken from Kellogg (1994), which discusses the Kevex

instrument and its characteristics. In the case of the JV XRF information, limits of

detection were not provided by the instrument manufacturer, and were therefore
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determined by test blank data. Test blanks were analyzed along with standards and

samples to ensure quality results. For each specie, an average of the blank concentration

values was used to represent a lower detection of the instrument. A summary of these

calculated detection limits are given in Table A2. In the case of two or more targets used

to determine blanks, the larger of the two detection limits was used, to take advantage of

the effect on uncertainty. In each case of a single specie having multiple MDLs, the

MDLs were similar to one another, further supporting this method.

One quality test performed was a reconstructed PM2.5 mass, which was compared

to the measured PM mass. In a reconstruction test, the trace elements and the particulate

species are summed according to the following equations and compared to the VAPS and

TEOM mass quantities to point out any major discrepancies. The basic equation for fine

fraction PM is as follows:

PMR = 1.4OC + EC + NO3 + (NH4)2SO4 + ∑ XRF (1)

where OC is the organic carbon contribution and is multiplied by a factor of 1.4 to

account for the average mass ratio of bound hydrogen and oxygen to the carbon, EC is

the elemental carbon concentration, NO 
3 is the nitrate, (NH4)2SO4 is the particle form of

ammonium sulfate, and XRF elements are the trace elements on the filters, analyzed by

X-ray Fluorescence whose mass contribution is given by:

∑XRF = 1.89Al+2.14Si+1.21K+1.4Ca+1.67Ti+1.29Mn+1.43Fe+∑other (2)
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where the multipliers are used to account for the bound oxygen for the common soil

components.

This series of equations takes into account all particulate pollution analyzed in

this study and most of the particulate matter that would be captured on a filter. Within

this reconstruction technique, there were two calculations of (NH4)2SO4 made. The first

calculation used the sulfate data, and mass was computed via the ratio of sulfate to

ammonium sulfate. The second calculated the mass ratio of ammonium sulfate to sulfur,

using XRF-derived sulfur.

(NH4)2SO4 = SO4Quartz filter * ratio of ((NH4)2SO4:S04) (3a)

(NH4)2SO4 = XRFS * ratio of ((NH4)2SO4:S) (3b)

In either case, it is assumed that all of the sulfur is tied up in the ammonium sulfate, so in

Equation 3, the XRF sulfur is intentionally not added to the overall mass. Equations 1-3b

are collectively taken from previous work to approximate soil contributions to PM and

are discussed in more detail in Gray et al. (1986), Chow et al. (1994), and Norris (1998).

Poor or suspicious data can stem from instrumental problems, filter storage, and

filter contamination. Instrumental problems can refer to failure of sensors or data loggers,

overloading the samplers, or human error. In cases of these such interferences, whole

samples are considered suspicious because the total PM mass is questionable. Filter

storage can lead to loss of volatilization of compounds. Handling can lead to loss or gain

of mass, and skew one or more, or all, the specie concentrations. For example, skin
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contact of the exposed filter surface can transfer salts from sweat or oils onto the filter.

Poor quality lab tools can contaminate filters with metals. Laboratory quality checks

reveal small incidences of flagged data of the following: Na, Ba, Br, Cl, Cs, Ni, Si, Sr, W,

Br, Zr, Ca, K, Fe, Rb. The flags were either due to specific contamination or very high

values with no justifiable cause. In spite of all the potential for suspect data, these

instances encompass less than 4% of the overall dataset.

The reconstructed data groups were plotted against each other to graphically

assess the level of agreement between modeled and actual PM. Included in this check

were the two reconstructions set against one another, each reconstruction with the

VAPS2.5 data, and VAPS2.5 data with TEOM2.5. The two sulfur reconstruction methods

are plotted against each other, to display any obvious outliers in either the XRF sulfur or

sulfate data. Each reconstruction is also plotted against the actual VAPS PM2.5 mass, to

pinpoint any cases where either the VAPS may be wrong or the reconstructions may not

be valid. In all cases, the data are separated into yearlong groups. For each plot,

suspicious data were logged for further scrutiny. Samples with pre-existing flags were

either taken out or their uncertainties increased. Those suspect points with no prior flags

were considered individually, and either eliminated or flagged in case of influence on the

model results.

Graphical analyses of the reconstructions indicate strong data quality for the most

of the study. The following graphs (Figure 1) are the data quality plots for the first year

of study, 1995, and are representative of the overall reconstruction analysis. The data are

generally very good, and the questionable points are usually very deviant from the norm.

Results indicate solid agreement with the reconstruction and measured massed. The
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majority of the outlier samples have corresponding flags with their sampling or analysis

methods. In total, roughly 4% of samples tested had species within them that were

recommended to be altered or taken out entirely. The level of quality data also increases

over time; that is, much of the discord in the data occurs early in the study, suggesting

that part of the variability is due to operators learning to use the equipment properly

and/or correct calibration and maintenance methods.

Another series of sensitivity tests were performed for this research, to ensure the

source features were accurate, and not superficially imposed by the models. For the XRF

data, before thesis modeling began, a replication was performed on the work by Kim et.

al (2003), which included ionic, total carbon, and Kevex XRF data from the first three

years of the dataset. This reconstructed PMF study was done in order to understand how

the PMF model responded to the early years of the dataset and that there was

correspondence in assumptions in the kin studies. PMF was used for this analysis; in the

beginning, the exact same settings were used, and were gradually relaxed to understand

the robustness of the model. The resulting profiles were similar but not identical,

attributed to the random nature of the model, and small differences in data filtering.

The Kim et. al reconstruction was expanded to include all Kevex data years

(1995-1999) and deletion of selected elements. This premise behind this sensitivity test

was to confirm the robustness of the Kevex data. Jordan Valley XRF data had known

problems; the instrument was especially bad for elements Al, Mn, and Pb. Because

Kevex was used as the standard for correction, it was important to understand the unique

influence these problem species had on the PMF model, in a situation where the elements

were deemed “good.” Al, Pb, and Mn were individually removed and then in
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combination, and the resultant dataset modeled by PMF to determine whether their

exclusion would hinder the profile. In sources where an element was a key feature, such

as Al and Mn for airborne soil, or Pb for vehicle exhaust, those features were still

identifiable, and other source features were not influenced. Based on the PMF model

outcome and the reported instrumental issues, it was decided that Al would be eliminated

from the dataset, and Pb and Mn would stay.

One post-analysis tool added to PMF version 1.1 is the bootstrapping program.

This program is intended to provide some measure of how well the designed model

predicts the behavior of the data. For each chapter, data were broken into groups of

roughly 500 samples each. The PM2.5 masses were added to data and down weighted by a

factor of thirty (in order to show up in the profile without affecting the profile structure).

A large number of runs are selected in the bootstrap, random starting points with which

the bootstrap program attempts to match runs to the original output. The variation

resulting from matching these runs to the original are plotted in Figures A2-A21. These

variations indicate the uncertainty associated with each source feature, based on the

goodness of the model.
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Specie Cases
(N
=2663)

Selected
(%)

Replaced
(%)

Geometric
Mean
(µg/m3)

Arithmetic
Mean
(µg/m3)

TC 2370 89 11 6.581 8.565
NO3 2183 82 18 0.486 0.698
SO4 2546 96 4 0.696 0.856
NH4 1592 60 40 0.349 0.416
Kevex Instrument
Specie Cases

(N
=1515)

Selected
(%)

Replaced
(%)

Geometric
Mean
(µg/m3)

Arithmetic
Mean
(µg/m3)

Al 1243 82 18 0.102 0.145
Si 1477 97 3 0.166 0.290
Cl 927 61 39 0.016 0.025
K 1506 99 1 0.062 0.080
Ca 1384 91 9 0.041 0.060
Mn 1184 78 22 0.003 0.004
Fe 1515 100 0 0.087 0.125
Cu 1451 96 4 0.011 0.021
Zn 1473 97 3 0.008 0.011
Br 1164 77 23 0.002 0.002
Pb 1046 69 31 0.004 0.005
Jordan Valley Instrument
Specie Cases

(N
=1147)

Selected
(%)

Replaced
(%)

Geometric
Mean
(µg/m3)

Arithmetic
Mean
(µg/m3)

Al 419 37 63 0.261 0.917
Si 1036 90 10 0.501 0.757
Cl 976 85 15 0.059 0.074
K 1147 100 0 0.118 0.149
Ca 1089 95 5 0.050 0.087
Mn 1055 92 8 0.007 0.009
Fe 1144 99 1 0.179 0.244
Cu 1022 89 11 0.007 0.007
Zn 1146 99 1 0.018 0.017
Br 785 68 32 0.003 0.004
Pb 1047 91 9 0.005 0.006

Table A1. Summary Statistics for species used in Kevex and Jordan Valley PMF datasets.
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Element Kevex
MDL

JV
MDL

Element Kevex
MDL

JV
MDL

Na 0.0056 .5440 Se 0.0008 .0002
Mg 0.0034 .0210 Br 0.0006 .0007
Al 0.0184 .0442 Rb 0.0008 .0004
Si 0.0084 .0275 Sr 0.0012 .0052
P 0.0028 .0121 Y 0.0012 n/a
S 0.0028 .0080 Zr 0.0012 .0037
Cl 0.0050 .0161 Mo 0.0016 n/a
K 0.0066 .0025 Rh 0.0270 n/a
Ca 0.0094 .0006 Pd 0.0230 n/a
Sc 0.0016 n/a Ag 0.0210 n/a
Ti 0.0177 .0220 Cd 0.0230 .0043
V 0.0056 .0028 Sn 0.0320 n/a
Cr 0.0080 .0319 Sb 0.0330 .0010
Mn 0.0008 .0013 Te 0.0276 n/a
Fe 0.0008 .0069 I 0.0372 n/a
Co 0.0004 .0002 Cs 0.0512 n/a
Ni 0.0006 .0001 Ba 0.0542 .0248
Cu 0.0008 .0001 La 0.0740 n/a
Zn 0.0010 .0004 W 0.0036 n/a
Ga 0.0016 n/a Au 0.0018 n/a
Ge 0.0012 n/a Hg 0.0016 n/a
As 0.0008 .0001 Pb 0.0016 .0019

Table A2. Instrumental limits of detection (µg/m3) for the Kevex and Jordan Valley XRF.
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Figure A1. PM2.5 Reconstructed Masses using XRF, ion, and total carbon masses.
Figure (a) represents a comparison of the sulfur versus ammonium sulfate masses; (b)
represents the comparison of VAPS and TEOM measured PM2.5 masses; (c)
represents the comparison of VAPS measured PM2.5 mass to sulfur-derived
reconstructed mass; and (d) represents the comparison of VAPS measured PM2.5 mass
to ammonium sulfate-derived reconstructed mass.
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Figure A2. Vehicle Exhaust bootstrap uncertainties for XRF data. Plots represent three
Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.
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Figure A3. Chlorine-rich feature bootstrap uncertainties for XRF data. Plots represent
three Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.
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Figure A4. Metal processing bootstrap uncertainties for XRF data. Plots represent three
Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.



XIII

Figure A5. Biomass burning bootstrap uncertainties for XRF data. Plots represent three
Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.



XIV

Figure A6. Airborne soil bootstrap uncertainties for XRF data. Plots represent three
Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.



XV

Figure A7. Nitrate bootstrap uncertainties for XRF data. Plots represent three Kevex and
two Jordan Valley data groups, broken up in approximately five hundred points each.



XVI

Figure A8. Vehicle exhaust bootstrap uncertainties for INAA-XRF data. Plots represent
two Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.



XVII

Figure A9. Chlorine-rich feature bootstrap uncertainties for INAA-XRF data. Plots
represent two Kevex and two Jordan Valley data groups, broken up in approximately five
hundred points each.



XVIII

Figure A10. Metal processing bootstrap uncertainties for INAA-XRF data. Plots
represent two Kevex and two Jordan Valley data groups, broken up in approximately five
hundred points each.



XIX

Figure A11. Biomass burning bootstrap uncertainties for INAA-XRF data. Plots represent
two Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.



XX

Figure A12. Airborne soil bootstrap uncertainties for INAA-XRF data. Plots represent
two Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.



XXI

Figure A13. Nitrate bootstrap uncertainties for INAA-XRF data. Plots represent two
Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.



XXII

Figure A14. Chromium-rich feature bootstrap uncertainties for INAA-XRF data. Plots
represent three Kevex and two Jordan Valley data groups, broken up in approximately
five hundred points each.



XXIII

Figure A15. Vehicle exhaust bootstrap uncertainties for INAA-XRF-Carbon data. Plots
represent INAA-Kevex-EC-OC, INAA-JV-EC-OC, and INAA-JV-EC-OC fractions,
broken up in approximately five hundred points each.



XXIV

Figure A16. Cl-rich feature bootstrap uncertainties for INAA-XRF data. Plots represent
INAA-Kevex-EC-OC, INAA-JV-EC-OC, and INAA-JV-EC-OC fractions, broken up in
approximately five hundred points each.



XXV

Figure A17. Metal processing bootstrap uncertainties for INAA-XRF data. Plots
represent INAA-Kevex-EC-OC and INAA-JV-EC-OC, broken up in approximately five
hundred points each. The OC fractions data did not produce a metal processing source.



XXVI

Figure A18. Biomass burning bootstrap uncertainties for INAA-XRF data. Plots represent
INAA-Kevex-EC-OC, INAA-JV-EC-OC, and INAA-JV-EC-OC fractions, broken up in
approximately five hundred points each.



XXVII

Figure A19. Airborne soil bootstrap uncertainties for INAA-XRF data. Plots
represent INAA-Kevex-EC-OC, INAA-JV-EC-OC, and INAA-JV-EC-OC
fractions, broken up in approximately five hundred points each.



XXVIII

Figure A20. Nitrate feature bootstrap uncertainties for INAA-XRF data. Plots represent
three Kevex and two Jordan Valley data groups, broken up in approximately five hundred
points each.



XXIX

Figure A21. Chromium-rich feature bootstrap uncertainties for INAA-XRF data. Plots
represent three Kevex and two Jordan Valley data groups, broken up in approximately
five hundred points each.


