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AGRICULTURAL RISK MANAGEMENT DECISION MODELING FOR THE US PACIFIC 

NORTHWEST 

Abstract 
 
 

By Xiaomei Chen, Ph.D. 
Washington State University 

December, 2006 
 

Chair: H. Holly Wang 

The dissertation includes both empirical and theoretical studies in risk management for 

Pacific Northwest (PNW) farmers.  Chapter one gives a brief introduction of the structure and 

contents of the following three studies. 

Chapter two uses a mean-variance model to assess the risk management impact of cross 

hedging with alternative futures contracts (Chicago - CBOT, Kansas City - KCBT, or 

Minneapolis - MGE) for PNW soft white wheat hedgers.  Since existing measures of liquidity 

costs are limited, a breakeven approach is developed to assess the risk management effect of the 

alternative futures markets.  Results suggest KCBT is the best choice for risk protection in most 

cases.  The MGE ranks the lowest and the CBOT is in the middle. 

The goal of the chapter three is to develop a general mean-variance-skewness (MVS) model 

and compare it and the traditional mean-variance (MV) model against the expected utility (EU) 

model in the setting of an individual producer hedging in the futures market.  Optimal solutions 

of optimal hedge ratios and comparative statics are derived.  The optimal hedge ratios from MV 

and MVS models are numerically compared with that of EU model under alternative preference 
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parameters.  Results show that: 1) the derived linear MVS model maintains the analytical 

convenience of MV model, 2) it can generate different results as MV, 3) it approximate EU better 

than MV, and 4) it is more flexible than MV. 

Chapter four is to assess income risks of PNW apple growers and the effect of the apple crop 

insurance program.  We have examined the income risks of conventional and organic 

production; and evaluate the roles of Grower Yield Certification (GYC) and a hypothesized 

Income Protection insurance for Red Delicious, Golden Delicious, Gala and Fuji.  Results show 

organic apple growers earn higher expected revenue, incur higher production cost, make higher 

expected profit, but face higher income risks than conventional growers.  Based on government 

investment in premium subsidies, revenue insurance is more cost effective.  Organic apple 

production risks are higher than their conventional counterparts, causing the current GYC 

premium to be below the expected indemnity (except Gala). 
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CHAPTER ONE 

INTRODUCTION 

    

    In agricultural production, price risk and yield risk are the main risks faced by a farmer. 

Forward, futures and options are the three basic types of market driven risk management tools to 

protect a farmer from price risk.  In addition, the United States government has provided pricing 

programs to help the farmer manage his price risk and crop insurance to manage the yield risk.  

This dissertation will concentrate on futures market and crop insurance.  Each of the following 

three chapters focuses on a different set of issues.  They are summarized in the rest of this 

chapter. 

    The Pacific Northwest (PNW) region produces about 80 to 90 percent of the soft white 

wheat in the US, and wheat is one of the region’s major cash crops.  Traditionally, the region’s 

wheat producers have not used hedging extensively for price risk management.  The lack of an 

inherent futures contract for soft white wheat is likely a major reason.  Thus, the need to cross 

hedge PNW wheat using market classes with an inherent futures contract (hard red winter on 

Kansas City -KCBOT, soft red winter on Chicago - CBOT, or hard spring on Minneapolis - 

MGE) presents some unique basis issues.  The idea of hedging a commodity for which no 

futures market exists (cross hedging) has become a common practice.  Anderson and Danthine 

(1981) generally suggested cross hedging may be an appropriate risk management tool and such 

hedges can be evaluated just like a standard hedge.  Although Wilson (1983) looked at cross 
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hedging wheat in the US, an important class of wheat (soft white) was not included in the 

analysis. 

The overall objective of chapter two is to determine which futures contract (CBOT, KCBOT, 

or MGE) maximizes utility of PNW soft white wheat hedgers.  A standard mean-variance utility 

model is used to define the utility maximization equation, which includes the appropriate hedge 

ratios and a range of risk aversion coefficients.  Results suggest that the KCBT may dominate 

the other two markets in terms of best protecting cross-hedging risk for soft white wheat in the 

Pacific Northwest, especially for large hedgers.  This is generally true unless the true liquidity 

cost for the KCBT relative to Chicago is at or above currently available estimates.  The MGE 

appears to be less effective given reasonable expectations of liquidity costs levels for the MGE, 

although precise estimates are not available.  Results certainly suggest Kansas City should be 

given more attention as a hedging vehicle for soft white wheat in the Pacific Northwest region. 

Chapter two is an applied study on futures market.  Chapter three focuses more on 

theoretical aspect of futures and develops a general mean-variance-skewness (MVS) model 

based on the widely used mean-variance (MV) model.  The linear mean-variance (MV) model 

has been widely used in finance and economic decision analysis as an approximation of Von 

Neumann-Morgenstern expected utility (EU) model.  The MV model requires less information 

from decision makers’ preference and random distributions than EU models in addition to its 

very convenient form for analytical work.  Since conditions that guarantee the exact consistency 

between the MV and EU models are restrictive, many studies have expanded the model to 

incorporate higher moments. 
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    The introduction of third or higher moments not only can improve the accuracy of the 

approximation, but is also suitable to represent investors’ skewness preference (prudence) with 

the latter supported by empirical evidence.  Literature of developing such MVS models or 

applying any form of three moment models to agricultural risk management is rarely found. 

    The goal of chapter three is to develop a general MVS model and compare it and the 

traditional MV model against the EU model in the setting of an individual producer hedging in 

the futures market.  Kimball’s absolute prudence which is isomorphic to Arrow-Pratt’s risk 

aversion, is incorporated in the MVS model as well as the risk aversion level.  The closed form 

solutions and comparative statics of OHR from both MV and MVS models are compared 

theoretically, which leads to important propositions.   

    Because closed form solutions from EU models are generally not available, the numerical 

analysis is used to benchmark MV and MVS against EU based on a field crop grower who faces 

uncertain price and yield and makes a decision on hedging in the futures market.  Joint Gamma 

distributions of stochastic prices and yields are simulated with alternative set of parameters.  

Risk preference parameters are set around the commonly used constant relative risk aversion 

(CRRA) type of utility functions.  Both sets of parameters are calibrated based on a US dryland 

wheat grower hedging in a wheat futures market.  Numerical optimizations are obtained with 

sensitivity analysis, especially on prudence coefficient to reveal its impacts on hedging decision. 

    The OHRs derived from the MV and MVS models are identical only when: 1) the decision 

maker is “prudence neutral” or; 2) assuming unbiased futures market and perfect correlation at 

both second moment and third moment levels. Otherwise, the two models will yield different 
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OHRs.  The OHR of MVS model changes in the same direction as that of the MV model when 

the initial futures price, covariance of cash and futures prices, and risk aversion coefficient 

changes one at a time.  The signs on the comparative statics of the MVS OHR on the other 

parameters such as the prudence level, skewness of futures prices and coskewness of futures and 

cash prices are ambiguous unless further conditions are considered.  For example, the MVS 

OHR will be “longer” so as to increase the benefit from increased profit skewness when the 

futures price is more skewed. 

    Numerical results show the OHRs from the MVS model is closer to those from EU model 

than MV model OHRs in all situations considered.  This evidence suggests MVS model is 

superior to MV model.  The farmer hedges more (or less) under the MVS model than the MV 

model when he/she is in a long (short) position.   

    The influences of risk aversion and prudence on OHRs for the MVS model are also 

examined by extending the ranges of relative risk aversion and prudence from the common 

CRRA utility preferences.  The numerical results show the farmer full-hedges in the unbiased 

market and hedges less as risk aversion increases in the biased futures market.  The hedging 

position decreases as the farmer becomes more prudent.  Risk aversion has a greater influence 

on OHR than prudence in the case of biased futures market.  The certainty equivalent 

consistently decreases as the risk aversion increases in both biased and unbiased market, but the 

certainty equivalent does not necessarily increase with prudence.  

It has great potential to generate discussions.  Although EU is widely used in risk analysis 

and numerical analysis can be easily carried when analytical results are not feasible, MVS as an 
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approximation to EU is still meaningful because it can explicitly model and measure the decision 

maker’s preference for the third moment.  The model can be applied to other risk management 

instruments in agricultural markets, and can be extended to incorporate higher moments. 

    Chapter four discusses crop insurance for PNW apple growers to protect from yield risk.  

PNW, especially the state of Washington, is the leading region in both conventional and organic 

apple production.  PNW apples are primarily grown for the high value fresh market due to their 

high quality.  This higher quality also requires higher production costs, which in turn results in 

high profit risks for apple growers, when couple with adverse weather conditions, insects and 

plant diseases, and other factors. 

 Apple crop insurance is a major risk management tool for apple growers.  However, the 

current apple crop insurance program only offers a yield based program.  A frequent complaint 

made by PNW apple growers is that national insurance programs do not provide adequate 

coverage for high valued apples, which is more problematic for organic apples.  The price 

selection level in GYC is set low compared to the fresh market price for PNW apples (4.65 $/box 

for Red Delicious and Golden Delicious and 6.45 $/box for Gala and Fuji).  The yield coverage 

level is also low, ranges only to 75%.  So far, no work has been found assessing the effect of the 

apple crop insurance program on either conventional or organic apple production. 

    The goal of chapter four is to assess income risks of PNW apple growers and the risk 

management effect of the apple crop insurance program by varieties (Red Delicious, Golden 

Delicious, Gala and Fuji).  Income risks are represented by the distributions of growers’ 

production income.  The risk management effects of insurance programs are based on growers’ 
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expected utility models.  We assume a representative apple grower chooses an insurance 

coverage level to maximize expected utility of wealth, composed of initial wealth, random 

production income and insurance transactions.  Insurance can be GYC, and a hypothetical 

income protection insurance product. Insurance premiums are developed based on the actual 

premium structure. 

Results show organic apple growers earn higher expected revenue, incur higher production 

cost (excluding establishment cost), make higher expected profit, but face higher income risks 

than conventional apple growers.  In terms of certainty equivalent, that income insurance is not 

necessarily preferable than yield insurance by growers because the base price is set too low 

compared to its corresponding market cash price.  However, from the point of view of the 

government investment in premium subsidies, revenue insurance is always more cost effective 

for all varieties and for both conventional and organic practices.   

Organic apple production risks are higher than their conventional counterparts, causing the 

current GYC premium to be below the expected indemnity even before the subsidy and after the 

organic premium inflation factor (except Gala) based on our survey data.  Gala apple 

production is less risky for both conventional and organic apple growers.  Consequently, Galas 

benefit little from insurance and organic Gala becomes an exception from the other organic 

varieties, namely, the current GYC premium is above the expected indemnity.  In the future 

insurance parameter setting, it would be good to separate at least Gala from the other varieties. 
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CHAPTER TWO 

CROSS HEDGING PNW SOFT WHITE WHEAT: CHICAGO, KANSAS CITY, OR 

MINNEAPOLIS 

 

I. INTRODUCTION 

 The Pacific Northwest (PNW) region produces about 80 to 90 percent of the soft white 

wheat in the US, and wheat is one of the region’s major cash crops.  Traditionally, the region’s 

wheat producers have not used hedging extensively for price risk management (Makus, et al., 

1990).  The lack of an inherent futures contract for soft white wheat is likely a major reason.  

Although the Minneapolis Grain Exchange (MGE) offered a white wheat futures contract for a 

number of years, the contract was thinly traded and has been discontinued.  Thus, the need to 

cross hedge PNW soft white wheat using market classes with an inherent futures contract (hard 

red winter on the Kansas City Board of Trade -KCBT; soft red winter on the Chicago Board of 

Trade - CBOT; or hard red spring on the Minneapolis Grain Exchange - MGE) presents some 

unique challenges to hedging wheat in the PNW.  Cross hedging is a process of hedging a cash 

commodity with the futures contract of a different but related commodity (Graff, et al., 1997).  

Simple price correlations between the Portland cash price (the principal cash market for PNW 

soft white wheat), and the three available futures contracts suggest that all three markets are 

potential candidates (Table 2.1).   

There are studies (Wilson, 1983; Brorsen, et. al., 1998; Franken and Parcell, 2003) on the 

effectiveness of cross-hedging specific commodities in different futures markets, but none 
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analyze the effect of cross-hedging PNW soft white wheat.  The CBOT has been used as the 

futures market to investigate PNW growers’ hedging behavior (Ke and Wang, 2002), but no 

work has been done to carefully evaluate all of the alternative futures contracts.   

The goal of the paper is to determine which futures contract (CBOT, KCBT, or MGE) 

provides the best risk management effect for PNW soft white wheat hedgers.  The specific 

objectives include: (1) to estimate regression hedge ratios for each market under the assumption 

of zero transaction costs; (2) to calculate the maximized mean-variance utility hedge ratios with 

non-zero transaction costs; and (3) to compare the three futures markets using a break-even 

method to determine the potential impact of liquidity costs.  

 

II. METHODOLOGY 

The classical mean-variance model has been applied frequently to hedging analyses 

(Benninga, et. al., 1984; Myers and Thompson, 1989; Brorsen, et al., 1998; Franken and Parcell, 

2003) since being introduced by Markowitz in the 1950s (Steinbach, 2001).  Under certain 

conditions, the mean-variance model generally provides results consistent with the more 

comprehensive and popular expected utility models (Meyer, 1987).  In the context of hedging, 

Benniga, et. al. (1984) identify the set of specific conditions.  The mean-variance utility 

maximization problem can be specified as: 

(1)                    ( ( )) max[ ( ) var( )]
2

MaxE U R E R Rλ
= −   

where U( ) is the utility function; R is the return from any risky investment; λ is the decision 
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maker’s absolute risk aversion coefficient, and E() and Var() are the expected value and variance 

operators.  Following Leuthold, et. al. (1989), a hedging return R is specified as: 

 ||)()( 0101 XTCFFXSSX R ffs − − + − =  

where Xs is the cash market holding; Xf is the hedging level in the futures market; S0 and F0 are 

the known cash and futures prices at the beginning of a hedge period when the hedging decision 

is made; S1 and F1 are the uncertain cash and future prices at the end of the period; and TC is the 

total transaction cost per unit hedged.  Denoting σ2
s, σ2

f, and σsf as the variances and covariance 

of the cash and futures prices respectively, and assuming the cash and futures markets to be 

unbiased1, the expected value and variance of the return from hedging become:   

f

ffs

XTC

XTCFFEXSSEXRE

−=

−−+−= ))(())(()( 0101
 

sfsfffss XXXXRVar σσσ 2)( 2222 ++=  

Take the first derivative of equation (1) with respect to the hedging level (Xf) to obtain2:  

(2)                    σσσλ 22* /)/( fsfsff XTCX −=   

Assuming zero transaction cost, equation (2) yields: 

(3)                     σσ 2** /)/( fsfsf XXb =−≡   

The ratio of the futures hedging level to the cash market holdings (b*) is equal to the slope 

coefficient when cash prices are regressed on futures prices, which is also called the regression 

hedge ratio.  Although there is some debate about a price level versus price change approach 

(Brown, 1985; Witt, et. al., 1987), the price change approach can be used to remove the unit root 
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problem from the time series data.  Thus, the regression hedge ratio can be achieved by 

estimating the following regression: 

(4)                           vtkttktt FFSS +−+=− −− )()( 10 ββ   

where k indicates the hedge period and can be used to represent short versus long term hedging 

behaviors; St - St-k and Ft - Ft-k represent the cash and future price differences from day t to day 

t-k respectively; and νt is the error term.  The regression hedge ratio β1, although not considered 

optimal when transaction costs are included, can be used as an estimate of σsf /σ2
f in the equation 

to calculate the optimal hedge level.  The optimal hedge level X*
f is equal to the negative of the 

optimal hedge ratio if we assume Xs = 1 (that is, a one unit cash position).  The maximized 

utility (MU) is calculated by substituting the optimal hedge value into equation (1), namely: 

(5)                 22 2* * *( / 2)[ ( ) 2 ]f f fs f sfMU TC X X Xλ σ σ σ= − + +  

Transaction costs are never equal to zero and should include some measure of commission 

costs as well as liquidity costs as suggested by Brorsen, et al., 1998.  Good measures of 

liquidity cost in commodity futures markets are limited.  Thompson, Eales, and Seibold (1993) 

estimated the liquidity costs for the CBOT and KCBT futures markets using methods developed 

by Roll (1984) and Thompson and Waller (1988).  No work was found focusing on liquidity 

costs for the MGE.  Even Thompson, et al. (1883) caution that their estimation of CBOT and 

KCBT liquidity costs has its limitation due to the short time period analyzed.  Brorsen, et al. 

(1998) also point out another potential limitation of the Thompson, et al. (1993) measure of 

liquidity costs.  Their concern relates to whether or not large hedgers can influence the bid-ask 
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spread.  Therefore, a break-even method is employed to eliminate the need for using a specific 

measure of liquidity costs for all three markets.  The break-even relationship can be expressed 

by equating (5) for the compared market to a market selected as the benchmark.  That is: 

(6)                    ( ) ( )C C B BMU TC MU TC=  

where MUC and MUB are the maximized utility of the compared and benchmark futures markets 

respectively, expressed as functions of TCC and TCB; TCB is the true transaction cost of a 

benchmark market which is known or specified; TCC is the break-even transaction cost of the 

compared market to make equation (6) hold.  Combining equation (2), (5) and (6) and solving 

for TCC yields: 

(7)                    2 2 2( 2 )C B
f f fTC MUλ λ λσ σ σ= − +   

The higher the break-even transaction cost for the compared market relative to the 

benchmark market, the more effective the compared market is in regard to its risk reducing effect.  

Hedging in the compared market can bring about the same expected utility level to the hedger as 

from the benchmark market, even though the transaction cost of the compared market is higher.  

Thus, a high break-even transaction cost suggests the compared market is more effective. 

 

III. DATA AND EMPIRICAL ANALYSIS 

The analysis utilizes daily cash and futures prices from January 2, 1997 to June 30, 2003 

(1,631 observations).  Cash prices are daily prices provided by the USDA-Agricultural 

Marketing Service for soft white wheat delivered to Portland.  Futures prices are daily 
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settlement prices for the CBOT, KCBT, and MGE provided by the Commodity Research Bureau.  

Summary statistics for the price data are provided in table 2.13.  Hedging periods analyzed 

include 1, 21, 65, 130, and 260 days representing one day, one month, three months, six months, 

and one year hedges.  The nearby futures contract is used for hedging, with the nearby being 

defined as the contract month closest to delivery without being in delivery when the hedge is 

lifted.  A dummy variable is included in the regression model to capture the impact of the 

contract switching points. 

Several diagnostic tests are conducted on the time series data to identify the appropriate 

specifications of the error terms for the regression model.  The existence of a unit root in each 

time series is indicated by the Augmented Dickey-Fuller test.  Thus, price changes rather than 

price levels are employed in the estimation as in equation (4).  Conditional heteroscedasticity is 

also strongly indicated by the Q-test and Lagrange multiplier test (table 2.2).  The sample 

autocorrelation function of residuals from simply regressing cash prices changes on futures 

prices changes shows spikes at lag 1 and k, where k corresponds to the different hedge periods.  

All of the above suggest a kth-order autoregressive error model with the GARCH variance model.  

Namely, the AR(k) - GARCH(1,1) regression model is the most appropriate.  The Q test and 

Lagrange multiplier test are applied again to the suggested model and both support a good fit 

(Table 2.2).  Equation (4) is now written as:   

(4a)        110 1 2( ) ( ) t t k tkt t k t t kS S F F D v vβ β β ρ ρ ε− −− −− = + − + − − +  

where D is the dummy variable with a value of 1 at the contract month switching point and 0 

otherwise; 1ρ and kρ are the first-order and kth-order autocorrelation parameters where k 
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corresponds to the hedge period; vt-1 and vt-k are the 1st and kth-order autoregressive process 

which is: 

0 1( ) ( )t k t t k t t kS S F Fv β β− − −= − − − − ; 

and tε is the GARCH(1,1) variance model. 

The absolute risk aversion level (λ) is allowed to vary from 0.2 to 1 as a way to observe 

how maximized utility responds to changes in the risk aversion level.  The variances of cash 

prices and futures prices in the three markets are calculated directly from the data.  The 

covariance of cash and futures prices is obtained by the multiplication of the regression hedge 

ratio and futures price variance.  

Transaction costs include a commission cost and a liquidity cost.  According to Brorsen, et 

al. (1998), the commission costs are 1.6 cents per bushel for small hedgers and 0.18 cents per 

bushel for large hedgers.  Based on the Thompson, et al. (1993) estimation of liquidity cost at 

the CBOT and KCBT, two scenarios for liquidity costs are addressed.  First, a liquidity cost of 

0.25 cents per bushel is used for all three markets so that optimal hedge ratios and MU values 

can be compared.  The lower range of the liquidity costs estimates from Thompson, et al. (1993) 

are 0.252 and 0.263 cents for the CBOT and KCBT, respectively.  Second, 0.25 cents per bushel 

is used for the CBOT as the benchmark futures market, and break-even liquidity costs are 

calculated for the other two futures markets. 

 

IV. RESULTS 

The estimates of regression hedge ratios (no transaction cost) for the CBOT, KCBT, and 
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MGE futures markets are all significant at the 0.0001 level.  Hedge ratios range from 0.30 to 

0.36, indicating that about one-third of the cash position needs to be hedged in the futures market 

if there is no market transaction cost.  These ratios for the three markets in five hedge periods 

are plotted in Figure 2.1, and the hedge ratios in the KCBT are higher than those in both the 

CBOT and MGE markets.  Regression hedge ratios for the MGE futures market are generally 

between those for the KCBT and the CBOT.  Without considering the transaction cost, the 

covariance between the futures and Portland cash prices relative to the variance of futures prices 

is highest for the KCBT, then the MGE, and lowest for the CBOT except the 1-day hedge period 

(CBOT is close to KCBT and higher than MGE).  Or loosely speaking, the correlation between 

Portland cash and the futures prices accounting for the time series properties is highest for the 

KCBT and lowest for the CBOT with 1-day hedge period exception, quite different from the 

simple sample correlations reported in Table 2.1.   

The hedging pattern is different when transaction costs are included.  Table 2.3 shows the 

optimal hedge ratios for both small and large hedgers for the first scenario.  Commission costs 

for small and large hedgers are set at 1.6 and 0.18 cents per bushel, respectively.  Liquidity 

costs are 0.25 cents per bushel for all three futures markets.  The optimal hedge ratios in the 

KCBT are still generally larger than those in the other two markets except that in the 1-day hedge 

period the optimal hedge ratios in the CBOT are the highest.  However, the relative rank of the 

CBOT and MGE reflects some changes.  Large hedgers generally have comparable optimum 

hedge ratios in the CBOT and MGE, with the CBOT being larger especially for the shorter term 

hedges.  Small hedgers consistently have higher ratios in the CBOT than in the MGE regardless 



 16

of risk aversion level.  The optimal hedge ratio is higher in the CBOT in most cases when the 

commission cost is high (for small hedgers).  The reason is that the optimal hedge ratio is 

monotonically increasing with regard to both the regression hedge ratio and variance of the 

futures prices with transaction costs as shown in equation (2).  The regression hedge ratio is 

higher in the MGE, but the variance of the futures prices is higher in the CBOT.  Thus, the 

relative rank between the CBOT and MGE is determined by a tradeoff between the regression 

hedge ratio effect and the futures price variance effect under the influence of risk aversion. 

No hedging occurs for small hedgers facing a transaction cost when the risk aversion level 

is low (0.2).  The optimal hedge ratios go up and converge toward the regression hedge ratios as 

the risk aversion level increases.  This is because the more risk-averse hedgers are willing to 

discount the impact of any transaction cost. 

The maximized utility values in Table 2.4, which are based on the equal liquidity cost 

scenario, show that the KCBT generally provides the highest utility values (smallest negative 

value).4  The one-day hedge is the exception, where the CBOT has the highest utility value.  

The CBOT is the second best relative to maximized utility values, with the MGE ranking the 

lowest although optimal hedge ratios are about the same between the MGE and the CBOT in 

some cases.  All the maximized utility values decrease as the risk aversion level increases, as 

expected.  Larger hedgers always have higher maximized utility values because they pay lower 

transaction costs.  Small hedgers (with high commission cost) have the same maximized utility 

values for all hedge periods when the risk aversion level is at 0.2 because they don’t hedge.  

Thus, only the variance of the cash price influences the utility value.   
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Since liquidity costs in the three markets are likely not equal, it is useful to use the 

break-even approach to assess the level of liquidity cost that provides the same level of utility 

(equation 7).  Table 2.5 shows the break-even liquidity cost for the KCBT and MGE when the 

CBOT is selected as the benchmark market.  The CBOT is assigned a liquidity cost equal to 

0.25 cents per bushel based on Thompson, et al. (1993).  The break-even liquidity costs are 

higher in the KCBT than those in the benchmark CBOT (except for the one day hedge) when the 

utilities in both markets are equated.  In fact, trading on the KCBT is likely more expensive 

(higher liquidity costs) because of low trading volume (Brorsen, et al., 1998).  From the 

Thompson, et al. (1993) estimation, KCBT liquidity costs range from 0.26 to 0.54 cents per 

bushel.  The issue is how much more in liquidity costs can hedgers tolerate (relative to the 

CBOT), and still receive the same risk management effect.  

If the highest estimated liquidity costs value for the KCBT is assumed (0.54 cents), any 

break-even liquidity cost value in table 2.5 for the KCBT above 0.54 cents suggests the 

compared futures market is superior to the benchmark market (the CBOT).  The KCBT is 

generally superior at risk aversion levels above 0.60 and for the intermediate hedging periods (65 

or 130 days).  If the low range of the estimated liquidity cost for KCBT is assumed, (0.26 cents 

per bushel), the KCBT is superior for all hedge periods and risk aversion levels except for the 

one-day hedge period.  This result is consistent for both small and large hedgers. 

Results for the MGE are somewhat more problematic since no empirical estimates for 

liquidity costs are available.  However, in order to achieve the same utility, liquidity costs for 

the MGE have to be very low or negative.  Therefore, results suggest the CBOT is generally 
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better than the MGE unless the liquidity costs for MGE are very low, which is unlikely given the 

low volume of the MGE relative to both the CBOT and KCBT.   

 

V.  SUMMARY AND CONCLUSION 

A mean-variance version of the expected utility model is used to determine which futures 

contract (Chicago, Kansas city, or Minneapolis) provides the best risk management effect for 

Pacific Northwest soft white wheat hedgers.  Regression hedge ratios are estimated first, as they 

provide a useful estimate needed to get the optimal hedge ratios.  Transaction costs are included 

in the model, and both commission and liquidity costs are considered.  Previous estimates of the 

liquidity cost for the KCBT cover a wide range, and such estimates are not available for the 

MGE wheat futures contract.  Therefore, a break-even method is employed to compare risk 

management effects across the three futures markets.  Five hedge periods (1, 21, 65, 130, and 

260 days) with five risk aversion levels (0.20 to 1.00 in increments of 0.20) are analyzed. 

The regression hedge ratios are different when compared to the optimal hedge ratios based 

on the mean-variance model when equal liquidity costs are assumed.  Furthermore, the rank 

(based on size) of the hedge ratios changes in the three markets.  The KCBT consistently has 

the largest regression hedge ratios, followed by the MGE and CBOT except the 1-day hedge 

period.  When optimal hedge ratios are determined, the highest hedge ratios are still associated 

with the KCBT.  Larger regression hedge ratios are associated with the CBOT relative to the 

MGE, although the two are close for the large hedge and longer hedge periods.  All the optimal 

hedge ratios increase as the risk aversion level goes up, and they approach levels comparable to 
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the regression hedge ratios. 

Maximized utility values are consistently higher for the KCBT when the same level of 

liquidity cost (0.25 cents per bushel) is assumed for each exchange, except for the one-day hedge 

period.  The CBOT ranks second, followed by the MGE.  Maximized utility values are smaller 

with higher levels of risk aversion. 

Since liquidity costs are likely different across exchanges, a break-even approach is used to 

assess the level of liquidity costs resulting in the same level of utility using the CBOT as the 

benchmark.  Previous liquidity cost estimates for the CBOT are consistently around 0.25 cents 

per bushel, and the CBOT is more commonly used for hedging wheat in the Pacific Northwest.  

The KCBT can be superior to the CBOT for hedging effectiveness when the highest estimate 

(0.54 cents per bushel) of KCBT liquidity cost is used.  However, results favor the CBOT for 

certain hedge periods and risk aversion levels.  If the low range of KCBT liquidity costs 

estimates is assumed (0.26 cents per bushel), the KCBT is consistently superior with the one-day 

hedge still being the exception. 

Although a liquidity cost estimate for the MGE is not available, break-even results suggest 

that the MGE should rank the lowest.  The reason is that its liquidity cost has to be very low or 

negative in order to achieve the same utility as is available from the other two markets.  

Conceptually, the MGE’s true liquidity cost should be higher given its volume relative to the 

CBOT and KCBT. 

Results suggest that the KCBT may dominate the other two markets in terms of best 

protecting cross-hedging risk for soft white wheat in the Pacific Northwest, especially for large 
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hedgers.  This is generally true unless the true liquidity cost for the KCBT relative to Chicago is 

at or above currently available estimates.  The MGE appears to be less effective given 

reasonable expectations of liquidity costs levels for the MGE, although precise estimates are not 

available.  Results certainly suggest Kansas City should be given more attention as a hedging 

vehicle for soft white wheat in the Pacific Northwest region. 



 21

ENDNOTES 

1The cash market is assumed unbiased when storage costs are included. 

2It can be proved that Xf must have a non-positive value in an unbiased market for a hedger with 

a short cash position.  Equation (2) is derived for a non-positive interior solution Xf when the 

exogenous variables on the right hand side satisfy the non-positive condition; otherwise a corner 

solution of Xf = 0 will be obtained which is of less interest. 

3A few missing price values exist and are replaced with the price average from the two closest 

days. 
4The maximized utility values are negative because unbiased futures and cash prices are 

assumed. 
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Table 2.1. Summary Statistics for the Original Price Data (cents / bushel) and 

         Correlation Coefficients 
____________________________________________________________________________ 
 
                   Summary Statistics               Correlation Coefficients    
Variables  Mean  Std. Dev.  Maximum  Minimum  Cash  CBOT  KCBT  MGE 

Cash 344.56 51.15  482.50 252.00 1.00 0.90 0.83 0.74 

CBOT 297.97 45.13 441.75 230.75 0.90 1.00 0.94 0.88 

KCBT 325.79 48.22 499.50 259.25 0.83 0.94 1.00 0.92 

MGE 349.57 42.05 515.25 286.25 0.74 0.88 0.92 1.00 
__________________________________________________________________________________________ 
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Table 2.2. The Q statistic (Q) test and Lagrange Multiplier (LM) Test for Identification of 

         the Error Term 

____________________________________________________________________________ 
 

Before AR (21)-GARCH (1, 1) model           After AR (21)-GARCH (1, 1) model  
Order    Q Pr>Q  LM Pr>LM  Q Pr>Q LM Pr>LM 
 
1 1352.73 <.0001 1349.87 <.0001  0.4459 0.5043 0.4511 0.5018 

2 2467.87 <.0001 1350.37 <.0001  0.6095 0.7373 0.6117 0.7365 

3 3343.53 <.0001 1353.52 <.0001  0.7100 0.8708 0.7121 0.8704  

4 4048.77 <.0001 1354.56 <.0001  0.7106 0.9500 0.7142 0.9496 

5 4603.84 <.0001 1354.89 <.0001  1.1065 0.9535 1.0801 0.9558 

6 5017.84 <.0001 1357.25 <.0001  1.1935 0.9772 1.1871 0.9775 

7 5320.71 <.0001 1357.25 <.0001  1.8452 0.9679 1.8303 0.9686 

8 5547.59 <.0001 1357.91 <.0001  1.9796 0.9816 1.9523 0.9824 

9 5717.69 <.0001 1357.93 <.0001  2.0085 0.9913 1.9677 0.9920 

10 5860.24 <.0001 1360.32 <.0001  3.7725 0.9570 3.7156 0.9593 

11 5982.23 <.0001 1360.44 <.0001  5.2864 0.9165 5.0536 0.9285 

12 6094.09 <.0001 1360.66 <.0001  6.2677 0.9020 5.9156 0.9203 
____________________________________________________________________________ 
 
Note: The tests results are for the 21-day hedge period.  Tests for the other hedge periods of 
     1, 65, 130, and 260 days are very similar to the 21-day hedge period, and are not 
     presented. 
 



 

  

Table 2.3. The Optimal Hedge Ratios for the Three Futures Markets with the Same Liquidity Cost at 0.25 cents / bushel for    

         Five Hedge Periods and Alternative Risk Aversion Levels 

___________________________________________________________________________________________________________________________ 
 
                                             Alternative Risk Aversion Levels                                

0.200 0.400 0.600      0.800       1.000 
Hedge Period CBOT KCBT MGE CBOT KCBT MGE CBOT KCBT MGE CBOT KCBT MGE CBOT KCBT MGE 
 
Small hedgers (commission cost = 1.6 cents per bushel) 

1 day   0   0   0 0.167 0.162 0.109 0.231 0.228 0.182 0.263 0.260 0.219 0.282 0.280 0.241 

21 days   0   0   0 0.138 0.150 0.115 0.202 0.216 0.188 0.234 0.249 0.225 0.253 0.268 0.247 

65 days   0   0   0 0.113 0.137 0.091 0.177 0.203 0.164 0.209 0.235 0.201 0.228 0.255 0.223 

130 days   0   0   0 0.128 0.157 0.100 0.192 0.222 0.173 0.224 0.255 0.210 0.243 0.275 0.232 

260 days   0   0   0 0.121 0.133 0.103 0.184 0.199 0.177 0.216 0.231 0.213 0.235 0.251 0.235 
Large hedgers (commission cost = 0.18 cents per bushel) 

1 day 0.269 0.267 0.227 0.314 0.313 0.278 0.329 0.328 0.295 0.336 0.336 0.304 0.340 0.340 0.309 

21 days 0.241 0.256 0.233 0.285 0.301 0.284 0.300 0.316 0.301 0.307 0.324 0.309 0.312 0.329 0.315 

65 days 0.216 0.242 0.209 0.260 0.288 0.260 0.275 0.303 0.277 0.282 0.311 0.285 0.287 0.315 0.290 

130 days 0.230 0.262 0.218 0.275 0.307 0.269 0.290 0.323 0.286 0.297 0.330 0.294 0.301 0.335 0.299 

260 days 0.223 0.238 0.221 0.267 0.284 0.272 0.282 0.299 0.289 0.290 0.307 0.298 0.294 0.311 0.303 
___________________________________________________________________________________________________________ 
 

Note: All the hedge ratios should have negative signs representing a short hedge, so the negative sign is omitted from the table. 
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Table 2.4. Maximized Utility Values for the Three Futures Markets with the Same Liquidity Cost at 0.25 cents / bushel for    

         Five Hedge Periods and Alternative Risk Aversion Levels 

___________________________________________________________________________________________________________ 
 
                                              Alternative Risk Aversion Levels                                

0.200 0.400 0.600      0.800       1.000 
Hedge Period CBOT KCBT MGE CBOT KCBT MGE CBOT KCBT MGE CBOT KCBT MGE CBOT KCBT MGE 
 

Small hedgers (commission cost = 1.6 cents per bushel) 

1 day -1.061 -1.061 -1.061 -1.988 -1.999 -2.073 -2.798 -2.819 -2.975 -3.579 -3.608 -3.842 -4.348 -4.385 -4.697 

21 days -1.061 -1.061 -1.061 -2.030 -2.016 -2.067 -2.888 -2.855 -2.961 -3.716 -3.664 -3.820 -4.532 -4.460 -4.666 

65 days -1.061 -1.061 -1.061 -2.061 -2.034 -2.088 -2.956 -2.895 -3.014 -3.823 -3.724 -3.907 -4.678 -4.542 -4.785 

130 days -1.061 -1.061 -1.061 -2.044 -2.008 -2.081 -2.918 -2.836 -2.995 -3.762 -3.634 -3.876 -4.595 -4.421 -4.742 

260 days -1.061 -1.061 -1.061 -2.053 -2.039 -2.078 -2.938 -2.906 -2.988 -3.794 -3.742 -3.863 -4.638 -4.565 -4.726 

Large hedgers (commission cost = 0.18 cents per bushel) 

1 day -0.886 -0.894 -0.953 -1.647 -1.662 -1.798 -2.401 -2.425 -2.636 -3.154 -3.185 -3.471 -3.906 -3.945 -4.306 

21 days -0.921 -0.908 -0.948 -1.729 -1.696 -1.784 -2.531 -2.477 -2.614 -3.331 -3.257 -3.441 -4.131 -4.036 -4.268 

65 days -0.949 -0.923 -0.970 -1.795 -1.733 -1.839 -2.635 -2.536 -2.701 -3.474 -3.337 -3.561 -4.312 -4.137 -4.421 

130 days -0.933 -0.900 -0.962 -1.758 -1.678 -1.819 -2.576 -2.449 -2.669 -3.393 -3.219 -3.518 -4.209 -3.988 -4.365 

260 days -0.941 -0.928 -0.959 -1.777 -1.743 -1.812 -2.607 -2.552 -2.657 -3.435 -3.359 -3.501 -4.262 -4.166 -4.344 
             __________________ 
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Table 2.5. Break-even Liquidity Costs for KCBT and MGE with CBOT as the 

         Benchmark Market Charging 0.25 cents / bushel in Liquidity Cost 

_______________________________________________________________________ 
 
                        Alternative Risk Aversion Levels                   
Hedge      0.200        0.400         0.600        0.800        1.000 
Period KCBT MGE KCBT MGE KCBT MGE KCBT MGE KCBT MGE 
 
Small hedgers (commission cost = 1.6 cents per bushel) 

1 day NA NA 0.181 -0.339 0.160 -0.571 0.138 -0.803 0.117 -1.035 

21 days NA NA 0.344 -0.033 0.404 -0.111 0.464 -0.190 0.523 -0.268 

65 days NA NA 0.458 -0.010 0.574 -0.077 0.690 -0.144 0.807 -0.211 

130 days NA NA 0.503 -0.065 0.642 -0.160 0.781 -0.254 0.920 -0.349 

260 days NA NA 0.353 0.030 0.417 -0.017 0.481 -0.064 0.546 -0.110 

Large hedgers (Commission cost = 0.18 cents per bushel) 

1 day 0.222 -0.011 0.202 -0.242 0.179 -0.475 0.158 -0.706 0.136 -0.938 

21 days 0.303 0.142 0.363 0.063 0.423 -0.015 0.482 -0.094 0.544 -0.171 

65 days 0.361 0.155 0.476 0.086 0.592 0.018 0.710 -0.047 0.827 -0.114 

130 days 0.382 0.126 0.523 0.032 0.661 -0.063 0.801 -0.157 0.940 -0.251 

260 days 0.307 0.173 0.372 0.126 0.438 0.081 0.502 0.034 0.565 -0.014 
________________________________________________________________________ 
 
Note: When the risk aversion level is at 0.2, small hedgers don’t hedge.  The  
      break-even transaction costs have no meaning at this level of risk aversion.  
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Figure 2.1. Comparison of Regression Hedge Ratios for the Three Futures Markets   

          In Five Hedge Periods 
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CHAPTER THREE 

RISK AVERSION, PRUDENCE, AND THE THREE-MOMENT DECISION 

MODEL FOR HEDGING 

 

I. INTRODUCTION 

    A linear moment preference function has been widely used in decision analysis as an 

approximation of Von Neumann-Morgenstern expected utility (EU).  The two-moment 

mean-variance model is the most popular.  It was originated by Markowitz (1952) as a 

portfolio selection tool, extended by Tobin (1958) to include risk-free assets, and applied 

in equilibrium analysis by Sharpe (1964) and Lintner (1965) to the risk pricing of capital 

assets.  It requires less information from decision makers and from random distributions 

than EU models.  However, challenges (Borch, 1969; Feldstein, 1969) to the 

appropriateness of the approximation have caused the defenders of mean-variance to 

either modify the conditions or improve the model by adding more moments.  

Theoretically, the two-moment model can yield a consistent optimal decision with EU if 

1) the decision maker’s utility function is quadratic, or 2) the stochastic return is normally 

distributed (Tobin, 1958), or 3) the random variables satisfy the location-scale constraint 

(Meyer, 1987).  However, Arrow and Hicks denounced a quadratic function as absurd 

because of its limited range of applicability and highly implausible implication of 

increasing absolute risk-aversion.  On the other hand, the assumption of normal 

distribution of all risky outcomes is not realistic too since returns typically are not 

normally distributed. 

    Since all of these constraints are very restrictive, many studies have expanded the 

model to incorporate higher moments.  Samuelson (1970) noted that higher than second 

moments improve the solution for any arbitrarily short, finite time interval.  Tsiang 
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(1972) pointed out skewness preference may be prevalent in investor’s behavior because 

modern financial institutions provided a number of devices for investors to increase the 

positive skewness of the returns of their investments.  The skewness preference has 

received special attention in the asset pricing and portfolio theory (Kraus and 

Litzenberger, 1976; Friend and Westerfield, 1980; Sears and Wei, 1988; Lim 1989).   

    The three-moment model will be important for analytical studies on risk 

management decision modeling when the distribution is skewed.  Poitras and Heaney 

(1999) compared the optimal demand for put options derived from the two moment and 

three moment models.  It is shown theoretically the optimal demand for put options was 

reduced with positive skewness preference.  However, they did not compare their results 

to the expected utility model, and their derived moment models require a specific utility 

form. Further development and application of three-moment model in agricultural risk 

management using derivatives are very limited.   

    In this paper, we will develop a general three-moment model and compare it and the 

traditional two-moment model to the expected utility in the setting of an individual 

producer hedging in the futures market.  Specific objectives include (1) to theoretically 

develop the linear three-moment model analogue to the existing mean-variance model, (2) 

to apply it in the context of hedging and derive the optimal solution as well as 

comparative statics, and (3) to numerically compare the optimal hedge ratios (OHR) 

derived from the two-, three-moment models and the full expected utility model under 

alternative preference parameters.  Only the second and third moments are concerned in 

this paper because higher moments add little, if any, information about the distribution’s 

physical features (Arditti, 1967). 
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II. MODEL 

    A decision maker’s preference can be represented by a Von Neumenn-Morgenstern 

utility function U(π).  Using Taylor’s expansion,     

( ) ( )EU EUπ μ ε= +  

2 3( ) [ '( )] [ ''( )] / 2 [ '''( )] / 3!EU E U E u E uμ ε μ μ με ε≅ + + +  

Where E() is the expected value operator,π is the random profit, μ is the expected profit, 

andε is the error term with zero expected value.  Because maximizing the utility 

function of the certainty equivalent is equivalent to maximizing the expected utility 

function (Robinson and Barry, 1987) and the utility function is monotonically increasing, 

the three-moment model in terms of mean, variance and skewness are derived as 

(Appendix A): 

(1)                  [ ( ) ( ) ( )]
2 6CEMax Max E V Sλ ληπ π π π= − +  

where CEπ is the certainty equivalent of profit; E(), V() and S() are the expectation, 

variance and skewness1 operators; λ is Arrow-Pratt’s absolute risk aversion coefficient, 

i.e., ''/ 'U U− ; η  is Kimball (1990)’s absolute prudence level, i.e., '''/ ''U U−  which is 

isomorphic to Arrow-Pratt’s absolute risk aversion.  According to Kimball (1990), the 

absolute prudence measures the sensitivity of the optimal choice of a decision variable to 

risk.  This term suggests the propensity to prepare and forearm oneself in the face of 

uncertainty while “risk aversion” measures how much one dislikes uncertainty and would 

turn away from uncertainty if possible.  πη is a measure of relative prudence, just as 

πλ is a measure of relative risk aversion.  

    According to Arrow (1971), the essential properties for an investor’s utility function 
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are: (1) positive marginal utility for wealth, i.e., U’> 0, (2) decreasing marginal utility for 

wealth, i.e., U’’< 0, and (3) non-increasing absolute risk aversion, i.e. U’’’≥ 0.  Thus 

both λ andη should be positive, i.e., the decision maker is risk averse and prudent.  

He/she would always desire positive skewness of returnπ when the mean and variance of 

the return remain constant.  The two-moment model is equation (1) without the third 

term, or 0η = . 

    Assuming no transaction costs for trading futures contracts, the return π  in the 

futures market for an individual farmer is specified as: 

(2)                     0 0( )px c f yfπ π= + − + −   

where 0π is the initial wealth; p is the cash price at harvest; x is the nonstochastic 

production level; c is the cost of producing x; y is the hedging level in the futures market 

to be determined; f0 is the price at planting time; f is the futures price at harvest.  

Denoting 2
pσ , 2

fσ , pfσ , ps , fs , 2p fσ , 2pfσ as the variances, covariance, skewnesses and 

coskewness of the cash and futures prices respectively2, the expected value, variance and 

skewness of the return from hedging become: 

(2.1)                 0 0( ) ( ) [ ( )]E xE p c E f yfπ π= + − + −  

(2.2)                 22 2 2( ) 2f pfpV xyyxπ σ σ σ= −+  

(2.3)                 2 2

3 23 2( ) 3 3f p p fp fS yy xyx xs sπ σ σ= − − +  

Substituting the specific expected value, variance and skewness of return in equation (1), 

the first order condition of the model yields: 

(3)           * * *2 20
2 2

2 2 2

( ) [ ( ) 2 ]
2

p f f pMVS MVS MVS

pf
f

f f f

E ff x xy y yxsησ
σ σ

λσ σ σ
−

= + − + −  
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where *
MVSy is the optimal hedging levels for the three-moment models.  The 

two-moment optimal hedge level *
MVy equals the first two terms of equation (3).  As 

expected, the optimal hedge levels from the two models are the same, or the 

three-moment model does not add any information upon the two-moment model, if the 

decision maker is “prudence neutral”, i.e. 0η = .  

    The closed form solution for equation (3) is3: 

(4)                    
2

2
* f p f
MVS

f f

x
y

s s
σσ

η

− + Δ
= +  

where 22 2
2 2

0( ) [ 2 2 / 2 ( ) / ]f f p f f p pfx x E ffs xη η η λ λσ σ σ σΔ = − − − − + .  It suggests that the 

solutions from the two models can be equal when the decision maker is not prudence 

neutral only if 2
fp fσ σ= , 2f p fsσ = and in the unbiased futures market (f0 = E(f)).  The 

farmer would fully hedge, namely, he or she will hedge the same amount as the 

production level in that case.  Therefore, we have the following proposition. 

 

Proposition 1: The optimal hedge levels of mean-variance and mean-variance-skewness 

models are equal if: 

(i) the decision maker is “prudence neutral”, i.e. 0η =  or; 

(ii) 2
fp fσ σ= , 2f p fsσ = and the futures market is unbiased. 

    We refer 2
fp fσ σ=  as cash and futures prices are perfectly correlated in the second 

moment, and 2f p fsσ = as perfectly correlated in the third moment, assuming the variance 

and skewness of the two prices are the same for convenience.  Only when the two prices 

are perfectly correlated, the mean-variance model yields a full hedge for risk averse 
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farmers in the unbiased market. (ii) says if the two prices are furthermore perfectly 

correlated in the third moment, the mean-variance-skewness model yields a full hedge for 

risk averse and prudent farmers.  The two cases are implied in a more strong condition 

when there is no basis risk, ie. p = f.  Then a decision maker will always make a ful 

hedge in either model (and in the full expected utility model). 

 

Corollary 1: The risk averse and prudent farmer will make a full hedge in an unbiased 

market if there is no basis risk. 

    The following comparative static propositions can be derived by partially 

differentiating the two optimal hedge levels with respect to each parameter. 

 

Proposition 2: The short position will be increased (decreased) and the long position will 

be decreased (increased) if current futures price goes up (down) in both mean-variance 

and mean-variance-skewness models, while holding all other parameters constant. 

    Proof: Partially differentiate the two optimal hedge levels with the initial futures 

price:  

 (5)                         
*

2
0

1 0MV

f

y
f λσ

∂
= >

∂
 

 (6)                         
*

1/ 2
0

1 0MVSy
f λ

∂
= >

∂ Δ
 

The values of the optimal hedge levels are monotonically increasing with the initial 

futures price.  Higher optimal hedge level means “hedge more” for a short position 

hedger and “hedge less” for a long position hedger because the absolute value is 

decreased.  This is a speculating effect because a higher current futures price means 
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more expected profit gain (loss) for a short (long) hedger.  For both models, the 

response is smaller for a more risk-averse hedger because the speculating position 

deviates from the optimal risk reducing position, and the more risk averse hedger chooses 

to deviate less. 

 

Proposition 3: The short position will be increased (decreased) and the long position will 

be decreased (increased) if the covariance between the cash and futures prices increases 

(decreases) in both mean-variance and mean-variance-skewness models, while holding 

all other parameters constant. 

    Proof: The following are obtained by partially differentiating with the covariance of 

cash and futures prices.  

(7)                          
*

2 0MV

pf f

xy
σ σ

∂
= >

∂
 

(8)                          
*

1/ 2
0MVS

pf

y x
σ

∂
= >

∂ Δ
 

    This is a risk reducing effect because a higher covariance means lower basis risk and 

risk reducing gives more incentive on short hedging but less incentive on long hedging.  

The responses from both models are proportional to the production level. 

 

Proposition 4: The decision maker hedges more (less) if the current futures price is 

lower (higher) than the expected futures price as the decision maker becomes more risk 

averse in both mean-variance and mean-variance-skewness models, while holding all 

other parameters constant.  The risk aversion coefficient will not affect the hedging 

position when the futures market is unbiased, when other parameters remain constant.   
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    Proof: Differentiate with the risk aversion level and obtain: 

(9)                       
*

0
2 2

( )MV

f

E fy f
λ λ σ

∂ −
= −

∂
  

(10)                      
*

0
2 1/ 2

( )MVSy f E f
λ λ

∂ −
= −

∂ Δ
 

    According to (9) and (10), the optimal hedge levels from the two models change in 

the same direction as risk aversion increases.  Both equations have a positive sign as f0 < 

E(f) and a negative sign as f0 > E(f).  Risk averters will make a full hedge when there is 

no basis risk in the unbiased futures market.  This result will not change with the risk 

aversion level.  The full hedge minimizes risk.    

    When the current futures price is lower than the expected maturity price, both 

models advise the decision maker to underhedge, namely, to sell less than their 

production level. As they become more risk averse they will increase their hedging levels 

toward the full level, because their risk reducing incentive increases relative to their loss 

reducing incentive.  If the current future price is sufficiently low the decision maker 

would be likely to take a long position, namely, buy now and sell in the future from the 

futures market.  In that case, the farmers would hedge less as they are more risk averse. 

On the other hand, when the current futures price is higher than the expected maturity 

price, both models recommend over hedging, and more risk-averse farmers will over 

hedge less so as to be closer to the full hedge level. 

    The comparative statics of the three-moment optimal hedge level on the other 

parameters are: 

 (11)        
2

2
4 1/ 2* 2
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2 2
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 (12)       
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    The signs for equation (11), (12) and (13) are ambiguous. These signs will be 

examined for the following empirical example.   

 

III. SIMULATION AND NUMERICAL RESULTS  

    Numerical analysis of an example examines the level of approximation of the 

two-moment and three-moment models to the expected utility model by comparison of 

the optimal hedge ratios (OHR).  The hedge ratio is the ratio of hedging to the 

production level.  Assume the hedger has the commonly used CRRA (constant relative 

risk aversion) utility function (Coble, et. al.; Mahul; Wang, et. al.): 

(14)                     1 (1 )( ) (1 )U θπ θ π− −= −  

whereθ is the relative risk aversion coefficient.  The optimal hedge ratio for the 

expected utility model is solved numerically.  For two- and three-moment models, the 

optimal hedge ratios are obtained by (3) ignoring the third term and (4).  The values of 

θ range from 1 to 4 following Dynan(1993).  Six levels of relative risk aversion 

coefficient (θ ), specifically 1.5, 2, 2.5, 3, 3.5, 4, are analyzed.  The six levels of the 

absolute risk aversion coefficient λ  and absolute prudence coefficientη are calculated 

based on the relative risk aversion levels ( /λ θ π= , (1 ) /η θ π= + )4.   

    The analysis assumes a representative farmer who grows wheat in U.S. Pacific 
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Northwest region.  The initial wealth determined by average per acre is 550 $/acre.  

Production cost is 230 $/acre and production level is 68.94 bushels/acre.  Bivariate 

gamma distribution is chosen to simulate the wheat cash and futures prices for the 2002 

harvest period because (1) it’s positively skewed; (2) gamma random variables (cash and 

futures prices in this case) are positive; (3) it facilitates including the skewness parameter 

in the simulation.  The approach of Law and Kelton (1982) is used to simulate the 

correlated bivariate gamma distribution.   

    The correlation between the wheat cash and futures prices is 0.48.  The scale and 

location parameters for the gamma distribution are calculated from the variances (0.37 

and 0.56 for wheat cash and futures prices) and skewnesses (0.12 and 0.29 for wheat cash 

and futures prices)5.  The mean values are adjusted to 3.7 and 3 $/bushel respectively 

after the simulation.  These parameter levels are determined based on the weekly 

Portland spot market cash price and CBOT futures price data from September 1998 to 

August 2001.  The descriptive statistics for the simulated cash and futures prices are 

shown on Table 3.1.  The skewness of the simulated cash and futures prices are 

significant, although they appear small6.  The initial future price f0 is set at three levels 

(3.20, 3.00 and 2.80 $/bushel).  The futures market is unbiased when f0 equals 3.00 

$/bushel.  The hedger is likely to take a short (or long) position if f0 equals to 3.20 (or 

2.80) $/bushel. 

    Table 3.2 shows the optimal hedge ratios (OHR) from three models under six 

relative risk aversion levels and three levels of initial futures prices.  The results show 

that the OHRs from three-moment model are closer to those from expected utility model 

than two-moment model OHRs in all situations.  The evidence from this example 
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strongly favors the three-moment model over the two-moment model. 

    Comparing the absolute OHR values, the farmer hedges more (less) in the MVS 

model than in the MV model when he is in a long (short) position.  Based on equation 

(3), the optimal hedge level of the MVS model has one more term than that of MV model, 

which is due to skewness of profit.  If a farmer with a short (long) position hedges more, 

the skewness of profit which he desires will be decreased (increased) according to the 

definition of skewness of profit.  Thus compared to MV model, the farmer would hedge 

less (more) in a short (long) position.  

    When the initial futures price changes from 2.8 to 3 and to 3.2 $/bushel, the OHR 

values of both models increase, consistently with Proposition 2.  The OHRs from the 

MV model increase at a constant rate for each relative risk aversion level.  But the 

values from MVS do not have the same pattern with each level of initial futures price 

increase, which is also consistent to Proposition 2 as in equations 5 and 6.   

The absolute values of OHRs from the MV model do not change in the unbiased 

futures market while they drop with the relative risk aversion in the biased futures market. 

This is consistent with Proposition 4 (equation 9).  The absolute values of MVS OHRs 

decrease in biased and unbiased futures as relative risk aversion increases.  This 

seeming inconsistency arises because the particular CRRA utility we choose is not 

constant in prudence.  The prudence level is related to the risk aversion level.  In order 

to compare the MVS results to the true utility maximization results, we allow the 

prudence to vary accordingly.  Therefore, the conditions in Proposition 4, i.e., holding 

all other parameters constant, is violated, and the OHR changes for MVS model in Table 

3.2 is a result of a joint increase in both risk aversion and prudence. 
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In both models, the farmer hedges more when he is in a short position than in a long 

one. This is because the minimum risk position is short.  When the market goes biased 

for the same level in both directions, the short hedge is enhanced and the long hedge is 

only a residual after the short position has been fully reduced. 

The comparative statics are also numerically checked so as to illustrate the 

ambiguous signs of equation (11) and (12).  Equation (13) is not checked because the 

coskewness can not be controlled in the simulation since it changes with the skewness. 

First, we examine how the MVS OHR changes with the skewness of futures prices.  The 

cash price skewness is fixed because it is not directly related to OHR (Equation 4).  

Three skewness levels (0.5, 1.0 and 1.5 times of the original skewness) are chosen for the 

futures prices so that the bivariate gamma distributed cash and futures prices could be 

simulated7.  Two more bivariate gamma distributed cash and futures prices are 

simulated based on the change of skewness.  According to the simulated data, the 

coskewness, 2p fσ decreases and 2pfσ increases as the skewness of futures goes up and vice 

versa.   

The comparative static results of MVS OHRs on futures price skewness are 

demonstrated in table 3.3.  Both unbiased and biased (long and short positions) are 

considered.  The farmer takes a longer position when the futures price is more skewed. 

The intuition is that the farmer uses hedging to both reduce variance and increase 

skewness of the profit, and if futures price is more skewed the long position can amplify 

the profit skewness more effectively.  The increasing skewness motivates the farmer to 

increase his long hedge position at a cost of decreased variance.  The same reasoning 

can be used to explain the smaller short position when skewness increases in the biased 
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futures market.  The opposite behavior occurs under the unbiased market because the 

short positions are much smaller than in the other two cases.  The variance reducing 

effect dominates the skewness increasing effect comparing the variance equation (2.2) 

and skewness equation (2.3) of profit.  This causes the farmer to take a larger short 

position. Therefore, the comparative static on futures skewness cannot be simply 

determined in sign.  

The influence of risk aversion and prudence on the OHRs in the MVS model is 

shown in Figure 3.1 (a) and (b), respectively.  The relative risk aversion and prudence 

range from 1 to 5.  Empirical research on prudence levels is not available. The range is 

chosen at the same as risk aversion because the two are often close in commonly used 

utility functions such as exponential (constant absolute risk aversion preference), log or 

power functions (constant relative risk aversion preference).  The impact on OHR from 

relative risk aversion has consistent pattern as in proposition 4, when the relative 

prudence level is fixed at 2.   

When relative risk aversion is fixed at 2, the hedging position decreases as the 

farmer becomes more prudent so that all three lines in Figure 3.1(b) are downward 

sloping.  The downward slope in the unbiased market is so small that the line looks 

horizontal.  The influence of the prudence on the market is trivial in this case.  The 

decreasing position means hedging less in short and more in long.  We have also set risk 

aversion at other levels, but the OHRs show the same pattern, i.e., decreasing with 

prudence.  This means the sign of equation (11) is not sensitive to the preference 

parameters.  Compared to Figure 3.1(a), risk aversion makes a big difference in OHR 

than prudence in the biased futures market.     
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Figure 3.2 demonstrates how relative risk aversion and prudence affect the certainty 

equivalent in the MVS model in an unbiased futures market.  The certainty equivalent is 

the certain amount of money which leaves the decision maker equally well-off as the 

specified risky hedging opportunity.  The higher certainty equivalent means higher 

utility achieved with hedging.  The results show that changes of certainty equivalent 

brought by difference prudent levels are small relative to the changes brought by different 

risk aversion levels.   

The certainty equivalent always decreases as the risk aversion increases in both 

biased and unbiased markets, because the farmer requires higher compensation for risk.  

For the same reason, one might expect the certainty equivalent to increase as prudence 

increases.  However, it decreases as the prudence increases when in a short position (See 

Figure 3.2(b)).  This occurs because the short position reduces the profit skewness 

enough to offset the increased prudence. 

 

IV. SUMMARY AND CONCLUSION  

A linear mean-variance-skewness (three-moment) model is developed and applied to 

hedging in the futures market.  The optimal hedge ratio (OHR) and associated 

comparative statistics are derived and compared theoretically from both three-moment 

and two-moment models.  The term “prudence” introduced by Kimball is included in 

the three-moment model.  The OHRs from the two models are equal only when: 1) the 

decision maker is “prudence neutral” or; 2) with unbiased futures markets, assuming 

perfect correlation of cash and futures prices in both second and third moments.  The 

OHR of the three-moment model changes in the same direction as that of the 
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two-moment model when the initial futures price, covariance of cash and futures prices 

and risk aversion coefficient change respectively.  Otherwise, effects on OHRs are not 

definite theoretically.  The signs on the comparative statics of the three-moment OHR 

on the other parameters such as the prudence level, skewness of futures prices and 

coskewness of futures and cash prices are ambiguous.  

The two and three moment models are also compared against the expected utility 

model for a numerical example so as to examine which model provides a closer 

approximation to expected utility.  We assume the hedger is a typical farmer, with the 

common CRRA utility function, who grows wheat in the Pacific Northwest.  The results 

show the OHRs from the MVS model is closer to those from expected utility model than 

those from MV model in all situations considered.  This strong evidence suggests that 

the MVS model is superior to the MV model.  The farmer hedges more (less) in the 

MVS model than in the MV model when he/she is in a long (short) position.  This 

results from the additional term skewness of return in the MVS model.  The 

comparative statics of MVS OHRs on futures price skewness indicates the farmer takes a 

longer position so as to increase the benefit from increased positive profit skewness when 

the futures price is more skewed.  The opposite behavior for the unbiased market is 

primarily because the short positions are much smaller than in the other two cases, and 

the variance reducing effect dominates the skewness increasing effect.  There’s no clear 

pattern when the farmer is in a short position.  

The influences of risk aversion and prudence on OHRs for the MVS model are also 

examined.  The ranges of relative risk aversion and prudence are extended a little based 

on the common CRRA utility function.  The numerical results show the farmer 
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full-hedges in the unbiased market and hedges less as risk aversion increases in the biased 

futures market.  The hedging position decreases as the farmer becomes more prudent. 

Risk aversion has a greater influence on OHR than prudence in the biased futures market. 

The certainty equivalent consistently decreases as the risk aversion increases in both 

biased and unbiased market, because the farmer requires his/her certain compensation for 

the risky hedge.  Similarly, the certainty equivalent should be expected to increase with 

prudence; however, it decreases in a very large short position.  This is because the long 

position increases quickly which reduce the profit skewness thereby offsetting the effect 

of the increased prudence. 
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ENDNOTES 

1 “Skewness” refers to the third moment instead of standardized third moment in this 

paper. 

2 2
2 {[ ( )][ ( )] }

f p
E f E f p E pσ = − − ,

2

2{[ ( )] [ ( )]}
f p

E f E f p E pσ = − −  

3 The first order condition equation has two roots and result in two closed forms of 

*
MVSy actually. The sign operator before the square root could be ‘add’ or ‘subtract’. The 

‘add’ operator is chosen in order to achieve the maximum by the second order condition 

(SOC). 

4 For the particular CRRA preference, the relative prudence is determined once the 

relative risk aversion is set at a certain level. 

U θπ
π

−∂
=

∂
, 

2
(1 )

2
U θθ π

π
− +∂

= −
∂

, 
3

( 2 )
3 (1 )U θθ θ π

π
− +∂

= +
∂

, 

''( ) /[ '( )] /U Uλ μ μ θ μ= − = , '''( ) /[ ''( )] (1 ) /U Uη μ μ θ μ= − = +  

5 Location parameter 2 3 24( ) /Sα σ= and scale parameter 2/2Sβ σ= . 

6 Formal hypothesis test is conducted. H0: S = 0 vs. H1 S ≠ 0 where S is the skewness.  

Then the statistic z, / 6 /z S n
∧

= , where n =10,000 the number of observations, follows 

the standard normal distribution under the null hypothesis.  Here, z is 5.031 and 11.424 

for cash and futures prices, respectively, and both are larger than the critical value at 5%.  

Therefore, the null hypothesis of zero skewness is rejected for both. 

7 If the skewness is less than 0.5 times, the futures price would be almost normally 

distributed which is not the interest of this paper. If the skewness is larger than 1.5 times, 

the bivariate gamma distributed cash and futures prices would not be able to be 

simulated. 
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Table 3.1. Descriptive Statistics for Simulated Cash and Futures Prices ($/bushel) 

 

Variable N Mean Skewness StDev Minimum Median Maximum

cash 10000 3.7 0.123 0.6104 2.052 3.653 6.672 

future 10000 3 0.28 0.7418 1.267 2.914 7.048 
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Table 3.2. Optimal Hedge Ratios Comparison under Six Relative Risk Aversion    

         Levels and Three Levels of Initial Futures Prices 

θ 1.5 2 2.5 3 3.5 4 

       

unbiased futures market (f0 = Ef = 3 $/bushel)     

Mean-Variance Model 0.392 0.392 0.392 0.392 0.392 0.392 

Mean-Variance-Skewness Model 0.385 0.384 0.382 0.381 0.38 0.378 

Expected Utility Model 0.385 0.383 0.382 0.38 0.379 0.378 

       

f0 = 3.2 $/bushel        

Mean-Variance Model 2.325 1.842 1.552 1.358 1.22 1.117 

Mean-Variance-Skewness Model 2.089 1.676 1.424 1.253 1.13 1.037 

Expected Utility Model 2.046 1.673 1.43 1.261 1.138 1.043 

       

f0 = 2.8 $/bushel        

Mean-Variance Model -1.541 -1.058 -0.768 -0.575 -0.437 -0.333 

Mean-Variance-Skewness Model -2.008 -1.361 -0.992 -0.754 -0.588 -0.465 

Expected Utility Model -1.86 -1.295 -0.954 -0.727 -0.566 -0.446 

 

Note: The negative hedge ratios mean the hedger takes a long position for f0 = 2.8 

$/bushel. 
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Table 3.3. Impacts of Futures Price Skewness on Three-Moment Optimal Hedge  

         Ratios 

theta 1.5 2 2.5 3 3.5 4 
       
unbiased futures market (f0 = Ef = 3 $/bushel)   
0.5*Sf 0.364 0.362 0.359 0.357 0.354 0.351 
Sf 0.385 0.383 0.382 0.38 0.379 0.378 
1.5*Sf 0.39 0.39 0.39 0.39 0.39 0.39 
       
f0 = 3.2 $/bushel       
0.5*Sf 2.15 1.71 1.442 1.261 1.131 1.033 
Sf 2.089 1.676 1.424 1.253 1.13 1.037 
1.5*Sf 1.98 1.599 1.366 1.208 1.094 1.008 
       
f0 = 2.8 $/bushel       
0.5*Sf -1.71 -1.18 -0.868 -0.663 -0.518 -0.411 
Sf -2.008 -1.361 -0.992 -0.754 -0.588 -0.465 
1.5*Sf -2.569 -1.619 -1.148 -0.859 -0.663 -0.52 
 

Note: The negative hedge ratios mean the hedger takes a long position for f0 = 2.8 

$/bushel. 
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Figure 3.1. Comparative Statics of Optimal Hedge Ratio (OHR) by Relative Risk   

          Aversion Level and Relative Prudence level 

 

 

 

 

 

 

 
              (a)                                        (b) 

 

Note: (1) The negative hedge ratios mean the hedger takes a long position for f0 = 2.8 $/bushel. 

     (2) *π λ is relative risk aversion and *π η is relative prudence. 
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Figure 3.2. Certainty Equivalent Changes with Relative Risk Aversion Level and Relative  

          Prudence Level respectively 

                  (a)                                       (b) 

Note: *π λ is relative risk aversion and *π η is relative prudence. 
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CHAPTER FOUR 

PRODUCTION RISK AND CROP INSURANCE EFFECTIVENESS: ORGANIC VERSUS 

CONVENTIONAL APPLES 

 

I. INTRODUCTION  

Apples are a major crop in the Pacific Northwest (PNW) states (Washington, Idaho, and 

Oregon).  As the leading state of apple production since 1920s, Washington (WA) accounts for 

58.8% of total US apple production in 2005.  The value of apple production is $1.23 billion, 

representing 19 percent of total agricultural value produced in WA.  Oregon is also a major 

producer of apples, and it generates $26 million value of production accounting for 11 percent 

total value of production in Oregon State (NASS, 2006).  The value of apples production in 

Idaho was $12.5 million in 2005, ranking No.11 in the United States (US) apples production.  

The nutrient-rich soil, arid climate, plentiful water and advanced growing practices provide the 

right ingredients for producing top-quality apples in PNW region.   

    Due to health and environment concerns, a significant interest in organic apples production 

has developed over the last 10 to 15 years.  WA orchards produce about 35 percent of the 

organic apples in the U.S. and about 20 percent of the organic apples in the world (Schotzko and 

Granatstein).  The dry climate and ideal temperatures in central Washington reduce the number 

of disease and pest problems that can impact fruit and therefore reduces the need for applications 

to control insects and pests.  Certified Washington State organic apple acreage increased from 

well below 500 total acres in the late 1980s to 9,861 acres in 20021.  Most of the PNW organic 
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acreage is planted in Red Delicious followed by Granny Smith, Gala, Golden Delicious, Fuji and 

so on. 

PNW apples are primarily grown for the fresh market with a higher quality and higher value.  

PNW especially Washington’s quality standards for all apples are more stringent than grading 

standards used in any other growing region in the world.  This higher quality also requires 

higher production costs, which in turn results in high profit risks for apple growers, when couple 

with adverse weather conditions, insects and plant diseases, and other factors.  Apple crop 

insurance is a major risk management tool for apple growers.  However, compared with major 

field grain crops, the current apple crop insurance program is quite limited with only yield based 

contracts.  The basic choices include catastrophic coverage, higher coverage under Grower 

Yield Certification (GYC) which is a type of Multi Peril Crop Insurance (MPCI) policy, and 

optional coverage for fresh fruit quality.  

    A frequent complaint made by PNW apple growers is that national insurance programs do 

not provide adequate coverage for high valued PNW fresh apples, and are even less adequate for 

organic apples.  The price selection level in GYC is set low compared to the fresh market price 

for PNW apples (4.65 $/box for Varietal B and 6.45 $/box for Varietal A).  The yield coverage 

level is also low, ranges only to 75%.  In 2000, USDA’s Risk Management Agency (RMA) 

introduced a pilot coverage enhancement option (CEO) which was an option of increasing the 

coverage to 85%, but it was terminated recently.  

     An extensive amount of production-based research has been done on risk management of 

organic farms.  Duram reported organic farmers were exposed in both production and price 
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risks during the three-year transition period from conventional to organic production.  Hanson 

et. al. (1990) compared conventional and organic grain rotation during the first nine years of 

production and found that the average annual profits of the conventional rotation were higher 

than the organic rotation without organic price premiums.  Reganold et. al. compared 

conventional, integrated pest management, and organic apple production systems.  Numerous 

studies have also been found on insurance programs for field crops such as wheat and barley (Ke 

and Wang; Wang, et. al.), corn and soybean (Sherrick, et. al.; Miranda and Glauber), and other 

field crops.  However, little work has been done specifically assessing both production and 

price risks for organic fruit growers.  Hansen et. al. (2004) indicated that most fruit and 

vegetable producers had little knowledge of crop insurance.  No other work has been found 

assessing the crop insurance program for tree fruits.   

Apples have many varieties for which production and price can differ markedly.  Currently, 

GYC insurance groups all apples only into two groups, varietal A and B.  Fuji, Gala and other 

newer varieties are in varietal A.  Red delicious, golden delicious and other traditional varieties 

are in varietal B.  This could limit the risk reducing effectiveness of the insurance. 

The goal of this paper is to assess income risks of WA apple growers and the risk 

management effectiveness of apple crop insurance programs.  Specifically, we will: (1) examine 

the income risks associated with conventional and organic production; (2) evaluate the roles of 

GYC for conventional and organic apples by variety; (3) evaluate presumed income based 

insurance (IP) and compare it with GYC.  
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II. METHODOLOGY  

Income risks are represented by the distributions of growers’ income from production.  

(1)                               0π PY C= −           

where π0 is the profit function from producing apples; P is the farm gate price after harvest2, Y is 

the corresponding realized production level, and C is the deterministic cost of producing Y. 

 When growers have insurance, their profit function is specified as revenue generated from 

sales, yield or revenue insurance indemnities less production costs and subsidized insurance 

premiums: 

(2)                       0π π INS PRE SUB= + − +                                            

the insurance income, INS, represents indemnity from GYC and the hypothetical IP as in the 

following:  

(3)                     ),0max( 21 YyxpxINS bGYC −=                             

(4)                     ),0max( 21 PYyxpxINS bIP −=                        

where pb is the base price; x1 is the price selection level of the grower; and x2 is the GYC 

coverage level selected.  The setting for INSGYC is based on the actual GYC policy that growers 

can select a price level and a yield coverage level as a percentage of the established base price 

and Actual Production History (APH).  The APH is established as the projected yield at planting 

time, and here we use mean yield for APH.  The setting for INSIP is based on the current IP 

program for field crops, except that the base price level is set at the same level as GYC instead of 

futures market price.  PRE is the premium, calculated as both the actual premium currently set 

by RMA and the actuarially fair level for GYC, but only for the actuarially fair level for the IP; 
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SUB is the RMA premium subsidy based on the current policy.  

The risk management decision is presumed made based on growers’ expected utilities.  We 

assume a representative apple grower chooses an insurance coverage level to maximize his or her 

expected utility of wealth, composed of a deterministic initial wealth, random production income 

and insurance transactions.   

(5)                     
1 2,

[ ( )]
x x

Max E U w , and π+= 0ww                                         

where E( ) is an expectation operator; U( ) is a von Neumann-Morgenstern utility function 

representing the risk attitude of the decision maker; w is the stochastic terminal wealth; and w0 is 

an initial wealth level.   

Welfare effects of the insurance programs are evaluated by the Certainty Equivalent (CE) of 

the insurance, i.e., the certain amount of income paid to the grower for him to achieve the same 

expected utility without using the insurance as using the insurance. 

(6)                     0 0( ) ( )MaxEU w EU w CE= + π +         

    The grower is assumed to have constant relative risk aversion, with the utility function as: 

(7)                         )1(1)1()( θθ −−−= wwU                                              

where θ is the Arrow-Pratt relative risk aversion coefficient.  This utility function, representing 

constant relative risk aversion, is justified by Wang, et. al. and has been commonly used in a 

similar focus (Coble, et. al.; Mahul).   

 

III. DATA AND SIMULTIONS   

    The empirical analysis is based on simulated risks faced by PNW apple production in crop 
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year of 2006.  Historical data are used to estimate random price and yield distributions used in 

the simulations.  Data sources are: (1) WA Growers Clearing House (WAGCH) price data by 

variety, for both conventional and organic apples; (2) National Agricultural Statistics Service 

(NASS) aggregated state conventional yield data, long term but not by variety; (3) RMA farm 

level conventional APH records, not variety specific; (4) WAGCH conventional production data 

by variety; (5) Washington Fruit Survey (1993, 2001, 2002) acreage data by variety; and (6) 

farm-level data from our own survey for organic apple growers in the Pacific Northwest 

including yield from 2000 to 2005 and production cost by variety.  The information from each 

source is combined together with reasonable assumptions to obtain farm level yields and prices 

by variety for both conventional and organic apple data. 

To be able to capture the weather-related yield risks, a long time series of historical yields is 

needed while accounting for time trends.  Several functional forms of time trends (linear, 

piecewise linear, quadratic, and loglinear) for the mean yield of conventional varietal apples are 

considered.  The analysis showed no trend for Red Delicious and Golden Delicious and a 

piecewise trend for Gala and Fuji.  For the organic varietal yields, no trend was considered 

based on limited recent six years data. 

The proper crop-yield distributions have been debated in the agricultural economics 

literature since the early 1970’s.  Several studies have agreed that crop yields are skewed 

(Babcock and Hennessy; Coble et al.; Borges and Thurman; Nelson and Preckel).  Some studies 

support positive skewness (Day) while others support negative skewness (Swinton and King; 

Ramirez).  A few non-normal distributions are proposed such as Beta (Borges and Thurman; 
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Nelson and Preckel), Gamma (Gallagher), and log-normal (Jung and Ramezani).  Just and 

Weninger identify three common methodological problems in yield distribution analyses: use of 

aggregate yield data, inflexible trend modeling, and inappropriate interpretation of the Normality 

test results.  They shed doubt on the validity of previous findings of yield nonnormality and 

renew support for the normal distribution of crop yields.  Unfortunately, a consensus 

specification for crop yield distributions has not been reached in the agricultural economics 

literature.  Thus this paper will use normal distribution to simulate the yields because: (1) the 

normality test of the residuals after time detrending can not be rejected; (2) there is no former 

work questioning the normality of apple yields; and (3) the multivariate joint normal distribution 

is well defined, which is convenient to simulate joint yield and price distribution with a 

correlation imposed. 

    Both conventional and organic varietal prices are obtained from WAGCH.  Trends are 

identified and lognormal distributions are chosen to simulate the prices for 2006 against a few 

other candidate distributions.  An empirical distribution with 10,000 samples is simulated for 

each variety’s price and yield (See Appendix B for details of the data process). 

The independently simulated yield and price distributions are converted into joint 

distributions using a linear transformation to impose the correlation structure estimated from the 

data.  The conventional yield-price correlation is about -0.6 for all varieties, and the organic 

correlations are about -0.7 with the exceptions for Fuji at -0.2.   

    Per acre production cost for conventional apples for established trees are obtained from 

Schotzko and Granatstein.  The organic varietal costs are calculated as the average of the 
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surveyed growers’ costs for each variety.3  Production cost ranges from 4,000 to 5,000 $/acre 

for conventional and 4,500 to 7000 $/acre for organic apples.  The costs are assumed 

deterministic. 

In accordance with current GYC options, the maximum price selections are 4.65 $/box for 

Red Delicious and Golden Delicious and 6.45 $/box for Gala and Fuji.  The price selection 

level can be chosen from 67% to 100%.  The yield selection level ranges from 50% up to 75% 

with 5% increment.  The current policy provides an aggressive base premium rate and a 

regressive subsidy rate based on the growers’ choice of yield coverage levels.  The rates for 

base premium are 3.2%, 3.7%, 4.5%, 5.4%, 6.5% and 7.7% of liabilities and subsidy rates are 

67%, 64%, 64%, 59%, 59%, 55% corresponding to coverage levels of 50%, 55%, 60%, 65%, 

70% and 75%, respectively.  The organic apple premium is inflated by an optional organic 

factor of 1.05.   

    The value of the relative risk aversion coefficient is set at θ = 2, which is based on previous 

research (Wang, Hanson and Black; Coble, Heifner and Zuniga; Pope and Just).  Thus the initial 

wealth (farm equity) for organic and conventional Red Delicious and Golden Delicious growers 

is 6,685 $/acre based on the debt/asset ratio for Washington farmers (17%, WASS) and the 

average WA apple orchard asset, 8,066 $/acre, including land value, the cost of irrigation system 

and tree value (Glover, et. al. ).  The initial wealth for Gala and Fuji is 8,803 $/acre since the 

trees value for those two is much higher than traditional varieties. 

 

IV. RESULTS  
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The descriptive statistics of simulated varietal yields, prices and profits for both 

conventional and organic apples are shown in Table 4.1.  Organic apple growers have higher 

expected revenue and higher risk than conventional apple growers.  Among conventional apples, 

the newer Gala and Fuji varieties have higher expected revenue and lower risk than Red 

Delicious and Golden Delicious.  This may explain why Gala and Fuji have increased their 

market shares dramatically in recent years.  Organic Fuji has the highest expected revenue and 

risk among all the organic varieties.  Different from conventional Gala apples, organic Gala has 

lower risk (standard deviation) and also lower expected revenue than both organic Fuji and 

organic Golden Delicious.  

Besides the benchmark case of no insurance, six other scenarios are investigated for each of 

conventional and organic varieties.  GYC under current policy premium rates, GYC under 

actuarially fair premium rates, and hypothesized IP under actuarially fair premium rates, all of 

which have two cases of with and without subsidies.  These scenarios allow us to compare the 

welfare values of GYC and IP at a similar basis (actuarially fairness), can also to reveal the 

premium loading effect of current GYC. 

Red Delicious 

The optimization results (Table 4.2) for Red Delicious show that both GYC and 

hypothesized IP protect the farmer from risk as shown by reductions in the standard deviation of 

profit for most insurance options  Both conventional and organic growers choose full coverage 

in all cases except GYC without the subsidy for conventional apples.  In this case, the grower 

does not choose insurance because the current premium is too high relative to his/her risks and 
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no subsidy is provided.  As expected, the grower has a higher welfare as measured by certainty 

equivalent (CE) and pays lower premium with subsidy than without subsidy for both GYC and 

hypothesized IP programs.  

The conventional grower is better off (higher CE and less premium) when the insurance is 

actuarially fair than when the premium is set as in the current policy.  This implies a loading 

exists in the current premium rates. The hypothesized IP gives the conventional grower higher 

protection (less risk as measured by standard deviation of profit) and higher welfare (CE) than 

GYC program, although the grower pays more premium.  This is because both their production 

and marketing risks are protected with IP which results in receiving a higher indemnity and a 

higher government subsidy.   

The standard deviation reduction of profit ranges from 0 (GYC without subsidy) to 239.07 

(IP) for the conventional grower and from 288.27 (IP) to 662.87 (GYC) for the organic grower 

when insurance is used.  Thus the organic apple grower’s income risk is reduced more 

dramatically by insurance than conventional grower.  Consequently, the organic apple grower’s 

welfare gain from insurance is higher than that of the conventional grower although he has to pay 

much higher premium for GYC than the conventional grower so as to reduce more risk.  

Different from conventional apples, the income protection gives less risk protection for organic 

Red Delicious grower than GYC.  This is because that price selection (4.65 $/box) in the 

current GYC programs is too low compared to the organic Red Delicious market cash price (9.27 

$/box).  It’s easier to get indemnity from GYC than IP program based on Equation (3) and (4).   

However, from the point of view of the premium paid by the grower and government 
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investment in premium subsidy, hypothesized revenue insurance (IP) is more cost effective for 

both conventional and organic practices.  For example, the per dollar subsidy investment will 

bring a $4.21 welfare gain by GYC and $9.34 welfare gain by IP under actuarially fair premium 

structures for organic Red Delicious.  The per dollar grower investment in insurance (premium 

paid) will gain $5.14 welfare by GYC and $11.41 by IP under the same scenario.  Notice, the 

$0.61 welfare gain brought by each dollar of government subsidy in conventional GYC suggests 

that it would be more economic for the government to give the $1 directly to growers instead of 

subsidizing the GYC program.  

The organic grower pays higher premium and is less willing to pay for GYC when the 

premium is actuarially fair than set by current policy.  The reason is that the organic apple 

production risks are so high based on our survey, that the current GYC premium is set below the 

expected indemnity even after the organic premium is inflated by 5 percent by policy.  This is 

also why in our scenario of current GYC without subsidy the grower still chooses the highest 

coverage level.  Although the insurance price is quite low compared to the market organic apple 

prices, organic growers still benefit more than their conventional counterpart from the GYC.  

The organic inflation factor needs to be increased so as to make the insurance actuarially fair.   

Sensitivity analysis of risk aversion level is also conducted.  We examine the risk aversion 

levels from 1.5 to 3 with 0.5 increments.  The rankings of insurance programs in all the 

comparisons do not change except the values of CE increase as the risk aversion level goes up. 

Golden Delicious 

Similar to Red Delicious, both GYC and hypothesized IP protect the Golden Delicious 
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grower from risk (Table 4.3), but the hypothesized IP is not better than GYC in absolute values 

for either conventional or organic growers.  Again, hypothesized revenue insurance (IP) is more 

cost effective for both conventional and organic practices in terms of the premium paid by the 

grower and government investment in premium subsidy.  The grower chooses full coverage in 

all cases except that GYC premium is set by policy with the subsidy removed case for 

conventional apples.   

When the premium is higher than the actuarially fair level and no subsidy, the grower 

chooses not to buy insurance.  When subsidy is added, the grower chooses full yield coverage 

and a reduced price selection level at 92%.  The conventional grower’s welfare gain is higher 

and he pays less premium when actually fair or with subsidy.  The risk is reduced greatly after 

insurance for organic apples.  The organic grower is less willing to pay for insurance and has to 

pay more premiums when actuarially fair for the same reason as organic Red Delicious apple.  

The 0.13 CE/Subsidy ratio indicates the current GYC is more cost ineffective for Golden 

Delicious growers than Red Delicious growers. 

Gala 

    As for Gala, the conventional grower is not interested in current GYC or hypothesized IP 

either with or without subsidies.  The conventional grower chooses insurance only for 

actuarially fair GYC, but this plan does not provide much value to him either.  Thus both GYC 

and IP are not effective in reducing the risk for conventional Gala growers.  The price selection 

and yield coverage are too low to provide significant protection.  Or, this grower’s risk is not 

high enough for him/her to benefit from the insurance as shown by the coefficients of variation 
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(CV) in Table 4.1. 

GYC and hypothesized IP can protect organic Gala growers from risk.  The grower 

chooses full coverage in all cases except when current premium is high without subsidy for GYC.  

The organic grower has a higher welfare gain from insurance because of the higher risk of 

growing organic Gala.  If the subsidy is removed from the current GYC, the organic grower 

will reduce their coverage level from maximum to minimum.  The GYC is preferable to the 

hypothesized IP for the organic Gala grower for the same reason as Red Delicious.  However, 

hypothesized revenue insurance (IP) is much more cost effective for both conventional and 

organic practices in terms of the premium paid by grower and government investment in 

premium subsidy. 

Different from other organic varieties, the organic Gala grower pays less premium and is 

more willing to pay for GYC when the premium is actuarially fair than set by current policy.  

This means the GYC premium for organic Gala is set above the expected indemnity, which is a 

normal practice.  The reason that organic Gala is an exception is that Gala production risk is 

much lower than the other organic apples and thus reduces the expected indemnity.  

Fuji 

Table 4.5 demonstrates the optimization results for Fuji apples.  The current GYC is not 

beneficial to the grower with or without subsidy because the premium is set too high relative to 

the grower’s risk.  The conventional grower chooses full coverage in all other cases.  However, 

the conventional grower does not receive much protection from insurance in any of these cases. 

GYC is preferable to IP under same situations.  Like all the other varieties, hypothesized 
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revenue insurance (IP) is more cost effective for both conventional and organic Fuji practices in 

terms of the premium paid by grower and government investment in premium subsidy. 

The organic Fuji grower is much more willing to pay for insurance since it exhibits the 

highest profit risk of all varieties (Table 4.1).  Although the yield risk is lower than for both Red 

Delicious and Golden Delicious, the low price and yield correlation for organic Fuji apples 

makes its income highly risky.  This makes the insurance value for organic growers the second 

highest following Red Delicious among all varieties.   

   

V. SUMMARY AND CONCLUSIONS  

PNW, especially the state of Washington, is the leading region in both conventional and 

organic apple production.  PNW apples are primarily grown for the high value fresh market due 

to their high quality.  Multiple perils (production cost) and market fluctuation (price risk) results 

in revenue risk.  Crop insurance is a major risk management tool for apple growers.  The 

current apple insurance program offers only a yield based program.  Both price selection and 

coverage level are set too low to provide adequate protection.  In this paper, we examined the 

income risks associated with conventional and organic production and evaluated the roles of 

GYC and hypothesized IP insurance schemes for conventional and organic apples by variety.  

Results show organic apple growers earn higher expected revenue, incur higher production 

cost (excluding establishment cost), make higher expected profit, but face higher income risks 

than conventional apple growers.   

We assume the apple grower makes decisions on insurance coverage and price election 
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levels to maximize expected utility of after harvest wealth, composed of initial wealth, random 

production income and insurance transactions.  Results show, in terms of certainty equivalent, 

that income insurance is not necessarily preferable than yield insurance by growers because price 

selection in the current GYC programs is too low compared to the market cash price.  Only 

conventional Red Delicious growers will benefit from IP more than GYC under comparable 

premium subsidy structures since the base selection is very close to Red Delicious market price.    

From the point of view of the government investment in premium subsidies, revenue insurance is 

always more cost effective for all varieties and for both conventional and organic practices. 

The conventional apple growers’ welfare gain from the current insurance is less than the 

organic growers because their income risk is lower.  Organic apple production risks are higher 

than their conventional counterparts, causing the current GYC premium to be below the expected 

indemnity even before the subsidy and after the organic premium inflation factor (except Gala) 

based on our survey data.  Although the insured price is quite low compared to the organic 

market prices, organic growers still benefit more than their conventional counterparts from the 

GYC.  Gala apple production is less risky for both conventional and organic apple growers. 

Consequently, Galas benefit little from insurance and organic Gala becomes an exception from 

the other organic varieties, namely, the current GYC premium is above the expected indemnity.  

In the future insurance parameter setting, it would be good to separate at least Gala from the 

other varieties.  This implies that the current Varietal A and B categorization is not accurate 

enough to assess a fair premium structure for apple growers which may cause adverse selection 

problems. 
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    The results depend heavily on the simulated distribution.  Our organic grower survey 

sample is small, and the organic results can be more reliable only when more grower production 

records are available in the future.  
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ENDNOTES  

12002 estimated figures from Washington State University Center for Sustaining Agriculture and 

Natural Resources. 

2Apples are sent to packing house after harvested, and then sorted, stored, packed and marketed 

to retailers year round.  The growers usually receive the payment from the packing house based 

on the average price over the crop year less a packing house cost.  Therefore, the price is 

stochastic until way after the harvesting time. 

3Both costs do not include establishment cost.  There is a large amount of establishment cost in 

the first few years of new trees.  These costs are usually amortized into later years when the 

trees get matured, so that the profit levels would be greatly reduced.  However, we don’t find 

this information by variety and by conventional/organic practice.
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Table 4.1. Descriptive Statistics of the Simulated Varietal Conventional and Organic Yields, Prices and Revenues 

                Conventional                                        Organic                     
Variable Mean StDev CV Min Max Skewness Mean StDev CV Min Max Skewness 

                          
Yield             
Red Delicious 902.23 278.32 0.31 0 1958.21 0.04 1139.8 518.6 0.45 0 3224.4 0.12 
Golden Delicious 1032.9 269.7 0.26 48.5 2050.7 0.06 1067.3 449.2 0.42 0 2845.3 0.07 
Gala 929.52 103.7 0.11 523.76 1364.67 0.03 744.24 209.67 0.28 0 1615.47 -0.01 
Fuji  832.16 200.74 0.24 83.87 1640.3 0 1000.7 404.8 0.4 0 2431.6 0.03 
             
Price             
Red Delicious 4.37 1.57 0.36 1.1 16.74 1.09 9.27 2.32 0.25 3.75 22.83 0.76 
Golden Delicious 6.22 2.04 0.33 1.82 20.04 0.99 11.77 3.94 0.33 3.5 37.77 0.96 
Gala 9.25 1.71 0.18 4.5 18.04 0.52 13.55 2.94 0.22 5.84 27.9 0.66 
Fuji  10 2.56 0.26 3.69 25.08 0.8 13.58 3.25 0.24 4.61 38.53 0.76 
             
Revenue             
Red Delicious 3712 1232.9 0.33 0 10378.5 0.74 9645.8 3404.2 0.35 0 21261.9 -0.45 
Golden Delicious 6112.5 1756.6 0.29 727 18181.3 0.74 11237 3624 0.32 0 26093 -0.16 
Gala 8501.3 1292.7 0.15 5042.5 14087.5 0.43 9704.6 2311.8 0.24 0 21247.5 0.09 
Fuji  7890.2 1124.1 0.14 1753.7 12910.7 0.12 13319 5889 0.44 0 43335 0.5 

                          
 

Note: Yield unit is boxes per acre. Price unit is dollars per box. Profit unit is dollars per acre. 
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Table 4.2. Optimization Results for Red Delicious Apple 

Profit  
  Mean Std Dev CE 

Price 
Election

Optimal 
Coverage Premium

CE / 
Premium Subsidy 

CE / 
Subsidy 

                    
Conventional          
No insurance 6487.00 1232.85        
GYC 6529.21 1135.70 81.77 1.00 0.75 109.03 0.75 133.26 0.61 
GYC (W/O subsidy) 6487.00 1232.85 0.00 0.00 0.00 0.00 N/A 0.00 N/A 
GYC (Actuarially fair,W subsidy) 6570.18 1135.70 122.43 1.00 0.75 68.06 1.80 83.18 1.47 
GYC (Actuarially fair,W/O subsidy) 6487.00 1135.70 39.87 1.00 0.75 151.24 0.26 0.00 N/A 
IP (Actuarially fair,W subsidy) 6610.23 993.78 213.99 1.00 0.75 100.83 2.12 123.23 1.74 
IP (Actuarially fair,W/O subsidy) 6487.00 993.78 92.80 1.00 0.75 224.06 0.41 0.00 N/A 
          
Organic           
No insurance 11373.68 3404.19        
GYC 11669.21 2741.32 1064.03 1.00 0.75 144.62 7.36 176.75 6.02 
GYC (W/O subsidy) 11492.45 2741.32 915.33 1.00 0.75 321.37 2.85 0.00 N/A 
GYC (Actuarially fair,W subsidy) 11615.76 2741.32 1018.86 1.00 0.75 198.06 5.14 242.08 4.21 
GYC (Actuarially fair,W/O subsidy) 11373.68 2741.32 816.56 1.00 0.75 440.14 1.86 0.00 N/A 
IP (Actuarially fair,W subsidy) 11444.87 3115.92 664.76 1.00 0.75 58.25 11.41 71.19 9.34 
IP (Actuarially fair,W/O subsidy) 11373.68 3115.92 605.28 1.00 0.75 129.44 4.68 0.00 N/A 
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Table 4.3. Optimization Results for Golden Delicious Apple 

Profit  
  Mean Std Dev CE 

Price 
Election

Optimal 
Coverage Premium

CE / 
Premium Subsidy

CE / 
Subsidy 

            
Conventional          
No insurance 8697.47 1756.58        
GYC 8683.43 1687.57 18.20 0.92 0.75 114.83 0.16 140.35 0.13 
GYC (W/O subsidy) 8697.47 1756.58 0.00 0.00 0.00 0.00 N/A 0.00 N/A 
GYC (Actuarially fair,W subsidy) 8757.72 1684.09 93.24 1.00 0.75 49.30 1.89 60.25 1.55 
GYC (Actuarially fair,W/O subsidy) 8697.47 1684.09 33.28 1.00 0.75 109.55 0.30 0.00 N/A 
IP (Actuarially fair,W subsidy) 8710.16 1717.20 37.89 1.00 0.75 10.38 3.65 12.69 2.99 
IP (Actuarially fair,W/O subsidy) 8697.47 1717.20 25.26 1.00 0.75 23.08 1.09 0.00 N/A 
          
Organic           
No insurance 13334.29 3623.67        
GYC 13556.31 3137.56 800.41 1.00 0.75 135.42 5.91 165.52 4.84 
GYC (W/O subsidy) 13390.79 3137.56 655.25 1.00 0.75 300.94 2.18 0.00 N/A 
GYC (Actuarially fair,W subsidy) 13530.88 3137.56 778.02 1.00 0.75 160.85 4.84 196.59 3.96 
GYC (Actuarially fair,W/O subsidy) 13334.29 3137.56 606.04 1.00 0.75 357.44 1.70 0.00 N/A 
IP (Actuarially fair,W subsidy) 13366.75 3473.45 423.96 1.00 0.75 26.56 15.96 32.46 13.06 
IP (Actuarially fair,W/O subsidy) 13334.29 3473.45 395.42 1.00 0.75 59.02 6.70 0.00 N/A 
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Table 4.4. Optimization Results for Gala Apple  

Profit  
  Mean Std Dev CE 

Price 
Election

Optimal 
Coverage Premium

CE / 
Premium Subsidy 

CE / 
Subsidy 

            
Conventional          
No insurance 10156.33 1292.74        
GYC 10156.33 1292.74 0.00 0.00 0.00 0.00 N/A 0.00 N/A 
GYC (W/O subsidy) 10156.33 1292.74 0.00 0.00 0.00 0.00 N/A 0.00 N/A 
GYC (Actuarially fair,W subsidy) 10157.82 1291.52 1.81 1.00 0.75 1.22 1.48 1.49 1.21 
GYC (Actuarially fair,W/O subsidy) 10156.33 1291.52 0.32 1.00 0.75 2.72 0.12 0.00 N/A 
IP (Actuarially fair,W subsidy) 10156.33 1292.74 0.00 0.00 0.00 0.00 N/A 0.00 N/A 
IP (Actuarially fair,W/O subsidy) 10156.33 1292.74 0.00 0.00 0.00 0.00 N/A 0.00 N/A 
          
Organic           
No insurance 11738.63 2311.77        
GYC 11747.36 2112.44 142.52 1.00 0.75 130.99 1.09 160.09 0.89 
GYC (W/O subsidy) 11692.17 2263.74 7.28 0.67 0.55 68.72 0.11 0.00 N/A 
GYC (Actuarially fair,W subsidy) 11815.48 2112.44 208.90 1.00 0.75 62.87 3.32 76.85 2.72 
GYC (Actuarially fair,W/O subsidy) 11738.63 2112.44 134.01 1.00 0.75 139.72 0.96 0.00 N/A 
IP (Actuarially fair,W subsidy) 11742.10 2292.07 40.04 1.00 0.75 2.84 14.09 3.47 11.52 
IP (Actuarially fair,W/O subsidy) 11738.63 2292.07 36.61 1.00 0.75 6.32 5.80 0.00 N/A 
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Table 4.5. Optimization Results for Fuji Apple 

Profit  
  Mean Std Dev CE 

Price 
Election

Optimal 
Coverage Premium

CE / 
Premium Subsidy 

CE / 
Subsidy 

            
Conventional          
No insurance 9790.18 1124.14        
GYC 9790.18 1124.14 0.00 0.00 0.00 0.00 N/A 0.00 N/A 
GYC (W/O subsidy) 9790.18 1124.14 0.00 0.00 0.00 0.00 N/A 0.00 N/A 
GYC (Actuarially fair,W subsidy) 9845.31 1037.71 78.93 1.00 0.75 45.10 1.75 55.12 1.43 
GYC (Actuarially fair,W/O subsidy) 9790.18 1037.71 23.99 1.00 0.75 100.23 0.24 0.00 N/A 
IP (Actuarially fair,W subsidy) 9790.63 1120.80 2.51 1.00 0.75 0.37 6.77 0.45 5.54 
IP (Actuarially fair,W/O subsidy) 9790.18 1120.80 2.05 1.00 0.75 0.82 2.49 0.00 N/A 
          
Organic           
No insurance 15110.17 5889.15        
GYC 15294.42 5479.92 909.20 1.00 0.75 126.97 7.16 155.18 5.86 
GYC (W/O subsidy) 15139.24 5479.92 775.65 1.00 0.75 282.15 2.75 0.00 N/A 
GYC (Actuarially fair,W subsidy) 15281.34 5479.92 897.89 1.00 0.75 140.05 6.41 171.17 5.25 
GYC (Actuarially fair,W/O subsidy) 15110.17 5479.92 750.79 1.00 0.75 311.22 2.41 0.00 N/A 
IP (Actuarially fair,W subsidy) 15177.85 5673.25 676.69 1.00 0.75 55.38 12.22 67.68 10.00 
IP (Actuarially fair,W/O subsidy) 15110.17 5673.25 618.95 1.00 0.75 123.06 5.03 0.00 N/A 
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APPENDIX A: DERIVATION OF THE THREE-MOMENT MODEL IN TERMS OF 

MEAN, VARIANCE AND SKEWNESS 
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) ( ) ( )( CE U m EUU μ μ επ = − = +  

where μ is the expected profit return, m is premium and ε is the error term with zero 

expected value. The profit returnπ is a random variable which is equal to μ ε+ .  

( ) ( ) '( )U m U mUμ μ μ− ≅ −  

2 3( ) ( ) [ '( )] [ ''( )] / 2 [ '''( )] / 3!EU EU E U E u E uμ ε μ ε μ μ με ε+ ≅ + + +  

                  2( ) ''( ) / 2 '''( )] / 3!kU U USμ μ μσ= + +  

2 ''( ) /[2 '( )] '''( ) /[3! '( )]km U U U USμ μ μ μσ= +  

CE mμπ = −  

2 / 2 '''( ) /[6 '( )]kU USμ λ μ μσ= − +  

        2 / 2 / 6kSμ λ λησ= − +  

where ''( ) /[ '( )]U Uλ μ μ= −  , '''( ) /[ ''( )]U Uη μ μ= −  
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APPENDIX B: YIELD, PRICE AND INCOME RISK SIMULATION FOR PNW 

APPLE GROWERS 
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    We have explored four sources of data available for the apple risk research.  First is 

the NASS published data.  Second is APH RMA records.  Third is the WA Clearing 

House data.  The last one will be from our own survey.  They each have advantages 

and disadvantages in terms of representing the risks as listed in the following table.  

 NASS RMA Clearing House Survey 
Period  >30 years 24 years 4 years 5 year 
By variety No No Yes Yes 
Aggregation State level Farm level State level Farm level 
Organic/Conventional mixed mixed Separated Organic only 
 

    Ideally, to analyze the income risks of an apple grower, we will need farm level data, 

by variety, by grade/size category because they are sold at different prices, by 

conventional or organic practice, and longer period so as to represent the production risk 

caused by weather.  Some bad weather might have not appeared in recent four or five 

years.  However, from the above table we see that there is no one source that can satisfy 

all the research needs.  The information from each source is combined together with 

reasonable assumptions to obtain farm level yields and prices by variety for both 

conventional and organic apple data. 

I. Yield, Price and Income Simulation for Conventional Apples  

    We first need to estimate the model parameters, and simulation can be easily carried 

in computer software based on the parameters.  We first identify the long term trend 

using NASS data, and examine the detrended residual yield distribution.  The test 

statistic of Shapiro-Wilk normality test for the residuals is 0.96, which means we cannot 

reject that the residual of the yield following a normal distribution.  Because we will 

need the farm yield which may have a higher risk than the state level, we turn to RMA 

data.  Assuming they follow the same trend because of the same technical development, 
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we can measure the farm level yield distribution and calculate the farm level variance.   

    Clearing House data is the only source with output quantity by variety.  We use 

these data as a proxy to the total WA state output of each variety excluding cull.  Based 

on an average state cull rate, we converted the packed output into total output including 

culls.   Then based on the two Washington Fruit Surveys in January 1993 and 2001, and 

the by variety acreages changes for the years after, we estimated the acreage for each year 

for each variety, and use them to divide the total output to get yield by variety.  These 

yields by variety are estimated based on many assumptions, with about ten years of data, 

and are at state level.  With these yields, we can estimate the trends of each variety, 

detrend them, and estimate the distributions.  We then convert the state level by variety 

distributions into farm level by simply enlarging their variances while maintain all other 

distributional parameters at the state level.  We follow the same variance ratios between 

state and farm from the above all variety samples in this conversion of by variety samples.  

These farm level yield distribution by variety estimations can be used in simulation. 

    It is relatively easier to estimate the price distribution because prices are at the state 

level and individual farms face the same prices.  First, the Clearing House website 

provides the average by variety FOB data for over ten years.  Specifically, Reds and 

Goldens: 1980-2004, Granny Smith: 1984-2004, and Gala and Fuji: 1991-2004.  The 

FOB prices are then converted into farm gate prices by subtracting the warehouse cost.   

Again, trends are identified and lognormal distributions are adopted after refutable tests.  

    The correlations between the yield of all varietal apples and their prices are 

estimated from the historical data.  A negative correlation is identified for the 

established varieties because of the market supply demand relationships.  The 
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correlation is then imposed in the joint price-yield simulation.  The growers per acre 

revenue distribution can be calculated by the price times the yields, under the assumption 

of all apples are sold at an average market price.   

II. Yield, Price and Income Simulation for Organic Apples  

    A survey on organic apple growers in the PNW was conducted by Washington State 

University and University of Idaho.  We have Red Delicious, Golden Delicious, Fuji, 

Gala, Braeburn, and Granny Smith apples in our survey with a total of 118 observations 

for 33 farms for 6 years (2000-2005).  Although the number of farms is not large, it has 

a good representability given the whole population of PNW growers with no less than 

five acres of organic apples is very small.  We only keep the first four varieties because 

the others have only one or two farms with multiple years of yield records which are not 

enough for risk analysis purposes. 

 No trend is modeled because we believe that the conventional long term trend 

does not represent the organic technology, and the six years of farm data is not long 

enough to model the trend.  As a result, we average the annual yields to represent the 

expected yield for each variety by farm, and the sample standard deviations is also used 

to represent the yield risks for each variety by farm.  Then, the averages and standard 

deviations of all the farm yield are used as the representative farm’s expected yield and 

standard deviation.  Following the same normal distributions of conventional yields, 

10,000 random yields are simulated for each variety representing the upcoming crop year 

2006. 

The organic FOB price data (1998-2004) is found from the WA Growers Clearing 

House (WAGCH) website, the same place as conventional apple.  Following the same 



 

 86

procedure as in the conventional price estimations, a lognormal model is used and 10,000 

random prices are simulated for each variety. 

The price-yield correlations are calculated based on the WAGCH and survey data 

over years 2000 through 2004, during which both price and yield have observations.  A 

joint price-yield distribution is then obtained from a linear transformation of the 

independently simulated price and yield distributions.  The revenue distribution from 

growing each variety of apples is obtained by multiplying the prices and yields in the 

joint distribution.  
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APPENDIX C: COMPUTER PROGRAM CODES FOR CHAPTER 2 
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Appendix C.1. Identify the Specification of Error Terms for the Regression Model (SAS) 
 
proc import datafile="c:\data\hedge.xls" out=one replace; 
run; 
 
proc corr data=one; 
run; 
 
data one1;  set one; 
     if dummy=1 then D2=0; 
  else D2=1;  
  *D2 is dummy variable where 1 is contract switching point and 0 not; 
     cash1 = dif1( cash ); 
     c1 = dif1( c ); 
  k1 = dif1(k); 
  m1 = dif1(m); 
  run; 
 
 
PROC AUTOREG DATA=one1; 
     MODEL Cash1 = c1 d2/ NLAG=1 GARCH=(Q=1,P=1) /*ARCHTEST*/ METHOD=ML; 
  OUTPUT OUT=OUT6 CEV=V R=R; 
  run; 
 
data one21;  set one; 
      cash21 = dif21( cash ); 
      c21 = dif21( c ); 
   run; 
 
PROC AUTOREG DATA=one21; 
     MODEL CASH21 = c21 dummy/ NLAG=(1 21) GARCH=(Q=1,P=1) ARCHTEST METHOD=ML; 
  OUTPUT OUT=OUT211 CEV=V R=R; 
run; 
 
data one65;  set one; 
     cash65 = dif65( cash ); 
     c65 = dif65( c ); 
   run; 
 
PROC AUTOREG DATA=one65; 
     MODEL CASH65 = c65 dummy/ NLAG=(1 65) GARCH=(Q=1,P=1) /*ARCHTEST*/ 
METHOD=ML; 
     /*MODEL CASH65 = c65 / NLAG=(65) GARCH=(Q=1,P=1) ARCHTEST METHOD=ML;*/ 
  OUTPUT OUT=OUT651 CEV=V R=R; 
  run; 
 
data one130;  set one; 
     cash130 = dif130( cash ); 
     c130 = dif130( c ); 
 
PROC AUTOREG DATA=one130; 
     MODEL CASH130 = c130 dummy / NLAG=(1 130) GARCH=(Q=1,P=1) /*ARCHTEST*/ 
METHOD=ML; 
     /*MODEL CASH130 = c130 / NLAG=(130) GARCH=(Q=1,P=1) ARCHTEST 
METHOD=ML;*/ 
  OUTPUT OUT=OUT1301 CEV=V R=R; 
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  run; 
 
/*260 days hedge period*/ 
data one260;  set one; 
     cash260 = dif260( cash ); 
     c260 = dif260( c ); 
   run; 
 
PROC AUTOREG DATA=one260; 
     MODEL CASH260 = c260 dummy/ NLAG=(1 260) GARCH=(Q=1,P=1) /*ARCHTEST*/ 
METHOD=ML; 
     /*MODEL CASH260 = c260 / NLAG=(260) GARCH=(Q=1,P=1) ARCHTEST 
METHOD=ML;*/ 
  OUTPUT OUT=OUT2601 CEV=V R=R; 
  run;
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Appendix C.2. Calculate the Utility Maximized Hedge Ratio (GAUSS) 
 
new; 
cls; 
 
format /rd 16,4; 
 
load z[] =  C:\data\dif.txt;  
  
/*The variables are Cash dif, Chifuture dif, KCBT dif, MBT dif*/ 
 
n = rows(z)/4; 
z = reshape(z,n,4); 
@ 
CTC = 1.6;       /*commission cost for small hedgers*/ 
@ 
CTC = 0.18;      /*commission cost for Large hedgers*/ 
@ 
TC0 = 0.26 + CTC;  
@ 
TC0 = 0.25 + CTC; 
 
Let V[4,5] = 
3.2579138 19.5727942 37.3549684 51.1045413 62.2345384   
/*cash variance for 5 hedging periods*/ 
4.9185891 21.0261394 33.9674329 43.0818195 51.4391643   
/*CBOT futures variance for 5 hedging periods*/   
4.8509113 23.2267014 43.2922457 56.8513911 59.6205502   
/*KCBT futures variance for 5 hedging periods*/ 
4.5838074 21.4092174 41.7183450 52.4063269 52.4790609   
/*MGE futures variance for 5 hedging periods*/ 
; 
vs0 = v[1,.]^2; 
vf0=V[2:4,.]^2; 
 
let b[5,3] = 0.3581 0.3585 0.3291 
             0.3296 0.3469 0.335 
             0.3046 0.3336 0.3109 
             0.3191 0.3531 0.3199 
             0.3117 0.3297 0.3233; 
/*Regression hedge ratios with dummy variable*/ 
Vsf0 = b'.*Vf0; 
 
xfhold = zeros(5,15); 
maxEUhold = zeros(5,15); 
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lamda1 = {0.2, 0.4, 0.6, 0.8, 1}; 
 
i=1;                         
   do until i > 5;          /* 5 risk aversion levels */ 
   lamda = lamda1[i];  /* a scalor */ 
    
   j=1;                 /* 3 markets with corresponding TC */ 
      do until j>3; 
      tc = tc0; 
       
      k=1; 
         do until k >5;    /* 5 hedging periods */ 
         vf = vf0[j,k];    /* variance of futures */ 
         vsf = vsf0[j,k];   /* covariance of cash and futures */ 
         vs = vs0[k]; 
 
         Xf0 = tc/(lamda*vf)-vsf/vf; 
         if xf0 < 0; 
         Xf = xf0; 
         else; 
         xf = 0;  
         endif; 
             
         {f} = maxeu(xf); 
         xfhold[k,(3*i+j-3)] = xf; 
         maxEuhold[k,(3*i+j-3)] = f; 
 
         k=k+1; 
         endo; 
      j=j+1; 
      endo; 
 
   i = i+1; 
   endo; 
 
print "xfhold" -xfhold; 
print "maxeuhold" maxeuhold; 
 
end; 
 
proc maxeu(xf); 
    local eu; 
    EU = -abs(xf)*TC -lamda/2*(Vs + (xf^2)*vf+ 2*xf*Vsf); 
    retp (eu);    
    endp; 
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APPENDIX D: COMPUTER PROGRAM CODES FOR CHAPTER 3 
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Appendix D.1. Simulating Bivariate Gamma Distribution for Futures and Cash Prices 
(GAUSS) 
 
new; 
cls; 
format /rd 6,3; 
 
r = 10000; 
MC = 3.7; 
Mf = 3; 
k = 1; 
Vc = k*0.37; 
Vf = k*0.56;  
j = 0.5; 
Sc = 0.12; 
Sf = j*0.29; 
/*These are nonstandardized third moments which are recalulated from the data 
(meanc(c-Ec)^3. */ 
rho = 0.48; 
/*The above data are mean, variance and skewness correlation of futures and 
 cash prices and dry area wheat yield*/ 
 
a1 = 4*Vc^3/(Sc^2);   
b1 = Sc/(2*vc); 
a2 = 4*vf^3/(Sf^2); 
b2 = sf/(2*vf); 
/*The calculation is based on the 2nd and 3rd moments with alpha and beta 
sigma^2 = alpha*beta^2, skewness = 2*alpha*beta^3*/ 
 
z = rho*(a1*a2)^0.5; 
 
y1 = rndgam(r,1,a1-z); 
y2 = rndgam(r,1,a2-z); 
y3 = rndgam(r,1,z); 
x1 = b1*(y1+y3); 
x2 = b2*(y2+y3); 
 
/*Correlated bivariate gamma simulation. The approach is based on  
Averill M. Law and W.David Kelton "simulation Modeling and Analysis" P270*/ 
 
xc = x1 + MC - meanc(x1); 
xf = x2 + Mf - meanc(x2); /*Adjusted mean*/ 
xx = xc~xf; 
 
NC = xc-meanc(xc); 
NF = xf-meanc(xf);         /*W/O standardized*/ 
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SC1 = sumc(NC^3)/(r-1);    /*sample Skewness of Cash*/ 
Sf1 = sumc(NF^3)/(r-1);    /*sample Skewness of futures*/ 
 
vc2f = sumc((NC^2).*NF)/(r-1);    /*sigma of cash^2 and futures*/ 
vcf2 = sumc(NC.*(NF^2))/(r-1);    /*sigma of cash and futures^2*/ 
 
x=68.94; 
g = xc.*x; 
ohr = 0.35; 
/*0.38 0.35 0.35 0.35 for j=1,2,3,4*/ 
h = (3-xf).*ohr*x; 
pi0 = 550 - 230 +g+h; 
 
NP = pi0-meanc(pi0);         /*W/O standardized*/ 
Spi = sumc(Np^3)/(r-1);    /*sample Skewness of Cash*/ 
 
print "mean" meanc(xc) meanc(xf); 
print "skew" SC1 Sf1 vc2f vcf2; 
print "cov" vcx(xx); 
print "corre" corrx(xx); 
print "a1 b1 " a1 b1; 
 
output file = Bgammasimuv05.txt reset; 
 
print xx; 
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Appendix D.2. Calculating the Optimal Hedge Ration for Two-moment, Three-moment 
and Expected Utility Model (GAUSS) 
 
new; 
cls; 
format /rd 6,3; 
 
r = 10000; 
load xx[r,2] = bgammasimu.txt; 
 
xc = xx[.,1]; 
xf = xx[.,2]; 
 
NC = xc-meanc(xc); 
NF = xf-meanc(xf);         /*W/O standardized*/ 
SC1 = sumc(NC^3)/(r-1);    /*sample Skewness of Cash*/ 
Sf1 = sumc(NF^3)/(r-1);    /*sample Skewness of futures*/ 
 
vc2f = sumc((NC^2).*NF)/(r-1);    /*sigma of cash^2 and futures*/ 
vcf2 = sumc(NC.*(NF^2))/(r-1);    /*sigma of cash and futures^2*/ 
 
print "mean" meanc(xc) meanc(xf); 
print "skew" SC1 Sf1 vc2f vcf2; 
print "cov" vcx(xx); 
print "corre" corrx(xx); 
 
/*Test the null hypothesis H0: skewness=0 vs.H1 skewness=/0*/ 
z1 = sc1/sqrt(6/r); 
z2 = sf1/sqrt(6/r); 
z = cdfni(0.975);  /*critical value*/ 
/*Reject the null hypothesis since z1 and z2 both greater than z*/ 
 
f0 = 2.8; 
/*wheat price for the first week of September 2001 as the initial future price*/  
@f0 = meanc(xf);  /*unbiased futures market*/ 
@Y = 68.94;   /*bushel/acre*/ 
C = 230; /*two year rotation*/ 
/*The above data are from the PNW crop insurance paper*/ 
  
ymv = zeros(1,6); 
ymvs = zeros(1,6); 
CEmv = zeros(1,6); 
CEmvs = zeros(1,6); 
UCEmv = zeros(1,6); 
UCEmvs = zeros(1,6); 
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W0 = 550;  /*Intial wealth for whitman County is 550 $/acre(Wang,2003)*/ 
W = W0;  
/*Average Profit from hedging is around $25 under biased futures market*/  
 
lamda0 = (seqa(1.5,0.5,6))/W;  
eta0 = (seqa(2.5,0.5,6))/W; 
theta0 = seqa(1.5,0.5,6); 
   
EF1 = meanc(xf); 
cov = vcx(xx); 
 
i = 1; 
    do until i > 6; 
    lamda = lamda0[i];   /*6 risk aversion levels*/  
    eta = eta0[i];  /*6 absolute prudence levels*/ 
    theta = theta0[i]; 
 
   /*Two moments model*/ 
    ymv[i] = (f0-EF1)/(lamda*cov[2,2])+cov[1,2]*y/cov[2,2]; /*OHR*/ 
 

CEmv[i] = y*meanc(xc)-c+(f0-EF1)*ymv[i] - lamda*(y^2*cov[1,1] +   
         ymv[i]^2*cov[2,2] - 2*y*ymv[i]*cov[1,2])/2;     
         /*Certainty Equivalent*/ 

    UCEmv[i] = ((1-theta)^(-1))*CEmv[i]^(1-theta);   /*U(CE)*/ 
 
    /*Three moments model*/ 
    sf = sf1;  /*1 skewness levels*/ 
    delta = (lamda^2)*(cov[2,2]-eta*y*vcf2)^2 - lamda*eta*sf*(lamda*eta*y^2*vc2f- 
          2*lamda*y*cov[1,2]-2*f0+2*EF1); 
 

ymvs[i] = y*vcf2/sf+(-lamda*cov[2,2]+sqrt(delta))/(lamda*eta*sf); /*OHR*/ 
 
CEmvs[i] = y*meanc(xc)-c+(f0-EF1)*ymvs[i] - lamda*(y^2*cov[1,1] +  
          ymvs[i]^2*cov[2,2] -2*y*ymvs[i]*cov[1,2])/2 + lamda*eta*(y^3*sc1 –  
          ymvs[i]^3*sf - 3*y^2*ymvs[i]*vc2f+3*y*ymvs[i]^2*vcf2)/6;             
          /*Certainty Equivalent*/ 
 

    UCEmvs[i] = ((1-theta)^(-1))*CEmvs[i]^(1-theta);   /*U(CE)*/ 
i = i+1; 
endo; 
 
/***MAXIMIZING EXPECTED UTILITY***/ 
   sqpSolveSet; 
    x0 = {0.3}; 
    MIP = 0; 
    {x,f,lagr,ret} = sqpSolve(&EU,X0); 
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    F = -F;  
    
   proc EU(X0); 
      local EU,profit,mpi,vpi,theta; 
      Profit = xc*y - c + (f0 - xf)*x0 + W0; 
      MPI = MEANC(Profit); 
      VPI = VCX(PROFit); 
      theta = 1.5; 
      EU = -meanc((profit^(1-theta))/(1-theta)); 
   retp(EU); 
   endp; 
 
   
print "Two-momentOHR " ymv./y; 
print "Three-MomentOHR " ymvs./y; 
print; 
print "UCEmv " ucemv; 
print "UCEmvs " ucemvs; 
print; 
print "CEmv " cemv; 
print "CEmvs " cemvs; 
print "maximized expected utility " f; 
print "optimal hedge ratio " x/y; 
 
end; 
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Appendix D.3. Certainty Equivalent Changes with Lamda and Eta (GAUSS) 
 
new; 
cls; 
format /rd 6,3; 
 
r = 10000; 
load xx[r,2] = bgammasimu.txt; 
 
xc = xx[.,1]; 
xf = xx[.,2]; 
NC = xc-meanc(xc); 
NF = xf-meanc(xf);         /*W/O standardized*/ 
SC1 = sumc(NC^3)/(r-1);    /*sample Skewness of Cash*/ 
Sf1 = sumc(NF^3)/(r-1);    /*sample Skewness of futures*/ 
vc2f = sumc((NC^2).*NF)/(r-1);    /*sigma of cash^2 and futures*/ 
vcf2 = sumc(NC.*(NF^2))/(r-1);    /*sigma of cash and futures^2*/ 
 
print "mean" meanc(xc) meanc(xf); 
print "skew" SC1 Sf1 vc2f vcf2; 
print "cov" vcx(xx); 
print "corre" corrx(xx); 
 
/*Test the null hypothesis H0: skewness=0 vs.H1 skewness=/0*/ 
z1 = sc1/sqrt(6/r); 
z2 = sf1/sqrt(6/r); 
z = cdfni(0.975);  /*critical value*/ 
/*Reject the null hypothesis since z1 and z2 both greater than z*/ 
 
f0 = 3.2; 
/*wheat price for the first week of September 2001 as the initial future price*/  
@f0 = meanc(xf);  /*unbiased futures market*/ 
@Y = 68.94;   /*bushel/acre*/ 
C = 230; /*two year rotation*/ 
/*The above data are from the PNW crop insurance paper*/ 
  
ymv = zeros(1,6); 
ymvs = zeros(1,6); 
CEmv = zeros(1,6); 
CEmvs = zeros(1,6); 
UCEmv = zeros(1,6); 
UCEmvs = zeros(1,6); 
 
W0 = 550;  /*Intial wealth for whitman County is 550 $/acre(Wang,2003)*/ 
W = W0;  
/*Average Profit from hedging is around $25 under biased futures market*/  
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lamda0 = (seqa(6,0,6))/W;  
eta0 = (seqa(1,1,6))/W; 
theta0 = seqa(1.5,0.5,6); 
EF1 = meanc(xf); 
cov = vcx(xx); 
 
i = 1; 
    do until i > 6; 
    lamda = lamda0[i];   /*6 risk aversion levels*/  
    eta = eta0[i];  /*6 absolute prudence levels*/ 
    theta = theta0[i]; 
 
   /*Two moments model*/ 
    ymv[i] = (f0-EF1)/(lamda*cov[2,2])+cov[1,2]*y/cov[2,2]; /*OHR*/ 
 

CEmv[i] = y*meanc(xc)-c+(f0-EF1)*ymv[i] - lamda*(y^2*cov[1,1] +  
         ymv[i]^2*cov[2,2] - 2*y*ymv[i]*cov[1,2])/2;      
         /*Certainty Equivalent*/ 
 

    UCEmv[i] = ((1-theta)^(-1))*CEmv[i]^(1-theta);   /*U(CE)*/ 
 
    /*Three moments model*/ 
    sf = sf1;  /*1 skewness levels*/ 
    delta = (lamda^2)*(cov[2,2]-eta*y*vcf2)^2 - lamda*eta*sf*(lamda*eta*y^2*vc2f- 
              2*lamda*y*cov[1,2]-2*f0+2*EF1); 
 

ymvs[i] = y*vcf2/sf+(-lamda*cov[2,2]+sqrt(delta))/(lamda*eta*sf); /*OHR*/ 
 
CEmvs[i] = y*meanc(xc)-c+(f0-EF1)*ymvs[i] - lamda*(y^2*cov[1,1] +  
          ymvs[i]^2*cov[2,2] - 2*y*ymvs[i]*cov[1,2])/2 + lamda*eta*(y^3*sc1 –  
          ymvs[i]^3*sf - 3*y^2*ymvs[i]*vc2f+3*y*ymvs[i]^2*vcf2)/6;        
           /*Certainty Equivalent*/ 
 

    UCEmvs[i] = ((1-theta)^(-1))*CEmvs[i]^(1-theta);   /*U(CE)*/ 
i = i+1; 
endo; 
  
print "Two-momentOHR " ymv./y; 
print "Three-MomentOHR " ymvs./y; 
print "UCEmv " ucemv; 
print "UCEmvs " ucemvs; 
print; 
print "CEmv " cemv; 
print "CEmvs " cemvs; 
end;   
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Appendix D.4. Comparative Statics of the Optimal Hedge Ratio for Two-moment and 
Three-moment Models (GAUSS) 
 
new; 
cls; 
format /rd 6,3; 
 
r = 10000; 
load xx[r,2] = bgammasimu.txt; 
xc = xx[.,1]; 
xf = xx[.,2]; 
NC = xc-meanc(xc); 
NF = xf-meanc(xf);         /*W/O standardized*/ 
SC1 = sumc(NC^3)/(r-1);    /*sample Skewness of Cash*/ 
Sf1 = sumc(NF^3)/(r-1);    /*sample Skewness of futures*/ 
 
vc2f = sumc((NC^2).*NF)/(r-1);    /*sigma of cash^2 and futures*/ 
vcf2 = sumc(NC.*(NF^2))/(r-1);    /*sigma of cash and futures^2*/ 
 
print "mean" meanc(xc) meanc(xf); 
print "skew" SC1 Sf1 vc2f vcf2; 
print "cov" vcx(xx); 
print "corre" corrx(xx); 
 
 
f0 = 3.2;/*wheat price for the first week of September 2001 as the initial future price*/  
Y = 68.94;   /*bushel/acre*/ 
C = 230; /*cost for the two year rotation*/  
/*The above data are from the PNW crop insurance paper*/ 
 
ymv = zeros(1,5); 
ymvs = zeros(5,7); 
 
W0 = 550;  /*Intial wealth for whitman County is 550 $/acre(Wang,2003)*/ 
W = W0; /*Average Profit from hedging is around $25*/  
 
lamda0 = (seqa(1,1,7))/W;  
eta0 = (seqa(1,1,7))/W; 
theta0 = seqa(1.5,0.5,5); 
@ 
lamda0 = seqa(0.2,0.2,5);  
eta0 = seqa(0.2,0.2,5); 
@    
EF1 = meanc(xf); 
cov = vcx(xx); 
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i = 1; 
    do until i > 7; 
    lamda = lamda0[i];   /*5 risk aversion levels*/  
    j = 1; 
        do until j > 7; 
        eta = eta0[j];  /*5 absolute prudence levels*/ 
        /*Two moments model*/ 
        ymv[i] = (f0-EF1)/(lamda*cov[2,2])+cov[1,2]*y/cov[2,2]; /*OHR*/ 
 
        /*Three moments model*/ 
        sf = sf1;  /*1 skewness levels*/ 
        delta = (lamda^2)*(cov[2,2] - eta*y*vcf2)^2 –  
              lamda*eta*sf*(lamda*eta*y^2*vc2f - 2*lamda*y*cov[1,2] –  
              2*f0+2*EF1); 
        ymvs[i,j] = y*vcf2/sf+(-lamda*cov[2,2]+sqrt(delta))/(lamda*eta*sf); /*OHR*/ 
     j = j+1; 
     endo; 
i = i+1; 
endo; 
 
   
print "Two-momentOHR " ymv./y; 
print; 
print "Three-MomentOHR " ymvs./y; 
 
end;   
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APPENDIX E: COMPUTER PROGRAM CODES FOR CHAPTER 4 
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Appendix E.1. Simulating Price and Yield for Each Variety (GAUSS) 
 
new; 
cls; 
y = zeros(10000,2); 
p = zeros(10000,1); 
xx = rndn(10000,2); 
 
r = -0.5586; /*reds*/ 
@ 
r = -0.571; /*goldens*/ 
 
r = -0.564; /*gala*/ 
 
r = -0.861; /*fuji*/ 
@ 
/*correlation between the residuals from the price and yield trend*/ 
M = zeros(2,2); 
M[1,1] = 1; 
M[2,1] = r; 
M[2,2] = sqrt(1-r^2); 
 
yy = M*xx'; 
 
/*red trend*/ 
my = 902.91; /*yield prediction for 2006 as mean*/ 
mp = 1.416;   /*price prediction for 2006 as mean*/ 
Ysdv = {276.49,0.346}; /*standard deviation of yield and price*/ 
@ 
/*Goldens*/ 
my = 1032.09; 
mp = 1.777; 
Ysdv = {270.59, 0.3194}; 
 
/*Gala*/ 
my = 929.95; 
mp = 2.209; 
Ysdv = {103.89,0.1816}; 
 
/*Fuji*/ 
my = 832.23; 
mp = 2.269; 
Ysdv = {200.07,0.2514}; 
@ 
Y = Ysdv.*yy; 
Y = y'; 
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pp = Y[.,2]+mp; 
lnp = exp(pp); 
yield = my + y[.,1]; 
 
/*defnie all negative yields as 0*/ 
i = 1; 
    do until i>10000; 
    if yield[i] < 0; 
    yield[i] = 0; 
    else; 
    endif; 
    i=i+1; 
endo; 
 
py = lnp.*yield; 
z = yield~pp; 
zz = yield~lnp~py; 
 
print "correlation between yield and lnprice" corrx(z); 
print "standard deviation" stdc(z); 
print "mean" meanc(z); 
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Appendix E.2. Modeling GYC Insurance for Red Delicious Grower (GAUSS) 
 
new; 
cls; 
library pgraph; 
format /rd 10,3; 
n = 10000; 
 
load xx[n,3] = pyreds.txt; 
y = xx[.,1]; 
p = xx[.,2];   
y0 = meanc(xx[.,1]); 
p0 = meanc(xx[.,2]); 
MP = 0; 
VP = 0; 
w0 = 6695; 
cost = 3920; 
m = 205; 
load z0[m,4] = pricecoverage.txt; 
 
EU0 = zeros(1,1); 
prof = zeros(n,1); 
sub0 = zeros(1,1); 
prem0 = zeros(1,1); 
 
i = 1; 
  do until i>m; 
  z = z0[i,.]; 
  MPCI = 4.37*z[1]*maxc(((z[2]*y0-y)~zeros(n,1))');   
/*we use varietal apple B's price selection 4.65, fresh apple 6.9 and its mean 4.37 for red 
delicious apples*/ 
@ 
  Prem = 4.37*z[1]*z[2]*y0*Z[3]; 
  sub = Prem*z[4]; 
  Total = MPCI-Prem+sub; 
@ 
  Prem = meanc(MPCI);  /*Actuarially fair*/ 
  sub = prem*z[4]; 
  Total = MPCI-Prem+sub;  /*no subsidy*/ 
 
  w = w0 + p.*y + total - cost;  /*Only MPCI*/ 
  theta = 2;  /*Risk aversion coefficient*/ 
  U = w^(1-theta)/(1-theta); 
  EU = meanc(U); 
  prof = prof~w; 
  Eu0 = EU0|eu; 
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  sub0 = sub0|sub; 
  prem0 = prem0|prem; 
i=i+1; 
endo; 
 
t = seqa(1,1,m); /*create an index to find which is the max coverage level*/ 
Eu0 = 10000.*eu0[2:m+1]; 
sub0 = sub0[2:m+1]; 
prem0 = prem0[2:m+1]; 
EUnew = t~EU0~sub0~prem0~z0; 
E = sortc(eunew,2); 
MaxEU = E[m,2]; 
 
g = E[m,1]; 
profit = prof[.,g+1];     /*the maximized profit*/ 
profit0 = w0+p.*y-cost;   /*Calculate the profit w/o insurance*/ 
Mp = meanc(profit); 
stdp = stdc(profit); 
Mp0 = meanc(profit0); 
stdp0 = stdc(profit0); 
 
/***WILLINGNESS TO PAY FOR THE FUTURES***/ 
 
WT0 = {100}; 
sqpSolveSet; 
{WT,FW, GW, RTCW} = sqpSolve(&SSE,WT0); 
 
print "price election, MPCI coverage"; 
print z0[g,.]; 
print "WILLINGNESS TO PAY FOR THE INSURANCE,Maximized expected utility" ; 
print WT maxeu; 
print "mean and stdc of original and maximized profit"; 
print mp0 stdp0 mp stdp; 
print "Optimal subsidy and premium" E[m,3:4]; 
 
{ b,m,f } = hist(profit,20); 
 
/***Procedure to CALCULATE THE WILLINGNESS TO PAY***/ 
proc SSE(WT0); 
local EU0,UPI0,SSE; 
     UPI0 = (profit0+wt0)^(1-theta)/(1-theta);   
     EU0 =  10000 * MEANC(UPI0); 
     SSE =  (maxeu - EU0)^2; 
 
   retp(SSE); 
   endp; 



 

 107

Appendix E.3. Modeling Hypothetical IP Insurance for Red Delicious Apple Grower 
(GAUSS) 
 
new; 
cls; 
library pgraph; 
format /rd 10,4; 
n = 10000; 
 
load xx[n,3] = pyreds.txt;  /*bivariate normal distributed price and yield*/ 
y = xx[.,1]; 
p = xx[.,2];   
y0 = meanc(xx[.,1]); 
p0 = meanc(xx[.,2]); 
MP = 0; 
VP = 0; 
w0 = 6695; 
cost = 3920; 
m = 205; 
load z0[m,4] = pricecoverage.txt; 
/*Create a Z0 matrix which include the base price selection,the MPCI coverage 
(50%-75%), and corresponding base premium rate and premium subsidy factor*/ 
 
EU0 = zeros(1,1); 
prof = zeros(n,1); 
sub0 = zeros(1,1); 
prem0 = zeros(1,1); 
 
i = 1; 
  do until i>m; 
  z = z0[i,.]; 
  IP = maxc(((6.9@4.65,p0@*z[1]*z[2]*y0-p.*y)~zeros(n,1))');  
/*set price election as the MPCI level (4.65) or mean of cash prices*/  
 
  Prem = 6.9@4.65,p0@*z[1]*z[2]*y0*Z[3]; 
  sub = Prem*z[4]; 
  Total = IP-Prem+sub; 
@ 
/*ONly consider actuarially fair case for IP*/ 
  Prem = meanc(IP);  /*Actuarially fair*/ 
  sub = prem*z[4]; 
  Total = IP-Prem;  /*no subsidy*/ 
@ 
  w = w0 + p.*y + total - cost;  /*Only MPCI*/ 
  theta = 2;  /*Risk aversion coefficient*/ 
  U = w^(1-theta)/(1-theta); 
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  EU = meanc(U); 
  prof = prof~w; 
  Eu0 = EU0|eu; 
  sub0 = sub0|sub; 
  prem0 = prem0|prem; 
i=i+1; 
endo; 
 
t = seqa(1,1,m); /*create an index to find which is the max coverage level*/ 
Eu0 = 10000.*eu0[2:m+1]; 
sub0 = sub0[2:m+1]; 
prem0 = prem0[2:m+1]; 
EUnew = t~EU0~sub0~prem0~z0; 
E = sortc(eunew,2); 
MaxEU = E[m,2]; 
 
g = E[m,1]; 
profit = prof[.,g+1];     /*the maximized profit*/ 
profit0 = w0+p.*y-cost;   /*Calculate the profit w/o insurance*/ 
Mp = meanc(profit); 
stdp = stdc(profit); 
Mp0 = meanc(profit0); 
stdp0 = stdc(profit0); 
 
/***WILLINGNESS TO PAY FOR THE FUTURES***/ 
WT0 = {100}; 
sqpSolveSet; 
{WT,FW, GW, RTCW} = sqpSolve(&SSE,WT0); 
 
print "price election, MPCI coverage"; 
print z0[g,.]; 
print "WILLINGNESS TO PAY FOR THE INSURANCE, Maximized expected utility" ; 
print WT maxeu; 
print "mean and stdc of original and maximized profit"; 
print mp0 stdp0 mp stdp; 
print "Optimal subsidy and premium" E[m,3:4]; 
 
/***Procedure to CALCULATE THE WILLINGNESS TO PAY***/ 
   proc SSE(WT0); 
   local EU0,UPI0,SSE; 
     UPI0 = (profit0+wt0)^(1-theta)/(1-theta);   
     EU0 = 10000 * MEANC(UPI0); 
     SSE =  (maxeu - EU0)^2; 
 
   retp(SSE); 
   endp; 
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