
 

 

INTEGRATED DATA MODELING IN  

HIGH-THROUGHPUT PROTEOMICES 

 

 

 

By 

SHUANGSHUANG JIN 

 

 

 

A dissertation submitted in partial fulfillment of 

The requirements for the degree of 

 

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE 

 

WASHINGTON STATE UNIVERSITY 

School of Electrical Engineering and Computer Science 

 

DECEMBER 2007 

 

@Copyright by SHUANGSHUANG JIN, 2007 

All Rights Reserved 

 

 

 

 



 ii

 

 

 

 

 

  

 

 
To the Faculty of Washington State University: 

   

The members of the Committee appointed to examine the Dissertation of 

SHUANGSHUANG JIN find it satisfactory and recommend that it be accepted. 

 

 

 

 

                                                                                             Chair 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

 

 

ACKNOWLEDGMENT 

 

 
The work of this dissertation has been an inspiring, exciting, interesting, and 

challenging experience. It cannot be accomplished without the accompanying and 

support by many people.  

The first person I would like to express my deep and sincere gratitude to is my 

direct supervisor, Dr. John H. Miller, who has given me countless suggestions and 

insightful guidance during the course of this work. His wide knowledge and fruitful 

discussions have been great value to me. His understanding, encouragement and 

instruction have provided a good basis for the present dissertation. He’s definitely one of 

my great supervisors in my life.  

I am deeply grateful to my committee members, Dr. Donald J. Lynch, and Dr. 

Robert R. Lewis. They accompanied me through each challenging examination: 

qualification exam, preliminary exam and the final oral defense of this dissertation. 

Without their understanding and support, I may not able to get the chance to fulfill my 

academic goal step by step. Their insightful comments and suggestions on this thesis 

work have also been extremely helpful. The experience of working with Dr. Lewis on my 

Master’s thesis was also an unforgettable exciting thing in my life.  

I wish to express my warm thanks to the colleagues in Pacific Northwest National 

Laboratory: Dr. David Springer, Mrs. Renee Johnson, and Dr. Don Dally, etc. It was my 

great pleasure to work with them. We also gratefully acknowledge the grant support by 

the Office of Science (BER), U. S. Department of Energy. 



 iv

Many thanks to WSU Graduate School and EECS for providing me such a good 

environment to accomplish my graduate program. The support from EECS administration: 

Dr. Ali Saberi and Dr. Zhe Dang (Pullman), Dr. Donald Lynch and Dr. Robert Lewis 

(Tri-Cities); the help from EECS Secretary Mrs. Ruby Young and Mrs. Joanne Baker; the 

technical support from our computer center, made my graduate study hopeful and easier.  

Special thanks to my dear parents. Without their endless support and love for me, 

I would never achieve my current progress. They are my spirit and emotion supporters. 

Finally, great thanks to my dear husband Yousu Chen, for his love and patience. It 

was my great fortune to meet and marry him. I’m always feeling happy and hopeful with 

him. He’s my shining sun, always warm and cheer me up, even in darkness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v

 

 

INTEGRATED DATA MODELING IN HIGH 

-THROUGHPUT PROTEOMICS 

 
Abstract 

 

 

by Shuangshuang Jin, Ph.D. 

Washington State University  

December 2007 

 

 

Chair: John H. Miller 

 

The purpose of this research project is to investigate the work flow in high-

throughput quantitative proteomics.  After data collection on complex protein mixtures 

subjected to proteolysis, liquid chromatography (LC) and mass spectrometry (MS), a 

long data reduction procedure beings that involves protein identification, protein 

abundance estimation, biological interpretation of differentially abundant proteins.  The 

data reduction procedure contains many steps that are the subject of ongoing research in 

bioinformatics.  This thesis research addresses the following issues: (1) protein database 

redundancy, (2) peptides from proteolysis that are found in more than one database entry, 

(3) separation of biological effects on protein abundance from variance due to instrument 

and processing effects, (4) data mining to relate observed global changes in an organisms 

proteome to biological processes perturbed by treatments. 
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Chapter 1 

Introduction 

1.1  Background and significance 

Proteomics research started in 1994 when the term “Proteome” was first defined 

as “PROTEins expressed by the genOME” [1]. It is a field using quantitative methods to 

study the function and/or changes of all expressed proteins in a given cell, tissue, or 

organism under a variety of conditions. Since proteins are the most functionally 

important molecules involved in essentially all biological processes, proteomics research 

has a great significance in deciphering the mechanisms of gene expression controls and 

characterizing biological processes in terms of disease processes and drug effects [2]. To 

date, most proteomic studies qualitatively and quantitatively compare proteomes in terms 

of protein abundance or concentration in normal (control) and disease states in cells and 

tissues. By comparing protein expressions in different conditions, for example, saying 

that the presence of a particular protein at a particular concentration deviates significantly 

from a normal range of values, valuable information are obtained to understand the 

underlying physiology and pathogenic mechanisms [3]. 
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Currently global proteomics approaches are challenged by the complexity of the 

mammalian proteome, the extensive range of protein concentrations and inadequate 

methods to quantify concentration differences. Although high-throughput mass 

spectrometry drives the proteomics research by changing the focus from the analysis of 

selected isolated proteins to proteome-wide analyses [4], difficulties still exist as a result 

in large-scale data manipulation, information extraction and pathway analysis. From the 

time the experimental raw data becomes available, there is a long way to go before we 

can really evaluate the significant role each particular protein plays in the biological 

system. Manual data acquisition and calculation on the enormous dataset is not practical 

and subject to unacceptable error rate.  Without reliable data processing and statistical 

analysis, protein abundance change can not be calculated quantitatively, no confidence 

tests can be applied, and the subsequent significance evaluation and pathway analysis are 

not valuable.  

Therefore, designing a seamless data flow to go through the processes, seeking a 

strategy to maximize useful sample dataset, preparing reliable data for statistical analysis 

to facilitate altered protein concentration estimation, and devising tools to test the 

consistency of proteomics data and its biological meaning, all have great significance to 

proteomics research.  

An integrated data model, which contains all these properties as well as high 

speed, accuracy and automation, can serve as a good prototype in high-throughput 

proteomics research. It can help proteomics researchers to perform their proteomics 

analysis in a semi-automatic fashion and provide reliably identified peptides and proteins 

information and statistical analyzed data to interpret biological processes or test 
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biological hypotheses, which is also very important in disease understanding and 

detection, diagnosis investigation, and drug development. 

 

1.2  Protein profiling 

Assessment of differential protein expression from the observed properties of 

detected peptides is the primary goal of proteomics. In recent years, high-throughput 

technologies for measuring the global expression of different components of the 

biological system, such as genomics, proteomics, and metabolomics, have made 

significant progress [5-7].  RNA profiling using microarrays is accepted as the state-of-

the-art approach to investigating genome-wide changes in gene expression.  However, the 

use of gene expression patterns is insufficient for understanding protein abundance, as 

additional post-transcriptional mechanisms, post-translational modifications and 

degradation, may influence the level of a protein present in a given cell or tissue.  Protein 

profiling using high-throughput mass spectrometry (MS) as a complement to microarray 

analysis increases the likelihood that genome-wide data collection will lead to the 

discovery and characterization of important disease pathways [8].  A major challenge in 

using these new proteomics technologies is devising ways to extract the full meaning and 

implications of the data in a semi-automated fashion that facilitates an understanding of 

the underlying biology.  

Global proteomics approaches based on MS reliably identify peptides and 

proteins; however, using these data to determine which proteins in a complex mixture are 

up- or down-regulated by a given treatment or disease is critical to biological 
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interpretation of the data and is still challenging.  The most common method for 

quantifying protein changes is 2-dimensional electrophoresis coupled with MS or tandem 

MS analysis.  Here the gels are stained, the intensity of the spot used to obtain abundance 

information and the MS to identify the proteins.  While this method has been used since 

the early 1970s, it has the disadvantages of being difficult to automate and its limited 

detection range misses low abundance proteins.   

Since it is generally accepted that the intensity of the MS signal for a peptide may 

vary due to ion suppression effects between simultaneously eluting peptides, isotopic 

labeling techniques have been implemented in conjunction with MS approaches.  

Ostensibly this approach provides greatest accuracy but has several disadvantages which 

include 1) expense, 2) complicated labeling chemistries that sometimes yield artifacts, 

and 3) difficulties in identifying isotopic pairs for relative quantification.  Recently there 

have been several reports describing “label-free” methods for LC-MS that successfully 

identify proteins with altered relative abundances [9-11].  These reports indicate that a 

linear correlation exists between the amount of peptide and its peak area when the LC 

flow rate is low and small amounts of sample allow for optimum electrospary ionization 

(ESI) efficiencies.  

Liquid chromatography (LC) is a chemical approach that can separate a wide 

range of compound mixtures, from small molecules to peptides and proteins. Proteomic 

samples are usually enzymatically digested by trypsin to cut the amino acids lysine (K) 

and arginine (R) so that proteins are cut into smaller charged amino acid chains -- 

peptides. Under high-pressure chromatography, these peptide pieces are dissolved in a 

solvent and then placed on a column head, which is a tube packed with LC separation 
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media. Different species elute through the column at a different speed according to their 

resolving power to the solvent and separation material. Weakly-interacting species elute 

out of the column early while strongly-interacting species elute out of the column slowly. 

As a result, different groups of identical species arrive at the end of the column at 

separate times [12]. The resolving power (or peak capacity), which is defined as “the 

number of peaks that can fit into the length of the separation” [7], is a characteristic of 

LC separation approach. It is determined by several factors such as the LC column 

efficiency, gradient elution speed, particle size, or surface structures [13]. For analyzing 

complex mixtures, high peak capacity separation is always significant because of the 

limited number of species that can be resolved and identified by MS at any given time 

[7].   

Mass spectrometry (MS) coupled with LC separation technique is widely used for 

analyzing highly complex protein mixtures. The LC column feeds the MS continuously 

with separated charged peptides.  MS measures the frequency and mass/charge ratio of 

the peptides and fragments them into ions by collision induced dissociation, where inert 

gas, such as helium or argon atoms, is commonly used to carry out the collision.  

Collisional dissociation breaks the weakest links in the peptide backbone, which are NH-

CH, CH-CO, and CO-NH bones [14]. Only charged fragmental ions generated by the 

collision process can be monitored by MS. Measuring the molecular weights of series of 

ions, the corresponding amino acid fragmentation can be reasonably predicted, so that the 

peptide sequence can be determined. Fragmentation patterns may differ for each mass 

spectrometer. Ionization technology, fragmentation technology, parameters setting, 

detector and instrument software may all have influence on it [12].  
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While shotgun sequencing (LC-MS/MS) is currently the most popular technique 

for large-scale protein profiling, another identification technology of growing importance 

is FTICR-MS, the Fourier transform ion cyclotron resonance mass spectrometers. It is a 

good complement to LC-MS/MS. In the first stage, enzymatically digested protein 

samples are cleaved into smaller peptides, and these peptide mixtures are analyzed by 

LC-MS to establish a set of tentative peptide identifications called Potential Mass and 

Time (PMT) Tags database, which contains the identified peptides as well as their exact 

elution time and mass information.  

This PMT database is imported by running the MS/MS data against database 

search software for peptide identification. There are a lot of software tools available to 

assign peptides to MS/MS spectra: Mascot [15], MS-Tag [16], SEQUEST [17], and 

Sonar [18]. These database searching methods vary from each other on the algorithm 

design and required parameters, but all have the same role, that is, to search a protein 

database with a single peptide MS spectrum. They start with constructing theoretical 

spectrum for all peptides in a protein database, and then compare the experimental and 

theoretical peptide spectra using an effective scoring scheme. When the measured peptide 

MS/MS spectrum is matched with the database peptides within some tolerance, the 

measured peptide is initially identified. Identified peptides can be further filtered based 

on peptide ion charge (singly-, doubly-, or triply-charged), raw correlation score of the 

top protein candidate (Xcorr), difference in correlation score between the top and second 

peptide candidates (DelCN), and the tryptic nature of peptides to reduce incorrect peptide 

assignments. A discriminant program can also be used to determine peptide confidence 

probabilities. The discriminant score takes advantage of elution time information and 
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tryptic cleavage information, which enhances the accuracy of peptide identification [19].  

In the next stage, the protein samples can be analyzed in duplicate by high mass 

measurement accuracy using FTICR-MS, coupled with the same type of separation. Then 

candidate peptide masses are compared to masses measured experimentally by the 

FTICR-MS. If a match with a small mass error and reasonable elution time can be found 

between a tentatively identified peptide and an experimental observed peptide, then that 

sequence become part of an Accurate Mass and Time (AMT) Tag marker database used 

to perform differential expression studies without further tandem mass spectral analysis. 

This match process is often called peak matching.  

LC-FTICR is a good validation of the peptides identified by LC-MS/MS. The 

inherently greater resolution of FTICR over MS/MS also makes it able to identify low-

abundance proteins with better sensitivity in proteome mixtures, which is difficult for 

MS/MS to identify with confidence. In addition, this proteomic technology has several 

other advantages. It has a higher dynamic range, better proteome coverage and higher 

throughput for large-scale proteome studies under multivariate conditions [7].  

LC-MS/MS and LC-FTICR-MS play a significant role in high-throughput 

quantitative proteomics and protein profiling. They identify a list of peptides inside the 

complex mixtures, which are requirements for further protein identifications.  

Inferring protein identities based upon peptide assignments is challenging. One 

must group all assigned peptides according to their corresponding proteins in the database 

[20], namely, find the shortest list of proteins needed to explain the detected peptides and 

make the most likely association of peptides with the proteins they identify. Detected 
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peptides can be unique, derivable from one protein only, or degenerate, possibly 

originating from several proteins. The homologous and redundant entries in database and 

sequence similarities of proteins are the main reasons for the occurrences of peptide 

degeneracy. This is a difficulty for protein identification, as the sequence of a degenerate 

peptide is present in several different protein sequences, they cannot identify the presence 

of a protein uniquely. Another problem comes from the false identification of a peptide, 

especially when that peptide uniquely identifies a single protein in the mixture. 

Therefore, measuring the protein identification confidence is necessary. Peptides 

probabilities can be combined as a factor to perform this validation. A number of protein 

identification software tools that can facilitate this assigning and filtering process are 

CHOMPER [21], DTASelect [22], INTERACT [23], Qsocre [24], and Protein Prophet 

[20].  

A typical protein-peptides association can be further investigated by arranging 

proteins in classes according to the unique/degenerate character of the peptides that 

identify them.  Greatest confidence is placed in proteins identified by multiple unique 

peptides and this is reflected in a confidence score.  Proteins that cannot be distinguished 

by the peptides observed in the mass spectra are grouped together. These proteins 

generally have very similar sequence due to redundancy in the database of proteins for 

the organism under investigation or because they are isoforms. Additional information, 

such as the mass of the protein, is required to determine which protein among those is 

actually present in the sample. 

Comparing a protein’s concentration under different treatment is the focus of 

many proteomics studies. The abundance of a protein in a sample from a treatment group 
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relative to its abundance in samples from controls can be estimated from the abundances 

of the peptides that identify the protein, provided they are observed in samples from both 

the treatment and controls. Peptides of different sequence have intrinsically different 

detection probabilities for many reasons, including their ability to be ionized, which can 

greatly affect the areas under their peaks in mass spectra. If a peptide is observed in both 

treatment and control samples, the ratio of peak areas is independent of these instrument 

effects. This ratio should be the same for all unique peptides that identify a protein; hence, 

a simple average of the abundance of unique peptides relative to controls is a good 

estimate of protein abundance relative to controls. The abundances observed for 

degenerate peptides could be due to contributions from more than one protein in a 

biological sample; consequently, they are less reliable than unique peptides for estimation 

of protein abundance. Usually they are eliminated from protein abundance estimate for 

this reason. In Chapter 5, we will present our method of utilizing degenerate peptides for 

protein abundance estimates without introducing this ambiguity while including more 

peptides data. 

Identification and characterization of signaling proteins whose expression is 

up/down regulated is a crucial step of protein profiling. The abundance of proteins from 

treated samples relative to controls can be estimated as part of an analysis of variance to 

return the upper and lower bounds on relative protein abundance for a specified statistical 

confidence level. Proteins judged to have abundances in treated samples that are 

statistically different from their abundance in control samples can be ranked by their 

abundance relative to control.  In seeking a biological interpretation of abundance 

changes, priority is given to proteins with the greatest differential abundance.  Typically, 
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proteins which have statistically significant differential abundance greater than 2 or less 

than 0.5 could be the initial targets.  Databases are searched for gene-expression and 

intracellular signaling pathways that contain these targets. As pathways are discovered by 

this set of targets, we can reinforce the discoveries by searching the pathways for proteins 

observed in the experiments with less pronounced differential abundance and less 

confident identification. From the pathways discovered, hypotheses can be formulated 

regarding the biological processes responsible for the observed up- and down-regulated 

proteins.  These hypotheses are tested by more traditional molecular-biology experiments 

that focus on a defined set of proteins and use methods of detecting abundance change 

that are more sensitive than mass spectrometry. 

Protein profiling opens a door for system-level biology. Details on how the 

signaling pathway is involved to help us investigate the underling biological mechanisms 

are introduced in the following section.  

 

1.3  Signaling pathway 

High-throughput technologies enable us to collect comprehensive datasets on 

complex protein mixtures, protein profiling contributes to the identification and analysis 

of differentially expressed proteins in the sample, and signaling pathway helps us to 

understand the interaction of these proteins and uncover the underlying phenomena of 

this biological network at a system-level, which is the main purpose of system biology 

approach.  
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Systems biology can be defined as “an approach to biology where organisms and 

biological processes should be analyzed and described in terms of their components and 

their interactions in a framework of mathematical models” [25]. These components (e.g., 

in our case the differentially expressed protein targets) by themselves are not sufficient to 

understand the complexity of the organism, but investigating the regulation network 

containing these components will be much helpful for us to explore their functions and 

the biochemical interactions between them [26].  

Database search against the differentially expressed proteins for signaling 

pathways that contain them is the main tool to construct the signaling network and 

interpret the protein’s abundance changes. Two categories of statistical approaches are 

usually used to rank the up or down regulation properties of the list of differentially 

expressed proteins: over-representation approach (ORA) and functional class scoring 

approach (FCS) [27]. ORA compares the number of differentially expressed proteins with 

the number of proteins expected to be found just by chance. If there’s a substantial 

difference, it is said to be significant. The probability of observing the actual number of 

proteins just by chance, for example, the p-value, can be calculated by this kind of 

statistical model. Alternately, FCS considers the distribution of the pathway proteins in 

the entire list of proteins and performs an enrichment analysis, which ranks all proteins 

based on the correlation between their expression and phenotypes and then calculates a 

score to reflect that [27]. Both of them are currently widely used, but they have 

limitations in system level dependencies and interactions exploration as well as pathway 

level perturbations and modification identification because their functional category is 

analyzed independently without a unifying analysis. Pathway databases such as KEGG 
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help to perform the analysis in a more comprehensive and powerful level.  

KEGG [28-31] (Kyoto Encyclopedia of Genes and Genomes) is a database 

resource for systematic analysis of cells or organisms to understand their higher order 

functions from genome information. KEGG consists of three databases: GENES 

database, PATHWAY database, and LIGAND database. GENES database collects all the 

completely or partially sequenced genes and proteins. PATHWAY database stores the 

higher order functional information of genomes in terms of the interacting network. 

LIGAND database collects the information for chemical compounds and enzymatic 

reactions in the cell. KEGG helps in computerized representation and utilization of 

functional data, which are contained in the networks of interacting molecules. 

Interpreting proteomics data for its biological meaning is our main target for 

proteomics analysis. One of the tools to construct the biochemical signaling network 

from experimental data and analyze them by computational methods to understand their 

role in complex biological processes is MetaCore [32].  MetaCore is an interactive 

database derived from manually curated literature publications on proteins and small 

molecules of biological relevance in humans.  It was developed for the purpose of 

exploring biological interpretations with the integration of functional, molecular, or 

clinical information, and visualizing cellular components as networks of signaling, 

regulatory and biochemical interactions.  

MetaCore provides several graph-based tools to relate proteins altered in 

abundance to biological processes affected by treatments. Currently it has seven network 

building algorithms and numerous options to specialize their use. In addition, data 
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filtration prior to network building based on tissue type, fold-change threshold, sub-

cellular localization, etc. allow exploration of multiple scenarios for interpretation of a 

data set. The analyze-networks feature is designed to fragment super-networks of the 

input proteins into sub-networks with statistical scores that rank them according to their 

saturation with objects from the input data list. This feature is often used on large data 

sets without predefined restrictions to maintain the greatest flexibility of possible 

connections between proteins in the input list. This mode of analysis often produces 

many sub-networks that are well-populated with differentially abundant proteins, 

statistically significant, and biologically relevant. In proteomics study, this tool displays 

both the proteins that we identified, called “targets”, and the direction of protein 

abundance change, called “up- or down-regulation” on signaling networks associated 

with the control of biological function. Hence, the network becomes a directed graph 

with nodes that are proteins and edges that indicate how a biological process affects their 

abundance.  

MetaCore uses argument based on enrichment statistics (kind of FCS) to suggest 

which processes within its database of cellular signaling networks is the most likely 

explanation for the proteomic data. Enrichment statistics are based solely on the number 

of targets found on the network. The larger the number of targets the higher the 

enrichment score and the more likely the signaling network is a valid interpretation of the 

proteomic data.  

The consistency of up and down regulation of targets with activation and 

inhibition within a network is not included in scores based solely on number of targets on 

a network. We propose that augmenting enrichment with consistency tests will increase 
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our ability to discriminate between networks in the MetaCore database which are possible 

explanation for our proteomic observations.  

We know that to gain biological insight from protein profiling, it is useful to 

employ a software package like MetaCore to locate proteins, which are significantly 

altered in abundance, on known genetic and cellular signaling pathways. But first of all, 

we need to find identifiers for the proteins that can be recognized as nodes in the database 

of network interactions. Identifiers for human proteins include Entres Gene, LocusLink, 

SwissProt, RefSeq and Unigene. Identifiers for mouse proteins are limited to Entres 

Gene, LocusLink and RefSeq. The same type of identifier must be used for all proteins in 

the input; hence it is desirable to choose the type of identifier that maximizes the number 

of proteins that can be mapped onto networks. It is clear that effort to increase the 

number of differentially-abundant proteins mapped to networks is needed in some cases. 

This might be accomplished by choosing a different type of identifier or an alternate 

identifier of the same type, if one exists. A resource like Uniprot [33] can be used to find 

multiple IDs for the same protein. Batch conversion of identifiers can also be achieved 

using DAVID Bioinformatic Resources 2006, National Institute of Allergy and Infectious 

Disease (NIAID), NIH [34].  

 

1.4  Outline of this dissertation 

In this chapter, we have introduced the knowledge of the two most important 

concepts of proteomics research: protein profiling and signaling pathway. In next chapter 

we give an overview of the previous work on proteomics analysis, which our research is 
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closely related. In Chapter 3, a dataflow and an integrated model developed by us to 

facilitate the proteomics data processing procedures are described. The data analyzing 

processes of two functionally different proteomics studies using this model are 

demonstrated with results and discussions in Chapter 4. A detailed discussion of our 

approach on degenerate peptides processing is presented in Chapter 5, and possible 

directions for further research and development of the model are outlined in Chapter 6.  
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Chapter 2 

Existing Methods and Previous Work 

Mass spectrometry-based proteomics analysis coupled with liquid 

chromatography-based separation, is one of the most promising technologies to probe a 

complex biological sample globally across multiple conditions at the protein level. It 

holds great promise as a discovery tool for diagnostic biomarkers. In Chapter 1 we have 

introduced some basic concepts and technologies that involved in proteomics analysis. In 

this chapter, we are going to selectively illustrate some existing complete workflow 

solutions for LC-MS-based quantitative proteomics analysis [35-38], and two previous 

proteomics studies which we conducted before without integrating our new dataflow and 

proteomics data analyzing model [39, 40].  

 

2.1 Existing methods 

2.1.1 Quantification by linearity of signal ions and molecular concentration  

To quantify proteins and metabolites by liquid chromatography-mass 

spectrometry, Wang and colleagues reported a new method in 2003 [35]. Without 

isotopic labeling or spiked standards, this biotechnology relies on linearity of signal 
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versus molecular concentration and reproducibility of sample processing, provides 

differential expression measurements and quantitative profiling of large-scale proteins 

and small molecules, and enables the discovery of biomarkers for clinical studies. 

 Wang et al. undertook a broad study to verify that analyte ion signals from 

electrospary ionization can in general reflect concentrations in a linear way even in the 

case of complex matrixes. They did observe the linear behavior in the signal from 

digested peptides of the synthetic mixtures corresponding to the protein concentrations. 

This linearity forms the basis of their analytical method for quantifying proteome and 

metabolome profile data for differential expression.  

 The quantification method they use relies on the changes in analyte signals 

directly reflecting their concentrations in one sample relative to another. It is based on the 

linearity as well as the stability and reproducibility of analyte signals. Spectral intensity 

normalization is employed during the quantification process to account for any long-term 

drifts in overall LC-MS response by employing signals of molecules that do not change 

concentration from sample to sample.  An unbiased normalization procedure they use is 

based on determining the median of ratios of peak intensities of molecular components in 

the test sample relative to a reference sample and applying that median ratio as the 

normalization factor for each sample. A software application MassView was developed 

to perform this normalization to determine the constant intensity ratio between those 

unchanging analytes for the purpose of identifying the nonchanging concentrations.  

 This work established a direct quantification method to quantify proteomic and 

metabolomic profile data by LC-MS electrospary ionization without the need for isotopic 

labeling or spiking of special chemicals. It offers advantages such as simple sample 
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processing, applicability to proteome and metabolome samples, and less spectral 

interferences. Nevertheless, one restriction of this method is that the sample processing 

and LC-MS platform must be highly reproducible, which requires appropriate standard 

operating and system maintenance procedures. Significant computational cost is 

unavoidable for increasing sample complexity. Another point is that a threshold must be 

set properly so that all the signals being tracked have substantial ion counts to allow for 

the capture of both high- and low-intensity molecular ions.  

 

2.1.2 An informatics platform for global proteomic profiling  

 In 2004, Radulovic and colleagues developed an informatics platform to integrate 

algorithms, statistical methods, and computer applications together to facilitate large-

scale LC-MS-based gel-free shotgun profiling of complex protein mixtures [36]. Based 

on principles like experimental repetition, pattern recognition, and mathematical 

algorithms, this platform is a more advanced generation, and allows for systematic 

global comparison and classification of complex tissue proteomic samples, which further 

speeds up the discovery of biologically relevant proteomic biomarkers.  

 According to standard practice, peptide mixtures are subjected to LC-MS to form 

mass spectra. Extracting quantitative information from LC-MS datasets is the main 

contribution of this method. Several algorithms are applied. To filter signals from LC-MS 

raw data, Radulovic et al. developed a robust, assumption-free, threshold-like data 

filtering algorithm to detect real differences in peak number and intensity. A peak 

detection algorithm called “contour detection algorithm” is developed to automate peak 

definition based on boundary detection and integration techniques. A peak alignment 
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algorithm is used to correct peak drift and distortion to provide careful examination of 

protein abundance across multiple samples for the purpose of accurate biomarker 

discovery.   

The platform permits meaningful quantitative and qualitative comparisons of 

proteomic datasets to identify differential protein expression between samples. And 

large-scale pattern recognition and mining of proteomic datasets are also automated to 

facilitate sample classification, which is the clinically important end-goal of expression 

profiling. Another significant advantage of this informatics strategy is that it is 

established on existing applicable LC-MS procedures and broadly available techniques 

and instruments to derive reliable protein profiling data, thus very convenient to use. One 

constraint of this method is its computational time. The alignment algorithm can provide 

careful examination, but it is computationally intensive and scales with the square of the 

number of experiments. When the sample sizes are large, the computational time is 

particularly demanding.  

 

2.1.3 Signal maps 

 The combined method of mass spectrometry coupled with liquid chromatography 

is rapidly emerging as a method of choice for large-scale proteomics analysis. Usually, 

the probing of a complex biological sample is performed at the protein level. By 

determining the identities, abundances, and post-translational states of the myriad of 

proteins under different circumstances across multiple samples, similarities and 

differences can be identified, and expression profiling can be obtained to test the 

hypotheses regarding the biological roles of proteins in health and disease [41].  
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 In the work of Prakash et al. [37], they went one step further and performed the 

comparison of complex biological samples directly on the signal level to resolve the 

problem that protein level comparison encountered: protein lists generated from 

individual experiments typically cover only a small fraction of the total protein content, 

making global comparisons extremely limited. 

 This work starts with constructing signal maps that associates experimental 

signals in the raw MS data across multiple experiments. The rule is to map the signals 

from any given peptide in the experiment to the signals acquired from the same peptide in 

the other experiment. Once constructed, this signal maps can be used for a variety of 

purposes in the furthering processing.  

A lot of algorithms are involved in the implementation of this method. A score 

function is used to reward corresponding peaks. Alignment algorithm based on the score 

function is introduced to relate peaks of a run with peaks of another run through a signal 

map by choosing the alignment such that similar spectra appear close to each other in the 

sequence in the alignment. Two strategies: global alignment using a set of globally best 

pairwise alignments and progressive multiple alignment are explored to analyze the 

similarities and differences between different runs. Feature recognition method to detect 

features in real and virtual runs is also described in the work.  

This signal maps approach is expected to decrease inter- and intra-experiment 

biases and improve the signal-to-noise ratio, thus be highly sensitive at identifying even 

low intensity signals and applicable to increasing throughput, which beats the common 

mass spectrometer technologies in their limited capability of sensitivity, reproducibility, 

and undersampling.  
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2.1.4 A review of comparative proteomic profiling methods 

 High-throughput mass spectrometry based proteomics technologies have made 

significant progress in recent years. Lots of approaches have been developed to facilitate 

this protein identification and profiling process to achieve the measurement of global 

expression of different components in biological systems for diagnosis discovery 

purposes.   

 In 2005, Listgarten and Emili [38] provided an overview of key statistical and 

computational issues relevant to bottom-up shotgun global proteomic analysis, with an 

emphasis on methods that can to some extent provide an accurate and rigorous 

assessment of the proteins’ quantitative changes in their relative abundance in a complex 

biological sample.  

 In this review, several key directions of expression proteomics research have been 

readdressed as following:  “Which proteins and variant isoforms are expressed during the 

lifecycle of an organism? Which post-translational modifications occur in each of these 

proteins? How do these patterns differ in different cell types and tissues and under 

different developmental, physiological, and disease conditions? How can biologists make 

use of this information to better understand the molecular basis for fundamental 

biological processes as well as for monitoring the course of disease so as to improve 

clinical diagnosis and treatment? [42-44]”. These questions illustrate the difficulties of 

proteomics analysis on large-scale complicate biological system, and show the great 

importance of developing comprehensive methodologies and technologies to implement 

the complex profiling procedures.  
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 Listgarten and Emili discussed a series of important computational and statistical 

concepts that should be considered when performing comparative proteomic analyses, 

and illustrated several quantitative analyses approaches for information extraction LC-

MS based shotgun profiling, including the two we have discussed in the above sections 

(Wang et al. [35] and Radulovic et al. [36]). Moreover, they also outlined a typical 

sequence of operations for LC-MS datasets processing. It starts from quantization of 

peptide m/z values, signal filtering and background subtraction, amplitude normalization, 

peak detection and quantification, data transformations and error models, alignment in 

time, to classification algorithms and final biomarker discovery. Listgarten and Emili 

classified these steps into three levels of processing: Low-level, mid-level, and high-level, 

each focusing on different processing steps. For example, low-level involves data matrix 

formation, signal filtering, noise minimizing, and peptide quantization; mid-level 

involves data normalization, alignment in time, peak detection, peak quantification, peak 

matching and error models to facilitate profile comparisons; while high-level focuses on 

sample classification significance testing, and biomarker discovery, etc. Most of the LC-

MS data processing approaches are based on this fundamental outlines with possible 

reordering of the intermediate steps, and different merits and limitations. 

 The basic statistical idea for examination of profiling datasets is mentioned in this 

review as well. Typically, when a statistics method is applied, it usually generates a score 

reflecting how much a feature discriminates between two classes. The distribution of test 

scores can indicate the information like the feature is discriminative or not.  

 As a future prospects of proteomic profiling, Listgarten and Emili anticipate that 

existing and emerging statistical and computational techniques with rigorous and 
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systematic evaluation will help unleash the full biomedical potential of proteomic 

profiling. Simultaneous LC-MS data alignment and normalization, and systematically 

tackling of preprocessing, classification, and biomarker discovery in a unified framework 

will definitely benefit the comparative profiling to a great extent.  

  

2.2 Previous work 

In this section, we are going to introduce two proteomics studies we have 

conducted before using LC-MS based proteomics technologies. The purpose of reviewing 

this previous here is to compare them with our new integrated model. Although these two 

studies have their own characteristics and processing and analyzing strategies, they have 

some commonalities and the same ultimate objectives with the new studies we are going 

to introduce in the next chapter. One of them is to use proteomic approach to identify and 

characterize protein shedding, and another is to identify shed proteins through cross-

species manipulations. By looking into what methods these studies used to perform 

proteomics analysis, we can see the improvements and benefits of implementing our 

integrated dataflow on protein profiling and data analyzing, which will be presented in a 

good detail in the following chapter.  

 

2.2.1 A proteomic approach to characterize protein shedding  

 Shedding is a mechanism by which cells change the repertoire of membrane 

proteins. Protein shedding is of great biological significance since it regulates a lot of 

biological processes. MS-based proteomic methods are usually the best tool for protein 

discovery.  
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To study the feasibility of identifying chemically-induced shed proteins, Ahram 

and colleagues [39] developed an optimal approach to perform sample processing and 

shed proteins identification using MS. Trypsin-digested protein samples are analyzed by 

reversed-phase capillary liquid chromatography interfaced to an ion-trap mass 

spectrometer. The resulting peptide spectra are analyzed by SEQUEST using a modified 

version of the human.fasta protein database provided by NCBI (National Center for 

Biotechnology Information). SEQUEST assigns the amino acid sequence of detected 

peptides to proteins to determine protein identifications. Microsoft Access 2002 is used to 

combine SEQUEST results and filter the peptide identifications based on criteria like 

peptide ion charge, correlation score, and tryptic natures. Protein abundances are then 

estimated using a peptide count method (count the number of peptides and proteins) 

based on the relationship between the abundance of proteins and the number of peptides 

observed by MS analysis. During this step, a set of rules are followed to identify changes 

in protein abundances: proteins must associate with cell surfaces (shed protein); and each 

protein must be represented by at least two different peptides to minimize false 

identification; protein must be identified by multiple experiments with multiple 

replications in treatments, etc. Furthermore, protein abundance estimates are validated 

using immuno-detection methods. Protein abundance changes in different treatments are 

also estimated.  

This approach shows how to identify membrane proteins shed into the media 

using large-scale proteomic methods. It is a fundamental example for utilizing MS based 

proteomic technologies to investigate biological mechanism. However, additional 

precision and higher confidence information issues need to be considered.  
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2.2.2 Identification of shed proteins from Chinese hamster ovary cells  

 Ahram’s group conducted another work regarding the identification of radiation-

induced shed proteins from Chinese hamster ovary (CHO) cells [40]. Similar to [39], 

trypsin digested protein samples are separated by reversed-phase capillary liquid 

chromatography to separate proteins into peptides and analyzed by MS/MS. The 

difference of this study is that samples are also evaluated by FTICR-MS, which is several 

orders of magnitude more sensitive than ion-trap mass spectrometer. Again, SEQUEST is 

used to determine protein identifications. A discriminant function developed by 

Strittmatter et al. [45] is used to interpreter MS/MS data to increase confidence in peptide 

identification. SEQUEST results are imported into Microsoft Access 2002 to filter 

peptide identifications according to the similar criteria as described in [39]. Protein 

abundance estimates are also performed using a similar strategy with the only difference 

that the abundances are more accurate since they are obtained from FTICR analysis.  

 One characteristic of this CHO study is that it searches against cross-species 

protein databases (mouse and human) for MS/MS spectra interpretation, because a 

hamster protein database is not available, mouse-human homologs make it a good 

substitute for a hamster database. The success of identifying shed proteins of CHO 

validates that the high rate of protein homologs between mouse and human proteomes 

allows for the use of protein databases of closely related species to obtain cross-species 

protein identifications.  

 This study takes advantage of the high sensitivity of FTICR-MS to increase the 

number of shed proteins identifications, MS data are searched against both the mouse and 
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human databases, and a confidence scoring method based on discriminant analysis is 

developed to increase the positive identifications. It is possible to further advance it to 

conduct large-scale proteomic studies in the future.   
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Chapter 3 

An Integrated Model for Proteomics Analysis 

Genome-wide high-throughput mass spectrometry-based proteomics has emerged 

as an important new source of data on biological systems.  This technology yields global 

information about the proteins expressed by an organism; consequently, biological 

processes can be studied without a priory assumption about the proteins that are involved.  

A profile of up- and down-regulated proteins is obtained which can be used to discover 

the gene-expression and cellular signaling pathways that underlie the disease state and/or 

response to treatment being investigated at the functional molecular level, which is of 

great significance in the discovery of diagnosis biomarkers.   

Although identifying protein expressions and associating them with specific 

disease is one of the most promising areas of proteomics research [46], it is still 

challenged by the complexity of the mammalian proteome and the extensive range of 

protein concentrations. Many data-manipulation steps are involved in obtaining results of 

this type from mass spectrometry. This gives the data acquisition and processing a critical 

role in proteomics studies for complex protein mixtures.  
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The work of this dissertation is focused on prototyping a data flow to extract the 

full meaning and implications of the proteomic data in a semi-automated fashion, which 

involves data mining, developing methods to deal with missing data and degenerate 

peptides, integrating a rigorous statistical model to identify proteins with significantly 

altered abundances, and using the protein profile to characterize important signaling 

pathways to help us reveal the unique aspects of biological systems.  

The resultant method will provide a seamless workflow for systematically 

constructing data and plots for proteomics analysis through data selection, classification, 

profiling, and interpretation processes. It will also provide an effective strategy to involve 

more identified peptides data to create a larger dataset for better statistical analysis, and a 

consistency-checking function as a complement to MetaCore software on pathway 

analysis. The experimental datasets we use were obtained from two studies. The first one 

is a toxicology study of mouse lung tissue and the second is a comparison of the 

mitochondrial proteome in normal and genome unstable cell lines. Detailed description of 

these two studies will be illustrated in the next chapter. 

In this chapter, we will start with an overview of the dataflow we designed for 

these proteomics studies, followed by the detailed strategies we derived to solve each 

specific proteomics data processing and analyzing issues. Computer intervention and 

manipulation are involved. Mathematical and statistical methodologies are integrated. 

 

3.1 Dataflow design 

Mass spectrometry-based profiling combined with computer-based data 

processing is the main goal of our dataflow design. Figure 3.1 illustrates the flow of 
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information in protein profiling based on genome-wide, high-throughput quantitative 

mass spectrometry.  

 

 

 

 

 

 
 

 

Figure 3.1: Information flow in protein profiling based on genome-wide high-

throughput, quantitative mass spectrometry. 

 

Biological samples from controls and treatment groups are subjected to enzymatic 

digestion to break proteins into peptides.  Mass and fragmentation patterns are used to 

identify peptides and their relative abundance is determined from peak areas. 

Discriminate analysis combines observed mass and elution time with scores from 

database searching to yield an overall confidence score for peptide identification.  Peptide 

identification is used to identify proteins most likely responsible for the detected peptides. 

Proteins are identified and the abundance of proteins from treated samples relative to 

controls is estimated under a specified statistical confidence level. Proteins judged to 
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have statistically significantly different abundance from the controls are studied in 

genomic pathways. Biological interpretations of the abundance changes are derived to 

achieve an understanding of the biological mechanisms and its relationship to diseases.  

 

3.1.1 Peptide identification 

 Proteomic samples are digested and analyzed using tandem mass spectrometers 

coupled with high-pressure microcapillary liquid chromatographic separations. A 

composite of all samples (control plus treatments) are separated into fractions by strong 

cation exchange. Mass and fragmentation patterns from the MS/MS data are searched by 

SEQUEST v2.7 (ThermoFinnigan, San Jose, CA) against the National Center for 

Biotechnology Information (NCBI) protein database to identify the peptides present in 

the complex mixture. Parameters used in SEQUEST searches are variable, depending on 

the experimental design. The searches that generated data for this thesis were carried out 

using ± 3 Da restriction on parent mass accuracy and are unconstrained with respect to 

enzymatic cleavage, which allows for the detection of biologically modified peptides not 

normally associated with Trypsin digestion of proteins. (See Figure 3.2 for a sample 

SEQUEST parameter file.)  

Sequest Parameters 

[Sequest] 
;DMS_Description =  --No Change--  
first_database_name = C:\Database\M_Musculus_2005-12-08_NCBI.fasta 
second_database_name =  
peptide_mass_tolerance = 3.0000 
create_output_files = 1 
ion_series = 0 1 1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0  
diff_search_options = 0.0000 C 0.0000 C 0.0000 C 0.0000 X 0.0000 X 0.0000 X 
max_num_differential_AA_per_mod = 4 
fragment_ion_tolerance = 0.0000 
num_output_lines = 10 
num_description_lines = 3 
num_results = 500 
show_fragment_ions = 0 
print_duplicate_references = 1 
enzyme_number = 0 
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nucleotide_reading_frame = 0 
mass_type_parent = 0 
mass_type_fragment = 1 
remove_precursor_peak = 0 
ion_cutoff_percentage = 0.0000 
max_num_internal_cleavage_sites = 4 
protein_mass_filter = 0 0 
match_peak_count = 0 
match_peak_allowed_error = 1 
match_peak_tolerance = 1.0000 
residues_in_upper_case = 1 
partial_sequence =  
sequence_header_filter =  
 
add_Cterm_peptide = 0.0000 
add_Cterm_protein = 0.0000 
add_Nterm_peptide = 0.0000 
add_Nterm_protein = 0.0000 
add_G_Glycine = 0.0000 
add_A_Alanine = 0.0000 
add_S_Serine = 0.0000 
add_P_Proline = 0.0000 
add_V_Valine = 0.0000 
add_T_Threonine = 0.0000 
add_C_Cysteine = 0.0000 
add_L_Leucine = 0.0000 
add_I_Isoleucine = 0.0000 
add_X_LorI = 0.0000 
add_N_Asparagine = 0.0000 
add_O_Ornithine = 0.0000 
add_B_avg_NandD = 0.0000 
add_D_Aspartic_Acid = 0.0000 
add_Q_Glutamine = 0.0000 
add_K_Lysine = 0.0000 
add_Z_avg_QandE = 0.0000 
add_E_Glutamic_Acid = 0.0000 
add_M_Methionine = 0.0000 
add_H_Histidine = 0.0000 
add_F_Phenylalanine = 0.0000 
add_R_Arginine = 0.0000 
add_Y_Tyrosine = 0.0000 
add_W_Tryptophan = 0.0000 
 
[SEQUEST_ENZYME_INFO] 
0.  No_Enzyme                       0     -              - 
1.  Trypsin                               1    KR                   - 
2.  Trypsin_modified                1    KRLNH            - 
3.  Chymotrypsin                     1    FWYL              - 
4.  Chymotrypsin__modified    1    FWY               - 
5.  Clostripain                          1    R                     - 
6.  Cyanogen_Bromide           1    M                     - 
7.  IodosoBenzoate                 1    W                    - 
8.  Proline_Endopept              1    P                      - 
9.  Staph_Protease                1    E                      - 
10. Trypsin_K                         1    K                     P 
11. Trypsin_R                         1    R                     P 
12. GluC                                 1    ED                   - 
13. LysC                                 1    K                     - 
14. AspN                                0    D                      - 
15. Elastase                           1    ALIV                P 
16. Elastase/Tryp/Chymo      1    ALIVKRWFY    P 

Figure 3.2: Sample SEQUEST parameter file. Parameter files may be customized 

to search for protein modifications if desired. 
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3.1.2 Preparation of PMT database 

Results from SEQUEST searches are combined to give a set of tentative peptide 

identifications called Potential Mass and Time (PMT) Tags, which have been filtered 

based on peptide ion charge (singly-, doubly-, or triply-charged), raw correlation score of 

the top protein candidate (Xcorr), difference in correlation score between the top and 

second peptide candidates (DelCN), and the tryptic nature of peptides. A program 

developed by PNNL [9] is used to calculate a confidence score on peptide identification. 

The discriminant score takes advantage of elution time information in addition to 

SEQUEST scores, which enhances the accuracy of peptide identification. After building 

the PMT Database, distributions of discriminant scores and PMT quality scores are 

requested. These data are useful for determining a suitable cut off point when peak 

matching with the FTICR (Fourier transform ion cyclotron resonance) data to minimize 

false positive identifications. The PMT database functions as a lookup table of peptide-

indexed (elution time, mass) pairs [47, 48] for later FTICR-LC-MS data (elution time, 

mass) comparison to reveal the underlying peptide’s identity and its associated ion-

current peak area [49-51].  

 

3.1.3 Peak matching and LC-FTICR mass spectrometry 

Because of the inherently greater resolution of FTICR over LC-MS/MS, the 

individual samples from control and treated animals are analyzed using a 9.4 Tesla LC-

FTICR mass spectrometer. A separate Experiment is entered for each analysis. Data 

acquisition occurs only during the gradient phase of the LC run. The automated robotic 

ESI (electrospary ionization) interface allows for introduction of calibrant ions during the 
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last 5 minutes of data acquisition, thereby providing a run-to-run update of calibration 

coefficients and better mass accuracy. After the FTICR data are collected, mass to charge 

(m/z) ratios are extracted from the raw data using software developed at PNNL and listed 

in a single .pek file for a subsequent peak matching in the PMT database.  

 

3.1.4 Q Rollup export 

Q Rollup Export software [52] is used to filter the mass tag database and compile 

peptide and protein data. Only peptides having a Discriminant Score > 0.6 and a PMT 

Quality Score of 1 are considered.  At the Q RollUp Export stage, these thresholds cannot 

be lower than they are at the peak matching stage. 

Q Rollup speaks to the mass tag database using an SQL-based stored procedure, 

initiated through a GUI interface and user selection. Output is in the form of an Excel file, 

which is partitioned into several tabs. Prior to generating a Q Rollup file, the user may 

enter the “Edit/Define Q Rollups” tab and modify settings for each dataset. Protein tabs 

have a listing of all the protein database entries implicated by the SEQUEST searches 

along with the average abundance of all the detected peptide that identified each protein 

and some summary statistics. These protein abundance estimates are biased by instrument 

and processing effects that can be removed by the normalization procedure and statistical 

analysis discussed in section 3.1.6 and 3.1.7.  

Peptide tabs have a listing of all the peptides detected in the samples by LC-

FTICR-MS. There are redundancies because peptides are frequently found in more than 

one sample. Many peptides also map to more than one protein database entry name and 

all are included in this list. There are many scores associate with the peptide 
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identification; however, only discriminant scores are later used by Protein Prophet as a 

measure of the confidence of peptide identification. 

  

3.1.5 Protein identification by Protein Prophet [53] 

Digesting proteins into shorter peptides simplifies the MS/MS sequencing at the 

early stage of the process, but makes the assembling of peptide identifications back to the 

protein level a little difficult [54]. As shown in Figure 3.3, incorrect peptide identification 

(black squares) leads to false positive protein identification (black circles). Degenerate 

peptides may also be a reason for false positive protein identification. To solve this 

protein inference problem, i.e. the task of assembling the sequences of identified peptides 

to infer the protein content of the sample [54], we need automated database searching to 

help us determine the identities of the sample proteins. Protein Prophet [53] is one of the 

software tools we used to perform this task.  

 

Figure 3.3: High-throughput mass spectrometry-based analysis of protein 

mixtures [55]. 
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Peptide identifications gathered with Q Rollup are passed to Protein Prophet to 

find the shortest list of proteins needed to explain the detected peptides and to make the 

most likely association of degenerate peptides with the proteins they identify. Generation 

of a Protein Prophet input file is accomplished using Microsoft Access to query the Q 

Rollup output. Figure 3.4 shows the required fields for the Protein Prophet input file.  

 

• $pep: peptide 
• $cs: charge state used for abundance 
• $XCorr: Xcorr score 
• $Ref: Protein ID 
• $pep2: the peptide formatted as: “-.pep.-“ 
• $degen: peptide degeneracy or the number of proteins that could 

contain the given identified peptide 
• $prob: peptide prophet probability score applied to a given MS/MS 

hit or High MS/MS Descriminant Score 
• $ntt: number of tryptic termini  (0=no tryptic termini, 1= partially 

tryptic, 2=fully tryptic or 2 tryptic termini) 

Figure 3.4: Required fields for a Protein Prophet input text file. 

The fasta file of the protein database used by SEQUEST (NCBI database) is also 

a required input for Protein Prophet. Protein Prophet flags the unique peptides that 

identify a protein; thereby allowing proteins to be arranged in classes according to the 

unique/degenerate character of the peptides that identify them. Greatest confidence is 

placed in proteins identified by multiple unique peptides and this is reflected in a 

confidence score calculated by Protein Prophet.  

Proteins that cannot be distinguished by the peptides observed in the mass spectra 

are grouped into the same “item”. Proteins within an item generally have very similar 

sequence due to redundancy in the protein database or because they have similar 

biological function, such as different isoforms of a protein.  Additional information, such 
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as protein masses, would be required to determine which proteins among those listed in 

an item are actually present in the sample. Since all proteins in an item are identified by 

the same set of peptides, abundance estimates derived from observed peptide abundances 

must be the same for all proteins in an item.  Consequently, only one protein ID from an 

item needs to be associated with the peptide observations in creating the input file for 

statistical analysis to determine which proteins are significantly altered in abundance by 

the treatments.  

 

3.1.6 Estimates of protein abundance 

 In addition to protein identification, quantitative MS allows us to estimate the 

abundance of proteins in a sample from observed peptide abundances. Other than 

treatment affects, the largest contribution to the variance of protein abundance comes 

from the intrinsic detection efficiency of peptides of different amino acid sequence.  This 

contribution can be modeled as described below under the reasonable assumption that it 

is independent of biological variability and any treatment effects. When the variance due 

to peptide detection probability is removed by fitting the logarithm of peptide abundances 

to a linear mixed-effects statistical model, other instrument effects such as instrument 

drift and LC-column performance, are more easily seen in the data. They are described in 

Chapter 4 in the context of a particular data set. 

A mixed effects linear statistical model fit to peptide abundance data by restricted 

maximum likelihood estimation [56, 57] was developed by the PNNL statistics group to 

estimate and quantify treatment effects in proteomic data. The model has two main 

components: the first describes the design of the biological experiment (sample injections 
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within animals within treatments) while the second describes the design of the sample 

processing (LC columns and peptide mass tags across injections). The latter component 

accounts for fluctuation in MS abundances due to column differences and, most 

importantly, differences in peptide measurability. Restricted maximum likelihood 

estimation (REML) offers a viable solution to fitting linear statistical models to LC-

FTICR proteomics data that inevitably includes numerous missing ion current 

measurements for a significant proportion of the peptides across the multiple samples. 

The analysis leverages the many linear modeling tools immediately available to fit 

models, estimates errors and confidence intervals, diagnosis the model fit to the data set, 

and presents results in established and well understood formats.  

 

3.1.7 Statistical analysis of protein relative concentration estimates 

The LC-MS measurability of distinctly sequenced peptides is intrinsically 

different for many reasons, including differential digestibilities, elutions, and ionization 

potentials. Nevertheless, the relative difference in ion current between one peptide and 

another of equal molarity because they are unique to the same protein is consistent across 

samples. This observation suggests a multiplicative statistical model for a peptide MS 

abundance measurement: A = CPE where A is measured abundance, C is the peptide’s 

concentration under the treatment, P is the effect of peptide measurability and E is 

random measurement error. It follows that if  the abundance of peptide P is measured in 

both treatment (At) and control (Ac), the expected value of its abundance ratio is the 

peptide’s relative concentration: At/Ac = CtP/ CcP = Ct/ Cc. This ratio should be the 

same for all unique peptides that identify a protein because the unique peptides of a 
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protein within a sample should be at equal molarity. Hence, for a given protein, a simple 

average of the ratios of its unique peptides under a treatment relative to the control is a 

good estimate of the treatment’s protein concentration relative to the control. This simple 

model is the basis for the more complex statistical treatment developed at PNNL using a 

REML-fit mixed-effects linear model of log-transformed abundances that includes terms 

reflecting both the design of the biological experiment and the LC-MS sample processing. 

A statistically rigorous approach based on a mixed effects linear model [58] was 

used to assess significant protein abundance change by the treatments. For this analysis, 

the following input files are required: (1) the Pedigree File, which describes the 

experimental design of the data, and (2) the MS File, which is generated by combining 

information from Protein Prophet output file with the peptide crosstab from the Q Rollup 

file.  After statistical analysis, identified proteins are divided into following groups: (1) 

proteins for which there are insufficient peptide data to accurately determine the 

parameters of the statistical model, (2) proteins for which an abundance in control 

samples can not be estimated due to insufficient peptide data, (3) proteins with 

abundances in one or more treated samples that is significantly different from their 

abundance in control samples, and (4) proteins whose abundance is not significantly 

changed by any treatment.  The 2+2 rule (at least 2 observations of a peptide in at least 2 

groups, control or treated) is used to define group #1 proteins.  Since abundance relative 

to control cannot be calculated for members of group #2, a different statistical model [59] 

is used to determine if a member of this group was significantly up regulated by one or 

more treatments.   
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When an experiment involves more than one type of treatment, the abundance of 

a protein may be significantly modified by more than one treatment.  To eliminate this 

redundancy, proteins with altered abundance are sorted into the unique regions of a Venn 

diagram. For a 3-treatment study, the Venn diagram has the 7 regions illustrated in Figure 

3.5. 

 

  

 

  

Figure 3.5: Venn diagram showing the overlap of proteins with altered abundance 

in three treatment groups. 

 

3.1.8 Biological pathway analysis  

 The software package MetaCore™ (version 3.2.1 Copyright © 2000-2006 

GeneGo Inc) is used to find biological interpretations of groups of proteins altered in 

abundance by the various treatments. Inputs to MetaCore are prepared by associating the 

logarithm of abundance relative to control with 2 gene identifiers, RefSeq and Gene 

Symbol, for all proteins judged by the statistical model to be significantly up- or down- 

regulated. Inputting the logarithm of relative abundance allows MetaCore to display the 

directionality of abundance change on signaling networks that involve observed proteins. 

Providing more than one identifier for each protein in the input list increases the 
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probability that MetaCore recognizes the protein as part of its database of signaling 

networks derived from ongoing literature surveys. 

 

3.1.9 Summary of the dataflow 

The designed dataflow discussed above facilitates semi-automated proteomic data 

analysis to provide a reliable dataset of up- and down- regulated proteins for biological 

pathway analysis. Several issues remain to be explored inside the data model, which will 

be discussed in Chapter 6. In next chapter we'll illustrate the use of the current data flow 

to proteomic data sets.  

 

3.2 Software implementation 

High-throughput MS projects lead to a large amounts of data that need to be 

manipulated and analyzed. To cope with the need for automated data conversion, 

classification, and filtering in the field of proteomics analysis, we developed an software 

tool ProteoViz. The system handles data for each individual steps, automates data 

creation, and provides a Java graphical user interface for managing the data manipulation 

steps which leads to the pathway analysis data from the initial identified peptides data. 

Perl scripts are called by the Java GUI to perform data and information extraction. 

Furthermore, bar charts are created automatically to enable proteomics researchers to 

better understand the data and interpret the underlying biological meanings.  The work 

flow of ProteoViz is outlined in Figure 3.6.  

 

 



 41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Work flow in of ProteoViz. Green rectangle indicates running process. 

Cyan parallelogram indicates input/output operation. Yellow oval indicates 

specific executing operations involved in a particular process. Magenta squares 

are block indexes for the processes.  
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Prophet identified proteins in 5 classes according to the unique/degenerate character of 

the peptides that identify them: 

1). Protein identified by multiple unique peptides,  

2). Protein identified by single unique peptides,  

3). Protein identified by mixed peptides,  

4). Protein identified entirely by degenerate peptides,  

5). Protein identified by groups.  

In each class, protein prophet confidence score, item number, and protein 

reference ID are associated. Histogram and confidence score bar can be plotted based on 

the classes’ data in this step (Figure 3.6, Block A). 

 

3.2.2 Wrapping all classes of proteins into full protein-peptides abundance dataset 

Then we combine these protein classes into a big dataset, attach peptide 

information for each protein entry, remove protein and peptide redundancies, count 

degeneracy, and insert degeneracy number and molecular weight. These compose an 

initial input dataset for statistical analysis (Figure 3.6, Block B). 

 

3.2.3 Applying the degeneracy approach and running statistical analysis 

 We use Perl scripts to compose protein family closures based on class 3-5 

proteins in the initial input dataset and decrease protein degeneracy according to our 

degeneracy approach presented in Chapter 5. Statistical test and analysis are applied to 

identify proteins with significantly altered abundance. Figures are plotted to facilitate 

data analyzing (Figure 3.6, Block C and D). 
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3.2.4 Analyzing statistical analyzed dataset and Make MetaCore input for pathway 

analysis 

Proteins with statistically significant different abundance in treated samples 

relative to controls are studied for their biological functions. They are sorted into 7 

unique regions of a Venn diagram (Figure 3.5) and loaded for pathway analysis 

separately to allow for a better interpretation of the biological processes affected by each 

individual treatment (Figure 3.6 Block E).  

 

3.2.5 The goodness of ProteoViz 

ProteoViz integrates the data processing steps together, enables serialized data 

manipulation to better utilize the original experimental data. More useful information is 

extracted. Meaningful expressions of data are achieved. They facilitate semi-automated 

proteomics analysis to provide a reliable dataset for biological pathway analysis and 

disease findings.  

The goodness of this tool can be characterized as following:  

1). Comprehensive: ProteoViz provides the necessary functionality for our 

proteomics analysis dataflow. Protein Prophet is combined to make protein-peptides 

association. Statistical methods are integrated to enable data analyzing. Histogram and 

bars are drawn to visualize the data. And required dataset in handy format are created 

automatically for further pathway analysis.  

2) Simple: Tedious data manipulation steps are serialized in ProteoViz. After 

loading the source file, ProteoViz can follow the dataflow to automate the creation of 
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required dataset. People don’t have to create several Access databases to perform all 

kinds of operations on data for an expected dataset.  

3) Reliable & Fast: Instead of manually data preparation, which is slow and prone  

to human error, ProteoViz produces more reliable results in far time. For a dataset with 

3000 proteins, Proteoviz can create the MetaCore source file in three hours (Most of the 

time are occupied by running the Protein Prophet) while an experienced data analyzer 

may take a whole day or more to accomplish. With this quality, we believe Proteoviz is a 

good assistant for proteomics researchers, even those who is not familiar with computer 

operations. In figure 3.7-3.9, several screen shots of ProteoViz are given to illustrate the 

basic functionalities of this tool.  

 

3.3 Summary 

In summary, we have prototyped an integrated data model to fulfill the high-

throughput proteomics analysis. Data manipulation, information extraction, missing data 

and degenerate problem exploration, and statistical model devising are all discussed in a 

good detail. We hope this semi-automated data flow will facilitate the proteomics 

research by computer modeling, fully extract the underling meaning of proteomics data, 

and unravel biological processes in favor of disease investigation and development of 

new-methods of treatments.  
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Figure 3.7: Data manipulation by ProteoViz, including file tree, log of data flow 

execution, and data visualization window. 

 
 

Figure 3.8: Histograms created by ProteoViz, including distribution of proteins in 

an item, and distribution of Protein Prophet confidence score.  
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Figure 3.9: Reconstructed graph in ProteoViz. 
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Chapter 4 

Applying the Integrated Dataflow Model for 

Proteomics Studies 

Genome-wide high-throughput mass spectrometry-based proteomic technologies 

have made significant progress in protein identification, profiling, and measurement of 

global expression of different components in biological systems. We have demonstrated 

in Chapter 3 our seamless data flow to extract the full meaning and implications of the 

data in a semi-automated fashion. In this chapter, we illustrate the characteristics and 

benefits of using this data processing and analyzing method in proteomics research work. 

The experimental datasets we use are obtained from two studies. The first one is a 

toxicology mouse study relative to chronic obstructive pulmonary disease (COPD) [60-

62]. Another one investigated mitochondrial proteome in cells exposed to radiation-

induced genome instability (RIGI).  
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4.1 COPD study 

 The purpose of this study is to investigate whether the co-exposure to cigarette 

smoke (CS) and inflammatory-inducing lipopolysaccharide (LPS) will heighten the 

pulmonary lesions [63-65] in mice, and thus create a mouse model as a surrogate to 

mimic COPD in human smokers [66-75].   

Development of COPD in rodents treated with CS alone takes long exposures and 

results in mild lung lesions, which limits the usefulness of the animal model for 

mechanistic research and therapeutic development [76]. Evaluations of genomic, 

proteomic, and classical toxicological end points in the early stages of pathological 

changes in the respiratory tract of mice exposed to CS, LPS and combined exposure were 

carried out to after a short exposure to determine the exposure regiment for subsequent 

chronic COPD experiments. 

The proteomic data collected in the integrated mouse lung-tissue study provided a 

large complex dataset to investigate label-free methods to identify proteins with 

statistically significant abundance changes induced by the 3 exposure regiments.  

 

4.1.1 Materials and methods 

4.1.1.1 Study design 

The detailed experimental design and results for clinical chemistry and 

histopathology were reported by Lee et al [77, 78]. Briefly, thirteen week old male 

AKR/J mice were exposed via nose-only inhalation for three consecutive weeks via one 

of the following regimens: 1) LPS (Lipopolysaccharide), 2) CS (Cigarette smoke), 3) 



 49

CS/LPS (Smoke plus LPS). Sham controls were exposed to high-efficiency particulate air 

(HEPA)-filtered humidified air. 

 

4.1.1.2 Lung sample preparation for proteomics 

Lung samples were collected at the end of three week exposure and were weighed 

before being tied for division. The left lung lobe was dedicated to our proteomic analysis. 

The proteomic samples contained lung tissue sampled from 5 mice per group (LPS, CS, 

CS/LPS and controls). Replicate injections for each of the 20 samples (one sample was 

run in triplicate) were analyzed by the LC-MS/MS; thus a total of 41 MS runs were 

evaluated. The samples were queued systematically for LC/MS-MS analysis, ordered by 

treatment and then animal within treatment. The two samples from each animal were 

queued sequentially to the two LC columns. Sample processing, which included two 24-

hour periods for routine maintenance, required 7-days. 

 

4.1.1.3 LC/MS-MS & LC-FTICR analysis and peptide & protein identification 

 LC/MS-MS & LC-FTICR analysis and peptide & protein identification were 

performed according to the dataflow discussed in Chapter 3. Briefly, analysis of 

enzymatically digested protein samples using tandem mass spectrometers coupled with 

high-pressure microcapillary liquid chromatographic separations was performed to 

establish a set of tentative peptide identifications called Potential Mass and Time (PMT) 

Tags, next the individual animal samples were analyzed in duplicate by high mass-

measurement-accuracy Fourier transform ion cyclotron resonance mass spectrometers 

(FTICR-MS), coupled with the same type of separation system, so that peptide elution 
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time information can be used. Candidate peptides in the PMT were compared to masses 

measured experimentally by the FTICR-MS. If a match with a small mass error and 

reasonable elution time was found, then that peptide became part of an Accurate Mass 

and Time (AMT) Tag marker database used to perform differential protein expression 

studies without further tandem mass spectral analysis. Protein Prophet made the most 

likely association of the peptides with the proteins they identified. ProteoViz classified 

these proteins with respect to the unique/degenerate properties of the peptides that 

identified them, manipulated the data into specified formats, and applied statistical 

analysis to the protein abundance data to evaluate the up/down regulation characteristics 

of the proteins under different treatments. Pathway analysis upon the proteins with the 

most significantly altered abundances was performed in MetaCore to investigate the 

underlying mechanisms of the biological system.  

 

4.1.2 Results and discussion 

4.1.2.1 Peptide and protein identification 

The distribution of discriminant scores for peptides in the PMT database (Figure 

4.1A) has a large peak at very low scores. Including these peptides in peak matching of 

FTICR mass spectra would likely result in a large number of false positive identifications 

from purely random hits [79]. Excluding this peak, the distribution of discriminant scores 

is relatively flat until a second broad peak emerges with a maximum near 0.8 (Figure 

4.1B) which identifies the most reliable portion of the original PMT database assembled 

by SEQUEST analysis of LC-MS/MS spectra. Consequently, a smaller PMT database 
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was assembled from mass tags (peptides) with discriminant scores greater than 0.6. This 

reference PMT database contained about 3800 peptides.   
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Figure 4.1: Distribution of discriminant scores among peptides identified by 

SEQUEST analysis of LC-MS/MS spectra using biological samples from control 

and treated mice. Panel A represents all peptides identified by SEQUEST and 

panel B shows only those peptides with discriminant scores ≥  0.2.  
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The mass and time tag pairs from the FTICR-MS analyses of the 41 individual 

samples were matched against the reference PMT database, identifying 3219 candidate 

peptides, each appearing at least once across the 41 LC-MS injections. These peptides 

mapped to 2834 mouse proteins in the NCBI database, which Protein Prophet separated 

into 825 unambiguously identified proteins plus 415 groups of proteins which have 

similar amino acid sequence and could not be distinguished by the detected peptides.  

Figure 4.2 shows that about half of the 415 groups are pairs of proteins, which in many 

cases consisted of a known protein and a theoretical homolog.  Many of the larger groups 

are composed of different isoforms of a protein. Since all members of a group of 

indistinguishable proteins are identified by the same set of peptides, abundance estimates 

derived from the mixed-effects statistical model apply to all members.  Hereafter, we will 

refer to all 1240 items in the Protein Prophet output (825 unambiguously identified 

proteins and 415 groups) as simply “proteins”. 

 

Figure 4.2: The distribution of the number of proteins in items of the Protein 

Prophet output. 
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A peptide was called “unique” if it identified a single protein or only one of the 

415 groups of indistinguishable proteins with highly similar sequences due to a close 

biological relationship (i.e. homologs and isoforms). About one third of the 3219 peptides 

detected in the LC-FTICR spectra did not pass this test and were called “degenerate”.   

The 1240 proteins in the Protein Prophet output were grouped according to the 

unique/degenerate feature of the peptides that identified them. Figure 4.3 shows the 

distributions of Protein Prophet confidence scores in these groups.  As expected, greatest 

confidence was assigned to proteins identified by multiple unique peptides (Class 1).  

Proteins identified by a single unique peptide (Class 2) usually have a lower confidence 

scores than those identified by a mixture of unique and degenerate peptides (Class 3).  

Proteins identified by degenerate peptides only (Class 4) were usually assigned very low 

confidence scores. 

 

 

 

 

 

 

 

 

Figure 4.3: The distribution of confidence scores assigns by Protein Prophet to 

proteins identified by multiple unique peptides (open), single unique peptides 

(closed), and a mixture of unique and degenerate peptides (stripped). 
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4.1.2.2 Instrument effects 

The COPD study contained 20 lung-tissue samples from 5 control animals and 15 

treatment animals, 5 in each of the 3 groups: LPS, CS, and combined CS/LPS. Two sub-

samples were drawn from each sample and injected into the LC-MS/MS. A third 

injection was made for one sample which meant that a peptide could be detected in as 

many as 41 MS runs. However, many of the detected peptides were not seen in all 41 

runs due to either low abundance or misidentification. The statistical methods used in this 

work were specifically designed to treat unbalanced data sets that result from missing 

data. 

Ion current measurements of peptides present at equimolar concentrations may 

vary significantly [80] due to differences in LC-MS measurability. Some peptides are 

cleaved more consistently than others, some peptides elute better, and some ionize easier.  

Differences in peptide measurability are the largest source of variability in mass tag ion 

current measurements. Since peptide LC-MS measurability is independent of biological 

variability and treatment effects, it can be accounted for by a mixed effects linear 

statistical model [81] as discussed in Chapter 3. 

When the estimated effects of peptide measurability are removed from the log-

transformed ion current measurements, other instrument effects are more easily seen. 

Two other processing effects are immediately apparent in Figure 4.4A. First, treatment 

groups were run in sequence beginning with controls. The 6 samples from control 

animals that were run on Sunday have median abundances that are below the overall 

median, indicated by the heavy horizontal line, while 3 of the remaining 4 control 
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samples run after a 24-hour routine maintenance period have median abundances above 

the overall median.  In retrospect, the impact of these day-to-day processing effects could 

have been reduced by a blocking technique that ran samples from controls and treated 

animals in groups rather than running all controls followed by all LPS-treated animals, 

etc.   

The second processing effect revealed in Figure 4.4A is a dependence of peptide 

abundances on the LC column, which is most evident in data from the middle period of 

acquisition where alternating light and dark shades reveal a systematic difference from 

alternating columns on the dual-column instrument. Alternating the two LC columns in 

sample processing is, in effect, blocking; hence the column effects could be directly 

accounted by our linear mixed effects statistical model [81].  

To reduce the day-to-day processing effects that could not be included in the 

statistical model, the measurements were normalized by a procedure that is commonly 

used in the analysis of microarray data (Figure 4.4B).  The procedure is more problematic 

for protein profiles due to missing data; nevertheless, the short exposures in the mouse-

lung COPD study that generated our dataset makes it reasonable to assume that many of 

the observed proteins were only weakly affected by the treatments and justifies 

normalization based on medians.   

 

4.1.2.3 Relative concentration estimates 

Of the 1240  proteins determined by Protein Prophet to be the minimum number 

necessary to explain the observed peptides, 303 lacked a sufficient number of peptide 

abundance observations (at least 2 peptides measured in samples from at least 2 animal  
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Figure 4.4: Logarithm of peptide abundances plotted as a function of injection 

times for FTICR-MS analysis. A box indicates the range of peptide abundance 

that contains 50% of the data with dashed lines denoting the range of 

approximately 90%. The sample median is marked by the bar across each box. 

Outliers are plotted as individual points. Light and dark shading indicates samples 

run on different columns. Panel A shows the raw data. Panel B shows the data 

after a normalization procedure based on medians.  

A 

B 
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groups; 2 + 2 rule), to estimate the parameters of the mixed-effects statistical model.  

Cases where numerous peptides were detected in samples from a single animal group, 

control or treated, would be rejected by the 2 + 2 rule; however, no cases of this type 

were present in the peptide data. In 78 of the 937 cases where the 2 + 2 rule was satisfied, 

calculations of relative protein concentrations in treatment groups were not possible due 

to a failure to detect sufficient peptides in samples from control animals. This type of 

observation suggests up-regulation of proteins by treatment effects; however, the 

observation may not be statistically significant. To test for statistical significance in these 

78 cases, a generalized linear model [82] of measurement presence/absence was 

developed [83] to test the null hypothesis that the proportion of protein observations 

(number of observations of a peptide identifying a protein divided by the number of 

replicates) for a treatment equals the proportion for the control. Failure of the null 

hypothesis identified 12 significantly up-regulated proteins based on peptide data from 

treated samples in the absence of sufficient data from controls.  

For the remaining 859 proteins (1240 – 303 – 78) where peptide observations 

satisfied the 2 + 2 rule and included data from controls, peptide abundances were fit with 

a mixed effects linear statistical model [81] to identify statistically significantly up- and 

down-regulated proteins at a false discovery rate of 5%, while simultaneously allowing 

for peptide measurability and LC column effects (see Instrument Effects above). This 

analysis yielded 383 proteins with significantly different concentrations relative to 

controls. When combined with the 12 proteins judged to be up-regulated based on 

peptides observed in treated samples but not controls, we obtain 395 out of 1240 proteins 

with abundances significantly affected by one or more treatments. 
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Peptides that are unique to a single protein will have equal molar concentrations 

in the digested mixture. After instrument effects have been removed (peptide 

measurability, column effects, etc.) a simple average of their observed abundances 

provides an estimate of the relative concentration of the protein that they identify. On the 

other hand, degenerate peptides may come from proteins that are affected differently by a 

given treatment, which introduces an element of uncertainty if they are included in 

estimates of protein abundance. For this reason, of the 383 proteins judged to be up- or 

down-regulated by our mixed-effects statistical model, we are most confident about the 

131 differentially abundant proteins that were identified by unique peptides and least 

confident about the 160 differentially abundant proteins that were identified by 

degenerate peptides only (These part of data are processed separately as illustrated in 

Chapter 3 Section 3.3). The remaining 92 differentially abundant proteins came from a 

set of 197 proteins identified by a mixture of unique and degenerate peptides. An 

alternative method for assessing the abundance of these proteins, which eliminates the 

ambiguity associated with degenerate peptides, is discussed in Chapter 5. Based on 

unique peptides only, 62 of the 197 proteins identified by a mixture of unique and 

degenerate peptides were judged to have significantly different abundance in treated and 

controlled samples.   

 

4.1.2.4 Validation of MS results by immunoblotting 

In an effort to validate our statistical method to identify up- and down-regulated 

proteins, immuno-blotting procedures were employed. For this, commercially available 

antibodies were obtained for 6 proteins. Antibodies were selected based on their 
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availability and the magnitude of the abundance change. Both up- and down-regulated 

proteins were selected as well as a protein not observed in the control group.  Initially we 

used the slot blotting technique and visual inspection to rapidly determine whether the 

immunological approach was in agreement with the MS statistical data. In all 6 cases 

there was good qualitative agreement between the two methods, i.e., proteins identified as 

up-regulated by MS also appeared up-regulated on the slot blots and vice versa. 

We also wanted to obtain detailed quantitative information on a smaller number 

of proteins and to compare these results to those from the MS analyses. Western blots 

were chosen for these analyses because it is generally accepted that they provide more 

reliable quantitative data than slot blots. Results for Surfactant Protein-D clearly 

demonstrate that this lung protein is highly up-regulated by all three treatments and that 

there is good quantitative agreement between the Western blot and the MS statistical 

method. Western blot analyses for Cathepsin D indicate clear up-regulation in groups 

receiving smoke treatments which is entirely consistent with the MS statistical results. 

This points to the importance of statistical analysis for cases where data is missing for the 

control group. Similar agreement between the MS statistical method and Western blots 

were obtained for lymphocyte specific protein-1 and haptoglobin. These results provide 

compelling evidence that our MS statistical method applied to MS data correctly 

identifies proteins with altered abundance. 

 

4.1.2.5 Summary of results 

Proteoviz combined the 62 class-3 proteins judged to be differentially abundant 

based on unique peptides with the 131 differentially abundant class-1 and -2 proteins 
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together with the 12 proteins judged to be up-regulated based on peptides observed in 

treated samples but not controls, and resulted in a total of 205 statistically significant up- 

or down-regulated proteins. Venn diagram of the distribution of these 205 proteins in the 

three treatments is shown in Figure 4.5, which indicates the high degree to which proteins 

with significantly altered concentrations are common to all 3 treatment groups (99 out of 

205). A large number of differentially-altered proteins are also common to the CS and 

combination CS/LPS treatments (39 out of 205). Of the remaining 67 proteins, 12, 15, 

and 26 are unique to the LPS, CS, and CS/LPS treatments, respectively. Table 4.1 shows 

the number of up- and down-regulated proteins by treatment groups and class. Proteins 

identified by a single unique peptide (class 2) contribute fewer statistically-significant up- 

and down-regulated proteins even though this class contains more proteins than classes 1 

or 3 (360 vs 263 and 197). This result points out the advantage of having multiple mass 

tags for abundance estimates by statistically rigorous methods. 

 

Figure 4.5: Venn diagram of proteins identified by at least one unique peptide and 

with statistically significantly altered abundance relative to controls at a 5% false 

discovery rate.  
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Table 4.1: Shown are the number of proteins with significantly altered abundance (5% 

false discovery rate) classified by Protein Prophet as being identified by unique or 

degenerate peptides. The same protein may be altered by one or more treatments. 

 

Treatment 
a
Class 1 

b
Class 2 

c
Class 3 

d
Absent in Controls 

Total proteins (205) 101 30 62 12 

LPS up regulated 54 10 29 4 

LPS down regulated 15 3 10 0 

SMK up regulated 66 13 22 10 

SMK down regulated 19 8 19 0 

LPS+SMK up regulated 66 10 30 12 

LPS+SMK down regulated 22 11 23 0 

a
identified by multiple unique peptides 

b
identified by single unique peptide 

c
identified by unique and degenerate peptides; abundance based on unique peptides 

d
observed in treated samples but not controls 

 

 Our results demonstrate that label-free FTICR-MS methods can be applied to 

complex protein mixtures to determine the subset of proteins that are significantly altered 

in abundance by biological treatment. Advanced statistical analysis to separate treatment 

effects from instrument effects is an essential component of this approach. Missing 

peptide data causes unbalance in treatment datasets and necessitates the use of maximum 

likelihood methods of variance analysis to accurately access which proteins have 
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statistically significant abundance change relative controls. Identification of up- and 

down-regulated proteins is the cornerstone of biological interpretation of treatment 

effects. We feel that statistically rigorous methods like those used in this work are a 

major improvement over arbitrarily-chosen thresholds of abundance change for 

identifying these critical features of global protein profiling. Exclusion of degenerate 

peptides had a significant impact on the number of proteins to which our mixed-effects 

statistical model could be applied; hence, the development of techniques discussed in 

Chapter 5 to include degenerate peptides in the assessment of statistically significant 

protein-abundance change make an important contribution to proteomics. 

 

4.1.2.6 Biological interpretation 

Analysis of significantly-altered protein abundance data by MetaCore ranked cell 

motility and cell adhesion among the important processes induced by the treatments 

(Figure 4.6).  

 

Figure 4.6: MetaCore output showing the distribution of p-values for the top-10 

processes associated with up- and down-regulated proteins from treatments in the 
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mouse-lung toxicology study. From up to down, the three bars in each set 

represent LPS, SMK, and the combined LPS plus SMK treatment, respectively.  

 

Cell motility is one of the key processes mediating the inflammatory and immune 

response mediation common to all the three treatment groups. Although some of the 

differentially-altered proteins involved in cell motility are common to the three 

treatments, Figure 4.6 suggests some differences exist that make the process most 

dominant for the combined CS/LPS treatment. After combining our proteomic data with 

the cytokine data from the same study [84, 85], the MetaCore software was used to build 

signaling networks based upon highest representation of the cell motility process, which 

are shown in Figures 4.7, 4.8 and 4.9 for LPS, CS, and combined CS/LPS treatment 

groups, respectively. Heavy blue line connects proteins directly involved in cell motility 

based on information in the MetaCoreTM database from published literature. Light lines 

show known interactions of these proteins with other proteins in the network. Proteins in 

the network are arranged by subcellular location. Taken together, these networks provide 

insight into the similarities and differences between the inflammatory responses of the 

lung to CS and LPS (and combined) exposure. 
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Figure 4.7:  Network with the highest representation of the cell motility process 

built for proteins up-regulated (red circles) or down-regulated (blue circles) by 

treatment with LPS.   

 

Figure 4.8:  Network with the highest representation of the cell motility process 

built for proteins up-regulated (red circles) or down-regulated (blue circles) by 

treatment with cigarette smoke (CS).   
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Figure 4.9:  Network with the highest representation of the cell motility process 

built for proteins up-regulated (red circles) or down-regulated (blue circles) by 

treatment with a combination of LPS and cigarette smoke. 

 

4.1.3 Evaluation of Proteoviz dataflow 

 The greatest challenge in using new high-throughput technologies for protein 

profiling is devising ways to extract the full meaning and implications of the data to 

facilitate data mining. By conducting this COPD study according to our dataflow and 

processing the data using Proteoviz, we successfully obtained the ultimate dataset in the 

ideal format to follow up the discovery and characterization of important biological and 

disease pathways. Reliable, fast and semi-automated, it is proved to be a good helper for 

proteomics analysis and research work.   

 

4.1.4 Conclusion 

 In summary we describe the results of a MS-based proteomics study to identify 

mouse lung proteins with abundance changes attributable to inhalation exposure to CS, 
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LPS, or combined treatment. The approach includes: 1) FTICR-MS which provides very 

high mass accuracy for peptide identifications, 2) Protein Prophet to minimize 

redundancies in the number of proteins identified, 3) A mixed effects statistical model 

along with a 5% false discovery rate to identify proteins with abundance changes relative 

to controls, and 4) MetaCore software analysis to reveal biological processes that are 

common or unique to the treatments. Using this approach we found 205 up- and down-

regulated proteins. Approximately one half of these proteins were common to all 

treatment groups while a smaller number of proteins were treatment-group specific.  

Using a powerful pathway mapping tool, the most common biological processes 

identified could be related to inflammation and immune response. These results 

demonstrate the importance of rigorous statistical evaluation of MS data, provide a proto-

type for data analysis workflow, and allow for interpretation of the biological processes 

involved in the inflammatory response to CS/LPS combined treatment, a potential animal 

model of COPD. 

 

4.2 RIGI study 

Radiation-induced genome instability (RIGI) is a response to radiation exposure 

[86-88] in which the progeny of surviving cells exhibit increased frequency of 

chromosomal changes many generations after the initial insult. Since genomic instability 

is believed to be a major factor in tumor promotion [89], understanding the mechanisms 

that initiate the perpetuate RIGI is of great importance. 

Persistently elevated oxidative stress accompanying RIGI and the ability of free-

radical scavengers, given before irradiation, to reduce the incidence of instability suggest 
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that radiation induced alterations to mitochondrial function likely play a role in RIGI. To 

further elucidate this mechanism, we performed high-throughput quantitative mass 

spectrometry on samples enriched in mitochondrial proteins from three chromosomally-

unstable GM10115 Chinese-hamster-ovary cell lines and their stable parental cell line.   

 

4.2.1 Materials and methods 

4.2.1.1 Cell lines 

 Parental GM10115 hamster human hybrid cells and three cell clones 

independently derived from single GM10115 cells surviving exposure to ionizing 

radiation, LS-12, CS-9, and 115 were used for these studies. 

 

4.2.1.2 Sample preparation 

Both stable and unstable cell lines were grown in DMEM media to confluence in 

T150 flasks, harvested by centrifugation and washed. Flasks were pooled to give 

approximately 6 X 10 7  cells for each cell line and mitochondria isolated using the 

Qiagen mitochondrial isolation kit. Isolated mitochondrial proteins were resuspended in 

bicarbonate buffer and digested with trypsin. Digested peptides were further purified and 

stored at -80C prior to mass spectrometry analysis. Completeness of the tryptic digestion 

was confirmed using 4-12% Bis-Tris PAGE gel separation.       

 

4.2.1.3 LC-MS/MS spectrometry 

The trypsin digests of purified mitochondrial proteins were each analyzed 3 times 

by liquid chromatography-tandem mass spectrometry as follows. The digests were 
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diluted to an approximate concentration in 0.1% formic acid and 2 % acetonitrile (solvent 

A). The peptides samples were then separated on a capillary column over a gradient from 

solvent B (0.1% formic acid, 95% acetonitrile) on a liquid chromatography system. The 

eluting peptides were analyzed by a linear ion trap mass spectrometer equipped with a 

dynamic nanospray probe. MS and MS/MS spectra were acquired.  

 

4.2.1.4 Data analysis   

As illustrated in Chapter 2 the previous work with CHO cells [90, 91], we used 

both mouse [92] and human [93] protein databases to match in silico LC-MS/MS spectra. 

This approach to cross-species protein identification could fail due to sequence 

differences between hamster proteins and their human and mouse homologs; however, 

due to the small phylogenetic distance between mouse and hamster, we think such 

failures are minimal. Limitations of the alternative approach of de novo peptide 

sequencing followed by homology searches, which is far more computationally intense, 

have been discussed by Habermann et al [94]. The searches were done by using Sorcerer 

v2.0 (SageN research, San Jose, CA) which combines SEQUEST scoring algorithm and 

TPP (Trans-Proteomics Pipeline, Institute of System Biology, WA) validating algorithm.  

SEQUEST output was validated by Protein Prophet to deal with issues of partial 

coverage and database redundancy. A Protein Prophet probability greater than 0.5 and 

number of unique peptides in proteins larger than 1 were used to filter the protein 

identification results. Spectral count, the total number of MS/MS spectra matched to 

peptides that identify a protein, was used as an indicator of that protein’s abundance.  

Dunnett’s test [95] for comparing each of several experimental means with a control 
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mean was used to infer significantly difference protein abundance between unstable cells 

lines and the stable parental GM10115 cell line. 

 

4.2.2 Detailed implementation issues 

 There are several unique characteristics of RIGI study, so although the overall 

dataflow shares the same idea with COPD study, data processing in RIGI has slight 

differences. During implementation, we tackled these issues one by one. Figure 4.10 

outlines the key data processing steps involved in the dataflow.  

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Outline of the major data processing steps. 

 

 As shown in Figure 4.10 Block A, we identify mitochondrial proteins and 

calculate its spectral count by searching separate mouse and human databases are the first 

step in characterizing the mitochondrial proteome of CHO cell lines. Unlike COPD 
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where we can search against a mouse.fasta protein database for peptide identification, in 

the RIGI study, we used Chinese-hamster-ovary cell lines, for which a protein database is 

not available. The small phylogenetic separation between mouse, hamster and human 

allows the use of protein databases of closely related species to obtain cross-species 

protein identification; however we expect substantial protein redundancy in the hamster 

proteins identified by searches against mouse and human databases. Identifying the 

common proteins between human and mouse database searches is the main challenge of 

cross-species manipulation. Our scripts helped to covert protein ID to a uniform identifier 

and by constructing a keyword list, the hash table implementation enables us to find out 

the common proteins between the two searches based on their fasta annotation (Figure 

4.10 Block B and C). This semi-automated procedure for removing redundancy in corss-

species protein identification is a substantial improvement over the manual procedure 

used in the previous studies with CHO described in Chapter 2.  

 The use of Dunnett’s test to infer significantly difference protein abundance 

between unstable cells lines and the stable controlled GM10115 cell line and the 

application of MetaCore pathway analysis for biological interpretation of differentially 

abundant proteins are further improvement over previous work (Figure 4.10 Block D). 

  

4.2.3 Results and discussion 

Three samples from each of the four cell lines were subjected to LC-MS/MS 

spectroscopy and data analysis. Table 4.2 shows the average number of peptides and 

proteins (total and mitochondrial) identified by searching the mouse and human databases 

to match spectra obtained with samples from the GM10115 parental cell line. Similar 
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results were obtained for the 3 unstable cell lines. Mouse database searches consistently 

yielded a slightly greater number of mitochondrial protein identifications. 

 

Table 4.2: Number of peptide and protein identifications in parental GM10115 cells 

 Mouse database Human database 

Number of peptides 898 ±  84 763 ±  65 

Number of proteins 333 ±  21 324 ±  19 

Number of mitochondrial proteins 93 ±  5 83 ±  3 

 

 

Many mouse-human homologs can be identified from FASTA annotation without 

carrying out sequence comparison. We used this approach to eliminate redundancy in the 

mitochondrial proteins identified by SEQUEST searches of the mouse and human protein 

databases. Usually, about half of the proteins identified by searching the human database 

were homologs to proteins found in the mouse database. This overlap reduced the number 

of distinct mitochondrial proteins identified to about 100 for a typical cell line. 

Spectral count is a property of peptides; namely, the number of MS/MS spectra 

acquired that identify a particular peptide. The sum of the spectral counts for all the 

peptides that identified a protein was used to estimate the abundance of that protein in an 

unstable cell line relative the stable parental control. This approach assigns larger total 

spectral count to proteins identified by multiple peptides and makes their relative 

abundance estimates less sensitive to random experimental errors. Dunnett’s test for 

protein abundances in unstable cells that are significant difference from control requires a 

non-zero total spectral count for all 4 cell lines. This requirement eliminated some 
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proteins identified by only one or a few peptides; however, these proteins were more 

likely to be false positives than those included in the statistical analysis of differential 

abundance. 

Table 4.3 list those mitochondrial proteins judged to be significantly up- or down-

regulated in at least one of the unstable cell lines. Only one of the 15 proteins listed in 

Table 4.3 was found to be significantly modified in more than one of the 3 unstable cell 

lines. Acetyl-CoA-acetyltransferase (also known as thiolase), a key component of the 

tricarboxylic acid (TCA) cycle, is down regulated in both the LS-12 and 115 unstable cell 

lines. 115 is also character by down-regulation of a protein of unknown function that 

binds to the Q subcomponent of complement component 1 and by up-regulation of a 

transmembrane protein that contains an EF-hand domain and, consequently, is most 

likely associated with calcium-ion (Ca2+) transport. 

Among the unstable cell lines investigated in this study, LS-12 is the best 

characterized at the cellular level.  Kim et al. [96] observed that both the state 3 and the 

uncoupled respiration rates of LS-12 were reduced by about 40% relative to the parental 

GM10115 cells. They also detected a 30% reduction in the activity of complex IV 

(cytochrome c oxidase), the last step in the electron transfer chain (ETC). This 

observation could explain the reduced state-3 respiratory rate and the persistently 

elevated levels of ROS in LS-12, since blocks to the ETC are known to increase the 

production of ROS by mitochondria.   

The 7 mitochondrial proteins that we observed to have significantly altered 

abundance in LS-12 relative to the parental GM10115 cell line are listed in Table 4.4 

along with their catalytic activity and the metabolic pathway in which they function. In  
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Table 4.3: Proteins abundance in unstable cells relative to stable parental control 

Protein LS-12/GM CS-9/GM 115/GM 

acetyl-CoA-acetyltransferase 0.55* 0.84 0.77* 

aconitate hydratase (1) 0.53* 0.84 0.96 

ATP synthase (beta) 1 1.15* 1 

calcium-binding (ARALAR2) 1.2 1.86* 1.44 

citrate synthase 0.65* 0.95 0.89 

complement component 0.6 0.8 0.53* 

cytochrome c oxidase (subunit 5A) 1 1.63* 1.25 

enoyl-CoA hydratase (alpha) 0.52* 0.96 1 

isocitrate dehydrogenase (NADP+) 0.58* 0.92 1 

isocitrate dehydrogenase (alpha) 0.99 1.18* 1.12 

isocitrate dehydrogenase (isoform 2) 0.39* 0.94 1.17 

Leucine zipper-EF-hand transmembrane 1.42 1 1.67* 

pyruvate dehydrogenase (beta) 0.31* 0.89 0.74 

succinate dehydrogenase (flavoprotein) 0.82 1.30* 0.81 

glutamate dehydrogenase 0.56* 0.96 0.95 

* Statistically significant at 95% confidence 

 

all 7 cases, the proteins are down-regulated and involved in fatty acid or carbohydrate 

metabolism. As mentioned by Kim et al. altered abundance and/or activity of TCA 

enzymes can be the cause of reduced state-3 respiration; however, their observation of 

reduced cytochrome c oxidase activity leads them to suspect the ETC. The coupling 
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between central carbon metabolism and oxidative phosphorylation makes it difficult to 

discern cause from effect; nevertheless, mutations in mitochondrial DNA that cause 

blockage in the ETC and metabolic shifts away from the TCA-cycle have been reported 

for budding yeast and C. elegans [97].   

 

Table 4.4: Down-regulated mitochondrial proteins in LS-12 cells 

Protein  catalytic activity pathway 

acetyl-CoA-

acetyltransferase 

Acyl-CoA + acetyl-CoA = 

CoA + 3-oxoacyl-CoA 

lipid and fatty acid 

metaboloism 

aconitate hydratase Citrate = cis-aconitate + H2O tricarboxylic acid pathway 

citrate synthase Acetyl-CoA + H2O + 

oxaloacetate = citrate + CoA 

tricarboxylic acid pathway 

enoyl-CoA hydratase 

(alpha) 

(3S)-3-hydroxyacyl-CoA = 

trans-2-enoyl-CoA + H2O 

fatty acid beta-oxidation cycle 

isocitrate 

dehydrogenase 

(isoform 2) 

isocitrate + NADP(+) = 2-

oxoglutarate + CO2 + 

NADPH 

interacts with pyruvate 

dehydrogenase 

pyruvate 

dehydrogenase (beta) 

conversion of pyruvate to 

acetyl-CoA and CO2 

intermediary metabolism 

glutamate 

dehydrogenase 

L-glutamate + H2O + 

NADP(+) = 2-oxoglutarate + 

NH3 + NADPH 

catabolism of glutamate 
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Table 4.5 list the 5 mitochondrial proteins we observed to have significantly 

altered abundance in CS-9 unstable cell line relative to parental GM10115 cells. This 

protein profile of dysfunctional mitochondria contrasts sharply with that described above 

for LS-12. In this case we observed up-regulated proteins, none of which have 

significantly altered abundance in LS-12 unstable cells. Three of the up-regulated 

mitochondrial proteins in CS-9, ATP synthase, succinate dehydrogenase and cytochrome 

c oxidase, are directly associated oxidative phosphorylation and ATP production. Like 

isocitrate dehydrongenase, succinate dehydrogenase is also part of the TCA-cycle. 

 

Table 4.5: Up-regulated mitochondrial proteins in CS-9 cells 

Protein catalytic activity pathway 

ATP synthase(beta) ATP + H2O + H(+)(In) = ADP + 

phosphate + H(+)(Out) 

ATP production in 

presence of H+ gradient 

calcium-binding 

(ARALAR2) 

not an enzyme aspartate amd glutamate 

carrier 

cyctochrome c 

oxidase (subunit 

5A) 

4 ferrocytochrome c + O2 = 4 

ferricytochrome c + 2 H2O 

terminal oxidase in 

electron transport 

isocitrate 

dehydrogenase 

(alpha) 

isocitrate + NADP(+) = 2-

oxoglutarate + CO2 + NADPH 

intermediary metabolism 

and energy production 

succinate 

dehydrogenase 

succinate + ubiquinone = fumarate 

+ ubiquinol 

component of complex II 
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Characterization of CS-9 at the cellular level is not as complete as for LS-12. 

Unpublished work by Spitz and coworkers indicates that, like LS-12, CS-9 has 

persistently elevated ROS and compromised antioxidant capacity. Our results suggests 

that different mechanisms may be responsible for the elevated levels of ROS in LS-12 

and CS-9. One possible interpretation of our data on CS-9 is that the respiration rate is 

higher than in the parental GM01115 cells, so that a similar leakage rate could produce 

more ROS. 

 

4.2.4 Conclusions 

Research on dysfunctional mitochondria has increased in recent years due to the 

discovery of their role in human diseases that include cancer, diabetes, neurodegeneration 

and cardiomyopathy. Recognition of their role in both the direct and non-targeted 

responses of cells to radiation exposure has also increased. In both human disease and 

radiation response, the role of mitochondria can be explained in general terms by the 

model “Mitochondrial Threshold Effect Theory” [98]. This model is based on the 

hypothesis that cells cope with a certain degree of mitochondrial dysfunction by 

compensatory mechanisms that support viability. Increased mitochondrial mass after 

radiation exposure is an example of this principle that may have the undesirable long-

term effects of persistent oxidative stress and genome instability; however, this 

mechanism does not apply to the LS-12 cell line, since it does not show an increase in the 

number of mitochondria. The distinct mitochondrial-protein profiles of genome unstable 

cell lines observed in this study suggest that a variety of coping mechanisms are available 
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to cells with compromised mitochondrial function due to radiation exposure.  

Understanding these compensatory mechanisms and their thresholds for failure are an 

important new area of research in radiation biology. 
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Chapter 5 

Degenerate Peptides 

5.1 Degeneracy related protein abundance estimate issues 

 Assessment of differential protein expression from the observed properties of 

detected peptides is the primary goal of label-free shotgun proteomics. The abundance 

observed for unique peptide originates from its identified protein only. However, the 

abundance observed for degenerate peptides may be due to contributions from multiple 

proteins in a biological sample that are affected differently by a given treatment. 

Consequently, including degenerate peptides in estimates of protein abundance may lead 

to erroneous results for the effect of a treatment on protein expression levels.  

 Excluding degenerate peptides eliminates this ambiguity but may significantly 

decrease the number of proteins for which abundance estimates can be made, especially 

when degenerate peptides are in a large fraction. So when degenerate peptides show up in 

the identification of a protein, it is helpful to develop a strategy to evaluate the 

contribution they give to an estimate of the protein’s abundance and make a judgment on 

whether or not to include them in the protein’s abundance estimate. At the early stage, we 

start our exploration by an approach based on the following assumption:  If a protein is 
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identified by multiple peptides, the abundances of the peptides in samples from a 

treatment group relative to its abundance in samples from control should all be 

consistent with each other. We know that unique peptides have this property because they 

will be present at the same concentration as the protein from which they were derived by 

proteolysis; hence we require it to be true for degenerate peptides also. 

To implement this approach, we can pick up all the unique peptides that identify a 

protein, and calculate their ratio of abundance as a reference. Then we calculate the ratio 

of abundance of the degenerate peptides that identify this protein. Compare each of them 

with the ratio of unique peptides. If the ratios are consistent with each other to a specified 

level of statistical confidence, we can keep the degenerate peptide for protein’s 

abundance estimate; otherwise, we discard it. 

 By this way, we can quantitatively evaluate the contribution of degenerate 

peptides to a protein’s abundance estimate. Comparing with previous strategy, which 

eliminates all the degenerate peptides data, we can achieve a larger dataset by introducing 

valuable degenerate peptides data and discarding only the degenerate peptides whose 

abundances are influenced by multiple proteins that respond differently to a given 

treatment.  

The above approach can be applied without considering any biological 

relationship among the proteins that contain a degenerate peptide. It is purely empirical 

and only requires sufficient data on unique peptides to define an expected pattern of 

abundance change with treatments relative to controls. Nevertheless, when we 

investigated the biological function and annotation of proteins that are identified by a 

degenerate peptide, we often found that they belong to a family of proteins, all members 
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of which have similar amino-acid sequence and biological function. Sequence similarity 

increases the likelihood peptide degeneracy (i.e. a peptide found in one family member is 

likely to be found in all family members). Functional similarity raises the possibility that 

treatments may affect all of the family members in a same way. When this is the case, it 

is reasonable to use both unique and degenerate peptides to discover the correlated effect 

of treatments on the biologically-related proteins. So we want to try a higher level 

analysis of the degenerate peptides that endeavors to discover the effect of treatments on 

the whole family of proteins rather than its individual members. This reasoning leads to 

the following assumption concerning the use of degenerate peptides in protein abundance 

estimation:  If all of the proteins that a peptide identifies are in the same family, we treat 

it as a unique peptide for estimation of the effects of treatments on the family of proteins. 

Based on this assumption, we developed a more biologically based method to 

include degenerate peptides in protein abundance estimates. The description of proteins 

in the database used by SEQUEST to interpret LC-MS/MS spectra is usually sufficient to 

define protein families. In most cases a family consists of isoforms of the same protein. 

After a protein family has been composed, we can investigate the degenerate peptides one 

by one to determine if the source of degeneracy is just different family members and 

form the final peptide abundance dataset for the subsequent protein’s abundance estimate 

and statistical significance analysis.  

 

5.2 The computational method 

 The above hypotheses form the basis for us to develop our closure-family method 

to solve degenerate peptides problem in protein abundance estimates. In this section we 
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describe this method of including degenerate peptides in differential expression analysis 

for protein profiling using label-free proteomics data. It starts with finding groups of 

proteins that have a biological relationship and embody all of the degeneracy of peptides 

that identify group members, then tests for correlated abundance changes in the group 

due to treatments. Four steps are involved in this computational method. 

 

5.2.1 Finding peptide-degeneracy closure groups  

The first step in our method is to identify groups of proteins with closure on 

degenerate peptides (i.e. the group contains all the proteins responsible for the 

degeneracy of any peptide that identifies a group member).  If we define the level of 

degeneracy as the number of proteins that contain an observed peptide, then the condition 

for closure is that the number of occurrences of every peptide in a group must equal its 

level of degeneracy. 

 

5.2.2 Finding closure groups with biologically related proteins  

For many peptide-degeneracy closure groups, the FASTA annotation of proteins 

in the group is sufficient to explain their biological relationship. An example of groups of 

this type is shown in Table 5.1, where the relationship is a predicted similarity to 

different isoforms of laminin alpha 5. 

In some cases, like that shown in Table 5.2, key words in the FASTA annotation 

suggest a biological relationship but are not sufficient to determine the putative 

relationship. Ubiquilin 2 is probably biologically related to ubiqulin 1 but more complete 

annotations are required to confirm this hypothesis.  In cases like this, we assumed that 
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the FASTA annotation was evidence for a biological relationship among proteins of a 

peptide-degeneracy closure group.   

In a relatively small number of cases, FASTA annotation suggested that the 

proteins in a peptide-degeneracy closure group have different biological functions. An 

example of this type is shown in Table 5.3, where the degenerate peptide AAIDWFDGK 

is found in both pigpen and TAF15. Cases of this type are flagged for further analysis to 

assess the likelihood that more than one protein was contributing to the observed 

abundance of the degenerate peptide. 

 

Table 5.1: Proteins in the Laminin peptide-degeneracy closure group 

Protein description: similar 

to laminin alpha 5 isoform 

Peptide 

Level of 

Degenerac

y 

1 

AVEASNAYSSILQAVQAAEDAAGQAL

R 1 

1 GQLQLVEGNFR 1 

1 AHPVSNAIDGTER 2 

1 ATGDPWLTDGSYLDGSGFAR 2 

3 ATGDPWLTDGSYLDGSGFAR 2 

9 AHPVSNAIDGTER 2 
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Table 5.2: Proteins in the Ubiquilin peptide-degeneracy closure group 

Protein Description Peptide 

Level of 

Degeneracy 

ubiquilin 1 isoform 1 QQLPTFLQQMQNPDTLSAMSNPR 1 

ubiquilin 1 isoform 1 EKEEFAVPENSSVQQFK 1 

ubiquilin 1 isoform 2 NQDLALSNLESIPGGYNALR 1 

ubiquilin 1 isoform 2 NPEISHMLNNPDIMR 1 

ubiquilin 1 isoform 2 FQQQLEQLSAMGFLNR 2 

ubiquilin 1 isoform 2 QLIMANPQMQQLIQR 2 

ubiquilin 1 isoform 2 ALSNLESIPGGYNALR 2 

ubiquilin 2 GPAAAPGAASPPAEPK 1 

ubiquilin 2 FQQQLEQLNAMGFLNR 1 

ubiquilin 2 ALSNLESIPGGYNALR 2 

ubiquilin 2 QLIMANPQMQQLIQR 2 

ubiquilin 2 FQQQLEQLSAMGFLNR 2 

 

 

Table 5.3: Proteins in the Pigpen peptide-degeneracy closure group 

Protein Description Peptide 

Level of 

Degeneracy 

Pigpen TGQPMINLYTDR 1 

Pigpen EFSGNPIK 1 

Pigpen AAIDWFDGK 2 

TAF15 RNA polymerase II, TATA 

box binding protein associated factor AAIDWFDGK 2 
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5.2.3 Assessment of common abundance change for proteins in a peptide-degeneracy 

closure group  

Let t

xA  and c

xA  be the observed abundances of peptide x in treatment and control 

groups, respectively. Consider a peptide-degeneracy closure group consisting of proteins 

identified by unique peptides p and q, as well as a degenerate peptide pq. The abundances 

of these peptides in samples from treatment group t relative to their abundances in control 

samples are given by  
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where 
t

pA and 
t

qA  are the concentrations of proteins p and q in samples from treatment t 

and similarly 
t

pC and 
t

qC  are their concentrations in control samples. Equations (1-3) are 

based on a model of observed peptide abundances in which the variation of detection 

sensitivity for peptides of different amino acid sequence is contained in multiplicity 

factors that are the same for samples from treatment and control groups; consequently, 

these factors cancel in peptide abundances relative to controls.  In this model, one can 

easily show that if rp = rq = r, then rpq = r. This result generalizes for any combination of 

proteins responsible for a peptide’s degeneracy; hence, we can include both unique and 
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degenerate peptides in a one-parameter model for the abundance relative to control of 

proteins in a peptide-degeneracy closure group. 

 

5.2.4 Statistical analysis 

For each treatment t, mean abundances relative to control and their standard error 

are calculated for all peptides (unique and degenerate) identifying proteins in a group 

with closure on peptide degeneracy. Well-known propagation-of-error formulas [99] are 

used to transform these quantities into log-space where statistical tests based on the 

assumption of normally-distributed errors are expected to be more valid. Let ρit and σit 

denote the mean and standard error of the logarithm of peptide abundance relative to 

control. If detection of proteins in a group defined by closure on peptide degeneracy 

involved k peptides, then the best estimator [99] for the common abundance of proteins in 

the group is 

∑
=

=
k

i

ititt cC
1

ˆ ρ

        (4) 

where 

∑
=

=

k

i itit

itc

1
22

11

σσ
       (5) 

Well-known results for a linear combinations of means [100] were used to derive 

a confidence interval for tĈ . Superimposing tĈ  with its confidence interval on a log-

space plot of mean peptide abundances relative to control gives a visual indication of how 

well the model of a common abundance relative to control applies to a group of 



 86

biologically related proteins with closure on peptide degeneracy. In addition, an F-test 

[100] is performed on the null hypothesis of equal means for peptide abundances in a 

peptide-degeneracy closure group. Failure to reject the null hypothesis at a specified 

confidence level is another indication of the validity of the model that proteins in a 

peptide-degeneracy closure group have a common abundance relative to control.   

 

5.3 Results on degeneracy approach 

 In this section, we use data from the COPD study (mouse-lung toxicology study) 

to illustrate our approach for including degenerate peptides in estimates of differential 

protein abundance. Detailed illustration of this study was given in Chapter 4. We briefly 

introduce this study here again for the purpose of presenting the degeneracy approach.  

In that study, lung tissue samples are taken from 5 animals in each of 3 treatment 

groups and 5 control animals. Two LC/MS injections are prepared from each biological 

sample. By combining data from different animals and injections, 10 replicates are 

potentially available to assess a peptide’s abundance in a given treatment group or control; 

however, for some peptides the number of replicates actually seen is far less than 10.  In 

the case illustrated by Figure 5.1, missing data for unique peptides severely limits the 

application of t-tests to assess the equality of means between treatment and control 

groups; however, these t-tests that require a minimum of 3 replicates [101] can be carried 

out on abundance measures for the degenerate peptides. 
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Figure 5.1: The pattern of peptide abundance observations in the ubiquilin 

peptide-degeneracy closure group (see Table 5.2). Mass Tags are elements of the 

PMT database used to interpret LC-FTICR mass spectra. White and light-gray 

squares denote observation of unique and degenerate peptides, respectively. A 

dark-gray square indicates that the peptide was not observed in the injection. 

 

The ability to use both unique and degenerate peptides in estimates of protein 

abundance diminishes the impact of missing peptide data and increases the number of 

proteins for which abundance relative to control can be quantified. Analysis of the 

proteomic data from the mouse lung-tissue study [102, 103] illustrates this point very 

well. Processing the LC/MS data by SEQUEST and Protein Prophet reveals 1240 

proteins in the NCBI mouse database identified by 3219 peptides with peak areas 

determined by FTICR-MS [104]. The proportion of proteins identified entirely by 

degenerate peptides (420/1240) is approximately equal to the proportion of degenerate 

peptides (1045/3219). 

Since the Protein-Prophet confidence scores for the 420 proteins identified by 

degenerate peptides are generally low, excluding them by using only unique peptides in 

protein abundance estimates may not be a great loss; however, this is not the full impact 



 88

of degenerate peptides. Of the remaining 820 proteins identified by at least one unique 

peptide, 197 are identified by a mixture of unique and degenerate peptides (referred to as 

the mixed class) and generally received high confidence scores from Protein Prophet.  

For this set of proteins, the effects of degenerate peptides are assessed by calculating 

mean abundances relative to controls for the 3 treatments in the mouse toxicology study 

with and without degenerate peptides. Excluding degenerate peptides significantly affects 

abundance estimates for about half of the proteins in the mixed group, with the most 

obvious effect being the number of proteins with sufficient peptide data to estimate 

abundance relative to control. By including degenerate peptides, relative abundance can 

be estimated for 178 of the 197 mixed-class proteins, which decreased to 140 when 

degenerate peptides are excluded. These findings encourage us to develop a method for 

including degenerate peptides in differential protein-abundance assessments. 

Ambiguity of source is the basic reason for excluding degenerate peptides in 

protein abundance estimates; hence, it is reasonable to seek a higher-order classification 

of proteins that eliminates this ambiguity. We call this entity a “peptide-degeneracy 

closure group” because it includes all proteins associated with a set of degenerate 

peptides. Initially, we are surprised to see how often proteins in a closure group appeared 

to have similar function. We found 165 peptide-degeneracy closures groups among the 

617 proteins identified in the mouse-lung toxicology study partially or completely by 

degenerate peptides. Based on FASTA annotation, 143 of these closure groups appears to 

be composed of biologically related proteins. These 143 peptide-degeneracy closure 

groups contain 82% of the proteins for which identification involved degenerate peptides. 

Even though definitive conclusions about biological relationships cannot be based on 
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FASTA annotation alone, this finding suggests that most of the peptide degeneracy in the 

data from the mouse-lung toxicology study is among protein family members. 

The Transferrin peptide-degeneracy closure group (Table 5.4) is among the 22 

closure groups where FASTA annotation suggests that proteins in the group are not 

biologically related. 

 

Table 5.4: Proteins in the Transferrin peptide-degeneracy closure group 

 

Protein description Peptide Level of Degeneracy 

transferrin GDVAFVK 2 

melanoma associated antigen p97 GDVAFVK 2 

transferrin SKDFQLFSSPLGK 1 

transferrin LYLGHNYVTAIR 1 

transferrin HTTIFEVLPEK 1 

transferrin YLGAEYMQSVGNMR 1 

transferrin KGTDFQLNQLEGK 1 

transferrin TAGWNIPMGMLYNR 1 

transferrin LGHNYVTAIR 1 

transferrin HQTVLDNTEGK 1 

transferrin DSAFGLLR 1 

transferrin DFQLFSSPLGK 1 

transferrin EEYNGYTGAFR 1 

transferrin LPEGTTPEK 1 

 

Since Transferrin is identified by 12 unique peptides and melanoma associated 

antigen p97 is identified by only one degenerate peptide, it is not surprising that their 

Protein-Prophet confidence scores are 1 and 0, respectively. The abundance data for the 
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degenerate peptide GDVAFVK in samples treated with LPS is consistent with data on the 

unique peptides that identified Transferrin. Similar results are obtained for the other 2 

treatments in the mouse toxicology study and the result shown in Figure 5.2 for the best 

estimate of Transferrin abundance relative to control is validated by immunoblots. 

 

Figure 5.2: Logarithm of the mean relative abundance of peptides identifying 

proteins in the Transferrin group with closure on peptide degeneracy. Peptides 2 – 

11 (squared) uniquely identify Transferrin. Peptide 1 (asterisked) is also found in 

melanoma associated antigen p97. Dashed lines show the 95% confidence interval 

on the best estimate of a common relative abundance (solid line) for all 12 

peptides. 

 

The F-test for equality of means [100] fails when apply to the data in Figure 5.2; 

however, the failure is more likely due to scatter in the mean abundances of peptides that 

uniquely identify Transferrin than to the degenerate peptide (#1 in Figure 5.2), which has 
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a mean abundance in good agreement with the estimate of a common mean abundance 

(solid line). To determine how often to expect this type of false negative, we apply the F-

test for equality of means to 476 cases in the mouse toxicology study where proteins were 

identified by multiple unique peptides. Failure of the test in 27% of these cases where 

peptides are unique to a particular protein suggests that sources of variability other than 

different protein concentrations could explain failure of the F-test for equality means 

when it is applied to the abundance of degenerate peptides. Nevertheless, success of the 

equality of means test adds weight to the conclusion of a common abundance relative to 

control for biologically-related proteins in a peptide-degeneracy closure group. 

Our results for the Transferrin peptide-degeneracy closure group clearly point to 

the conclusion that peptide GDVAFVK uniquely identifies Transferrin because 

melanoma associated antigen p97 is probably not in the samples being investigated to any 

appreciable extent. This example shows that application of Protein-Prophet confidence 

scores can reduce peptide degeneracy by eliminating false positive protein identifications.  

We investigate the magnitude of this effect by removing all 381 proteins identified in the 

mouse-lung toxicology study with a Protein-Prophet confidence score of zero. Since most 

of the peptides identifying these proteins also identify proteins with nonzero Protein-

Prophet confidence scores, only 4 peptide-degeneracy closure groups incur a loss of 

peptides due to elimination of proteins with zero confidence score.  By retaining 23 of the 

381 proteins with a Protein-Prophet confidence score of zero, no peptides are lost from 

any peptide-degeneracy closure group, which means that the data analysis to estimate a 

common abundance of group members is not affected. In 118 of the 165 peptide-

degeneracy closure groups, elimination of proteins with a zero Protein-Prophet 
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confidence score reduces the level of peptide degeneracy to the point that all the 

remaining proteins are identified by unique peptides. 

Before removal of proteins with Protein-Prophet confidence score of zero, the 

peptide-degeneracy closure group with FASTA annotations relate to Myosin contains 7 

NCBI database entries identified by 11 peptides, two of which are unique to the protein 

described as “Myosin light chain, regulatory B-like” identified with a Protein-Prophet 

confidence score of 1. After removal of proteins with Protein-Prophet confidence score of 

zero, the only other protein in the Myosin closure group has FASTA annotation 

“Predicted similar to Mysoin regulatory light chain 2” and a Protein-Prophet confidence 

score of 0.98. Eight of the 11 peptides identifying members of the Myosin peptide-

degeneracy closure group are observed in a sufficient number of replicates to carryout 

our statistical analysis. The equality of means test gives a positive result in this case and 

Figure 5.3 shows how well the peptide data from mice treated with LPS can be explained 

by a common relative abundance. The solid horizontal line marks the best one-parameter 

fit to these mean peptide abundances. The dashed lines bound a 95% confidence interval 

on the optimum value of this parameter. Since this interval does not include zero, we 

interpret these data as a statistically significant up regulation of the proteins in this 

Myosin closure group due to the LPS exposure. 

Due to insufficient data, the statistical analysis illustrated by Figure 5.3 can not be 

carried out for all of the 143 peptide-degeneracy closure groups with biologically related 

proteins. For the LPS and SMK treatments, 94 closure groups have the minimum 

requirement of 2 peptide abundance observations in both treatment and control samples 

to apply the statistical analysis. For the combined LPS+SMK treatment, the statistical 
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analysis can be performed on 97 peptide-degeneracy closure groups. In total, these 

groups contain about 60% of the 617 proteins for which the identification involves 

degenerate peptides. In a majority of the cases where sufficient data are available for 

statistical analysis, the F-test for equality of means suggests that peptide relative 

abundances are not significantly different. 

 

 

Figure 5.3: One-parameter fit to the logarithm of the mean relative abundances of 

peptides identifying proteins in the Myosin group with closure on peptide 

degeneracy. Dashed lines show the 95% confidence interval on the best estimate 

of a common relative abundance (solid line) for all 8 degenerate peptides 

(asterisk). 

 

 



 94

5.4 Significance of the degeneracy approach 

Degenerate peptides, a frequent phenomenon in shotgun proteomics, complicate 

both the identification of proteins and estimates of their relative abundance in biological 

samples. It is reasonable to have more confidence in proteins identified by unique 

peptides than degenerate peptides and this is reflected in confidence scores reported by 

Protein Prophet. The impact of degenerate peptides on the interpretation of shotgun 

proteomics can usually be reduced by treating proteins with low confidence scores as 

false positive identifications; however, many researchers are reluctant to take this 

approach and prefer to retain all identified proteins as a basis for biological interpretation 

of proteomic data. The concept of peptide-degeneracy closure groups we have presented 

is a way to deal with degenerate peptides that is somewhat insensitive to the confidence 

of protein identifications. As the threshold score for confident protein identification 

increases, the protein composition of peptide-degeneracy closure groups changes but 

peptide composition is unchanged if degeneracy is due to proteins with both high and low 

confidence scores. 

Our conclusions about peptide-degeneracy closure groups are based on analysis of 

data from the study of mouse lung tissues where we find that (1) closure groups are most 

often composed of proteins with related biological function as judged by their FASTA 

annotation,  (2) a one-parameter model of abundance relative to control for all proteins in 

a closure group is frequently adequate to explain the observed relative peptide 

abundances, and (3) a large number of proteins identified with low Protein Prophet 

confidence scores can be rejected as false positives without affecting the peptide 

abundance data used to discern the affect of treatments on closure groups. Our 
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conclusions regarding the utility of peptide-degeneracy closure groups will undoubtedly 

be refined as we apply the concept to additional datasets; however, we are confident that 

they enable an approach that is an improvement over simply excluding degenerate 

peptides, which we have found to significantly reduce the number of identified proteins 

for which differential-abundance analysis can be carried out with statistical inference. 
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Chapter 6 

Future Work 

The proceeding chapters presented a seamless dataflow to facilitate the high-

throughput proteomics analysis. It deals with data manipulation, degenerate peptides, and 

pathway analysis in a semi-automated fashion. Some places can be further improved to 

help us extract the underlying meaning of proteomics data and unravel the biological or 

disease processes associated with it. These improvements are the targets of our ongoing 

project. 

 

6.1 Degenerate peptides 

Degenerate peptides had a significant impact on the number of proteins to which 

the assessment of statistically significant protein-abundance change can be performed. 

We have proposed a peptide-degeneracy closure group approach to include degenerate 

peptides in protein abundance estimation, and derived a one-parameter statistical model 

to accomplish this objective. More work could be done in this area. For example, the one-

parameter statistical model deals with the degenerate peptide problem in isolation. A 
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more rigorous statistical model integrating the degenerate peptide issue with peptide 

measurability and other instrument effects is needed.   

 

6.2 Missing data 

The degenerate peptide issue is part of a more general missing-data problem in 

LC-MS proteomics. Figure 6.1 illustrates a case where many peptides identify a protein, 

which should allow accurate estimation of protein abundance in samples from control and 

treatment groups; however, missing data, indicated by the dark squares in the figure, 

eliminates many of the detected peptides from statistical analysis based on a mixed 

effects linear model.  

 

 

 

 

 

 

 

 

 

Figure 6.1: Pattern of peptide abundance observations for a protein identified by 

multiple unique peptides. White indicates samples in which the peptide was 

observed. Black indicates missing data. 
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We know that the greatest source of uncertainty in protein abundance estimation 

comes from the inherent difference in measurability of different peptides that identify a 

protein. Some of the missing data are true observations due to the fact that the abundance 

of the peptide in a given protein sample is near the detection limit. But we suspect there 

are still a great number of missing data that are false observations because the peptide 

ion-current peak is present in the mass spectrum but misidentified. The strongest 

evidence for false observations comes from replicate injections into the spectrometer 

from the same biological sample. Peptides seen with high abundance in one but not all 

injections of the same sample may be due to choice of parameters used in processing LC-

MS/MS data to obtain the PMT database and parameter that control matching of peaks in 

the FTICR spectrum to entries in the PMT database.  

To explore this problem, we plan to look into the COPD dataset, and pair up all 

the replicate or triplicate injections of a biological sample to determine for each detected 

peptide whether it is seen in all replicate injections. Figure 6.2 illustrates several distinct 

conditions that will illuminate the missing-data problem. 1) From abundances of peptides 

seen in all injections, we can estimate a threshold of abundance to distinguish low 

abundances from other possible sources of missing data, like incorrect identification. 2) 

Given this threshold, we can eliminate cases where a peptide seen in one but not all 

injections is likely due to limited sensitivity. 3) Count the cases where high abundance 

peptides are missing in one or more replicate injections of the same biological sample.  

With the count defined above as a quantitative measure of missing data, we 

investigate the parameters involved in MS data reduction to determine if there is a 

correlation between these parameters and the missing data problem. Therefore, we can 
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formulate criteria to choose suitable parameters to enable minimizing missing data while 

keeping false-positive peptide identification at an acceptable level.  

  

 

  

 

 

 

 

Figure 6.2: Exploring the missing data problem by evaluating different injection 

conditions. 

 

6.3 Consistency test on MetaCore network analysis  

We incorporate the software package MetaCore to explore biological 

interpretations of groups of proteins altered in abundance by the various treatments. 

MetaCore provides several graph-based tools to relate proteins altered in abundance with 

biological processes affected by treatments. One of them is the “analyze networks” tool 

illustrated in Figure 6.3. This tool displays both the proteins that we identify, called 

“targets”, and the direction of protein abundance change, called “up- or down regulation” 

on signaling networks associated with the control of biological functions. Hence, the 

network becomes a directed graph with nodes that are proteins and edges that indicate 

how a biological process affects their abundance.  

Detected peptide 

High abundance 

peptides are missing 
Missing due to 

limited sensitivity 

Observed in all injections  

Discard 

Estimate a threshold of abundance 
to distinguish low abundances from 

incorrect identification 

Count the case 

Observed in one injections 

but not all injections 
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MetaCore uses an argument based on enrichment statistics to suggest which 

processes within its database of cellular signaling networks is the most likely explanation 

for the proteomic data.  Enrichment statistics are based solely on the number of targets 

found on the network.  The larger the number of targets the high the enrichment score 

and the more likely the signaling network is a valid interpretation of the proteomic data. 

 

Figure 6.3: Sub-network associated with phagocytosis and apoptosis from 

application of analyze-network feature applied to proteins altered in abundance by 

all treatments. 

 

The consistency of up and down regulation of targets with activation and 

inhibition within a network is not included in scores based solely on number of targets on 

a network. We propose that augmenting enrichment with consistency tests will increase 

our ability to discriminate between networks in the MetaCore database which are possible 

explanation for our proteomic observations. 
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Pulling information out of MetaCore’s graphical expression of pathways is one of 

the difficulties associated with this project. Since MetaCore doesn’t allow automated 

downloading of its pathway information due to its intellectual property, we have to start 

with manual data extraction from the graphic description on the pathway. We need to 

compose a property file, which contains nodes, edges, and their attributes of the 

MetaCore pathway, then reconstruct the defined graph by the nodes and edges data, and 

check the logic of the graph according to the attributes of the nodes and edges. For 

example, if an edge denotes gene activation, the gene-product node should be up-

regulated. We score each signaling network, which interprets our proteomic data, by the 

faction of consistent nodes and edges. Networks with highest consistency ratio are 

assigned greater confident in interpreting the biological processes implied by the 

proteomic data. Figure 6.4 shows a sample property file for a reconstructed graph.  

We are also considering about replacement of MetaCore with other available 

pathway analysis tools. Draghici’s [105] systems biology approach for pathway level 

analysis could be a good choice.  

The ultimate goal for use of our dataflow and integrated data-analyzing tools is to 

generate reliable analyzed proteomics results for biological and disease level biomarker 

investigations. Clearly, such improvements will play an important role in making high-

throughput, global quantitative proteomics an established part of biomedical research.  
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Figure 6.4: A sample property file to reconstruct a directed graph. 
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