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PERFORMANCE MODELLING AND HIGH PERFORMANCE BUFFER DESIGN FOR THE 

SYSTEM WITH NETWORK ON CHIP 

Abstract 

 
by Jin Liu, Ph.D. 

Washington State University 
DECEMBER 2007 

 
 
 

Chair:  José G. Delgado-Frias 
 
 High performance novel dynamically allocated multi-queue (DAMQ) buffer schemes for 

systems with network on chip (NoC) have been proposed and evaluated in this dissertation.  An 

analytical model to predict performance of a NoC where wormhole switching technique and 

fully adaptive routing protocols has been developed and compared with simulations.   

In this dissertation, a novel analytical model for NoC which makes use of simple close 

form calculations is presented. This model provides accurate network performance prediction in 

the network stable region. The validity of this model is demonstrated by comparing analytical 

prediction with simulation results obtained on high-radix k-ary 2-cube networks.   

 Three novel switch buffer schemes, DAMQall, DAMQmin and DAMQshared, for system on 

chip with an interconnection network are also reported. The proposed schemes are based on a 

DAMQ self-compacting buffer hardware design. These schemes outperform existing approaches. 

DAMQall have similar performance using only half of the buffer size used in traditional SAMQ 

implementations. DAMQmin provides an excellent approach to optimize buffer management 

providing a good throughput when the network has a larger load. DAMQshared scheme lets virtual 

channels from different physical channel share free buffer space. While providing similar 

performance, DAMQshared scheme uses only around sixty percent of the buffer size that is used in 
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traditional implementation for NoCs. In addition, using same size buffers, DAMQshared 

outperforms existing approaches such as SAMQ and DAMQall by 1% to 2% in throughput. The 

proposed schemes also make a better utilization of the available buffer space.  
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Chapter 1 

Introduction 

This chapter provides an overall perspective of the research work presented in this 

dissertation. Section 1 introduces network on chip which is the major topic of this study. Section 

2 provides the outline of this dissertation. 

 

1.1 System with Network on Chip 

System on chip (SoC) designs are becoming widely used in telecommunication, 

consumer electronics and multimedia areas. As technology allows greater integration, they are 

being investigated in greater detail. By the end of this decade SoCs will grow up to four billion 

transistors [24]. SoCs incorporate a number of components (or modules) including processors, 

controllers and memory arrays. These components need to communicate to pass data and/or 

control information. Thus, a successful SoC design largely relies on the ability to interconnect 

these components to compute a solution efficiently.  

One of the major problems for future SoC designs is the non-scalable global wire delays 

[31]. Global wires can carry signals across a chip, but the wire delays typically increase 

exponentially or at least linearly by inserting repeaters. Therefore SoC design has to rely on 

networking paradigms. The shared medium arbitrated bus is the most commonly used on-chip 

interconnect architecture, here all communicating modules share the same transmission medium. 

Although the bus architecture features simple topology and low area cost, the relatively long bus 
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to which a number of components are connecting has a quite high parasitic resistance and 

capacitance [31]. For SoCs consisting of tens or hundreds of IP blocks, the bus-based 

interconnect architecture will lead to serious bottleneck problems [38]. Another alternative is to 

have dedicated connections between any given modules, but this design could be extremely 

complex as the number of modules increases.  

To overcome these problems, the use of an interconnection network (direct or indirect 

network) within a chip has been advocated by researchers. Direct network consists of a set of 

nodes; each node directly connects to a limited number of other nodes in the network. Two 

neighboring nodes are connected by a pair of unidirectional channels in opposite directions or a 

bidirectional channel. Usually these on-chip computational units contain a network interface 

block called router (switch), which handles communication and connects to neighbor nodes’ 

routers. Thus overlapped computation and communication are realized within each unit. As the 

total number of nodes in the system increases, the total communication bandwidth, memory 

bandwidth and processing capability of the system also increase [2]. Therefore direct networks 

have been a prevalent interconnection architecture.  

Similar to the wide area network design, the on-chip interconnection network is proposed 

to be viewed as a hierarchy of services starting from the physical layer that synchronizes the 

transfer of bit streams to higher-level protocols layers that perform functions such as 

packetization, routing etc. [24].  While there is currently no consensus on a standard set of layers 

for the whole communication system, a three layer model to abstracting the operation of 

interconnection network is proposed in [2]: the routing layer, the switching layer and the 

physical layer. Physical layer refers to link-level wiring protocols for transferring messages and 

managing the physical channels between adjacent routers. Switching layer implements 
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mechanisms for forwarding messages through the network; it determines when and how to 

connect router inputs to outputs and the time at which message components may be transferred 

along these paths. Switching layer utilizes flow control mechanisms to synchronize the message 

transfer; and flow control is tightly coupled with buffer management algorithms that determine 

how the buffers are used, i.e. how messages are handled when blocked in the network. Routing 

layer is responsible to make routing decision, determine the output channels at intermediate 

nodes. 

 Due to the constraints of being in a single chip, using an interconnection network on chip 

needs be restricted in terms of area. Thus, it is extremely important to design the schemes that 

require less hardware resources and still provide a good performance.  

The research presented in this dissertation focuses on direct network architecture of NoC.  

The first part explored the ways to model a directed connected k-ary n-cube. The second part 

researched the methods to efficiently organize input buffer of switches used in the NoC modules. 

 

1.2 Dissertation Outline 

Chapter 2 provides a background on topics related to this dissertation. It describes 

network topology, switching techniques, flow control, routing algorithms and analytical models 

for NoC. It also introduces the virtual channel concept and buffer schemes used in NoC switch. 

In Chapter 3 a novel analytical model for NoC with wormhole switching and fully 

adaptive routing is presented. To confirm its validity, the model is compared with results 

obtained from simulations. 



 

 4

Three novel DAMQ input buffer schemes are presented in Chapter 4. Their performance 

is determined by means of simulations. 

Finally, chapter 5 includes a summary, some conclusion remarks, and a list of 

contributions of this study as well as directions for future research.  
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Chapter 2 

Background 

This chapter provides background on topics related to this dissertation work. The related 

NoC background information includes: network topology, switching techniques, flow control, 

routing algorithms, analytical models, virtual channel concept and buffer schemes for switch.  

 

2.1 Network Topology 

Interconnection networks are usually classified into four major classes based on network 

topology: shared-medium network, direct network, indirect network, and hybrid network. In 

shared medium networks, the communication medium is shared by all connected devices. As it 

was mentioned in chapter 1 the shared bus is an example of this class. Although this architecture 

is simple, it is not suitable for future NoCs with an increasing number of modules.  In direct 

network, communicating devices are linked to each other by transmission channels. To transmit 

a message from one device to another, this message needs to traverse through several 

intermediate devices if the source and destination are not neighboring. On the other hand, an 

indirect network connects devices by one or more switches, thus any message exchanging 

requires information transmitting through one or more switches. Finally, hybrid network is also 

possible by using elements of the previous three paradigms. This research focuses on direct 
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network as most network on chip architectures based on this design. We introduce the common 

direct network topology used in NoC below.  

 Network topology can be depicted by a graph in which nodes represent switching 

points and edges represent communication links [36]. Many direct network topologies have been 

proposed based on their graph properties. Most of the implemented networks have an orthogonal 

topology [2].  If every node is connected to every other node then the network is a completely 

connected network. The completely connected network can use simple routing algorithm and 

achieves high network performance. However, the cost of the complex architecture makes it 

impractical for network with large numbers of nodes. In terms of cost and performance, many 

other orthogonal network topologies such as mesh/torus and hypercube have received more 

attention. There are a number of network designs with different topology for network on chip 

reported in the literatures [27-30], among which k-ary n-cubes have been studied and used the 

most because of their desirable properties, such as ease of implementation, recursive structures, 

and ability to exploit communication locality to reduce message latency [5]. 

The most commonly used direct network topologies are shown in Fig 1. Each node in 

these networks is composed of a routing element (switch) and a process element (PE), except the 

tree like architecture SPIN. In the following, we briefly describe the different NoC topologies 

proposed recently in the literature.  
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(a) 2D torus (4-ary 2-cube) 

 
 

(b) CLICHÉ (mesh) 



 

 8

 

Figure 2.1: Examples of NoC topologies. 

 
 

(c) Octagon 

 
 

(d) SPIN (tree)
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Dally and Towles [29] have proposed a 2D torus as NoC architecture as shown in Fig. 

2.1a. The torus architecture is basically same as a regular mesh [2] except that the switches at the 

edges are connected to the switches at the opposite edge through wrap-around channels. Every 

switch has five ports, one connected to the local resource and the others connected to the closest 

neighboring switches. The long end-around connections can yield excessive delays. However, 

this can be avoided by folding the torus.   

Kumar et al. [28] proposed a mesh-based interconnect architecture, CLICHÉ (Chip-Level 

Integration of Communicating Heterogeneous Elements). This architecture is based on an m x n 

mesh network where every switch, except those at the edges, is connected to four neighboring 

switches and one computation resource (PE) through communication channels. A channel 

consists of two unidirectional links between two switches or between a switch and a PE. Shown 

in Fig. 2.1b is a16 functional IP blocks network.  

Guerrier and Greiner [27] proposed a tree like generic interconnect template called 

SPIN (Scalable, Programmable, Integrated Network) for on-chip packet switched 

interconnections network. A fat-tree architecture is used to interconnect IP blocks. Fig. 2.1d 

shows the basic SPIN architecture with 16 nodes, representing the number of functional IP 

blocks in the system. Every node has four children and the parent is replicated four times at any 

level of the tree. The size of the network grows at (NlogN)/8. The functional IP blocks reside at 

the leaves and the switches reside at the vertices. In this architecture, the number of switches 

converges to S = 3N/4, where N is the system size in terms of number of functional.  

Karim et al. proposed the OCTAGON MP-SoC architecture in [30]. Shown in Fig. 1c is 

an octagon unit consisting of eight nodes and 12 bidirectional links. According to topology, 

exchanging message between any pair of nodes takes at most two hops. To design a system 
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consisting of more than eight nodes, the octagon can be extended to multidimensional space on a 

significantly increased wiring complexity. 

 

2.2 Switching Techniques 

The switching techniques employed in on-chip interconnection networks initially 

followed those techniques employed in local and wide area communication networks, e.g. circuit 

and packet switching.  

In circuit switching, a physical path from source to destination must be reserved prior to 

the data transmission. Physical path is set up by routing header flit which contains destination 

address and some other information. Once a routing header flit reaches the destination, a 

complete path is set up and an acknowledgement is transmitted back to the source. Physical path 

is reserved for the duration of message and may be idle for a period and block other messages. 

Thus circuit switching is only good for long and infrequent messages.  

As an alternative to circuit switching, a message can be partitioned and transmitted as 

fixed-length packets by packet switching. Packets are individually routed from source to 

destination. A packet is stored at each intermediate node then forward to next node. Packet 

switching is good for short and frequent messages [2]. However, unlike in circuit switching 

where a physical path is reserved for the whole message, each packet of a message has to be 

routed at each intermediate node. Moreover, splitting a message into packets also makes 

overhead.  

As the applications of the systems spread into more compute-intensive areas, the 

traditional designs borrowed from LANs become a limiting performance bottleneck. Some new 
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switching techniques, such as virtual cut-through switching (VCT) and wormhole switching, are 

evolved to practical use.  

In packet switching, a packet must be received in the whole at an intermediate node 

before making a routing decision and forwarding to the destination.  However the header of a 

packet usually arrives to an intermediate node earlier than the tail of a packet by multiple cycles. 

This is because of the message length and available bandwidth.  Thus even a node already knows 

the needed information to make a routing decision after receiving the header of a message; it still 

cannot forward the received part of the message to destination. To overcome this drawback, 

virtual cut-through switching is proposed to forward package immediately after routing decision 

is made. In absence of blocking, message can be cut through to input port of next node without 

buffering and the package transmission is pipelined through successive switches. In case a 

header is blocked at a busy output port, the whole message will be received and buffered at this 

node.  

The requirement to buffer entire packets at a node makes it difficult to build compact and 

fast routers by using VCT switching technique.  To construct small router which resides in an 

on-chip component, wormhole switching is used.  

Wormhole switching has been widely used in practical multi-computer and network on 

chip where small and faster router is needed [31]. In wormhole switching, message packets are 

broken up into flits for message transmission flow control. Header flit contains routing 

information, once a header is received at intermediate node, the routing decision is made and the 

header is forwarded to next node in absence of blocking. The remaining data flits just follow the 

route that is determined by the header.   
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Input or output buffers of a wormhole router only need to be able to store a few flits. For 

example, message buffer in the Cray T3D are 1 flit deep [2]. The flits are pipelined through the 

network in a similar manner as VCT in absence of blocking. Because a message is typically too 

large to be completely stored in a router, in case the required output port is busy, all the flits of 

the message are stored in situ which implies that a block message occupies buffers in several 

routers along the path.  

An example of a blocked message in wormhole switching network is shown in Fig 2.2 

where message A is blocked because message C has occupied south port of node 3 and message 

B is blocked due to message A’s occupancy of west port at node 2. Furthermore, Fig 2 shows 

that the flits of blocked message A are stored in situ.  

This research work is focusing on wormhole switching network.  

 

Figure 2.2: Blocked message in a wormhole network 
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2.3 Virtual Channel 

The simple wormhole switching introduced in previous section has a drawback that 

different messages cannot be interleaved or multiplexed over a physical channel. Once a message 

starts to be transferred on a channel, this channel will be occupied till the entire message crossing 

it. During this time period, the occupied channel can not be used by other messages. Virtual 

channel [2] mechanism is introduced to increase channel utilization. 

Multiple virtual channels can multiplex a physical channel. They are implemented by an 

independently managed pair of buffers at two adjacent nodes as illustrated in Fig 2.3 where we 

can see two unidirectional virtual channels multiplex one direction of the physical channel. 

Logically each virtual channel in Fig 2.3 operates as if a distinct physical channel which operates 

at half the original bandwidth.   

 

 

 
 

Figure 2.3: Virtual channels multiplexing a physical channel 
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Virtual channel can be used to improve message latency and network throughput; 

however it was first introduced to solve the problem of deadlock in wormhole switching network. 

[2] As shown in Fig 2.4, message A and message B that are blocked in Fig 2.2 can now advance 

to their next hop node with the help of virtual channel.  

Using virtual channels may improve network performance by reducing blocking 

probability. However the increased channel multiplexing reduces the data transfer rate of 

messages, thus increases message latency. Therefore, the increase of message latency may 

eventually overshadow the improvement brought by virtual channels [2]. Moreover, virtual 

channels also introduce overhead in hardware support for this mechanism. Additional hardware 

blocks need to be used to make arbitration between multiple virtual channels and allocate buffer 

space among the virtual channels. Thus, when using virtual channels for a switch, these tradeoffs 

need to be taken into considerations.  

 

 

 

 

 
Figure 2.4: Use virtual channel to reduce blocking. 
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2. 4 Buffer Schemes 

The switch buffers can be associated with input or output ports. Because buffering 

packets at the input ports can reduce hardware complexity [3], it is preferred over output ports 

buffering designs [37].  

Input buffering schemes can be divided into four categories, namely FIFO (First in First 

out), SAFC (Statically Allocated Fully Connected), SAMQ (Statically Allocated Multi-Queue), 

and DAMQ (Dynamically Allocated Multi-Queue). They are illustrated in Fig 2.5.  

Among these designs, DAMQ efficiently utilized buffer space by dynamically allocating 

buffer to incoming flits. It has been proved to be a better scheme than others. [3] Following is the 

DAMQ buffer schemes reported in the literatures.  

2.4.1 Linked list buffer scheme  

In order to let multiple queues of packets share a DAMQ buffer, linked lists can be used 

to implement the buffer scheme [37] [39] [40]. The basic idea of this approach is to maintain 

(k+1) linked lists in each buffer: one list of packets for each one of the (k-1) output ports, one list 

of packets for the end node interface and one list of free buffer blocks. Corresponding to each 

linked list there is a head register and a tail register. The head register points to the first block in 

the queue and the tail register points to the last block. In each output queue, next block 

information also must be stored in each buffer block to maintain the FIFO ordering.  
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(a) First in First out (FIFO) 

 
 

(B) Statically Allocated Fully Connected (SAFC) 
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Figure 2.5: Input buffer schemes. 

 
 

(c) Statically Allocated Multi-Queue (SAMQ) 

 
 

(d) Dynamically Allocated Multi-Queue (DAMQ) 
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2.4.2 Self-compacting buffer scheme.  

To reduce the hardware complexity of the linked list scheme, an efficient DAMQ buffer 

design self-compacting buffer (SCB) was proposed by [40] [41]. The idea for this buffer scheme 

is to divide the buffer dynamically into regions with every region containing the data associated 

with a single output channel. If two channels are denoted as i, j with i < j, then the addresses of 

buffer regions for the two channels Ai Aj will be Ai < Aj. There is no reserved space dedicated for 

any channel. Data is stored in a FIFO manner within the region for each channel. When an 

insertion of the packet requires space in the middle of the buffer, the required space will be 

created by moving down all the data which reside below the insertion address. Similarly, when a 

reading operation conducted from the top of a region, data removed from the buffer may result in 

empty space in the middle of the buffer, then the data below the read address is shifted up to fill 

the empty space. Our new buffer schemes are based on the SCB scheme.  

 

2.5 Routing algorithms and analytical models 

Routing algorithms are used to specify the path from source to destination for each 

message. They can be implemented in two ways which are either deterministic or adaptive.  

2.5.1 Deterministic routing protocols  

Deterministic routing protocol chooses the path for a message only by its source and 

destination. All packets with the same source and destination pair will follow one single path. 

The packet will be delayed if any channel along this path is loaded with heavy traffic, and if a 

channel along this path is faulty the packet cannot be delivered. Thus the deterministic routing 

protocols are prone to suffer from poor use of bandwidth, blocking when alternative paths are 

available. They are particularly susceptible to component failures. [16] A common deterministic 
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routing algorithm is dimension-order routing [22], in which the packet is routed in one 

dimension at a time, arriving at the proper coordinate in each dimension before proceeding to the 

next dimension. We use a dimension-order routing protocol E-Cube to conduct our simulation 

for two new buffer schemes.   

Deterministic routing has been widely used in multi-computers due to its simplicity. [32] 

[33] [34] and its analytical model has been widely reported in the literature [3] [6] [7] [9] [10] 

[11] [35]. 

2.5.2 Adaptive routing protocols   

Adaptive routing protocols are proposed to make more efficient use of bandwidth and to 

improve fault tolerance of interconnection network. In order to achieve this, adaptive routing 

protocols provide alternative paths for communicating nodes. Thus it can overcome the 

congested areas in the network. Several adaptive routing algorithms have been proposed, 

showing that message blocking can be considerably reduced, thus strongly improving 

throughput.[23] Among them, routing algorithms based on Duato’s design methodology [16] are 

very popular. These routing algorithms split each physical channel into two virtual channel sets, 

the adaptive and the deterministic channels. When the paths of adaptive channels are blocked, a 

message uses an escape channel at the congested node. If there is any free adaptive channel 

available at subsequent nodes, the message can go back to the adaptive channels. Adaptive 

routing algorithms can be further categorized to progressive and backtracking algorithms. 

Progressive routing algorithms move the message header forward by reserving a new channel. 

Backtracking algorithms needs more complex hardware support [2] because they allow the 

message header to be routed backtrack releasing previously reserved channels. In our model, we 

assume the routing algorithm is progressive, no backtracking is allowed.  
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Two analytical models for wormhole switching network using fully adaptive routing 

protocols are reported in the literature [4] [5]. Y.Boura et al. proposed an analytical model for 

adaptive routing Hypercube in [4]. In Hypercube network a message traverses at most one 

channel along a dimension. Due to this topology nature, at an intermediate node, the number of 

remaining hops for a message to arrive at destination is known in Hypercube. However, k-ary n-

cubes do not have this property. Thus, at a given intermediate node the number of remaining 

hops that remains on current dimension is not clear. M. Khaoua proposed a model for Duato’s 

fully adaptive routing algorithm in k-ary n-cubes in [5]. Its key idea was to compute the blocking 

probability at a given node by deriving the blocking probability of the two virtual channel groups 

in Duato’s algorithm i.e. adaptive and deterministic virtual channels groups respectively.  

In this dissertation we present a novel performance analysis model for k-ary n-cubes 

network on chip with wormhole routing and fully adaptive routing. We use a 2D torus network 

as the analysis example to compute the average message latency using our new model. The 

model is based on general queuing theory and probability analysis. The blocking probability for 

a message at a given channel is derived by the arrival traffic rate and the service rate the message 

receives. It’s simple and yields satisfactory predictions in the network’s steady state region.  
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Chapter 3 

Analytical Model for Wormhole Switching NoC 

 

This chapter presents a novel analytical model for easily predicting average message 

latency of traffics in a network on chip where wormhole switching and fully adaptive routing 

protocols is used. The model has simple close-form calculations and produces very accurate 

results in the network stable regions. To validate this model a comparison between analytical 

prediction and simulation results is performed on high-radix k-ary 2-cube networks. 

 

3.1 Network Configuration 

We use a 2D torus network as our analysis target to illustrate the model for simplicity.  Fig. 

3.1 shows an 8-ary 2-cube (torus) message exchanging network. Each node consists of a 

processing element (PE) and a switch. PE is responsible for generating message and consuming 

message from other nodes. Each switch has 5 input and output channels. PE is connected to 

switch by the local injection/ejection channel. A node is connected to 4 adjacent neighbouring 

nodes by bi-directional network channels.  

As introduced in chapter 2, virtual channels multiplexing one direction of a duplex physical 

channel are used in network on chip to enhance throughput and avoid deadlock. Due to the 



 

 22

nature of limited hardware resource and to facilitate our model calculation, we assume the buffer 

size for each end of a virtual channel is 1 flit deep.  

 

 

Figure 3.1: 64 nodes torus message exchanging system 

A message which is generated from a nodes PE will first be transmitted to the switch by 

local injection channel. Then, this message will be routed toward its destination. At the 

destination node, the message is transmitted to PE through local ejection channel. Thus a 

message has to travel through at least 3 links from the source to destination. For instance, as 

shown in Fig. 3.2, the message generated in node N1 has to traverse channels Ch1,L, Ch2,W and 

Ch2,L to arrive at its destination PE in N2.  
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Figure 3.2: Switch to switch path 

 

3.2. Pertinent Assumptions 

For this model the following assumptions have been made; these assumptions are 

commonly accepted in the literature [2-13]. 

1) Independent traffic generation. Each node generates traffic independently with the traffic 

following a Poisson process on a mean rate of Mgen messages per cycle. 

2) Uniform distribution of destinations. Message destinations are uniformly distributed across 

the network nodes. Although for an actual application, if node A sends a message to node B it’s 

highly possible that B will send back a message to A. 

3) Messages of constant length L flits. A message is long enough so that its data flits span 

from source to destination nodes. Moreover, the message lengths can be designated according to 

any probability distribution where expectation and variance of message lengths are known.  

4) One clock cycle transmission between adjacent nodes. Each flit requires one cycle to be 
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transmitted from one node to the next over the physical link between them. Two cycles are 

needed for a flit to cross a node, i.e. from an input buffer to an output port, in absence of 

blocking.  

5) Infinite capacity in local injection queue. The local queue at the injection channel in the 

source node has infinite capacity. Messages at the destination node are transferred to the local PE 

one flit at a time through the ejection channel. 

6) Duplex physical channels between any two adjacent nodes. More than two virtual channels 

are used for each direction of a physical channel. In Duato’s algorithms [15] [16], if there are 

adaptive virtual channels available, a message can use a random one; for the deterministic virtual 

channels, although there are two of them, a message uses only one at a time. Therefore we adopt 

the same strategy as described in [4] to make no distinction between the deterministic and 

adaptive virtual channels when computing the different virtual channels occupancy probabilities. 

This simplification also reflects the idea of fully adaptive routing. 

 

3.3 Notations 

There are a number of notations involved in this model. We list all of them into Table 3.1 to 

facilitate the name look up.  
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Table 3.1. The Parameter Notations 

 
Parameter 

 

 
Description 

Mgen Average message generation rate at each node 
Tmsg The mean latency for all the delivered messages 
Ts Routing (Switching) delay across a node 
Tw Propagation delay across the physical channel 
L Average message length(not including header) 
D Average path length for all the delivered messages 
Nq Average number of intermediate nodes along the path 

Wq 
Average waiting time for a message at each intermediate nodes along 
the message’s routing path 

Wej Average waiting time for a message on ejection node channel 
λ The average message arrival rate at a channel 
μ The service rate for a message at a physical channel 
S The service time for a message at a channel without contention. 

SR The service rate for a message at a channel without contention 
Weq Average waiting time for a message on last node of the routing path. 

dir
rμ  The service rate that a channel observes from the immediate 

downstream channel on dir direction. 

μr 
The service rate that a channel observes from all its immediate 
downstream channels at nodes on the path.  

μrE The service rate that a channel observes from all its immediate 
downstream channels at destination node. 

P’Q The blocking probability for a message at a physical channel without 
contention. 

PQ The blocking probability for a message at a physical channel 
v The virtual channel number of each direction of a physical channel  

o In/output ports number of a node (not including local channel port), in 
our network, it’s 4. 

dir Direction. Each nodes has ports on 5 directions, i.e. East, South, West, 
North and Local 

Chn, dir 
Physical channel in dir direction of a message’s nth hop node.  
 

 

 

3.4 Calculation of Average Message Latency 

Average message latency is a key metric to evaluate a network’s performance. It’s defined 

as the time elapsed since the message transmission is initiated until the message is received at the 
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destination node [2]. In the following, we present how to calculate the average message latency. 

First we present the notations used in the computing process, and then we describe the 

calculation process. 

The average message latency Tmsg comprises of the message transmission delay across the 

network channel tw, the intrarouter delay ts, [2] the average contention delay Wq at the network 

channels and the average delay Wej at nodes’ local ejection channel. It can be computed as 

follows: 

   ( )1 tr trmsg q q eq ejT N W W D T L T W= − ⋅ + + ⋅ + ⋅ +        (1) 

Where Ttr is given by max(ts, tw). It demonstrates the nature of pipelined flits transmission 

of wormhole switching in absence of contention. DTtr denotes the mean time that a message’s 

header flit needs to travel from source to destination and LTtr denotes the travel time for the data 

payload of a message. (Nq -1)Wq shows the waiting time that header flit experienced at the Nq -1 

channels of intermediate nodes. Queuing system at the destination node of a messages routing 

path, Weq, is separated from other queues on previous nodes because of the different service rate 

offered by last node. We will discuss the detail later. As the minimum link number that a 

message travels is 3, the average hops that messages take, D, can be obtained by: 

3
i

k

i
D p i

=

= ⋅∑       (2) 

Where k is the diameter of the network, and pi denotes the probability that a message’s travel 

path is i links long. Another simple and commonly used estimation of D is: 
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3
2

kD +
=        (3) 

However, in a low radix network, Eq. (3) is prone to produce error. For example, D of the 

4 nodes Torus network is 3.33, while Eq. (3) yields 3.5 in this case.  

Under the uniform traffic pattern, the average traffic arrival rate λ for each channel is determined 

by the message generating rate Mgen, average routing hops D and output channels number of each 

node o  [4]. 

4
genM D

λ
⋅

=              (4) 

In order to receive service from a link, the message’s header flit needs to acquire a virtual 

channel. Once a virtual channel is assigned to a message, it keeps serving this message and will 

not be released until all the data flits flow across this node. Because each virtual channel has one 

flit depth buffer, once it is assigned to a message, no other message can use the same virtual 

channel till it’s free again. When the traffic rate is light, there is no congestion; the service time 

at each channel can be defined as:  

( 1)sS t L= ⋅ +               (5) 

And the service rate can be derived accordingly: 

S
SR 1

=
          (6) 

When traffic rate is high enough, congestion appears in the network and waiting queues 

build up at corresponding bottleneck links. In this case, the service that one channel can provide 
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to the incoming messages is not only determined by its own service capacity, but also by the 

blocking state of its immediate downstream channels.  

In our network, the traffic arrival rates for the four input channel of a node are equal to 

each other because of the following reasons: 

1. Torus network with wrap around links is a strictly symmetric topology.  

2. Every node is identical in terms of capacity of generating and consuming message. 

3. Traffic is generated randomly from all the nodes. 

4. The routing protocol is fully adaptive algorithm.  

5. The input channels all have equal service capacity.  

So we can treat the queuing systems at each of these channels as identical. Without loss of 

generality, suppose the node that we analyze is at nth hop of a messages routing path. We derive 

the queuing system model of the channel Chn,W on the west input port as shown in Fig. 1.  

We follow the suggestion in [11] to treat the waiting queue Qn,W at channel Chn,W as two 

distinct queues Qc and Qd. As shown in Fig. 5, Qc is result from the delay involved in router 

(switch) service delay observed by Chn,w, while Qd is due to the contention that a message may 

experience when it’s to be accepted by a downstream input channels.  
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Figure 3.3: Queuing model for an input channel 

Qc is determined by the traffic arrival rate λ and the router self’s service rate SR. To 

model it, we use an M/M/m queuing system. The first two “M”s stands for the Poisson 

distribution traffic arrival process and the exponential distributed service time respectively. The 

third “m” means there are m servers and a message at the head of the queue is routed to any 

server that is available. Accordingly we have v virtual channels per physical link in our network 

configuration, which are treated as the v servers in the queuing model.  

The probability that an arrival message will find all virtual channels are busy and will be 

forced to wait in queue can be obtained by [1]:  
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( )
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⋅ ⋅
=
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Where p0 is given by:  

( )
( )0

1
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0

( )
! ! 1

nv v

n

v vp
n v
ρ ρ

ρ

−
−

=

⎛ ⎞⋅ ⋅⎜ ⎟= +
⎜ ⎟⋅ −
⎝ ⎠
∑     (8) 

 

And ρ is given by:  

v SR
λρ =
⋅       

For the second queue Qd, the traffic arrival rate is still λ, and the service rate, μr, is the 

service rate that offered by all the immediate downstream channels to Chn,w. However μr at 

destination node is different from those at intermediate nodes along the path. This is because at 

destination, the message is bound to be delivered into local ejection channel, thus other three 

possible immediate downstream channels cannot contribute service to μrE in this case. 

Correspondingly, at other nodes along the path, local ejection channel won’t offer service to a 

message. We first show how to compute μr at intermediate nodes and use it to get the average 

waiting time for a message at these nodes when contention is taken into consideration. After that, 

we’ll show the calculation for μrE and the corresponding waiting time at the destination node.  
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Figure 3.4: Reduced queuing model for an input channel 

To obtain μr at intermediate nodes, we can further divide Qd to three queues, each of 

which is associated with an immediate downstream channel in one of the three possible 

downstream directions, i.e. east, south and north in this case. Note, the routing algorithm that we 

assume in the model is progressive algorithm, so we don’t treat the backtracking channel as an 

immediate downstream channel. However, if the model needs to be used to model a backtracking 

routing algorithm, then service from one more possible downstream channel (Chn-1,E in this case) 

in the reverse direction can be easily added in.  

As we mentioned before, the traffic arrival rates for the three queues on each direction of 

next hop are equal to each other. Moreover, these downstream network channels have same 

service capacity, so we can get the analysis results for all these queues by analyzing any one of 

them. Without loss of generality, let’s consider the waiting queue residing at the west 

downstream channel Chn+1,W. The channel can accept a new message when it has free virtual 

channel available, while no messages can be accepted when all the virtual channels are occupied. 

Furthermore, Chn+1,W’s service capability, i.e. the number of flits that can be processed within a 

unit time (clock cycle) is fixed, so with more traffic generated in the network, the probability of 
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one message to be served is less; in another word, the waiting time for this message is longer. 

Since we can get the average waiting time for a message by: [1] 

( )

'

1
Q

dq
P

W
ρ

λ ρ

⋅
=

⋅ −      (9) 

Then the average time that a message spends at the queuing system of Chn+1,W is Wqd + S. 

In addition, there are v virtual channels in Chn+1,W and Chn+1,W has o possible inputs(including 

local injection channel), therefore we can get
w

r
μ as : 

( )
w
r

qd

v
o S W

μ =
⋅ +       (10) 

Hence, we get μr as:  

W S N

W S Nr r r rp p pμ μ μ μ= + +      (11) 

Because of the symmetry of our network, we know that pW=pS=pN, therefore μr=3
w

rμ . 

For networks with different topology or traffic pattern, we can get μr by deriving the probabilities 

of the traffic flows to downstream links on different direction. Using Little’s Theorem, the 

average number of messages in the whole queuing system at Chn,W can be derived as: 

QP
N T

v
λλλ

μ μ λ
⋅

= ⋅ = +
⋅ −                  (12) 

Note that μ in Eq. (12) is the overall service rate that Chn,W provides to its incoming 

traffic. It takes into consideration of both with and without contention cases on downstream 

channels. Also by Little’s Theorem, the average number of messages in Qd is:  
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d
r

N λ
μ λ

=
−                  (13) 

And the average number of messages in Qc is: 

Q
c

P
N

SR v SR
λλ

λ
⋅

= +
⋅ −               (14) 

As Qn, E comprises of Qc and Qd, combine Eq. (12), (13) and (14), we get: 

Q Q

r

P P
v SR v SR
λ λλ λ λ

μ μ λ λ μ λ
⋅ ⋅

+ = + +
⋅ − ⋅ − −          (15) 

From Eq. (7) and (8), we already knew that PQ in Eq. (15) can be expressed in terms of λ and μ:  
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⎛ ⎞⋅ ⋅⎜ ⎟+ ⋅ ⋅
⎜ ⎟⋅ −
⎝ ⎠=

⋅ −

∑
     (16) 

Where ρ is given by: 

v
λρ
μ

=
⋅  

Replace PQ in Eq. (15) using Eq. (16), solve the nonlinear equation, we can get the service 

rate μ at channel Chn,W. 

Then, by Little’s Theorem again, we can obtain the average time Wq that a message has to 

wait in queuing system at the intermediate nodes of a message’s traveling path: 

( )1
Q

q
P

W
ρ

λ ρ
⋅

=
⋅ −      (17) 
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At the destination node, say Ndes, μrE is solely determined by the local ejection channel. 

But we cannot apply Eq. 9 and 10 directly, because there may be more than one message choose 

Ndes as its destination node which implies that local ejection channel has a different arrival traffic 

rate than network channels. We can derive the message arrival rate from other sources by:   

1

1
' ( )

o
i

i
n iλ λ

−

=

= ⋅ −∑         (18) 

Where n is the total nodes number of the network. Since the node’s local ejection channel 

doesn’t have any downstream channel dependency; we treat it as an independent M/M/m queuing 

system, where “m” also equals to virtual channel number v. Thus we can use Eq. (8) to calculate 

the average waiting time for a message, Wqde, in absence of contention by replacing λ to λ+λ’.  

So we obtain μrE as: 

'rE
qde

v
S W

λμ
λ λ

= ⋅
+ +              (19) 

Repeating the computing process expressed in Eq. 12, 13, 14, 15, 16, 18, by providing the ρ 

for this case: 

'
v
λ λρ

μ
+

=
⋅   

We can obtain the waiting time at the input channel of destination node, Weq.  

Finally, as we mentioned that the nodes local ejection channel is treated as independent 

M/M/m queuing system; the average waiting time on ejection node channel can be obtained by:  
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( ) ( )' 1
ej ej

ej

Q
ej

P
W

ρ

λ λ ρ

⋅
=

+ ⋅ −               (20) 

Where 
ejQP can be obtained by Eq. (16) with  

 
'

ej v SR
λ λρ +

=
⋅               (21) 

At this point, the message delay Tmsg defined in Eq. (1) can be easily calculated out as all 

the unknown variables at the right hand side of the equation are all obtained now.  

3.5 Validation 

We carried out a number of simulations to validate the proposed model. The simulator we 

used is flexsim1.2 [18] [20], which is a flit level simulator for Torus/Mesh network adopting 

wormhole switching. In flexsim1.2, when uniformly distributed traffic is used in simulations, the 

source of a message is equally randomly picked among nodes in the network. Thus we can treat 

the traffic that arrives at a given channel follow Poisson distribution. Parameters of the simulated 

network are set to conform to the assumptions described in section 3. Validation experiments are 

carried out on many different combinations of network size, message length and virtual channel 

number per physical channel. In order to facilitate the illustration of our model’s validity, the 

messages’ data payload is set to 32 flits and the number of virtual channels per physical channel 

is set to 4. All the simulation results are obtained from simulations running for over 1 million 

cycles simulating time to rule out exceptional results. In the follows, we present average message 

latency results obtained from both model and simulations on three different size networks, 64, 

256 and 1024 nodes two dimensional Torus network. Figures 3.5, 3.6 and 3.7 demonstrate 

average message latency results predicted by the model against those obtained from the 
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simulations. These results are obtained from 8-ary 2-cube, 16-ary 2-cube and 32-ary 2-cube 

networks respectively. The figures reveal that simulation results and predictions of our model 

match well from a very light usage of a network channel to about 50% average utilization, after 

which point discrepancies are apparent as the network gets into saturation state. 
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Figure 3.5: Comparison of Model against simulation in 64 nodes torus network 
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Figure 3.6: Comparison of Model against simulation in 256 nodes torus network 
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Figure 3.7: Comparison of Model against simulation in 1024 nodes torus network 
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3.6 Apply model to multiple flit buffer  

 We have presented the detailed calculation process to use the proposed analytical model 

predicting performance of a k-ary 2-cube network in section 3.4. In section 3.5 a comparison 

with simulation results is shown. In that calculation process, to make it simpler to illustrate the 

core idea of the model we assume the buffer size at each virtual channel end is 1 flit deep. 

Although there are machines that implement 1 flit buffer, it is also possible to have larger virtual 

channel buffers. In this section we introduce an approach to apply our model to Statically 

Allocated Multi-Queue (SAMQ) buffers which are more than 1 flit deep.    

The following are notations that are needed in this extension of the model: 

1. Buf:   Buffer Size of each virtual channel 

2. Dsm:  Number of nodes needed to store message in virtual channel buffer when message is 

blocked. It is obtained by L/Buf where L is message length 

3. Di:  Distance between ith intermediate node to destination node.  

Due to the pipelined transmission nature of wormhole switching, if there is no 

congestion in the network, then buffer size has no impact on flowing message because all the 

flits are cut through to next hop channel without storing in current node’s channel buffer.  

In case the message is blocked in an intermediate node’s channel, all the flits will be 

stored in the intermediate node buffers. Thus, if there is more buffer space available at each 

intermediate node’s channel, then more flits can be stored in these channels. Therefore, for a 

channel that are near the source node, its Dsm may be smaller than its Di. In contrast, if each 

virtual channel has 1 flit buffer, then Dsm is equal to Di. This is to say that the channels near the 

source node side may be freed right after transmitting flits and the possible congestions of 

message M in subsequent nodes have no impacts to this channel after it finishes transmitting all 
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the flits of M. This is because all the flit can be stored in Dsm virtual channels that precede the 

congested node.  

In wormhole switching, once a virtual channel is assigned to a message, this virtual 

channel cannot be used for other messages no matter what’s the size of the virtual channel buffer. 

Therefore, although more buffer space means more data flits can be stored in the channel buffer, 

the service rate that a channel can provide to the incoming traffic still remains same. In another 

words, using the notations of analysis in section 3.4, the service rate of a physical channel is still 

determined by the v servers that are the virtual channels multiplexing it. Therefore we can use 

the average waiting time for a message at each intermediate node, Wq, which is obtained in 

section 3.4 to estimate the message waiting time in the multiple flit buffer case.  

Using the notations in section 3.4, for multiple flit buffer virtual channels, we can obtain 

the average time that one virtual channel may be occupied by a flowing message M as: 

( 1) min( , )tr sm i qL T D D W+ ⋅ + ⋅     (1) 

where (L+1)Ttr denotes the time that this channel spends to transfer the header and data payload 

flits of a message M and min(Dsm, Di)Wq shows the time span that flits of M stay in this virtual 

channels buffer. As mentioned earlier, we know that if 1 flit buffer is used, then Dsm = Di, 

therefore, the average time that one virtual channel may be occupied by a flowing message M in 

this case is:  

( 1) tr i qL T D W+ ⋅ + ⋅      (2) 

Subtract (1) from (2), we get difference between the time that a flowing through message spent 

in a 1 flit buffer channel and the time it spent in multiple flit buffer channel:   
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( min( , ))i sm i qD D D W− ⋅     (3) 

Using equation (2) and (3), together with the parameters of a analysis target network, we 

can obtain the percentage of the average time reduction of message M staying in a virtual 

channel, which in turn can be used to estimate the improvement in terms of the physical channel 

service rate. Then we can apply the model presented in section 3.4 to predict the performance of 

networks with multiple flit virtual channel buffer.  

As to apply the model to predict network with Dynamically Allocated Multi-Queue 

buffer, we need to analyze the pattern of how the buffer space is partitioned among the 

competing virtual channels. It is more complex than the previously mentioned SAMQ case. 

However it would be a very good topic for future extension of this research.  

 
3.7 Conclusion 

  We have presented an analytical model for predicting network performance in this 

chapter. This model can be applied to wormhole switching network to predict network 

performance measures, such as average message latency and average link waiting time in a torus 

network using fully adaptive routing algorithms such as Duato’s method. Unlike previously 

proposed models, this model is based on general queuing theory and probability analysis. It’s 

simple and yields rather accurate predictions in network’s steady state region. Compared with the 

model [5] in the literature for wormhole switching k-ary n-cubes network with adaptive routing, 

our model computes the blocking probability using message arrival rate and service rate 

provided by network channels and can predict network performance accurately from very light 

traffic load to the saturation point where about 0.2 messages are received/sent at each network 

node per cycle. While the model proposed in [5] conducted the calculation based on virtual 
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channel groups in Duato’s routing algorithm and predicted network performance in the traffic 

load region from 0 to about 0.002 messages per node per cycle.  

By applying close-form calculations of this model, we can correctly predict high-radix k-

ary n-cubes in steady state regions with a short code snippet. It can be concluded that our model 

provides an effective and practical evaluation tool. In addition, since this model obtains message 

waiting time at each queuing system at channels of a routing path, it can be easily adapted for 

networks with other topologies. For instance, mesh network. The only required information is 

message arrival rate and service rate at the related channels. These two measures can be 

computed based on the specific network topology property and routing algorithm. 
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Chapter 4 

High Performance DAMQ Buffer Schemes 

 

In this chapter three novel DAMQ buffer schemes based on self compacting buffer (SCB) 

are presented. These schemes are proposed to let traffic flow make an efficient use of input 

buffer that resides in each communicating node. For each of the three schemes, we first describe 

their organization; then present the simulation results and some concluding remarks.  

 

4.1 DAMQ with Reserved Space for All Virtual Channels 

DAMQ dynamically allocate buffer blocks according to the packet received. Compared 

with statically allocated buffer scheme, the advantage of DAMQ is that it uses efficiently the 

buffer space by applying free space to any incoming packet regardless its destination output port. 

Since there is no reserved space dedicated for each output channel, the packets destined to one 

specific output port may occupy the whole buffer space thus the packets destined to other output 

ports have no chance to get into the buffer. This is the case especially for small and compact 

routers with limited buffer space where wormhole switching technique and virtual channel 

mechanism are commonly used. A unidirectional virtual channel is implemented by an 

independently managed pair of buffers at two adjacent nodes.  
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Figure 4.1: DAMQall Buffer space at the initial state 

When several virtual channels multiplex across the physical channel and share a common 

buffer, the virtual channels which have packets accepted in the buffer prior to other virtual 

channels may hold the whole buffer space when the output port to next hop node that it destines 

to is busy. In order to overcome this shortcoming of DAMQ buffer schemes, we implement a 

new buffer organization scheme, DAMQ with reserved space for all virtual channels (DAMQall). 

DAMQall is based on the self-compacting buffer (SCB) scheme. It inherits most features of the 

SCB. Similarly, the virtual channels multiplexing one direction of a physical channel share a 

buffer. The new feature is that there is reserved space dedicated for each virtual channel, 

therefore at any time there is free space for the packets of “late” virtual channels which has not 

received packet and one virtual channel can never consume the whole buffer. As shown in Figure 

4.1, two buffer slots are reserved for each virtual channel before the buffer accepts any incoming 

flit. The reserved spaces for each virtual channel are arranged sequentially according to the 

sequence numbers of the virtual channels.  
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Figure 4.2: DAMQall Buffer space status in operations 

One register is used to point to the head of each reserved space, i.e. the head of the buffer 

region for each virtual channel. If two channels are denoted as Vi, Vj with i + 1 = j, then the 

reserved region for Vj will be placed right after the reserved region for Vi.  

The size of reserved space for each virtual channel can be adjusted, however, we have 

chooses two flits because, according to our simulation experiments statistics, two reserved flits 

scheme yields satisfactory performance while keeps more free space for sharing. When there is 

an incoming flit to the buffer, the DAMQall operates as shown in Figure 4.3. When a flit is 

leaving the buffer, the DAMQall operates as illustrated in Figure 4.4: 

.  Also as shown in Figure 4.2, the reserved space for each virtual channel is always kept if 

there is no flit or only one flit in the buffer region for a specific virtual channel.  
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Figure 4.3: Pseudo-code for in buffer operations 

 

 

if (first flit for current VC){ 

  put it into buffer; 

  increment counters; 

} 

else if 

(current VC doesn’t fill reserved space for it) or 

(there is free slot left in buffer){ 

 if (last flit of current VC is next to first slot of next VC buffer space) { 

   shift down all the flits and reserved space of the lower virtual channels one slot;  

    increment head pointer for lower VCs; 

} 

put flit into buffer; 

increment counters; 

} 
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Figure 4.4: Pseudo-code for out buffer operations 

When the buffer performs shift up or shift down operations, the reserved spaces are 

treated same as the slots which are holding flits. Thus the order of the buffer space for virtual 

channels is kept conforming to the sequence of virtual channels. And once the number of current 

flits in buffer plus the number of reserved slots equals to the total amount of buffer slots, no 

more flit will be accepted unless this flit belongs to a virtual channel which has any reserved 

space available. Therefore, one or more virtual channels which have the flits come into the buffer 

at earlier time can never deprive the chance for other virtual channels which get flits later than 

if (last flit in current VC){ 

  write flit to output port; 

  decrement counters; 

} 

else{ 

  write flit to output port; 

  decrement counters; 

  shift up remaining flits of current VC; 

  if (number of remaining flits of current VC >= reserved space number){ 

shift up all the flits and reserved space of following VC one slot; 

decrement head pointer for following VC; 

} 

} 
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them to get buffer. Moreover, once the earlier coming packets are blocked in the buffer, since 

there is still reserved space for other virtual channels, the network traffic will keep flowing, so 

the performance of the switch is also enhanced. This is the key improvement of DAMQall 

scheme over SCB scheme. 

  

4.2 DAMQ with Minimum Reserved Space for Virtual Channels 

DAMQall improved SCB by reserving buffer space for each virtual channel to avoid the 

situation that a few virtual channels consume the whole buffer then other virtual channels can not 

get buffer even when those virtual channels which get buffer are blocked. In the simulation 

experiments, we found that DAMQall is not the most efficient way to reserve space for virtual 

channels. In a specific time interval, there may be no packets destined for some virtual channels. 

Even worse situation is that there may be no packets destined for some virtual channels for a 

very long time. In either case, the reserved spaces for these idle virtual channels are wasted. In 

order to reserve the buffer space more efficiently and provide more space for flowing traffic, we 

implement another buffer organization scheme, DAMQ with minimum reserved space for all 

virtual channels (DAMQmin). DAMQmin is also based on SCB scheme and the virtual channels of 

one direction of a physical channel still share a buffer. And based on the simulation results, we 

still set the number of reserved buffer space to two slots. The difference to DAMQall is that at 

any time there is at most one reserved space for all the virtual channels. And if every virtual 

channel have flit present in the buffer, no reserved space will be kept in the buffer anymore. 

Thus DAMQmin use minimum space for reserve purpose. As shown in Figure 4.5, two buffer 

slots are reserved for the virtual channel which may firstly claim for buffer.  
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Figure 4.5: DAMQmin Buffer space status at the initial state. 

Once a virtual channel has one flit come into the buffer, it will occupy two buffer slots 

which were reserved space before it comes in, thus there is actually still one slot reserved for it. 

As shown in Figure 4.8, this virtual channel will hold at least these two buffer slots unless it has 

no flit left in the buffer any more. Once every flits of a virtual channel moves out the buffer, the 

header pointer of this virtual channel will be reset to empty and there are no more buffer slots 

belong to it. Another two slots reserved buffer region may be created if possible. The operations 

that DAMQmin performs for incoming and leaving flit are shown in Figure 4.6 and 4.7 

respectively. 

Reserved for 1st 
VC

Free Space

0 1
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 Figure 

4.6: Pseudo-code of in buffer operations for DAMQmin 

if (first flit for current VC) and (there is a reserved space){ 

  put it into buffer; 

  increment counters; 

  set head pointer for current VC; 

  if ( have enough free space in buffer ) and (not every VC are present) 

     set the reserved space pointer to the slot next to current VC reserved space;  

} 

else if 

(current VC doesn’t fill reserved space for it) or 

(there is free slot left in buffer){ 

  if (last flit of current VC is next to first slot of next VC buffer space) { 

      shift down all the flits and reserved space of the lower virtual channels one slot;  

      increment head pointers for lower VCs; 

} 

put flit into buffer; 

increment counters; 

} 
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Figure 4.7: Pseudo-code of out buffer operations for DAMQmin 

if (last flit in current VC){ 

  write flit to output port; 

  decrement counters; 

  reset head pointer for current VC; 

} 

else{ 

  write flit to output port; 

  decrement counters; 

  shift up remaining flits of current VC; 

  if (number of remaining flits of current VC >= reserved space number){ 

shift up all the flits and reserved space of following VC one slot; 

decrement head pointer for following VC; 

} 

} 

if ( no reserved space is present in buffer ) and (not every VC are present){ 

  if (there are enough free buffer slots) 

     set the reserved space pointer to the slot next to last VC reserved space; 

} 
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Reserved space is always placed right after the buffer region of virtual channel which is the 

latest one to have flit into the buffer. When the buffer performs shift up or shift down operations, 

all reserved slots are treated same as the slots which are holding flits.  

 

Figure 4.8: DAMQmin Buffer space status in operations. 
 

By dynamically creating reserved space for virtual channels, DAMQmin presents a very 

efficient way to use buffer space, there is always minimum buffer space used for reserve purpose, 

so there are more free space available for flowing traffic.   

 

4.3 Shared DAMQ with Reserved Space for All Virtual Channels 

DAMQ allocates buffer space when a packet is received. Compared with statically 

allocated multi-queue (SAMQ) scheme, the advantage of DAMQ is its efficient use of the buffer 

space by allocating free space to an incoming packet regardless of its destination output port. 

However, because there is no reserved space dedicated for each output channel, the packets 

destined to one specific output port may occupy the whole buffer space thus the packets destined 

to other output ports have no chance to get into the buffer. This is the case especially for small 

and compact routers with limited buffer space where wormhole switching technique and virtual 

channel mechanism are used. In order to overcome this shortcoming a new buffer scheme, 

Reserved for 
next VC

Free SpaceUsed by 1st VC- 
(i-1)th VC

Used by ith 
VC



 

 52

DAMQ with reserved space for all virtual channels (DAMQall) was proposed in [43], DAMQall is 

based on Self-compacting buffer (SCB) scheme, the virtual channels belonging to one direction 

of a bidirectional physical channel share a buffer as described in previous sections of this chapter.  

However, in a wormhole-switched network with several virtual channels multiplexing a 

physical channel, some routing algorithms, for example, the algorithms that pick an available 

virtual channel sequentially tend to choose one set of virtual channels over others; moreover, 

even the virtual channels are chosen randomly, the traffic may not evenly distributed into all 

virtual channels of different physical channel, thus the traffic load usually is not evenly 

distributed in buffer space of a physical channel and among different physical channels. 

Therefore, a more efficient approach to use the available buffer space is to let the virtual 

channels belonging to a physical channel share buffer with virtual channels of another physical 

channel.  
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Figure 4.9: Switches with DAMQall buffer and DAMQshared buffer 

As shown in Figure 4.9. (a), the simple switch with four input and four output ports adopts 

DAMQall buffer scheme for the input buffer; there is one dedicated buffer per physical channel, 

i.e. east X, west X, north Y and south Y. Each physical channel buffer has its own read port and 

write port, the four virtual channels that are multiplexing a physical channel have their own 

reserved space (RS) in buffer. Our new DAMQshared buffer combines the buffer for virtual 

channels from two different physical channels. We combine the buffer space for east X and south 

Y virtual channels to build one physical buffer, and west X and north Y forms another buffer 

group. As shown in Figure 4.9. (b) and (c), there are two buffers for four physical channels; each 

buffer is shared by eight virtual channels, and has two read ports and write ports respectively.  

We used two ways to organize the shared space of DAMQshared. The first way,  

DAMQshared-1, behaves similarly as DAMQall, the difference is the number of virtual channels 

 



 

 55

sharing buffer is doubled in this case. In the second way, DAMQshared-2, the shared space is 

placed in the middle of the two buffer regions of two virtual link groups then the two buffer 

regions expand towards center of the free buffer space. This way, there will be less data shifts 

when a flit is saved into buffer because the movement of one region doesn’t depend on shift of 

another group and it closely simulates the behavior of hardware which is shown in Figure 4.10.  
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Figure 4.10: DAMQshared buffer organization 
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As illustrated in Figure 4.11, two buffer slots are reserved for each virtual channel before 

any flit comes in the buffer. In DAMQshared-1, the reserved spaces for each virtual channel are 

arranged sequentially according to the sequence numbers of the virtual channels. As shown in 

Fig 4.11 (a), virtual channels on the X dimension have smaller sequence numbers than those on 

the Y dimension; the first virtual channel on Y dimension is contiguous to the last one on X 

dimension. One register is used to point to the head of each reserved space, i.e. the head of the 

buffer region for each virtual channel. If two channels are denoted as Vi, Vj with i + 1 = j, then 

the reserved region for Vj will be placed right after the reserved region for Vi. The reserved space 

for virtual channels on Y dimension is right after the reserved space for X virtual channels. The 

reserved space for each virtual channel is always kept if there is no flit or only one flit in the 

buffer region for a specific virtual channel.  

When the buffer performs shift up or shift down operations, the reserved spaces are 

treated same as the slots which are holding flits. Thus the order of the buffer space for virtual 

channels is kept conforming to the sequence of virtual channels. Moreover, since two groups of 

virtual channels are sharing buffer and the reserved spaces for virtual channels from two groups 

are arranged continuously, if there is no space in the region of first group for an incoming flit 

headed to a virtual channel in this group, and there is still space in the shared region, then the 

space will be made by shifting down all the lower addressed regions including space of this 

virtual channel, space of other virtual channels in this group and space of another virtual 

channels group. The buffer state when it is in operation is shown in Figure 4.11 (b).  
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Figure 4.11: DAMQshared buffer statuses in initial state and operation 
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(c) DAMQshared-2 Buffer space status at initial state 
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For DAMQshared-2, when the buffer is in operation, the RS (reserved space) is also always 

kept if there is no flit or only one flit in the buffer region for a specific virtual channel. As shown 

in Figure 4.11(d), same as previously mentioned schemes, when the buffer performs shift up or 

shift down operations, the RSs are also shifted. When a virtual channel accepts a flit, it first uses 

its RS. If RS is used up, buffer space of the lower addressed region in this group expands toward 

another group’s buffer space to produce a slot. Once the boundaries of the two buffer regions 

encounter, no more flit will be accepted unless this flit goes to a virtual channel which has its 

own RS available. At any time during operation, the number of current flits in buffer plus the 

number of reserved slots equals to the total amount of buffer slots. Therefore, one or more virtual 

channels which have the flits come into the buffer at earlier time can never deprive the chance 

for other virtual channels which get flits later than them to get buffer. Also, in case the earlier 

coming packets are blocked in the buffer, since there is still reserved space for other virtual 

channels, the network traffic through these channels can still keep flowing; therefore the 

performance of the switch and the whole network can be enhanced.  

Moreover, as virtual channels from two physical channels are sharing the buffer, the 

buffer space is more efficiently used by the incoming flits. Hence, to achieve same network 

performance, by using DAMQshared scheme, a switch can use less buffer space than DAMQall and 

traditional buffer schemes. The results will be shown in next section. 
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4.4 Performance Evaluation 

This section presents the results of simulation experiments conducted to evaluate the 

performance of our novel buffer organization schemes proposed in previous sections. First, our 

methodology and configuration of simulation environment are described. Then we examine the 

performance of DAMQall, DAMQmin , and DAMQshared in greater detail.  

4.4.1 Simulation Experiments Setup 

We have carried out our simulations by using flexsim1.2 [18] which is a simulator for 

flit-level simulation of torus/mesh networks as introduced in Chapter 3.  To compare the 

performance of DAMQshared with other schemes including DAMQall, we conducted exhaustive 

simulations on 16-ary 2-cube, 8-ary 2-cube and 4-ary 2-cube message exchanging systems with 

wrapped around channels as shown in Figure 4.12. For DAMQall and DAMQmin, the architecture 

we used to conduct simulations is a 4-ary 2-cube message exchanging system.  

In the simulated network system, a switch is attached to each end-node which has one 

injection channel to the switch and one input channel to receive message from network. Physical 

channels are duplex channels. To thoroughly examine DAMQshared scheme and get in depth 

understanding of how switch buffer schemes impact network performance, two kinds of traffic, 

uniformly distributed and hotspots traffic are simulated.  

To evaluate DAMQall and DAMQmin schemes, we used uniform traffic as many other 

researchers also use this traffic mode in their NoC works [31] [42]. When using uniformly 

distributed network traffic, every end node generates packets with randomly determined 

destination and injects them into the network. When using hotspot traffic, we randomly pick four 

hotspots in a 64 nodes 8-ary 2-cube network. In addition, we make these hotspots nodes reside in 

different row and column of the network to avoid intensively congested region. Other pertinent 
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simulation configuration parameters are listed as follows: 

 Routing flit delay is set to 1 cycle. 

 Data flit delay is set to 1 cycle. 

 Buffers at local end nodes are infinite. 

 Packets size is set to 32 flits. 

 Switching technique used is wormhole. 

As to the routing algorithms used in our simulations, we adopt a static routing protocol E-

Cube [12] to conduct the simulations for both DAMQall and DAMQmin. Adaptive routing 

protocol is used to conduct our simulations for DAMQshared as several researchers had reported 

strong performance brought by adaptive routing [23]. Among the up to date adaptive routing 

algorithms, we choose Duato’s routing methodology in our experiments because it’s a well 

known and extensively used adaptive routing protocol. Dimension order path selection function 

is used for the Duato’s routing protocol. We vary the applied load, buffer size and virtual 

channels number; study their impact on throughput and message latency for the network. To 

increase the number of virtual channels multiplexing a physical channel can improve switch 

performance, but having too many virtual channels not only incurs expensive hardware expense 

but also increases the message delay. In our simulation experiments, we set the number of virtual 

channels of one direction of a duplex physical channel to four or eight, thus the advantages 

brought by virtual channel mechanism will not be overshadowed by its shortcoming. 
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Figure 4.12: The base system for our simulations 

4.4.2 Examined Performance Metrics 

Since messages are divided to flits when transmitting, to increase message length has the 

similar effect on increasing traffic load as to shorten the average injection period for each node. 

We set the message length at fixed 32 flits and make the network into saturation state by 

shortening injection period for each node namely by increasing the traffic load rate. Traffic load 

rate is derived by the following formula [18]:  

( ) DstIPMLNChLR ××=×  
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Where LR is load rate, CH is the number of channels, N is the number of nodes, ML is message 

length, IP is average injection period, and DST is average routing distance.  

We compare our new buffer scheme DAMQshared to DAMQall [43] and the traditional 

statically allocated buffer scheme (SAMQ) used for virtual channels which is reported in [44]. 

We didn’t include traditional DAMQ scheme in the comparisons, because during the simulation 

process we found the whole buffer space for one port is easily occupied by the blocked messages 

which incur deadlocks, when the network becomes congested.  

Two most important metrics, network throughput and message latency are compared 

among these three buffer schemes. The network throughput (TP) is defined as the number of flits 

received per node per cycle as follows:  

STN
MLMSGNTP

×
×

=  

Where MSGN is the total number of delivered messages; ML is the message length, N is the total 

number of nodes and ST is the simulation time (in cycles).  

The message latency is measured as the average time span (in cycles) for every packet 

between the moment it was generated and the reception of the whole packet at destination. We 

use average latency (LTNavg) of all the injected messages as the performance metric in our 

simulations. This latency is defined as follows: 

∑ =
×=

MN

i
iavg LTN

MN
LTN

1

1
 

Where LTNi is latency for Messagei and MN is the total injected message number.  
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In addition, when evaluating DAMQshared scheme, we compared buffer utilizations 

among these buffer schemes to get an in-depth understanding of buffer usage efficiency. We use 

average stored flits (FLITavg) in the buffers of all the nodes as a metric in our simulations. It is 

defined in the following formula: 

∑ ∑ =
×=

ST VN

i
iavg FLIT

ST
FLIT

1 1

1
 

Where FLITavg is the average number of flits that are stored in the buffer space of all the nodes, 

FLITi is the number of stored flits in VirtualChanneli’s buffer space and VN is the total virtual 

channel count in the network.   

4.4.3 Simulation Results 

DAMQall and DAMQmin on four virtual channels and 16 nodes In this part we present the 

simulation results obtained when 4 virtual channels are multiplexing a physical channel network 

is 16 nodes torus. We examine the performance for three different size buffers on SAMQ and 

two different size buffers on DAMQall and DAMQmin, The throughput and message latency are 

shown in Tables 4.1 and 4.2, respectively. It is well known that there is no significant difference 

for different buffer scheme while the network is not saturated. In our simulation experiments, we 

keep increasing the traffic load so that we can compare the performance of different buffer 

schemes when the network is in saturation status. As shown in Figure 4.13, along with the 

network saturation process, our DAMQall and DAMQmin have higher throughputs than SAMQ if 

they all use same size buffer. DAMQall achieves approximate the same maximum throughput as 

SAMQ. However it only uses half of the buffer space used by SAMQ. DAMQmin gets even 

higher maximum throughput than DAMQall, because the former saves more buffer slots ready to 

be used than the latter. Furthermore, at the same maximum throughput level, both DAMQall and 
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DAMQmin have less latency than SAMQ as shown in Figure 4.14. 

DAMQall and DAMQmin on eight virtual channels and 16 nodes We present the 

simulation results obtained when 8 virtual channels are multiplexing a physical channel in this 

section and network is 16 nodes torus. Because more virtual channels are used, the throughput 

and latency are higher than 4 virtual channels situation when the network is saturated. The 

throughput and message latency are shown in Table 4.3 and Table 4.4 respectively. DAMQall and 

DAMQmin again get better performance over SAMQ. As shown in Figure 4.15, with only half 

size buffer, DAMQmin even get higher maximum throughput than SAMQ and DAMQall get same 

throughput as SAMQ. The reason is when there are more virtual channels involved, DAMQmin 

and DAMQmin can have more free buffer space to use and DAMQmin make the most efficient 

usage on the buffer. Also as shown in Figure 4.16, there is no unwanted message latency 

introduced for DAMQall and DAMQmin, they have approximate same latency as SAMQ that are 

using double size buffer. 
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Figure 4.13: Comparison on throughput between 4/ 8 flit-buffer DAMQall / DAMQmin and  

4/ 8/ 16 flit-buffer SAMQ 
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Table 4.1 

The Performance 4-ary, 2-cube network composed of block switches. Shown is the throughput 

obtained from simulations where 4 virtual channels used 
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Figure 4.14: Comparison on Latency between 4/ 8 flit-buffer DAMQall / DAMQmin and  

4/ 8/ 16 flit-buffer SAMQ 
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Table 4.2 

The Performance 4-ary, 2-cube network composed of block switches. shown is the message 

latency obtained from simulations where 4 virtual channels used. 
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Figure 4.15: Comparison on Throughput between 8 flit buffer DAMQall / DAMQmin and  

8/ 16 flit-buffer SAMQ 
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Figure 4.16: Comparison on Latency between 8 flit-buffer DAMQall / DAMQmin and  

8/ 16 flit-buffer SAMQ 
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Table 4.3 

The Performance 4-ary, 2-cube network composed of block switches. Shown is the throughput 

obtained from simulation where 8 virtual channels used.. 

 

DAMQshared on four virtual channels, 64 nodes and uniform traffic. Because of the 

hardware constrains for network on chip systems, a single buffer in NoC systems usually does 

not hold a full message. We set the buffer size for each virtual channel to 4 flits when DAMQall 

and SAMQ are used. Since four virtual channels are multiplexing cross one physical channel, the 

buffer size for each direction of a duplex physical channel is 16 flits when these two buffer 

schemes are evaluated. To examine the performance of DAMQshared with regard to the 

relationship between buffer size and performance, we use six different size buffers from 11 to 16 

flits buffers for each direction of a duplex physical channel.  

 

 

Throughput Versus Applied Traffic Load Rate Buffer 
Type 

 
BS 
per 
VC 0.02 0.06 0.10 0.14 0.18 0.55 1 

8 
0.16 0.32 0.63 0.74 0.80 0.80 0.79 

SAMQ 
16 

0.16 0.32 0.63 0.75 0.81 0.82 0.81 

DAMQall 8 
 

0.16 
 

0.32 
 

0.64 
 

0.77 
 

0.81 
 

0.82 
 

0.81 

DAMQmin 8 
 

0.16 
 

0.30 
 

0.64 
 

0.77 
 

0.82 
 

0.83 
 

0.83 
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Table 4.4  

The Performance 4-ary, 2-cube network composed of block switches. Shown is the message 

latency obtained from simulations where 8 virtual channels used 

 

The simulation results for throughput and message latency are shown in Tables 4.5 and 

4.6, respectively. We compare the performance of different buffer schemes when the network 

starts to saturate on about 0.28 traffic load until it gets saturated after about 0.4 traffic load is 

applied. As shown in Figure 4.17, along with the network saturation process, our new 

DAMQshared has higher throughput than both DAMQall and SAMQ when they all use same size 

of 16 flits buffer. When the network gets saturated, DAMQshared achieves the highest throughput 

with same size 16-flit buffer is used. Furthermore, 12-flit DAMQshared achieves approximately 

the same maximum throughput as SAMQ using 16 flits buffer as shown in Figure 4.17. Also, 14-

flit DAMQshared achieves approximately the same maximum throughput as SAMQ using 16 flits 

buffer. In sum, DAMQshared achieves best performance among the three buffer schemes we tested. 

Message Latency Versus Applied Traffic Load Rate 
Buffer 
Type 

 
BS 
per 
VC 

0.02 0.06 0.10 0.14 0.18 0.55 1 

8 
55 74 147 214 308 375 394 

SAMQ 
16 

54 73 150 213 347 439 455 

DAMQall 8 
 

55 
 

73 
 

147 
 

219 
 

357 
 

438 
 

443 

DAMQmin 8 
 

54 
 

73 
 

147 
 

218 
 

357 
 

439 
 

458 
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DAMQshared tends to provide a more efficient method for flits to share buffer space than 

DAMQall which has already shown advantages over traditional SAMQ scheme.   

DAMQshared achieves the best performance among the three buffer schemes we tested. 

DAMQshared tends to provide a more efficient method for flits to share buffer space than 

DAMQall which has already shown advantages over traditional SAMQ scheme. 

As to the message latency, DAMQshared managed to hold a similar latency as SAMQ until 

the network is severely saturated after a load of about 0.36 is applied, as shown in Figure 4.18. 

When we further increase the traffic load after the network starts getting saturated, DAMQshared 

shows higher latency than both DAMQall and SAMQ. The reason is DAMQshared holds much 

more flits in the buffer than other schemes.  

The numbers of average flits that are stored in the buffer are presented in Table 4.7. The 

total buffer space (BUFtotal) can be obtained by the following formula: 

VBVCPHYNBUF total ××××= 2  

Where PHY is the physical channel corresponding to a node port, VC is the count of virtual 

channel multiplexing a physical channel and VB is the buffer size of a virtual channel. The total 

available buffer space is 4096 flits in our simulations. Thus, under traffic load 0.38, DAMQshared 

utilizes 65% of the whole buffer space while DAMQall and SAMQ uses 51% and 37% 

respectively as shown in Figure 4.19. Because message latency is a time span average on all the 

flits that are injected into the network, more flits stored in the buffer results in longer time for 

them in the waiting queues as the network has become drastically saturated. 

It has been shown that DAMQshared provides a better use of the buffer space. In addition, 

it should be pointed out that a 12-flit DAMQshared buffer achieves approximately the same 
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maximum throughput as a 16-flit SAMQ buffer as shown in Figure 4.17. Also, a 14-flit 

DAMQshared achieves approximately the same maximum throughput as 16-flit DAMQall buffer. 

This is to say, to provide a similar network performance on very limited buffer resource, 

DAMQshared achieves similar throughput with 25% and 12.5% less buffer space than SAMQ and 

DAMQall, respectively. And the control units overhead is negligible as mentioned in Section 4.3. 
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Table 4.5 

The Performance of 8-Ary, 2-cube Network Composed Of Block Switches. Shown is the 

Throughput Obtained for Simulations Where 4 Virtual Channels per Physical Channel Used 

When Uniform Traffic is applied. 

 

 

Applied Traffic Load Rate 
Buffer Type 

BS 
per 
PC .20 .23 .29 0.31 .33 .35 .38 

SAMQ 16 .391 .442 .530 .548 .556 .558 .555 

DAMQ all 16 .391 .440 .541 .562 .571 .570 .565 

11 .392 .447 .535 .553 .554 .553 .542 

12 .392 .450 .539 .558 .562 .560 .546 

13 .391 .449 .540 .564 .568 .565 .548 

14 .392 .447 .541 .565 .575 .570 .552 

15 .392 .449 .542 .571 .578 .576 .568 

DAMQshared 

16 .392 .449 .541 .573 .585 .585 .575 
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Table 4.6 

The Performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Message 

Latency Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used When 

Uniform Traffic is Applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.7 

 

Applied Traffic Load Rate 

Buffer Type 
BS 
per 
PC 

.20 .23 .29 .31 .33 .35 .38 

SAMQ 16 103 113 140 157 168 179 199 

DAMQ all 16 102 110 142 158 175 184 198 

11 103 117 151 169 190 200 223 

12 104 116 149 171 186 201 228 

13 103 116 149 165 184 203 235 

14 103 114 145 164 183 205 238 

15 103 113 145 164 185 203 240 

DAMQshared 

16 103 113 143 158 180 205 244 
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Table 4.7 

The Performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Buffer 

Usage Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used When 

Uniform Traffic is Applied. 

 

Applied Traffic Load Rate 

Buffer Type BS per PC 

.20 .23 .29 .31 .33 .35 .38 

SAMQ 16 356 493 873 1053 1224 1324 1501 

DAMQ all 16 368 543 1019 1291 1611 1798 2096 

11 446 592 1020 1223 1341 1462 1537 

12 452 626 1086 1305 1548 1651 1793 

13 461 672 1156 1417 1675 1857 2024 

14 501 662 1201 1541 1864 2063 2262 

15 491 689 1224 1619 1931 2172 2489 

DAMQshared 

16 501 685 1219 1618 2002 2239 2669 
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Figure 4.17. Comparison on throughput between 11-16 flit buffer DAMQshared, 16 flit-

buffer DAMQall and 16 flit-buffer SAMQ under uniform traffic. 
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Figure 4.18: Comparison on latency between 11-16 flit-buffer DAMQshared, 16 flit-buffer 

DAMQall and 16 flit-buffer SAMQ under uniform traffic. 
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Figure 4.19: Comparison on buffer usages between 11-16 flit-buffer DAMQshared, 16 flit-

buffer DAMQall and 16 flit-buffer SAMQ under uniform traffic 
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Figure 4.20: Comparison on throughput between 11-16 flit-buffer DAMQshared, 16 flit-buffer 

DAMQall and 12/16 flit-buffer SAMQ under Hotspots traffic 
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Figure 4.21: Comparison on latency between 11-16 flit-buffer DAMQshared, 16 flit-buffer 

DAMQall and 12/ 16 flit-buffer SAMQ under hotspots traffic. 
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Figure 4.22: Comparison on buffer usages between 11-16 flit-buffer DAMQshared, 16 flit-

buffer DAMQall and 12/16 flit-buffer SAMQ under Hotspots traffic 

 



 

 85

DAMQshared on four virtual channels, 64 nodes and hotspots traffic As motioned earlier, 

four hot spots are randomly generated in the 64 nodes network when we conduct the simulations 

on hotspots traffic. After we got the hot spots locations, they are fixed for all the simulations on 

different buffer schemes. Five percent of the traffic is directed to the hot spots. Other network 

configurations are same as simulations for uniform traffic.   

The simulation results for throughput and message latency are shown in Tables 4.8 and 4.9, 

respectively. As shown in Figure 4.20, because hot spots become the bottlenecks for the entire 

network, we can observe all the three buffer schemes provides similar throughput along with the 

network’s saturating process. Also we can find that buffer space doesn’t play an important role in 

this scenario; there is no significant throughput difference between 12-flit and 16-flit SAMQ. 

The results on different sized DAMQshared buffer are very similar as well. This is because when 

network gets saturated, hot spots become bottlenecks and they are the determining factor for the 

whole network throughput. As shown in Figure 4.21, message latency on DAMQshared is about 

twenty and ten percent higher than same sized SAMQ and DAMQall respectively.  

Moreover, the message latency is proportional to the buffer size when DAMQshared are used. 

11-flit DAMQshared buffer has very close message latency to DAMQall and SAMQ; larger sized 

DAMQshared buffer has greater latency while 16-flit DAMQshared buffer has the greatest one. 

Similar to simulations under uniform traffic, the reason for higher message latency on 

DAMQshared buffer is that it holds much more flits than other two buffers, the numbers are shown 

in Table 4.10. In Figure 4.22, we can see that under traffic load 0.38, 16-flits DAMQshared makes 

use of 45% of the whole buffer space while same sized DAMQall and SAMQ uses 27% and 20% 

respectively. Again the 12-flits DAMQshare buffer can be used to provide similar performance as 

other SAMQ or DAMQall and save the hardware cost by 25% with very little control logic cost. 
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Table 4.8 

The performance 8-ary, 2-cube Network Composed of Block Switches. Shown is the Throughput 

Obtained from Simulations Where 4 virtual Channels Per Physical Channel Used When Hotspots 

Traffic is Applied. 

Applied Traffic Load Rate 

Buffer Type BS per PC 

.20 .23 .29 .31 .33 .35 .38 

SAMQ 16 .391 .441 .494 .502 .508 .510 .518 

DAMQ all 16 .390 .442 .499 .506 .513 .516 .522 

11 .391 .441 .493 .503 .508 .510 .516 

12 .392 .442 .495 .502 .508 .510 .516 

13 .391 .444 .495 .503 .506 .512 .517 

14 .391 .444 .496 .503 .507 .512 .518 

15 .391 .444 .496 .503 .508 .511 .518 

DAMQshared 

16 .390 .444 .498 .505 .507 .510 .518 
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Table 4.9 

The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Message 

Latency Obtained from Simulations Where 4 virtual Channels Per Physical Channel Used When 

Hotspots Traffic is Applied. 

 

Applied Traffic Load Rate 

Buffer Type 
BS 
per 
PC 

.20 .23 .29 .31 .33 .35 .38 

SAMQ 16 103 121 165 177 186 192 200 

DAMQ all 16 95 117 163 178 186 192 202 

11 103 126 176 190 197 203 210 

12 103 125 178 193 202 207 217 

13 101 124 185 199 210 215 225 

14 102 125 188 204 216 220 230 

15 103 125 190 207 219 223 234 

DAMQshared 

16 101 125 192 209 222 228 237 
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Table 4.10 

The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Buffer 

Usage Obtained from Simulations Where 4 virtual Channels Per Physical Channel Used When 

Hotspots Traffic is Applied. 

Applied Traffic Load Rate 

Buffer Type BS per PC 

.20 .23 .29 .31 .33 .35 .38 

SAMQ 16 341 474 726 785 822 839 880 

DAMQ all 16 344 562 966 1043 1082 1081 1130 

11 410 592 890 937 962 985 1011 

12 449 651 1033 1102 1140 1147 1182 

13 480 701 1187 1243 1310 1319 1354 

14 483 762 1280 1390 1449 1479 1516 

15 494 780 1427 1564 1607 1643 1704 

DAMQshared 

16 495 820 1550 1681 1764 1775 1848
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DAMQshared on four virtual channels, 4/6/8 flit buffer per VC , 64 nodes and uniform 

traffic In this section we examine the network performances for 4 and 8 flits buffer for each 

virtual channel on SAMQ; fixed 4 flits buffer for each virtual channel on DAMQall. Three 

different size buffers, 4, 6 and 8 flits buffers for each virtual channel are used on DAMQshared so 

that we can examine its performance in detail. The simulation results for throughput and message 

latency are shown in Table 4.11 and 4.12, respectively. We compare the performance of different 

buffer schemes until the network is saturated after about 0.4 traffic load is applied.  

As shown in Figure 4.23, along with the network saturation process, our DAMQshared has 

significant higher throughputs than both DAMQall and SAMQ when they all use same size of 4 

flits buffer and DAMQall beats SAMQ. DAMQshared not only achieves the highest throughput 

when same size buffer is used, but also achieves approximately the same maximum throughput 

as SAMQ using 8 flits buffer, which double the number of buffer DAMQshared is used. When we 

use 6 flits buffer for DAMQshared, it achieves a significantly higher throughput than SAMQ with 

8 flits buffer as shown in Figure 4.23. The max throughput is achieved by DAMQshared, when 8 

flits buffer is used for it. In sum, DAMQshared achieves best performance among the three buffer 

schemes we tested. The reason, we believe, is DAMQshared provides more efficient methods for 

flits to share buffer space than DAMQall which has already shown advantages over traditional 

SAMQ scheme. Furthermore, at the same maximum throughput level, DAMQshared also has a 

similar latency as SAMQ as shown in Figure 4.24.   
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Table 4.11 

The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the 

Throughput Obtained from Simulations Where 4 virtual Channels Per Physical Channel Used. 

 

Applied Traffic Load Rate 
Buffer Type BS per VC 

0.20 0.23 0.29 0.31 0.33 0.35 0.38 

4 0.39 0.44 0.53 0.54 0.55 0.55 0.55 
SAMQ 

8 0.39 0.44 0.54 0.56 0.58 0.59 0.59 

DAMQ all 4 0.39 0.44 0.54 0.56 0.57 0.57 0.57 

4 0.39 0.44 0.54 0.57 0.58 0.59 0.59 

6 0.39 0.44 0.55 0.58 0.6 0.61 0.61 DAMQshared 

 

8 0.39 0.44 0.55 0.58 0.6 0.62 0.62 
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Table 4.12 

The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Message 

Latency Obtained from Simulations Where 4 virtual Channels Per Phy Channel Used. 

 

Applied Traffic Load Rate 
Buffer Type BS per VC 

0.20 0.23 0.29 0.31 0.33 0.35 0.38 

4 102 113 140 156 167 174 186 
SAMQ 

8 102 112 141 157 175 183 204 

DAMQ all 4 102 110 142 157 175 184 198 

4 102 113 142 158 178 187 207 

6 101 110 140 157 169 188 216 DAMQshared 

 

8 102 110 139 155 169 185 225 
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Figure 4.23: Comparison on throughput between 4/6/8 flit-buffer DAMQshared, 4 flit-buffer 

DAMQall and 4/ 8 flit-buffer SAMQ 
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DAMQshared on four virtual channels, 10/12/14/16 flit buffer per PC, 16 nodes and 

uniform traffic According to other researchers works in the literature [42] [43], we set the buffer 

size for each virtual channel to 4 flits when DAMQall and SAMQ are used. Since four virtual 

channels are multiplexing cross one physical channel, the buffer size for each direction of a 

duplex physical channel is 16 flits when these two buffer schemes are evaluated. In order to 

examine the performance of DAMQshared with regard to the relationship between buffer size and 

network performance, we use four different size 10, 12, 14 and16 flits buffer. The simulation 

results of network throughput and message latency are shown in Tables 4.13 and 4.14, 

respectively.  
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Figure 4.24: Comparison on Latency between 4/6/8 flit-buffer DAMQshared, 4 flit-buffer 

DAMQall and 4/8 flit-buffer SAMQ 
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We compare the performance of different buffer schemes when the network starts to 

saturate on traffic load rate 0.2 until it gets severely saturated after about 0.5 traffic load is 

applied. As shown in Figure 4.25, along with the network saturation process, our new 

DAMQshared has higher throughput than both DAMQall and SAMQ when they all use same size 

16-flits buffer. When the network gets saturated, DAMQshared achieves the highest throughput 

while using same size 16-flit buffer. Furthermore, DAMQshared with 10-flit buffer achieves 

approximately the same maximum throughput as SAMQ using 16-flit buffer. With 14-flit buffer, 

it also yields approximately the same throughput as 16-flit DAMQall along with the network 

saturating process. In summary, DAMQshared achieves the best performance among the three 

buffer schemes we studied . It provides a more efficient method for virtual channels to share 

buffer space than DAMQall which also showed advantages over traditional SAMQ scheme.   

As to the message latency, DAMQshared managed to hold a similar latency as SAMQ until 

the network is congested after about 0.3 traffic load is applied. This is shown in Figure 4.26. 

When we further increase the traffic load after the network gets saturated, DAMQshared shows 

higher latency than both DAMQall and SAMQ. And the reason is mentioned earlier.  

Under a traffic load of 0.5, when the three buffer schemes use same size 16-flit buffer, 

DAMQshared utilizes 56% of the whole buffer space while DAMQall and SAMQ use 43% and 

30% respectively as shown in Figure 4.27. In addition, with 12-flit buffer, DAMQshared already 

contains more flits in buffers than SAMQ along with the increasing of traffic load. It has also 

been shown that 10-flit DAMQshared contains a similar number of flits as 16-flit 
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Figure 4.25: Comparison on throughput between 10-16 flit buffer DAMQshared, 16 flit-buffer 

DAMQall and 16 flit-buffer SAMQ under uniform traffic. 
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Table 4.13 

The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown is the 

Throughput Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used 

When Uniform Traffic is Applied. 

 

Applied Traffic Load Rate 
Buffer Type 

BS 
per 
PC .15 .20 .25 .30 .40 .50 .60 

SAMQ 16 .554 .665 .716 .742 .760 .765 .767 

DAMQ all 16 .563 .678 .732 .754 .770 .777 .774 

10 .560 .670 .719 .741 .759 .762 .766 

12 .562 .679 .725 .749 .761 .774 .774 

14 .563 .680 .737 .756 .769 .773 .780 
DAMQshared 

16 .564 .680 .738 .764 .768 .778 .785 
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Table 4.14 

The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown is the Message 

Latency Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used When 

Uniform Traffic is Applied. 

 

Applied Traffic Load Rate 
Buffer Type 

BS 
per 
PC .15 .20 .25 .30 .40 .50 .60 

SAMQ 16 107 130 150 162 176 183 188 

DAMQ all 16 103 132 153 167 183 190 196 

10 110 137 159 170 182 190 193 

12 108 138 163 176 191 197 201 

14 108 140 165 182 199 206 210 
DAMQshared 

16 109 139 166 184 203 210 213 
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Table 4.15 

The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown is the Buffer 

Usage Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used When 

Uniform Traffic is Applied. 

 

Applied Traffic Load Rate 
Buffer Type 

BS 
per 
PC .15 .20 .25 .30 .40 .50 .60 

SAMQ 16 98 165 227 262 298 312 322 

DAMQ all 16 128 239 329 385 434 449 462 

10 107 170 220 241 262 271 276 

12 135 232 304 339 369 381 384 

14 155 280 375 425 468 482 490 
DAMQshared 

16 189 320 446 506 561 579 591 
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Figure 4.26: Comparison on latency between 10-16 flit-buffer DAMQshared, 16 flit-buffer 

DAMQall and 16 flit-buffer SAMQ under uniform traffic. 
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4.5 Conclusion 

In this chapter we have presented three novel buffer schemes based on a DAMQ self-

compacting buffer. These schemes outperform existing approaches and DAMQshared is the most 

efficient scheme among them.  

DAMQall and DAMQmin have similar performance using only half of the buffer size used in 

SAMQ when deterministic routing method is used. And they both provides higher throughput 

than SAMQ when same size buffers are used.  

Based on DAMQall, we proposed DAMQshared by letting virtual channels from two physical 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

50

100

150

200

250

300

350

400

450

500

550

600

650

Applied Traffic Load

Fl
its

 N
um

be
r

 16flits SAMQ
 16flits DAMQall

 10flits DAMQshared

 12flits DAMQshared

 14flits DAMQshared

 16flits DAMQshared

 
 

Figure 4.27: Comparison on buffer usages between 10-16 flit-buffer DAMQshared, 16 flit-

buffer DAMQall and 16 flit-buffer SAMQ under uniform traffic 
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channel share free buffer space. The extensive simulations results show that DAMQshared 

provides an excellent scheme to optimize buffer management. The proposed DAMQshared scheme 

has the following features: 

 Less buffer space at similar performance. At a similar throughput, DAMQshared needs 

37% and 12.5% less buffer space than SAMQ and DAMQall, respectively. 

 Better space utilization. DAMQshared utilizes more than 26% and 13% more buffer space 

than SAMQ and DAMQall respectively in uniform traffic simulations.  

 Higher throughput. It outperforms existing approaches with 2% - 3% higher than SAMQ 

on 16 nodes and 64 nodes network, and 1% higher than DAMQall in uniform traffic 

simulations when same size buffer is used. 

In summary, when an adaptive routing protocol such as Duato’s algorithm is used for the 

NoC, DAMQshared is an excellent scheme to optimize buffer management providing a good 

throughput when the network has a larger load. It can utilize significantly less buffer space 

without sacrificing the network performance.  

Implementing the proposed schemes in hardware requires minor modifications to early 

implementations of the self-compacting buffer [40]. 
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Chapter 5 

 

Conclusion and Future Study 

 

In this dissertation the results of a study on performance modeling and efficient buffer 

schemes for network on chip have been reported. The contributions of this work include 

proposing a network performance modeling method and evaluation of novel DAMQ self 

compacting buffer schemes. This chapter summarizes the study presented in this dissertation as 

well as lists the contribution of this study. 

Chapter 2 provided background on issues related to this research work. The chapter 

included network topology, switching techniques, flow control, virtual channel, buffer schemes, 

routing algorithms and analytical models.  

Chapter 3 presented a performance model for k-ary n-cubes network using fully adaptive 

routing algorithm. We use a 2D torus network as the analysis target and presented how to obtain 

average message latency through a series of queuing theory and probability calculations. By 

examining the predicted network performance against the results obtained in simulation 

experiments, we showed that this model yields satisfactory accuracy. Also as explained in 

chapter 3, this model can be applied to other topology network with minor modifications.  

In Chapter 4, we presented three novel DAMQ self compacting buffer schemes. The 

schemes organization methods are described in detail. The schemes can be implemented in 
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hardware with minor modifications based on the method proposed in [40]. Extensive simulations 

were performed on Flexsim1.2 [18] to evaluate the performance of these buffer schemes. The 

simulations results on different network configurations, such as different traffic mode, network 

size, virtual channel number, buffer size per virtual/physical channel and routing protocols, were 

presented to show that these novel buffer schemes especially the DAMQshared scheme are 

efficient buffer organization methods to be used in the network on chip. As shown in our 

simulation results, these buffer schemes can provide marginally higher throughput than 

traditional SAMQ when same amount of resource is used, this is due to the fact that buffer 

cannot play a major role in determining the network performance in terms of throughput or 

latency. However, the results show that these schemes can use significantly less hardware to 

provide a same performance as traditional SAMQ buffer. 

 

5.1 Major Contributions 

The major contribution of this study can be summarized as follows: 

   This research sought the ways of predicting the performance of directed connected network 

on a chip which is characterized by limited resource  

   An analytical model for directed connected network, k-ary n-cubes has been proposed and 

evaluated.  

   Two novel DAMQ buffer schemes, DAMQall, DAMQmin, which let virtual channels of one 

physical channel share free buffer space, have been proposed, simulated and evaluated.  

   A novel DAMQ buffer scheme, DAMQshared, which let virtual channels from two physical 

channel of same communication node share free buffer space, has been proposed, simulated 

and evaluated.  
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5.2 Future Research Directions 

This section suggests areas for future work to complement this study in both performance 

modeling and buffer schemes for network on chip.  

For the network performance modeling, as we can see from the calculation process 

presented in chapter 3, blocking probability at a channel determines the waiting time for a 

message given a specific service rate. A higher blocking probability will results in an 

exponentially larger waiting time. Thus if we can reduce the blocking probability for a message 

travelling across the network, the network will have better performance. At given message 

generation rate and link service rate, one can alter the message blocking probability by different 

routing algorithm, network topology, or increasing the buffer size at every communicating node. 

The first two are major factors in determining network performance while the buffer size has 

smaller impact [2]. Because buffer is usually not deep enough to store the whole blocked 

message, so that it may not be able to free the upstream channels that occupied by the blocked 

message. This is especially the case for network on chip with wormhole switching, where buffer 

needs to be carefully designed to be both compact and efficient to reduce hardware cost while 

maintaining network performance. Therefore, to predict the subtle impact of buffer size on the 

network performance, we need more sophisticate queuing system analysis.  

Hence our future work on NoC performance modeling can be to extend the model to 

incorporate buffer size impact, i.e. how to model a network with virtual channels that have 

buffers that are more than 1 flit deep. By mathematically figuring out the contribution that buffer 

offers in alleviating blocking probability, we can better predict the performance of directly 

connected network with more complicate configurations. 
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We can also extend the work on DAMQ buffer schemes for the systems with NoC. For the 

short term goal, we can continue studying hardware requirements and effect of proposed buffer 

in other network topologies. For the long term goal, we can extend these buffer schemes to 

incorporate fault tolerance ability.  

The proposed buffer schemes are based on self compacting buffer hardware design. As 

these schemes have additional features to the original SCB, the new buffers may require a larger 

control circuit. This however can be compensated by the need of far less buffer space.   

We can also study the performance of proposed schemes in other network topologies, for 

instance, SPIN (Scalable, Programmable, Integrated Network) [27], Butterfly Fat-Tree [50] and 

Octagon [30] etc.  

Fault tolerant mechanisms for interconnection networks are becoming a critical design 

issue for large massively parallel computers. [45] It is also important to high performance SoCs 

as the system complexity keeps increasing rapidly. Researchers have reported many routing 

protocols to provide fault tolerant mechanism [46-49]. On the message switching layer, we can 

make improvement to boost system performance when there are faults involved in the 

components communication. The basic proposal is when a node or a physical channel is deemed 

as faulty, the previous hop node will terminate the buffer occupancy of messages destined to the 

failed link. The buffer usage decisions are made at switching layer without interactions with 

higher abstract layer, thus buffer space will be released to messages destined to other healthy 

nodes quickly. Therefore, the buffer space will be efficiently used in case fault occurs at some 

nodes. For example, if node A is connecting to node B and C and there are message flows from 

A to B and A to C. When B fails, there are probably still a number of message flits left in A’s 
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buffer. It will improve the system performance if the buffer space occupied by B’s message can 

be allocated to C’s message quickly. It would be interesting to conduct this research in the future. 
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