
PERFORMANCE MODELLING AND HIGH PERFORMANCE BUFFER DESIGN FOR THE

SYSTEM WITH NETWORK ON CHIP

By

JIN LIU

A dissertation submitted in partial fulfillment of
the requirements for the degree of

 DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

DECEMBER 2007

© Copyright by JIN LIU, 2007
All Rights Reserved

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the dissertation of
JIN LIU find it satisfactory and recommend that it be accepted.

 Chair

 iii

ACKNOWLEDGMENT

 I would like to offer my sincerest appreciation to my department and my committee

members: Dr. José G. Delgado-Frias, Dr. Kung-Chi Wang, and Dr. Sirisha Medidi for their

support, guidance, willingness to work with me, and the suggestions each has offered throughout

this process. In particular, I would like to thank my major advisor, Dr. José G. Delgado-Frias,

for his consistent support, many helpful discussions that guide me through my whole graduate

study and research. I could not have asked for more in terms of his never-ending encouragement

and support in this study and make my graduate experience an extremely rewarding and positive

one.

I would also like to thank the School of Electrical Engineering and Computer Science

which has excellent scholars and students. The School has provided me a great environment and

experience through my whole study and life at WSU.

 Finally, I must also acknowledge the support and encouragement from my wife and my

parents. Words can never express my thankfulness for their love and support.

 iv

PERFORMANCE MODELLING AND HIGH PERFORMANCE BUFFER DESIGN FOR THE

SYSTEM WITH NETWORK ON CHIP

Abstract

by Jin Liu, Ph.D.

Washington State University
DECEMBER 2007

Chair: José G. Delgado-Frias

 High performance novel dynamically allocated multi-queue (DAMQ) buffer schemes for

systems with network on chip (NoC) have been proposed and evaluated in this dissertation. An

analytical model to predict performance of a NoC where wormhole switching technique and

fully adaptive routing protocols has been developed and compared with simulations.

In this dissertation, a novel analytical model for NoC which makes use of simple close

form calculations is presented. This model provides accurate network performance prediction in

the network stable region. The validity of this model is demonstrated by comparing analytical

prediction with simulation results obtained on high-radix k-ary 2-cube networks.

 Three novel switch buffer schemes, DAMQall, DAMQmin and DAMQshared, for system on

chip with an interconnection network are also reported. The proposed schemes are based on a

DAMQ self-compacting buffer hardware design. These schemes outperform existing approaches.

DAMQall have similar performance using only half of the buffer size used in traditional SAMQ

implementations. DAMQmin provides an excellent approach to optimize buffer management

providing a good throughput when the network has a larger load. DAMQshared scheme lets virtual

channels from different physical channel share free buffer space. While providing similar

performance, DAMQshared scheme uses only around sixty percent of the buffer size that is used in

 v

traditional implementation for NoCs. In addition, using same size buffers, DAMQshared

outperforms existing approaches such as SAMQ and DAMQall by 1% to 2% in throughput. The

proposed schemes also make a better utilization of the available buffer space.

 vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS.. iii

ABSTRACT...iv

LIST OF TABLES..vii

LISTOF FIGURES ... viii

CHAPTER

 1. INTRODUCTION..1

 1.1 System with Network on Chip...1

 1.2 Dissertation Outline ...3

 2. BACKGROUND ..5

 2.1 Network Topology...5

 2.2 Switching Techniques..10

 2.3 Virtual Channel..13

 2.4 Buffer Schemes..15

 2.4.1 Linked list buffer scheme..15

 2.4.2 Self-compacting buffer scheme ..18

 2.5 Routing Algorithms and Analytical Models ..18

 2.5.1 Deterministic routing protocols ..18

 2.5.2 Adaptive routing protocols ...19

 3. ANALYTICAL MODEL FOR WORMHOLE SWITCHING NOC21

 3.1 Network Configuration ..21

 vii

 3.2 Pertinent Assumptions ...23

 3.3 Notations ..24

 3.4 Calculation of Average Message Latency ...25

 3.5 Validation...35

 3.6 Apply model to multiple flit buffer..38

 3.7 Conclusion ...40

 4. HIGH PERFORMANCE DAMQ BUFFER SCHEMES42

 4.1 DAMQ with Reserved Space for All Virtual Channels...........................42

 4.2 DAMQ with Minimum Reserved Space for Virtual Channels................47

 4.3 Shared DAMQ with Reserved Space for All Virtual Channels...............51

 4.4 Performance Evaluation...60

 4.4.1 Simulation Experiments Setup..60

 4.4.2 Examined Performance Metrics..62

 4.4.3 Simulation Results ..64

 4.5 Conclusion ...100

 5. CONCLUSION AND FUTURE STUDY...102

 5.1 Major Contributions...103

 5.2 Future Research Directions..104

REFERENCES ...107

 viii

LIST OF TABLES

3.1 The Parameter Notations..25

4.1 The Performance 4-ary, 2-cube network composed of block switches. Shown is the

 throughput obtained from simulations where 4 virtual channels used67

4.2 The Performance 4-ary, 2-cube network composed of block switches. shown is the

 message latency obtained from simulations where 4 virtual channels used..............69

4.3 The Performance 4-ary, 2-cube network composed of block switches. Shown is the

 throughput obtained from simulation where 8 virtual channels used72

4.4 The Performance 4-ary, 2-cube network composed of block switches. Shown is the

message latency obtained from simulations where 8 virtual channels used.............73

4.5 The Performance of 8-Ary, 2-Cube Network Composed Of Block Switches. Shown

is the Throughput Obtained for Simulations Where 4 Virtual Channels per Physical

Channel Used When Uniform Traffic is applied ...76

4.6 The Performance of 8-ary, 2-cube Network Composed of Block Switches. Shown

 is the Message Latency Obtained from Simulations Where 4 Virtual Channels per

 Physical Channel Used When Uniform Traffic is Applied77

4.7 The Performance of 8-ary, 2-cube Network Composed of Block Switches. Shown

 is the Buffer Usage Obtained from Simulations Where 4 Virtual Channels per

 Physical Channel Used When Uniform Traffic is Applied78

4.8 The performance 8-ary, 2-cube Network Composed of Block Switches. Shown

is the Throughput Obtained from Simulations Where 4 virtual Channels per

Physical Channel Used When Hotspots Traffic is Applied.86

4.9 The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown

is the Message Latency Obtained from Simulations Where 4 virtual Channels per

 ix

Physical Channel Used When Hotspots Traffic is Applied ..87

4.10 The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown

is the Buffer Usage Obtained from Simulations Where 4 virtual Channels Per

Physical Channel Used When Hotspots Traffic is Applied88

4.11 The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown

is the Throughput Obtained from Simulations Where 4 virtual Channels Per

Physical Channel Used When Hotspots Traffic is Applied90

4.12 The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown

is the Message Latency Obtained from Simulations Where 4 virtual Channels Per

Physical Channel Used When Hotspots Traffic is Applied91

4.13 The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown

is the Throughput Obtained from Simulations Where 4 Virtual Channels Per Physical

Channel Used When Uniform Traffic is Applied ...96

4.14 The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown

 is the Message Latency Obtained from Simulations Where 4 Virtual Channels Per

 Physical Channel Used When Uniform Traffic is Applied97

4.15 The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown

is the Buffer Usage Obtained from Simulations Where 4 Virtual Channels Per

Physical Channel Used When Uniform Traffic is Applied98

 x

LIST OF FIGURES

2.1 Examples of NoC topologies ...8

2.2 Blocked message in a wormhole network ...12

2.3 Virtual channels multiplexing a physical channel ...13

2.4 Use virtual channel to reduce blocking..14

2.5 Input buffer schemes..17

3.1 64 nodes torus message exchanging system ..22

3.2 Switch to switch path ...23

3.3 Queuing model for an input channel..29

3.4 Reduced queuing model for an input channel..31

3.5 Comparison of Model against simulation in 64 nodes torus network36

3.6 Comparison of Model against simulation in 256 nodes torus network37

3.7 Comparison of Model against simulation in 1024 nodes torus network37

4.1 DAMQall Buffer space at the initial state...43

4.2 DAMQall Buffer space status in operations ...44

4.3 Pseudo-code for in buffer operations...45

4.4 Pseudo-code for out buffer operations...46

4.5 DAMQmin Buffer space status in operations ..48

4.6 Pseudo-code of in buffer operations for DAMQmin ...49

4.7 Pseudo-code of out buffer operations for DAMQmin ...50

4.8 DAMQmin Buffer space status in operations ..51

4.9 Switches with DAMQall buffer and DAMQshared buffer ..54

4.10 DAMQshared buffer organization ..56

4.11 DAMQshared buffer statuses in initial state and operation ..58

4.12 The base system for our simulations..62

 xi

4.13 Comparison on throughput between 4/ 8 flit-buffer DAMQall / DAMQmin and

 4/ 8/ 16 flit-buffer SAMQ..66

4.14 Comparison on Latency between 4/ 8 flit-buffer DAMQall / DAMQmin and

 4/ 8/ 16 flit-buffer SAMQ..68

4.15 Comparison on Throughput between 8 flit buffer DAMQall / DAMQmin and

 8/ 16 flit-buffer SAMQ ..70

4.16 Comparison on Latency between 8 flit-buffer DAMQall / DAMQmin and

 8/ 16 flit-buffer SAMQ ..71

4.17 Comparison on throughput between 11-16 flit buffer DAMQshared, 16 flit-buffer

 DAMQall and 16 flit-buffer SAMQ under uniform traffic.......................................79

4.18 Comparison on latency between 11-16 flit-buffer DAMQshared, 16 flit-buffer

 DAMQall and 16 flit-buffer SAMQ under uniform traffic...80

4.19 Comparison on buffer usages between 11-16 flit-buffer DAMQshared, 16 flit-buffer

 DAMQall and 16 flit-buffer SAMQ under uniform traffic.......................................81

4.20 Comparison on throughput between 11-16 flit-buffer DAMQshared, 16 flit-buffer

 DAMQall and 12/16 flit-buffer SAMQ under Hotspots traffic82

4.21 Comparison on latency between 11-16 flit-buffer DAMQshared, 16 flit-buffer

 DAMQall and 12/ 16 flit-buffer SAMQ under hotspots traffic.83

4.22 Comparison on buffer usages between 11-16 flit-buffer DAMQshared, 16 flit-buffer

DAMQall and 12/16 flit-buffer SAMQ under Hotspots traffic84

4.23 Comparison on throughput between 4/6/8 flit-buffer DAMQshared, 4 flit-buffer

 DAMQall and 4/ 8 flit-buffer SAMQ. ..92

4.24 Comparison on Latency between 4/6/8 flit-buffer DAMQshared, 4 flit-buffer

 DAMQall and 4/8 flit-buffer SAMQ ..93

4.25 Comparison on throughput between 10-16 flit buffer DAMQshared, 16 flit-buffer

 DAMQall and 16 flit-buffer SAMQ under uniform traffic.......................................95

 xii

4.26 Comparison on latency between 10-16 flit-buffer DAMQshared, 16 flit-buffer

 DAMQall and 16 flit-buffer SAMQ under uniform traffic..99

4.27 Comparison on buffer usages between 10-16 flit-buffer DAMQshared, 16 flit-buffer

 DAMQall and 16 flit-buffer SAMQ under uniform traffic100

 1

Chapter 1

Introduction

This chapter provides an overall perspective of the research work presented in this

dissertation. Section 1 introduces network on chip which is the major topic of this study. Section

2 provides the outline of this dissertation.

1.1 System with Network on Chip

System on chip (SoC) designs are becoming widely used in telecommunication,

consumer electronics and multimedia areas. As technology allows greater integration, they are

being investigated in greater detail. By the end of this decade SoCs will grow up to four billion

transistors [24]. SoCs incorporate a number of components (or modules) including processors,

controllers and memory arrays. These components need to communicate to pass data and/or

control information. Thus, a successful SoC design largely relies on the ability to interconnect

these components to compute a solution efficiently.

One of the major problems for future SoC designs is the non-scalable global wire delays

[31]. Global wires can carry signals across a chip, but the wire delays typically increase

exponentially or at least linearly by inserting repeaters. Therefore SoC design has to rely on

networking paradigms. The shared medium arbitrated bus is the most commonly used on-chip

interconnect architecture, here all communicating modules share the same transmission medium.

Although the bus architecture features simple topology and low area cost, the relatively long bus

 2

to which a number of components are connecting has a quite high parasitic resistance and

capacitance [31]. For SoCs consisting of tens or hundreds of IP blocks, the bus-based

interconnect architecture will lead to serious bottleneck problems [38]. Another alternative is to

have dedicated connections between any given modules, but this design could be extremely

complex as the number of modules increases.

To overcome these problems, the use of an interconnection network (direct or indirect

network) within a chip has been advocated by researchers. Direct network consists of a set of

nodes; each node directly connects to a limited number of other nodes in the network. Two

neighboring nodes are connected by a pair of unidirectional channels in opposite directions or a

bidirectional channel. Usually these on-chip computational units contain a network interface

block called router (switch), which handles communication and connects to neighbor nodes’

routers. Thus overlapped computation and communication are realized within each unit. As the

total number of nodes in the system increases, the total communication bandwidth, memory

bandwidth and processing capability of the system also increase [2]. Therefore direct networks

have been a prevalent interconnection architecture.

Similar to the wide area network design, the on-chip interconnection network is proposed

to be viewed as a hierarchy of services starting from the physical layer that synchronizes the

transfer of bit streams to higher-level protocols layers that perform functions such as

packetization, routing etc. [24]. While there is currently no consensus on a standard set of layers

for the whole communication system, a three layer model to abstracting the operation of

interconnection network is proposed in [2]: the routing layer, the switching layer and the

physical layer. Physical layer refers to link-level wiring protocols for transferring messages and

managing the physical channels between adjacent routers. Switching layer implements

 3

mechanisms for forwarding messages through the network; it determines when and how to

connect router inputs to outputs and the time at which message components may be transferred

along these paths. Switching layer utilizes flow control mechanisms to synchronize the message

transfer; and flow control is tightly coupled with buffer management algorithms that determine

how the buffers are used, i.e. how messages are handled when blocked in the network. Routing

layer is responsible to make routing decision, determine the output channels at intermediate

nodes.

 Due to the constraints of being in a single chip, using an interconnection network on chip

needs be restricted in terms of area. Thus, it is extremely important to design the schemes that

require less hardware resources and still provide a good performance.

The research presented in this dissertation focuses on direct network architecture of NoC.

The first part explored the ways to model a directed connected k-ary n-cube. The second part

researched the methods to efficiently organize input buffer of switches used in the NoC modules.

1.2 Dissertation Outline

Chapter 2 provides a background on topics related to this dissertation. It describes

network topology, switching techniques, flow control, routing algorithms and analytical models

for NoC. It also introduces the virtual channel concept and buffer schemes used in NoC switch.

In Chapter 3 a novel analytical model for NoC with wormhole switching and fully

adaptive routing is presented. To confirm its validity, the model is compared with results

obtained from simulations.

 4

Three novel DAMQ input buffer schemes are presented in Chapter 4. Their performance

is determined by means of simulations.

Finally, chapter 5 includes a summary, some conclusion remarks, and a list of

contributions of this study as well as directions for future research.

 5

Chapter 2

Background

This chapter provides background on topics related to this dissertation work. The related

NoC background information includes: network topology, switching techniques, flow control,

routing algorithms, analytical models, virtual channel concept and buffer schemes for switch.

2.1 Network Topology

Interconnection networks are usually classified into four major classes based on network

topology: shared-medium network, direct network, indirect network, and hybrid network. In

shared medium networks, the communication medium is shared by all connected devices. As it

was mentioned in chapter 1 the shared bus is an example of this class. Although this architecture

is simple, it is not suitable for future NoCs with an increasing number of modules. In direct

network, communicating devices are linked to each other by transmission channels. To transmit

a message from one device to another, this message needs to traverse through several

intermediate devices if the source and destination are not neighboring. On the other hand, an

indirect network connects devices by one or more switches, thus any message exchanging

requires information transmitting through one or more switches. Finally, hybrid network is also

possible by using elements of the previous three paradigms. This research focuses on direct

 6

network as most network on chip architectures based on this design. We introduce the common

direct network topology used in NoC below.

 Network topology can be depicted by a graph in which nodes represent switching

points and edges represent communication links [36]. Many direct network topologies have been

proposed based on their graph properties. Most of the implemented networks have an orthogonal

topology [2]. If every node is connected to every other node then the network is a completely

connected network. The completely connected network can use simple routing algorithm and

achieves high network performance. However, the cost of the complex architecture makes it

impractical for network with large numbers of nodes. In terms of cost and performance, many

other orthogonal network topologies such as mesh/torus and hypercube have received more

attention. There are a number of network designs with different topology for network on chip

reported in the literatures [27-30], among which k-ary n-cubes have been studied and used the

most because of their desirable properties, such as ease of implementation, recursive structures,

and ability to exploit communication locality to reduce message latency [5].

The most commonly used direct network topologies are shown in Fig 1. Each node in

these networks is composed of a routing element (switch) and a process element (PE), except the

tree like architecture SPIN. In the following, we briefly describe the different NoC topologies

proposed recently in the literature.

 7

(a) 2D torus (4-ary 2-cube)

(b) CLICHÉ (mesh)

 8

Figure 2.1: Examples of NoC topologies.

(c) Octagon

(d) SPIN (tree)

 9

Dally and Towles [29] have proposed a 2D torus as NoC architecture as shown in Fig.

2.1a. The torus architecture is basically same as a regular mesh [2] except that the switches at the

edges are connected to the switches at the opposite edge through wrap-around channels. Every

switch has five ports, one connected to the local resource and the others connected to the closest

neighboring switches. The long end-around connections can yield excessive delays. However,

this can be avoided by folding the torus.

Kumar et al. [28] proposed a mesh-based interconnect architecture, CLICHÉ (Chip-Level

Integration of Communicating Heterogeneous Elements). This architecture is based on an m x n

mesh network where every switch, except those at the edges, is connected to four neighboring

switches and one computation resource (PE) through communication channels. A channel

consists of two unidirectional links between two switches or between a switch and a PE. Shown

in Fig. 2.1b is a16 functional IP blocks network.

Guerrier and Greiner [27] proposed a tree like generic interconnect template called

SPIN (Scalable, Programmable, Integrated Network) for on-chip packet switched

interconnections network. A fat-tree architecture is used to interconnect IP blocks. Fig. 2.1d

shows the basic SPIN architecture with 16 nodes, representing the number of functional IP

blocks in the system. Every node has four children and the parent is replicated four times at any

level of the tree. The size of the network grows at (NlogN)/8. The functional IP blocks reside at

the leaves and the switches reside at the vertices. In this architecture, the number of switches

converges to S = 3N/4, where N is the system size in terms of number of functional.

Karim et al. proposed the OCTAGON MP-SoC architecture in [30]. Shown in Fig. 1c is

an octagon unit consisting of eight nodes and 12 bidirectional links. According to topology,

exchanging message between any pair of nodes takes at most two hops. To design a system

 10

consisting of more than eight nodes, the octagon can be extended to multidimensional space on a

significantly increased wiring complexity.

2.2 Switching Techniques

The switching techniques employed in on-chip interconnection networks initially

followed those techniques employed in local and wide area communication networks, e.g. circuit

and packet switching.

In circuit switching, a physical path from source to destination must be reserved prior to

the data transmission. Physical path is set up by routing header flit which contains destination

address and some other information. Once a routing header flit reaches the destination, a

complete path is set up and an acknowledgement is transmitted back to the source. Physical path

is reserved for the duration of message and may be idle for a period and block other messages.

Thus circuit switching is only good for long and infrequent messages.

As an alternative to circuit switching, a message can be partitioned and transmitted as

fixed-length packets by packet switching. Packets are individually routed from source to

destination. A packet is stored at each intermediate node then forward to next node. Packet

switching is good for short and frequent messages [2]. However, unlike in circuit switching

where a physical path is reserved for the whole message, each packet of a message has to be

routed at each intermediate node. Moreover, splitting a message into packets also makes

overhead.

As the applications of the systems spread into more compute-intensive areas, the

traditional designs borrowed from LANs become a limiting performance bottleneck. Some new

 11

switching techniques, such as virtual cut-through switching (VCT) and wormhole switching, are

evolved to practical use.

In packet switching, a packet must be received in the whole at an intermediate node

before making a routing decision and forwarding to the destination. However the header of a

packet usually arrives to an intermediate node earlier than the tail of a packet by multiple cycles.

This is because of the message length and available bandwidth. Thus even a node already knows

the needed information to make a routing decision after receiving the header of a message; it still

cannot forward the received part of the message to destination. To overcome this drawback,

virtual cut-through switching is proposed to forward package immediately after routing decision

is made. In absence of blocking, message can be cut through to input port of next node without

buffering and the package transmission is pipelined through successive switches. In case a

header is blocked at a busy output port, the whole message will be received and buffered at this

node.

The requirement to buffer entire packets at a node makes it difficult to build compact and

fast routers by using VCT switching technique. To construct small router which resides in an

on-chip component, wormhole switching is used.

Wormhole switching has been widely used in practical multi-computer and network on

chip where small and faster router is needed [31]. In wormhole switching, message packets are

broken up into flits for message transmission flow control. Header flit contains routing

information, once a header is received at intermediate node, the routing decision is made and the

header is forwarded to next node in absence of blocking. The remaining data flits just follow the

route that is determined by the header.

 12

Input or output buffers of a wormhole router only need to be able to store a few flits. For

example, message buffer in the Cray T3D are 1 flit deep [2]. The flits are pipelined through the

network in a similar manner as VCT in absence of blocking. Because a message is typically too

large to be completely stored in a router, in case the required output port is busy, all the flits of

the message are stored in situ which implies that a block message occupies buffers in several

routers along the path.

An example of a blocked message in wormhole switching network is shown in Fig 2.2

where message A is blocked because message C has occupied south port of node 3 and message

B is blocked due to message A’s occupancy of west port at node 2. Furthermore, Fig 2 shows

that the flits of blocked message A are stored in situ.

This research work is focusing on wormhole switching network.

Figure 2.2: Blocked message in a wormhole network

 13

2.3 Virtual Channel

The simple wormhole switching introduced in previous section has a drawback that

different messages cannot be interleaved or multiplexed over a physical channel. Once a message

starts to be transferred on a channel, this channel will be occupied till the entire message crossing

it. During this time period, the occupied channel can not be used by other messages. Virtual

channel [2] mechanism is introduced to increase channel utilization.

Multiple virtual channels can multiplex a physical channel. They are implemented by an

independently managed pair of buffers at two adjacent nodes as illustrated in Fig 2.3 where we

can see two unidirectional virtual channels multiplex one direction of the physical channel.

Logically each virtual channel in Fig 2.3 operates as if a distinct physical channel which operates

at half the original bandwidth.

Figure 2.3: Virtual channels multiplexing a physical channel

 14

Virtual channel can be used to improve message latency and network throughput;

however it was first introduced to solve the problem of deadlock in wormhole switching network.

[2] As shown in Fig 2.4, message A and message B that are blocked in Fig 2.2 can now advance

to their next hop node with the help of virtual channel.

Using virtual channels may improve network performance by reducing blocking

probability. However the increased channel multiplexing reduces the data transfer rate of

messages, thus increases message latency. Therefore, the increase of message latency may

eventually overshadow the improvement brought by virtual channels [2]. Moreover, virtual

channels also introduce overhead in hardware support for this mechanism. Additional hardware

blocks need to be used to make arbitration between multiple virtual channels and allocate buffer

space among the virtual channels. Thus, when using virtual channels for a switch, these tradeoffs

need to be taken into considerations.

Figure 2.4: Use virtual channel to reduce blocking.

 15

2. 4 Buffer Schemes

The switch buffers can be associated with input or output ports. Because buffering

packets at the input ports can reduce hardware complexity [3], it is preferred over output ports

buffering designs [37].

Input buffering schemes can be divided into four categories, namely FIFO (First in First

out), SAFC (Statically Allocated Fully Connected), SAMQ (Statically Allocated Multi-Queue),

and DAMQ (Dynamically Allocated Multi-Queue). They are illustrated in Fig 2.5.

Among these designs, DAMQ efficiently utilized buffer space by dynamically allocating

buffer to incoming flits. It has been proved to be a better scheme than others. [3] Following is the

DAMQ buffer schemes reported in the literatures.

2.4.1 Linked list buffer scheme

In order to let multiple queues of packets share a DAMQ buffer, linked lists can be used

to implement the buffer scheme [37] [39] [40]. The basic idea of this approach is to maintain

(k+1) linked lists in each buffer: one list of packets for each one of the (k-1) output ports, one list

of packets for the end node interface and one list of free buffer blocks. Corresponding to each

linked list there is a head register and a tail register. The head register points to the first block in

the queue and the tail register points to the last block. In each output queue, next block

information also must be stored in each buffer block to maintain the FIFO ordering.

 16

(a) First in First out (FIFO)

(B) Statically Allocated Fully Connected (SAFC)

 17

Figure 2.5: Input buffer schemes.

(c) Statically Allocated Multi-Queue (SAMQ)

(d) Dynamically Allocated Multi-Queue (DAMQ)

 18

2.4.2 Self-compacting buffer scheme.

To reduce the hardware complexity of the linked list scheme, an efficient DAMQ buffer

design self-compacting buffer (SCB) was proposed by [40] [41]. The idea for this buffer scheme

is to divide the buffer dynamically into regions with every region containing the data associated

with a single output channel. If two channels are denoted as i, j with i < j, then the addresses of

buffer regions for the two channels Ai Aj will be Ai < Aj. There is no reserved space dedicated for

any channel. Data is stored in a FIFO manner within the region for each channel. When an

insertion of the packet requires space in the middle of the buffer, the required space will be

created by moving down all the data which reside below the insertion address. Similarly, when a

reading operation conducted from the top of a region, data removed from the buffer may result in

empty space in the middle of the buffer, then the data below the read address is shifted up to fill

the empty space. Our new buffer schemes are based on the SCB scheme.

2.5 Routing algorithms and analytical models

Routing algorithms are used to specify the path from source to destination for each

message. They can be implemented in two ways which are either deterministic or adaptive.

2.5.1 Deterministic routing protocols

Deterministic routing protocol chooses the path for a message only by its source and

destination. All packets with the same source and destination pair will follow one single path.

The packet will be delayed if any channel along this path is loaded with heavy traffic, and if a

channel along this path is faulty the packet cannot be delivered. Thus the deterministic routing

protocols are prone to suffer from poor use of bandwidth, blocking when alternative paths are

available. They are particularly susceptible to component failures. [16] A common deterministic

 19

routing algorithm is dimension-order routing [22], in which the packet is routed in one

dimension at a time, arriving at the proper coordinate in each dimension before proceeding to the

next dimension. We use a dimension-order routing protocol E-Cube to conduct our simulation

for two new buffer schemes.

Deterministic routing has been widely used in multi-computers due to its simplicity. [32]

[33] [34] and its analytical model has been widely reported in the literature [3] [6] [7] [9] [10]

[11] [35].

2.5.2 Adaptive routing protocols

Adaptive routing protocols are proposed to make more efficient use of bandwidth and to

improve fault tolerance of interconnection network. In order to achieve this, adaptive routing

protocols provide alternative paths for communicating nodes. Thus it can overcome the

congested areas in the network. Several adaptive routing algorithms have been proposed,

showing that message blocking can be considerably reduced, thus strongly improving

throughput.[23] Among them, routing algorithms based on Duato’s design methodology [16] are

very popular. These routing algorithms split each physical channel into two virtual channel sets,

the adaptive and the deterministic channels. When the paths of adaptive channels are blocked, a

message uses an escape channel at the congested node. If there is any free adaptive channel

available at subsequent nodes, the message can go back to the adaptive channels. Adaptive

routing algorithms can be further categorized to progressive and backtracking algorithms.

Progressive routing algorithms move the message header forward by reserving a new channel.

Backtracking algorithms needs more complex hardware support [2] because they allow the

message header to be routed backtrack releasing previously reserved channels. In our model, we

assume the routing algorithm is progressive, no backtracking is allowed.

 20

Two analytical models for wormhole switching network using fully adaptive routing

protocols are reported in the literature [4] [5]. Y.Boura et al. proposed an analytical model for

adaptive routing Hypercube in [4]. In Hypercube network a message traverses at most one

channel along a dimension. Due to this topology nature, at an intermediate node, the number of

remaining hops for a message to arrive at destination is known in Hypercube. However, k-ary n-

cubes do not have this property. Thus, at a given intermediate node the number of remaining

hops that remains on current dimension is not clear. M. Khaoua proposed a model for Duato’s

fully adaptive routing algorithm in k-ary n-cubes in [5]. Its key idea was to compute the blocking

probability at a given node by deriving the blocking probability of the two virtual channel groups

in Duato’s algorithm i.e. adaptive and deterministic virtual channels groups respectively.

In this dissertation we present a novel performance analysis model for k-ary n-cubes

network on chip with wormhole routing and fully adaptive routing. We use a 2D torus network

as the analysis example to compute the average message latency using our new model. The

model is based on general queuing theory and probability analysis. The blocking probability for

a message at a given channel is derived by the arrival traffic rate and the service rate the message

receives. It’s simple and yields satisfactory predictions in the network’s steady state region.

 21

Chapter 3

Analytical Model for Wormhole Switching NoC

This chapter presents a novel analytical model for easily predicting average message

latency of traffics in a network on chip where wormhole switching and fully adaptive routing

protocols is used. The model has simple close-form calculations and produces very accurate

results in the network stable regions. To validate this model a comparison between analytical

prediction and simulation results is performed on high-radix k-ary 2-cube networks.

3.1 Network Configuration

We use a 2D torus network as our analysis target to illustrate the model for simplicity. Fig.

3.1 shows an 8-ary 2-cube (torus) message exchanging network. Each node consists of a

processing element (PE) and a switch. PE is responsible for generating message and consuming

message from other nodes. Each switch has 5 input and output channels. PE is connected to

switch by the local injection/ejection channel. A node is connected to 4 adjacent neighbouring

nodes by bi-directional network channels.

As introduced in chapter 2, virtual channels multiplexing one direction of a duplex physical

channel are used in network on chip to enhance throughput and avoid deadlock. Due to the

 22

nature of limited hardware resource and to facilitate our model calculation, we assume the buffer

size for each end of a virtual channel is 1 flit deep.

Figure 3.1: 64 nodes torus message exchanging system

A message which is generated from a nodes PE will first be transmitted to the switch by

local injection channel. Then, this message will be routed toward its destination. At the

destination node, the message is transmitted to PE through local ejection channel. Thus a

message has to travel through at least 3 links from the source to destination. For instance, as

shown in Fig. 3.2, the message generated in node N1 has to traverse channels Ch1,L, Ch2,W and

Ch2,L to arrive at its destination PE in N2.

 23

Figure 3.2: Switch to switch path

3.2. Pertinent Assumptions

For this model the following assumptions have been made; these assumptions are

commonly accepted in the literature [2-13].

1) Independent traffic generation. Each node generates traffic independently with the traffic

following a Poisson process on a mean rate of Mgen messages per cycle.

2) Uniform distribution of destinations. Message destinations are uniformly distributed across

the network nodes. Although for an actual application, if node A sends a message to node B it’s

highly possible that B will send back a message to A.

3) Messages of constant length L flits. A message is long enough so that its data flits span

from source to destination nodes. Moreover, the message lengths can be designated according to

any probability distribution where expectation and variance of message lengths are known.

4) One clock cycle transmission between adjacent nodes. Each flit requires one cycle to be

 24

transmitted from one node to the next over the physical link between them. Two cycles are

needed for a flit to cross a node, i.e. from an input buffer to an output port, in absence of

blocking.

5) Infinite capacity in local injection queue. The local queue at the injection channel in the

source node has infinite capacity. Messages at the destination node are transferred to the local PE

one flit at a time through the ejection channel.

6) Duplex physical channels between any two adjacent nodes. More than two virtual channels

are used for each direction of a physical channel. In Duato’s algorithms [15] [16], if there are

adaptive virtual channels available, a message can use a random one; for the deterministic virtual

channels, although there are two of them, a message uses only one at a time. Therefore we adopt

the same strategy as described in [4] to make no distinction between the deterministic and

adaptive virtual channels when computing the different virtual channels occupancy probabilities.

This simplification also reflects the idea of fully adaptive routing.

3.3 Notations

There are a number of notations involved in this model. We list all of them into Table 3.1 to

facilitate the name look up.

 25

Table 3.1. The Parameter Notations

Parameter

Description

Mgen Average message generation rate at each node
Tmsg The mean latency for all the delivered messages
Ts Routing (Switching) delay across a node
Tw Propagation delay across the physical channel
L Average message length(not including header)
D Average path length for all the delivered messages
Nq Average number of intermediate nodes along the path

Wq
Average waiting time for a message at each intermediate nodes along
the message’s routing path

Wej Average waiting time for a message on ejection node channel
λ The average message arrival rate at a channel
μ The service rate for a message at a physical channel
S The service time for a message at a channel without contention.

SR The service rate for a message at a channel without contention
Weq Average waiting time for a message on last node of the routing path.

dir
rμ The service rate that a channel observes from the immediate

downstream channel on dir direction.

μr
The service rate that a channel observes from all its immediate
downstream channels at nodes on the path.

μrE The service rate that a channel observes from all its immediate
downstream channels at destination node.

P’Q The blocking probability for a message at a physical channel without
contention.

PQ The blocking probability for a message at a physical channel
v The virtual channel number of each direction of a physical channel

o In/output ports number of a node (not including local channel port), in
our network, it’s 4.

dir Direction. Each nodes has ports on 5 directions, i.e. East, South, West,
North and Local

Chn, dir
Physical channel in dir direction of a message’s nth hop node.

3.4 Calculation of Average Message Latency

Average message latency is a key metric to evaluate a network’s performance. It’s defined

as the time elapsed since the message transmission is initiated until the message is received at the

 26

destination node [2]. In the following, we present how to calculate the average message latency.

First we present the notations used in the computing process, and then we describe the

calculation process.

The average message latency Tmsg comprises of the message transmission delay across the

network channel tw, the intrarouter delay ts, [2] the average contention delay Wq at the network

channels and the average delay Wej at nodes’ local ejection channel. It can be computed as

follows:

 ()1 tr trmsg q q eq ejT N W W D T L T W= − ⋅ + + ⋅ + ⋅ + (1)

Where Ttr is given by max(ts, tw). It demonstrates the nature of pipelined flits transmission

of wormhole switching in absence of contention. DTtr denotes the mean time that a message’s

header flit needs to travel from source to destination and LTtr denotes the travel time for the data

payload of a message. (Nq -1)Wq shows the waiting time that header flit experienced at the Nq -1

channels of intermediate nodes. Queuing system at the destination node of a messages routing

path, Weq, is separated from other queues on previous nodes because of the different service rate

offered by last node. We will discuss the detail later. As the minimum link number that a

message travels is 3, the average hops that messages take, D, can be obtained by:

3
i

k

i
D p i

=

= ⋅∑ (2)

Where k is the diameter of the network, and pi denotes the probability that a message’s travel

path is i links long. Another simple and commonly used estimation of D is:

 27

3
2

kD +
= (3)

However, in a low radix network, Eq. (3) is prone to produce error. For example, D of the

4 nodes Torus network is 3.33, while Eq. (3) yields 3.5 in this case.

Under the uniform traffic pattern, the average traffic arrival rate λ for each channel is determined

by the message generating rate Mgen, average routing hops D and output channels number of each

node o [4].

4
genM D

λ
⋅

= (4)

In order to receive service from a link, the message’s header flit needs to acquire a virtual

channel. Once a virtual channel is assigned to a message, it keeps serving this message and will

not be released until all the data flits flow across this node. Because each virtual channel has one

flit depth buffer, once it is assigned to a message, no other message can use the same virtual

channel till it’s free again. When the traffic rate is light, there is no congestion; the service time

at each channel can be defined as:

(1)sS t L= ⋅ + (5)

And the service rate can be derived accordingly:

S
SR 1

=
 (6)

When traffic rate is high enough, congestion appears in the network and waiting queues

build up at corresponding bottleneck links. In this case, the service that one channel can provide

 28

to the incoming messages is not only determined by its own service capacity, but also by the

blocking state of its immediate downstream channels.

In our network, the traffic arrival rates for the four input channel of a node are equal to

each other because of the following reasons:

1. Torus network with wrap around links is a strictly symmetric topology.

2. Every node is identical in terms of capacity of generating and consuming message.

3. Traffic is generated randomly from all the nodes.

4. The routing protocol is fully adaptive algorithm.

5. The input channels all have equal service capacity.

So we can treat the queuing systems at each of these channels as identical. Without loss of

generality, suppose the node that we analyze is at nth hop of a messages routing path. We derive

the queuing system model of the channel Chn,W on the west input port as shown in Fig. 1.

We follow the suggestion in [11] to treat the waiting queue Qn,W at channel Chn,W as two

distinct queues Qc and Qd. As shown in Fig. 5, Qc is result from the delay involved in router

(switch) service delay observed by Chn,w, while Qd is due to the contention that a message may

experience when it’s to be accepted by a downstream input channels.

 29

Figure 3.3: Queuing model for an input channel

Qc is determined by the traffic arrival rate λ and the router self’s service rate SR. To

model it, we use an M/M/m queuing system. The first two “M”s stands for the Poisson

distribution traffic arrival process and the exponential distributed service time respectively. The

third “m” means there are m servers and a message at the head of the queue is routed to any

server that is available. Accordingly we have v virtual channels per physical link in our network

configuration, which are treated as the v servers in the queuing model.

The probability that an arrival message will find all virtual channels are busy and will be

forced to wait in queue can be obtained by [1]:

 30

()
()

0'
! 1Q

vp v
P

v
ρ
ρ

⋅ ⋅
=

⋅ − (7)

Where p0 is given by:

()
()0

1
1

0

()
! ! 1

nv v

n

v vp
n v
ρ ρ

ρ

−
−

=

⎛ ⎞⋅ ⋅⎜ ⎟= +
⎜ ⎟⋅ −
⎝ ⎠
∑ (8)

And ρ is given by:

v SR
λρ =
⋅

For the second queue Qd, the traffic arrival rate is still λ, and the service rate, μr, is the

service rate that offered by all the immediate downstream channels to Chn,w. However μr at

destination node is different from those at intermediate nodes along the path. This is because at

destination, the message is bound to be delivered into local ejection channel, thus other three

possible immediate downstream channels cannot contribute service to μrE in this case.

Correspondingly, at other nodes along the path, local ejection channel won’t offer service to a

message. We first show how to compute μr at intermediate nodes and use it to get the average

waiting time for a message at these nodes when contention is taken into consideration. After that,

we’ll show the calculation for μrE and the corresponding waiting time at the destination node.

 31

Figure 3.4: Reduced queuing model for an input channel

To obtain μr at intermediate nodes, we can further divide Qd to three queues, each of

which is associated with an immediate downstream channel in one of the three possible

downstream directions, i.e. east, south and north in this case. Note, the routing algorithm that we

assume in the model is progressive algorithm, so we don’t treat the backtracking channel as an

immediate downstream channel. However, if the model needs to be used to model a backtracking

routing algorithm, then service from one more possible downstream channel (Chn-1,E in this case)

in the reverse direction can be easily added in.

As we mentioned before, the traffic arrival rates for the three queues on each direction of

next hop are equal to each other. Moreover, these downstream network channels have same

service capacity, so we can get the analysis results for all these queues by analyzing any one of

them. Without loss of generality, let’s consider the waiting queue residing at the west

downstream channel Chn+1,W. The channel can accept a new message when it has free virtual

channel available, while no messages can be accepted when all the virtual channels are occupied.

Furthermore, Chn+1,W’s service capability, i.e. the number of flits that can be processed within a

unit time (clock cycle) is fixed, so with more traffic generated in the network, the probability of

 32

one message to be served is less; in another word, the waiting time for this message is longer.

Since we can get the average waiting time for a message by: [1]

()

'

1
Q

dq
P

W
ρ

λ ρ

⋅
=

⋅ − (9)

Then the average time that a message spends at the queuing system of Chn+1,W is Wqd + S.

In addition, there are v virtual channels in Chn+1,W and Chn+1,W has o possible inputs(including

local injection channel), therefore we can get
w

r
μ as :

()
w
r

qd

v
o S W

μ =
⋅ + (10)

Hence, we get μr as:

W S N

W S Nr r r rp p pμ μ μ μ= + + (11)

Because of the symmetry of our network, we know that pW=pS=pN, therefore μr=3
w

rμ .

For networks with different topology or traffic pattern, we can get μr by deriving the probabilities

of the traffic flows to downstream links on different direction. Using Little’s Theorem, the

average number of messages in the whole queuing system at Chn,W can be derived as:

QP
N T

v
λλλ

μ μ λ
⋅

= ⋅ = +
⋅ − (12)

Note that μ in Eq. (12) is the overall service rate that Chn,W provides to its incoming

traffic. It takes into consideration of both with and without contention cases on downstream

channels. Also by Little’s Theorem, the average number of messages in Qd is:

 33

d
r

N λ
μ λ

=
− (13)

And the average number of messages in Qc is:

Q
c

P
N

SR v SR
λλ

λ
⋅

= +
⋅ − (14)

As Qn, E comprises of Qc and Qd, combine Eq. (12), (13) and (14), we get:

Q Q

r

P P
v SR v SR
λ λλ λ λ

μ μ λ λ μ λ
⋅ ⋅

+ = + +
⋅ − ⋅ − − (15)

From Eq. (7) and (8), we already knew that PQ in Eq. (15) can be expressed in terms of λ and μ:

()
() ()

()

11

0

()
! ! 1

! 1Q

nv v v

n

v v v
n v

P
v

ρ ρ ρ
ρ

ρ

−
−

=

⎛ ⎞⋅ ⋅⎜ ⎟+ ⋅ ⋅
⎜ ⎟⋅ −
⎝ ⎠=

⋅ −

∑
 (16)

Where ρ is given by:

v
λρ
μ

=
⋅

Replace PQ in Eq. (15) using Eq. (16), solve the nonlinear equation, we can get the service

rate μ at channel Chn,W.

Then, by Little’s Theorem again, we can obtain the average time Wq that a message has to

wait in queuing system at the intermediate nodes of a message’s traveling path:

()1
Q

q
P

W
ρ

λ ρ
⋅

=
⋅ − (17)

 34

At the destination node, say Ndes, μrE is solely determined by the local ejection channel.

But we cannot apply Eq. 9 and 10 directly, because there may be more than one message choose

Ndes as its destination node which implies that local ejection channel has a different arrival traffic

rate than network channels. We can derive the message arrival rate from other sources by:

1

1
' ()

o
i

i
n iλ λ

−

=

= ⋅ −∑ (18)

Where n is the total nodes number of the network. Since the node’s local ejection channel

doesn’t have any downstream channel dependency; we treat it as an independent M/M/m queuing

system, where “m” also equals to virtual channel number v. Thus we can use Eq. (8) to calculate

the average waiting time for a message, Wqde, in absence of contention by replacing λ to λ+λ’.

So we obtain μrE as:

'rE
qde

v
S W

λμ
λ λ

= ⋅
+ + (19)

Repeating the computing process expressed in Eq. 12, 13, 14, 15, 16, 18, by providing the ρ

for this case:

'
v
λ λρ

μ
+

=
⋅

We can obtain the waiting time at the input channel of destination node, Weq.

Finally, as we mentioned that the nodes local ejection channel is treated as independent

M/M/m queuing system; the average waiting time on ejection node channel can be obtained by:

 35

() ()' 1
ej ej

ej

Q
ej

P
W

ρ

λ λ ρ

⋅
=

+ ⋅ − (20)

Where
ejQP can be obtained by Eq. (16) with

'

ej v SR
λ λρ +

=
⋅ (21)

At this point, the message delay Tmsg defined in Eq. (1) can be easily calculated out as all

the unknown variables at the right hand side of the equation are all obtained now.

3.5 Validation

We carried out a number of simulations to validate the proposed model. The simulator we

used is flexsim1.2 [18] [20], which is a flit level simulator for Torus/Mesh network adopting

wormhole switching. In flexsim1.2, when uniformly distributed traffic is used in simulations, the

source of a message is equally randomly picked among nodes in the network. Thus we can treat

the traffic that arrives at a given channel follow Poisson distribution. Parameters of the simulated

network are set to conform to the assumptions described in section 3. Validation experiments are

carried out on many different combinations of network size, message length and virtual channel

number per physical channel. In order to facilitate the illustration of our model’s validity, the

messages’ data payload is set to 32 flits and the number of virtual channels per physical channel

is set to 4. All the simulation results are obtained from simulations running for over 1 million

cycles simulating time to rule out exceptional results. In the follows, we present average message

latency results obtained from both model and simulations on three different size networks, 64,

256 and 1024 nodes two dimensional Torus network. Figures 3.5, 3.6 and 3.7 demonstrate

average message latency results predicted by the model against those obtained from the

 36

simulations. These results are obtained from 8-ary 2-cube, 16-ary 2-cube and 32-ary 2-cube

networks respectively. The figures reveal that simulation results and predictions of our model

match well from a very light usage of a network channel to about 50% average utilization, after

which point discrepancies are apparent as the network gets into saturation state.

60

80

100

120

140

160

180

200

220

240

260

0.004125 0.006 0.00825 0.0165 0.02 0.0329348

Traffic Arrival Rate (msssages/cycle)

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy simulation

model

Figure 3.5: Comparison of Model against simulation in 64 nodes torus network

 37

60

80

100

120

140

160

180

200

220

240

260

0.004125 0.006 0.00825 0.012 0.0165 0.02 0.033333

Traffic Arrival Rate (messages/cycle)

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy simulation

model

Figure 3.6: Comparison of Model against simulation in 256 nodes torus network

60

80

100

120

140

160

180

200

220

240

260

0.004125 0.006 0.00825 0.012 0.016665 0.03333

Traffic Arrival Rate (messages/cycle)

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

simulation

model

Figure 3.7: Comparison of Model against simulation in 1024 nodes torus network

 38

3.6 Apply model to multiple flit buffer

 We have presented the detailed calculation process to use the proposed analytical model

predicting performance of a k-ary 2-cube network in section 3.4. In section 3.5 a comparison

with simulation results is shown. In that calculation process, to make it simpler to illustrate the

core idea of the model we assume the buffer size at each virtual channel end is 1 flit deep.

Although there are machines that implement 1 flit buffer, it is also possible to have larger virtual

channel buffers. In this section we introduce an approach to apply our model to Statically

Allocated Multi-Queue (SAMQ) buffers which are more than 1 flit deep.

The following are notations that are needed in this extension of the model:

1. Buf: Buffer Size of each virtual channel

2. Dsm: Number of nodes needed to store message in virtual channel buffer when message is

blocked. It is obtained by L/Buf where L is message length

3. Di: Distance between ith intermediate node to destination node.

Due to the pipelined transmission nature of wormhole switching, if there is no

congestion in the network, then buffer size has no impact on flowing message because all the

flits are cut through to next hop channel without storing in current node’s channel buffer.

In case the message is blocked in an intermediate node’s channel, all the flits will be

stored in the intermediate node buffers. Thus, if there is more buffer space available at each

intermediate node’s channel, then more flits can be stored in these channels. Therefore, for a

channel that are near the source node, its Dsm may be smaller than its Di. In contrast, if each

virtual channel has 1 flit buffer, then Dsm is equal to Di. This is to say that the channels near the

source node side may be freed right after transmitting flits and the possible congestions of

message M in subsequent nodes have no impacts to this channel after it finishes transmitting all

 39

the flits of M. This is because all the flit can be stored in Dsm virtual channels that precede the

congested node.

In wormhole switching, once a virtual channel is assigned to a message, this virtual

channel cannot be used for other messages no matter what’s the size of the virtual channel buffer.

Therefore, although more buffer space means more data flits can be stored in the channel buffer,

the service rate that a channel can provide to the incoming traffic still remains same. In another

words, using the notations of analysis in section 3.4, the service rate of a physical channel is still

determined by the v servers that are the virtual channels multiplexing it. Therefore we can use

the average waiting time for a message at each intermediate node, Wq, which is obtained in

section 3.4 to estimate the message waiting time in the multiple flit buffer case.

Using the notations in section 3.4, for multiple flit buffer virtual channels, we can obtain

the average time that one virtual channel may be occupied by a flowing message M as:

(1) min(,)tr sm i qL T D D W+ ⋅ + ⋅ (1)

where (L+1)Ttr denotes the time that this channel spends to transfer the header and data payload

flits of a message M and min(Dsm, Di)Wq shows the time span that flits of M stay in this virtual

channels buffer. As mentioned earlier, we know that if 1 flit buffer is used, then Dsm = Di,

therefore, the average time that one virtual channel may be occupied by a flowing message M in

this case is:

(1) tr i qL T D W+ ⋅ + ⋅ (2)

Subtract (1) from (2), we get difference between the time that a flowing through message spent

in a 1 flit buffer channel and the time it spent in multiple flit buffer channel:

 40

(min(,))i sm i qD D D W− ⋅ (3)

Using equation (2) and (3), together with the parameters of a analysis target network, we

can obtain the percentage of the average time reduction of message M staying in a virtual

channel, which in turn can be used to estimate the improvement in terms of the physical channel

service rate. Then we can apply the model presented in section 3.4 to predict the performance of

networks with multiple flit virtual channel buffer.

As to apply the model to predict network with Dynamically Allocated Multi-Queue

buffer, we need to analyze the pattern of how the buffer space is partitioned among the

competing virtual channels. It is more complex than the previously mentioned SAMQ case.

However it would be a very good topic for future extension of this research.

3.7 Conclusion

 We have presented an analytical model for predicting network performance in this

chapter. This model can be applied to wormhole switching network to predict network

performance measures, such as average message latency and average link waiting time in a torus

network using fully adaptive routing algorithms such as Duato’s method. Unlike previously

proposed models, this model is based on general queuing theory and probability analysis. It’s

simple and yields rather accurate predictions in network’s steady state region. Compared with the

model [5] in the literature for wormhole switching k-ary n-cubes network with adaptive routing,

our model computes the blocking probability using message arrival rate and service rate

provided by network channels and can predict network performance accurately from very light

traffic load to the saturation point where about 0.2 messages are received/sent at each network

node per cycle. While the model proposed in [5] conducted the calculation based on virtual

 41

channel groups in Duato’s routing algorithm and predicted network performance in the traffic

load region from 0 to about 0.002 messages per node per cycle.

By applying close-form calculations of this model, we can correctly predict high-radix k-

ary n-cubes in steady state regions with a short code snippet. It can be concluded that our model

provides an effective and practical evaluation tool. In addition, since this model obtains message

waiting time at each queuing system at channels of a routing path, it can be easily adapted for

networks with other topologies. For instance, mesh network. The only required information is

message arrival rate and service rate at the related channels. These two measures can be

computed based on the specific network topology property and routing algorithm.

 42

Chapter 4

High Performance DAMQ Buffer Schemes

In this chapter three novel DAMQ buffer schemes based on self compacting buffer (SCB)

are presented. These schemes are proposed to let traffic flow make an efficient use of input

buffer that resides in each communicating node. For each of the three schemes, we first describe

their organization; then present the simulation results and some concluding remarks.

4.1 DAMQ with Reserved Space for All Virtual Channels

DAMQ dynamically allocate buffer blocks according to the packet received. Compared

with statically allocated buffer scheme, the advantage of DAMQ is that it uses efficiently the

buffer space by applying free space to any incoming packet regardless its destination output port.

Since there is no reserved space dedicated for each output channel, the packets destined to one

specific output port may occupy the whole buffer space thus the packets destined to other output

ports have no chance to get into the buffer. This is the case especially for small and compact

routers with limited buffer space where wormhole switching technique and virtual channel

mechanism are commonly used. A unidirectional virtual channel is implemented by an

independently managed pair of buffers at two adjacent nodes.

 43

Reserved
for VC0

Reserved
for VC1

Reserved
for VCn-1

Free Space

0 1 2 3 2n-2 2n-1

Figure 4.1: DAMQall Buffer space at the initial state

When several virtual channels multiplex across the physical channel and share a common

buffer, the virtual channels which have packets accepted in the buffer prior to other virtual

channels may hold the whole buffer space when the output port to next hop node that it destines

to is busy. In order to overcome this shortcoming of DAMQ buffer schemes, we implement a

new buffer organization scheme, DAMQ with reserved space for all virtual channels (DAMQall).

DAMQall is based on the self-compacting buffer (SCB) scheme. It inherits most features of the

SCB. Similarly, the virtual channels multiplexing one direction of a physical channel share a

buffer. The new feature is that there is reserved space dedicated for each virtual channel,

therefore at any time there is free space for the packets of “late” virtual channels which has not

received packet and one virtual channel can never consume the whole buffer. As shown in Figure

4.1, two buffer slots are reserved for each virtual channel before the buffer accepts any incoming

flit. The reserved spaces for each virtual channel are arranged sequentially according to the

sequence numbers of the virtual channels.

 44

Reserved for
VCi

Free SpaceUsed by VC0-
VCi-1

Used by VCi+1-
VCn-1

Figure 4.2: DAMQall Buffer space status in operations

One register is used to point to the head of each reserved space, i.e. the head of the buffer

region for each virtual channel. If two channels are denoted as Vi, Vj with i + 1 = j, then the

reserved region for Vj will be placed right after the reserved region for Vi.

The size of reserved space for each virtual channel can be adjusted, however, we have

chooses two flits because, according to our simulation experiments statistics, two reserved flits

scheme yields satisfactory performance while keeps more free space for sharing. When there is

an incoming flit to the buffer, the DAMQall operates as shown in Figure 4.3. When a flit is

leaving the buffer, the DAMQall operates as illustrated in Figure 4.4:

. Also as shown in Figure 4.2, the reserved space for each virtual channel is always kept if

there is no flit or only one flit in the buffer region for a specific virtual channel.

 45

Figure 4.3: Pseudo-code for in buffer operations

if (first flit for current VC){

 put it into buffer;

 increment counters;

}

else if

(current VC doesn’t fill reserved space for it) or

(there is free slot left in buffer){

 if (last flit of current VC is next to first slot of next VC buffer space) {

 shift down all the flits and reserved space of the lower virtual channels one slot;

 increment head pointer for lower VCs;

}

put flit into buffer;

increment counters;

}

 46

Figure 4.4: Pseudo-code for out buffer operations

When the buffer performs shift up or shift down operations, the reserved spaces are

treated same as the slots which are holding flits. Thus the order of the buffer space for virtual

channels is kept conforming to the sequence of virtual channels. And once the number of current

flits in buffer plus the number of reserved slots equals to the total amount of buffer slots, no

more flit will be accepted unless this flit belongs to a virtual channel which has any reserved

space available. Therefore, one or more virtual channels which have the flits come into the buffer

at earlier time can never deprive the chance for other virtual channels which get flits later than

if (last flit in current VC){

 write flit to output port;

 decrement counters;

}

else{

 write flit to output port;

 decrement counters;

 shift up remaining flits of current VC;

 if (number of remaining flits of current VC >= reserved space number){

shift up all the flits and reserved space of following VC one slot;

decrement head pointer for following VC;

}

}

 47

them to get buffer. Moreover, once the earlier coming packets are blocked in the buffer, since

there is still reserved space for other virtual channels, the network traffic will keep flowing, so

the performance of the switch is also enhanced. This is the key improvement of DAMQall

scheme over SCB scheme.

4.2 DAMQ with Minimum Reserved Space for Virtual Channels

DAMQall improved SCB by reserving buffer space for each virtual channel to avoid the

situation that a few virtual channels consume the whole buffer then other virtual channels can not

get buffer even when those virtual channels which get buffer are blocked. In the simulation

experiments, we found that DAMQall is not the most efficient way to reserve space for virtual

channels. In a specific time interval, there may be no packets destined for some virtual channels.

Even worse situation is that there may be no packets destined for some virtual channels for a

very long time. In either case, the reserved spaces for these idle virtual channels are wasted. In

order to reserve the buffer space more efficiently and provide more space for flowing traffic, we

implement another buffer organization scheme, DAMQ with minimum reserved space for all

virtual channels (DAMQmin). DAMQmin is also based on SCB scheme and the virtual channels of

one direction of a physical channel still share a buffer. And based on the simulation results, we

still set the number of reserved buffer space to two slots. The difference to DAMQall is that at

any time there is at most one reserved space for all the virtual channels. And if every virtual

channel have flit present in the buffer, no reserved space will be kept in the buffer anymore.

Thus DAMQmin use minimum space for reserve purpose. As shown in Figure 4.5, two buffer

slots are reserved for the virtual channel which may firstly claim for buffer.

 48

Figure 4.5: DAMQmin Buffer space status at the initial state.

Once a virtual channel has one flit come into the buffer, it will occupy two buffer slots

which were reserved space before it comes in, thus there is actually still one slot reserved for it.

As shown in Figure 4.8, this virtual channel will hold at least these two buffer slots unless it has

no flit left in the buffer any more. Once every flits of a virtual channel moves out the buffer, the

header pointer of this virtual channel will be reset to empty and there are no more buffer slots

belong to it. Another two slots reserved buffer region may be created if possible. The operations

that DAMQmin performs for incoming and leaving flit are shown in Figure 4.6 and 4.7

respectively.

Reserved for 1st
VC

Free Space

0 1

 49

 Figure

4.6: Pseudo-code of in buffer operations for DAMQmin

if (first flit for current VC) and (there is a reserved space){

 put it into buffer;

 increment counters;

 set head pointer for current VC;

 if (have enough free space in buffer) and (not every VC are present)

 set the reserved space pointer to the slot next to current VC reserved space;

}

else if

(current VC doesn’t fill reserved space for it) or

(there is free slot left in buffer){

 if (last flit of current VC is next to first slot of next VC buffer space) {

 shift down all the flits and reserved space of the lower virtual channels one slot;

 increment head pointers for lower VCs;

}

put flit into buffer;

increment counters;

}

 50

Figure 4.7: Pseudo-code of out buffer operations for DAMQmin

if (last flit in current VC){

 write flit to output port;

 decrement counters;

 reset head pointer for current VC;

}

else{

 write flit to output port;

 decrement counters;

 shift up remaining flits of current VC;

 if (number of remaining flits of current VC >= reserved space number){

shift up all the flits and reserved space of following VC one slot;

decrement head pointer for following VC;

}

}

if (no reserved space is present in buffer) and (not every VC are present){

 if (there are enough free buffer slots)

 set the reserved space pointer to the slot next to last VC reserved space;

}

 51

Reserved space is always placed right after the buffer region of virtual channel which is the

latest one to have flit into the buffer. When the buffer performs shift up or shift down operations,

all reserved slots are treated same as the slots which are holding flits.

Figure 4.8: DAMQmin Buffer space status in operations.

By dynamically creating reserved space for virtual channels, DAMQmin presents a very

efficient way to use buffer space, there is always minimum buffer space used for reserve purpose,

so there are more free space available for flowing traffic.

4.3 Shared DAMQ with Reserved Space for All Virtual Channels

DAMQ allocates buffer space when a packet is received. Compared with statically

allocated multi-queue (SAMQ) scheme, the advantage of DAMQ is its efficient use of the buffer

space by allocating free space to an incoming packet regardless of its destination output port.

However, because there is no reserved space dedicated for each output channel, the packets

destined to one specific output port may occupy the whole buffer space thus the packets destined

to other output ports have no chance to get into the buffer. This is the case especially for small

and compact routers with limited buffer space where wormhole switching technique and virtual

channel mechanism are used. In order to overcome this shortcoming a new buffer scheme,

Reserved for
next VC

Free SpaceUsed by 1st VC-
(i-1)th VC

Used by ith
VC

 52

DAMQ with reserved space for all virtual channels (DAMQall) was proposed in [43], DAMQall is

based on Self-compacting buffer (SCB) scheme, the virtual channels belonging to one direction

of a bidirectional physical channel share a buffer as described in previous sections of this chapter.

However, in a wormhole-switched network with several virtual channels multiplexing a

physical channel, some routing algorithms, for example, the algorithms that pick an available

virtual channel sequentially tend to choose one set of virtual channels over others; moreover,

even the virtual channels are chosen randomly, the traffic may not evenly distributed into all

virtual channels of different physical channel, thus the traffic load usually is not evenly

distributed in buffer space of a physical channel and among different physical channels.

Therefore, a more efficient approach to use the available buffer space is to let the virtual

channels belonging to a physical channel share buffer with virtual channels of another physical

channel.

 53

 54

Figure 4.9: Switches with DAMQall buffer and DAMQshared buffer

As shown in Figure 4.9. (a), the simple switch with four input and four output ports adopts

DAMQall buffer scheme for the input buffer; there is one dedicated buffer per physical channel,

i.e. east X, west X, north Y and south Y. Each physical channel buffer has its own read port and

write port, the four virtual channels that are multiplexing a physical channel have their own

reserved space (RS) in buffer. Our new DAMQshared buffer combines the buffer for virtual

channels from two different physical channels. We combine the buffer space for east X and south

Y virtual channels to build one physical buffer, and west X and north Y forms another buffer

group. As shown in Figure 4.9. (b) and (c), there are two buffers for four physical channels; each

buffer is shared by eight virtual channels, and has two read ports and write ports respectively.

We used two ways to organize the shared space of DAMQshared. The first way,

DAMQshared-1, behaves similarly as DAMQall, the difference is the number of virtual channels

 55

sharing buffer is doubled in this case. In the second way, DAMQshared-2, the shared space is

placed in the middle of the two buffer regions of two virtual link groups then the two buffer

regions expand towards center of the free buffer space. This way, there will be less data shifts

when a flit is saved into buffer because the movement of one region doesn’t depend on shift of

another group and it closely simulates the behavior of hardware which is shown in Figure 4.10.

 56

Figure 4.10: DAMQshared buffer organization

C

ha
nn

el
 A

 p
oi

nt
er

s

B
uf

fe
r C

on
tro

lle
r A

B

uffer C
ontroller B

C
hannel B

 pointers

W
rit

e
B

us
 A

W
rit

e
B

us
 B

 R
ead B

us A

R
ead B

us B

BUFFER

Free Space

Input Port A

Input Port B

To Node’s Switch

To Node’s Switch

Virtual Channels for Physical

Channel B

Virtual Channels for Physical

Channel A

 57

As illustrated in Figure 4.11, two buffer slots are reserved for each virtual channel before

any flit comes in the buffer. In DAMQshared-1, the reserved spaces for each virtual channel are

arranged sequentially according to the sequence numbers of the virtual channels. As shown in

Fig 4.11 (a), virtual channels on the X dimension have smaller sequence numbers than those on

the Y dimension; the first virtual channel on Y dimension is contiguous to the last one on X

dimension. One register is used to point to the head of each reserved space, i.e. the head of the

buffer region for each virtual channel. If two channels are denoted as Vi, Vj with i + 1 = j, then

the reserved region for Vj will be placed right after the reserved region for Vi. The reserved space

for virtual channels on Y dimension is right after the reserved space for X virtual channels. The

reserved space for each virtual channel is always kept if there is no flit or only one flit in the

buffer region for a specific virtual channel.

When the buffer performs shift up or shift down operations, the reserved spaces are

treated same as the slots which are holding flits. Thus the order of the buffer space for virtual

channels is kept conforming to the sequence of virtual channels. Moreover, since two groups of

virtual channels are sharing buffer and the reserved spaces for virtual channels from two groups

are arranged continuously, if there is no space in the region of first group for an incoming flit

headed to a virtual channel in this group, and there is still space in the shared region, then the

space will be made by shifting down all the lower addressed regions including space of this

virtual channel, space of other virtual channels in this group and space of another virtual

channels group. The buffer state when it is in operation is shown in Figure 4.11 (b).

 58

Figure 4.11: DAMQshared buffer statuses in initial state and operation

Reserved for
VCi

Free SpaceUsed by VC0-
VCi-1

Used by VCi+1-
VC2n-1

(b) DAMQshared-1 Buffer space status in operations.

0 1 2n-2 4n-1 2n

Rsv
VC0

2 3 2n-1 4n-2 2n+2

Rsv VC1
Rsv

VCn-1

Rsv
VC2n-1

Rsv
VCn+1

Rsv
VCn

Free
Space

(c) DAMQshared-2 Buffer space status at initial state

Reserved
for VC0

Reserved
for VCn-1

Reserved
for VCn

Free Space

0 1 2n-2 2n-1 2n 2n+1 4n-2 4n-1

Reserved for
VC2n-1

(a) DAMQshared-1 Buffer space status at initial state.

Rsv VCj Used by
VCn-VCj-1

Used by
VCj+1-VC2n-1

Rsv VCi Used by
Vi+1-VCn-1

Used by
VC0-VCi-1

Free
Space

(d) DAMQshared-2 Buffer space status in operations

 59

For DAMQshared-2, when the buffer is in operation, the RS (reserved space) is also always

kept if there is no flit or only one flit in the buffer region for a specific virtual channel. As shown

in Figure 4.11(d), same as previously mentioned schemes, when the buffer performs shift up or

shift down operations, the RSs are also shifted. When a virtual channel accepts a flit, it first uses

its RS. If RS is used up, buffer space of the lower addressed region in this group expands toward

another group’s buffer space to produce a slot. Once the boundaries of the two buffer regions

encounter, no more flit will be accepted unless this flit goes to a virtual channel which has its

own RS available. At any time during operation, the number of current flits in buffer plus the

number of reserved slots equals to the total amount of buffer slots. Therefore, one or more virtual

channels which have the flits come into the buffer at earlier time can never deprive the chance

for other virtual channels which get flits later than them to get buffer. Also, in case the earlier

coming packets are blocked in the buffer, since there is still reserved space for other virtual

channels, the network traffic through these channels can still keep flowing; therefore the

performance of the switch and the whole network can be enhanced.

Moreover, as virtual channels from two physical channels are sharing the buffer, the

buffer space is more efficiently used by the incoming flits. Hence, to achieve same network

performance, by using DAMQshared scheme, a switch can use less buffer space than DAMQall and

traditional buffer schemes. The results will be shown in next section.

 60

4.4 Performance Evaluation

This section presents the results of simulation experiments conducted to evaluate the

performance of our novel buffer organization schemes proposed in previous sections. First, our

methodology and configuration of simulation environment are described. Then we examine the

performance of DAMQall, DAMQmin , and DAMQshared in greater detail.

4.4.1 Simulation Experiments Setup

We have carried out our simulations by using flexsim1.2 [18] which is a simulator for

flit-level simulation of torus/mesh networks as introduced in Chapter 3. To compare the

performance of DAMQshared with other schemes including DAMQall, we conducted exhaustive

simulations on 16-ary 2-cube, 8-ary 2-cube and 4-ary 2-cube message exchanging systems with

wrapped around channels as shown in Figure 4.12. For DAMQall and DAMQmin, the architecture

we used to conduct simulations is a 4-ary 2-cube message exchanging system.

In the simulated network system, a switch is attached to each end-node which has one

injection channel to the switch and one input channel to receive message from network. Physical

channels are duplex channels. To thoroughly examine DAMQshared scheme and get in depth

understanding of how switch buffer schemes impact network performance, two kinds of traffic,

uniformly distributed and hotspots traffic are simulated.

To evaluate DAMQall and DAMQmin schemes, we used uniform traffic as many other

researchers also use this traffic mode in their NoC works [31] [42]. When using uniformly

distributed network traffic, every end node generates packets with randomly determined

destination and injects them into the network. When using hotspot traffic, we randomly pick four

hotspots in a 64 nodes 8-ary 2-cube network. In addition, we make these hotspots nodes reside in

different row and column of the network to avoid intensively congested region. Other pertinent

 61

simulation configuration parameters are listed as follows:

 Routing flit delay is set to 1 cycle.

 Data flit delay is set to 1 cycle.

 Buffers at local end nodes are infinite.

 Packets size is set to 32 flits.

 Switching technique used is wormhole.

As to the routing algorithms used in our simulations, we adopt a static routing protocol E-

Cube [12] to conduct the simulations for both DAMQall and DAMQmin. Adaptive routing

protocol is used to conduct our simulations for DAMQshared as several researchers had reported

strong performance brought by adaptive routing [23]. Among the up to date adaptive routing

algorithms, we choose Duato’s routing methodology in our experiments because it’s a well

known and extensively used adaptive routing protocol. Dimension order path selection function

is used for the Duato’s routing protocol. We vary the applied load, buffer size and virtual

channels number; study their impact on throughput and message latency for the network. To

increase the number of virtual channels multiplexing a physical channel can improve switch

performance, but having too many virtual channels not only incurs expensive hardware expense

but also increases the message delay. In our simulation experiments, we set the number of virtual

channels of one direction of a duplex physical channel to four or eight, thus the advantages

brought by virtual channel mechanism will not be overshadowed by its shortcoming.

 62

Figure 4.12: The base system for our simulations

4.4.2 Examined Performance Metrics

Since messages are divided to flits when transmitting, to increase message length has the

similar effect on increasing traffic load as to shorten the average injection period for each node.

We set the message length at fixed 32 flits and make the network into saturation state by

shortening injection period for each node namely by increasing the traffic load rate. Traffic load

rate is derived by the following formula [18]:

() DstIPMLNChLR ××=×

 63

Where LR is load rate, CH is the number of channels, N is the number of nodes, ML is message

length, IP is average injection period, and DST is average routing distance.

We compare our new buffer scheme DAMQshared to DAMQall [43] and the traditional

statically allocated buffer scheme (SAMQ) used for virtual channels which is reported in [44].

We didn’t include traditional DAMQ scheme in the comparisons, because during the simulation

process we found the whole buffer space for one port is easily occupied by the blocked messages

which incur deadlocks, when the network becomes congested.

Two most important metrics, network throughput and message latency are compared

among these three buffer schemes. The network throughput (TP) is defined as the number of flits

received per node per cycle as follows:

STN
MLMSGNTP

×
×

=

Where MSGN is the total number of delivered messages; ML is the message length, N is the total

number of nodes and ST is the simulation time (in cycles).

The message latency is measured as the average time span (in cycles) for every packet

between the moment it was generated and the reception of the whole packet at destination. We

use average latency (LTNavg) of all the injected messages as the performance metric in our

simulations. This latency is defined as follows:

∑ =
×=

MN

i
iavg LTN

MN
LTN

1

1

Where LTNi is latency for Messagei and MN is the total injected message number.

 64

In addition, when evaluating DAMQshared scheme, we compared buffer utilizations

among these buffer schemes to get an in-depth understanding of buffer usage efficiency. We use

average stored flits (FLITavg) in the buffers of all the nodes as a metric in our simulations. It is

defined in the following formula:

∑ ∑ =
×=

ST VN

i
iavg FLIT

ST
FLIT

1 1

1

Where FLITavg is the average number of flits that are stored in the buffer space of all the nodes,

FLITi is the number of stored flits in VirtualChanneli’s buffer space and VN is the total virtual

channel count in the network.

4.4.3 Simulation Results

DAMQall and DAMQmin on four virtual channels and 16 nodes In this part we present the

simulation results obtained when 4 virtual channels are multiplexing a physical channel network

is 16 nodes torus. We examine the performance for three different size buffers on SAMQ and

two different size buffers on DAMQall and DAMQmin, The throughput and message latency are

shown in Tables 4.1 and 4.2, respectively. It is well known that there is no significant difference

for different buffer scheme while the network is not saturated. In our simulation experiments, we

keep increasing the traffic load so that we can compare the performance of different buffer

schemes when the network is in saturation status. As shown in Figure 4.13, along with the

network saturation process, our DAMQall and DAMQmin have higher throughputs than SAMQ if

they all use same size buffer. DAMQall achieves approximate the same maximum throughput as

SAMQ. However it only uses half of the buffer space used by SAMQ. DAMQmin gets even

higher maximum throughput than DAMQall, because the former saves more buffer slots ready to

be used than the latter. Furthermore, at the same maximum throughput level, both DAMQall and

 65

DAMQmin have less latency than SAMQ as shown in Figure 4.14.

DAMQall and DAMQmin on eight virtual channels and 16 nodes We present the

simulation results obtained when 8 virtual channels are multiplexing a physical channel in this

section and network is 16 nodes torus. Because more virtual channels are used, the throughput

and latency are higher than 4 virtual channels situation when the network is saturated. The

throughput and message latency are shown in Table 4.3 and Table 4.4 respectively. DAMQall and

DAMQmin again get better performance over SAMQ. As shown in Figure 4.15, with only half

size buffer, DAMQmin even get higher maximum throughput than SAMQ and DAMQall get same

throughput as SAMQ. The reason is when there are more virtual channels involved, DAMQmin

and DAMQmin can have more free buffer space to use and DAMQmin make the most efficient

usage on the buffer. Also as shown in Figure 4.16, there is no unwanted message latency

introduced for DAMQall and DAMQmin, they have approximate same latency as SAMQ that are

using double size buffer.

 66

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.06 0.1 0.14 0.18 0.55 1

Applied traffic load

Th
ro

ug
hp

ut 4 flits SAMQ
8 flits SAMQ
16 flits SAMQ
4 flits DAMQall
8 flits DAMQall
4 flits DAMQmin
8 flits DAMQmin

Figure 4.13: Comparison on throughput between 4/ 8 flit-buffer DAMQall / DAMQmin and

4/ 8/ 16 flit-buffer SAMQ

 67

Table 4.1

The Performance 4-ary, 2-cube network composed of block switches. Shown is the throughput

obtained from simulations where 4 virtual channels used

.

Throughput Versus Applied Traffic Load Rate
Buffer
Type

BS
per
VC

0.02 0.06 0.10 0.14 0.18 0.55 1

4

0.16

0.31

0.57

0.62

0.65

0.66

0.66

8
0.15 0.32 0.58 0.64 0.68 0.69 0.69

SAMQ

16
0.15 0.32 0.58 0.66 0.69 0.71 0.71

4
0.16 0.31 0.57 0.63 0.67 0.68 0.68

DAMQ all
8

0.16 0.31 0.58 0.65 0.70 0.71 0.71

4
0.16 0.32 0.58 0.64 0.68 0.69 0.69

DAMQmin

 8

0.16

0.31

0.59

0.66

0.70

0.72

0.72

 68

60

110

160

210

260

0.06 0.1 0.14 0.18 0.55 1

Applied traffic load

M
es

sa
ge

 L
at

en
cy

4 flits SAMQ

8 flits SAMQ

16 flits SAMQ

4 flits DAMQall

8 flits DAMQall

4 flits DAMQmin

8 flits DAMQmin

Figure 4.14: Comparison on Latency between 4/ 8 flit-buffer DAMQall / DAMQmin and

4/ 8/ 16 flit-buffer SAMQ

 69

Table 4.2

The Performance 4-ary, 2-cube network composed of block switches. shown is the message

latency obtained from simulations where 4 virtual channels used.

Message Latency Versus Applied Traffic Load Rate
Buffer
Type

BS
per
VC 0.02 0.06 0.10 0.14 0.18 0.55 1

4

54

73

119

144

171

207

217

8 53 71 119 150 173 217 226 SAMQ

16 53 70 120 155 207 256 273

4 55 71 116 144 173 209 219

DAMQall

8 54 71 119 154 174 242 247

4 53 70 120 142 178 210 218
DAMQmin

8
 54 69 118 156 192 237 249

 70

0.3

0.4

0.5

0.6

0.7

0.8

0.06 0.1 0.14 0.18 0.55 1

A pplied traffic load

Th
ro

ug
hp

ut

8 flits SAMQ

16 flits SAMQ

8 flits DAMQall

8 flits DAMQmin

Figure 4.15: Comparison on Throughput between 8 flit buffer DAMQall / DAMQmin and

8/ 16 flit-buffer SAMQ

 71

60

110

160

210

260

310

360

410

460

0.06 0.1 0.14 0.18 0.55 1

Applied traffic load

M
es

sa
ge

 la
te

nc
y

8 flits SAMQ

16 flits SAMQ

8 flits DAMQall

8 flits DAMQmin

Figure 4.16: Comparison on Latency between 8 flit-buffer DAMQall / DAMQmin and

8/ 16 flit-buffer SAMQ

 72

Table 4.3

The Performance 4-ary, 2-cube network composed of block switches. Shown is the throughput

obtained from simulation where 8 virtual channels used..

DAMQshared on four virtual channels, 64 nodes and uniform traffic. Because of the

hardware constrains for network on chip systems, a single buffer in NoC systems usually does

not hold a full message. We set the buffer size for each virtual channel to 4 flits when DAMQall

and SAMQ are used. Since four virtual channels are multiplexing cross one physical channel, the

buffer size for each direction of a duplex physical channel is 16 flits when these two buffer

schemes are evaluated. To examine the performance of DAMQshared with regard to the

relationship between buffer size and performance, we use six different size buffers from 11 to 16

flits buffers for each direction of a duplex physical channel.

Throughput Versus Applied Traffic Load Rate Buffer
Type

BS
per
VC 0.02 0.06 0.10 0.14 0.18 0.55 1

8
0.16 0.32 0.63 0.74 0.80 0.80 0.79

SAMQ
16

0.16 0.32 0.63 0.75 0.81 0.82 0.81

DAMQall 8

0.16

0.32

0.64

0.77

0.81

0.82

0.81

DAMQmin 8

0.16

0.30

0.64

0.77

0.82

0.83

0.83

 73

Table 4.4

The Performance 4-ary, 2-cube network composed of block switches. Shown is the message

latency obtained from simulations where 8 virtual channels used

The simulation results for throughput and message latency are shown in Tables 4.5 and

4.6, respectively. We compare the performance of different buffer schemes when the network

starts to saturate on about 0.28 traffic load until it gets saturated after about 0.4 traffic load is

applied. As shown in Figure 4.17, along with the network saturation process, our new

DAMQshared has higher throughput than both DAMQall and SAMQ when they all use same size

of 16 flits buffer. When the network gets saturated, DAMQshared achieves the highest throughput

with same size 16-flit buffer is used. Furthermore, 12-flit DAMQshared achieves approximately

the same maximum throughput as SAMQ using 16 flits buffer as shown in Figure 4.17. Also, 14-

flit DAMQshared achieves approximately the same maximum throughput as SAMQ using 16 flits

buffer. In sum, DAMQshared achieves best performance among the three buffer schemes we tested.

Message Latency Versus Applied Traffic Load Rate
Buffer
Type

BS
per
VC

0.02 0.06 0.10 0.14 0.18 0.55 1

8
55 74 147 214 308 375 394

SAMQ
16

54 73 150 213 347 439 455

DAMQall 8

55

73

147

219

357

438

443

DAMQmin 8

54

73

147

218

357

439

458

 74

DAMQshared tends to provide a more efficient method for flits to share buffer space than

DAMQall which has already shown advantages over traditional SAMQ scheme.

DAMQshared achieves the best performance among the three buffer schemes we tested.

DAMQshared tends to provide a more efficient method for flits to share buffer space than

DAMQall which has already shown advantages over traditional SAMQ scheme.

As to the message latency, DAMQshared managed to hold a similar latency as SAMQ until

the network is severely saturated after a load of about 0.36 is applied, as shown in Figure 4.18.

When we further increase the traffic load after the network starts getting saturated, DAMQshared

shows higher latency than both DAMQall and SAMQ. The reason is DAMQshared holds much

more flits in the buffer than other schemes.

The numbers of average flits that are stored in the buffer are presented in Table 4.7. The

total buffer space (BUFtotal) can be obtained by the following formula:

VBVCPHYNBUF total ××××= 2

Where PHY is the physical channel corresponding to a node port, VC is the count of virtual

channel multiplexing a physical channel and VB is the buffer size of a virtual channel. The total

available buffer space is 4096 flits in our simulations. Thus, under traffic load 0.38, DAMQshared

utilizes 65% of the whole buffer space while DAMQall and SAMQ uses 51% and 37%

respectively as shown in Figure 4.19. Because message latency is a time span average on all the

flits that are injected into the network, more flits stored in the buffer results in longer time for

them in the waiting queues as the network has become drastically saturated.

It has been shown that DAMQshared provides a better use of the buffer space. In addition,

it should be pointed out that a 12-flit DAMQshared buffer achieves approximately the same

 75

maximum throughput as a 16-flit SAMQ buffer as shown in Figure 4.17. Also, a 14-flit

DAMQshared achieves approximately the same maximum throughput as 16-flit DAMQall buffer.

This is to say, to provide a similar network performance on very limited buffer resource,

DAMQshared achieves similar throughput with 25% and 12.5% less buffer space than SAMQ and

DAMQall, respectively. And the control units overhead is negligible as mentioned in Section 4.3.

 76

Table 4.5

The Performance of 8-Ary, 2-cube Network Composed Of Block Switches. Shown is the

Throughput Obtained for Simulations Where 4 Virtual Channels per Physical Channel Used

When Uniform Traffic is applied.

Applied Traffic Load Rate
Buffer Type

BS
per
PC .20 .23 .29 0.31 .33 .35 .38

SAMQ 16 .391 .442 .530 .548 .556 .558 .555

DAMQ all 16 .391 .440 .541 .562 .571 .570 .565

11 .392 .447 .535 .553 .554 .553 .542

12 .392 .450 .539 .558 .562 .560 .546

13 .391 .449 .540 .564 .568 .565 .548

14 .392 .447 .541 .565 .575 .570 .552

15 .392 .449 .542 .571 .578 .576 .568

DAMQshared

16 .392 .449 .541 .573 .585 .585 .575

 77

Table 4.6

The Performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Message

Latency Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used When

Uniform Traffic is Applied.

Table 4.7

Applied Traffic Load Rate

Buffer Type
BS
per
PC

.20 .23 .29 .31 .33 .35 .38

SAMQ 16 103 113 140 157 168 179 199

DAMQ all 16 102 110 142 158 175 184 198

11 103 117 151 169 190 200 223

12 104 116 149 171 186 201 228

13 103 116 149 165 184 203 235

14 103 114 145 164 183 205 238

15 103 113 145 164 185 203 240

DAMQshared

16 103 113 143 158 180 205 244

 78

Table 4.7

The Performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Buffer

Usage Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used When

Uniform Traffic is Applied.

Applied Traffic Load Rate

Buffer Type BS per PC

.20 .23 .29 .31 .33 .35 .38

SAMQ 16 356 493 873 1053 1224 1324 1501

DAMQ all 16 368 543 1019 1291 1611 1798 2096

11 446 592 1020 1223 1341 1462 1537

12 452 626 1086 1305 1548 1651 1793

13 461 672 1156 1417 1675 1857 2024

14 501 662 1201 1541 1864 2063 2262

15 491 689 1224 1619 1931 2172 2489

DAMQshared

16 501 685 1219 1618 2002 2239 2669

 79

0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38
0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

 16-flit SAMQ
 16-flit DAMQall

 11-flit DAMQshared

 12-flit DAMQ
shared

 13-flit DAMQshared

 14-flit DAMQ
shared

 15-flit DAMQshared

 16-flit DAMQshared

N
et

w
or

k
Th

ro
ug

hp
ut

Applied Traffic Load

Figure 4.17. Comparison on throughput between 11-16 flit buffer DAMQshared, 16 flit-

buffer DAMQall and 16 flit-buffer SAMQ under uniform traffic.

 80

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

100

120

140

160

180

200

220

240

260 16-flit SAMQ
 16-flit DAMQall

 11-flit DAMQ
shared

 12-flit DAMQshared

 13-flit DAMQshared

 14-flit DAMQ
shared

 15-flit DAMQshared

 16-flit DAMQshared

M
es

sa
ge

 L
at

en
cy

Applied Traffic Load

Figure 4.18: Comparison on latency between 11-16 flit-buffer DAMQshared, 16 flit-buffer

DAMQall and 16 flit-buffer SAMQ under uniform traffic.

 81

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800 16-flit SAMQ
 16-flit DAMQ

all

 11-flit DAMQshared

 12-flit DAMQ
shared

 13-flit DAMQshared

 14-flit DAMQ
shared

 15-flit DAMQshared

 16-flit DAMQshared

Fl
its

 N
um

be
r

Applied Traffic Load

Figure 4.19: Comparison on buffer usages between 11-16 flit-buffer DAMQshared, 16 flit-

buffer DAMQall and 16 flit-buffer SAMQ under uniform traffic

 82

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38
0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

 16-flit SAMQ
 16-flit DAMQ

all

 11-flit DAMQ
shared

 12-flit DAMQshared

 13-flit DAMQshared

 14-flit DAMQshared

 15-flit DAMQshared

 16-flit DAMQshared

N
et

w
or

k
Th

ro
ug

hp
ut

Applied Traffic Load

Figure 4.20: Comparison on throughput between 11-16 flit-buffer DAMQshared, 16 flit-buffer

DAMQall and 12/16 flit-buffer SAMQ under Hotspots traffic

 83

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

100

120

140

160

180

200

220

240

 16-flit SAMQ
 16-flit DAMQall

 11-flit DAMQshared

 12-flit DAMQshared

 13-flit DAMQ
shared

 14-flit DAMQshared

 15-flit DAMQshared

 16-flit DAMQshared

M
es

sa
ge

 L
at

en
cy

Applied Traffic Load

Figure 4.21: Comparison on latency between 11-16 flit-buffer DAMQshared, 16 flit-buffer

DAMQall and 12/ 16 flit-buffer SAMQ under hotspots traffic.

 84

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

Y
 A

xi
s

Ti
tle

Applied Traffic Load

 16-flit SAMQ
 16-flit DAMQ

all

 11-flit DAMQ
shared

 12-flit DAMQshared

 13-flit DAMQshared

 14-flit DAMQ
shared

 15-flit DAMQ
shared

 16-flit DAMQ
shared

Figure 4.22: Comparison on buffer usages between 11-16 flit-buffer DAMQshared, 16 flit-

buffer DAMQall and 12/16 flit-buffer SAMQ under Hotspots traffic

 85

DAMQshared on four virtual channels, 64 nodes and hotspots traffic As motioned earlier,

four hot spots are randomly generated in the 64 nodes network when we conduct the simulations

on hotspots traffic. After we got the hot spots locations, they are fixed for all the simulations on

different buffer schemes. Five percent of the traffic is directed to the hot spots. Other network

configurations are same as simulations for uniform traffic.

The simulation results for throughput and message latency are shown in Tables 4.8 and 4.9,

respectively. As shown in Figure 4.20, because hot spots become the bottlenecks for the entire

network, we can observe all the three buffer schemes provides similar throughput along with the

network’s saturating process. Also we can find that buffer space doesn’t play an important role in

this scenario; there is no significant throughput difference between 12-flit and 16-flit SAMQ.

The results on different sized DAMQshared buffer are very similar as well. This is because when

network gets saturated, hot spots become bottlenecks and they are the determining factor for the

whole network throughput. As shown in Figure 4.21, message latency on DAMQshared is about

twenty and ten percent higher than same sized SAMQ and DAMQall respectively.

Moreover, the message latency is proportional to the buffer size when DAMQshared are used.

11-flit DAMQshared buffer has very close message latency to DAMQall and SAMQ; larger sized

DAMQshared buffer has greater latency while 16-flit DAMQshared buffer has the greatest one.

Similar to simulations under uniform traffic, the reason for higher message latency on

DAMQshared buffer is that it holds much more flits than other two buffers, the numbers are shown

in Table 4.10. In Figure 4.22, we can see that under traffic load 0.38, 16-flits DAMQshared makes

use of 45% of the whole buffer space while same sized DAMQall and SAMQ uses 27% and 20%

respectively. Again the 12-flits DAMQshare buffer can be used to provide similar performance as

other SAMQ or DAMQall and save the hardware cost by 25% with very little control logic cost.

 86

Table 4.8

The performance 8-ary, 2-cube Network Composed of Block Switches. Shown is the Throughput

Obtained from Simulations Where 4 virtual Channels Per Physical Channel Used When Hotspots

Traffic is Applied.

Applied Traffic Load Rate

Buffer Type BS per PC

.20 .23 .29 .31 .33 .35 .38

SAMQ 16 .391 .441 .494 .502 .508 .510 .518

DAMQ all 16 .390 .442 .499 .506 .513 .516 .522

11 .391 .441 .493 .503 .508 .510 .516

12 .392 .442 .495 .502 .508 .510 .516

13 .391 .444 .495 .503 .506 .512 .517

14 .391 .444 .496 .503 .507 .512 .518

15 .391 .444 .496 .503 .508 .511 .518

DAMQshared

16 .390 .444 .498 .505 .507 .510 .518

 87

Table 4.9

The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Message

Latency Obtained from Simulations Where 4 virtual Channels Per Physical Channel Used When

Hotspots Traffic is Applied.

Applied Traffic Load Rate

Buffer Type
BS
per
PC

.20 .23 .29 .31 .33 .35 .38

SAMQ 16 103 121 165 177 186 192 200

DAMQ all 16 95 117 163 178 186 192 202

11 103 126 176 190 197 203 210

12 103 125 178 193 202 207 217

13 101 124 185 199 210 215 225

14 102 125 188 204 216 220 230

15 103 125 190 207 219 223 234

DAMQshared

16 101 125 192 209 222 228 237

 88

Table 4.10

The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Buffer

Usage Obtained from Simulations Where 4 virtual Channels Per Physical Channel Used When

Hotspots Traffic is Applied.

Applied Traffic Load Rate

Buffer Type BS per PC

.20 .23 .29 .31 .33 .35 .38

SAMQ 16 341 474 726 785 822 839 880

DAMQ all 16 344 562 966 1043 1082 1081 1130

11 410 592 890 937 962 985 1011

12 449 651 1033 1102 1140 1147 1182

13 480 701 1187 1243 1310 1319 1354

14 483 762 1280 1390 1449 1479 1516

15 494 780 1427 1564 1607 1643 1704

DAMQshared

16 495 820 1550 1681 1764 1775 1848

 89

DAMQshared on four virtual channels, 4/6/8 flit buffer per VC , 64 nodes and uniform

traffic In this section we examine the network performances for 4 and 8 flits buffer for each

virtual channel on SAMQ; fixed 4 flits buffer for each virtual channel on DAMQall. Three

different size buffers, 4, 6 and 8 flits buffers for each virtual channel are used on DAMQshared so

that we can examine its performance in detail. The simulation results for throughput and message

latency are shown in Table 4.11 and 4.12, respectively. We compare the performance of different

buffer schemes until the network is saturated after about 0.4 traffic load is applied.

As shown in Figure 4.23, along with the network saturation process, our DAMQshared has

significant higher throughputs than both DAMQall and SAMQ when they all use same size of 4

flits buffer and DAMQall beats SAMQ. DAMQshared not only achieves the highest throughput

when same size buffer is used, but also achieves approximately the same maximum throughput

as SAMQ using 8 flits buffer, which double the number of buffer DAMQshared is used. When we

use 6 flits buffer for DAMQshared, it achieves a significantly higher throughput than SAMQ with

8 flits buffer as shown in Figure 4.23. The max throughput is achieved by DAMQshared, when 8

flits buffer is used for it. In sum, DAMQshared achieves best performance among the three buffer

schemes we tested. The reason, we believe, is DAMQshared provides more efficient methods for

flits to share buffer space than DAMQall which has already shown advantages over traditional

SAMQ scheme. Furthermore, at the same maximum throughput level, DAMQshared also has a

similar latency as SAMQ as shown in Figure 4.24.

 90

Table 4.11

The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the

Throughput Obtained from Simulations Where 4 virtual Channels Per Physical Channel Used.

Applied Traffic Load Rate
Buffer Type BS per VC

0.20 0.23 0.29 0.31 0.33 0.35 0.38

4 0.39 0.44 0.53 0.54 0.55 0.55 0.55
SAMQ

8 0.39 0.44 0.54 0.56 0.58 0.59 0.59

DAMQ all 4 0.39 0.44 0.54 0.56 0.57 0.57 0.57

4 0.39 0.44 0.54 0.57 0.58 0.59 0.59

6 0.39 0.44 0.55 0.58 0.6 0.61 0.61 DAMQshared

8 0.39 0.44 0.55 0.58 0.6 0.62 0.62

 91

Table 4.12

The performance of 8-ary, 2-cube Network Composed of Block Switches. Shown is the Message

Latency Obtained from Simulations Where 4 virtual Channels Per Phy Channel Used.

Applied Traffic Load Rate
Buffer Type BS per VC

0.20 0.23 0.29 0.31 0.33 0.35 0.38

4 102 113 140 156 167 174 186
SAMQ

8 102 112 141 157 175 183 204

DAMQ all 4 102 110 142 157 175 184 198

4 102 113 142 158 178 187 207

6 101 110 140 157 169 188 216 DAMQshared

8 102 110 139 155 169 185 225

 92

0.20 0.25 0.30 0.35 0.40
0.35

0.40

0.45

0.50

0.55

0.60

0.65

 4flist DAMQshared

 6flist DAMQshared

 8flist DAMQshared

 8flist SAMQ
 4flist DAMQall

 4flist SAMQ

Applied Traffic Load

Th
ro

ug
ht

pu
t

Figure 4.23: Comparison on throughput between 4/6/8 flit-buffer DAMQshared, 4 flit-buffer

DAMQall and 4/ 8 flit-buffer SAMQ

 93

DAMQshared on four virtual channels, 10/12/14/16 flit buffer per PC, 16 nodes and

uniform traffic According to other researchers works in the literature [42] [43], we set the buffer

size for each virtual channel to 4 flits when DAMQall and SAMQ are used. Since four virtual

channels are multiplexing cross one physical channel, the buffer size for each direction of a

duplex physical channel is 16 flits when these two buffer schemes are evaluated. In order to

examine the performance of DAMQshared with regard to the relationship between buffer size and

network performance, we use four different size 10, 12, 14 and16 flits buffer. The simulation

results of network throughput and message latency are shown in Tables 4.13 and 4.14,

respectively.

0.20 0.25 0.30 0.35 0.40

100

120

140

160

180

200

220

240

Applied Traffic Load

 4flist DAMQshared

 6flist DAMQshared

 8flist DAMQshared

 8flist SAMQ
 4flist DAMQall

 4flist SAMQ

M
es

sa
ge

 L
at

en
cy

Figure 4.24: Comparison on Latency between 4/6/8 flit-buffer DAMQshared, 4 flit-buffer

DAMQall and 4/8 flit-buffer SAMQ

 94

We compare the performance of different buffer schemes when the network starts to

saturate on traffic load rate 0.2 until it gets severely saturated after about 0.5 traffic load is

applied. As shown in Figure 4.25, along with the network saturation process, our new

DAMQshared has higher throughput than both DAMQall and SAMQ when they all use same size

16-flits buffer. When the network gets saturated, DAMQshared achieves the highest throughput

while using same size 16-flit buffer. Furthermore, DAMQshared with 10-flit buffer achieves

approximately the same maximum throughput as SAMQ using 16-flit buffer. With 14-flit buffer,

it also yields approximately the same throughput as 16-flit DAMQall along with the network

saturating process. In summary, DAMQshared achieves the best performance among the three

buffer schemes we studied . It provides a more efficient method for virtual channels to share

buffer space than DAMQall which also showed advantages over traditional SAMQ scheme.

As to the message latency, DAMQshared managed to hold a similar latency as SAMQ until

the network is congested after about 0.3 traffic load is applied. This is shown in Figure 4.26.

When we further increase the traffic load after the network gets saturated, DAMQshared shows

higher latency than both DAMQall and SAMQ. And the reason is mentioned earlier.

Under a traffic load of 0.5, when the three buffer schemes use same size 16-flit buffer,

DAMQshared utilizes 56% of the whole buffer space while DAMQall and SAMQ use 43% and

30% respectively as shown in Figure 4.27. In addition, with 12-flit buffer, DAMQshared already

contains more flits in buffers than SAMQ along with the increasing of traffic load. It has also

been shown that 10-flit DAMQshared contains a similar number of flits as 16-flit

 95

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

Applied Traffic Load

N
et

w
or

k
Th

ro
ug

hp
ut

 16flits SAMQ
 16flits DAMQall

 10flits DAMQshared

 12flits DAMQshared

 14flits DAMQshared

 16flits DAMQshared

Figure 4.25: Comparison on throughput between 10-16 flit buffer DAMQshared, 16 flit-buffer

DAMQall and 16 flit-buffer SAMQ under uniform traffic.

 96

Table 4.13

The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown is the

Throughput Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used

When Uniform Traffic is Applied.

Applied Traffic Load Rate
Buffer Type

BS
per
PC .15 .20 .25 .30 .40 .50 .60

SAMQ 16 .554 .665 .716 .742 .760 .765 .767

DAMQ all 16 .563 .678 .732 .754 .770 .777 .774

10 .560 .670 .719 .741 .759 .762 .766

12 .562 .679 .725 .749 .761 .774 .774

14 .563 .680 .737 .756 .769 .773 .780
DAMQshared

16 .564 .680 .738 .764 .768 .778 .785

 97

Table 4.14

The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown is the Message

Latency Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used When

Uniform Traffic is Applied.

Applied Traffic Load Rate
Buffer Type

BS
per
PC .15 .20 .25 .30 .40 .50 .60

SAMQ 16 107 130 150 162 176 183 188

DAMQ all 16 103 132 153 167 183 190 196

10 110 137 159 170 182 190 193

12 108 138 163 176 191 197 201

14 108 140 165 182 199 206 210
DAMQshared

16 109 139 166 184 203 210 213

 98

Table 4.15

The Performance of 4-ary, 2-cube Network Composed of Block Switches. Shown is the Buffer

Usage Obtained from Simulations Where 4 Virtual Channels Per Physical Channel Used When

Uniform Traffic is Applied.

Applied Traffic Load Rate
Buffer Type

BS
per
PC .15 .20 .25 .30 .40 .50 .60

SAMQ 16 98 165 227 262 298 312 322

DAMQ all 16 128 239 329 385 434 449 462

10 107 170 220 241 262 271 276

12 135 232 304 339 369 381 384

14 155 280 375 425 468 482 490
DAMQshared

16 189 320 446 506 561 579 591

 99

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
60

80

100

120

140

160

180

200

220

240

 16flits S A M Q
 16flits D A M Q

all

 10flits D A M Q
shared

 12flits D A M Q
shared

 14flits D A M Q shared

 16flits D A M Q
shared

A pp lied T ra ffic Load

M
es

sa
ge

 L
at

en
cy

Figure 4.26: Comparison on latency between 10-16 flit-buffer DAMQshared, 16 flit-buffer

DAMQall and 16 flit-buffer SAMQ under uniform traffic.

 100

4.5 Conclusion

In this chapter we have presented three novel buffer schemes based on a DAMQ self-

compacting buffer. These schemes outperform existing approaches and DAMQshared is the most

efficient scheme among them.

DAMQall and DAMQmin have similar performance using only half of the buffer size used in

SAMQ when deterministic routing method is used. And they both provides higher throughput

than SAMQ when same size buffers are used.

Based on DAMQall, we proposed DAMQshared by letting virtual channels from two physical

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0

50

100

150

200

250

300

350

400

450

500

550

600

650

Applied Traffic Load

Fl
its

 N
um

be
r

 16flits SAMQ
 16flits DAMQall

 10flits DAMQshared

 12flits DAMQshared

 14flits DAMQshared

 16flits DAMQshared

Figure 4.27: Comparison on buffer usages between 10-16 flit-buffer DAMQshared, 16 flit-

buffer DAMQall and 16 flit-buffer SAMQ under uniform traffic

 101

channel share free buffer space. The extensive simulations results show that DAMQshared

provides an excellent scheme to optimize buffer management. The proposed DAMQshared scheme

has the following features:

 Less buffer space at similar performance. At a similar throughput, DAMQshared needs

37% and 12.5% less buffer space than SAMQ and DAMQall, respectively.

 Better space utilization. DAMQshared utilizes more than 26% and 13% more buffer space

than SAMQ and DAMQall respectively in uniform traffic simulations.

 Higher throughput. It outperforms existing approaches with 2% - 3% higher than SAMQ

on 16 nodes and 64 nodes network, and 1% higher than DAMQall in uniform traffic

simulations when same size buffer is used.

In summary, when an adaptive routing protocol such as Duato’s algorithm is used for the

NoC, DAMQshared is an excellent scheme to optimize buffer management providing a good

throughput when the network has a larger load. It can utilize significantly less buffer space

without sacrificing the network performance.

Implementing the proposed schemes in hardware requires minor modifications to early

implementations of the self-compacting buffer [40].

 102

Chapter 5

Conclusion and Future Study

In this dissertation the results of a study on performance modeling and efficient buffer

schemes for network on chip have been reported. The contributions of this work include

proposing a network performance modeling method and evaluation of novel DAMQ self

compacting buffer schemes. This chapter summarizes the study presented in this dissertation as

well as lists the contribution of this study.

Chapter 2 provided background on issues related to this research work. The chapter

included network topology, switching techniques, flow control, virtual channel, buffer schemes,

routing algorithms and analytical models.

Chapter 3 presented a performance model for k-ary n-cubes network using fully adaptive

routing algorithm. We use a 2D torus network as the analysis target and presented how to obtain

average message latency through a series of queuing theory and probability calculations. By

examining the predicted network performance against the results obtained in simulation

experiments, we showed that this model yields satisfactory accuracy. Also as explained in

chapter 3, this model can be applied to other topology network with minor modifications.

In Chapter 4, we presented three novel DAMQ self compacting buffer schemes. The

schemes organization methods are described in detail. The schemes can be implemented in

 103

hardware with minor modifications based on the method proposed in [40]. Extensive simulations

were performed on Flexsim1.2 [18] to evaluate the performance of these buffer schemes. The

simulations results on different network configurations, such as different traffic mode, network

size, virtual channel number, buffer size per virtual/physical channel and routing protocols, were

presented to show that these novel buffer schemes especially the DAMQshared scheme are

efficient buffer organization methods to be used in the network on chip. As shown in our

simulation results, these buffer schemes can provide marginally higher throughput than

traditional SAMQ when same amount of resource is used, this is due to the fact that buffer

cannot play a major role in determining the network performance in terms of throughput or

latency. However, the results show that these schemes can use significantly less hardware to

provide a same performance as traditional SAMQ buffer.

5.1 Major Contributions

The major contribution of this study can be summarized as follows:

 This research sought the ways of predicting the performance of directed connected network

on a chip which is characterized by limited resource

 An analytical model for directed connected network, k-ary n-cubes has been proposed and

evaluated.

 Two novel DAMQ buffer schemes, DAMQall, DAMQmin, which let virtual channels of one

physical channel share free buffer space, have been proposed, simulated and evaluated.

 A novel DAMQ buffer scheme, DAMQshared, which let virtual channels from two physical

channel of same communication node share free buffer space, has been proposed, simulated

and evaluated.

 104

5.2 Future Research Directions

This section suggests areas for future work to complement this study in both performance

modeling and buffer schemes for network on chip.

For the network performance modeling, as we can see from the calculation process

presented in chapter 3, blocking probability at a channel determines the waiting time for a

message given a specific service rate. A higher blocking probability will results in an

exponentially larger waiting time. Thus if we can reduce the blocking probability for a message

travelling across the network, the network will have better performance. At given message

generation rate and link service rate, one can alter the message blocking probability by different

routing algorithm, network topology, or increasing the buffer size at every communicating node.

The first two are major factors in determining network performance while the buffer size has

smaller impact [2]. Because buffer is usually not deep enough to store the whole blocked

message, so that it may not be able to free the upstream channels that occupied by the blocked

message. This is especially the case for network on chip with wormhole switching, where buffer

needs to be carefully designed to be both compact and efficient to reduce hardware cost while

maintaining network performance. Therefore, to predict the subtle impact of buffer size on the

network performance, we need more sophisticate queuing system analysis.

Hence our future work on NoC performance modeling can be to extend the model to

incorporate buffer size impact, i.e. how to model a network with virtual channels that have

buffers that are more than 1 flit deep. By mathematically figuring out the contribution that buffer

offers in alleviating blocking probability, we can better predict the performance of directly

connected network with more complicate configurations.

 105

We can also extend the work on DAMQ buffer schemes for the systems with NoC. For the

short term goal, we can continue studying hardware requirements and effect of proposed buffer

in other network topologies. For the long term goal, we can extend these buffer schemes to

incorporate fault tolerance ability.

The proposed buffer schemes are based on self compacting buffer hardware design. As

these schemes have additional features to the original SCB, the new buffers may require a larger

control circuit. This however can be compensated by the need of far less buffer space.

We can also study the performance of proposed schemes in other network topologies, for

instance, SPIN (Scalable, Programmable, Integrated Network) [27], Butterfly Fat-Tree [50] and

Octagon [30] etc.

Fault tolerant mechanisms for interconnection networks are becoming a critical design

issue for large massively parallel computers. [45] It is also important to high performance SoCs

as the system complexity keeps increasing rapidly. Researchers have reported many routing

protocols to provide fault tolerant mechanism [46-49]. On the message switching layer, we can

make improvement to boost system performance when there are faults involved in the

components communication. The basic proposal is when a node or a physical channel is deemed

as faulty, the previous hop node will terminate the buffer occupancy of messages destined to the

failed link. The buffer usage decisions are made at switching layer without interactions with

higher abstract layer, thus buffer space will be released to messages destined to other healthy

nodes quickly. Therefore, the buffer space will be efficiently used in case fault occurs at some

nodes. For example, if node A is connecting to node B and C and there are message flows from

A to B and A to C. When B fails, there are probably still a number of message flits left in A’s

 106

buffer. It will improve the system performance if the buffer space occupied by B’s message can

be allocated to C’s message quickly. It would be interesting to conduct this research in the future.

 107

References

[1] D. Bertsekas and R. Gallager, Data Networks, second edition. Prentice-Hall, 1992.

[2] J.Duato, S. Yalmanchili and L. Ni, Interconnection Networks, IEEE Computer Society,

1997

[3] Agarwal, “Limits on Interconnection Network Performance”, IEEE Trans. Parallel and

Distributed Systems, vol. 2, pp. 398-412, 1991.

[4] Y. Boura, C.R. Das, and T.M. Jacob, “A Performance Model for Adaptive Routing in

Hypercubes,” Proc. Int'l Workshop Parallel Processing, pp. 11-16, Dec. 1994.

[5] M. Ould-Khaoua, “A Performance Model for Duato's Fully Adaptive Routing Algorithm

in k-Ary n-Cubes”, IEEE Transactions on Computers, v.48 n.12, p.1297-1304, Dec 1999.

[6] B. Ciciani, M. Colajanni, and C. Paolucci, “An Accurate Model for the Performance

Analysis of Deterministic Wormhole Routing, ” Proc. 11th Int'l Parallel Processing

Symp., pp. 353-359, 1997.

[7] W.J. Dally, “Performance Analysis of k-ary n-cubes Interconnection Networks,” IEEE

Trans. Computers, vol. 39, no. 6, pp. 775-785, June 1990.

[8] J. Duato and P. Lopez, “Performance Evaluation of Adaptive Routing Algorithms for k-

ary n-cubes,” Proc. First Workshop Parallel Computer Routing and Comm., K. Bolding

and L. Snyder, eds., pp. 45-59, May 1994.

 108

[9] J.T. Draper and J. Ghosh, “A Comprehensive Analytical Model for Wormhole Routing in

Multicomputer Systems,” J. Parallel and Distributed Computing, vol. 32, pp. 202-214,

1994.

[10] R. Greenberg and L. Guan, “Modeling and Comparison of Wormhole Routed Mesh and

Torus Networks,” Proc. Ninth IASTED Int'l Conf. Parallel and Distributed Computing

and Systems, 1997.

[11] W.J. Guan, W.K. Tsai, and D. Blough, “An Analytical Model for Wormhole Routing in

Multicomputer Interconnection Networks”, Proc. Int'l Conf. Parallel Processing, pp. 650-

654, 1993.

[12] J. Hu, U.Y. Ogras, R. Marculescu, “System-Level Buffer Allocation for Application-

Specific Networks-on-Chip Router Design” IEEE Trans. Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, no. 12, pp. 2919-2933, Dec. 2006.

[13] P. Hu and L. Kleinrock, "An Analytical Model for Wormhole Routing with Finite Size

Input Buffers", Proc. 15th Int’l Teletraffic Congress, 1997.

[14] V. S. Adve , M. K. Vernon, “Performance Analysis of Mesh Interconnection Networks

with Deterministic Routing”, IEEE Trans Parallel and Distributed Systems, v.5 n.3,

p.225-246, March 1994

[15] C. Chen, W. Wu, Z. Li, “Multipath routing modeling in ad hoc networks” Proc. ICC 2005.

2005 IEEE Int’l Conference on Vol5, 16-20 May 2005 P,2974 – 2978

[16] J. Duato, “A New Theory of Deadlock-Free Adaptive Routing in Wormhole Routing

Networks,” IEEE trans. Parallel and Distributed Systems, vol. 4, no. 12, pp. 1,320-1,331,

Dec. 1993.

 109

[17] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks,” IEEE Trans. Computers,vol. 36, no. 5, pp. 547-553, May

1987.

[18] S. Warnakulasuriya and T.M. Pinkston, “Characterization of Deadlocks in k-ary n-cube

Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 10, no 9, Sept. 1999, 904-

932.

[19] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,” IEEE

Trans. Parallel Distributed Syst., vol. 4, no. 12, Dec. 1993, 1320–1331.

[20] SMART Interconnects Grp, USC, FlexSim1.2, 2002

[21] Patrick T. Gaughan and Sudhakar Yalamanchili, “Adaptive Routing Protocols for

HvDercub Interconnection Networks,” IEEE Trans. Computer, vol. 26, no 5, pp. 12-23,

May 1993.

[22] W.J. Dally and H. Aoki, “Deadlock-Free Adaptive Routing in Multicomputer Networks

Using Virtual Channnels,” IEEE Trans. Parallel and Distributed Systems, Vol. 4, No. 4,

pp. 466-475, April 1993

[23] E. Baydal, P. L´opez and J. Duato, "Increasing the Adaptivity of Routing Algorithms for

k-ary n-cubes," in Proc. 10th Euromicro Workshop on Distributed and Network-based

Processing, pp. 455-462, Jan. 2002

[24] L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” IEEE

Computer, Vol. 35 , No. 1, Jan. 2002, 70-78.

[25] P. Magarshack and P.G. Paulin, “System-on-Chip beyond the Nanometer Wall,” Proc.

Design Automation Conf. (DAC), pp. 419-424, June 2003.

 110

[26] M. Horowitz and B. Dally, “How Scaling Will Change ProcessorArchitecture,” Proc.

Int’l Solid State Circuits Conf. (ISSCC), pp. 132-133, Feb. 2004.

[27] P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip Packet-Switched

Interconnections,” Proc. Design and Test in Europe (DATE), pp. 250-256, Mar. 2000.

[28] S. Kumar et al., “A Network on Chip Architecture and Design Methodology,” Proc. Int’l

Symp. VLSI (ISVLSI), pp. 117-124, 2002.

[29] W.J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection

Networks,” Proc. Design Automation Conf. (DAC), pp. 683-689, 2001.

[30] F. Karim et al., “An Interconnect Architecture for Networking Systems on Chips,” IEEE

Micro, vol. 22, no. 5, pp. 36-45, Sept./Oct.2002.

[31] P.P. Pande. et al. "Performance Evaluation and Design Trade-offs for MP-SoC

Interconnect Architectures”, IEEE Trans. Computers, vol. 54, no. 8, Aug 2005, 1025-

1040.

[32] S.F. Nugent, "The iPSC/2 Direct-Connect Communication Technology," Proc. Conf.

Hypercube Concurrent Computers and Applications, vol. 1, pp. 51-60, 1988.

[33] M. Noakes and W.J. Dally, "System Design of the J-Machine," Proc. Advanced Research

in VLSI, pp. 179-192, 1990.

[34] R.E. Kessler and J.L. Schwarzmeier, "CRAY T3D: A New Dimension for Cray Research,

Proc. CompCon, pp. 176-182, Spring 1993.

[35] J. Kim and C.R. Das, “Hypercube Communication Delay with Wormhole Routing,” IEEE

Trans. Computers, vol. 43, no. 7, pp. 806-814, July 1994.

[36] C. L. Wu and T. Y. Feng, “On a class of multistage interconnection networks,” IEEE

Transactions on Computers, vol. C-29, No.8, pp. 694-702, Aug. 1980

 111

[37] R. Sivaram, C. B. Stunkel, and D. K. Panda, “HIPIQS: A High Performance switch

architecture using input queueing,” IPPS/SPDP ’98, pp. 134–143, Orlando, FL, March

1998.

[38] C. Grecu, et al “Structured Interconnect Architecture: A Solution for the Non-Scalability

of Bus-Based SoCs,” Proc. Great Lakes Symp. VLSI, pp. 192-195, Apr. 2004

[39] Y. Tamir and G. L. Frazier, “Dynamically-allocated multiqueue buffers for VLSI

communication switches,” IEEE Transactions on Computers, vol. 41, no. 2, pp. 725–737,

June 1992.

[40] J. G. Delgado-Frias and R. Diaz, “A VLSI Self-Compacting Buffer for DAMQ

Communication Switches,” IEEE Eighth Great Lakes Symposium on VLSI, pp. 128-133,

Lafayette, Louisiana, February 1998.

[41] J. Park, B. O’Krafka, S. Vassiliadis, and J. Delgado-Frias, “Design and evaluation of a

DAMQ multiprocessor network with self-compacting buffers,” IEEE Supercomputing ’94,

The Conference on High Performance Computing and Communications, pp. 713–722,

Nov.14-18, 1994

[42] Santi, S. et al. “On the Impact of Traffic Statistics on Quality of Service for Networks on

Chip”, ISCAS´05, 2349-2352.

[43] J. Liu, J. G. Delgado-Frias, “DAMQ Self-Compacting Buffer Schemes for Systems with

Network-On-Chip,” In Proc, 2005 Int. Conf. Comput Design, pp. 97-103, Las Vegas, June

2005.

[44] W. Dally. “Virtual-channel flow control,” IEEE Transactions on Parallel and Distributed

Systems, vol. 3, no. 2, pp. 194–205, 1992

 112

[45] M. E. Gomez, et al, “A Routing Methodology for Achieving Fault Tolerance in Direct

Networks”, IEEE Trans, Computers, vol 55, no. 4, pp 400-415, Apr. 2006.

[46] C.T. Ho and L. Stockmeyer, “A New Approach to Fault-Tolerant Wormhole Routing for

Mesh-Connected Parallel Computers,” IEEE Trans. Computers, vol. 53, no. 4, pp. 427-

439, Apr. 2004.

[47] Z. Jiang, J. Wu, and D. Wang, “A New Fault Information Model for Fault-Tolerant

Adaptive and Minimal Routing in 3-D Meshes,” Proc. Int’l Conf. Parallel Processing, pp.

500-507, June 2005.

[48] M. E. Gomez, et al, “A Routing Methodology for Achieving Fault Tolerance in Direct

Networks”, IEEE Trans, Computers, vol 55, no. 4, pp 400-415, Apr. 2006

[49] P.T. Gaughana and S. Yalamanchili, “A Family of Fault-Tolerant Routing Protocols for

Direct Multiprocessor Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 6,

no. 5, pp. 482-497,May 1995.

[50] P.P. Pande, C. Grecu, A. Ivanov, and R. Saleh, “Design of a Switch for Network on Chip

Applications,” Proc. Int’l Symp. Circuits and Systems (ISCAS), vol. 5, pp. 217-220, May

2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

