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Chair: John H. Miller 
 

 The response of biological systems to external stimuli is ruled by their cellular 

interaction networks. This makes the problem of inferring cellular interaction networks 

essential to decipher the basic operational principles of biological systems. Knowing 

which proteins exist in a certain organism or cell type and how these proteins interact 

with each other are necessary for the understanding of biological processes at the whole 

cell level. The determination of the protein-protein interaction (PPI) networks has been 

the subject of extensive research and it has been shown that domain-domain interactions 

(DDIs) are good indicators of possible protein interactions, and can more accurately 

predict protein interactions than comparing full-length protein sequences. Despite the 

development of reasonably successful methods there is definite scope for improvement. 

 

This thesis is aimed at developing machine learning based computational 

techniques that utilize domain information in the proteins to predict PPI networks. This 

research aims to make four major contributions to the field of PPIs. The first two are the 

development of two new PPI prediction algorithms, DomainGA and DomainSVM. 

DomainGA is a genetic algorithm based multi-parameter optimization method which 

quantifies DDIs and uses them to predict PPI. The second method, DomainSVM utilizes 
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the DDI scores obtained from DomainGA in a Support Vector Machine (SVM) based 

learning system to improve PPIs prediction by overcoming the limitations of DomainGA. 

These two methods can be used as a two-step filtering process to validate experimentally 

detected PPI. The third contribution is score assignment to DDIs which is proven to be 

discriminatory between positive and negative PPI. Finally the fourth contribution is a 

visual analytic environment called CABIN (Collective Analysis of Biological Interaction 

Networks) which provides a one-of-its-kind tool to analyze, compare and integrate 

multiple predicted networks obtained from public data sources and/or inference 

algorithms such as DomainGA and DomainSVM. The predicted interactions 

accompanied by a confidence score and an exploratory visualization environment shall 

help researchers validate experimental observations and/or make an informed decision 

while generating hypothesis and models for designing new experiments.  
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CHAPTER ONE 

INTRODUCTION 
 

Genome sequencing projects are producing large quantities of sequence data with the 

sequencing of more than 200 organisms to date, and still counting. Although sequence data 

lead to knowledge of proteins in the cell they provide little information about the biological 

processes involving these proteins. The fact that the sequence similarity of human and mouse 

genomes is between 70 - 90% suggests that species differences arise not because of the actual 

components themselves but because of how these individual components talk or interact with 

each other. This realization has led to rapid growth in the field of proteomics which aims at 

elucidating the structure, interactions, and functions of all the proteins within a cell of an 

organism. The study of proteomics in general and protein-protein interactions (PPIs) in 

particular will provide a more complete understanding of cellular processes and networks at 

the protein level. This can lead to a better understanding of disease mechanisms and aid drug 

target discovery by suggesting new means of intervention. This chapter is aimed at answering 

the following questions to provide a basic understanding of the importance of PPI networks 

and motivate the research reported in this thesis. 

 

Why study protein interaction networks? 

What are the existing experimental methods for detecting PPI? 

Why develop computational methods for PPI prediction? 

What are the existing computational methods for PPI prediction? 

What are the objectives and contributions of this dissertation? 
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1.1.  Why study protein interaction networks? 
 

The interaction between proteins is fundamental to a broad spectrum of biological 

functions, including regulation of biological functions, metabolic pathways, progression 

through the cell cycle, and protein synthesis [1]. Although a complete understanding of protein 

functionality will require information on many levels such as knowledge of transcription, 

translational regulation, post-translational regulation, binding constants, and structures, 

answering basic questions, such as what proteins interact?, provides a foundation on which 

more complex regulatory information can be built [2]. Therefore, understanding PPI networks 

will have a significant role to play in the functional interpretation of fully sequenced genomes 

that have numerous genes of unknown function. 

 

Studying protein interaction networks allows us not only to assess the role of 

individual proteins in the overall pathway but also to evaluate the redundancy of network 

components, identify candidate genes involved in genetic diseases, and set up the framework 

for mathematical models. For complex systems, the actual output may not be predictable by 

looking only at the individual components, but the complete picture is critical for correct 

biological assessment. 

 

1.2. What are the experimental methods for detecting PPI? 

The current techniques for detecting the proteins inside a cell involve separation via two-

dimensional gel electrophoresis, followed by identification using tandem mass spectrometry 

[3]. There are several related high-throughput research methods for detecting PPIs such as the 

Yeast two-Hybrid (Y2H) (Uetz et al. [4] and Ito et al. [5] - first two comprehensive studies in 
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yeast), affinity purification with mass spectrometric identification (Ho et al. [6] and Gavin et 

al. [7]), protein chips (Zhu et al. [8]), phage display (Tong et al. [9]), synthetic lethals (Tong et 

al. [10] ), etc. The Yeast two-Hybrid (Y2H) and mass spectrometry techniques try to detect 

physical binding between proteins and have been widely used to detect PPI in different 

organisms. 

 

The Y2H system detects the interaction between two proteins to be tested for 

interaction through an assay involving transcription activation of one or several reporter genes. 

As shown in Figure 1.1, the proteins are expressed as fusion proteins (‘hybrids’) in yeast: one 

protein is fused to a DNA-binding domain (BD), the other to a transcriptional activation 

domain (AD). Any interaction between them is detected by the formation of a functional 

transcription factor.  

 

Figure 1.1: The Y2H system of detecting PPIs. The two proteins that physically interact with each other are 

observed by the formation of a transcription factor. Figure obtained from [11] 

 
In the mass spectrometry technique of purified complexes, the protein of interest is 

tagged and inserted in a cell where it is expressed after forming a complex. The protein of 
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interest and its complex is then isolated and then based on its mass-charge spectra; the proteins 

in the complex are identified. Von Mering et al. [12] gives a good background on other 

experimental approaches and their biases with respect to the distribution of interactions, 

functional categories of interacting proteins, and the drawbacks of these techniques. 

 

1.3. Why develop computational methods for PPI prediction? 
 

There are two main reasons for developing computational methods for PPI prediction: (1) 

to validate experimental observations of high-throughput experimental techniques because 

high-throughput methods are as much as 50% inaccurate and (2) to aid in the experiment 

design, obtaining complete interactomes of genomes computationally instead of using 

expensive, tedious, and highly inaccurate experimental methods since the interactomes of even 

well studied organisms such as Yeast are far from being complete. 

 

As discussed by Legrain et al. [13] there are several flaws in experimental techniques 

such as Y2H for detecting PPI, namely a large percentage of observations are false positives 

(auto-activation, sticky prey) or false negatives (due to incorrect folding, inappropriate sub-

cellular localization, absence of post-translation modifications). Due to this high number of 

false negatives in Y2H systems, the two exhaustive studies of the yeast proteome [4, 5] failed 

to identify as many as 90% of interactions previously described in the literature [5], and there 

was a very low overlap between these two exhaustive studies. Other experimental techniques 

also incur degradations due to self activators or promiscuous proteins as contaminants, protein 

concentration differences, and also lack of a benchmark. Analysis based on validation studies 

shows that only 30 – 50 % of high-throughput interactions are valid [14]. Legrain et al. [13] 
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discuss the various high-throughput techniques for detecting PPI, their general limitations, and 

the potential advances they make possible, especially when in combination with other 

functional genomics or bioinformatics analysis. 

 

The second reason for studying PPI computations is the fact that whole genome PPI 

networks for well studied organisms are far from being complete with 30,000 estimated vs. 

10,000 actual interactions in yeast, for example [12]. High-throughput experiments are 

tedious, expensive, and inaccurate and such experimental detections are not in place for most 

of the organisms that need to be studied to understand biological processes. However, it is 

essential to study interactomes of various organisms and to conduct cross-organism 

comparisons to be able to understand species evolution and biological processes.  

 

Figure 1.3: Complexity of interaction networks. Interaction networks are complex entities and there is a need for 

tools and algorithms to explore predict, and compare them. Figure obtained from Tucker et al. [2] 

 
As shown in Figure 1.3 PPI networks are complex entities and there is a need to 

develop computational algorithms and tools to facilitate studying them in the context of 
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validating experimental observations, partially replacing tedious, labor intensive, and 

potentially inaccurate [15] experimental techniques or for comparison of interactions obtained 

from several experimental or computational techniques. It is for these reasons that more and 

more research is focused on developing computational methods to predict whether two 

proteins interact or not. Complimentary in-silico methods capable of accurately predicting 

interactions would be of considerable value along with a need for tools to enable exploration, 

prediction, and comparison of PPI networks. 

 

1.4. What are the existing computational methods for PPI prediction? 

In the last decade extensive research has been conducted to develop computational 

techniques for determining PPIs based on genome sequence analysis [15-20], functional 

domain based approaches [21-31], and integration approaches [22, 32-36]. A good overview 

of genome sequence based approaches can be found by Valencia et al. [37].  Chapter 2 

provides a survey of the methods proposed for PPI prediction in the last decade with a 

discussion on the advantages and limitations of these approaches.  

 

1.5. What are the objectives and contributions from this dissertation? 

The primary objective of this research is the effective utilization of structural domain 

information for predicting PPIs by developing methods that overcome the limitations and have 

better performance than existing methods. An added objective is to provide a tool to explore 

and analyze the predictions made using developed and existing computational and 

experimental methods for detecting PPIs. Inspite of a deluge of PPI prediction methods in the 

recent past, there is room for improvement in score assignment to domain-domain interactions 
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(DDIs) to be used for predicting PPIs. Most of the existing domain based methods do not 

accommodate the effect of multiple domain combinations, i.e., domains in one protein always 

functioning together to interact with other domains. Moreover, the accuracies achieved and 

assumptions made in most of the available predictive methods make it difficult to apply them 

in real world situations. 

 

The goal of this research is to make four major contributions to the field of PPIs. The 

first two are the development of two new PPI prediction algorithms, DomainGA and 

DomainSVM. These two methods can be used as a two-step filtering process to validate 

experimentally detected PPIs. The third contribution is score assignment to DDIs which is 

proven to be discriminatory between positive and negative PPIs, and finally the fourth 

contribution is the development of a one-of-its-kind exploratory visual analytic tool called 

CABIN (Collective Analysis of Biological Interaction Networks) for comparing and analyzing 

multiple PPI networks obtained from a variety of predictive and/or experimental methods. 

 

 Specific Aim 1: Develop and validate a genetic algorithm based methodology to 

quantify DDIs and use them to predict PPIs (DomainGA) 

 Specific Aim 2:  Develop and validate an SVM-based approach that effectively utilizes 

the DDI information by overcoming the limitations of DomainGA and assigns 

uncertainty scores to predicted PPIs (DomainSVM) 

 Specific Aim 3: Develop an exploratory visual analytic tool to conduct exploratory 

analysis and comparison of experimental and/or computational predictions (CABIN) 
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An important advantage of computational analysis is its flexibility, high throughput 

ability, and low cost. In general it can be shown that the integration of the predictions 

obtained by the different computational approaches together with the experimental data 

can improve the functional assignment, as demonstrated for the S. cerevisiae genome [17]. 

Therefore, combining computational approaches and experimental methods will definitely 

accelerate the study of PPI networks, provide useful insights into the mechanisms of the 

biological processes in the organisms as well as enable us to better understand the 

complexity of life. 
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CHAPTER TWO 

Existing Computational Methods for predicting PPI 

 
Since the existing high-throughput experimental techniques for detecting PPIs are 

expensive and error prone; and the interactome of most organisms are far from complete as 

discussed in Chapter 1; several computational techniques have been developed in the last 

decade to complement experimental observations. The computational approaches proposed till 

date can be classified into three categories: 1) genomic inference based approaches 2) 

functional domain based approaches 3) integration approaches. This chapter reviews the 

proposed methods in literature for each of these categories. 

 

2.1. Genomic inference based approaches 
 

Several methods have been proposed that demonstrate the usefulness of computational 

techniques such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), 

linear regression and random forests in deriving network topologies based on the primary 

sequence of the proteins. One of the first genome sequence-based approaches was proposed by 

Dandekar et al. [16] in 1998 called the Gene Neighbor method which looks at conserved 

operons across organisms to provide additional evidence that they are functionally coupled 

and are perhaps components of a protein complex or pathway. Around the same time Marcotte 

et al. [17] and Enright et al. [15] proposed the Rosetta Stone/Gene Fusion method. This 

method is based on the observation that two proteins expressed separately in one organism can 

be found as a single chain in the same or a second genome. This method infers PPIs from 

genome sequences given their observed homologies in other organisms, such that interacting 
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proteins have fused into a single protein chain. The Phylogenetic profiles method was 

proposed by Pelligrini et al. [20] which uses the fact that co-evolved genes are more likely to 

be part of the same pathway or complex. This method uses co-occurrence or absence of pairs 

of non-homologous genes across genomes to infer functional relatedness. Bock et al. [18] 

presented a Support Vector Machines (SVM) based method for predicting PPIs based on the 

primary amino acid sequence and associated physiochemical properties such as charge, 

hydrophobicity and surface tension. The feature vector, the representation of a protein or 

protein pair in multi-dimensional space as required by a SVM, was formed as a concatenation 

of the above mentioned properties of Protein A and Protein B. They trained the SVM on PPI 

data from all organisms in the DIP database which is a curated database of exhaustive 

experimental studies such as that of [4, 5]. This method achieved a predictive accuracy of 80% 

in 10-fold CV tests and showed the potential of predicting PPI using sequence information. 

Bowers et al. [19] developed the Prolinks database which provides access to four genomic 

inferences based functional association methods namely the Phylogenetic profiles method 

[20], the Rosetta stone method [15, 17], a version of the Gene neighbor method [16] and the 

Gene cluster method which predicts functional linkage by using genome proximity. Martin et 

al. [38] extended the signature descriptor method for signature products to represent protein 

pairs and classified interactions in a SVM classifier. This approach is similar to that proposed 

by Bock et al. [18] but they bypass the transformation of the sequence information into 

physico-chemical properties of the protein by using a signature descriptor based 

representation. The drawback of this method is that it relies heavily on the completeness of the 

interaction map and on the quality of the functional annotations. These genomic inference 
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based approaches are “guilt by association” based methods in which function is assigned to a 

protein by transposing existing annotations from its interacting partners. 

 

2.2. Functional domain based approaches 

One of the pioneering works of using domain interaction information to predict PPI 

was proposed by Sprinzak et al. [29] in 2001 called the Association Method in which they 

analyzed over represented sequence-signature pairs (domain pairs) among PPIs. The 

association method defines the fraction of interacting protein pairs among all protein pairs 

containing the domain pair as the measure of interaction between two domains. This method 

has the disadvantage that it assigns a high score to domain pairs that occur infrequently in 

positive PPI which might not be a correct assessment of the interaction probability. Wocjcik et 

al. [31] proposed a method to predict the protein interaction map of a target organism from the 

protein interaction map of a reference organism. The method is called the Interacting Domain 

Profile Pairs (IDPP) which is based on a combination of interaction and sequence data of one 

organism along with homology and clustering operations to obtain the interaction network of 

another organism. In simple terms it takes the set of PPI in one organism, transforms it to a set 

of DDI based on interaction and sequence information and uses that to predict PPI in another 

organism. They derive their own domain profiles instead of using a database such as pfam or 

Interpro that pre-defines relationships between proteins and domains. In 2002 the authors used 

the IDPP method to predict a virtual interaction map for Escherichia coli based on an 

experimentally derived map of Helicobacter pylori [30]. The drawbacks of this approach are 

that if some important DDI are missing or infrequent in the source organism (which is the case 

in our observations of occurrence comparisons of DDI in Human and Yeast for example) then 
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PPI predicted in the target organism will not be complete. Secondly this method relies heavily 

on the completeness, accuracy and level of detail (definition of protein domain) of the 

reference dataset. With these theoretical drawbacks and a lack of statistical cross validation 

analysis it is hard to estimate the applicability of this approach to a real world scenario. Deng 

et al. [22], present an optimization approach called the maximum likelihood estimation which 

infers domain interactions by maximizing the likelihood of the observed protein interaction 

data by optimizing it using the expectation-maximization (EM) algorithm. An EM method 

supplements observed data on PPI with missing data on DDI in an iterative manner to 

maximize the missing data parameters. They achieved 55.5% specificity and 55% sensitivity 

on their combined datasets, which are low accuracies for this method to be used for predictive 

purposes in a real world scenario. Gomez et al. [39] have developed probabilistic models for 

PPIs based on the frequency with which specific DDIs occur within known interactions. The 

domain interaction data is complemented with information on the topology of the network and 

is incorporated into the model by assigning greater probabilities to networks displaying more 

biologically realistic topologies. They use Markov chain Monte Carlo techniques for the 

prediction of posterior probabilities of the interaction between a set of proteins; allowing its 

application to larger data sets. In 2003 the authors extended this approach to incorporate 

negative PPI by describing an attraction-repulsion model in which the interaction between a 

pair of proteins is represented as the sum of attractive and repulsive forces associated with 

small domain sized features along the length of each protein [24]. Kim et al. [27] improved the 

association method [29] by using the number of domains in each protein to accommodate for 

the correct probability assignment to infrequent domains. Recently, Riley et al. [28] have 

presented the domain pair exclusion analysis method for inferring domain interactions from 
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multiple organisms using the Database of Interacting Proteins (DIP) [40-43]. These methods 

provide evidence to support the fact that proteins interact via physical units such as 

evolutionary conserved protein domains (e.g., as defined in the PFAM database [44-46]). 

Guimaraes et al. [25] present a parsimony-driven approach where domain interactions are 

inferred using linear programming optimization and false positives in the protein network are 

handled by a probabilistic construction. The advantage is that they do not rely on PPI 

networks. These approaches do not consider the fact that multiple domains in a protein can 

interact with multiple domains in another and the possibility of a domain pair appearing both 

an interacting and a non-interacting protein pair. Proteins typically contain two or more 

domains; given that about two-thirds of proteins in prokaryotes and four-fifths in eukaryotes 

are multidomain proteins. Therefore since these methods assume independency of DDIs they 

suffer from the general limitation of the association method which is ignoring other DDI 

information between the protein pairs. 

 

Chen et al. [21] propose a domain-based random forest of decision trees to infer 

protein interactions. It takes into account combinations of domains by exploring all possible 

domain interactions and making predictions based on them unlike the previous methods. They 

tested their system on yeast with equal number of positive and negative samples and achieved 

sensitivity of 80% and specificity of 65%. Their feature vector representation is a vector of 

domains with a value of zero, one or two based on if the domain is present in none, one or 

both the proteins. Unfortunately this representation does not provide information on if one or 

more domains were from the same protein or from two different proteins. Han et al. [26] 

proposed a domain combination based method which considers all possible domain 



 

14 

 

 

combinations as the basic units of each protein. The domain combination interaction 

probability is also based on the number of interacting protein pairs containing the domain 

combination pair and the number of domain combinations in each protein. The method 

considers the possibility of domain combinations appearing in both interacting and non-

interacting sets of protein pairs. Although these are promising methods, most of these methods 

are tested on an equal number of positive and negative examples and as discussed by Ben-Hur 

et al. [47], that assumption can severally limit the usefulness of a prediction method to a real 

world scenario in which there is a huge imbalance between positive and negative interactions. 

 

2.3. Integration approaches 
 

The use of various intersecting data types [12, 14, 34, 40, 48-52] has also been 

proposed to improve the PPI networks. Dohkan et al. [33] show that SVM is a robust 

technique to predict PPI pairs. Using interfacial surface characteristics such as amino acid 

compositions, hydrophobic moments, hydrophobicity, and protein length along with the 

domain information about the proteins; they have shown that their approach is able to identify 

more positive PPIs than the Maximum Likelihood Estimation technique used by Deng et al 

[22]. Jansen et al. [34] in 2003 used a Bayesian integrative approach to assign confidence to 

PPI based on experimental interactions data obtained from Y2H and mRNA expression and 

integrated it with genomic features such as GO biological processes and MIPS function. This 

was a seminal paper showing the usefulness of multiple feature integration in predicting PPI. 

In 2005 Lu et al. [35], showed with the use of 16 features that there is a limit to genomic data 

integration beyond which the predictive power of an approach does not increase. The reason 

for the lack of increase in the predictive power is however the unavailability of high-coverage 
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genomic features. Ben-Hur et al. [32] use a SVM classifier to predict PPIs using sequence 

based information such as K-mer compositions [53] and PFAM domains [46] and non-

sequence based information such as GO (Gene Ontology) annotations [54], homology and 

mutual clustering coefficient. They propose a pair-wise kernel as a measure of similarity 

between pairs of proteins. Experimenting with different kernel transformations, their results 

indicate that a linear kernel is best to represent sequence and non-sequence based information. 

They incorporated the knowledge about the reliability of the PPIs into the training procedure 

using the SVM soft-margin parameter c. This parameter puts a penalty on patterns that are 

misclassified or are close to the SVM decision boundary. Their negative set selection was 

based on random interactions between proteins in the positive set and they chose an equal 

number of negative samples as the positive samples, which is not representative of a real 

world scenario. Ng et al. [36] devised an integrative approach to computationally infer protein 

domain interactions and showed that the use of heterogeneous data sources with domain 

evidence improved protein interaction detection sensitivity. They have  developed a database 

of putative DDIs called InterDom [55] which differs from the above mentioned statistical 

methods by attempting to directly quantify the strength of the DDIs. In the InterDom database, 

the DDIs are derived by combining information from multiple sources: domain fusions, 

protein interactions and complexes, and scientific literature. A probability-based scoring 

scheme is used to assign higher confidence to domain interactions that are derived 

independently by multiple methods from different data sources [36, 55]. Although it is a novel 

effort, our analysis results show that the InterDom scores need significant improvements 

before they can be used for predictive purposes for PPIs as discussed in detail in the chapter 

three.  
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2.4. Summary 

As quite a few of the methods discussed above suffer from low accuracies there is a 

definite opportunity for improvement. Secondly, although some of these methods claim a high 

accuracy, their method of selection of negative interactions introduces some bias. They 

randomly select a subset of the negative samples which is equal to the positive sample size. 

But in a real world scenario because of the size difference between negative (non-interacting 

pair) and positive (true interaction) PPIs even a very low false-positive prediction rate can 

result in a situation where most of the predicted interactions are incorrect [34]. Thirdly, most 

of these methods do not achieve high sensitivity (recall) value, which as discussed by Marina 

et al., is an important measure for testing the performance of a bioinformatics approach. The 

methods developed in this thesis outperform the existing approaches with the right assumption 

of more non-interacting protein pairs than interacting protein pairs. Moreover these methods 

use only the fundamental domain information and therefore they can be applied across 

organisms.  
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CHAPTER THREE 
Benchmark Data selection and processing 

 

The quality of the available training data is very important to the success of a learning 

algorithm-based method. For the PPI network construction studies, the training dataset ideally 

contains a list of truly positive interactions (i.e. real PPIs) and a list of non-interacting pairs of 

proteins (i.e. negative examples) called the gold standards for a particular organism. A well-

performing interaction scoring scheme should have predictive power and be able to 

discriminate between the true and false observations.  

3.1. Benchmark Data 

Since definite identification of true and false PPIs is problematic due to the reported 

inaccuracies in the experimental methods, one has no choice but to create positive and 

negative PPI lists and assume that the list is correct. Fortunately, there are efforts devoted to 

construct PPI lists for yeast that are as reliable and correct as possible [34, 38, 50]. The 

training and test datasets selected for this research are obtained from these earlier 

compilations. For the positive and negative yeast PPIs, the information available at the 

Munich Information Center for Protein Sequences (MIPS) [56, 57] in the version originally 

compiled by Jansen et al. [34], which contains 8250 positive and ~2.7 million negative PPIs is 

utilized. This set of PPIs represents the interactions between proteins that are present in the 

same complex. Negative PPIs were obtained by using the protein location information by 

assuming that proteins residing in different sub-cellular compartments do not interact. 

Although this assumption is not entirely valid (as discussed by Ben-Hur et al. [47]), because of 
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the low error rate, its effect on the outcome of the prediction algorithms is assumed to be 

unimportant.  

The domain information is obtained from the InterPro database [58, 59] which uses 

sequence alignment and regular expression based patterns as well as profiles with complex 

probabilistic scoring mechanisms such as hidden Markov Models (HMMs) to identify 

domains in a protein. InterPro capitalizes on the individual strengths of a number of databases 

including PROSITE [60], Pfam [46], PANTHER [61], and PRINTS [62] as well as sequence-

cluster based methods such as PSI-BLAST [63] on well-characterized proteins to derive 

protein domains. As it unifies Pfam with other databases, use of the InterPro database allowed 

us to obtain a better coverage for the domains of the proteins of interest. 

Finally the cross-verification tests for DomainGA scores were performed using the 

Core and Full yeast PPI datasets from Uetz et al. [64]. The Core subset of DIP contains the 

pairs of interacting proteins (ScereCR20060402 list downloaded on 04/02/2006) identified in 

the budding yeast that were validated according to the criteria described in Deane at al. [65]. 

The Full Yeast set corresponds to the subset of DIP that contains all the pairs of interacting 

proteins identified in the budding yeast (yeast20060402.lst file downloaded on 04/02/2006). 

These sets contain 5952 and 17471 positive PPIs, respectively. The datasets originally 

compiled by Rhodes et al. [40] were used in the across-organism cross-verification test with 

the human PPIs in DomainGA. These sets were obtained from the Human Protein Reference 

Database (HPRD), and the lists contain 364,645 positive and ~40 million negative PPIs. 
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3.2. Data pre-processing 

 One of the biggest challenges with biological data in general and the PPI datasets 

obtained herein is identifier mapping. There are multiple identifiers such as Uniprot-

Accession, IPI number, GI number, Entrez Gene-Id, Common Names, and Gene Symbols etc. 

that are used to represent a biological entity such as a protein/gene. Very few of the public 

databases agree on the usage of the same set of identifiers to represent the entities. This leads 

to the problem of mapping between identifiers to be able to compare entities across databases. 

The publicly available mapping information is redundant and incomplete to say the least. 

More often than not multiple identifier mappings are required to get from one set of identifiers 

to the other. For instance: pathway maps available on websites such as CancerCell [66] and 

Human Protein Reference Database (HPRD) [67] represent proteins using common-

names/gene-symbols which need to be compared to a domain information based prediction 

system that uses uniprot-ids since the domain information available from the Interpro [58, 59] 

database is valid only for uniprot-ids; while the gold standards data from a database such as 

HPRD defined PPI using entrez-ids. The problem is exacerbated by the fact that there can be 

one-to-many relationships between these identifiers (For example: One IPI number generally 

has more than one equivalent uniprot-ids/accession numbers). There are no well defined 

criteria for resolving the inconsistencies and redundancy of these identifiers in an automated 

manner. 

 These problems are dealt with the creation of equivalency mappings between proteins 

based on their domain compositions. Since these are domain based approaches and a protein is 

represented by a string of domain-ids, if two proteins come from the same parent identifier and 

contain the same domains, it is treated as one protein for this purpose. 
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3.3. Subsets creation 

To avoid over-fitting not all domain-domain interactions in an organism are selected as 

the parameter set used for quantification in the DomainGA method or as elements in the 

DomainSVM feature vector. A subset of the DDI is selected which requires sub-setting the 

PPI training data. Therefore these PPI datasets were further processed to obtain the relevant 

subsets (Table 3.1) for use as training data in both DomainGA and DomainSVM. The training 

and testing datasets have been created in two different ways, by introducing two new concepts. 

The closed set is a subset of the PPIs such that all the domain-domain pairs in the included 

PPIs are included in the parameter set. All the other PPIs are not selected. In contrast, the PPIs 

in which the involved protein pair has the potential to interact through one or more of the 

domain-domain pairs not included in the parameter set are included in the inclusive set. In 

other words, PPIs in the inclusive set may interact through the domain-domain pair that is 

chosen in the parameter set, but these PPIs may have other DDI pairs that are neglected (not 

included in the chosen parameter set). Details of the resulting set sizes used in training the 

DomainGA and DomainSVM are reported in Table 3.1. 
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No of Parameters / Data Set a PPI Retained Interactions 

Positive 342 
103 Inclusive  

Negative 14,402 

Positive 1,882 
867 Inclusive 

Negative 79,413 

Positive 435 
344 a Closed 

Negative 3,139 

Positive 2,308 
2466 Inclusive 

Negative 162,115 

Positive 734 
1216 a Closed 

Negative 13,146 

Positive 2,666 
5095 Inclusive 

Negative 243,866 

Positive 1,448 
3060 a Closed 

Negative 25,651 

Table 3.1. Details of the yeast MIPS datasets used in the studies. Starting yeast dataset was obtained from Munich Information Center for 

Protein Sequences (MIPS) site [57] and it contained 8250 positive and ~2 million negative PPIs [34]. Retained interactions column report the 

number of entries for the sets after the original dataset is filtered according to the domain pairs included in the parameter set.  Further details 

can be found in the Methods section.  

a These are the closed set versions of the 867, 2466, and 5095 parameter inclusive sets. It is important to note that during filtering to obtain 

the closed PPI sets, occurrence of some of the domain pairs are nullified and these parameters cannot be truly optimized during the GA runs. 

So these closed sets are a subset of their corresponding inclusive sets.  
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CHAPTER FOUR 
DomainGA 

 
 

Abstract 

This chapter presents the DomainGA which is a multi-parameter optimization method 

in which the available PPI information is used to derive a quantitative scoring scheme for the 

domain-domain pairs.  The scores are then used to predict whether a pair of proteins interacts. 

This chapter discusses the design of the DomainGA methodology and its statistical validation 

with respect to the selection of the parameter sets to be optimized, score ranges, and fitness 

evaluation rule. DomainGA method surpasses other existing methods by achieving very high 

explanation ratios for the positive and negative PPIs in model organism Saccharomyces 

cerevisiae. Cross-verification tests were conducted on human PPIs and the scores of the 

optimized parameters were compared with structurally observed domain interactions obtained 

from the iPFAM database which shows that the DomainGA method holds great promise to be 

applicable across multiple organisms. Since DomainGA uses fundamental domain 

information, it can be used to create potential PPIs and the erroneous predictions can be 

filtered further using supplementary approaches such as those based on literature search; 

DomainSVM method discussed in Chapter 5; or other predictive methods discussed in Chapter 

2. 

4.1. Introduction 

DomainGA advocates a quantitative approach that uses the structural domains of 

proteins as a fundamental filtering step in inferring biological PPI networks. The underlying 

premise is that proteins interact with each other through their smaller substructures (i.e., 
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domains), which have the biophysical properties that are instrumental in protein-protein 

complex formations [68]. The validity of this assumption stems from the fact that 

evolutionarily conserved polypeptide domains can be thought of as structural building blocks 

that define and regulate the functionality of the proteins. Such ideas also form the foundation 

of the databases, such as the Pfam database [46], allocated to the characterization of protein 

domains.  

 

Figure 4.1: Protein-Protein Interactions and the role of domains. Proteins P1 and P2 are composed of domains 

D1, D2, D3 and domains D4, D5 respectively. The knowledge of proteins P1 interacting with P2 can be 

interpreted as and/or combinations of domains interacting in the two proteins. 

 
In the domain-based structural quantification approach, the knowledge about the 

strength of the interaction between domain di in protein X and domain dj in protein Y is used 

to predict whether proteins X and Y interact as shown in Figure 4.1. Corollary to this would be 

that for a given list of PPIs, can the possible interactions (and their strengths) between domain 
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pairs be determined? This idea was behind the development of the InterDom database and 

domain interaction scores [36, 55], and it forms the starting point of the study presented here. 

DomainGA first develops a scoring scheme for the interactions between the functional 

domains of the proteins and then uses it to predict the strength of interaction between protein 

pairs. 

In the InterDom database, the DDI are derived by combining data from multiple 

sources: domain fusions, protein interactions and complexes, and scientific literature. A 

probability-based scoring scheme is used to assign higher confidence to domain interactions 

that are derived independently by multiple methods from different data sources [36, 55]. These 

scores can be used to evaluate the InterDom method in terms of its predictive power of the 

PPIs. If the domain interaction scores have good discriminatory power, predicted PPI scores 

for the positive and negative PPI lists should be different - at least qualitatively. However, as 

shown in Figure 4.2, score distributions for the negative and positive lists for the human and 

yeast PPIs have considerable overlap. It should be noted that this analysis overlooks certain 

factors that are also determinants of domain-domain, and therefore protein-protein, 

interactions. Subtle differences in actual domain structures such as the ones due to amino acid 

composition, environmental factors, and whether the placement of the domain is in an 

accessible portion of the protein would be a few of such factors. For these reasons, the lack of 

a clear separation between the scores for the positive and negative PPI predictions may not be 

entirely due to the InterDom scores. Therefore, not a complete but only a reasonable 

separation between the curves is to be expected in Figure 4.2. However, the observed large 

overlap clearly indicates that there is room for improving the InterDom DDI scores, if they are 

to be used to predict PPIs in this manner. 
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Figure 4.2: Comparing positive and negative PPIs computed using InterDom DDI scores. Comparison of the 

strengths of the positive (red line with squares) and negative (blue line with circles) PPIs computed using the 

InterDom DDI scores. The interactions with a score of zero are not reported. The histogram curves were 

calculated by binning the logarithm of the PPI scores that were computed using the maximum-score detection 

rule. Vertical axis shows the percentage of the PPIs with interaction scores that are within the strength interval 

of a particular bin. Top: Yeast PPI obtained from Munich Information Center for Protein Sequences (MIPS); 

Bottom: Human PPI obtained from Human Protein Reference Database (HPRD). 

 
DomainGA quantifies the protein DDI by optimizing them as parameters in a genetic 

algorithm. The algorithm generates a set of DDI scores, which are then used to classify the 

interactions into three categories: high, low, and fuzzy. As in any machine-learning technique, 

DomainGA approach requires good-quality training data. Since a large quantity of high 

quality public data exists, Saccharomyces cerevisiae (yeast) is arguably the best model 
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organism for testing new algorithms. Therefore the algorithm is benchmarked using the PPI 

data available for S. cerevisiae with details provided in Chapter 3.  

 

4.2. Research Design and Methodology 

Figure 4.3 depicts the flow of logic in the DomainGA methodology which is discussed 

in detail in this section. The actual DomainGA algorithm is written in C but it is supported by 

several Python scripts required for preprocessing the input data and post-processing the 

results. The details of the benchmark data and its pre-processing to circumvent several 

challenges such as obtaining negative interactions; dealing with conflicting data in positive 

and negative PPI; resolving identifier induced redundancy; and appropriate sub-setting of the 

training data & parameter set to avoid over-fitting the problem space are discussed in Chapter 

3.   
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Figure 4.3: DomainGA methodology. Pre- and post-processing using python scripts forms important components 

of the entire methodology 

 
 
4.2.1. Overview of the algorithm 

Genetic Algorithms (GA) can be used as a search technique to find best-estimate 

solutions in optimization problems. They are a particular class of machine-learning algorithms 

that uses techniques inspired by evolutionary biology such as inheritance, mutation, 

recombination and natural selection. GAs are typically implemented as computer simulations 

in which a population of abstract representations (called chromosomes) of candidate solutions 

(called individuals) evolves toward better solutions. The solutions are either strings of 0/1s or 

can have different encodings. The evolution starts from a random population, and changes 
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occur through a selection process over generations. In each generation, the fitness of the whole 

population is evaluated, and most successful individuals are kept for the next generation. This 

selected group of individuals is supplemented with offspring that are obtained by modifying 

(random mutations and/or recombinations obtained using crossovers with inherited 

characteristics) the individuals that are stochastically selected from the current population 

(with probabilities based on their fitness). The set formed this way then becomes the current 

population set in the next iteration of the algorithm.  

In the DomainGA each chromosome is created as an array of DDI (parameter set to be 

optimized). It starts with 50 chromosomes that have randomly initialized parameter values as 

their array elements. An integer scale of [0-T] is used where T is 9 in all cases except in initial 

studies testing the dependence on the range of values as shown in Figure 4.4. In each 

generation the population size is increased 10-fold by the use of recombination, mutation, and 

random-generation operators. A multi-point recombination function is used among randomly 

selected chromosomes to add 250 (5x) more chromosomes. Random mutations are carried out 

on the genes of the chromosome (parameters) to create 150 (3x) new chromosomes. Finally, 

50 (1x) random chromosomes are created and added to the initial population. When combined, 

this set forms the population of a particular generation. The chromosomes in the population 

are then evaluated based on an optimization fitness function, rank ordered and only the top 50 

seed chromosomes are retained for the next iteration. The optimization fitness function is then 

maximized during the GA iterations, and when the score does not change over 15 successive 

iterations, the GA is terminated. At least 2000 GA runs starting from randomly selected 

populations are executed for each reported case. Finally, the results from the GA runs whose 

converged fitness function scores are lower than 80% of the maximum fitness value (local 
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maxima) are considered unsuccessful, and are discarded from the statistical analysis that 

determines the distribution and mean values of the optimized parameter values reported. 

 

Figure 4.4: Basic Genetic Algorithm operation. Shows a typical genetic algorithm flowchart with examples of the 

initial parameter vectors and the fitness functions tested in the DomainGA. 

 
 
4.2.2. Optimization fitness function 

The optimization fitness function evaluates how well the training PPI set is explained 

by the chromosome population. Each chromosome is an array of scores for the included 

domain-domain pairs, and this score set can be used to decide whether two proteins interact. 

Adapting the DDI scores to predict PPIs requires the development of a criterion to decide 

which type of domain-domain score corresponds to a PPI. For this, the DomainGA first forms 

a list of all possible DDI between two proteins; that is, all possible combinations between 

domain pairs. It then takes either the largest (maximum score detection rule) or the sum (total 

score detection rule) of the DDI scores from this list to represent the strength of the interaction 
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between the proteins. If the determined strength is larger than a pre-assigned cutoff (>5 when 

T=9), then that pair of proteins is predicted to interact. The pair is assumed to not interact if 

the score is below the cutoff (<5 when T=9), and an indecisive assignment is made if it is 

equal to the cutoff. These PPI predictions are then compared to the training data where correct 

prediction is granted +1 point, and a penalty of −1 is applied for an incorrect identification. 

Indecisive assignments do not contribute to the optimization fitness score. As the number of 

positive and negative PPI entries in the training dataset can be vastly different, the 

contributions of the negative and positive PPIs are normalized to the overall fitness function 

according to the number of PPIs in each list such that both lists carry equal weight.  

Since the selection of the negative set of PPI is a debatable issue with no best solution 

[47]  an “alpha fitness function” is also provided in the DomainGA that uses only the positive 

PPI list as the training data and minimizes the magnitude of the involved parameters. This 

fitness function has two terms. The first term represents the explanation ratio of the training 

dataset; it is exactly the same function that was discussed in the previous paragraph. The 

second term is the sum of the magnitude squares of the parameters; that is, the sum of squares 

of all DDI scores. The second term is multiplied with a weight factor α and then subtracted 

from the first term to be used as the resulting fitness function in the GA runs. As discussed in 

the results section, results reported in Figure 4.7 were obtained using α=0.5, and the maximum 

score detection rule was used in deciding the PPI predictions. This fitness function maximizes 

the explanation ratio while assigning a minimum number of domain pairs as interacting 

partners. Note that without the second term, assignment of high values to all the optimized 

parameters would lead to a perfect explanation ratio of the positive PPI list so it would be a 

trivial global solution. The subtracted weighted parameter magnitude term blocks the 
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optimizer from assigning high parameter values unless they are necessary to achieve a good 

explanation ratio. 

 

4.2.3. Optimization parameter set selection 

As in any multi-parameter optimization approach, the involved parameter set needs to be 

defined. For N domains there are N * (N+1)/2 possible domain-domain pairs whose values 

need to be known. Noting that N is on the order of 104 in InterPro classification, there are ~108 

possible interacting domain-domain pairs. Reliable optimization of such large parameter sets 

requires PPI training data that are not currently available and possibly will not be available in 

the near future either. Therefore, inclusion of all possible domain-domain pairs in the 

optimization process is not realistic. To avoid parameter over-fitting, a small parameter set is 

selected and assumed to be large enough to represent the important domain, and thus protein, 

interactions. To select the used DDI parameter set, the histograms for the number of 

occurrences of the domain-domain pairs in the training PPI sets are created and the domain 

pairs are sorted according to their occurrence counts to achieve reasonably large training and 

test datasets. This procedure is repeated to select subsets with different number of domain-

domain pairs (103, 867, 2466, and 5095 pairs; Table 1) to use as the parameter sets in the GA 

optimizations. Choice of these parameters was based on the occurrence of the domain pairs in 

the positive and negative standard PPI lists where roughly half of the parameters came from 

each list. It is important to note that DomainGA implicitly assumes that the omitted domain 

pairs are not a determining factor in deciding whether two proteins interact. Thus this would 

be equivalent to assigning zero (i.e., non-interacting) values to the neglected domain pairs.  
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4.2.4. Training subset selection 

As discussed in Chapter 3 section 3.3, based on the parameter set selection, subsets of the 

gold standards training data are also created using the new concepts of closed set and inclusive 

set. It is important to note that in forming the closed dataset, an additional problem arises 

which reduces the number of parameters that can be truly optimized with the DomainGA 

method. Say that a domain pair is chosen as a parameter to be optimized. If all the PPIs that 

include this is domain pair dij contain at least another domain pair whose interaction score is 

not optimized (i.e., not a domain pair selected as a parameter), then these PPIs will be 

excluded from the list defining the closed set. This would lead to the case that domain pair dij 

may not appear in any of the PPIs defining the closed dataset. When that happens, as there is 

no information that is relevant for its optimization, the value of this parameter will be set 

randomly during the optimization. This was observed in the simulations and, when T was 9, 

such parameters had average values in the [4-5] range as expected. Thus, as they should, these 

parameters appear as fuzzy, uncertain parameters in the results. For this reason, whenever the 

closed and the inclusive set results are compared; these non-optimized parameters are omitted 

from the figures.  

 

4.2.5. Assigning strengths to PPI 

Domain GA method is set-up as a multi-parameter optimization method in which the 

extreme value of a fitness (score) function is searched. Adapting the DDI scores to predict 

PPIs requires the development of a criterion for deciding what domain-domain score 

corresponds to a PPI. For this, first a list of all possible DDI between two proteins is formed; 
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that is, all possible combinations between domain pairs. The largest or the total of the DDI 

scores is then taken to represent the strength of the interaction between the two proteins. If the 

determined strength is larger than a predetermined cutoff value, the protein pair is classified as 

interacting and as non-interacting otherwise. Throughout this chapter, the term strength is used 

in an unconventional manner. In this case, it is a score that represents the likelihood of 

interaction between two domains. The likelihood however has a bounded range and is 

discretized for practical implementation. Depending on the representation, the score can be 

interpreted as a normalized and scaled biochemical binding affinity or the thermodynamic 

Boltzmann factor, or as the statistical interaction probability. In the future versions of the 

algorithm, a continuous and unbound score range can be used which will make these 

correspondences more obvious. 

 

4.3. Results and Discussion 

 There is no well established process of checking the correctness of a machine learning 

based prediction algorithm that depends so heavily on high quality training data. Therefore 

several tests are conducted to check for any assumptions introduced bias; statistical validation 

of PPI predictions based on cross-validation studies; cross-verification tests on test sets 

obtained from some other organism; discriminative & structural analysis of DDI score 

assignment; and finally testing the method by only using positive PPI for training. The 

following subsections discuss each of these tests in detail.  
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4.3.1. Testing the Robustness of DomainGA 

Since the parameter set is reduced to avoid over-fitting the parameters during the 

optimization step, it raises the question of how dependent the derived values are on the size of 

the defined parameter set. A related concern is how representative the small set can be in 

terms of explaining the observations that are used as the training data. Another concern is the 

dependence of the optimization procedure on the score range used for parameter score 

assignment. Moreover optimization procedures such as Genetic Algorithms need to be tested 

for dependence on the fitness function or detection rule used. These issues have been 

addressed by the following test case studies to show that the selection procedure and these 

assumptions are reasonable. 

4.3.1.1 Invariance with respect to the parameter score range: In the DomainGA, parameter 

values (i.e., the strength of each domain pair interaction) are optimized to maximize agreement 

with the training PPI list used. In the current implementation of DomainGA, the parameters 

are allowed to have integer values between 0 and T, where the upper bound determines the 

coarseness of the discretization. Figure 4.5 compares the results for the smallest data set when 

the maximum score value T was chosen as 5 and 9. The cutoff value to decide whether 

possible DDI result in a PPI was chosen as the mid-values 3 and 5 for the T=5 and 9 cases, 

respectively. Choosing the mid-values as the cutoff was totally arbitrary. In Fig. 4.5., the 

parameter scores are reported using a color scheme and the order of the parameters is the same 

in both parts. Each row in Fig. 4.5, shows the values of the parameter set (i.e., the domain 

interaction scores) optimized in a particular GA run. Each column shows the optimized value 

of a particular parameter across different GA runs. A uniform color through a column means 
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that the corresponding parameter’s score remain consistent across many different GA runs. 

Dominant red and blue colors represent interacting and non-interacting domain pairs, 

respectively, and other color shades correspond to intermediate parameter scores. The 

parameters with intermediate scores or whose values fluctuate between high and low scores 

across the different GA runs as defined as fuzzy (or indefinite) parameters. It is clear from Fig. 

4.5. that the scale choice does not make a noticeable difference. A correlation analysis of the 

optimized parameter values computed as the mean of the GA runs indicates an almost perfect 

match with an R-square value of 0.9996 between the T=5 and 9 cases. 

 

Figure 4.5: Comparison of the scores of the common 103 parameters. These were optimized using different 

ranges for the scores with the inclusive set. Employed range was: (A) [0-5] and (B) [0-9]. In the figures, the 

vertical axis represents a particular GA run and the horizontal axis shows the optimization parameters, which 

are rank ordered according to their mean strength values. Each column shows the score of a particular 

parameter obtained in different GA runs. A consistent color through a column indicates that the optimized value 
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of corresponding parameter is almost the same in all the GA runs. Each plot reports the optimized score set 

values for more than 2,000 GA runs. Intense blue and red colors respectively represent the non-interacting and 

interacting domain-domain pairs. 

 
 
4.3.1.2. Invariance with respect to the number of parameters: In an optimization study, an 

added concern is the dependence on the size of the parameter set. To address this issue, 

datasets have been created with different number of parameters, Table 4.1. As discussed in the 

Research Methodology section, dataset with 867 parameters was selected based on single- and 

multiple-occurrence statistics of the domain pairs in the training set. The size of this dataset 

was further increased to 2466 and then to 5095 by adding more parameters to the list (Table 

1). It should be noted that the parameters of the 867-parameter set are a subset of the larger 

parameter sets. Inclusion of the same parameters in several datasets allows numerical tests to 

see if the optimized values of the parameters depend on the size of the set used. Figure 4.6 

reports the optimized values for the 867 parameters that are common in all sets. Comparison 

of the results shows that the assignments of a small fraction (~15%) of the parameters change 

between the high, low, or fuzzy categories. Therefore, vast majority of the domain-domain 

pair interaction scores do not depend on the included number of optimization parameters. The 

most noticeable pattern between the results for the cases is that, as the number of optimized 

parameters is increased, scores of some of the parameters shift from the positively determined 

to the fuzzy (indeterminate) category, Fig. 4.6D. The differences however do not alter the 

explanation ratios of the training datasets, Table 4.2. 
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Figure 4.6: Comparison of scores between the optimization studies with different number of parameters. Parts 

(A-C) report the scores of the 867 parameters that were common in all three cases. Inclusive set optimizations 

with: (A) 867; (B) 2466; and (C) 5095 parameters. Part (D) reports and compares the classification of the 

optimized scores according to their interaction profiles. 

 
 
4.3.1.3. Invariance with respect to the detection rule: The robustness of the DomainGA 

method with respect to the detection rule choice is tested by comparing results obtained using 

the max-score detection rule and the total-score detection rule. In terms of biophysical 

considerations, the maximum-score detection rule emphasizes the dominant DDI, and it 

implicitly assumes that proteins interact through, at most, one domain at a time, and the 

domain-domain pair with the highest affinity is the most crucial one. In contrast, the total-
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score detection rule considers all possibilities by summing over the interaction score, which is 

analogous to calculating the cumulative thermodynamic free energy of a PPI where every 

possibility contributes according to its strength.  

Optimizations using both of the detection rules were carried out using the closed 344 

parameter set (Table 4.1). The parameter score range was [0-9] and a cutoff of 5 was used to 

classify the PPIs into positive or negative interaction categories. Parameter values obtained 

using the total- and the maximum-score detection rules are compared in Figure 4.7. As the 

reported two-dimensional histogram shows, the scores of the domain pairs in these two 

optimization studies lie close to the diagonal demonstrating the promise that the DomainGA 

results are rather insensitive to the detection rule. There are only a few parameters that have 

conflicting optimized values between the two detection rule cases. These appear as a spike at 

the (max~7, total~1) point in the histogram diagram indicating a discrepancy between the 

parameter sets. It is important to note that the small differences at the low or high parameter 

scores are unimportant because in the current classification scheme, values are simply grouped 

into three classes: non-interacting (<5), fuzzy (~5), and interacting (>5). Therefore, small 

variations in the (0:3) or (7:9) ranges are irrelevant to the derived conclusions.  
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Figure 4.7: Comparison of the optimized parameter scores. There were optimized using the 344 parameter 

closed set with maximum (x-axis) and total (y-axis) score detection rules. Reported scores are the averages of the 

GA runs after the infrequently occurring parameter values are discarded during analysis. Histogram diagram 

reports the score distribution of the parameters that can be optimized in the simulations. Each (x,y) entry in this 

histogram plot reports the number of parameters that has mean values of x and y when the maximum- and total-

score detection rule was used in the optimization, respectively. The maximum value of the color scale is lowered 

from 67 to 20 to enhance the contrast between the histogram points. 

 
 
4.3.1.4. Comparison of subsets of training data: To test the robustness of the algorithm with 

respect to the sub-setting of the training data (closed and inclusive sets) comparison of the 

mean scores for the common 344 parameters (DDI) in both the sets was conducted. The results 

of the two optimization studies agree very well, which is evident in Figure 4.8.  



 

40 

 

 

 

Figure 4.8: Comparison of scores of the 344 common parameters. There parameters are common between the 

closed 344 parameter (x-axis) and inclusive 867 parameter (y-axis) datasets. The maximum score detection rule 

was used and the reported scores are the averages of the GA runs after the infrequently occurring parameter 

values are discarded during analysis. Each (x,y) entry in this histogram plot reports the number of parameters 

that has mean values of x and y when the referred closed and inclusive dataset was used in the optimization, 

respectively. 

 
 
 4.3.1.5. Parameter space search: One major concern in a parameter optimization study is the 

appropriate sampling of the parameter space. In the GA runs, initial values of the parameters 

were picked randomly and the optimized parameter values were statistically analyzed. Results 

reported in Figures 4.5 & 4.6 are representative of our typical findings. In these figures, each 

row shows the optimized values of the parameter set in a particular GA run, and a uniform 

shade across a column means that particular parameter has the same optimized value at the 

end of every GA run. It is clear that optimal solutions of the GA runs have insignificant 

variations in the optimized parameters when the score of a parameter is in the low or high 

categories; that is, if the parameter indicates that a domain-domain pair is found to be 

interacting or not. DDI parameters that are in the fuzzy range, i.e., may or may not interact, 
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generally have larger variations. This is to be expected because these fuzzy parameters are 

indefinite and do not contribute much to the information content of the machine-learning step. 

Thus, the overall explanation ratios of the training set are rather insensitive to their variations.  

 

4.3.2. Cross-Validation studies 

The previous sections have discussed the robustness of the DomainGA method to the 

selection of the parameter sets, score ranges, detection rules, and search space. The 

explanation ratio of the training dataset can be one evaluation criteria to determine the 

success of a machine-learning method. The explanation ratio is defined as the percentage of 

the PPIs in the training set that are successfully accounted for at the end of an optimization, 

i.e., it is the ratio of correctly predicted to the total number of entries in the list. Let TP, TN, 

FP, and FN respectively stand for true- and false-positive and negative predictions. Then, the 

explanation ratios of the training sets are TP/(TP+FN) and TN/(TN+FP) for the positive and 

negative PPI lists, respectively. 

Another way to evaluate the performance of the optimizations is to conduct a cross-

validation analysis with a testing dataset. N-fold cross validation with N~10 is typical in 

machine learning studies where ~10% of the entries are used for testing the predictions based 

on training with the remaining 90%. This process is repeated 10 times for the data split 10 

ways. Performed 10-fold cross validation test using the inclusive 867 parameter dataset 

indicated that the DomainGA optimization achieves an average explanation ratio of 94.8% and 

97.0% for the training and 92.9% and 97.0% for the testing sets for the positive and negative 

PPIs, respectively. A two-fold test was also conducted in which half of the dataset was used as 
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the training data, while the remainder served as the testing dataset. In this most severe form of 

N-fold cross validation, DomainGA optimization achieves an average explanation ratio of 

95.7% and 96.6% for the training and 88.8% and 96.5% for the testing sets for the positive and 

negative PPIs, respectively. Overall, these are very respectable results for N-fold cross 

validation tests.  

No of Parameters Training 
set PPI 

Explanation  

Ratio (%) a 
Accuracy Precision 

Positive 95.6 
867 Inclusive 

Negative 96.1 

96.4 38.9 

Positive 99.3 
344 Closed 

Negative 98.7 

98.7 90.6 

Positive 96.2 
2466 Inclusive 

Negative 95.7 

95.7 24.3 

Positive 99.0 
1216 Closed 

Negative 96.4 

96.6 60.8 

Positive 97.3 
5095 Inclusive 

Negative 95.6 

95.6 19.3 

Positive 99.3 
3060 Closed 

Negative 95.6 

95.9 56.5 

Deng et al. Inclusive Positive 95-98 93-95 24-30 
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Negative 93-95 

Positive 91-93 

with 

867 pmts b 

Closed 

Negative 89-90 

89-90 54-55 

Positive 61.0 Random with 

867 pmts 
Inclusive 

Negative 35.4 

36.0 2.2 

Table 4.1. Explanation ratios of the MIPS yeast datasets 

a Explanation ratio is the ratio of successful predictions to the overall number of entries in a particular list. Note that the explanation ratios for 

the positive and negative PPI lists respectively correspond to the sensitivity and specificity with Lin et al. definitions. 

b Calculated performance metrics depend on the false positive and negative prediction rates used in the MLE algorithm as well as on the 

cutoff for positive and negative PPI assignments. Therefore, the reported range of percentages were obtained when various prediction rates 

were used in the MLE algorithm.  

 

 

4.3.3. Comparison with existing approaches 

The information contained in the calculated explanation ratios relates to the content of 

the Receiver Operating Characteristic (ROC) curves that are often reported in machine-

learning studies [32, 69, 70]. DomainGA approach achieves explanation ratios that are larger 

than 95% for the parameter sets used (Table 4.2). The performance of the DomainGA method 

is evaluated using the sensitivity=TP/(TP+FN) and specificity=TN/(TN+FP) definitions given 

by Lin et al. [69]. Note that these properties are equal to the explanation ratios for the positive 

and negative PPI lists, respectively, that are reported in Table 4.2. Thus, these optimizations 

typically result in predictions with a >95% sensitivity and >95% specificity, which is 
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equivalent to a point (0.05, 0.95) in the ROC plot indicating a very steep curve, a highly 

desired attribute.  

Martin et al. developed their own set of definitions for performance evaluation [38]. 

They define the additional benchmark measures of accuracy = (TP+TN)/(TP+FP+TN+FN) 

and precision= TP/(TP+FP). Obtained values for these measures are reported in Table 4.2. 

Accuracy and precision of the DomainGA predictions with the inclusive 867 parameter set are 

2.7 and 17.7 times higher than the random predictions, respectively. Having a much better 

precision with the closed set compared to the inclusive set is most likely due to the implicit 

assumption that the excluded parameters do not contribute to the predictions. This assumption 

is not needed in the closed set studies but it can be severe for certain protein pairs and may 

limit the precision of the predictions in the inclusive set cases. Therefore, as the representation 

is contained in itself, even though the number of truly optimized parameters is less (Table 4.1), 

optimization with the closed datasets can achieve a much higher precision. Another trend that 

is obvious in these results is that the precision decreases with the increase in the number of 

included parameters. As discussed above, this is most likely due to the limitation with the 

amount of information to reliably optimize some of the parameters included in the larger 2466 

and 5095 parameter sets.  

The predictions of the DomainGA method can be compared with the results obtained 

by the Maximum Likelihood Estimation (MLE) method of Deng et al. [22]. The MLE method 

was re-implemented and various false positive and negative prediction rates were 

experimented since they are necessary parameters during the likelihood maximization stage. 

The results depict that the overall results are rather insensitive to the used false negative and 

positive prediction rates. The same conclusion was also reached by Deng et al. themselves 



 

45 

 

 

[22]. The results for the MLE prediction are reported in Table 2 for various case scenarios. 

Explanation ratios (which also correspond to the sensitivity and the specificity) achieved by 

the MLE method are slightly lower than our DomainGA predictions. The accuracy obtained 

by the MLE is 90% for the closed and 94% for the inclusive datasets, which are lower than the 

accuracy of the DomainGA results, 96% and 99%. However, the most notable difference is in 

the precision of the predictions. Even though the precision of the DomainGA may appear to be 

low, 91% for the closed and 39% for the inclusive sets, it is considerable higher than the 

precision of the MLE method, 55% for the closed and 30% for the inclusive sets. It should be 

noted that both methods perform much better than the random predictions. 

 

4.3.4. Cross verification studies 

 Although cross validation in machine learning studies is important, when the training 

and testing data are of the same origin, this may bias the predictive power of a method. For 

this reason, the cross-explanation ratios for the DomainGA optimization results are also 

computed (Tables 4.3 & 4.4), which aids in verifying the results across datasets of different 

origin. In the cross verification tests, the parameter sets were optimized using one set of 

training data (MIPS yeast data in this case) and then the predictive power of the optimized 

parameter set is checked by computing the explanation ratio of another set (e.g., another yeast 

dataset or the human PPI data) that has not been used during the training. This is analogous to 

an extreme form of cross-validation because training and testing sets may not have much 

resemblance; therefore, an algorithm passing this type of testing would show its wider 

predictive power and applicability. This argument is also valid for using the closed and 
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inclusive set combination from the same resource for training and testing purposes, albeit to a 

lesser degree. 

Analysis of the yeast results shows that when MIPS datasets are used for training, 

DomainGA optimization can achieve remarkable explanation ratios of the training datasets, 

typically at higher than 95% level (Table 4.2). Since all of the domain pairs that appear in the 

used training set are included as parameters in the optimization, as expected, explanation 

ratios are slightly higher for the closed set cases. Using the optimized parameter values, the 

cross-explanation percentages between the MIPS yeast datasets are computed. These 

calculations (Table 4.3) showed that parameters optimized using the inclusive set explains the 

closed set data extremely well – typically at the 99% and 96% level for the positive and 

negative PPIs, respectively. These ratios are nearly as good as the ratios obtained by training 

on the closed set itself (Table 4.2). This may be expected because, as they are a subset of the 

inclusive set, the closed set data are included in the computations. On the contrary, the 

parameters optimized using the much more limited closed set are less successful in explaining 

the inclusive datasets (Table 4.3); however, its success is still quite respectable. Since the 

closed set starts to represent the inclusive set better, the cross explanation ratios improve with 

the increase in the size of the parameter set, Table 4.3. As a further check, comparison of the 

optimized parameter scores shows that the use of the closed and inclusive datasets results in 

very similar parameter values (Figure 4.5). The parameters whose optimized values disagree 

between the methods appear as off-diagonal elements in the lower right or upper left corners 

in Figure 4.5; clearly, only a very small percentage of the parameters exhibit this behavior. 

Not surprisingly, cross-verification studies between the MIPS and Uetz et al. yeast 

datasets resulted in lower explanation ratios (Table 4.3). However, the explanation ratios are 
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still at a very respectable ~75% level. Information about the PPI networks in yeast collected in 

various high-throughput studies is known to have small overlap [65]. This is expected to be 

reflected in this scheme as well where the domain-domain pairs that are selected to represent 

the MIPS datasets may not contain the necessary decisive information that represent the Uetz 

et al. datasets [4, 64]. Corollary to this would be that the domain-pairs that are important to 

represent the Uetz et al. data were not included in our optimization studies because, based on 

their occurrence, they were not among the most important ones in representing the MIPS PPI 

dataset.  

Training set Test set Explanation Ratio (%) a 

Positive 99.3 867 pmt 

inclusive 

344 pmt 

closed 
Negative 95.4 

Positive 69.9 344 pmt 

closed 

867 pmt 

inclusive  
Negative 64.3 

Positive 98.6 2466 pmt 

inclusive 

1216 pmt 

closed  
Negative 96.0 

Positive 76.7 1216 pmt 

closed 

2466 pmt 

inclusive 
Negative 66.5 

Positive 99.3 5095 pmt 

inclusive  

3060 pmt 

closed 
Negative 95.6 

Positive 84.5 3060 pmt 

closed 

5095 pmt 

inclusive 
Negative 67.8 
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Core 78 867 pmt 

inclusive 
Uetz et al. b 

Full 75 

Core 78 344 pmt 

closed 
Uetz et al. b 

Full 75 

Table 4.2. Cross verification with the yeast datasets 

a Explanation ratios were calculated by using the indicated yeast datasets as the testing data after the DDI score parameters were optimized 

using the reported MIPS set as the training data in the DomainGA runs.   

b Explanation ratios were calculated by using the indicated closed Uetz et al. yeast datasets [4] as testing data. Uetz et al. datasets 

(http://dip.doe-mbi.ucla.edu/dip/ Download.cgi) contain only positive PPIs so test statistics were computed only for the positive predictions. 

Yeast Core set originally contained 5952 positive PPIs of which 74 were retained after selecting the entries according to their relevance to the 

parameter set utilized in optimizations. In the Yeast Full dataset case the corresponding total and retained values were 17471 and 119. 

 

In another cross-verification study, the DDI scores that were optimized using the MIPS 

yeast data were used to compute the explanation ratios for the human interactome (Table 4.4).  

MIPS 

Training set 

Closed HPRD 

Test set 

Explanation 

Ratio (%) 

Positive 75.4 344 pmt 

closed Negative 92.9 

Positive 75.5 867 pmt 

inclusive Negative 93.7 

Positive 70.0 Random 

scores Negative 35.9 

Table 4.3.  Cross verification with the human PPI *  
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* Explanation ratios were calculated by using the indicated closed human PPI [40] datasets as testing data after the DDI score parameters 

were optimized using the reported MIPS set as the training data in the DomainGA runs.  Explanation ratio is simply the ratio of successful 

predictions to the overall number of entries in the used positive or negative PPI list. Human PPI dataset was obtained from the Human Protein 

Reference Database (HPRD) and it has contained 364645 positive and ~40 million negative PPIs. Of these 215 and 6892 were retained 

respectively after selecting the entries according to their relevance to the parameter set utilized in optimizations. 

Explanation ratios obtained for the closed sets were 74% and 93% for the positive and 

negative PPI sets, respectively. These are surprisingly high percentages, particularly for the 

negative protein interaction predictions. Explanation ratios obtained with the DomainGA 

method can also be compared to the predictions of a random score scheme. As Table 4.4. 

indicates, the DomainGA method significantly improves on the random predictions, 

particularly for predicting the non-interacting protein pairs. Accuracy (93%) and precision 

(28%) of the DomainGA is much higher than the corresponding values for the random 

predictions with 37% accuracy and 3.3% precision. Thus, the DomainGA increases the 

precision of the across-organism predictions by a factor of 8.4 and, based on the severe cross-

verification test, it can be concluded that the DomainGA method shows great promise to be 

applicable across multiple organisms.  

4.3.5. Evaluation of the obtained DDI scores  

As discussed in the Introduction section, a rationale behind the presented research was 

the lack of discriminatory power of the InterDom DDI scores. To further evaluate the 

DomainGA method’s performance, a similar analysis has been conducted using the 

DomainGA interaction scores. Figure 4.9 reports the distributions of the predicted yeast PPI 

scores obtained using the DDI scores obtained in the inclusive 867 parameter study. Using the 

same optimized parameter values, as in the cross-verification study reported above, Figure 4.9 

also reports the predicted score distribution for the human interactome for the closed PPI 
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dataset. For both cases, distributions for the positive and negative PPI scores are clearly well 

separated indicating that, in terms of having discriminatory power, the DomainGA method 

significantly improves on the InterDom scores.  

 

Figure 4.9: Comparison of the strengths of the MIPS positive and negative PPIs. MIPS positive (red line with 

squares) and negative (blue line with circles) PPIs are computed using the DomainGA optimized DDI scores. 

Vertical axis shows the percentage of the PPIs with interaction scores that were calculated by binning the total 

PPI scores using unit bin sizes. Top: Inclusive set yeast PPI; Bottom: Closed set human PPI. 

 
4.3.6. Testing against structurally identified interactions 

The iPfam resource [71]  makes use of the biomolecular structures deposited in the protein 

data bank (PDB) and identifies the possible interactions between the domains defined by the 

Pfam classification. Because it is based on structural information, derived DDI can be 

considered reliable. However, it should be kept in mind that iPfam uses an automated 
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computational approach and does not distinguish between biological and crystal contacts. In 

addition, interactions between the domains of a single polypeptide and domain interactions 

between separate peptides are not treated separately. These characteristics can lead to false-

positive detections in iPfam. The domain interactions between Pfam-A class domains from the 

iPfam website were used to investigate the corresponding scores that were obtained in the 

DomainGA studies. As pointed out by Deng et al. [22] due to the unavailability of high 

number of known DDI, it is difficult to estimate the accuracies of interaction predictions at the 

domain level. As an evidence of this, out of the 867 domain-domain pairs included in the most 

precise optimization study only 33 were found to be included in the iPfam list (Table 4.5).  

 

Domain Name 
(Pfam ID) 

Domain Name 
(Pfam ID) 

Mean Score a 
(Inclusive/Closed set) 

PNPase 
(PF03726) 

RNase_PH 
(PF01138)  7.61/7.48 

GTP_EFTU 
(PF00009)  

GTP_EFTU 
(PF00009)  7.57 

Ribosomal_L6 
(PF00347)  

Ribosomal_L6 
(PF00347)  7.56 

CK_II_beta 
(PF01214)  

CK_II_beta 
(PF01214)  7.56/7.49 

Prenyltrans 
(PF00432)  

PPTA 
(PF01239)  7.53 

Ribosomal_S8 
(PF00410)  

Ribosomal_S2 
(PF00318)  7.52 

TPR_1 
(PF00515)  

TPR_1 
(PF00515)  7.52 

Ribosomal_S11  
(PF00411)  

Ribosomal_S7e  
(PF01251)  7.52/7.50 

IF-2B 
(PF01008)  

IF-2B 
(PF01008)  7.51/7.49 

CK_II_beta 
(PF01214)  

Pkinase 
(PF00069)  7.49 

Ribosomal_S2 
(PF00318)  

Ribosomal_S2 
(PF00318)  7.49 

Bromodomain 
(PF00439)  

Bromodomain 
(PF00439)  7.48/5.66 
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WD40 
(PF00400)  

G-gamma 
(PF00631)  7.48/1.97* 

Ribosomal_L4 
(PF00573)  

Ribosomal_L37e  
(PF01907)  7.48 

G-alpha 
(PF00503)  

WD40 
(PF00400)  7.46 

PFK  
(PF00365)  

PFK  
(PF00365)  7.45 

Ribosomal_S8e  
(PF01201)  

Ribosomal_S2 
(PF00318)  7.44 

GTP_EFTU 
(PF00009)  

EF1_GNE 
(PF00736)  7.43 

Proteasome 
(PF00227)  

Proteasome 
(PF00227)  6.26/6.11 

ATP-synt_ab 
(PF00006)  

ATP-synt_C 
(PF00137)  5.86 

Clat_adaptor_s  
(PF01217)  

Adaptin_N 
(PF01602)  5.40 

Ribosomal_L4 
(PF00573)  

Ribosomal_L15e  
(PF00827)  5.38 

Glyco_transf_20  
(PF00982)  

Glyco_transf_20  
(PF00982)  5.33 

Ribosomal_L24e  
(PF01246)  

Ribosomal_L14e  
(PF01929)  5.30/5.39 

Prefoldin 
(PF02996)  

KE2 
(PF01920)  4.91 

Proteasome 
(PF00227)  

AAA 
(PF00004)  4.75/4.92 

Pkinase 
(PF00069)  

Pkinase 
(PF00069)  2.43* 

WD40 
(PF00400)  

WD40 
(PF00400)  2.11/2.04* 

RRM_1 
(PF00076)  

RRM_1 
(PF00076)  2.07* 

Pkinase 
(PF00069)  

Ank 
(PF00023)  2.05* 

Myb_DNA_binding  
(PF00249)  

Myb_DNA_binding 
(PF00249)  2.04* 

WD40 
(PF00400)  

PH 
(PF00169)  1.92/2.04* 

Ank 
(PF00023)  

Ank 
(PF00023)  1.87* 

Table 4.4. DDI scores for the pairs that appear in the iPfam database* 

* Entries are discussed in the main text. 
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a Scores obtained in the inclusive 867 parameter study. In the entries that contain more than one score, the second numbers are the scores for 

the domain pairs that were obtained in the corresponding 344 parameter closed set optimizations. 

According to the score predictions with the inclusive set, seven of these domain pairs 

have low scores thus reflecting a disagreement between these results and the information listed 

at the iPfam database. Detailed investigation of these eight conflicting cases conducted by Dr. 

Haluk Resat at PNNL was illuminating for evaluating the success of the DomainGA method 

as discussed in Singhal et al. [72]. This demonstrates that in addition to helping with 

constructing PPI networks, this domain-based approach may also be of use in detecting the 

biophysical properties of the protein functional domains.  

4.3.7. Optimization using only the positive PPIs 

Although the positive PPI lists are generally based on direct experimental observation, 

the negative PPIs can be ambiguous as discussed by Ben-Hur et al. [47]. As in the compilation 

of the MIPS dataset that is used, negative interactions are often extracted by making certain 

assumptions; for example, proteins that occupy different sub-cellular compartments do not 

interact. Implicit in this assumption is that the proteins would still not interact even if the 

biophysical barriers keeping them in separate compartments are removed. This in essence is a 

severe assumption whose correctness is questionable, and the assignment of locations can 

itself be problematic [73]. To test the utility of DomainGA without any negative PPI dataset, 

optimizations have been conducted with a different GA optimization fitness function that 

maximizes the explanation ratio of the training dataset while keeping the values of the 

domain-domain score parameters at a minimum. The idea of minimizing the number of 

positive domain interactions is analogous to choosing a smaller set of domain-pairs with 

higher-specificity concept that was advocated in reference [74]. 
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Comparison of the results obtained using only the positive MIPS PPI dataset for the 

closed 344 parameter case with the new minimum parameter magnitude fitness function 

(details of the optimization routine are described in the Research Design and Methodology 

section) with the above reported results shows very good correlation between the results 

(Figure 4.10). In line with the earlier cases, the explanation ratio of the training set was very 

high (98%). To test whether the unused negative PPI list was still well predicted with the 

obtained scores, the explanation ratios were computed, and it was 96%, an excellent ratio. 

Thus, with the use of realistic fitness functions in the GA optimization runs, one may be able 

to sidestep the problems associated with the availability of the negative PPI training data.  

 

Figure 4.10: Comparison of the mean scores of the parameters optimized using the 344 parameter closed set 

training data with different fitness functions. X-axis: Optimization using both the negative and positive PPIs with 

the maximum score detection rule;. Y-axis: Optimization with the minimum parameter magnitude fitness function 

using only the positive PPI list. The maximum value of the color scale is lowered from 121 to 30 to enhance the 

contrast between the histogram points. 

 
One clear trend in the optimized values of the parameters is that scores for the domain-

domain parameters are generally lower with the new optimization fitness function (Figure 
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4.10). This is an expected outcome because, as a result of the way the optimization fitness 

score is constructed, the algorithm would only set a minimal number of parameters to have 

large non-zero values. The shift in the values of the scores does not create any discrepancy 

between the results. There are 44 parameters that have values >5 in the optimization with the 

new fitness function. This finding for the number of interacting domain pairs is in accord with 

the predictions of the closed set optimization runs that use both the positive and negative PPI 

lists as training data.  
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CHAPTER FIVE 
DOMAINSVM 

 
Abstract  

 DomainGA methodology introduced in Chapter 4 utilized the structural domain 

information in the PPI to develop a scoring scheme for domain-domain interactions. Although 

it accounted for “OR” combinations of domain interactions in the Maximum-Fitness function 

and the “AND” combinations of domain interactions in the Total-Fitness function; it did not 

account for “AND/OR” combinations of multiple domain interactions.  The chapter presents 

the DomainSVM method which is a support vector machine based approach that classifies 

protein-protein interactions by accounting for combinations of domain-domain interaction 

scores obtained from DomainGA. DomainSVM method outperforms PPI predictions obtained 

from DomainGA by achieving very high explanation ratios, precision, specificity, sensitivity 

and F-measure values in a 10 fold cross-validation study conducted on the positive and 

negative PPIs in yeast. Functional analysis of the predicted interactions amongst unknown 

protein pairs brings forth interesting observations.  

 

5.1. Introduction 
 

As discussed in the Chapter 2, most of the existing domain based approaches for protein 

interaction prediction assume independence of domain-domain interactions. As pointed out by 

Dohkan et al. [33] and Han et al. [26], the multiple complex structures in the Protein Data 

Bank (PDB) suggest that multiple domains take part in a physical interaction. Therefore it is 
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essential to consider the effect of multiple domains interactions when predicting protein-

protein interactions.    

 This chapter introduces the DomainSVM approach which uses the interaction 

information within domains of proteins to infer biological PPI networks. DomainSVM is a two 

step process in which first the interactions between the functional domains of the proteins are 

quantified using the DomainGA method and then those scores are used in an SVM based 

technique to detect patterns of domain interactions for classifying protein-protein interactions. 

Similar to the DomainGA approach this algorithm is benchmarked using the PPI data 

available for S. cerevisiae. The following sections discuss the two steps of this technique (1) 

optimization of the domain-domain interaction scores and (2) use of the optimized scores in an 

SVM setup to predict PPI interactions. The results are then presented which show the 

statistical validity of the approach using measures such as accuracy, precision, recall and F-

measure values on a 10-fold cross validation study conducted on positive and negative PPI for 

yeast. The PPI predictions obtained from DomainSVM are then compared with predictions 

from DomainGA on the same datasets using statistical measures such as sensitivity and 

specificity; and the incorrect predictions of DomainGA correctly predicted in DomainSVM 

are analyzed. In addition interesting observations obtained from biological function analysis of 

the different categories (true positives, false positives, true negatives, false negatives) of 

predicted PPI are presented. 
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5.2. Research Design and Methodology 
 

Figure 5.1 depicts the flow of logic in the DomainSVM methodology which is 

discussed in detail in this section. 
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Figure 5.1: DomainSVM methodology. Pre- and post-processing using Python scripts forms important 

components of the entire methodology. 
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5.2.1. Overview of the approach  

 DomainSVM makes use of the DDI scores optimized using DomainGA in an SVM 

based learning approach to detect multiple domain pairs working together to predict PPI. As 

discussed in Chapter 3 and depicted in Figure 5.1, the gold standards PPI data is obtained from 

the MIPS database. The data is validated to remove duplicates and other inconsistencies such 

as interactions appearing in both positive and negative samples. The domain information for 

the PPI in the GSTD list is obtained from the Interpro database and a list of possible domain 

pairs is formed along with occurrence statistics of DDI in GSTD PPI.  Two subsets of the DDI 

are created with 867 and 5095 elements each based on high occurrence characteristics. Based 

on the two subsets of the domain-pairs, four subsets of the GSTD PPI data are created namely: 

867-closed set, 867-inclusive set, 5095-closed set and 5095-inclusive set. These four sets are 

then subset into 10 sets each to conduct 10-fold cross-validation (CV) studies keeping 1/10th 

(X) of the positives examples and randomly selected(without replacement) 4X negative 

examples from the parent list in each of the 10 CV sets. Once the 10 fold CV sets are created 

for each of the 4 sets being studied, DomainGA optimizations were conducted for each of the 

40 sets.  The setup of an optimization in DomainGA requires providing a list of parameters 

(DDI) to be optimized, a range for score assignment, a set of gold standard PPI and the 

selection of the fitness function to be used. The maximum score detection rule in which the 

DomainGA uses the largest of the domain-domain interaction scores for each protein pair to 

represent the strength of the interaction between the proteins was used. The optimization 

fitness function is maximized during the GA iterations, and when the score does not change 

over 15 successive iterations, the GA is terminated. At least 2000 GA runs starting from 

randomly selected populations are executed for each reported case. Finally, the results from 
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the GA runs whose converged fitness function scores are lower than 80% of the maximum 

fitness value (local maxima) are considered unsuccessful, and are discarded from the statistical 

analysis that determines the distribution and mean values of the optimized parameter values 

used in the SVM as discussed in section 5.2.2. Finally the SVM runs were conducted using 

SVMLight [75] implementation as discussed in section 5.2.3 and several statistics were 

gathered as discussed in the Results and Discussion section 5.3. All these steps were repeated 

for each of the 40 sets created. Since most of these tasks need to be performed regularly on 

different subsets of the data they were automated by developing Python scripts for the same. 

 

5.2.2. Utilizing domain-domain interaction scores in an SVM  

To consider the effect of combinations of domains interactions on protein-protein 

interactions prediction, DomainSVM uses the domain-domain interactions scores obtained 

from DomainGA in a Support Vector Machine based classifier. Support Vector Machines 

were developed by Vapnik [76, 77] for binary classification and regression estimation tasks. 

Since their introduction, SVMs have been used in a large number of bioinformatics tasks such 

as homology detection [78-81], sub-cellular localization prediction [82-84] and protein 

interaction prediction [18, 33] among others. SVMs are machine learning algorithms designed 

with the intention of “generalizing better”. The problem SVM algorithms address relates to the 

efficient learning of a classification rule from a set of exemplars. 
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Figure 5.2: Working of a Support Vector Machine. This figure shows the representation of positive and negative 

examples in two dimensional space separated by the hyper-plane.  

As shown in Figure 5.2, in classification tasks, the goal of the SVM is to determine 

whether a candidate “belongs to” or “does not belong to” a given class. A linear SVM has a 

decision function of the form: 

                                                         bwxxf +=)(   (1) 

where w is the weight vector and b is a constant bias. A data point is classified according to 

the sign of the function f. The choice of w and b is such that the separation between the 

positive and negative examples is the maximum for linearly separable data points. One 

requirement of SVM algorithms is that the input be represented as a set of fixed-length 

vectors. The internal transformation of the input fixed-length data vectors into a non-linear 

high-dimensional feature space can be accomplished by means of a kernel function. Any 

symmetric, positive semi-definite function is a valid kernel function, corresponding to an inner 

product in some feature space. The base kernel in an SVM is generally normalized forcing 

each vector to have a length of 1 in the feature space i.e. 

                                                       
( ) ( )YYXX

YX
YXK

⋅⋅

⋅
=),(                        (2) 



 

62 

 

 

The existing methods [33] using domain information in an SVM for predicting PPI 

either use the domains in one protein concatenated with the domains in the other protein as 

elements of the feature vector or use the domains to represent the feature vector with values 

based on if that domain was seen in 0, 1 or both the proteins of the PPI. Unlike previous 

studies the domain-domain interactions are used to represent elements of the feature vector in 

this study. By doing this the SVM is trained to recognize combinations of domain pairs that 

imply protein-protein interactions. As pointed out by Ben-Hur et al. [32] using features that 

characterize pairs of proteins such as domain-domain interactions are in concept the same as 

using a pairwise kernel such as that proposed by them. The feature vector corresponding to a 

protein pair (P, P’) is therefore given by:  

                               F(P, P’) = [d1-d2, d2-d3, d3-d5, … D-Din]                                    (3) 

       where di-dj = domain pairs 

       and n = size of the subset of domain pairs (n=867 or n=5095 in this study) 

These vectors were labeled as a +1 for positive PPI and -1 for negative PPI. The reciprocal 

protein pairs <p, p’> and <p’, p> were removed from the training and test set creation since 

they are redundant.  

 

5.2.3. Implementation 

 Several Python scripts were developed for pre- and post-processing of the data 

required for DomainGA. For example, pre-processing required scripts for creating and 

validating the positive and negative GSTD data; selecting DDI parameter sets based on 

occurrence counts; creating 867 and 5095 closed and inclusive sets; splitting the data in to 10-

fold CV datasets for the 867-closed set, 867-inclusive set, 5095-closed set and 5095-inclusive 
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sets; running the DomainGA optimization on all the 10 sets of the 867 & 5095 closed and 

inclusive sets; removing local maxima of GA optimizations and creating mean scores for DDI 

for each of the sets; creating feature vector representations using the mean, random, and other 

scores; and finally a script for automating the running the SVM implementation on the 

prepared data and collecting the statistics as shown in Figure 5.1. 

 

SVMLight [75] was used as the SVM implementation in this study. Experiments are 

conducted with four kernel functions namely linear, sigmoidal, gaussian and polynomial. 

Similar to the observation by Ben-Hur et al., we also found that the linear kernel provides 

faster and better convergence than the other kernel methods despite the high dimensionality of 

the feature space; therefore all results presented in this paper were obtained using the linear 

kernel unless otherwise stated.  

 

5.2.4. Assigning probability estimates to PPI 

For a text example vector, the SVM outputs a score that provides the distance of that 

vector from a separating hyperplane. The class (interacting or non-interacting) of the test 

example can be deduced from the sign of the score. The magnitude of the SVM score by itself 

can  only be used to compare predictions in the same set since it is relative to the training data 

used in the SVM. To be able to compare the SVM scores across training data, we need to take 

all the SVM scores across all training data and calibrated it into a conditional posterior 

probability estimate by using alternate measures such as by using the binning technique 

outlined by Drish [85]. In the binning technique the training examples are first rank ordered on 

the SVM scores and then divided into “n” equal sized bins. They recommend choosing the 



 

64 

 

 

value of “n” experimentally such that the variance is minimal across bins. The fraction of the 

true positive training examples in each bin is used to represent the probability estimate of  

each test example that falls in the corresponding bin (gets an SVM score in that bin). For this 

study 10 bins were created and the fraction of true positive training examples calculated for 

each of them. As shown in Figure 5.3, the further the distance from the hyperplane the more 

likely the prediction being correct.  
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Figure 5.3: The distance from the hyperplane (SVM score) plotted against the probability estimates obtained 

from the binning technique. The greater the magnitude of the SVM score the higher the likelihood of it being in a 

particular class. 

 

5.2.5. Performance Measures 

 Statistical validation using cross validation studies is a well recognized method for 

testing the usefulness of a prediction algorithm. 10-fold cross-validation studies were 

conducted to measure the performance of the different scoring schemes such as DomainGA 

scores, MLE method scores and Random scores used in the DomainSVM approach. In our 

evaluation the following measures of statistical validation were used. 
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where TP, FN, TN and FN represent true positives, false negatives, true negatives and false 

negatives respectively. The F-measure is the harmonic mean of Precision and Recall and is an 

important measure to take into account the usefulness of a prediction algorithm if it is not 

dependent on the usage scenario. 

 

5.3.  Results and Discussion 
 
5.3.1. Cross-Validation studies 

 10-fold cross validation studies were conducted to evaluate the performance of the 

DomainGA method, the results of which are summarized in Table 5.1 where the numbers are 

the average across the 10 sets. The table also shows the results obtained by using random 

scores (in the same range as DomainGA scores) for the DDI in the DomainSVM. It is 

important to note that this comparison is different from a true random comparison since it uses 

the information about the possible domain interactions amongst protein pairs to randomize the 

scores of those DDI instead of randomizing all the values in the feature vector.   

Scores used in 
DomainSVM 

Accuracy  
closed set 

(inclusive set) 

Precision 
closed set 

(inclusive set) 

Recall(Sensitivity) closed 
set  

(inclusive set) 

Specificity 
closed set 

(inclusive set) 

F-measure 
closed set 

(inclusive set) 
DomainGA scores 98.9% 

(96.9%) 
97.8%  

(95.0%) 
96.8% 

(89.4%) 
99.5% 

(98.8%) 
97.3% 

(92.2%) 
Random scores 96.0% 

 (95.0%) 
98.0% 

 (96.0%) 
80.0% 

(79.4%) 
99.5% 

(99.2%) 
88.0% 

(87.0%) 
MLE scores 

(radial kernel) 
96.9% 

(93.9%) 
98.4% 

(96.2%) 
85.9% 

(72.8%) 
99.6% 

(99.3%) 
91.7% 

(82.8%) 
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Table 5.1: Average of 10-fold cross-validation results using DomainSVM with different values (scores) for the elements in the feature vector. 

The DomainGA scores used are mean values across multiple runs of the algorithm. The data used was the closed and inclusive sets of 5095 

parameters (DDI). 

As can be seen from the table for the 5095 parameter closed set, the use of the DomainGA 

scores yielded a precision and recall of 97.8% and 96.8% respectively, with an average F-

measure of 97.3% whereas the use of the random scores had much lower Sensitivity (Recall) 

of 80% with an F-measure of 88%. 

 The usefulness of domain-pair interaction scores obtained from DomainGA can also be 

established by comparison with the domain-pair interaction values obtained from the 

Maximum Likelihood Estimation method proposed by Deng et al. As shown in Table 5.1, the 

recall or sensitivity values of 10-fold cross-validation studies done on 5095 closed and 

inclusive sets are much lower than that obtained by the use of DomainGA scores.  Although, 

the evaluation and validation of a machine learning based method is very difficult since it 

depends heavily on the choice of the data used for training and testing; 10-fold cross-

validation (CV) is a popularly used technique for statistical evaluation of an approach and 

DomainSVM yielded very high prediction accuracies compared to those reported previously 

in a 10-fold CV study which demonstrates the validity of this approach.  

 

5.3.2. Comparison of PPI predictions across approaches 

PPI predictions obtained from the DomainSVM method were also compared with 

predictions obtained from the DomainGA method using statistics collected from the 10-fold 

cross-validation studies as shown in Figure 5.2. A careful analysis of the predictions 

incorrectly made by DomainGA and correctly predicted by DomainSVM showed that almost 

all the parameters involved had been assigned fuzzy values (mean values in the range of 4-5) 



 

67 

 

 

by the DomainGA, which was one of the drawbacks of that approach. This observation leads 

us to believe that DomainSVM can more effectively detect combinations of domain-pairs 

interacting to predict PPI. 

 

Algorithms Accuracy  

closed set 

(inclusive set) 

Precision 

closed set 

(inclusive set) 

Recall(Sensitivity) closed 

set  

(inclusive set) 

Specificity 

closed set 

(inclusive set) 

F-measure 

closed set 

(inclusive set) 

DomainSVM  98.9% 

(96.9%) 

97.8%  

(95.0%) 

96.8% 

(89.4%) 

99.5% 

(98.8%) 

97.3% 

(92.2%) 

DomainGA 95.7% 

 (95.7%) 

96.0% 

 (92.6%) 

81.6% 

(85.7%) 

99.0% 

(98.2%) 

88.2% 

(89.0%) 

Table 5.2: Average of 10-fold cross-validation results using different algorithms for predicting PPI. The data used was the closed and 

inclusive sets of 5095 DDI. 

5.3.3. Testing the scalability  

 A limiting factor in an SVM based approach can be the dimensionality of the feature 

vector. Also, the right balance between the dimensionality and the amount of is training data is 

important to avoid over-fitting. To test the scalability of the DomainSVM approach, statistical 

comparison was conducted for the 867 and 5095 parameter set. As shown in Figure 5.3, there 

is very little difference in the accuracies of the 867 closed and inclusive sets versus the 5095 

closed and inclusive sets showing that the DomainSVM performance does not deteriorate by 

increasing the dimensionality to up-to 5000 parameters and possibly higher.  
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Table 5.3: Average of 10-fold cross-validation results using DomainSVM with different feature vector sizes. The data used was the closed 

and inclusive sets of 867 and 5095 DDI. 

 

5.3.4. Functional analysis 

 Since the selection of the set of non-interacting PPI is a guess at the best based on co-

localization information and the positive PPI set can also have inaccuracies, a functional 

comparison of proteins involved in PPI was conducted. The hypothesis is that interacting 

proteins share common functions or roles in a pathway. The Gene Ontology (GO) annotations 

database was used to obtain biological function information for the proteins of interest. The 

function information was compared at the leaf level (bottom-most in the hierarchy) and the 

semantic difference between “Is-A” and “Part-Of” was ignored for the purposes of this 

comparison. As summarized in Table 5.4, the percentage of true positives sharing GO 

annotations averages about 80% for all the 4 test cases being studied (867 & 5095 closed and 

inclusive sets).  

 867-closed set 867-inclusive set 5095-closed set 5095-inclusive set 

Parameter set 

used in 

DomainSVM 

Accuracy  

closed set 

(inclusive 

set) 

Precision 

closed set 

(inclusive 

set) 

Recall(Sensitivity) 

closed set  

(inclusive set) 

Specificity 

closed set 

(inclusive 

set) 

F-

measure 

closed set 

(inclusive 

set) 

867 98.0%  

(97.0%) 

97.0%  

(95.0%) 

95.0% 

(90.0%) 

99.0% 

(98.8%) 

96.0% 

(92.4%) 

5095 98.9% 

(96.9%) 

97.8%  

(95.0%) 

96.8% 

(89.4%) 

99.5% 

(98.8%) 

97.3% 

(92.2%) 
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True positives 77.5% 81.3% 86.7% 85.9% 

True negatives 2.1% 2.1% 2.1% 2.1% 

False positives 33.3% 50.0% 54.5% 25.9% 

False negatives 63.6% 53.4% 68.0% 58.0% 

Table 5.4: Percentage functional similarity between proteins in a PPI in the predicted set 

 Comparison of biological functional annotations for new predictions (non-interacting 

in test set, but predicted to interact by the classifier) i.e. false positives of the test set showed 

that more than 50% of new predictions using DomainSVM involved proteins sharing common 

functions verses only 2% of the true negatives involved proteins with common functionality 

for the 5095 closed set. This difference between the functional similarity of the true negatives 

and the false positives for the other sets of 867-closed (33% vs. 2.1%) & inclusive sets (50% 

vs. 2%) and 5095-inclusive set (25% vs. 2%) were also significant.  
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CHAPTER SIX 

Visual Analytic Tool-CABIN 
 

Abstract 

 The importance of understanding molecular interaction networks has fueled the 

development of numerous interaction data generation techniques, databases and prediction 

tools. However not all prediction tools and databases predict interactions with one hundred 

percent accuracy. Generation of high confidence interaction networks formulates the first step 

towards deciphering unknown protein functions, determining protein complexes and inventing 

drugs. The CABIN: Collective Analysis of Biological Interaction Networks software is an 

exploratory data analysis tool that enables comparison, analysis and integration of interactions 

evidence obtained from multiple sources, thereby increasing the confidence of computational 

predictions as well as validating experimental observations. CABIN has been written in 

JavaTM and is available as a plugin for Cytoscape – an open source network visualization tool. 

CABIN along with a user manual and tutorials is freely available for download at 

www.sysbio.org/dataresources/cabin.stm. 
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6.1. Introduction 
 

Attaining a detailed understanding of the various biological networks in an organism 

lies at the core of the emerging discipline of systems biology. A precise description of the 

relationships formed between genes, mRNA molecules, and proteins is a necessary step 

toward a complete description of the dynamic behavior of an organism at the cellular level; 

and towards intelligent, efficient and directed modification of an organism. The importance of 

understanding such regulatory, signaling, and interaction networks has fueled the development 

of numerous in silico inference algorithms, as well as new experimental techniques and a 

growing collection of public databases that quantify PPIs based on their functional 

associations, phylogenetic profiles, sequence similarity, homology etc. These prediction tools 

as well as experimental techniques aim at assigning quantitative metrics to each interaction 

edge within such networks. In most cases, the evidence about these interactions can be 

incomplete and associated with uncertainty. As a result, human judgment and expertise has to 

be exercised while deriving a set of high-confidence interactions after assessing each source of 

data. The current methods for validating experimentally observed interactions involve 

checking interactions in public data sources like Prolinks [19], STRING [86], DIP [43], BIND 

[87], and Literature in a voting mechanism mostly done in a spreadsheet format such as Figure 

6.1. There is a lack of computational tools that facilitate assignment of confidence to “sources 

of evidence” based on the reliability of the prediction method and dynamic cutoff assignment. 

Moreover the problem of combining evidence from multiple sources is compounded by typical 

identifier mapping problems such as redundancy and missing attributes etc. 
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Figure 6.1: Traditional spreadsheet approach of validating experimentally observed interactions. 

 

CABIN is developed as a plugin to Cytoscape [88] – an open source network 

visualization tool to circumvent these problems by facilitating multiple evidence integration in 

a more intuitive manner. Multiple coordinated views within CABIN foster exploratory data 

analysis by users accommodating for expert domain knowledge. The functionalities available 

within CABIN maximize human perception and understanding of uncertain and complex data 

facilitating high quality human judgment with limited investment of the user’s time. Predictive 

methods such as DomainGA and DomainSVM which assign confidence scores to interactions 

can be compared and further refined by combining them with confidence scores from other 

predictive methods in CABIN.  
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6.2. Research Design and Methodology 
 
6.2.1. Visual Design 

CABIN follows the basic information visualization principles of “focus+context” in 

which it displays the details of data at the focal point as well as the area around the focal point 

(the context) to help make sense of how the important information relates to the entire data 

structure. CABIN provides multiple coordinated viewers that represent the problem at multiple 

levels of abstraction as shown in Figure 6.2. A Scatter Plot Matrix viewer shows the relation 

amongst the different evidence-networks for the interactions of interest serving to facilitate the 

weight (confidence) assignment to each evidence-source. Matrix visualization within CABIN 

shows a heat map representation of the data values for all the evidence-sources in a tabular 

format. A Cytoscape network viewer shows the selected evidence-source in a node-edge 

format, providing the conventional node-edge kind of visualization for PPI networks. All the 

three viewers have functionality to make selections that are reflected in the other views. A 

filtering mechanism is provided to select subsets of interactions based on their evidence values 

shown in a histogram view. Finally a Weighted Evidence Viewer provides a view of the 

interactions with confidence based on the average weighted sum of its evidences. Along with 

these basic views, CABIN also has functionalities to search for interactions involving proteins 

of interest, mapping node attributes for all imported networks, functionality to drag and select 

interactions and functionality to save the selected or all interactions as a sub-network or in a 

tab delimited file on the local machine. 



 

    

 

Figure 6.2 – Using CABIN to validate experimental interactions. The environment is loaded with 

experimentally observed interactions in Shewanella.  The Prolinks database is used to create Phylogenetic 

Profile, Gene Cluster, Gene Neighborhood and Rosetta stone evidence networks for the same set of 

interactions. Exploratory analysis is being carried out by creating filters to select cutoffs for individual 

networks. 

 
6.2.2. Implementation 

CABIN has been written in JavaTM and is available for download as a Cytoscape 

plugin providing extended functionality to Cytoscape. CABIN makes use of publicly available 

libraries such as Colt [89], JFreeChart [90], jMatrixView [91] and BiSlider [92] to provide 

effective and rich visualizations. Once imported into CABIN, evidence networks are stored in 

a matrix model that keeps a list of the networks and their interactions. This model, provided by 

the high-performance Colt library, is backed by an optimized 2-dimensional sparse matrix 

which contains the confidence values of each interaction (row) of each network (column). 

These data values are visualized in multiple views as scatter plots (JFreeChart), as a heat map 

matrix representation (jMatrixView), and as Cytoscape networks. Each view references the 

matrix model and observes any changes in the model, allowing the views to update themselves 

when networks are imported, removed, or updated.  Additionally, a view selection controller 
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serves as an intermediary that notifies each registered view of any data selection events. Data 

values can be manipulated further using the histogram range slider interface facilitated by the 

BiSlider and JFreeChart libraries. 

 

6.2.3. Features and Functionality 

The functionalities provided within CABIN for visual analysis of multiple interaction 

networks include: 

6.2.3.1 Network Import 

Interaction networks inferred using the either the DomainGA, DomainSVM algorithms, or 

other publicly available inference methods based on phylogenetic profiling, gene 

neighborhood, gene cluster, homology etc can be imported into Cytoscape in the “sif” (simple 

interaction format) in which the first and the third columns represent the proteins in the 

interaction and the middle column represents the confidence value for that interaction based 

on the evidence source (inference method). Cytoscape also allows importing networks in the 

“gml” (graph markup language) and the “xggml” (XML format) formats. Networks imported 

into Cytoscape are CABIN compatible and can be imported into it by assigning a reliability 

score, or weight, based on the user-defined confidence in the evidence source. CABIN also 

has provisions to assign custom values to missing evidences for interactions.  This missing 

value can be set to a value between 0 and 1, to the median value for that evidence network, or 

null.  

 

6.2.3.2. Multiple Coordinated Viewers 

6.2.3.2.1. Scatter Plot Matrix Viewer 
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The Scatter Plot Matrix viewer shows a matrix of scatter plots of the evidence-networks 

chosen in the Scatter Plot Feature Selection Panel. Each evidence-network is plotted 

against the other selected evidence-networks, showing a matrix with multiple scatter plots 

reflecting the relationship of all evidence-networks with all the others. A color gradient is 

used an indicator of density with yellow corresponding to lower density and red 

corresponding to higher density. An example of a scatter plot matrix between four 

selected evidence-networks is shown in Figure 6.3. 

Figure 6.3 Scatter Plot Matrix Viewer 

 
A minimum of two and a maximum of eight evidence-networks can be selected for 

plotting at a time. The status bar shows an estimated completion time and the progress of 
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the operation.  Clicking on any scatter plot opens it up in a bigger window for a more 

detailed view of the plot. This viewer supports selection of points for corresponding 

information in the other views. The selection interactions can be saved as a new network 

within CABIN or exported to a local file. 

6.2.3.2.2. Matrix Viewer 

The Matrix Viewer is a heat map representation of the data values for all the evidence 

sources in a tabular format. Horizontal and vertical sliders are provided to expand the size 

of the columns and the rows for easy access to a large number of interactions. Sorting 

functionality facilitates easy selection of high confident interactions as shown in Figure 

6.4. Continuous or discontinuous ranges of interactions can be selected by shift and 

control (ctrl) selecting rows in the matrix. Selection in this viewer is also coordinated 

with selection in the other viewers. Similarly, right-clicking anywhere in the view 

provides options to save selected or all interactions to a file or create a sub-network with 

the selected interactions for further exploration within CABIN. 
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Figure 6.4 Matrix viewer 

 
6.2.3.2.3. Graph/Cytoscape Viewer 

The Cytoscape Viewer shows the selected evidence-network in a node-edge format. It 

provides options to view the different imported networks as well as the combined 

weighted network one-by-one in a node-edge representation as shown in Figure 6.5.  This 

viewer has zoom-in and zoom-out functionality to delve-deeper into an area of interest.  

Interesting regions of the network can be selected, explored and exported after analysis.  
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Figure 6.5. Combined Weighted View 

 

6.2.3.2.4 Weighted Combined-Evidence Viewer 

Each point in the Weighted Combined Evidence Viewer represents an 

interaction. This view shows a plot of the interactions with confidence values based on 

the weighted sum of all its evidences. The mouse pointer over a point shows the 

proteins involved in the interaction and its weighted sum. Multiple interactions can be 

selected by clicking and dragging over a rectangular area in the view as shown in 

Figure 6.6. The selected area is depicted by the red, outlined rectangular box. On 

release of the mouse button, the selected points are represented in blue color. Selecting 

points in this viewer will update the selections in the other viewers as well. 
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Figure 6.6 Combined Weighted Evidence Viewer 

Selected or all interactions in this viewer can be saved to a file on the local machine by 

right-clicking anywhere within the view. 

6.2.3.3. Filters 

 Once a network has more than a few hundred edges, it exploration becomes difficult 

especially in the conventional node-edge kind of representation. Moreover, to facilitate 

the selection of the “cutoff” parameter for confidence-value of an interaction from a 

public data source or an inference algorithm, CABIN has the functionality to assign 

dynamic filters to filter interactions in an evidence-network according to their confidence 

values. To add a filter for an evidence-network, CABIN shows a histogram distribution 

of the edge-values in that network along with a slider control to select the cutoff-value as 

shown in Figure 6.7. Edges displayed can also be restricted based on an OR relation or an 

AND relation amongst the networks; e.g., the combined network displayed (and possibly 

exported later) can be restricted to those edges that appear in the experimental network 

and that also appear in either the evidence network from DomainGA or the evidence 
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network from DomainSVM (Experimental AND (DomainGA OR DomainSVM)). Once 

the filters are set and the update button is clicked, the views are updated based on 

interactions (edges) that pass the filters. The filtered set of edges can be saved as a new 

network within CABIN and assigned a confidence of its own.  

 
Figure 6.7 Dynamic Filters 

 
6.2.3.4 Find/Search 

To facilitate selection of interactions involving a particular protein(s) of interest such 

as bait proteins, CABIN provides the search functionality as shown in Figure 6.8. Either 

the names of both the proteins can be entered (to select an interaction of interest) or one 

of the protein names can be entered (to select all interactions involving that protein). This 

regular expression based search tool facilitates searching for multiple proteins at one time 

as well such as using SO0*[0-100] to search for proteins from “SO0000” to “SO0100”. 
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Figure 6.8 Finding Interactions 

 
6.2.3.5. Creating sub-networks 

 All the viewers support functionality to save the selected interactions as a new sub-

network within CABIN. The source for the edge value (such as the combined-weighted score) 

and a weight need to be assigned to each such sub-network for comparison against the other 

imported networks. This functionality also allows selecting neighboring nodes of proteins of 

interest by specifying the depth of the network: 

None - only selected interactions 

Level 1 – selected interactions and neighboring interactions one-hop away 

Level 2 – selected interactions and neighboring interactions up to 2 hops away  

6.2.3.6. Exporting Results 

 CABIN provides the option to save all or selected interactions in a view to a file on 

your local machine. To save interactions to a file, right-click inside the view to bring up a 

popup menu with two options: save all interactions and save selection interactions as shown in 
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Figure 6.9. Choose one option from the menu depending on what you want to save. Choose 

the appropriate location from the file browser window that appears; specify a file name and 

click “Save” when finished. 

 

Figure 6.9 Save interactions to file 

 

6.2.4. Data Sources 

 The following is a listing of the prediction algorithms and bioinformatics sources that 

can be used for creating evidence-networks for analysis and integration in CABIN: 

 Prolinks: http://mysql5.mbi.ucla.edu/cgi-bin/functionator/pronav 

 String: http://string.embl.de/ 

 Intact: http://www.ebi.ac.uk/intact/site/index.jsf 

 DIP: http://dip.doe-mbi.ucla.edu/ 

 BIND: http://bond.unleashedinformatics.com/Action? 

 HPRD: http://www.hprd.org/ 

 Agilent literature Search: Plug-in of Cytoscape 
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 There are several inference algorithms that have been published in literature for 

inferring interactions amongst proteins from microarray data. These algorithms can be 

accessed from the Software Environment for Biological Network Inference (SEBINI) [93] 

developed at the Pacific Northwest National Laboratory (PNNL) and available at:  

https://www.emsl.pnl.gov/SEBINI/ 

 CLR: http://gardnerlab.bu.edu  

 BANJO: http://www.cs.duke.edu/~amink/software/banjo/  

 ARACNE [94]  

This integration and comparative analysis of networks inferred from experimental data and 

computational predictive methods is one of the most unique and useful features of CABIN. 

 

6.3. Results and Discussion 
 
6.3.1. Case Study 

In this section, a specific case study of using CABIN is discussed in a PPI network 

reconstruction project at the Pacific Northwest National Laboratory (PNNL). The MiPPI 

project [95] is a multi-year ORNL/PNNL collaboration to determine protein complexes and 

interaction networks in the bacterium Rhodopseudomonas palustris via mass spectrometry 

protein bait-prey experiments. CABIN forms the backbone of the exploratory analysis pipeline 

for this project. The downstream analysis of this project has three main steps: (1) use of the 

BEPro algorithm [96] to infer a PPI network from a set of 854 bait-prey experiments run at 

ORNL (2) obtaining evidence networks from bioinformatics sources (3) analysis of the 

resulting network in CABIN. Each of these steps is discussed in detail in the following sub-

sections. 
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Step1: Using BEPro to infer PPI network from experimental data 

 Tandem affinity purification method is used to detect PPIs experimentally. 854 assays 

are conducted for R. palustris using this technique and then the BEPro : Bayesian Estimator of 

Protein-Protein Association Probabilities algorithm [97] is run on the assays. The BEPro 

program uses two algorithms designed to overcome errors pf pull-down experiments and 

produces a set of reliable PPIs, i.e., a network topology, by examining an annotated matrix 

across a set of assays. The following six parameters were set for the BEPro algorithm: (1) an 

estimate of the maximum number of prey proteins that can be observed with the given analysis 

method in R. palustris - set to 1,700, (2) the total number of proteins in the underlying 

proteome of R. palustris -  set to 4,000,  (3) the protein association score threshold, or cut point 

– set to 0, so that any positive value indicates “present”, (4) the number of Monte Carlo 

simulations to perform – set to 50,000, (5) the maximum false positive rate, used to control the 

False Discovery Rate – set to 0.05, and (6) the posterior probability of protein-protein 

association threshold, i.e., the cutoff applied to the final association value to determine 

whether there is an interaction (a network edge to store) – set to 0.05. Using these parameter 

values, the BEPro specific LRT-Bayes algorithm returned 3,370 edges to store as the 

interaction network inferred from the set of 854 SEQUEST [98] runs 1,668 proteins from R. 

palustris. 

 

Step2: Obtaining evidence networks from bioinformatics sources 

 For the set of proteins in the inferred network four evidence networks are obtained 

using the Phylogenetic Profile, Gene Cluster, Gene Neighborhood and Rosetta stone methods 

of the Prolinks database [25]. The details of these networks are provided in Table 6.1. 
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Name of Network Source Description 

rpal_phylogenetic.sif Phylogenetic profiles 
method from Prolinks 

database 
http://128.97.39.94/cgi_fil
es/functionator/about.html 

The Phylogenetic Profile network is created by 
using the phylogenetic profile method from the 
Prolinks database which uses the presence and 
absence of proteins across multiple genomes to 
detect functional linkages. 

rpal_genecluster.sif Gene Cluster method from 
Prolinks database 

http://128.97.39.94/cgi_fil
es/functionator/about.html 

The Gene Cluster method from the Prolinks 
database is used to create the gene cluster network 
which uses genome proximity to predict functional 
linkage. 

rpal_rosettastone.sif Rosetta Stone method 
from Prolinks database 

http://128.97.39.94/cgi_fil

es/functionator/about.html 

The Rosetta Stone network is created by using the 
Rosetta stone scores from the Prolinks database 
which uses a gene fusion event in a second 
organism to infer functional relatedness. 

rpal_geneneighbor.sif Gene Neighbor method 
from Prolinks database 
http://128.97.39.94/cgi_fil
es/functionator/about.html 

The Gene Neighbor method in the Prolinks database 
uses both gene proximity and phylogenetic 
distribution to infer linkage. 

Table 6.1: Networks obtained from the Prolinks database 

In addition, two evidence networks are obtained using protein information from the interolog 

and regulog methods [99] from the Bioverse database [100] with details provided in Table 5.2.  

Name of Network Source Description 

Rpal_interolog.sif Interolog method of the 
Bioverse database 

http://bioverse.compbio.wa
shington.edu/ 

The interolog method predicts an interaction 
between two proteins if they are both homologs of 
two proteins known to interact. Known protein 
interactions are gathered from databases of 
experimentally-determined PPIs (e.g. BIND, DIP) 
and PSI-BLAST is used to determine similarity 
between this set and all proteins in a target 
organism. 

rpal_regulog.sif Interolog method of the 
Bioverse database 

http://bioverse.compbio.wa
shington.edu/ 

Regulogs are regulatory interactions inferred by 
homology. A regulog is predicted by determining 
similarity to a known transcription factor (TF) and 
the TF's target protein. Finally the nucleotide 
similarity in the upstream transcriptional promoter 
regions is determined and used to filter the regulog 
predictions: if there are similar promoter sequences 
then a regulog is predicted. 

Table 6.2: Networks obtained from the Bioverse database 
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Another evidence network is obtained by utilizing the sub-cellular location information about 

the proteins with details described in Table 6.3.  

Name of Network Source Description 

rpal_location.sif Sub-cellular localization  
information 

The location network is created by looking at the 
sub-cellular compartment information of the two 
proteins in all possible interactions amongst the 
proteins in the pull-down experiments. The edge 
was assigned a value of 1 if both the proteins were 
localized in the same compartment and a value of 0 
otherwise. If the compartment information for 
atleast one of the proteins was unavailable or the 
protein was localized in multiple compartments, 
then a value of 0.5 was given to the interactions 
involving those proteins. 

 

Table 6.3: Networks created using sub-cellular localization information 

 

Step3: Analysis of the resulting network in CABIN 

  Figure 6.10 shows the use of CABIN to validate experimental interactions inferred in 

this case study. These eight predicted networks (including the experimental network inferred 

using BEPro) are created as SIF files and imported into Cytoscape. They are then imported 

into CABIN by assigning a user-defined weight based on the confidence in the evidence 

source. For networks such as the cellular location network which has categorical information 

(tags), CABIN prompts the user to choose values for those tags at the time of import. 

Therefore values such as 1.0 for tag1, 0 for tag2 and 0.5 for tag3 can be chosen. 
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Figure 6.10 – CABIN use-case scenario. The CABIN software is used to validate experimental 

interactions for Rhodopseudomonas palustris obtained using tandem affinity purification 

technique bait-prey experiments. The interactions of interest are selected in blue. 

 

 All interaction values are normalized to a scale of 0-1 in CABIN at the time of import. 

As can be seen from Figure 6.10, there are 9,344 interactions imported into CABIN. The 

scatter plots show the correlation of the different interaction networks with respect to each 

other. It can be clearly seen that many inferred experimental interactions from the ORNL-

PNNL MiPPI project (rpal_pulldown_specific.sif) have good agreement with the Prolinks 

predictions (prolinks_evidence. sif). Such agreement validates those experimental interactions, 

showing support from an independent data source. The regulog interaction network, on the 

other hand, has a low overlap with the other networks (points along the axis). This can be 

attributed to the obvious fact that PPIs (and/or interologs) are very different from regulatory 

interactions (and/or regulogs). Regulatory interactions act through an intermediate (the 

promoter region) so the transcription factor (TF) and TF target do not need to physically make 
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contact. Only in (probably rare) cases where the protein produced from the TF gene target 

binds to its TF generally to inhibit its activity (an auto-regulatory loop) would you see both a 

protein-protein and regulatory interaction between the same pair of proteins. Two such 

interactions can be seen in this case; easily finding such interactions that may warrant further 

investigation is one advantage of CABIN.  

 

     Although the different views of the data give a deeper understanding of the multi-source 

data, the interpretation of an interaction network with more than a few hundred edges becomes 

difficult in a traditional network/graph like view. The use of filters in CABIN helps in sub-

setting the data by changing the cutoff for the evidence networks dynamically. The 

interactions in Figure5.10 are filtered based on a value greater than 0.4 for the location 

network. Applying such a filter eliminated the interactions whose proteins are located in 

separate cellular compartments. Multiple filters can be added with AND/OR relationships 

between them, such as the filter applied on the inferred experimental network with a cutoff of 

0.6. As shown in the status bar in CABIN, there are 6,392 interactions remaining after 

applying the filters in this case. The separation (points selected in blue) of the interactions can 

be clearly seen based on the combined confidence from all the evidence sources in the 

Weighted Scaling Viewer. These interactions are automatically selected in all the other 

viewers, showing their corresponding values in those views. Using the functionalities within 

CABIN, further data analysis can be carried out to validate the experimental interactions and, 

on conclusion of the analysis process, the high-confidence interactions can be saved in a local 

file. 
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6.3.2. Usage Scenarios 

This section discusses some usage scenarios for CABIN.  

6.3.2.1. Validating experimental observations 

False predictions of an inferred network from experimental data can be validated by 

comparing it with predictions evidence obtained from  other bioinformatics sources (such 

as Prolinks, DIP, BIND etc) or from other  prediction algorithms (such as DomainGA, 

DomainSVM, Homology etc). 

6.3.2.2. Network annotation or extension 

A set of interactions involving detected proteins/genes can be extended or annotated by 

integrating evidence obtained from bioinformatics data sources.  

6.3.2.3. Designing new experiments 

Interaction evidence from several bioinformatics data sources can be integrated to 

construct a template/skeleton of a network and that can be used to determine the set of 

interesting proteins to be experimentally verified. 

6.3.2.4. Comparing inference algorithms 

Networks Inferred from experimental data using one of more inference algorithms such as 

CLR, ARACNE etc can be compared thereby evaluating the different inference algorithms 

and their parameter settings as well. 

6.3.2.5. Exploration of dense networks 

Interaction networks of more than a few hundred edges become difficult to explore and 

analyze in the conventional node-edge kind of representation. The coordinated viewers and 

filters in CABIN provide a better solution to explore these dense networks. 
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6.3.3. Availability 

CABIN version 2.1 is available for download at the following location: 

http://www.sysbio.org/dataresources/cabin.stm 

The following are the terms of usage of the software: 

 

6.3.3.1. Terms of Use 

 Notice: This computer software was prepared by Battelle Memorial Institute, 

hereinafter the Contractor, under Contract No. DE-AC05-76RL0 1830 with the Department of 

Energy (DOE).  All rights in the computer software are reserved by DOE on behalf of the 

United States Government and the Contractor as provided in the Contract.  NEITHER THE 

GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR 

IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE.  This 

notice including this sentence must appear on any copies of this computer software. 

 

6.3.3.2. Sample Data Release Policy  

 By using the sample PPI datasets provided within CABIN, the user agrees to the 

following: PNNL/ORNL is not responsible for errors contained in the PPI datasets, or for 

consequences arising from using the PPI datasets. Forthcoming publications from us will 

detail methods and controls used in the acquisition of data underlying the sample PPI datasets. 

The following acknowledgement must be included in any publications, presentations, reports, 

databases, websites, or data analyses that have used the CABIN PPI datasets: "PPI data were 

obtained from the Center for Molecular and Cellular Systems (mippi.ornl.gov) which is 

sponsored at Oak Ridge National Laboratory by the U.S. Department of Energy Office of 
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Biological and Environmental Research." The following paper needs to be cited in any 

research facilitated by CABIN: Singhal, M., Domico, K., "CABIN: Collective Analysis of 

Biological Interaction Networks", Computat. Biol. Chem. (2007), 

doi:10.1016/j.compbiolchem.2007.03.006. PNNL reserves the right to publish a description of 

the overall PPI datasets, and the methods used to obtain the contents of the dataset 
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CHAPTER SEVEN 
CONCLUSIONS AND FUTURE WORK 

 
 

High-throughput experimental methods to identify PPIs can be expensive and 

inaccurate, therefore computational methods can nicely complement experimental approaches. 

This thesis presents novel techniques for the prediction of PPI networks which provide a 

unique capability to map cellular pathways and their interconnectivities. The developed 

techniques use a combination of machine learning and visual analytic approaches. A genetic 

algorithm based approach called DomainGA assigns scores to DDIs and uses these scores to 

predict PPI. To accommodate for multiple domain-domain interactions, DomainSVM was 

presented, which uses the DDI scores obtained from DomainGA in an SVM based learning 

technique to increase the confidence in the predictions. Since several other predictive and 

experimental methods for PPI detection exist, each leveraging slightly different aspect of 

protein interactions, an exploratory visual analytic environment called CABIN is created to 

facilitate visualization, querying, comparison and hypothesis driven analysis of these 

interaction networks. The techniques developed in this thesis are expected to assist researchers 

in generating novel hypothesis and models. 

 

DomainGA method predicts PPIs using the protein functional domain information and 

is tested for usefulness on the model organism S. cerevisiae. Because of the limitation imposed 

by the amount of available training data, in its current version only a small number of DDI 

pairs are selected as prediction parameters. As more experimental data become available, the 

reported scores can be improved and the domain parameter set can be expanded. Results with 

the larger 2466 and 5095 parameters show that this is possible when there is enough training 
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data and that it is feasible to handle the added computational complexity. In addition to 

dealing with the PPI data specific to a specific organism, combining PPI data from multiple 

organisms can be used to create larger training and testing datasets. The encouraging results 

obtained in cross-verification tests where scores optimized using the yeast data were used to 

predict the human PPIs demonstrate that combining the data from multiple organisms will 

increase the predictive power of the DomainGA approach. 

The possibility of false predictions is unavoidable in any computational method [13, 

34, 38]. This may limit the usefulness of the computational PPI predictions to supplement the 

experimental observations. Keeping this in mind, the DomainGA is envisioned as a first step 

of a multi-tier approach to constructing PPIs. As a second step in a multi-tier approach the 

DomainSVM is presented which is an SVM based methodology for predicting PPI by utilizing 

domain-domain interaction information obtained from DomainGA. A careful analysis of PPI 

differently predicted in DomainGA and DomainSVM showed that those PPI involve fuzzy 

parameters (DDI with scores in the range of 4-6); fuzzy parameters being a limitation of the 

DomainGA method. Therefore it can be hypothesized that the detection of multiple domain 

interaction combinations as patterns lead to improved performance of DomainSVM over 

DomainGA. 10-fold statistical validation results showed that this approach yields better 

statistical results in particular the sensitivity or recall values than other existing methods.  

Moreover, comparison of biological functional annotations at the most detailed (leaf) level 

obtained from Gene Ontology (GO) database showed that 50% of new predictions using 

DomainSVM involved proteins sharing common functions verses only 2% of the true 

negatives involved proteins with common functionality. This also suggests the use of this 

approach to gain functional insight on proteins of unknown function involved in predicted 
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interactions. As future work, including sub-cellular localization information in the feature 

vector can be expected to improve the prediction accuracy since physical interactions between 

proteins occur in specific compartments in the cell. However in that case care needs to be 

taken to validate the method with training data not created by looking at the sub-cellular 

localization information but by using alternate methods of creating the negative set such as 

those proposed by Ben-Hur et al. [47]. 

 

 As it is based on fundamental structural information, the DomainGA and DomainSVM 

approaches can be used to create the potential PPIs, and the accuracy of the constructed 

interaction template can be improved later using complementary methods such as those based 

on literature search or location based evidence. Obtained explanation ratios during the 

reported test case studies clearly show that the false prediction rates of the obtained templates 

would be reasonably low and can be lowered even further with additional secondary tests 

conducted in the software tool CABIN. CABIN provides tools for visualizing and analyzing 

interactions data from multiple sources of evidence. This tool helps the user investigate their 

data in much greater detail than what is possible in the conventional spreadsheets. CABIN also 

provides the ability to integrate the domain expertise into the analysis process by being able to 

assign confidence values to sources of evidence and dynamically changing cutoffs for filtering 

interactions. Not only is such a tool useful for validating experimental observations, but is also 

useful in designing experimental studies based on computational prediction of highly 

confident interactions. Future work involves refining the weights assignment process by 

providing default weights based on statistical reliability of the features; normalizing discrete or 

rank based data effectively; and providing advanced algorithms for creating the weighted 
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combined view. CABIN has more than 150 users till date and is being used in the analysis 

pipeline of large-scale Genomes to Life project at PNNL to find PPI networks in bacteria, as 

discussed in section 6.3.1. In addition, CABIN is being employed to find interactions in mass 

spectrometry data for studying the insulin signaling pathway in mouse in the Environmental 

and Molecular Sciences Laboratory (EMSL) at PNNL; in exploring experimentally observed 

interactions in the human proteome by scientists at the Harvard Medical School; as well as in 

the analyses of inferred networks from large sized micro-array data sets at North Carolina 

State University at Charlotte. Finally choosing the right data sources and their weight 

assignment is crucial to conduct an un-biased analysis. It is important to realize that CABIN 

does not give a final answer; it just helps see interesting aspects in the data which need to be 

experimentally verified. 

 

In terms of limitations of these methods, it is important to note that while extracting the 

protein domains, it has been implicitly assumed that the variations in the amino acid 

composition of the same domain type among proteins do not alter the domain’s interaction 

patterns. As amino acid substitutions may impact complex formation affinities, disregarding 

the exact sequence of the functional domains may lead to failures in some cases. Inclusion of 

such local structural characteristics can be very useful in predicting the effects of mutations 

[101] and alternate splicing events [102]. Even though the necessary computational extension 

to include the local amino acid sequence dependence is straightforward, inclusion of the amino 

acid composition of the functional domains into the interaction score scheme would require a 

combinatorial increase in the needed training dataset sizes. Such generalizations are currently 

impractical, but they will be included in future studies as such details are warranted. 
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