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Probabilistic Seismic Demand Analysis for the Near-Fault Zone 

Abstract 

by Reza Sehhati, Ph.D. 

Washington State University 

December 2008 

Chair:  Dr. Adrian Rodriguez-Marek 

Ground motions close to a fault can be significantly influenced by rupture directivity 

effects. In particular, the effects of forward-directivity may cause severe damage to 

buildings. These effects have not been clearly addressed in current building codes and 

engineers still lack specific guidelines as to how to account for forward-directivity effects 

when determining the seismic hazard for structures. A methodology for probabilistic seismic 

demand analysis that includes the effects of forward directivity through time domain analysis 

is proposed in this work. First, the characteristics of forward-directivity ground motions and 

the structural response to these motions are studied and simplified mathematical 

representations for pulse-type forward-directivity ground motions are proposed. Intensity 

Measures for forward directivity ground motions are then proposed based on the simplified 

pulses. For this purpose, the non-linear dynamic response of three generic multi-story shear 

buildings to near-fault and ordinary ground motion ensembles was studied using Incremental 

Dynamic Analysis. Results show that whenever the pulse period of forward-directivity 

ground motions is close to the first-mode structural period, structural response is controlled 
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by forward-directivity pulses. For these cases, structural response can be predicted using 

pulse-period and pulse-amplitude as intensity measures. 

The principles of Probabilistic Seismic Demand Analysis are then extended to consider 

the effect of forward-directivity within a probabilistic framework. Structural response to 

pulse-type forward-directivity ground motions is quantified by means of time-domain 

analysis of simplified pulses that comprehensively represent all possible pulse-type ground 

motion scenarios. The hazard due to pulse-type motions is then coupled with conventional 

spectral domain seismic demand analyses for non-pulse-type ground motions. Results show 

that the proposed methodology captures more accurately the structural response to pulse-type 

ground motions than with current methods, leading to the prediction of greater hazard for 

near-fault scenarios. In addition, the proposed method provides a clear guide for the selection 

of time histories for the design of near-fault structures.
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CHAPTER ONE 

INTRODUCTION 

1.1. Problem Statement 

Modern seismic design philosophy as expressed in Performance-Based Seismic Design 

(PBSD) (SEAOC Vision 2000) targets a broader set of design objectives than those 

historically considered for structural systems. PBSD introduces a framework by which the 

owner of a structure may select from a range of target behavior levels and performance 

objectives and provides the means to confirm that a proposed structural design meets those 

objectives. As a result, the PBSD framework permits the design of civil structures for 

predictable and definable seismic performance within established risk levels. The Earthquake 

Performance Levels (or damage states) that PBSD considers range from "Fully Operational" 

to "Near Collapse"; the levels of risk it considers by means of Earthquake Design Levels 

range from "Frequent" to "Very Rare". To meet these performance targets at high risk levels, 

structures are allowed to deform nonlinearly. Hence, direct estimates of the inelastic response 

of structures are required. Moreover, it becomes necessary to provide alternative analysis and 

design procedures to achieve the prescribed seismic performance objectives. A tool that can 

aid engineers in assessing various analysis and design schemes is Probabilistic Seismic 

Demand Analysis. PSDA is built upon the more traditional Probabilistic Seismic Hazard 

Analysis and couples the probabilistic description of future ground motions from PSHA with 

their random dynamic effects on the structure. Results of PSDA provide the annual 
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likelihood of exceedance of engineering demand parameters, which in turn can be correlated 

to the annual probability of exceedance of different Performance Levels, which in turn are 

correlated to Earthquake Design Levels considered by PBSD.  

This dissertation addresses the problem of incorporating PSDA principles to analysis of 

structures located in the vicinity of active faults. Near-fault ground motions are largely 

affected by finite source effects. In particular, ground motions in the near-fault affected by 

forward-directivity effects exhibit distinct velocity pulses at the beginning of time history 

records. These pulses, in turn, may result in high seismic demands; hence, the design or 

retrofit of structures that are in the proximity of an active fault must consider the effects of 

forward-directivity pulses. Recent research has addressed the seismological aspects of fault 

mechanisms leading to forward-directivity, the characteristics of pulse-like ground motions 

(Somerville et al. 1997; Spudich and Chiou 2008), and structural response to these motions 

(Hall 1998; Mylonakis and Reinhorn 2001; Zhang and Iwan 2002). However, designers still 

lack specific guidelines as to how to account for forward-directivity effects when 

determining the seismic hazard for a given structure. The overall goal of this research project 

is to develop PSDA for structures in near-fault zones and include the effects of forward-

directivity into the determination of seismic demand for a structure. This work will improve 

seismic hazard analyses and design of near-fault structures by introducing effective IMs, and 

by proposing a rigorous method to link the IMs to Engineering Demand Parameters (EDP) 

for structures affected by near-fault ground motions. 
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1.2. Background 

Near-fault ground motions, defined as those recorded within a distance of about 20 km 

from the ruptured fault, may be significantly different from those observed further away from 

the seismic source. In particular, near-fault ground motions affected by rupture directivity 

effects are characterized by large, long-period pulses at the beginning of the time history. 

These forward-directivity pulses are observed more clearly in the velocity time history. 

Pulse-like ground motions impose significant demand to structures and cause large inelastic 

drift, resulting in significant permanent deformations (Hall et al. 1995; Bertero et al. 1978; 

Hall 1998; Alavi and Krawinkler 2004a). 

During an earthquake, fault rupture propagates at a relatively constant velocity, and as 

rupture progresses it generates a shear wave front, (Figure 1-1). If the velocity of rupture 

propagation approaches the shear wave velocity, the shear waves traveling ahead of the 

rupture are reinforced and their amplitude increases rapidly (see Figure 1-2). This is the case 

for most earthquakes, where the rupture velocity is usually 70 to 80% of the shear wave 

velocity (an exception would be earthquakes where super-shear rupture was observed, as 

discussed by Bouchon and Vallee (2003). Overlapping of pulses can lead to strong directivity 

pulses at sites toward which the fault ruptures (Figures 1-1 and 1-2). This phenomenon, 

called forward rupture directivity or simply forward-directivity, occurs when the direction of 

slip on the fault is aligned with the site and the rupture front propagates toward the site. 

When forward rupture directivity conditions are met, the propagation of fault rupture toward 

a site at a velocity close to shear wave velocity causes most of the seismic energy from the 
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rupture to arrive in a large long-period pulse of motion that occurs at the beginning of the 

record (Somerville et al. 1997). The radiation pattern of the shear dislocation on the fault 

causes this large pulse of motion to be oriented in the direction perpendicular to the fault, 

causing the strike-normal ground motions to be larger than the strike-parallel ground motions 

at periods longer than about 0.5 sec (Somerville 2003). If the rupture propagates away from 

the site, backward directivity occurs. Backward directivity ground motions have lower 

amplitude and larger duration than their forward-directivity counterparts. Neutral-directivity 

occurs when the site is in front of the epicenter. 

When forward-directivity effects are present, the fault-normal and fault-parallel 

components must be treated separately. In forward-directivity ground motions, strike-normal 

ground motions are associated with a reversing displacement in the direction normal to the 

fault. In contrast, strike-parallel ground motions are associated with permanent displacement 

in the direction parallel to the fault which sometimes is called the “Fling-step”. The Fling-

step is the result of residual ground displacement due to tectonic deformation associated with 

the rupture mechanism. The Fling-step occurs in the direction of fault slip (Somerville et al. 

1997). In strike-slip faults, the Fling-step occurs in the strike-parallel direction, as in the 

Kocaeli and Duzce earthquakes (Kalkan and Kunnath 2006). On the other hand, in dip-slip 

faults a component of the Fling-step is observed in the strike-normal direction of the 

horizontal component, as in the Chi-Chi earthquake (Mavroeidis and Papageorgiou 2003). 

The permanent displacements resulting from the Fling Step are generally of little 

consequence to structures because they occur slowly, the exception being if a structure 
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straddles the fault (Hall et al. 1995) or the structure has an extremely long fundamental 

period. 

In the case of a strike-slip fault, forward-directivity occurs in regions away from the 

hypocenter and is stronger near the end of the fault that is located away from the hypocenter. 

On the other hand, in dip-slip faults the alignment of both the rupture direction and the slip 

direction up-dip on the fault plane produces rupture directivity effects at sites located around 

the surface exposure of the fault (or its up-dip projection if it does not break the surface). 

Unlike the case for strike-slip faulting, where forward rupture directivity effects occur at all 

locations along the fault away from the hypocenter, dip-slip faulting produces directivity 

effects on the ground surface that are most concentrated in a limited region up-dip from the 

hypocenter (Somerville et al. 1997). 

In brief, the differences between pulse-like forward-directivity and ordinary ground 

motions can be summarized as the followings: 

 The velocity-time histories of pulse-like ground motions initiate with long period 

pulses. 

 Near-fault ground motions containing forward-directivity pulses have higher 

Peak Ground Velocity (PGV). 
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 The spectral accelerations of pulse-like ground motions are higher within a 

period band centered on the period of the forward-directivity pulses (ranging 

from 0.6 sec to upwards of 5 sec). 

 Duration of near-fault ground motions is shorter. 

With the exception of the last item, all other particularities of pulse-like ground motions 

imply that they are more destructive and impose a larger demand on structures when 

compared to ordinary ground motions. Structures with the fundamental period close to the 

period of the forward-directivity pulse are more vulnerable to pulse-like ground motions. The 

forward-directivity pulse period has been found to be proportional to the earthquake 

magnitude, lengthening as the earthquake magnitude increases. Therefore, smaller magnitude 

earthquakes generate pulses with shorter period that normally are closer to the fundamental 

period of typical structures. The implication is that typical structures may be more vulnerable 

to forward-directivity pulses caused by smaller magnitude earthquakes. This contradicts 

conventional engineering intuition that directly correlates damage potential with earthquake 

magnitude. 

Even though there is a consensus on the importance of forward-directivity effects, there 

are still questions about how they should be included into predictions of seismic hazard (e.g., 

see Travasarou et al. 2006). The current state of practice accounts for forward-directivity 

effects either by modifying response spectra or by the use of equivalent pulse models. The 

use of equivalent pulses is driven by research that indicates that structural response is 
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significantly influenced by the characteristics of the velocity-time history (Anderson and 

Bertero 1987; Hall et al. 1995; Alavi and Krawinkler 2000; Sasani and Bertero 2000; 

Mylonakis and Reinhorn 2001; Zhang and Iwan 2002) and equivalent pulse models are 

acceptable proxy for pulse-like motions. However, some researchers (Malhotra 1999; Chopra 

and Chintanapakdee 2001) indicate that modifications to the linear and nonlinear design 

spectra are enough to capture structural response to pulse-like ground motions.  

In this study, the traditional approach to PSDA is modified to include the use of 

simplified pulses in the prediction of the EDPs. The proposed PSDA considers separately the 

contribution to hazard of ground motions with pulses and those without pulses, using a 

recently proposed model to predict the probability of pulse occurrence (Iervolino and Cornell 

2008). Traditional analysis methodologies using response-spectra based fragility curves are 

used for ground motions without pulses. For ground motions that have a pulse an equivalent 

pulse model along with time-domain analyses are used to predict structural response. The 

parameters of the equivalent pulse model are determined using predictive relationships for 

pulse period and amplitude. The seismic hazard computed using the proposed PSDA is 

generally higher than that computed using traditional PSDA analysis, highlighting the 

importance of considering forward-directivity pulses for design. 

1.3. Objectives 

The goal of this study is to obtain explicit estimates of seismic demand for structures 

subjected to near-fault ground motions and explore the effect of forward-directivity on 
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seismic hazard. Probabilistic methods are utilized to include the effects of pulse-like ground 

motions on Intensity Measures (IMs) and Engineering Demand Parameters (EDPs). The 

novelty of the proposed approach lies on the use of equivalent pulses and time-domain 

analyses within the PSDA methodology. The outcome of the proposed methodology is a 

seismic hazard curve for an arbitrary EDP. The curve includes the effects of forward-

directivity. This is achieved through a PSDA method that incorporates forward-directivity 

effects. The overall goal can be divided into the following objectives: 

1. Define appropriate IMs for near-fault ground motion. 

2. Develop an equivalent pulse model to represent the characteristics of pulse-like 

ground motions. 

3. Use the equivalent pulse model to evaluate EDPs through Incremental Dynamic 

Analysis (IDA) for near-fault ground motions with dominant forward-directivity 

pulses. 

4. Use statistical methods to correlate structural response obtained from the 

nonlinear time-history dynamic analyses to EDPs. 

5. Incorporate the use of equivalent pulses into Probabilistic Seismic Demand 

Analysis for the selected EDPs. 

6. Investigate shortcomings of the design of structures in near-fault zones based on 

the International Building Code (IBC 2006) and subsequently provide 
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recommendations to improve the design of structures subjected to pulse-like 

ground motions. 

1.4. Dissertation Outline 

This dissertation is divided into 5 chapters. Chapter 2 presents an extended review of 

Performance-Based Seismic Design, Intensity Measures, Engineering Demand Parameters, 

current literature on Forward-Directivity Ground Motions (FDGMs), and the use of 

simplified pulse representations for FDGMs. Chapter 2 also discusses available statistical 

methodologies to correlate EDPs to IMs.  

In Chapter 3, the effects of forward-directivity near-fault ground motions on the 

response of three multi-story structures are studied and an equivalent pulse model to 

represent pulse-like ground motions is developed. Once it is proven that simplified pulse 

representations capture structural response accurately, these representations are used to 

compute EDPs as a function of pulse parameters.  

In Chapter 4, a new PSDA model to include forward-directivity effects through time-

domain analysis of structures is proposed. Chapter 4 is followed by an example which 

illustrates the procedure and shows the applicability and limitations of the proposed 

methodology. Finally, Chapter 5 addresses the shortcoming of the design procedures 

provided by building codes and recommends methods to improve design of structures 

subjected to near-fault ground motions.
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1.5. Figures 

 

Figure 1-1: Schematic diagram of rupture directivity effects for a vertical strike-slip fault. 

The rupture begins at the hypocenter and spreads circularly at a speed that is about 80% of 

the shear wave velocity (modified from Somerville et al. 1997)  

 

Figure 1-2: Schematic illustration of directivity effect on ground motions at sites toward and 

away from direction of fault rupture (Kramer 1996). 
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CHAPTER TWO 

CURRENT STATE OF THE PRACTICE 

Various methods have been proposed to include the effects of forward-directivity in 

seismic analysis. Most of these methods increase the level of the conventional Intensity 

Measure (e.g. elastic response spectra) to account for forward-directivity effects. This raises 

a fundamental question: Is the conventional Intensity Measure a proper representation of the 

near-fault ground motion with forward-directivity pulses? The following sections introduce 

the current state of practice in order to consider this question in context. 

2.1. Performance-Based Earthquake Engineering 

Current codes do not evaluate a building’s performance after the onset of damage. 

Instead, they require compliance with a minimum safety standard by specifying a design 

which historically has protected life safety in earthquakes. Conversely, what is called 

Performance-Based Earthquake Engineering in the Pacific Earthquake Engineering Research 

Center (PEER 1999) and Performance-Based Seismic Design in FEMA-273 (1997) is a 

methodology that provides a means to more reliably predict seismic risk in all buildings in 

terms more useful to building users. PBSD employs the concept of performance objectives, 

which is the specification of an acceptable level of damage to a building if it experiences an 

earthquake of a given severity. Therefore, the specific objectives of engineering assessment 

analyses are in effect quantities such as the mean annual frequency (MAF) of the loss 

exceeding x dollars, or such as the MAF of collapse or any other variables. These can only 

be estimated probabilistically. Once hazard curves for structural response are provided, the 

results can be used to make decisions about the adequacy of a design or the need to retrofit. 
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The first generation of performance-based earthquake engineering (PBEE-1) assessment 

and design procedures for buildings in the United States (ATC-40 1996; FEMA-274 and 

Agency 1997) made important steps toward the implementation of performance-based 

earthquake engineering. These procedures, developed in the early to mid 1990s, 

conceptualized the problem that is illustrated in part of Figure 2-1. In this figure, a building is 

loaded by earthquake-induced lateral forces that produce nonlinear response (damage) in 

structural components. Relationships were established between structural response indices 

(inter-story drifts, plastic rotation demands, and member forces) and performance-oriented 

descriptions such as Immediate Occupancy (IO), Life Safety (LS) and Collapse Prevention 

(CP). Subsequently, performance evaluation of the structure can be associated with variables 

such as monetary losses, downtime, and casualty rate. Hamburger (2003) identified several 

well-accepted shortcomings with these first generation procedures, namely, 

1. engineering demands were based on simplified analysis techniques, including 

static and linear analysis methods. Where dynamic or nonlinear methods were 

used, calibrations between calculated demands and component performance were 

largely lacking;  

2. the defined relations between engineering demand and component performance 

were based somewhat inconsistently on relations measured in laboratory tests, 

calculated by analytical models, or assumed on the basis of engineering 

judgment. Consistent approaches based on relevant data are needed to produce 

reliable outcomes; and 
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3. structural performance was defined on the basis of component performance 

states. Structural system performance was assumed to be equal to the worst 

performance calculated for any component in the building. 

The second generation of performance-based earthquake engineering assessment and 

design procedures (PBEE-2) were formed based on probability-based performance 

assessment tools (Cornell et al. 2002). The PBEE-2 process, illustrated in Figure 2-2, begins 

with the definition of one (or more) ground motion Intensity Measures that should capture 

the important characteristic(s) of earthquake ground motion that affect the response of the 

structural framing and nonstructural components and building contents. For building 

structures, the second step of the PBEE-2 process is to determine Engineering Demand 

Parameters that describe the response of the structure as a whole and of its individual 

structural components. This is accomplished by structural response simulations using 

earthquake ground motions scaled to predetermined IM levels. However, as described in 

Section 2.10, statistical methods can alternatively be used to accomplish the second step of 

the PBEE-2. 

Next, the EDPs for the structural and nonstructural components and building contents 

are linked to Damage Measures (DMs) that describe the physical condition of those 

components and contents (such as permanent deformation, toppling of equipment, or 

cracking or spalling of material in structural components and architectural finishes). Damage 

Measures include effective descriptions of the damage state or condition, which are then used 

to estimate the effects on functionality, occupancy-readiness, life safety consequences and 

necessary repairs of or to the building including nonstructural components and systems. The 
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product of this step is a set of conditional probabilities, P[DM|EDP], which are then 

integrated with P[EDP] to calculate the occurrence frequency of DM, P[DM]. Thus, 

P[DM|EDP] is the probability that the engineering Damage Measures  exceed specified 

values given (i.e., conditional on knowing) that the Engineering Damage Parameters (e.g., 

the maximum inter-story drift, and/or the vector of cumulative hysteretic energies in all 

elements) are equal to particular values. 

The final step in the PBEE-2 process is the calculation of Decision Variables (DVs) that 

serve to translate damage estimates into quantities that are useful to those tasked with making 

risk-related decisions. The DVs under development at this time at PEER relate to one or 

more of the three decision metrics identified in Figure 2-2, namely, direct dollar losses, 

downtime (or restoration time), and deaths (casualties). The products of this step are 

conditional probabilities, P[DV|DM], which are then integrated with P[DM] to calculate the 

occurrence frequency of DV, P[DV]. Thus, P[DV|DM] is the probability that the (vector of) 

decision variable(s) exceed specified values given (i.e., conditional on knowing) that the 

engineering Damage Measures are equal to particular values. The PBEE-2 process can be 

expressed in terms of a triple integral that is an application of the total probability theorem 

(ATC-58 2004): 

|][|]|[]|[]|[)(  IMdIMEDPdPEDPDMdPDMDVPDV 
  (2-1) 

where DV, DM, EDP, and IM are decision variable, damage measure, Engineering Demand 

Parameters, and Intensity Measure, respectively. P[X|Y] is the probability density of X 

conditioned on knowledge of Y.  ][IMd is mean annual frequency of IM. 
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However, discussion of DVs and DMs are beyond the scope of this study. Probabilistic 

evaluation of EDPs in terms of Intensity Measures which, in PEER is referred to as 

Probabilistic Seismic Demand Analysis is a prerequisite for the computation of Equation 2-1 

and the seismic reliability of structures. PSDA is built upon the more traditional PSHA and 

couples the probabilistic description of future ground motions from PSHA with their random 

dynamic effects on a structure. Results of PSDA provide the annual likelihood of different 

Performance Levels for a given hazard (e.g. by defining performance in terms of structural 

response). To include the effects of forward-directivity into PSDA, the principle of PSHA 

has to be extended. The next section is allocated to explain the conventional PSHA and its 

modification for forward-directivity ground motions.  

2.2. Probabilistic Seismic Hazard Analysis 

Probabilistic Seismic Hazard Analysis is routine for important projects in seismically 

active areas to estimate the ground motion intensity that should be considered when 

assessing a structure’s performance. In this approach, uncertainties in the size, location, and 

rate of recurrence of earthquakes as well as uncertainties in the variation of ground motion 

characteristics with earthquake size and location are explicitly considered in the evaluation of 

seismic hazards.  

 Forward-directivity effects either have been ignored in PSHA or treated semi-

deterministically. There has been the belief that the ground motion increase due to forward-

directivity events would be negated by ground motion decrease due to backward directivity 

events when rupture directivity effects are considered probabilistically. Disagreeing with this 

argument, Travasarou et al. (2006) quantified the degree of conservatism associated with the 
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semi-deterministic approach relative to explicit integration of directivity effects in 

probabilistic seismic hazard calculations. In the semi-deterministic approach, a 

deterministically estimated scaling factor is multiplied by the probabilistically estimated 

ground motions without directivity effects. The deterministic scaling factors are based on a 

severe forward-directivity scenario. Travasarou’s  results showed that directivity effects are 

most significant for critical structures that are designed for long return periods, sites located 

close to faults (e.g., < 5 to 15 km), and for sites located close to segmentation points along 

major faults when the adjacent fault is relatively active. Conversely, directivity effects may 

not be important for less critical facilities designed for shorter return periods (i.e. on the 

order of 72 to 100 years) even for active faults, and for critical structures located next to less 

active faults. Therefore, treating directivity effects semi-deterministically can lead to a 

considerable over prediction of the ground motion hazard. The degree of conservatism 

associated with the deterministic approach increases with decreasing return period.  

Therefore, either ignoring the effects of directivity in PSHA or including its effects 

semi-deterministically causes inaccuracy in estimation of the hazard. To accurately estimate 

the hazard at near-fault sites, directivity should be directly included in the hazard analysis. 

Researchers have proposed different methods to include the rupture directivity effects in the 

conventional PSHA. A case of special vector-valued PSHA computation was developed by 

Tothong et al. (2007) which extended the principles of PSHA to incorporate the possible 

occurrence of a velocity pulse in a near-fault ground motion in terms of elastic spectral 

acceleration. In their procedure, the PSHA is separated into two parts; the non-near-source 

contribution and the near-source contribution expressed as: 



 

17 

)()()( ,, yyy NSIMNSnonIMIM         (2-2) 

The first term is simply a conventional PSHA while the second contribution is separated 

further into effects due to the event of experiencing a pulse-like motion and that when a pulse 

is not present. 

Many of these methods are based on a scalar IM such as that explained in the next 

section.  

2.3. Scalar Intensity Measures 

Ground motion Intensity Measures are parameters that capture the important 

characteristic(s) of the ground motion that affect the response of the structure. In the past, 

researchers used Peak Ground Acceleration (PGA) as an Intensity Measure to estimate the 

response of structures to a ground motion time history. Further studies showed that PGA 

alone is not enough to capture the effects of a ground motion on a structure. Within a ground 

motion time history, the amount of energy that each frequency carries is different and 

changes from one earthquake to another. Therefore, ground motion records with the same 

value of PGA can cause different structural responses.  In other words, one specific record 

may be highly damaging for some structures and less severe for others of different periods. 

That is why PGA was found to be a poor response indicator. Therefore, elastic spectral 

quantities such as spectral acceleration of the first mode of the structure, Sa(T1), took 

precedence. Compared to PGA, the spectral quantities enhance the estimation of structural 

response. However, Sa(T1) alone fails to accurately describe the seismic demands of a multi-

degree-of-freedom (MDOF) structure when the contribution of higher modes is significant 
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and, therefore, it cannot completely capture the dynamic behavior of structures. Similar to 

PGA, ground motion records with the same value of Sa(T1) may cause a considerable 

variability in the level of structural response of a MDOF structure, particularly when they are 

subjected to pulse-like ground motions. In a non-linear MDOF structure, the effective period 

of its first mode is increased to a period longer than the fundamental period. In this case, 

Sa(T1) is no longer an effective IM even if response is dominated by the first mode. In spite 

of these shortcoming, Sa(T1) still is one of the most commonly used IMs for non-pulse-like 

ground motions due to its simplicity and relative accuracy. 

Currently, all seismic guidelines and codes specify seismic demand using the response 

spectrum for both ordinary and pulse-like ground motions.  The design values are defined 

based on spectral acceleration of the first-mode period of vibration, Sa(T1), obtained from the 

design response spectrum. The design response spectrum defined by IBC does not consider 

the effects of rupture directivity. In Chapter 3, it will be discussed that Sa(T1) cannot be an 

efficient and sufficient IM for near-fault ground motions when forward-directivity pulses are 

dominant. But, for cases in which forward-directivity pulses are not dominant, Sa(T1) may 

still be used to predict the structural response. 

It is important to note that the response spectra for pulse-like ground motions are 

different from those associated with ordinary ground motions. These differences in response 

spectra have been observed and addressed by many authors (Somerville et al. 1997; 

Abrahamson 1998a; Abrahamson 1998b). The effects of forward-directivity in the response 

spectra can be considered by necessary modifications to an attenuation relation through two 

different approaches: broadband and narrow band models, as have been explained in the 
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following sections. Based on the broadband directivity model, the response spectra increase 

monotonically with magnitude at all periods. On the other hand, in a narrow band directivity 

model, the response spectrum for near-fault ground motion becomes richer for a larger 

magnitude earthquake because of the pulse period. This has been illustrated in Figure 2-3 and 

Figure 2-4.  

2.4. Broadband Directivity Model 

Somerville (1997) proposed a broadband model to include the amplitude and duration 

effects of rupture directivity to the ground motion attenuation relations proposed by 

Abrahamson and Silva (1997). Somerville’s model comprises two period-dependent scaling 

factors that may be applied to the horizontal attenuation relationship. One of the factors 

accounts for the change in shaking intensity in the average horizontal component of motion 

due to near-fault rupture directivity effects (higher ground motions for rupture toward the site 

and lower ground motions for rupture away from the site). The second factor reflects the 

directional nature of the shaking intensity using two ratios: fault normal (FN) and fault 

parallel (FP) versus the average (FA) component ratios. 

This model was later refined by Abrahamson (2000) to incorporate rupture directivity 

into probabilistic seismic hazard analysis. Initially, Somerville’s directivity model was 

independent of distance and applicable to magnitudes greater than 6.5. Abrahamson applied a 

distance dependent taper function to the model that reduces the effect to zero for distances 

greater than 60 km. Also, a magnitude taper was applied that reduces the effect to zero for 

magnitudes less than 6.0 and interpolates linearly for magnitudes between 6 and 6.5. Based 

on an evaluation of empirical recordings and numerical simulations, the form of the 
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directivity function was modified to reach a maximum at ξcos(θ) = 0.4, where ξ=S/L is 

defined as the fraction of the fault length that ruptures toward the site; S is the projected 

distance (along the rupture plane) from the epicenter toward the site; L is the fault rupture 

length; and θ is the Azimuth angle between the fault plane and the ray path to site. Due to 

adding the directivity term into the ground motion model, a period dependent reduction was 

applied to the standard deviation of the attenuation relation. The final broadband model 

results in a monotonic increase in the response spectra at all periods larger than 0.6 sec with 

an increase of magnitude. However, later studies showed that pulse-like ground motions 

cannot be adequately described by the monotonic broadband scaling and, therefore, a narrow 

band model was proposed.  

2.5. Narrow Band Rupture Directivity Model 

Somerville (2003b) proposed a narrow band directivity model where the response 

spectrum does not increase monotonically with magnitude at all periods, as is the case in 

conventional ground motion models. Instead, the response spectra for near-fault ground 

motions become richer in longer periods as a result of a magnitude increase which lengthens 

the pulse period. Earthquakes with higher magnitude result in pulses with longer periods. 

Consequently, longer period pulses increase the level of response spectra for longer periods. 

This shifts the peak response spectral acceleration of the strike-normal component to longer 

periods. Thus, the response spectrum values from smaller earthquakes may exceed those of 

larger earthquakes at shorter and intermediate periods. 

The response spectrum is the elastic response of a single degree of freedom that is meant 

to represent the structural response in terms of displacement, velocity, or acceleration. 
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Structural response can be presented in different terms, as explained below. However, 

responsive Engineering Demand Parameters should be selected to improve the accuracy of 

the prediction of the structural response. 

2.6. Engineering Demand Parameters 

As previously explained, in PSDA, Intensity Measures are correlated to structural 

response parameters through a probabilistic means. Following the terminology convention of 

PEER, Engineering Demand Parameter is used here to refer to those structural response 

parameters. EDPs are structural response quantities that can be used to estimate damage to 

structural and nonstructural components and systems. Researchers have used different EDPs 

that are useful for engineering design decision-making. Primary EDPs are related to 

deformation that can be associated with structural and nonstructural damage, such as roof 

drift, story drifts, maximum inter-story drift ratio, ductility demands, and maximum peak 

story drift angle (Krawinkler and Alavi 1998;  Luco and Cornell 2001; Krawinkler et al. 

2003b; Baker and Cornell 2005). Different EDPs can be defined to correlate best with the 

various types of damage. Sensitive Engineering Demand Parameters enhance the accuracy of 

the prediction of structural response.  For example, the average of the maximum story drift 

ratio is a good measure when damage is linearly related to drift. The maximum roof drift 

(roof displacement over height) is considered as a reference or global measure of damage. 

The inter-story drift ratio is relevant to collapse. Shear distortions in joints and rotations at 

plastic hinges are other indicators of structural damage. In Chapter 3, the selected 

Engineering Demand Parameter for this study and its advantages will be explained. 
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In general, the above mentioned Engineering Demand Parameters are obtained from the 

response of a structure subjected to ground motions that may or may not have been scaled. In 

the next section, this matter is considered.  

2.7. Scaling Ground Motions 

Lack of recorded data from a specific fault often necessitates scaling of ground motions 

to make them compatible with the site specific hazard. Also, when ensembles of scaled 

ground motions are used, variability of the structural response is minimized, thus requiring 

fewer records and dynamic analyses. For example, the response of a structure to the ground 

motions scaled to the spectral acceleration at the structure’s fundamental period of vibration, 

Sa(T1), shows smaller dispersion compared to unscaled records. Therefore, relationships 

between EDPs and IMs are more stable for a lower number of analyses. However, when 

there are sufficient numbers of ground motion records, no scaling is required. Nevertheless, 

when scaling is required, near-fault ground motion records should be treated with much care. 

Scaling of ground motions can be conducted using a time-domain and/or a frequency-

domain approach. Time-domain scaling involves a linear scaling of the amplitude of the 

ground motions to match a target ground motion parameter, such as the PGA, the PGV, the 

Arias Intensity, or spectral acceleration at the first or other elastic modal periods. In the 

frequency-domain approach, the frequency content is changed to match a target spectral 

response. Even though the former approach maintains the frequency content of ground 

motions, there is a significant dispersion in response spectra of ground motions scaled by this 

method. The latter approach changes the physical characteristics of the ground motions. 

Therefore, forward-directivity pulses can be distorted in this process. However, both of these 
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methods result in significant dispersion in the estimation of the nonlinear response of a 

structure. This issue has become an attractive matter for researchers. Many studies have 

aimed to reduce the dispersion in estimates of structural response parameters in order to find 

the most appropriate method for scaling near-fault and ordinary ground motions.  

For example, Krawinkler et al. (2003a) selected ensembles of records with about the 

same magnitude and distance and scaled them so that they have an identical spectral 

acceleration at the period of 0.5 sec. Figure 2-5 shows spectra of the 20 ordinary ground 

motions designated as Large Magnitude-Short Distance (6.5≤Mw≤7.0, 13 km ≤ R ≤ 30 km) 

scaled to the same spectral acceleration at T = 0.5 sec (Krawinkler et al. 2003a). As shown in 

Figure 2-5, there is large dispersion in spectral accelerations at all other periods, even those 

very close to 0.5 sec.  Even this dispersion gets much larger for the near-fault spectra than for 

ordinary ones. The dispersion results in a significant scatter in the elastic response of 

structures whose fundamental periods are not equal to 0.5 sec. The amount of this scatter 

depends on the importance of higher mode effects. 

Similarly, Kurama and Farrow (2003) compared different methods of scaling. They 

investigated the effectiveness of seven ground motion scaling methods in reducing the 

dispersion in peak lateral displacement demand estimated from non-linear dynamic time-

history analyses. The response of a series of linear and non-linear single-degree-of-freedom 

and multi-degree-of-freedom structures was considered for the following IMs:  

1. Peak ground acceleration: each ground motion record is scaled to the arithmetic mean 

PGA of the ground motion ensemble. 
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2. Effective peak acceleration (EPA): each ground motion record is scaled to the 

arithmetic mean EPA of the ground motion ensemble. According to NEHRP 1994, 

EPA is calculated as the mean linear-elastic 5%-damped spectral acceleration for the 

period range of 0.1 to 0.5 sec divided by 2.5. The 2.5 coefficient relates back to the 

formulation of the design response spectra in ATC-3-06 (1978). 

3. Arias intensity-based parameter (A95): each ground motion record is scaled to the 

arithmetic mean A95 of the ground motion ensemble. The term A95, is defined by 

Sarama and Yang (1987) as the acceleration for which its squared value contains 95% 

of the Arias Intensity. 

4. Effective peak velocity (EPV): each ground motion is scaled to the arithmetic mean 

EPV of the ensemble. According to NEHRP, EPV is equal to the linear-elastic 5% 

damped spectral pseudo-velocity at period, T =1 sec. 

5. Maximum incremental velocity (MIV): each ground motion is scaled to the 

arithmetic mean MIV of the ground motion ensemble. Incremental velocity, IV, is the 

area under the acceleration time-history of a ground motion between two consecutive 

zero acceleration crossings. 

6. Spectral response acceleration at the structure fundamental period: each ground 

motion is scaled to the arithmetic mean linear-elastic 5% damped spectral 

acceleration of the ground motion ensemble at the linear-elastic fundamental period 

of the structure, Sa(T1). 
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7. Spectral acceleration over a range of structure periods (Sa(T1→Tµ)): each ground 

motion is scaled to the arithmetic mean linear-elastic 5% damped spectral 

acceleration of the ground motion ensemble over a range of structural periods 

(Martinez-Rueda 1998; Nassar and Krawinkler 1991; Shome and Cornell 1998). 

First, the mean spectral acceleration, Sa(T1→Tµ), of the ensemble over the period 

range T1→Tµ is calculated. Then, the records are scaled such that the mean spectral 

acceleration of each ground motion over the period range, T1→Tµ, is equal to 

Sa(T1→Tµ). 

Kurama and Farrow (2003) concluded that, for the near-field ground motion ensembles, 

the effectiveness of the Sa(T1) and Sa(T1→Tµ) methods with respect to the PGA method is 

significantly decreased and in the long period range their effectiveness decreases as R 

(defined as the linear-elastic force demand under a ground motion divided by the yield 

strength of the structure) increases. In general, the dependency of the scatter in the peak 

displacement demand on R is large. For the PGA, EPA, and A95 scaling methods, the 

dependency of the scatter in the peak displacement demand on the period significantly 

decreases for the near-field ground motion ensemble. Basically, it is hard to select an 

effective scaling method for near-field ground motions that can reduce the scatter in peak 

lateral displacement demand for all ranges of site and structure characteristics. However, 

between all proposed scaling methods by Kurama and Farrow (2003), the MIV method is the 

most effective one, but the biggest disadvantage for the implementation of the MIV scaling 

method in current seismic design procedures is the lack of methods to estimate the mean 

annual frequency of exceedance of MIV.  
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Alternatively, one can utilize more Intensity Measure parameters to improve the 

accuracy of the structural response prediction statistical models rather than using a scalar IM. 

The following introduces combinations of different IMs proposed by many researchers. 

2.8. Vector-Valued Intensity Measures 

In this section, Vector-Valued Intensity Measures are discussed. Before going further, it 

is helpful to define two terminologies: efficiency and sufficiency (Luco and Cornell 2007). 

An efficient IM is defined (from the perspective of a structural engineer) as one that results 

in a relatively small variability of the structural demand measure given as an IM. A sufficient 

IM, on the other hand, is defined here as one that renders DM conditionally independent, 

given an IM of earthquake magnitude (Mw) and source-to-site distance (Rrup). 

As previously mentioned, according to recent studies, for tall, long-period, or buildings 

subjected to pulse-like ground motions, the conventional intensity measure, Sa(T1), cannot be 

efficient and sufficient even for ordinary ground motions. Moreover, the spectral acceleration 

at the structure’s fundamental period of vibration becomes less effective for near-fault 

ground motions when forward-directivity pulses are dominant. Therefore, Sa(T1) should be 

replaced or combined with more effective IMs to improve the accuracy of the estimation of 

the structural response. Due to the shortcomings of Sa(T1), many other IMs which are 

capable of being adequate demand predictors have been proposed. For instance, for multi-

mode dominated structures, a combination of spectral quantities at different frequencies can 

be used to enhance accuracy of the response prediction (e.g., the spectral value of the third 

mode of elastic response in addition to the first and second modes). Bazzurro (1998), as well 

as Shoma and Cornell (1998), have considered Vector-Valued IMs comprised of Sa(T1) and 
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the ratio of Sa(T2)/ Sa(T1), as well as a scalar IM that combines Sa(T1) and Sa(T2). Magnitude 

and distance, which influence the frequency content of ground motions, are other parameters 

of Vector-Valued IMs that can be considered as well as the predominant period of the ground 

motion. Others have proposed inelastic spectral quantities as efficient IMs for pulse-like 

ground motions (Luco 2002).  

Baker and Cornell (2005) used the conventional intensity measure, Sa(T1), with other 

parameters such as magnitude, distance, and the epsilon (ε) associated with the ground 

motion (where ε is defined as the number of standard deviations by which an observed 

logarithmic spectral acceleration differs from the mean logarithmic spectral acceleration of a 

ground motion prediction equation). In other words, ε is computed by subtracting the mean 

predicted lnSa(T1) from the record’s lnSa(T1), and dividing by the logarithmic standard 

deviation (as estimated by the prediction equation). ε is an indicator of the shape of the 

response spectrum. Since the shape of the spectrum does not change with scaling, ε, which is 

defined with respect to the unscaled record, will not change in value when the record is 

scaled. For a given ground motion record, ε is a function of T1 (i.e. epsilon will have 

different values at different periods) and the ground motion prediction model used (because 

the mean and standard deviation of lnSa(T1) vary somewhat among models). Neglecting the 

effect of ε when computing the drift hazard curve leads to conservative estimates of the 

response of the structure. 

(Luco and Cornell 2007) and Baker and Cornell (2008) investigated the efficiency and 

sufficiency of six alternative IMs defined in Table 2-1. In comparison with the conventional 
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intensity measure, Sa(T1), or equivalently IM1E, the ground-motion intensity measure denoted 

by IM1I&2E, which takes into account the second-mode frequency content and inelasticity, is 

demonstrated to be relatively efficient and sufficient under both near-source and ordinary 

suites of earthquake records. The lone exception is for tall, long-period buildings subjected to 

near-source earthquake records. In that case, although IM1I&2E is the most efficient of the 

intensity measures compared, it is not sufficient. 

Table 2-1: Intensity measures defined by (Luco and Cornell 2007) 

IM1E  the first mode of elastic structural response 

IM1I the first mode of inelastic structural response 

IM1E&2E the first two modes of elastic structural response combined by the square-root-of-

sum-of-squares (SRSS) rule 

IM1I&2E the first mode of inelastic and the second mode of elastic structural response 

IM1eq the first mode of spectral displacement of an “equivalent” elastic SDOF oscillator 

IM1eff the elastic structural response of an effective period longer than the first mode 

Still more research is needed to find efficient and sufficient Vector-Valued IMs for near-

fault ground motions.  

Although the proposed IMs for near-fault ground motions by researchers have been 

dissimilar, all reach a consensus that Vector-Valued IMs would be more efficient and 

sufficient for the case of forward-directivity. Some researchers have considered time-domain 

rather than frequency-domain characteristics of earthquake records as IMs. Time-domain 
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features of near-source records, such as the amplitude and the period of the velocity pulse, 

considerably affect the building response and can be part of Vector-Valued IMs (Iwan et al. 

1998; MacRae and Roeder 1999; Alavi and Krawinkler 2001).  

Krawinkler et al (2003a) included equivalent pulse parameters (pulse period and 

intensity) as parts of a vector of IMs for near-fault ground motions. They noticed that for 

forward-directivity ground motions, the effect of frequency content on the prediction of 

demands is dominated by the dispersion of spectral values rather than the median shape of 

the spectrum. Krawinkler et al. also concluded that magnitude and distance dependence of 

spectral shapes is a moot issue and does not have a dominating effect for forward-directivity 

ground motions. 

Bazzuro et al. (2005) also considered "non-stationary" features of near-source, forward-

directivity accelerograms in addition to Sa(T1) to improve structural response estimation.  

The non-stationary time-domain features considered as potential response predictors are the 

number of half-pulses, the pulse period, and the peak velocity. The record duration was 

another parameter considered in their study. Results showed that velocity pulse 

characteristics and record duration do not appreciably improve the accuracy of the response 

estimates beyond that achieved by using linear elastic spectral values alone. The fact that 

these four ground motion parameters in Bazzurro’s study do not explicitly account for the 

period or strength of the structure seems to limit their predictive power. This is because 

Bazzurro et al. did not consider the characteristics of the structure. On the contrary,   

Krawinkler et al. (2003a) considered the characteristics of the structure in combination with 

the equivalent pulse parameters. That is why Krawinkler, as opposed to Bazzurro, found that 
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pulse parameters are adequate representations of near-fault ground motions. In a later study, 

Bazzurro, by studying the inelastic spectral displacement of an elastic-perfectly-plastic 

SDOF oscillator, noticed that record characteristics that do not account for fundamental 

period and strength of the structure are not likely to be good response predictors.  

Time-domain characteristics of near-fault ground motion, such as the parameters of the 

forward-directivity pulse, seem to be more proper as IMs since near-fault ground motions are 

distinct from ordinary ground motions for their intensive velocity pulse. Moreover, these 

pulse parameters are predictable based on seismological data such as site and fault 

information. Consequently, many researchers have chosen to represent the characteristics of 

near-fault ground motions with means of the equivalent pulses explained in the next chapter. 

 Even though estimation of ground motion hazard for scalar IMs is well developed using 

PSHA, incorporation of Vector-Valued IMs is still a challenging task. This is because one 

can select different parameters as Vector-Valued IMs and, subsequently, each selection 

needs a different treatment. For example, Vector-Valued IMs comprised of spectral 

acceleration and ε (Baker and Cornell 2005) can be obtained from scalar hazard curves 

combined with standard deaggregation results. In other cases, such as Vector-Valued IMs 

consisting of spectral acceleration values at multiple periods (Bazzurro 1998; Shome and 

Cornell 1998), special Vector-Valued PSHA computations are needed.  

2.9. Equivalent Pulse Models:  

The predictive power of time-domain parameters of the near-fault ground motion 

records has led seismologists and engineers to develop techniques to numerically simulate 
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pulse-like ground motions. Forward-directivity pulses play an important role in the response 

of structures in near-fault zones due to the seismic energy that is carried by them at the 

beginning of the motion. The coincidence of the equivalent pulse period and the period 

corresponding to the peak pseudo-velocity response spectrum reinforces the idea that the 

velocity pulse carries the most energy of the ground motion. This energy is carried in a 

narrow period band centered about the period of the forward-directivity pulse. Therefore, 

simplified representations of pulse-like ground motions have been developed to describe 

near-fault ground motions and to predict the response of structures subjected to this type of 

motion.  In the following sections, different equivalent pulses presented by researchers are 

introduced. 

2.9.1. A, B, and Cn Pulses (Makris 1997; Makris and Chang 1998) 

Makris and Chang (1997 and 1998) proposed an equivalent pulse model to approximate 

the near-fault ground motion by sine and cosine pulses. They classified the near-fault ground 

motion displacement pulses into three distinct tri-geometric functions, a type-A pulse, a type-

B pulse or a type-Cn pulse. A Type-A, pulse which is a one-sine pulse, models the forward 

ground motion; a type-B pulse, which is a one-cosine pulse, models a forward and backward 

motion, and a type-Cn pulse approximates a recorded motion that exhibits n main pulses in its 

displacement time history. These pulses have been plotted in Figure 2-6. Parameters used to 

define these pulses are the amplitude and the circular frequency of the pulse. A Type-Cn 

pulse has an additional parameter which is the phase angle. The phase angle is determined by 

requiring that the ground motion displacement at the end of the pulse be zero.  Later, they 

obtained closed form solutions for a SDOF subjected to each type of pulse. However, their 
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proposed models poorly match the velocity pulses of all of the recorded ground motions 

(Makris and Chang 2000). 

2.9.2. Sine pulse (Somerville 1998) 

Somerville (1998) developed a preliminary model that relates time-domain parameters 

of the near-fault ground motion pulse to the earthquake magnitude and distance. The pulse 

parameters of single pulse of his model are the period and peak amplitude of the largest cycle 

of motion of the velocity pulse. He postulated that the period of the pulse is directly related 

to the rise time, which is correlated to the faulting mechanism.  He concluded that the period 

of the pulse is thus equal to about twice the rise time of slip on the fault, which is consistent 

with the fact that the rise time is a lower bound on the period of the pulse. He postulated that 

the number of half sine pulses in the velocity time history might be associated with the 

number of asperities in a fault. His model assumes a bilinear relationship between the 

logarithm of the PGV, magnitude, and the logarithm of distance, which may not be realistic 

at very close distances. To avoid unrealistic predictions of PGV at short distances, 

Somerville used a distance cut-off of 3 km. His proposed relation between magnitude and 

pulse period for rock and soil respectively are: 

wDir MT 5.07.31log 10        (2-3) 

wDir MT 346.002.2log 10        (2-4) 

Near-fault ground motions containing forward rupture directivity are not always simple 

enough to be represented by a single pulse. Considering pulse-like records which have more 
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than two peaks or troughs, it is obvious that the single pulse proposed by Somerville does not 

fit these ground motion pulses well. 

2.9.3. P1, P2, and P3 Pulses (Krawinkler and Alavi 1998) 

Krawinkler and Alavi (1998) used Somerville’s relationship between magnitude, 

distance, and PGV and defined P1, P2, and P3 pulses to classify near-fault ground motion 

pulses. P1, P2, and P3 are a half pulse, a full pulse, and multiple pulses, respectively (see 

Figure 2-7). These pulses are defined by their period and amplitude and are used to represent 

the ground motion velocity pulses.  The pulse period of the model is determined from the 

peaks of the elastic velocity spectra. For single pulse motions, the period of the equivalent 

pulse almost coincides with the period corresponding to the peak of the pseudo-velocity 

spectrum, but for more complex records, they can differ significantly. In their procedure, the 

amplitude of the equivalent pulse is found by minimizing the differences between the 

maximum story ductility demand from the near-fault record and the corresponding demand 

obtained from an equivalent pulse representation for a certain range of ductility. Based on 

their study, the equivalent pulse velocity lies within 20% of the PGV of the record, for nearly 

all cases. The pulse type is judged based on an inspection of the time history trace and on a 

comparison between ground motion and pulse spectral shapes. 

2.9.4. Decaying Sinusoidal Pulses (Agrawal and He 2002) 

Agrawal and He (2002) proposed decaying (damped) sinusoidal pulses to represent 

dominant kinematic characteristics of the ground motion (see Figure 2-8). The pulse 

parameters of their model are the natural frequency, amplitude of the velocity pulse, and the 

damping factor of the decaying sinusoid which controls the shape and duration of the 
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velocity pulse. The values of the parameters are judged based on the time history of the 

ground motion. They found that while their proposed approximation captures the dominant 

kinematic characteristics of displacement and velocity of recorded ground motions in 

forward rupture directivity conditions, the resulting predictions of accelerations are poor 

because of the exclusion of the high frequency fluctuations that override long duration pulses 

in recorded ground motions. Their study showed that high frequency components which 

override the long-period components of the recorded acceleration time history can not 

contribute to the response of flexible structures. Therefore, the proposed approximation is not 

reliable for these kinds of structures subjected to near-fault earthquakes. Sometimes the 

second peak or trough of the forward rupture directivity pulses is larger than the first one in 

amplitude, which is not possible to represent with decaying (damped) sinusoidal pulses.  

2.9.5. Wavelet Pulses (Mavroeidis and Papageorgiou 2003) 

Mavroeidis and Papageorgiou (2003) used wavelet pulses to represent near-fault ground 

motion velocity pulses. Similar to Krawinkler and Alavi (1998), Mavroeidis and 

Papageorgiou determined a pulse period so that the pseudo-velocity response spectra of the 

synthetic and recorded near-fault ground motions exhibit their peak at approximately the 

same natural period. The amplitude of their synthetic velocity pulse is determined so that the 

amplitude of the synthetic velocity pulse and its peak pseudo spectral velocity agree well 

with the corresponding quantities of the actual record.  The amplitude of their synthetic 

velocity pulse was found to agree closely with PGV. The number and phase of half cycles 

and the epoch of the envelope’s peak are other parameters to define the waveform of their 

proposed equivalent pulse. The phase parameter defines symmetric and anti-symmetric 
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signals. Although their proposed model successfully simulates the entire set of available 

near-fault displacement, velocity, and (in many cases) acceleration time histories, as well as 

the corresponding deformation, velocity, and acceleration response spectra, the response of 

structures to these wavelet pulses was not studied. 

2.9.6. Sine Pulse (Bray and Rodriguez-Marek 2004) 

Bray and Rodriquez-Marek (2004) developed a simplified time-domain representation of 

pulse-like ground motion using half-sine pulses. Parameters of this representation are 

amplitude, pulse period, and the number of significant pulses in the velocity-time history (see 

Figure 2-9). A regression analysis was developed to correlate these pulse parameters with 

magnitude and distance. The regression analysis indicated a systematic difference between 

pulses recorded in rock and in soil. The predictive equations of the Bray and Rodriguez-

Marek model are given by: 

ijiwij
dRcbMaPGV   )ln()ln(

22

     (2-5) 

ijiwijv bMaT  )ln(
      (2-6) 

where PGVij and (Tv)ij are the PGV and pulse period in units of cm/s of the j
th

 recording from 

the i
th

 event, respectively; Mw is moment magnitude of event i; R is rupture distance in km; ηi 

and εij represent the inter- and intra-event variations, respectively, obtained using the random 

effects model; and a, b, c, and d are regression parameters (for more information about the 

above parameters, see Bray and Rodriguez-Marek, 2004). The proposed definition of pulse 

period uses either the zero crossing time or the time at which velocity is equal to 10% of the 

peak velocity for this pulse. The latter definition is necessary for pulses in which the pulse is 
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preceded by a small drift in the velocity–time history. Another alternative for defining the 

dominant pulse period is a weighted average period of all significant cycles of motion. The 

number of cycles of motion (referred to as the number of significant pulses) is defined as the 

number of half-cycle velocity pulses that have an amplitude of at least 50% of the PGV of 

the ground motion. Considering site-effects, they predict longer periods at soil sites than at 

rock sites for lower magnitude events. This difference diminishes as magnitude increases and 

disappears for large magnitudes.  

The aforementioned models rely on user judgment to determine zero crossings in the 

presence of noise or to select reasonable starting points which can be very time-consuming 

and inaccuracies inevitably creep in. Recently, Baker proposed a computerized method 

which is independent of user judgment. 

2.9.7. Daubechies Wavelet of Order 4 (Baker 2007a) 

Baker (2007) proposed an automated screening and classification procedure to identify 

and extract the largest velocity pulse from a ground motion using wavelet-based signal 

processing (the Daubechies wavelet of order 4). The approach uses wavelet analysis to 

extract the largest velocity pulse from a given ground motion. The size of the extracted pulse 

relative to the original ground motion is used to develop a quantitative criterion for 

classifying a ground motion as “pulse-like.” To identify the subset of these pulse-like records 

potentially caused by directivity effects, two additional criteria are applied: the pulse arrives 

early in the ground motion and the absolute amplitude of the velocity pulse is large. Baker 

used the period associated with the maximum Fourier amplitude of a wavelet to define a 

pseudo-period for extracted wavelet pulses. The amplitude of the wavelet pulses is obtained 
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from the wavelet transform computation. Baker also used a linear regression analysis and 

found a predictive relationship between pulse period and earthquake magnitude similar to 

other authors ( Somerville 1998; Mavroeidis and Papageorgiou 2003; Bray and Rodriguez-

Marek 2004) as: 

wp MTLn 02.178.5)(    with   55.0    (2-7) 

where Tp, Mw, and σ are defined as pulse period, moment magnitude, and standard deviation, 

respectively. Note that, the extracted pulses by the Baker procedure are referred to as 

extracted pulses in the following sections. 

2.9.8. Comparison of the available equivalent pulse models 

None of the aforementioned researchers has considered the response of MDOF 

structures to their proposed models (with the exception of Krawinkler and Alavi (1998)). In 

spite of conclusive study of Krawinkler and Alavi, it is not clear whether maximum ductility 

demand is due to the first part of the record, which contains the forward-directivity pulse, or 

the entire record. Krawinkler and Alavi pointed out that the influence of P- effects varies 

from negligible to dominant based on their case study. Nevertheless, they decided not 

consider P- effects in their study. Also, their data base was scaled in such a manner that the 

spectrum of each individual record matches the NEHRP soil type D spectrum (frequency-

domain scaling method). However, as mentioned in section 2.7, this kind of scaling should 

be done with much care for pulse-like ground motions. In this scaling process, the frequency 

content of ground motions is changed and forward-directivity pulses can be distorted. 
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In the next chapter, an equivalent pulse model addressing the aforementioned 

ambiguities is introduced. 

2.10. Methodologies to Correlate EDPs to IMs 

The numerical evaluation of demand parameters makes it possible to develop 

statistically representative relationships between EDPs that were obtained on the basis of 

previously discussed ground motion IMs. Many such methods have been proposed by 

different authors, including correlations to scalar and vector IMs. Some of these methods are 

discussed here and one will be selected for our purpose. For example, Baker (2007) proposed 

a few different methods to estimate the probabilistic relationship between ground motion 

intensity and structural response from a statistical inference perspective. The field of 

statistical inference is concerned with estimating the properties of a random variable from a 

finite sample of data. Baker considered two classes of statistical inference approaches to 

determine EDPs from given IMs. These approaches are discussed below. 

2.10.1. Parametric Approaches: 

In this approach, it is assumed that the random variable EDP has some probability 

distribution (e.g. lognormal) that is defined by a few parameters. Then, these parameters are 

estimated to define the distribution (Lehmann and D'Abrera 1998). Two parametric 

estimation methods discussed are as follows: 

2.10.1.1. Cloud Method 

With this method, the nonlinear dynamic analysis of a structure is performed using a set 

of unscaled ground motion records (or records scaled by a constant factor). Regression can 
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be used with the records’ IM values and associated EDP values obtained from nonlinear 

dynamic analysis to compute the conditional mean and standard deviation of the EDP given 

the IM. A log-linear relationship between the logarithms of the two variables often provides 

a reasonable estimate of the mean value of the EDP over a restricted range. Figure 2-10 

shows a cloud of Ln EDP|IM data, the conditional mean value from linear regression, and a 

Gaussian CCDF fitted to the mean and standard deviation from the regression. 

2.10.1.2. Strip Method 

Rather than using regression analysis with ground motions having a range of IM levels, 

the motions can be scaled instead so that each motion has the IM level of interest, and then 

the distribution of EDP can be estimated directly from the resulting structural responses. This 

method is similar to that described in 2.10.1.1, except that here a regression analysis is used 

to define the moments of the statistical distribution of the EDP, while the method described 

in Section 2.10.1.1 uses an empirical cumulative distribution function. Figure 2-11 shows a 

strip of Ln EDP data and a Gaussian CCDF based on the sample mean and standard 

deviation. 

2.10.1.3. Capacity Method 

With this method, the probability distribution of EDP for a given IM is not estimated 

directly. Rather, the results from Incremental Dynamic Analysis (Dimitrios and Cornell 

2002) are used to determine the probability that the IM level of a ground motion is less than 

IM, given that the ground motion caused a level of response EDP = y (Kennedy et al. 1984; 

Bazzurro and Cornell 1994a; Bazzurro and Cornell 1994b). Figure 2-12 shows incremental 
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dynamic analysis curves, and a Gaussian CDF of Ln IMCap obtained from the sample mean 

and standard deviation of the first exceedance of maximum inter-story drift ratio=0.01 

2.10.2. Non-Parametric Approaches 

A non-parametric approach does not require any assumptions about the distribution of 

the data (Lehmann and D'Abrera 1998) and has the advantage of being robust when the data 

do not fit a specified parametric distribution, but it generally requires more data for 

estimation in cases where the data do fit a parametric distribution. Two different non-

parametric estimation methods reviewed by Baker are as follows:  

2.10.2.1. Empirical Distribution for Response  

Rather than using regression analysis with ground motions having a range of IM levels 

(as in the cloud method), the motions can be scaled instead such that each motion has the IM 

level of interest, and then the distribution of EDP can be estimated from an empirical 

complementary cumulative distribution function (Lehmann and D'Abrera 1998). With this 

approach, no assumptions are needed regarding distributions or functional relationships 

between EDP and IM. The eliminated assumptions have a cost, however, because more data 

are needed to characterize the conditional distributions. Empirical distributions can also have 

difficulties in estimating accurately the probability of exceeding extreme values, which are 

often of concern for reliability analysis. Figure 2-13 shows a strip of Ln EDP data and its 

empirical CCDF. 
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2.10.3. Comparison of Statistical Methods 

The aforementioned methods can be developed for scalar or Vector-Valued IMs. Among 

these methods, some are preferable in the sense of accuracy and a reduced number of 

analyses required. The shortcomings of the cloud method could be addressed by requiring the 

relationship between EDPs and IMs to be linear, or by performing the regression over a more 

narrow range of IMs. This method does not severely restrict the functional form of the mean 

response versus IM relationship, while also not requiring excessive numbers of structural 

analyses to be performed. The level of confidence in the result depends on the nature of the 

data used in the regression analysis. More data makes the regression more stable. The strip 

method potentially requires more structural analyses than required for the cloud method. A 

drawback of the capacity method is that it will likely require more analyses than for a cloud 

analysis (although it will provide more accuracy than the cloud method if used over a large 

range of IMs). The empirical distribution method is potentially very accurate, but may 

require a prohibitive number of dynamic analyses, especially for IM vectors containing many 

parameters. 

In the next chapter, a statistical model using the Cloud method is developed to correlate 

EDPs to IM. The cloud method requires a fewer number of analyses. 
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2.11. Figures 

  
Figure 2-1: Illustration of performance-based earthquake engineering (ATC-58 2004) 

 
Figure 2-2: Steps in the PBEE-2 procedure (Moehle 2003) 
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Figure 2-3: Simplified representation of forward-directivity pulses and their acceleration and 

velocity response spectra (Somerville et al. 2003) 
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Figure 2-4: Near fault response spectral model, strike-slip, 5 km for soil sites. 

Top: model without directivity (Abrahamson and Silva 1997). Bottom-left: Broadband 

directivity model (Somerville et al. 1997). Bottom-right: Narrow band directivity model 

(Somerville 2003) 
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Figure 2-5: Spectra of the 20 ordinary ground motions scaled to the same spectral 

acceleration at T = 0.5 sec (Krawinkler et al. 2003a) 

 
Figure 2-6: Type A, B, and Cn pulses (Makris 1997; Makris and Chang 1998) 
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Figure 2-7: Acceleration, velocity, and displacement time histories of pulses P2 and P3 

(Krawinkler and Alavi 1998) 

 

 

Figure 2-8: Acceleration and velocity time history of near-fault ground motion pulse with 

different decaying factors (Agrawal and He 2002) 
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Figure 2-9: Simplified half-sine pulses (Bray and Rodriguez-Marek 2004) 

 

 
Figure 2-10: A cloud of Ln EDP|IM data 
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Figure 2-11: A strip of Ln EDP and its Gaussian CCDF 

 

Figure 2-12: Incremental Dynamic Analysis curve and a Gaussian CCDF of Ln IMCap 
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Figure 2-13: A strip of Ln EDP data and its empirical CCDF 
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CHAPTER THREE 

RESPONSE OF MULTI-STORY STRUCTURES TO NEAR-FAULT GROUND 
MOTIONS 

3.1. Introduction 

Ground motions close to a fault affected by directivity effects are different from ordinary 

ground motions (e.g. see Chapter 1). They typically initiate with a high intensity velocity 

pulse at the beginning of time history records (e.g., see Figure 0-1). In the current state-of-

the-practice, forward-directivity effects are introduced in seismic hazard analyses by 

modifying the ground motion elastic response spectra ( Somerville et al. 1997; Abrahamson 

2000) and using spectral-based intensity measures to capture structural response (Baker and 

Cornell 2008). Nevertheless, forward-directivity ground motions typically have large 

intensities and tend to drive structures into the nonlinear range. For these cases, a linear 

response spectrum, and in particular the spectral acceleration at the first-mode period of the 

structure, Sa(T1), no longer serves as an effective intensity measure (Baker and Cornell 

2008). However, forward-directivity ground motions have relatively simple time-domain 

representations and can be characterized by the period and amplitude of the velocity pulse 

(Agrawal and He 2002; Mavroeidis and Papageorgiou 2003; Bray and Rodriguez-Marek 

2004; Baker 2007a), and these parameters can be used as intensity measures. Moreover, the 

narrow band nature of the forward-directivity pulse implies that forward-directivity ground 

motions can be represented using equivalent pulse models (Agrawal and He 2002; 

Mavroeidis and Papageorgiou 2003). These models have been shown to be an acceptable 

proxy for pulse-like motions. 
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In this chapter, the seismic response of three multi-story structures to equivalent pulses 

is studied. An equivalent pulse model based on the modified Gabor wavelet pulse is selected 

(Gabor 1946; Mavroeidis and Papageorgiou 2003). The cases for which this equivalent pulse 

model can capture structural response to forward-directivity ground motions are identified, 

with particular care to consider separately the response of the structures to the forward-

directivity pulse from their response to the high-frequency motion that follows or sometimes 

overrides the initial pulse. Fifty four forward-directivity and ordinary ground motions are 

used to obtain statistically significant results.  

This chapter first presents a description of the ground motion database used in this study, 

along with the methodology employed to extract equivalent pulses from the recorded ground 

motions. The structural models are then described, and their responses to ordinary and 

forward-directivity ground motion are compared. The parameters of the simplified wavelet 

pulses are then calibrated such that the equivalent pulses render a similar structural response 

to that of the recorded forward-directivity records. These parameters are compared to 

parameters of forward-directivity pulses extracted directly from the recorded ground 

motions, and cases in which structural response can be predicted with the simplified pulses 

are identified. Finally, the response of the structures to pulse-type ground motions is 

summarized in terms of a response surface. 

3.2. Ground Motion Records Used in this Study 

Twenty-seven forward-directivity ground motions and twenty-seven ordinary ground 

motions from six earthquakes with moment magnitude (Mw) greater than 6.5 were compiled 

into a database (Table 3-1 to Table 3-3; Figure 3-1 and Figure 3-2). All records were taken 
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from stations within 20 km of the fault rupture. Records were selected from a database by 

Bray and Rodriguez-Marek (Bray and Rodriguez-Marek 2004) and were obtained from the 

Pacific Earthquake Engineering Research Center database (PEER 1999). Baker’s procedure 

(2007) was used to obtain a pulse-period and amplitude for each of the motions in the 

forward-directivity database (Table 3-2). The mean value for the ratio of the amplitude of the 

extracted pulses over the peak ground velocity is 0.73 for the forward-directivity ensemble. 

In this study, both the time-domain and frequency-domain scaling methods were 

examined. The frequency-domain scaling (e.g., scaling to a target spectral acceleration) was 

not chosen because it alters the characteristics of some of the pulse-like ground motions. In 

particular, spectral matching using the RSPMatch2005 program (Abrahamson 1993) 

changed the pulse-like characteristics of two of the pulse-like ground motion records. 

The time-domain scaling method elevated or plunged response spectra of the records 

unreasonably. Therefore, a large number of ground motions without any scaling were used to 

stabilize the statistical analyses. 

3.3. Multi-Story Systems 

To study the effects of forward-directivity pulses on buildings, three generic buildings 

were considered. The buildings are seven-story, fourteen-story, and twenty one-stories high. 

The buildings are devoid of any irregularities. They are designed to have fundamental 

periods of exactly 1, 2, and 3 seconds, for the seven, fourteen, and twenty one-story 

buildings, respectively. The structures were designed to have the same base shear coefficient 

(defined as the base shear that causes yielding in the structure divided by the total weight of 

the structure). The base shear coefficient was arbitrarily selected to be 0.07. The seismic 
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resisting system, in the weak direction, consists of four moment resisting steel frames. Each 

frame has three 20 foot long by 12.5 foot high spans. Details of the building in the strong 

direction are irrelevant in this study because the structures were only loaded in their weak 

directions. To reduce computational efforts, the structures were simplified as shear building 

models. 

A MATLAB program (The MathWorks Inc.) was written for conducting 2D nonlinear 

dynamic analyses of the frames. The step-by-step integration method with the Wilson-Theta 

modification (Chopra 1995) was used for time integration and the Modified Newton-

Raphson Method (Chopra 1995) was used to iterate within each time step. Steel material 

nonlinearity was modeled by an elastoplastic kinematic hardening relationship, having 

identical properties in tension and compression. The frames were assumed to have a viscous 

damping ratio equal to 5%. To enhance analysis accuracy, each story was modeled in 

SAP2000 and subjected to pushover analysis to get a force-displacement curve for that story. 

Plastic hinge properties of each member were modeled with a bilinear non-degrading 

moment-curvature model with a range of strain hardening from 2.5% to 3.5%. These models 

were obtained from the commercial Xtract software (Imbsen & Associates Inc.) and were 

assigned to the SAP model at the top and bottom of columns. The member hardening 

behavior in each story resulted in a story hardening stiffness range of 10% to 12% in the 

form of force-displacement curves. The force-displacement curves obtained from the SAP 

pushover analyses for each story were used by the MATLAB program for the dynamic 

analyses. 
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P-effects, which can have a significant role in the response of near-fault structures 

with an excessive drift, were approximated by adding geometric stiffness to the first order 

stiffness matrix. The geometric stiffness was calculated assuming that axial forces remain 

constant for the entire duration of the ground motion. Geometric stiffness was calculated 

based on the shape functions of each column with the two ends fixed against rotation and 

found to be equal to 1.2P/L where P is axial load and L is length of column. 

3.4. Analysis Results 

Structural analyses were preformed for each of the three structures described in the 

previous paragraph using the input ground motions listed in Table 3-2 and Table 3-3 

(forward-directivity and ordinary ground motions, respectively). Only the fault normal 

component of each record was applied to the structures and it was assumed that the weak 

axes of the structures are perpendicular to the fault. Engineering Demand Parameters such as 

drift ratio, ductility demand, and story shear forces were monitored. However, the maximum 

story displacement ductility demand (MSDD) was selected to describe the inelastic response 

of the structures. The MSDD becomes greater than 1.0 when the relative displacement in any 

story is larger than the story yield displacement. The maximum inter-story ductility demand 

(MIDD) was defined as the maximum value of the MSDD over all the stories. 

3.5. MSDD for Forward-Directivity and Ordinary Ground Motions 

The results of the structural analyses for the ordinary and the forward-directivity ground 

motion sets are shown in Figure 3-3. The maximum standard deviation of the MSDD for all 

stories (σmax) is shown for each structure. Observe that the mean structural response is 

consistently higher for the forward-directivity ground motion set (Figure 3-3b). Even though 
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the ordinary and the forward-directivity ground motion sets have approximately the same 

mean PGA (0.49g and 0.48g, respectively), their PGVs are distinctly different due to the 

presence of the initial velocity pulse (the mean PGV of the forward-directivity set is 81.7 

cm/s compared to 42.0 cm/s for the ordinary ground motion set). The initial pulse leads to 

larger nonlinearities in the system, and thus to a larger structural demand. Moreover, since 

the structural response appears to be controlled by the initial pulse, and this pulse varies 

widely from one ground motion to another, the dispersion in the structural response is larger 

for the forward-directivity set, as evidenced by the larger values of the maximum standard 

deviation (max) of MSDD when the structure is subject to forward-directivity ground 

motions (Figure 3-3b) as opposed to ordinary ground motions (Figure 3-3a). 

The observations made in Figure 3-3 are reinforced when a comparison is made of the 

inelastic response of the 7-story structure to forward-directivity and ordinary records from 

selected earthquakes (Figure 3-4). The structural response is different for ordinary and 

forward-directivity ground motion ensembles within the same earthquake; the mean value of 

response for each earthquake shows that forward-directivity ground motions impose higher 

demand to the structure compared to ordinary ground motions. Results for the other two 

buildings are qualitatively similar. 

The force-displacement curves of the seven-story structure subjected to ordinary and 

pulse-like records are shown in Figure 3-5. As shown in the figure, the lateral displacement 

and shear forces under forward-directivity ground motions are much higher than those under 

ordinary ground motions with the same PGA but different PGV. It is worth noting that the 

peak displacement and the corresponding forces are generated at the beginning of the record 
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due to the forward-directivity pulse. This pulse imposes severe demands to the structure. The 

arrival of the velocity pulse causes the structure to dissipate considerable input energy in 

relatively few plastic cycles. 

Different damping values ranging from 5 to 15% were considered in order to investigate 

the effects of damping on the response of the structures subjected to pulse-like ground 

motions and ordinary ground motions. It was found that damping does not play a larger role 

in the response of the structures subjected to pulse-like ground motions than it does in 

structures subjected to ordinary ground motions, as would be expected given that viscous 

damping is proportional to velocity. Moreover, damping forces are slightly less effective 

when the structures are subjected to pulse-like ground motions compared to ordinary ground 

motions. This is because damping forces do not have enough time to dissipate significant 

energy in forward-directivity ground motions because of the short duration of the large-

amplitude cycle. The same result was obtained by Naeim (1996). For this reason, variations 

in structural response with respect to damping are ignored in the reminder of this chapter and 

results are presented only for a viscous damping value of 5%.  

3.6. Predictive Power of different IMs  

The response of the three structures in terms of MIDD as a function of three different 

intensity measures (PGA, Sa(T1), and PGV) are presented in Figure 3-6. The best-fit curve 

for the data is also shown separately for the forward-directivity and ordinary ground motion 

sets. A power-law model was used to correlate MIDD with each intensity measure. This 

model is constrained to increase monotonically and to produce values of MIDD ≥ 1. The 

best-fit parameters were obtained using Maximum Likelihood estimation and are given in 
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Table 3-4. No effort was made to use functional forms that can be extrapolated; hence the 

curves shown are valid only within the range of the data shown. Observe that when the IM is 

either PGA or the spectral acceleration at the first mode period, the MIDD for the forward-

directivity ground motions is higher than the MIDD for the ordinary ground motions; hence, 

different correlations should be used for forward-directivity and ordinary ground motions, in 

particular for higher IM. When the IM is PGV, the MIDD values for both the forward-

directivity and the ordinary ground motion sets are similar over the range of the data. These 

observations suggest that PGV is a more stable IM for near-fault ground motions. 

The standard deviation of the residuals (e.g. the MIDD for each ground motion minus 

the best fit curve) is a measure of how well an IM can predict the MIDD. However, the 

standard deviations of the residuals for the plots shown in Figure 3-6 increase with IM. 

Hence, a direct comparison of standard deviations of the forward-directivity and the ordinary 

ground motion sets cannot be made because the forward-directivity ground motion data set 

has, in general, higher values of the IM. The use of the coefficient of variation (e.g. the 

standard deviation normalized by the mean) is also misleading because of the wide range of 

MIDD values within each data set. Hence, an alternate normalization procedure is proposed 

with the objective of obtaining a single measure that can serve to quantify the quality of the 

fit for the relationships shown in Table 3-4. First, the standard deviation was allowed to vary 

linearly within the Maximum Likelihood model. A new parameter, σ10, was then defined as 

the standard deviation when MIDD is equal to 10. This parameter permits a comparison of 

the standard deviations at a single value of MIDD and hence can be used on data sets with 

widely different values of MIDD. A large σ10 implies a poor correlation between MIDD and 

the IM, while a small σ10 implies that the IM is a good predictor of MIDD. The σ10 values 
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computed separately for forward-directivity and ordinary ground motions are shown in 

Figure 3-6 and listed in Table 3-5. For completeness, other measures of dispersion (e.g. 

standard deviation and coefficient of variation) are also listed in Table 3-5.  

The poor correlation between MIDD and PGA (Figure 3-6a; also see the high values of 

10 in Table 3-5 for PGA compared to those for other IM) indicates that PGA is a poor 

predictor of structural response for both ordinary and forward-directivity ground motions. 

Also observe that Sa(T1) is a better predictor of MIDD for ordinary ground motions than for 

forward-directivity ground motions (Figure 3-6b; also see in Table 3-5 that 10 is 

significantly lower for non-forward-directivity ground motions than for forward-directivity 

ground motions). This variability in standard deviations can be important when using 

traditional hazard analyses for forward-directivity ground motions. PGV is a better predictor 

of MIDD than Sa(T1) for all the cases studied except for the 21-story building subject to the 

ordinary ground motion data set (Figure 3-6c, Table 3-5). This suggests that PGV is a better 

predictor of structural response both for ordinary and forward-directivity ground motions 

recorded in the near-fault region, and hence it should be used as an IM instead of spectral 

accelerations at the first mode period. The above results highlight the need to search for 

alternative ways to determine structural demand for structures subjected to forward-

directivity ground motions. In the next sections, an alternative approach using simplified 

pulse representations of forward-directivity motions is explored. 

3.7. Equivalent Gabor Pulse Model 

Wavelets are basis functions that can be used to divide a given function or continuous-

time signal into different frequency components. One such wavelet was proposed by Gabor 
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(1946). Later, Mavroeidis et al. (2003) replaced the Gaussian envelope of the Gabor wavelet 

with another symmetric bell-shaped function that possesses a simpler analytical expression. 

The velocity time history of the resulting wavelet is expressed as: 
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where, A controls the amplitude of the wavelet, fp is the frequency of the amplitude-

modulated harmonic (or the prevailing frequency of the signal),  is the phase of the 

amplitude-modulated harmonic (i.e.,  = 0 and  = ±π/2 define symmetric and antisymmetric 

signals, respectively),  is a parameter that defines the oscillatory character (i.e., zero 

crossings) of the signal, and to specifies the location in time of the envelope’s peak. An 

illustrative example of this pulse is shown in Figure 3-7. In this study, only  = 0 was 

considered in order to achieve an equivalent pulse with a lower number of parameters. 

Hence, the parameters needed to define the Gabor wavelet pulse are A, fp, and . 

A methodology was developed to constrain the parameters of the Gabor pulse such that 

the structural response to the pulses is similar to the structural response to recorded forward-

directivity ground motions. The parameter was selected based on the number of peaks and 

troughs of the forward-directivity pulse extracted using Baker’s procedure. Parameters A and 

fp were obtained by minimizing the differences between the MSDD due to the recorded 

forward-directivity ground motions and the MSDD values due to the Gabor wavelet pulses. 

The minimization criterion was defined as  

V(t) = 
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where, (MSDDpulse-like)i is the maximum story ductility demand due to the pulse-like ground 

motion in each story and (MSDDGabor)i is the maximum story ductility demand due to the 

Gabor wavelet pulse in each story. The parameters of the Gabor wavelet pulse after 

minimization are tabulated in Table 3-6. Structural response was not very sensitive to the 

value of the parameter , hence only two parameters (Ap and fp) control structural response. 

The MSDD due to the Gabor pulses were compared to the MSDD due to the pulse-like 

ground motions for cases in which the period of the forward-directivity pulses are roughly 

equal to the period of the structures (Figure 3-8b) and cases in which the periods are 

significantly different (Figure 3-8a and c). Observe that there is a close agreement between 

the displacement ductility demand due to the simplified pulses and the recorded forward-

directivity ground motions. 

Different damping values were considered to investigate the effects of damping on the 

response of the structure subjected to pulse-like ground motions versus ordinary ground 

motions. The structural responses of the buildings with 5%, 10%, and 15% damping ratios 

subjected to pulse-like and ordinary ground motions were compared using a simple criterion 

defined as the following: 
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where (MIDDζ )FD and  (MIDDζ )NonFD are the maximum inter-story ductility demands of the 

structure with damping ratio ζ for pulse-like and ordinary ground motions, respectively. 

(contributiondamping)FD and (contributiondamping)NonFD are additional damping forces due to the 

increase of damping of the structure subjected to pulse-like and ordinary ground motions, 

respectively. 

As an example, results for a 7-story building are tabulated in Table 3-7. It was found that 

the damping value does not play a more significant role in structures subjected to pulse-like 

ground motions than structures subjected to ordinary ground motions. Moreover, damping 

forces are less effective when the structures are subjected pulse-like ground motion 

compared to ordinary ground motions. As explained by Naeim (1996), this is due to 

 “… the maximum response to an impulse load will generally be 

attained on the first cycle. For this reason, the damping forces do 

not have time to absorb much energy from the structure. 

Therefore, damping has a limited effect in controlling the 

maximum response and is usually neglected when considering the 

maximum response to impulse type loads” (Naeim, 1996). 

3.8. Discussion 

The parameters of the Gabor pulses (pulse period and pulse amplitude) were obtained by 

matching the structural response of the multi-story structures such that the response to the 
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Gabor pulse was similar to the response of recorded forward-directivity pulses. When the 

pulse parameters match those obtained directly from the velocity time histories of recorded 

ground motions (using Baker’s procedure (2007)), it implies that structural response is 

controlled by the forward-directivity pulses. This is the case when the ratio of pulse period to 

the fundamental period of the structure falls in a range between 0.5 and 2.5 (Figure 3-9). In 

this range of pulse periods, 85% of the Gabor pulse periods are within 20% of the pulse 

period of the extracted forward-directivity pulses. Therefore, in this range of periods the 

response is controlled by the forward-directivity pulse and the Gabor wavelet pulses are 

capable of both reproducing structural response to forward-directivity ground motions and 

accurately resembling the recorded motions. Outside of this range, additional analyses 

indicated that structural response is controlled by the higher frequency content of the ground 

motions that either overrides or follows after the forward-directivity pulse. The higher 

frequency content elicits contribution of higher structural modes. In these cases, the pulse 

parameters are not adequate IM. Note that the Gabor pulses are still able to mimic structural 

response to recorded ground motions, but in these cases those pulses have no resemblance to 

the recorded ground motions and have no predictive value. The amplitude of the Gabor 

pulses obtained using the minimization procedure in Equation 3-2 is on average 73% of the 

PGV (with standard deviation of 0.22). Hence, attenuation relationships for PGV can be used 

to predict the amplitude of the pulses. 

To better understand why structural response is controlled by the forward-directivity 

pulse only when 0.5 ≤ Tpulse/Tstructure ≤ 2.5, it is helpful to look at the response spectra of the 

ground motions, the forward-directivity pulse alone, and the Gabor pulse used to match 

structural response. Figure 3-10 shows the velocity response spectra of recorded forward-
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directivity pulses, the extracted pulses using Baker’s procedure, and the Gabor pulses with 

parameters selected to match the MIDD of the structure. Fundamental periods of the 

structures have been marked on the horizontal axes. Note that when 0.5 ≤ Tpulse/Tstructure ≤ 2.5, 

the recorded ground motions, the extracted pulses, and the Gabor pulses have peaks at 

approximately the same spectral period and, importantly, this period coincides with the 

fundamental structural period (Figure 3-10b). On the other hand, when the period of the 

forward-directivity pulse is much shorter or longer than the fundamental period of the 

structure (Tpulse/Tstructure<0.5 or Tpulse/Tstructure > 2.5), the velocity response spectrum of the 

Gabor pulses does not closely match the velocity response of the extracted pulses and ground 

motion records. However, there is another peak in the velocity response spectrum of the 

ground motion records in the vicinity of the fundamental period of the structure that controls 

the behavior of the structure (Figure 3-10a and c). In Figure 3-10a, these peaks are related to 

shorter periods (higher frequencies) in the recorded ground motions that are filtered out when 

simplified pulses are used to represent the ground motions. In Figure 3-10c, the periods of 

forward-directivity pulses are too long to excite the structure. Therefore the response of the 

structure is governed by other frequencies, close to those of the structure.  

The distribution of the MSDD changes depending on the value of the pulse parameters. 

The critical story shifts from the base of the structure to higher stories with a decrease of the 

period of the pulse. However, the value of the ductility demand decreases as the period of the 

pulse decreases. In general, the distribution of the MSDD may be classified into three groups 

(Figure 3-11). For example, if we consider the 14-story structure, for pulses with long 

periods (Tp > 0.7 sec), the critical story is at the base. For pulses in the intermediate period 

range (0.4 < Tp ≤ 0.7 sec), the critical story moves to higher stories. For pulses with shorter 
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periods (Tp ≤ 0.4 sec), the distribution of the MSDD tends toward a uniform shape over the 

height of the structure. These period ranges change from structure to structure. This 

distribution of the MSDD cannot be captured by an elastic or spectral analysis which is based 

on Sa(T1). 

Given that Gabor wavelet pulses can reasonably represent near-fault ground motions 

when their pulse period is in the neighborhood of the fundamental period of the structure 

(0.5 ≤ Tpulse/Tstructure ≤ 2.5 for the structures studied herein), multiple runs can be used to 

predict the inelastic response of the structure for pulses with all possible amplitudes and 

periods in this range. Thus, the inelastic response of structures can be predicted for a range of 

forward-directivity pulses with realistic amplitudes and frequencies (Figure 3-12). The short 

period region of the response surface in Figure 3-12 is less smooth than the response at other 

period ranges, indicating that there are no clearly defined trends in the response of the 

structure in this region. This likely happens because the contribution of higher modes 

becomes predominant. A response surface such as that shown in Figure 3-12 can be coupled 

with Probabilistic Seismic Hazard Analyses to predict structural response (see Chapter 4). 

When Tpulse/Tstructure is outside of the defined range, the forward-directivity pulse may not 

control response and other IMs must be selected for predicting structural response.  

In the International Building Code (IBC 2006), vertical distribution of seismic forces in 

buildings that comply with the limitations for the use of the Simplified Analysis and 

Equivalent Lateral Force Procedures is based on first mode domination. This implies that 

maximum demand occurs at the base of the building. By contrast, for forward-directivity 
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input motions, the critical story (the story which has maximum MSDD) is not always at the 

base of the structure. 

Analyses were repeated without consideration of P-effects. The mean values of 

MSDD for each ensemble with and without consideration of P- effects are shown in Figure 

3-13. It was found that the P- effect decreases the stiffness of the system, elongates the 

fundamental period of the structure, and imposes more demand to the base of the structure. 

P- effects are more significant for records that cause more drift to the structure. Figure 3-13 

shows that P- effects are more significant for forward-directivity records and especially for 

taller structures. For example, when P- effects are considered, the mean value of MSDD 

computed at the base of the 7, 14, and 21-story structures increased by 6%, 16%, and 22%, 

respectively, for the forward-directivity ground motion data set. For all the cases when the 

critical story occurs at the base, P- effects increased MIDD and the critical story remained 

at the base. On the other hand, no consistent trend was observed when the critical story was 

one of the middle stories. On 75% of these cases, P- effects increased the value of MIDD 

and the critical story either stayed in the same floor, moved to the base, or shifted to other 

stories. In the remaining 25% of the cases, the critical story location either remained or 

shifted to other floors, but the value of MIDD decreased.  

Response of the structures with different damping ratios (5%, 10%, and 15%) to pulse-

like and ordinary ground motions was studied. Since the maximum response of the structures 

to pulse-like ground motions is attained on the first cycles, the damping forces do not have 

time to absorb much energy from the structures and they are not as effective as when the 

structures are excited with ordinary ground motions. 
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3.9. Conclusions 

In this chapter, the inelastic dynamic response of three different typical steel structures 

has been investigated to study the effects of forward-directivity. In addition, the idea of 

simplifying near-fault ground motions with equivalent pulses to predict the behavior of 

structures in the near-fault region was investigated. It was shown that, in general, the spectral 

acceleration at the first-mode period of vibration is not the ideal IM to capture structural 

response to pulse-like ground motions. On the other hand, dynamic analyses using an 

equivalent pulse model renders similar structural response to that computed for forward-

directivity pulses when 0.5 ≤ Tpulse/Tstructure ≤ 2.5. In this period range, the response of 

structures is controlled by forward-directivity pulses and equivalent pulses can be used to 

predict structural response. Outside of this range, the response of the structures is not 

controlled by the forward-directivity pulse.  

The shape of the MSDD distribution and location of the critical story are influenced 

heavily by the period and amplitude of the forward-directivity pulse. The MSDD is higher at 

the base when ground motions contain forward-directivity pulses with longer periods (e.g., 

for larger magnitude earthquakes). The critical story shifts up when the pulse period is 

shorter. This distribution of the MSDD has not been considered in building codes such as the 

IBC which assume that the maximum demand occurs at the base. Therefore, revisions for the 

codes to consider this issue are recommended.  

P- effects can be significant for structures subject to forward-directivity ground 

motions and should be accounted for in design. On the other hand, damping forces are less 

important in structures that are subjected to pulse-like ground motion compared to ordinary 
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ground motions. This study was based on the response of three generic buildings, hence care 

must be exercised when generalizing the results presented herein. Moreover, only the 

response of the buildings to the fault-normal component of all ground motions was 

considered. 
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Figure 3-1: Velocity time histories of the forward-directivity ground motions used in this study. 

For ground motion information see Table 3-2 
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Figure 3-2: Velocity time history of the near-fault ordinary ground motions used in this study. 

For ground motion information see Table 3-3 
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Figure 3-3: Maximum story ductility demand for (a) 27 non forward-directivity (NFD) records and (b) 27 forward-directivity (FD) 

records
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Figure 3-4: Maximum story ductility demand of the 7-story structure 

subjected to ordinary and forward-directivity ground motions from the (a) Loma Prieta, (b) 

Northridge, and (c) Chi-Chi earthquakes. For ground motion see Table 3-2 and Table 3-3. 
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Figure 3-5: Story shear vs. relative displacement of the 7-story structure 

at its base, for (a) ordinary ground motion (e.g. Non-Forward-Directivity, NFD) and (b) 

pulse-like ground motions (e.g. Forward-Directivity, FD) 
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Figure 3-6: Maximum inter-story ductility demand for the 7, 14, and 21 story structures 

subjected to pulse and non-pulse ground motion ensembles plotted versus different Intensity 

Measures. Continuous and dashed lines represent the median response for the Pulse and Non-

Pulse ground motion ensembles, respectively.
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Figure 3-7: Gabor wavelet pulses with parameters A = 20 cm/sec, fp = 1 Hz, and to = 2.5 sec. 



 

76 

 

0 5 10
1

2

3

4

5

6

7

8
Pacoima Dam (downstr.) Record

MSDD

S
to

ry
 L

e
v
e
l

 

 

FD, T
BaKer

= 0.59 s

Gabor, T= 0.75 s

0 10 20
1

2

3

4

5

6

7

8
Saratoga-W Valley Coll. Record

MSDD

S
to

ry
 L

e
v
e
l

 

 

FD, T
BaKer

= 1.90 s

Gabor, T= 1.55 s

0 5 10
1

2

3

4

5

6

7

8
TCU101 Record

MSDD
S

to
ry

 L
e
v
e
l

 

 

FD, T
BaKer

= 6.86 s

Gabor, T= 1.11 s

0 5 10 15 20

2

4

6

8

10

12

14

16

Pacoima Kagel Canyon Record

MSDD

S
to

ry
 L

e
v
e
l

 

 

FD, T
Baker

= 0.90 s

Gabor, T= 0.91 s

0 2 4 6 8 10

2

4

6

8

10

12

14

16

Gilroy Historic Building Record

MSDD

S
to

ry
 L

e
v
e
l

 

 

FD, T
Baker

= 1.80 s

Gabor, T= 1.89 s

0 2 4 6 8 10

2

4

6

8

10

12

14

16

Arcelik Kandilli Record

MSDD

S
to

ry
 L

e
v
e
l

 

 

FD, T
Baker

= 7.97 s

Gabor, T= 3.73 s



 

77 

 

0 20 40

2

4

6

8

10

12

14

16

18

20

22

24
Newhall-Fire Sta. Record

MSDD

S
to

ry
 L

e
v
e
l

 

 

(a)

FD, T
Baker

= 1.04 s

Gabor, T= 1.41 s

0 10 20

2

4

6

8

10

12

14

16

18

20

22

24
Newhall-W. Pico Can. Rd. Record

MSDD

S
to

ry
 L

e
v
e
l

 

 

(b)

FD, T
Baker

= 2.41 s

Gabor, T= 2.61 s

0 10 20

2

4

6

8

10

12

14

16

18

20

22

24
TCU102 Record

MSDD
S

to
ry

 L
e
v
e
l

 

 

(c)

FD, T
Baker

= 9.11 s

Gabor, T= 3.09 s

 
Figure 3-8: Maximum story ductility demand for pulse-like ground motion and Gabor 

wavelet pulses. 

(a) when pulse period is significantly shorter than structural period (b) when pulse period 

approximately matches structural period (c) when pulse period is significantly longer than 

structural period. The first, second, and third rows correspond to the 7, 14, and 21 story 

structures, respectively.  
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Figure 3-9: Comparison of (a) the periods and (b) the amplitudes of the Gabor pulses and the parameters of the forward-directivity 

pulses. 
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Figure 3-10: Velocity response spectra for the recorded pulse-like ground motion 

The extracted wavelet pulse, and the Gabor wavelet pulse for selected forward-directivity ground motions (a) when 

0.5 > Tpulse/Tstructure, (b) when 0.5 ≤ Tpulse/Tstructure ≤ 2.5, (c) when Tpulse/Tstructure > 2.5. The first, second, and third rows correspond 

to the 7, 14, and 21 story structures, respectively. (These spectra correspond to the input ground motions used in the analyses 

shown in Figure 3-8). 
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Figure 3-11: Distribution of maximum story ductility demand of the 14-story building 

for Gabor wavelet pulses with long (Tp > 0.7 sec), intermediate (0.4 < Tp ≤ 0.7 sec), and short 

periods (Tp ≤ 0.4 sec) A=40 cm/sec. Results for other buildings are qualitatively similar.  
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Figure 3-12: Maximum inter-story ductility demand of the 7-story structure for Gabor pulses 

with parameters  = 3, 15 < A < 60 cm/s, and 0.37 < Tp  < 3.33 s. 
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Figure 3-13: Mean value of MSDD with and without P- effects for (a) ordinary and (b) forward-directivity ground motions. 
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3.11. Tables 

Table 3-1: Earthquakes that recorded the ground motions used in this study. 

Earthquake Date Moment magnitude 

Parkfield (PF) 6/27/66 6.1 

San Fernando (SF) 2/9/71 6.6 

Imperial valley (IV) 10/15/79 6.5 

Morgan Hill (MH) 4/24/84 6.2 

Superstition Hills (SH) 11/24/87 6.6 

Loma Prieta (LP) 10/17/89 7 

Erzincan, Turkey (EZ) 3/13/92 6.7 

Landers (L) 6/28/92 7.3 

Northridge (N) 1/17/94 6.7 

Kobe (KB) 1/17/95 6.9 

Kocaeli (K) 8/17/99 7.4 

Chi-Chi (CH) 9/21/99 7.6 

Duzce (D) 11/12/99 7.1 

Palm Springs (PS) 7/8/86 6.0 

Denali(DE) 11/3/02 7.9 

San Simeon (SS) 12/23/03 6.5 

Bam (B) 12/26/03 6.5 
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Table 3-2: Ground motions with forward-directivity effects (selected from Bray and Rodriguez-Marek (2004)). 

# Station Agency 
Station 

# 
Event

a
 

R
b
 

(km) 
Site

c
 

PGA 

(g) 

PGV 

(cm/s) 
Tv-p 

e
(s) 

(Tp)Baker 
f 

(s) 

(Ap)Baker 
g 

(cm/s) 

1 Gilroy-Gavilan Coll. CDMG 47006 LP 11.6 r 0.32 30.81 0.38 1.80 13.8 

2 Gilroy-Historic Bldg. CDMG 57476 LP 12.7 s 0.29 36.82 1.47 1.80 29.2 

3 Gilroy Array#1 CDMG 47379 LP 11.2 r 0.48 38.61 0.4 4.31 9.4 

4 Gilroy Array#2 CDMG 47380 LP 12.7 s 0.41 45.67 1.46 1.72 40.4 

5 Gilroy Array#3 CDMG 47381 LP 14.4 s 0.54 49.34 0.48 2.32 23.8 

6 LGPC UCSC 16 LP 6.1 r 0.84 103.18 0.79 3.92 62.1 

7 Saratoga-Aloha Ave. CDMG 58065 LP 13.0 s 0.39 55.58 1.55 4.47 26.5 

8 Saratoga-W Valley Coll. CDMG 58235 LP 13.7 s 0.40 71.33 1.14 1.90 37.7 

9 Erzincan   95 EZ 2.0 s 0.50 95.56 2.23 2.65 66.6 

10 Jensen Filtration Plant USGS 655 N 6.2 s 0.40 104.55 2.86 3.36 80.3 

11 Newhall-Fire Sta. CDMG 24279 N 7.1 s 0.77 120.27 0.71 1.04 92.6 

12 Newhall-W. Pico Can. Rd USC 90056 N 7.1 s 0.43 87.75 2.03 2.41 76.0 

27 Pacoima Dam (downstr.) CDMG 24207 N 8.0 r 0.53 51.24 0.44 0.59 35.0 

14 Rinaldi Receiving Sta. DWP 77 N 7.1 s 0.89 173.07 1.06 1.50 111.3 

15 Sylmar-Converter Sta. DWP 74 N 6.2 s 0.61 130.27 1.1 3.48 78.4 
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Table 3-2 (Cont.) 

# Station Agency 
Statio

n # 
Event

a
 

R
b
 

(km) 
Site

c
 

PGA 

(g) 

PGV 

(cm/s) 
Tv-p 

e 
(s) 

(Tp)Baker 
f 

(s) 

(Ap)Baker 
g 

(cm/s) 

16 Sylmar-Converter Sta. E. DWP 75 N 6.1 s 0.85 116.56 2.92 3.49 55.0 

17 Sylmar-Olive View FF CDMG 24514 N 6.4 s 0.77 122.72 2.42 3.11 71.0 

18 Pacoima Kagel Canyon CDMG 24088 N 7.3 r 0.53 56.00 0.88 0.90 43.0 

19 Arleta-Nordhoff Fire Sta. CDMG 24087 N 8.7 s 0.32 35.50 1.49 1.23 23.0 

13 Duzce ERD – K 12.7 s 0.36 46.41 1.37 1.36 46.7 

20 Arcelik Kandilli  – K 17.0 r 0.14 42.35 5.24 7.97 28.4 

21 Gebze ERD – K 17.0 r 0.28 40.69 4.62 5.97 34.0 

22 TCU052
h, i

 CWB – CH 0.2 s 0.53 177.27 4.48 6.12 95.2 

23 TCU068
h
 CWB – CH 1.1 s 0.61 145.13 4.06 4.25 104.9 

24 TCU075
i
 CWB – CH 1.5 s 0.32 76.14 2.03 2.41 61.8 

25 TCU101
i
 CWB – CH 2.9 s 0.21 65.19 8.62 6.86 38.4 

26 TCU102
i
 CWB – CH 1.8 s 0.30 87.07 2.52 9.11 51.7 

a
 See Table 3-1.    

b
 Closest distance to the fault plane.     

c
 Soil (s) or rock (r). 

e
 Period corresponding to the peak in the velocity response spectrum. 

f
 Pulse period determined with the procedure of Baker (2007). 

g
 Pulse amplitude determined with the procedure of Baker (2007). 

h
 The fault normal direction for these records was assumed to be the direction oriented with the largest velocity pulse (N122º for 

TCU052 and N199º for TCU068). 
i
 The fling step was removed using the procedure described in Bray and Rodriquez-Marek (2004).
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Table 3-3: Near-fault ground motions included in the non-FD database (e.g. those that do not have pulse-like characteristics). 

# Station Agency Station # Event
a
 R 

b 
(km) Site

c
 PGA (g) PGV (cm/sec) Tv-p 

d 

1 BRAN UCSC 13 LP 10.7 r 0.63 53.34 0.49 

2 Capitola CDMG 47125 LP 15.2 s 0.45 34.56 0.64 

3 Corralitos CDMG 57007 LP 3.9 r 0.51 45.48 0.75 

4 UCSC Lick Observatory CDMG 15 LP 18.4 r 0.47 17.69 0.36 

5 UCSC UCSC 58135 LP 18.5 r 0.46 11.61 0.16 

6 WAHO UCSC 14 LP 17.5 r 0.78 25.42 0.23 

7 N Hollywood – Coldwater Can. USC 90009 N 12.5 r 0.24 22.89 1.2 

8 Sunland – Mt Gleason Ave. USC 90058 N 13.4 r 0.15 19.25 1.04 

9 Burbank – Howard Rd.  90059 N 16.9 r 0.12 8.14 0.64 

10 Simi Valley – Katherine Rd. USC 90055 N 13.4 r 1.07 51.4 0.62 

11 Sun Valley – Roscoe Blvd. USC 90006 N 10.1 s 0.31 25.86 1.01 

12 Santa Susana Ground USGS 5108 N 16.7 r 0.4 20.31 0.69 

13 Big Tujunga, Angeles Nat F USC 90061 N 19.7 r 0.17 6.67 0.64 

14 CHY028 CWB - CH 3.1 s 0.65 72.86 0.62 

15 CHY029 CWB - CH 11.0 s 0.3 30.35 0.67 

16 CHY035 CWB - CH 12.7 s 0.25 45.61 1.28 

17 CHY080 CWB - CH 2.7 s 0.97 107.61 0.88 

18 CHY006 CWB - CH 9.8 s 0.36 55.44 1.81 

19 TCU055 CWB - CH 6.4 s 0.24 26.23 2.15 

20 TCU070 CWB - CH 19.0 s 0.26 52.16 5.1 

21 TCU071 CWB - CH 5.3 s 0.58 44.52 0.56 

22 TCU072 CWB - CH 7.0 s 0.53 71.8 0.88 

23 TCU074 CWB - CH 13.5 s 0.64 73.4 1.47 

24 TCU079 CWB - CH 11.0 s 0.76 61.24 0.6 

25 TCU089 CWB - CH 8.9 s 0.34 30.93 5.42 
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# Station Agency Station # Event
a
 R 

b 
(km) Site

c
 PGA (g) PGV (cm/sec) Tv-p 

d 

26 Bolu ERD - D 17.6 s 0.81 56.51 0.79 

27 Duzce ERD - D 8.2 s 0.36 59.99 5.50 
a
 See Table 3-1.      

b
 Closest distance to the fault plane. 

c
 Soil (s) or rock (r). 

d
 Period corresponding to the peak in the velocity response spectrum. 
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Table 3-4:  Parameters for the power-law model* used to correlate MIDD with different intensity measures 

Structure GM set 
IM = PGA IM = Sa(T1) IM = PGV 

a b xo a b xo a b xo 

7 story 
FD 32.3 0.73 0.1 24.6 0.71 0.1 0.095 1.17 5 

NFD 13.3 0.55 0.1 13 0.70 0.1 0.266 0.92 5 

14 story 
FD 37.6 0.69 0.1 42.8 0.71 0.03 0.286 1.00 15 

NFD 12.8 0.47 0.1 21.2 0.48 0.03 1.227 0.58 15 

21 story 
FD 27.3 0.87 0.05 35.1 0.61 0.02 0.174 1.03 15 

NFD 9.9 0.32 0.05 32.3 0.54 0.02 0.949 0.63 15 

 

*    1,1max
b

oxIMaMIDD   

 

Table 3-5: Measures of fit for the correlations between MIDD and different intensity measures 

Structure GM set 
IM = PGA IM = Sa(T1) IM = PGV 

10 
a
 res 

b
 res 

c
 10 

a
 res 

b
 res 

c
 10 

a
 res 

b
 res 

c
 

7 story 
FD 5.98 9.41 0.57 4.35 7.11 0.43 4.05 4.85 0.29 

NFD 4.46 3.81 0.47 2.48 1.87 0.23 1.9 1.55 0.19 

14 story 
FD 5.34 9.28 0.48 6.18 5.52 0.28 2.14 2.73 0.14 

NFD 4.67 4.05 0.48 2.21 2.36 0.28 2.18 2.02 0.24 

21 story 
FD 5.15 6.57 0.48 4.62 5.36 0.39 2.69 2.57 0.19 

NFD 4.91 4.71 0.58 2.80 2.69 0.33 3.41 2.84 0.35 
a
 10 = standard deviation of residuals when MIDD = 10. 

b
 res = standard deviation of residuals (assuming a constant standard deviation). 

c
 res = coefficient of variation of residuals given by res divided by the mean MIDD. 
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Table 3-6: Parameters of Gabor Wavelet pulses (Equation 3-1) obtained through minimization. 

Station 
7-Story (T1 = 1sec) 14-Story (T1 = 2sec) 21-Story (T1 = 3sec) 

Tp (sec) γ A (cm/sec) Tp (sec) γ A (cm/sec) Tp (sec) γ A (cm/sec) 

Gilroy - Gavilan Coll. 1.60 3.0 13.0 1.89 3.0 11.7 1.99 3.0 13.6 

Gilroy - Historic Bldg. 1.59 3.0 34.2 1.89 3.0 25.6 1.56 3.0 30.9 

Gilroy Array#1 1.24 2.0 13.3 3.91 2.0 13.2 3.45 2.0 10.1 

Gilroy Array#2 1.49 2.5 44.0 1.96 2.5 37.4 1.53 2.5 45.4 

Gilroy Array#3 2.10 3.0 25.3 1.78 3.0 27.7 2.15 3.0 23.7 

LGPC 1.75 3.0 70.0 3.26 3.0 70.0 3.37 3.0 56.5 

Saratoga - Aloha Ave. 1.30 3.0 33.3 3.63 3.0 29.5 4.04 3.0 30.1 

Saratoga - W Valley Coll. 1.55 3.0 41.0 2.49 3.0 37.0 2.24 3.0 41.2 

Erzincan 3.53 3.0 105.1 2.57 3.0 73.1 2.57 3.0 67.6 

JensenFiltration  Plant 2.39 3.0 71.3 3.67 3.0 74.6 2.84 3.0 83.6 

Newhall - Fire Sta. 1.01 4.0 92.0 1.49 4.0 96.4 1.41 4.0 89.9 

Newhall - W. Pico Can. Rd 2.69 2.0 82.1 2.57 2.0 81.0 2.61 2.0 101.3 

Pacoima Dam (downstr.) 0.75 3.0 25.2 1.29 3.0 38.6 7.51 3.0 45.9 

Rinaldi Receiving Sta. 1.40 2.5 108.2 1.78 2.5 125.0 2.26 2.5 124.9 

Sylmar - Converter Sta. 1.77 2.5 97.2 3.25 2.5 74.6 3.95 2.5 80.1 

Sylmar - Converter Sta. E. 1.45 2.5 68.3 3.08 2.5 60.7 4.10 2.5 58.8 

Sylmar - Olive View FF 1.96 2.5 78.2 2.90 2.5 62.1 2.62 2.5 68.5 

Pacoima Kagel Canyon 0.90 3.0 49.9 0.91 3.0 73.4 1.23 3.0 57.7 

Arleta – Nordhoff Fire Sta. 1.17 2.5 19.1 1.06 2.5 46.5 1.66 2.5 52.1 

Duzce 1.41 2.5 50.2 1.67 2.5 51.6 2.19 2.5 54.0 

Arcelik Kandilli 1.47 3.0 11.5 3.73 3.0 22.9 8.12 3.0 49.5 

Gebze 0.87 3.0 20.6 4.34 3.0 37.5 6.50 3.0 46.6 

TCU052 3.20 3.0 139.6 7.24 3.0 131.9 5.54 3.0 87.3 

TCU068 2.75 3.0 103.9 3.98 3.0 98.3 3.95 3.0 107.9 

TCU075 2.19 3.0 61.4 2.79 3.0 63.3 2.54 3.0 69.8 

TCU101 1.11 2.0 23.0 2.38 2.0 30.1 6.33 2.0 42.0 

TCU102 2.34 2.5 89.9 7.21 2.5 101.5 3.09 2.5 128.6 
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Table 3-7: Normalized differences in response of 7-story structure due to increase of damping.  

Mean of differences in the maximum interstory ductility demand of 7-story subjected to:  

Pulse-like records when ζ was increased from Ordinary records when ζ was increased from 

5% to 10% 5% to 15% 5% to 10% 5% to 15% 

0.137 0.242 0.150 0.267 
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CHAPTER FOUR 

PROBABILISTIC SEISMIC DEMAND ANALYSIS FOR THE NEAR-FAULT ZONE 

4.1. Introduction 

In the current state-of-the-practice, forward-directivity effects are introduced in seismic 

hazard analyses by modifying the ground motion elastic response spectra. Nevertheless, 

forward-directivity ground motions typically have large intensities and tend to drive 

structures into the nonlinear range. For these cases, the spectral acceleration at the first-mode 

period of the structure, denoted as Sa(T1), no longer serves as an effective Intensity Measure 

(Luco and Cornell 2007; Baker and Cornell 2008).  

Alternatively, Vector-Valued IMs can be used to improve the accuracy of the estimation 

of the structural response (Baker and Cornell 2005; Luco and Cornell 2007; Baker and 

Cornell 2008). As discussed in previous chapters, forward-directivity ground motions have 

relatively simple time-domain representations and can be characterized by the period and 

amplitude of the velocity pulse. These parameters can be used as alternative Intensity 

Measures. Moreover, the narrow band nature of the forward-directivity pulse implies that 

forward-directivity ground motions can be represented using equivalent pulse models such as 

the Gabor pulse model presented in Chapter 3. This model was shown to be an acceptable 

proxy for pulse-like motions (see Chapter 3). Hence, the Gabor pulse can be used to compute 

structural response for pulse-like motion using time-domain analyses. 

A prerequisite of Performance-Based Earthquake Engineering is Probabilistic Seismic 

Demand Analysis in which hazard curves are obtained for an arbitrary Engineering Demand 



 

 

92 

Parameter (EDP). PSDA is built upon PSHA and couples the probabilistic description of 

future ground motions from PSHA with a probabilistic description of their effects on a 

structure. In traditional PSHA, forward-directivity effects are either ignored, treated semi-

deterministically, or considered through a broadband directivity model that captures the 

average effect of forward-directivity on response spectra (e.g.,  Somerville et al.’s 

broadband-directivity model (1997) as modified by Abrahamson (2000), or Spudich and 

Chiou (2008) model based on Isochrone theory). Travasarou et al. (2006) quantified the 

degree of conservatism associated with the semi-deterministic approach relative to explicit 

integration of directivity effects in probabilistic seismic hazard calculations using Somerville 

et al.’s model. Results of the study showed that directivity effects are most significant for 

critical structures that are designed for long return periods, sites located close to faults (e.g., 

< 5 to 15 km), and for sites located close to segmentation points along major faults when the 

adjacent fault is relatively active. Travasarou et al. (2006) concluded that treating directivity 

effects semi-deterministically can lead to considerable over prediction of ground motion 

hazard. On the other hand, traditional PSHA is based on elastic-pseudo acceleration of the 

fundamental period of the structure. While the effects of forward-directivity can be included 

in response spectral predictions using a broad band directivity model to modify response 

spectra, this approach does not account for the particularities of structural response to pulse-

type ground motions. In fact, Luco and Cornell (2007) proved that the elastic response 

spectrum at the fundamental period of the structure is neither a sufficient nor efficient IM for 

pulse-like ground motions. Therefore, both ignoring the effects of directivity on PSHA and 

including these effects semi-deterministically or through a broadband-directivity model, can 

lead to an inaccurate estimation of the seismic hazard. In order to accurately estimate the 
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hazard at near-fault sites, an appropriate quantification of the hazard due to pulse-like 

motions must be considered.  

In traditional PSDA analyses, a statistical correlation between IMs and EDP (usually 

referred to as fragility curves) is used to predict structural response. The use of IMs to 

characterize earthquake ground motions is necessary because of the impossibility of 

predicting full time histories for ordinary earthquake scenarios. Moreover, the statistical 

treatment of structural response is necessary because IMs (even when considering a vector of 

IMs) are not full descriptors of a ground motion time history, and as a result the relationship 

between structural response and the IM is not unique and must be described statistically even 

for idealized structures that have a deterministic response. However, as previously discussed, 

the most widely used IM (the spectral acceleration at the structure’s fundamental period of 

vibration) is not an adequate IM for near-fault ground motions (see Section 2.3). In 

particular, when the period of forward-directivity pulses are roughly equivalent to the 

fundamental period of the structure, structural response is controlled by forward-directivity 

pulses. In these cases, it is tempting to use pulse parameters as additional IM within a 

Vector-Valued PSDA approach. An alternative approach is to use predictive relationships for 

pulse period and pulse amplitude and develop an equivalent pulse model to fully characterize 

the ground motion time histories and then use time-domain structural analysis methodologies 

to predict structural response. 

In this study, forward-directivity effects are considered using time-domain analyses. In 

the time-domain approach, the amplitude and period of the pulse are used to generate 

equivalent pulse representations of the forward-directivity ground motion and these 
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representations are used in structural response analyses to predict the response of the 

structure when response is controlled by the pulse. Pulse parameters are predicted based on 

magnitude, site location with respect to the fault, and fault rupture geometry and orientation. 

In addition, the probability of pulse occurrence is included in the probabilistic analysis. For 

cases in which no directivity pulse is predicted, the PSDA is conducted using a more 

traditional approach. The results are hazard curves for PSDA that are more consistent with 

the behavior of the structure. 

The methodology to couple the traditional PSDA analyses for non-pulse ground motions 

with the proposed time-domain methodology is presented in this chapter. In addition, PSDA 

analyses using fragility curves developed specifically for near-fault ground motions are also 

conducted for comparison. An example is presented in order to illustrate the procedure and to 

show the applicability and limitations of the proposed methodology. 

4.2.  Probabilistic Seismic Demand Analysis 

The second generation of Performance-Based Earthquake Engineering assessment and 

design procedures (PBEE-2) which were postulated based on probability-based performance 

assessment tools (Cornell et al. 2002) was introduced in Section 2.2. PBEE-2 was expressed 

in terms of a triple integral which, is an application of the total probability theorem and is 

rewritten here for convenience: 

|][|]|[]|[]|[)(  IMdIMEDPdPEDPDMdPDMDVPDV    (4-1) 
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where DV, DM, EDP, and IM are Decision Variables, Damage Measures, Engineering 

Demand Parameters, and Intensity Measures, respectively; P[X|Y] is the probability density 

of X conditioned on knowledge of Y; and ][IMd is mean annual frequency of occurrence of 

the IM. 

PSDA is the intermediate step in PBEE where the mean annual rate of exceedance of an 

engineering demand parameter is computed, PSDA is embodied in the following equation 

(ATC-58 2004): 

  |)(|]|[)( ydyIMxEDPPx IMEDP      (4-2) 

where )(xEDP  is the mean annual frequency of EDP exceeding the value x, 

]|[ yIMxEDPP   is the probability of EDP exceeding x given that IM equals y, )( yd IM  

is the mean annual frequency of occurrence of IM equal to y, and )(yIM  is mean annual 

frequency of IM exceeding y (ground motion hazard) which is obtained from conventional 

PSHA. Note that Equation 4-2 is a subset of Equation 4-1. 

In this study, a new PSDA model (referred here as the New-PSDA model) is proposed 

for the analysis of sites located near a fault. The hazard is divided among the contribution of 

various scenarios (e.g. near-source, non-near-source) following the approach proposed by 

Tothong et al. (2007) for response spectra hazard curves that include the effect of forward-

directivity. In the proposed method, the EDP for near-source events with dominant forward-

directivity pulses are predicted using simplified pulses rather than using elastic-pseudo 
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acceleration response spectra. This provides an accurate prediction of structural response 

when forward-directivity pulses govern the structural behavior.  

In addition to the proposed PSDA approach, three other PSDA analyses were conducted 

to serve as a basis for comparison with the proposed PSDA model: 

1. A traditional PSDA model without inclusion of forward-directivity effects. In this 

model, elastic-pseudo acceleration of the fundamental period of a structure is used as 

the IM. The IM is obtained from an attenuation relationships (for simplicity, only 

one attenuation relationship was considered, the NGA attenuation relationships of 

Abrahamson and Silva (2007); more formally, an entire set of attenuation 

relationships should be considered to account for epistemic uncertainty). Directivity 

effects were ignored. EDPs were predicted through a statistical model which is 

developed based on results obtained from dynamic nonlinear time-history analyses 

of a structure subjected to ordinary and near-fault ground motions without forward-

directivity effects. In this chapter, this model and the PSHA associated with it are 

referred to as Traditional-PSDA and Traditional-PSHA models, respectively. 

2. A Broadband PSDA model. In this model the elastic-pseudo acceleration of the 

fundamental period of a structure was used as the IM. The IM predicted by the 

ground motion model of Abrahamson and Silva (2007) is modified by Somerville’s 

broadband-directivity model (Somerville et al. 1997, Abrahamson 2000) to account 

for forward-directivity effects. Forward directivity is included in the PSHA analysis 

by randomizing the location of the hypocenter and the direction of rupture 
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(Abrahamson 2000). EDPs were predicted through the same statistical model used in 

the Traditional-PSDA. In this chapter, this model and the PSHA associated with it 

are referred to as Broadband-PSDA and Broadband-PSHA models, respectively. 

3. An Enhanced Broadband PSDA model. To enhance the Broadband-PSDA model, 

Iervolino and Cornell’s model (2008) to predict the occurrence of forward-directivity 

pulses was used to discriminate between the hazard resulting from pulse-like 

motions and the hazard from non-pulse-like motions. Forward-directivity is included 

as for the Broadband-PSDA model; however, for scenarios in which pulse-like 

motions are predicted, the EDPs are predicted by a statistical model based on 

dynamic nonlinear time-history analysis of a structure subjected to near-fault ground 

motions with pulses (see Section 4.10.1). In this chapter, this model is referred to as 

Enhanced-Broadband-PSDA. Note that PSHA associated with this model is as same 

as the Broadband-PSHA model. 

In the following sections, the methodology of the proposed approach is elaborated, but 

first empirical correlations needed for developing the new PSDA model are presented.  

4.3. Empirical Correlations Needed for Incorporating Forward-Directivity 

The proposed PSDA model uses empirical correlations to predict the amplitude of the 

forward-directivity pulse (Ap) and its period (Tp) based on magnitude and distance. In 

addition, a predictive model for the occurrence of velocity pulses is also needed. These 

correlations are discussed in the following sections. 
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4.3.1. Predictive model for pulse period (Tp) 

Pulse period was found to be a function of magnitude alone ( Somerville 2003; Bray and 

Rodriguez-Marek 2004; Baker 2007a). The model by Baker (2007b) is used in this work, as 

discussed in Section 2.9.7 and repeated here for convenience: 

wp MTLn 02.178.5)(            with 55.0ln 
pT   (4-3) 

where pT  is the median predicted value of pulse period in seconds as a function of 

magnitude, Mw; and 
pTln  is the standard deviation in natural log units of the pulse period. 

This equation implicitly assumes that the pulse period has a log normal distribution.  

4.3.2. Predictive model for pulse amplitude (Ap) 

The amplitude of forward-directivity pulses extracted using the procedure proposed by 

Baker (2007a) was found to be 73% of the PGV (Section 3.8). Hence, the pulse amplitude 

can be calculated using predictive relationships for PGV. The model of Bray and Rodriguez-

Marek (2004) is used to estimate PGV at distances shorter than 20 km (the limit of 

applicability of that model): 

)7(57.034.051.4)(
22

 rupw rLnMPGVLn   with  49.0PGV    (4-4) 

where PGV  is in units of cm/sec, rrup is the closest distance to the site in km, and PGV is the 

standard deviation of PGV in log units. At distances larger than 60 km, the PGV is estimated 

using the Abrahamson & Silva NGA relationship (2007). For intermediate distances (e.g. 

between 20 km and 60 km), a cosine taper function is used to transit smoothly from the near-
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source PGV correlation (Bray and Rodriguez-Marek 2004) to the NGA PGV correlation 

(Abrahamson and Silva 2007): 

)().1()(.)( NGAMarekRodriguez PGVLnPGVLnPGVLn       (4-5) 

where ))
2

1

40
(cos(

2

1

2

1


rupr
 . Figure 4-1 shows an example of the resulting PGV 

function. The standard deviation of PGV is similarly defined. 

4.3.3. Correlation between pulse amplitude and pulse period 

Bray and Rodriguez-Mark (2004) proposed empirical relationships for pulse amplitude 

and pulse period. However, that study fails to provide a cross-correlation between the two 

ground motion parameters. Therefore, sixty-six forward-directivity ground motions (listed in 

Table 3-2 and Table 4-1) were considered in order to determine the cross-correlation 

between pulse period and pulse amplitude. Baker’s procedure (2007a) was used to extract 

forward-directivity pulses from the aforementioned records. Pulse parameters of ground 

motions (listed in Table 3-2 and Table 4-1) were used to define a correlation between pulse 

period and amplitude. The correlation is denoted as ρ and defined by Equation 4-6: 
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where 
__

pA  and 
__

pT define the mean amplitude and mean pulse period for each ground motion 

i as defined in Sections 4.3.1 and 4.3.2 for the corresponding magnitude and distance of that 
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recording. It was observed that no correlation exists between pulse period and amplitude for 

the data used ( = 0.08). 

4.3.4. Occurrence of Pulse 

Iervolino and Cornell (2008) developed an empirical model to predict the probability of 

a pulse occurring at the site determined by the following expression: 
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e

e
SrpulseP     (4-7) 

where rrup is the closest distance to the fault; S is the projected distance along the rupture 

plane from the epicenter to the site; θ is the azimuth between the fault plane and ray path to 

the site;  and i are parameters with values given by α = 0.85925, β1= -0.11137, 

β2 = 0.018704, β3 = -0.04441. The parameters S and  were originally defined by Somerville 

et al. (1997) to parameterize forward-directivity effects. 

4.4. Proposed PSDA methodology using time-domain analyses 

Similar to the procedure set forth by Tothong et al. (2007) (see Section 2.2), the 

proposed methodology separates the mean annual frequency of exceedance (MAF) of an 

Engineering Demand Parameter for a given Intensity Measure, λEDP(x), into the contribution 

of near-source (NS) and non-near-source (non-NS) scenarios. This is expressed as: 

)()()( ,, xxx NSEDPNSnonEDPEDP         (4-8) 
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The MAF of the EDP for the near-source case (EDP,NS) includes hazard resulting from 

pulse- and non-pulse-like ground motions and can be separated into two parts: the near-

source hazard from pulse-like ground motion events, pulseNSEDP &, , and the near-source 

hazard due to non–pulse-like records, pulsenoNSEDP &, :  

)()()( &,&,, xxx pulsenoNSEDPpulseNSEDPNSEDP     (4-9) 

For near-source ground motion with forward-directivity pulses, two different cases are 

considered: 

1. When forward-directivity pulses are not dominant: in this case, forward-directivity 

pulses do not control response of the structure, hence, Sa(T1) is used as an Intensity 

Measure. These cases are treated similarly to near-source events without pulse.  

2. When forward-directivity pulses are dominant: in this case, forward-directivity pulses 

control structural response and simplified pulses are used to predict the EDP using 

time-domain analyses.  

In Chapter 3 it was found that, for the MDOF structures analyzed therein, when the ratio 

of the pulse period and structural period are within 0.5 and 2.5 (i.e., 

0.5 ≤ Tpulse/Tstructure ≤ 2.5), forward-directivity pulses are dominant and control the behavior 

of the structures. For these cases an Incremental Dynamic Analyses using the Gabor 

equivalent pulse model was performed to predict the EDP for possible forward-directivity 

pulses at the analysis site. Given that Gabor wavelet pulses can reasonably represent near-

fault ground motions when forward-directivity pulses are dominant, multiple analyses can be 
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used to predict inelastic response of a structure for all possible pulse amplitudes and all pulse 

periods in this range. Hence, the inelastic response of a structure for a possible range of 

forward-directivity pulses with realistic amplitudes and frequencies can be predicted as 

illustrated in Figure 3-12. Note that the bounds for which the pulse controls (Tlower = 0.5 Tp 

and Tupper = 2.5 Tp for the MDOFs studied in Chapter 3) may be structure dependent. 

Nonetheless, the concept that the response of the structure is controlled by the pulse when the 

pulse period is in the neighborhood of the structural period is assumed to be generally 

applicable to all structures. 

In summary, the EDP hazard at a site can be divided into 

)()(
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dominantnot  is pulse,&,dominant is pulse,&,
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
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  ( 4-10) 

For non-NS (EDP,non-NS), and near source cases with no pulse or in which the pulse is not 

dominant (EDP, NS&no-pulse and EDP,NS&pulse, pulse is not dominant), the hazard (EDP) is computed 

using Equation 4-2 and the EDP is estimated from statistical correlations with spectral 

acceleration. In these cases, the intensity measure hazard (Sa) has to be deaggregated into 

the same four scenarios considered for EDP, hence:  
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    (4-11) 

Each of these hazard components is discussed in Sections 4-5 to 4-8.  
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4.5. Hazard for non-near source scenarios [λEDP,non-NS(x)] 

Whenever the closest distance to the ruptured fault for a given scenario is greater than 60 

km, that scenario is considered to be a non-near source scenario. The 60 km threshold 

distance is based on Abrahamson’s (2000) model. For these cases, the mean annual 

frequency of the Engineering Demand Parameter exceeding x for non-near-source 

events, )(, xNSNonEDP  , is given by: 

   |)(|]|)[()( ,, ydySxEDPPx NSNonSaNSNonEDP a
    (4-12) 

where ]|)[( ySxEDPP a   is the conditional probability of EDP exceeding x given that 

Sa(T1) = y, and is defined by the statistical model presented in Section 4.10.1; and 

)(, yd NSNonSa  is the mean annual frequency of occurrence of Sa(T1) = y for non-near-source 

scenarios and is equal to )2/()2/(  yy
aa SS  , where Δ is a selected Intensity 

Measure interval and )(, yNSNonSa   is the mean annual frequency of elastic-pseudo spectral 

acceleration exceeding y and is obtained through conventional PSHA considering only non 

near-source scenarios, hence, )(, yNSNonSa  is given by: 
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      (4-13) 

where vi is the mean annual rate of occurrence of earthquakes on fault i above a minimum 

threshold magnitude, Mw is the moment magnitude, and Rrup is the closest distance from the 
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site to the rupture plane. The function INS(rrup) is a flag that is set to one when rrup < 60 km, 

and set to 0 when rrup > 60 km. The term ),(
, rupwRM

rmf i
rup

i  is the joint probability density 

function (PDF) of Mw and Rrup on fault i. The term, ),|(
,| rupwRMSa

rmyG i
rup

i
w

, represents the 

Complementary Cumulative Gaussian probability density function (CCDF) of the log 

normally distributed random variable Sa, which is defined as:  
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     (4-14) 

where (...)  is the standard Gaussian CDF, and 
rupwa rmS ,|ln and 

rupwa rmS ,|ln are the conditional 

mean and standard deviation of the natural logarithm of Sa, respectively, as obtained from a 

ground motion prediction model (Abrahamson and Silva 2007), and y is a test value for Sa . 

Note that in Equations 4-13 and 4-14, random variables are denoted by uppercase characters 

while lowercase characters represent realizations of those random variables. This definition 

holds true for all equations presented herein. Equation 4-13 sums the hazard over all faults 

affecting a site. Without loss of generality, the presentation from here on assumes that a 

single fault contributes to hazard and the subscript i is ignored. 

A note on the implementation of Equation 4-13 is in order here. The definition of the 

joint probability density function ),(
, rupwRM

rmf
rup  

requires the definition of the probability 

density function for closest distance to the fault (Rrup) which in turn is a function of 

magnitude through the dependence of rupture length on magnitude. An alternative approach 
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is to iterate through all possible scenarios for magnitude and rupture length in which case 

Equation 4-13 becomes (for a single fault): 

      
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   ( 4-15) 

where RL is the rupture length and X is the location of the ruptured segment within the given 

fault. Note that rrup is a function of  and rl, but the functionality is omitted from the notation 

of Eq. 4-15 for simplicity. The probability density function for magnitude, fMw(mw) can be 

obtained by geological or seismological studies (McGuire 2004). The probability density 

function for rupture length, fRL(mw) is given by empirical relationships such as Wells and 

Coppersmith (1984). The probability density function for the location of rupture (f) is 

assumed to be uniform, implying equal probability of occurrence of rupture within the fault. 

This is a simplification that may not apply for faults with strong segmentation. Equation 4-15 

is easier to implement numerically than Equation 4-13 and lends itself to implementation of 

forward-directivity as discussed in subsequent sections. 

The implementation of Equation 4-15 is carried through the discretization of its 

integrals. The predictor variables for magnitude (Mw), rupture length (RL) and location of the 

rupture length (X) are first discretized into bins and then Equation 4-15 can be rewritten as: 
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where mj, rlk, and m are the center point of the Mw, RL, and X bins, respectively; j, k, and m 

are summation indices; PM(mj) denotes the probability that the magnitude falls within the j
th

 

magnitude bin; PRL(rlk) denotes the probability that the rupture length falls within the k
th

 

rupture length bin; and PX(m) denotes the probability that the location of the rupture falls 

within the m
th

 bin for location of rupture. These discrete probabilities are obtained from the 

corresponding probability density functions in Equation 4-15. 

4.6. Near source scenarios when no pulses are present [λEDP,NS&No-Pulse(x)] 

The approach for near-source ground motions without pulses is identical to that for non-

near source ground motions, except that only the appropriate scenarios (near-source 

scenarios with no pulses) are considered when computing the intensity motion hazard (Sa). 

Whenever the closest distance to the fault was less than 60 km, that scenario was considered 

as a near source scenario. The mean annual frequency of Engineering Demand Parameter 

exceeding x for near-source no-pulse-like events,EDP,NS&No-Pulse , is given by Equation 4-2 

but using Sa,NS&No-Pulse as the intensity measure: 

 
 |)(|]|)[()(

&,&,
ydySxEDPPx PulseNoNSSaPulseNoNSEDP a

         (4-17) 

In Equation 4-17, )(
&,

yd
PulseNoNSaS 

  is defined as the mean annual frequency of 

occurrence of Sa for the near-source hazard due to non–pulse-like records, which is obtained 

from the corresponding hazard curve for )(
&,

y
PulseNoNSaS 

 and is given by: 
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(4-18) 

where H is the location of the hypocenter defined between the interval [0,1] where h=0 and 

h=1 imply either end of the ruptured fault, and the variables Z, S, and  are parameterizations 

used to characterize forward-directivity ground motions (Somerville et al. 1997). S, and  

were previously defined, and Z is defined as ξcos(θ), where ξ is the fraction of the fault 

rupturing towards a site (ξ = S/RL). All other variables were previously defined. The 

probability of pulse occurrence P(pulse) is given by Iervolino and Cornel (2008) and is 

defined in Equation 4-7. The location of the hypocenter was assumed to be randomly located 

along the fault with a uniform distribution. Rupture was assumed to progress from the 

hypocenter towards each end of the ruptured fault. In Equation 4-18, rrup is a function of 

rupture length (rl) and the location of the ruptured segment (). The variables S and  are a 

function of the location of the hypocenter (h), the location of the fault segment () and the 

rupture length. The term PulseNoRMS rupwa
G ,,|  is defined by Equation 4-14 and represents the 

Complementary Cumulative Gaussian distribution function of Sa conditioned on Mw, Rrup 

when no pulse-like ground motions are considered. Such an attenuation relationship could be 

derived by excluding pulse-like ground motion from the database. Although no such 

relationship has been derived to date, it could be approximated by considering the Somerville 

et al. (1997) model for backward directivity or simply by using a model that does not include 

directivity. Equation 4-18 is solved through a discretization similar to that described by 

Equation 4-16. Such discretization is omitted herein for brevity. 
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4.7. Near source scenarios when Forward-Directivity pulses are not Dominant 

[λEDP,NS&Pulse, pulse not dominant(x)] 

Chapter 3 discusses cases in which structures subjected to pulse-like forward-directivity 

ground motions are controlled by the forward-directivity pulse. In general, it was observed 

that whenever the forward-directivity pulse is within a certain interval that contains the 

predominant period of the structure, then the structural response is controlled by the forward-

directivity pulse. Assuming a log-normal distribution for the period of the velocity pulse, the 

probability that the forward-directivity pulse is within a certain range of the structural period 

is given by: 

Pwithin(T1| Tp,Tp) = (ln(Tupper) | ln(Tp),Tp) – (ln(Tlower) | ln(Tp),Tp)       ( 4-19) 

where T1 is the predominant period of the structure, Tp and Tp are the mean value and 

standard deviation of the pulse period which in turn are function of earthquake magnitude 

(Equation 4-3). Tupper and Tlower define the upper and lower period bounds where the 

structural response is controlled by the forward-directivity pulse. In Chapter 3, such ranges 

were deemed to be equal to Tupper = 2.5 T1 and Tlower = 0.5 T1 for the MDOF structures 

analyzed in that chapter. 

The method of determining the mean annual frequency of exceedance of an EDP when 

forward-directivity pulses are not dominant is similar to Equation 4-2. The sole modification 

is that Sa is defined as: 
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    (4-20) 

Note that in this section the Complementary Cumulative Gaussian distribution function of Sa 

(GSa|M,Rrup,Pulse) should be computed from an attenuation relationships that considers pulse-

like ground motions, such as the broadband-directivity model of Somerville et al. (1997). 

Equation 4-20 is solved through a discretization similar to that described by Equation 4-16. 

Such discretization is omitted herein for brevity. 

4.8. Near source scenarios when Forward-Directivity pulses are Dominant 

[λEDP,NS&Pulse,pulse dominant(x)] 

The treatment of near source scenarios (e.g. rrup < 60 km) when the directivity pulses are 

dominant (e.g. Tlower < Tp < Tupper) differs from the treatment of other sources in hazard 

described in Sections 4.5 to 4.7. For other cases, Equation 4-2 was used to define the hazard 

for the EDP. On the other hand, when forward-directivity pulses control the ground motion 

hazard, each possible scenario is considered along with the probability of occurrence of that 

scenario and a numerically defined function that relates the EDP to the pulse period and 

pulse amplitude through IDA analyses of equivalent pulses. 

For simplicity, λEDP,NS&Pulse, pulse dominant(x) is defined through a discrete form of the hazard 

integral rather than its integral form. In schematic form, it is given as: 
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Where Iwithin(.) is a flag that is equal to one when Tp falls within the interval [Tlower, Tupper] 

and zero otherwise, INS(.) is a flag that is equal to 1 when rrup < 60 km and zero otherwise, H 

is the Heaviside step function (H(x) = 0 for x < 0, and H(x) = 1 for x ≥ 0), and Ppulse is 

discussed in Section 4.3.4. The functions Iwithin(.), and INS(.) are included in the summation to 

eliminate all scenarios that do not qualify as near-source scenarios with pulse period in the 

range where the pulse period is dominant. Each scenario is weighted by the probability of 

that scenario taking place (discussed below), and the probability of that scenario having a 

pulse, ),,|( SrpulseP rup
. Finally, the function H(.) ensures that only the scenarios that 

contribute to the hazard (e.g. where EDP > x) are considered for λEDP,NS&Pulse,pulse dominant(x). 

EDPscenario(Tp, Ap) is the EDP computed from time-domain analyses for a given pulse period 

and pulse amplitude using the Gabor pulse as the equivalent pulse representations (Chapter 3, 

Figure 3-12) 

The summation over all possible scenarios implies a multiple summation over all 

possible realizations of the predictive variables, namely magnitude (Mw), rupture length (RL), 

rupture location (), hypocenter location (H), pulse period (Tp), and pulse amplitude (Ap). 

Each of these variables is discretized into bins. The probability of an individual scenario is 

given by: 

Pscenario = PM(mw) PRL(rl|mw) P(|rl) PH(h) PTp(tp|mw) PAp(ap|mw,rrup)  ( 4-22) 
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where the lower case variables represent the center point of each corresponding bin (the 

summation indices are omitted for clarity). The discrete probabilities P are computed using 

the continuous definitions given earlier. Note that pulse period and pulse amplitude are 

assumed to be independent, log normally distributed random variables (Section 4.3.1and 

4.3.2). Their mutual independence (Section 4.3.3) is crucial for the validity of Equation 4-22. 

As discussed earlier, the rupture length is assumed to be uniformly distributed along the fault 

and the location of the hypocenter is assumed to be uniformly distributed along the ruptured 

fault. 

4.9. Numerical Implementation of the proposed PSDA analysis 

Figure 4-2 and Figure 4-3 illustrate the flow chart of the numerical implementation of 

the proposed PSDA analysis. The implementation is described for a single fault. For multiple 

faults, hazard is computed for each fault individually and then it is added to compute the 

overall hazard. The implementation consists of four general modules, a Main Module where 

all the input parameters and the bin sizes for all the descriptive variables are defined, and 

each of the other modules is called (Figure 4-2), a PSHA module where the hazard curves for 

the intensity measure are computed (Figure 4-3), a traditional PSDA module where Equation 

4-2 is implemented for all scenarios (Figure 4-4) except the near-source scenario with 

dominant pulses, and finally the time-domain PSDA module for the computation of Equation 

4-21 (Figure 4-5). All the probability distributions used in the implementation are bounded at 

3 standard deviations. The probability density functions are renormalized such that they 

satisfy all necessary conditions. 
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Equation 4-2 requires the definition of dSa. dSa can be approximated by discretizing Sa 

into bins and taking dSa = Sa,i – Sa,i-1 where i is a summation counter for a discrete version 

of Equation 4-2. This approach, however, is not practical because it forces the use of 

identical bin sizes in the PSHA analysis and the PSDA analyses. Alternatively, each of the 

resulting hazard curves for Sa can be interpolated using a piece-wise polynomial (e.g. a cubic 

spline interpolation) and the derivatives can be found analytically. Hence, Equation 4-2 can 

then be expressed as: 

 

i

iiSaiEDP SaSaSaSaxEDPPx |)(|]|[)(      ( 4-23) 

Where ’Sa(Sa=Sai) is the derivative of Sa obtained analytically from the piece-wise 

polynomial interpolation at Sa=Sai, and Sai is the bin size for Sa. 

The heaviest computational cost of the proposed method lies in the definition of the 

response surface EDP (Tp, Ap) (Section 3.8). Note that because of the short duration of the 

equivalent pulses, the computational cost for defining the response surface is not nearly as 

significant as it would be for recorded ground motions. Moreover, uncertainties in structural 

response or properties could be considered through structural reliability methods to define 

the response surface in probabilistic terms (e.g. P(EDP>x|Tp, Ap), in which case variations 

due to structural response (in addition to those due to input motion variability which are 

considered in this study) can be also included in the analyses. 
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4.10. Example Application 

To illustrate the methodology presented in this work, a PSDA analysis is conducted for 

the 7-story structure described in Chapter 3 located at various distances from an arbitrary 

fault. The structure is assumed to be on rock. In this example, only the fault normal 

component is considered, and it is assumed that the weak axis of the building is oriented in 

the fault normal direction. The Maximum Inter-story Ductility Demand (MIDD) is selected 

as the EDP for the analysis based on considerations presented in Chapter 3.  

4.10.1. Statistical Models to Correlate EDPs to IMs  

The 7-story building was subjected to ground motions recorded within 20 km from a 

fault (see Chapter 3). The near-fault ground motions were divided into two groups, one group 

consisting of ground motions with pulses as identified by the procedure of Baker (2007), and 

the other group for ground motions without pulses. MIDD was assumed to be normally 

distributed with mean MIDD and standard deviation . A power-law relationship between 

the mean MIDD and Sa(T1) was assumed. The parameters of the relationship were obtained 

using a Maximum Likelihood regression assuming a normal distribution for MIDD. For 

near-fault motions without pulses the resulting relationship is given by: 










1.0for     1

1.0for  )1.0)((131
7.0

1

Sa

SaTS
MIDD

a
      (4-24a) 

with σ given by  
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where xo = 0.1, x1 = 0.57, max = 1.98, and min = 0.34. The range of applicability of equation 

4-24 is 0 < Sa(T1) ≤ 1.9g. As indicated, it was assume that MIDD has a normal distribution, 

however, the normal distribution is truncated to prevent physically unrealizable MIDD 

values (e.g. MIDD<1). Similarly, another power relationship between Sa(T1) and MIDD from 

near-fault ground motion with forward-directivity effects was computed: 

71.0

1
)1.0)((6.241  TSMIDD

a       (4-25) 

with σ given by Equation 4-24b with xo = 0.1, x1 = 1.24, max = 8.54, and min = 2.11. The 

applicability range for Equation 4-25 is 0 < Sa(T1) ≤ 1.9g. Figure 4-6 compares predicted 

EDPs from Equation 4-24 and 4-25 with measured EDPs due to the associated ground 

motions. Note that the minimum value of MIDD is 1.0. 

4.10.2. Fault and Site Information 

A 240 km vertical strike-slip fault was considered as the single seismic source (Figure 

4-7). An arbitrary coordinate system as shown in the figure was assigned. A truncated 

exponential model was used to define the probability density function for magnitude. A 

seismicity rate of 1 was used for simplicity and a minimum magnitude of Mw = 5.0 was 

considered, assuming that lower magnitude earthquake do not contribute to hazard. Rupture 
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lengths corresponding to each magnitude were estimated based on Equation 4-26, as 

presented by Wells and Coppersmith (1994): 

w
MRLD 62.057.2)log(   with 15.0    (4-26) 

Where RLD is the mean value of the rupture length and σ is the standard deviation in log 

units for the rupture length. The rupture length is assumed to follow a log normal 

distribution. 

The range of magnitudes (Mw), probability of each magnitude, rupture length (RL) 

associated to each magnitude, and the probability of each rupture length are presented in 

Table 4-2 for a given choice of magnitude bins. The fault was assumed to be a linear source 

and its depth was neglected which assumes that the fault has a uniform probability of rupture 

along its depth and length. Shear velocity of the rock (Vs) was assumed as 760 m/sec. Depth 

to VS=1.0 km/s at the site (defined as Z1 in Abrahamson & Silva NGA) was taken as 23.5 m.  

Locations with various distances from the fault were considered in order to study the 

effect of forward-directivity based on source-site distance. Hazard for each location was 

calculated using four methodologies previously discussed: the New-PSDA Model proposed 

in this work, the Traditional-PSDA, the Broadband-PSDA, and the Enhanced-Broadband-

PSDA models (see Section 4.2).  

4.10.3. Results 

A grid of points of 10 km along strike and 5 km perpendicular to the fault was 

established and seismic hazard curves [EDP(x)] were obtained using the four aforementioned 
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PSDA models at each node of the grid. As an example, results are illustrated in Figure 4-8 

for four nodes located along an axis at the center of the fault and at fault distances of 6 km, 

11 km, 16 km, and 21 km from the fault. As expected, the Traditional-PSHA which does not 

account for forward-directivity effects, underestimates the hazard in near-fault zone 

compared to the other PSDA models which include forward-directivity effects. The 

maximum difference between hazards predicted from the aforementioned methods occurs for 

sites close to the fault and reduces as the distance from the fault increases or as the hazard 

level decreases (shorter return period). Results from the Traditional-PSDA model converge 

to those from the Broadband-PSDA model and results from the Enhanced-Broadband-PSDA 

converge to those from the New-PSDA at a distance about 16 km. However, results from all 

models converge to the same level of hazard at a distance about 25 km. Recall that both the 

Enhanced-Broadband-PSDA and the New-PSDA models consider the special response of the 

structure to pulse-like motions, the Enhanced-Broadband-PSDA does it through separate 

relationships between EDP and Sa(T1) for pulse- and non-pulse-like ground motions 

(Equations 4-24 and 4-25), while the New-PSDA does it through time-domain analyses. 

In Figure 4-8, the contributions to hazard to the Enhanced-Broadband-PSDA model are 

divided into the hazard due to pulse-like motions (BB-Pulse) and hazard due to non-pulse-

like motions (BB-No Pulse). Observe how at low return periods, the hazard is controlled by 

non-pulse motions while the reverse is true for long return periods. This occurs because the 

likelihood of occurrence of pulse-scenarios is very low hence at low return periods there is a 

minimal contribution to hazard by these scenarios. On the other hand, at long return periods, 



 

 

117 

non-pulse scenarios cannot contribute significantly to hazard because of the low probability 

that such scenarios can generate large MIDDs. 

Similarly, the hazard predicted by the New-PSDA model is summation of near-source 

scenarios with dominant pulses (NS-P-in), near-source scenarios with pulses but where the 

pulse does not control the response of the structure (NS-P-out), near-source scenarios 

without pulses (NS-NP) and non near-source scenarios (Non-NS). As expected, the Non-NS 

scenario does not contribute to hazard for any of the distances considered. Similarly near-

source pulse scenarios that are outside the range where the pulse is dominant contribute little 

to hazard. This is because these scenarios have a very low probability of occurring (for 

example, for a site at 11 km from the fault, the probability of a near-source scenario with 

pulses is only 0.4%, and of those only 0.21% are scenarios with pulses outside of the range 

where the pulse is dominant). At low return periods, most of the hazard results from non-

pulse scenarios (which contribute nearly 99.5% of all possible scenarios), and the pulse 

scenarios that are in the range where pulses are dominant. Those scenarios, while 

constituting only (on average) 0.2% of all possible scenarios, contribute significantly to 

hazard because time-domain analyses do predict large EDPs for these scenarios. 

Figure 4-9 shows the magnitude-distance deaggregation of hazard for some of the cases 

considered in Figure 6. Several interesting observations with significant relevance to hazard 

analysis can be inferred from the deaggregation plots. For close distances to the fault (Figure 

4-9a), the proposed model predicts an increase in the contribution to hazard from small 

magnitude earthquakes with respect to the predictions using other PSDA models. This 

difference is due to the ability of the time-domain analyses to capture the large EDPs that 
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result from resonance when the pulse period matches the structural period. When forward-

directivity is included through a broadband model the effect of the pulse-type motions on the 

response spectra is smeared over a broad period band and the particular resonance that 

develops with pulse-type motions is not captured. For example, the contribution for a 

Magnitude-Distance bin centered at 6 km (Figure 7a) increases from 4.1% to 10.3% when 

considering time-domain analyses (the comparison is with the Enhanced-Broadband model 

that considers pulse motions through Sa(T1)). Equally important, the contribution of more 

distant earthquake increases significantly. For example, the time-domain PSDA predicts a 

small contribution to hazard of low magnitude earthquakes for distances up to 15 km (up to 

5% contribution to hazard), while the Enhanced-Broadband model predicts no contribution to 

hazard for distances higher than 6 km. The same pattern (e.g. increase in the contribution to 

hazard of small earthquakes) persists even for distances of 21 km from the fault (Figure 4-

9d) but is not present at larger distances. Figure 4-10 plots the magnitude-distance 

deaggregation of the New-PSDA model separated into the contributions of near-source and 

far-source events, those with and without pulses, and those with pulses that control structural 

response. In Figure 4-10, different plots are presented for different hazard components (e.g. 

near source with dominant pulses (NS-P-in), near source without dominant pulses (NS-P-

out), near source with no pulses (NS-NP-in and NS-NP-out, where in and out indicate 

whether the pulse period is close to the structural period or not, and non near source 

scenarios). The y-axis is the contribution to total hazard for each bin.Magnitude and pulse-

period deaggregation results show that as site-source distance increases, higher magnitudes 

contribute more in hazard. Note that the contribution of near-source motions with dominant 

pulses (NS-P-in) dominates the contribution of small to intermediate magnitude earthquakes 
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to the overall hazard. This makes sense when one considers that a Mw 5.75 earthquake 

generates a pulse with a period of 1.1 sec, which is close to the period of the structure (1.0 

sec). This confirms previous speculation that smaller magnitude earthquakes can contribute 

more to hazard than large magnitude earthquakes (Somerville 2003). 

Figure 4-11 shows a magnitude and pulse-period deaggregation and Figure 4-12 shows a 

magnitude pulse-amplitude deaggregation plot. At near distances to the fault, lower 

magnitude events have larger contribution to hazard for shorter periods. As magnitude 

increases the contribution of longer period increases. At areas close to the fault, events with 

lower magnitudes generate pulses with shorter period but relatively large amplitudes. These 

short periods pulses excite higher modes of the structure. Intermediate magnitude events 

generate pulses whose periods are equal to the elastic or nonlinear fundamental period of the 

structure. Large magnitude events generate pulses with long periods which do not fall within 

the range where pulse periods are dominant. At further distances, short period pulses 

generated with lower magnitude are attenuated and are not as effective as near distances. On 

the other hand, pulses generated with intermediate magnitude events are still strong enough 

to excite the structure and have more significant contribution. 

These observations have significant relevance for the design of structures in near-fault 

regions, as they indicate the importance of considering the near-source pulses for smaller 

magnitude earthquakes. For these cases, it is necessary to consider pulse-like motions in 

evaluating hazards. For these cases, a deaggregation of pulse period and pulse amplitude can 

guide the selection of design ground motions. Figure 4-13 shows a deaggregation of pulse-

period and pulse-amplitude for a site-to-fault distance of 6 km. This plot can be used directly 
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to select simplified pulses that contribute the most to hazard. In this particular case, it is 

obvious that pulse periods between 0.75 sec and 1.5 sec control design, and the dominant 

pulse amplitude is centered around 30 cm/sec. Simplified pulses with these characteristics 

can be selected for the design of this particular structure. 

Figure 4-14 shows contours of variations between pseudo-acceleration of period 1.0 sec 

exceeding an arbitrary value (0.5 g) predicted by the Traditional-PSHA and the Broadband-

PSHA models. Note that, in Figure 4-14 there are cases that the Broadband-PSHA predicts 

an intensity measure hazard level lower than the traditional-PSHA. These cases are 

associated to the situation that the first factor of directivity (defined by Somerville et al., 

which accounts for the change in the shaking intensity in the average horizontal component) 

becomes negative. Consequently, the Traditional-PSDA model underestimates EDP hazard 

(EDP) when compared to the Broadband-PSDA, the Enhanced-Broadband-PSDA, and the 

New-PSDA models (respectively Figure 4-15, Figure 4-16, and Figure 4-17). The variation 

between the hazard curves of the aforesaid methods decreases when site-source distance is 

increased as shown in Figure 4-15, Figure 4-16, and Figure 4-17. Note that, λEDP was 

calculated for MIDD with intervals equal to 1. Therefore, IMs with small differences (for 

example 2%) predicted from the Traditional-PSHA and the Broadband-PSHA may result in 

MIDDs which fall in the same interval. Although the Broadband-PSDA and the Enhanced- 

Broadband-PSDA models account for forward-directivity effects and result in higher hazard 

compared to the Traditional-PSDA, they underestimate the hazard for higher EDPs compared 

to the New-PSDA model. For larger distance from the fault, where there is no directivity, the 
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variation between the New-PSDA and the other PSDA predictive models decrease and the 

EDP  predicted by all the models are in close agreement. 

Higher MIDDs are associated with a narrower band of periods roughly equivalent to the 

fundamental period of the structure. This is not captured by broadband directivity models 

where the response spectrum of a structure will increase monotonically with respect to 

moment magnitude for all structural periods and hence the EDPs increase monotonically 

with an increase in the response spectra. On the other hand, the New-PSDA model provides 

more reasonable IMs utilized within the specified range. Within this range, forward-

directivity pulses control structural response and result in higher demand. It is for this reason 

that in vicinity of the fault, predicted hazard based on the proposed New-PSDA model at 

higher EDPs is greater than those predicted from the both Broadband-PSDA models. 

4.11. Conclusion 

A new PSDA model was developed to include forward-directivity effects for near-fault 

zones. Events were classified as being near-source or not. Near-source events were separated 

to two categories; events with and without forward-directivity pulses. Near-source faults with 

pulses were divided into two different cases as events with pulses whose periods are roughly 

equal to the fundamental period of the structure and those that are not. For events with pulses 

in the vicinity of the fundamental period of the structure, rather than using a spectral based 

intensity measure, the EDP was computed using time-domain analyses with an equivalent 

pulse model. For other events, response spectra pseudo-acceleration was used as the Intensity 

Measure to predict the structural response using a statistical model. 
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Results of the New-PSDA model were compared with the results obtained from a PSDA 

model which does not account for forward-directivity and a PSDA model that accounts for 

forward directivity through a broadband model (Somerville et al. 1997, Abrahamson 2000). 

Results showed that even though the Broadband-PSDA models accounts for forward-

directivity and predicts larger hazard for near-fault scenarios, it still underestimates the 

hazard compared to the proposed PSDA model. When a separate function is used to predict 

structural response for pulse-like motions, the computed hazard increases to nearly the level 

predicted by the proposed methodology. Nonetheless it still fails to fully capture the hazard 

levels computed by the new time-domain methodology. The increase in computed hazard in 

the time-domain methodology results from the different treatment of pulse-like motions: 

whereas existing methodologies consider near-fault hazard through average increase in 

response spectral estimates, the proposed methodology captures its narrowband nature. 

Moreover, by performing structural analyses for each realization of the pulse-type motions, 

the resonant nature of the structural response to pulse-like motions is captured and 

introduced into the hazard computation. 

Analysis with the proposed methodology indicated that near-source structures with 

structural periods close to about 1.0 seconds can be affected by smaller magnitude 

earthquakes that generate ground motion pulses with periods close to the structural period. 

Traditional, spectral acceleration-based PSDA analysis do not capture this effect and 

underestimate the contribution to hazard from small magnitude earthquakes and can lead to 

errors in ground motion selection for design. 
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Although the example selected in this report corresponds to an idealized MDOF 

structure and an idealized fault, both the fault model and the structural model were selected 

to represent realistic conditions and the results shown would very likely be reproduced for 

actual structures located near active faults. The proposed methodology not only computes a 

more adequate hazard from existing faults, but also provides, through pulse-period and pulse-

amplitude disaggregation, a tool for selecting ground motions for design of such structures. 

 

4.12. Figures 

 

Figure 4-1: Transition from PGV estimated by Bray and Rodriguez-Marek (2004) to PGV 

estimated by Abrahamson and Silva (2007) for distances between 20 and 60 km. 
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Figure 4-2: Flow chart for the main module. 
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Figure 4-3: Flow chart for the PSHA module. 
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Figure 4-4: Frequency-Domain PSDA Module 
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Figure 4-5a: Time-Domain PSDA Module 
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Figure 4-5b: Time-Domain PSDA Module 
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Figure 4-6: Predictive model for Maximum Inter-story Ductility Demand (MIDD) 

as a function of spectral acceleration at the first mode period of the structure. The figure on 

left shows the mean predictions (Equations 4-24a and 4-25) along with MIDD computed 

from dynamic analyses. The figure on the right shows the residuals (MIDD computed for 

each record minus the predicted MIDD for each record) and the model for standard deviation 

(Equation 4-24b). 

 

 

  

   

      

 

 

Figure 4-7: Fault and site geometry.  
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Figure 4-8a: MAF of EDP for sites located along the centerline of the fault at 6 and 11 km 

from the fault. 
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Figure 4-8b: MAF of EDP for sites located along the centerline of the fault at 16 and 21 km 

from the fault.
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Figure 4-9a: Magnitude and distance deaggregation of λEDP when EDP = 5 

for four different PSDA models and for a site located at 6 km from the fault along its centerline. The y-axis shows percentage 

contribution to risk for each PSDA model.  
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Figure 4-9b: Magnitude and distance deaggregation of λEDP when EDP = 5 

for four different PSDA models and for a site located at 11 km from the fault along its centerline. The y-axis shows percentage 

contribution to risk for each PSDA model. 
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Figure 4-9c: Magnitude and distance deaggregation of λEDP when EDP = 5 

for four different PSDA models and for a site located at 16 km from the fault along its centerline. The y-axis shows percentage 

contribution to risk for each PSDA model. 
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Figure 4-9d: Magnitude and distance deaggregation of λEDP when EDP = 5 

for four different PSDA models and for a site located at 21 km from the fault along its centerline. The y-axis shows percentage 

contribution to risk for each PSDA model. 
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Figure 4-10a: Magnitude and distance deaggreagation of λEDP when EDP = 5 for a site at 6 km from the fault along its centerline. 
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Figure 4-10b: Magnitude and distance deaggreagation of λEDP when EDP = 5 for a site at 11 km from the fault along its centerline. 
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Figure 4-10c: Magnitude and distance deaggreagation of λEDP when EDP = 5 for a site at 16 km from the fault along its centerline. 
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Figure 4-10d: Magnitude and distance deaggreagation of λEDP when EDP = 5 for a site at 21 km from the fault along its centerline. 
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Figure 4-11a: Pulse period and magnitude deaggreagation of λEDP when EDP = 5 for a site located at 6 km far from the fault along 

its centerline. 
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Figure 4-11b: Pulse period and magnitude deaggreagation of λEDP when EDP = 5 for a site located at 11 km far from the fault 

along its centerline. 



 

 

 

1
4
2

 

 
Figure 4-11c: Pulse period and magnitude deaggreagation of λEDP when EDP = 5 for a site located at 16 km far from the fault 

along its centerline. 
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Figure 4-11d: Pulse period and magnitude deaggreagation of λEDP when EDP = 5 for a site located at 21 km far from the fault 

along its centerline. 
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Figure 4-12a: Magnitude and pulse amplitude deaggreagation of λEDP when EDP = 5 for a site located 6 km far from the fault 

along its centerline. 
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Figure 4-12b: Magnitude and pulse amplitude deaggreagation of λEDP when EDP = 5 for a site located 11 km far from the fault 

along its centerline. 
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Figure 4-12c: Magnitude and pulse amplitude deaggreagation of λEDP when EDP = 5 for a site located 16 km far from the fault 

along its centerline. 
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Figure 4-12d: Magnitude and pulse amplitude deaggreagation of λEDP when EDP = 5 for a site located 21 km far from the fault 

along its centerline. 
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Figure 4-13: Period and Amplitude deaggreagation of λEDP when EDP = 5 for sites located 6 km far from the fault and between 

two ends of the fault
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Figure 4-14: Contours of percentage change of spectral acceleration hazard estimated by 

Traditional-PSHA versus the Broadband-PSHA. 
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Figure 4-15: Contours of percentage change of λEDP when EDP = 5 predicted by the Traditional-

PSDA versus the Broadband-PSDA. 
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Figure 4-16: Contours of percentage change of λEDP when EDP = 5 predicted by the Traditional-

PSDA versus the Enhance-Broadband-PSDA. 
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Figure 4-17: Contours of percentage change of λEDP when EDP = 5 predicted by the Traditional-

PSDA versus the New-PSDA model. 
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4.13. Tables 

Table 4-1: Ground motions with forward-directivity effects; selected from Gillie (2005). 

Station Agency Station # Event
a
 R

b
 (km) Site

c
 PGA (g) 

PGV 

(cm/s) 

Tv-p 
e
(s) 

(Tp)Baker 
f 

(s) 

(Ap)Baker 
g 

(cm/s) 

Cabazon Post Office USGS 5073 PS 8.4 s 0.23 17.5 0.22 2.81 5.56 

Desert Hot Springs CSMIP 12149 PS 6.8 s 0.34 26.8 0.40 1.65 14.01 

N. Palm Springs Pst. Off. USGS 5295 PS 3.4 s 0.71 73.2 1.10 1.32 48.53 

PS10 TAPS 10 DE 3.0 s 0.33 108.0 2.80 8.81 47.24 

Bam BHRC BAM SS 4.8 s 0.81 134.0 1.50 2.00 96.33 

Coalinga - Slack Canyon CSMIP CE46175 B 10.0 r 0.33 42.1 0.69 0.76 40.37 

Fault Zone 9 CSMIP CE36443 B 1.1 r 0.14 26.1 1.00 1.15 23.81 

Fault Zone 12 CSMIP CE36138 B 1.2 s 0.25 57.4 1.00 1.20 55.75 

Fault Zone 14 CSMIP CE36456 B 0.1 s 0.99 84.7 0.66 0.62 86.90 

Fault Zone 15 CSMIP CE36445 B 0.6 s 0.21 28.1 1.10 1.51 19.88 

Middle Mountain USGS MFU B 2.0 s 0.32 32.3 0.31 3.28 13.47 

Vineyard Canyon 1E CSMIP CE36455 B 6.5 r 0.32 34.6 0.38 1.26 22.63 

Vineyard Cyn 1W CSMIP CE36448 B 2.1 r 0.14 21.1 0.38 1.12 18.93 

Vineyard Cyn 2W CSMIP CE36447 B 17.0 r 0.61 30.2 0.34 0.36 24.66 

Cholame #2 CDMG 1013 PF 0.1 s 0.47 75.0 0.66 0.36 8.57 

Temblor CDMG 1438 PF 9.9 r 0.29 17.5 0.40 1.88 7.68 

Pacoima Dam CDMG 279 SF 2.8 r 1.47 114.0 1.15 1.58 86.22 

Brawley Airport USGS 5060 IV 8.5 s 0.21 36.1 3.11 4.03 25.45 

EC County Center CDMG 5154 IV 7.6 s 0.22 54.5 3.44 4.52 39.44 

EC Meloland Overpass CDMG 5155 IV 0.5 s 0.38 115.0 2.86 3.35 78.47 

El Centro Array #10 USGS 412 IV 8.6 s 0.23 46.9 3.82 4.49 33.03 
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Station Agency Station # Event
a
 R

b
 (km) Site

c
 PGA (g) 

PGV 

(cm/s) 

Tv-p 
e
(s) 

(Tp)Baker 
f 

(s) 

(Ap)Baker 
g 

(cm/s) 

El Centro Array #3 USGS 5057 IV 9.3 s 0.27 45.4 4.27 5.24 27.24 

El Centro Array #4 USGS 955 IV 4.2 s 0.47 77.8 4.00 4.61 62.86 

El Centro Array #5 USGS 952 IV 1.0 s 0.53 91.5 3.25 4.05 76.81 

El Centro Array #6 USGS 942 IV 1.0 s 0.44 112.0 3.41 3.84 89.94 

El Centro Array #7 USGS 5028 IV 0.6 s 0.46 109.0 3.31 4.23 69.98 

El Centro Array #8 USGS 5159 IV 3.8 s 0.59 51.9 4.00 5.39 35.31 

El Centro Diff Array USGS 5165 IV 5.3 s 0.44 59.6 3.02 5.86 33.94 

Holtville Post Office USGS 5055 IV 7.5 s 0.26 55.1 4.20 4.69 39.37 

Westmorland Fire Sta. CDMG 5169 IV 15.1 s 0.10 26.7 4.71 5.02 17.62 

Coyote Lake Dam CDMG 57217 MH 0.1 r 1.00 68.7 0.71 0.97 59.14 

Gilroy Array #6 CDMG 57383 MH 11.8 r 0.61 36.5 1.16 1.23 33.13 

El Centro Imp Co. Cent. CDMG 1335 SH 13.9 s 0.31 51.9 1.25 7.31 20.74 

Lucerne SCE 24 L 1.1 r 0.78 147.0 4.30 5.12 72.30 

LA Dam USGS – N 2.6 r 0.58 77.0 1.30 1.65 50.25 

Pacoima Dam (upper left) CDMG 24207 9 8.0 r 1.47 107.0 0.73 0.90 79.23 

KJMA (Kobe)  – 10 0.6 r 0.85 96.0 0.86 0.95 100.16 

Kobe University CEOR – 10 0.2 r 0.32 42.2 1.33 2.06 40.59 

OSAJ  – 10 8.5 s 0.08 19.9 1.18 5.52 8.89 
a
 See Table 1.     

b
 Closest distance to the fault plane.    

c
 Soil (s) or rock (r). 

e
 Period corresponding to the peak in the velocity response spectrum. 

f
 Pulse period determined using the procedure of Baker (2007). 

g
 Pulse amplitude determined using the procedure of Baker (2007). 

h
 The fault normal direction for these records was assumed to be the direction oriented with the largest velocity pulse (N122º for 

TCU052 and N199º for TCU068). 
i
 The fling step was removed by the procedure described in Bray and Rodriguez-Marek (2004). 
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Table 4-2: synopsis of fault seismicity 

Mw P(Mw) RL (km) P[RL] 

5.25 0.604 

2.1 0.032 

3.2 0.242 

4.8 0.452 

7.3 0.242 

11.1 0.032 

5.75 0.241 

4.3 0.032 

6.5 0.242 

9.9 0.452 

15 0.242 

22.6 0.032 

6.25 0.096 

8.8 0.032 

13.3 0.242 

20.2 0.452 

30.5 0.242 

46.2 0.032 

6.75 0.038 

18 0.032 

27.2 0.242 

41.2 0.452 

62.4 0.242 

94.4 0.032 

7.25 0.015 

36.7 0.032 

55.6 0.242 

84.1 0.452 

127.4 0.242 

192.8 0.032 

7.75 0.006 

75 0.032 

113.5 0.242 

171.8 0.452 

260 0.242 

393.6 0.032 
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CHAPTER FIVE 

SUMMARY AND CONCLUSIONS 

5.1 Summary and main findings 

A methodology for probabilistic seismic demand analysis that includes the effects of 

forward directivity through time domain analysis has been proposed. First, the structural 

response of three multi-degree of freedom structures to both pulse-like forward-directivity 

and non-pulse-like near-fault ground motions was studied. It was observed that the structural 

demands resulting from pulse-like ground motions exceed those resulting from non-pulse 

ground motions. In particular, when MIDD is used as the EDP and elastic response spectra is 

used as the IM, the structures under study consistently showed higher demands when 

subjected to pulse-like ground motions compared to non-pulse-like ground motions. 

Moreover, the dispersion around the median prediction for pulse-like ground motions was 

higher than that for non-pulse ground motions, indicating that elastic response spectra are not 

good intensity measure for pulse-like forward-directivity ground motions. 

As an alternative to the use of elastic response spectra, simplified mathematical 

representations for pulse-type forward-directivity ground motions were proposed. Intensity 

Measures for forward directivity ground motions were then proposed based on the proposed 

equivalent pulses. Results of incremental dynamic analyses showed that whenever the pulse 

period of forward-directivity ground motions is close to the first-mode structural period, 

structural response is controlled by forward-directivity pulses. For these cases, structural 

response can be predicted using pulse-period and pulse-amplitude as intensity measures. 
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The principles of Probabilistic Seismic Demand Analysis were then extended to consider 

the effect of forward-directivity within a probabilistic framework. Structural response to 

pulse-type forward-directivity ground motions was quantified by means of time-domain 

analysis of simplified pulses that comprehensively represent all possible pulse-type ground 

motion scenarios. The hazard due to pulse-type motions was coupled with conventional 

spectral domain seismic demand analyses for non-pulse-type ground motions.  

Hazard computations with the proposed methodology resulted in higher computed 

hazard for MIDD for the selected structures for sites located near the fault. This increase 

results from the different treatment of pulse-like motions: whereas existing methodologies 

consider near-fault hazard through the average increase in response spectral estimates, the 

proposed methodology captures its narrowband nature. Moreover, by performing structural 

analyses for each realization of the pulse-type motions, the resonant nature of the structural 

response to pulse-like motions is captured and introduced into the hazard computation. 

Analysis with the proposed methodology indicated that near-source structures with 

structural periods close to about 1.0 seconds can be affected by smaller magnitude 

earthquakes that generate ground motion pulses with periods close to the structural period. 

Traditional, spectral acceleration-based PSDA analyses do not capture this effect and 

underestimate the contribution to hazard from small magnitude earthquakes and can lead to 

errors in ground motion selection for design. 

Although the example selected in this dissertation corresponds to an idealized MDOF 

structure and an idealized fault, both the fault model and the structural model were selected 
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to represent realistic conditions and the results shown would very likely be reproduced for 

actual structures located near active faults. Therefore, it is recommended that the proposed 

methodology be used for the design of infrastructure located near faults. The proposed 

methodology not only computes a more adequate hazard from existing faults, but also 

provides, through pulse-period and pulse-amplitude disaggregation, a tool for selecting 

ground motions for the design of such structures. 

5.2. Consideration of Forward-Directivity in Building Codes and Provisions 

The velocity pulses that can occur in forward-directivity ground motions are associated 

with severe loads which can impose a larger demand to structures when compared to loads 

resulting from ordinary ground motions. The subsequent dynamic displacements resulting 

from forward-directivity ground motions are considerable on long period structures (such as 

bridges). Moreover, when such structures straddle the fault, large static displacement may 

occur due to tectonic displacement across the fault. Seismic guidelines and codes, such as, 

UBC 1997, IBC 2006, and NEHRP 2007 have recognized the possibility of rupture 

directivity and its effect on near-fault buildings, but none of the aforementioned codes 

consider this effect in design. In light of the results shown in this thesis, the paragraphs 

below review the existing literature to consider recommendations for improving current 

design practices. 

Near-fault ground motions had been considered as a special case meriting site-specific 

analysis (site specification) by NEHRP in the editions before that of 2007. For the 2007 

update, NEHRP discussed the inclusion of directivity in the ground motions by means of a 
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10 percent (distance dependence) increase to the mapped value of the Maximum Considered 

Earthquake spectral response acceleration at a period of 1 second, S1, obtained from a 

combination of the various USGS probabilistic seismic hazard maps and deterministic hazard 

maps. However, this approach was still under discussion (USGS 2007). 

None of the aforementioned building codes has yet considered the effects of pulse-like 

ground motion on the dynamic response of structures. For example, current building codes 

do not consider the redistribution of story shear, nor do they account for changes in level of 

story ductility demand due to variations in frequency, amplitude, and type of pulse (Alavi 

and Krawinkler 2004b). Redistribution of story ductility demand caused by inelastic behavior 

of the structure cannot be captured through an elastic or spectral analysis. Moreover, small 

modifications of a near-fault time history that have no significant effect on the response 

spectrum can have a major effect on the response of a structure when subjected to non-linear 

time history analysis (Alavi and Krawinkler 2004b). 

As discussed in Chapter 3, the response of a structure to pulse-like ground motions is 

different than that to ordinary ground motions. It was shown that the location of the critical 

story changes depending on the frequency content of ground motions. The maximum story 

ductility demand occurs in the upper stories for ground motions with forward-directivity 

pulses with short periods. As the period of forward-directivity pulses increase, the maximum 

demand migrates to the bottom portion of the structure, where it grows rather rapidly with 

further increase in the pulse period. In the medium-period range, code-compliant frame 

structures may experience excessive ductility demands associated with a level of structural 

damage that is not expected by present code provisions. Ductility demand distribution over 
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the height of frame structures leads to large variations of required story shear strength. 

Therefore, the design of near-fault structures should be improved to consider the effects of 

rupture directivity. 

Alavi and Krawinkler (2004b), realizing the severe demand imposed to structures 

subjected to pulse-like ground motions, proposed strengthening techniques with the objective 

of reducing maximum drift demands. One technique is to modify the code-based SRSS 

distribution of story shear strength over the height by strengthening of the lower stories of 

the frame. The modified distribution reduces the maximum story ductility demand, 

particularly for weak and flexible structures. However, this strengthening technique is less 

effective for stiff structures, and is almost ineffective for cases in which the maximum 

demand occurs in the upper stories, i.e. strong and flexible structures. The other technique 

proposed by Alavi and Krawinkler (2004b) is to add walls that are either fixed or hinged at 

the base (as shown in Figure 5-1). They found that strengthening with hinged walls is very 

effective in reducing drift demands for structures with a wide range of periods and at various 

performance levels. Based on their study, walls with inelastic behavior only slightly reduce 

the benefits of strengthening with hinged walls. 

In addition to the aforementioned methods, there are many potential ways to improve 

structural design for buildings subjected to forward-directivity ground motions and some of 

these are addressed in the following section.  
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5.3. Some Thoughts to Improve Structural Design: 

We strongly recommend that more adequate Intensity Measures, such as those proposed 

in this study, be employed for the analysis of structures subjected to near-fault ground 

motions rather than the conventional Intensity Measure, Sa(T1). To predict ground motions 

hazard for near-fault locations, site-specific analyses should be performed rather than relying 

on the hazard maps provided by the USGS. The use of PSHA modified for forward-

directivity will provide deeper insight into the expected ground motion hazard. Furthermore, 

performance based analysis can be conducted using the methodology presented in this work 

in order to better account for the near-fault hazard. 

In a force-based design procedure, forces are computed based on the elastic response of 

a single degree of freedom and reduced by a response modification coefficient (R factor) to 

account for nonlinear behavior of the structure. The philosophy of the response modification 

coefficient is based on the well known “equal-displacement” approximation, which has 

dubious validity (Priestley et al. 2007). Since near-fault structures are subjected to large 

displacement, inaccuracy of the “equal-displacement” approximation becomes a significant 

concern. Therefore, the R factor should be selected with more care for structures subjected to 

near-fault ground motions. This may require modification of the R factor provided by 

building codes. A preferred solution would be the use of displacement-based design. 

Displacement-based design procedures yield more reliable results compared to those of the 

force-based design procedures. 
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Furthermore, a seismic evaluation of structural performance is necessary. Seismic 

evaluation of structures is often done through static nonlinear analysis, known as pushover 

analysis. However, pushover analysis may fall short in evaluating the performance of multi-

mode dominated structures, which is true for some near-fault cases. In pushover analyses, the 

structure is subjected to a certain distribution of lateral forces over its height, which increases 

monotonically until a target displacement is reached. The main assumption in pushover 

analysis is that the response is controlled by the fundamental mode and that the mode shape 

remains unchanged after the structure yields. However, this assumption is inconsistent with 

dynamics of structures. Therefore, adaptive pushover analyses can improve the seismic 

evaluation of multi-mode dominated structures. 

Since the fundamental period of structures becomes a more sensitive issue for near-fault 

ground motions, its calculation should not be base on the approximate equation T=C(h)
n
 

introduced by building codes but based on exact methods. 

5.4. Recommendations for further study 

While the work in this thesis has increased the understanding of the treatment of forward 

directivity ground motions for structural analysis, it also identified a number of issues that 

warrant further investigation:  

 Some of the components of the model presented herein have not yet been fully 

developed. For example, the computation of near-fault hazard for non-pulse-type 

motions should be performed using a complete ground motion database that 

excludes non-pulse near-source motions. Such a task is beyond the scope of this 
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research, yet it can be achieved thanks to the recent compilation of the NGA 

database. Other components that need to be improved are the predictive models 

for PGV and pulse period. These models, understandably, are poorly constrained 

by existing data. Additional constraints from modeling or possibly with data 

collected from future earthquakes are necessary to generate more robust models.  

 The model presented herein should be applied to actual structures located near 

actual faults.  

 The analyses presented herein assumed that the structure has a weak axis aligned 

with the fault normal direction. While theory predicts that forward-directivity 

pulses are aligned with the fault normal direction, actual recordings have 

indicated that the orientation of these pulses is a random variable. This variability 

should be considered when making estimates of hazard to structures. 
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5.5. Figures 

 

Figure 5-1: Typical elastic deflected shape of dual systems: (a) fixed wall; and (b) hinged 

wall (Krawinkler et al. 2003b) 
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6. APPENDIX A 

Incremental Dynamic Analysis (IDA) is an emerging analysis method that offers 

thorough seismic demand and capacity prediction capability by using a series of nonlinear 

dynamic analyses under a multiply scaled suite of ground motion records. Realization of its 

opportunities requires several innovations, such as choosing suitable ground motion Intensity 

Measures (IMs) and representative Damage Measures (DMs). In addition, proper 

interpolation and summarization techniques for multiple records need to be employed, 

providing the means for estimating the probability distribution of the structural demand given 

the seismic intensity. Limit-states, such as the dynamic global system instability, can be 

naturally defined in the context of IDA, thus allowing annual rates of exceedance to be 

calculated. Finally, the data gathered through IDA can provide intuition for the behavior of 

structures and shed new light on the connection between the Static Pushover (SPO) and the 

dynamic response (Vamvatsikos and Cornell 2004).
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