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SIGNAL DETECTION ON TWO-DIMENSIONAL INTERSYMBOL

INTERFERENCE CHANNELS: CORRELATED SOURCES

AND REDUCED COMPLEXITY ALGORITHMS

Abstract

by Ying Zhu, Ph.D.
Washington State University

December 2008

Chair: Benjamin Belzer

Co-Chair: Krishnamoorthy Sivakumar

In this dissertation, we present a novel iterative algorithm for detection of binary-valued

2D Markov Random Fields (MRFs) corrupted by 2D intersymbol interference (ISI) and

additive white Gaussian noise (AWGN). We assume a first-order binary MRF as a simple

model for correlated images. We also assume a 2D digital storage channel, where the MRF

is interleaved before being written and then read by a 2D transducer; such channels occur

in recently proposed optical disk storage systems. The detection algorithm is a concatena-

tion of two soft-input/soft-output (SISO) detectors: an iterative row-column soft-decision

feedback (IRCSDF) ISI detector, and a MRF detector. For the2 × 2 averaging mask ISI

channel, at a bit error rate (BER) of10−5, the concatenated algorithm achieves SNR savings

up to 2.0 dB over the IRCSDF detector alone; the savings increase as the MRFs become

more correlated, or as the SNR decreases. The algorithm is also fairly robust to mismatches

between the assumed and actual MRF parameters.
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The complexity of Bahl-Cocke-Jelinek-Raviv (BCJR) algorithms grows exponentially

with the size of the ISI mask and is an important concern with their implementation. We

consider BCJR-like iterative detection algorithms for 1D and 2D binary-input ISI channels

with AWGN. The proposed new technique reduces the complexity of BCJR algorithms

by decreasing the effective number of states in the trellis. It does particularly well for

mixed phase sequence ISI masks, which have higher weights for the center taps and lower

weights for the peripheral taps. Other complexity reduction techniques proposed in the

literature perform poorly for such masks. Moreover, the complexity of the proposed state

reduction technique is comparable to other reduced complexity techniques reported in the

literature. Experimental results are provided to demonstrate the advantages of the proposed

state reduction technique.

This dissertation also addresses the problem of equivalent masks for 4-ary and binary

modulation at the same areal density. The ML bounds for these masks show that when the

point spread function (PSF) is more spread, the performance of 4-ary modulation can be

better than binary modulation on 2D ISI channels.
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Chapter 1

Introduction and Background

To continue the historical trend of exponentially increasing storage density, two-dimensional

(2D) storage techniques, wherein bits are written in 2D blocks (rather than 1D tracks), are

being developed for magnetic and optical disks [1], and also for newer 3D technologies

like holographic storage [2]. These new multi-dimensional storage techniques promise

density and data read-write rate increases of more than an order of magnitude over current

state of the art. However, 2D and 3D storage systems suffer from 2D and 3D intersymbol

interference (ISI) due to the low-pass nature of the read-write system. Without effective

equalization, 2D and 3D ISI will cause unacceptably high bit error rates (BERs) in next-

generation magnetic and optical storage systems.

1



1.1 2D ISI System Model

We consider aM ×N 2D signalf(m,n) transmitted over the 2D intersymbol interference

(ISI) channel. The received signal is

r(m,n) =
∑

k

∑

l

h(k, l)f(m− k, n− l) + w(m,n), (1.1)

where0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1, h(k, l) is a finite-impulse-response 2D blurring

mask, thew(m,n) are zero mean i.i.d. Gaussian random variables (r.v.s) with varianceσ2
w,

and the double sum is computed over the mask support regionSh = {(k, l) : h(k, l) 6= 0}.

The binary image pixelsf(m,n) take values−1 or +1. It is assumed that a boundary of

−1 elements surrounds the data set.

The motivating application for this channel model is 2D magnetic or optical storage

systems, which are subject to 2D ISI. Over the past 10 years, a number of papers (e.g., [3]-

[14]) have considered the detection problem for binary images on the 2D ISI channel, under

the assumption that the transmitted image pixels are independent and identically distributed

(i.i.d.) and equiprobable.

MultiLevel recording was a technology developed by Calimetrics to increase the storage

capacity of prerecorded and writable optical discs. MultiLevel recording refers to the use

of multiple reflectivity values to encode data onto an optical disc. By using more than

two levels, more information can be put into the minimum feature size [15]-[18]. The

prototype system presented in [15] uses 8-level codes. The system in [19] uses ternary

2



recording where an 8-bit binary data word is converted to a 5-symbol ternary code word. A

look-up table stores a modulation/demodulation table defining the correspondence between

the binary data word and the ternary code word.

Channel modeling and page-oriented optical memory detection are considered in [20]-

[22]. If the recorded signal is 4-ary, for the optical detection system, to keep the same

areal density as the binary systems, we can compute the corresponding 4-ary discrete point

spread function (PSF). When we look at the ML bound performance for the discrete PSF,

in some cases, the 4-ary is better then binary.

For M-ary signals, the complexity of the proposed ISI detector will increase exponen-

tially. This dissertation considers reduced complexity algorithms for M-ary signals.

1.2 Markov Random Field (MRF) Detection

In the following, we refer to 2D signals as images. There are two reasons why past papers

on detection for 2D ISI channels, and part of the present dissertation, focus on binary im-

ages: (1) almost all past, and virtually all present and proposed magnetic and optical disk

storage devices and standards are binary, due to the physical difficulty of achieving reli-

able M-ary storage in magnetic or optical disks; and (2) detection of binary i.i.d. sources

on 2D ISI channels remains an open problem, as no practical algorithm is known that can

attain the performance of the maximum likelihood detector (whose performance at high

signal-to-noise (SNR) is known [23]) for even simple3× 3 masks (such as, e.g., the3× 3

3
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Figure 1.1: Block diagram of the assumed digital storage channel.

averaging mask whereh(k, l) = 1/9 for −1 ≤ k, l ≤ 1). In practice, the i.i.d. assumption

can be largely achieved by interleaving the original image before storage (as in Fig. 1.1),

and deinterleaving it after detection. However, in practice the original image is often cor-

related [24, 25]. Uncompressed natural images are highly correlated; these typically occur

in diagnostic medical imaging where distortion due to lossy compression is intolerable,

and the time required for lossless compression/decompression may not be available. Im-

ages usually retain some correlation even if stored in compressed format, because practical

lossless (or lossy) image compression schemes do not completely decorrelate the image.

We use a 2D binary MRF [26]-[28] to model the correlated source. Transmission of

anM ×N binary-valued 2D MRFF over the digital storage channel is shown in Fig. 1.1,

whereπ represents an image interleaver, and∗ represents 2D convolution. Level shifting

from {0, 1} to {−1, 1}, performed after the interleaver, is not shown. The received image

r(m,n) =
∑

k

∑

l

h(k, l)F̃ (m− k, n− l) + w(m,n), (1.2)

wherem, n, h(k, l), w(m,n) and the double sum have the same meaning as in (1.1), and

F̃ = 2×π(F )− 1 is an interleaved and level-shifted version ofF . The MRFF takes pixel

4



values from{0, 1}, and is correlated according to the following Markov property [28]:

Pr(Fm,n = fm,n|Fk,l = fk,l, (k, l) 6= (m,n))

= Pr(Fm,n = fm,n|Fk,l = fk,l, (k, l) ∈ Fm,n). (1.3)

In (1.3), Fm,n denotes pixel(m,n) of the MRF,fk,l denotes a particular value of pixel

(k, l), andFm,n denotes the first-order neighborhood of pixel(m,n): Fm,n = {(m,n −

1), (m,n + 1), (m − 1, n), (m + 1, n)}. The MRFF is generated by a Gibbs sampler

based on the Ising model, which is characterized by a two parameter energy function. It is

assumed that the detector knows the energy parameters (and therefore the complete Markov

model) of the transmitted MRF. Because of the interleaver, it is assumed that the pixels in

F̃ are i.i.d., withPr{F (m,n) = 0} = Pr{F̃ (m,n) = −1} = p0 = 1 − p1 for all (m,n),

where thea priori probabilitiesp0 andp1 need not in general equal1/2.

In addition, a number of proposed source-channel coding schemes produce compressed

output images that can be modeled with MRFs. This dissertation exploits the correlation in

the source image to greatly reduce the bit error rate on 2D ISI channels.

Although the dissertation is the first to construct an iterative algorithm for MRF detec-

tion on 2D ISI channels, and to demonstrate that it works well for detection of natural bi-

nary images on 2D ISI channels, a number of previous publications on joint source channel

coding have considered joint detection and decoding of one or two dimensional Markov

sources on other channels, including 1D ISI channels. MRF source modeling and joint

5



MRF detection and channel decoding on the AWGN channel are considered in [29]-[31];

these papers model quantized natural images (or quantized image subbands) as MRFs, and

propose a number of iterative source-channel decoding algorithms that perform iterative

MRF estimation using an algorithm similar to the Geman and Geman (G&G) algorithm

[28]. This dissertation employs a SISO version of the G&G algorithm for MRF detection,

and uses the method of [29]-[31] to construct output log-likelihood ratios from the MRF

detector; however, the dissertation uses a different method to incorporate the output LLRs

from the 2D-ISI detector into the Gibbs energy function of the MRF detector. In addition,

the dissertation accounts for non-uniform prior pixel probabilities in the MRF detector,

i.e., the casep0 6= p1, whereas in [29]-[31] the prior probabilities are implicitly assumed to

be uniform because singlet cliques are not allowed in the Gibbs energy function. In [32],

the trellis structure of variable-length error correcting (VLEC) source codes for discrete

memoryless sources is exploited in an iterative decoding scheme wherein a SISO VLEC

source decoder exchanges information with a maximuma posteriori(MAP) 1D-ISI equal-

izer, to achieve effective control of the ISI. A variable length coding (VLC) scheme for

first order Markov sources is constructed in [30], and concatenated with a recursive pre-

coder for a 1D ISI channel; the corresponding iterative decoder exchanges soft information

between a SISO VLC decoder and an equalizer employing a super-trellis for the ISI chan-

nel and the precoder. In [33], the Markov structure of the indices of a vector-quantized

Gauss-Markov source is exploited to construct an iterative equalization and source decod-

ing scheme for a 1D ISI channel. The JPEG-2000 compatible image transmission scheme

6



proposed in [34] replaces the JPEG-2000 entropy coding stage with punctured turbo codes,

and then exploits the Markov structure of the bitplanes of the quantization indices to con-

struct an iterative successive-bitplane joint source-channel decoder; simulations over the

binary-symmetric (BSC) channel show that the proposed scheme significantly outperforms

traditional schemes that use JPEG-2000 with entropy coding followed by a separate chan-

nel coding step.

1.3 Iterative Row-Column Soft-Decision Feedback (IRCSDF) Algo-

rithm Review

The following material is a summary of the papers by Cheng et.al. [3, 12].

Direct maximum likelihood (ML) detection ofM ×N binary 2D images requires com-

parison of received data with2MN candidate transmitted images, and is therefore impracti-

cal even for small image dimensions. The standard Wiener filtering solution is significantly

inferior to ML detection, especially at high SNR [7]. Hence, it is desirable to develop a

low-complexity 2D detection algorithm that achieves or approximates the performance of

2D ML detection. For one dimensional signals, the Viterbi algorithm (VA) provides an ef-

ficient method for ML detection of ISI-corrupted data [35]. Unfortunately the VA does not

generalize to two or higher dimensions. For 2D ISI, issues of scan-order, adjacency, and

causality must be considered in construction of the trellis, and the mapping between input

pixel sequences and trellis paths is not one-to-one. However, union bounds on the perfor-

7



mance of 2D ML detection have been developed in [23]; these ML performance bounds are

tight at high SNR, and are useful in assessing the performance of sub-optimal 2D detection

algorithms.
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Figure 1.2: IRCSDF algorithm in a 2D ISI channel.

Figure 1.2 shows a block diagram of the algorithm scheme, in which the two estimation

blocks (row-by-row, column-by-column) exchange weighted soft information. The weights

w, which are less than one, prevent the algorithm from converging too quickly. Each de-

coder also processes received imager , which is corrupted by 2D-ISI and by AWGN. The

basic element is asoft decision feedback, soft-input soft-outputdecoder.

The IRCSDF algorithm is a modified BCJR algorithm, in which soft estimates of branch

outputs and state transition probabilities from earlier trellis stages are used assoft decision

feedback(SDF) to aid the computation of log-likelihood ratios (LLRs) for the current pixel.

The SDF branch output computation computes LLRs for inner products between the mask

and the image.

For the row-SISO, trellis states and inputs are defined in Figure 1.3; for the3× 3 mask,

the trellis has 64-states and 8 branches entering and leaving each state. At each position

8
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Figure 1.3: State, input, and feedback pixels for the2× 2 mask and3× 3 mask.

(m,n) the trellis branch output is a vector consisting of three3× 3 inner products between

the inverted mask and the pixel values defined by the trellis; the upper inner product, named

x(m,n), uses two feedback rows, the middle one,namedx(m + 1, n), uses one feedback

row and the lower one, namedx(m + 2, n), just uses received pixels. The branch metric

is the squared Euclidean distance between the branch output and the real received pixel

vector [r(m,n), r(m + 1, n), r(m + 2, n)]. For the2× 2 mask the trellis has 4 states and 4

branches for each state. The column-by-column case is similar to the row-by-row case.

To illustrate the SDF LLR calculation, assume the3 × 3 averaging maskhkl = 1/9 is

used to compute the convolutionc(m,n) =
∑2

k=0

∑2
l=0 f(m− k, n− l)/9.

For pixel (m,n) at thekth stage,k ∈ {0, 1, . . . , N}, the corresponding received pixel

vector is r = [r(m,n), r(m + 1, n), r(m + 2, n)], and the actual input vector isf =

[f(m,n), f(m + 1, n), f(m + 2, n)]. To simplify, let yk = [yk0, yk1, yk2] = r , andu =

9



[uk0, uk1, uk2] = f. The log-likelihood ration (LLR) is

Li(k) = log




P (uk0 = +1|yk, ũi)

P (uk0 = −1|yk, ũi)


 , (1.4)

whereũi is the estimation of pixel vectoru from decoderi, i ∈ {1, 2}. The extrinsic

information input to decoderi is

L̃i(k) = log




P (uk0 = +1|ũi)

P (uk0 = −1|ũi)


 , (1.5)

and the output extrinsic information to the next decoder is

L̃next(i)(k) = Li(k)− L̃i(k), (1.6)

wherenext(1) = 2, next(2) = 1. By using the input extrinsic information, we can compute

the conditional probability of the input pixel:

P (uk0 = +1|ũi) =
eL̃i(k)

1 + eL̃i(k)

P (uk0 = −1|ũi) =
1

1 + eL̃i(k)
.

(1.7)

Given a particular trellis stateSk, input vectoru, and noisy received vectorsyk, de-
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fine λi
k(s) = P (u = i, Sk = s, yk), where i = [i0, i1, i2], im ∈ {−1, +1}, and s ∈

{0, 1, . . . , 63}. We can then compute thea posterioriprobability (APP)

P (u = i|yk) =

∑
s λi

k(s)

P (yk)
. (1.8)

As in [36], by setting

αk(s) = P (Sk = s, yk)

βk(s) = P (yk+1|Sk = s)

γi(yk, s
′, s) = P (u = i, Sk = s, yk|Sk−1 = s′),

(1.9)

we have

λi
k(s) =

∑

s′
P (u = i, Sk = s, Sk−1 = s′, yk)

=
∑

s′
αk−1(s

′)γi(yk, s
′, s)βk(s).

(1.10)

Theαk(s) andβk(s) can be computed as

αk(s) =
∑

s′

∑

i

αk−1(s
′)γi(yk, s

′, s)

βk(s) =
∑

s′

∑

i

βk+1(s
′)γi(yk+1, s, s

′),

(1.11)

whereα0(0) = 1, α0(s) = 0 for s 6= 0; βN(0) = 1, βN(s) = 0 for s 6= 0. The SDF output
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LLRs can be incorporated into the current pixel transition probabilitiesγi(yk, s
′, s). The

modifiedγ is the product of a modified conditional channel PDFp′(·), the trellis transition

probabilities, and the extrinsic information (from the other decoder):

γi(yk, s
′, s)

= p′(yk|u = i, Sk = s, Sk−1 = s′)× P (u = i|s, s′)

× P (Sk = s|Sk−1 = s′)× P (ũ|u = i).

(1.12)

For the given statess′, s and inputu, P (u = i|s, s′) is 0 or 1 andP (Sk = s|Sk−1 = s′) is

1/8 based on the trellis. The extrinsic information can be computed as:

P (ũ|u = i) =
P (u = i|ũ)P (ũ)

P (u = i)
, (1.13)

whereP (u = i|ũ) comes from (1.7), andP (ũ) = P (u = i) = 1/8. The modified channel

PDF sums over all possible values of the inner productscsdf associated with state transition

s′ → s that are affected by past decisions:

p′(yk|u = i, Sk = s, Sk−1 = s′) = P
(
yk2|uk0, uk1, uk2, s, s

′)

×
[∑

Ω2

P (Ω2)P
(
yk1|uk0, uk1, s, s

′, csdf2(Ω2), Ω2

)

×
(∑

Ω1

P (Ω1)P
(
yk0|uk0 , s, s

′, csdf1(Ω1, Ω2), Ω1, Ω2

))]
(1.14)
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whereΩ denotes feedback rows, inner productcsdfj(Ω) is a function of the feedback pixels,

and probabilitiesP (Ωj) are obtained from the feedback probabilitiesP (ωjl):

P (Ωj = ωj0, ωj1, ωj2) =
2∏

l=0

P (ωjl). (1.15)

The probabilitiesP (ωjl) can be computed by (1.7), using feedback LLRs from previously

processed rows (or columns) during the current iteration. We note that, since the original

image is subject to AWGN,p′(yk|u = i, Sk = s, Sk−1 = s′, csdfj(Ω)) are normal PDFs

with meancsdfj(Ω).

Since we have vector inputs and received pixels, to estimate the pixel located on(m,n),

we sum theλs over(m + 1, n) and(m + 2, n):

λi0
k (s) =

∑
i1,i2

λi0,i1,i2
k (s). (1.16)

The pixel LLR is computed as:

L(k) = log




∑
s λi0=+1

k (s)
∑

s λi0=−1
k (s)


 . (1.17)

If L(k) > 0, we decide that pixel(m,n) is +1; otherwise, it is detected as−1.
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1.4 Reduced Complexity BCJR Algorithms Review

The computational complexity of the BCJR-based SISO iterative algorithms grows expo-

nentially with the size of the channel impulse response, or “mask” [37, 38]. To reduce

complexity, a number of reduced-state BCJR algorithms have been proposed, including,

e.g., the reduced state BCJR (RS-BCJR) of [39], the (quite similar) RS-SISO algorithm

of [40], the minimum sequence metric reduced-state SISO (MSM RS-SISO) of [40], and

the M-BCJR algorithm of [41]. These algorithms, when used for equalization of finite-

length 1D ISI channels, typically perform reasonably close to their corresponding full-state

versions when the channels are minimum- or maximum-phase. However, their perfor-

mance suffers with mixed-phase channels that have relatively high-magnitude center taps

and lower magnitude peripheral taps; we refer to such channel masks as “center-weighted,”

and will discuss the algorithms for this type of channel in both 1D and 2D in chapter 3.

Consider the finite-length ISI channel

r = h ∗ a + w, (1.18)

whereh is the channel mask,a is the data,w contains i.i.d. Gaussian random variables
of 0 mean and varianceN0/2, and “*” indicates 1- or 2-dimensional convolution. For the

1D case,h = {hi}, 0 ≤ i ≤ L − 1, anda = {ak} ∈ {−1, 1}, 0 ≤ k ≤ N − 1. For

2D, h = {hi,j}, 0 ≤ i, j ≤ L − 1, anda = {ak,l}, 0 ≤ k, l ≤ N − 1. At the kth input

symbol, the input to the 1D ISI channel isak, and the state is the previousL − 1 symbols

ak−1, . . . , ak−L−1. This leads to a trellis diagram with2L−1 states and two branches leaving

14



(and entering) each state.

At each trellis stage in its forward pass, the M-BCJR algorithm of [41] selects the

M states with the highest forward state probabilitiesα(m) and retains only those states

and their connecting branches. The backward pass only considers the states and branches

selected during the forward pass.

1.5 Main Contributions

In this dissertation, we present new iterative equalization schemes, which exchange soft bit

estimates, resulting in significantly lower BERs than previously proposed algorithms. In

particular, new algorithms for joint 2D random field estimation and ISI equalization have

been developed, in order to exploit the correlation present in many 2D data blocks. On

the 2 × 2 averaging-mask ISI channel, the proposed algorithm achieves SNR savings of

up to 2.0 dB or37% over previous detectors which do not account for correlations within

data blocks. Higher SNR savings can be achieved for more correlated data blocks. The

computational complexity of the proposed algorithm is comparable to that of previously

published algorithms. The proposed algorithm is also robust against mismatches in the

correlation parameters, thereby eliminating the need for a good model estimator.

We present a new 1D and 2D truncated state SISO algorithm. The new algorithm,

based on the MSM RS-SISO of [40], uses a truncation scheme more appropriate for center-

weighted masks. Simulation results show that the new algorithm significantly outperforms
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MSM RS-SISO for center weighted masks.

We compare the equivalent masks for 4-ary and binary modulation at the same areal

density. In some cases, binary modulation has better performance. In other cases, 4-ary

modulation does better. We also considered the simulation of the row-column soft-decision

feedback algorithm described in section 1.3 with 4-ary modulation, and with binary mod-

ulation and large masks. Because the trellis has more states and more branches for 4-ary

modulation and/or larger size masks, reduced complexity algorithms are needed to simulate

the system with these masks.

1.6 Dissertation Outline

The rest of this dissertation is organized as follows. In chapter two, the detection of Markov

random fields on 2D ISI channels is presented. The material of this chapter was partially

presented at the 44th Annual Allerton Conference on Communication, Computing, and

Control in September 2006 [42] and journal article of “IEEE Transactions on Signal Pro-

cessing” in July 2008 [43] . In chapter three, we consider the reduced state BCJR al-

gorithms for one- and two-dimensional equalization. The material of this chapter was

partially presented at the IEEE International Conference on Acoustics, Speech and Signal

Processing in Mar./Apr. 2008 [44]. In chapter four, we give the masks for binary and 4-ary

modulation with both Gaussian and Sinc square PSFs. Also in chapter four the reduced

complexity algorithms are discussed. Finally, the dissertation is concluded in chapter five.
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Chapter 2

Markov Random Field Detection on Two-Dimensional Intersymbol

Interference Channels

In this chapter, we present an iterative detection scheme that exploits the correlation in the

original image to achieve significant SNR savings over ISI detection schemes which do

not account for correlated input images. Both the MRF detector and the ISI detector in

our technique account for non-uniform prior probabilities, and we demonstrate the iterative

detection scheme on non-uniformly distributed natural binary images. Although we model

the image correlation by a simple first-order Markov random field, our results give at least

a proof of principle that can be further explored with more realistic image models.

2.1 The Concatenated Detector

The block diagram of the digital storage channel has been shown in Fig. 1.1. A block dia-

gram of the concatenated detection system is shown in Fig. 2.1. It operates according to the

“turbo principle” (after turbo-codes [45]), whereby two or more SISO decoders exchange
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extrinsic information and iterate until convergence. The received imager is an input to

the ISI detector, which attempts to remove the ISI under the assumption that the pixels

of F̃ in Fig. 1.1 are i.i.d. The ISI detector outputs deinterleaved extrinsic log-likelihood

ratios (LLRs) to the MRF detector, which estimates the original MRFF , and feeds back

interleaved extrinsic LLRs to the ISI detector.

F̂

������

����������	�
�
�
�����

�������
�

π

1−π
r

Figure 2.1: Block diagram of the concatenated detector.

Two comments are in order about how the proposed joint MRF estimator and ISI detec-

tor would fit into a digital storage system. First, although Figs. 1.1 and 2.1 do not include

channel coding, it could easily be incorporated into the proposed joint detection and equal-

ization scheme by replacing the 2D ISI SISO equalizer in Fig. 2.1 with a joint channel

decoder/equalizer, and letting the decoder/equalizer exchange soft information with the

MRF detector. Second, the 2D correlation assumed to exist in the source image would

be very small if the source image were compressed using an entropy code. Most stan-

dard entropy codes are variable length, and their decoders suffer catastrophic failure when

they encounter channel-induced bit errors. For this reason, a number of proposed source-

channel coding schemes (e.g., [29, 33, 34] described in chapter 1) avoid entropy coding,

and yet their end-to-end performance is competitive with entropy coded systems that em-

18



ploy separate source and channel coding. Hence, it is not unrealistic to assume that the

proposed detection system may be part of a digital storage system that does not use entropy

coding.

2.1.1 The ISI Detector

A detailed description of the ISI detector, including performance comparisons with a num-

ber of other previously published 2D ISI algorithms, appears in [3, 12] and is briefly de-

scribed in Section 1.3.

The IRCSDF algorithm used in 2D ISI SISO detector consists of two SISO modules,

run on rows and columns, which exchange weighted soft information estimates of the in-

terleaved MRFF̃ . Each module runs the BCJR algorithm [36] on several rows (columns)

of the image at once, and uses soft decision feedback from previously-processed rows

(columns), to arrive at an LLR estimatẽL of the current row (or column.) The weightw

attenuates the LLR estimates, to correct for the over-confidence effect resulting from use

of SDF.

If the candidate input pixelsij take values from{−1, 1} with a priori probabilitiesp0

andp1, we use the non-equiprobable version of IRCSDF which is described in [46].

To the best of our knowledge, the above-described IRCSDF algorithm gives the best

published performance for equalization of the2× 2 averaging mask on non-trivially-sized

source images, with the exception of the concatenated zig-zag algorithm of [13], which

uses the IRCSDF algorithm as a component. We chose the IRCSDF algorithm for the ex-
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periments described in this dissertation because it is about half as complex as the concate-

nated zig-zag algorithm, and because the focus in this dissertation is on the improvements

provided by concatenating a MRF detector with an ISI detector.

2.1.2 The MRF Detector

The MRF detector is designed to provide a maximuma posteriori(MAP) estimate of the

original MRFF from its noisy versionG = F + z, wherez is zero mean 2D AWGN. The

MRF detector’s extrinsic input LLRs are the deinterleaved extrinsic output LLRs from the

ISI detector:

LMRF
in = π−1

(
LISI

out

)
.

In practice, theLMRF
in are (approximately) conditionally normal, with conditional meansµ+

andµ− corresponding to pixel values of+1 or−1 in π−1(F̃ ). The MRF detector computes

sample mean and variance estimatesµ̂+, µ̂−, σ̂2
+, and σ̂2

− for the two conditional input

PDFs. The LLRsLMRF
in are then shifted and scaled to form the “noisy image”G, which

has conditional means of 0 and 1:

G(m,n) =
LMRF

in (m,n)− µ̂−
µ̂+ − µ̂−

. (2.1)

The conditional variances ofG are estimated as

σ2
G =

N+σ̂2
+ + N−σ̂2

−
(N+ + N−)(µ̂+ − µ̂−)2

, (2.2)
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whereN+ andN− are the number of positive and negative pixels in the input LLR image

LMRF
in .

Generation of the MRFs

The conditional probabilities in (1.3) are calculated according to the Gibbs distribution [28]

Pr(Fm,n = fm,n|Fk,l = fk,l, (k, l) ∈ Fm,n) =
e−E(fm,n)/T

∑1
f=0 e−E(f)/T

. (2.3)

The energy functionE used to generate the MRFs in this dissertation follows the Ising

model:

EI(fm,n) = fm,n(α + βvm,n), (2.4)

wherevm,n = fm,n−1 + fm,n+1 + fm−1,n + fm+1,n. The MRF becomes more correlated

as the interaction coefficientβ becomes increasingly large and negative. Coefficientα is

related to the prior probability of pixel(m, n); α is set equal to−2β when the pixels are

equiprobable. The “temperature” parameterT is set to one to generate the original MRFs,

but is varied according to an annealing schedule during the stochastic relaxation algorithm

used for MRF estimation.

The method used to simulate the MRF is as follows[47]:

1. Start with an i.i.d. random configuration.

2. Randomly chose two pixels.
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3. Compute the energy change∆E if these two pixels are switched.

4. If ∆E < 0, i.e., if the energy decreases, accept the switch.

5. Otherwise, accept the switch with probabilityq ∝ exp (−∆E).

6. Go to 2) until convergence occurs.

This method ensures that the generated MRF has the same number of 0s and 1s as the

initial configuration, and after the interleaver it has the same distribution as an i.i.d. source.

Two examples of generated equiprobable MRFs are shown as images b and c in Fig. 2.2.

In these images, black represents 0, and white represents 1. Image b hasβ = −1.5, and

image c hasβ = −3.0; from the figure it is clear that image c is more correlated than image

b. Fig. 2.2 (a) shows an i.i.d. image for comparison.

(a) (b) (c)

Figure 2.2: Three64 × 64 equiprobable binary images: (a) i.i.d. image; (b) MRF with
correlation parameterβ = −1.5; (c) MRF withβ = −3.0.

If the source image is non-equiprobable, then parameterα in the MRF model needs to

be modified as follows. If we level shift the binary alphabet forFm,n such that0 → −1
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and1 → 1, let β = 0, and denote the level-shifted pixels byf ′m,n, thenEI(f
′
m,n) = f ′m,nα1,

where we use the notationα1 to denote the alpha constant for the{−1, 1} alphabet. So,

p0 ≡ P (F ′
m,n = −1) =

eα1

e−α1 + eα1

p1 ≡ P (F ′
m,n = +1) =

e−α1

e−α1 + eα1
,

which gives

α1 =
1

2
log

P (F ′
m,n = −1)

P (F ′
m,n = +1)

=
1

2
log

p0

p1

.

Now, we map the values from{−1, 1} to {0, 1} and consider the energy function in (2.4):

EI(fm,n) = f ′m,n(α1 + βv′m,n)

= (2fm,n − 1){α1 + β[(2fm,n−1 − 1) + (2fm,n+1 − 1)

+(2fm−1,n − 1) + (2fm+1,n − 1)]}

= 2α1fm,n + 4βvm,nfm,n − 8βfm,n − 2βvm,n + 4β − α1

=
1

4
fm,n(

1

2
α1 − 2β + βvm,n)− 2βvm,n + 4β − α1

=
1

4
fm,n(α + βvm,n)− 2βvm,n + 4β − α1, (2.5)

where

α =
1

2
α1 − 2β =

1

4
log

p0

p1

− 2β. (2.6)
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Given the neighborsvm,n, (−2βvm,n +4β−α1) is a constant which does not affect the

probability computation. An example MRF with(p0, p1) = (0.1, 0.9) is shown in Fig. 2.3.

Figure 2.3: Non-equiprobable64× 64 binary MRF, withp0 = 0.1 andβ = −3.0.

Stochastic Relaxation

The stochastic relaxation algorithm of Geman and Geman (G&G) [28] is an iterative al-

gorithm that proceeds at discrete time stepst = 0, 1, 2, . . . , tmax; after each step, a new

MRF estimateF̂ (t) is obtained. For sufficiently largetmax, the algorithm converges to

a final estimateF̂ that does not change appreciably fort > tmax. The initial estimate

F̂ (0) is computed by thresholding the noisy imageG at 1/2. Given estimateF̂ (t) at

time t, at timet + 1 M × N randomly chosen pixels of̂F (t) are visited. The value of

each pixel(m, n) visited during the random scan is set to 0 or 1 with probability1/2.

If the new value is different from its valuêfm,n at time t, then the energy difference

∆EP (m,n) = EP (NOT(f̂m,n))−EP (f̂m,n) is computed, whereEP is the modified (a poste-

riori ) energy function which includes the difference energy between the noisy input image
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G and the current trial estimate, and is defined at timet + 1 as:

EP (fm,n) = EI(fm,n) + ‖G− F̂ (t, fm,n)‖2/2σ2
G. (2.7)

In (2.7), F̂ (t, fm,n) denotes the estimated MRF̂F (t) with pixel (m,n) taking the value

fm,n, and σ2
G is estimated as in (2.2). In computing∆EP (m,n), only one pixel at a

time (i.e., pixel(m,n)) is changed; all other pixels retain their values from timet. If

∆EP (m,n) < 0, then the change is accepted:f̂m,n(t+1) = NOT(f̂m,n(t)). If ∆EP (m,n) ≥

0, the change is accepted with probabilityq = exp [−∆EP (m,n)/T (t + 1)]. The tem-

peratureT is gradually reduced according to a logarithmic annealing schedule:T (t) =

C/ log(1 + t), 1 ≤ t ≤ tmax; in this dissertation the valueC = 3.0 is used for all simula-

tions.

The extrinsic information LLRsLMRF
in (m,n) = log [Prext(Fm,n = 1)/Prext(Fm,n = 0)]

are independenta priori information about pixel(m,n). Hence, in theEI(fm,n) of (2.7),

we replaceα with

α′ = α− LMRF
in (m,n). (2.8)

After converting to probabilities using (2.3), this extra LLR term inα′ results in the cor-

responding extrinsic probabilitiesPrext(Fm,n = fm,n) appearing as independent weight

factors in the renormalized expressions for the conditional probabilities of (2.3). Thus, as

the LLRsLMRF
in (m,n) grow increasingly large with successive iterations of the concate-

nated detector, they increasingly influence the estimatesF̂ arrived at by the MRF detector.
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The G&G algorithm provides only a binary estimateF̂ of the MRF. To compute LLR

estimatesLMRF(m, n) for each pixel, we use the following method, which is similar to that

in [29, 31], where a soft-output G&G algorithm is used for recovery of noise-corrupted

MRFs, and for iterative source-channel image decoding with MRF source models. After

the stochastic relaxation algorithm convergence, we compute the conditional probabilities

based on the MRF model:

Pr(Fm,n = 0|Fm,n) =
1

1 + e−(α′+βvm,n)/T
(2.9)

Pr(Fm,n = 1|Fm,n) =
e−(α′+βvm,n)/T

1 + e−(α′+βvm,n)/T
. (2.10)

The LLRsLMRF(m,n) are then computed as

LMRF(m,n) = −(α′ + βvm,n)/T

= −(α− LMRF
in (m,n) + βvm,n)

T
. (2.11)

Finally, sinceLMRF
in (m,n) is weighed by1/T ,

LMRF
out (m,n) = LMRF(m,n)− LMRF

in (m,n)/T

= −(α + βvm,n)/T. (2.12)

The per-pixel complexity of the proposed MRF-ISI detector is now summarized, under
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the assumption of a2 × 2 ISI mask. (The mask size affects only the complexity of the

ISI detector). Each pass through the MRF detector results in a per-pixel complexity of

10+9pd×Nit adds/subtracts,3+(8pd+pd×p∆)×Nit multiplies/divides,1+pd×p∆×Nit

exp/log operations, and(3 + pd × p∆) × Nit random number generations, wherepd =

1/2 is the probability that the new trial pixel and the old pixel are different,p∆ is the

probability that the energy change∆EP (m,n) ≥ 0, andNit is the number of iterations of

the stochastic relaxation algorithm. Simulation results for image (c) in Fig. 2.2 at moderate

SNRs of11 and12 dB indicate thatp∆ is close to1. Assuming thatp∆ = 1, then the MRF

detector’s complexity per pixel per iteration is 10.5 adds/subtracts, 7.5 multiplies/divides,

1.5 exp/log, and 3.5 random number generations. By comparison, the MRF source decoder

of [29] requires about 180 adds/subtracts per pixel per iteration, assuming the four doublet

cliques used in the Ising model of the present paper (and neglecting the singlet), 1 bit source

vectors, and no block coding (corresponding to the parameter settingsNC = 4, andN =

M = 1 in [29]). Our technique has somewhat lower complexity because our sources are

binary, so that we do not need to do the source modeling done in [29]. The ISI detector uses

three-row IRCSDF, which needs 1935 adds/subtracts, 3398 multiplies/divides, and 391

exp/logs per pixel. Using the typical valuesp∆ = 1, andNit = 300, five iterations of the

MRF-ISI detector require a total of 16475 adds/subtracts, 23755 multiplies/divides, 2710

exp/logs, and 5250 random number generations per pixel. In these figures, the complexity

due to the MRF detector is roughly equal to that of the ISI detector. The simulation results

in the following section demonstrate that the approximate doubling of the complexity over
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ISI detection alone can give performance gains as high as 2.5 dB at high SNR.

2.2 Simulation Results

During initial iterations of the concatenated system of Fig. 2.1, the ISI detector cannot

remove all the ISI from received imager . Due to its use of soft-decision feedback, the

ISI detector is also subject to error propagation, especially at low SNRs. Thus, the “noisy

image” G supplied to the MRF detector by the ISI detector contains bit errors as well

as Gaussian-like noise. To verify that the MRF detector can correct some of these bit

errors (by exploiting the Markov structure of the image), we performed the simulation

diagrammed in Fig. 2.4. The MRF passes through a binary-symmetric channel (BSC) with

crossover probabilityp, followed by an AWGN channel, and is then detected with the MRF

MAP estimator. Fig. 2.5 plots the BER of the hard decisions made at the MRF estimator’s

output versus the SNR10 log10 (var[F ] /σ2
w) of the AWGN channel, for several values of

the BSC error probabilityp. In every case, the MRF detector’s output has an error floor

lower than the value ofp used in the simulation. This result strongly suggests that the MRF

detector can improve the reliability of the information passed to it by the ISI detector.
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Figure 2.4: Experiment to test error correction capability of the MRF detector.
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Figure 2.5: Simulation results for the experiment shown in Fig. 2.4.

Unless otherwise noted, all simulations of the concatenated system of Fig. 2.1 used the

the 2 × 2 averaging mask (withh(k, l) = 1/4 for 0 ≤ (k, l) ≤ 1) in the 2D convolu-

tion of (1.1). Unless otherwise noted, all simulations used 5 outer iterations of the entire

concatenated system, with one inner iteration of the ISI detector performed for each outer

iteration. In the following subsections, we present simulation results for three cases: (1)

the source image is a binary first order MRF, and the receiver knows the MRF parameters;

(2) the source image is a binary first order MRF, and the receiver guesses the MRF param-

eters; and (3) the source image is a natural binary image, and the receiver guesses the most

appropriate MRF parameters.
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2.2.1 MRF Source and Known Markov Parameters at the Receiver

Monte-Carlo simulation results for the concatenated system, when the source images were

the two64 × 64 binary equiprobable MRFs shown in Fig. 2.2(b) and (c), are shown in

Fig. 2.6. For image (c), results for both the2 × 2 and3 × 3 averaging masks are shown.

(The3 × 3 averaging mask hash(k, l) = 1/9 for −1 ≤ k, l ≤ 1). The SNR in Fig. 2.6 is

defined as in [12]:

SNR= 10 log10

(
var

[
F̃ ∗ h

]
/σ2

w

)
, (2.13)

where∗ denotes 2D convolution, andσ2
w is the variance of the Gaussian r.v.sw(m,n)

in (1.1). The performance of the IRCSDF ISI detector alone on the received imager is

also shown for comparison. For the2 × 2 mask at a BER of2 × 10−5, the concatenated

system gives SNR savings of0.5 and1.5 dB over the ISI detector alone, for images (b)

and (c) respectively. As the input MRF becomes more correlated, the MRF detector makes

increasingly reliable decisions, thereby improving the system’s SNR gain. For the2 × 2

mask at a BER of2×10−3, the concatenated system saves about0.8 and2.2 dB over the ISI

detector alone, for images (b) and (c) respectively. The gains increase at lower SNR, where

the additional input of the MRF detector helps the ISI detector resolve an increased number

of ambiguous cases. For the3 × 3 averaging mask at a BER of10−4, the concatenated

system operating on image (c) saves about2.5 dB over the ISI detector alone; it appears

that increasing the mask size also increases the number of ambiguous cases output from the

ISI detector, making the MRF detector’s assistance more valuable. For the3× 3 averaging
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mask a total of 2 outer iterations were used, with 2 inner iterations of the ISI detector per

outer iteration. Experiments indicated that this was the best iteration schedule for the3× 3

mask. Additional outer iterations beyond 2 gave no additional gains.
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Figure 2.6: Simulation results for the concatenated system on the 2D ISI channel with2×2
and3 × 3 averaging masks, for MRFs (b) and (c) shown in Fig. 2.2. The performance of
the ISI detector alone is also shown for comparison.

We also considered first order MRFs with non-equiprobable pixels. Fig. 2.7 shows

simulation results on thep0 = 0.1, β = −3.0 MRF of Fig. 2.3. The figure shows perfor-

mance of the concatenated system, as well as the performances of the non-equiprobable

and equiprobable ISI detectors alone. Non-equiprobable ISI detection offers little gain at

high SNR, but saves between 0.5 and 1 dB at lower SNRs. The addition of the MRF detec-
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Figure 2.7: Simulation results for the concatenated system on the 2D ISI channel with
2× 2 averaging mask, for the non-equiprobable MRF withp0 = 0.1 andβ = −3.0 shown
in Fig. 2.3. The performances of the equiprobable and non-equiprobable ISI detectors alone
are also shown for comparison.

tor (with modifiedα as in (2.6)) gives SNR savings of about 1 dB at BER2 × 10−4, and

about 3 dB at BER10−2, over non-equiprobable ISI detection alone. A similar set of sim-

ulation results, but withp0 = 0.01, is shown in Fig. 2.8. Now the gain of non-equiprobable

ISI compared to equiprobable ISI detection is higher: about 0.5 dB at BER10−4. But the

gain of the concatenated system over non-equiprobable ISI is smaller: about 0.3 dB at BER

2× 10−4. Clearly it is worth exploiting a non-uniform pixel distribution by using the non-

equiprobable concatenated system in place of equiprobable ISI detection alone, although

for extremely skewed distributions, non-equiprobable ISI detection alone achieves most of

32



the available SNR gain.
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Figure 2.8: Simulation results for the concatenated system on the 2D ISI channel with
2 × 2 averaging mask, for a non-equiprobable MRF withp0 = 0.01 andβ = −3.0. The
performances of the equiprobable and non-equiprobable ISI detectors alone are also shown
for comparison.

It is also worth noting that the concatenated algorithm greatly outperforms the standard

G&G algorithm applied to a non-interleaved MRF passed through the ISI channel. Simu-

lation results for the G&G algorithm alone operating on aβ = −3.0 MRF passed through

the 2 × 2 averaging-mask ISI channel are shown in Fig. 2.9. The SNR in this figure is

defined by replacing̃F by F in (2.13). From the figure it is clear that the G&G algorithm

alone has a BER floor of about1.5 × 10−3, and thus is not suitable for 2D digital storage

applications, where much lower BERs are required.
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Figure 2.9: Simulation results for the standard Geman and Geman stochastic relaxation
algorithm applied to a MRF with correlation parameterβ = −3.0, that has passed through
the 2D ISI channel with2× 2 averaging mask and AWGN without being interleaved first.

2.2.2 MRF Source and Unknown Markov Parameters at the Receiver

If the MRF detector must estimate the Markov model parameters, there will be some esti-

mation error between the actual and estimated parameters. This leads to the question: how

accurate must the model parameters be in order to achieve performance gains similar to

those seen when the parameters are known exactly?

To answer this question, we did a number of simulations using the equiprobable MRFs

of Fig. 2.2(b) and (c), in which the assumed MRF parameterβ did not match the actual

parameter. These simulation results are shown in Figs. 2.10 and 2.11. In Fig. 2.10 the

source image hasβ = −1.5. At high SNR, there is a mismatch penalty of about 0.2 or 0.3
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dB when the receiver assumes thatβ is one of the values(−0.5,−0.75,−3.0), but this still

leads to a gain of about 0.2 dB over the ISI-only case. Only whenβ is assumed to be−4.5

does the concatenated system perform worse than the ISI detector alone. Interestingly,

at low SNR, the assumed values of−3.0 and−4.5 give almost identical results to the

correct value of−1.5. The concatenated system thus appears to be quite robust to receiver

parameter mismatch, at both high and low SNRs.
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Figure 2.10: Simulation results for the concatenated system on the 2D ISI channel with
2× 2 averaging mask, for theβ = −1.5 binary MRF of Fig. 2.2(b) with receiver parameter
mismatch.

The results shown in Fig. 2.11, where the source MRF hasβ = −3.0, suggest that

robustness to parameter mismatch increases as the source MRF becomes more correlated.

At high SNR, assumed values ofβ in a range between−1.5 and−10.0 give gains of more
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than 1 dB compared to ISI-only detection; assumed values of−4.5 and−6.0 perform as

well as the correct value ofβ = −3.0.
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Figure 2.11: Simulation results for the concatenated system on the 2D ISI channel with
2× 2 averaging mask, for theβ = −3.0 binary MRF of Fig. 2.2(c) with receiver parameter
mismatch.

2.2.3 Natural Image Sources

We also tested the performance of our concatenated MRF-ISI detector on the some natural

binary images. Without doing any model estimation, we simply used our first order MRF

model with several guessed values ofβ to model these images.

First we consider two64 × 64 natural binary images “chair” and “man” shown in

Fig. 2.12. In these images, the numbers of 0s and 1s are nearly equal, so we used the
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equiprobable version of the MRF-ISI system.

(a) (b)

Figure 2.12: Two64× 64 natural binary images: (a) chair, and (b) man.

The guessedβ value used here are−1.5,−3.0,−4.5, and−6.0. The simulation results

for the chair and man images appear in Figs. 2.13 and 2.14. For these natural images at high

SNR, the concatenated detector achieves SNR savings of between 1 and 2 dB compared to

the ISI-only detector, for a wide choice ofβ values at the receiver.

Then we tested the performance of our concatenated MRF-ISI detector on the three

256 × 256 natural binary images “Lena”, “text” and “rice” shown in Fig. 2.15, and on a

512× 512 binary version of “Lena” we called “Lena512.” The probabilitiesp0 of the three

256× 256 images are0.6951, 0.9411 and0.7139 respectively, and their variances after the

interleaver are0.2094, 0.0548 and0.0574 respectively. The quantization threshold for the

“Lena512” image was adjusted so that its value ofp0 was0.6929, very close to that for

the256 × 256 “Lena.” The non-equiprobable version of the MRF-ISI system was used to

process these natural binary images.
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Figure 2.13: Simulation results for the concatenated system on the 2D ISI channel with
2 × 2 averaging mask, on the natural binary image “chair” of Fig. 2.12, for various values
of MRF parameterβ.
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Figure 2.14: Simulation results for the concatenated system on the 2D ISI channel with
2 × 2 averaging mask, on the natural binary image “man” of Fig. 2.12, for various values
of MRF parameterβ.

(a) (b) (c)

Figure 2.15: Three256× 256 natural binary images: (a) Lena, (b) text and (c) rice.
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Without doing any model estimation, we simply used our first order MRF model with

several guessed values ofβ between−1.5 to−15.0 to model these three images, and chose

oneβ which had the best performance for each image. For these images, the performance

degraded by no more than 0.1 dB forβs within±30% of the chosen value. In particular, we

choseβ = −4.5 for “Lena” and “text”,β = −10.0 for “rice”, andβ = −1.5 for “Lena512.”

The simulation results appear in Fig. 2.16, where at BER10−4 “Lena” has a SNR gain of

about 1.5 dB compared to the ISI-only detector, “Lena512” has a gain of about 0.2 dB,

“text” has a gain of 0.7 dB, and “rice” has a gain of 2 dB. The gain for “Lena512” was

smaller than for “Lena”, probably because the greater detail of the larger image reduced the

correlation after quantization. We also noticed that “text” and “rice” have lower SNR than

“Lena”; this is because their variances are smaller than that of “Lena.” For these natural

images at high SNR, the concatenated detector achieves SNR savings of between 0.2 and 2

dB compared to the ISI-only detector, thereby demonstrating that a simple first-order MRF

model is very useful in reducing 2D ISI in natural binary images.

In order to examine the performance of our MRF-ISI detector on compressed gray-level

images, we computed a one-level wavelet transform of the256 × 256 8-bit Lena image,

and then quantized to 8 bits (sign and magnitude format). The standard 9/7 Daubechies bi-

orthogonal wavelet transform [48] was used. The quantized version of the bit 7 bit-plane

(i.e., the MSB, which was the sign bit) is shown in Fig. 2.17. Then we use the128 × 128

low pass subband to run the simulation. When the bit 7 bit-plane was used as the source

image, the probabilityp0 of this images was0.6150 and the variance after the iterleaver
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Figure 2.16: Simulation results for the concatenated system on the 2D ISI channel with
2× 2 averaging mask, on the natural binary images of Fig. 2.15 with best chosen values of
MRF parameterβ.
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Figure 2.17: MSB of wavelet transformed Lena image

was0.2320. So we used the non-equiprobable version of the MRF-ISI system to run the

simulation. The simulation results appear in Fig. 2.18, where the MRF-ISI detector gave

a gain of 0.2 dB over the ISI-only detector at a BER of10−4, when the MRF detector

assumed thatβ = −1.5. When the bit 6 bit-plane was used as the source image, the MRF-

ISI detector gave a gain of 1.1 dB, withβ = −3.0. The bit 5 plane gave a gain of 0.2 dB,

with β = −1.5. These experiments demonstrate that the proposed joint MRF-ISI detection

scheme can be useful for the higher-order bit-planes of quantized gray-level images.
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Figure 2.18: Simulation results for bit 7 of low pass subband of Lena image.
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Chapter 3

Reduced State BCJR Algorithms for One- and Two-Dimensional

Equalization

In this chapter, we present a new truncated state SISO algorithm which is more appropriate

for center-weighted masks. The finite-length ISI channel discussed in this chapter is de-

scribed in section 1.4 and the standard log-MAP version of BCJR is employed to estimate

thea posterioriprobabilities (APPs) of the input symbols.

InputTruncated 
state

Survivor 
path

Forward Path at time k

Input Truncated 
state

Survivor 
path

Backward Path at time k

kk-1k-2

k k+1 k+2

Figure 3.1: Truncated state diagram for the MSM RS-SISO of [40], for 1D mask of length
L = 3.
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3.1 1D Reduced State Algorithms for Center-Weighted Masks

The MSM RS-SISO of [40] defines truncated forward and backward state vectors as in

Fig. 3.1, which shows a simple example forL = 3. The full-state trellis would have four

states, but the truncated-state trellis has only two states. A log-min version of the BCJR

algorithm is employed, with different branch metricsλf
k(i, j) andλb

k(i, j) for the forward

and backward passes; herei andj are state indices of the reduced-state trellis. The branch

metrics correspond to the negative log of theγk(i, j) state transition probabilities. The

branch outputs necessary to compute theγk(i, j)s depend on the missing symbolsk−2 and

k+2 for the forward and backward passes; these missing symbols are estimated by keeping

track of surviving paths (in both the forward and backward directions) into the truncated

states. The log-min formulation means that the update equations in both directions are

similar to those of the Viterbi algorithm.

We now briefly summarize the update equations from [40]. The forward and backward

state metric updates are

δk+1(j) = min
i∈F(j)

[δk(i) + λf
k+1(i, j)] (3.1)

ηk(i) = min
j∈B(i)

[ηk+1(j) + λb
k+1(i, j)], (3.2)

whereF(j) = {i : i → j is an allowed forward transition} and B(i) = {j : i ←

j is an allowed backward transition}. The soft output metrics for symbolak are computed
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by minimizing over the sums of the relevant forward and backward state metrics:

M o(ak = m) = min
j∈C(m)

[δk(j) + ηk(j)], (3.3)

whereC(m) = {j : at timek + 1, state elementak = m}, andm ∈ {−1, 1}. Extrin-

sic information can be passed either to subsequent iterations of the 1D MSM RS-SISO

(“self-iterations”), or to a MSM RS-SISO running in another scanning direction (for 2D

ISI detection); the output extrinsic information metric is

M o
e (ak = m) = M o(ak = m)−M i(ak = m), (3.4)

whereM i(ak = m) denotes input extrinsic information.

For center weighted masks with small magnitude peripheral taps, the distance differ-

ences between surviving path candidates are very small, causing the MSM RS-SISO of [40]

to choose incorrect surviving paths and leading to poor detection performance. To solve

this problem, we redefine the forward and backward truncated state vectors as in Fig. 3.2,

which shows an example forL = 3. In these diagrams, the leading bits in the forward and

backward directions, which are the input bits in the full-state version, are simply ignored;

their contribution to the branch outputs is small due to the small peripheral taps and can

therefore be neglected. The indexing of the update equations (3.1)-(3.3) is adjusted to ac-

count for the offset between the estimated input bit in the forward and backward directions
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Figure 3.2: Truncated state diagram for the new MSM RS-SISO algorithm for center-
weighted masks of lengthL = 3.

in the new state vectors; no such offset is present in the original state vector definitions

shown in Fig. 3.1. Because the truncated bits are ignored, there is no need to estimate them

using surviving paths.

For the 1D mask of lengthL = 3, the fully connected trellis has four states with two

branches out of each state. By comparison, both the algorithm of [40] (due to Chen and

Chugg) and our proposed algorithm have two states with two branches out of each state,

which is equivalent in complexity to the M-BCJR algorithm withM = 2.

3.1.1 Simulation Results

We consider the 1D channel[α 1 α] with α = 0.1, 0.2, 0.8 and 1.0. We compare the

performance of our proposed algorithm with that of the M-BCJR algorithm [41] forM =

2 and Chugg’s algorithm [40]. The union upper bound on the performance of the ML

equalizer is also shown for comparison; this bound is tight at high SNR. The results for

α = 0.1, 0.2 are shown in Fig. 3.3; this figure also shows the results of simple hard decision
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demodulation (without equalization) for these channels. Fig. 3.4 depicts similar results for

α = 0.8, 1.0. With reference to the channel model (1.18), the SNR in all simulations

reported in this dissertation is

SNR= 10 log10

(
var[a ∗ h] /σ2

w

)
, (3.5)

where∗ denotes 1- or 2-D convolution, andσ2
w is the variance of the elements of the noise

vectorw in (1.18).
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Figure 3.3: 1D simulation results for masks[0.1 1 0.1] and[0.2 1 0.2].

Whenα = 0.1 or 0.2, M-BCJR withM = 2 gives the best performance, which is very

48



close to the ML bound. Forα = 0.1, our proposed algorithm is about 0.7 dB away and

Chugg’s algorithm is about 17 dB away from the ML bound, while the hard-decision curve

is about 2.9 dB from the bound. Forα = 0.2, our proposed algorithm is about 3 dB away

and Chugg’s algorithm is about 11 dB away from the ML bound, while the hard-decision

curve is about 12.5 dB from the bound. Whenα = 0.8 or 1.0, M-BCJR with M = 2

again gives the best performance, which is 0.6 dB away from the ML bound. Forα = 0.8

(α = 1.0), Chugg’s algorithm is 0.8 dB (0.9 dB) away from the ML bound, whereas our

proposed algorithm completely fails in both cases. All comparisons are done at a BER of

10−4.

Since our proposed algorithm truncates one state bit, it is expected to perform well

when the contribution of the truncated mask element is small. In the current example, this

happens when the value ofα is small.

3.2 2D Reduced State Algorithms for Center-Weighted Masks

Fig. 3.5 shows the truncated state and input block for the row-trellis of IRCSDF algorithm

of [3], for a 3 × 3 ISI mask. This modified IRCSDF algorithm uses MSM RS-SISOs

(like those in [40]) in row and column directions; the SISOs iteratively exchange extrinsic

information until convergence occurs. A similar input block, rotated right by 90 degrees,

defines the column trellis.

Trellis generation for the3 × 3 mask on themth image row is initiated by placing the
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Figure 3.4: 1D simulation results for masks[0.8 1 0.8] and[1 1 1].

input marked(m,n) in Fig. 3.5 (the uppermost of the three inputs) at the left end of the

row, where the initial values of the six state pixels (which include the three truncated state

pixels on the left) are−1 due to the boundary conditions, and the vector of three input

pixels can take eight different values. The entire state/input block is then shifted right to

pick up the next three input pixels, and the previous three input pixels become the middle

three state pixels. The full-state trellis therefore has 64 states with 8 branches out of each

state. The Chugg-style truncation scheme shown in Fig. 3.5 has eight states with eight

branches out of each state; the deleted state pixels are estimated by surviving paths in the

forward and backward passes of the MSM RS-SISO algorithm. At each position(m,n),
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Figure 3.5: 2D truncated state diagram for the forward row pass of the IRCSDF algorithm
of [3] on a3× 3 ISI channel.

the trellis branch output vector consists of three3× 3 inner products between the inverted

mask and the pixel values defined by the trellis; the upper inner product feedback from two

previously processed rows, the middle uses one feedback row, and the lower uses received

pixels only. The branch metric is the squared Euclidean distance between the branch output

and the received pixel vector [r(m,n), r(m + 1, n), r(m + 2, n)].

Fig. 3.6 shows the truncated state diagram for the row-trellis of an IRCSDF algorithm

employing the new MSM-RS-SISO of section 3.1. The new MSM-RS-SISO algorithm is

used in row and column directions. This truncation scheme works well for center weighted

masks in which the relative magnitude of the edge coefficients on each row (column) are

much smaller than those of the center coefficient. As with the truncation scheme shown
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Figure 3.6: Proposed new truncated state diagram for the forward row pass of the IRCSDF
algorithm on a3× 3 ISI channel.

in Fig. 3.5, the truncated trellis has 8 states and 8 branches per state. Thus, both truncated

IRCSDF algorithms are equivalent in complexity to an IRCSDF algorithm which employs

the M-BCJR algorithm withM = 8 in its row and column detectors; performance compar-

isons between these three algorithms are made in the following section.

3.2.1 Simulation Results

We consider the3× 3 channel mask the “α channel”,




0 α 0

α 1 α

0 α 0


 . (3.6)
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Figure 3.7: 2D-ISI simulation results for3× 3 center-weighted masks withα = 0.1, 0.2.

We compare the performance of our proposed algorithm (corresponding to Fig. 3.6)

with that ofM = 8 M-BCJR [41] and Chugg’s algorithm (corresponding to Fig. 3.5). The

ML bound is also shown for comparison. The results forα = 0.1, 0.2 are shown in Fig. 3.7;

this figure also shows the results of simple hard decision demodulation for these channels.

Fig. 3.8 depicts similar results for “Channel B” and the averaging mask. The3×3 “Channel

B” mask [6] is




0.0993 0.352 0.0993

0.352 1 0.352

0.0993 0.352 0.0993


 . (3.7)

The3 × 3 averaging mask has all elements equal to 1.0. Six iterations of the IRCSDF
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algorithm were used for all simulations shown in Fig. 3.7 and Fig. 3.8, with the exception

of the hard-decision simulations.
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Figure 3.8: 2D-ISI simulation results for3 × 3 masks, the “Channel B” mask and the
averaging mask.

Whenα = 0.1, the performance of the new algorithm (0.7 dB away from ML bound) is

better than that of theM = 8 M-BCJR algorithm (more than 6 dB away from ML bound).

Whenα = 0.2, the performance of the new algorithm (3 dB away from ML bound) is again

better than that ofM = 8 M-BCJR (5.5 dB away from ML bound). Chugg’s algorithm fails

for bothα = 0.1, 0.2, as does hard-decision demodulation. For Channel B, the performance

of M = 8 M-BCJR (2 dB away from ML bound) is better than that of Chugg’s algorithm

(3.4 dB away from ML bound). For the averaging mask, the performance of Chugg’s
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algorithm (1.3 dB away from ML bound) is better than that ofM = 8 M-BCJR (1.8 dB

away from ML bound). Our proposed algorithm fails for Channel B and the averaging

mask. All comparisons are done at a BER of10−4.

3.3 2D ISI M-BCJR Algorithm Comparison

In the M-BCJR algorithm we used, the surviving states were picked only from the forward

direction. In [49], the forward direction selects theM states with the highest forward

state probabilitiesα(m) and retains only those states and their connecting branches. The

backward pass employs the same strategy, using the backward state probabilitiesβ(m) to

independently choose the backward-pass active states. We apply this method in our 2D

ISI problem. Instead of weighting the extrinsic information in every iteration, [49] uses a

parameterγ, in the range[0, 1], to performoutput saturation. For each time epochk, the

ratio between the lowest extrinsic information and the largest one must be at least equal

to γ. We tested several values ofγ with the 2D averaging mask; the results are shown in

Fig. 3.9, where the curve labelled “averaging M=8” is the one using our old method, which

is identical with the “averaging M=8” curve in Fig. 3.8. From Fig. 3.9 we can see, the new

method works better at low SNR but performs almost the same as the old method at high

SNR.
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Figure 3.9: 2D-ISI M-BCJR simulation results for the averaging mask.
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Chapter 4

4-ary Modulation for 2D-ISI Channels

For 2D storage systems, the storage capacity can be increased by using more than two

levels. In this chapter, we will compute equivalent masks for 4-ary and binary modulation

for Gaussian and Sinc square point spread functions (PSFs). For 4-ary and binary, at the

same areal density, when we chose different parameters, for some cases, 4-ary modulation

can give better performance than binary modulation.

4.1 System Presentation

The basic system architecture of the parallel optical binary detection system is shown in

Fig 4.1. This figure is copied from [22]. L1 and L2 are Fourier transform lenses, XTAL

is a photo refractive crystal, and REF represents the reference beam. SLM is a spatial light

modulator. CCD is a charge-coupled device. During recording a binary amplitude SLM

transmits the 2D binary data into the optical recording system. The overall noncoherent

system PSF is defined as:
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Figure 4.1: Parallel optical binary detection system: (a)system architecture and (b)system
model.

h(x, y) = p(x, y) ∗ hchan(x, y) (4.1)

where∗ denotes 2D convolution.

The discrete PSF can be defined as:

hkl =

∫ y+
k

y−k

∫ x+
l

x−l

h(x, y)dxdy (4.2)

wherex±l = lD± γ/2, y±k = kD± γ/2, D is the SLM pixel pitch, andγ is the CCD pixel

size. For simplicity, we setD = 1 andγ = 1.

From 4-ary to binary, to keep the same areal density, Fig. 4.2 shows that we can change

both the CCD pixel sizeγ and SLM pixel pitchD from 1 to1/
√

2.

If we use the same equation to compute SNR for binary and 4-ary sources, the SNR

for 4-ary would be “SNR per symbol”. SinceEs = 2Eb, “SNR per bit” equals “SNR per

symbol”− 3dB.
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Figure 4.2: Example of symbol positions for (a)4-ary and (b)binary in same area.

4.1.1 Gaussian PSF

We call the PSF “Gaussian PSF” if the computed values of the discrete PSF are based on

the use of a radially symmetric Gaussian blur spot with widthσb:

h(k, l) =

∫ (k+1/2)/δ

(k−1/2)/δ

∫ (l+1/2)/δ

(l−1/2)/δ

exp[−(x2 + y2)/2σ2
b ]dxdy, (4.3)

whereδ = 1 for 4-ary andδ =
√

2 for binary.

The Sparrow criterion specifies that the noncoherent intensity superposition of two

neighboring pixels yields an intensity profile that has a point of inflection at the spatial

position half-way between the two pixels. For a Gaussian blur function, the resolution

limit (Sparrow limit) is achieved forσb = 0.5; the corresponding discrete PSF is




0.000280588 0.00373363 0.00872232 0.00373363 0.000280588

0.00373363 0.0496814 0.116063 0.0496814 0.00373363

0.00872232 0.116063 0.271141 0.116063 0.00872232

0.00373363 0.0496814 0.116063 0.0496814 0.00373363

0.000280588 0.00373363 0.00872232 0.00373363 0.000280588




. (4.4)
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With the same areal density, the 4-ary discrete PSF is




1.82145−6 0.000212 0.00092 0.000212 1.82145−6

0.000212 0.024745 0.107391 0.024745 0.000212

0.000921 0.107391 0.466065 0.107391 0.0009213

0.000212 0.024745 0.107391 0.024745 0.000212

1.82145−6 0.000212 0.00092 0.000212 1.82145−6




. (4.5)

The ML bounds for these two PSFs are shown in Fig. 4.3. In this case, the binary

modulation performs about 1.2dB better than the 4-ary modulation.
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Figure 4.3: ML bound for Gaussian PSF withσb = 0.5

The binary and 4-ary PSFs forσb = 0.6 are:

Binary:
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


0.0013648 0.00884065 0.0164148 0.00884065 0.0013648

0.00884065 0.0572663 0.106329 0.0572663 0.00884065

0.0164148 0.106329 0.197426 0.106329 0.0164148

0.00884065 0.0572663 0.106329 0.0572663 0.00884065

0.0013648 0.00884065 0.0164148 0.00884065 0.0013648




, (4.6)

4-ary:




0.0000383706 0.00121488 0.00368791 0.00121488 0.0000383706

0.00121488 0.0384649 0.116765 0.0384649 0.00121488

0.00368791 0.116765 0.354455 0.116765 0.00368791

0.00121488 0.0384649 0.116765 0.0384649 0.00121488

0.0000383706 0.00121488 0.00368791 0.00121488 0.0000383706




. (4.7)

The ML bounds for these two PSFs are shown in Fig. 4.4, where the binary ML bound

is computed using the5× 5 PSF of (4.6). The 4-ary ML bounds computed using the center

3× 3 PSF of (4.7) and the full5× 5 PSF of (4.7) are very close. The BERs for binary and

4-ary modulation intersect at an SNR around 16.5dB. At BER of10−8, the SNR savings

for 4-ary modulation is about 0.6dB.

The binary and 4-ary PSFs forσb = 0.707107 = 1/
√

2 are:
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Figure 4.4: ML bound for Gaussian PSF withσb = 0.6

Binary:




0.0000358 0.000363 0.00145 0.00229 0.00145 0.000363 0.0000358

0.000363 0.00368 0.0147 0.0232 0.0147 0.00368 0.000363

0.00145 0.0147 0.0585 0.0927 0.0585 0.0147 0.00145

0.00229 0.0232 0.0927 0.147 0.0927 0.0232 0.00229

0.00145 0.0147 0.0585 0.0927 0.0585 0.0147 0.00145

0.000363 0.00368 0.0147 0.0232 0.0147 0.00368 0.000363

0.0000358 0.000363 0.00145 0.00229 0.00145 0.000363 0.0000358




, (4.8)
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4-ary:




0.000280588 0.00373363 0.00872232 0.00373363 0.000280588

0.00373363 0.0496814 0.116063 0.0496814 0.00373363

0.00872232 0.116063 0.271141 0.116063 0.00872232

0.00373363 0.0496814 0.116063 0.0496814 0.00373363

0.000280588 0.00373363 0.00872232 0.00373363 0.000280588




. (4.9)

The ML bounds for these two PSFs are shown in Fig. 4.5. where the 4-ary ML bound is

computed using the5× 5 PSF. The binary ML bounds for this case suggest that we should

use the7 × 7 PSF, although the5 × 5 PSF from the center of (4.8) gives results that are

very close. At BER of10−8, the SNR savings for 4-ary modulation is about 2dB.
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Figure 4.5: ML bound for Gaussian PSF withσb = 0.707
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The binary and 4-ary PSFs forσb = 1.0 are:

Binary:




0.00104 0.00347 0.00712 0.00905 0.00712 0.00347 0.00104

0.00347 0.0115 0.0236 0.0301 0.0236 0.0115 0.00347

0.00712 0.0236 0.0486 0.0617 0.0486 0.0236 0.00712

0.00905 0.0301 0.0617 0.0784 0.0617 0.0301 0.00905

0.00712 0.0236 0.0486 0.0617 0.0486 0.0236 0.00712

0.00347 0.0115 0.0236 0.0301 0.0236 0.0115 0.00347

0.00104 0.00347 0.00712 0.00905 0.00712 0.00347 0.00104




, (4.10)

4-ary:




0.0000358 0.000363 0.00145 0.00229 0.00145 0.000363 0.0000358

0.000363 0.00368 0.0147 0.0232 0.0147 0.00368 0.000363

0.00145 0.0147 0.0589 0.0927 0.0589 0.0147 0.00145

0.00229 0.0232 0.0927 0.147 0.0927 0.0232 0.00229

0.00145 0.0147 0.0589 0.0927 0.0589 0.0147 0.00145

0.000363 0.00368 0.0147 0.0232 0.0147 0.00368 0.000363

0.0000358 0.000363 0.00145 0.00229 0.00145 0.000363 0.0000358




.

(4.11)

The ML bounds for these two PSFs are shown in Fig. 4.6, where the 4-ary ML bound

is computed using the5× 5 PSF. The binary ML bounds suggest that for this case we have

to use7× 7 PSF. At BER of10−8, the SNR savings for 4-ary modulation is about 5dB.
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Figure 4.6: ML bound for Gaussian PSF withσb = 1.0

4.1.2 Sinc Square PSF

For sinc square channel with4/D = 0.9,

h(k, l) =

∫ (k+1/2)/δ

(k−1/2)/δ

∫ (l+1/2)/δ

(l−1/2)/δ

h(x, y)dxdy, (4.12)

whereδ = 1 for 4-ary andδ =
√

2 for binary, and

h(x, y) =
1

42
rect(x/4, y/4) ∗ 1

σ2
b

sinc2(x/σb, y/σb). (4.13)

All the ML bounds computed for sinc square PSFs use5 × 5 PSFs. The binary and

4-ary PSFs forσb = 1.0 are:
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Binary:




0.00040618 0.0039387 0.01079533 0.0039387 0.00040618

0.00393866 0.03819246 0.1046802 0.03819246 0.00393866

0.01079533 0.1046802 0.2869138 0.1046802 0.01079533

0.00393866 0.03819246 0.1046802 0.03819246 0.00393866

0.00040618 0.0039387 0.01079533 0.0039387 0.00040618




, (4.14)

4-ary:




0.00023252 0.00196489 0.01049893 0.00196489 0.00023252

0.00196489 0.016604 0.0887198 0.016604 0.00196489

0.01049893 0.0887198 0.4740536 0.0887198 0.01049893

0.00196489 0.016604 0.0887198 0.016604 0.00196489

0.00023252 0.00196489 0.01049893 0.00196489 0.00023252




. (4.15)

The ML bounds for these two PSFs are shown in Fig. 4.7. In this case, the binary

modulation performs better than 4-ary modulation by about 2dB.

The binary and 4-ary PSFs forσb = 1.25 are:

Binary:




0.00054328 0.00515187 0.011295 0.00515187 0.00054328

0.00515187 0.0488544 0.10711 0.0488544 0.00515187

0.011295 0.10711 0.2348 0.10711 0.011295

0.00515187 0.0488544 0.10711 0.0488544 0.00515187

0.00054328 0.00515187 0.011295 0.00515187 0.00054328




, (4.16)

4-ary:
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Figure 4.7: ML bound for sinc square PSF withσb = 1.0




0.0003975 0.003181 0.01278 0.003181 0.0003975

0.003181 0.025457 0.102276 0.025457 0.003181

0.01278 0.102276 0.4109 0.102276 0.01278

0.003181 0.025457 0.102276 0.025457 0.003181

0.0003975 0.003181 0.01278 0.003181 0.0003975




. (4.17)

The ML bounds for these two PSFs are shown in Fig. 4.8. In this case, the binary

modulation performs better than 4-ary modulation by about 0.5dB.

The binary and 4-ary PSFs forσb = 1.5 are:

Binary:

67



12 13 14 15 16 17 18 19 20 21
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

SNR per bit (dB)

B
E

R

4−ary
binary

Figure 4.8: ML bound for sinc square PSF withσb = 1.25




0.000942437 0.0070943 0.012981 0.0070943 0.000942437

0.0070943 0.0534031 0.09771737 0.0534031 0.0070943

0.012981 0.09771737 0.1788 0.09771737 0.012981

0.0070943 0.0534031 0.09771737 0.0534031 0.0070943

0.000942437 0.0070943 0.012981 0.0070943 0.000942437




, (4.18)

4-ary:




0.000397682 0.003637 0.0112027 0.003637 0.000397682

0.003637 0.0332656 0.10245928 0.0332656 0.003637

0.0112027 0.10245928 0.315578 0.10245928 0.0112027

0.003637 0.0332656 0.10245928 0.0332656 0.003637

0.000397682 0.003637 0.0112027 0.003637 0.000397682




. (4.19)
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The ML bounds for these two PSFs are shown in Fig. 4.9. In this case, the BERs for

binary and 4-ary PSFs intersect at SNR around 16.5dB. At BER of10−8, the SNR savings

for 4-ary modulation is about 0.6dB.
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Figure 4.9: ML bound for sinc square PSF withσb = 1.5

4.2 The 4-ary i.i.d Source Detection for 2D ISI Channels

We consider a 2D ISI system as described in [3, 12], but the original symbols take values

from the set {0, 1, 2, 3}.

For the3× 3 averaging mask, letyk = [yk0, yk1, yk2], andu = [uk0, uk1, uk2]. Consider

the symbolu ∈ {0, 1, 2, 3}; the log-likelihood ratio (LLR) at thek-th stage can be defined
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as:

Lu(k) = log




P (uk0 = u|yk, ũ)

P (uk0 = uref |yk, ũ)


 ,

whereũ = [ũk0, ũk1, ũk2] is the estimation of symbol vectoru from the other detector.

The extrinsic information input is

L̃u(k) = log




P (uk0 = u|ũ)

P (uk0 = uref |ũ)


 . (4.20)

If we chooseuref = 0, thenL̃0(k) = 1, and the conditional probability of the input

symbol will be:

P (uk0 = 0|ũ) =
1

1 +
∑3

i=1 eL̃i(k)
,

P (uk0 = u|ũ) =
eL̃u(k)

1 +
∑3

i=1 eL̃i(k)
,

(4.21)

whereu = 1, 2, 3.

With the same definition for SNR, the 4-level system needs much higher SNR, which

makes it difficult to implement MAP algorithm because of numerical representation prob-

lem (overflow). So Log-MAP algorithm [50] is used here, and it is equivalent to the true

MAP.
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The operator
∗

max is used in Log-MAP algorithm, which performs the following oper-

ation:

∗
max

j
(aj) ≡ log

[∑
j

eaj

]
, (4.22)

and it can be computed recursively, with initialization

log(eδ1 + eδ2) = max(δ1, δ2) + log(1 + e−|δ2−δ1|). (4.23)

Suppose thatδ = log(eδ1 + · · ·+ eδn−1) is known, then,

log(eδ1 + · · ·+ eδn) = log(eδ + eδn) = max(δ, δn) + log(1 + e−|δ−δn|). (4.24)

So for Log-MAP algorithm, from (4.21) the log of the conditional probability of the

input symbol becomes:

log{P (uk0 = u|ũ)} = L̃u(k)− log{1 +
3∑

i=1

eL̃i(k)}

= L̃u(k)− ∗
max

j
(L̃j(k)) (4.25)

Defineλi
k(s) = P (u = i, Sk = s, yk), wherei = [i0, i1, i2], im ∈ {0, 1, 2, 3} is the

input, ands is the state. Similarly with (1.10), we have

log{λi
k(s)} =

∗
max

s′
{αk−1(s

′) + γi(yk, s
′, s) + βk(s)}. (4.26)
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Theαk(s) andβk(s) are obtained through the forward and backward recursions, as

αk(s) =
∗

max
s′,i
{αk−1(s

′) + γi(yk, s
′, s)} (4.27)

βk(s) =
∗

max
s′,i
{βk+1(s

′) + γi(yk+1, s, s
′)}. (4.28)

with intial values

α0(s) =





0, s = S0

−∞, otherwise

βN(s) =





0, s = S0

−∞, otherwise

.

The modifiedγ now is the following summation:

γi(yk, s
′, s)

= log{p′(yk|u = i, Sk = s, Sk−1 = s′)}+ log{P (u = i|s, s′)}

+ log{P (Sk = s|Sk−1 = s′)}+ log{P (ũ|u = i)}.

(4.29)

wherep′(·) is the modified conditional channel PDF, for the given statess′, s and inputu,

andP (u = i|s, s′) is 0 or 1 based on the trellis.P (Sk = s|Sk−1 = s′) is a constant number

for each branch and will be cancelled out whenγ is used to compute LLRs.
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The
∗

max operator is also used to compute the modified channel PDF,

log{p′(yk|u = i, Sk = s, Sk−1 = s′)} = log{P(
yk2|uk0, uk1, uk2, s, s

′)}

+
∗

max
Ω2

[
log{P (Ω2)}+ log{P(

yk1|uk0, uk1, s, s
′, csdf2(Ω2), Ω2

)}

+
∗

max
Ω1

(
log{P (Ω1)}+ log{P(

yk0|uk0 , s, s
′, csdf1(Ω1, Ω2), Ω1, Ω2

))]
.

(4.30)

The symbol LLR is then computed as:

Lu(k) =
∗

max
s

(log{λi
k(s)} if i0 = u)− ∗

max
s

(log{λi
k(s)} if i0 = 0) (4.31)

And we detect symbolu asu = argmax
u

(Lu(k)), in other words, we detect the symbolu

as the one which has the maximum value ofLu(k).

For largex, e−|x| is approximately equal to 0. The Max-Log-MAP algorithm is a subop-

timal algorithm especially at low SNR because it uses the max function to approximate the

∗
max operation. In our case, the SNR is relatively high, and the value ofx in e−|x| is most

likely very large, so we expect that the performance loss using Max-Log-MAP algorithm

is not very big. This can be shown in Fig. 4.10, for both32 × 32 and64 × 64 signal size,

the performances of Max-Log-MAP algorithm and Log-MAP algorithm are very close.

The complexity of the ISI detector will increase exponentially for 4-ary signals. For

2 × 2 mask with two inner products, the trellis has 16 states and 16 branches out of each

state, while the binary case has 4 states and 4 branches out of each state. For2 × 2 mask
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with three inner products, the trellis has 64 states and 64 branches out of each state, while

the binary case has 8 states and 8 branches out of each state.
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Figure 4.10: Test for Log-MAP and Max-Log-MAP algorithms for2× 2 mask.

For3×3 mask, the trellis has 4096 states and 64 branches out of each state. To compute

each branch metric, the soft feedback of 6 feedback symbols gives 4096 combinations. It

takes too much time to simulate. So first we sort the 4096 feedbacks by their probabilities,

then only use theN most probable combinations in (4.30) to run the simulation. The

simulation of two blocks for 20dB after 6 iterations of64× 64 images are: top 25 case has

354 errors; top 50 case has 345 errors; top 100 case has 340 errors.

Fig. 4.11 shows the accumulated top 300 feedback probabilities for iteration 1, stage
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k=3 andk=24 when SNR is 21dB. Whenk=3, top 160 can reach probability 0.99. When

k=24, top 300 only reaches probability 0.41.
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Figure 4.11: Probabilities of top 300 feedbacks for iteration 1, k=3 and k=24

The average accumulated probabilities of the top 300 feedbacks for 6 iteration are

shown in Fig. 4.12. In iteration 1, the average accumulated probabilities for top 25 feed-

backs are0.31, for top 300 feedbacks are0.79. In iteration 2, top 9 feedbacks can reach

0.99. After iteration 3, only the best feedback combination has probability other than 0.

Even the Max-Log-MAP algorithm takes too much time to simulate the3× 3 mask. So

we use the same procedure for Max-Log-MAP algorithm and M-BCJR algorithm. Fig. 4.13

is the simulation results for the mask shown in (4.9). We can see after 6 iterations, using top
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Figure 4.12: Average accumulated probabilities of top 300 feedbacks.

25 feedbacks and using top 50 feedbacks give us almost the same SER. We also include one

point at 20dB for top 100, it gives almost the same results as top 25 and top 50. The curve

labelled ’vary’ is the case where we use different number of feedbacks for each iteration:

iteration 1 uses top 50, iteration 2 uses top 25, iteration 3 and 4 use top 5, iteration 5 and

6 use only top one feedback. At SER= 10−3, it is about 3.5dB away from the ML bound.

When M=2048, using top 75 feedbacks, there is about 1.6dB distance to the full trellis

using top 25/50 feedbacks. The M-BCJR algorithm completely fails when M=25, using

all 4096 feedbacks, which has the same complexity with top 25 using the full 4096 state

trellis. When using top 50 feedbacks, M=1024 is about 3.6dB away from M=2048.
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Figure 4.13: Simulation results for 4-ary 3x3 mask.

4.2.1 Set Partitioning Method

We want to investigate more for 4-ary or even M-ary signals. A set partitioning method

is a possible choice [51]-[53]. Assume a M-PAM signal is used; the set partition is made

in each symbol individually. For example, if M=4 and each symbol is partitioned into 2

subsets, then for 1D1 × 2 mask, the full trellis has 4 states, the subset trellis has 2 states,

and simulation results show that there is about 0.3dB performance deduction. For 2D2× 2

mask, the full trellis has 16 states and each state has 16 branches, while the subset trellis

has 4 states and each state has 4 branches. We implement the algorithm using the Viterbi

algorithm across rows with decision feedback from previously detected rows, similar to [7].
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Fig. 4.14 shows the results for256 × 256 signal using both full trellis and reduced state

trellis; we can see that the performance deduction is also about 0.3dB.
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Figure 4.14: Simulation results for2×2 averaging mask, gray level=4, signal size256×256.

4.3 The Binary i.i.d Source Detection for Larger Masks

In section 4.2, we discussed 4-ary source detection for the mask shown in (4.9). For the

same areal density, the equivalent binary PSF is shown in (4.8). Because this PSF is much

more spread, we have to make the mask at least5× 5, rather than3× 3. Then if we define

4 columns as state, and 1 column as input, the trellis will have220 = 1048576 states and

25 = 32 branches out of each state. The 4 feedback rows will give220 = 1048576 soft

feedbacks. This huge trellis is impossible to simulate. We propose the following methods
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to simulate the5× 5 binary mask.

(1) Because the values in the corner of the mask are very small compared with other

values, we can set them to 0 to reduce the number of states to218 = 262144.

(2) Use the M-BCJR algorithm to reduce the number of states.
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Chapter 5

Conclusion

5.1 Summary of Thesis Contribution

This dissertation has demonstrated that, if the input image to a 2D ISI channel has 2D

correlation that can be modelled by a MRF, then significant SNR savings over previously

proposed 2D-ISI detectors can be realized by employing a concatenated iterative decoder

consisting of SISO 2D-ISI and MRF detectors, and that the SNR savings increase with

the degree of source-image correlation. The techniques described in this dissertation have

potential application in future-generation optical recording systems, which will employ 2D

read/write heads. In practice, many source images destined for storage on such media are

correlated; for example, uncompressed natural images are usually highly correlated, and

most practical image-compression schemes leave residual correlation. This dissertation has

also demonstrated that the proposed algorithm is quite robust to MRF parameter mismatch

between the source image and the receiver, and that the simple first-order MRF is a very

useful model for 2D-ISI reduction in natural binary images.
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This dissertation has also developed and demonstrated a new reduced-state BCJR algo-

rithm for detection on 1- and 2-dimensional finite-size ISI channels, that works especially

well for center-weighted masks. This dissertation has also presented detailed performance

comparisons between the newly proposed algorithm and two previously published algo-

rithms, which point out the strengths and weaknesses of each algorithm. The 1D simulation

results show that, for center-weighted masks, the proposed algorithm significantly outper-

forms the previously proposed MSM RS-SISO algorithm of [40]. However, the simulations

also demonstrate that the M-BCJR algorithm of [41] gives by far the best performance for

reduced-state 1D equalization, for both center-weighted and relatively “flat” ISI masks.

The situation changes when the reduced-state algorithms are used in the row and column

detectors of the 2D-ISI algorithm proposed in [3]. The newly proposed algorithm per-

forms best for center weighted 2D masks with 0s in the corners, while the algorithm of

[40] achieves the best performance for the averaging mask. The “Channel B” mask, based

on sampling of a 2D Gaussian PDF [6], presented the most challenging test for all three

algorithms; at high SNR, the best performing algorithm on “Channel B” was more than

2 dB away from the ML bound. We conclude that improved reduced-state algorithms are

needed for 2D-ISI masks with Gaussian-like magnitude profiles.

In this dissertation, we compute equivalent masks for 4-ary and binary modulation with

Guassian and Sinc square PSFs. To maintain the same areal density, the binary mask is

wider than the corresponding 4-ary mask. Based on the ML bound, we find that for larger

values of parameterσb, the BER of a 4-ary modulation can be better than that of the equiva-

81



lent binary system. Reduced complexity algorithms for detection of 4-ary signals on 2D-ISI

channels have also been proposed.

5.2 Future Work

The basic ideas of the detection of correlated sources on 2D-ISI presented in this disser-

tation should extend to more realistic image models and more practical scenarios. Algo-

rithms that learn an appropriately accurate MRF model from the source image would allow

practical implementation of joint 2D-ISI and MRF estimators in optical storage systems.

In this dissertation, we investigate the reduced-state BCJR algorithm for detection on 1-

and 2-dimensional finite-size ISI channels, that works especially well for center-weighted

masks. We would like to extend these results to other types of masks.

The detection of binary signals with larger size masks also needs to be investigated

in the future, together with the 4-ary results in Chapter 4, to prove that the ML bound

comparison can be realized in practice.
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