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CONFOCAL MICROSCOPY OF FLUID ARGON UNDER PRESSURE

Abstract

by Gabriel Joseph Hanna, Ph.D.

Washington State University

December 2009

Chair: Matthew D. McCluskey

Confocal microscopy is a technique used in mainly in the life sciences for producing

three-dimensional images of cellular structures. We have adapted the technique to mea-

sure volumes and refractive indices of fluids in a diamond anvil cell. While high-precision

techniques, such as X-ray diffraction and neutron scattering, exist for measuring lattice

volumes of solids, the measurement of fluid volumes is much more difficult. This new

technique will allow for quick, inexpensive, and non-destructive measurements of the

equation of state of fluids at high pressure. In addition, we have explored the use of

carbon dioxide as a probe of the structure of fluid argon and nitrogen, using Fourier

transform infrared spectroscopy. New experimental results presented here include: pro-

cedures for measuring volume and refractive index with the confocal microscope; the

equation of state and refractive index of argon and water along the 300 K isotherm up

to about 5 GPa; the dependence on density and pressure of the asymmetric stretching

mode of carbon dioxide dissolved in argon and nitrogen at 300 K; and the IR absorption

frequency of Ge:O as a function of pressure at 10 K.
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Chapter 1

Introduction

1.1 History of argon

1.1.1 Discovery

In 1894, Lord Rayleigh noticed that nitrogen produced from chemical reactions seemed

to be less massive than nitrogen gas extracted from the atmosphere. The difference was

small, less than one-half of one percent, but the precision of the experiments implied

that the difference was significant, and unexplained [1].

Impurities in atmospheric nitrogen were suspected, but all known elements were

eliminated by one test or another, and in 1895 Lord Rayleigh and William Ramsay [2]

presented to the Royal Society their evidence of a new atmospheric component. They

isolated it from nitrogen by several methods, and found that it would react with no

known substance. They called it argon, which is Greek for “it does no work.”

In recreating the experiments of Henry Cavendish in 1785, on what was then called

“dephlogisticated air,” Rayleigh and Ramsay showed that argon had demonstrably been

isolated even then. But chemistry was not far enough advanced in 1785 for Cavendish

to realize what he was seeing.
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The mass of argon was determined by Rayleigh and Ramsay to be, in modern units,

about 40 u, and to compose about 1 % of the atmosphere. William Crookes [2, 3]

measured its visible emission spectrum and determined that it corresponded with no

known element. Rayleigh and Ramsay also determined, from the velocity of sound

in argon, the ratio of specific heats (Cp/Cv); they found this ratio to be about 5/3,

indicating a monatomic gas [2].

At the request of Rayleigh and Ramsay, Olszewski [2, 4] successfully liquefied and

solidified argon. Among other things, he measured the critical point to be at (in modern

units) 5 MPa, 152 K; current accepted values are 4.86 MPa, 150.7 K [5–9] . Hartley [10]

showed that the argon spectrum was present in the spectrum of air, and Newall [11]

showed that the argon spectrum had been measured previously in 1894, though of course

not identified as argon at that time. Further, MacDonald and Kellas [12], at the request

of Rayleigh and Ramsay, showed that argon, though found along with nitrogen in the

atmosphere, was not present along with nitrogen in the tissues of plants and animals.

This ruled out argon as possibly being a form of nitrogen.

The evidence, then, pointed to a newly discovered element, abundant in the envi-

ronment, which did not engage in any known chemical reaction.

1.1.2 Argon and the periodic table

Argon presented a serious challenge to the periodic table [13–15].

The periodic table of 1895 was not, like that of today, based on quantum mechanics.

It was a list of elements arranged by atomic mass. The chemical properties of elements

were thought to be periodic with respect to atomic mass, though what atomic mass

had to do with chemical properties was unknown. Furthermore, it was not even yet

accepted by all chemists whether such things as atoms really existed, though almost

all chemists accepted the atomic model as useful for understanding chemical reactions

2



Groups: I II III IV V VI VII VIII
Periods: (transition)

0 H
Series: Li Be B C N O F

1 1 Na Mg Al Si P S Cl
2 K Ca – Ti V Cr Mn Fe Co Ni Cu

2 3 Cu Zn – – As Se Br
4 Rb Sr Y? Zr Nb Mo – Ru Rh Pd Ag

3 5 Ag Cd In Sn Sb Te I
6 Cs Ba – Ce – – – – – – –

4 7 – – – – – – –
8 – – – – Ta W – Os Ir Pt Au

5 9 Au Hg Ti Pb Bi – –
10 – – – Th – U – – – – –

Table 1.1: Mendeleev’s periodic table of 1870 [16]. Atomic mass increases from left
to right and from top to bottom. “–” indicates empty slots for elements yet to be
discovered. “Y?” refers to the doubtful location of yttrium. Note that the last element
in Group VIII is the first element of Group I in the next period.

[13–15].

The most successful periodic table was Mendeleev’s, but his was only the latest in

a long line of systems of classification of elements, and his table was published nearly

contemporaneously with those of five other authors. While Mendeleev’s table had held

up well over twenty years, the periodic system had no theoretical justification [13–17].

A periodic table of Mendeleev’s that may well be the one referred to by Rayleigh and

Ramsay [2] is shown in Table 1.1.

Mendeleev’s Group VIII contained the “transition elements;” these were the ele-

ments of multiple valency that were thought to have chemical properties “intermedi-

ate” with respect to Group VII and Group I. The last-listed element in Group VIII of

a period is the first-listed element in Group I of the next period [16].

Mendeleev used his table to correct erroneously measured atomic masses of known

elements, and to predict chemical properties and atomic masses of those yet to be

discovered. In a few cases atomic masses stubbornly refused to obey the periodic law; for

3



example, no matter how many times they were measured, the atomic mass of tellurium

came out greater than that of iodine. But their respective chemical properties required

that tellurium come before iodine in the table [13–15].

While there was room for more elements in the table–it was this very feature that

made Mendeleev’s table so widely accepted among chemists–there was no place for

argon, unless some major finding of chemistry or physics were wrong. The properties

which made argon so difficult to fit into the periodic system were these: it reacted with

no known chemical, it had an atomic mass of 40 u, and it was a monatomic gas.

There was no reason to suppose that such a thing as an inactive element should

exist. As suggested by Rayleigh and Ramsay [2], argon’s chemical inactivity might be

only apparent, and the conditions required for it to react might yet be discovered. Until

they were discovered it would be impossible to definitively assign argon its place in the

table, or to definitively say that the table must be wrong.

None of Mendeleev’s groups were characterized by chemical inactivity, but Rayleigh

and Ramsay [2] suggested that argon might go in Group VIII, after chlorine, as a

transition to potassium. Unfortunately the atomic mass of argon was the same as that

of calcium. It seemed too ad hoc to just assume that argon could be that far out of

order with respect to atomic mass, or that the periodic table would put argon between

two elements with properties so dissimiliar to its own.

Another possibility, suggested by Rayleigh and Ramsay [2], was that “argon” could

be a mixture of two gases; “argon” of atomic mass 37 u, and “krypton” of atomic mass

82 u. If the mixture consisted of 93 % argon and 7 % krypton, this would explain the

measured atomic mass of 40 u. Argon and krypton would both be inert, and argon could

go in Group VIII between chlorine and postassium while krypton could go in Group

VIII between bromine and rubidium. However, it seemed that such a relatively large

fraction of krypton should have been detected when the argon-krypton mixture was

4



liquefied, and the diffusion experiments of Rayleigh and Ramsay should have isolated

a measurable quantity of krypton.

Other than mercury vapor, no monatomic gases were known in 1895. If argon were a

diatomic molecule, then its atomic mass would be, at 20 u, just right to go in Group VIII

as a transition from fluorine to sodium. Alternatively, argon might just be a compound

of nitrogen; as Mendeleev suggested [13–15], it might be N3. In both cases the kinetic

theory of gases must be wrong, and atoms must not really exist.

Several other possibilities were suggested by other researchers, but all were unsatis-

factory enough that none was accepted. It seemed, in 1895, that chemists must either

abandon the periodic table, abandon the atomic theory and the kinetic theory of gases,

or just ignore argon altogether [13–15]. As Lord Rayleigh said,

The facts were too much for us; and all that we can do now is to apologise

for ourselves and for the gas.[13]

All that could be definitively said about argon was that it was a newly discovered

element which didn’t seem to make any sense in relation to the others. Furthermore, it

was quite abundant and had been “under everyone’s nose” at least as far back as 1785.

The work previously done on argon enabled Ramsay, in the next few years, to

isolate helium, neon, krypton, and xenon (from Greek for “sun,” “new,” “secret,” and

“strange,” respectively). These had the same chemical inactivity as argon, but also had

atomic masses that made sense in the periodic table, and were eventually regarded as

a group in their own right, either coming before Group I or after Group VII.

The periodic table was vindicated–although it had not predicted a new class of

elements characterized by chemical inactivity, it was able to accomodate them; and the

new class of elements, in general, obeyed the periodic law. Argon was considered just

one more exception to the general rule of increasing atomic mass [13–15].
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Within a few decades, the periodic table was put on a solid theoretical foundation.

Largely due to the experimental work of Moseley on X-rays and K-shell electrons [15],

the role of electrons in chemistry was worked out according to quantum mechanical

theories. The elements of the periodic table were then arranged by atomic number,

rather than atomic mass, which eliminated the exceptions. Argon at 18 fits perfectly

between chlorine at 17 and potassium at 19.

Lord Rayleigh and William Ramsay received the Nobel Prizes for Physics and Chem-

istry (respectively) in 1904 for their discovery of argon and the other noble gases.

1.2 Characteristics

1.2.1 Physical and chemical properties

The atomic number of argon is 18. It has three stable isotopes: 36Ar, 38Ar, 40Ar. The

first two are more abundant in the universe at large. However, on Earth 40Ar, which

is produced by the decay of 40K, makes up 99.6 % of argon and is found in rocks, the

atmosphere (1 % by volume), and dissolved in the oceans [5–9].

At ambient pressure, argon liquefies at 87.3 K and solidifies at 83.8 K [5–9]. At

ambient temperature argon solidifies at 1.35 GPa [20]. Its triple point is at 83.81 K,

68.95 kPa. Its critical point is at 150.7 K, 4.86 MPa [5–9]. Figure 1.1 shows the phase

diagram up to 10 GPa and 800 K.

Solid argon is face-centered cubic (fcc). Figure 1.2 shows the structure. Around

30 GPa hexagonal close-packed (hcp) structures begin to form. The fcc and hcp phases

are predicted to coexist up to around 300 GPa, at which point the solid should be hcp.

Body-centered cubic phases and metallization are predicted at much higher pressures

but have not so far been observed [21–24].

Our experimental work was done at ambient temperature. For the lowest pressures
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Figure 1.1: Phase diagram for argon, showing the melting line to 800 K [18]. Inset: the
liquid-gas phase boundary [19], encountered at far lower pressures and temperatures
than were achieved in this work.

we can achieve in a diamond anvil cell (about 0.2 GPa) argon is a supercritical fluid.

The highest pressures we achieved in this work were under 10 GPa.

1.2.2 In theory and experiment

Only one chemical compound of argon is known, argon fluorohydride (HArF), discovered

only in 2000 and stable only under unusual conditions [25]. The heavier noble gases,

xenon and radon, can be induced to form a few compounds, and helium and neon are

not known to form any [26, 27].

The noble gases are chemically inactive due to their filled valence shells; reminding

us that Argan, in 1673, found that opium puts people to sleep due to its dormitive virtue

[28]. A better explanation can be found in the spherical symmetry of their electronic

wavefunctions [29–31], as will be detailed later (section 2.1).

7



Figure 1.2: Face-centered cubic structure (fcc). Left: fcc unit cell. The length of the
side of the unit cell, L, and the interatomic distance a, are related by L = a

√
2. Right:

atom-centered view of fcc structure. The central atom has 12 nearest neighbors, all at
the same interatomic distance a. There are 3-fold as well as 4-fold symmetry axes.

The interatomic forces between noble gas atoms are isotropic and very weak, and as

gases they show nearly ideal behavior. Their deviations from ideality provide important

clues to the details of their interatomic interactions [20, 32, 33].

Noble gas atoms can be treated to high accuracy as interacting through purely

atomic potentials (without considering interactions between electrons and nuclei) [20,

32, 33]. The atoms repel at short distances and attract at longer ones, with a potential

minimum between, as will be derived later (section 2.2) from the Schrödinger equation

and the Pauli exclusion principle. This was first done in the 1920s and 1930s by Lennard-

Jones [29, 30], London [34], Slater [35], Pauling [36], and others and was an early success

for quantum mechanics.
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For substances interacting by hard-sphere two-body potentials, the equation of state

can be worked out exactly and analytically [37]. The computers of the 1940s and 1950s

could carry out numerical calculations for more complicated potentials such as that

of Lennard-Jones, but for many years calculations involving anisotropy or many-body

forces were computationally prohibitive [38]. In noble gases these effects are very small,

so they were the first substances for which chemical and macroscopic propertes could

be worked out from first principles.

Within the noble gases argon occupies a “sweet spot”–massive enough to be treated

classically or semiclassically to good accuracy, unlike helium and neon; but small enough

that its electrons hardly interact with other elements, unlike the electrons of xenon and

radon [26, 27]. Argon has the added virtues of being cheap, abundant, and easy to

handle [20].

In summary, argon is a model substance for fundamental atomic and condensed

matter physics.

1.3 Applications

Argon is interesting in its own right for what it can tell us about fundamental atomic

physics, but it also has practical applications.

Argon is by far the cheapest and most abundant of the noble gases [20]. It is

produced by fractional distillation of air, usually as a byproduct of oxygen production.

This has the interesting consequence that when demand for steel drops, the price of

argon goes up [39].

Due to its relative cheapness, commercial and industrial applications of argon are

widespread. Argon is generally used in circumstances when an inert gas is needed and

nitrogen will not work. Nitrogen may not be unreactive enough, or nitrogen may be
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too thermally conductive.

Some examples of commercial and industrial applications are: inert atmospheres

for welding, glove boxes, electronics manufacture, crystal growth, incandescent and

fluorescent lighting, and as a thermal insulator in double-pane windows [20, 39–41].

Some examples of scientific applications of argon are: as a carrier gas for mass

spectrometry, as a hydrostatic pressure medium in diamond anvil cells, and as a method

of dating rocks and fossils [20, 41, 42].

1.4 Subject of and motivation for this work

In this work we study the equation of state of fluid argon at 300 K in a diamond anvil

cell, and we use the vibrational modes of dissolved carbon dioxide to probe the fluid

argon structure.

From the experimental data we collect, we hope to draw some conclusions about

the interatomic interactions of argon, and the structure of the fluid state. This will be

useful to theorists who wish to work from first principles to understand macroscopic and

chemical properties. It will also be useful to researchers in the static high pressure field

who wish to use argon as a hydrostatic pressure medium and as a pressure standard.

Our experimental techniques include: confocal microscopy, used to obtain equation

of state data for fluids, which will be developed in this work; and Fourier transform

infrared spectroscopy, used to measure the localized modes of carbon dioxide in argon.

To our knowledge, this is the first time that confocal microscopy has been used to

measure the volume of a fluid under pressure. Fluid volumes are difficult to measure.

Argon is a model system that provided a good test of this novel experimental technique.

There are other techniques of measuring fluid volumes. One is Fabry-Perot interfer-

ence, which yields the product of refractive index and sample thickness. Consequently
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some other method must be used to find one of those two quantities separately. The

reflection of the laser between the culets of the diamonds forms monochromatic rings,

which may be imaged, and the index of refraction calculated from the radii of succes-

sive rings. [43, 44]. Another method is that described in section 4.2.8, which does not

require a confocal microscope [45], but is much more easily done with one [46].

Another method is X-ray tomographic microscopy, which produces 3D images of

samples at high pressure with a spatial resolution of about 1 µm [47]. This requires

advanced, specialized, and expensive technology.

The virtues of confocal microscopy are that it is inexpensive, quick, non-destructive,

and uses commercially available equipment found at many universities.
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Chapter 2

Interatomic interactions

It is extremely difficult to make argon react chemically with anything, and the phase

diagram of argon (up to about 100 GPa) is very simple. What is it about argon (and

the other noble gases) that is different from all other elements?

There are many different types of chemical “bonds”. Ionic bonds form when an

electron from one atom is transferred to another, as in the case of table salt. In covalent

bonds electrons are shared between atomic nuclei, as in the cases of hydrogen, oxygen,

and nitrogen. There are bonds intermediate in some degree, as covalent and ionic

bonding represent extremes on a continuum [1, 2]. In metallic bonds, some electrons

in the metal are not localized to any one atom. There are hydrogen bonds, where a

hydrogen atom, covalently bonded to another atom, is made sufficiently non-polar to

strongly attract a third atom. This type of bond is present in water and many proteins.

Van der Waals bonds are responsible for the solid and liquid phases of the noble gases.

They are present to some degree between all atoms and molecules, though nearly always

weaker than any other bond that may be present [1–3].

Words mean what we want them to mean–it is a question of which is to be master

[4]. In this work a “chemical bond” is when an electron from one atom is associated
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Quantity Atomic unit Name SI equivalent Other equivalent
Mass me electron mass 9.109 38× 10−31 kg 1

1823
u

Charge ec electron charge 1.602 18× 10−19 C —
Angular momentum h̄ h̄ 1.054 57× 10−34 J s —

Length a0 Bohr radius
(

4πε0h̄
2

mee2c

)
0.052 917 7 nm 0.529 177 Å

Energy Eh hartree
(

e2c
4πε0a0

)
4.359 74× 10−18 J 27.2114 eV

Table 2.1: Atomic units and their SI equivalents, along with equivalents in other com-
monly used units. Bohr radius and hartrees are calculated assuming infinite nuclear
mass, which simplifies comparisons between atoms of differing masses.

with the nucleus of another. While it is not unknown in the literature to refer to, for

example, two helium atoms at low temperature as a “molecule” [5], in this work we

do not. Of the various types of bonds only covalent, ionic, and metallic bonds are

“chemical bonds” by this definition. The other kinds could be called “atomic bonds”,

if it is necessary to name them.

We choose this definition so that we can characterize the difference between noble

gases and the other elements in terms of their electronic structures, which are deter-

mined by the number of protons Z in their nuclei. Using this approach we can show

why noble gases are so reluctant to form chemical bonds and what sort of interatomic

interactions they do exhibit.

In dealing with electrons and nuclei, it is most convenient to work in atomic units,

which are defined in table 2.1 [6].

2.1 The argon atom

The chemical behavior of any atom is determined by the structure of its electrons, which

in turn is determined by its atomic number [3].
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A bare atomic nucleus has the Coulomb potential

V (r) = −ZEh
ec

a0

r
, (2.1)

and one-electron atoms can be solved exactly and analytically (neglecting spin). The

solutions are well-known [6, 7] and will not be restated here, but a few details are worth

reviewing.

Each eigenfunction is a product of a radial function and a spherical harmonic, char-

acterized by the quantum numbers n, l,m. The eigenenergies are given by

En = −1

2

Z2

n2
Eh. (2.2)

Each eigenfunction has an associated angular momentum l(l + 1)h̄2. For each value

of l the associated eigenfunction has a particular symmetry, with l = 0 corresponding

to spherical symmetry. The orientation along the z axis is associated with m. The

possible values of the quantum numbers are determined by n; l ranges from 0 to n− 1

and m ranges from −l to l. Each set of eigenfunctions with the same n are called shells ;

those with the same l are called subshells. There is a characteristic length scale given

by n
Z
a0, which is the exponential decay constant of the radial function and can serve as

a measure of the size of the shell [6, 7].

The structures of many-electron atoms may be calculated to great precision. There

are several techniques for working them out, depending on the desired accuracy and

which effects one wishes to include. In this section, we are concerned with demonstrating

that (1) some atoms have high spherical symmetry in their ground states, and (2) a

subset of these atoms, the noble gases, are chemically unreactive [8].

Imagine assembling an atom, starting with a bare nucleus of Z protons and adding

one electron at a time until the atom is neutral. The first electron goes into the ground
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state hydrogenic orbit (n = 1, l = 0), giving a spherically symmetric distribution of

radius 1
Z
a0. Bringing in a second electron, it can be argued, should not disturb the other

electron significantly. If the two electrons do not interact at all, then they can be in

the same spatial eigenstate if their spins are opposite, by the Pauli exclusion principle.

In this case, we treat the electron-electron interaction as a small perturbation, and

consider them both in the n = 1 shell. Of course, the radius, energy and associated

properties will be slightly different from those calculated from the one-electron atom.

The two electrons are distributed in space over the spherical shell they occupy, a bit

like a cloud. Treating the electrons like an extended charge distribution,

ρ(r) = −2ρ0e
−2Z r

a0 , (2.3)

ρ0 ≡
2

π

(
Z

a0

)3

ec, (2.4)

then by Gauss’s Law a third electron brought to this atom should experience a Coulomb-

like electrical field

~E(r) = −
(
Z − 2

(
1− e−2Z r

a0

))
Eh
ec

a0

r2
r̂,

~E(r)
∣∣∣
r>>a0/z

≈ −(Z − 2)Eh
ec

a0

r2
r̂,

(2.5)

outside the shell. This is called “shielding”. However, the model presented here is far

too simple. Electrons are point particles and it is fundamentally wrong to treat them as

charge distributions [2]. To obtain reasonable results, one must calculate the electron

density using numerical techniques.

One approach is the Hartree-Fock self-consistent field method [9], which replaces

the electron-electron interactions with an effective central potential

V (r) = −Zeff (r)
Eh
ec

a0

r
. (2.6)
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This potential and its associated eigenfunctions and eigenenergies are calculated nu-

merically. The details of such a calculation do not concern us here. Regardless of how

one obtains the effective potential, its spherical symmetry implies that the angular part

of the eigenfunctions are the spherical harmonics. Thus, there are shells and subshells

corresponding to n and l. However, one important difference from the one-electron

atom is that the eigenenergies are no longer functions of n alone, but also l.

What stays the same is the angular distribution of the spherical harmonics. This has

implications for chemical properties. Each subshell has room for 2(2l+ 1) electrons, by

the exclusion principle. If a subshell is entirely full, the overall distribution of electrons

is spherically symmetric. Electrons outside the last filled subshell experience only a

weak attraction to their own atom due to screening. Their lack of spherical symmetry

implies a multipole moment which will attract other atoms, bringing them close enough

together so that their electrons will interact. If the electron configurations interact so

that some of the electrons can be associated with the opposite nucleus, we refer to this

as a chemical bond [1, 3].

Neutral, spherical atoms, on the other hand, have no multipole moments, and hence

little attraction to each other. The subshells of noble gases are already filled, so when

they are brought close together, their electrons do not interact with each other except

by repulsion. Furthermore, the electrons in one atom are not significantly affected

by the nucleus of the other. At very high pressures or temperatures, their electronic

configurations may distort somewhat. Nonetheless, the electrons remain associated with

their own atoms and do not form chemical bonds, as the term is used in this work.

Spherical symmetry, though necessary, is not sufficient to explain chemical inactiv-

ity. The electron distributions of the IA and IIA elements are also spherical, and IIA

elements also have filled subshells.

The difference between the chemical inactivity of noble gases and the chemical ac-
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tivity of the other spherical atoms is explained by the l dependence of the energy of

the subshell. A purely Coulombic potential has no l dependence (this is peculiar to the

Coulomb potential, as can be seen by writing the Hamiltonian in parabolic coordinates)

[6]. In multielectron atoms, the energy difference between l = 0 and l = 1 is small.

Electrons are easily excited from one to the other, so the l = 0 subshell is unstable for

n > 1. Hence, beryllium and magnesium are not noble gases but neon is. The difference

between l = 1 and l = 2 is more pronounced. Argon is a noble gas despite not filling

the n = 3 shell, but it must fill both its l = 0 and l = 1 subshells just as neon does.

Higher atomic numbers have more complicated electronic structures. The energy

of subshells of lower n shells begins to overlap the subshells of higher n shells, and so

nickel, at atomic number 28, is not a noble gas; its 3d shell is partially filled. Were it

not for the overlap, nickel might fill the 3d shell and thus be one of the noble gases.

The next noble gas is krypton at atomic number 36, which fills the l = 0 and l = 1

subshells of the n = 4 shell, and all the subshells of the lower shells. Xenon at 54 does

not fill the l = 3 subshell of the n = 4 shell, but rather fills the first two subshells of

n = 5 [1].

Of course, chemical properties are not entirely explained by “filling subshells;” this

is why we have to talk about “shells overlapping.” The idea nonetheless has value. Even

if one can solve the full Hamiltonian of each and every atom as precisely as one likes,

deriving atomic properties ab initio, there still needs to be some way of organizing

the results. The rules for filling shells are easy to remember even if they get more

complicated and arbitrary as atomic number increases [1].

In summary, the inactivity of the noble gases is explained by the spherical symmetry

and stability of their electronic configurations. The symmetry and stability can be

demonstrated approximately by comparison with the hydrogenic eigenfunctions.
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2.2 Two-body interactions

2.2.1 Van der Waals attraction

Neutral atoms and molecules exert attractive forces on one another. Some of these

attractions, like those between water molecules which have permanent dipole moments,

are “obvious” from a classical physics standpoint. But even spherically symmetric

neutral atoms attract one another. This is not obvious. Given a spherically symmetric

charge distribution, with a decaying exponential dependence, there should be practically

no field a few atomic radii from the nucleus [2]. In this work, we reserve the term van

der Waals attraction for this particular effect.

If one thinks of a cloud of electrons orbiting a nucleus, something like the stars

orbiting the center of mass of a globular cluster, it is easy to see that the spherical

symmetry of the charge distribution is only a time-averaged property of the atom. One

can then think of neutral spherical atoms as instantaneously fluctuating dipoles, which

would attract each other: one dipole would form instantaneously, and polarize the other

atom briefly [2]. However, the solutions to the time-independent Schrödinger equation

are distributions in space which do not vary with time. It should therefore be possible

to explain van der Waals attraction without invoking fluctuating dipoles [2].

Van der Waals forces necessarily exist between all neutral atoms, but in noble gases

they are the leading term in the interatomic potential. Since noble gases all contain

more than one electron, and solving their Schrödinger equations is a large undertaking,

as shown in the previous section, we will derive the functional form of the van der Waals

equation from the hydrogen atom [10].

Consider two hydrogen atoms, the nuclei of which are separated by a distance R,

which will serve to define the z-axis. We consider the nuclei to be fixed in space (the

Born-Oppenheimer approximation), so that R is a parameter, not a variable of the
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Figure 2.1: Coordinate system for van der Waals potential calculation.

system. The variables are ~r1, the position of electron 1 with respect to nucleus 1, and

~r2, the position of electron 2 with respect to nucleus 2, as shown in figure 2.1. We write

the Hamiltonian:

Ĥ = − h̄2

2me

∇2
r1
− h̄2

2me

∇2
r2
− Eh

a0

r1

− Eh
a0

r2

(2.7)

+Eh
a0

R
− Eh

a0

|~R− ~r1|
− Eh

a0

|~R + ~r2|
+ Eh

a0

|~R + ~r2 − ~r1|
.

The first four terms are the Hamiltonians of two hydrogen atoms that do not interact.

If R >> r1, r2 then the last four terms can be treated as a perturbation, and the

eigenfunctions of the hydrogen atom can be used as a basis set:

Ψ(r1, θ1, φ1, r2, θ2, φ2) = |Ψn1,l1,m1,n2,l2,m2〉 = |n1, l1,m1〉 ⊗ |n2, l2,m2〉 . (2.8)

Each hydrogen atom, in its ground state, has an energy E0 = −1
2
Eh, with a0 being the

Bohr radius, and we rewrite the perturbing potential as

λV =
a0

R
2Eh

 1 −
(
1 +

r21
R2 − 2

~R·~r1
R2

)−1
−
(
1 +

r22
R2 + 2

~R·~r2
R2

)−1

+
(
1 +

r21
R2 +

r22
R2 + 2

~R·~r1
R2 − 2

~R·~r2
R2 − 2 ~r1·~r2

R2

)−1

 . (2.9)
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Using the binomial theorem we can expand the denominators, and almost everything

cancels:

λV̂ =
a0

R

2Eh
R2

(~r1 · ~r2). (2.10)

Consider the hydrogen atoms in their ground state, represented by Ψ0, with an

unperturbed energy 2E0. The effect of the perturbation on the ground state of the

hydrogen atoms is, to first order, zero. This is because 〈Ψ0| ~r1 · ~r2 |Ψ0〉 is a measurement

of the dipole moments of the hydrogen atoms perpendicular and parallel to the z-axis.

Since the ground state is spherically symmetric, neither atom has a dipole moment in

any direction. Consequently, we must evaluate the second order term

E(2) = λ2
g∑
n

∑
g

∣∣∣〈Ψg
n

∣∣∣V̂ ∣∣∣Ψ0

〉∣∣∣2
2E0 − En

= − a
2
0

R2

4E2
h

R4

g∑
n

∑
g

∣∣∣〈Ψg
n

∣∣∣~r1 · ~r2

∣∣∣Ψ0

〉∣∣∣2
2Eh + En

, (2.11)

where n is the index over the energy levels of the unperturbed Hamiltonian and g the

index over the degeneracies of those levels. We don’t actually have to carry out the

calculation to see that

E(2) ∝ − 1

R6
= −C6

R6
, (2.12)

and it was never necessary to invent instantaneous fluctuations in charge density. The

attraction exists because the perturbing potential distorts the spherical charge densities,

making them slightly multipolar.

Of course we have only kept the leading order term. Other terms exist, and there

are van der Waals attractions proportional to R−8, R−10, and so forth [10]. Since the

R−6 term is the most important it is more or less synonymous with “van der Waals

attraction”.

Naturally the numerical value of the proportionality constant is important if one
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wishes to deal with real atoms. For the Lennard-Jones model

V (R) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
, (2.13)

the proportionality constant is 4εσ6. For argon ε = 3.82 × 10−4Eh, σ = 6.43a0 [11],

which yields C6 = 108Eha
6
0.

2.2.2 Exchange repulsion

In the last section we showed that neutral spherical atoms should attract one another

despite having very little field, of any kind. We demonstrated this attraction by assum-

ing the electrons in the atoms can be approximated by their normal ground state.

As the atoms get closer, however, the perturbation, which depends on R, is no longer

small. All of the electrons begin to feel the effects of both nuclei.

Electrons are identical fermions, and their overall state must be antisymmetric with

respect to exchange. The electrons of the two atoms are in identical spin states (there

is only one way to completely fill a subshell). Consequently, their overall wavefunction

must be antisymmetric. If one thinks of the spatial distribution of the electrons, it

must be zero between the atoms, which translates into a repulsive potential at short

distances. Another way to think of this is that the Pauli exclusion principle forces them

to resist being brought together, increasing the potential energy.

Again we should like to use the hydrogen atom to demonstrate the functional form

of the effect. Perturbation theory, as used in section 2.2.1, will not work because it does

not account for exchange. Instead we use the Rayleigh-Ritz variational method:

〈
ψT

∣∣∣Ĥ∣∣∣ψT〉
〈ψT |ψT 〉

= ET ≥ E0, (2.14)
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where ψT is a trial solution, which might contain parameters which may be adjusted to

minimize ET . ET is the upper-bounded estimate of E0, which in turn is the ground-state

solution for Ĥ [6, 7].

The four possible spins states of two electrons are

triplet


|↑↑〉

|↓↓〉
1√
2
( |↑↓〉+ |↓↑〉 )

singlet
{

1√
2
( |↑↓〉 − |↓↑〉 ) (2.15)

If the electrons are in the singlet state, then their overall spatial wavefunction must be

symmetric under exchange, and this would constitute a covalently bonded H2 molecule.

In order to exhibit repulsion, they must be in the triplet state. Consequently, following

Heitler and London [12], we use the antisymmetrized ground states of the two separated

hydrogen atoms as the trial solution to the very same Hamiltonian that we used to

demonstrate the van der Waals attraction,

Ĥ = − h̄2

2me

∇2
r1
− h̄2

2me

∇2
r2
− Eh

a0

r1

− Eh
a0

r2

+ Eh
a0

R
− Eh

a0

|~R− ~r1|
− Eh

a0

|~R + ~r2|
+ Eh

a0

|~R + ~r2 − ~r1|
, (2.16)

ψT =
1√
2

(
φ(r1)φ(r2)− φ(|~R− ~r1|)φ(|~R + ~r2|)

)
, (2.17)

〈
ψT

∣∣∣Ĥ∣∣∣ψT〉 = Eh

1 +
a0

R
+

〈
ψT

∣∣∣∣ a0

|~R−~r1|
+ a0

|~R+~r2|
+ a0

|~R+~r2−~r1|

∣∣∣∣ψT〉
〈ψT | ψT 〉

 . (2.18)

Since Eh is the energy of two separated hydrogen atoms we can subtract it from the

energy, so that the energy of the two-atom system goes to zero at infinite separation.
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We can then rewrite the energy (following Slater [13]) as

〈
ψT

∣∣∣Ĥ∣∣∣ψT〉 = ET = Eh
H0 −H1

1− I2
. (2.19)

An explanation of H0, H1, and I follows.

H0 is the Coulomb integral

∫ ∫
φ2(r1)2φ2(r2)

a0

R
+

a0∣∣∣~R− ~r1 + ~r2

∣∣∣ − a0∣∣∣~R− ~r1

∣∣∣ − a0∣∣∣~R + ~r2

∣∣∣
 dV1 dV2. (2.20)

This integral can be interpreted as electrostatic energy. If the φ2 are interepreted as

charge distributions, H0 is the energy of the repulsion of the nuclei, the repulsion of

each electronic charge distribution for the other, and the attraction for each electronic

charge distribution to the other nucleus. This energy is repulsive at short distances and

attractive at long distances.

I is the overlap integral

I =
∫
φ(r1)φ

(∣∣∣~R− ~r1

∣∣∣) dV1 =
∫
φ(r2)φ

(∣∣∣~R + ~r2

∣∣∣) dV2, (2.21)

which can be interpreted as the charge density for an electron shared between two

nuclei. It is at a maximum of 1 when the nuclei are at zero separation, and goes to zero

at infinite separation.

H1 is the exchange integral

H1 =∫ ∫
φ(r1)φ

(∣∣∣~R− ~r1

∣∣∣)φ(r2)φ
(∣∣∣~R + ~r2

∣∣∣)
a0

R
+

a0∣∣∣~R− ~r1 + ~r2

∣∣∣ − a0∣∣∣~R− ~r1

∣∣∣ − a0∣∣∣~R + ~r2

∣∣∣
 dV1 dV2.

(2.22)
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Figure 2.2: Exchange repulsion energy ET . Black: Result of the Heitler-London cal-
culation. Red: Fit to A

R
exp(−kR), where A = 1.725Eh and k = 0.870 a−1

0 . Inset:
Comparison of Heitler-London energy (black) to Lennard-Jones potential for the hy-
drogen triplet, σ = 6.97 a0, ε = 2.047× 10−5Eh [14].

If the two electrons are considered charge distributions as described by I, H1 is the

energy of the repulsion of the two nuclei, the repulsion of the two charge distributions

for each other, and the attraction of the charge distributions to both nuclei. This energy

is repulsive at short range and attractive at long range; but at long range its attraction

is much larger than that produced by H0, and at short range its repulsion is smaller.

Because the energy depends on H0 − H1, the energy is repulsive for all R. The

denominator, 1 − I2, expresses the fact that the electrons do not “want” to overlap,

and so the potential becomes much more strongly repulsive at short range. The energy

is plotted in figure 2.2. At very short ranges (R < 0.2 a0), the Taylor expansion about

R = 0

ET ≈
a0

R
+ 0.5− 2

R

a0

, (2.23)
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is a good approximation; for longer ranges

ET ≈ A
e−kR

R
(2.24)

is adequate. In the Lennard-Jones potential repulsion is approximated by

ET ≈ 4ε
(
σ

R

)12

(2.25)

A major deficiency in the Heitler-London result is that at long range the potential

is not attractive, as we saw that it should be in 2.2.1. In fact, experiments and more

exact calculations [14] show that the potential has a minimum at about 7.8 a0, as shown

in figure 2.2. This minimum is too shallow to support a bound state for an atom of the

mass of hydrogen, but it is just deep enough that atomic hydrogen can be condensed

to a liquid, and that three tritium atoms (which interact with essentially the same

potential) form a bound state [15]. While the Heitler-London result is far from perfect,

it is accurate enough to demonstrate the nature of the effect.

The combination of exchange repulsion and van der Waals attraction accounts for

nearly all of the two-body argon potential, and an accurate Ar-Ar potential from the

literature [16] is shown in figure 2.3.

2.3 Many-body interactions

The Coulombic potential energy of a system of charged particles, such as electrons and

nuclei, is the sum of potential energies between pairs of particles. However, in noble

gases electrons are strongly associated with their own nucleus. Treating atoms as units,

rather than charged particles, vastly simplifies the expression of the overall potential

energy, as we have seen in section 2.2. The price of this simplification is that terms in
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Figure 2.3: Black: Ar-Ar two-body potential. This is the HFD-C potential of Aziz and
Chen [16], which combines the results of Hartree-Fock self-consistent field calculations
with parameters determined by experiment. Red: Lennard-Jones potential [11]. Insets:
differences at the minimum and at long range.

the overall potential energy depend not only on the configurations of pairs of atoms but

of triple, quadruples and so forth.

It is easiest to understand this effect for a triple of atoms. The electronic configu-

rations of two atoms will be distorted by each other, producing a two-body potential

as described previously. Bringing in a third atom will distort the configurations of the

other two, as well as its own, in ways not accounted for by the two-body potential. For

example, two atoms very close together will look like two dipoles, and the potential

experienced by the third atom will not be isotropic. But two atoms far apart will not

distort each other much, and a third atom will expeience a potential very close to the

sum of pair potentials, as illustrated in figure 2.4.

In a system of N atoms, there will be 1
2
N(N − 2) pairwise interactions. There
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n 1 2 3 4 5 6 7 8 9 10
N
1 1
2 2 1
3 3 3 1
4 4 6 4 1
5 5 10 10 5 1
6 6 15 20 15 6 1
7 7 21 35 35 21 7 1
8 8 28 56 70 56 28 8 1
9 9 36 84 126 126 84 36 9 1
10 10 45 120 210 252 210 120 45 10 1

Table 2.2: Number of n-tuple interactions for system of N atoms.

will be 1
6
N(N − 1)(N − 2) triple interactions, 1

24
N(N − 1)(N − 2)(N − 3) quadruples,

and in general the number M of n-tuple particle interactions is given by the binomial

coefficient:

M(n,N) =
N !

n!(N − n)!
=

1

n!

n∏
1

(N − n+ 1) (2.26)

The calculation up to N = 10, n = 10 is given in table 2.2. It is easy to see that the

greatest number of interactions, M , is for the N/2-tuple. At this point we might despair

of ever being able to calculate the potential energy of any but the smallest clusters of

atoms. This is not the case for two reasons. First, potentials fall off with interatomic

distance; second, atoms can only be brought so close together. The consequence is that

only a tiny fraction of a given n-tuple need to be calculated for a cluster of N atoms;

in the vast majority of cases at least one atom in the n-tuple will be too far away from

the others to significantly affect them.

In practice, for neutral, spherical atoms, the typically significant n-body potential

is the three-body potential. An example is the Axilrod-Teller three-body potential

Vijk = CAT

(
1 + 3 cos γi cos γj cos γk

(rijrjkrik)3

)
, (2.27)
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Figure 2.4: Contour plot of Axilrod-Teller potential. Contour lines indicate potential
energy in units of CAT/R

9, where R is the distance between atoms 1 and 2 (located
at z = ±1

2
R). Blue line: zero energy. Red lines: attractive region, with the solid line

indicating an energy of 1 CAT/R
9. Black lines: repulsive region, with the solid line

indicating an energy of 1 CAT/R
9.

where i, j, k represent three atoms, rij the distance between atoms i and j, and γi the

angle formed by the three atoms with atom i at the vertex [17]. It is calculated anal-

ogously to the two-body van der Waals interaction, using second-order perturbation

theory (section 2.2.1). Note that this potential is not isotropic and is not always at-

tractive (figure 2.4). Including a three-body potential typically lowers the energy of a

system on the order of one percent. It often improves the accuracy of theoretical results,

the effects becoming more important at higher pressures [18].
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Chapter 3

Fluid argon

Chapter 2 describes the nature of the interatomic interaction of argon. The principal

features are that argon atoms repel at close range, attract at long range, and have no

meaningful orientation with respect to one another. Furthermore, argon undergoes no

chemistry except under extreme conditions not encountered in this work.

In principle, the behavior of a substance in bulk can be deduced from precise knowl-

edge of its interatomic interactions [1–4]. In practice, the problem is mathematically

intractable, even if the interatomic interactions are very well known. Furthermore, in-

teratomic interactions are not directly observable. However, in the case of argon many

simplifying approximations and assumptions exist, due to the simple nature of its in-

teratomic interactions. In this chapter we indicate how the interatomic interactions are

connected with bulk properties of the fluid, so that knowledge of one can shed light on

the other.

3.1 Classical or quantum mechanics?

One of the first simplifying assumptions for argon is that of classical behavior. While

all of the noble gases share a similarly-shaped potential, helium and neon show more
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Element Mass ε σ η Λ/ā
(me) (Eh) (a0) (0 K) (300 K)

Helium 7297 3.16× 10−5 4.84 0.430 0.0146
Neon 36790 1.14× 10−4 5.18 0.094 0.0065
Argon 72820 3.82× 10−4 6.43 0.030 0.0046

Table 3.1: Comparison of the quantumness of noble gases. Lennard-Jones parameters
taken from Marder [5].

pronounced quantum behavior; in the case of helium spectacularly so. There is more

than one way of characterizing the “quantumness” of a system.

One estimate of quantumness is given by calculating the quantum parameter η. If

we assume a pairwise Lennard-Jones interaction for helium, neon, and argon, then we

can write the quantum Hamiltonian for N atoms as

Ĥ = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i 6=j

4ε

( σ

rij

)12

−
(
σ

rij

)6
 ; (3.1)

where rij is the distance between atoms i and j, and σ and ε are the range and well depth

of the Lennard-Jones interaction. We can rewrite the Hamiltionian dimensionlessly by

replacing the Cartesian coordinates qi with with q̃iσ and dividing through by the well

depth:

1

ε
Ĥ = −1

2
η2

N∑
i=1

∇2
i +

N∑
i 6=j

4
(
r̃−12
ij − r̃−6

ij

)
(3.2)

η2 ≡ h̄2

mεσ2
(3.3)

The quantum parameter η is a measure of the ratio of the kinetic energy at zero temper-

ature to potential energy, and as η → 0 the system exhibits classical behavior. Values

of η for helium, neon and argon are given in table 3.1.

Another estimate of quantumness is given by calculating the thermal de Broglie
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wavelegth Λ, defined as [2]:

1

Λ
≡ 1

h

∫ ∞
−∞

exp

(
− p2

2mkT

)
dp =

(
2πmkT

h2

)1/2

; (3.4)

where h is Planck’s constant, used here to make the integral dimensionless (first used

for this purpose by Josiah Willard Gibbs, years before Planck [1]). We can compare

this wavelength to a crude measure of interatomic separation

ā ≡ ρ(T )−1/3 =
(
V

N

)1/3

, (3.5)

where ρ(T ) is the number density; we require that

Λ

ā
<< 1 (3.6)

for classical behavior. Values of Λ
ā

for helium, neon, and argon at 300 K are found in

table 3.1.

3.2 The partition function

The partition function is the bridge between statistical mechanics and thermodynamics.

Once we have decided that we have a classical substance of N atoms described by

the classical Hamiltonian Ĥ(px1 , py1 , pz1 , x1, y1, z1, . . . pxN , pyN , pzN , xN , yN , zN) all that

remains is to calculate the partition function [1]

Z =
1

h3NN !

∫ ∫
e−

1
kT
Ĥ

N∏
i=1

dxi dyi dzi dpxi dpyi dpzi , (3.7)

where h is Planck’s constant and N ! accounts for classical indistiguishability of atoms.

Because the potential energy of the system is velocity independent we can integrate
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over the momenta:

Z =
1

N !Λ3N

∫
e−

1
kT
V (x1,y1,z1,...xN ,yN ,zN )

N∏
i=1

dxi dyi dzi =
1

Λ3N
ZQ; (3.8)

where Λ is the thermal de Broglie wavelength defined in equation 3.4,

V (x1, y1, z1, . . . xN , yN , zN) is the potential energy of the system, and ZQ is the config-

urational partition function.

This is of course where it gets hard; if we assume the potential is zero we recover the

ideal gas equations. However, in considering real gases, as well as liquids and solids, we

have to incorporate the short-range repulsion and long-range attraction of real atoms.

This implies that we must find some way of dealing with equation 3.8.

In the gas phase, the potential energy term can be considered a small correction

to the kinetic energy term. In the solid phase, the kinetic energy term is considered a

small correction to the potential energy term; usually by considering atoms in a solid to

vibrate harmonically in a crystal lattice. Gases are disordered, and solids exhibit large-

scale order. Liquids are characterized by order at atomic scales, and disorder at large

scales. Each atom feels mostly repulsion from its nearest neighbors, with the attractive

force it feels averaged over the volume. Thus the microscopic picture of a liquid is much

like carelessly packing spheres, and in fact careless packing of spheres has been used to

study the structure of liquids [6]. Liquids have the worst of both worlds, and are poorly

approximated by solid-like and gas-like models [2–4].

This work is primarily concerned with supercritical argon. We take the behavior of

solid argon as given, and are especially interested in the fluid as it condenses to the solid.

Because there is no phase transition in the fluid region, we can think of it as behaving

at low densities like a gas and at high densities like a liquid, with a smoothly-varying

transition from low density to high density.
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Figure 3.1: Lennard-Jones potential (black) and Mayer f -function (red). The f -function
is temperature dependent; the one shown here is kT = ε.

3.3 The virial equation of state

One simplification, appropriate for argon and the heavier noble gases, is to assume that

the total potential energy is the sum of pairwise interactions. Rewriting equation 3.8

accordingly yields

Z =
1

N !Λ3N

∫
exp

 1

kT

N−1∑
i=1

N∑
j=i+1

V (rij)

 N∏
i=1

dτi, (3.9)

where V (rij) represents the pair potential, r2
ij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2 is

the interatomic distance between atoms i and j, and dτi = dxidyidzi.

Now we introduce the Mayer f -function [2], shown for the Lennard-Jones potential

in figure 3.1:

fij = exp

(
−V (rij)

kT

)
− 1 (3.10)
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This is the sort of thing we are looking for; it describes atoms as refusing to get very

close together, and at the same time indifferent to atoms that are far away, which is one

of the properties of liquids. Rewriting the partition function in terms of the f -function

gives

Z =
1

N !Λ3N

∫ N−1∏
i=1

N∏
j=i+1

(fij + 1)
N∏
i=1

dτi, (3.11)

We can expand the integrand into a series:

N−1∏
i=1

N∏
j=i+1

f(rij) + 1 = 1 +
∑
i

∑
j

fij +
∑
i

∑
j

∑
k

∑
l

fijfkl + . . . (3.12)

If we treat all atoms as being in the bulk, and not on the surface, then this series can

be rearranged into terms that represent pairs, triples, quadruples, and so on:

Z =
1

N !Λ3N

∫
1+

1

2

N !

(N − 2)!
pairs +

1

6

N !

(N − 3)!
triples +. . .

1

n!

N !

(N − n)!
n-tuples . . .

N∏
i=1

dτi

(3.13)

We can carry out this integral termwise:

Z =
1

N !Λ3N

(
V N +

1

2

N !

(N − 2)!
V N−1I2 +

1

6

N !

(N − 3)!
I3 + . . .

1

n!

N !

(N − n)!
V N−nIn . . .

)
(3.14)

where the terms In represent the cluster integrals. Of course, evaluating the cluster

integrals is the hard part. They are not even straightforward to write down, except for

the pair and the triple:

I2 =
∫
f12 dτ2, (3.15)

I3 =
∫ ∫

f12f23f31dτ2dτ3, (3.16)

with higher n-tuples classified and described according to a pictorial notation reminis-
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cent of Feynman diagrams.

Once we have calculated as many terms of the partition function as we decide we

require, we use the thermodynamic relation

P = kT

(
∂ logZ

∂V

)
T

, (3.17)

and this, coupled with the Stirling approximation for large N , produces the virial equa-

tion of state

P =
NkT

V

(
1− N

V
B2(T )− N2

V 2
B3(T )...

)
(3.18)

with Bn(T ) = 1
n!
In is the virial coefficient. One can immediately see that if they are

negligible we recover the ideal gas law, and the van der Waals equation of state can be

written in this form by expanding it in powers of N/V .

Our triumph is not yet complete, as there are two serious concerns to address. First

is the difficulty of calculating the virial coefficients; in practice six or seven is the limit.

Second is the problem of convergence; it is not known under what conditions the series

defined by the coefficients will converge. All that one can do is keep the density small,

and the virial equation of state is not very accurate except for gas-like fluids. To extend

the virial equation of state to liquid-like densities would require calculating a large

number of coefficients, which cannot be done in practice [2–4].

It is instructive nonetheless to calculate some of the simpler virial coefficients for

simple, realistic potentials such as the Lennard-Jones potential. Then the virial coef-

ficients can be measured experimentally and used to work out the values of σ and ε

for the Lennard-Jones potential. This is useful because interatomic potentials are not

directly observable.

B2(T ) = −1

2

4π
∫ ∞

0
r2

exp

−4ε
(
σ12

r12
− σ6

r6

)
kT

− 1

 dr
 (3.19)
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The Lennard-Jones potential is positive for r < σ and negative for r > σ, which provides

a natural place at which to break the integral. For r < σ the f -function is very closely

approximated by -1, as shown in figure 3.1, yielding

B2(T ) ≈ 1

2

4

3
πσ3 + 4π

∫ ∞
σ

r2

exp

−4ε
(
σ12

r12
− σ6

r6

)
kT

− 1

 dr
 . (3.20)

Another approximation, that of high temperature, is useful here. For argon, ε/k is

120 K [3], and so for temperatures above that we can approximate the integrand:

B2(T ) ≈ 1

2

4

3
πσ3 − 4π

∫ ∞
σ

r2
4ε
(
σ12

r12
− σ6

r6

)
kT

dr.

 , (3.21)

which is easy enough to evaluate:

B2(T ) ≈ 1

2

(
4

3
πσ3 − 32

9
πσ3 ε

kT

)
=

1

2
V0

(
1− 8

3

ε

kT

)
, (3.22)

where V0 = 4
3
πσ3 can be thought of as the volume of one atom.

We can see from this expression that there is a temperature at which we recover ideal

gas behavior, the Boyle temperature, TB, at which B2(T ) = 0. The estimate of B2(T )

given by equation 3.22 yields TB = 8
3
ε
k
, corresponding to 320 K for argon, but more

accurate evalutions of equation 3.19 give TB = 3.42 ε
k

for the Lennard-Jones potential

[3]. This corresponds to about 400 K for argon.

Since most interatomic and intermolecular potentials have some kind of attractive

well and some kind of repulsive radius, this gives rise to the law of corresponding states

for gases [1], which allows one to scale the estimates of Bn(T ) by the appropriate

parameters for the particular gas one is interested in, and get approximately accurate

results for the equation of state.
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Figure 3.2: Schematic pair distribution function for a liquid (red line) compared to
the analogous construction for an fcc solid (black bars). The height of the bars is
the number of neighbor atoms a distance r from one atom at zero; divided by r2, so
that integration yields the total atoms in the volume around the central atom. Ideally
the solid pair distribution function would be a set of delta functions. The liquid pair
distribution function is normalized to 1 as r →∞, describing the lack of correlation at
long range.

3.4 The pair distribution function

If the pair distribution function is also known, the equation of state of pairwise-interacting

atoms can be written more simply [2–4]:

P = ρkT − 4πρ2

6

∫ ∞
0

g(r)
dV

dr
r3 dr, (3.23)

where ρ is the number density N/V , V (r) is the pair potential, and g(r) is the pair

distribution function. A schematic of a pair distribution function for a liquid is given

in figure 3.2, along with an analogous construction for an fcc solid.
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The pair distribution function, when integrated over the whole volume, is related to

the density by

4π

N − 1
ρ
∫ ∞

0
g(r)r2 dr = 1. (3.24)

But the pair distribution function is accessible experimentally, as the Fourier trans-

form of the structure factor, S(k), determined from scattering and diffraction experi-

ments.

The calculation of g(r) from an interatomic potential, however, is no more tractable

than the calculation of the virial coefficients. g(r) can be derived through the configu-

rational partition function, ZQ (equation 3.8):

ρ2g(r) =
1

(N − 2)!ZQ

∫
exp

(
−V (x1, y1, z1, . . . , xN , yN , zN)

kT

)
N∏
i=3

dτi, (3.25)

which involves two intractable integrals. Another approach is to write the pair distribu-

tion function in terms of an integral over the triple distribution function, which in turn

can be written over an integral over the quadruple distribution function, and so on unto

the N-tuple distribution function. This approach works by assuming something simple

for the triple or quadruple distribution function and truncating the recursion [2].

3.5 The hard-sphere model

Unlike atoms in a solid, which sit in a potential minimum produced by the interactions

of their nearest neigbors, the atoms in a liquid have enough kinetic energy that their

interactions with their neighbors are primarily repulsive. The attractive forces that

make the collection of atoms liquid-like rather than gas-like are smeared out over the

entire volume. Consequently, the hard-sphere model, where atoms have no attractive

interaction at all, produces surprisingly accurate results for the bulk; however, hard
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spheres do not show a transition between liquid and gas [2–4].

The hard sphere model represents the interatomic potential, V (r), by

V (r) =


∞, r < σ

0, r ≥ σ
. (3.26)

Of course this is analytically much more tractable, and at least eight virial coefficients

have been calculated for hard spheres [7].

The structure of hard-sphere fluids is characterized by approximately five-fold sym-

metry [6], which of course cannot fill space the way regular lattices can. Although hard

spheres do not have any attractive forces built in, they do exhibit an effective attraction

due to collisional shielding [2–4].

A semi-empirical equation of state for the hard sphere fluid, the Carnahan-Starling

equation of state, is given by

PV

NkT
=

1 + η + η2 − η3

(1− η)3
(3.27)

where η = 1
6
πρσ3, which for a close-packed structure would be

√
2

6
π.

3.6 Numerical and experimental results

Argon may be the most extensively studied substance in existence. We hope that the

references given below constitute a representative sample.

The equation of state of argon has been calculated by a variety of methods for a

wide range of temperatures and pressures. These include Monte Carlo simulation [8, 9];

molecular dynamics simulation [10, 11], directly from the interatomic potential via sig-

nificant structure theory [12], the embedded atom method [13], and the configurational

46



20 40 60 80 100
Molar volume (mm

3
 mmol

-1
)

0.5

1.0

P
re

ss
ur

e 
(G

P
a)

Figure 3.3: Experimentally derived equation of state for fluid argon at 300 K.

partition function [14]; from total energy calculations [15]; from the corresponding states

principle [16]; from density functional theory [17], from mean-field theory [18].

There have been many experimental measurements of the equation of state. For

the solid, X-ray diffraction [19–22]. For the fluid, using metal bellows [23] and piston-

cylinder apparatus [24, 25], and through Brillouin scattering if properties such as re-

fractive index are known [26].

Empirical equations of state are also generated from experimental results, from ther-

modynamic properties such as pressure, density, temperature, isothermal compressibil-

ity, triple and critical points, heat capacities, etc. IUPAC produced a book-length set

of tables for argon up to pressures of 0.1 GPa [27] in 1972. A more recent one for fluid

argon [28] at 300 K is shown in figure 3.3; it draws on about 180 references.

Other thermodynamic properties such as elastic moduli, melting lines, structural

properties, along with those listed above, have been calculated from the interatomic
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potential; and the interatomic potential has in turn been calculated from measurements

of those properties [11, 17, 29–37].
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Chapter 4

Experimental techniques

4.1 Diamond anvil cells

Diamond anvil cells (DACs) are used to apply high pressures [1]. Diamonds are very

hard and also transparent to visible and infrared light [2, 3]. Consequently, not only

can they be used to apply high pressures, but they are also well-suited for optical and

spectroscopic measurements [1].

The diamonds used in a DAC, and typical DACs, are shown in figure 4.1. The DAC

we used is a Merrill-Basset design [4]. The diamonds are attached to backing plates by

five-minute epoxy. Setscrews hold the backing plates in the piston and cylinder; the

setscrews allow for fine adjustment of the alignment of the diamonds. The diamonds

apply pressure to a gasket, usually stainless steel. The gasket has a hole drilled in its

center, typically half the diameter of the diamond culets. The sample goes in the hole,

and if the sample is solid the hole is filled with a pressure medium such as water, argon,

or an ethanol-methanol mixture. Typically a chip of ruby is also added to the hole for

pressure measurements (section 4.1.5).
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Figure 4.1: Left: Typical diamond, 600 µm diameter culet. Right: Parts of the DAC.
Counterclockwise from top left: piston, cylinder, assembled DAC, gasket. a) Hemispher-
ical backing plate with diamond. b) Setscrews for adjusting axial alignment. c) Disk
backing plate with diamond. d) RTD for sensing temperature of DAC. e) Setscrew for
adjusting alignment in plane. f) Preindentation in gasket. g) Allen screws for adjusting
pressure. h) Reference marks.

4.1.1 Alignment

The backing plates and the tables of the diamonds were first cleaned, under a stereo

microscope, with cotton swabs and methanol. It is critical that the tables and plates

be smooth and clean, or the diamonds will shift under pressure and be more likely to

fracture. The diamonds were then centered over the holes in the backing plates. Two

small drops of five-minute epoxy were applied to opposite sides of the circumference

of each diamond. Moderate pressure was applied to the culets, forcing the tables to

make good contact with the backing plates. Then epoxy was applied all around the

circumference of each diamond. Applied pressure kept the epoxy from seeping between

the table and the plate. After twenty-four hours the diamonds and backing plates were
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Figure 4.2: Left: Interference fringes due to slight misalignment of diamonds. Right:
Corrected alignment.

removed and inspected. If epoxy had seeped in between the plate and the diamond, it

would have been necessary to start over.

The receptacles for the backing plates, in the piston and cylinder, were then cleaned

under the microscope with methanol and cotton swabs, as were the diamond culets.

The backing plates were then inserted into the piston and cylinder. One plate is flat,

and can move from side to side. The other plate is hemispherical, and can tilt. The

setscrews were just tightened, and the piston was inserted into the cylinder, gently,

so that the diamond culets were in contact. The reference marks on the piston and

cylinder were then aligned. The Allen screws inserted and just tightened, taking care

not to apply significant toruqe to the screw, and the alignment of the diamond culets

was inspected under the microscope.

The circumferences of the culets must be aligned and the culets themselves made

parallel. This was done by adjusting the setscrews. Interference fringes will be seen in

the microscope if the culets are not parallel (figure 4.2). The setscrews were adjusted
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1 2 3 ∆12 ∆13

Aligned 107 105 109 -002 002
Goal 147 145 149 -002 002

Initial 247 242 251 -005 004
242 241 243 -001 001
238 236 240 -002 004
. . . . . . . . . . . . . . .
152 152 154 000 002

Final 148 145 150 -003 002

Table 4.1: A sample alignment and preindentation record. The units are ten-
thousandths of an inch. Aligned: the measured thickness at three points when the
diamonds are aligned. Goal: the desired measurements when the cell is preindented to
the desired thickness (100 µm). Initial: the measurements when the gasket has been
inserted but not preindented. Final: measurements after preindentation is completed.

until the circumferences matched up, and the fringes disappeared. Typically the fringes

cannot be made entirely to disappear merely by adjusting setscrews. When the fringes

were reduced to one or two very broad bands, they were eliminated entirely by very

slight tightening of the Allen screws that push the piston against the cylinder. Excessive

tightening of the Allen screws will of course break the diamonds.

After aligning the diamonds, the alignment was recorded. This was done by ap-

plying a dial indicator to three points on the piston, and recording the thickness of

the cell to the ten-thousandth of an inch (figure 4.3). The relative differences between

the measurements constitute the record of the alignment (table 4.1). (The absolute

measurements were used when the gasket was preindented.) This alignment was main-

tained any time the Allen screws were adjusted. If the culets get significantly out of

true while pressure is applied, the diamonds will fracture. If the differences between

the measurements should be more than three or four ten-thousandths, then there may

be something wrong with the cell, such as foreign material under a backing plate.
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Figure 4.3: Left: Order in which Allen screws are tightened. Right: Measuring the
thickness of the DAC in three locations using the dial indicator.

4.1.2 Gasket preparation

The gaskets used in these experiments were #304 stainless steel, 0.25 mm thick. Other

materials can be used, depending on the desired pressures. In general, harder materials

go to higher pressures, although very hard materials increase the risk of fracturing the

diamonds.

The gasket was first preindented. The Allen screws were removed and the piston

removed from the cylinder. The gasket was marked, so that it could be reoriented

correctly. (If a resistance temperature detector, described in section 4.1.6, was affixed

to the backing plate a wedge was out of the gasket to provide clearance.) The gasket

was centered on the culet and clay somtimes used to help keep it in place. The piston

was then inserted and both diamonds made contact with the gasket. The Allen screws

were reinserted and just tightened. The alignment was measured, and compared to the

recorded alignment. The Allen screws were tightened, in small increments, to bring the
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Figure 4.4: Left: Setup for drilling the hole in the preindented gasket. a) hand lens
for alignment. b) vise of milling machine. c) jig. d) gasket clamped to jig with Allen
screws. Circled: drill bit. Right: A barely adequate hole; it does not quite touch the
sides of the indentation.

cell into the recorded alignment. When the cell was level again, the Allen screws were

tightened in a “Magen David” pattern (figure 4.3). The alignment was checked, the cell

was leveled again, and so forth, until the desired preindentation was reached. This was

judged by comparing the dial indicator measurements of the aligned cell (section 4.1.1)

with the dial indicator measurements of the preindented gasket.

Thinner gaskets will support higher pressures. For these experiments preindenta-

tions typically were between 100 microns and 150 microns. Because the gasket expands

when pressure is released, a preindented gasket will be thicker than the dial indicator

measurements would suggest.

The gasket was then drilled. The diameter of the hole was about half that of the

diamond culets. (In this work 0.7 mm culets were drilled to 0.29 mm, and 1 mm culets

to 0.45 mm.) The gasket was clamped in a jig, and the jig was placed in the vise of a

milling machine. The drill bit was placed in the milling machine and brought down just

above the preindentation. As shown in figure 4.4, using a 10X hand lens, the X position

of the jig was adjusted until the bit appeared to be centered in the preindentation. This

is most easily done if the bit is brought so close that its reflection can be seen in the
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preindentation; it then appears as a line bisecting an ellipse, as shown in the figure.

Once the bit was centered in the X direction it was then centered in the Y direction.

Once the bit was aligned in both directions, the hole was drilled by bringing the bit

down very slowly (taking about one second to push through the gasket).

Once the hole was drilled it was examined under the microscope, and burrs removed

by a needle. The hole need not be exactly centered but it must not touch the edges of

the indentation (figure 4.4).

4.1.3 Loading at ambient temperature

DACs are often loaded with a pressure medium such as water. Loading at ambient

temperature was as follows. First the gasket was placed on the cylinder diamond. The

sample and ruby chip (if desired) were placed in the hole with a needle. The liquid

is then placed in the gasket with a dropper. Air bubbles were removed with a needle.

Sometimes the liquid did not get between the bottom diamond and the gasket, and air

bubbles would appear after the piston was pressed onto the gasket. In this circumstance

they were removed by raising the piston off the gasket and replacing it. In the most

difficult cases it was necessary to lift the gasket off the bottom diamond and wiggle it

to get all the air out. It was necessary that the gasket and culets be very clean because

the liquid would spread out and pick up foreign material, and when the cell was sealed

this foreign material could be trapped in the cell.

4.1.4 Cryogenic loading

Techniques and equipment exist to load argon at ambient temperature, but in this work

we did not use them. Instead, liquid argon was used.

For Fourier transform infrared spectroscopy, carbon dioxide was introduced into the

argon. This was done by running carbon dioxide vapor into the dewar that contains
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Figure 4.5: Left: Stage for cryogenic loading. a) DAC. b) stage. c), d) optical fibers
for monitoring pressure in situ (optional). Right: Coleman cryogenic loading chamber
and aluminum cylinder with stage inserted.

the liquid argon for at least one half hour, until the liquid argon had the appearance of

milk. This was done before loading argon into the cell.

After the gasket was drilled and a ruby chip and sample placed in the hole, the piston

was inserted and the Allen screws were just tightened. The cell was then inverted, so

that the weight of the piston came off the gasket. The piston setscrews were tightened

just enough to hold the piston in place. The cell was then attached to a stage we

constructed specially, shown in figure 4.5. If it was desired to load the cell to a high

pressure, a set of fibers was attached to the stage and cell to monitor the pressure while

loading.

The stage was inserted in a specially constructed aluminum cylinder. The cylinder

was placed in a cryogenic loading chamber manufactured by Coleman. The cylinder

was placed near one side of the chamber. Liquid nitrogen was then slowly poured into

the chamber, taking care not to splash nitrogen into the cylinder. When the level of

the nitrogen was about halfway up the cylinder, and any nitrogen in the cylinder had
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boiled out, then liquid argon was poured into the cylinder until the cell was immersed

to the depth of about half an inch. (Liquid nitrogen and liquid argon are miscible, so it

is important to keep them separate to avoid contamination.) Argon boiled out as the

cell and stage cooled, so more argon was poured in to keep the cell covered. After a

minute or two the argon settled down, and small bubbles came out of the cell. At this

time, the Allen wrench was placed in the argon, resting on the stage, to cool.

About five minutes after the last bubble, the Allen screws were tightened. Each

screw was torqued until it just gaves. If low pressures were desired, 2 - 5 times around

the pattern were sufficient. If higher pressures were desired, then we went around the

pattern until the ruby peak had shifted by the desired amount (section 4.1.5). If at

any time the ruby signal disappears, one must stop immediately; this indicates that no

argon is in the hole and it has collapsed, and the diamonds are in danger of fracture.

Liquid nitrogen, at 77 K, is below argon’s freezing point and the argon was freezing

from the outside of the cylinder in. In practice there were at least ten to twenty minutes

to work.

After tightening, the stage and cell are removed from the nitrogen and allowed to

warm to ambient temperature.

4.1.5 Pressure measurement

Pressure in the DAC was measured by ruby fluorescence. Under green or blue light,

the ruby fluoresces near 694.5 nm. The fluorescence is composed of two peaks, the

stronger called R1 and the weaker R2. Both peaks shift with pressure and temperature.

Below 30 GPa, the shift is linear with pressure and temperature [1, 5–7]. The pressure

calibration for the R1 peak shift is 2.70 GPa/nm, and the temperature calibration is

148 K/nm [6]. At ambient pressure and temperature the shift for the R2 peak is not

significantly different [5–7].
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A small (50 microns - 100 microns) ruby chip is placed in the hole before loading.

Naturally the size is kept as small as possible, so that the relative error in the measured

volume introduced by the ruby chip is small. A bright source of green light will produce

ample fluorescence for measuring pressure; we used a laser or a mercury lamp.

Taking the ratio of the two calibration parameters, one finds that a temperature

uncertainty of 1 K implies a measured pressure uncertainty of 20 MPa. To measure

pressure precisely, the temperature of the cell should be controlled.

It is possible to measure pressure to 1 MPa using ruby fluorescence if great care is

taken with temperature and several ruby spectra are taken [6]. In this work we were

satisfied with a precision of 20 MPa, given that the pressures we are interested in go

up to 6 GPa. We control the temperature (section 4.1.6) to 0.5 K, which translates to

an uncertainty of 10 MPa, if temperature were the sole source of uncertainty in the

measurement.

The procedure for measuring pressure in the confocal microscope was as follows.

First an unloaded cell with ruby chip was used establish the reference spectrum. Green

light from the confocal microscope’s mercury lamp was used to excite the fluorescence,

and the spectrum was measured using an 0.5 mm diameter optical fiber and an Ocean

Optics spectrometer, as shown in the figure. The spectrum was fitted to give the

location of the R1 peak. This yielded the “zero” of the pressure measurement (which

is really 100 kPa). Then the cell was loaded, and further pressure measurements were

done on the confocal microscope, just as described for the empty cell. Alternatively the

loaded cell may be measured first, and the “zero” pressure measured afterward.

In situ pressure monitoring was sometimes used during the cryogenic loading of the

cell. A 543 nm diode laser was shined into an 0.5 mm diameter optical fiber attached

to the top of the cell. At the bottom of the stage a small optical fiber picked up the

fluorescence and carried it to the spectrometer, as shown in figure 4.5. As the cell
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cooled the ruby peak shifted dramatically, and there was only one peak (R1) visible

at liquid argon temperatures [6]. While tightening the Allen screws the peak location

was monitored. In our experience a peak shift just visible, at loading temperature,

translates to a pressure at ambient temperature in excess of 1 GPa. Hence, the in situ

setup was not used for the fluid argon study. Loading to 0.1 GPa was done as described

in section 4.1.4.

4.1.6 Temperature control

The cell was heated by a 100 W mica band heater wrapped around the circumference of

the cell. The temperature was measured by a platinum resistance temperature detector

(RTD) glued to the bottom backing plate as shown in the figure. The temperature was

controlled by a proportional integral derivative (PID) controller. All of these compo-

nents were supplied by Omega.

RTDs are more stable and accurate (± 0.2 K at 273 K) [8] than thermocouples.

While they do have a slower response time, a DAC has a large thermal mass which does

not respond quickly to small changes in heater output or ambient temperature.

A PID controller adjusts the output of the heater using the PID algorithm [9]:

• Proportional parameter: The controller is set to a desired temperature (setpoint).

The difference between the temperature of the cell and the setpoint (the error),

divided by the proportional output parameter, is the fractional output of the

heater. For example, if the proportional output parameter is 5 K and the cell is

1 K cooler than the setpoint, the 100 W heater will be run at 20 W. If the propor-

tional parameter is too large then temperature oscillations are produced. When

properly adjusted, the proportional parameter will cause the error to approach a

constant non-zero value.
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• Integral parameter: The temperature is sampled at a given rate. The error at a

given time, multiplied by the sampling rate, is summed over some time period.

The value of this integral is multiplied by the integral parameter and added to the

output of the heater. This corrects for the tendency of the proportional parameter

to produce a constant error, but the integral parameter has a tendency to produce

overshoots and oscillations in temperature.

• Derivative parameter: The difference in error between sampling times, divided

by the sampling rate, is multiplied by the derivative parameter and added to the

output of the heater. This corrects for the oscillations produced by the integral

parameter, but if the value is too large temperature instability can result.

The PID algorithm is just the damped-driven oscillator in disguise. Early PID

controllers were in fact systems of masses, springs, and pnuematic dampeners.

A properly tuned PID algorithm is capable of fine temperature control. There are

several algorithms for tuning, but unless the thermal properties of the system are well

known, and the system is linear in thermal response, tuning is more art than science.

Fortunately the DAC was fairly well-behaved and the temperature was usually kept

between 299.7 K and 300.3 K, once the cell had time to reach setpoint.

We chose 300 K for the isotherm we measured because, while it is often described

as “room temperature”, most people find 300 K a little too warm. Climate-controlled

rooms, therefore, will be kept around 300 K. To maintain 300 K only a heater is needed,

and a small one at that.
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Figure 4.6: Schematic of confocal microscope. Solid lines represent light originating
from the focal point, dashed lines represent light originating elsewhere and screened by
the pinhole. Blue: the illuminating laser.

4.2 Confocal microscopy

Confocal microscopy was invented in 1957 by Marvin Minsky [10, 11]. As shown in

figure 4.6, in essence a confocal microscope consists of two lenses and a pinhole. Light

(usually a laser) is shined through the objective lens onto the object. Reflected or

emitted (e.g. by fluorescence) light comes back to the objective. Light passing through

the focus of the objective passes through the pinhole, but a fraction of the light passing

through other points is screened. Images are obtained by scanning over a volume and

taking data point by point.

The image is improved in two ways, with respect to conventional microscopy. First,

the illuminating laser is focused to a point, and thus the illumination is much more

intense than in a conventional microscope. Second, the pinhole improves resolution by

screening much of the light that does not pass through the objective focus. An ideal

confocal microscope, in the geometric optics limit, would image only the focal point.

These improvements come at the price of only being able to look at one small point at
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a time. Consequently, in order to image an extended object the focal point must be

moved. Minsky’s microscope moved the stage to image the object, and the image was

displayed on a long-persistence oscilloscope [10].

Modern confocal microscopes move the light and lenses by mirrors and motors re-

spectively. The light is captured by a detector and processed by software into an stack

of 2D images, one for each focal plane, which may then be processed into a 3D image

by software such as ImageJ [12]. Confocal microscopes are capable of high resolution

(nanometer scale) 2D images, but typically the resolution in the third dimension is

measured in microns [11].

Lateral resolution (x, y) for conventional microscopes is given by the well known

formula 0.51 λ
NA

[13], where λ is the wavelength of the light reaching the microscope and

NA is the numerical aperture of the lens. A confocal microscope, on the other hand,

has a lateral resolution given by 0.37 λ′

NA
[13]. λ′ is defined by

1

λ′2
≡ 1

λ2
+

1

λ2
i

, (4.1)

where λi is the wavelength of the light illuminating the sample and λ the light reaching

the microscope. (Since confocal microscopes are often used to image fluorescence, these

wavelengths are not necessarily the same.)

Axial resolution (z) for conventional microscopes is given by λ
NA2 , while for a confocal

microscope it is approximately 1.28 λ′

NA
[13]. Numerical apertures are nearly always less

than one, so a confocal microscope has a significantly better resolution [13].

In most biological applications, a confocal microscope uses a laser to illuminate the

object, typically a cell with impregnated with dyes. The laser excites fluorescence in

the dyes which is collected by the objective. A dichroic mirror filters out the reflected

laser light, and a stack of high-resolution 2D images of the fluorescence provides the 3D
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structure of the cell [11].

In this work, we use the microscope quite differently. Instead of exciting fluorescence

to image the interior of the diamond anvil cell, we use the reflected laser light to find

the area and optical thickness of the cell, yielding the volume. To our knowledge this

technique has not been worked out previously. In order to explain this new technique

we must first introduce the measurement of the reflected intensity profile (section 4.2.1),

which is best analyzed by modelling the laser as a Gaussian beam (section 4.2.2). The

Gaussian beam model is most easily handled by matrix optics (section 4.2.3). This

allowed us to calculate the shapes of the peaks in the reflected intensity profile (section

4.2.5), which to our knowledge has not been done previously. From our analysis of this

model we were able to develop the method of measuring volume and refractive index

discussed in sections 4.2.6, 4.2.7, 4.2.8, and 4.2.9.

4.2.1 Reflected intensity profile

When we first learned to use the microscope we were interested in imaging, for example,

crystals of ice VI in water at room temperature and 1 GPa [14]. The confocal microscope

produces high quality images of the area of the cell (figure 4.7). However, the axial

resolution of fluorescence images is much worse, precluding an accurate determination

of the sample thickness.

We had noticed that as we focused down into the diamond anvil cell there were

bright flashes as the focal point passed through the surfaces of the diamonds (figure

4.7). It occured to us that the reflected intensity of the light could tell us where the

diamond surfaces were located, if we could work out the intensity as a function of the

position of the focus. A plot of reflected intensity as a function of focus position, which

we call the reflected intensity profile, is shown in figure 4.8.

The reflected intensity profile is generated from the image stack as follows. A small

67



~300 micron

AnvilSampleAnvilAir

1 2 3

200 micron 300 micron
~

3
0
0
 m

ic
ro

n

Figure 4.7: Left: Cross-section of diamond anvil cell, showing the sample surrounded
by the gasket. Right: Axial section of diamond anvil cell, showing reflections from the
interfaces. The jagged line indicates a break of 600 microns. The second diamond-air
interface is not shown.

area near the center of the gasket, but not near the ruby chip, is selected using ImageJ.

The intensity is averaged over this small area, and this is repeated for every image in

the stack (section 4.2.6).

In order to use the reflected intensity profile for measuring the thickness of the sample

we needed to model the reflection of the beam from the interfaces. There are four optical

interfaces within the cell: the diamond tables, which are air-diamond interfaces, and the

diamond culets, which are diamond-sample interfaces. Each interface is reflecting light

back through the microscope, as shown in figure 4.9, with most of the light screened by

the pinhole.

Modeling the laser as a cone of rays shows that there is a maximum of reflected light

when the light is focused on the interface, but the ray optics approximation is not good

enough to fit the observed profile (appendix B). A better model for the incident beam
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Figure 4.8: Reflected intensity profile. The numbered peaks correspond to the numbered
interfaces in figure 4.7. The fourth peak is not shown. Inset: The first peak, plotted to
emphasize the shape.

was needed, and so we turned to the Gaussian beam model.

4.2.2 Gaussian beam model

Lasers are modelled as Gaussian beams [15–19]. A Gaussian beam is a solution to the

Helmholtz equation in the paraxial approximation (sin θ ≈ θ, with θ being the angle

with respect to the z axis) [15–19]. Starting with the Helmholtz equation:

(
∇2 + k2

)
E(~r) = 0, (4.2)
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Pinhole

Figure 4.9: Blue lines: cone of light rays incident on a diamond anvil cell. Red lines:
light reflecting from the four interfaces and screened by the pinhole. n0: refractive index
of air. n1: refractive index of diamond. n2: refractive index of sample.

where k is the wave number and E is the electric field written as a complex-valued

scalar, we write the Laplacian in cylindrical coordinates (ρ,φ,z):

∇2 =
1

ρ

∂

∂ρ
+

∂2

∂ρ2
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
. (4.3)

Spherical wave solutions to the Helmholtz equation in three dimensions are given by:

E(~r) = E0(~r)e±i
~k·~r, (4.4)

~r ≡ xx̂+ yŷ + zẑ.

In the paraxial approximation, ~k is nearly parallel to ẑ, so ~k · ~r ≈ kz and we rewrite

E(~r) as:

E(~r) = E0(~r)e±ikz. (4.5)
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Inserting this into the Helmholtz equation gives

(
1

ρ

∂

∂ρ
+

∂2

∂ρ2
+

1

ρ2

∂2

∂φ2

)
E0 ± 2ik

∂E0

∂z
+
∂2E0

∂z2
= 0. (4.6)

If
∣∣∣∂E0

∂z

∣∣∣ << |kE0| and
∣∣∣∂2E0

∂z2

∣∣∣ << |k2E0| then the third term can be neglected, and the

paraxial Helmholtz equation is

(
1

ρ

∂

∂ρ
+

∂2

∂ρ2
+

1

ρ2

∂2

∂φ2

)
E0 ± 2ik

∂E0

∂z
= 0. (4.7)

Equation 4.7 is used to describe optical resonant cavities, such as in lasers. The

boundaries of a resonant cavity might be mirrors, symmetric about the z-axis. A

Gaussian beam is the fundamental mode of such a cavity, and thus solves equation

4.7. (The solution is rather abstract, so it is relegated to appendix C).

A Gaussian beam is much like a cone of light rays, as shown in figure 4.10. The

wave properties of light do not allow it to be focused to the geometric point seen in ray

diagrams. Instead, a Gaussian beam has a finite waist w0 (located at z = z0), the size

of which is determined by the wavelength of the light and the half-angle θ of the beam:

w0 = 2λ
πθ

.

A Gaussian beam is most intense along the optical axis z and falls off with distance

ρ from the optical axis. The intensity of a Gaussian beam is given by:

I = I0

(
w0

w(z)

)2

e
− 2ρ2

w(z)2 , (4.8)

w(z) ≡ w0

1 +

(
λ(z − z0)

πw2
0

)2
1/2

. (4.9)

At the waist, the wave fronts of a Gaussian beam are perpendicular to the z-axis. Far

from the waist, the wave fronts are spherical. The radius of curvature of the wavefronts
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Figure 4.10: Gaussian beam (waist w0 = zR/2). Blue lines: intensity contour plot,
contour interval 10 % of maximum intensity (see equation 4.8). Solid black lines: Beam
envelope, defined as I(z)e−2 (see equation 4.9). Dotted black lines: cone of light rays
which approximates beam. Red lines: wavefronts (see equation 4.10).

is given by

R(z) = (z − z0)

1 +

(
πw2

0

λ(z − z0)

)2
 . (4.10)

Three parameters characterize a Gaussian beam: wavelength λ, waist position z0,

and waist size w0. It is convienient to define the Rayleigh parameter zR =
πw2

0

λ
, reducing

the number of parameters to two [15, 16].

The laser of a confocal microscope incident on a diamond anvil cell will be reflected

from the four diamond surfaces, then propagated through the optics of the microscope,

and then screened by a pinhole. In order to understand the reflected intensity profile, it

is necessary to figure out what happens to a Gaussian beam subject to these conditions.

This had not, to our knowledge, been done before; so we did it ourselves, using the
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Figure 4.11: A ray at angle θ with respect to the optical axis propagates through a
medium of refractive index n. At z = z0 the ray encounters an interface with a medium
of refractive index n′, and is described by the vector given by expression 4.11. The
ray propagates a distance d within the second medium, and its new vector is given
according to equation 4.13.

matrix optics formalism desscribed below.

4.2.3 Matrix optics

The behavior of a Gaussian beam in an optical system can be described using matrix

optics, a formalism developed for ray optics [15–19].

In matrix optics, a ray is represented by a vector, and there are three matrices

which operate on this vector: translation, refraction, and reflection. Combinations of

these three types of matrices represent lenses, mirrors, or optical media such as air or

diamond. The paraxial approximation sin θ ≈ θ is used throughout [15, 16].

A ray, located along the optical axis z at some reference position z0, is characterized

by 3 parameters: the distance ρ from the optical axis, the angle θ with respect to the

optical axis, the index of refraction at the reference plane, n. (See figure 4.11.) A ray
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is represented by the following vector:

 ρ

nθ

 . (4.11)

If a ray passes into a medium of index n′ at z0, and propagates to a new position

z0 + d, its new angle θ′ will be approximately n
n′ θ, by Snell’s Law. Its new distance ρ′

will be ρ+d n
n′ tan θ ≈ ρ+d n

n′ θ, as in figure 4.11. Consequently we write the translation

matrix as  1 d
n′

0 1

 . (4.12)

Its operation on a ray is

 ρ′

n′θ′

 =

 1 d
n′

0 1


 ρ

nθ

 =

 ρ+ d n
n′ θ

nθ

 ; (4.13)

as it must, if the geometry is to work out correctly.

Refraction at plane interfaces is handled automatically by the translation matrix,

provided that translation matrices are written to connect each to the next. Refraction

at curved interfaces is described as follows.

A ray is incident on a curved surface at z = z0 (see figure 4.12). The surface has

a radius of curvature R. (If R > 0, then the center of curvature is located at a point

z > z0.) Before the surface the index is n, and beyond the surface the index is n′. The

ray’s distance ρ from the optical axis does not change, but it will be refracted.

The incident angle to the surface γ is φ+ θ, where tanφ ≈ φ = ρ/R. The refracted

angle γ′ is, by Snell’s Law, n
n′γ. The new ray angle θ′ is therefore 1

n′

(
n−n′

R
ρ+ nθ

)
. In the

paraxial approximation the entire curved surface is in the same plane, so the incident
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Figure 4.12: A ray at angle θ with respect to the optical axis propagates through a
medium of refractive index n. At z = z0 the ray encounters a curved interface with a
medium of refractive index n′ and radius of curvature R. The ray refracts according to
equation 4.14.

ray has the same z coordinate for all ρ. Consequently the refraction matrix is given by

 1 0

n−n′

R
1

 . (4.14)

Note that the refraction matrix reduces to the identity matrix when R is infinite or

n′ = n. It does not reduce to the translation matrix.

The reflection matrix from a flat surface is simply the identity matrix. Since θ′ = −θ

this would seem to be wrong. But for reflected beams the direction of propagation

is along the negative z direction, and the index n is considered to be negative by

convention. Thus nθ does not change with reflection from a flat surface.

The matrix describing an optical component, such as a lens, is constructed by mul-
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tiplying these matrices from output to input. For example, consider a thin lens made

from a material with index n, with curvature R1 on the incident side and R2 on the

other side. Let the beam initially propagate in a medium of index 1. In the paraxial

approximation, the whole surface of the lens is located in one plane, even though the

normal to the surface changes, and for a thin lens we consider the thickness to be zero.

The matrix for the thin lens is thus

 1 0

n−1
−R2

1


 1 0

1−n
R1

1

 =

 1 0

(1− n)
(

1
R2

+ 1
R1

)
1

 . (4.15)

If one pays close attention to the sign convention, one may notice that the only term

that is not zero or one is found in the lens maker’s equation for thin lenses

1

f
= (n− 1)

(
1

R1

+
1

R2

)
, (4.16)

found in any freshman physics text.

So we can write any thin lens as a matrix in terms of its focal length f :

 1 0

− 1
f

1

 . (4.17)

We can use this matrix to recover the thin lens equation

1

p
+

1

q
=

1

f
, (4.18)

also found in any freshman text, where p is the image distance and q is the object

distance:  1 q

0 1


 1 0

− 1
f

1


 1 p

0 1

 =

 1− q
f

p+ q − pq
f

1
q

+ 1
p

1− p
f

 . (4.19)
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Because p is the object distance and q is the image distance, all rays with the same ρ

at p end up at q with the same ρ′, regardless of angle. So the angular dependence of ρ′

is zero, which means that p+ q − pq
f

= 0, and this is the thin lens equation. All of the

other properties of thin lenses, familiar from introductory physics courses, are easily

obtained from equation 4.19.

A ray matrix can also be used to propagate spherical waves [15, 16]. Consider the

rays normal to a spherical wavefront of radius R. Because sin θ = ρ/R and sin θ ≈ θ in

the paraxial approximation, R = ρ/θ. Consequently

R′ =
Aρ+Bnθ

Cρ+Dnθ
=
AR
n

+B

C R
n

+D
. (4.20)

This is known as the ABCD rule.

A Gaussian beam, in this formalism, is accomodated by a complex radius [15, 16]:

q ≡ z + izR, (4.21)

1

q
=

n

R(z)
+ i

nλ

πw(z)2 , (4.22)

and the operation of the ray matrix is given by

q′ =
Aq +B

Cq +D
, (4.23)

just as for R.

It is not easy to see how to work this out from first principles, but it is easy to show

that it works (appendix C). At the beam waist, 1/R = 0, and w = w0, thus q = −iπw
2
0

nλ
.

At some distance z from the waist, R(z) = z
[
1 +

(
πw2

0

λz

)2
]

and w(z) =

√
1 +

(
πw2

0

λz

)2
.

The matrix is given by A = 1, B = z/n, C = 0, D = 1. Applying the ABCD rule to 1/q

gives 1/q′. Matching the real and imaginary parts of q to q′ recovers R(z) and w(z).
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Figure 4.13: Reflection of a Gaussian beam (approximated in the drawing by a cone).
s and s′ are the image and object distance respectively. By convention, s and s′ have
the same sign when z0 and z′0 are on opposite sides of the lens. Blue: incident beam.
Red: reflected beam.

4.2.4 Thin lens equations and reflection

Armed with the matrix optics formalism, we can determine what effect optical compo-

nents such as reflecting interfaces and lenses will have on Gaussian beams [15, 16, 20].

First we work out the effect of reflection. A Gaussian beam is characterized by its

Rayleigh parameter zR and the position of its waist z0. It propagates to an interface

located at zi and the reflected beam will have a new waist position z′0 and a new Rayleigh

parameter z′R, as shown in figure 4.13. It is convenient to write in terms of the object

distance s ≡ zi − z0 and s′ ≡ z′0 − zi.

The reflection matrix is given by

 1 s′

−n

0 1


 1 0

0 1


 1 s

n

0 1

 =

 1 s−s′
n

0 1

 . (4.24)

Because we are dealing with beam waists, 1/q = − i
zR

and 1/q′ = − i
z′
R

. Applying
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the ABCD rule yields

s− s′ = 0, (4.25)

− i

zR
= − i

z′R
. (4.26)

The new Rayleigh parameter is equal to the old one. The image distance is equal to

the object distance, which is the same result that geometric optics gives for reflection

from a plane mirror.

Refraction through a thin lens of focal length f , located at zi, is handled similarly

(with n = 1):

 1 s′

0 1


 1 0

−1/f 1


 1 s

0 1

 =

 1− s′

f
s+ s′ − ss′

f

− 1
f

1− s
f

 . (4.27)

We apply the ABCD rule and get

s′ − f = f 2 s− f
(s− f)2 + z2

R

, (4.28)

the first thin lens law for Gaussian beams derived by Self [20].

In the geometric limit zR → 0 and equation 4.28 reduces to the familiar 1/f =

1/s + 1/s′. However, a surprising result is obtained for Gaussian beams which has no

analog in geometric optics. A beam waist at the focus is propagated to the other focus,

not to infinity, even in the limit zR → 0. We also get

z′R =
f 2

(s− f)2 + z2
R

zR, (4.29)

the second thin lens law derived by Self [20].

These two relations will be used to find the reflected intensity as a function of the
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Figure 4.14: Coordinate system for calculating reflected intensity profile. Blue: incident
laser. Red: Light reflected from interface. See page 80 for description of coordinates.

focus position.

4.2.5 Reflected intensity as a function of focus position

Here we present the shape of the reflected intensity profile, derived from the properties

of Gaussian beams via matrix optics and the Gaussian thin lens equations. To our

knowledge this has not been derived before.

The optical components of a confocal microscope which we consider here are two

lenses and a pinhole. We apply the thin lens laws (equations 4.28, 4.29) to propagate

the Gaussian beam incident on the objective to the pinhole. Then we calculate the

intensity of the resulting Gaussian beam screened by the pinhole, using equation 4.8.

As shown in figure 4.14, a laser beam with Rayleigh parameter R is focused with its

waist at position z. The beam is incident on an interface at zi. The beam is reflected,
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yielding a new waist position z0, but the Rayleigh parameter is unchanged. The beam

is then refracted by the objective lens of focal length f1, located at z + f1, yielding a

new waist at z1 and a new Rayleigh parameter R1. The beam then is refracted by the

tube lens of focal length f2, located at L−f2. (L is the distance of the pinhole from the

zero of the coordinate system, of the order of ten cm.) The resulting beam has a waist

position at z2 and a Rayeigh range of R2. It is then screened by a pinhole of diameter

D located at L.

Integrating the intensity of the beam over the diameter of the pinhole gives the

power reaching the detector:

P (z2) = Pi

[
1− exp

(
− D2

2w2
2

R2
2

R2
2 + (L− z2)2

)]
, (4.30)

where Pi is proportional to the reflection coefficient of the interface, described in more

detail below, and w2 is the waist size determined by the Rayleigh parameter R2.

Using the thin lens laws twice on the initial waist position and Rayleigh parameter

gives z2 and R2:

z2 = L+ q2f 2
2

pq2 −
(

1
2
q2 + f 2

1

)
(q2 −R2)

1/2[
pq2 −

(
1
2
q2 + f 2

1

)
(q2 −R2)1/2

]2
+ f 4

1R
2
, (4.31)

R2 = f 2
1 f

2
2

q2[
pq2 −

(
1
2
q2 + f 2

1

)
(q2 −R2)1/2

]2
+ f 4

1R
2
R, (4.32)

with p ≡ (L− 2f1 − 2f2 − zi) and q2 ≡ 4(z − zi)2 +R2.

If the focus is close to the interface, q << p and the expressions reduce to

z2 ≈ L− 2

(
f2

f1

)2

(z − zi), (4.33)

R2 ≈
(
f2

f1

)2

R, (4.34)
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Figure 4.15: Summing of reflections from multiple interfaces. Blue lines: incident light.
Red lines: reflected light.

and w2
2 = w2

R
R2 =

(
f2
f1

)2
w2.

Substituting into the expression for the power gives the profile for reflection from

one interface:

fi(z) = Qi

1− exp

− D2

2w2

(
f1

f2

)2
R2

4(z − zi)2 +R2

 , (4.35)

with Qi proportional to the reflection coefficient of the interface.

The reflection profile from multiple interfaces is simply the sum of single interface

profiles, but the Qi terms will contain reflection and transmission coefficients for every

interface the beam has passed through on its way to the pinhole. In this work there are

four interfaces, and as shown in figure 4.15,

Q1 = R10, (4.36)

Q2 = (1−R10)2R12, (4.37)

Q3 = (1−R10)2(1−R12)2R12, (4.38)
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Figure 4.16: Left: Optical thickness and the effect of secondary reflections. Primary
reflections (blue), due to refraction, appear to originate from d/n (optical thickness)
rather than from d (true thickness). Secondary reflections (red) appear to orginate from
d′, and are displaced from primary reflections in the reflected intensity profile. Right:
Reflected intensity profile showing secondary reflection peak 2’ of peak 2.

Q4 = (1−R10)2(1−R12)4R10, (4.39)

with Rjk the reflection coefficient for the interface between index j and index k. The

differences between peak locations zi and zi+1 will give the optical thickness d/n of the

medium between the interfaces, as figure 4.16 illustrates.

Of course a beam does not reflect only one time from each interface. Between

interface 1 and 2, for example, there are an infinite number of secondary reflections,

but each one appears in a different location, as the figure illustrates. An example of a

multiple reflection from our data appears in the figure.

We want this model to have general applicability and so we do not want to have to

know exactly what the optical parameters of the microscope are. Consequently we do

not explicitly identify the parameters in the profile, and we rewrite the function as

fi(z) = Ai
(
1− e−ai

)−1
[
1− exp

(
−ai

R2
i

4(z − zi)2 +R2
i

)]
. (4.40)
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Figure 4.17: Fit (red) of the reflected intensity profile (black) to the expression 4.40 via
the Taylor expansion 4.41.

Because least-squares fitting to this function is numerically problematic, we fit our

profile data to its Taylor expansion about zi:

fi(z) ≈ Ai

[
1− 8ai

R2
i (e

a
i − 1)

(z − zi)2 +
(384ai − 192a2

i )

R4
i (e

a
i − 1)

(z − zi)4

]
. (4.41)

The result may be seen in figure 4.17.

4.2.6 Measuring volume: experimental procedure

Here we present the confocal volume measurement technique we developed. To our

knowledge this has not been done before.

The confocal microscope which we used is a Zeiss LSM 510 Meta, shown in figure

4.18. We used the 514 nm argon laser to illuminate the cell. The light passed though

an 80/20 beamsplitter, through the objective lens, which is a 10X apochromatic lens
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Figure 4.18: Zeiss LSM 510 Meta, at the Franchesci Microscopy and Imaging Center,
Washington State University.

with numerical aperture of 0.26 (yielding a Rayleigh range of 2.4 microns and a waist

size of 0.6 microns). It reflected from the cell, back through the objective and the tube

lens, and was screened by a pinhole of diameter 174 microns.

The preparations for a volume measurement were as follows: First, we found the

boundary of the sample using the eyepiece of the microscope, and restricted the scanning

area to a circle centered on the sample, as shown in figure 4.19. Next, we moved the

stage back 800 microns to find the first air diamond interface, and adjusted the gain of

the detector so that the signal was not saturated. Next, we moved the stage forward

400 microns and adjusted the offset of the detector so the signal was zero. (If a is

about 1 and R is about 12 microns, as in our data, the reflected intensity fraction of the

peak value 400 microns from the peak should be about 0.0004, close to zero.) Then, we
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Figure 4.19: Left: Cross-section of diamond anvil cell, showing the sample surrounded
by the gasket. Black areas are not scanned. Blue circle: Area in which greyscale is
averaged to produce reflected intensity profile. Red circle: Fitted ellipse to determine
area of sample. Right: Axial section of diamond anvil cell, showing reflections from the
interfaces. The jagged line indicates a break of 600 microns. The second diamond-air
interface is not shown. Interfaces must be perpendicular to scan axis.

moved the stage to 100 microns before the peak and scanned at 5 micron intervals for

1100 microns. Finally, we looked at the side projection of the image stack. The three

peaks should look like thick planes viewed edge-on. They should be perpendicular to

the scanning axis. If they were not, then the cell was readjusted in the stage and the

preparations repeated.

Once the microscope was prepared we scanned the cell in two sections. First, we

scanned a thickness of 200 microns centered around the air-diamond interface. Then we

moved the stage forward 600 microns and scanned a thickness of 300 microns, starting

before the first diamond-sample interface and finishing beyond the second. We did not

scan the fourth air diamond interface. We scanned at 1 micron intervals. The result

was a stack of 501 images, omitting the uninteresting interior of the diamond.
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Figure 4.20: Reflected intensity as a function of incident laser power. The greyscale
value ranges from 0 to 255. If greyscale is not directly proportional to the intensity of
the light, our refractive index measurements will be wrong.

4.2.7 Optical thickness and area

Once the image stack was collected, we used ImageJ [12] to get the reflected intensity

profile. We chose a small area near the center of the cell, not near the ruby, as shown

in figure 4.19. We then calculated the average greyscale value of the circle for all 501

images. The greyscale value is directly proportional to intensity, as shown in figure

4.20.

The result was output to a text file. When plotted, the reflected intensity profile

appeared as three peaks. The three peaks were fitted to the Taylor expansion of the

model profile, as described above and shown in figure 4.17. The optical thickness of

the sample was given by the difference in peak positions corresponding to the diamond

culets (numbered 2 and 3 in figure 4.17).

The area of the sample was determined by selecting the image at the surface of the
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gasket. In this image, we fit an ellipse to the area of the hole, as shown in figure 4.19,

and ImageJ counted the pixels in the ellipse. Each pixel represents an area, which is

calculated by the microscope based on the lens and laser wavelength used. In this work

the area of one pixel was 0.77 µm2.

4.2.8 Refractive index and calibration

The ratios of the peak heights Ai yield the refractive index of the sample. The ratio

P21 of peak 2 to peak 1 is, according to our model

P21 =
(1−R10)2

R10

R12 (4.42)

and the ratio P31 of peak 3 to peak 1 is

P31 =
(1−R10)2(1−R12)2

R10

R12. (4.43)

The well-known indices of diamond [3] (n1) and air [21] (n0) at 514 nm are used to

calculate R10. Inverting these expressions gives two estimates for R12, and we get the

sample index n2

n2 =

(
1−
√
R12

1 +
√
R12

)
n1. (4.44)

Other than refraction and specular reflection, no other optical effects, such as ab-

sorption and scattering, are accounted for in this model. Consequently, the values for

the index which we calculated from the peak ratios needed correction. We did this by

measuring substances for which the refractive index is well known. Organic solvents are

found in most labs and have indices ranging from 1.3 to 1.6, which is where most of our

measurements were done. If the anvils, gaskets, laser wavelengths, or objective lenses

are very different from those used in the calibrated set of measurements, it is best to
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Figure 4.21: Refractive index measurement calibration using various organic solvents.
The measurements for water and cyclohexane deviate considerably from the fit line. In
other experiments we measured the index of water more accurately [22].

recalibrate.

Figure 4.21 shows a plot of known index as a function of measured index. Our argon

measurements are calibrated to the linear fit of these data.

4.2.9 Precision of measurements

The precision of the optical thickness measurement is dependent on the precision of

the motors that move the stage of the microscope. Repeated measurements of the

optical thickness of a diamond anvil gave an estimate of 1 micron for the precision of

the optical thickness measurement. Consequently gaskets should be thick for confocal

measurements; in this work ours were between 100 microns and 200 microns.

The precision of the refractive index measurement is calculated from the scatter of

measured indices about the calibration line shown in figure 4.21, and is estimated to be
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1 %.

The precision of the area measurement is dependent on the shape of the gasket. An

uncertainty of 1 % was estimated by repeatedly fitting ellipses to the same hole, and by

comparing with the size of the bit used to drill the hole.

If these three measurements are multiplied to produce a measurement of absolute

sample volume, the uncertainty in the volume measurements will be approximately 2 %.

One way to reduce the uncertainty is to fit the refractive index to a function of pres-

sure, and use the fitted index rather than the measured index to calculate the volume.

Relative volumes were produced by fitting the measured volumes of the solidifed sample

to an equation of state from the literature; for many solids precise X-ray data exist.

Using this procedure the error on the relative volumes, as a function of pressure, were

estimated to be 1 %, as judged by the standard deviation of the scatter of the relative

volumes about the known equation of state [23].

4.3 Fourier transform infrared spectroscopy

In this work we also wished to investigate the behavior of the asymmetric stretching

mode of carbon dioxide dissolved in argon. The frequency of the stretching mode

changes with pressure; this change in pressure should depend fundamentally on changes

in the local density of argon near the carbon dioxide molecule and thus probes the

structure (section 5.2.1). We are the first, to our knowledge, to measure the frequency

as a function of pressure and density for argon and nitrogen at ambient temperature.

4.3.1 The interferogram

FTIR spectrometry uses an interferometer in place of a diffraction grating. The type

used in this work is a Michelson interferometer, invented in 1880 [24]. Infrared light
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Figure 4.22: Schematic of interferometer. Blue lines: beam that reflects from the fixed
mirror. Red lines: beam that reflects from the movable mirror. At the detector the
beams interfere.

passes through a beamsplitter. One beam is reflected from a fixed mirror, and then

to the detector. The other beam is reflected from a movable mirror, and then to the

detector, as shown in figure 4.22.

A source of infrared light emits photons at many frequencies; we denote the number

emitted as a function of frequency N(ω). The number of photons of frequency ω which

reach the detector will vary with the path difference δ between between the two beams.

When δ is half a wavelength, N(ω) will be zero, and when δ is a full wavelength N(ω)

will be a maximum. Consequently it will be simpler to write N(ω) in terms of the wave

number, k = ω/c, where c is the speed of light. The interferometer does not “know”

the frequency of the photons, it only “knows” the position of the mirror. We write the
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number of photons detected as a function of mirror position, Nd(δ), as

Nd(δ) = N(k)(1 + cos kδ). (4.45)

The detector will therefore produce a signal with “AC” and “DC” components; if we

drop the DC component we get

Nd(δ) = N(k) cos kδ. (4.46)

This relationship is a Fourier cosine transform. If more than one frequency is emitted

from the source, the interferogram N(δ) is given by

Nd(δ) = 2
∫ ∞

0
N(k) cos kδ dk, (4.47)

as illustrated for a very simple case in figure 4.23.

A real detector does not detect photons of all frequencies equally well, and neither

does a real beamsplitter reflect and transmit photons of all frequencies equally. We

can modify Nd(δ) with expressions for the efficiency of the detector, ED(k) and the

efficiency of the beam splitter, EB(k):

Nd(δ) = 2
∫ ∞

0
N(k)ED(k)EB(k) cos kδ dk = 2

∫ ∞
0

N(k)I(k) cos kδ dk, (4.48)

where I(k) is an function summarizing the response of the all the instruments.

Of course what we are actually interested in is the response of the sample to infrared

light, S(k), and so the number of photons detected, if a sample is present, is

Nd(δ) = 2
∫ ∞

0
N(k)I(k)S(k) cos kδ dk (4.49)
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Figure 4.23: A very simple interferogram. The source emits N1 photons at wave number
k1 and N2 photons at wave number k2.

In order to get S(k) out of Nd(δ), we take the inverse Fourier cosine transform of both

sides:

2
∫ ∞

0
Nd(δ) cos kδ dδ = N(k)I(k)S(k). (4.50)

Collecting an interferogram without a sample present will yield N(k)I(k); the ratio of

the spectra will yield S(k).

While we have presented here the essential principle of FTIR spectrometry, there

is a great deal more to consider. For example, the movable mirror cannot go out to

infinity, so the Fourier transform is truncated at the maximum displacement L. This

limits the resolution ∆k of the spectrometer to ∆k ∝ 1/L; as well as changing the

shapes of spectral lines, which must be corrected by a mathematical function known

as the apodization. In addition, the interferogram is only sampled at finite intervals, so

the Fourier transform is actually a discrete Fourier transform. This produces the effect
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Figure 4.24: Bomem DA8 FTIR spectrometer.

known as aliasing, where a waveform is reflected and sent to a part of the spectrum

where it doesn’t really occur [24, 25]. These and other practical considerations are

important for understanding a real spectrometer, but a thorough discussion will not be

undertaken here.

4.3.2 Using the FTIR spectrometer

In this work we used a Bomem DA8 FTIR spectrometer, shown in figure 4.24. The

source of infrared light is a globar, which emits a blackbody spectrum. The beamsplitter

is composed of KBr, appropriate for a range between 450 cm−1 and 5000 cm−1. The

detector is InSb, which must be cooled to liquid nitrogen temperatures and is suitable
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Figure 4.25: Effect of Fabry-Perot interference. Top left: Interferogram from diamond
anvil cell. The two large peaks flanking the center peak are responsible for the Fabry-
Perot interference. Bottom left: Fabry-Perot interfence appears as a “ripple” in the
spectrum. Top right: “Zapping” the flanking peaks removes the Fabry-Perot interfer-
ence. Bottom right: Corrected spectrum.

for a range between 1600 cm−1 and 7000 cm−1 [26].

When collecting the interferogram for a diamond anvil cell, we compensated for the

effect of Fabry-Perot interference. Diamond has a high refractive index, and the culets

and tables of the diamonds were kept as flat and parallel as we could acheive. Conse-

quently, as infrared light passed through the DAC, it reflected from all the interfaces

and interfered with itself. As a result the transmitted intensity through the cell varied

with frequency. This interference made it difficult to locate normal modes, as can be

seen in figure 4.25. This was compensated for by “zapping” the interferogram; the

peaks corresponding to the Fabry-Perot interference are easily located and eliminated.

Because the IR spectrum must be taken in vacuum, to eliminate the strong ab-
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sorbance of water vapor, carbon dioxide, and other atmospheric components, we did

not attempt to control the temperature of the DAC as we did when performing confocal

measurements (section 4.1.6). Ambient temperature in the lab was usually about 297 K.

The purpose of controlling the temperature of the DAC was to ensure accurate pressure

measurements. This accuracy was ensured at ambient temperature by measuring the

fluorescence of a reference ruby at ambient pressure and temperature before measuring

the fluorescence of the ruby in the DAC (section 4.1.5).
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Chapter 5

Experimental results

5.1 Confocal data

In this section we present the results of our refractive index and volume measurements

for argon at high pressure. These data are interesting in their own right, but they will

also serve to establish confocal microscopy as a viable technique for measuring fluid

volumes and refractive indices.

5.1.1 Equation of state for argon at 300 K

Each confocal microscopy experiment was performed by first loading a DAC with ar-

gon as described in section 4.1. Then the reflected intensity profile was measured as

described in section 4.2.6. The pressure was adjusted in small increments by tight-

ening only three of six screws at one time. The ruby fluorescence was stimulated by

the mercury lamp of the confocal microscope, and collected by a 0.5 mm optical fiber.

The location of the R1 peak was determined with an Ocean Optics spectrometer. Once

pressures of about 6 GPa were attained, the experiment was ended, and a new cell pre-

pared and loaded for the next experiment. (We chose to end the experiments at 6 GPa

99



0 1 2 3 4 5 6
Pressure (GPa)

0.04

0.05

0.06

0.07

0.08
A

re
a 

(m
m

2 )

Figure 5.1: Left: Area of sample in DAC as a function of pressure. + and X denote
separate experiments. Right: Images of sample areas for X (top) and + (bottom)
showing the difference in size between experiments.

because at that pressure we had enough solid-phase data to determine the mole number

of the sample, as described below.)

The resulting image stacks were processed into reflected intensity profiles as de-

scribed in section 4.2.6. Each peak was fitted to the Taylor expansion (equation 4.41)

and its location and height were used to calculate the optical thickness and refractive

index of the sample for each pressure, as described in section 4.2. Areas were determined

as described in section 4.2.7.

The area, optical thickness, and refractive index measurements are plotted as func-

tions of pressure in figures 5.1, 5.2, and 5.3.
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Figure 5.2: Left: Refractive index as a function of pressure as measured by confocal
microscopy. + and X denote separate experiments. Red lines: fits to fluid and solid
data (table 5.1). Right: Refractive index from reference [1]. Red lines: fits to fluid and
solid data (table 5.1).

The area does not seem always to decrease with increasing pressure. We do estimate

an uncertainty of about 1 % in the area measurement, but we think the irregular changes

in area have something to do with the response of the gasket to sudden changes in

pressure. Presumably gaskets of different materials will respond differently, but we

have not investigated this systematically. At high pressures, argon becomes stiffer than

the metal gasket, and this explains why the area stops decreasing.

Optical thickness seems always to decrease with increasing pressure, although one

or two exceptions may be seen in figure 5.3. As with area, we attribute this behavior

to the material properties of the gasket, and we have not investigated it systematically.

Around 1.35 GPa there are many points where the optical thickness is decreasing but

the pressure is not increasing, and this is the phase transition from fluid to solid. This
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Figure 5.3: Data from confocal microscopy of argon in DAC. + and X denote separate
experiments. Left: Optical thickness as pressure increases. Right: Absolute volumes of
sample as pressure increases. Red lines: Fit to XRD pressure-volume data of solid at
ambient temperature [1], with mole number N of sample as adjustable parameter.

may be visually confirmed in the microscope images.

We show refractive index, along with fits to calculated values [1], in figure 5.2. We

excluded all points with pressures between 1.3 GPa and 1.4 GPa, because the calculation

that produces refractive index from peak heights is meaningless if fluid and solid argon

are both present. We chose to exclude pressure within 50 MPa of the phase transition

for two reasons. First, the pressure measurements are only precise to about 20 MPa.

Second, the difference in refractive index between fluid and solid argon is small (less

than 0.1) and sometimes it is difficult to see the solid argon. The problem is much the

same as trying to photograph ice in water under bright light.

Fitting the refractive index to a function of pressure is tricky, because the refractive
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fluid solid
a b a b

reference 0.13738 0.00197 0.08011 0.13022
This work 0.09632 0.09385 0.07739 0.12705

Table 5.1: Fitting parameters for pressure as a function of refractive index.

index of argon is really a function of density, described by the Clausius-Mossotti relation

n2 − 1

n2 + 2
=

1

3
αρ, (5.1)

where α is the polarizability of an argon atom (appendix D). Pressure, however, can be

expressed as a polynomial in density, via the virial equation of state (section 3.3); and

the equation of state of argon (whether solid or fluid) is approximately cubic (equation

5.3). This allows us to linearize the data,

n2 − 1

n2 + 2
= a

(
P

P0

)1/3

+ b, (5.2)

where a and b are the fitting parameters and P0 = 1.35 GPa, the freezing pressure at

300 K, is a convenient scaling factor. The parameters are given, to a convenient number

of figures, in table 5.1; the resulting functions n(P ) are plotted in figure 5.2. The root-

mean-square deviation of our data from the fits to the reference data is 0.02, and so we

estimate the absolute error on our index data to be 0.02.

Absolute volumes are plotted in figure 5.3. They are the product of area, optical

thickness, and fitted refractive index. As with refractive index, the data with pressures

between 1.3 GPa and 1.4 GPa were excluded. The solid phase data were fitted to a

published equation of state produced from X-ray diffraction data [1]:

P = A0 + A1ρ+ A2ρ
2 + A3ρ

3. (5.3)
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Figure 5.4: Measured equation of state of argon. + and X denote separate experiments.
Red lines: fits to experimental 300 K isotherm [2] and XRD pressure-volume data at
ambient temperature [1].

We rewrote ρ as N/V and fitted our absolute volumes using N as the fitting parameter.

This gave us the number of moles N of argon in our samples, which are shown in figure

5.3, which we used to convert our absolute volumes into molar volumes, shown in figure

5.4. N can be roughly estimated from the density of liquid argon at the boiling point

(1.394× 10−3 g mm−3), the atomic mass of argon (0.039 948 g mmol−1), and the volume

of the hole drilled in the gasket (1
4
(0.29 mm)2(0.150 mm)), which yields N = 0.350 mmol.

The root mean square deviation of molar volume from the published equation of

state, for the solid data, is 0.7 mm3 mmol−1; for the fluid data it is 1 mm3 mmol−1.
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Figure 5.5: Clausius-Mossotti relation. Circles and diamonds denote fluid and solid
data repectively. Solid red line: fit to confocal data (slope = 3.21(14) mm3 mmol−1,
intercept = 0.037(6)). Dashed red lines: fit to published liquid data [3] and calculated
solid data [1]. Density is calculated from the measured pressure via the appropriate
equation of state [1, 2], (n2− 1)/(n2 + 2) is calculated using the measured index. Error
bars are omitted for clarity; the error on the density is about 0.002 mmol m−3, and the
error on CCM is about 0.007.

5.1.2 Refractive index and Clausius-Mossotti relation

For the purpose of measuring volume we assumed that refractive index is a function of

pressure. But it is only indirectly a function of pressure, because pressure is itself a

function of density through the equation of state.

Density and refractive index are related through the Clausius-Mosotti relation [4]

CCM =
n2 − 1

n2 + 2
=

1

3
ρα, (5.4)

where n is refractive index, ρ is number density, and α is polarizability of the argon

atom. The relation is derived by treating each atom as being in a spherical “hole” in
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α(Å
3
)

This work 1.77(8)
Lallemand (1977) [5] 1.643

Table 5.2: Polarizability of argon.

an isotropic linear dielectric medium, which is polarized by an incident electromagnetic

wave. α depends on the structure of the atom, which should be independent of pressure

for any pressures achieved in this work, and the field the atom experiences from the

other atoms that make up the dielectric. Therefore changes in α indicate changes in

the structure of the dielectric, besides the change in density.

In figure 5.5, we plot the left-hand side of equation 5.4, calculated from the measured

refractive index for each pressure, against the density (calculated from the molar volume

v using the fitted refractive index). The uncertainty is calculated in the standard way:

ρ =
1

v
(5.5)

∆ρ

ρ
=

∆v

v
(5.6)

CCM =
n2 − 1

n2 + 2
(5.7)

∆CCM
CCM

= 2n∆n

(
1

(n2 + 1)2
+

1

(n2 − 1)2

)1/2

(5.8)

∆v

v
= 0.02 (5.9)

∆n = 0.01 (5.10)

Our data, whether in the solid or fluid phase, seem all to lie on the same line, which

would indicate that the polarizability of argon is not affected, within the experimental

uncertainty, by phase or density over the range of pressures we studied. Our data are

consistent with published estimates of polarizability (table 5.2).

106



5.1.3 Discussion - confocal data

Because argon is a substance extensively studied, well understood, and readily available,

it is an ideal substance on which to test and refine a new technique of measurement. The

agreement of our confocal data, both for refractive index and equation of state, with

the literature indicates that the technique is viable for “optically simple” substances.

The refractive index of argon at high pressure has been previously measured to a

precision of only about 4 % [6]; our precision is about 2 %.

5.2 FTIR data

Argon is a spherical atom and consequently absorbs very little infrared. Previous work

done in our research group [7] showed that the infrared absorption of carbon dioxide,

which is usually present in cryogenically loaded DACs, can be used as a pressure stan-

dard. One interesting feature is that the frequency as a function of pressure shows

discontinuities at phase transitions, as illustrated for carbon dioxide in nitrogen at am-

bient temperature. (figure 5.6).

Carbon dioxide dissolved in argon would also be a useful pressure standard. In

addition, the discontinuities at phase transitions indicate that the frequency of dissolved

carbon dioxide is somehow dependent on the structure of the solvent. Figure 5.7 shows

a representative absorption spectrum for a diamond anvil cell loaded with argon and

carbon dioxide.

According to matrix isolation studies [9], carbon dioxide occupies two sites in the

argon fcc lattice. Using this information we calculated frequency as a function of

argon density using Gaussian03 (the B3LYP method), in three different ways: 1) a

carbon dioxide molecule, surrounded by fixed nearest-neighbor argon atoms, using the

LANL2DZ basis set, 2) a carbon dioxide molecule, surrounded by fixed nearest-neighbor
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Figure 5.6: Frequency of carbon dioxide in nitrogen, as a function of pressure, at ambient
temperature. Dashed lines: phase transitions [8].

argon atoms, using the aug-cc-PVDZ basis set, and 3) a carbon dioxide molecule,

surrounded by nearest- and second-nearest-neighbor argon atoms, with the nearest-

neighbors free to move, using the LANL2DZ basis set. (The free nearest neighbors

did not move significantly.) The results are shown in figure 5.8, scaled by the carbon

dioxide frequency at “zero density” (no neighbors) for each basis set.

Using published equations of state [1, 2], we able to plot the frequencies, deter-

mined by FTIR spectroscopy, of carbon dioxide in argon as a function of the density

of argon, as shown in figure 5.9. The concentration of carbon dioxide is estimated to

be 0.08 mmol cm−3, using the area of the absorbance peaks in the solid [10] and the

estimated gasket thickness from figure 5.3.

Like the experimental data for the solid, the Gaussian data is apparently linear for

densities between 0.04 mmol mm−3 and 0.07 mmol mm−3. But one important difference
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Figure 5.7: Absorption spectrum of a diamond anvil cell loaded with argon and carbon
dioxide. Inset: The absorption peak of carbon dioxide. The carbon dioxide peak in the
solid is much sharper than that in the fluid; this is most likely due to the disordered
nature of the fluid, where the local density of argon atoms varies. Argon itself absorbs
little infrared.

is that the Gaussian data goes to the zero pressure frequency of carbon dioxide, and

the experimental data is always below that pressure (2349 cm−1). The matrix isolation

data [9, 11] shows the same effect, as illustrated in figure 5.9.

Figure 5.10 shows the width of the IR peaks of carbon dioxide in argon and nitrogen.

In argon the peaks become noticeably sharper in the solid phase, but in nitrogen we do

not observe this.

5.2.1 Discussion - FTIR data

We are the first, to our knowledge, to measure the frequency of carbon dioxide as a

function of pressure in argon and nitrogen. We find that Gaussian calculations overes-
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Figure 5.8: Left: frequencies of asymmetric stretching mode of carbon dioxide in
solid argon, calculated by Gaussian. Red line: fit to equations 5.14 and 5.15. Only
the LANL nearest-neighbor data (+) was fitted, and only for densities greater than
0.04 mmol mm−3. Right: Equilibrium C-O bond length for carbon dioxide in solid ar-
gon, calculated by Gaussian. Diamonds: LANL second-nearest-neighbor calculation,
with nearest neighbors free to move. Circles: aug-cc nearest-neighbor calculation.

timate the frequency shift. To explain these data, we propose a rather simple model

for the carbon dioxide-argon interaction.

We assume that we have isolated carbon dioxide molecules. Because the cell is

loaded at liquid argon temperatures, as it warms up both argon and carbon dioxide

pass through gas states and are presumably well-mixed by the time the cell reaches its

equilibrium pressure and temperature.

Suppose that each argon atom interacts with an oxygen atom, according to a

Lennard-Jones potential, not necessarily of the 12-6 type, VArO(r), where r is the dis-

tance from an argon atom to an oxygen atom on the z-axis at z. The oxygen atoms

would be subject to a nearly harmonic potential from the carbon atom; and near equi-
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Figure 5.9: Frequency of carbon dioxide in argon at ambient temperature. Red lines:
fits to equations 5.14 and 5.15. Dashed lines: phase boundaries. The pressures are
converted to densities by equations of state for the fluid phase [2] and the fcc phase [1].
Circle: Frequency of carbon dioxide in argon matrix isolation at 10 K [11]. The density
of the argon matrix is estimated by interpolation from the solid equations of state at
4 K and 20 K [12].

librium, a nearly harmonic potential from the argon atoms.

This potential could be written as an integral over all space, if the distribution of

argon atoms in space were known. Assuming that the argon atoms are distributed

symmetrically about the longitudinal axis of the carbon dioxide molecule (which they

are in an fcc solid), this potential would depend only on the z-coordinate of the oxygen

atom. Near equilibrium the potential would be approximately harmonic, and we can

write the total force on each oxygen atom as

FO = −k0(z − zeq)− kρ(z − zeq), (5.11)
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Figure 5.10: Left: Widths of IR peaks of carbon dioxide as a function of argon density.
Right: Widths of IR peaks of carbon dioxide as a function of nitrogen density. Dashed
lines indicate phase transitions.

where k0 is the force constant of the carbon-oxygen interaction, kρ the force constant

due to the argon-oxygen interaction, and zeq the equilibrium position for the oxygen

atoms.

Solving for the normal modes of the the carbon-dioxide molecule in the standard

way gives, for the asymmetric IR-active mode,

ω2 =
mC(k0 + kρ) + 2k0mO

2mOmC

1 +

(
1− 8k0kρmOmC

[mC(k0 + kρ) + 2k0mO]2

)1/2
 (5.12)

where mC ,mO are the masses of the carbon and oxygen atoms, respectively. If kρ is

positive, then the frequency will increase, and if negative the frequency will decrease,

with respect to the frequency of an isolated carbon dioxide molecule.

If the distribution of argon atoms in space is known (for the solid, it is the fcc
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Figure 5.11: Frequency of carbon dioxide in nitrogen at ambient temperature. Red
lines: fits to equations 5.14 and 5.15. Dashed lines: phase boundaries [8]. The δ-δloc
phase boundary does not involve a change in molar volume. The pressures are converted
to densities by equations of state for the fluid phase [13] and the β and δ phases [8].
Very few points have been measured for the β equation of state.

lattice), then kρ may be found from

1

2
kρ(z − zeq)2 = ρ

∫
g(x′, y′, z′)VArO dx

′dy′dz′, (5.13)

where ρ is the number density of the argon atoms and g(x′, y′, z′) dimensionlessly rep-

resents the distribution of the argon atoms in space. It follows that kρ must be directly

proportional to ρ, and so we write

kρ = Aρ+B; (5.14)

so that the force constant has a density-dependent and a density-independent part
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A B
(mm3 mmol−1)

Gaussian (ρ ≥ 0.4 mmol mm−3) 5.63(9) -0.194(5)
Fluid argon (ρ ≥ 0.4 mmol mm−3) 4.74(3) -0.25(1)
Solid argon 3.55(2) -0.26(1)
Fluid nitrogen 15.1(13) -0.622(6)
β nitrogen 19.6(11) -0.79(6)
δ & δloc nitrogen 31.0(7) -1.46(5)

Table 5.3: Fit parameters for the model given in equation 5.14.

(which might depend on other parameters such as temperature).

If each phase has a different g(x′, y′, z′), we can expect the constant A to change

with phase transitions. We can also expect that kρ is dominated by the nearest argon

atoms to the oxygen atoms, because interactions between neutral atoms fall off faster

than r−2. A change in the constants A and B might imply a local change in density;

for example, in the fluid argon atoms might tend to crowd around the carbon dioxide,

making the frequency less sensitive to changes in overall number density.

We can simplify things somewhat by writing 5.12 dimensionlessly in terms of the

asymmetric mode of an isolated carbon dioxide atom, ω0:

(
ω

ω0

)2

=
1

2

(
1 +

µκ

µ+ 2

)1 +

(
1− 8µκ

[µ(1 + κ) + 2]2

)1/2
 , (5.15)

where µ = mC/mO and κ = kρ/k0.

The fits to the experimental data to this model are shown in figure 5.9 and 5.11,

and the fit parameters given in 5.3.

From the table we learn that the density-independent part of the force constant

for argon does not change, within the estimated error, but the density-dependent part

changes significantly. The solid argon density dependence is also significantly different

from that of the Gaussian calculations, suggesting that the argon lattice distorts in some

way near the carbon dioxide molecule. In the case of nitrogen, the density dependence
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Figure 5.12: Frequency of carbon dioxide in solid argon at ambient temperature. Red
lines: fit to density-dependent force constant assuming isotropic Lennard-Jones inter-
action for argon and oxygen.

changes a great deal, and the density-independent part of the δ-phase force constant

changes significantly from that of the fluid and β phases.

We can explain the approximately linear dependence of force constant on density in

another way. First we assume that each oxygen atom interacts with each argon atom

according to an isotropic Lennard-Jones potential, and each oxygen atom interacts with

the carbon atom according to a harmonic potential. We can then calculate the total

potential energy of the oxygen atoms, and Taylor expand the potential energy about

the C - O equilibrium bond length, to derive the density-dependent force constant kρ.

Using a 12-6 Lennard-Jones potential with parameters σ, ε, and argon atoms in an fcc

lattice of interatomic separation a, we find
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kρ ≈ − 4
ε

σ2

(
41625.024

z4
0

a4
− 10035.576

z2
0

a2
− 326.964

)(
σ

a

)14

+ 4
ε

σ2

(
2533.968

z4
0

a4
− 1918.194z2

0a
2 + 10.164

)(
σ

a

)8

, (5.16)

where z0 is the C - O bond length for the free carbon dioxide molecule. Using this

expression for kρ and treating ε and σ as fitting parameters we find the frequency as a

function of density in figure 5.12. In the range of solid pressures measured in this work

we see the approximately linear behavior discussed previously, but as the solid density

approaches zero the frequency increases to the frequency of the free carbon dioxide

molecule.

This model of an isotropic argon - oxygen potential is too simplistic. There should

also be an argon - carbon interaction. A more realistic model would complicate the

density-dependent force constant relation derived here. However, from this simple model

we can conclude that van der Waals forces are largely responsible for the frequency

dependence at lower densities. This explains the discrepancy between the Gaussian

calculations and the experimental data; density functional theory calculations do not

replicate van der Waals forces.

An accurate argon - carbon dioxide potential determined from the solid argon data

would help us to understand the behavior in the liquid; the difference between liquid

and solid behavior would be attributed then to the local density of the argon atoms

near the carbon dioxide molecule.
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Chapter 6

Conclusion

Confocal microscopy of argon

In this work we have developed and demonstrated the use of confocal microscopy to

measure fluid volumes and refractive indices in the diamond anvil cell. As far as we

are aware, we are the first to do so. Besides being of interest for characterizing ma-

terials, refractive index data is needed for Brillouin scattering experiments. Confocal

microscopy should prove to be a useful technique for the high-pressure community.

The advantages of confocal microscopy are these: measurements are non-destructive,

inexpensive, and quick, and can handle fluids. The disadvantages: the precision is low (a

few percent), and the technique is restricted to transparent, optically simple materials

with well defined plane interfaces. The low precision is mitigated by the ability to take

a great deal of data in a short time at low cost. In addition, confocal microscopy allows

for simultaneous and independent measurements of refractive index along with area and

optical thickness.

Our confocal measurements of fluid argon seem to be as good as any that exist in

the literature; because argon is widely used as a hydrostatic pressure medium in the

high-pressure community, this in itself was worth doing. In addition, we have measured
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the refractive index directly for pressures greater than 0.1 GPa, and these measurements

are as good as those in the literature.

FTIR spectroscopy of carbon dioxide in argon and nitrogen

We are the first to determine the frequency of carbon dioxide, as a function of density,

in nitrogen and argon. As a probe of structure, the preliminary steps we have taken

seem to show some promise. We have shown that the frequency of carbon dioxide in

argon and nitrogen is primarily affected by density. We have found that the Gaussian

calculations overestimate the change in frequency for argon and that van der Waals

forces are largely responsible for the low-density behavior of argon.

Further research

Now that the confocal microscopy technique for fluids is worked out, using it to measure

some fluids might be a useful occupation. Our search of the literature indicates that

the equation of state of the β phase of nitrogen, at ambient temperature, is not well

measured; that seems a good place to start. In addition, it might be worth trying

to measure the density of water, to see if high-density and low-density water can be

distinguished.

Integrating Fabry-Perot interference measurements into the confocal microscopy pro-

cedure should improve the estimates of refractive index and sample thickness. The

reflected intensity profile gives independent estimates of index n and optical thickness

d/n; Fabry-Perot inteference would add an independent estimate of nd.

Further investigation of the interaction of carbon dioxide and argon would be useful

in probing the structure of fluid argon. Measurements at very low pressures, for diamond

anvil cells, seem like the next logical step; and simulations of carbon dioxide in argon

ought not to be too difficult. Simulations might reveal some of the details of the
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distribution of argon atoms about the carbon dioxide molecule that would improve on

the naive model presented here.

What exactly happens as a liquid condenses to a solid? A combination of these

techniques with simulations might help to shed some light on this question.
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Appendix A

Heitler-London derivation of

exchange repulsion

We consider two electrons and two nuclei interacting by Coulomb potentials as shown in

figure A.1. We treat the nuclei as fixed and the internuclear separation R as a parameter

of the system (Born-Oppenheimer approximation [1]). We define the coordinate system

as follows: ~r1 is the position of electron 1 with respect to nucleus 1; ~r2 is the position

of electron 2 with respect to nucleus 2; ~R− ~r1 is the position of electron 1 with respect

to nucleus 2, and ~R + ~r2 is the position of electron 2 with respect to nucleus 1.

The trial wave function for the electrons, ψT , is given in terms of the ground state

of the hydrogen atom, φ(r), where

φ(r) = Ae
− r
a0 , (A.1)

r is the distance of one electron from one nucleus, a0 is the Bohr radius, and A is the

constant that normalizes
∫
φ2(r) dV to 1.

We are interested in the energy of the spin triplet state, which must be antisymmetric
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Figure A.1: Coordinate system for calculating exchange energy.

with respect to spatial coordinates:

|ψT 〉 =
1√
2

[
φ(r1)φ(r2)− φ

(∣∣∣~R− ~r1

∣∣∣)φ (∣∣∣~R + ~r2

∣∣∣)] . (A.2)

Any trial wave function gives an energy higher than the true ground state energy. This

energy, ET , is given by

ET =

〈
ψT

∣∣∣Ĥ∣∣∣ψT〉
〈ψT |ψT 〉

, (A.3)

ET =

〈
ψT

∣∣∣∣∣− h̄2

2me

∇2
r1
− h̄2

2me

∇2
r2
− EH

(
a0

r1

+
a0

r2

)∣∣∣∣∣ψT
〉
〈ψT |ψT 〉−1

+ Eh

〈
ψT

∣∣∣∣∣∣ a0∣∣∣~R + ~r2 − ~r1

∣∣∣ − a0∣∣∣~R− ~r1

∣∣∣ − a0∣∣∣~R + ~r2

∣∣∣
∣∣∣∣∣∣ψT

〉
〈ψT |ψT 〉−1

+ Eh
a0

R
, (A.4)

ET =
A

1− I2
+ Eh

(
C −B
1− I2

+
a0

R

)
. (A.5)

For convenience in evaluating the integrals, we group them differently than in section
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2.2.2. There are four quantities we need to evaluate:

1− I2 = 〈ψT | ψT 〉 , (A.6)

A =

〈
ψT

∣∣∣∣∣− h̄2

2me

∇2
r1
− h̄2

2me

∇2
r2
− Eh

(
a0

r1

+
a0

r2

)∣∣∣∣∣ψT
〉
, (A.7)

B =

〈
ψT

∣∣∣∣∣∣ a0∣∣∣~R− ~r1

∣∣∣ +
a0∣∣∣~R + ~r2

∣∣∣
∣∣∣∣∣∣ψT

〉
, (A.8)

C =

〈
ψT

∣∣∣∣∣∣ a0∣∣∣~R + ~r2 − ~r1

∣∣∣
∣∣∣∣∣∣ψT

〉
. (A.9)

We tackle these in order. The details of evaluating the integrals are covered thoroughly

in Slater (1963) [2].

The first integral is

〈ψT | ψT 〉 =
1

2

∫ ∫
φ2(r1)φ2(r2) dV1 dV2

+
1

2

∫ ∫
φ2
(∣∣∣~R− ~r1

∣∣∣)φ2
(∣∣∣~R + ~r2

∣∣∣) dV1 dV2

−
∫ ∫

φ(r1)φ
(∣∣∣~R− ~r1

∣∣∣)φ(r2)φ
(∣∣∣~R + ~r2

∣∣∣) dV1 dV2 (A.10)

〈ψT | ψT 〉 =
1

2

∫
φ2(r1) dV1

∫
φ2(r2) dV2

+
1

2

∫
φ2
(∣∣∣~R− ~r1

∣∣∣) dV1

∫
φ2
(∣∣∣~R + ~r2

∣∣∣) dV2

−
∫
φ(r1)φ

(∣∣∣~R− ~r1

∣∣∣) dV1

∫
φ(r2)φ

(∣∣∣~R + ~r2

∣∣∣) dV2. (A.11)

The first two terms of 〈ψT | ψT 〉 are just normalized probability distributions integrated

over all space. The third term is square of the overlap integral, I:

I =
∫
φ(r1)φ

(∣∣∣~R− ~r1

∣∣∣) dV1 =
∫
φ(r2)φ

(∣∣∣~R + ~r2

∣∣∣) dV2

= 2πA2
∫ ∞

0

∫ π

0
exp

(
− r

a0

)
exp

− [R2 − 2Rr cos θ + r2

a0

]1/2
 r2 sin θ dθ dr
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=

(
1 +

R

a0

+
1

3

R2

a2
0

)
e
− R
a0 . (A.12)

The final result is 〈ψT | ψT 〉 = 1− I2.

The second integral is

A =

〈
ψT

∣∣∣∣∣− h̄2

2me

∇2
r1
− h̄2

2me

∇2
r2
− Eh

(
a0

r1

+
a0

r2

)∣∣∣∣∣ψT
〉

=
〈
ψT

∣∣∣Ĥ1 + Ĥ2

∣∣∣ψT〉 (A.13)

where Ĥ1, Ĥ2 are the Hamiltonians of isolated hydrogen atoms, equal to 1
2
Eh when

operating on the appropriate wave function. The integral becomes

A =
1

2

∫ ∫
φ(r1)φ(r2)

(
Ĥ1 + Ĥ2

)
φ(r2)φ(r1) dV1 dV2

+
1

2

∫ ∫
φ
(∣∣∣~R− ~r1

∣∣∣)φ (∣∣∣~R + ~r2

∣∣∣) (Ĥ1 + Ĥ2

)
φ
(∣∣∣~R + ~r2

∣∣∣)φ (∣∣∣~R− ~r1

∣∣∣) dV1 dV2

−
∫ ∫

φ(r1)φ(r2)
(
Ĥ1 + Ĥ2

)
φ
(∣∣∣~R− ~r1

∣∣∣)φ (∣∣∣~R + ~r2

∣∣∣) dV1 dV2 (A.14)

A =
1

2
Eh

∫
φ2(r1) dV1

∫
φ2(r2) dV2

+
1

2
Eh

∫
φ2
(∣∣∣~R− ~r1

∣∣∣) dV1

∫
φ2
(∣∣∣~R + ~r2

∣∣∣) dV2

− Eh

∫
φ(r1)φ

(∣∣∣~R− ~r1

∣∣∣) dV1

∫
φ(r2)φ

(∣∣∣~R + ~r2

∣∣∣) dV2 (A.15)

A = Eh
(
1− I2

)
. (A.16)

The third integral is

B =

〈
ψT

∣∣∣∣∣∣ a0∣∣∣~R− ~r1

∣∣∣ +
a0∣∣∣~R + ~r2

∣∣∣
∣∣∣∣∣∣ψT

〉

=
1

2

∫ ∫
φ2(r1)

 a0∣∣∣~R− ~r1

∣∣∣ +
a0∣∣∣~R + ~r2

∣∣∣
φ2(r2) dV1 dV2
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+
1

2

∫ ∫
φ2
(∣∣∣~R− ~r1

∣∣∣)
 a0∣∣∣~R− ~r1

∣∣∣ +
a0∣∣∣~R + ~r2

∣∣∣
φ2

(∣∣∣~R + ~r2

∣∣∣) dV1 dV2

−
∫ ∫

φ(r1)φ
(∣∣∣~R− ~r1

∣∣∣)
 a0∣∣∣~R− ~r1

∣∣∣ +
a0∣∣∣~R + ~r2

∣∣∣
φ(r2)φ

(∣∣∣~R + ~r2

∣∣∣) dV1 dV2(A.17)

The integrals separate into

B =
1

2

∫
φ2(r1)

a0∣∣∣~R− ~r1

∣∣∣ dV1 +
1

2

∫
φ2(r2)

a0∣∣∣~R + ~r2

∣∣∣ dV2

+
1

2

∫
φ2
(∣∣∣~R− ~r1

∣∣∣) a0∣∣∣~R− ~r1

∣∣∣ dV1 +
1

2

∫
φ2
(∣∣∣~R + ~r2

∣∣∣) a0∣∣∣~R + ~r2

∣∣∣ dV2

−
∫
φ(r1)φ

(∣∣∣~R− ~r1

∣∣∣) a0∣∣∣~R− ~r1

∣∣∣ dV1 +
∫
φ(r2)φ

(∣∣∣~R + ~r2

∣∣∣) a0∣∣∣~R + ~r2

∣∣∣ dV2.(A.18)

Inspection reveals that the first term is identical to the second, the third term to the

fourth, and the fifth term to the sixth. They can be rewritten as

B = 2πA2
∫ ∞

0

∫ π

0
e
−2 r

a0
a0

(R2 − 2Rr cos θ + r2)1/2
r2 sin θ dθ dr

+ 2πA2
∫ ∞

0

∫ π

0
e
−2 r

a0
a0

r
r2 sin θ dθ dr,

− 4πA2
∫ ∞

0

∫ π

0
e
− r
a0 exp

(R2 − 2Rr cos θ + r2)
1/2

a0

a0

r
r2 sin θ dθ dr (A.19)

B =
a0

R
−
(

1 +
a0

R

)
e
−2 R

a0

+ 1

+
(

1 +
R

a0

)
e
− R
a0 . (A.20)

The fourth integral is

C =

〈
ψT

∣∣∣∣∣∣ a0∣∣∣~R + ~r2 − ~r1

∣∣∣
∣∣∣∣∣∣ψT

〉
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=
1

2

∫ ∫
φ2(r1)φ2(r2)

a0∣∣∣~R + ~r2 − ~r1

∣∣∣ dV1 dV2

+
1

2

∫ ∫
φ2
(∣∣∣~R− ~r1

∣∣∣)φ2
(∣∣∣~R + ~r2

∣∣∣) a0∣∣∣~R + ~r2 − ~r1

∣∣∣ dV1 dV2

−
∫ ∫

φ(r1)φ
(∣∣∣~R− ~r1

∣∣∣)φ(r2)φ
(∣∣∣~R + ~r2

∣∣∣) a0∣∣∣~R + ~r2 − ~r1

∣∣∣ dV1 dV2. (A.21)

Unlike the others evaluated so far these integrals do not separate, and are most easily

solved in spheroidal coordinates [2]. Inspection reveals that the first term is identical

to the second. They evaluate to:

C =
a0

R
− e−2 R

a0

(
a0

R
+

11

8
+

3

4

R

a0

+
1

6

R2

a2
0

)

+
1

5

 −e
−2 R

a0

[
−25

8
+ 23

4
R
a0

+ 3R
2

a2
0

+ 1
3
R3a3

0

]
+

6 R
a0

[
I2
(
γ + log R

a0

)
+ I ′2Ei

(
−4 R

a0

)
− 2II ′Ei

(
−2 R

a0

)]


where I =

(
1 +

R

a0

+
1

3

R2

a2
0

)
e
− R
a0 ,

I ′ =

(
1− R

a0

+
1

3

R2

a2
0

)
e
R
a0 ,

Ei(−x) = −
∫ ∞
x

1

t

(
1− e−t

)
dt,

γ = 0.57722 . . . Euler’s constant. (A.22)

Now that the four integrals are evaluated we can return to equation A.5:

ET =
A

1− I2
+ Eh

(
C −B
1− I2

+
a0

R

)
= Eh

(
1 +

a0

R
+
C −B
1− I2

)
(A.23)

Since Eh is independent of R, we subtract it from the energy so that it goes to zero at

infinite separation. ET is plotted in figure A.2.
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Figure A.2: Exchange repulsion energy ET . Black: Result of the Heitler-London cal-
culation. Red: Fit to A exp(−kR), where A = 1.725Eh and k = 0.870 a−1

0 . Inset:
Comparison of Heitler-London energy (black) to Lennard-Jones potential (red) for the
hydrogen triplet, σ = 6.97 a0, ε = 2.047× 10−5Eh [3].

Taylor expansion about R = 0 gives

ET ≈ Eh

(
a0

R
+

1

2
− 2

R

a0

)
, (A.24)

which is accurate within 2 % up to R = 0.1 a0 but rapidly becomes useless thereafter.

As shown in figure A.2, a fit to

ET ≈ Ae
−k R

a0 (A.25)

works tolerably well.

The Heitler-London method fails at long-range; ET approaches zero at infinite sep-

aration, instead of recovering the van der Waals R−6 attraction. The hydrogen triplet

actually has a potential minimum at about 7.8 a0 [3].
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Appendix B

Reflected intensity profile: ray

optics

Our first attempt to describe the reflected intensity profile used ray optics in the paraxial

approximation.

A cone of light rays of uniform intensity I0 has its focus at z, and reflects from a

plane interface located at zi. The reflected light enters the objective lens, of focal length

f1, then through the tube lens of focal length f2, and then is screened by the pinhole

of diameter D located at the focal point of the tube lens, as illustrated in figure B.1.

Light that passes through the pinhole must first pass through the image of the

pinhole located at the focal point of the objective. A trivial calculation shows that no

matter how far apart the lenses, the image of the pinhole is always at the at the focus

of the objective (hence the name confocal microscope), and that the diameter of the

pinhole image is given by

Di =
f1

f2

D, (B.1)

as figure B.2 makes clear.

The reflected light forms a cone of light rays with its focus at z′. By the law of
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Figure B.1: Coordinate system for reflected intensity profile.

reflection,

z − zi = zi − z′, (B.2)

and so the distance of the reflected focus from the virtual pinhole is 2(z−zi). Assuming

constant intensity, the reflected power Pr passing through the virtual pinhole is

Pr = I0π

(
f1

f2

D

2

)2

. (B.3)

The total incident power in the cone is given by

P0 = I0πR
2 (B.4)

where R is the radius of the reflected cone at the focal point. In the paraxial approxi-

mation, R = 2(z − zi)θ, where θ is the half-angle of the cone.
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D iD

Figure B.2: Ray diagram of pinhole and pinhole image. Parallel lines, in the paraxial
approximation, are always brought to the focal point, and an object at one focus has
its image at the other.

The reflected intensity profile in the ray optics model is therefore

f(z) =


f2
1

f2
2

D2

8θ2(z−zi)2 |z − zi| > 1
θ2
√

2

f1
f2
D

1 |z − zi| ≤ 1
θ2
√

2

f1
f2
D

(B.5)

These flat-topped peaks were found too crude to fit the data, though they did show

that the reflected intensity is indeed a maximum when the focus is at the interface. The

Gaussian beam model derived in section 4.2.5, equation 4.35, is

f(z) =

1− exp

− D2

2w2

(
f1

f2

)2
R2

4(z − zi)2 +R2

 . (B.6)

In the limit that the beam waist goes to zero this reduces to

f(z) = 1− exp

(
−D

2

2θ2

f 2
1

f 2
2

1

4(z − zi)2

)
. (B.7)
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Figure B.3: The ray optics profile (red) compared with the Gaussian beam profile
(black). The horizontal axis shows the distance of the focus from the interface, in units
of the virtual pinhole radius, 1

2
f1
f2
D.

Setting the pinhole diameter to be very large (several hundred microns) with respect to

the beam waist will show flat-topped peaks, difficult to locate precisely. But equation

B.6 only reduces to equation B.5 when far from the interface. The two profiles are

plotted together in figure B.3; the ray optics model fails badly near the interface, which

is what we desire to model.
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Appendix C

Solving the paraxial Helmholtz

equation

We demonstrate that a Gaussian beam is a solution to the paraxial Helmholtz equation

(
1

ρ

∂

∂ρ
+

∂2

∂ρ2

)
E(ρ, z)eikz = 2ik

∂

∂z
E(ρ, z)eikz, (C.1)

where ρ, z are the radial and axial coordinates, E(ρ, z) is a complex-valued scalar rep-

resenting the magnitude of the electric field, and k is the wave number.

We write the electric field as a scalar because in the paraxial approximation the

wave vector is considered to point along the z axis. The direction of the electric field is

therefore already assumed to be perpendicular to the z axis. In this case, for simplic-

ity, we assume that the electric field points in the radial (ρ̂) direction and is radially

symmetric. Real lasers need not show radial symmetry. The symmetry of a real laser

depends on the shapes that define its resonant cavity [1–5].
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The intensity of a Gaussian beam is given in section 4.2.2,

I = I0

(
w0

w(z)

)2

exp

(
−2

ρ2

w2(z)

)
, (C.2)

w(z) = w0

√
1 +

(
z

zR

)2

, (C.3)

where w0 is the size of the beam waist, zR = πw2
0/λ is the Rayleigh range of the beam,

and I0 is the maximum intensity (at the origin, for simplicity).

The electric field which produces this intensity is given by [1, 3, 4]

E(ρ, z) = E0
w0

w(z)
exp

(
− ρ2

w2(z)

)
exp

(
−ik ρ2

2R(z)
− iζ(z)

)
, (C.4)

R(z) = z

[
1 +

(
zR
z

)2
]
, (C.5)

ζ(z) = tan−1 z

zR
, (C.6)

and it is simple to show that |E(ρ, z)|2 gives the intensity given in equation C.2.

This equation looks quite complex and it is not easy to see, from first principles,

how it is derived. It is written in this way because R(z), w(z), and ζ(z) are parameters

that help to visualize the beam in terms of a plane wave propagating along the z axis.

ζ(z) is the Gouy phase shift, surprisingly difficult to spell, which expresses how the

phase of the beam differs from that of a plane wave as a function of z. R(z) is the

radius of curvature of the wavefronts of the beam; it makes the beam approximate a

plane wave at the waist and a spherical wave far from the waist. w(z) expresses the

falling-off of intensity with distance from the beam axis (figure C.1.)

Equation C.4 is greatly simplified by the substitution of the complex radius

q ≡ z + izR, (C.7)
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Figure C.1: Gaussian beam (waist w0 = zR/2). Blue lines: intensity contour plot,
contour interval 10 % of maximum intensity (see equation C.2). Solid black lines: Beam
envelope, defined as I(z)e−2 (see equation C.3). Dotted black lines: cone of light rays
which approximates beam. Red lines: wavefronts (see equation C.5).

discussed in section 4.2.5. Equation C.4 becomes

E(ρ, q) = E0
q0

q
exp

(
−ik ρ

2

2q

)
, (C.8)

with q0 = zR. Equation C.8 is much easier to manipulate than equation C.4, but much

harder to interpret physically. Equation C.8 was derived first, by analogy with the time-

dependent Schrödinger equation, and the interpretation of q in terms of a modified plane

wave worked out afterward [5]. Inserting equation C.8 into equation C.1 yields

−ik
q
E(ρ, q)−

(
k2ρ2

q2
+
ik

q

)
E(ρ, q) = 2ik

(
−1

q
+
ikρ2

2q2

)
E(ρ, q)

k2ρ2

q2
− 2

ik

q
=

k2ρ2

q2
− 2

ik

q
(C.9)
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Like the Schrödinger equation, there are many solutions to the paraxial Helmholtz

equation. The Gaussian beam is the fundamental transverse mode, and is designated

TEM00 [1–5].
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Appendix D

Derivation of the Clausius-Mossotti

relation

The Clausius-Mossotti relation is also known as the Lorentz-Lorenz relation or Maxwell

relation, depending on the context. It is derived by considering an atom of a fluid to

reside in a spherical hole in a uniformly polarized linear dielectric consisting of the other

atoms in the fluid [1].

An external field E polarizes a fluid in the z direction. The fluid has a dielectric

constant ε and is of number density ρ. The atoms of the fluid have a polarizability α.

The field Eh inside a spherical hole in a uniformly polarized dielectric is

Eh = E +
P

3ε0
, (D.1)

where P is the dipole moment per unit volume. P is given by

P = (ε− ε0)E, (D.2)

due to the linear response of the dielectric. Because the dielectric is made up of atoms
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of polarizability α, this P must also be

P = ραε0Eh. (D.3)

Eliminating Eh and P (E cancels) yields

ε
ε0
− 1

ε
ε0

+ 2
=

1

3
αρ. (D.4)

Recalling that ε/ε0 = n2, if the permeability of the dielectric is the same as vacuum, we

get the Clausius-Mossotti relation

n2 − 1

n2 + 2
=

1

3
αρ. (D.5)
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Appendix E

Confocal data for water at 300 K

Our first confocal measurements of fluid volume were carried out on water at 300 K [1].

The results are plotted in figure E.1 and E.2. These were our first results, intended

to demonstrate the viability of the confocal microscopy technique, and not all of the

procedures described in chapter 4 were yet worked out. These data are not as accurate

or precise as the data collected for argon (section 5.1.1). However, they did enable us

to refine the technique.

In this experiment, we used a piston-cylinder DAC, identical to that described in

section 4.1, with a stainless steel gasket indented to about 150 µm, and drilled with

a hole of diameter 330 µm. We loaded the cell with high-purity water as described in

section 4.1.3 and a small ruby chip for pressure measurement as described in section

4.1.5. We maintained the cell at 300 K using a 100 W mica band heater as described

in section 4.1.6. We then collected the reflected intensity profile as described in section

4.2.1.

However, in this experiment volume was calculated by multiplying the measured

area, optical thickness, and calibrated refractive index, without doing any smoothing.

We did not calculate mole number; instead we calculated a zero-pressure volume, V0 =
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Figure E.1: Equation of state for water at 300 K [1]. Red lines: equations of state for
water [2], ice VI [3], and ice VII [4].
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Figure E.2: Index of refraction as a function of density for water at 300 K [1]. “Relative
density” is scaled by the volume of the first measured point. Red: linear fit to our data.
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Reference Slope Intercept
Yadav et al. [5] 0.322 1.332
Hanna and McCluskey [1] 0.34(2) 1.308(7)

Table E.1: Linear fit of refractive index as a function of density for water at 300 K.

9.06(5)× 10−3 mm3, by least squares fit of the published fluid EOS [2] to our data. We

multiplied the published equations of state for water [2], ice VI [3], and ice VII [4] by

this zero-pressure volume to compare our data with the equations of state.

Because for many substances refractive index is approximately a linear function of

density, we fitted it to a straight line. The results are shown in table E.1.
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Appendix F

X-ray diffraction experiments

We assisted Kirill Zhuravlev in collecting powder X-ray diffraction data at Lawrence

Berkeley National Laboratory for doped zinc oxide crystals. The crystals were placed

in a DAC with argon for a hydrostatic medium. A byproduct of the experiment was

measurements of the molar volume of solid argon as a function of pressure, at ambient

temperature (about 297 K). Only one or two measurements were taken at fluid argon

pressures. Kirill Zhuravlev was kind enough to process the X-ray data into pressure-

volume data for argon, which we present here with his permission (figure F.1).

We fit the data to a polynomial equation of state, chosen for ease of inversion and

convenience of fitting:

P = a(ρ− b)3, (F.1)

with a = 6.056(46)× 105 GPa mm9 mmol−9 and b = 0.0210(12) mmol mm−3.
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Figure F.1: Equation of state for solid argon. Solid line (red): our fit. Dashed line
(red): equation of state from the literature [1]. Dashed line (black): boundary of
solid phase. Our fit excludes points not in the solid phase, and the outliers between
0.055 mmol mm−3 and 0.060 mmol mm−3.
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Appendix G

IR absorption of Ge:O

We measured the frequency of the IR absorption peak of interstitial oxygen in germa-

nium at 10 K. Interstitial oxygen is predicted to be delocalized about an axis determined

by two germanium atoms [1], and has IR modes near 860 cm−1 and 1270 cm−1.

In this experiment we measured the mode near 860 cm−1, using liquid helium to keep

the temperature near 10 K. Pressure was determined by the frequency of the carbon

dioxide and nitrogen IR absorption peaks according to the calibration by McCluskey

and Zhuravlev [2]. The results are plotted in figure G.1.
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Figure G.1: IR absorption of Ge:O at 10 K. Red line: linear fit (slope =
0.48 cm−1 GPa−1, intercept = 863.7 cm−1). The error bars are the peak widths.
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