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Abstract

by Sherod Eubanks, Ph.D.
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DECEMBER 2009

Chair: Judith J. McDonald

Nonnegative matrices appear in many branches of mathematics, as well as in appli-

cations to other disciplines such as economics, computer science, and chemistry. Since

the inception of the fundamental results by Perron and Frobenius, the area of nonneg-

ative matrices have been a fertile field for research. In this dissertation, we consider

the problem of reconstructing a nonnegative symmetric or normal matrix based on a

knowledge of spectral data.

Specifically, our exposition is centered around two facets of the just-mentioned prob-

lem. First, we consider symmetric matrices with spectrum σ = {λ1, λ2, . . . , λn} and

corresponding orthonormal set of eigenvectors s1, s2, . . . , sn, such that successive spec-

tral decompositions are nonnegative:

t∑

i=1

λisis
T
i ≥ 0, t = 1, . . . , k.

We determine the zero-nonzero structure of the si’s which correspond to positive λi’s, and

provide a complete characterization of the si’s in case the above holds for λ1 = λ2 = · · · =

λt = 1 for t = 1, . . . , n. The resulting orthogonal matrices S = [s1, s2, . . . , sn], which we

call here extended Soules matrices, are then a generalization of the well-studied class

of Soules matrices (henceforth called classical Soules matrices). Among other results,
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we also prove each extended Soules matrix is the limit of a sequence of classical Soules

matrices, and that the rank of symmetric matrices whose eigenvectors form an extended

Soules matrix is equal to the cp-rank of the matrix. The other associated problem is

that of characterizing the set of potential λi’s, where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, such that

the above partial sum nonnegativity is accomplished for a given fixed set s1, s2, . . . , sn.

We provide some initial results in this direction, as well as an example of how such an

analysis would proceed using certain orthogonal Hadamard matrices.

Second, we consider the nonnegative (nonsymmetric) normal inverse eigenvalue prob-

lem (NNIEP), which is the problem of determining necessary and sufficient conditions on

a list σ of complex numbers such that σ is the spectrum of a nonnegative normal matrix.

We give a summary of some known necessary and sufficient conditions for the NNIEP,

and present some preliminary results using the somewhat new technique of analyzing

the eigenvectors of certain skew-symmetric matrices, and using the result to construct

solution matrices for the NNIEP. Using this technique, we are able to give the strongest

possible result for the NNIEP for 3×3 matrices, and make some progress on the NNIEP

for 4 × 4 matrices. That our approach has promise is evidenced by the nonnegative

normal matrix we construct whose spectrum is σ = {12
√

2,−12, 12 + i, 12 − i}, even

though σ satisfies none of the currently known sufficient conditions for the NNIEP.
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Chapter 1

Preliminaries

1.1 Introduction

Since its initial development by Perron and Frobenius at the beginning of the 20th

century, the theory of nonnegative matrices has progressed enormously and is currently

being used and extended in such diverse fields of study as probability theory, numerical

analysis, demography, economics, and dynamic programming. This scope of application

is evident to anyone using the Google search engine, which utilizes nonnegative matrix

theory to rank those web pages most relevant to the search terms. Some other famous

examples include Leontief’s input-output analysis in economics and state-transitions

modeled by finite Markov chains in statistics, both of which have nonnegative matrices

as primary objects of study. In all cases, an analysis of the spectrum of the underlying

nonnegative matrix is of particular interest.

Often in problems of a dynamic nature, the reconstruction of a nonnegative matrix

from prescribed, or desired, spectral data is essential to obtain insight into the behavior

of the phenomenon being studied. This is the main theme of this dissertation, and we

examine two specific facets herein. In Chapter 2, we examine nonnegative symmetric

matrices for which each partial sum of its spectral decomposition expansion is also

nonnegative. That is, symmetric matrices with spectrum σ = {λ1, λ2, . . . , λn} and

orthonormal set s1, s2, . . . , sn of eigenvectors, for which each partial sum of its spectral



2

decomposition is nonnegative:

t∑

i=1

λisis
T
i ≥ 0, t = 1, . . . , n.

In Section 2.2 we prove first a characterization of the sign pattern of the vectors si

which correspond to a positive λi. We apply this result in Section 2.3 to the case where

λ1 = λ2 = · · · = λt = 1 for t = 1, . . . , n (which is equivalent to the above property

holding for all λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0), and obtain what we call extended Soules

matrices. In turn, we show that extended Soules matrices lie in the topological closure

of the set of all Soules matrices (which are now well-known), which we refer to herein

as classical Soules matrices. We show also that symmetric matrices whose eigenvectors

form extended Soules matrices have cp-rank equal to the rank, and a few other results

regarding matrix functions of these symmetric matrices. In Section 2.4, we consider

the problem of determining the set of λi’s for which the above spectral decomposition

property holds for a given fixed set of si’s, and present some basic results. The solution

to the problem in this case amounts to that of solving systems of linear inequalities, a

process which we illustrate for certain orthogonal Hadamard matrices in 2.4.1

In Chapter 3 we explore the nonnegative inverse eigenvalue problem for normal ma-

trices (NNIEP), which is the problem of determining necessary and sufficient conditions

for a given list of complex numbers to be the spectrum of a nonnegative normal matrix.

In Section 3.1, we summarize some of the necessary conditions for the general NIEP,

including Karpelevich’s Theorem, which outlines the solution to the stochastic NIEP

(StNIEP) (the NIEP and the StNIEP are equivalent, as we outline in Section 3.1). We

then very briefly summarize some sufficient conditions for the real NIEP (RNIEP) in

3.1. These conditions lead to sufficient conditions for the NNIEP, which we outline,
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and include a more recent result for the NIEP for circulant matrices, in Section 3.2.

Prompted by the fact that the list σ = {12
√

2,−12, 12 + i, 12 − i} does not satisfy

any currently known sufficient conditions for the NNIEP, but yet is the spectrum of a

nonnegative normal 4× 4 matrix, a new means of examining the NNIEP, that from the

perspective of eigenvectors of skew-symmetric matrices, is detailed in Section 3.3. The

results obtained here lead to the strongest result available for the NNIEP in the case

n = 3, and to some interesting preliminary results for the NNIEP in the case n = 4.

1.2 Standard Definitions, Notation, and Results

In this section we begin with some standard definitions, notation, and results as can be

seen from any advanced text in matrix theory. Our main sources here are [13] and [25].

Denote by Mn(S) the set of n×n (“square”) matrices with entries from the set S; if

it is not necessary to specify S, we simply write Mn and assume the entries are complex

numbers. If A is a square matrix, the spectrum of A, denoted by σ(A), is the set of

eigenvalues of A. The spectral radius ρ(A) of A is defined as ρ(A) = max{|λ| : λ ∈ σ(A)}.

Since we consider exclusively matrices A with real entries, any complex eigenvalues of A

occur in conjugate pairs, a property we summarize by writing σ(A) = σ(A). The trace of

A, denoted tr(A) is the sum of the diagonal entries of A. If σ(A) = {λ1, λ2, . . . , λn}, it is

known that tr(A) = λ1+λ2+· · ·+λn. The set σ(A) is the set of roots of the characteristic

polynomial, written as a formal polynomial in t, and defined by pA(t) = det(tI − A).

Since most of the matrices as well as the vector spaces considered in this dissertation

are real, our usage of ‖ · ‖ with no subscript indicates the standard Euclidean norm.

If A = [aij ] ∈ Mn, by AT = [aji] ∈ Mn we denote the transpose of A, and A∗ = [āji]
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the conjugate transpose or Hermitian adjoint of A. Clearly AT = A∗ if and only if

A ∈ Mn(R).

If A ∈ Mn commutes with its Hermitian adjoint, i.e. AA∗ = A∗A, A is said to be

normal. If A ∈ Mn(R) is normal, then AAT = AT A. If A is Hermitian, i.e. A = A∗, or

skew-Hermitian, i.e. A = −A∗, then A is normal. Also, if A ∈ Mn(R) is symmetric, then

A = AT , or skew-symmetric, then A = −AT , and both symmetric and skew-symmetric

matrices are also normal. Additionally, if A ∈ Mn and AA∗ = I, A is unitary, while

if A ∈ Mn(R) is unitary, AAT = I, and A is called orthogonal. Both unitary and

orthogonal matrices are also normal. The following result can be found in [13, Theorem

2.5.4].

Theorem 1.1 [13] Let A ∈ Mn, with σ(A) = {λ1, λ2, . . . , λn} ⊂ C. The following are

equivalent.

(a) A is normal.

(b) There is an orthonormal set of n eigenvectors of A.

(c) A is unitarily diagonalizable: there is a unitary matrix U such that

U∗AU = diag(λ1, λ2, . . . , λn).

(d) If we let H = 1
2
(A + A∗) and K = 1

2
(A − A∗) (H and K are Hermitian and

skew-Hermitian, respectively) then HK = KH.

If A ∈ Mn(R), we may replace “Hermitian” and “skew-Hermitian” above with “symmet-

ric” and “skew-symmetric,” but in (c) we still must in general require a unitary, rather

than an orthogonal, matrix to diagonalize A. The equivalence of (a) and (c) above is

known as the Spectral Decomposition Theorem:
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Theorem 1.2 (Spectral Decomposition Theorem for Normal Matrices) Let A ∈ Mn,

with σ(A) = {λ1, λ2, . . . , λn} ⊂ C. Then A is normal if and only if there is a unitary

matrix U = [u1, u2, . . . , un] ∈ Mn such that:

A = λ1u1u
∗
1 + λ2u2u

∗
2 + · · ·+ λnunu

∗
n =

n∑

i=1

λiuiu
∗
i .

If A ∈ Mn(R), we have the following result [13, Theorem 2.5.8].

Theorem 1.3 [13] Let A ∈ Mn(R). Then A is normal if and only if there is a real

orthogonal matrix Q ∈ Mn(R) such that

QT AQ =













A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · Ak













∈ Mn(R), 1 ≤ k ≤ n

where each Aj is either a real 1 × 1 matrix or is a real 2 × 2 matrix of the form

Aj =






αj βj

−βj αj




 .

If A is symmetric, then each Aj is a 1×1 matrix, and if A is skew-symmetric, each Aj has

a zero diagonal. That is, symmetric matrices have real eigenvalues, and skew-symmetric

matrices have either 0 or purely imaginary eigenvalues.

1.3 Nonnegative Matrices

We continue with a brief summary of terminology and fundamental results specific to

nonnegative matrix theory, which we obtain largely from [1, Chapter 2], that we require
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herein. An n × n matrix A is said to be reducible if there is a permutation matrix P (a

matrix with exactly one 1 in each row and 0’s elsewhere) such that:

PAP T =






B 0

C D






where B and D are square matrices, or if n = 1 and A = 0. A is called irreducible

otherwise. In this case, the spectrum σ(A) of A is the union of the spectra of B and D.

If either of B or D are reducible, we may write the matrix in lower triangular form as

above, and continue the process until no more diagonal blocks are reducible, or are 1×1

nonzero matrices. Proceeding in this manner yields the Frobenius normal form of A:

QAQT =













A11 0 · · · 0

A21 A22 · · · 0

...
...

...
...

Am1 Am2 · · · Amm













for some permutation matrix Q, where the diagonal blocks Aii are square and irreducible.

Irreducibility has an elegant graph-theoretic interpretation. Let G = G(A) denote

the directed graph of an n×n matrix A, which consists of n vertices P1, P2, . . . , Pn where

a directed edge (Pi, Pj) leads from Pi to Pj if and only if aij 6= 0. G is said to be strongly

connected if there is a sequence of directed edges {(Pi, Pi1), (Pi1, Pi2, . . . , (Pik , Pj))} called

a path from every vertex Pi to any other vertex Pj . If a path contains k edges, then the

entry a
(k)
ij > 0 where a

(k)
ij is the (i, j)-entry of Ak.

Theorem 1.4 [1] Let A ∈ Mn(R). The following are equivalent.

(a) A is irreducible.
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(b) The directed graph G(A) is strongly connected.

(c) For each i, j there is a positive integer q such that a
(q)
ij > 0.

In a strongly connected graph, each vertex belongs to a cycle, which is a path beginning

and ending at the same vertex, each edge of which is distinct. An important consequence

of the above theorem is that since a strongly connected directed graph may be viewed

as a union of cycles, it follows that an irreducible matrix A can be written as a sum of

multiples of cycle matrices. If C = [cij] is a cycle matrix, then C is a {0, 1}-matrix such

that if cij = 1 then cjk = 1 for some k, and cil = 0 for all l 6= j.

A matrix A = [aij ] is nonnegative if for each i, j, aij ≥ 0, and we write A ≥ 0. If

A ≥ 0 and A 6= 0, we write A > 0, and if for each i, j, aij > 0, A is positive, and we

write A ≫ 0. Note that positive matrices are irreducible. We use the same terminology

for vectors as well. The fundamental theorem of nonnegative matrix theory [1, Theorem

1.4] is stated (in part) as follows.

Theorem 1.5 (Perron-Frobenius Theorem) Let A be an n × n irreducible nonneg-

ative matrix. Then ρ(A) > 0 is an algebraically simple eigenvalue of A (i.e. it is not

repeated), any other eigenvalue of A of the same modulus is also simple, and A has an

entry-wise positive eigenvector corresponding to ρ(A).

Using the Frobenius normal form of a nonnegative matrix A, the Perron-Frobenius

Theorem implies that the spectral radius of any square A ≥ 0 is an eigenvalue, which

corresponds to a nonnegative eigenvector.

We remark that the full statement of the theorem naturally includes the case in which

A is reducible and σ(A) contains h eigenvalues λi such that ρ(A) = |λi| for i = 1, . . . , h.

Such a matrix is said to be cyclic of index h. In this thesis, the nonnegative matrices
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under consideration are assumed to be either irreducible, or cyclic of index 1, unless

otherwise noted.
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Chapter 2

On a Spectral Decomposition Property of

Nonnegative Symmetric Matrices

According to the Spectral Decomposition Theorem, if A ∈ Mn(R) is symmetric with

spectrum σ(A) = {λ1, λ2, . . . , λn} ⊂ R, Λ = diag(λ1, λ2, . . . , λn), and R = [r1, r2, . . . , rn]

is an orthogonal matrix such that Ari = λiri, then A = RΛRT , hence:

A = λ1r1r
T
1 + λ2r2r

T
2 + · · · + λnrnr

T
n =

n∑

i=1

λirir
T
i . (2.1)

The principal aim of this chapter is to analyze spectral decompositions of the form (2.1)

for nonnegative symmetric matrices which satisfy the additional caveat that the λi’s are

nonnegative and ordered non-increasingly, and each partial sum in (2.1) is nonnegative.

That is, let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and consider the following sequence:

t∑

i=1

λirir
T
i ≥ 0, t = 1, . . . , n. (2.2)

The purpose of this chapter is to examine the following two problems which arise in

consideration of (2.2): (1) fix the λi’s and analyze the structure of orthogonal matrices

R satisfying (2.2), and (2) fix R and analyze the set of n-tuples (λ1, λ2, . . . , λt, 0, . . . , 0) ∈

R
n for t = 1, . . . , n.

This chapter is organized as follows. In Section 2.1, we introduce the definitions

and notation used throughout the chapter, and in Section 2.2, we begin with our main

result (Theorem 2.1) characterizing those orthogonal matrices satisfying (2.2) with the
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λi’s subject to more general conditions. Section 2.3 concerns problem (1) where each

λi = 1, and we call the resulting matrices extended Soules matrices; in subsections 2.3.1

and 2.3.2, we examine further properties of extended Soules matrices as they relate

to matrix functions and completely positive matrices. In Section 2.4, we investigate

problem (2) by utilizing specific examples of orthogonal matrices. Finally, in Section 2.5

we summarize our results, and describe open problems.

2.1 Some Additional Definitions and Notation

In this section we summarize the main body of terminology employed in this chapter.

If A > 0 or A < 0, we say A is mono-signed, and if A ≫ 0 or A ≪ 0, A is strictly

mono-signed. If A contains both positive and negative entries, we say A is multi-signed.

We will also use these definitions for vectors x in Rn.

The support of the matrix A is the set {(i, j) : ai,j 6= 0}, and the support of the

vector x is {i : xi 6= 0}, which we will denote by supp(A) and supp(x), respectively. The

positive support of the matrix A, denoted supp+(A) is the set {(i, j) : ai,j > 0}, and the

negative support of A, denoted supp−(A), is {(i, j) : ai,j < 0}.

If two matrices or vectors of the same size have disjoint supports, we say they have

non-overlapping support; otherwise they have overlapping support. Given two matrices

X and Y of the same size with overlapping supports, if the support of X is contained in

that of Y we say that X has completely overlapping support with Y , or that the support

of X completely overlaps the support of Y .

A partition of n is a partition of the set 〈n〉 = {1, 2, . . . , n} into pairwise disjoint

subsets whose union is 〈n〉. Specifically, an m-partition of n is a partition of 〈n〉 into
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m disjoint subsets. We assume that the elements within each subset of a partition

are arranged in increasing order. If A ∈ Mn and R, C are p- and q-partitions of n,

respectively, the matrix A[Ri|Cj] is the submatrix of A whose rows are indexed by the

elements Ri and columns indexed by Cj of the partitions. Finally, if N ⊂ 〈n〉, we write

xN =







xi i ∈ N ,

0 i /∈ N .

2.2 Main Theorem

In this section we state and prove the main theorem of this chapter. Let S ∈ Mn(R)

be an orthogonal matrix with S = [s1, s2, . . . , sn] and σ = {λ1, λ2, . . . , λn} an arbitrary

(not necessarily ordered) sequence of real numbers. If

t∑

i=1

λisis
T
i ≥ 0, t = 1, . . . , n, (2.3)

we say the pair (S, σ) satisfies (2.3). We now prove that the structure of the matrix S

satisfying (2.3) for some sequence σ can be completely characterized.

Theorem 2.1 Let S = [s1, . . . , sn] be an orthogonal matrix and σ = {λ1, λ2, . . . , λn}

a sequence of real numbers with exactly p nonzero elements. That is, λi1 , λi2, . . . , λip

are nonzero, where i1 < i2 < · · · < ip. If the pair (S, σ) satisfies (2.3), then si1 is

mono-signed, λi1 > 0, and for each 2 ≤ j ≤ p, sij is either

(i) mono-signed and has non-overlapping support with each of si1 , . . . , sij−1
; or

(ii) multi-signed and has completely overlapping support with exactly one mono-

signed sik with k < j.

Moreover, for each mono-signed sij , we require λij > 0.
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Conversely, if si1 is mono-signed and for each 2 ≤ j ≤ p, sij satisfies either (i) or

(ii) then there exists a sequence σ whose nonzero elements are λi1, λi2 , . . . , λip, where

λij > 0 if sij is mono-signed, such that the pair (S, σ) satisfies (2.3).

Proof. For convenience of notation, assume the first p entries of σ are nonzero.

Since (2.3) is invariant under row permutation, we write s1 as follows:

s1 =






s1,1

0




 ,

where s1,1 is strictly mono-signed. Partition s2 conformally:

s2 =






s2,1

s2,2




 .

Suppose s2 satisfies the following:

sT
2 s1 = sT

1,1s2,1 = 0, (2.4a)

λ1s1s
T
1 + λ2s2s

T
2 =






λ1s1,1s
T
1,1 + λ2s2,1s

T
2,1 λ2s2,1s

T
2,2

λ2s2,2s
T
2,1 λ2s2,2s

T
2,2




 ≥ 0. (2.4b)

By (2.4a), s2,1 is either multi-signed or 0, and considering the (2, 2) block of (2.4b), s2,2

is either 0 or mono-signed, and in the latter case, we also require λ2 > 0. Nonnegativity

of the off-diagonal blocks of (2.4b) implies either that if s2,2 is mono-signed then s2,1 = 0

and if s2,1 is multi-signed then s2,2 = 0. Hence, s2 satisfies either (i) or (ii) above.

Proceeding by induction, assume si satisfies either (i) or (ii) for i = 1, . . . , k (k < p).

Suppose m of the si’s satisfy (i), and denote them by s1 = sc1, sc2, . . . , scm
with cl−1 < cl,

and also that λcl
> 0 for each l = 1, . . . , m. The induction hypothesis and the invariance
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of (2.3) under row permutation allow us to partition these vectors as follows:

s1 =
















s1,1

0

...

0

0
















, sc2 =
















0

sc2,2

...

0

0
















, . . . , scm
=
















0

0

...

scm,m

0
















. (2.5)

We also assume each of the s1, . . . , sk are partitioned in this manner, and we write:

k∑

i=1

λisis
T
i =
















S1 0 · · · 0 0

0 S2 · · · 0 0

...
...

. . .
...

...

0 0 · · · Sm 0

0 0 · · · 0 0
















, (2.6)

where Si ≥ 0 for each i. Partition sk+1 as follows:

sk+1 =
















sk+1,1

sk+1,2

...

sk+1,m

sk+1,m+1
















. (2.7)
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Let sk+1 satisfy the following:

sT
k+1scl

= sT
k+1,lscl,l = 0 for each l = 1, . . . , m, (2.8a)

k+1∑

i=1

λisis
T
i =













S1 + λk+1sk+1,1s
T
k+1,1 · · · λk+1sk+1,1s

T
k+1,m λk+1sk+1,1s

T
k+1,m+1

...
. . .

...
...

λk+1sk+1,msT
k+1,1 · · · Sm + λk+1sk+1,msT

k+1,m λk+1sk+1,msT
k+1,m+1

λk+1sk+1,m+1s
T
k+1,1 · · · λk+1sk+1,m+1s

T
k+1,m λk+1sk+1,m+1s

T
k+1,m+1













≥ 0.

(2.8b)

Since each of the scl,l’s are mono-signed, it follows from (2.8a) that each of the sk+1,l’s

are multi-signed or 0. As before, the (m + 1, m + 1) block of (2.8b) implies sk+1,m+1 is

either 0 or mono-signed, with the latter case implying λk+1 > 0. The off-diagonal blocks

of (2.8b) thus yield that if sk+1,m+1 is mono-signed, then the sk+1,l’s are all 0, and if any

of the sk+1,l’s are multi-signed, then sk+1,q = 0 for each q 6= l. That is, sk+1 satisfies (i)

or (ii) above. This completes the induction, and the proof of the first part.

To prove the converse, we shall continue to assume the first p columns of S satisfy

(i) or (ii) above, with s1 mono-signed. Let λ1 = 1, since s1s
T
1 ≥ 0. As before, we write

s1 as follows:

s1 =






s1,1

0




 ,

where s1,1 is strictly mono-signed, and partition s2 conformally:

s2 =






s2,1

s2,2




 .
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Note that it follows from (i) and (ii) that s2,1s
T
2,2 = 0 and s2,2s

T
2,1 = 0, hence we compute:

s1s
T
1 + λ2s2s

T
2 =






s1,1s
T
1,1 + λ2s2,1s

T
2,1 0

0 λ2s2,2s
T
2,2




 . (2.9)

If s2 satisfies (i), s2,1 = 0 and s2,2 is mono-signed, hence s2,1s
T
2,1 = 0 and we may

take λ2 = 1. Otherwise, if s2 satisfies (ii), then s2,2 = 0, so s2,2s
T
2,2 = 0, and s2,1 is

multi-signed. To analyze this case more concisely requires additional notation. Let

A = [ai,j ] ∈ Mn(R) and B = [bi,j] ∈ Mn(R), where B has at least one positive and one

negative entry. Define the functions l(·, ·) and L(·, ·) as follows:

l(A, B) = max
(i,j)∈supp+(B)

{−ai,j

bi,j

}

,

L(A, B) = min
(i,j)∈supp

−
(B)

{
ai,j

|bi,j|

}

.

A crucial observation with respect to our assumption is that if A ≥ 0, B is multi-

signed, and the support of A completely overlaps the support of B, then l(A, B) < 0 <

L(A, B). Accordingly, putting l2 = l(s1s
T
1 , s2s

T
2 ) and L2 = L(s1s

T
1 , s2s

T
2 ), we clearly have

s1s
T
1 + λ2s2s

T
2 ≥ 0 if l2 ≤ λ2 ≤ L2, and L2 > 0. Hence, if s2 satisfies (i) or (ii), we select

λ2 as follows:

λ2 =







1 if s2 satisfies (i),

L2 if s2 satisfies (ii).

We now proceed by induction, assuming si satisfies either (i) or (ii) for i = 1, . . . , k

(k < p). Suppose m of the si’s satisfy (i), and denote them by s1 = sc1, sc2, . . . , scm

with cq−1 < cq. We also assume λj 6= 0 for j = 1, . . . , k, and also that λcq
> 0 for each

q = 1, . . . , m (we may take each to be 1). Partition the scq
’s as in (2.5), where we assume

also that s1, . . . , sk are partitioned in the same manner. We may also write
∑k

i=1 λisis
T
i



16

as in (2.6) where, again, each Si ≥ 0, and partition sk+1 conformably with the previous

sj’s as in (2.7). Then, applying our assumptions as in (2.9), we have:

k+1∑

i=1

λisis
T
i =













S1 + λk+1sk+1,1s
T
k+1,1 · · · · · · 0

...
. . .

...
...

0 · · · Sm + λk+1sk+1,msT
k+1,m 0

0 · · · 0 λk+1sk+1,m+1s
T
k+1,m+1













. (2.10)

Thus if sk+1 satisfies (i), then sk+1,j = 0 for j = 1, . . . , m, hence we may select λk+1 = 1.

If sk+1 satisfies (ii), then sk+1,m+1 = 0 and each of the sk+1,j’s is either multi-signed or 0

for j = 1, . . . , m. Moreover, the support of
∑k

i=1 λisis
T
i completely overlaps the support

of sk+1. Define:

lk+1 = l

(
k∑

i=1

λisis
T
i , sk+1s

T
k+1

)

and Lk+1 = L

(
k∑

i=1

λisis
T
i , sk+1s

T
k+1

)

.

Then (2.10) is nonnegative if lk+1 ≤ λk+1 ≤ Lk+1, and Lk+1 > 0. So, if sk+1 satisfies (i)

or (ii), we may select λk+1 as follows:

λk+1 =







1 if sk+1 satisfies (i),

Lk+1 if sk+1 satisfies (ii).

This completes the induction and ends the proof. �

Although the more general problem of analyzing pairs (S, σ) with σ not subject

to any particular ordering conditions is interesting and theoretically sophisticated, we

do not treat this problem here. In the next section we apply the forward direction of

Theorem 2.1 to the case where each λi = 1, and in the following section we (partially)

apply the opposite direction to the case in which λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.
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2.3 Extended Soules Matrices

Let S = [s1, . . . , sn] ∈ Mn be an orthogonal matrix whose columns satisfy the following

property:
t∑

i=1

sis
T
i ≥ 0 t = 1, . . . , n. (2.11)

Clearly s1 is mono-signed. We call S an extended Soules matrix, and if, in addition, s1

strictly mono-signed, we call S a classical Soules matrix.

Our first result is a generalization of [10, Observation 2.1] that was proved for classical

Soules matrices only (although the proof, which we include for completeness, is the same)

and that specifies the connection between (2.11) and (2.2). In particular, it indicates

that (2.11) holding with s1 mono-signed is equivalent to (2.2) holding for all sequences

σ = {λ1, λ2, . . . , λn} with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Theorem 2.2 Let S = [s1, · · · sn] ∈ Mn be orthogonal and s1 be mono-signed. Then

t∑

i=1

sis
T
i ≥ 0 t = 1, . . . , n,

i.e. S is an extended Soules matrix, if and only if

t∑

i=1

λisis
T
i ≥ 0, t = 1, . . . , n,

for every sequence σ = {λ1, λ2, . . . , λn} with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Proof. Sufficiency of the latter condition follows by taking λ1 = λ2 = · · · = λn = 1,

so we need only prove it is necessary. Toward this end, for each 1 ≤ j ≤ n, define

Λj = diag(1, . . . , 1, 0, . . . , 0), where the first j diagonal entries of Λj are equal to 1, and

all other entries are 0. If Λ = diag(λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, observe
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that we may rewrite Λ as follows:

Λ = (λ1 − λ2)Λ1 + (λ2 − λ3)Λ2 + · · ·+ (λn−1 − λn)Λn−1 + λnΛn.

Notice that:
t∑

i=1

sis
T
i = SΛtS

T ≥ 0 t = 1, . . . , n

hence we have:

t∑

i=1

λisis
T
i = (λ1 − λ2)SΛ1S

T + · · · + (λt−1 − λt)SΛt−1S
T + λtSΛtS

T ≥ 0

for t = 1, . . . , n. Since σ = {λ1, λ2, . . . , λn} is an arbitrary sequence satisfying λ1 ≥ λ2 ≥

· · · ≥ λn ≥ 0, the result follows. �

Remark 2.3 If S is a classical Soules matrix, it is shown in [10, Theorem 2.2] that,

associated with S, there is a sequence N1, . . . , Ni, i = 1, . . . , n of partitions of n, with

N1 = {N1,1}, . . . , Ni = {Ni,1, . . . , Ni,i}, where N1,1 = 〈n〉 and Ni is constructed from

Ni−1 by partitioning exactly one of the sets Ni−1,j into two subsets Ni,j, Ni,j+1, while

leaving the remaining sets intact. Letting s1 = s and sNi,j
= s(i,j), the just-mentioned

sequence determines s2, . . . , sn (up to a factor of ±1) in terms of s in the following way:

si =
1

√

‖s(i,j)‖2 + ‖s(i,j+1)‖2

(‖s(i,j+1)‖
‖s(i,j)‖ s(i,j) − ‖s(i,j)‖

‖s(i,j+1)‖s(i,j+1)

)

, i ≥ 2. (2.12)

Finally, we note that in [34], Stuart describes an algorithm based on inflation matrices

which can be used as an alternative to (2.12) to determine whether a matrix is Soules.

Observe that any convergent sequence of orthogonal matrices satisfying (2.3) has an

orthogonal limit which also satisfies (2.3). Consequently, the closure of the (open) set of
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classical Soules matrices is contained in the set of extended Soules matrices. In order to

show that inclusion holds also, we shall first describe the structure of extended Soules

matrices. As a first step, we state the following lemma, which is actually a corollary of

the forward direction of Theorem 2.1.

Lemma 2.4 Let S = [s1, . . . , sn] be an extended Soules matrix. Then s1 is mono-signed,

and for each i ≥ 2, si is either

(i) mono-signed and has non-overlapping support with each of s1, . . . , si−1.

(ii) multi-signed and has overlapping support with exactly one mono-signed sj with

j < i.

Proof. Take λ1 = λ2 = · · · = λn = 1 in the forward direction of Theorem 2.1. �

The converse of Lemma 2.4 is false, as the following example shows.

Example 2.5 Consider the following two matrices:

A =
















0 0 1 0 0

1
2

1
2

0 1√
2

0

1
2

1
2

0 − 1√
2

0

1
2

−1
2

0 0 1√
2

1
2

−1
2

0 0 − 1√
2
















, B =
















0 0 1 0 0

1
2

1√
2

0 1
2

0

1
2

− 1√
2

0 1
2

0

1
2

0 0 −1
2

1√
2

1
2

0 0 −1
2

− 1√
2
















.

Both matrices satisfy the conclusion of Lemma 2.4. However, A is an extended Soules

matrix, and the matrix B, which may be obtained from A by interchanging columns 2

and 4, is not. In particular, (2.11) is invariant only under certain column permutations.
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With Lemma 2.4 in hand, we have the following complete characterization of ex-

tended Soules matrices.

Theorem 2.6 If S = [s1, . . . , sn] is an extended Soules matrix, then there exist m-

partitions {R1, . . . , Rm} and {C1, . . . , Cm} of n, where Ri and Ci have the same cardi-

nality, such that S[Ri|Cj ] = 0 if i 6= j, and S[Ri|Ci] is a classical Soules matrix for each

i = 1, . . . , m.

Conversely, if S1, . . . , Sm are classical Soules matrices whose orders sum to n, then

for any m-partitions {R1, . . . , Rm} and {C1, . . . , Cm} of n such that Ri and Ci have the

same cardinality as the order of Si, the matrix S such that S[Ri|Cj] = 0 if i 6= j, and

S[Ri|Ci] = Si for i = 1, . . . , m, is an extended Soules matrix.

Proof. If S = [s1, . . . , sn] is an extended Soules matrix, by Lemma 2.4 there exists a

positive integer m ≤ n such that the columns s1 = sc1, sc2, . . . , scm
are mono-signed.

Let ri be the cardinality of the set supp(sci
), and define m-partitions {R1, . . . , Rm} and

{C1, . . . , Cm} of n as follows: for each i = 1, . . . , m,

Ri = supp(sci
) and Ci = {ci = ci,1, ci,2, . . . , ci,ri

}, (2.13)

where the ci,j’s refer to those columns sci,j
which, by Lemma 2.4, are multi-signed (for

j = 2, . . . , ri) and have overlapping support with sci
. Since every other column of S

has non-overlapping support with the columns indexed by Ci, it follows not only that

S[Ri|Cj] = 0 if i 6= j, but also S[Ri|Ci] has a strictly mono-signed first column and

satisfies (2.11). Hence S[Ri|Ci] is a classical Soules matrix. Since this holds for each

i = 1, . . . , m, the result follows.

The converse follows easily, since the hypothesis guarantees (2.11) is satisfied for

each pair of m-partitions with the given property. Note that our assumption that the



21

elements of each Ci are listed in increasing order is critical here. �

Remark 2.7 If each set in R is composed of consecutive integers, then the mono-signed

columns of S have the form (2.7), hence each summand in (2.11) has the form (2.6). In

this case, (2.11) is a direct sum for each t. If, in addition, the same is true for the sets

in C , then R = C , and the resulting extended Soules matrix is a direct sum of classical

Soules matrices. This is formally proved in Section 2.3.2 as Corollary 2.14(i) to Theorem

2.6.

Remark 2.8 Let n1, . . . , nm be positive integers such that n1+· · ·+nm = n, and define:

r0 = 0 and ri =

i∑

j=1

ni.

If S is an extended Soules matrix such that R and C are m-partitions of n as in Theorem

2.6 such that:

Ri = {ri−1 + 1, . . . , ri} and Ci = {i, m − i − 2 + ri−1, . . . , m − i + ri},

then S has the following form:








s1,1 · · · 0 S[R ′
1|C ′

1] · · · 0

...
. . .

...
...

. . .
...

0 · · · sm,1 0 · · · S[R ′
m|C ′

m]









, (2.14)

where the si,1’s are strictly mono-signed,

R
′
i = Ri \ {ri−1 + 1} and C

′
i = Ci \ {i},

and for each i = 1, . . . , m, the (ni − 1) × ni matrix S[R ′
i|C ′

i ] has multi-signed columns.

Specifically, for every extended Soules matrix S there are permutation matrices P and

Q such that PSQ has the form (2.14).



22

Now, let Sn and Gn denote the set of all n×n classical and extended Soules matrices,

respectively. Using the form (2.14), we will now prove that every extended Soules matrix

is the limit of a sequence of classical Soules matrices.

Theorem 2.9 The closure Sn of Sn coincides with Gn, i.e. Sn = Gn.

Proof. Clearly Sn ⊂ Gn; that Sn ⊆ Gn follows from the fact that orthogonality and

(2.11) hold for the limit of any convergent sequence of classical Soules matrices. We need

only show that every extended Soules matrix S is the limit of a sequence of classical

Soules matrices. In view of Remark 2.8, it suffices to show this for S of the form (2.14).

Accordingly, let ǫ ∈ (0, 1) and define:

s
(ǫ)
1 =

√

1 − ǫ

1 − ǫm













|s1,1|

|s2,1|
√

ǫ

...

|sm,1|
√

ǫm−1













,

where, for definiteness, we assume s1,1 ≫ 0. For j = 2, . . . , m, let s
(ǫ)
j be partitioned

conformably with s
(ǫ)
1 where:

s
(ǫ)
j =

sgn(sj,1)(1 − ǫ)
√

(1 − ǫm−j+2)(1 − ǫm−j+1)



























0

...

0

−|sj−1,1|(1 − ǫm−j+1)
√

ǫ

|sj,1|

|sj+1,1|
√

ǫ

...

|sm,1|
√

ǫm−j



























.
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Finally, in view of Remark 2.3 and (2.12), we define:

[s
(ǫ)
m+1, . . . , s

(ǫ)
n ] =









S[R ′
1|C ′

1] · · · 0

...
. . .

...

0 · · · S[R ′
m|C ′

m]









,

for R ′
i, C ′

i as defined in Remark 2.8. It is easily checked that the matrix S(ǫ) =

[s
(ǫ)
1 , . . . , s

(ǫ)
n ] is a classical Soules matrix for every ǫ ∈ (0, 1), and since Sǫ → S as

ǫ → 0+, the proof is complete. �

2.3.1 On Matrix Functions and Exponentially Nonnegativity

In this section we describe a few results regarding matrix functions of diagonalizable

matrices that are diagonalized by extended Soules matrices. Our attention here will be

confined to monotonic real functions defined on R.

Theorem 2.10 Let S be an orthogonal matrix, and f a nondecreasing function mapping

R onto (0,∞). Then f(SΛST ) is nonnegative for all diagonal matrices Λ with non-

increasing diagonal entries if and only if S is an extended Soules matrix.

Proof. Note that f(SΛST ) = Sf(Λ)ST = S · diag{f(λ1), . . . , f(λn)} · ST , and also

that the assumptions on f imply that there is a decreasing sequence {xk} such that

f(xk) = 1/k for k = 1, 2, . . . . Let f(SΛST ) ≥ 0 for all Λ = diag{λ1, . . . , λn} where

λ1 ≥ λ2 ≥ · · · ≥ λn. For each t = 1, . . . , n and positive integer k define:

Λ
(t)
k = diag{x1, . . . , x1

︸ ︷︷ ︸

t terms

, xk, . . . , xk}.
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Then, it follows that

f(SΛ
(t)
k ST ) =

t∑

i=1

sis
T
i +

1

k

n∑

i=t

sis
T
i ≥ 0

for all k = 1, 2, . . . . Letting k → ∞ for each t = 1, . . . , n yields (2.11), hence S is an

extended Soules matrix.

Conversely, suppose S is an extended Soules matrix, and let Λ = diag{λ1, . . . , λn}

with λ1 ≥ · · · ≥ λn. Note that f(SΛST ) may be written as follows:

f(SΛST ) =

n−1∑

t=1

(f(λt) − f(λt+1))

t∑

i=1

sis
T
i + f(λn)I.

Hence, it follows from (2.11) and our assumptions on f that f(SΛST ) ≥ 0 for all diag-

onal matrices Λ with non-increasing diagonal entries. �

One direction of the following immediate corollary of Theorem 2.10 appeared in [10,

Lemma 2.3] (under a slightly stronger hypothesis). Since the same proof still applies

under our more general assumptions, we include it for completeness.

Corollary 2.11 Let S be an orthogonal matrix, and g a non-increasing function map-

ping (0,∞) onto itself. Then g(SΛST ) is a nonsingular M-matrix for every nonnegative

diagonal matrix Λ with positive, non-increasing diagonal entries if and only if S is an

extended Soules matrix.

Proof. First we make some preliminary observations. If Λ = diag(λ1, λ2, . . . , λn), then:

g(SΛST ) = Sg(Λ)ST = S · diag(g(λ1), g(λ2), . . . , g(λn)) · ST .

Also, if λ1 ≥ λ2 ≥ · · · ≥ λn > 0, we have:

0 < g(λ1) ≤ g(λ2) ≤ · · · ≤ g(λn).
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Finally, if g(x) is nonincreasing, then the function ft(x) = t − g(x) is nondecreasing for

all t ∈ R. Fix t > g(λn), so that

t − g(λ1) ≥ t − g(λ2) ≥ · · · ≥ t − g(λn) > 0,

that is,

ft(λ1) ≥ ft(λ2) ≥ · · · ≥ ft(λn) > 0. (2.15)

Now, if S is an extended Soules matrix, (2.15) and Theorem 2.10 imply that:

ft(SΛST ) = tI − g(SΛST ) ≥ 0.

Hence g(SΛST ) = tI − ft(SΛST ) is a nonsingular M-matrix. Conversely, if g(SΛST ) is

a nonsingular M-matrix, then for some s > g(λn) and nonnegative matrix C we have

g(SΛST ) = sI − C. But then:

C = sI − g(SΛST ) = S(sI − g(Λ))ST = Sfs(Λ)ST ,

hence appealing once more to Theorem 2.10 yields the result. �

An additional result appearing in [10, Corollary 2.4] that can be generalized in the

same way as Corollary 2.11 is the following.

Corollary 2.12 Let S be an orthogonal matrix and define A = SΛST . Then for any

p ≥ 0, A−p is a nonsingular M-matrix for every nonnegative diagonal matrix Λ with

positive, non-increasing diagonal entries if and only if S is an extended Soules matrix.

In particular, A−1 will always be an M-matrix.

Proof. Choose g(x) = 1/xp in Corollary 2.11. �
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Our final result is a special case of Theorem 2.10. We say a matrix A is exponentially

nonnegative if

etA =

∞∑

k=0

tkAk

k!
≥ 0 for all t ≥ 0.

Corollary 2.13 Let S be an orthogonal matrix. The following statements are equiva-

lent.

(i) S is an extended Soules matrix.

(ii) SΛST ≥ 0 for all nonnegative diagonal matrices Λ with non-increasing diag-

onal entries.

(iii) SΛST is exponentially nonnegative for all diagonal matrices Λ with non-

increasing diagonal entries.

Proof. That (i) ⇐⇒ (ii) and (i) ⇐⇒ (iii) hold follows from taking f(x) = x and

f(x) = ex, respectively, in Theorem 2.10. �

2.3.2 On Completely Positive Matrices

An n×n symmetric matrix A is completely positive if it can be represented as a product

A = BBT where B ≥ 0 is an n × m matrix. One basic, yet important (and unsolved)

problem is to compute the smallest possible value of m (the number of columns of B) in

the representation of A = BBT . This smallest value of m is called the cp-rank of A. In

[30], it is shown that if A can be diagonalized by a classical Soules matrix, i.e. generated

by a classical Soules matrix, then cp-rank(A) = rank(A). In this section we prove that

the same result is true if A is generated by an extended Soules matrix.
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Let Λ = diag(λ1, λ2, . . . , λn) where λ1 ≥ λ2 ≥ · · · ≥ λn. We say that Λ is a diagonal

matrix with non-increasing diagonal entries. We begin with the following corollary of

Theorem 2.6.

Corollary 2.14 Let S be an n × n extended Soules matrix, and Λ a diagonal matrix

with non-increasing diagonal entries. There are n × n permutation matrices P and Q,

and an integer m, such that

(i) PSQ is a direct sum of m classical Soules matrices R1, . . . , Rm, where Ri is

ni × ni, and

(ii) QT ΛQ is a direct sum of m diagonal matrices Λ1, . . . , Λm, where Λi is ni ×ni,

and each Λi has non-increasing diagonal entries.

Proof. If S = [s1, . . . , sn] is an extended Soules matrix, there exists a positive integer

m ≤ n such that the columns s1 = sc1 , sc2, . . . , scm
are mono-signed. Let ni be the

cardinality of the set supp(sci
), and define m-partitions {R1, . . . , Rm} and {C1, . . . , Cm}

of n in accordance with Theorem 2.6 as follows: for each i = 1, . . . , m,

Ri = {ri,1, ri,2, . . . , ri,ni
} and Ci = {ci = ci,1, ci,2, . . . , ci,ni

}. (2.16)

Let ei denote the ith standard basis vector for Rn, and define the permutation matrices

P and Q as follows:

P = [er1,1
, er1,2

, . . . , er1,n1
, . . . . . . , erm,1

, erm,2
, . . . , erm,nm

]T , (2.17)

and

Q = [ec1,1
, ec1,2

, . . . , ec1,n1
, . . . . . . , ecm,1

, ecm,2
, . . . , ecm,nm

]. (2.18)
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Then, letting mj =
∑j

i=1 ni and

R̃i = C̃i = {mi−1 + 1, . . . , mi−1 + ni} = {mi−1 + 1, . . . , mi},

observe that (PSQ)[R̃i|C̃j] = S[Ri|Cj ] for i, j = 1, . . . , m. Hence, by Theorem 2.6, PSQ

is a direct sum of m classical Soules matrices R1, . . . , Rm, where Ri is ni × ni.

Additionally, if Λ = diag(λ1, λ2, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn, since ci,1 < ci,2 <

· · · < ci,ni
, we have

λci,1
≥ λci,2

≥ · · · ≥ λci,ni

for each i = 1, . . . , m. Thus QT ΛQ is a direct sum of diagonal matrices Λ1, . . . , Λm,

where each Λi = diag(λci,1
, λci,2

, . . . , λci,ni
) has non-increasing diagonal entries. �

Let S be an n × n extended Soules matrix, and Λ an n × n nonnegative diagonal

matrix with non-increasing diagonal entries. We say the matrix A = SΛST is generated

by an extended Soules matrix. The following result is proved in [30, Theorem 2.1].

Theorem 2.15 [30] Let A be an n × n nonnegative matrix generated by a (classical)

Soules matrix. Then cp−rank(A) = rank(A).

With Corollary 2.14 at hand, we are able to generalize Theorem 2.15 to matrices

generated by extended Soules matrices.

Theorem 2.16 Let A ≥ 0 be an n × n matrix generated by an extended Soules matrix.

Then cp−rank(A) = rank(A).

Proof. Let S be an n × n extended Soules matrix, Λ = diag(λ1, . . . , λr, 0, . . . , 0) with

λ1 ≥ · · · ≥ λr > 0, and A = SΛST . By Corollary 2.14, there are permutation matrices
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P and Q such that PSQ is a direct sum of m Soules matrices R1, . . . , Rm where Ri is

ni × ni, and such that QT ΛQ is the direct sum of m diagonal matrices Λ1, . . . , Λm, each

with non-increasing diagonal entries. Define Ã = (PSQ)(QTΛQ)(PSQ)T and observe

that Ã is a direct sum of RiΛiR
T
i , for i = 1, . . . , m. Let ri denote the number of nonzero

diagonal entries in Λi, and select the permutation matrix C such that the diagonal blocks

Rj1Λj1R
T
j1, . . . , Rjm

Λjm
RT

jm
of CT ÃC are ordered in non-increasing order according to ri,

i.e. rj1 ≥ rj2 ≥ · · · ≥ rjm
. Let l be the largest index k such that rjk

> 0. Then we have:

CT ÃC =
















Rj1Λj1R
T
j1

0 · · · · · · 0

0 Rj2Λj2R
T
j2 · · · · · · 0

...
...

. . .
...

0 0 · · · Rjl
Λjl

RT
jl

0

0 0 · · · 0 0
















,

where the zero diagonal block is square with n− (nj1 + · · ·+njl
) = njl+1

+ · · ·+njm
rows

and columns. By Theorem 2.15, for each k = 1, . . . , l there is a nonnegative njk
× rjk

matrix Bjk
such that Rjk

Λjk
RT

jk
= Bjk

BT
jk

, hence we have CT ÃC = BBT , where:

B =
















Bj1 0 · · · 0

0 Bj2 · · · 0

...
...

. . .
...

0 0 · · · Bjk

0 0 · · · 0
















.

Since
∑l

k=1 rjk
= r, it follows that B is n × r. So, as Ã = PAP T , it follows that

A = B̃B̃T where B̃ = P T CB ≥ 0 is n × r, and thus the cp-rank and rank(A) are equal.

This completes the proof. �
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2.4 Eigenvalues and Additional Classes of Orthogo-

nal Matrices

We now turn to problem (2) mentioned in the opening paragraphs of this chapter.

Namely, let S = [s1, . . . , sn] ∈ Mn be an orthogonal matrix and σ = {λ1, λ2, . . . , λn} be

a sequence whose elements are ordered non-increasingly, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and

suppose the pair (S, σ) satisfies (2.3):

t∑

i=1

λisis
T
i ≥ 0 t = 1, . . . , n.

In the previous section, we considered σ to be fixed and described the structure of

orthogonal matrices S satisfying (2.3) for λ1 = λ2 = · · · = λn = 1 (or, as shown to be

equivalent in Theorem 2.2, for every sequence σ such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0), and

obtained a complete characterization of such matrices in Theorem 2.6.

Given an orthogonal matrix S = [s1, s2, . . . , sn], we are interested here in describing

the set of all points (λ1, λ2, . . . , λn) ∈ R
n for which S satisfies (2.3) for each t = 1, . . . , n.

As a basis for preliminary results and further investigation into this problem, we make

the following definitions and simplifying assumptions. Let

Λk = diag(λ1, λ2, . . . , λk, 0, . . . , 0)

be n × n for k = 1, . . . , n. Define:

Sn = {(λ1, λ2, . . . , λn) ∈ R
n : 1 = λ1 ≥ · · · ≥ λn ≥ 0}.

Associate with S the following two sequences Pn(S) = {Pn
1 (S), . . . ,Pn

n (S)} and Qn(S) =

{Pn
1 (S), . . . ,Pn

n (S)} of subsets of Sn, where:

Pn
k (S) =

{

(λ1, . . . , λk, 0, . . . , 0) ∈ Sn : SΛtS
T =

t∑

i=1

λisis
T
i ≥ 0, t = 1, . . . , k

}

,
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Qn
k(S) =

{

(λ1, . . . , λk, 0, . . . , 0) ∈ Sn : SΛkS
T =

k∑

i=1

λisis
T
i ≥ 0

}

.

Our primary goal in this section is thus to characterize Pn(S) which, since each Pn
k (S)

is clearly convex, amounts to determining the vertices of Pn(S). Our introduction of

the larger set Qn(S), which is essentially the set of all solutions to the n× n symmetric

NIEP for a given fixed basis, is just for comparison of results. For example, if

(λ1, λ2, . . . , λk−1, λk, 0, . . . , 0) ∈ Pn
k (S),

then each of

(λ1, 0, . . . , 0), (λ1, λ2, . . . , 0), . . . , (λ1, λ2 . . . , λk−1, 0, . . . , 0) ∈ Pn
k (S),

but the above statement is false in general if we replace Pn
k (S) with Qn

k(S). In the same

spirit as the above, we make the following observations regarding these sets.

Observation 2.17

(a) Pn
k (S) 6= ∅, i.e. (1, 0, . . . , 0) ∈ Pn

k (S) for k = 1, . . . , n, if and only if s1 is

mono-signed.

(b) For any orthogonal n × n matrix S, (1, 1, . . . , 1) ∈ Qn
n(S).

(c) Fix λ1, λ2, . . . , λk, and define µk = (λ1, λ2, . . . , λk, 0, . . . , 0) ∈ Sn. If µk ∈

Qn
k(S), then µk ∈ Pn

k (S) if and only if µ1, . . . , µk−1 ∈ Pn
k (S) (i.e. µj ∈ Pn

j (S)

for j = 1, . . . , k − 1).

(d) Pn
k (S) ⊆ Pn

k+1(S) for any orthogonal matrix S. In particular, Pn
n (S) = Pn(S).

(e) Pn
k (S) ⊆ Qn

k(S) for each k = 1, . . . , n. Equality holds for each k = 1, . . . , n if

and only if S is an extended Soules matrix.
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Proof.

(a) If s1 is mono-signed, then s1s
T
1 ≥ 0, hence (1, 0, . . . , 0) ∈ Pn

k (S).

(b) That (1, 1, . . . , 1) ∈ Qn
n(S) is clear since SIST = SST = I ≥ 0.

(c) The statement follows from the definitions of Pn
k (S) and Qn

k(S). See also the

comment preceding the statement of this observation.

(d) If µ = (λ1, . . . , λk, 0, . . . , 0) ∈ Pn
k (S), taking λk+1 = 0 implies µ ∈ Pn

k+1(S).

(e) The first part is obvious, and the second part follows from Theorem 2.2 and (b)

above. �

Since our main goal is to determine Pn(S), of immediate importance are the condi-

tions under which we have equality or strict inclusion in Observation 2.17(d). To move to-

ward an answer to this question, we note that Pn
k (S) contains points (λ1, . . . , λk, 0, . . . , 0)

in Sn for which there are at most k positive coordinates. We call the maximal such k

the dimension of Pn(S), and denote it by dimPn(S). Using the notation and definitions

of this section, we obtain an immediate corollary of Theorem 2.1.

Theorem 2.18

(a) Pn
k (S) 6= Pn

k+1(S) if and only if sk+1 is mono-signed or has completely overlap-

ping support with exactly one mono-signed column sj for some 1 ≤ j < k + 1. In

particular, every multi-signed column si has completely overlapping support with

exactly one mono-signed column sj for j < i, or s1 is strictly mono-signed, if and

only if dimPn(S) = n.
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(b) dimPn(S) = p for some 1 ≤ p < n, i.e. Pn
k (S) ⊆ Pn

p (S) for all k = 1, . . . , n, if

and only if p is the smallest index such that sp+1 is multi-signed and the support

of sp+1 does not completely overlap that of sj for any j = 1, . . . , p.

We illustrate Theorem 2.18 with an example.

Example 2.19 Consider the following matrices.

S1 =













1√
2

1√
3

− 1√
7

− 1√
42

1√
2

− 1√
3

1√
7

1√
42

0 1√
3

2√
7

2√
42

0 0 1√
7

− 6√
42













, S2 =
1

2













1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1













.

Both S1 and S2 have mono-signed first columns, hence P4
1 (S1) = P4

1 (S1) = {(1, 0, 0, 0)}.

Also, the support of the second column of S1 does not completely overlap that of the first

column, while in S2 the first column is positive. Theorem 2.18 implies dimP4(S1) =

1, P4(S1) = P4
1 (S1), and dimP4(S2) = 4. S2 is an example of a special orthogonal

Hadamard matrix, which are discussed in further generality in 2.4.1.

Note that if u and v are mono-signed and orthogonal vectors, they have supports

that do not overlap, and hence there is a permutation matrix R such that the supports of

Ru and Rv consist of consecutive integers, respectively. Hence Theorem 2.18(a) implies

that if dimPn(S) = n, there are permutation matrices R and T such that RST is a

direct sum of blocks, with each block possessing a strictly mono-signed first column.

We encountered this in the previous section in Theorem 2.6, in the case for which

(1, 1, . . . , 1) ∈ Pn
n (S).

We now consider the specification of Pn(S). Since each SΛkS
T is symmetric and has

nonnegative diagonal entries for k = 1, . . . , dimPn(S), to determine Pn(S) is the same
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as specifying the feasible region determined by the following set of inequalities that are

linear in λi:






1 = λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0

(SΛtS
T )ij =

∑t
r=1 λisirsjr ≥ 0 i, j = 1, . . . , n, i < j; t = 1, . . . , k

(2.19)

The number of inequalities in (2.19) is at most kn(n−1)
2

+k; however, this number may be

further reduced with knowledge of dimPn(S) and the sign pattern of S, in accordance

with Theorem 2.18.

Remark 2.20 In practice, we do not solve a separate system (2.19) for each k and

take the union of the result to determine Pn(S). Rather, beginning with k = 2 (if s1 is

mono-signed), we collect for each successive k those inequalities which are independent

of (2.19) for previous k. The resulting system then determines Pn(S). Pn
k (S) may

then be constructed from the extreme points of Pn(S) for which the kth through the nth

coordinates are zero.

It turns out (see Theorem 2.21) that finding the extreme points of (2.19) is tanta-

mount to determining Pn(S). To describe the potential forms the set Pn(S) may take,

we require some additional notation and terminology, as set forth in [25, Chapters 2,

3]. Let V be a real finite-dimensional vector space, and S a subset of V . We say S

is convex provided for all x, y ∈ S we have sx + (1 − s)y ∈ S for all 0 ≤ s ≤ 1. In

particular, the convex set S contains all convex linear combinations of its elements, i.e.

if x1, x2, . . . , xm ∈ S then

z = s1x1 + s2x2 + · · ·+ xmxm ∈ S
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for any set of real numbers s1, s2, . . . , sm such that

m∑

i

si = 1.

Denote by H{x1, x2, . . . , xm} the set of all convex linear combinations of x1, x2, . . . , xm.

We call this set the convex polyhedron with vertices x1, x2, . . . , xm, or the convex hull of

x1, x2, . . . , xm. A slightly more general notion emerges by considering the vector z above,

where if we collect all vectors of the same form as z together with all multiples w = λz

for λ ≥ 0, the resulting set is called a convex pyramid with vertices x1, x2, . . . , xm, or the

positive hull of x1, x2, . . . , xm.

To solve (2.19), we employ the general theory of linear inequalities developed in [25,

Sec. 7.4], and summarize the main result proved there as follows. The resulting theorem

is often called the “principle of boundary solutions.”

Theorem 2.21 [25] Let A be an m×n matrix of rank r > 0, x an n×1 column vector,

and b an m × 1 column vector. Consider the system of linear inequalities written in

matrix form as follows:

Ax − b ≥ 0. (2.20)

The set of solutions to (2.20) is either empty or it is the sum K = K1 + K2 of a convex

polyhedron K1 and a convex pyramid K2. Note that K2 can be trivial here, since it

consists of the solutions to the homogeneous system Ax ≥ 0.

Let A(r) be an r × r submatrix of A with rank r, and x(r) and b(r) both be r × 1

subvectors of x and b indexed by the columns and rows of A(r), respectively. Then any

solution of the system

A(r)x(r) − b(r) = 0 (2.21)
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also satisfies (2.20). In particular, The convex polyhedron K1 can be chosen so that its

vertex vectors satisfy exactly one of the equations (2.21).

So, Pn(S) is thus the sum of a convex polyhedron and a convex pyramid, both of which

can be determined by a finite number of vertices. The vertices are the extreme points

of inequalities (2.19). In order to obtain the vertices of Pn(S), Theorem 2.21 suggests

we take the following steps:

1. Use (2.19) to construct (2.20).

2. Compute r = rank(A).

3. Solve each r × r subsystem (2.21) obtained from (2.20) with rank r (if possible),

and check that the solution satisfies (2.20).

We illustrate this process with an example as we conclude this section.

Example 2.22 Consider the matrix S2 in Example 2.19. For Λ = diag(1, λ2, λ3, λ4),

we have:

S2ΛST
2 =

1

4













1 + λ2 + λ3 + λ4 1 − λ2 + λ3 − λ4 1 + λ2 − λ3 − λ4 1 − λ2 − λ3 + λ4

1 − λ2 + λ3 − λ4 1 + λ2 + λ3 + λ4 1 − λ2 − λ3 + λ4 1 + λ2 − λ3 − λ4

1 + λ2 − λ3 − λ4 1 − λ2 − λ3 + λ4 1 + λ2 + λ3 + λ4 1 − λ2 + λ3 + λ4

1 − λ2 − λ3 + λ4 1 + λ2 − λ3 − λ4 1 − λ2 + λ3 − λ4 1 + λ2 + λ3 + λ4













Proceeding according to Remark 2.20 once again, P4(S2) is determined by the system:







1 = λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0,

1 − λ2 − λ3 ≥ 0
(2.22)
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Imposing (2.22) and constructing (2.20) yields:

Ax − b =
















−1 0 0

1 −1 0

0 1 −1

0 0 1

−1 −1 0
















·









λ2

λ3

λ4









−
















−1

0

0

0

−1
















≥ 0. (2.23)

Here rank(A) = 3, hence there are ten 3×3 subsystems of (2.23) to solve. Note that the

subsystem of (2.23) determined by the row set {1, 2, 5} has no solution, that of {2, 3, 4}

only the trivial solution, and the subsystems determined by {1, 3, 4}, {1, 3, 5}, {1, 4, 5},

and {3, 4, 5} all have the same nontrivial solution. We summarize the result in the

following table.

Row Set(s) (λ2, λ3, λ4)

{2, 3, 4} (0, 0, 0)

{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {3, 4, 5} (1, 0, 0)

{2, 4, 5} (1/2, 1/2, 0)

{2, 3, 5} (1/2, 1/2, 1/2)

{1, 2, 4} (1, 1, 0)

{1, 2, 3} (1, 1, 1)

Only the first four solutions above satisfy (2.23), hence by Theorem 2.21:

P4(S2) = H{(1, 0, 0, 0), (1, 1, 0, 0), (1, 1/2, 1/2, 0), (1, 1/2, 1/2, 1/2)}.
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2.4.1 On Special Orthogonal Hadamard Matrices

A square matrix H whose entries consist of +1 or −1 is said to be a Hadamard matrix of

order n if HHT = nI, i.e. if distinct columns of H are orthogonal and if the Euclidean

norm of each column is equal to n. Any matrix satisfying these properties cannot have

odd order, and so n must be even. An interesting open problem for these matrices (which

we do not address here) called the Hadamard Conjecture is that for every k there is a

Hadamard matrix of order 4k.

For every Hadamard matrix H , notice that the matrix S = 1√
n
H is an orthogonal

matrix, what we shall call an orthogonal Hadamard matrix. For example, the following

two matrices are orthogonal Hadamard matrices:

S1 =
1√
2






1 1

1 −1




 , S2 =

1

2













1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1













.

Recall that the matrix S2 was considered in Section 2.4 in Examples 2.19 and 2.22.

Using a construction originally devised by Sylvester, if H is any n × n Hadamard

matrix, we may construct a 2n × 2n Hadamard matrix as follows:





S S

S −S




 .

Observe that if we take S to be the above 2 × 2 matrix S1, using this construction

technique gives rise to the 4 × 4 matrix S2 above. Defining the 2m+1 × 2m+1 matrix

Sm+1 =
1√
2






Sm Sm

Sm −Sm




 , m = 1, 2, . . .
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with S1 and S2 given above, we obtain an infinite sequence of orthogonal Hadamard

matrices, which we shall call special orthogonal Hadamard matrices. The purpose of this

section is to determine the inequalities yielding P2m

(Sm) for an arbitrary integer m ≥ 1.

It is interesting to note that Sm, and hence Aj = SmΛmST
m, is symmetric for each

m ≥ 1. Another interesting fact is that Am, in addition to being symmetric, is also

anti-symmetric, that is, symmetric about its anti-diagonal. Although these two facts,

symmetry and anti-symmetry, are useful to note, a more important fact for the problem

at hand is that each row of Am contains precisely the same entries as the first row. It is

this stronger result which we now prove.

Theorem 2.23 Consider the sequence Sm for m ≥ 1 as defined above, and let Λm =

diag(λ1, λ2, . . . , λ2m) be any 2m × 2m diagonal matrix. Then the matrix Am = [am
i,j] =

SmΛmST
m is completely determined by its first row; that is, there is an l such that am

i,j =

am
1,l for every i, j with 1 < i ≤ 2m.

Proof. We proceed by induction on m. Observe that:

A1 =
1

2






1 1

1 −1











λ1 0

0 λ2











1 1

1 −1




 =

1

2






λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2




 .

Now assume Am = SmΛmST
m is completely determined by its first row, and consider

Am+1. Partition Λm+1 as follows:

Λm+1 =






Λm+1
1 0

0 Λm+1
2




 ,

where Λm+1
1 and Λm+1

2 are 2m × 2m diagonal matrices. Using our definition of Sm+1, we
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compute:

Am+1 =






Sm Sm

Sm −Sm











Λm+1
1 0

0 Λm+1
2











Sm Sm

Sm −Sm






=






Sm(Λm+1
1 + Λm+1

2 )ST
m Sm(Λm+1

1 − Λm+1
2 )ST

m

Sm(Λm+1
1 − Λm+1

2 )ST
m Sm(Λm+1

1 + Λm+1
2 )ST

m




 .

(2.24)

By our induction hypothesis, Sm(Λm+1
1 + Λm+1

2 )ST
k and Sm(Λm+1

1 − Λm+1
2 )ST

m are com-

pletely determined by their first rows, and since concatenating these rows make up the

first row of Am+1, the same is true of Am+1. This completes the proof. �

The clear advantage of Theorem 2.23 in achieving our aforementioned goal is that we

need only consider the first row of SmΛtS
T
m in determining P2m

(Sm). Moreover, as our

next result shows, if we know P2m−1

(Sm−1), we need only append 2m zeros to each of

its points to obtain P2m

k (Sm) for k = 1, . . . , 2m, and thus limit our attention to the first

rows of SmΛtS
T
m for t > 2m−1.

Theorem 2.24 Define P̂2m

k (Sm) as a subset of R2m+1

by appending 2m zeros to each

point of P2m

k (Sm), for m ≥ 1, k = 1, . . . , 2m. Then for each k = 1, . . . , 2m+1, we have

P̂2m

k (Sm) ⊆ P2m+1

k (Sm+1), with equality if and only if 1 ≤ k ≤ 2m.

Proof. For k = 1, . . . , 2m, let Λk = diag(1, λ2, . . . , λk, 0, . . . , 0) be 2m × 2m, and define

the 2m+1 × 2m+1 matrix:

Λ̂k =






Λk 0

0 0




 .

Using our definition of Sm as in (2.24), as well as Theorem 2.23, it follows that:

(Sm+1ΛkS
T
m+1)1,∗ = [(SmΛkS

T
m)1,∗, (SmΛkS

T
m)1,∗],
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which is nonnegative if and only if (SmΛkS
T
m)1,∗ ≥ 0. Since (SmΛkS

T
m)1,∗ ≥ 0, we have

P̂2m

k (Sm) = P2m+1

k (Sm+1) for each k = 1, . . . , 2m. That P̂2m

k (Sm) ⊆ P2m+1

k (Sm+1) for

k = 2m, 2m + 1, . . . , 2m+1 follows from Observation 2.17(d) and Theorem 2.18(a). �

While Theorems 2.23 and 2.24 are useful in limiting the number of inequalities we

must consider in (2.19), and since there are potentially 2m distinct first-row entries of

SmΛtS
T
m, to proceed requires a deeper consideration of the sign pattern of Sm. To this

end, observe that an additional consequence of Theorems 2.23 and 2.24 (together with

symmetry) is:

(SmΛkS
T
m)T

1,∗ ≥ 0 if and only if 2m/2Smxk ≥ 0,

where xk = [1, λ2, λ3, . . . , λk, 0, . . . , 0]T . So, as 1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, of particular

concern are those rows of Sm for which there are more λi’s being subtracted in computing

Smxk than being added, and this is determined completely by the sign pattern of the

first k columns of Sm.

Although we cannot explicitly specify the jth row of Sm (or even its sign pattern) in

general, we can, however, say something about the distribution of positive and negative

entries in Sm, particularly its first columns. This is the content of our next two results.

Theorem 2.25 Consider the sequences Sm and m ≥ 1. For each j = 0, . . . , m − 1, the

row(s) of Sm indexed by (2l − 1) · 2j + 1 for l = 1, . . . , 2m−j−1, have exactly 2j positive

entries in the first 2j columns. Also, the first 2m−1 entries of row 2m−1 + 1 are positive,

while the rest are negative, and the first row of Sm contains 2m positive entries.

Proof. We proceed by induction on m. If m = 1 the assertion is trivial. Sup-

pose the assertion holds for Sm and consider Sm+1. By definition of Sm, it follows
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that for j = 0, . . . , m − 1 the rows of Sm+1 indexed by (2l − 1) · 2j + 1 for l =

1, . . . , 2m−j−1, 2m−j−1 +1, . . . , 2 ·2m−j−1, i.e. for l = 1, . . . , 2m−j , have exactly 2j positive

entries in the first 2j columns. Since the first row of Sm contains 2m positive entries, the

first 2m entries of row 2m + 1 of Sm+1 are positive, while the rest are negative. Finally,

the first row of Sm+1 contains 2m+1 entries. This completes the proof. �

Theorem 2.26 Consider row s, 1 < s 6= 2m−1, of Sm for m ≥ 2, and let row s have

exactly 2j positive entries in its first 2j columns. Then the entry in the last column

belongs to a block of 2j consecutive entries of the same sign. Moreover, every entry of

this row belongs to a block of entries of the same sign containing 2j or 2j+1 entries.

Proof. Note the assertion holds for the rows s of Sm that are excluded: rows 1 and

2m−1. We proceed by induction on m. For m = 2 the assertion holds by observing S2.

Suppose the assertion is true for Sm and consider Sm+1. That is, By definition of Sm,

the result holds for the first 2m columns of Sm+1, hence the final entry of Sm belongs to

a block of 2j consecutive entries. The row s satisfies either 1 6= s < 2m or s > 2m. In

the former case, the entry in column 2m belongs to a group of 2j consecutive entries if

it is negative, or a group of 2j+1 consecutive entries if it is positive. In the latter case,

we interchange “positive” and “negative” in the previous argument. All other entries

satisfy the induction hypothesis, and so our proof is complete. �

We say that two rows of Sm are equivalent provided they have the same number 2j

of positive entries in its first 2j columns, for 0 ≤ j ≤ m. This defines an equivalence

relation on the rows of Sm. We select representatives of these m + 1 equivalence classes
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as follows:

j = 0 : [+,−,−, +, ∗, . . . , ∗]

j = 1 : [+, +,−,−,−,−, +, ∗, . . . , ∗]
...

...

j = t : [+, . . . , +
︸ ︷︷ ︸

2t terms

,−, . . . ,−
︸ ︷︷ ︸

2t+1 terms

, +, ∗, . . . , ∗]

...
...

j = m − 2 : [+, . . . , +
︸ ︷︷ ︸

2m−2 terms

,−, . . . ,−
︸ ︷︷ ︸

2m−1 terms

, +, . . . , +
︸ ︷︷ ︸

2m−2 terms

]

j = m − 1 : [+, . . . , +
︸ ︷︷ ︸

2m−1 terms

,−, . . . ,−
︸ ︷︷ ︸

2m−1 terms

]

j = m : [+, . . . , +]

Note that for j = m− 1 and j = m, the rows shown above are the only elements of the

respective classes, and all other equivalence classes have 2m−j−1 members (by Theorem

2.25).

To further analyze the sign pattern of Sm, and hence each equivalence class of its

rows, we introduce the following sequence of matrices Nm, for m ≥ 1. Each Nm is

2m × 2m, which via multiplication will yield successive row sums of 2m/2Sm:

N1 =






1 1

0 1




 , Nm+1 =






Nm Om

0 Nm




 , m = 1, 2, . . .

where Om is a 2m × 2m matrix of 1’s. The kth column of the matrix Rm = 2m/2SmNm

is thus the sum of the first k columns of 2m/2Sm, for k = 1, . . . , 2m. Inequalities we

must impose on 2m/2Smxk in addition to 1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 then result from

encountering negative entries in or prior to the kth column in a given row of Rm. If a

row of Rm has a negative entry, we call the corresponding row of Sm sign-imbalanced,

since it indicates that at the column for which the negative entry appears in the row,
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there are more negative entries than positive entries. A row of Rm that is nonnegative

is thus called sign-balanced. Interestingly, we can explicitly identify the smallest entry

in each sign-imbalanced row.

Theorem 2.27 Consider the sequence Rm = 2m/2SmNm for m ≥ 2 (note that R1 ≥ 0).

For each j = 0, . . . , m−2, the row(s) indexed by (3+2l)2j +1 for l = 0, . . . , 2m−j−1 −2,

are sign-imbalanced, and contain both −2j and 2j, which are the smallest and largest

entries in this row. All other rows of Rm are sign-balanced; moreover, row 2m−1 + 1 is

nonnegative and has largest entry 2m−1.

Proof. We proceed by induction on m. Observe that:

R1 =






1 2

1 0




 ≥ 0,

and

R2 =













1 2 3 4

1 0 1 0

1 2 1 0

1 0 −1 0













.

Notice that both 1 = 20 and −1 = −20 appear in row 4 = (3 + 2 · 0)20 + 1, all other

rows of R2 are nonnegative, and the largest entry of row 3 = 22−0−1 + 1 is 2 = 22−0−1.

Suppose the assertion holds for Rm and consider Rm+1. A computation reveals:

Rm+1 =






Rm 2m/2SmOm + Rm

Rm 2m/2SmOm − Rm




 .
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Notice:

2m/2SmOm =













2m · · · 2m

0 · · · 0

...
...

0 · · · 0













,

and so partitioning Rm as follows:

Rm =






1 · · · 2m

R̂m






where R̂m is (2m − 1) × 2m, we have:

Rm+1 =













1 · · · 2m 2m + 1 · · · 2m+1

R̂m R̂m

1 · · · 2m 2m − 1 · · · 0

R̂m −R̂m













. (2.25)

So we need only consider the last 2m − 1 rows of Rm+1. Specifically, from the above

computation it is clear that for each j = 0, . . . , m − 2, the row of Rm+1 indexed by

(3 + 2l)2j + 1 for l = 0, . . . , 2m−j−1 − 2, contain both −2j and 2j, and row 2m−1 of R̂m

is nonnegative and contains the entry 2m−1. Thus, row 2m + 2m−1 + 1 = (3 + 2l)2j + 1

for l = 0 and j = m − 1 of Rm+1 contains both 2m−1 and −2m−1. Finally, notice that

row 2m+1 of Rm+1 is nonnegative and contains the entry 2m. This completes the proof.�

Note that, by Theorem 2.26, a row of Sm with 2j positive entries in the first 2j

columns contains positive and negative entries in blocks of 2j or 2j+1. We now prove

that a row of Rm containing smallest entry −2j has the same index as a row of Sm

containing a block of 2j positive entries in its first 2j columns.
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Theorem 2.28 Consider the sequences Sm and m ≥ 2. For each j = 0, . . . , m − 2, the

row(s) of Sm indexed by (3 + 2l)2j + 1 for l = 0, . . . , 2m−j−1 − 2, have exactly 2j positive

entries in the first 2j columns. In particular, the first 2m−1 entries of row 2m−1 + 1 are

positive, and the rest are negative.

Proof. We proceed by induction on m. For S2, row 4 = (3 + 2 · 0)20 + 1 has 1 = 20

positive entries in its first 20 column. Suppose the assertion holds for Sm and consider

Sm+1. By definition of Sm+1 and by our assumption on Sm, and since j ≤ m − 2, rows

(3 + 2l)2j + 1, for l = 0, . . . , 2m−j−1 − 2 + 2m−j−1, i.e. l = 0, . . . , 2m−j − 2, have exactly

2j positive entries in the first 2j columns, and the proof is complete. �

Before proceeding to our main result, we make a few comments. Consider the equiv-

alence class of rows of Sm containing exactly 2j positive entries in its first 2j columns.

Applying Theorem 2.26 to this equivalence class gives two possibilities:

[+, . . . , +
︸ ︷︷ ︸

2j terms

,−, . . . ,−
︸ ︷︷ ︸

2j terms

,−, . . . ,−
︸ ︷︷ ︸

2j terms

, ∗, . . . , ∗], [+, . . . , +
︸ ︷︷ ︸

2j terms

,−, . . . ,−
︸ ︷︷ ︸

2j terms

, +, . . . , +
︸ ︷︷ ︸

2j terms

, ∗, . . . , ∗].

The first of these is clearly sign-imbalanced. Considering P2m

3·2j (Sm), we must therefore

require:

1 + λ2 + · · ·+ λ2j − λ2j+1 − · · · − λ3·2j =
2j
∑

i=1

λi −
3·2j
∑

i=2j+1

λi ≥ 0.

By Theorems 2.27 and 2.28, each sign-imbalanced row of Sm in this equivalence class

corresponds to a row of Rm for which the smallest entry is −2j . Thus, upon consideration

of the corresponding entries of 2m/2Smxk for m ≥ j + 2 and k ≥ 3 · 2j, we may1 equate

the above inequality holding with adding 2j to each row with smallest term −2j in

1That this statement is true may be verified by hand; a rigorous proof remains to be found.
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Rm, which results in this row becoming sign-balanced. So, the above inequality implies

2m/2Smxk ≥ 0 for all 3 · 2j ≤ k ≤ 2m and each m ≥ j + 2. Moreover, if the second

sign pattern above is sign-imbalanced, it’s corresponding row of Rm has smallest entry

−2j ; however, observe that if we use the above inequality, the corresponding entry of

2m/2Smxk for m ≥ j + 2 and k = 3 · 2j is:

2j
∑

i=1

λi −
2j+1

∑

i=2j+1

λi +
3·2j
∑

i=2j+1+1

λi.

If we add and subtract the third term above, the following inequality is clear:

2j
∑

i=1

λi −
3·2j
∑

i=2j+1

λi + 2 ·
3·2j
∑

i=2j+1+1

λi ≥ 0.

Again, notice that adding and subtracting the third term and combining as above is

equivalent to adding 2j to each term of the corresponding row of Rm, so that the row

becomes sign-balanced, hence 2m/2Smxk ≥ 0 for all 3 · 2j ≤ k ≤ 2m and each m ≥ j + 2.

Collecting the above inequalities for j = 0, . . . , m−2, i.e. one for each equivalence class,

establishes our main theorem.

Theorem 2.29 Consider the sequence Sm, m ≥ 1, as defined above. Then (2.19) for

P2m

k (Sm) for k = 1, 2, . . . , 2m becomes:







1 = λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0,

∑2s

i=1 λi −
∑3·2s

i=2s+1 λi ≥ 0, s = 0, 1, . . . , m − 2,
(2.26)

where, for indices s such that 2s > k, we have λt = 0.

We now consider the solution P2m

(Sm) of system (2.26). Notice that if we write
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(2.26) in matrix form, we have:

Ax − b =






































−1 0 0 0 · · · · · · 0 0

1 −1 0 0 · · · · · · 0 0

0 1 −1 0 · · · · · · 0 0

0 0 1 −1 · · · · · · 0 0

...
...

...
. . .

. . . · · · ...
...

0 0 0 0 · · · · · · 1 −1

0 0 0 0 · · · · · · 0 1

−1 −1 0 0 · · · · · · 0 0

1 −1 −1 −1 −1 · · · 0 0

...
...

...
...

...
...

...
...

1 1 1 1 · · · · · · −1 −1




























































λ2

λ3

λ4

λ5

...

λ2m−1

λ2m























−






































−1

0

0

0

...

0

0

−1

−1

...

−1






































≥ 0.

The matrix A is (2m +m−1)× (2m−1), and rank(A) = 2m−1, so by Theorem 2.21, the

solution set P2m

(Sm) consists of a convex polyhedron. Recall that for m = 2, P4(S2) was

obtained in Example 2.22. Although determining (2.26), and not its general solution

(the extreme points of P2m

(Sm) for general m) was the purpose of this section, it is the

goal of future research to obtain a general form of the solution to (2.26), if one exists,

or to prove that no useful closed-form exists.

To solve (2.26) for m = 3, we implement the MATLAB function sohad (see Appendix

A.1), which was written for this purpose. This MATLAB function takes as input the

value of m, and follows precisely the steps outlined after Theorem 2.21 using (2.26). The

function’s output is the set of extreme points of P2m

3·2m−2(Sm) written as a matrix with

each extreme point a column. The program runs in time exponential according to m,

and is impractical for m ≥ 7. For m = 3, we see that P8(S3) is the convex hull of 17
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points:

P8(S3) =H{(1, 0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0, 0, 0), (1, 1/2, 1/2, 0, 0, 0, 0, 0),

(1, 1/2, 1/2, 1/2, 0, 0, 0, 0), (1, 1/2, 1/2, 1/2, 1/2, 0, 0, 0),

(1, 1/3, 1/3, 1/3, 1/3, 0, 0, 0), (1, 1/2, 1/2, 1/3, 1/3, 1/3, 0, 0, 0),

(1, 1/2, 1/2, 1/2, 1/4, 1/4, 0, 0, 0), (1, 3/5, 2/5, 2/5, 2/5, 2/5, 0, 0, 0)

(1, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 0), (1, 1/2, 1/2, 1/3, 1/3, 1/3, 1/3, 0)

(1, 1/2, 1/2, 1/2, 1/4, 1/4, 1/4, 0), (1, 3/5, 2/5, 2/5, 2/5, 2/5, 2/5, 0),

(1, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3), (1, 1/2, 1/2, 1/3, 1/3, 1/3, 1/3, 1/3)

(1, 1/2, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4), (1, 3/5, 2/5, 2/5, 2/5, 2/5, 2/5, 2/5)}

For m = 4, P16(S4) is the convex hull of 184 points, which we do not present here.

2.5 Conclusion

In this chapter we were able to obtain an important characterization of nonnegative

symmetric matrices for which each successive partial sum of the spectral decomposition

is a nonnegative matrix. Specifically, we have shown that the widely known class of

orthogonal matrices known as Soules matrices, which satisfy this property in a very

specific way, are actually a subclass of a larger set of orthogonal matrices, which we

call extended Soules matrices. Soules matrices are thus referred to as classical Soules

matrices, and we prove that each extended Soules matrix is a limit of a sequence of

classical Soules matrices. Upon obtaining a characterization of extended Soules matrices,

we examined nonnegativity of matrix functions whose inputs are matrices generated by

extended Soules matrices. As an additional application, we proved that every matrix
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generated by an extended Soules matrix is completely positive, with rank equal to the

cp-rank.

Given a symmetric matrix which satisfies the nonnegative successive partial sum

property, the over-arching theme of this chapter was to examine two basic problems:

fix the coefficients and vary the orthogonal matrix, or vary the coefficients and fix the

orthogonal matrix. Our best general result linking both problems is given by the Main

Theorem - its main drawback is that it does not specify any relationship among the

coefficients that is certain to prevail in specific examples. A major step toward a general

solution to the first problem is that of extended Soules matrices, which the first half of

the chapter was devoted to. As a first step toward that of the second problem, which

amounts in scope to the same type of problem as the SNIEP and requires the solution of a

system of linear inequalities, we obtain a characterization for the coefficients of a special

class of orthogonal Hadamard matrices. A closed-form solution set for the coefficients

of such matrices seems imminent, but requires further research. An investigation of

this set of coefficients for other classes of orthogonal matrices may also engender further

interesting results in future research as well.



51

Chapter 3

The Nonnegative Inverse Eigenvalue Problem for

Normal Matrices

Given a list σ = {λ1, λ2, . . . , λn} of n complex numbers, the Nonnegative Inverse Eigen-

value Problem (NIEP) seeks necessary and sufficient conditions for the existence of a

nonnegative n × n matrix A such that σ is the spectrum of A. This problem is com-

pletely solved only for n = 3 and n = 4, and only partially for n = 5. While the NIEP

remains open in general, several necessary and a profusion of sufficient conditions are

known, some of which we discuss in this chapter.

We do not attempt here an adequate summary of known results related to the NIEP,

nor do we wish to exemplify the varied and numerous applications, subproblems, ex-

tensions, or methods of numerical solution. For a recent thorough, yet brief, summary

of results related to the NIEP, which also includes an extensive bibliography of pa-

pers dealing with the NIEP as stated above, see [9]; for a complete and comprehensive

consideration of the NIEP, including an analysis of each of its many subproblems, ap-

plications, and numerical solutions, see [7]. The topic of this chapter is a special case of

the NIEP, the Normal NIEP (NNIEP), which seeks necessary and sufficient conditions

for the existence of a normal nonnegative matrix with spectrum σ.

We begin in Section 3.1 with a brief overview of the NIEP, specifically we outline

necessary conditions, and some sufficient conditions for general NIEP. In turn, this will
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lead us in Section 3.2 to a discussion of known sufficient conditions for the NNIEP, the

compendium of which to our knowledge has not been collected in a single source before.

Now, if N is a normal matrix and N = S + K with symmetric S and skew-symmetric

K, that the condition N ≥ 0 places certain restrictions on the possible sign-patterns of

K is proved in Section 3.3. An analysis of these sign patterns, specifically the potential

eigenvectors associated with the given spectrum, is then undertaken to solve the NNIEP

for n = 3, and to provide a partial solution to the NNIEP for n = 4. The chapter is

concluded with a discussion of questions raised in the current work, and directions for

further research into the NNIEP.

3.1 Overview of the NIEP

3.1.1 Necessary Conditions

We begin with the following, now somewhat classical, conditions on σ which are necessary

for the existence of a nonnegative matrix A with spectrum σ.

Theorem 3.1 Let A ≥ 0 be n × n with σ(A) = {λ1, λ2, . . . , λn}. Then:

(a) ρ(A) = max{|λi| : λi ∈ σ(A)} ∈ σ(A).

(b) σ(A) = σ(A).

(c) sk =

n∑

i=1

λk
i ≥ 0, k = 1, 2, . . . .

(d) sm
k ≤ nm−1skm, k, m = 1, 2, . . . .

Proof.
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(a) The statement follows from the Perron-Frobenius Theorem.

(b) The characteristic polynomial of A has real coefficients, hence any complex eigen-

values must occur in conjugate pairs.

(c) Since sk = tr(Ak), the result follows from Ak ≥ 0, k = 1, 2, . . . .

(d) Let A = D + C where D = diag(a11, a22, . . . , ann). Since A ≥ 0:

Am = (D + C)m ≥ Dm + Cm ≥ 0.

It follows that:

sm = tr(Am) ≥ tr(Dm) + tr(Cm) =

n∑

i=1

am
ii + tr(Cm). (3.1)

Recall Hölder’s Inequality: for any positive p, q satisfying 1
p

+ 1
q

= 1:

n∑

i=1

|xiyi| ≤
(

n∑

i=1

|xi|p
)1/p

·
(

n∑

i=1

|yi|q
)1/q

.

Taking p = m
m−1

, q = m, xi = 1, and yi = aii, we have:

s1 =

n∑

i=1

aii =

n∑

i=1

1 · aii ≤
(

n∑

i=1

1

)m−1

m

·
(

n∑

i=1

am
ii

) 1

m

= n
m−1

m

(
n∑

i=1

am
ii

) 1

m

.

Hence multiplying (3.1) by nm−1 and applying the inequality obtained from the

above by raising both sides to the power m yields:

nm−1sm ≥ nm−1
n∑

i=1

am
ii + nm−1tr(Ckm) ≥ sm

1 + nm−1tr(Ckm).

Thus sm
1 ≤ nm−1sm, and we have proved the inequality in the case k = 1. Applying

the above to the matrix B = Ak yields the remaining cases. �
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We remark that in [12, Theorem 1] Friedland proved that any set σ of complex numbers

satisfying Theorem 3.1(c) must also satisfy 3.1(a). Also, conditions 3.1(d) are called

the “JLL Conditions,” so-named since they were proved independently by Loewy and

London [18], and Johnson [15]. We also observe that further necessary conditions on the

coefficients of the characteristic polynomial of A (hence, the sk’s) were recently obtained

in [36, Theorem 3] using graph theoretic techniques.

Remark 3.2 The conditions in Theorem 3.1 are sufficient for the existence of a non-

negative matrix A with spectrum σ for n = 3, as is shown in Theorem 3.25 below. This is

false for n ≥ 4. To see this, suppose σ(A) = {
√

2,
√

2, i,−i} for some 4× 4 nonnegative

matrix A. Then ρ(A) =
√

2, but since it is not an algebraically simple eigenvalue of

A, the Perron-Frobenius Theorem implies A must be reducible. This implies {
√

2, i,−i}

must be the spectrum of a nonnegative matrix as well, but Theorem 3.1(d) fails for k = 1

and m = 2, since s1 =
√

2 and s2 = 0.

An important additional necessary condition for the NIEP, known as Karpelevich’s

Theorem, which is independent of those outlined in Theorem 3.1, follows from the equiv-

alence of the general NIEP with the stochastic NIEP (StNIEP). This equivalence was

first established by Johnson [15], and is what we describe next. In particular, suppose

A ≥ 0 is an irreducible n × n matrix with σ = {λ1, λ2, . . . , λn}, and ρ(A) = λ1 > 0. Let

x = [x1, x2, . . . , xn]T ≫ 0 be the positive eigenvector of A corresponding to λ1. Now,

let D = diag(x1, x2, . . . , xn), and consider the matrix B = 1
λ1

D−1AD ≥ 0. If we let

e = [1, 1, . . . , 1]T be the n × 1 vector of ones, we have:

Be =
1

λ1
D−1ADe =

1

λ1
D−1Ax =

1

λ1
D−1λ1x = D−1x = e.
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That is, B is a stochastic matrix with spectrum σ(B) = 1
λ1

σ(A), and A and B are

(diagonally) similar.

In case A is reducible, suppose A is in Frobenius normal form as follows:

A =













A11 0 · · · 0

A21 A22 · · · 0

...
...

. . .
...

Am1 Am2 · · · Amm













where each Aii is ni × ni and irreducible, and n1 + n2 + · · ·+ nm = n. Then σ(A) is the

union of the σ(Aii)’s, and suppose each σ(Aii) has spectral radius λi > 0 (with λi ≤ λ1).

Select x(i) ≫ 0 and define the matrix Di = diag(x
(i)
1 , x

(i)
2 , . . . , x

(i)
ni ). Observe then that

D−1
i AiiDie = λie (for e ni ×ni). Hence, letting Bi1 ≥ 0 be an arbitrary ni+1 ×ni matrix

with row sums equal to 1 − λi

λ1
, if we define:

B =













1
λ1

D−1
1 A11D1 0 · · · 0

B21
1
λ1

D−1
2 A22D2 · · · 0

...
...

. . .
...

Bm1 0 · · · 1
λ1

D−1
m AmmDm













,

it follows that Be = e and σ(B) = 1
λ1

σ(A) as before (only now A and B are not similar).

Let Θn ⊂ C be the set of all eigenvalues of n × n stochastic matrices. That is, λ

is an eigenvalue of an n × n stochastic matrix if and only if λ ∈ Θn. Our next result

is a complete characterization of Θn, specifically, the boundary of Θn, and is due to

Karpelevich [16]. See also [23, Chapter 7] for several useful examples and additional

information regarding the result. Our somewhat shorter statement is due to Ito [14].
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Theorem 3.3 (Karpelevich’s Theorem [14]) The region Θn is symmetric relative to

the real axis, is included in the unit disc |z| ≤ 1, and intersects the circle |z| = 1 at points

e2πia/b, where a and b run over the relatively prime integers satisfying 0 ≤ a ≤ b ≤ n.

The boundary of Θn consists of these points and of curvilinear arcs connecting them in

circular order.

Let the endpoints of an arc be e2πia1/b1 and e2πia2/b2 (b1 ≤ b2). Each of these arcs is

given by the following parametric equation:

λb2(λb1 − s)[n/b1] = (1 − s)[n/b1]λb1[n/b1], (3.2)

where [p/q] is the largest integer less than p/q, and the real parameter s runs over the

interval 0 ≤ s ≤ 1.

We note that the previous two results are useful for proving that a given list σ is not

the spectrum of a nonnegative matrix, but cannot in general allow one to conclude for

certain that a list is the spectrum of a nonnegative matrix.

In the next two examples, and since we require them for our work later, we illustrate

Karpelevich’s Theorem by constructing Θn for n = 3, 4 (see Figure 1). Note that

Θn ⊂ Θn+1, since to any stochastic n × n matrix we may append a row and column of

zeros without changing the spectrum (except adding a 0 to it).

Example 3.4 Let n = 3 in Karpelevich’s Theorem. Θ3 intersects the circle |z| = 1 at

points 1,−1, e2πi/3, e4πi/3. Since Θ2 is the real interval [−1, 1], the arc connecting 1 to −1

in Θ3 is this interval. Consider the arc connecting 1, e2πi/3, where a1 = 0, b1 = 1, a2 =

1, b2 = 3. The resulting parametric equation (3.2) is:

λ3(λ − s)3 = (1 − s)3λ3,
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for 0 ≤ s ≤ 1. The nonconstant solutions to the above are:

λ =
3s − 1

2
± i

√
3

(
1 − s

2

)

.

So, taking the positive root above yields the line segment connecting 1, e2πi/3; the negative

root yields that connecting 1, e4πi/3.

Now,for a1 = 1, b1 = 2, a2 = 1, b2 = 3, we have:

λ3(λ2 − s) = (1 − s)λ2,

for 0 ≤ s ≤ 1 which has (nonconstant) solutions

λ = −1

2
± i

2

√
4s − 3.

So, the arc connecting e2πi/3 and −1 consists of two parts, taking the negative root

above: for 0 ≤ s ≤ 3
4
, the line segment connecting points (−1, 0) with (−1/2, 0), and

for 3
4
≤ s ≤ 1, the line segment connecting (−1/2, 0) with e2πi/3. Taking the positive

root yields the complex conjugate of these arcs, and determines those connecting −1 with

e4πi/3.

Thus, Θ3 is the union of the real interval [−1, 1] with the closed triangle with vertices

1, e2πi/3, e4πi/3. See Figure 1(a).

Example 3.5 We now construct Θ4 according to Karpelevich’s Theorem. The boundary

of Θ4 intersects the unit disc at the points: 1, eπi/2, e2πi/3,−1, e4πi/3, e3πi/2.

For the arc connecting 1, eπi/2, let a1 = 0, b1 = 1, a2 = 1, b2 = 4. (3.2) becomes:

λ4(λ − s)4 = (1 − s)4λ4,

for 0 ≤ s ≤ 1. The nonconstant solutions to the above are: λ = 2s− 1, s± i(1− s). The

latter solutions are line segments connecting 1, eπi/2 and 1, e3πi/2, respectively taking the

+ and − above.
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The arcs connecting eπi/2, e2πi/3 requires a1 = 1, b1 = 3, a2 = 1, b2 = 4, so (3.2)

becomes:

λ4(λ3 − s) = (1 − s)λ3,

hence, factoring and eliminating constant solutions, we have:

(λ + 1)(λ2 + 1) = s (3.3)

for 0 ≤ s ≤ 1. Replacing λ with λ̄ gives the arc connecting e4πi/3 and e3πi/2. Similarly,

the arc connecting e2πi/3,−1 requires a1 = 1, b1 = 2, a2 = 1, b2 = 3, hence (3.2) becomes:

λ3(λ2 − s)2 = (1 − s)2λ4,

i.e.

λ4 − 2sλ2 − (s2 − 2s + 1)λ + s2 = 0, (3.4)

for 0 ≤ s ≤ 1. As before, replacing λ with λ̄ yields the arc connecting −1, e4πi/3.

Now, the polynomials in (3.3), (3.4) have a closed-form solution set as can be de-

termined by Cardano’s or Ferrari’s Formulas; we do not present them here. They are

easily plotted in Maple: see Figure 1(b).

The regions Θn for n = 3, 4 are plotted below.

Remark 3.6 In general, Karpelevich’s Theorem is useful for providing bounds on the

imaginary parts of individual complex numbers in the spectrum of a nonnegative ma-

trix. However, if σ is a list of n ≥ 5 complex numbers, and λ, µ ∈ Θn are distinct,

Karpelevich’s Theorem does not imply that λ and µ are both eigenvalues of the same

n×n nonnegative matrix. This is not the case if λ, µ are complex, nonreal numbers and

n ≤ 4, in which case µ = λ̄.
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Figure 1: The regions Θ3 and Θ4 as determined by Karpelevich’s Theorem.

We now describe some sufficient conditions for the real NIEP (RNIEP) which lead

to sufficient conditions for the NNIEP.

3.1.2 Some Sufficient Conditions for the RNIEP

In this section we present a few known sufficient conditions for the RNIEP, some of

which date back to the inception of the problem. In the following we assume λ1 ≥ λ2 ≥

· · · ≥ λn. Suleimanova [35] stated and Perfect [26] proved that if

λ1 +
∑

i,λi<0

λi ≥ 0 (3.5)

then σ = {λ1, λ2, . . . , λn} is the spectrum of an n × n (stochastic) nonnegative matrix.

This result was improved by Salzmann [29], who found the following conditions sufficient

for the existence of a diagonalizable nonnegative n × n matrix:

1

2
(λi + λn+1−i) ≤

1

n

n∑

j=1

λj , i = 2, . . . ,

[
n + 1

2

]

,

n∑

j=1

λj ≥ 0

(3.6)
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Salzmann’s result was further refined by Kellogg [17] and later generalized by Fiedler

[11] who deduced the existence of a nonnegative symmetric matrix with spectrum given

as ordered above. In particular, let r be the greatest index j (1 ≤ j ≤ n) for which

λj ≥ 0, and define:

K =

{

i ∈
{

1, 2, . . . ,

[
n − 1

2

]}

: λi ≥ 0 and λi + λn−i < 0

}

.

If

λ1 +
∑

i∈K
i<k

(λi + λn−i) + λn−k ≥ 0, for all k ∈ K,

λ1 +
∑

i∈K

(λi + λn−i) +

n−1−r∑

j=r+1

λj ≥ 0, provided n ≥ 2r + 2,

(3.7)

then σ is the spectrum of an n×n nonnegative matrix. Borobia [2] proved the following

further generalization of Kellogg’s condition (3.7). Define r as before to be the greatest

index j (1 ≤ j ≤ n) for which λj ≥ 0, and let J = {λr+1, . . . , λn}. If some partition

J1 ∪ · · · ∪ Js of J exists such that the list:

λ1 ≥ · · · ≥ λr ≥
∑

λ∈Js

λ ≥
∑

λ∈Js−1

λ ≥ · · · ≥
∑

λ∈J1

λ (3.8)

satisfies (3.7), then {λ1, λ2, . . . , λn} is the spectrum of a nonnegative matrix.

Remark 3.7 Condition (3.8) is the most general of (3.5)-(3.8). That (3.7) implies

(3.8) is obvious. Fiedler [11] and Marijuan, et. al [20] proved (3.5) and (3.6) imply

(3.8), and none of the converses are true since σ = {5, 3,−2,−2,−2,−2} satisfies (3.8)

but none of the rest. Also, (3.5) and (3.6), and (3.5) and (3.7) are independent. To see

this, let σ1 = {4, 3,−1,−2,−3}, σ2 = {14, 6, 1,−7,−8}, σ3 = {9, 7, 4,−3,−3,−6,−8},

and σ4 = {3, 3,−1,−1. − 2,−2}. Then σ1 satisfies (3.5) but not (3.6) and σ2 satisfies
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(3.6) but not (3.5), while σ3 satisfies (3.5) but not (3.7) and σ4 satisfies (3.7) but not

(3.5).

We now proceed to the NNIEP.

3.2 Sufficient Conditions for NNIEP

In this section, we collect some sufficient conditions for the NNIEP. We include proofs

only where short, or somewhat simple, or where no proof can be found in the literature.

Practically all such known conditions are based on the existence or construction of

circulant matrices, which have the form:

A =













a1 a2 · · · an

an a1 · · · an−1

...
...

. . .
...

a2 a3 · · · a1













.

Circulant matrices enjoy many nice properties (see [8]). In particular, they are normal,

and if a nonnegative circulant matrix is scaled so that it’s spectral radius is equal to 1,

then it is doubly stochastic. Let σ(A) = {λ1, λ2, . . . , λn} and Λ = diag(λ1, λ2, . . . , λn).

If U is the n × n normalized Fourier matrix, i.e.

U =
1√
n













1 1 1 · · · 1

1 w1 w2
1 · · · wn−1

1

...
...

. . .
...

1 wn−1 w2
n−1 · · · wn−1

n−1













where

wi = e2πik/n = cos
2kπ

n
+ i sin

2kπ

n
, k = 1, . . . , n,
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then U is unitary, i.e. UU∗ = I, and:

A = UΛU∗.

The nonnegative inverse eigenvalue problem for circulant matrices has been solved

by Rojo and Soto [28, Theorem 10], who proved the following.

Theorem 3.8 [28] Let σ = {λ1, λ2, . . . , λn} be a list of complex numbers labeled so that

(a) λ1 ≥ max2≤k≤n |λk|,

(b) λn−j+2 = λ̄j for j = 2, 3, . . . ,
[

n+1
2

]
.

Then σ is the spectrum of a nonnegative n × n circulant matrix if and only if λ1 is at

least:

min
p∈P

max
0≤k≤2m

{

−2
m+1∑

j=2

Rep(λj) cos
2k(j − 1)π

2m + 1
− 2

m+1∑

j=2

Imp(λj) sin
2k(j − 1)π

2m + 1

}

(3.9)

if n = 2m + 1, or

min
p∈P

max
0≤k≤2m+1

{

−2

m+1∑

j=2

Rep(λj) cos
k(j − 1)π

m + 1
− (−1)kλm+2

−2
m+1∑

j=2

Imp(λj) sin
k(j − 1)π

m + 1

}

(3.10)

if n = 2m + 2, where

P = {p : p permutation on {λ2, . . . , λn},

p(λj) = λk iff p(λn−j+2) = λ̄k, j = 2, 3, . . . , n
}

(3.11)

The following corollary of Theorem 3.8, proved independently by Xu [37, Theorem

2.3], leads to additional results from which sufficient conditions for the more general

NNIEP arise.
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Corollary 3.9 [37] Let σ = {λ1; λ2, . . . , λm+1, λ̄2, . . . , λ̄m+1} and Imλi 6= 0 for i =

2, . . . , m + 1. If

λ1 ≥ 2(|λ2| + · · ·+ |λm+1|),

then there exists an n × n nonnegative circulant matrix with spectrum σ, where n =

2m + 1.

Proof. Select p ∈ P as in (3.11), and suppose σ is relabeled if necessary in accordance

with p, so that the first m complex λi’s are the conjugates of the last m. Suppose

p(λj) = xj + iyj, where yj 6= 0, for j = 2, . . . , m + 1. A computation using (3.9) reveals:

max
0≤k≤2m

{

−2
m+1∑

j=2

Rep(λj) cos
2k(j − 1)π

2m + 1
− 2

m+1∑

j=2

Imp(λj) sin
2k(j − 1)π

2m + 1

}

= −2

m+1∑

j=2

√

x2
j + y2

j




xj

√

x2
j + y2

j

cos
2k∗(j − 1)π

2m + 1
+

yj
√

x2
j + y2

j

sin
2k∗(j − 1)π

2m + 1





≤ 2

m+1∑

j=2

|p(λj)| ·

∣
∣
∣
∣
∣
∣

xj
√

x2
j + y2

j

cos
2k∗(j − 1)π

2m + 1
+

yj
√

x2
j + y2

j

sin
2k∗(j − 1)π

2m + 1

∣
∣
∣
∣
∣
∣

≤ 2

m+1∑

j=2

|p(λj)|

= 2(|λ2| + · · ·+ |λm+1|)

≤ λ1.

Appealing to Theorem 3.8 yields the result. �

The following interesting result, found in Fiedler [11, Lemma 2.2] and generalized by

Xu [37, Lemma 2.4], is used to construct additional normal matrices, which may not be

circulants, from two given normal matrices. The proof is based on direct construction,

and so we omit it.
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Theorem 3.10 [37] Let A be an m×m normal matrix with eigenvalues α1, . . . , αm, let

u, ‖u‖ = 1, be an eigenvector corresponding to α1; let B be an n×n normal matrix with

eigenvalues β1, . . . , βn, let v, ‖v‖ = 1, be an eigenvector corresponding to β1, then for

any ρ, the matrix

C =






A ρuv∗

ρvu∗ B






has eigenvalues α2, . . . , αm, β2, . . . , βn, ν1, ν2, where ν1 and ν2 are eigenvalues of the ma-

trix

Ĉ =






α1 ρ

ρ β1




 .

Remark 3.11 If A ≥ 0 and B ≥ 0 in Theorem (3.10), the Perron-Frobenius Theorem

implies both u and v are nonnegative, hence C ≥ 0 as well.

Notice that the selection of ρ, in addition to the matrices A and B, completely

determines ν1 and ν2, as well as the matrix C, above. By selecting ρ properly, one

can construct a new nonnegative normal matrix from two nonnegative normal matrices,

altering only the respective spectral radii of the original matrices [37, Theorem 2.5].

Theorem 3.12 [37] If {α0; α1, . . . , αm−1} and {β0; β1, . . . , βn−1} are the spectra of non-

negative normal matrices A ∈ Mm and B ∈ Mn respectively, and α0 ≥ β0, then for any

η ≥ 0,

{α0 + η; β0 − η, α1, . . . , αm−1, β1, . . . , βn−1}

is the spectrum of a nonnegative normal matrix C ∈ Mm+n.

Proof. Take ρ =
√

η(α0 + β0 + η) in Theorem 3.10. Clearly C ≥ 0; that C is also

normal follows since C has an orthonormal set of m + n eigenvectors. �
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Theorems 3.9 and 3.12 together imply the following more general result [37, Corollary

2.7].

Theorem 3.13 [37] Let σ = {λ01; λ1, . . . , λt, λt+1, . . . , λs, µ1, . . . , µm, µ̄1, . . . , µ̄m} where

λ0 ≥ λ1 ≥ · · · ≥ λt ≥ 0 ≥ λt+1 ≥ · · · ≥ λs are real and Imµk 6= 0 for k = 1, . . . , m. If

λo ≥ |λt+1| + · · ·+ |λs| + 2|µ1| + · · ·+ 2|µm|,

then there exists an n × n normal nonnegative matrix with spectrum σ, where n =

2m + s + 1.

Proof. We first prove the case t = 0. Here we proceed by induction on s. If s = 0,

the assertion follows from Theorem 3.9. If s = 1, let λ′
0 = λ0 + λ1 and λ′

1 = 0.

Theorem We first prove the case t = 0. Here we proceed by induction on s. If

s = 0, the assertion follows from Theorem 3.9 implies there is a (2m + 1) × (2m + 1)

nonnegative circulant matrix with spectrum {λ′
0; µ1, . . . , µm, µ̄1, . . . , µ̄m}. Since [0] is

normal, applying Theorem 3.12 with η = |λ1| yields that

{λ0; λ1, µ1, . . . , µm, µ̄1, . . . , µ̄m}

is the spectrum of a 2m + 2 nonnegative normal matrix.

Suppose the result is true for all k ≤ s where s ≥ 2. Let λ′
0 = λ0 + λ1, λ′

1 =

λ2, . . . , λ
′
s−1 = λs. By the induction hypothesis, there exists a nonnegative normal

(2m + s) × (2m + s) matrix with spectrum {λ′
0; λ

′
1, . . . , λ

′
s−1, µ1, . . . , µm, µ̄1, . . . , µ̄m}.

Again, since [0] is normal, we apply Theorem 3.12 with η = |λ1| to obtain that

{λ0; λ1, λ2, . . . , λs, µ1, . . . , µm, µ̄1, . . . , µ̄m}
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is the spectrum of a nonnegative normal (2m + s + 1) × (2m + s + 1) matrix. This

completes the induction and proves the case t = 0.

Now, if t ≥ 1, we take the direct sum of the aforementioned (2m+s+1)×(2m+s+1)

matrix with the (nonnegative, normal) diagonal matrix diag(λ1, . . . , λt) and obtain a

nonnegative normal matrix with desired spectrum. This completes the proof. �

We now turn to the comparison of sufficient conditions for the RNIEP with those

for the NNIEP. To do so, we require some further definitions as found in [37]. For a

(2m + s + 1)-tuple of complex numbers

σ = {λ0; λ1, . . . , λs, µ1, . . . , µm, µ̄1, . . . , µ̄m}, (3.12)

where λ0, λ1, . . . , λs are real, λ0 ≥ 0, and Imµj 6= 0 (0 ≤ j ≤ m), we define:

r′o = λ0, r′i = λi (1 ≤ i ≤ s),

r′s+j = −2|µj| (1 ≤ j ≤ m)

(3.13)

We call the set

σ′ = {r′0; r′1, . . . , r′s, r′s+1, . . . , r
′
s+m} (3.14)

the companion set of σ. Note σ′ is a (s + m + 1)-tuple of real numbers.

Observe that Theorem 3.13 shows that if the companion set of σ satisfies Perfect’s

sufficient condition (3.5), then there is a nonnegative normal matrix with spectrum σ.

That this is also true for Salzmann’s and Kellogg’s conditions (3.6), (3.7) is proved in

[37, Corollary 2.9, Theorem 2.8]. We state the results here for completeness, but omit

the rather lengthy proofs.

Theorem 3.14 [37] Let σ and σ′ be given by (3.12) and (3.13), respectively, and σ′ be

ordered as r0 ≥ r1 ≥ · · · ≥ rn, where n = s + m and ri = r′τ(i), (0 ≤ i ≤ n) for some
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permutation τ . If

1

2
(ri + rn−i) ≤

1

n + 1

n∑

j=0

rj , i = 1, . . . ,
[n

2

]

,

n∑

i=0

ri ≥ 0,

then there exists a normal nonnegative matrix with spectrum σ.

Theorem 3.15 [37] Let σ and σ′ be given by (3.12) and (3.13), respectively, and σ′ be

ordered as r0 ≥ r1 ≥ · · · ≥ rn, where n = s + m and ri = r′τ(i), (0 ≤ i ≤ n) for some

permutation τ . Let

K =
{

i ∈
{

1, . . . ,
[n

2

]}

: ri ≥ 0 and ri + rn+1−i < 0
}

and q be the greatest index j (0 ≤ j ≤ n) for which rj ≥ 0. If

r0 +
∑

i∈K
i<k

(ri + rn+1−i) + rn+1−k ≥ 0 for all k ∈ K,

r0 +
∑

i∈K

(ri + rn+1−i) +

n−q
∑

j=q+1

rj ≥ 0,

then there exists a (2m+ s+1)× (2m+ s+1) normal nonnegative matrix with spectrum

σ.

Finally, it was proved by Radwan [27, Theorem 3.3] that if a certain set derived from

the companion set of σ satisfies Kellogg’s condition (3.7), then we obtain a sufficient

condition for the existence of a nonnegative normal matrix that is similar in generality

to that of Borobia’s (3.8). We state Radwan’s conditions without proof as we conclude

this section.
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Theorem 3.16 [27] Let σ = {λ0, λ1, . . . , λl, µ1, . . . , µm, µ̄1, . . . , µ̄m} where λ0 ≥ λ1 ≥

· · · ≥ λl are real numbers, λ0 ≥ 0, and Imµj 6= 0 for all j = 1, 2, . . . , m. Let σ′ =

{r0, r1, . . . , rl+m} be the companion set of σ, arranged so that r0 ≥ r1 ≥ · · · ≥ rl+m. Let

q be the greatest index j (0 ≤ j ≤ l) for which rj ≥ 0. Let S be an integer such that 1 ≤

S ≤ l+m−q, and let J1∪J2∪· · ·∪JS be an S-partition of J = {−rq+1,−rq+2, . . . ,−rl+m}

where
∑

r∈J1

r ≥
∑

r∈J2

r ≥ · · · ≥
∑

r∈JS

r.

Define Tj =
∑

Jj
r, j = 1, 2, . . . , S.

If {r0, r1, . . . , rq,−TS,−TS−1, . . . ,−T1} satisfies Kellogg’s condition (3.7), then σ is

the spectrum of a nonnegative normal (2m + l + 1) × (2m + l + 1) matrix.

As a final remark, we consider the following example.

Example 3.17 Let σ = {12
√

2,−12, 12 + i, 12 − i}. Observe that the companion set

of σ is σ′ = {12
√

2,−12,−2
√

145}, which is not the spectrum of any 3 × 3 nonnegative

matrix since the sum of its entries is negative. Indeed, σ does not satisfy any of the

sufficient conditions stated in this section to be the spectrum of a nonnegative normal

4×4 matrix. In particular, σ is not the spectrum of a 4×4 nonnegative circulant matrix.

However, σ is the spectrum of the following nonnegative normal 4 × 4 matrix:

A = 12
√

2













1
6
−

√
2

12
1
6

+ 5
√

2
12

√
2

6
− 1

6
−

√
3

72

√
2

6
− 1

6
+

√
3

72

1
6

+ 5
√

2
12

1
6
−

√
2

12

√
2

6
− 1

6
−

√
3

72

√
2

6
− 1

6
+

√
3

72
√

2
6
− 1

6
+

√
3

72

√
2

6
− 1

6
+

√
3

72
1
3

+
√

2
3

1
3
−

√
2

6
−

√
6

72
√

2
6
− 1

6
−

√
3

72

√
2

6
− 1

6
+

√
3

72
1
3
−

√
2

6
+

√
6

72
1
3

+
√

2
3













.

The means by which we construct A, namely the matrix S in Case 2 of Section 3.3.2
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with quasi-diagonal form:

Λ =













12
√

2 0 0 0

0 12 1 0

0 −1 12

0 0 0 −12













,

will be discussed in the next section.

3.3 Skew-Symmetric Sign Patterns Allowing Posi-

tive Null Vectors

Recall that if N is an n×n normal matrix, then N = S +K where S = ST is symmetric

and K = −KT is skew-symmetric, each of S and K are also normal, hence possess a

common orthonormal set of n eigenvectors. Now, suppose N ≥ 0, and

σ(N) = {λ1, . . . , λs, α1 + iβ1, . . . , αm + iβm, α1 − iβ1, . . . , αm − iβm},

where λ1 ≥ 0, λk ∈ R (1 ≤ k ≤ s) and βj > 0 (i ≤ j ≤ m). Then S ≥ 0 as well, and

σ(S) = {λ1, . . . , λs, α1, . . . , αm, α1, . . . , αm}

and

σ(K) = {0, . . . , 0
︸ ︷︷ ︸

s terms

, iβ1, . . . , iβm,−iβ1, . . . ,−iβm}.

If ρ(N) = λ1 ≥ 0, N has a nonnegative eigenvector corresponding to λ1 which thus

corresponds to λ1 for S and to 0 for K. That is, K must have a nonnegative null vector.

If N is also irreducible, it follows that K must have a positive null vector.
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In order for K to have a positive null vector, there are certain restrictions that must

be placed on its sign pattern which, in turn, place restrictions on the orthonormal set

of eigenvectors of K, S, and thus N . The analysis of the prevailing sign patterns leads

to a method for solving the NNIEP which shows promise. Specifically, we construct

an orthonormal basis of eigenvectors of K, determine if σ(S) is the set of eigenvalues

of a nonnegative symmetric matrix S with the same eigenvector basis, and then see if

N = S+K ≥ 0 (the sum S+K is then a normal matrix since S and K are simultaneously

diagonalizable by construction).

We begin with a basic result characterizing skew-symmetric matrices from which our

main results will follow, whose proof can be found in [13, Chapter 2].

Theorem 3.18 Let K be an n × n skew-symmetric matrix. Then:

(a) K is normal, hence there is a unitary matrix U such that U∗KU is a diagonal

matrix.

(b) The eigenvalues of K are either 0 or pure imaginary numbers occurring in

complex conjugate pairs.

(c) K has even rank, and the parity of n and the number of zero eigenvalues are

the same. Thus if n is odd, then K is singular.

We are concerned here with sign patterns of skew-symmetric matrices, henceforth called

skew patterns. As we shall see, skew patterns are relatively special, and form a proper

subset of all sign-singular skew patterns.

Since our principal aim is directed toward sign patterns of null vectors, and trans-

position and permutation similarity do not effect positive such vectors, we make the

following observation.
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Observation 3.19 The set of n × n skew patterns is closed under

(a) permutation similarity, and

(b) transposition, i.e. multiplication by −1.

In view of the above result, there is no loss of generality in replacing + and − in a

skew pattern with 1 and −1, each of the patterns considered below may be viewed as

{1,−1, 0}−matrices rather than sign patterns.

Remark 3.20 The set of n× n skew patterns is also closed under signature similarity:

if K is a skew pattern and D is a diagonal matrix with 1’s and −1’s on its diagonal (i.e.

a signature matrix), then DKD is also a skew pattern. However, signature similarity

does not preserve positivity of null vectors, and so will not be included in the discussion

here.

We say that two skew patterns A and B are equivalent if B can be obtained from A

by finitely many operations in Observation 3.19, and hence, this defines an equivalence

relation. Consequently, to achieve our aforementioned goal, it suffices to consider repre-

sentatives of equivalence classes.

We require now a, preferably simple, condition for determining whether or not a

skew pattern allows a positive null vector. It is clear that a skew pattern with a positive

null vector cannot have a row (or column) whose nonzero entries are all of the same

sign: that is, each row must be multi-signed. The following lemma provides a necessary

condition that is easy to check.

Lemma 3.21 Let K = [kij] be an n × n singular skew-symmetric matrix. If K has a
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positive null vector, then

∣
∣
∣
∣
∣

n∑

j=1

kij

∣
∣
∣
∣
∣
≤

n∑

j=1

|kij|, i = 1, . . . , n (3.15)

with equality for some i if and only if kij = 0 for all j = 1, . . . , n. An analogous inequality

also holds for the columns of K.

Proof. By the triangle inequality for real numbers, if equality holds in (3.15) for some

nonzero row (column) of K, then each nonzero entry of this row (column) must have

the same sign, hence K cannot have a positive null vector. �

For n = 3, 4, and 5, Lemma 3.21 is also sufficient as a characterization of possible

skew patterns as can be verified directly using the function skewsp implemented in

MATLAB (see Appendix A.2). However, beginning with n = 6, the condition is not

sufficient, as we now illustrate.

Example 3.22 Let

K =




















0 + − + + +

− 0 + + + +

+ − 0 + + +

− − − 0 − +

− − − + 0 −

− − − − + 0




















Clearly K satisfies (3.15). However, K does not possess a positive null vector. Let

K have a positive null vector x = [x1, . . . , x6]
T . Then Kx = 0 if and only if K̂e =

D−1KDe = 0 where e = [1, . . . , 1]T ∈ R6 and D = diag(x1, . . . , x6) (we used the same
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idea to prove the equivalence of the NIEP and the StNIEP in Section 3.1). Observe that

K̂ and K have the same sign pattern, only now the rows of K̂ sum to 0. Suppose

K̂ =




















0 a −b c d e

−a 0 f g h j

b −f 0 k l m

−c −g −k 0 −p q

−d −h −l p 0 −r

−e −j −m −q r 0




















,

where a, b, c, d, e, f, g, h, j, k, l, m, p, q are positive numbers. K̂e = 0 implies the following

three equations must hold:

a = f + g + h + j

b = a + c + d + e

f = b + j + k + l.

Substituting the second equation for b in the third equation, then substituting the resulting

expression for f into the first equation yields:

a = a + c + d + e + j + k + l + g + h + j,

hence c + d + e + j + k + l + g + h + j = 0. This contradicts that the terms involved are

positive. Therefore, no realization of the sign pattern K has a positive null vector.

Let K be skew-symmetric and write K = K+ −KT
+ where K+ ≥ 0, the positive part

of K, has nonzero entries only at indices where K is positive. Through an analysis of

K+, we obtain necessary and sufficient conditions for a skew-symmetric pattern to have

a positive null vector, as follows.
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Theorem 3.23 Let K 6= 0 be a singular skew-symmetric pattern, and K+ its positive

part. Then K allows a positive null vector if and only if K+ is irreducible, or the

Frobenius normal form of K+ is a direct sum of irreducible matrices.

Proof. It suffices to prove the “if” part in the case that K+ is irreducible. Hence the

graph G of K+ is strongly connected, and so each member of E(G) belongs to some

cycle. Assume that G contains p edge-distinct cycles. Then we may decompose the

pattern K+ as a sum of p cycle patterns Z1, Z2, . . . , Zp. Denote by Ẑi the {0, 1}-matrix

obtained from Zi by replacing + with 1. By definition of cycle pattern, we see that the

sum of each nonzero row and column of Ẑi − ẐT
i is 0, hence defining K̂+ as the sum of

Ẑ1, Ẑ2, . . . , Ẑp, we see that the skew-symmetric matrix K̂ = K̂+ − K̂T
+, satisfies:

K̂e =

p
∑

i=1

(Ẑi − ẐT
i )e =

p
∑

i=1

0 = 0.

We have thus constructed a realization of the pattern K which has a positive null vector.

We shall prove the contrapositive of the “only if” part. Assume K is a singular

skew-symmetric matrix with a reducible K+, and that the Frobenius normal form of K+

is not a direct sum. Without losing generality, we assume K+ has the form:





K1 K3

0 K2






where K1 and K2 are square nonnegative matrices, and K3 is nonnegative and nonzero.

Let x be a null vector of K, and partition x = [x1, x2]
T to conform with K+. Then:

Kx =






(K1 − KT
1 )x1 K3x2

−KT
3 x1 (K2 − KT

2 )x2




 =






0

0




 .

Since xT
1 (K1 − KT

1 )x1 = xT
2 (K2 − KT

2 )x2 = 0 for any x1, x2, and xT Kx = 0, it follows

that xT
1 K3x2 = 0. So, x1 or x2 must contain at least one nonpositive entry, and thus
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cannot both be positive. Consequently, K cannot have a positive null vector, and this

completes the proof. �

We have the following immediate corollary to Theorem 3.23.

Corollary 3.24 Let K be a skew-symmetric pattern. The following are equivalent:

(a) K allows a null vector with no zero entries;

(b) DKD allows a positive null vector for some signature matrix D;

(c) the positive part of DKD is irreducible, or its Frobenius normal form is a direct

sum of irreducible matrices, for some signature matrix D.

We now proceed to the NNIEP for n = 3 and 4. Note that the SNIEP has been solved

for n = 3, 4 by McDonald and Neumann [21], who used Soules matrices to construct

solution matrices. For this reason, we focus our attention on the nonsymmetric NNIEP.

3.3.1 The NNIEP for 3 × 3 Matrices

We begin our exposition of the NNIEP for n = 3 with the following observation.

Observation 3.25 There is only one equivalence class of 3×3 skew-symmetric matrices

which allow a positive null vector and satisfy (3.15). This class is represented by the

following sign-pattern matrix:








0 + −

− 0 +

+ − 0









.
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Proof. The only two patterns which satisfy (3.15) and allow a positive null vector are









0 + −

− 0 +

+ − 0









and









0 − +

+ 0 −

− + 0









and the first pattern is the transpose of the second. As an example, the null space of









0 1 −1

−1 0 1

1 −1 0









is spanned by [1, 1, 1]T . �

We will now characterize the spectra of all 3 × 3 (nonsymmetric) normal matrices

in terms of the nonzero entries of their skew-symmetric parts with sign patterns in

accordance with Observation 3.25.

Theorem 3.26 Let A ≥ 0 be a (nonsymmetric) normal 3 × 3 matrix with σ(A) =

{1, a + bi, a − bi} (b > 0) and unit Perron vector ν = [x, y, z]T ≫ 0, where x ≥ y ≥ z.

Then

− z2

x2 + y2
≤ a ≤ 1 and b ≤ yz(1 − a)

x
. (3.16)

Conversely, if σ = {1, a + bi, a − bi} (b > 0) and

−1

2
≤ a ≤ 1 and b ≤ 1 − a√

3
(3.17)

are satisfied, there exists a nonnegative normal matrix with spectrum σ.

Before proceeding to the proof of Theorem 3.26, we make the following remark.
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Remark 3.27 Observe that conditions (3.17) are simply those of Theorem 3.1(c) and

(d) adapted for σ = {1, a + bi, a − bi}, and (3.17) follows from (3.16) by taking x =

y = z = 1√
3
. Also, the set Θ3 constructed in Figure 1(a) is precisely the set obtained

by graphing (3.17). While (3.17) are thus sufficient for the existence of some normal

matrix with the given spectrum, the first part of Theorem 3.26 indicates that the sharper

inequalities (3.16) must hold for a given normal matrix with Perron vector ν.

Proof of Theorem 3.26. Let K = 1
2
(A − AT ) be the skew-symmetric part of A, and

denote by K̂ the matrix:

K̂ =









0 z −y

−z 0 x

y −x 0









.

Note that σ(K̂) = {0, i,−i}, and ν = [x, y, z]T is a (positive) null vector of K̂. By

Observation 3.25, we may assume without losing generality that K = bK̂, so that K

and K̂ are simultaneously unitarily diagonalizable. An invertible matrix diagonalizing

K̂ is:

R =










x
−xz + iy

x2 + y2

−xz − iy

x2 + y2

y
−yz − ix

x2 + y2

−yz + ix

x2 + y2

z 1 1










.

Since R is not unitary, we apply the Gram-Schmidt procedure to R to obtain:

U =












x
−xz + iy
√

2(x2 + y2)

−xz − iy
√

2(x2 + y2)

y
−yz − ix
√

2(x2 + y2)

−yz + ix
√

2(x2 + y2)

z

√

x2 + y2

2

√

x2 + y2

2












.
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Now, U not only diagonalizes K̂ and K, but also A itself, hence letting Λ = diag(1, a +

bi, a − bi), it follows that:

A = UΛU∗ =









x2 + (y2 + z2)a xy(1 − a) + zb xz(1 − a) − yb

xy(1 − a) − zb y2 + (x2 + z2)a yz(1 − a) + xb

xz(1 − a) + yb yz(1 − a) − xb z2 + (x2 + y2)a









. (3.18)

So, A ≥ 0 if and only if the following inequalities are satisfied:

−min

{
x2

y2 + z2
,

y2

x2 + z2
,

z2

x2 + y2

}

≤ a ≤ 1,

and

b ≤ min

{
xy(1 − a)

z
,
xz(1 − a)

y
,
yz(1 − a)

x

}

.

By our assumption that x ≥ y ≥ z, we have x2 ≥ y2 ≥ z2 and x2+y2 ≥ x2+z2 ≥ y2+z2,

and also xy ≥ xz ≥ zy. Therefore,

x2

y2 + z2
≥ y2

x2 + z2
≥ z2

x2 + y2
and

xy(1 − a)

z
≥ xz(1 − a)

y
≥ yz(1 − a)

x
,

hence (3.16) holds.

To prove (3.17), it suffices to take x = y = z = 1√
3

in (3.18). This completes the

proof. �

As a corollary to the above theorem, we obtain the following result, essentially proved

by Loewy and London in [18].

Corollary 3.28 Let σ = {1, a + bi, a − bi}. Then σ is the spectrum of a nonnegative

matrix if and only if inequalities (3.17) hold. In particular, the NIEP and the (nonsym-

metric) NNIEP are equivalent for n = 3.
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Proof. See Remark 3.27. �

As a final note, observe that the matrix:

R =











x
−xz

√

x2 + y2

−y
√

x2 + y2

y
−yz

√

x2 + y2

x
√

x2 + y2

z
√

x2 + y2 0











obtained from U in the above proof by taking the real and imaginary parts of U ’s

complex columns and re-normalizing, is a classical Soules matrix. If we let D be the

following quasi-diagonal matrix:

D =









1 0 0

0 a b

0 −b a









we see that the matrix RDRT is the same (up to permutation) as the matrix A con-

structed in (3.18). This different approach, often called the “Soules approach” to the

NNIEP (which was used to successfully solve the SNIEP for n = 3, 4 and partially for 5

in [21]), is another means by which solutions may be constructed.

3.3.2 The NNIEP for 4 × 4 Matrices

We now turn to the NNIEP for n = 4. Note that the general NIEP for n = 4 has

been solved in two different ways, one by Meehan [22], and another, which was obtained

from the coefficients of the characteristic polynomial, by Torre-Mayo et. al. [36]. Both

solutions are essentially algorithmic in nature, and to date no practical means by which

the spectrum σ = {1, r, a + ib, a − ib} may be characterized are available.
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We begin with an analysis of the possible skew patterns in this case, which we checked

with the MATLAB function skewsp.

Observation 3.29 There are five equivalence classes of 4×4 skew patterns which allow

a positive null vector and satisfy (3.15). These classes have the following representatives:












0 0 0 0

0 0 + −

0 − 0 +

0 + − 0













,













0 0 + −

0 0 − +

− + 0 0

+ − 0 0













,













0 0 + −

0 0 + −

− − 0 +

+ + − 0













,













0 0 + −

0 0 − +

− + 0 +

+ − − 0













,













0 + + −

− 0 + +

− − 0 +

+ − − 0













.

(Note that the third and fourth matrices in the above are signature similar via D =

diag(1,−1, 1, 1).)

We are able to resolve the NNIEP for n = 4 for normal matrices that possess the

first two skew patterns above. For ease of presentation, our constructions will utilize the

following quasi-diagonal form for normal matrices:

Λ =













1 0 0 0

0 r 0 0

0 0 a −b

0 0 b a













,

to which our normal matrices will be real-orthogonally similar. We note also that the

arrangement of the diagonal blocks in Λ is somewhat arbitrary, and additional matrices
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and inequalities result if we rearrange the blocks, so long as the spectral radius corre-

sponds to the nonnegative or positive eigenvector. We intend to undertake this fully in

future research.

We proceed by cases to present our current work on this problem.

Case 1. Denote by K̂ the matrix:

K̂ =
1

√

x2 + y2 + z2













0 0 0 0

0 0 z −y

0 −z 0 x

0 y −x 0













.

We lose no generality in assuming K = bK̂, where σ(K̂) = {0, 0, i,−i}. Proceeding as

in the proof of Theorem 3.26, an orthogonal matrix that puts K̂ in quasi-diagonal form

is:

S =














w −
√

x2 + y2 + z2 0 0

x wx√
x2+y2+z2

− xz√
x2+y2

√
x2+y2+z2

− y√
x2+y2

y wy√
x2+y2+z2

− yz√
x2+y2

√
x2+y2+z2

x√
x2+y2

z wz√
x2+y2+z2

√
x2+y2√

x2+y2+z2
0














.

Observe that S is a classical Soules matrix. Now, upon examining the entries of A =

SΛST , we see that A ≥ 0 if and only if the following inequalities are satisfied:

− w2

x2 + y2 + z2
≤ r ≤ 1,

−min

{
x2

y2 + z2
,

y2

x2 + z2
,

z2

x2 + y2

}

· (rw2 + x2 + y2 + z2) ≤ a ≤ 1,

and

b ≤ min

{
xy

z
,
xz

y
,
yz

x

}

· rw2 + x2 + y2 + z2 − a
√

x2 + y2 + z2
.



82

As in the proof of Theorem 3.26, since w ≥ x ≥ y ≥ z, we have:

min

{
x2

y2 + z2
,

y2

x2 + z2
,

z2

x2 + y2

}

=
z2

x2 + y2

and

min

{
xy

z
,
xz

y
,
yz

x

}

=
yz

x
.

Thus, using w2 + x2 + y2 + z2 = 1, it follows that A ≥ 0 if and only if:

− w2

1 − w2
≤ r ≤ 1, (3.19)

−z2(1 − (1 − r)w2)

x2 + y2
≤ a ≤ 1 − (1 − r)w2, (3.20)

b ≤ yz(1 − a − (1 − r)w2)

x
√

1 − w2
. (3.21)

Observe that if we let w → 0+, (3.19) becomes 0 ≤ r ≤ 1, and (3.20) and (3.21) become

(3.17). In this case, A is a reducible matrix.

Case 2. Let K̂ be the following matrix:

K̂ =
1√

w2 + x2
√

y2 + z2













0 0 xz −xy

0 0 −wz wy

−xz wz 0 0

xy −yw 0 0













.

Proceeding as before, a matrix which puts K̂ in quasi-diagonal form is:

S =














w
w
√

y2+z2

w2+x2 0 − x2
√

w2+x2

x
x
√

y2+z2

w2+x2 0 w√
w2+x2

y −y
√

w2+x2√
y2+z2

− z√
y2+z2

z −z
√

w2+x2√
y2+z2

y√
y2+z2

0














.
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Note again that S is a classical Soules matrix. Upon examining the entries of A = SΛST ,

we see that A ≥ 0 if and only if the following inequalities are satisfied:

−1 ≤ r ≤ 1,

a ≥ −min

{
x2(1 − (1 − r)(y2 + z2))

w2
,
z2(1 − (1 − r)(w2 + x2))

y2

}

,

a ≤ min
{
1 − (1 − r)(y2 + z2), 1 − (1 − r)(w2 + x2)

}
,

b ≤ min

{
wz(1 − r)

xy
,
wy(1 − r)

xz
,
xz(1 − r)

wy
,
xy(1 − r)

wz

}

.

Since w ≥ x ≥ y ≥ z > 0, we have w2 + x2 ≥ y2 + z2, hence:

1 − (1 − r)(y2 + z2) ≥ 1 − (1 − r)(w2 + x2).

Also, wy ≥ wz and xy ≥ xz, so

wy

xz
≥ wz

xy
and

xy

wz
≥ xz

wy
,

thus as w2yz ≥ x2yz, we have:

wz

xy
≥ xz

wy
.

So,

min
{
1 − (1 − r)(y2 + z2), 1 − (1 − r)(w2 + x2)

}
= 1 − (1 − r)(w2 + x2),

min

{
wz(1 − r)

xy
,
wy(1− r)

xz
,
xz(1 − r)

wy
,
xy(1 − r)

wz

}

=
xz(1 − r)

wy
.

Further, if xy ≥ wz, then

x2(1 − (1 − r)(y2 + z2))

w2
≥ z2(1 − (1 − r)(w2 + x2))

y2
;

however, the ordering of the two terms in the above inequality is not certain if wz < xy.
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Therefore, A ≥ 0 if and only if:

−1 ≤ r ≤ 1, (3.22)

−min

{
x2(1 − (1 − r)(y2 + z2))

w2
,
z2(1 − (1 − r)(w2 + x2))

y2

}

≤ a ≤ 1 − (1 − r)(y2 + z2)

(3.23)

b ≤ xz(1 − r)

wy
(3.24)

The remaining cases are difficult since the orthogonal matrices we must use to put

K̂ into quasi-diagonal form contain parameters in addition to those appearing in the

Perron vector. It is the subject of further research to determine the restrictions that

prevail on the spectrum of the associated matrices. We suspect that the above two cases

encompass the majority of possible spectra in the NNIEP for n = 4.

For illustration, consider the base inequalities considered in the above two cases,

and momentarily ignore the ordering of w, z, y, z. In Case 1, if we let w = 0 and put

x = y = z = 1√
3
, the inequalities become:

0 ≤ r ≤ 1,

−1

2
≤ a ≤ 1,

b ≤ 1 − a√
3

,

which are the same as (3.17) together with 0 ≤ r ≤ 1. That this is the obvious result

follows from the fact that setting w = 0 implies then the resulting A is reducible. In
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Case 2, if we take w = x = y = z = 1
2
, the resulting inequalities are:

−1 ≤ r ≤ 1,

−1 + r

2
≤ a ≤ 1 + r

2
,

b ≤ 1 − r.

If we consider solutions of the above inequalities as determining regions in C, we see

that the first set of inequalities is simply Θ3, an equilateral triangle with vertices at

1, e2πi/3, e4πi/3, while the second set is a square with vertices at 1, i,−1,−i. Taking the

union of these two sets, we obtain the following shaded set, sketched with the boundary

of Θ4 superimposed, in Figure 2.

K1.0 K0.5 0 0.5 1.0

K1.0

K0.5

0.5

1.0

Figure 2: Known solutions to the NNIEP for n = 4

It is known, see [23, Chapter 7], that α is an eigenvalue of a 4 × 4 nonnegative

circulant matrix if and only if α belongs to the set shaded in Figure 2 above. Moreover,

observe that if

σt =

{

1, 2t,−1

2
− t + i

1

2
,−1

2
− i

1

2

}

,

then σ0 is the spectrum of a nonnegative 4 × 4 normal matrix; it is the result of all our

computations performed thus far that for no t > 0 is the same true of σt. Using Meehan’s
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[22] algorithm, however, we can easily construct a nonnormal nonnegative 4 × 4 matrix

which has spectrum σt.

3.4 Conclusion

In this chapter, we summarized the relevant necessary and some sufficient conditions

for the general NIEP, and used the latter to determine some sufficient conditions for

the NNIEP. Our purpose was to make some progress on the solution of the NNIEP,

which we viewed from the perspective as the problem of analyzing skew-symmetric sign

patterns which allow positive null vectors, constructing the associated orthonormal sets

of eigenvectors, and, in turn, using these bases to construct normal matrices.

We established necessary and sufficient conditions on a given skew pattern to possess

a positive eigenvector, and qualifying these patterns up to permutation and transposi-

tion, we found that in the case n = 3 only one pattern, and for n = 4, five patterns

emerged for consideration. This allowed a complete solution to the NNIEP in the case

n = 3 (in fact, the strongest result possible), and a partial analysis of two of the five

skew patterns in the case n = 4 was provided as well.

We believe that, through further research into the orthonormal bases for the other

three skew patterns, and through a variation of the arrangement of entries in the quasi-

diagonal forms used to construct realizing matrices, that a complete solution to the

NNIEP in the case n = 4 will be possible.
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Chapter 4

Concluding Remarks

In this dissertation, we investigated the implications of a property involving the spectral

decomposition of symmetric matrices, and constructed some preliminary solutions to the

normal nonnegative inverse eigenvalue problem (NNIEP). In Chapter 2 we studied the

former problem, and we obtained a characterization of a new class of orthogonal matri-

ces, which we call extended Soules matrices, that are generalizations of the widely-known

class of Soules matrices examined in the literature (which we call classical Soules ma-

trices). Using this characterization, we proved some results regarding matrix functions

and complete positivity of matrices generated by extended Soules matrices which were

only previously known to hold for classical Soules matrices. A reasonable conjecture is

that any result regarding classical Soules matrices that does not have assumptions of

irreducibility, or require a positive first column, also holds for extended Soules matrices.

Another aspect of the afore-mentioned property is the examination of the eigenvalues

involved, which was undertaken preliminarily and whose results were illustrated using

certain orthogonal Hadamard matrices. This interesting application was not fully re-

solved, but we conjecture that a closed-form solution, i.e. one specifying the vertices of

the convex hull of eigenvalues for which the resulting matrices have the spectral decom-

position property, is possible.

In Chapter 3, after giving an overview of the NIEP, as well as some necessary and

some sufficient conditions, we examined a new approach to the study of the NNIEP.
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Namely, our approach consists the investigation of skew-symmetric matrices with posi-

tive null vectors, from which we obtain a unitary matrix that can be used to construct

solution matrices. That this approach has efficacy is that its scope includes all possi-

ble skew-symmetric parts of normal matrices, and is evidenced by the solution to the

NNIEP for 3 × 3 matrices - the strongest result possible for this case. We present also

some preliminary results for the NNIEP for 4 × 4 matrices using this approach, which

fully resolves two out of five possible cases. Interestingly, the unitary matrices con-

structed in these two cases, when written as orthogonal matrices, are extended Soules

matrices. The remaining three cases are difficult since the unitary matrices involve pa-

rameters independent of spectral data, and so require a very careful and lengthy analysis

as to the outcome of resulting inequalities. Our initial work suggests that no new lists

σ = {1, r, a+ ib, a− ib} can be realized in these three cases that are not already realized

in the first two cases - further research is required to verify this statement, however. We

note also that the results obtained here are not contained in any known sufficient condi-

tion for the NNIEP adapted to 4×4 matrices. By generalizing individual skew patterns

and constructing normal matrices, we believe it is possible to obtain further sufficient

conditions for the NNIEP for any order that are independent of those appearing in the

literature.
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Appendix A

MATLAB Programs

A.1 MATLAB Code for sohad

function sohad(m)

format rat; % set output to belong to the set of rational numbers.

% 1. Construct A and b.

% a. Construct first 2^m rows. These rows represent the

% inequalities for the set S_n.

b=[-1,zeros(1,2^m-1),-ones(1,m-1)]’;

B=[eye(2^m-1);zeros(1,2^m-1)];

C=[zeros(1,2^m-1);eye(2^m-1)];

A=[C-B;-1,-1,zeros(1,2^m-3)]; % includes row for m=2.

clear B;

clear C;

% b. Construct last m-1 rows. These represent the additional

% inequalities that must be satisfied so that the resulting
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% symmetric matrix is nonnegative.

for i=1:m-2

c=2*[ones(1,2^i-1),zeros(1,2^m-2^i)];

d=[ones(1,3*2^i-1),zeros(1,2^m-3*2^i)];

A=[A;c-d];

clear c;

clear d;

end

% 2. Compute extreme points.

% a. Build a matrix containing rows of potential

% extreme points, which are computed as solutions of

% r-square subsystems of Ax=b, where r is the rank of A.

r=rank(A);

B=nchoosek(2:2^m+m-1,r);

n=size(B,1);

X=[];

for i=1:n
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if det(A(B(i,:),:))~=0

X(i,:)=(A(B(i,:),:)\b(B(i,:),1))’;

end

end

s=size(X,1);

% b. Due to truncation error in MATLAB, small negative numbers

% are introduced that we first set equal to zero. Then we test

% each resulting solution found in a in the original inequality

% Ax-b>=0, where again due to truncation error, we accept

% solutions which yield small negative numbers in the vector

% Ax-b.

for i=1:s

for j=1:r

if abs(X(i,j))<=10^(-(m-1)*m) % set precision.

X(i,j)=0;

end

end

end

p=1;
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for i=1:s

for j=1:r+m

if A(j,:)*(X(i,:)’)-b(j,1)>-10^(-(m-1)*m)

else

p=p+1;

end

end

if p>=2

X(i,:)=zeros(1,r);

p=1;

end

end

% c. Remove any duplicate or zero rows from matrix of extreme

% points.

unique(X,’rows’)’

A.2 MATLAB Code for skewsp

function skewsp(n,s)

% The purpose of this funcion is to search through all {0,1,-1} skew



93

% matrices for which each nonzero row has at least one 1 and one -1,

% and then classify the resulting patterns up to permutation and

% transposition. The function takes as input the size n of the matrix

% and a parameter s that is either 0 or 1, and provides as output the

% entries above the diagonal, and written in lexicographic order. If

% s=0 we classify up to transposition and permutation only, and if

% s=1, we also classify up to signature similarity.

% 1. Check that input is correct.

if (s~=0) & (s~=1)

disp(’Error. The second parameter must be 0 or 1.’)

return

end

m=(n^2-n)/2; % m is the number of entries above the diagonal

A=zeros(n*m,n);

% For each consecutive set of n rows, A stores a "basic skew matrix"

% which are skew symmetric matrices with exactly one 1 above the

% diagonal and one -1 below the diagonal.

% 2. Construct all possible n-square basic skew matrices, and stack
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% one on top of the other in A.

B=zeros(m,2);

C=zeros(m,2);

B(1,1)=1;

B(m,2)=n;

C(1,1)=2;

C(1,2)=1;

a=2;

b=1;

for i=2:m % construct indices for 1’s and -1’s

if a==n-b+1

B(i,1)=B(i-1,1)+n+1;

B(i-1,2)=a+b-1;

C(i,1)=B(i,1)+1;

C(i,2)=b+1;

b=b+1;

a=2;

else

B(i,1)=B(i-1,1)+n;

B(i-1,2)=a+b-1;

C(i,1)=B(i,1)+a;

C(i,2)=b;
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a=a+1;

end

end

for i=1:m % place 1 & -1 indices into basic skew matrix

A(B(i,1),B(i,2))=1;

A(C(i,1),C(i,2))=-1;

end

clear B;

clear C;

% 3. Collect all linear combinations of basic skew matrices that have

% either no nonzero elements or at least one 1 and one -1 in each row,

% where the set of coefficients comes from the set of all combinations

% of the elements (0, 1, -1) taken m at a time. Collect the entries

% of each appearing above the diagonal and order them lexicographically.

D=combn([0,1,-1],m); % generate 3^m X m coefficient matrix

for i=1:3^m % positive null vector condition

E=D(i,1)*A(1:n,1:n);

for j=2:m

E=E+D(i,j)*A((j-1)*n+1:(j)*n,1:n);
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end

F=abs(E);

for l=1:n

if (sum(F(l,:))~=0 & abs(sum(E(l,1:n)))==sum(F(l,:)))

D(i,:)=zeros(1,m);

end

end

clear F;

end

clear E;

D(~any(D,2),:)=[]; % remove trivial linear combinations.

% 4. Classify the result of step 3 up to transposition and permutation.

% a. Classify up to transposition (i.e. multiplication by -1)

c=size(D,1);

for i=1:c % transposition condition

for j=i+1:c

if (D(i,:)==-D(j,:)) D(j,:)=zeros(1,m);

end

end
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end

D(~any(D,2),:)=[];

c=size(D,1);

% b. Construct coefficients representing permutation matrices.

G=perms([n:-1:1]);

f=size(G,1);

H=zeros(n*f,n);

g=1; % permutation counter

for i=1:n:n*f

for j=1:n

H(i+j-1,G(g,j))=1;

end

g=g+1;

end

clear G;

% c. Classify up to permutation similarity.

for i=1:c % permutation similarity
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E=D(i,1)*A(1:n,1:n);

for j=2:m

E=E+D(i,j)*A((j-1)*n+1:(j)*n,1:n);

end

for k=i+1:c

F=D(k,1)*A(1:n,1:n);

for l=2:m

F=F+D(k,l)*A((l-1)*n+1:(l)*n,1:n);

end

h=sum(abs(D(i,:)));

if h~=0

for p=n+1:n:n*f

if (H(p:p+n-1,:)*F*(H(p:p+n-1,:))’==E)

D(k,:)=zeros(1,m);

end

end

end

end

end

D(~any(D,2),:)=[];

d=size(D,1);
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% 5. (Optional) Classify up to signature similarity.

if s==1

% a. Generate all possible signature matrices, and collect only

% diagonal entries.

J=combn([1,-1],n);

e=size(J,1);

% b. Remove skew coefficients that are signature similar.

for i=1:d % signature similarity

E=D(i,1)*A(1:n,1:n);

for j=2:m

E=E+D(i,j)*A((j-1)*n+1:(j)*n,1:n);

end

for l=i+1:d

F=D(l,1)*A(1:n,1:n);

for p=2:m

F=F+D(l,p)*A((p-1)*n+1:(p)*n,1:n);

end

for q=2:e

if (diag(J(q,1:n))*F*diag(J(q,1:n))==E)
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D(l,:)=zeros(1,m);

end

end

end

end

D(~any(D,2),:)=[];

D

else

D

end
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