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THEORETICAL BASIS FOR NUMERICALLY EXACT

THREE-DIMENSIONAL TIME-DOMAIN

ALGORITHMS

Abstract

by Christopher Lincoln Wagner, Ph.D.
Washington State University

May 2004

Chair: John Brand Schneider

Applied engineering often requires one to obtain solutions to partial differential

equations. Simple problems can be solved by analytic methods, but most practical applica-

tion problems are too complicated to solve analytically. One must either solve a simplified

approximation, or use numerical computations. There are numerous approximations and

numerical methods. In this work solution techniques are considered for the time evolution

of acoustic and electromagnetic fields. A popular time evolution method is Yee’s finite-

difference time-domain algorithm. This algorithm is used here as a reference algorithm.

Unfortunately, the Yee algorithm introduces non-physical algorithmic anisotropic disper-

sion error. Some of the consequences of the anisotropic behavior of the Yee algorithm are

considered. Then the spatial-differential operators needed to obtain theoretically numeri-

cally exact propagation in three-dimensions, with the central-difference time-derivative, are

defined, analyzed, and demonstrated. Numerically exact is taken to mean that, to within

the sampling limit imposed by the discretization in space and time, the only errors are due

to the finite precision of digital computer arithmetic.
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Chapter 1

Introduction
The classic Yee Finite-Difference Time-Domain (FDTD) algorithm employs standard

central-differences to approximate both the spatial and temporal derivatives of the gov-

erning equations [1]. These central differences yield second-order accuracy in terms of

propagation in a homogeneous grid [2]. Thus if the discretization is reduced by a factor of

n, the phase error will be reduced by a factor of n2. The Yee algorithm is also second-order

in terms of isotropy, i.e., the error as a function of angle has a leading term that depends on

the square of the discretization size.

For electromagnetics problems, Maxwell’s coupled differential equations are approxi-

mated as coupled finite difference equations. The finite-difference equations are solved for

the future fields in terms of known past fields. The coupled equations are then alternately

solved to advance the fields in the time-domain. A simulation is obtained by marching

the fields forward in time. However, because of the approximations inherent in the FDTD

equations, fields accumulate errors as they propagate. The amount of error is dependent on

the direction of propagation and the frequency, i.e., the error is both anisotropic and disper-

sive. Given unlimited computer resources, any desired model fidelity could be obtained.

Because of memory and other computer limitations, one often cannot simply increase the

discretization to achieve an acceptable level of error. Instead, a different FDTD algorithm
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can be employed which has superior error characteristics. Several such algorithms have

been proposed in the electromagnetics literature and a survey of many of the more promis-

ing ones can be found in [3]. This dissertation is divided into chapters, briefly described

below.

In order to formalize and simplify the analysis of FDTD algorithms, a finite-difference

calculus is presented in Chapter 2. This finite-difference calculus is then used to perform

dispersion and stability analysis of the Yee algorithm. The same basic techniques are used

for the dispersion and stability analysis in the subsequent chapters.

In Chapter 3, the consequences of the Yee algorithm anisotropic dispersion is studied.

The problem of mode scrambling is introduced and explained. Because a resonator with

perfect electrically conducting (PEC) walls has no complications with absorbing boundary

conditions and, for simple canonical geometries, the resonant frequencies are trivial to find,

resonators are often used for analyzing the performance of finite-difference time-domain

(FDTD) methods. However, when testing the performance of boundary implementations in

an FDTD scheme one should compare to the resonant frequencies of a “perfect” discretized

resonator (not to the mode frequencies in the continuous world). On the other hand, when

testing the dispersion properties of a method, the resonant frequencies for some structures

can be obtained directly from the dispersion relation, thus obviating the need for any sim-

ulation. Here we demonstrate how the dispersion relation can be used to obtain all the

resonant frequencies of a rectangular resonator modeled with the Yee algorithm. Further-

more it is shown that modes that are degenerate in the continuous world can split into

distinct modes in FDTD resonators, while modes that are separate in the continuous world
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can combine in FDTD resonators, thus yielding extra or missing modes. Analytic results

are verified using numerical simulations.

In Chapter 4 the problem of anisotropic dispersion is examined in the scalar field acous-

tic problem. An FDTD algorithm is presented here that has second-order accuracy but

fourth-order isotropy. This algorithm permits a temporal step size 50 percent larger than

that of the three-dimensional Yee algorithm. Pressure-release resonators are used to demon-

strate the behavior of the algorithm and to compare it with the Yee algorithm. It is demon-

strated how the increased isotropy enables post-processing of the simulation spectra to

correct much of the dispersion error. The algorithm can also be optimized at a specified

frequency, substantially reducing numerical errors at that design frequency. Also consid-

ered are simulations of scattering from penetrable spheres ensonified by a pulsed plane

wave. Each simulation yields results at multiple frequencies which are compared to the

exact solution. In general excellent agreement is obtained.

In Chapter 5 the theoretical basis for numerically exact algorithms is presented. In a

one-dimensional (1D) homogeneous space the classic Yee finite-difference time-domain

(FDTD) algorithm is numerically exact when operated at the Courant stability limit. Nu-

merically exact is taken to mean that, to within the sampling limit imposed by the dis-

cretization in space and time, the only errors are due to the finite precision of digital com-

puter arithmetic. Unfortunately, the Yee algorithm is not numerically exact in two or more

dimensions. However, using the design shown in Chapter 5, three-dimensional (3D) spatial

differential operators can have 1D dispersion properties. Just as the space and time errors

can be made to cancel in the 1D Yee algorithm, 3D algorithms (for hyperbolic systems
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of coupled first order equations) in an unbounded homogeneous space can be constructed

which are, in theory, numerically exact. The volumetric differential operators presented

here extend over a localized non-zero volume, unlike the usual Nabla (or Del) operator

which acts at a point. The computer implementations of volume operators presented here

are based on reconstruction methods. Thus producing global range operators, so the imple-

mentations of these operators are computationally expensive. Sample implementations of

approximate acoustic and electromagnetic algorithms are described and are shown to pro-

duce results that are superior to the classic Yee algorithm for the cubic resonator problem.
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Chapter 2

Analysis of the Classic FDTD Technique

2.1 Finite-Difference Calculus

In order to specify precisely a finite-difference algorithm, it is convenient to define the

following discrete operators. We inherently assume a Cartesian grid of nodes at which

samples of the fields are available. The shift operator Sn(a) acting on a field f(x, y, z, t)

shifts the variable n of f by a∆n, where ∆n is the grid spacing in the n direction. Thus,

for example, Sx(a)f(x, y, z, t) = f(x + a∆x, y, z, t). With this shift operator the central

finite-differences are

Dn =
Sn(1

2
) − Sn(−1

2
)

∆n

, n ∈ (x, y, z, t). (2.1)

Averaging operators are also needed

An =
Sn(1) + Sn(−1)

2
, n ∈ (x, y, z). (2.2)

When finding the dispersion relation and the stability limit below, the effect of these oper-

ators on plane waves is required. Given a scalar plane wave, P (x, y, z, t) = ei(k·r−ωt), the
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difference operators acting on the wave yield

DnP =
2i

∆n

sin

(

kn∆n

2

)

P, n ∈ (x, y, z),

DtP = − 2i

∆t

sin

(

ω∆t

2

)

P,

(2.3)

where kn, is the component of the wavevector in the n direction. When acting on a plane

wave the averaging operators yield

AnP = cos(kn∆n)P, n ∈ (x, y, z). (2.4)

In this notation the Yee Nabla or Del operator (∇0) is given by

∇0 = Dxx̂ +Dyŷ +Dzẑ. (2.5)

The Yee gradient of a scalar plane wave is then

∇0P (x, y, z) = (Dxx̂ +Dyŷ +Dzẑ)P (x, y, z)

=

(

2i

∆x

sin

(

kx∆x

2

)

x̂ +
2i

∆y

sin

(

ky∆y

2

)

ŷ +
2i

∆z

sin

(

kz∆z

2

)

ẑ

)

P (x, y, z).

(2.6)

The standard Yee divergence operator uses the six velocity components nearest to the pres-

sure node being updated. Using the above notation the Yee divergence becomes

∇0 · V = DxVx +DyVy +DzVz

=
2i

∆x

sin

(

kx∆x

2

)

Vx +
2i

∆y

sin

(

ky∆y

2

)

Vy +
2i

∆z

sin

(

kz∆z

2

)

Vz,

(2.7)
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where V is a vector plane wave. The Yee curl of a vector V is

∇0 × V = (DyVz −DzVy)x̂ + (DzVx −DxVz)ŷ + (DxVy −DyVx)ẑ, (2.8)

where for plane waves the terms can be expanded with (2.3).

2.2 Dispersion and Stability Analysis

A simple technique for analyzing the stability of finite difference methods was given

by von Neumann and Richtmyer [4]. In summary, substituting a complete basis set of

complex-exponential plane-wave solutions into the finite difference equations of the system

converts time and space derivatives into multiplicative factors. Then the fields are elimi-

nated from the resulting algebraic system to obtain the dispersion relation. The dispersion

relation can be analyzed to obtain stability requirements. The stability conditions are ob-

tained by examining the dispersion equation for the relationship between the wave vector k

and angular frequency ω. When the relationship is complex, the result is an unstable algo-

rithm [4] or superluminal propagation [5]. The material parameters are assumed constant in

the region of analysis. For a 3D space, plane waves of arbitrary wave-vector and frequency

form a complete basis. While von Neumann did obtain a dispersion relation (without call-

ing it such), he only considered stability properties. Taflove and Brodwin [6] demonstrated

the utility of analyzing the dispersion relation for understanding propagation behavior, i.e.,

the accuracy of the simulation. Thus the dispersion relation for a time-domain algorithm

provides a powerful tool for analyzing the algorithm for both stability and accuracy.
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Obtaining a dispersion relation for a Yee algorithm [6] is simple with the finite differ-

ence calculus. As an example, the acoustics dispersion relation is derived. For homogeneous-

space small-signal acoustics the governing equations are

∂V

∂t
= −1

%
∇P,

∂P

∂t
= −%c2∇ · V, (2.9)

where % is the density, c is the wave speed, and V and P are the velocity and pressure

fields, respectively. Applying (2.3), (2.6), and (2.7) to each term of (2.9) for assumed plane

wave solutions with wave vector k and frequency ω yields

DtV = −1

%
∇0P = −1

%
(x̂DxP + ŷDyP + ẑDzP ),

DtP = −%c2∇0 · V = −%c2(DxVx +DyVy +DzVz).

(2.10)

Solving (2.10) simultaneously to eliminate (for example) V yields

D2
tP = c2∇0 · ∇0P. (2.11)

Substituting the expressions for the plane-wave finite-differences (2.3), (2.6), and (2.7)

results in the Yee dispersion relation [6]

(

1

c∆t

sin
ω∆t

2

)2

=

(

1

∆x

sin
kx∆x

2

)2

+

(

1

∆y

sin
ky∆y

2

)2

+

(

1

∆z

sin
kz∆z

2

)2

. (2.12)
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For cubic cells of step size ∆g, this reduces to

1

S2
sin2

(

ω∆t

2

)

= sin2

(

kx∆g

2

)

+ sin2

(

ky∆g

2

)

+ sin2

(

kz∆g

2

)

, (2.13)

where S is the Courant number equal to c∆t/∆g.

To find the Courant stability limit the dispersion relation (2.13) is solved for the fre-

quency

ω =
2

∆t

sin−1

(

S

[

sin2

(

kx∆g

2

)

+ sin2

(

ky∆g

2

)

+ sin2

(

kz∆g

2

)]1/2)

. (2.14)

The Courant stability limit can be found using complex frequency analysis [4, 7] where

stability requires that ω be real for all real k’s permitted by grid sampling. Thus, in (2.14),

the magnitude of the argument of the arcsine must be less than or equal to one. Stability

limit SL is given by

1

SL

= max
k

|kx|,|ky |,|kz |≤ π

∆g

(
√

sin2

(

kx∆g

2

)

+ sin2

(

ky∆g

2

)

+ sin2

(

kz∆g

2

)

)

. (2.15)

The maximum case will occur when all ki’s are π/∆g, so the stability limit is

SL =
1√
3
. (2.16)

The essential consequences of the dispersion relation can be understood with the help

of figure 2.1, a graph of frequency ω vs. wavenumber |k| in three grid directions, as given
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Figure 2.1: Yee algorithm dispersion curves ω vs. |k| in three grid directions; the grid axis
(1D), the planar diagonal (2D), and the major diagonal (3D). For fixed |k| the anisotropic
dispersion curves show a range of frequencies which will correspond to the single value of
|k|. For fixed ω, the anisotropic dispersion will result in a range of |k|’s.

in (2.15). In resonator problems, the |k| is fixed by the geometry and boundary conditions.

For fixed |k| the anisotropic dispersion curves show a range of frequencies which can cor-

respond to the single value of |k|. For problems that fix the frequency ω (e.g., driving an

antenna with a sinusoid), the anisotropic dispersion will result in a range of |k|’s for a single

ω. The spread in |k|, and hence wavelength, is typically described as phase error.
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Chapter 3

Understanding Numerical Dispersion in Elec-

tromagnetics FDTD

3.1 Introduction

Canonical resonators have been used to quantify the performance of FDTD methods

designed to model boundaries that are not aligned with the grid (e.g., [8, 9]). Resonators or

resonant-like structures have also been used in simulations to demonstrate the dispersion

properties of a scheme (e.g., [10] where a parallel plate waveguide was used). When the

goal is to ascertain the quality of the implementation of boundary conditions (such as the

use of a locally conformal scheme to realize a PEC boundary), one should try to separate the

errors introduced by inherent grid dispersion from those introduced by the boundary con-

ditions themselves. To accomplish this, the resonant frequencies obtained in a simulation

should be compared not to frequencies of the corresponding resonator in the continuous

world, but rather to the frequencies of a “perfect” discretized scatterer, i.e., one that suffers

the inherent anisotropy and dispersion of the grid, but does not have any boundary errors.

We show that the dispersion relation for the Yee algorithm can be used to predict pre-

cisely the frequencies at which modes will oscillate in a rectangular resonator. Due to the
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anisotropic dispersion of the Yee algorithm, modes that have degenerate frequencies in the

continuous world may split into distinct frequencies in the discretized world. Conversely,

other modes that one would anticipate are distinct may combine in an FDTD simulation.

Given the ability to obtain the resonant behavior of some structures directly from the dis-

persion relation, it seems unnecessary to perform simulations using a resonator to quantify

the dispersion properties of a given method. These simulations yield no insight into the

method that is not already implicitly contained in the dispersion relation itself. However if

the dispersion relation changes in the domain, for example at the boundary, then this simple

dispersion analysis will not work. This is not a problem with the second order Yee algo-

rithm, however higher order Yee, Forgy, or other algorithms may have different dispersion

properties at boundaries.

We start by reviewing the Yee dispersion relation. We then show how it can be used to

predict the resonances that will be present in a rectangular structure. Mode shifting, split-

ting, and combining are illustrated with simulations and with use of a frequency-versus-

wavenumber diagram.

3.2 Dispersion Relation

The Yee dispersion relation, in rectangular coordinates, is given in (2.12). For cubic

cells this reduces to (2.13), repeated here for convenience

1

S2
sin2

(

ω∆t

2

)

= sin2

(

kx∆g

2

)

+ sin2

(

ky∆g

2

)

+ sin2

(

kz∆g

2

)

, (3.1)
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where S is the Courant number equal to c∆t/∆g, and ∆g is the cell length. Note that

the resonant wavenumbers are dictated by the physical size of the structure and this can

be controlled precisely in the FDTD simulation. Thus the wavenumbers in the continuous

and discrete worlds correspond exactly. However the frequencies that correspond to those

wavenumbers differ.

3.3 Dispersed Resonator Frequencies

A rectangular resonator with PEC walls has resonant mode frequencies given by

ω2 = (πc)2

[

(

m

Lx

)2

+

(

n

Ly

)2

+

(

p

Lz

)2
]

, (3.2)

where m, n, and p are the mode indices, and Lx, Ly, and Lz are the size of the resonator in

the x, y, and z directions respectively. In terms of the wavenumber components (3.2) can

be written

ω2 = c2
(

k2
x + k2

y + k2
z

)

. (3.3)

That is, given the mode indices, the corresponding wavenumbers are given by:

kx =
mπ

Lx

, ky =
nπ

Ly

, kz =
pπ

Lz

. (3.4)

Putting (3.1) and (3.4) together, and solving for f = ω/2π, we obtain

f =
1

π∆t

arcsin



S

√

(

sin
mπ∆g

2Lx

)2

+

(

sin
nπ∆g

2Ly

)2

+

(

sin
pπ∆g

2Lz

)2


 . (3.5)
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This gives the resonant frequency f for a particular set of mode indices for any Yee FDTD

rectangular resonator. When a resonator has the same size in more than one dimension

modes with permutations of indices will be degenerate. For example if Lx = Ly, modes

(1, 7, 0) and (7, 1, 0) are degenerate. When a mode has this type of degeneracy we will

refer to the mode in the plural even if a single set of indices is given.

In the continuum, any resonator has an infinite number of modes. In a discrete space

there will be a finite number due to the spatial sampling of the grid. The highest frequency

that may be coupled into the grid, i.e., the grid Nyquist frequency, is 1/2∆t [11]. In the

continuum there are modes whose frequencies are below the grid Nyquist frequency, but

that have wavenumber components that are complex [5, 11]. The transition between purely

real and complex wavenumbers occurs where there are exactly two grid points per numeric

wavelength. Complex wavenumber components experience exponential decay and hence

the corresponding mode does not resonate. Therefore the continuum theory is applied here

with the understanding that the wavenumbers do not extend beyond those that are real in

the FDTD grid. From (3.5) it appears that one can use any value for the mode indices and

still obtain a real result (assuming S is less than the stability limit of 1/
√

3). This is true

of this equation but that observation masks, to some extent, the true behavior of the grid

and what is realizable. Regardless of the direction of propagation, there must be at least

two samples per numeric wavelength, i.e., the minimum wavelength, λmin, is 2∆g. The

wavenumber corresponding to this discretization is kmax = 2π/λmin = π/∆g. Using this

as a bound on a single wavenumber component, say the kx component, and equating with

the expression given in (3.4), we obtain kx = mπ/Lx ≤ π/∆g. This places a bound on the
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mode index m such that m ≤ Lx/∆g. Therefore, if the resonator size Lx is N cells, then

m can be no larger than N . Similar arguments hold in the other directions.

3.4 FDTD Simulations

Here we demonstrate the agreement of measured and predicted values for FDTD res-

onators. The rectangular resonators are excited by a single element current source in the z

direction, centered in the domain. The source is a unit amplitude current of duration 2∆t,

giving a spectral null at the time-stepping Nyquist frequency. For operation at the stability

limit, the time-stepping Nyquist frequency will correspond to the vector k spatial-sampling

frequency. The z component of the electric field is sampled at the location of the source.

This data is Fourier transformed to produce the mode spectral plots shown below. With this

geometry the excited and detectable modes will have odd x and y mode indices, while the

z axis index will be even. To maintain the source at the center of the domain, there must

be an even number of cells in the x and y directions and an odd number in the z direction.

For simplicity, the domain is kept as nearly cubic as possible so the number of cells in the

z direction is one less than in x and y. Unit cells are cubic, with E fields along the cell

edges. Without loss of generality, unit cells are assigned a size of ∆g = 1 m. The simu-

lations use the Courant limit (1/
√

3) and are run for 65536 time steps. An FFT was used

to obtain spectral information. Using these parameters the Nyquist frequency is 259.6278

MHz and the spectral resolution ∆f is 7.923211 kHz. In the spectral plots to follow, sym-

bols are used to designate continuum and FDTD predicted resonant frequencies while a

line shows the result of the FDTD simulation (i.e., a solid line shows the entire spectrum
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obtained from the simulation). Specifically, plus signs are used to indicate the continuum

frequencies obtained via (3.2) while X’s are used to indicate FDTD frequencies obtained

via (3.5).

The difference between the continuum resonance and the FDTD resonance, as well as

the ability to predict the FDTD resonant frequency, can be demonstrated with a trivially

small resonator. The smallest possible resonator with the geometry described above has a

volume of 2 × 2 × 1 cells. Such a resonator has only one mode, the (1, 1, 0) mode. The

continuum frequency is 105.9927 MHz. Equation (3.5) predicts the FDTD frequency will

be 101.7291 MHz, this agrees within ±∆f of the observed FDTD results, as shown in

Figure 3.1.

To illustrate more clearly nonlinear effects, a resonator with a size of 4 × 4 × 3 is

considered next. The amplitude spectrum is shown in Figure 3.2. Note that the FDTD

predicted values match the observed spectral peaks whereas the continuum frequencies do

not. The (1, 3, 0) modes are dispersion shifted to a frequency lower than the (1, 1, 2) mode,

and the (3, 3, 0) mode is shifted to below the (1, 3, 2) modes as shown in Table 3.1. There

is a large dc line [12] due to the charge deposited by the pulsed source. A dc line does not

exist for the previous resonator because that small resonator did not provide ample room

to store charge to either side of the source (i.e., the charge was effectively shorted by the

walls of the resonator).

In Figure 3.2 note the relatively good agreement between the FDTD resonance and the

continuum theory at the highest resonant frequency. This is, at first, somewhat counter-

intuitive since this resonance occurs in a region with coarse discretization where one might
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Figure 3.1: Continuum and predicted resonant frequencies as well as observed spectrum
for a 2 × 2 × 1 resonator. Continuum and FDTD predicted frequencies are indicated with
symbols drawn with arbitrary amplitudes.

Mode Continuum Theory FDTD Predicted FDTD Observed

(1, 1, 0) 52.99633 52.52425 52.52297

(1, 1, 2) 113.1140 104.2227 104.2219

(1, 3, 0) 118.5034 101.7291 101.7261

(1, 3, 2) 155.0136 143.6522 143.6557

(3, 3, 0) 158.9890 141.2610 141.2629

(3, 3, 2) 187.7862 187.0015 187.0036

Table 3.1: 4 × 4 × 3 resonator frequencies. The observed frequencies are within ±∆f of
the predicted values. All frequencies are in MHz.
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Figure 3.2: Continuum and FDTD predicted resonant frequencies as well as observed spec-
trum for a 4 × 4 × 3 resonator. Note the good performance of the FDTD for the highest
frequency mode. This mode is (3, 3, 2) which is almost along the major diagonal. Contin-
uum and FDTD predicted frequencies are plotted with arbitrary amplitude.
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expect the worst dispersion errors. However, this peak corresponds to the (3, 3, 2) mode

whose associated wavevectors are nearly aligned with the grid diagonals. Since these sim-

ulations are run at the Courant limit there is no grid dispersion along the grid diagonals

regardless of the discretization. This illustrates that, due to the anisotropy of the grid, the

amount of dispersion is a function of both the discretization and the direction of propaga-

tion. For a general resonator in which one does not know the orientation of the associated

wavevectors, one would be unable to say if the agreement between the FDTD-generated

resonances and the continuum resonances are getting better or worse as the frequency in-

creases. Nevertheless, one can be confident that agreement is good for well-resolved fre-

quencies (i.e., ones for which the discretization is high enough to ensure low dispersion for

all directions of propagation).

Mode splitting is a result of the anisotropic dispersion of the Yee grid. Modes with

the same continuum frequency can have different dispersion shifts owing to their different

wavenumber components. This occurs because continuum degenerate modes having dis-

tinct sets of indices suffer different dispersion in the FDTD grid thus resulting in two (or

more) spectral lines. The smallest resonator where splitting occurs is the 8 × 8 × 7 res-

onator. For example the (1, 7, 0) modes, and the (5, 5, 0) mode are degenerate. However,

the dispersion shift will be different for the (1, 7, 0) modes and (5, 5, 0) mode, thus splitting

this line. The same thing occurs if the third index is 2, 4 or 6. The measured and predicted

resonances for the 8 × 8 × 7 resonator are shown in Figure 3.3. Again, there is perfect

agreement between the predicted and measured FDTD frequencies and these frequencies

may differ substantially from the continuum frequency.
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Figure 3.3: Continuum and FDTD predicted resonant frequencies as well as observed spec-
trum for a 8 × 8 × 7 resonator. Continuum and FDTD predicted frequencies are plotted
with arbitrary amplitude. The dc line is not shown.
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The resonators illustrated here do not exhibit an extra total number of mode lines since

some modes also combine while others split. However, once the size of the resonator is

above 20 × 20 × 19, the FDTD resonator will have more mode lines than the continuum

theory predicts.

Mode combining occurs when two (or more) distinct modes suffer different dispersion

resulting in the mode-lines combining to form a single line. In the case of the 8 × 8 × 7

resonator, the (1, 7, 0) modes are dispersion shifted to the same frequency as the dispersion-

shifted (3, 5, 0) mode, thus yielding a single spectral line in the simulation.

The mechanics of mode splitting and combining is perhaps best understood using an

f -k (ω-β) diagram of the frequency versus the wavenumber. Figure 3.4 shows such a dia-

gram that can be used to demonstrate the splitting and combining of the modes mentioned

above. First, one draws a straight line of slope c/2π representing the relationship between

frequency and wavenumber magnitude in the continuum. Assume one is interested in the

(1, 7, 0) and (5, 5, 0) modes which are degenerate in the continuum. The dispersion curves

for these modes are added to the plot. To generate these curves, the magnitude of the

wavenumber is now treated as the independent variable. For the (1, 7, 0) mode, one plots

1

S2
sin2

(

2πf∆t

2

)

= sin2

(

k∆g

2
√

50

)

+ sin2

(

7k∆g

2
√

50

)

, (3.6)

while for the (5, 5, 0) mode one plots

1

S2
sin2

(

2πf∆t

2

)

= 2 sin2

(

5k∆g

2
√

50

)

. (3.7)
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Now (3.2) is used to obtain the continuum frequency for the resonant mode. This point

is identified in Figure 3.4 by the intersection of the straight continuum line and the hori-

zontal line labeled “Continuum (1, 7, 0) & (5, 5, 0)”. Since the FDTD resonator must have

the same wavenumbers, one draws a vertical line from that point on the continuum line and

finds the intersections with the dispersion curves for the (1, 7, 0) and (5, 5, 0) modes. These

intersections are indicated with the horizontal lines labeled “Observed (5,5,0)” and “Ob-

served (1,7,0)”. The vertical distance between these horizontal lines shows the difference

in frequency of these supposedly degenerate modes.

Mode combining is illustrated in a similar fashion. One has to add the dispersion curve

for the (3, 5, 0) mode and identify the frequency for the corresponding continuum reso-

nance. Drawing a vertical line from that point on the continuum line, one finds that the

intersection with the (3, 5, 0) dispersion curve is precisely at the same frequency as the

(1, 7, 0) mode. Hence these distinct modes in the continuum yield a single resonance in the

FDTD simulation. The frequencies associated with these modes are given in Table 3.2.

3.5 Chapter Summary

The dispersion relation accurately predicts the frequencies at which a rectangular res-

onator mode will resonate. Dispersion can split or combine modes. Furthermore, the dis-

persion shift can change the resonant frequencies so that a list of observed modes ordered

by resonant frequency may or may not correspond in order to a list obtained from the con-

tinuum.

The Yee dispersion anisotropy is responsible for mode splitting and combining. Al-
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Figure 3.4: Dispersion curves (frequency vs. wavenumber) for selected modes in the 8 ×
8 × 7 resonator, graphically illustrating mode splitting and combining. Horizontal lines
labeled “Continuum” are the frequencies which should exist for a given k. Lines labeled
“Observed” are the dispersion shifted frequencies that will be seen in the FDTD simulation.

Mode Continuum Theory FDTD Predicted FDTD Observed

(3, 5, 0) 109.2547 101.7291 101.7261

(3, 3, 4) 116.8595 114.7771 114.7756

(3, 5, 2) 117.3490 112.5123 112.5096

(1, 5, 4) 128.3151 121.0187 121.0191

(1, 1, 6) 131.1865 103.2788 103.2791

(1, 7, 0) 132.4908 101.7291 101.7261

(5, 5, 0) 132.4908 123.3438 123.3406

Table 3.2: Selected list of 8 × 8 × 7 resonator mode frequencies, showing the effect of
combining and splitting. The (1, 7, 0) modes splits from the (5, 5, 0) mode and combines
with the (3, 5, 0) modes, jumping over intervening modes. Similar splitting/combining
occurs with a third index of 2, 4 or 6. Observed degenerate modes cannot be distinguished
in the FDTD data, the observed line frequency closest to the predicted line is reported. All
frequencies are in MHz.
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gorithms which are more isotropic than Yee, such as the algorithm developed in the next

chapter (based on the Forgy isotropic scheme [13] which is isotropic to fourth order), will

have reduced mode splitting. Given the dispersion relation one can post-process resonance

data to correct for the mean dispersion error. Such a correction would shift peaks but would

not undo any splitting or combining.

The resonant analysis conducted here was limited to the Yee scheme, but, as demon-

strated in the next chapter, a similar analysis can be conducted for any FDTD scheme for

which a dispersion relation exists. It is to be noted that the rectangular resonators consid-

ered here have simple resonances in which the fields can be viewed as the superposition

of plane waves propagating in discrete directions. Knowing the directions and the corre-

sponding frequencies, and given the dispersion relation, one can exactly predict the amount

of error in the resonant frequency obtained from a simulation. However, for a general res-

onator in which the wavevectors associated with a given mode are not known one cannot

determine the amount of error, nor can one completely correct for that error, unless the

particular scheme has the same amount of error for all wavevectors at a given discretiza-

tion. The Yee scheme, which is anisotropic to second order, permits only limited correction

where one can correct for the mean dispersion error. Such a technique is essentially the one

applied in the dispersion correction technique described by Nehrbass, Jevtić, and Lee [14]

(however they applied the correction at a single frequency prior to the simulation rather

than as a post-processing correction across all frequencies). On the other hand, correcting

for the mean dispersion error in the Forgy scheme (which is, same as the Yee algorithm,

second-order accurate but, unlike the Yee algorithm, isotropic to fourth order) would yield
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results that are more accurate than those which could be obtained from the (corrected) Yee

algorithm at the same discretization.
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Chapter 4

An Acoustics FDTD Algorithm with Improved

Isotropy
An FDTD algorithm is presented here that has second-order accuracy but fourth-order

isotropy. This algorithm permits a temporal step size 50 percent larger than that of the

three-dimensional Yee algorithm. Pressure-release resonators are used to demonstrate the

behavior of the algorithm and to compare it with the Yee algorithm. It is demonstrated how

the increased isotropy enables post-processing of the simulation spectra to correct much of

the dispersion error. The algorithm can also be optimized at a specified frequency, substan-

tially reducing numerical errors at that design frequency. Also considered are simulations

of scattering from penetrable spheres ensonified by a pulsed plane wave. Each simulation

yields results at multiple frequencies which are compared to the exact solution. In general

excellent agreement is obtained.

4.1 Introduction

Here the electromagnetic algorithm proposed by Forgy [15, 16, 13] is used to motivate

the development of a new acoustic FDTD technique that is designed to improve the isotropy

and stability limit relative to the Yee algorithm. The algorithm is defined in Section 4.2 and
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the dispersion relation is obtained in Section 4.3. The algorithm is shown to have second-

order accuracy but fourth-order isotropy. Despite the fact that the algorithm has the same

accuracy as the Yee algorithm, the algorithm permits a larger temporal step and the resulting

phase error is lower than that of the Yee algorithm. Additionally, because of the increased

isotropy, it is possible to “tune” the coefficients of the algorithm in order to eliminate most

algorithmic dispersion error at a specific design frequency, as will be discussed in Sec-

tion 4.4. Another type of correction made possible by the increased isotropy is discussed in

Section 4.5 where it is demonstrated that post-processing of homogeneous-domain spectra

can correct much of the dispersion error over the entire spectrum. Section 4.6 presents

simulations of cubic resonators. Finally, Section 4.7 presents simulations of plane-wave

scattering from penetrable spheres. Results at multiple frequencies are compared to the

exact solution.

4.2 The Constructed Divergence

The constructed divergence operator presented here is made by a linear combination of

the six nodes which are used in the Yee algorithm (two in each grid axis direction) and the

24 next nearest neighbors. Thus this divergence operator has 30 velocity nodes contributing

to the calculation. The constructed algorithm divergence operator is defined by

α0∇0 + α1∇1, (4.1)
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where the α’s are the combination weights (α0 is the Yee weight), ∇0 is given in (2.5), and

∇1 is

∇1 = Dx

(

Ay + Az

2

)

x̂ +Dy

(

Ax + Az

2

)

ŷ +Dz

(

Ax + Ay

2

)

ẑ. (4.2)

One component of the ∇1 operator averages four nodes, then takes the finite difference of

the average of the opposite face, for example

∇1 · x̂ = Dx
Ay + Az

2

=
(Sx(

1
2
) − Sx(−1

2
))(Sy(1) + Sy(−1) + Sz(1) + Sz(−1))

4∆x

,

(4.3)

The geometry implicit in (4.3) is shown in Figure 4.1. If α0 = 1 and α1 = 0 in (4.1),

then the Yee divergence is obtained. Even though the constructed divergence operator

uses more velocity nodes than the Yee divergence, the stencil of the constructed operator is

compact. This means that the constructed divergence operator can be applied as close to the

domain walls or corners as the Yee operator. The compact nature of the Yee and constructed

operators are illustrated in Figure 4.2 which shows how these divergence operators, which

use V nodes to compute a P node, can both be used equally close to the domain corners.

4.3 Dispersion Relation and Stability Limit

The small-signal acoustic governing equations for velocity and pressure are

∂V

∂t
= −1

ρ
∇P, (4.4)

∂P

∂t
= −ρc2∇ · V + Psource, (4.5)
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Figure 4.1: The diagram on the left shows the two velocity nodes which contribute to the
x component of the Yee divergence, ∇0 · V. The diagram on the right shows the eight
velocity nodes which contribute to the x component of the ∇1 · V divergence.

Figure 4.2: Two dimensional slice of the stencil of the Yee (left) and constructed divergence
operators (right), acting in the upper right corner of a domain. The hollow circles are pres-
sure nodes, the solid circle is the pressure node being updated by the divergence operator.
The thin arrows are velocity nodes, and the bold arrows are velocity nodes contributing to
the divergence operator.
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where V is the velocity, P is the pressure, c and ρ are the wave speed and density respec-

tively, and Psource is an additive pressure source. The space and time derivative symbols

are to be interpreted according to the context. They may refer to continuum operators or

to discrete operations on the grid. For the second-order constructed algorithm only (4.5)

is different from the Yee FDTD update. To include the constructed operator’s extra nodes

(4.5) is written with (4.1) for the divergence operator

DtP = −ρc2(α0∇0 · V + α1∇1 · V) + Psource. (4.6)

Substituting the Yee implementation of (4.4) into the time derivative of (4.6) and assuming

a source-free region produces the wave equation for the algorithm

D2
tP = c2(α0∇0 · ∇0 + α1∇1 · ∇0)P. (4.7)

Substituting the values of the operators from (2.3) and (2.4) into (4.7) and simplifying,

produces the dispersion relation for the algorithm

(

∆g

c∆t

)2

sin2

(

ω∆t

2

)

= sin2

(

kx∆g

2

)

(

α0 +
α1

2

(

cos (ky∆g) + cos (kz∆g)
)

)

+ sin2

(

ky∆g

2

)

(

α0 +
α1

2

(

cos (kx∆g) + cos (kz∆g)
)

)

+ sin2

(

kz∆g

2

)

(

α0 +
α1

2

(

cos (kx∆g) + cos (ky∆g)
)

)

,

(4.8)

where the ∆g is the cubic-cell grid size, and kx, ky, kz, are the wave number components in

the x, y, and z directions respectively. In (4.8) the k’s and ω may be exact (i.e., continuum
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or theoretical) or numerical (grid), depending on context. For example, in the resonators

considered in Section 4.6, the modes dictate that the wave numbers for a supported mode

are exact, which are then used in (4.8) to find the actual numerical frequencies. Henceforth

a tilde will be used to indicate numerical frequencies and wave numbers, so ω̃ and k̃ indicate

numerical values, ω and k indicate exact (theoretical) values.

The algorithm weights have not been specified. The α’s are chosen to obtain fourth-

order isotropy. Expanding the right hand side of the dispersion relation (4.8) in a power

series in the space step size ∆g, gives

(α0 + α1)(k
2
x + k2

y + k2
z)

− 1

12

(

α0(k
4
x + k4

y + k4
z) + α1(k

4
x + k4

y + k4
z + 6k2

xk
2
y + 6k2

xk
2
z + 6k2

yk
2
z)
)

∆2
g

+O[∆g]
4.

(4.9)

We now require α0 + α1 = 1 to normalize the leading term to the desired exact result

(k2
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y + k2
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1

12
(k4
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2
yk

2
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2
xk

2
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2
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4. (4.10)

Using k2 = k2
x + k2

y + k2
z and letting α1 be 1

3
yields

k2 −
k4∆2

g

12
+O[∆g]

4. (4.11)

Thus the operator is second-order accurate for the derivative, and fourth-order isotropic.

The isotropy is fourth-order because the second-order error term is dependant on k, without
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explicit dependence on kx, ky, or kz. The additional nodes used by the operator do not

increase the order of accuracy of the derivative. With α1 set to 1/3, α0 = 2/3 immediately

follows.

To find the Courant stability limit the dispersion relation (4.8) is solved for the fre-

quency

ω =
2

∆t

sin−1

(

S

[

sin2
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2

)

(
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2
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)
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2

(

cos (kx∆g) + cos (ky∆g)
)

)

]1/2)

,

(4.12)

where S = c∆t/∆g is the Courant number. The Courant stability limit can be found

using complex frequency analysis [4, 7] where stability requires that ω be real for all real

k’s permitted by grid sampling. Thus, in (4.12), the argument of the square-root must be

positive, and the magnitude of the argument of the arcsine must be less than or equal to

one. Typically the limiting case will occur when one or more of kx, ky, and kz are equal

to π/∆g. For α1 ≤ 1/4 the limiting case is when kx = ky = kz = π/∆g, and when

1/4 < α1 ≤ 1/2 the limiting case is when two k’s are π/∆g and one is zero. Using these
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conditions the Courant limit is as follows
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(4.13)

To illustrate the effect of the constructed operator on the FDTD algorithm Figures 4.3

and 4.4 show the phase velocity error surfaces for the Yee and the present algorithm. Both

figures are plots of 1 − ω̃/ω at k = 2π/(10∆g) (i.e., 10 cells per wavelength), when using

the respective Courant limits. The quantity 1 − ω̃/ω is a measure of the phase error at

a given wave number. The ideal surface has zero radius, the dispersion error in a given

direction is proportional to the radial distance from the origin. The enhanced isotropy of

the constructed algorithm is evident because the error surface is nearly spherical.

4.4 Run-Time Frequency Optimization

It is possible to “tune” this algorithm by adjusting the α0 and α1 coefficients to improve

the run-time performance at a particular frequency. The method is based on the technique

described by Forgy [16]. The spatial derivatives are optimized with the same procedure

as Forgy uses, however the time optimization is done here using the dispersion relation to

prevent the Courant number shift of [16]. Optimization at a particular frequency involves
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Figure 4.3: Dispersion error surface for the Yee algorithm at 10 samples per wavelength.
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setting the α0 and α1 coefficients to eliminate most of the error in the spatial derivative at

the design frequency. Time optimization is performed by interpreting the simulation data

time series as having a reduced time step ∆′
t, even though the simulation is still run at the

∆t found from the stability limit in (4.13).

To optimize the spatial derivative the dispersion error in two different directions are

made equal by adjusting the α’s. When α1 = 0 (i.e., the Yee algorithm) the worst case

dispersion error is along the grid axis. When α1 = 1/2 the worst case dispersion error is

along the major diagonals. Given a design wave number kopt with corresponding design

frequency ωopt = kopt/c, we equate the spatial dispersion along the grid axis

(

2

∆g

)2

(α0 + α1) sin2

(

kopt∆g

2

)

, (4.14)

with the spatial dispersion along the major diagonal

12

∆2
g

[

α0 + α1 cos

(

kopt∆g√
3

)]

sin2

(

kopt∆g

2
√

3

)

, (4.15)

which produces

(α0 + α1) sin2

(

kopt∆g

2

)

= 3

[

α0 + α1 cos

(

kopt∆g√
3

)]

sin2

(

kopt∆g

2
√

3

)

. (4.16)

The spatial optimization is performed by simultaneously solving (4.16) and α0+α1 = 1

for α0 and α1 giving

α0 = (1 − α′), α1 = α′, (4.17)
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where

α′ =
2 + cos (kopt∆g) − 3 cos

(

kopt∆g√
3

)

12 sin4
(

kopt∆g

2
√

3

) . (4.18)

The optimization to this point ensures that the dispersion-shifted frequencies ω̃ found via

(4.12) are equal for propagation along the grid axes and major diagonal directions at the

design wave number kopt. These α’s, i.e., (4.17), give a specific algorithm, the stability

limit of which is given by (4.13). Once the stability limit is found a time step ∆t for the

algorithm can be chosen.

Now the time optimization is performed by finding an effective temporal step ∆′
t using

the dispersion relation (4.12) with parameters given in (4.17) along the grid axis direction.

That is, the effective time step is defined as

∆′
t =

ω̃

ckopt
∆t =

2

ckopt
sin−1

(

S sin

(

kopt∆g

2

))

. (4.19)

This effective temporal step is used in interpreting the time-series data from the simulation.

This reinterpretation shifts the frequency of the optimized k to the correct ω. The simulation

is still run with the ∆t found above from stability considerations. The dispersion error

surface for the optimized algorithm is shown in Figure 4.5. Although this error surface

now appears anisotropic, one must note the small level of error. This surface essentially

represents the deviations from a perfect sphere for the surface shown in Figure 4.4.
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Figure 4.5: Dispersion error surface for the optimized algorithm at 10 samples per wave-
length. α′

0 = 0.6651999117, α′
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4.5 Post-Processing Frequency Correction

In addition to the run-time tuning of the algorithm above, isotropic algorithms in a

homogeneous space permit the post-processing of the spectra from a simulation to correct

the dispersion errors (shifted frequencies). The algorithm here is isotropic to fourth order,

so frequency correction can be performed where the goal is essentially to eliminate the

mean dispersion error at each frequency. The method uses the dispersion relation (4.8)

to perform the correction, where one solves for k given an observed frequency ω ′. The

corrected frequency is then given by ω = ck(ω ′). (It should be noted that one can attempt

to correct for the mean dispersion error in the Yee algorithm as was done by Nehrbass et

al. [14] However, because of the second-order nature of the isotropy, this can only provide

modest improvements as is discussed further in the next section.)

In solving (4.8) for k, a direction of propagation must be assumed. In a truly isotropic

algorithm, any choice of direction would be equivalent. In the present algorithm, the

(1, 1, 1) major diagonal direction is close to the direction of the average dispersion error,

so it is used as the correction direction in the results presented in the following section. To

restate the correction procedure, an observed frequency ω ′ in a simulation spectra is used

in the left of the dispersion relation (4.8). Then, given a direction, the right-hand side is

solved for the magnitude of the wavenumber, i.e., k(ω ′). For an arbitrary direction this

would require that the equation be solved numerically (e.g., by the bisection algorithm).

However when propagation is assumed along the grid diagonal of a uniform grid, such that

kx = ky = kz = k/
√

3 and the spatial step is ∆g in all directions, an analytic expression
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can be obtained for k:

k(ω′) =
2
√

3

∆g

sin−1







1

2

√

√

√

√3 −
√

9 − 8

S2
sin2

(

ω′∆t

2

)






. (4.20)

Multiplying (4.20) by the sound speed c gives the corrected frequency for which the phe-

nomena observed at ω′ should be assumed to have occured. Such a correction is demon-

strated in the following section.

Depending on the direction and the frequency, the wavenumber obtained from (4.20)

may be complex [5]. The correction process is terminated when k is complex. This will

happen when the argument of the innermost radical is negative and only occurs at the up-

permost frequencies of the simulation. For example, using the Courant limit of
√

3/2, the

inner-most radical is zero when sin(ω∆t/2) =
√

27/32. Since ω∆t/2 is equivalent to

πS/Nλ, where Nλ is the number of cells per wavelength, the radical is zero when the dis-

cretization is such that there are approximately 2.337 cells per wavelength of propagation,

i.e., an extremely high frequency in terms of standard FDTD discretization. For frequencies

beyond this value (or discretization that are coarser than this value), k(ω ′) will be complex

and hence one cannot obtain a corrected frequence for ω ′.

4.6 FDTD Simulations: Resonators

To compare and contrast this algorithm with the Yee algorithm, pressure-release bound-

ary (Dirichlet, P = 0) cubic resonators are used. Thus no absorbing boundary is required

to terminate the computational domain. The resonators are excited with an additive source
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in the center of the resonator and data is recorded at the same location. The resulting time

series is Fourier transformed.

The resonant frequencies for a rectangular resonator are simple to find in the continuum.

The symmetry and geometry of the resonator, in this case cubic with a centered source,

dictates the modes that are excited. Once the k’s of the continuum modes are found, the

dispersion relation (4.12) can be used to predict precisely the numerical frequencies of the

algorithm. The same procedure can be used with the Yee dispersion relation.

A cubic resonator with pressure-release boundary walls has resonant mode frequencies

given by

ω2 = c2
[

(mπ

L

)2

+
(nπ

L

)2

+
(pπ

L

)2
]

, (4.21)

where m, n, and p are the mode indices, and L is the size of the resonator along each

axis. For the present geometry the mode indices must be odd. In terms of the wavenumber

components (4.21) can be written

ω2 = c2
(

k2
x + k2

y + k2
z

)

. (4.22)

That is, given the mode indices, the corresponding wavenumbers are given by

kx =
mπ

L
, ky =

nπ

L
, kz =

pπ

L
. (4.23)

The numerical frequencies that will exist in the FDTD simulation can be found [17] from
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(4.12), with the k’s from (4.23)

ω̃ =
2

∆t

sin−1

(

S

[

sin2

(

mπ∆g

2L

)(

α0 +
α1

2

(

cos

(

nπ∆g

L

)

+ cos

(

pπ∆g

L

)))

+ sin2

(

nπ∆g

2L

)(

α0 +
α1

2

(

cos

(

mπ∆g

L

)

+ cos

(

pπ∆g

L

)))

+ sin2

(

pπ∆g

2L

)(

α0 +
α1

2

(

cos

(

mπ∆g

L

)

+ cos

(

nπ∆g

L

)))]1/2)

.

(4.24)

Equation (4.24) gives the resonant frequency ω̃ for a particular set of mode indices for an

FDTD cubic resonator. Due to symmetry, modes with permutations of mode indices will

be degenerate.

In the continuum, any resonator has an infinite number of modes. In a discrete space

there will be a finite number due to the spatial sampling of the grid. The highest frequency

that may be coupled into the grid, i.e., the grid Nyquist frequency, is 1/2∆t [11]. In the

continuum there are modes whose frequencies are below the grid Nyquist frequency, but

that have wavenumber components that are beyond the grid’s spatial sampling limit.

The cubic resonators are excited by a single additive pressure source centered in the

domain. The source is a unit amplitude pulse of duration 2∆t, giving a spectral null at the

grid Nyquist frequency. The pressure field is sampled at the location of the source. This

data is Fourier transformed (after being windowed with a raised-cosine transform which

helps emphasize the peaks) to produce the mode spectral plots shown below. With this

geometry the excited and detectable modes will have odd x, y, and z mode indices. To

maintain the source at the center of the domain, there must be an odd number of cells in

each direction. Without loss of generality, unit cells are assigned a size of ∆g = 1 m. The
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simulations use the appropriate Courant limit and are run for 65536 time steps.

For the sake of illustration, we model a fairly small resonator which is constructed from

93 cells. Because the walls of the resonator are constructed from pressure nodes which

are set to zero, the interior length L is 8∆g (the central source node has three additional

non-zero pressure nodes to either side along an axis before encountering a wall). Larger

resonators support more modes, but the fundamental behavior of the Yee and the proposed

technique can be understood from the smaller resonator and this understanding translates

to the larger structures. The speed of sound is assumed to be 1500 m/s. We consider

frequencies from dc up to 600 Hz where the discretization is 2.5 cells per wavelength

(Nλ = 2.5).

Figure 4.6 shows the magnitude of the FFT of the pressure versus frequency for the

Yee algorithm. Also shown is the theoretical result which corresponds to an ideal discrete

resonator that suffers no dispersion error. Each peak corresponds to one or more modes.

For the theoretical (ideal) results the peaks are labeled with a triplet written horizontally

which indicates the corresponding mode or modes. A label also implies the modes given

by the permutations of the indices. So, for example, a label of (1, 1, 3) also implies the

(1, 3, 1) and (3, 1, 1) modes exist at the same frequency. The modes corresponding to the

Yee peaks are written vertically. Note that some modes which should be degenerate, such

as the (3, 3, 3) and (1, 1, 5) modes, are distinct in the Yee algorithm. This is a consequence

of the anisotropy of the grid. The (3, 3, 3) mode consists of a superposition of plane wave

traveling along the grid diagonals. Such plane wave do not suffer dispersion errors in the

Yee algorithm when it is run at the 3D Courant limit and hence the (3, 3, 3) mode corre-
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Figure 4.6: Cubic resonator spectrum for Yee algorithm (α1 = 0) where the Courant num-
ber is 1/

√
3 and the resonator size is L = 8∆g. The triplets indicate the mode or modes

which correspond to a peak. The horizontal triplets are for the theory (ideal) peaks and
the vertical ones for the Yee algorithm. The triplets imply all the permutations of the in-
dices for the particular mode. Hence (1, 1, 3) also implies modes (1, 3, 1) and (3, 1, 1). The
highest frequency shown, 600 Hz, corresponds to 2.5 cells per wavelength.

sponds exactly to the theoretical result. However the (1, 1, 5) mode (and its permutations)

do not consist of plane waves propagating along the grid diagonals and hence do suffer

grid dispersion with the result that this mode is closer to the (1, 3, 3) mode than the (3, 3, 3)

mode. In addition to such mode splitting, there can be spurious degeneracies, or mode

combining, such as occurs with the (1, 1, 7) and (1, 3, 5) modes. Further details concerning

mode splitting and mode combining (as well as mode shuffling) can be found in reference

[17].
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Figure 4.7 shows the magnitude of the FFT of the pressure versus frequency for the

proposed isotropic FDTD algorithm together with the theoretic result. As before, the modes

corresponding to the peaks for the theoretical data are written horizontally while there are

written vertically for the FDTD results. Because of the improved isotropy of the algorithm,

the effects of mode splitting and mode combining are much less pronounced than in the

Yee algorithm. Note that the (1, 1, 5) and (3, 3, 3) modes are still split but the separation

in spectral peaks is less than two Hertz (the separation is approximately 49 Hz for the Yee

algorithm). Except in the case of the diagonal modes, the proposed technique typically

produces peaks which are closer to the correct value.

Figure 4.8 is the magnitude of the FFT of the pressure versus frequency for the proposed

technique after the frequency has been corrected as described in the previous section. This

correction essentially serves as a rescaling of the horizontal axis (although not a linear one).

This rescaling cannot recombine modes which are distinct. Thus the (1, 1, 5) and (3, 3, 3)

modes remain split, but they are mapped slightly closer to each other. Note that in the Yee

algorithm, one could remove the mean dispersion error, but the large separation between the

(1, 1, 5) and (3, 3, 3) modes would remain. As can be seen from Figure 4.8, the corrected

results agree very well with the ideal results. The only obvious discrepancy occurs for the

(1, 3, 5) mode where the discretization is approximately 2.7 cells per wavelength.

4.7 FDTD Simulations: Scattering

To demonstrate that the proposed algorithm works for inhomogeneous problems scat-

tering from penetrable spheres is considered in this section. No optimization or correction
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Figure 4.7: Cubic resonator spectrum for proposed isotropic FDTD (iFDTD) algorithm
(α1 = 1/3) where the Courant number is

√
3/2 and the resonator size is L = 8∆g. The

horizontal triplets are for the theory (ideal) peaks and the vertical ones for the iFDTD algo-
rithm. The (1, 1, 5) and (3, 3, 3) modes are distinct in the iFDTD results but the separation
is less than two Hertz and hence are labeled as a pair (the (3, 3, 3) mode is the higher of the
two).
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Figure 4.8: Cubic resonator spectrum from Figure 4.7 after applying the post-processing
correction described in Section 4.5. The horizontal triplets are for the theory (ideal) peaks
and the vertical ones for the iFDTD algorithm. The (1, 1, 5) and (3, 3, 3) modes are still
distinct in the iFDTD results since frequency correction cannot recombine modes (but it
does serve to narrow the separation between modes which are spuriously split).
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is employed. The test geometry is similar to that used in reference [18]. The computational

domain is 393 cells and the sphere is modeled using eight cells along its radius. Figure 4.9

shows a two-dimensional cross-section of the computational domain where the units are

in cell numbers. A plane wave is incident in the +z direction. The wave is a Ricker

wavelet with 20 cells per wavelength at its most energetic frequency. The incident field is

introduced over a total-field/scattered-field boundary [19, 20, 21]. The grid is terminated

with a perfectly-matched layer [22, 23, 24] (PML) which is not shown in Figure 4.9. The

PML is eight cells thick and was formulated following the coordinate-stretching approach

described by Chew and Weedon [25]. Spectral information is extracted using a discrete

Fourier transform [7]. Results are compared to the exact solution over the near-field “eval-

uation line” which parallels the z axis and is shown in Figure 4.9. Assuming unit-amplitude

harmonic ensonification, the exact solution for the scattered pressure is given by [26]

P s = −
∞
∑

m=0

(−i)m Pm(cos θ)
2m+ 1

1 + iCm

[jm(kR) + i nm(kR)] e−iωt, (4.25)

where jm and nm are the spherical Bessel and Neumann functions, respectively, Pm is the

Legendre polynomial, k is the wavenumber in the background medium, R is the distance

from the origin to the observation point, θ is the angle between the −z direction and a ray

to the observation point, and

Cm =
j′m(k1a) nm(ka) − gh jm(k1a) n′

m(ka)

j′m(k1a) jm(ka) − gh jm(k1a) j′m(ka)
, (4.26)
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where a is the radius of the scatterer, g = ρ1/ρ0, h = c1/c0, and k1 = k/h—a subscript

0 indicates the background medium while 1 indicates the scatterer. A prime is used to

indicated differentiation with respect to the argument so that j′m(kR) = ∂ jm(kR)/∂(kR).

The exact solution was calculated using Mathematica [27].

Two separate spheres are ensonified by the pulsed source. In the first case the sound

speed and the density of the scatterer are both twice that of the background medium, i.e.,

c1 = 2c0 and ρ1 = 2ρ0. The simulation was performed for 512 time steps and three

different frequencies corresponding roughly to those which would yield 10, 20, or 40 cells

per wavelength were extracted from the measured temporal data. We have observed that

when operated at their respective Courant limits both the Yee algorithm and the proposed

technique may be unstable when modeling inhomogeneous media. A slight reduction of

the Courant number produced stable results. Thus the Courant number employed for the

following simulations was 99 percent of the limit.

Figure 4.10 shows the magnitude of the pressure measured over the evaluation line

for the three frequencies as well as the exact solutions. Because of the discrete nature

of the simulation and the Courant number which was used, the measured frequencies do

not correspond to integer values of cells per wavelength. The true number of cells per

wavelength are given in the legend of the figure. Note that the agreement between the

measured and exact results is generally good except at the shortest wavelength where the

staircasing of the surface of the scatterer has a more pronounced impact on the scattered

field.

Figure 4.11 shows the scattered field when the sphere has a sound speed half that of the
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Figure 4.9: Two-dimensional cross-section of the spherical scatterer and the surrounding
space. The eight-cell PML used to absorb out-going waves is not shown. All units are in
number of cells (thus this cross section was taken over the x = 20 plane).
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Figure 4.10: Magnitude of pressure versus position at three different frequencies. The
sound speed and density of the scatterer are both twice that of the background media, i.e.,
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Figure 4.11: Magnitude of pressure versus position at two different frequencies. The sound
speed of the scatterer is half that of the background media while the density is constant
everywhere, i.e., c1 = c0/2 and ρ1 = ρ0. The cells per wavelength reported in the legend
are as seen in the background media (the discretization is halved within the scatterer).

background medium while the density is constant everywhere, i.e., c1 = c0/2 and ρ1 = ρ0.

In this case it takes much longer for the energy to ring out of the sphere so the simulation

was run for 16384 time steps (again, using a Courant number 99 percent of the limit).

Frequencies were recorded which correspond roughly to 10 and 20 cells per wavelength in

the scatterer (and thus twice that amount in the background medium). Again the agreement

between the exact and calculated results are good with some discrepancies evident at the

shorter wavelength.
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In both simulations no optimization was done (i.e., the coefficients were held at α0 =

2/3 and α1 = 1/3). Velocity nodes that had one neighboring pressure node in the scatterer

and the other in the background medium used a density which was the average of the

densities at the two adjacent pressure nodes. (This is only pertinent to the first sphere since

there is no change of density for the second.)

4.8 Chapter Summary

The FDTD algorithm presented in this chapter is stable at 3/2 times the usual Yee

Courant limit. In addition the operator is isotropic to fourth order. Isotropy improves

the mode structure behavior over the frequencies which are typically of interest. Isotropic

(or nearly isotropic) algorithms (in homogeneous regions) can be post-processed to reduce

much of the dispersion error induced frequency shifting. The algorithm was shown to yield

good results for canonical scattering problems.
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Chapter 5

Exact Algorithms

5.1 Introduction

The “magic time step” 1D Yee algorithm is a numerically exact differential equation

solver [1, 7]. To obtain theoretically similar performance in 3D we express the diver-

gence, gradient, and curl operators as derivatives with respect to a single variable. The

spatial derivative operators presented here provide (theoretically) numerically exact solu-

tions when used with a standard Yee “leap-frog” central difference time derivative. Once

the differential operators are defined a dispersion relation is derived for hyperbolic systems

of two coupled first-order equations and specific dispersion relations for 3D acoustic and

electromagnetics algorithms are then given. With the specified choice of algorithm param-

eters, the dispersion analysis shows theoretically exact propagation. An exact theory can

be used as the basis for designing practical approximations. As a test of these volumetric

differential operators, acoustic and electromagnetic algorithms have been coded. The per-

formance of these algorithms and the classic Yee algorithm are shown for the resonator test

cases.
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5.2 Spherical Volume Differential Operators

The spherical differential operators needed for exact algorithms can be defined as fol-

lows. Start with the gradient identity, and the closely-related Gauss’s divergence and vector

Stokes’ theorems:

∫∫∫

B
∇ψ(r + r′) dv =

∫∫

∂B
n̂ψ(r + r′) ds, (5.1)

∫∫∫

B
∇ · W(r + r′) dv =

∫∫

∂B
n̂ · W(r + r′) ds, (5.2)

∫∫∫

B
∇ × W(r + r′) dv =

∫∫

∂B
n̂ × W(r + r′) ds, (5.3)

where primes indicate variables of integration when necessary, and r is the position about

which the integrals are computed. Assume the fields, surfaces, and volumes satisfy the

conditions necessary for the theorems (5.1)–(5.3) to hold. Choose a sphere of radius ρ ≥ 0

as the shape of the volume B. Now define the spherical gradient, divergence and curl as the

scalar derivative of the corresponding integral identity

∇sψ(r) =
∂

∂V

∫∫∫

B
∇ψ(r + r′) dv =

∂

∂V

∫∫

∂B
n̂ψ(r + r′) ds, (5.4)

∇s · W(r) =
∂

∂V

∫∫∫

B
∇ · W(r + r′) dv =

∂

∂V

∫∫

∂B
n̂ · W(r + r′) ds, (5.5)

∇s × W(r) =
∂

∂V

∫∫∫

B
∇ × W(r + r′) dv =

∂

∂V

∫∫

∂B
n̂ × W(r + r′) ds, (5.6)

where the derivative is with respect to the volume V of sphere B, V = 4
3
πρ3. The symbol

∇s is used to denote a nabla operator that measures over a finite spherical volume (not the
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usual point operator). For analysis either the volume or surface integrals in (5.4)–(5.6) can

be used as required, but in algorithms only the surface integrals are used. With the choice

of spherical volumes, we can for illustrative purposes write out details of the right hand

side of (e.g.) (5.4)

∇sψ(r) =
1

4πρ2

∂

∂ρ

∫∫

∂B
(sin θ cosφx̂ + sin θ sinφŷ + cos θẑ)

ψ((x+ ρ sin θ cosφ)x̂ + (y + ρ sin θ sinφ)ŷ + (z + ρ cos θ)ẑ)ρ2 sin θ dθ dφ,

(5.7)

where

r = rr̂ = xx̂ + yŷ + zẑ,

r′ = ρn̂ = ρ(sin θ cosφx̂ + sin θ sinφŷ + cos θẑ),

(5.8)

and where the variables of integration are the spherical polar angle θ and the equatorial

angle φ.

5.2.1 Correspondence of Spherical and Point Derivatives

To see that the spherical derivatives correspond to the usual point derivatives when

the sphere size is zero, write the volume partial derivative as a limit and let F (V, r) =

∫∫

n̂ · W(r + r′) ds in (5.5)

∇s · W(r) = lim
v→0

F (V + v, r) − F (V, r)

v
V, v ≥ 0, (5.9)
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then set the volume V to zero

∇s · W(r)
∣

∣

V =0
= lim

v→0

F (v, r) − F (0, r)

v
= lim

v→0

F (v, r)

v

= lim
v→0

1

v

∫∫

∂B
n̂ · W(r + r′) ds = ∇ · W(r).

(5.10)

The final line of (5.10) is a typical definition of the usual point divergence [28], “typical”

because the usual point divergence definition does not need to specify the shape. The vol-

ume operator ∇s is useful because it is the usual nabla operator when computed with zero

radius, while for non-zero radius the operator can produce exact time-domain algorithms.

Equations (5.4)–(5.6) are the definitions of the space derivative operators for the present

class of exact algorithms. As written, (5.4)–(5.6) are functions of the size of the sphere.

For some particular algorithm, the as yet undetermined radius of the sphere is fixed.

5.3 Stability and Dispersion Analysis

The dispersion relation is obtained in the same manner as in Section 2.2. Here however,

the spatial derivatives are given by (5.4)–(5.6).

5.3.1 Effect on Plane Waves

In order to derive the algorithm stability properties and dispersion relation the effect

of the spherical volume differential operators on plane waves is required. For simplicity a

cubic cell grid of step size ∆g will be used throughout. For a specific implementation of an

algorithm a spatial grid will need to be chosen (e.g., staggered or collocated), at this point

we only require a staggered-in-time grid. The staggering or collocation of the spatial grid
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need not be specified yet for the volume operators. Given a complex scalar plane wave with

wave vector k and frequency ω

ψ(r, t) = ei(k·r−ωt), (5.11)

where

k = kk̂ = k(sinα cos βx̂ + sinα sin βŷ + cosαẑ) = kxx̂ + kyŷ + kzẑ, (5.12)

the volume derivatives and the usual Yee time derivative are computed. The angles α and β

are the spherical polar and equatorial angles of the wave vector. The classic Yee algorithm

uses central differences to approximate the temporal derivatives. Thus in the Yee algorithm

the temporal derivative of a plane wave is given by (2.3), repeated here for convenience is

Dtψ(r, t) = − 2i

∆t

sin

(

ω∆t

2

)

ψ(r, t). (5.13)

The space derivative operators for an exact algorithm must have the same functional effect

on the 3D plane wave as (5.13) in order to obtain a functionally 1D dispersion relation for

the 3D space. Then it will be possible to choose values of the algorithm parameters to

obtain matched space and time derivatives, giving theoretically exact homogeneous-space

propagation.
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When acting on a plane wave (5.11), the spherical volume gradient (5.4) becomes

∇sψ(r, t) =
1

4πρ2

∂

∂ρ

(∫ 2π

0

∫ π

0

n̂ψ(r + r′, t)ρ2 sin θ dθ dφ

)

=
1

4πρ2

∂

∂ρ

(

ρ2

∫ 2π

0

∫ π

0

n̂eik·r′ sin θ dθ dφ

)

ψ(r, t).

(5.14)

The integrals in (5.14) express the standard relation between spherical Bessel functions and

surface integrals of spherical harmonics. See for example Stratton [29, Sec. 7.7, Eq. (60)].

The spherical Bessel function integral is

in4π jn(kρ) Pm
n (cosα)

sin (mβ)

cos (mβ)

=

∫ 2π

0

∫ π

0

eik·r′ Pm
n (cos θ)

sin (mφ)

cos (mφ)

sin θ dθ dφ, (5.15)

where jn is the spherical Bessel function of order n, and Pm
n is the associated Legendre

polynomial. Using (5.15) and (5.12), the integrals in (5.14) become

∇sψ(r, t) =
1

4πρ2

∂

∂ρ

(

i4πρ2 j1(kρ)
)

k̂ψ(r, t). (5.16)

The derivative is best handled by using the spherical Bessel differentiation formula [30,

Eq. (10.1.23)]
(

d

zdz

)m

[zn+1 jn(z)] = zn−m+1 jn−m(z). (5.17)

By application of (5.17) to (5.16), one obtains the effect on the plane wave of the volume

gradient operator

∇sψ(r, t) = i j0(kρ)kψ(r, t). (5.18)
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Now set the radius ρ = a∆g, where a is the radius of the operator sphere in grid steps. With

all the terms of the volume gradient found, the various integrals in the volume divergence

and volume curl have been solved for vector plane waves. The volume gradient, divergence,

and curl of some scalar ψ or vector A plane wave become

∇sψ(r, t) = i j0(ka∆g)kψ(r, t), (5.19)

∇s · A(r, t) = i j0(ka∆g)k · A(r, t), (5.20)

∇s × A(r, t) = i j0(ka∆g)k × A(r, t). (5.21)

The key feature of the results (5.19)–(5.21) is the j0(ka∆g) factor. As will be shown, this

factor allows time-domain algorithms constructed with these volume operators to be ex-

act. Note that if the algorithm radius a is zero, then (5.19)–(5.21) are the usual gradient,

divergence, and curl of a plane wave, as expected from the previously established corre-

spondence of zero-sized spherical derivatives and point derivatives.

5.3.2 Dispersion Relation for Exact Algorithms

The operators presented here can be used to construct numerically exact algorithms for

hyperbolic systems of coupled first-order equations, for example Maxwell’s equations. The

time derivatives will be approximated with the usual “leap-frog” central difference as used

in the classical Yee FDTD algorithm [1], with the volume divergence, volume gradient, or

volume curl given by (5.4)–(5.6). Given a self-consistent hyperbolic system of two coupled
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first-order equations

∂F1

∂t
= h141F2,

∂F2

∂t
= h242F1, (5.22)

where the 4i’s are one of div, grad, or curl and the hi’s are the given scale constants

for each equation. The system must have propagating solutions. A plane wave solution

ei(k·r−ωt) is assumed (vector or scalar, as required), and the numerical differentiation on the

plane wave as given by (5.19)–(5.21). The usual finite-difference time derivatives (5.13)

are substituted into (5.22) and the resulting system is reduced and simplified. There are

three possible forms for each of the system’s equations

∂Fi

∂t
= hi∇ · Fj,

∂Fm

∂t
= hm∇Fn,

∂Fp

∂t
= hp∇ × Fq, (5.23)

where the F ’s, represent the fields of the system. The finite-difference time derivative

(5.13) and the spherical volume derivatives (5.19)–(5.21) acting on (5.23) with assumed

plane wave solutions will produce:

− 2

∆t

sin

(

ω∆t

2

)

Fi = hi j0(ka∆g)k · Fj,

− 2

∆t

sin

(

ω∆t

2

)

Fm = hm j0(ka∆g)kFn,

− 2

∆t

sin

(

ω∆t

2

)

Fp = hp j0(ka∆g)k × Fq.

(5.24)

Since the system is hyperbolic with propagating solutions, the dispersion relation results

from simultaneously solving the algebraic system of equations produced by substituting
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(5.24) into (5.22) and eliminating common factors. This yields

(

2

∆t

sin

(

ω∆t

2

))2

= (h1h2 k j0(ka∆g))
2. (5.25)

Substituting the trigonometric form for the spherical Bessel function into (5.25) and sim-

plifying yields
(

2

∆t

sin

(

ω∆t

2

))2

=

(

h1h2
sin (ka∆g)

a∆g

)2

. (5.26)

Note that, by design, this is functionally equivalent to the Yee 1D dispersion relation [7].

The algorithm parameters (∆t,∆g, a) are chosen such that

(

h1h2∆t

2a∆g

)2

= 1, (5.27)

or equivalently, so that the Yee algorithm’s Courant number, S, is

S =
c∆t

∆g

=
|h1h2|∆t

∆g

= 2a, (5.28)

where c = |h1h2| is the wave speed. With this choice of parameters the coefficients of the

sine functions in (5.26) are unity. Taking the square-root and the arcsine of both sides of

(5.26) and simplifying produces

ω =
√

|h1h2| k = ck, (5.29)
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which is the ideal homogeneous space continuum result. In order for (5.29) to be true we

must also have spatially and temporally band-limited waves because the computation is

sampled in space and time:

ω ≤ π

∆t

and |kx|, |ky|, |kz| ≤
π

∆g

. (5.30)

A surprising aspect of the stability and exactness condition (5.27) is that it can be imposed

for any ∆t because the radius a is a free parameter of the algorithm. It is unknown if

practical versions of this algorithm work for large time steps. Other algorithms which are

stable for arbitrary time steps are known, for example the “One-Step” method of De Raedt

et. al. [31].

5.3.3 Acoustics Dispersion Relation

The first specific example of a dispersion relation is for acoustics. For homogeneous-

space small-signal acoustics the governing equations are

∂V

∂t
= −1

%
∇P,

∂P

∂t
= −%c2∇ · V, (5.31)

where % is the density, c is the wave speed, and V and P are the velocity and pressure

fields, respectively. Applying (5.13), (5.19), and (5.20) to each term of (5.31) for assumed
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plane wave solutions with wave vector k and frequency ω yields

− 2i

∆t

sin

(

ω∆t

2

)

V = −1

%
i j0(ka∆g)kP,

− 2i

∆t

sin

(

ω∆t

2

)

P = −%c2i j0(ka∆g)k · V.

(5.32)

Solving (5.32) simultaneously to eliminate (for example) V yields

4

∆2
t

sin2

(

ω∆t

2

)

P = c2 j20(ka∆g)k · kP. (5.33)

Simplifying and eliminating the remaining common factors produces the dispersion rela-

tion

4

∆2
t

sin2

(

ω∆t

2

)

= c2k2 j20(ka∆g) =
c2

(a∆g)2
sin2 (ka∆g). (5.34)

This is the same as the Yee 1D dispersion equation, so the previous stability and exact-

ness conditions (5.27) and sampling limits (5.30) apply. Then using these conditions the

dispersion relation becomes

ω = ck, (5.35)

which is the ideal result up to the sampling limits.
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5.3.4 Electromagnetics Dispersion Relation

We obtain the electromagnetics dispersion relation with similar ease. Starting with

Maxwell’s curl equations in homogeneous source-free space

ε
∂E

∂t
= ∇ × H, µ

∂H

∂t
= −∇ × E, (5.36)

where E,H are the electric and magnetic fields, and ε, µ are the permittivity and perme-

ability. Applying (5.13) and (5.21) to each term of (5.36) for an assumed vector plane wave

solution yields

−2iε

∆t

sin

(

ω∆t

2

)

E = i j0(ka∆g)k × H,

−2iµ

∆t

sin

(

ω∆t

2

)

H = −i j0(ka∆g)k × E.

(5.37)

Eliminating one of the fields, chosen here to be H, produces a wave equation in the remain-

ing field

4

c2∆2
t

sin2

(

ω∆t

2

)

E = − j20(ka∆g)k × (k × E) = j20(ka∆g) k
2E, (5.38)

where c = 1/
√
εµ is the wave speed. Eliminating the remaining common factors gives the

dispersion relation

4

c2∆2
t

sin2

(

ω∆t

2

)

= k2 j20(ka∆g) =
1

(a∆g)2
sin2 (ka∆g). (5.39)
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Once again this is formally the one-dimensional Yee dispersion relation, so the stability

and exactness conditions (5.27) and sampling limits (5.30) apply, permitting theoretically

ideal propagation up to the sampling limits.

5.4 Proof-of-Principle Algorithms

In order to test the concepts of the volume operators presented here, a canonical prob-

lem is solved analytically and numerically with the classical Yee and volume algorithms.

The test case is a cubic resonator. In the scalar-field (acoustics) case the boundaries are

pressure-release (i.e., Dirichlet boundary conditions on the pressure), for the vector-field

(electromagnetics) case the boundary is a perfect electric conductor (PEC). Cubic res-

onators are canonical structures which provide instructive algorithm performance test beds.

Furthermore the domains are terminated with boundary conditions suitable for the problem,

thus no absorbing boundaries are required. The test resonators are excited and sampled at

the center of the cubic domain, the time series is Fourier transformed with a raised-cosine

window (1 − cos(2πn∆t/T ), where T is the total simulation time) to obtain amplitude

spectra. The material parameters, wave speed, and space delta are all set to unity. All calcu-

lations are done with single precision (32 bit) floating point numbers. The computations are

run for 65536 time steps—which is sufficient to see the approximately 107 dynamic range

of the 32 bit computations. The spectra are plotted from zero frequency to the Nyquist

limit. To facilitate meaningful comparisons, all algorithms are implemented on the usual

Yee staggered cubic-cell grid with c∆t/∆g = 1/
√

3.
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5.4.1 Sampled Resonator Description

The resonators used here are cubic, with a volume of L3 cubic meters. This is dis-

cretized with M = 10 cells in each axis, so L = M∆g. The source and sample point is

centered in the resonator. The resonator walls are aligned with the grid.

For acoustics the source and sample point is the pressure node at the center of the

resonator. The acoustics grid will have (M + 1)3 pressure (P ) nodes, the outer surface of

P nodes are initialized to zero, and remain zero. Velocity nodes are staggered between the

P nodes in the usual acoustics Yee grid. In order to have a P node at the geometric center

of the resonator, M must be even.

The electromagnetic source and sample is the two center-most Ez nodes, two nodes

are required because of the symmetries of the electromagnetics Yee grid. The Ez grid will

have (M + 1)2M nodes. The Ez nodes are zero on the x constant and y constant boundary

surfaces, there are no Ez nodes in the z constant boundary surfaces. Centering the source

and sample again requires M even. The other E components, and the H components are

staggered around Ez in the usual electromagnetics Yee grid.

5.4.2 Reference Theory

The reference theories are analytic resonators with band-limited k and ω (5.30), where

the band-limiting accounts for the sampled nature of the simulations. The eigenfunction

sums are truncated to accomplish the band-limiting. The band limited solutions are there-

fore approximate solutions to the given problems. A sampled analytic theory can allow

prediction of the behavior of ideal sampled numerical calculations. The coordinate sys-
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tems for analysis are chosen so that the origin is at the center of the cubic resonators, with

walls aligned with coordinate surfaces. The interior region of the resonators will be denoted

as Ω, the boundary by ∂Ω, and the closure by Ω̄.

For both the electromagnetics and acoustics problems the theoretical solution for the

time evolution of the field at the sample location is Fourier transformed and plotted for

comparison with the simulation spectra.

5.4.3 Acoustics Resonator Analysis

The Yee or volume-derivative algorithms use the coupled first order system to calculate

the fields in the resonator

∂V

∂t
= −1

%
∇P,

∂P

∂t
= −%c2∇ · V + J. (5.40)

For analysis the theoretical acoustics resonator is solved as a forcing-function problem,

where the wave equation is obtained from system (5.40) assuming material parameters are

constants. Here J is an additive pressure point-source at the origin. The problem is then

−c2∇2P (r, t) +
∂2P (r, t)

∂t2
=
∂J(t)

∂t
δ(r), r ∈ Ω , t ≥ 0, (5.41)

P (r, t)
∣

∣

∂Ω
= 0, r ∈ ∂Ω , t ≥ 0, (5.42)

P (r, t) ≡ 0, J(t) ≡ 0, r ∈ Ω̄ , t < 0, (5.43)

where δ(r) is a delta function locating the source (and sample) point at the center of the

resonator. For analysis, δ() is a Dirac delta, in the discrete simulations δ() is a Kronecker or
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discrete delta. Partial differential equation (PDE) (5.41) is the governing equation, (5.42)

is the boundary condition, and (5.43) is a causality condition. The solution is given by

P (r, t) =
∞
∑

m,p,q=1
ODD

Ampq(t)Φmpq(r)

=
∞
∑

m,p,q=1
ODD

Ampq(t) cos
(mπx

L

)

cos
(pπy

L

)

cos
(qπz

L

)

,

(5.44)

where Φmpq(r) are the eigenfunctions and Ampq(t) is the mode time dependence. Due to

the symmetries and boundary conditions of the acoustics problem, the mode indexesm, p, q

are odd.

The forcing function (right hand side of (5.41)) is expanded in the eigenfunctions

F (r, t) =
∂J(t)

∂t
δ(r) =

∞
∑

m,p,q=1
ODD

Bmpq(t)Φmpq(r). (5.45)

Now take the source time dependence to be J(t) = δ(t), then the Bmpq(t) can be found in

the usual way with

Bmpq(t) =

∫∫∫

Ω
F (r, t)Φmpq(r) dv

∫∫∫

Ω
Φ2

mpq(r) dv
=

8

L3
δ′(t). (5.46)

Then theAmpq(t) coefficients are found by substituting (5.44) and (5.45) into (5.41), giving

an ordinary differential equation (ODE)

ω2
mpqAmpq(t) + A′′

mpq(t) = Bmpq(t), (5.47)
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the solution, satisfying (5.41)–(5.43) is

Ampq(t) =
8

L3
H(t) cos(ωmpqt), (5.48)

where H(t) is a step function. The eigenvalues or resonant mode frequencies are

k2
mpq =

(π

L

)2
(

m2 + p2 + q2
)

=
(ωmpq

c

)2

. (5.49)

The solution to problem (5.41)–(5.43) is

P (r, t) = H(t)
8

L3

∞
∑

m,p,q=1
ODD

cos(ωmpqt)Φmpq(r). (5.50)

To band limit the solution, the sum is truncated. Because of the sampling considera-

tions, the mode indexes must all satisfy m, p, q < M . We have discretized with M = 10

cells, so the sums run to M − 1 = 9. At the sample point in the center of the domain, the

field is then

P (0, t) = H(t)
8

L3

M−1
∑

m,p,q=1
ODD

cos(ωmpqt) =
H(t)

(M/2)3∆3
g

M−1
∑

m,p,q=1
ODD

cos(ωmpqt), (5.51)

where (M/2)3 = 125 is the total number of modes, including degeneracies.

The source function for the acoustic simulation is an additive pressure source two ∆t

units long with amplitude 1/2. Although it is not obvious that this is the proper source to

simulate the specified theoretical problem (the obvious choice being a unit amplitude pulse
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one ∆t unit long), this source implementation is a consequence of sampling considerations.

Two samples per pulse are required. This source issue can be demonstrated as follows. In

addition to being able to construct the time evolution of the fields in an analytic acoustics

resonator, as was shown in Section 5.4.3, it is also possible to construct the time evolution

that will be produced by a Yee simulation without actually having to run the FDTD simu-

lation. As shown in [17], given the complete analytical solution of the sampled resonator,

the frequencies that will exist in the numerical grid can be precisely predicted by using the

dispersion relation. After dispersion shifting there will be a new list of frequencies and

amplitudes. This new list is the set of basis functions for generating a dispersion-shifted

theoretical prediction of the algorithm behavior. There is also a source amplitude issue.

The theoretical solution (5.51) assumed a unit amplitude delta function as the J in (5.40).

In the FDTD method a unit amplitude discrete delta signal acts over the entire unit-cell

space-time volume, not at a space-time point. We then need to either divide the signal

in the FDTD computation by ∆t∆
3
g, or multiply the prediction (5.51) by ∆t∆

3
g. For the

acoustics results presented here the scale factor is in the FDTD simulations.

The time evolution of the Yee FDTD acoustics algorithm and the Yee-dispersion-shifted

theory are shown in Figure 5.1. For illustrative purposes in this figure only, the source pulse

is delayed by ten time steps, and the theoretical solution is non-causal due to settingH(t) ≡

1. Note that at step 11 (the endpoint of the width two ∆t pulse, at approximately time 6)

the Yee simulation and the dispersion shifted theory overlap. The overlap remains excellent

throughout the remaining time steps of the 65536 step simulation. This demonstrates that

the width two ∆t pulse is the proper source function for the given theoretical problem.
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Figure 5.1: First time steps of a Yee FDTD simulation and Yee dispersion-shifted theo-
retical time evolution. The simulation source pulse starts at step 10 (about time 5). From
time-step 11 (endpoint of the width 2∆t pulse, about time 6) onward the theory and simu-
lation overlap, and continue to do so for the remaining steps of the simulation. Given the
resonator eigenfunctions and the Yee dispersion relation, the behavior of the Yee acoustics
resonator is predictable.
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5.4.4 Electromagnetics Resonator Analysis

As usual, the electromagnetics simulations (the computer programs) update the fields

using the coupled first order system of Maxwell’s curl equations, constitutive relations,

boundary conditions, and initial conditions

∂D

∂t
= ∇ × H − J,

∂B

∂t
= −∇ × E, r ∈ Ω , t ≥ 0, (5.52)

B = µH, D = εE, Jc = σE, r ∈ Ω , t ≥ 0, (5.53)

n̂ × E = 0, r ∈ ∂Ω , t ≥ 0, (5.54)

E ≡ 0, D ≡ 0, B ≡ 0, H ≡ 0, J ≡ 0, r ∈ Ω̄ , t < 0. (5.55)

For analysis the electromagnetics resonator is modeled as a boundary-value problem with

a forcing function. The model for E(r, t) is obtained by eliminating H,B, and D from

(5.52)–(5.55), using the simplifying assumptions that the permittivity ε and permeability µ

are invariant scalars, and the conductivity σ is zero. The resonator boundary value problem

becomes

∇ × ∇ × E + ε µ
∂2E

∂t2
= −µ ∂J

∂t
, r ∈ Ω , t ≥ 0, (5.56)

n̂ × E = 0, r ∈ ∂Ω , t ≥ 0, (5.57)

E ≡ 0, J ≡ 0, r ∈ Ω̄ , t < 0. (5.58)

The curl-curl operator is difficult to work with, so we rewrite it with a vector differential
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identity

∇ × ∇ × E = ∇∇ · E − ∇ · ∇E = ∇∇ · E −∇2E. (5.59)

Now we obtain an expression for ∇ · E in terms of J

∂D

∂t
= ∇ × H − J =⇒ ε∇ ·

∂E

∂t
= −∇ · J ⇐⇒ ∇ · E = −1

ε

∫ t

0−
∇ · J dτ. (5.60)

Thus, without approximation in the homogeneous region, the ∇ × ∇ × E can be written

∇ × ∇ × E = −∇2E − 1

ε
∇

∫ t

∇ · J dτ (5.61)

The problem is then

−∇2E + ε µ
∂2E

∂t2
= −µ ∂J

∂t
+

1

ε
∇

∫ t

0−
∇ · J dτ, r ∈ Ω , t ≥ 0, (5.62)

∇ · E = −1

ε

∫ t

0−
∇ · J dτ, r ∈ Ω , t ≥ 0, (5.63)

n̂ × E = 0, r ∈ ∂Ω , t ≥ 0, (5.64)

E ≡ 0, J ≡ 0, r ∈ Ω̄ , t < 0, (5.65)

Equation (5.62) is the governing PDE, (5.64) gives the boundary conditions, and (5.65) are

causality conditions. Note that the current density, J, is the current in (5.52), it can be data,

as here, or it can depend on the E field.
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The formal solution for the E field is

E(r, t) =
∞
∑

m,p,q

[

AX
mpq(t)Φ

X
mpq(r)x̂ + AY

mpq(t)Φ
Y
mpq(r)ŷ + AZ

mpq(t)Φ
Z
mpq(r)ẑ

]

, (5.66)

where AX
mpq(t) is the x axis mode time dependence, and where ΦX

mpq(r) is the x axis eigen-

function, and similarly for the y and z axes. Take the current density to be a centered, two

cell long z-directed filament

J(r, t) = δ(x)δ(y)(H(z + ∆g) −H(z − ∆g))f(t)ẑ, (5.67)

where δ() is a delta function, H() is a step function, and f(t) is the time dependence of the

current density. Now the symmetry of the centered source, and the boundary conditions

(5.64) can be used to find the eigenfunctions. The symmetry and boundary conditions

require that the m, p indexes are odd, and the q index is even. For notational simplicity

let km = mπ/L, kp = pπ/L and kq = qπ/L. Then the eigenfunctions, satisfying the

boundary condition (5.64), are

ΦX
mpq(r) = sin(kmx) cos(kpy) sin(kqz),

ΦY
mpq(r) = cos(kmx) sin(kpy) sin(kqz),

ΦZ
mpq(r) = cos(kmx) cos(kpy) cos(kqz).

(5.68)
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Expand the forcing function (the right-hand-side of (5.62)) in the resonator eigenfunctions

F(r, t) = − µ
∂J

∂t
+

1

ε
∇

∫ t

0−
∇ · J dτ

=
∞
∑

m,p=1
ODD

∞
∑

q=0
EVEN

[

BX
mpq(t)Φ

X
mpq(r)x̂ +BY

mpq(t)Φ
Y
mpq(r)ŷ +BZ

mpq(t)Φ
Z
mpq(r)ẑ

]

.

(5.69)

Then the B coefficients are found in the usual way, yielding

BX
mpq(t) =

16

L3
sin(∆gkq)

km

ε

∫ t

0−
f(τ) dτ,

BY
mpq(t) =

16

L3
sin(∆gkq)

kp

ε

∫ t

0−
f(τ) dτ,

BZ
mpq(t) =



















−16
L3 sin(∆gkq)

(

kq

ε

∫ t

0−
f(τ) dτ + µ

kq

f ′(t)
)

, q > 0

−8∆g

L3 µf ′(t), q = 0.

(5.70)

Once again the series expansions, (5.66) and (5.69), are substituted into the governing PDE

(5.62), giving auxiliary ODE’s for each of the A coefficients.

ω2
mpqAmpq(t) + A′′

mpq(t) = c2Bmpq(t). (5.71)

Choose the time dependence of the current density to be a doublet, f(t) = δ ′(t). Then the
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solutions to the auxiliary ODE’s, satisfying (5.62)–(5.65), are

AX
mpq(t) =

16c2

L3
sin(∆gkq)

km

ε ωmpq

sin(ωmpqt)H(t),

AY
mpq(t) =

16c2

L3
sin(∆gkq)

kp

ε ωmpq

sin(ωmpqt)H(t),

AZ
mpq(t) =



















−16c2

L3 sin(∆gkq)
(

µ δ(t)
kq

+
(

kq

ε ωmpq

− µ ωmpq

kq

)

sin(ωmpqt)H(t)
)

, q > 0

−8c2∆g

L3 (µ δ(t) − µωmpq sin(ωmpqt)H(t)) , q = 0,

(5.72)

where the mode frequencies ωmpq are given by (5.49).

Because of the sampling considerations, the indexes must satisfy m, p < M and q <

M − 1. Analytically, the potential between the sample nodes is given by a line integral

of the E field, along the z axis sample line. The value of “potential” extracted from the

simulations is the sum of the two central Ez field samples times the grid step size. The

predicted approximate potential is then the truncated (band-limited) sum

U(t) = −C1

M−1
∑

m,p=1
ODD

M−2
∑

q=0
EVEN

AZ
mpq(t)2∆g cos

( qπ

2M

)

, (5.73)

where C1 is a constant described below.

In the electromagnetics case the theoretical source function is a doublet δ ′(t). The

obvious finite doublet would be the time series (· · · , 0, 1,−1, 0, · · · ). Again, two samples

per pulse are required. There are several possible ways to rewrite the obvious finite doublet

to have two samples per pulse. The choice which seems to produce the results closest to the

theory is obtained by spreading each polarity of the obvious doublet over two steps, as was
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done with the acoustics finite delta. The time series is then (· · · , 0, 1/2, 0,−1/2, 0, · · · ).

This spaced-doublet is used as the unit amplitude finite doublet in all the electromagnetic

simulation results presented here.

The finite-impulse amplitude scaling issue also applies here, as in acoustics. In electro-

magnetics, the vector current density J has specific physical meaning, so the finite-impulse

scale factors are multiplied into (5.73). Here we have a doublet signal, applied to a current

density. The scale factor is then C1 = ∆2
t ∆

2
g, this factor is multiplied into (5.73) for the

results we present.

A plot of the last few time steps of the potential sample and prediction is shown in Fig-

ure 5.2. This plot shows that there is fair agreement between the Yee-dispersed theoretical

prediction and the simulation.

5.4.5 Algorithm Numerical Implementation

In order to implement the algorithms presented here, some method of computing deriva-

tives (5.4)–(5.6) or (5.82), which is presented in the next section, is required. Shannon’s

sampling and reconstruction methods are used here. Reconstruction methods can be de-

scribed as follows. Given reconstruction basis functions φ, some field component f is

exactly reconstructed at the arbitrary point (x, y, z) from the discrete samples f(i, j, k)

with the infinite sums

f(x, y, z) =
∑

i

∑

j

∑

k

φ

(

x

∆g

− i

)

φ

(

y

∆g

− j

)

φ

(

z

∆g

− k

)

f(i∆g, j∆g, k∆g),

(5.74)
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Figure 5.2: Plot of the last few time steps of the potential sample in an electromagnetic
Yee FDTD resonator simulation and Yee dispersion-shifted theoretical time evolution of
the resonator. The overlap here between theory and simulation is fair, though not excellent
as in the acoustics case. The electromagnetic simulations are run with the spaced-doublet
pulse.
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where for Shannon reconstruction the basis functions φ are the sinc(x) = sin(πx)/(πx)

functions. For notational simplicity let g(x, y, z) = φ(x)φ(y)φ(z) = g(r), and use vector

notation for sum indexes, so (5.74) becomes

f(r) =
∑

I

g

(

r

∆g

− I

)

f(∆gI). (5.75)

Now compute a spherical gradient, writing the function f(r) with a reconstruction sum

∇sf(r) = ∇s

∑

I

g

(

r

∆g

− I

)

f(∆gI) =
∑

I

f(∆gI)∇sg

(

r

∆g

− I

)

, (5.76)

where the exchange of the summation and ∇s is permitted because the ∇s only operates on

r, and not on I. Additionally in an algorithm the sums are finite, so convergence issues do

not apply. The function ∇sg(r) can be precomputed. So we define the update coefficients

CG(r) = ∇sg(r) =
∂

∂V

∫∫

∂B
n̂g(r + r′) ds =

1

4πρ2

∂

∂ρ

∫∫

∂B
n̂g(r + r′) ds, (5.77)

where the surface integration is over the spherical surface of the operator. This is a com-

plicated calculation which is performed numerically for a fixed radius. In terms of the
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coefficients, the spherical gradient, divergence, and curl are

∇sψ(r) =
∑

I

CG

(

r

∆g

− I

)

ψ(∆gI), (5.78)

∇s · W(r) =
∑

I

CD

(

r

∆g

− I

)

· W(∆gI), (5.79)

∇s × W(r) =
∑

I

CC

(

r

∆g

− I

)

× W(∆gI), (5.80)

where CG, CD and CC are the gradient, divergence and curl update coefficients. Equa-

tions (5.78)–(5.80) are quite general. Depending on the contents of the coefficient arrays,

they could provide classic Yee, higher-order Yee, Forgy [13], direct-domain equivalent of

pseudo-spectral time-domain (PSTD) [32], or other algorithms. The small-cube acoustics

algorithm (discussed in the next section) modeling system (5.31) uses (5.78) and (5.79) to

compute the spatial derivatives. The spherical-derivative electromagnetics algorithm uses

two staggered curls (5.80), to compute the partial derivatives. We need only compute the

spatial derivatives of the fields for coordinates r on a discrete grid, typically limited to in-

teger or half-integer multiples of the grid size ∆g. Only one octant of one component of

CG needs to be computed, the other octants and components can be obtained from simple

symmetry considerations. Additional symmetries could be used to further reduce the coef-

ficient calculation. Similar considerations allow finding the CD and CC coefficients from

the CG if staggering is properly considered. For a collocated grid CG = CD = CC , in a

staggered grid there are simple fixed shift offsets between the C’s.
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5.4.6 Small-Cube Operator Algorithm

In practice obtaining the update coefficients (5.77) is quite numerically expensive, nev-

ertheless, the electromagnetics results presented here uses these. To more readily obtain

coefficients a simplified approach we term the small-cube algorithm (where the “small-

cube” refers to the shape of the operators and not to the resonator) is used in the acoustics

results presented here. The small-cube operator algorithm simplifies the partial derivatives

in the right-hand side of (5.4)–(5.6), which are approximated by the finite difference over

a small cubic volume. This approximation greatly simplifies calculating the update coeffi-

cients used in numerical algorithms. For the gradient this simplification results in

∇sψ ≈
∫∫

S(∆v)
n̂ψ ds−

∫∫

S(0)
n̂ψ ds

∆v
=

1

∆v

∫∫

S(∆v)

n̂ψ ds = ∇cψ, (5.81)

where the integral over zero surface area, S(0), yields zero, and ∇c denotes the small-

cube operator. The small-cube divergence and curl are defined in a similar manner, so the

operators are

∇cψ =
1

∆v

∫∫

∂v
n̂ψ ds ≈ ∇sψ,

∇c · W =
1

∆v

∫∫

∂v
n̂ · W ds ≈ ∇s · W,

∇c × W =
1

∆v

∫∫

∂v
n̂ × W ds ≈ ∇s × W,

(5.82)

where ∆v is the volume of the grid-aligned small-cube operator, with surface ∂v. This ap-

proximation to the algorithm is equivalent, by integral theorems (5.1)–(5.3), to computing

the volume average of the usual divergence, gradient or curl over the small cube and using
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these averages as the algorithmic derivatives.

To find the effect of the small cube operator on scalar and vector plane waves the inte-

grals in (5.82) are computed over a cube with sides of length b∆g, yielding

∇cψ(r) = i j0(Kx) j0(Ky) j0(Kz)kψ(r), (5.83)

∇c · A(r) = i j0(Kx) j0(Ky) j0(Kz)k · A(r), (5.84)

∇c × A(r) = i j0(Kx) j0(Ky) j0(Kz)k × A(r), (5.85)

where Kx = b∆gkx/2, Ky = b∆gky/2, and Kz = b∆gkz/2. Writing the derivatives with

spherical Bessel functions is a notational convenience, the natural results of the integra-

tions are complex exponentials or trig functions. The dispersion equation for an acoustics

system, (5.31), is then easily written using equations (5.83), (5.84) and (5.13). The result

can be expressed as

4

∆2
t

sin2

(

ω∆t

2

)

= (ck)2 j20(Kx) j20(Ky) j20(Kz). (5.86)

To find the stability limit s (where s = c∆t/∆g), (5.86) is solved for the angular frequency

ω =
2

∆t

arcsin

(

s
k∆g

2

∣

∣ j0(Kx) j0(Ky) j0(Kz)
∣

∣

)

. (5.87)

Stability requires that ω be real for all permitted k’s, so the argument of the arcsin function
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must be between zero and one. Thus the stability limit s as a function of b is given by

1

s(b)
= max

k
|kx|,|ky |,|kz |≤π/∆g

(

k∆g

2

∣

∣ j0(Kx) j0(Ky) j0(Kz)
∣

∣

)

. (5.88)

While the exact algorithm can be stabilized at any ∆t, this approximation cannot. For

arbitrary b the max in (5.88) is difficult to find. However, if the size of the operator is

limited, the expression for the stability limit reduces to

s(b) =
2

π
√

3

∣

∣

∣

∣

bπ/2

sin bπ/2

∣

∣

∣

∣

3

where 0 ≤ b . 0.615. (5.89)

Equations (5.88) or (5.89) can be numerically solved for the size of the cubic operator for

a given stability limit. To obtain a stability limit of 1/
√

3, the Yee stability limit, the cube

edge length is set to b ≈ 0.5958636. For the small-cube operator the coefficient field C’s

are products of three independent 1D functions, so (in principle) the full 3D coefficient

arrays do not need to be stored. The small-cube coefficients are

C(r) = ∇cg(r) =
1

∆v

∫∫

∂v
n̂g(r + r′) ds ≈ ∇sg(r). (5.90)

Performing the surface integrations over the six faces of the cube operator (5.90) yields

C(r) =
1

b3
[ (

φ(x+) − φ(x−)
) (

Φ(y+) − Φ(y−)
) (

Φ(z+) − Φ(z−)
)

x̂

+
(

Φ(x+) − Φ(x−)
) (

φ(y+) − φ(y−)
) (

Φ(z+) − Φ(z−)
)

ŷ

+
(

Φ(x+) − Φ(x−)
) (

Φ(y+) − Φ(y−)
) (

φ(z+) − φ(z−)
)

ẑ
]

,

(5.91)
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where x+ = x+ b∆g/2 and x− = x− b∆g/2, etc., and

Φ(x) =

∫ x

0

φ(u) du =

∫ x

0

sincu du =
Si(πx)

π
, (5.92)

is the “sine integral” function. These coefficients perform qualitatively similarly to the

exact coefficients, but are much simpler to obtain. In effect, the only difference between

the “exact” and “small-cube” algorithms is the coefficients used in the update derivatives

(5.78)–(5.80).

5.4.7 Numerical Results

Figure 5.3 shows the acoustics calculations. The plots show the magnitude of the FFT

vs. frequency of the sample point data. Top plot is the theory, middle plot is Yee algorithm

and bottom plot is cubic derivative algorithm. Note that in the Yee algorithm fourth and

fifth spectral lines exhibit mode-splitting [33, 17], due to the anisotropy of the Yee algo-

rithm. These two lines are distinct even though they correspond to degenerate modes in the

continuous world and hence should appear as a single resonant line. Other lines also show

splitting. The bottom plot in Figure 5.3 shows the acoustics simulation results for an iden-

tically configurated resonator, but using the small-cube divergence and gradient operators.

Note again that the fourth spectral line has two closely-spaced peaks, this line is split due

to anisotropy, though the splitting is much smaller than in the Yee algorithm, the splitting

of the fourth line is too small to observe on this plot. The mode structure for the small-cube

algorithm is much closer to the theoretical mode structure than the Yee algorithm.

Figure 5.4 shows the results of the calculations for the electromagnetic resonator. The
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Figure 5.3: Spectra of solutions to the acoustics resonator problem. Top plot is the the-
ory (5.51), middle plot is the Yee algorithm and bottom plot is the small-cube algorithm.
The anisotropy of the Yee algorithm causes mode splitting, combining, and shuffling, thus
scrambling the modal structure. The small-cube algorithm does exhibit some splitting,
which is visible in some lines.
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plots show the magnitude of the FFT vs. frequency of the sample data. The top plot shows

the theoretical prediction given by (5.73). The middle plot is the result of a Yee algorithm

simulation and the bottom plot is the spherical derivatives algorithm. The electromagnetics

Yee algorithm is divergence free [7], unless the simulation problem has required diver-

gences, e.g., the current deposits charge [12]. The source current has no DC component,

and no DC is visible. The mode structure in the spherical algorithm is much better than the

Yee Algorithm, but at higher frequencies splitting is clearly visible.

5.4.8 Theoretical vs. Numerical Dispersion

The theoretical spherical operator dispersion relation, (5.34) or (5.39), repeated here for

convenience, is
(

2

c∆t

)2

sin2

(

ω∆t

2

)

=
1

(a∆g)2
sin2 (ka∆g). (5.93)

The results for the spherical operator shown in Figure 5.4 are not exact, as expected from

analysis of the algorithm when run according to the exactness condition (5.27). In practice

the summations in (5.78)–(5.80) need to be carried out over the finite-sized model space,

hence the reconstruction-based computation is an approximation of the algorithm. This

means that the dispersion relation above only approximately characterizes a numerical im-

plementation of the algorithm. The true numerical dispersion relation is then given in terms

of finite sums. In acoustics for example

(

2

c∆t

)2

sin2

(

ω∆t

2

)

= e−i(k·r)
∑

I

CD(
r

∆g

− I) ·

∑

J

CG(I − J)eik·∆gJ. (5.94)
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Figure 5.4: Spectra of solutions to the electromagnetics resonator problem. Top plot is
the theory (5.73), middle plot is Yee algorithm and bottom plot is spherical derivative al-
gorithm. Again note the mode structure is scrambled in the Yee algorithm. The spherical
algorithm shows much less mode splitting, the mode structure is closer to the ideal.
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This expression has a huge number of terms (> 106 complex exponentials), even for these

small resonators.

5.5 Chapter Summary

The spherical operators presented here provide for theoretically exact 3D time-domain

differential equation solvers. The theory of exact 3D time-domain solvers can be used to

guide the construction of practical algorithms. We have shown the theoretical existence of

3D time-domain solvers which can, in principle, be exact for any time-step size. While the

volume algorithms provides very good performance to the sampling limit, the O[n2] per

axis cost is far too computationally expensive to be practical for much larger model spaces

than the small resonators used here. Nonetheless, we have a theoretical framework for exact

algorithms with a “magic” time step in 3D, which can be used to guide the construction of

practical algorithms.

A well known method to improve performance is to use fast transform techniques.

Such methods would still use the full space, i.e., the operators would remain global. Al-

ternatively, preliminary testing suggests that practical algorithms can be made with some

set of only local neighbor nodes contributing to the operators. Such local operators are

much less computationally expensive than global reconstruction. The range of the operator

could be increased or decreased to improve accuracy or speed. A method to reduce the

needed computational range of the volume operators is to use reconstructors with faster

spatial falloff than the Shannon reconstructors. This can be accomplished by modifying

the rectangular spectrum of the Shannon reconstructor to have a slower falloff in the spec-
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trum of the reconstructor—since a slower spectral falloff will produce a faster falloff in the

reconstructor. The purpose of a localized reconstructor is to retain the same algorithmic

cost as the Yee algorithm, albeit with a much larger constant cost factor.

The test implementations show potential of the method, but an efficient implementation

that exploits this theory has not yet been obtained. The tests demonstrate solvers for both

acoustics and Maxwell’s equations, with good results.
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Chapter 6

Conclusions
For the electromagnetic resonators studied in Chapter 3, the dispersion relation accu-

rately predicts the frequencies at which a rectangular resonator will resonate. Anisotropic

dispersion of the Yee algorithm can split or combine modes. Furthermore, the dispersion

shift can change the resonant frequencies so that a list of observed modes ordered by reso-

nant frequency may or may not correspond in order to a list obtained from the continuum.

Modes can be combined, split, and shuffled—resulting in a scrambled mode structure.

The constructed divergence FDTD algorithm presented in Chapter 4 is stable at 3/2

times the usual Yee Courant limit. In addition the operator is isotropic to fourth order.

Isotropy improves the mode structure behavior over the frequencies which are typically of

interest. Isotropic (or nearly isotropic) algorithms (in homogeneous regions) can be post-

processed to reduce much of the dispersion-error induced frequency shifting. Such a cor-

rection would shift peaks but would not undo any splitting or combining. The constructed

algorithm was shown to yield good results for canonical scattering problems.

The spherical operators presented in Chapter 5 provide for theoretically exact 3D time-

domain differential equation solvers for hyperbolic systems of coupled first order equations

in an unbounded homogeneous space. We have shown the theoretical existence of 3D time-

domain solvers which can, in principle, be exact for any time-step size—a “magic” time
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stepping in 3D.

As used here the spherical operators were used on a cubic grid. The definition for the

operators (5.4)–(5.6), does not reference any grid—the operators could be defined on a non-

cubic grid. While the volume algorithms provides very good performance to the sampling

limit, the algorithm, as implemented here, is computationally expensive.
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