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EXON AND INTRON DETECTION IN HUMAN

GENOMIC DNA
Abstract

by James Keith Miller, Ph.D.
Washington State University
May 2005

Chair: Richard Gomulkiewicz

The exponential growth of raw genomic data demands a shift from bio-
logical methods of gene annotation to more computational and mathematical
methods. We present a novel computational approach using likelihood ra-
tios which we call the multi-window method. DNA n-tuple frequencies are
collected from a training set of known exons and introns. Likelihood ratios,
based on these n-tuple frequencies within a window of nucleotides, are used
to predict the position of a nucleotide. This position either indicates the
location within a codon for exon nucleotides, or indicates that the nucleotide
is from an intron.

We also compare the sensitivity and specificity of this method with a
simple hidden Markov model which captures many of the same features as

our multi-window method.
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Chapter 1

Introduction

As of October 2004, there were more than 38 million sequence entries totaling
over 43 billion base pairs entered into GenBank [Benson et al., 2000] (http: /-
/www.ncbinlm.nih.gov/Web/Newsltr/SummerFall04/GBrel.html). ~ This
staggering amount of data has been doubling almost every year for the last 20
years, and shows no signs of slowing - figure 1.1 At the same time, however,
computational power (CPU speed and memory size) grows at a slower rate
[Livstone et al., 2003]. Thus, to keep pace with the analysis of this data,
new techniques are needed. For a review of current methods, see Mathe
et al. [Mathe et al., 2002] and the website of Wentian Li (http://linkage.-
rockefeller.edu/wli/gene/).

Significant biological questions may be answered using this sequence
data, including questions regarding phylogeny [Townsend et al., 2004] (the
evolutionary history of an organism, and thus its relatedness to other or-

ganisms), population genetics [Won and Hey, 2005], and medical research
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Figure 1.1: Number of nucleotides and sequences in GenBank. http://www.-
ncbi.nlm.nih.gov/Genbank /genbankstats.html. Revised: May 4, 2004. Used

with permission from the National Center for Biotechnology Information.



[Sridhar, 2001]. Often, but not always, a first step in the analysis of this raw
genomic data is to computationally identify biologically significant regions of
these sequences. While there are many subregions of interests, (telomeres and
centromeres for example may play roles in aging and chromosome replication,
respectively) the genes of an organism are the key players since they contain
the genetic code which instructs the cell how to make the building blocks
of the cell itself — the proteins. This dissertation presents a novel approach
to locating the exons, or the regions which are translated into proteins, of a
gene.

In Chapter 2, after introducing the relevant biological background, sum-
maries of both biological annotation methods and the major current com-
putational annotation programs are given. Next, we present a novel com-
putational approach using likelihood ratios. DNA n-tuple frequencies are
collected from a training set of known exons and introns. Likelihood ratios,
based on these n-tuple frequencies within a window of nucleotides, are used
to predict the position of a nucleotide. This position either indicates the
location within a codon for exon nucleotides, or indicates that the nucleotide
is from an intron.

Chapter 3 gives a more thorough description of the method introduced in
Chapter 2. Next, the results from this method, i.e. the sensitivities and speci-
ficities (accuracies), are enumerated for n-tuples of length one, two and three.
Finally, an extension (the multi-window method) is introduced which uses
triplet frequencies and three consecutive overlapping windows of DNA data.

This extension increased the method’s overall sensitivity and specificity. The



multi-window method, unlike many of the more widely used current methods,
uses only local information to predict the position of a nucleotide. While this
may lower the method’s overall sensitivity and specificity, it still performs
reasonably well as a stand alone method. The results from our multi-window
method may also be used as additional evidence of the position of a nu-
cleotide when used in conjunction with another method. Another possible
use for our multi-window method is finding regions that were exonic in the
past, but no longer produce proteins. These so-called “pseudogenes” do not
have all of the DNA sequence information contained in a true gene, and thus
methods which rely on this entire set of true gene information will miss these
pseudogenes. While missing pseudogenes certainly can not be considered a
fault of a method which seeks to identify currently active genes, there are in-
stances where finding pseudogenes is of interest [Zhang and Gerstein, 2003],
[Zhang et al., 2003].

A simple hidden Markov model is developed in Chapter 4. It incorporates
many of the same features as the multi-window method, and is used to give a
more rigorous mathematical framework to the analysis of the sensitivity and
specificity of this latter method. Under this hidden Markov model frame-
work, both the Viterbi algorithm and the forward-backward algorithms are
employed to make exon/intron predictions. Then the sensitivities and speci-
ficities of the multi-window, the Viterbi and the forward-backward methods
are compared.

Finally, in Chapter 5, we attempt to increase the overall sensitivity and

specificity of the multi-window method by using a splice site prediction



method — GeneSplicer. Under ideal conditions the multi-window method
will correctly predict the position of a base when the three overlapping win-
dows are within the same region (exon or intron) as the base itself. As the
leading tail of the windows move through a splice site (a change from exon
to intron or visa versa) though, this tail contains data from a different re-
gion than the nucleotide in question. This causes the predictions to become
increasingly poor until the windows move entirely into the new region. This
inability to resolve splice sites was partially alleviated by incorporating the

splice site predictions made by GeneSplicer.
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Chapter 2

Exon and Intron Detection

using Likelihood Ratios

2.1 Abstract

In order to distinguish between the exon and intron regions within genes in
the human genome, nucleotide n-tuple frequencies in these two regions are
analyzed. The differences in these frequencies gives an exploitable method,
using likelihood ratios, to characterize these regions, and to find the correct

“reading frame” within the exons.

2.2 Introduction

As of October 2004, there were more than 38 million sequence entries totaling

over 43 billion base pairs entered into GenBank [Benson et al., 2000] (http:/-



/www.ncbi.nlm.nih.gov/Web/Newsltr/SummerFall04/GBrel.html). ~ This
staggering amount of data has been doubling approximately yearly over the
last 20 years, and shows no signs of slowing - figure 2.1. At the same time,
computational power (CPU speed and memory size) is growing at a slower
rate [Livstone et al., 2003]. To keep pace with the analysis of this data, new
analytical techniques are needed.

Many biological questions can be addressed using genome se-
quence data. Some examples include questions regarding phylogeny
[Townsend et al., 2004] (the evolutionary history of an organism, and thus
its relatedness to other organisms), population genetics [Won and Hey, 2005],
and medical research [Sridhar, 2001]. Often, but not always, a first step in
the analysis of raw genomic data is to identify biologically significant regions
of these sequences. There are many subregions of interests. For example,
telomeres on the ends of chromosomes may play a role in aging and cen-
tromeres play a role in chromosome replication. However, the genes of an
organism are the key players since they contain the genetic code which in-
structs each cell how to make the building blocks of the cell itself — the
proteins.

This chapter begins with an overview of the pertinent biology and then
gives a discussion of current methods of identifying exons and introns. Fi-
nally, a new method of exon and intron detection, using likelihood ratios, is

introduced.
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2.3 Biological Background

This section contains a summary of the pertinent biology. More detailed
accounts of the basic processes of transcription, slicing, and translation can
be found in any of the following general texts of genetics: [Lewin, 1994,
[Fairbanks and Anderson, 1999] and [Snustad et al., 1997].

Human chromosomes are composed of tightly coiled threads of de-
oxyribonucleic acid (DNA) [Watson and Crick, 1953] and associated protein
molecules which aid in the structured packing of the DNA. The DNA itself
is often compared to a twisted ladder with the sides of the ladder being the
sugar-phosphate backbone of the DNA, and the rungs being the two com-
plementary nucleotides that bind to one another - one from each of the two
strands of DNA. A single strand of DNA may be thought of as a sequence of
four nucleotides: adenine (A), cytosine (C), guanine (G) and thymine (T).
The nucleotides that bind to one another to form the “rungs” are known
as complementary pairs: A binds with T by a double hydrogen bond, and
C binds with G by a triple hydrogen bond. The A and G nucleotides are
known as purines and are larger than the C and T nucleotides, which are
known as pyrimidines. Thus all “rungs” are composed of one purine and
one pyrimidine. The DNA is always read by the cell machinery in the same
orientation. That is, the sequence AATCGTA of nucleotides (or bases) along
a strand of DNA would always be read in the order indicated above or in
the reverse as ATGCTAA, but not in both orders. The end of the sequence

where the reading starts is known as the 5’ end, and the other is the 3’ end.
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The complementary strand always has the reverse orientation. Thus if one
strand of a chromosome had the sequence 5’- AATCGTA - 3’, then this would
be bound to the sequence 3’ - TTAGCAT - 5 as shown below:

5 - AATCGTA - 3

3’ - TTAGCAT - 5

The genes within the DNA (which in higher eukaryotes comprise only
a small percentage of the entire genome - the entire DNA sequence of an
organism - which in humans is some three billion nucleotides long) are the
genetic code used by the cell to make proteins. A typical gene is a few
thousand bases long. There are many genes on both strands of the DNA of
a chromosome (humans have 23 pairs of chromosomes and somewhere on the
order of 30,000 genes), but if a particular gene were on the top strand of the
above diagram, it would be read from left to right, whereas if it were on the

bottom, it would be read from right to left.

2.3.1 Transcription

An initial stage of protein synthesis is the transcription of the DNA into
messenger RNA (mRNA). This mRNA will transfer the information from
the DNA in the nucleus of the cell out into the cytoplasm of the cell where
the protein is synthesized. See figure 2.2 [Snustad et al., 1997, Figure 11.28|
for a schematic of transcription and translation (explained below), and figure
2.5 [Snustad et al., 1997, Figure 11.5] for a diagram of them.

RNA is a molecule very similar in structure to DNA, except that thymine

12
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is replaced by the pyrimidine uracil (U) and RNA uses the sugar ribose
instead of deoxyribose for its sugar-phosphate backbone. If, in the above
example, the bottom strand were part of a gene it would be called the sense
strand for this portion of the double helix. The top strand would be used by
an enzyme (a catalytic protein) known as RNA polymerase II to synthesize
the mRNA; thus this top strand is known as the template or antisense strand.
The bottom strand, the non-template strand, would have the sequence in the
orientation in which, by convention, genes are reported. The growing mRNA
would be synthesized in the 5’ to 3’ direction as the reverse complement of

the top strand, so would be synthesized from “right to left” here:

5 - ...AATCGTA ...- 3’ The DNA template strand
3 - ...« UAGCAU ...- 5 The newly synthesized mRNA (pre-mRNA)

In order for RNA polymerase II to synthesize mRNA, the double helix
of the DNA must be locally unwound in the area around the transcription
initiation site. This unwinding, in eukaryotes, is performed not by the RNA
polymerase II, but by other proteins associated with transcription initiation.
Regulatory elements are located to either side of the transcription initiation
site. These are sequences which can bind to various proteins which then in-
crease (up regulate) or reduce transcription of the gene, thereby controlling
the amount of the corresponding protein in the cell. By definition, the regu-

latory element adjacent and upstream ( to the 5’ side ) to the initiation site

14



is known as the promoter. The promoter is comprised of various promoter
elements known as the TATA box (or the Goldber-Hogness box after its dis-
coverers), the CAAT box, and the GC box. Although no single promoter
element is found in every promoter, and their actual sequences vary, their
position and sequences are as follows in many genes. The TATA box has the
consensus sequence 5’-TATAAA-3’, and is located 30 bases upstream from
the transcription initiation site. This sequence appears to have little effect on
gene expression, but influences where transcription starts and thus serves as
a reference point for the protein complex involved in translation. The CAAT
box has a consensus sequence of 5’-GGCCAATCT-3" and is often 75 bases
upstream of the initiation site. This sequence does have a significant effect
on gene expression, with mutations down regulating gene expression. The
CG box has a consensus sequence of 5’-GGGCGG-3’ and is found 90 bases
upstream of the initiation site. This promoter element can face towards or
away from the gene, and thus can also appear as 5’-CCGCCC-3’; there are
often multiple copies of this promoter element.

In addition to these promoter elements, there are other regulatory ele-
ments known as enhancer and silencer elements. As the names imply, these
elements up or down regulate gene expression. Although most are located
upstream of the initiation site, they can be found downstream as well. These
elements tend to be further away from the gene — often more than 1,000 bases
from the promoter. Regulatory proteins bind to these sites, often causing the
DNA to fold, bringing the regulatory element bound protein(s) adjacent to

the start of transcription which then enhances or represses gene expression.

15



A gene’s promoter is not recognizable by the RNA polymerase, and thus
various transcription factors (TFs) are necessary for mRNA synthesis — a
typical example follows. First TFIID binds to the TATA box. TFIIB then
binds to this complex and brings in the RNA polymerase and TFIIF. Next
TFIIE and TFIIH bind to the complex, and transcription begins. The rate
of mRNA production may then be regulated by various enhancer or silencer
elements with their bound proteins.

The RNA polymerase synthesizes the mRNA from the point of tran-
scription initiation through all the nucleotides which will be translated into
proteins, and past. The mechanism for termination of mRNA synthesis is
poorly understood. A highly conserved sequence, known as the poly (A)
signal (see below), of AAUAAA is synthesized towards the end of the gene.
Eleven to 30 bases past this sequence, the growing mRNA is cleaved. The
RNA polymerase continues to synthesize mRNA for hundreds to thousands
of bases past this site, but this mRNA is degraded, and no part of it codes
for a protein.

The newly synthesized mRNA is known as pre-mRNA at this stage since
it must still undergo chemical modifications. In addition to the sequence of
bases which will be translated into amino acids, the pre-mRNA contains a
5" untranslated region (5 UTR) that contains a sequence which helps the
ribosome (see below) bind to the mRNA, and a 3’ untranslated region which
contains the poly (A) signal. The 5’ end has a chemically modified guanine
base added to it which also helps the ribosome to bind to the mRNA for
translation. The 3’ end of the mRNA is modified by the addition of a poly(A)

16



tail. This tail of usually 50 to 250 A bases helps regulate the degradation of
the mRNA out in the cytoplasm of the cell. There is no DNA template for
the poly(A) tail, that is, there is no sequence of corresponding T’s on the
DNA template strand, but there is a short sequence in the DNA (which is
then transcribed to the mRNA) that indicates where the poly(A) tail should
be added.

2.3.2 Splicing

Often chemical modification of the mRNA is followed by “splicing” where
precise, predefined, subsequences are spliced out and degraded. These sub-
sequences are known as introns (INTeRvening sequences), and the subse-
quences which are joined together are known as exons (EXpressed sequences).
The joined exons, called “mature mRNA” or simply “mRNA,” will pass out
of the nucleus of the cell to the cytoplasm where protein synthesis occurs.
Most splicing occurs in a splicing complex known as a spliceosome. The
spliceosome is a complex of the mRNA bound to small nuclear ribonucle-
oprotein particles (snRNPs — or “snurps”). The snRNPs are small nuclear
RNAs (snRNAs) associated with between six to ten proteins. There are six
principle snRNA called U1-U6 (the U designated they were ”unusual” when
first discovered), and all but U3 are involved with splicing. Introns that are
spliced out by spliceosomes usually start with the dinucleotide GU, end with
the sequence AG, and have a branch point sequence anywhere from 18 to

38 bases upstream from the end of the intron. Within this branch point
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Figure 2.3: Consensus sequences for regions of an intron. Ej denotes the k** exon.
| denotes an exon/intron or intron/exon boundary. R - a puRine (an A or G base), Y
- a pYrimidine (a C or T/U), N - aNy nucleotide. The subscripts give the percentage
occurrences of these bases at the indicated position relative to the splice sites. Subscripts
of 100 are rounded, and there are many known exceptions (and many more may be found
when introns are searched for without assuming that they start and end with these se-
quences. See http://www.ebi.ac.uk/asd/altextron/pre-release-dist-data.html for current

percentages).

sequence, there is an A nucleotide known as the branch point. The start and
end of the intron are known as the donor or 5’ and acceptor or 3’ splice sites
respectively. Although the initial GU and terminal AG are the only highly
conserved sequences from intron to intron, figure 2.3 shows that there are
longer, less well conserved sequences at the donor and acceptor splice sites
as well as the branch point sequence. Although this is useful information,
the sequences given at the donor splice site and branch-point occur only 10
and 40 percent of the time respectively (and the branch-point sequence has
only a single unique base represented), making these moderately conserved
signals of limited value in splice site detection.

The assembly of the spliceosome begins with the Ul snRNP binding to
the donor splice site. This is done by complementary base pairing of the
snRNA in the Ul snRNP with the donor splice site sequence. Next the U2

snRNP binds in a similar fashion to the branch point sequence, causing the
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intron to fold and bringing the 3’ end of E,, in proximity to the 5’ end of E,
— see figure 2.4 [Lewin, 2000, Figure 22.10]. The U4, U5, and U6 snRNPs
join the complex, and then U4 snRNP dissociates from the complex forming
an active spliceosome. The intron is cleaved at the donor splice site, and
then this free end is ligated to the branch-pt. Next the acceptor splice site
is cleaved and the ends of the exons joined. The spliceosome dissociates, the
donor splice site end is released from the branch point, and then the intron
is degraded.

Finally, it should be noted that there are other classes of introns (Group
I and Group II introns) which undergo self-splicing [Davies et al., 1982],
[Waring and Davies, 1984]. That is, the splicing is a protein-independent
reaction, and little is known about conserved sequences in these introns.
Thus, due to the different classes of introns, the incomplete understanding of
spliceosomal activity, the short and poorly conserved sequences in the donor
and acceptor splice sites, and the branch-point sequence, splice site detection

remains an open problem.

2.3.3 Alternative Splicing

To add to the challenges of splice site detection, it is estimated that
half of the human genes that are spliced can undergo alternative splicing
[Mironov et al., 1999], [Brett et al., 2000], [Lander et al., 2001]. Alternative
splicing yields different (viable) proteins through a variety of means: alter-

nate donor splice site, alternate acceptor splice site, exon skipping, and splice
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Figure 22.10 The splicing reaction proceeds through discrete stages in which spliceosome formation involves the
interaction of components that recognize the consensus sequences.
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Figure 2.4: Splicing. Used by permission of Oxford University Press — Free
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versus no splice. When the spliceosome splices the intron at a different start-
ing point, this is known as alternative donor splice site splicing. If these
alternate starts to the splice site are off by a multiple of three nucleotides,
then amino acids corresponding to the differing bases added or lost will be
added or deleted from the final protein. If on the other hand the alternate
starts are not off by a multiple of three, then there is a “frame shift” in the
codons (see section on translation), and thus all subsequent corresponding
amino acids can be different. A similar situation holds for alternate acceptor
splice sites.

As the name implies, exon skipping occurs when an exon is skipped in the
splicing process. Thus one less exon is incorporated into the mature mRNA.
If the exon has a length that is a multiple of three, then a certain region
of the resulting protein is excised, whereas if its length is not a multiple of
three, then a frame shift occurs with the above mentioned consequences.

Splicing versus no splicing is similar to exon skipping, but instead of
excising an exon, an intron is incorporated versus being spliced out. Once
again the length of the intron determines a possible frame shift.

Some believe that exons exist because they confer upon the organisms
carrying them the ability to more easily transfer discrete chunks of infor-
mation (single exons) between genes [Gilbert, 1978]. Often proteins have
certain regions, known as active sites, which carry out the important func-
tion of the protein. An organism with the ability to transfer the DNA
corresponding to these active sites between genes might be given an evo-

lutionary advantage, and although this transfer does not occur under regular
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circumstances in a cell, through evolutionary time, it would become relatively

common.

2.3.4 Translation

The information in the mRNA is used to synthesize protein in a process
known as translation. The genetic code of this mRNA is read in consecutive,
non-overlapping sets of three nucleotides. Each of these three nucleotides
codes for a single amino acid. Thus a sequence of DNA has three frames,
only one of which is used to make a particular protein. Consider the sequence
... TACGGTAATCCGGGT .... Since the sequence is read in triplets, it
could be read as:

... TAC GGT AAT CCG GGT...,

... T ACG GTA ATC CGG GT... or

...TA CGG TAA TCC GGG T....

Each of these would code for an entirely different amino acid sequence. The
triplets in the proper frame, which are used for protein synthesis, are known
as codons.

There are 64 codons (four possible nucleotides in each of the three loca-
tions). Three of the codons, (TAA, TAG, and TGA, or their more commonly
used mRNA counterparts: UAA, UAG, and UGA) signal that protein syn-
thesis should stop, and are thus known as stop codons. The remaining 61
each code for one of the 20 amino acids. Some amino acids are coded for

by only a single codon, while other amino acids have as many as six codons
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which code for them — known as redundancy. This single codon coding for
a single amino acid, which is highly conserved throughout all organisms, is
known as the “universal code.”

Protein synthesis occurs on a cellular organelle known as a ribosome.
When one of the many ribosomes in the cytoplasm of the cell comes in
contact with the 5" end of the mRNA, the ribosome becomes attached to it.
The ribosome “reads,” or moves down the mRNA three bases, or one codon,
at a time. There are two sites on the ribosome, each of which can hold
both a codon from the mRNA, and a transfer RNA (tRNA), and the tRNA’s
associated amino acid. Each tRNA has a three base anticodon on it. Only a
tRNA with an anticodon that matches the mRNA codon (by complementary
base pairing) which is docked on the ribosome can dock at the ribosome site;
this assures that the correct amino acids are placed in proximity to one
another. The amino acid (residue) from the most recently attached tRNA is
then attached to the growing polypeptide chain, and thus the DNA message
is faithfully transferred via the mRNA to the final polypeptide — see figure
2.5 [Snustad et al., 1997, Figure 11.5].

2.4 Current Methods

Most genomic data consists of “raw” DNA sequences whose effective compo-
nents and functions are completely unknown. For a given DNA sequence, it
is not known a priori whether the sequence came from (or spanned) a gene

or not. If it is from a gene, we would like to know if it is from an exon or an
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intron, and if it is from an exon, we would like to know which of the three
frames it is read in in order to find the protein product for which it codes.
Current methods for finding genes and distinguishing between their ex-
ons and introns can be grouped into computational or biological methods.
While the computational approach is crude as compared to biological exper-
iments, it is much faster. Often the two methods are used in conjunction
with one another, with the computational predictions giving a starting point
for further biological experimentation. It should also be noted that the basic
underlying information used by computational methods is obtained through
biological methods. A brief overview of both the biological and computa-

tional approaches to finding the function of a given DNA sequence follows.

2.4.1 Biological Methods

When a biologist seeks the sequence of a gene, she or he has an underlying
question that must be addressed. Often, a biologist is interested in identifying
a specific gene or genes. These genes may code for protein(s) that affect the
phenotype under study. In other cases, a biologist may be less interested
in what a gene does than what it indicates about, say, the evolutionary
relatedness of organisms.

Cystic fibrosis (CF) provides a classic example of the biological methods
used to locate and sequence a gene for a known phenotype (gene product).
It is the most prevalent genetic disorder among whites in the United States.

The most common cause of CF is a single three-base deletion which disrupts
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the function of a ion channel protein. This malfunctioning protein causes
an accumulation of mucus on the surface of certain cells, often resulting
in chronic infections and malnutrition. In 1940, the life expectancy of a
newborn with CF was two years. With advances in the understanding of the
disorder, this has grown to over 30 years. The cystic fibrosis gene was found
by positional cloning, or reverse genetics — a process that took four years and
the efforts of many laboratories [Rommens et al., 1989).

The first scientific step in finding a cure for a disease is to identify the
causative agent itself. This agent may have an environmental or genetic
basis. If it is genetic, then many members of the same family — some with
the disease, and others without, can be analyzed. If some “genetic marker”
(a DNA signature that is found more frequently in those individuals with the
disease than without) can be linked to the disease, then one may be able to
locate the genes whose variants cause the disease.

The genetic marker can be any detectable genetic difference between indi-
viduals. Occasionally these differences can be seen under a light microscope.
The DNA-containing chromosomes of a cell are condensed at a phase of cell
division known as metaphase. If the chromosomes are stained at this stage,
they are visible under the microscope. This complete set of chromosomes is
called a “karyotype” (literally, nucleus type).

Karyotypes can be visualized with different staining dyes. Some of these
show not only the condensed chromosome, but also a banding pattern within
the chromosomes. These bands have an average length on the order of 10

million nucleotides. Although other staining techniques are available, they
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5...CCATGATGAATTCCTTTAC...3
3’...GGTACTACTTAAGGAAATG...%

4
5’...CCATGATG AATTCCTTTAC...3
3’...GGTACTACTTAA GGAAATG... ¥

Figure 2.6: Cutting of DNA sequence by the restriction enzyme EcoRI

(“echo-R-one”). The boldface nucleotides represent the six base-pair “re-

striction site” for EcoRI

all show very large scale differences in chromosomes.

The CF gene did not show any linkage to visible karyotype differences. In-
stead, CF was linked to a restriction fragment length polymorphism (RFLP)
[Rommens et al., 1989]. A RFLP is a difference in the way two individual
genomes are “cut” by a “restriction enzyme.” Restriction enzymes are natu-
rally occurring enzymes in bacteria that are used to defeat invading viruses
by literally cutting the invading virus’s genetic code, and thus rendering it
inactive. Biologists have learned to use many different restriction enzymes
[Russell, 1998], each of which cuts specific nucleotide sequences (usually 4 to
8 base pairs in length — e.g. EcoRI cuts DNA as shown in figure 2.6 ). If sim-
ilar pieces of a chromosome are cut at different places, the resulting segments
have different lengths. The pattern of segment lengths can be observed using
a procedure known as Southern blot analysis.

Cystic fibrosis was linked to a particular RFLP in an analysis of a group of

related individuals (a “pedigree”), some of who had CF [Davies et al., 1987].
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Using a radioactively labeled RFLP probe, it was shown that the CF gene
was on chromosome 7. Then known markers on this chromosome were found
(again with linkage analysis) that flanked the CF gene. These two mark-
ers are approximately 1.5 million base pairs (bp) apart — a large distance.
Subsequent research found two new markers that flanked the gene that were
about 500 thousand base pairs apart. Through additional processes, known
as chromosomal walking and chromosomal jumping, many clones (copies of
DNA made by various replicating agents) of the DNA in this region were
made, and their union spanned 500 thousand base pairs containing the CF
gene.

There can, however, be many genes in a region of this size and finding the
gene of interest poses additional problems. One technique of finding genes
is to take the DNA clones, which are labeled by some method, and try to
hybridize them (join through complementary base pairing of the two strands
of DNA/RNA) with DNA from various animals in a procedure known as a
zoo blot. The reasoning behind this procedure is that there is less among
species variation in gene sequences than in intergenic sequences. This is
because random mutations in intergenic regions have no or little phenotypic
affect on an individual, and are expected to accumulate more rapidly than
mutations in a gene where they are presumably culled from a population by
natural selection [Rogic et al., 2001].

In the CF studies, five probes (clones that are labeled by some method —
radioactively, fluorescently, etc.) hybridized with the DNA from other organ-

isms — identifying them as possible CF genes. Two of these were excluded
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as containing the CF gene by linkage analysis, and one was found to be a
pseudogene — a sequence that had been a gene in the past, but became inac-
tivated by mutations to regions that control expression of the gene. Of the
two remaining probes, one was ruled out for its inability to hybridize with
any mRNA extracted from human cells. The remaining probe was shown to
hybridize with a cDNA (complementary DNA) made from mRNA extracted
from the cytoplasm of the cell. This cDNA was about 6,500 bp long — indi-
cating the mRNA was also about 6,500 bp long. Subsequent work showed
this mRNA was indeed the CF gene, and that it spanned 250 kb of DNA and
involved 24 exons (Exons can be found hybridizing the mRNA — or ¢cDNA
made from it — with the chromosomal DNA. As only the exons are present
in the mRNA the introns are spliced out, the mRNA /cDNA will hybridize
only where the exons are located) [Riordan et al., 1989).

Cystic fibrosis was the first gene found by positional cloning. This tech-
nique is also known as reverse genetics since the gene is found without any
knowledge of the gene product, the protein, itself. As cystic fibrosis is the
most common recessive disease of Caucasians, locating the gene responsible
was a major breakthrough for geneticists in the latter 1980’s.

The hunt for the cystic fibrosis gene ultimately concentrated on a mi-
nuscule fraction of the human genome. Working with karyotypes, RFLPs,
labeling DNA probes, and hybridizing DNA is both effective and accurate,
but it is also a slow and costly process. By comparison, the Human Genome
Project has created a draft which covers the entire three billion base pairs

of our genome and is 99.99 percent accurate. The challenge is to now locate
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the genes within this data through more efficient, namely, computational

means.

2.4.2 Computational Methods

A large number of computational approaches (around 100) have been cre-
ated for locating genes in genome sequence data. For a review, see Mathe
et al. [Mathe et al., 2002], and the website of Wentian Li (http://linkage.-
rockefeller.edu/wli/gene/). This section will describe the major categories of
methods.

Computational methods of gene identification and exon/intron detec-
tion can broadly be classified into three main groups: signal sensors, con-
tent sensors, and similarity searches. Signal sensors focus on subsequences
that may indicate the character of the DNA. For example, a series of pro-
moter elements may indicate that a gene is present downstream. Con-
tent sensors seek intrinsic properties of a sequence of interest. For in-
stance, a content sensor could look for the nucleotide triplet frequencies
in a sequence, and compare the frequencies to known intron and exon
triplet frequencies. Similarity searches look for subsequence similarities be-
tween two sets of data. The most basic similarity search is to search a
sequence for a particular relatively short subsequence. Suppose for exam-
ple, that a gene sequence has been found in an experimental organism such
as the yeast Saccharomyces cerevisae. One would then search the human

genome for a similar gene sequence (up to a third of yeast genes and about
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half the genes of the fruit fly Drosophila melanogaster have human counter-

parts).

Signal Sensors

Detecting biological sequence signals (promoter elements, donor splice sites,
acceptor splice sites, branch point sequences, poly (A) signals, ...) is proba-
bly the most intuitive method for detecting genes, exons and introns. Indeed
it is undoubtedly the underlying method used by the cell itself. Unfortunately
it has met with limited success in inferring the function of raw genomic data.
The variability of the consensus sequences (the most common sequence — see
figure 2.3 for an example) in the promoter (they are not “well” or “highly”
conserved), the lack of any promoter element being present in all promoters,
and the variability in the number of any specific promoter element have all
led to difficulties with this approach in predicting the transcription initia-
tion site of genes. Pedersen et al. [Pedersen et al., 1999] gives a review of
the biology of promoters and some of the computational difficulties in lo-
cating them. Ohler et al. [Ohler et al., 2000], [Ohler and Niemann, 2001]
review the literature on computational promoter prediction. Signal sen-
sors have been more successful in detecting splice sites between exons and
introns.  SplicePredictor [Kleffe et al., 1996] (http://www.bioinformatics.-
iastate.edu/cgi-bin/sp.cgi) and SPLICEVIEW [Rogozin and Milanesi, 1997]
(http://125.itba.mi.cnr.it - webgene/wwwspliceview.html — n.b. the char-
acter in 125 is an “el”) try to predict splice sites by identifying consen-

sus sequences. Other signal sensors predict splice sites using one or more

31



of the following techniques: maximal dependence decomposition (MDD),
hidden Markov models (HMM), and neural networks (NN), which are
briefly described below. GeneSplicer [Pertea et al., 2001](http://www.tigr.-
org/tdb/GeneSplicer /index.shtml) uses both HMM and MDD, NETGENE2
[Tolstrup et al., 1997] (http://www.cbs.dtu.dk/services/NetGene2/) uses
NN and HMM, and NNSPLICEOQ.9 [Reese et al., 1997] (http://www.fruitfly.-

org/seq-tools/splice.html) uses NN.

Maximal Dependence Decomposition Maximal dependence decompo-
sition [Burge and Karlin, 1997] was developed to identify the most significant
dependencies between positions of a splice site. It is a generalization of the
weight array model [Zhang and Marr, 1993|, which is itself a generalization
of the weight matrix method [Staden, 1984]. The weight matrix method uses
the frequencies pé- of the 7™ nucleotide at position i to estimate the proba-
bility
Prob(X) = Hznzlpfvi

of generating the sequence X = x1,%9,...,2,. The weight array model,
which takes into account dependencies between adjacent sites, calculates the
probability as

Prob(X) = p} I ,pi-1

Ti—1,T4

where p;_k“ is the conditional probability of nucleotide ) at position 7 given

that the nucleotide at position 7 — 1 is z;.
Maximal dependence decomposition starts with a set D of N aligned

sequences of length k. These sequences could be any type of biological signal
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for which dependencies between nucleotides is sought. Burge and Karlin
[1997] used the nine nucleotide sequence that corresponds to the last three
bases of an exon, and the first six bases of the intron of a donor splice site.
The positions were denoted -3, -2 -1, 1, 2, 3, 4, 5, and 6 with positions 1 and
2 always being the canonical GT (or GU in the tRNA) in the set D. The
most frequently occurring base(s) at each position is/are called the consensus
base(s), and an indicator variable C; is assigned the value 1 if the i base
of a given sequence of D is equal to the consensus base(s), and 0 otherwise.
The nucleotide indicator X; identifies the nucleotide at position j. For each
pair of ¢, 7 with 7 # j, a contingency table is formed. The x? values with i or
7 equal to one or two were omitted from their table as these positions did not
have any variability in their data set. Of the remaining 42 ¢, j pairs, 31 had
a significant x? value at the relatively stringent level of P < 0.001,df = 3.
This demonstrated that there was a great deal of dependence among these

nine nucleotides. Next, the sum
Si = Tj2x*(Ci, X)

is calculated, which gives a measure of the dependence between C; and the
nucleotides at the other positions. A binary decision tree is then used to
subdivide their set as follows. Choose the value 7; such that S;, is maxi-
mal, and partition D into two subsets, D;, and D;,-. D;, contains all the
sequences from D which have the consensus nucleotide(s) at position 7; and
D;, - contains the sequences which do not.

Each of these subsets is recursively subdivided until one of the following
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three conditions is met: i) the k — 1%* level of the tree is reached (and thus
no further subdivision is possible); ii) no significant dependencies between
positions is found; or iii) the size of the subset is small enough that further
subdivision would result in weight matrix method frequencies that would be
unreliable. Burge and Karlin derive a separate weight matrix method model

for each subset of the tree, and use them in their larger hidden Markov model.

Neural Networks A neural network (or more precisely an artificial neural
network) can be thought of as a weighted directed graph with the nodes
and edges being the neurons, and weighted edges connecting the neurons
[Agatonovic-Kustrin and Beresford, 2000]. A neural network is characterized

by:
e network architecture (or the topology of the network)

e network node properties (threshold values, . ..)

e weights of the edges between the neurons (the strength of their associ-

ation)
e learning or updating algorithm used by the network.

Figure 2.7 illustrates an example of a “perceptron.” The input, or pattern,
X1, %9, ---, Ty, and their associated edge weights wy, ws, . . ., w, will cause the
neuron to “fire” (produce a 1) if Y7, wyx; > T. If this threshold is not
reached, then the neuron does not fire (a 0 is produced). The “training” of

the perceptron (or of a more complicated neural network), is accomplished
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Figure 2.7: A perceptron with an input of dimension n and threshold T. Used

by permission of the author — http://www.iiit.ac.in/- vikram/nn_intro.html.

by supplying it with inputs from a “training set” where the “answer” is
known. If the perceptron produces the correct answer, then the weights are
not modified, but if it produces the wrong answer, they are updated according
to the learning algorithm. A simple algorithm is to decrease w; by cx; if the
neuron fired when it should not have, and to increase w; by cz; if the neuron
failed to fire when it should have. Thus the “knowledge” of the system is
stored in the weights of the edges (and this is thought to be a component of
biological brains as well). The condition Y1 ; w;x; = T defines a hyperplane,
and thus training this simple perceptron is equivalent to finding the values

w; such that the set of patterns with one answer are separated from those
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with the other answer by the hyperplane.

More complicated neural networks can have many hidden layers with
many neurons in each layer. If all signals are passed in the same direction,
then it is said to be a “feed forward” network, but if any loops occur, then
it is known as a “recurrent” (feedback) network.

Genie [Reese et al., 2000] is a popular hidden Markov model gene identifi-
cation program that uses neural networks to help identify promoter regions.
GRAIL [Uberbacher and Mural, 1991] on the other hand uses neural net-
works as the main scheme in gene detection. GRAIL’s coding recognition
module is an artificial neural network with seven input nodes, two layers of
hidden nodes, and an output node. The seven input nodes correspond to
weights, or levels of confidence, that a subsequence is a coding region. Each
input nodes weight is derived from a distinct algorithm which analyzes the
coding potential of the sequence. This neural net is trained on known cod-
ing and noncoding regions. If the output from the net then exceeds a given

threshold, it is predicted that the subsequence comes from a coding region.

Hidden Markov Models A Markov model is a set of states and a cor-
responding set of values which give the probabilities of changing from one
state to another [Rabiner, 1989]. One can consider the weather at noon on
consecutive days as being modeled by a Markov model where there are, for
example, three distinct states: sunny, overcast, and precipitating. Call these
states 1, 2, and 3 respectively. Then a;;,1 <17 < 3,1 < 5 < 3 is the probabil-

ity of the weather being in state j given that it was in state i the previous day.
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For a N state model we have a;; > 0 and Efil a;; = 1. These are examples
of discrete first order Markov chains. If the transition values are dependent
not only on the current state, but also on prior states, then a higher order
Markov model may be used.

In the above example, the states of the system are observable — one can tell
if it is sunny or rainy. In a hidden Markov model, some signal is observable,
but the underlying state of interest which generated the signal is hidden.
Consider, for example, three urns that are hidden behind a curtain in a room.
Each urn has a specific (hopefully sufficiently different) proportion of red,
green, and blue balls in it. A transition matrix A =a,;,1 <¢<3,1<35<3
is given which gives the probability of drawing a ball from urn j given that
the previous ball was drawn from urn i.

A person behind the curtain selects the urn using the transition matrix A,
and then randomly draws a ball from that urn. The person then shows the
color of the ball draw (the observation), but does not divulge the urn from
which it was drawn (the state). The goal is to surmise from the observation
sequence, the state sequence.

More generally, consider a model with M observable signals, /N states
and T observations. Let ¢; and O; represent the state and observation,
respectively, at step t. Then we wish to determine Q) = ¢i¢s...qr from
O =010,...07.

Let m be the N dimensional initial probability state vector with m; =
P(q; = S;) giving the probability that the process starts in state i, and

b;(k) = P(O; = v|q: = S;) giving the probability that the ¢ observation is
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vk, given that the process is in state j. Thus the matrix B = b;(k),1 < j <
M;1 < k < N simply gives the probability of each observation from each
state.

The hidden Markov model is characterized by the triplet A = (A, B, 7).
Given the model A\, we need to calculate P(O|)\), choose the state se-
quence QQ which “best” explains the observation sequence O, and update
the model parameters A to maximize P(O|A). For a thorough discussion of
these three problems, see the tutorial by Rabiner on hidden Markov model
[Rabiner, 1989].

The problem of finding P(O|)) is critical. It provides a way to compare
different models (A’s) for a given observation sequence O, and to choose the
model which best matches the observations. It is a straightforward task to
calculate the probability of a particular observation sequence O given A and

a particular state sequence Q = ¢1¢> ... qr:

P(OIQ,A) = T, P(Oilq )

= b4;(01)bg,(03) - - by (Or),

assuming observations are statistically independent for a given sequence Q.

We can also easily find the probability of any state sequence Q given A:

P(Q‘)‘) = Tg10q1920q2qs3 - - - Qqr_1g7-

The product of these two gives the joint probability of O and Q:
P(0,Q[X) = P(O|Q, \)P(Q|A). (2.1)
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The probability of the observation sequence O given the model A is found by
summing the joint probability (2.1) over all possible state sequences Q:

P(O[N) = > P(0,Q|\
all@Q

= > PO|Q,NP(QIN)

allQ
= Z qub(h (Ol)aqlqzb(h (02) cee a'LIT—IQTb‘IT (OT)-

q192..-9T

Unfortunately, this is impractical to compute unless observations are limited
to only a small number of states (i.e. most b;(k) = 0 for most j). In general,
if all of the N states can yield M observations, then each of the N possible
state sequences (), of length T, could yield the observation sequence O of
length T'. So for all but the smallest 7”’s, a new method is needed to calculate
P(O|)). Rabiner [Rabiner, 1989] shows that by finding the probability of a
partially observed sequence (starting with the first observation, and using
induction), the number of calculations to compute P(O|A) can be cut to
order of N?T.

The Viterbi algorithm [Viterbi, 1967], [Forney, 1973] is often used to cal-
culate a “most probable” state sequence (). This algorithm finds the state
sequence which maximizes P(Q|O, \), that is, it maximizes the probability
of the entire state sequence. This is very different than trying to choose the
most likely state individually at each step . To appreciate this difference,
consider the three urns again. All three urns contain each of the colors blue,

green, and red, but urns one (S;), two (S;) and three (S3) have a prepon-
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derance of blue, green, and red balls respectively. Assume also that a3 = 0,
that is one can not move from urn one to urn three directly. If we were to
observe the sequence blue, blue, red, to maximize P(¢;|O;, \), for each indi-
vidually, we would choose a state sequence ¢ = Si,¢q2 = St,q93 = S3, even
though this state sequence is impossible. The Viterbi method, by contrast,
would assign this sequence a probability of zero. At times it may be desirable
to calculate the most probable state at a given step ¢, and this can be done
with two algorithms known as the forward and backward algorithms, which
are described in the methods section of chapter 4.

Although there is no known method of adjusting A to maximize P(O|\),
the Baum-Welch [Baum, 1972] algorithm does well in practice, and assures
us of finding a local maximum. This is an iterative algorithm which uses a
training set of data to update the model’s parameter values. For example, a;;
is updated using (the expected number of transitions from state S; to state
S;)/(expected number of transitions from state S;), and similarly for the
other model parameters. The reader is referred to Rabiner [Rabiner, 1989]
for further details.

GENSCAN [Burge and Karlin, 1997] is one of the most accurate gene
prediction programs [Zhang and Zhang, 2002]. The hidden Markov model
they use has 27 states corresponding to various functional units within the
genome. Exons, for example, are treated as separate states depending on
whether they are initial, terminal, or internal exons. Additionally, internal
exons are broken into three states as determined by the “phase” (where the

intron falls in relation to the three bases of a codon) of the preceding intron.
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Content Sensors

As high throughput DNA sequencers started to flood databases with human
sequences, content sensor methods became the primary means of identifying
putative novel genes. Previously unknown human genes for which there were
known gene sequences from other organisms were often identified through
similarity searches.

Content sensors classify sequences based on statistical differences be-
tween different categories of sequences. Nucleotides C and G, for exam-
ple, are known to occur at higher frequencies in exons than in introns
[Mathe et al., 2002], and thus give a clue to the classification of a sequence.
Both neural networks and hidden Markov models have been employed in
content sensors.

Content sensors typically do a fairly accurate job of finding coding se-
quences, but often find numerous false positives as well [Guigo et al., 2000],
[Guigo et al., 2003]. That is, they have high “sensitivity,” but low “speci-
ficity.” Delimiting exact boundaries between regions (exons and introns for
example) is also often a problem. For both of these reasons, computational
programs often combine techniques. For example, a program may search
for exons with a content sensor, and then identify splice sites using signal
Sensors.

GENSCAN by Burge and Karlin [Burge and Karlin, 1997] (http:/-
/genes.mit.edu/GENSCAN.html) is one of the most widely used gene

finders. It combines hidden Markov models for exon detection, with
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maximal dependence decomposition and weight array model methods
to find the donor and acceptor splice sites, respectively. GeneParser
[Snyder and Stormo, 1993],  [Snyder and Stormo, 1995]  (http://beagle.-
colorado.edu/-eesnyder/GeneParser.html) and Genie [Reese et al., 1997]
(http://www.fruitfly.org/seq_tools/genie.html) both use neural networks
to detect coding regions, and then check these putative coding sequences
against either expressed sequence tags (short sequences of DNA recovered
from the cytoplasm of the cell, and thus sequences which have been
transcribed and have not been spliced out) in the former, and proteins from
a protein database in the latter.

All three of these programs also use dynamic programming to find optimal
gene models. That is, from all the possible donor and acceptor splice sites,
they find a consistent set (donor site followed by acceptor site) which gives
the best entire gene prediction. The reader is referred to Krogh [Krogh, 1998|

for a review of dynamic programming.

Similarity Searches

Similarity searches have been one of the major techniques of gene identifica-
tion, since even before computational approaches were employed. The zoo
blot mentioned in the biological methods section is accomplished through
binding of similar (or complementary) nucleotide sequences — see for example
[Russell, 1998, page 485]. The same idea is used in similarity searches: find a
sequence in uncharacterized DNA that is similar to a known DNA sequence

(a gene or exon for example). BLAST (Basic Local Alignment Search Tool)
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[Altschul et al., 1990] compares a so-called query sequence with a database of
nucleotide sequences, to find the highest scoring match. There are numerous
variations such as BLASTP [Altschul et al., 1997], which compares an amino
acid query sequence against a protein sequence database. Still others com-
pare amino acid/nucleotide query sequences to nucleotide/protein database.
These are some of the most commonly used gene locating programs in com-
putational biology. A limitation to BLAST is that the query sequence can
only be on the order of a gene’s length. For the above mentioned similarity
searches to a known sequence, this poses no problem, but with the comple-
tion of other vertebrate genome sequences, entirely new techniques of gene
identification are being developed.

Another strategy is to search for exons by finding similar DNA sequences
in two species genomes [Zhang et al., 1998]. This approach relies on the
premise that exon sequences are more highly conserved than intron sequences.
The basis for this premise that random mutations in exons are expected
to have a deleterious effect on an individual and are thus removed from a
population by natural selection, whereas random mutations in introns cause
no phenotypic change in an individual [Sunyaev et al., 2003].

Algorithms which use similarity searches include “global alignment” al-
gorithms which compare an optimal similarity score over the entire length of
the two sequences. In contrast, “local alignment” algorithms start with very
short exact matches, and then extend the sequence out as far as possible.

AVID  [Bray et al,, 2003], [Couronne et al., 2003] and LAGAN

[Brudno et al., 2003] are global alignment programs that compare the
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genomes of two organisms. The mouse is thought to be an ideal model
organism for global alignment with human genome data due to its relatively
close evolutionary proximity. Results using global alignment methods
are reported for the human-mouse comparison in [Bray et al., 2003],
[Couronne et al., 2003] and [Brudno et al., 2003]. Organisms that are even
more closely related, like primates and humans, may not have sufficiently
divergent introns; the exons from more distantly related organisms may be
too dissimilar to make comparisons meaningful.

SLAM [Alexandersson et al., 2003] is another global sequence aligner that
predicts exons from conserved sequences as well as conserved noncoding
sequences (CNS) using a CNS state in its hidden Markov model. SLAM
[Alexandersson et al., 2003] was run both with and without CNS informa-
tion. The study concluded that both the sensitivity and specificity for exon
detection were increased by considering CNS data.

Another global alignment algorithm is described in the paper by Boffelli et
al. [Boffelli et al., 2003]. They employ a novel approach in that they use mul-
tiple closely related species in their alignments instead of the more commonly
used two distantly related species. Boffelli et al. coin the term “phylogenetic
shadowing” to describe their use of a phylogenetic tree which includes hu-
mans. The tree is used to compare similar regions of DNA sequences with up
to 17 primate species. Phylogenetic shadowing is a variation of phylogenetic
“footprinting” which considers conserved sequences, but does not take into
account their phylogenetic tree [Tagle et al., 1988], [Gumucio et al., 1992].
As Gibbs and Nelson put it [Gibbs and Nelson, 2003], rather than make the
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standard assumption that “what is important is conserved,” phylogenetic
shadowing takes the point of view “what is not critical can vary — at least
some of the time.”

One of the main benefits of phylogenetic shadowing is the ability to find
newly evolved genes in humans, or genes which have become inactive in a
model organism. For example Apolipoprotein (a) is a newly evolved primate
gene product that is also of considerable biomedical importance (its presence
at high level in the plasma is a cardiovascular disease risk predictor). Phy-
logenetic shadowing showed that the exon regions as well as the TATA box
and another previously characterized promoter region were highly conserved
in this proteins gene sequence [Boffelli et al., 2003]. In addition, 8 short, pre-
viously uncharacterized, regions upstream from the promoter site showed a
high degree of conservation. It was hypothesized that these regions play a role
in gene expression. To test this hypothesis, an electrophoretic mobility—shift
assay was performed with sequences from both highly and poorly conserved
regions. This test showed that DNA binding proteins bound tightly to the
conserved regions, and weakly or not at all to the nonconserved regions. As
further support, experiments performed with the conserved and nonconserved
regions individually deleted from the sequence showed that gene expression
was affected by deletion of the conserved regions, but not by the deletion
of the nonconserved regions [Boffelli et al., 2003]. An important caveat of
computational gene identification methods was addressed by Boffelli et al.
here: although these methods can vastly accelerate answering many biologi-

cal questions, the results need to be verified with biological experiments.
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2.5 New Method

This section will introduce a new method of exon and intron detection. Using
only local data it makes predictions as to the function of the raw sequence
data using previously collected frequency counts of small DNA subsequences
in known exon and intron data. Using these frequencies, and likelihood ratios,
we hope to increase the overall accuracy of exon and intron detection either
in general, or under specific circumstances.

In 1925 Sir Ronald Fisher coined the term “likelihood” in the follow-

ing passage, in regards to comparing different hypotheses [Edwards, 1972,
page 9]:

What has now appeared is that the mathematical concept of prob-
ability is inadequate to express our mental confidence or diffidence
in making such inferences, and that the mathematical quantity
which appears to be appropriate for measuring our order of pref-
erence among different possible populations does not in fact obey
the laws of probability. To distinguish it from probability, I have

used the term ‘Likelihood’ to designate this quantity.

Let P(R|H) denote the probability of obtaining result R given hypoth-
esis H. Then the likelihood, L(H|R), of the hypothesis H given the result R
is proportional to P(R|H), with the constant of proportionality being arbi-
trary. Although P(R|H) and L(H|R) are functions of both R and H, in the
former, H is usually considered to be fixed; then P(R|H) is a function of
only the result (data, outcome, etc.). On the other hand, in L(H|R), R is
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considered to be fixed, and thus L(H|R) is a function of various hypotheses
under consideration.

As Edwards points out [Edwards, 1972, page 9], this distinction is funda-
mental. While the arbitrary constant of proportionality makes the quantity
L(H|R) itself of little interest, and it does not give rise to a statistical distri-
bution, Edwards [Edwards, 1972, pages 9-10] reveals that this is in fact not

a shortcoming at all:

The arbitrary constant of proportionality enables us to use the
same definition of likelihood for discrete and continuous variables
alike, and is no impediment to its use, which invariably involves
the comparison of likelihoods. Though it is a constant in any one
application, involving many different hypotheses but the same
data and probability model, it is, of course, not necessarily the
same constant in another application. This, too, is no hindrance,
for we shall not be attempting to make an absolute comparison

of different hypotheses on different data.

Here, the quantity of interest is a “likelihood ratio,” defined as
L(H{|R)/L(Hs|R) for two hypotheses H; and H,; the arbitrary (fixed) con-
stant cancels out. While a given value of a likelihood ratio does not corre-
spond to a particular probability or confidence interval, it does compare the
credibility of two hypotheses for given data.

Our interest is in using likelihood ratios to detect introns and exons in a

sequence of DNA. The orientation of the sequence of DNA (i.e. the direction
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in which it is “read”), will be known from the sequencing technique. If exons
are in the sequence, however, the reading frame will not be known, and thus
allowance must be made for all three frames. The complementary DNA
strand can (and must) be checked as well. The reverse complement of the
given sequence is easily formed and similarly analyzed.

Our likelihood method for distinguishing exons from introns is as follows.
Let the DNA sequence of interest have length L. We proceed by looking
at overlapping subsequences of length wl (window length), and computing
the likelihood ratio for each of these subsequences. More precisely we will
look at a subsequence of length wl (seqy;), where wl is divisible by n —
the length of the DNA subsequences whose frequencies were previously cal-
culated. The seq,; can then be broken into these n-tuples, and we can
compute L(H,|Data)/L(H;|Data) where H, and H; are the hypotheses that
seqqy; came from an exon or intron respectively, and where Data is the seq,;
itself. Assuming the probability of an n-tuple at position & is independent
of the n-tuple at position & — 1, they can be thought of as coming from a
multinomial distribution with 4™ (there are 4" DNA sequences of length n)
outcomes, and thus we have

l/n)!
L(H.|Data) = k * Prob(Data|H,) = k * Lﬂ)'p‘flpg2 cpit o (2.2)

ailas! ... aym!

where wl/n is the total number of n-tuples in seq,;, a; is the number of
occurrences of the %" triplet in segy,;, and p; is the probability (relative
frequency) of the i*® n-tuple within exons, similarly for L(H;|Data). The

likelihood ratio of interest is the ratio of equation 2.2 to its intron counterpart.
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Upon cancellation of like terms and taking the log for computational ease,

we have:

L(H.|Data) | pitps? ... pys

A=log—5— "7 — — e T 2.3
°8 L(H;|Data) °8 qirgs? .. g (23)
or more simply:
)\:allog&+a210g&+...+a4nlogp4n (2.4)
q1 a1 q4n

where ¢; is the frequency of the i** triplet within introns. Each of the 4"
pi/q; are computed only once, and so each )\ takes only wl/n additions and
multiplications.

For this study, n-tuple frequencies in human exons and in introns were
extracted from the Exon-Intron Database (EID, http://www.mcb.harvard.-
edu/gilbert/eid/) [Saxonov et al., 2000]. This is an exhaustive database of
protein-coding intron-containing genes compiled from the GenBank 115 re-
lease [Benson et al., 2000]. The distribution of EID includes not only the
database itself, but tools to extract and analyze sequences from the database.
Using the EID perl program extract_species.pl [Saxonov et al., 2000], hu-
man genes were extracted from the database. The EID filter_exp_keywl.pl
[Saxonov et al., 2000] program was applied to this subdatabase, giving se-
quences that failed to contain certain keywords in their GenBank annota-
tion. The keywords indicate whether the sequence or splice sites were found
computationally or experimentally, and so this filter can be used to extract
experimentally determined genes and splice sites from a subdatabase. It is

generally accepted that experimentally found genes and their exon and in-
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tron boundaries have a higher accuracy than those found with computational
methods [Claverie, 1997], and thus this filter should give a more accurate
training set. In addition sequences were removed that did not start with the
canonical ATG translation start site, or that had any non-ACGT characters
in them (there are various standard symbols to denote, any nucleotide (N),
a Purine (R), a pyrimidine (Y), any non A (B), etc).

There is only one reading frame in exons which corresponds to how the
DNA is read by the cell machinery to make proteins — the codons (see intro-
duction). Introns on the other hand have 2n (where n is the length of the
n-tuple frequencies) frames of possible interest. Consider the case of triplets
for example. These frames will be denoted 1, 2, 3, -1, -2, and -3. For an
intron 200 bases long, index the bases 1, 2, ..., 200. Then the six frames are

as follows:

frame frequencies using the following triplets

1 1,2,3 4,56...
2 2,3,4 5,6,7...
3 3,4,5 6,7,8...
-1 ...195,196,197 198, 199, 200
2 ...194, 195,196 197, 198, 199
-3 ...193, 194,195 196, 197, 198

In any one intron, frames -1, -2 and -3 always correspond (element-wise)

to the frames 1, 2, and 3 as follows:
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if the intron is length 0 mod 3, {1, 2, 3} — {-1, -3, -2}
if the intron is length 1 mod 3, {1, 2, 3} — {-2, -1, -3}
if the intron is length 2 mod 3, {1, 2, 3} — {-3, -2, -1}

Significant triplet frequency differences could emerge between all six
frames when the frequencies from all introns are examined. For example,
if introns start or end with a particular sequence, the frequency in one of
the frames could be significantly altered. In this study however, frequencies
computed from all six frames yielded almost identical results — see figure 3.4.
A two-factor fixed effects ANOVA (6 frames and 64 triplets ) gave P values
of 0.9067 and 7.471273" for the null hypotheses of no effect of frame and
triplet, respectively. Thus we would reject the latter hypothesis, but not the
former.

Tables 2.1, 2.2, and 2.3 show our computed triplet frequencies for codons,
introns, and lambda values respectively for the 64 triplets. Our most notable
finding is that all 8 intron triplets containing the sequence CG have less than
1/5 the average frequency of the other 56 intron triplets, and indeed have the
8 lowest frequencies of the 64 triplets. In one thousand randomly generated
sequences of the same length as the total number of intron nucleotides in our
database for example, the lowest dinucleotide frequency was never as low as
the CG frequency observed in our dataset. This initially surprising result
might be explained by the fact that the DNA dinucleotide CG often has a

methylated C. That is, the C is chemically modified, and this modification
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Figure 2.8: Vertical axis — relative frequency of intron triplets, horizontal
axis — the 64 triplets in alphabetical order. Frequencies of all six frames
are superimposed with vertical line indicating range. Note the similarity of

frequencies in all frames.
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results in a C which is more easily spontaneously mutated into a T. Since
mutations in an intron cause no phenotypic change in an individual or its
descendants, a CG to TG mutated intron is more likely to spread through
the population than a similar mutation in an exon (where the mutations
tend to be detrimental to the individual). This may explain why the CG
dinucleotide is relatively rarer among introns than it is among exons (the
mutation is “selected against” in exons, but not in introns). These 8 CG
containing triplets give some of the largest likelihood ratios, and are thus very
helpful in distinguishing between exons and introns (five of the six largest
lambdas have a CG dinucleotide in them), see table 2.3. We say they have a
strong (positive) signal.

Stop codons give a strong negative signal. That is, they have large neg-
ative values for lambda. This is because only one stop codon occurs in a
gene, at the end of the last exon, and are thus expected to be rare in ex-
ons. Our results (table 2.1) show that stop codons have the three lowest
codon frequencies by far — an average frequency of about 1/20 the other 61
codons. Similarly to the CG frequency simulations, we again generated one
thousand random sequences of the same length as the total number of exon
nucleotides in our database, and the lowest trinucleotide frequency was never
as low as any of the stop codon frequencies observed in our dataset. These
three triplets give the strongest signal (almost 3 times the strength of the
next strongest triplet).

In general, the more positive values of lambda indicate more evidence

that a subsequence segq,, is from an exon, and that the sequence is being
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aaa | 1 23.6 gaa | 33 | 28.6 tag | 51 | 0.5 gtc | 46 | 14.8
aac | 2 20.2 gac | 34 | 26.5 taa | 49 | 0.7 cac | 18 | 14.9
aag | 3 33.2 gag | 35 | 40.6 tga | 57 | 1.3 gca | 37 | 15.6
aat | 4 16.8 gat | 36 | 22.2 tcg | 55 | 4.5 att 16 | 15.7
aca | 5 14.7 gca | 37 | 15.6 cgt | 28 | 4.7 tac | 50 | 16.3
acc | 6 19.9 gce | 38 | 28.6 cga | 25 | 6.2 gga | 41 | 16.4
acg | 7 6.4 geg | 39 | 7.7 acg | 7 6.4 cca | 21 | 16.5
act | 8 12.7 get | 40 | 18.4 cta | 29 | 6.8 ggg | 43 | 16.5
aga | 9 11.2 gga | 41 | 16.4 gta | 45 | 6.8 ttt 64 | 16.6
agc | 10 | 19.3 gge | 42 | 23.1 ata | 13 | 7. aat | 4 16.8
agg | 11 | 11.1 ggg | 43 | 16.5 tta | 61 | 7. cct 24 | 17.2
agt | 12 | 11.7 ggt | 44 | 10.9 ccg | 23 | 7.1 tce 54 | 17.7
ata | 13 | 7 gta | 45 | 6.8 geg | 39 | 7.7 get | 40 | 18.4
atc | 14 | 223 gtc | 46 | 14.8 tgt | 60 | 9.7 agc | 10 | 19.3
atg | 15 | 22.2 gtg | 47 | 29.3 cat | 20 | 10.1 cte 30 | 19.3
att | 16 | 15.7 gtt | 48 | 10.7 gtt | 48 | 10.7 acc | 6 19.9
caa | 17 | 11.8 taa | 49 | 0.7 ggt | 44 | 10.9 aac | 2 20.2
cac | 18 | 14.9 tac | 50 | 16.3 cgc | 26 | 11. cce | 22 | 20.3
cag | 19 | 344 tag | 51 | 0.5 agg | 11 | 11.1 ttc | 62 | 20.7
cat | 20 | 10.1 tat | 52 | 12.1 aga | 9 11.2 atg | 15 | 22.2
cca | 21 | 16.5 tca | 53 | 114 tca | 53 | 11.4 gat | 36 | 22.2
ccc | 22 | 20.3 tcc | 54 | 17.7 cgg | 27 | 11.6 atc | 14 | 22.3
ccg | 23| 7.1 tcg | 55 | 4.5 agt | 12 | 11.7 gge | 42 | 23.1
cct | 24 | 17.2 tct 56 | 14.5 caa | 17 | 11.8 aaa | 1 23.6
cga | 25 | 6.2 tga | 57 | 1.3 ttg | 63 | 12. gac | 34 | 26.5
cge | 26 | 11. tge | 58 | 12.4 tat | 52 | 12.1 gaa | 33 | 28.6
cgg | 27 | 11.6 tgg | 59 | 13. ctt 32 | 124 gec | 38 | 28.6
cgt | 28 | 4.7 tgt 60 | 9.7 tge | 58 | 12.4 gtg | 47 | 29.3
cta | 29 | 6.8 tta | 61 | 7. act | 8 12.7 aag | 3 33.2
ctc 30 | 19.3 ttc 62 | 20.7 tgg | 59 | 13. cag | 19 | 344
ctg | 31 | 40. ttg | 63 | 12. tct 56 | 14.5 ctg | 31 | 40.

ctt 32 | 124 ttt 64 | 16.6 aca | 5 14.7 gag | 35 | 40.6

a b

Table 2.1: Codons, alphabetical ranking and frequency ranking. a) ranked

alphabetically b) ranked by frequency.
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aaa | 1 30.4 gaa | 33 | 17.2 cga | 25 | 2.5 atg | 15 | 16.7
aac | 2 12. gac | 34 | 9.6 acg | 7 2.7 cat | 20 | 16.7
aag | 3 17.5 gag | 35 | 18.8 tcg | 55 | 2.8 tce 54 | 16.9
aat | 4 20.1 gat | 36 | 13. cge | 26 | 3.2 agt | 12 | 16.9
aca | 5 17. gca | 37 | 14.7 cgt | 28 | 3.2 aca | 5 17.

acc | 6 12. gee | 38 | 14.8 geg | 39 | 3.4 tat 52 | 17.2
acg | 7 2.7 geg | 39 | 3.4 cgg | 27 | 3.8 gaa | 33 | 17.2
act | 8 15. get | 40 | 15.7 ccg | 23 | 3.8 taa | 49 | 174
aga | 9 20.3 gga | 41 | 16.6 gac | 34 | 9.6 ggg | 43 | 17.4
agc | 10 | 15. gge | 42 | 14.9 tac | 50 | 10.1 aag | 3 17.5
agg | 11 | 19.9 ggg | 43 | 174 gtc | 46 | 10.5 gtg | 47 | 18.3
agt | 12 | 16.9 ggt | 44 | 134 cta | 29 | 11.4 tca | 53 | 18.4
ata | 13 | 16.2 gta | 45 | 11.7 gta | 45 | 11.7 cte 30 | 18.8
atc | 14 | 12. gtc | 46 | 10.5 aac | 2 12. gag | 35 | 18.8
atg | 15 | 16.7 gtg | 47 | 18.3 atc 14 | 12. ttc 62 | 19.1
att | 16 | 22.3 gtt | 48 | 15.4 acc | 6 12. tta | 61 | 19.1
caa | 17 | 15. taa | 49 | 174 tag | 51 | 12.8 cca | 21 | 19.1
cac | 18 | 15. tac | 50 | 10.1 gat | 36 | 13. tga | 57 | 19.3
cag | 19 | 22. tag | 51 | 12.8 ggt | 44 | 134 ttg | 63 | 19.9
cat | 20 | 16.7 tat | 52 | 17.2 gca | 37 | 14.7 agg | 11 | 19.9
cca | 21 | 19.1 tca | 53 | 18.4 gce | 38 | 14.8 aat | 4 20.1
ccc | 22 | 16.5 tcc | 54 | 16.9 gge | 42 | 14.9 aga | 9 20.3
ccg | 23 | 3.8 tcg 55 | 2.8 agc | 10 | 15. ctt 32 | 204
cct | 24 | 20.7 tct 56 | 22.4 caa | 17 | 15. cct | 24 | 20.7
cga | 25 | 2.5 tga | 57 | 19.3 cac | 18 | 15. tgg | 59 | 21.3
cge | 26 | 3.2 tge | 58 | 15.7 act | 8 15. tgt | 60 | 21.5
cgg | 27 | 3.8 tgg | 59 | 21.3 gtt 48 | 15.4 cag | 19 | 22.

cgt | 28 | 3.2 tgt | 60 | 21.5 tge | 58 | 15.7 att 16 | 22.3
cta | 29 | 114 tta | 61 | 19.1 get | 40 | 15.7 tet 56 | 22.4
ctc | 30 | 18.8 ttc 62 | 19.1 ata | 13 | 16.2 ctg | 31 | 23.3
ctg 31 | 23.3 ttg 63 | 19.9 cce 22 | 16.5 aaa | 1 30.4
ctt 32 | 204 ttt 64 | 39.1 gga | 41 | 16.6 ttt 64 | 39.1

a b

Table 2.2: Intron triplets, alphabetical ranking and frequency ranking. a)

ranked alphabetically b) ranked by frequency.
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aaa | 1 -0.11 gaa | 33 | 0.22 tag | 51 | -1.41 cac | 18 | 0.
aac | 2 0.23 gac | 34 | 0.44 taa | 49 | -1.39 cte 30 | 0.01
aag | 3 0.28 gag | 35 | 0.33 tga | 57 | -1.17 tce 54 | 0.02
aat | 4 -0.08 gat | 36 | 0.23 tta | 61 | -0.44 gca | 37 | 0.03
aca | 5 -0.06 gca | 37 | 0.03 ttt 64 | -0.37 ttc 62 | 0.04
acc | 6 0.22 gee | 38 | 0.29 ata | 13 | -0.37 get | 40 | 0.07
acg | 7 0.37 geg | 39 | 0.36 tgt 60 | -0.35 ccc | 22 | 0.09
act | 8 -0.07 get | 40 | 0.07 aga | 9 -0.26 agc | 10 | 0.11
aga | 9 -0.26 gga | 41 | -0.01 agg | 11 | -0.25 atg | 15 | 0.12
agc | 10 | 0.11 gge | 42 | 0.19 gta | 45 | -0.23 gtc | 46 | 0.15
agg | 11 | -0.25 ggg | 43 | -0.02 cta | 29 | -0.23 cgt | 28 | 0.16
agt | 12 | -0.16 ggt | 44 | -0.09 ttg | 63 | -0.22 gge | 42 | 0.19
ata | 13 | -0.37 gta | 45 | -0.23 cat | 20 | -0.22 cag | 19 | 0.19
atc | 14 | 0.27 gtc | 46 | 0.15 ctt | 32 | -0.22 gtg | 47 | 0.2
atg | 15 | 0.12 gtg | 47 | 0.2 tgg | 59 | -0.21 tac | 50 | 0.21
att | 16 | -0.15 gtt | 48 | -0.16 tca | 53 | -0.21 tcg | 55 | 0.21
caa | 17 | -0.1 taa | 49 | -1.39 tct 56 | -0.19 acc | 6 0.22
cac | 18 [ O tac | 50 | 0.21 agt | 12 | -0.16 gaa | 33 | 0.22
cag | 19 | 0.19 tag | 51 | -1.41 gtt | 48 | -0.16 aac | 2 0.23
cat | 20 | -0.22 tat | 52 | -0.15 tat | 52 | -0.15 gat | 36 | 0.23
cca | 21 | -0.06 tca | 53 | -0.21 att 16 | -0.15 ctg | 31 | 0.24
ccc | 22 | 0.09 tcc | 54 | 0.02 aaa | 1 -0.11 ccg | 23 | 0.27
ccg | 23 | 0.27 tcg | 55 | 0.21 caa | 17 | -0.1 atc 14 | 0.27
cct | 24 | -0.08 tct 56 | -0.19 tge | 58 | -0.1 aag | 3 0.28
cga | 25 | 0.39 tga | 57 | -1.17 ggt | 44 | -0.09 gee | 38 | 0.29
cge | 26 | 0.54 tge | 58 | -0.1 cct | 24 | -0.08 gag | 35 | 0.33
cgg | 27 | 0.49 tgg | 59 | -0.21 aat | 4 -0.08 geg | 39 | 0.36
cgt | 28 | 0.16 tgt 60 | -0.35 act | 8 -0.07 acg | 7 0.37
cta | 29 | -0.23 tta | 61 | -0.44 cca | 21 | -0.06 cga | 25 | 0.39
ctc | 30 | 0.01 ttc 62 | 0.04 aca | 5 -0.06 gac | 34 | 0.44
ctg | 31 | 0.24 ttg | 63 | -0.22 ggg | 43 | -0.02 cgg | 27 | 0.49
ctt 32 | -0.22 ttt 64 | -0.37 gga | 41 | -0.01 cge | 26 | 0.54
a b

Table 2.3: Lambdas, alphabetical ranking and value ranking. a) ranked

alphabetically b) ranked lowest to highest.
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read in the correct reading frame. Increasingly negative values of lambda are
stronger evidence that seq,,; is from an intron. This window is slid along the
DNA sequence one nucleotide at a time, with a lambda calculated for each
consecutive wl nucleotides. These lambdas are calculated for all contiguous
subsequences of length wl, and thus a sequence of length L. would yield L-
wl+1 lambdas.

Consecutive lambdas have little correlation, as there is a frame shift from
one to the next, but there is a strong correlation between every third lambda
because they have wl/3 -1 triplets in common — one triplet is lost from the
window, and a new one is added. Thus we use three separate plots to display
the lambdas for a sequence. The first plot shows lambdas for the positions
one, four, seven etc., the second plot shows lambdas for positions two, five,
eight, etc., and the third plot shows the lambdas for the remaining positions.
Ideally, in a long sequence with introns in front of and behind an exon, the
exon signal would be strongest in the plot corresponding to its reading frame.
As the window moves into the exon, a series of lambdas would start to grow
until the window was fully into the exon, and later diminish as the window
moves out of the exon.

Figure 2.9 shows an idealized case with a sequence of 30 CGCs (the most
exon-like triplet) followed by 50 TAGs (the most intron-like triplet); these
80 triplets are then repeated. The peaks in each plot indicate the possible
presence of exons. Spurious peaks occur, however, when the window is in an
intron region. Similarly, some exons yield surprisingly low values of lambda.

In the next chapter, we give the procedures and results using the afore-
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Figure 2.9: Idealized exon, intron, exon, intron sequence. Plots a, b, and ¢ show
the lambdas corresponding to starting at position one, two, and three respectively.

Exons at positions 1 - 30 and 81 - 110, introns elsewhere.
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mentioned method of n-tuple frequencies and likelihood ratios. We give the
sensitivities (the number of true positives the method detects divided by all
the positives it detects) and specificities (the number of true negatives the
method detects divided by all the negatives it detects) of the method with n
set equal to one, two and three. Finally, we explore an extension to the triplet
case (the most successful) which we call the multi-window method. This ex-
tension uses the DNA data from three consecutive overlapping subsequences,

and takes into account the cyclic nature of the frames in exons.

2.6 Discussion

Many current programs that annotate DNA sequence data use multiple tech-
niques. These include hidden Markov models, neural networks, and maximal
dependence decomposition, along with similarity matching techniques, and
signal searches. Some methods also incorporate the full annotation efforts
of multiple programs [Murakami and Takagi, 1998]|, [Rogic et al., 2002]. Ap-
parently, integrated techniques that use a variety of information tend to
achieve more accurate results than those that use only a single method
[Rogic et al., 2001], [Rogic et al., 2002].

As more genes with canonical features (promoter elements, splice sites
etc.) are found, more emphasis must be placed on locating genes with non-
canonical features. Progress must also be made in the biological areas of
signal recognition. Computational biology should not only help answer these

questions, but should help decide which questions to address. Existing or
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new procedures should be able to incorporate these new findings to further
the progress in computational gene identification.

The method introduced here, using the maximum likelihood ratio with n-
tuple frequencies, is an additional tool in our attempt to annotate genomes.
Its incorporation into existing programs should increase overall sensitivity

and specificity.
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Chapter 3

Sensitivity and Specificity of
Exon Detection using

Likelihood Ratios

3.1 Abstract

Our initial approach of distinguishing between exon and intron regions us-
ing consecutive windows of nucleotides, and predicting the character of the
sequence based solely on the likelihood ratio of this subsequence gave low
sensitivities and specificities. Herein a new method is developed using multi-
ple windows, the frequencies of nucleotide triplets in all three frames of exons
as well as triplet frequencies in introns, and the ordering of the three frames

in exons. This new method gives substantially better results.
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3.2 Introduction

There are various ways of analyzing the performance of a gene or exon/intron
detection program [Zhang and Zhang, 2002]. “Correct” detection can be
stringently defined as correctly identifying the entire gene with exact
exon/intron boundaries identified at every donor and acceptor splice site
[Burge and Karlin, 1997]. Alternative splicing of many genes makes this an
ill-posed problem as the construct of the gene product is variable. One then
may look for the most frequent splicing of the gene, or one of the known
splicings. One can also consider exon/intron detection on an individual
exon/intron basis [Zhang and Zhang, 2002]. That is, if the splice sites to
either side of an exon/intron are correctly identified, then this exon/intron
has been correctly identified.

Single nucleotides are also often considered when gauging a method’s
sensitivity and specificity [Zhang and Zhang, 2002]. In this case, sensitivity
is equal to the number of true positives the method detects (a nucleotide
which is correctly predicted to be in an exon) divided by all the positives
it detects (the true positives plus the false positives). Similarly, specificity
is equal to the number of true negatives (similarly, a nucleotide which is
correctly predicted to not be in an exon) divided by all of the negatives.
The method we develop below does not have the resolution to determine
exact splice sites, so we use this single nucleotide definition of sensitivity and
specificity.

Our original method (Chapter 2) used only a single window of nucleotides
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from the sequence to characterize the subsequence as coming from an exon
or intron. Consecutive, overlapping windows of a given length were analyzed
individually by counting the number of consecutive, nonoverlapping n-tuples

in the window and calculating the likelihood ratio

L(H.|Data)

A = log \el0%)
©8 L(H;|Data)

(3.1)

where H, and H; are the hypotheses that the data came from an exon or
intron region respectively. Sir Ronald Fisher’s concept of “likelihood” and
its history is reviewed in [Edwards, 1972].

This “single window” method uses the sign of A in equation 3.1 to pre-
dict if the first nucleotide of the data is and exon (positive A) or an intron
(negative \) nucleotide. It achieved very limited success with exon sensitiv-
ity /specificity for the mono, di, and tri nucleotide, respectively, as follows:
731851/.638492, .731516/.656525, and .562256/.815566. There were far too
many spuriously high likelihood ratios in intron regions and low likelihood
ratios within exons. The ability of the single window method to delineate the
splice sites was very low and it did not obtain high nucleotide sensitivities or
specificities. Therefore a new method was developed.

This new “multi-window” method uses the codon frequencies (used in the
L(H.|Data) above) and the nucleotide triplet frequencies in the introns, but
it also takes into account the nucleotide triplet frequencies within the exons
that are not in the reading frame used for protein synthesis —i.e. the two non-
codon frames. In addition to considering these two new triplet frequencies,

the newer method analyzes three consecutive windows which are each shifted
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from one another by a single nucleotide, and compares various likelihood
ratios and their sums. The multi-window new method makes a prediction
on a single nucleotide basis as to whether the nucleotide came from the first,
second, or third base (nucleotide) of a codon, or if the nucleotide came from

an intron. It attained higher accuracy than the single window method.

3.3 Biological Background

A brief summary of the pertinent biology is given here. For a more de-
tailed account the reader is referred to the Biological Background section in
Chapter 2. The following books also give further information on the topic:
[Lewin, 1994, [Fairbanks and Anderson, 1999] and [Snustad et al., 1997].

Human chromosomes are composed of tightly coiled threads of deoxyri-
bonucleic acid (DNA) and associated protein molecules which aid in the
structural packing of the DNA. The DNA itself is often compared to a
twisted ladder with the sides of the ladder being the sugar-phosphate back-
bone of the DNA, and the rungs being the two complementary nucleotides
that bind to one another - one from each of the two strands of DNA
[Watson and Crick, 1953]. A single strand of DNA may be thought of as
a sequence of four nucleotides: adenine (A), cytosine (C), guanine (G) and
thymine (T). The nucleotides that bind to one another to form the “rungs”
are called complementary pairs: A binds with T and C binds with G.

The DNA is always read by the cell machinery in the same orientation.

That is, the sequence AATCGTA of nucleotides (bases) along a strand of
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DNA would always be read in the order indicated above, or in the reverse
as ATGCTAA, but not in both orders. The end of the sequence, where the
reading starts, is the 5’ end and the other is the 3’ end. The complementary
strand always has the reverse orientation. Thus if one strand of a chromo-
some had the sequence 5- AATCGTA - 3’, then this would be bound to the
sequence 3’ - TTAGCAT - 5.

The genes within the DNA are the genetic code used by the cell to make
proteins. In higher eukaryotes these genes comprise only a small percentage
of the entire genome — the entire DNA sequence of an organism — which in
humans is some three billion nucleotides long. A typical human gene is a few
thousand bases long. There are many genes on both strands of the DNA of a
chromosome. Humans have 23 pairs of chromosomes and somewhere on the

order of 30,000 genes.

Transcription

An initial stage of protein synthesis is the transcription of the DNA into
messenger RNA (mRNA). This mRNA transfers the information from the
DNA in the nucleus of the cell out into the cytoplasm of the cell where the
protein is synthesized. RNA is a molecule very similar in structure to DNA,
except that thymine is replaced by the nucleotide uracil (U), and RNA uses
the sugar ribose instead of deoxyribose for its sugar-phosphate backbone. If
a subsequence on one strand is a gene, then this strand is known as the sense
strand for this portion of the double helix. The complementary DNA strand

is used by an enzyme (a catalytic protein) known as RNA polymerase II to
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synthesize the mRNA. This complementary strand is known as the template
or antisense strand. The non-template, or sense, strand has the sequence in

the orientation in which genes are reported.

Splicing

The newly synthesized mRNA is known as pre-mRNA at this stage as it must
undergo chemical modifications to its beginning and end. Often chemical
modification is followed by “splicing” where precise, predefined, subsequences
are spliced out and degraded. These subsequences are called introns (INTeR-
vening sequences); the subsequences which are joined together to make the
mature mRNA, are called exons (EXpressed sequences). The joined exons,
called “mature mRNA” or simply “mRNA,” pass out of the nucleus of the
cell to the cytoplasm where protein synthesis occurs.

The start and end of the intron are known as the donor or 5’ and acceptor
or 3’ splice sites, respectively. Although the initial GU and terminal AG of
an intron are the only highly conserved sequences in introns, figure 5.1 shows
that there are longer, less well conserved sequences. In particular, at the

donor and acceptor splice sites as well as at a sequence known as the
branch point sequence which is generally 30 bases upstream from the acceptor
splice site. Although this is useful information, the sequences given at the
donor splice site and branch-point occur only 10 and 40 percent of the time
respectively (and the branch-point sequence has only a single unique base
represented), making these moderately conserved signals of limited value in

splice site detection.
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5 ...E, I donor splice site ...branch pt. seq. ...acceptor splice site I E,y...38

AesGr3 I G100U100A462A68G34Uss . .. Ye0NYgoYsrRrs A100Y05 - .. 12Y NCe5A100G100 B

Figure 3.1: Consensus sequences for regions of an intron. Ej is the k" exon of the
gene. | denotes an exon/intron or intron/exon boundary. R - a puRine (an A or G base),
Y - a pYrimidine (a C or T/U), N - aNy nucleotide. The subscripts give the percentage
occurrences of these bases. Subscripts of 100 are rounded, and there are many known
exceptions (and many more may be found when introns are searched for without assuming
that they start and end with these sequences. See http://www.ebi.ac.uk/asd/altextron/-

pre-release-dist-data.html for current percentages of donor/acceptor splice sites).

Alternative Splicing

To add to the problem of splice site detection, it is estimated that one half
of the human genes that are spliced can undergo alternative splicing. Alter-
native splicing yields different (viable) proteins through a variety of means:
alternate donor splice site, alternate acceptor splice site, exon skipping, and
splice vs. no splice. When the intron is spliced at a different starting point,
this is known as alternative donor splice site splicing. If these alternate starts
to the splice site are off by a multiple of three nucleotides, then amino acids
corresponding to the differing bases added or lost will be added or deleted
from the final protein. If, on the other hand, the alternate starts are not off
by a multiple of three, then there is a frame “shift” in the codons (see section
on translation), and thus all subsequent corresponding amino acids can be
different. A similar situation holds for alternate acceptor splice sites.

As the name implies, exon skipping occurs when an exon is skipped in the
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splicing process. Thus one less exon is incorporated into the mature mRNA.
If the exon has a length that is a multiple of three, then a certain region
of the resulting protein is excised; whereas if its length is not a multiple of
three, then a frame shift occurs with the above mentioned consequences.
Splicing vs. no splicing is similar to exon skipping, but instead of excising
an exon, an intron is incorporated instead of being spliced out. Once again

the length of the intron determines a possible frame shift.

Translation

The information in the mRNA is used to synthesize protein in a process
known as translation. The genetic code of this mRNA is read in consecutive,
non-overlapping sets of three nucleotides. Each of these triplets codes for a
particular amino acid — the subunits of a protein. Thus a sequence of DNA
has three frames, only one of which is used to make a particular protein.
Consider the sequence ... TACGGTAATCCGGGT .... Since the sequence
is read in triplets, it could be read as

...TAC GGT AAT CCG GGT...,

... T ACG GTA ATC CGG GT... or

...TA CGG TAA TCC GGG T...,
each of which would code for an entirely different amino acid sequence. The
triplets in the proper frame, which are used for protein synthesis, are called
codons.

There are 64 codons (four possible nucleotides in each of the three loca-

tions). Three of the codons ( TAA, TAG, and TGA, or their more commonly
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used mRNA counterparts: UAA, UAG, and UGA) signal that protein syn-
thesis should stop, and are thus known as stop codons. The other 61 each
code for one of the 20 amino acids. Some amino acids are coded for by only a
single codon, while others have as many as six. The correspondence between
a codon and its associated amino acid, or function as a stop codon, is so
consistent over all organisms (although exceptions exist), that it is known as
the “universal code.”

Protein synthesis occurs on a cellular organelle known as a ribosome.
When one of the many ribosomes in the cytoplasm of the cell comes in
contact with the 5’ end of the mRNA, the ribosome becomes attached to
it. The ribosome “reads,” or moves down the mRNA three bases, or one
codon, at a time. There are two sites on the ribosome each of which can
hold a codon from the mRNA, the transfer RNA (tRNA), and the tRNA’s
associated amino acid. Each tRNA has a three base anticodon on it. Only a
tRNA with an anticodon that matches the mRNA codon (by complementary
base pairing), which is docked on the ribosome, can dock at the ribosome site.
This assures that the correct amino acids are placed in close proximity. The
amino acid from the most recently attached tRNA is then attached to the
growing polypeptide chain. Thus the DNA message is faithfully transferred

via the mRNA to the final polypeptide.
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3.4 Methods

The differences between codon frequencies in exons and associated triplet fre-
quencies in introns gives exploitable information for distinguishing between
the two — see section 2.5. Human DNA in exons has been sequenced and an-
alyzed for some time in the form of RNA and ¢cDNA (complementary DNA
which is made in the laboratory from collected mRNA), and thus codon fre-
quency usage tables are available. With the human genome now sequenced,
and with access to databases, for example EID (Exon-Intron Database,
http://www.mcb.harvard.edu/gilbert /eid/) [Saxonov et al., 2000], that have
intron sequences, we can now compute intron triplet frequencies. Assuming
the frequencies we arrive at in these training sets are representative of the
frequencies in the exons and introns we are looking for, we can look at a
subsequence of DNA and determine if it more probably came from an exon
than an intron.

There are three frames in an exon, only one of which is the reading frame
used by the cell to code for protein synthesis. Consider, for example, the
sequence ... AATGCCTA... in an exon. The first A in the sequence could
be the first, second or third base in a codon which would result in the sequence
having the following codons, or being read as

...AAT GCC TA...,

...AA TGC CTA... or

...AATG CCT A....

The codon locations are known in the database (our training set), and the
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triplets collected as codons are denoted by frame 1. The triplets collected as
the second and third nucleotides of a codon, and the first nucleotide of the
next codon are denoted by frame 2. Finally, the triplets collected as the final
nucleotide in a codon followed by the first two nucleotides of the subsequent
codon are denoted by frame 3. All three of these triplet frequencies are
collected for every exon in the database. Similarly, the term “position k” is
given to an individual nucleotide where k = 1, 2, 3, or i refers to the first,
second, or third position in a codon, or an intron nucleotide respectively.
Intron nucleotide triplet frequencies were analyzed in various frames as
well, but were all found to be similar — figure 3.4. A two-factor fixed effects
ANOVA (6 frames and 64 triplets ) gave P values of 0.9067 and 7.4712737
for the null hypotheses of no effect of frame and triplet, respectively. Thus
we would reject the latter hypothesis, but not the former. Also, the ex-
pected value, see equation 3.7 for the exact formula, of the likelihood ratios

log L(H”Dam%, Jj,k=1,23,-1,-2,-3, j # k was low enough that the sim-

L(Hy|Data)
plifying assumption of using a single set of averaged intron triplet frequencies
was used. Table 3.1 (later in this section) gives these expected values, which
range from 7.1175 to 14.6614, for the three exon frames and the averaged
intron frame. The expected values when comparing the six intron frames to
one another, by comparison, ranged from .01036 to .02907 and thus compar-
ing these six intron frames to one another gives only from .07 to .19 percent
as much information as comparing the three exon frames and the averaged

intron frame to one another.

An interesting note concerning the intron triplet frequencies is that all
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Figure 3.2: Vertical axis — relative frequency of intron triplets, horizontal
axis — the 64 triplets in alphabetical order. Frequencies of all six frames
are superimposed with vertical line indicating range. Note the similarity of

frequencies in all frames.
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eight intron triplets containing the dinucleotide CG are relatively scarce.
In one thousand randomly generated sequences of the same length as the
total number of intron nucleotides in our database for example, the lowest
dinucleotide frequency was never as low as the CG frequency observed in our
dataset. The CG frequencies are similar to one another, and have an average
frequency less than 1/5 the frequency of the other 56 triplets. This initially
surprising result may be explained by the fact that the DNA dinucleotide CG
often has a methylated C — which may be useful to an organism because it
helps prevent viruses from inserting their own DNA at this location along the
DNA sequence [Simon et al., 1983]. The C is chemically modified, and this
modification results in a C which is more easily spontaneously mutated into a
T. Since mutations in an intron are not translated, they cause no phenotypic
change in an individual or its descendants. A CG to TG mutated intron
is therefore more likely to spread through the population than the same
mutation in an exon (where the mutations tend to be detrimental to the
individual). This may explain why the CG dinucleotide is relatively rarer
among introns than it is among exons (the mutation is “selected against” in
exons, but not in introns).

The single window method with the highest accuracy uses exon and intron
triplet frequencies (as compared to mononucleotide or dinucleotide frequen-

cies) in the single likelihood ratio

A = log i(He|Data) (3.2)

(H;|Data)

where H, and H; are the hypotheses that the data came from an exon (with
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the first base of the data being the first base of a codon) or intron region.
Let seqy,; be the sequence of length wl (window length — divisible by 3) used
in the likelihood ratio. Then the likelihood in the numerator of 3.2 is given

by

1/3)!
L(H.|Data) = k * Prob(Data|H,) = k * Mp‘flp? Pk (3.3)
a1!a2! P (1,64!

where k is an arbitrary fixed constant of likelihoods, wl/3 is the total number
of triplets in seqy;, a; is the number of occurrences of the i** triplet in seqy,
and p; is the probability (relative frequency) of the 7' triplet within exons.
A similar calculation gives L(H;|Data). The likelihood ratio of interest here
is the ratio of equation 3.3 to its intron counterpart. Upon cancellation of

like terms and taking the log for computational ease, we have:

L(H.|Data) | pi'py” ... pgit

A=1 ) e TR 3.4
® L(H|Data) ~ ® e qif (34)
or more simply:
/\:allog&—l—aglog&+...+a64log@ (3.5)
q1 q q64

where ¢; is the frequency of the i triplet within introns. Each of the 64
pi/q; are computed only once, and so each A takes only wl/3 additions and
multiplications.

Let H,, Hy, H3 and H; be the hypotheses that the first base of the data is
the first, second, or third base of a codon, or a base in an intron, respectively.
L(H,) was given in 3.3 (as L(H.)). L(Hy) and L(H;) are similarly computed

using triplet frequencies where the triplet starts in the second and third
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position of a codon respectively. That is H;, Hy, and H3 correspond to the
triplet frequencies collected in frames 1, 2, and 3 respectively. The ability
of the method to distinguish between the different frames in an exon or an
intron comes from their differences in triplet frequencies. To obtain a measure
of the method’s ability to distinguish between any two of the four frames, we

calculated the expected value of

L(H,|Data)
L(Hg|Data)

where H,, is the hypothesis that the triplet came from frame m, one of

log (3.6)

the three frames in an exon, or an intron. These values indicate how much
distinction between frames can be expected. Let E'V; be the expected value

of 3.6 given that the data triplet came from frame j. More precisely,

64
EVy = Z [Prob(tripletn\tripletn came from frame j)

n=1

* log

L(Hj|triplet,) ] | (3.7)

L(Hyg|triplet,)

where Prob(triplet,|triplet, came from frame j) is the number of triplet] s
found in frame j in the database divided by the total number of all triplets
in frame j in the database.

Table 3.1 gives these values, and we can see that the difference in triplet
frequencies of codons and introns (i.e. EVy; = 8.3313, EV;; = 11.3518) is
not as great as the difference between certain other frames. In particular,
the likelihood ratio containing H; and Hj3 will, on average, more readily
distinguish between these two frames (i.e. EVi3 = 11.3757, EV3; = 14.6614).

Certain other combinations of hypotheses also give higher likelihood ratios.
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EVi, | 10.5985 | EVy; | 8.3313 | EVa; | 7.1175
EVy | 12.0368 | EViy | 11.3518 | EVis | 7.5338
EVis | 11.3757 | EVas | 9.7323 | EV3; | 7.8890
EVy | 14.6614 | EVay | 9.9501 | EV;y | 8.1232

L(H;|Data)

Table 3.1: E'Vjy, is the expected value of log L(H: [ Data)

where Data is a triplet

from frame j. j =1,2,3,7 j # k.

As all of these differences in triplet frequencies contribute to the ability of
the method to distinguish between frames, our new method uses the following

likelihood ratios :
L(H,|Data)

= Jog 2z1AMA)
Azy = log L(H,|Data)

(3.8)

where x,y = 1,2,3,7 x # y. From these \s, the following As are defined to
be:

A, = > Azy- (3.9)

y=1,2,30 y#z

A, gives the sum of the three log likelihood ratios which each have the hy-
pothesis that the data came from frame x in the numerator and one of the
three alternative hypotheses in each of the denominators. Thus A, gives the
overall likelihood that the data came from frame z.

In order to capture maximal information regarding the first nucleotide
position in the raw genomic subsequence of length wl, we consider additional
biological constraints on the sequence. The cyclic “position within a codon”
nature of the nucleotides in an exon and the nearly identical triplet frequen-

cies for all frames in an intron gives the positions of the second and third
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nucleotides of the subsequence (assuming no intervening splice site) for any
assumed position of the first nucleotide. Calculations based on the four as-
sumptions that the first base of the window is from a first, second, or third

base of an exon, or a base in an intron are as follows:

Ar(wly) + Ag(wlgi1) + Ag(wlki2) (3.10)
Ao(wle) + Ag(wlps1) + As (wlpss) (3.11)
As(wl) + Ar(wlgi1) + Ag(wlkt2) (3.12)
Ai(wly) + Aj(wlpi1) + Ni(wly42) (3.13)

where Aj(wl,,) is A, evaluated using the window of nucleotides starting with
the m™ nucleotide. As for a basic likelihood ratio, these sums of As do not
give us a statistical distribution (i.e. does not give the probabilities of being
in each of the four states), but give us a way to compare our four hypotheses.
This is exactly what we want — to be able to compare the relative merits of
the hypotheses, and be able to choose the one in which we have the most
confidence. To this end we make a prediction as to the position of the k*”
nucleotide (the first base of the first of the three overlapping windows being
looked at) as follows. If the first of the above four sums is largest, we predict

the k™ nucleotide is a first base of a codon. Similarly, if the second, third
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or fourth sum is largest, then a prediction is made that the k' base comes

from the second or third base of a codon, or from an intron, respectively.

3.5 Results

We tested our new “multi-window” method described in the last section
on the human protein-coding gene sequences containing intron sequences
from the Exon-Intron Database at http://www.mcb.harvard.edu/gilbert /-
eid/) [Saxonov et al., 2000]. This web site has various Perl scripts to help
extract relevant information from their 800mb database which was obtained
from GenBank 115 (the 115" release of GenBank). We used the EID Perl
script extract_species.pl to extract human genes from EID’s sub-database
gb115.exp_mrna.dEID. This sub-database contains DNA sequences which
have subsequences within them which match known cDNAs. These cDNAs,
or complementary DNAs, are double-stranded DNA sequences constructed
from mature mRNAs. Recall that mature mRNAs have been transcribed
from an organism’s DNA and then have undergone splicing to remove the se-
quences corresponding to the introns of the gene. Thus, using a sub-database
which has known ¢cDNAs in each sequence helps ensure that each sequence
comes from a true gene [Russell, 1998]. We further filtered this sub-database
by removing any sequences which did not start with the canonical start codon
ATG, end with an exon, or contain any characters other than A, C, G, or
T (sometimes reported sequences will have other characters such as N for

any nucleotide, B for any non-A nucleotide, etc.). The remaining 3,085 gene
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sequences were analyzed.

In choosing the number of nucleotides to observe per window (wl), a
compromise must be made between a large wl which has more data (yielding
better predictions) and a small wl which is more likely to be shorter than the
exons themselves. If wl is longer than the length of the exon, it will lower the
method’s ability to detect the exon as it will contain both exon and intron
data. Figure 3.3 shows the length distribution of exons in genes containing
introns, from our database. Genes without introns (single exon genes) have
longer average exon lengths [Chen et al., 2002].

In our database, only approximately 6 percent of exons in intron con-
taining genes are shorter than 45 nucleotides, and this length still gave good
sensitivities and specificities (see below), and thus wl was set to 45 for this
analysis. Note that window length is a parameter that can be varied if there
is any a priori knowledge of the exon length(s) for which the search is being
employed.

As the multi-window method uses, for a particular position, three over-
lapping windows, of combined length wl + 2, for every nucleotide prediction,
the last wl 4+ 1 bases of a gene sequence are not given a prediction — due
to there not being enough available data. A prediction for these final bases
could be made such that they are consistent with the last prediction, but in
this analysis these bases are simply omitted. They represent less than one
half of one percent of the total nucleotides analyzed.

The sensitivity, Prob(method predicts nucleotide to be in frame j | nu-

cleotide is in frame j), and specificity, Prob(method predicts nucleotide to
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Figure 3.3: Length distribution of exons in our data set within intron con-
taining genes. Exons of length greater than 400 nucleotides, which represent

approximately 4 percent of these exons, are not included in the graph.

not be in frame j | nucleotide is not in frame j), of the multi-window method
are given in table 3.2. Calculations were based on the 3,085 gene sequences
which contain 31,400,012 bases for analysis. The sensitivities and specifici-
ties for individual genes were very similar for all three categories of bases in
exons as can be seen in table 3.2.

Figures 3.4 through 3.7 show the ordered ranking of the sensitivities and
specificities for the 3,085 individual gene sequences. The sensitivities and
specificities were very similar for all three exon positions, thus only the graphs
for the first base of an exon and for intron bases are shown. In Figure 3.4,
for example, we see that approximately the lowest scoring 1,000 genes have a
sensitivity of .6 or less and the approximately 1,000 highest scoring genes have
a sensitivity of .8 or greater. This mean that for the 1,000 gene sequences

with the lowest sensitivity, 60 percent or less of the actual bases which are
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NUCLEOTIDE TYPE | SENSITIVITY SPECIFICITY

(% true positive) | (% true negative)

First Base of Codon 66.3319% 87.9792%
Second Base of Codon | 66.2278 % 87.9521%
Third Base of Codon | 66.24% 87.9882%
Intron Base 63.0762% 81.7907%

Table 3.2: Sensitivity and specificity of method detecting various categories

of nucleotides.

the first base of a codon are properly detected. Similarly, for the 1,000 gene
sequences with the highest sensitivity, 80 percent of the true first bases in a
codon are accurately predicted.

We attempted to find a simple characteristic, such as total or average
exon length within a gene, that is highly correlated with the method’s sensi-
tivity or specificity. The aim here is to see if the method could be specifically
trained on lower scoring sequences as described below. Correlation results
for the sensitivities and specificities of first base of a codon are shown in
tables 3.3 and 3.4. P-values for testing the null hypothesis that the corre-
lation is equal to zero are also given. In table 3.4 we see that in two cases
the null hypothesis would be rejected at the .01 significance level, and that
in table 3.6 there is sufficient evidence to reject the null hypothesis at this
significance level for all cases. Still, no characteristic examined is highly

correlated with the method’s performance. Total and average intron length
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Figure 3.4: Ordered ranking of sensitivities for individual genes for first base

of codons.
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Figure 3.5: Ordered ranking of specificity for individual genes for first base

of codons.
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Figure 3.6: Ordered ranking of sensitivities for individual genes for intron

bases.
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Figure 3.7: Ordered ranking of specificity for individual genes for intron

bases.
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CHARACTERISTIC CORRELATION | P-Value
Total Exon Length 0.0368849 0.040421
Total Intron Length -0.188104 <101
Average Exon Length 0.0327903 0.068508
Average Intron Length -0.100098 <107
(Exon Length) / (Intron Length) | 0.0245828 0.172138

base of codon detection.

Table 3.3: Correlation coefficients for characteristic vs. sensitivity of first

CHARACTERISTIC CORRELATION | P-Value
Total Exon Length -0.050685 0.0048339
Total Intron Length 0.167440 <10
Average Exon Length 0.076865 <107
Average Intron Length 0.137882 <10
(Exon Length) / (Intron Length) | 0.051086 0.0045079

Table 3.4: Correlation coeflicients for characteristic vs. specificity of first base

of codon detection.
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are the most highly (negatively /positively) correlated characteristics for the
sensitivity /specificity of the first base of a codon detection. Study of addi-
tional biological characteristics (for example if the gene codes for membrane
bound proteins), which may be more highly correlated with the method’s
performance, should be pursued. This may give different categories of genes
which have lower than average sensitivities and specificities. The method
could then use the triplet frequencies specific to these categories of genes,
which could in turn raise the sensitivity and specificity of the method for

these currently low scoring genes.

3.6 Discussion

The multi-window method introduced in this chapter uses the information
contained in three overlapping windows of nucleotides to classify the first
base in the first of these windows. Thus it will tend to misclassify nu-
cleotides when a large proportion of the latter part of the window is in,
say, an exon region and the base for which the prediction is being made
is in an intron region. A simple approach of scanning for the canonical
start of an intron, the dinucleotide subsequence GT, in the vicinity of wil/2
nucleotides down from where the method starts to predict an exon, and
likewise looking for the canonical end of an intron, the dinucleotide AG, a
distance wl/2 nucleotides down from where the method starts to predict an
intron, could lead to higher sensitivities and specificities for all nucleotide

categories. However there are more sophisticated and accurate splice site
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detectors [Pertea et al., 2001], [Burge and Karlin, 1997], and combining the
multi-window method with them would likely lead to better results; future
work on this is planned.

One possible advantage of the multi-window method over methods which
rely more on information regarding canonical gene sequences (splice sites,
promoter sequences — which signal the start of a gene, etc.) is that it is
purely content based, and thus it is not biased against less common splice
sites, for instance. This could prove useful in detection of genes containing
these rarer types of splice sites.

Another possible benefit of the multi-window method is detecting se-
quences other than a typical gene. Pseudogenes are sequences which no
longer code for proteins due to some mutation in their sequence. If pseudo-
genes have mutated such that many of the common “signals,” which many
other methods try to identify, have been lost, this method may be able to
detect them at a higher rate (which could be a benefit or detriment depend-
ing on whether the user is interested in these other sequences). Similarly,
subsequences of a chromosome are sometimes randomly translocated to a
different location along the genome. If this breaks a gene into two parts it
would disrupt the gene’s protein synthesis, and thus the sequence would lose
its classification as a gene. If genes are broken by these translocation events,
this method should still be able to find the broken subsequences.

If a priori knowledge of the size of the exon(s) being searched for is known,
the user can adjust wl to give the multi-window method higher sensitivity and

specificity without compromising its ability to exclude the desired exon(s).
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This could be the case, for example, if the user had a priori knowledge of
the protein and/or the protein’s active sites, which are often contained in a
single exon [Gilbert, 1978], for which the gene coded.

Chapter 4 introduces hidden Markov models both as a means to more
rigorously analyze the sensitivity and specificity of our prediction methods
and to compare our multi-window method with two prediction methods of-
fered by the hidden Markov model. Both our multi-window method, and
the hidden Markov model use the triplet frequencies in our exon and intron

training set as the most significant source of information.
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Chapter 4

Hidden Markov Models as a
Means of Analyzing Likelihood

Ratios

4.1 Abstract

A hidden Markov model (HMM) which incorporated many of the same fea-
tures as our multi-window method was used to give a more rigorous analysis
of the sensitivity and specificity of the method. While there are some differ-

ences, many of the qualitative features are captured by both models.
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4.2 Introduction

As a means to more rigorously analyze the sensitivity and specificity of the
multi-window method, a hidden Markov model was constructed which cap-
tured as many similar features as possible. The most significant source of
information in both comes from the collected triplet frequency data in each
of the three frames of the exons and the triplet frequencies found in introns
(which are approximately invariant under shifts in frame collection.) An-
other salient feature captured by both methods is the cyclic tendency to
move through the codon “positions” when in exons, and to stay in exons (or
introns) once there. While the hidden Markov model does not incorporate
any parameter corresponding to the window length used in the multi-window
method, it does use an algorithm that finds the most probable “state path”
through the entire sequence, which allows it a “view” of the overall sequence

even though the basic units of interest are only the small triplets.

4.2.1 Overview of Markov Chain Models and Hidden
Markov Models

A Markov model is a set of states and a corresponding set of values which
give the probabilities of changing from one state to another [Rabiner, 1989).
One can consider the weather at noon on consecutive days as being modeled
by a Markov model where there are, for example, three distinct states: sunny,
overcast, and precipitating. Call these states 1, 2, and 3 respectively. Then

a;j,1 <14 < 3,1 < j < 3 is the probability of the weather being in state j
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given that it was in state ¢ the previous day. For an N state model we have
a;; > 0 and E;-V:l a;; = 1. These are examples of discrete, first order Markov
chains. If the transition values are dependent not only on the current state,
but also on prior states, then a higher order Markov model may be used
[Rabiner, 1989].

In the above example, the states of the system are observable — one can
tell if it is sunny or overcast. For hidden Markov models, some signal is
observable, but the underlying state which generated the signal is hidden.
Consider for example three urns, hidden behind a curtain, in a room. Each
urn has a specific (hopefully sufficiently different) proportion of red, green,
and blue balls in it. A transition matrix A = a;;,1 <7 < 3,1 < j < 3 is
given which gives the probability of drawing a ball from urn j given that the
previous ball was drawn from urn 7.

A person behind the curtain selects the urn using the transition matrix A,
and then randomly draws a ball from that urn. The person then shows the
color of the ball drawn (the observation), but does not divulge the urn from
which it was drawn (the state). The goal is to surmise from the observation
sequence, the state sequence.

Consider a model with M observable signals, N states and 1" observations.
Let ¢; and O; represent the state and observation, respectively, at step t.
Then we wish to determine Q) = ¢1¢s . .. qr from O = 0,0,...07.

Let m be the N dimensional initial state vector with =; = P(q; = S;)
giving the probability that the process starts in state i. Let b;(k) = P(O, =

vk|g: = S;) denote the probability that the tth observation is vy, given that
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the process is in state j. Thus B = b;(k),1 < j < M,1 < k < N simply
gives the probability of each observation from each state.

This triplet, which we denote by A = (A, B,7), then characterizes the
HMM. Given the model A, we need to be able to calculate P(O|)\) and find
some method to choose the state sequence () which in some way “best”
explains the observation sequence . Speech recognition has used HMMs
since the early 1970s, and this discipline continues to produce the majority of
papers on the subject [Durbin et al., 1998]. In this context, a recorded speech
signal is broken into 10-20 millisecond “frames”. These frames are assigned
to predefined categories, and are the observations of the HMM. The goal is
to infer the state sequence, or sequence of words, from these observations.
For a thorough discussion of these issues, please see the detailed tutorial by
Rabiner on HMMs [Rabiner, 1989].

It is a straightforward task to calculate the probability of a particular ob-

servation sequence O given A and a particular state sequence Q) = q1¢qs . ..qr:

P(O|Q,\) = T, P(Odlg, \)

= bq1 (O1)bq2 (02) ce b‘]T (OT)’

with the assumption of statistical independence of observations. We can also

find the probability of this state sequence Q:
P(Q|)\) = Mgy Gq145Qgsg5 - - - Cgp1qp-

The product of these two gives us the joint probability of O and Q:
P(0,QIN) = P(OIQ, ) P(QA). (4.1)
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By summing the above joint probability over all possible state sequences @),
we may then find the probability of the observation sequence O given the

model \:

PO = Y PO[Q,N)P(Q|N)
all@Q

= Z gy gy (Ol)aqlqzqu (O) .. 'G’QT—IQTbQT(OT)‘

q1q42...9T

Unfortunately, this is computationally impractical unless specific observa-
tions are limited to only a very small number of states (i.e. most b;(k) =0
for most 7). In general, if each of the N states can yield each of the M obser-
vations, then each of the N7 possible T length state sequences Q could yield
the T length observation sequence O, and so for all but the smallest values
of T, a new method is needed to calculate P(O|)). Rabiner [Rabiner, 1989]
shows that by finding the probability of a partially observed sequence (start-
ing with the first observation, and using then induction), that the number of
calculations to compute P(O|\) can be cut to the order of N*T.

The well known Viterbi algorithm [Viterbi, 1967], [Forney, 1973] is used to
calculate a “most probable” state sequence Q. It is important to note that this
algorithm finds the state sequence which maximizes P(Q|O, \); it maximizes
the probability of the entire state sequence. This is very different than trying
to choose the most likely state individually at each time ¢. To appreciate this
difference, consider the three urns again. All three urns contain each of the
colors blue, green, and red, but urns one (S;), two (S3) and three (S3) have

a preponderance of blue, green, and red balls respectively. Assume also that
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a13 = 0, that is one can not move from urn one to urn three directly. If we
were to observe the sequence blue, blue, red, to maximize P(g;|O;, ), for each
individually, we would choose a state sequence ¢; = S1,¢2 = S1,q3 = Ss3, even
though this state sequence is impossible. The Viterbi method, by contrast,
would assign this sequence a probability of zero. At times it may be desirable
to calculate the most probable state at a given step ¢, and this can be done
with two algorithms known as the forward and backward algorithms, which

are described in the methods section of chapter 4.

4.3 Methods

Let the first, second and third bases of a codon be represented by states
1, 2, and 3 respectively, and denote bases from introns by state 4. An
attempt will be made to determine these hidden states from the observed
sequence of nucleotides (A, C, G, T). In order to construct the hidden
Markov model the A = (A, B,7) parameters were found from empiri-
cal data. The Exon-Intron Database (EID, http://www.mcb.harvard.edu/-
gilbert/eid/) [Saxonov et al., 2000] based on Genbank release 132 was the
original database upon which we made our refinements.

The human sequences were extracted from this database using EID’s perl
script extract_species.pl. Next the two perl scripts filter_exp_keywl.pl and
filter_exp_keyw2.pl were used on this human database. These three scripts
are all available from the above EID website. The two “filter” scripts remove

sequences that have certain keywords in their annotation which would lead
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one to believe that they were found using gene locating programs as opposed
to being found by experimentation. If the characters “evidence=experiment”
are found in the coding sequence portion of the GenBank entry, then the
sequence is not removed — regardless of the possible presence of any other
keyword(s). This procedure gives a database with more accurate data. We
then took the intersection of the sequences from the two keyword filtered
scripts, and further removed any sequences that contained any non A, C, G,
or T base predictions (standard notations for ambiguous nucleotides include:
N - aNy nucleotide, Y - pYrimidine, U - pUrine, B - anything but A, etc.).
This left 7328 sequences. It was further checked that the first base from
each of these sequences was the first base of a codon (in “position 1”) by
checking the length of the first exon and the phase of the first intron (the
phase of the intron tells whether it falls between codons, between the first
and second, or second and third base of a codon). From these sequences, the
triplet data was collected in each of the frames of the exons and introns. The
triplet frequencies in the three frames in the exons are significantly different
from one another, while those in the introns are almost identical, and thus
an average of all the intron frames was used. For further information please
see Chapter 2. Further refinement of this set of 7328 sequences was made to
remove sequences which had incomplete intron data. This left 4074 sequences
for analysis by the hidden Markov model.

Assuming a geometric length distribution for both exons and introns
(which fairly closely models the data), and using the average length of the

exons and introns in the 4074 sequences which had full exon/intron data,
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the values of A and 7 were found. The average exon and intron length
were 156.4 and 1344.7 bases respectively. The mean value of a geometric
distribution is 1/p where p is the probability of success. Let p be the prob-
ability of transitioning from an exon to an intron. Then 1/p = 156.4 and
p = .0064 = a14 = agq = az4. For transitioning from an intron to an exon, 1/p
= 1344.7 or p = .00074. This value of p must be equally divided among a1,
aso and ay3 as a transition from the intron state to any of the exon states is
equally likely. Exon states are only permitted to transition to the “next” exon
state, or to the intron state, and thus a1 = a13 = 491 = a9 = a3 = a3z3 = 0.
The transitions from certain exon states to intron states, and visa versa could
also be modified to represent the bias in the phase of introns — see for example
[Ruvinsky et al., 2005]. The remaining elements of A are found from the fact
that the row sums are equal to one. This gives us the following transition

matrix:

0 9936 0 .0064
0 0 9936 .0064
9936 0 0 .0064

00025 .00025 .00025 .99926

The values for 7, the initial state distribution, were found from these mean
lengths as well. For raw genomic data, the probability of starting in an
intron is greater than that of starting in an exon as introns are, on average,

longer than exons. Thus we set 4, = 1344.7/(156.4 + 1344.7) = .8958, and
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m =my =73 = (1 —.8958)/3 or m = (.0347,.0347,.0347, .8958).

The triplet frequency data collected in each of the three exon frames, and
the averaged intron frames were used to compute b;(k) = P(O; = vg|g: = S;).
While b, (k) would be a 4 by 4 matrix if we were to consider our observation,
vk, to be a single nucleotide, we wish to base b;(k) on not only the current
nucleotide, but also on the two previous nucleotides. Thus b;(k) is a 64 by 4
matrix — see table 4.1. In this table the observations are N1 /N, N3, any of the
64 triplets composed of A, C, G, and T. The states represent the (hidden)
positions of the nucleotides or whether the nucleotides are in an exons (states
1, 2, and 3) or an intron (state 4).

As the first and second bases of a sequence do not have two prior bases,
bj(k) was calculated by taking an average over all 16 possible dinucleotides
that could precede the first base and over the 4 nucleotides which could pre-
cede the first two bases. More specifically, for the first nucleotide (considering
it to be N3) we calculate b;(k) as follows: b;(k) = 1= > .unn, Prob(O; =
N1 NyN3|Nj is in state k) and for the second nucleotide (now considering
the first nucleotide to be Ny and the second nucleotide to be N3) b,(k) =
T Y aun, Prob(Oy = N1N,N3|Nj is in state k).

4.3.1 Viterbi Algorithm

The Viterbi algorithm was used to find the most probable state sequence, the
sequence giving the states or positions of the nucleotides, through each of the

4074 given (observation) sequences. The state sequence consists of runs of
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AAA
AAC
AAG
AAT
ACA
ACC
ACG
ACT
AGA
AGC
AGG
AGT
ATA
ATC
ATG
ATT
CAA
CAC
CAG
CAT
CCA
ccc
cCcG
CcCT
CGA
CGC
CGG
CGT
CTA
cTC
CTG
CTT

State 1
.269388
.185139
.408017
137457
.332993
287529
.179303
.200175
.283724
.250366
.324713
.141197
.165132
.172207
.492161
.1705
.183022
209459
.471892
.135628
.335032
.28596
.158241
.220767
127893
.296032
.450858
.125217
.116417
.24203
.488768
.152785

State 2
.382126
.196308
.203866
2177
.338198
276706
.11281
272285
.377393
.220286
.235119
.167202
.190793
.294239
.203599
.31137
.294728
.237403
.21821
.249659
.27937
.214465
.168507
.337658
.292008
.227164
.25394
.226888
.193118
.264141
.255122
.287619

State 3
.219406
.242734
.378459
.159401
.244462
.414487
.136263
.204788
.196142
.383376
.224111
.196371

.0906704

.358234
.345294
.205802
.137
.217053
.52145
.124497
.249094
.350725
.136271
.26391
.156662
.377694
.343966
.121678

.0691483

-261291
.544312
.125249

State 4
.371615
.152143
.23024
.246002
.354702
.263816

.0644918

.31699
.275953
.210032
.289224
.224791
.233022
.182435

.25747
.327072
.208283
.220908
.336807
.234003
.302447
.289691

.0702144

.337647
.186917
.257561
.315997
.239525
.144759
.262964
.323131
.269146

GAA
GAC

GAG
GAT
GCA
GCC

GCG
GCT
GGA
GGC

GGG
GGT
GTA
GTC
GTG
GTT
TAA
TAC

TAG
TAT

TCA
TCC

TCG
TCT
TGA
TGC
TGG
TGT

TTA
TTC

TTG
TTT

State 1

.256553

.18903

.414651
.139765
.301328
.279853
.174793
.244026
.281533
.264274
.326264
.127928
.142402
.210535
.503063

.144

.268658
.226126

.34623

.158986
.336363
.302024
.126005
.235608
.230402
.248571
.390851
.130177
.163547
.244999
.421817
.169636

State 2

.361951
.208475
.224655

.20492

-268598

.25132

.154284
.325799
.396803
.245537
.188887
.168774
.194075
.273234
.260804
.271887
.352386
.215705
.161368
.270542
.297786
.298326
.119248
.284641

.32646

.208435
.262619
.202485
.181027
.312557
.163998
.342418

State 3
.19616
.258713
.382294
.162833
.193233
.423574
.14178
.241414
.222869
.354624
271117
.15139

-0895005

.246716
.519045
.144739

.0167946

.60653

.0152494

.361426
.212337
.412501

.0944256

.280737

.0315809

.350208
.388172
.230039

-0969691

436992
.201273
.264766

State 4
.283744
.168451
334773
.213032
.293181
.312555
.076183
.318081
.258681
23717
.297985
.206164
.194507
.196216
.338988
.270289
.301677
.17661
.230564
.291148
292369
.291204

.0486453

.367782
.243587
.204553
.281522
.270338
.190044
.204237
.208356
.397363

Table 4.1: Emission probabilities = b,(k). Each value under state j in the row
N1 Ny N3 gives P(N3| prior 2 bases are N1 Ny, (state of N3) = j). Of particu-
lar note are the three lowest values which correspond to the stop codons in the
reading frame (TAA, TAG, TGA —state 3.) Note that the probabilities which

must sum to one are Yy, P(Ns| prior 2 bases are N1 N,, (state of N3) = j),

and not the probabilities along a given row.
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...1,2,3,1,2,3... denoting the positions of the nucleotides within a codon,
and runs of ...4, 4, 4, 4, 4 ... denoting nucleotides in introns. The obser-
vation sequence consists of the nucleotides themselves, e.g. ... AAGTACCA
.... Let path and path; denote a state sequence through a given observation

sequence and the k' state in path, respectively. Also let
path™ = argmaxpe, P(O, path),

where P(O, path), the joint probability of O and the path, both of length L,
is given by

P(O,path) = ﬂ-thiL:lb(Ii (i)aqz'fh'ﬂ'

Thus path* is simply the state sequence with highest probability through the
observed sequence. Suppose that the probability of the most probable path
ending in state k with observation O; is known for all states k£, and denote
this probability by wvitg(:). The probabilities for the subsequent observation

O;1 are then calculated as follows:
U’itl(i + 1) = bl(OiH)mamk (vitk(i)akl). (42)

Consider the term wvity(z) on the right hand side, which is calculated for
all states. This gives us the most probable path through O¢,O,...0O; that
ends in state k. Moving to the next state involves the transition from state
k to state I, ag. The only £ dependence is in these two factors, and thus
the maxy is applied to them. The max is over the product of these two
because the quantity of interest is the most likely path through the the

observation sequence which ends in state £ and then transitions into state [.
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The mazy, factor is multiplied by the probability of observation O;;; from
state I, b;(0;11), to give the most probable path through our given observation
sequence O1, Oy ...0;;1 which ends in state [, or vit;(i + 1).

Thus if we know how vit starts, then the entire path can be found recur-
sively. For notational convenience, without loss of generality, let there be a
begin state of 0 in which all sequences start, and an end state of 0 in which all

i

sequences end. By keeping track of “pointers,” which point from all vitg(i)s
backwards to the previous states, the path can be found by backtracking.
The Viterbi algorithm (see [Durbin et al., 1998]) is as follows:

Viterbi Algorithm

Initialization(i = 0) : vity(0) =1
vitg(0) =0 for k > 0.
Recursion : (i =1,2,...,L): vity (%) = by(O;)mazy(vit (i — 1)ak)
ptr;i(1) = argmazg(vitg (i — 1)ag).

Termination : P(O,path*) = maxy(vitg(L)ago)
pathy, = argmaz(vity (L)ako).

Traceback : (i = L,L—1,...,1): path! | = ptr;i(path;).

The initiation step says that the path starts in state 0. The first equation in
the recursion step is the previously explained equation 4.2, and the second
equations shows how the pointers are calculated. These pointers are collected
for every state at each time step. At ¢ = 1 all pointers point back to the

0 state. Consider argmazy(vity(i — 1)ag;) for i« > 2. Then, given that the
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process is in state [, we wish to find the most probable previous state. The
kMa® corresponding to the largest vity(i — 1) is not what we desire as there
may be a very small (or 0) probability of transitioning from this state k%2
to state [, and so the given equation yields the desired state. The termination
step gives P(O, path*), and path}, the first calculated state of path*. In the
traceback step we follow the pointers (backwards) from pathj, back through
their most probable immediate predecessors to pathy.

The most probable state sequence path* produced by the Viterbi al-
gorithm is a sequence of states. It comsists of runs of ...1, 2, 3, 1, 2, 3
...interspersed with ...4, 4,4, 4,4, 4 .... The predicted states correspond-
ing to being in an exon (1, 2, 3) are forced by the transition matrix A to
cycle through the three positions in a codon while in the exon. Once the state
path has exited the exon, and entered an intron though, it is free to re-enter
the exon in any state. This is not biologically reasonable, but it models the
procedure followed by the multi-window method. In both of these models
there is a tendency to start the exon in the correct state though, as there is
local (multi-window) or local and global (Viterbi) information which helps
the respective method correctly identify the particular state — it is just not an
implied assumption of either model. In the multi-window method for exam-
ple, if any of the three stop codons are present in frame £ then the likelihood
ratios that both have H; in the numerator and the the window broken into
frame k, will be greatly reduced. This will in turn make the method less
likely to mispredict the state of a nucleotide as the method makes a transi-

tion from an intron to an exon. Although biologically the position of a the
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first base in an exon must be the “next” position after the last nucleotide of
the previous exon, our method’s not making this be a constraint could be
useful in detecting an error in the collected sequence data. This is further

examined in the Discussion section.

4.3.2 Forward and Backward Algorithms

Using a combination of the results from the so-called forward and backward
algorithms, we are able to obtain both the probability of an observed se-
quence, P(O), and the particular state sequence path which maximizes the
probability of the state at each individual observation. The aforementioned
combination of results also yields an exact probability (or confidence) for
each predicted state given our model A = (A, B, 7) [Durbin et al., 1998].

The probability in the forward algorithm corresponding to vity (i) is
fk(l) = P(Ol, 02 . Oi,pathi = k)

which gives the joint probability of the observed sequence up through and

including O;, and the ** state being state k. The recursion equation is :

f (Z + 1 = bl i+1 Z CLkl (43)
k

This is very similar to the recursion equation for the Viterbi method, equation
4.2. Here the forward variable replaces the Viterbi variable, and ), replaces
mazg. Whereas in the Viterbi equation we used maxy to give the most

probable path, here we want the total probability of the observed sequence,
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and thus the sum of the probabilities (from all previous states) is used. The
full forward algorithm is as follows:

Forward Algorithm

Initialization(i = 0) :  fo(0) =1
fx(0) =0 for k > 0.

Recursion: (i=1,2...L): fi(i) =b(0;) ;(fk(z — 1)ag).

Termination : P(O) = zk:(fk(L)akO).

As in the Viterbi algorithm, the initiation step says that we start in state

0. The recursion step is an application of the above equation 4.3, and the

termination step gives the total probability of the observation sequence O.
In order to find P(path; = k|O) we calculate the probability of the entire

observed sequence O with the i** state being state k.

P(O,pathi = k) = P(Ol, 02 PN Oi,pathi = k‘)
*P(O'H—la Oz'_|_2 “en OL|01, 02 “en Oi,pathi = k)
= P(Ol, 02 P Oi,pathi = k)

*P(Oi-i—l, Oi+2 P OL\pathi = k) (44)

The first term is fx(i), and we will denote the second term by [(7),
which we can see is the probability of the later observations given that the
preceding state was k. We calculate these (i (7)s in a manner similar to that

of the forward algorithm, and will use them, along with the fi(¢)s to obtain
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the probability of a state at a given time step given the observation sequence
O - equation 4.6. The backward algorithm follows:
Backward Algorithm

Initialization(i = L) : Br(L) = ako for all k.
Recursion: (i=L—1,L—2...1): (@) =Y aub(0i1)5(+1).
I

Termination : P(O) = aqubi(01)5/(1).
I

Here the initialization step starts at the end of the sequence, and (L) gives
the probability of transitioning from state k£ to the end of the sequence. In the
recursion step we have ay; which gives the probability of transitioning from
state k to state [. Next, once in state [, we need the probability of observing
O;+1 which is b;(O;41). The §i(i + 1) gives the probability of the observation
sequence O;i9,0;43...0p given that the (i + 1)% state was [. Finally, as
the observation O;; could, in general, come from any of the states, we must
sum over all the states to obtain fi(i). As in the forward algorithm, the
termination step gives P(O), and so this step is unnecessary, but serves as a
check on the two algorithms.
Using the results from both the forward and backward algorithms, we can
now calculate equation 4.4 as
P(0O, path; = k) = fi(1)bk(2) (4.5)
and from this we get the desired posterior probability
i (9)bi (4)

P(path; = k|O) = “PO) (4.6)
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where P(O) can be obtained from either the forward or backward algorithm.
From here it is a simple matter to find the state sequence, p?z?h, which
maximizes the probability of each state at each observation. Let the 7™

element of pzz?h be denoted pgt\hi, giving
paﬁzi = argmazxy P(path; = k|O). (4.7)

In the Results section we compare the sensitivity and specificity of path*,

pa?h, and the state path as predicted by the multi-window method.

4.4 Results

Table 4.2 gives the mean and median sensitivities, [Prob(method predicts
nucleotide to be in frame j | nucleotide is in frame j)|, and specificities,
[Prob(method predicts nucleotide to not be in frame j | nucleotide is not in
frame j)], for the state prediction of each of the three methods. Both the sen-
sitivities and specificities were very similar when comparing the predictions
of each of the three base positions in the exons, and thus they are grouped
together in the table with the highest and lowest values shown. The rankings
from the most to least accurate of the three methods were unchanged within
each of the four sensitivity/specificity and exon/intron categories, regardless
of whether the mean or median was used. All three methods are the highest
scorer in at least one category, with the Viterbi Algorithm being highest in
two categories. The Viterbi algorithm, along with the multi-window method,

scored the lowest in two categories. The most striking difference between the
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Exon Sensitivity

Intron Sensitivity

Exon Specificity

Intron Specificity

Median Median Median Median
fb 0.782609 - 0.783417 vit 0.956239 vit 0.988076 - 0.988563 mw 0.884487
mw 0.709877 - 0.711712 fb 0.930134 fb 0.977855 - 0.977961 fb 0.822751
vit 0.653553 - 0.655051 mw 0.527244 mw 0.866776 - 0.867576 vit 0.721235

Mean Mean Mean Mean
fb 0.684834 - 0.685108 vit 0.926559 vit 0.976135 - 0.976174 mw 0.8132
mw 0.659582 - 0.660767 fb 0.904385 fb 0.969498 - 0.969505 fb 0.717252
vit 0.590563 - 0.590908 mw 0.650498 mw 0.886748 - 0.887218 vit 0.625244

Table 4.2:

vit (Viterbi method), fb (forward/backward method), mw (multi-window
method). In the Exon columns the highest and lowest values for each of
the three positions of a codon are shown. The median values are calculated
by finding the sensitivities and specificities for each of the 4074 sequences
and ranking them from lowest to highest, and then finding the median sen-
sitivities and specificities.

27,085,898 nucleotides in the 4074 sequences, and finding the sensitivities

and specificities of the methods on these nucleotides.

119

Ranked sensitivity and specificity of the three methods:

The mean values are found by considering all




methods is regarding the sensitivity of the introns. Here, the multi-window
method gives a dramatically lower value of .5272 as compared to Viterbi’s
9562 and forward/backward’s .9301.

The forward/backward and multi-window methods would probably be
considered the highest and lowest scoring methods, respectively, overall. Al-
though the forward/backward was second highest in three categories, in the
two categories where Viterbi outscored it, it was only by .011 to .026 for
the median case and .007 to .022 for the mean case. The largest difference
in all four categories between the highest scorer and the forward/backward
method was for intron specificity where the multi-window method outscored
the forward /backward method by .062 in the median case, and .096 in the
mean case.

Given that both the forward/backward and the Viterbi method make
state predictions based on the entire sequence, with the Viterbi giving the
most probable state sequence, and the forward/backward maximizing the
probability of correctly identifying the state at every observation, it is not
surprising that they tend to do better than the multi-window method.

Though the multi-window method’s ability to predict a state base solely
on local sequence information lowers its sensitivity and specificity, it is also
an advantage in certain situations. If there is an error in the actual nucleotide
sequence data, for instance a single nucleotide might not get sequenced — re-
sulting in a single base omission for the sequence data — then a method which
makes predictions based only on local information would not be as likely to

be thrown off for as as long as a method which uses information from the
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entire sequence. Consider for example a long exon which has had a single
base not reported in the sequence data. Then the “correct” state sequence,
given this incorrect data, should have a single element removed from the list
...1,2,3,1,2,3.... Viterbi would not allow itself to ever make a prediction
that had a single element removed from this list as the transition matrix
A would assign such a sequence the probability of zero. Similarly, the for-
ward /backward method would assign a low probability to a state sequence
which had any such element removed. While the multi-window method would
also generally give lower sensitivities and specificities around such a removed
element, once it was making predictions more than “window length” nu-
cleotides from this error, the error would have absolutely no effect on the
method’s predictions.

To show the effects of these possible “mis-reads” on a sequence, one hun-
dred randomly selected sequences were each altered by a total of 18 “inser-
tions,” “deletions” and “mutations.” Insertions consisted of inserting one,
two or three bases at random exon and intron locations in the sequence. Anal-
ogous alterations were made for deletions and mutations (removing base(s)
and randomly changing base(s), respectively). The order of these alterations,
as shown in figure 4.1 is as follows:

(1 base, 2 base, 3 base), (exon, intron), (insertion, deletion, mutation)
where choices in parentheses move from left to right, and choices in latter
parentheses cycle more rapidly. Thus the first and second sensitivities plot-
ted are a 1 exon base insertion and a 1 exon base deletion. Of particular note

are the relatively low sensitivities, in all three graphs, at the first, second,
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seventh (2 base exon insertion), and eighth (2 base exon deletion) points
plotted. This is exactly as would be expected. Neither 3 base insertions or
deletions, nor mutations disrupt the period 3 cycling of nucleotide positions
within an exon. Also, as there is no cycling of positions in an intron, no
alterations dramatically affect the sensitivity. Although all three methods
had a drop in sensitivity for the one and two base insertion and deletions,
the multi-window method suffered the least from these alterations. In ad-
dition, these alterations in longer exons would lower the sensitivity of the
forward /backward and Viterbi method more dramatically while leaving the

drop in sensitivity of the multi-window method the same.

4.5 Discussion

We have introduced a simple Markov model which incorporated many of the
same features as our multi-window method. This served not only to give
a more rigorous analysis of the sensitivity and specificity of our method,
but also to compare the sensitivity and specificity of various methods. Al-
though the multi-window method does not give as high an overall sensitivity
and specificity for exon and intron predictions as either the Viterbi or for-
ward /backward method, it still has certain valuable characteristics. First, it
gives a higher intron specificity than either of the other two methods. Second,
it only looks locally around an observation (a nucleotide) to predict whether
the nucleotide came from the first, second, or third position of a codon, or

from an intron. While this can lower its overall sensitivity and specificity as
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for the ordering of the plotted points.
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compared to similar methods which also incorporate information from the
entire sequence, it also makes the method more robust to errors in the se-
quence data. Lastly, this method undoubtedly contains elements that more
closely reproduce the actual biological functions which take place in the cell
when the pre-mRNA is spliced by the spliceosome. That is, it is not very
reasonable to believe that the spliceosome reads the entire sequence before
splicing out the intron. Although there may be some interaction with dis-
tant DNA and the spliceosome, it is believed that the most dramatic signals
used by the spliceosomes are local. As additional biological details on the
interaction between DNA and spliceosomes become available, it may be that
methods, such as our multi-window method, which more closely approximate
the spliceosomes’s biological role will be able to more readily incorporate this

new information to produce methods with higher sensitivity and specificity.
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Chapter 5

Exon Detection using
Likelihood Ratios with the

Incorporation of GeneSplicer

5.1 Abstract

A shortcoming of exon detection methods, including our multi-window
method, which use relatively long nucleotide subsequences to make a pre-
diction as to a nucleotide’s biological function, is their poor ability to find
exact boundaries between sequences with distinct functions. GeneSplicer
[Pertea et al., 2001] is a splice site prediction method with high sensitivity
and specificity. Combining our multi-window method with GeneSplicer’s
splice site predictions helps alleviate this problem of indistinct boundaries

and gives our method higher overall sensitivity and specificity.
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5.2 Introduction

The multi-window method described in Chapter 3 makes a prediction as to
whether a nucleotide is from an exon or intron based on likelihood ratios
which use data from three overlapping subsequences or “windows.” Ideally,
when these windows are entirely in an exon or intron, the likelihood ratios
will correctly identify the base’s region, but as the windows move from exon
to intron, or vice versa, the windows contain data from both regions, and
the method’s performance drops. In an attempt to solve this problem, we
incorporate the splice site predictor GeneSplicer, which can help predict the
exact boundary between exons and introns.

GeneSplicer uses a decision tree method developed by Burge and Kar-
lin [Burge and Karlin, 1997], called maximal dependence decomposition. In
addition, Markov models are used to extract information in small windows
around the splice sites and sequence statistics are used on larger windows
to help distinguish between exons and introns. Finally, Brendel and Kleffe’s
[Brendel and Kleffe, 1998] local score optimality feature is used to increase
the accuracy of the method.

By combining the predictions from our multi-window method with those
from GeneSplicer, we were able to increase the overall sensitivity and speci-

ficity of our method.
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5.3 Biological Background

A brief summary of the pertinent biology is given here. For a more de-
tailed account the reader is referred to the Biological Background section in
Chapter 2. The following books also give further information on the topic:
[Lewin, 1994], [Fairbanks and Anderson, 1999] and [Snustad et al., 1997].

Human chromosomes are composed of tightly coiled threads of deoxyri-
bonucleic acid (DNA) and associated protein molecules which aid in the
structural packing of the DNA. The DNA itself is often compared to a
twisted ladder with the sides of the ladder being the sugar-phosphate back-
bone of the DNA, and the rungs being the two complementary nucleotides
that bind to one another - one from each of the two strands of DNA
[Watson and Crick, 1953]. A single strand of DNA may be thought of as
a sequence of four nucleotides: adenine (A), cytosine (C), guanine (G) and
thymine (T). The nucleotides that bind to one another to form the “rungs”
are called complementary pairs: A binds with T and C binds with G.

The DNA is always read by the cell machinery in the same orientation.
That is, the sequence AATCGTA of nucleotides (bases) along a strand of
DNA would always be read in the order indicated above, or in the reverse
as ATGCTAA, but not in both orders. The end of the sequence, where the
reading starts, is the 5’ end and the other is the 3’ end. The complementary
strand always has the reverse orientation. Thus if one strand of a chromo-
some had the sequence 5’- AATCGTA - 3’, then this would be bound to the
sequence 3’ - TTAGCAT - 5.

129



The genes within the DNA are the genetic code used by the cell to make
proteins. In higher eukaryotes these genes comprise only a small percentage
of the entire genome — the entire DNA sequence of an organism — which in
humans is some three billion nucleotides long. A typical human gene is a few
thousand bases long. There are many genes on both strands of the DNA of a
chromosome. Humans have 23 pairs of chromosomes and somewhere on the

order of 30,000 genes.

Transcription

An initial stage of protein synthesis is the transcription of the DNA into
messenger RNA (mRNA). This mRNA transfers the information from the
DNA in the nucleus of the cell out into the cytoplasm of the cell where the
protein is synthesized. RNA is a molecule very similar in structure to DNA,
except that thymine is replaced by the nucleotide uracil (U), and RNA uses
the sugar ribose instead of deoxyribose for its sugar-phosphate backbone. If
a subsequence on one strand is a gene, then this strand is known as the sense
strand for this portion of the double helix. The complementary DNA strand
is used by an enzyme (a catalytic protein) known as RNA polymerase II to
synthesize the mRNA. This complementary strand is known as the template
or antisense strand. The non-template, or sense, strand has the sequence in

the orientation in which genes are reported.
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Splicing

The newly synthesized mRNA is known as pre-mRNA at this stage as it must
undergo chemical modifications to its beginning and end. Often chemical
modification is followed by “splicing” where precise, predefined, subsequences
are spliced out and degraded. These subsequences are called introns (INTeR-
vening sequences); the subsequences which are joined together to make the
mature mRNA, are called exons (EXpressed sequences). The joined exons,
called “mature mRNA” or simply “mRNA,” pass out of the nucleus of the
cell to the cytoplasm where protein synthesis occurs.

The start and end of the intron are known as the donor (or 5’) and ac-
ceptor (or 3’) splice sites, respectively. The initial GU and terminal AG of
an intron are the only highly conserved sequences in the introns. Less well
conserved sequences are shown in figure 5.1; in particular, at the donor and
acceptor splice sites as well as at a sequence known as the branch point se-
quence, which is generally 30 bases upstream from the acceptor splice site, we
find longer less well conserved sequences. Although this is useful information,
the sequences given at the donor splice site and branch-point occur only 22
and 40 percent of the time respectively (and the branch-point sequence was
only determined up to two bases in most instances), making these moderately

conserved signals of limited value in splice site detection.
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5 ...E, I donor splice site ...branch pt. seq. ...acceptor splice site I E,y...38

AesGr3 I G100U100A462A68G34Uss . .. Ye0NYgoYsrRrs A100Y05 - .. 12Y NCe5A100G100 B

Figure 5.1: Consensus sequences for regions of an intron. Ej is the k" exon of the
gene. | denotes an exon/intron or intron/exon boundary. R - a puRine (an A or G base),
Y - a pYrimidine (a C or T/U), N - aNy nucleotide. The subscripts give the percentage
occurrences of these bases. Subscripts of 100 are rounded, and there are many known
exceptions (and many more may be found when introns are searched for without assuming
that they start and end with these sequences. See http://www.ebi.ac.uk/asd/altextron/-

pre-release-dist-data.html for current percentages of donor/acceptor splice sites).

Alternative Splicing

To add to the problem of splice site detection, it is estimated that one half
of the human genes that are spliced can undergo alternative splicing. Alter-
native splicing yields different (viable) proteins through a variety of means:
alternate donor splice site, alternate acceptor splice site, exon skipping, and
splice vs. no splice. When the intron is spliced at a different starting point,
this is known as alternative donor splice site splicing. If these alternate starts
to the splice site are off by a multiple of three nucleotides, then amino acids
corresponding to the differing bases added or lost will be added or deleted
from the final protein. If, on the other hand, the alternate starts are not off
by a multiple of three, then there is a frame “shift” in the codons (see section
on translation), and thus all subsequent corresponding amino acids can be
different. A similar situation holds for alternate acceptor splice sites.

As the name implies, exon skipping occurs when an exon is skipped in the
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splicing process. Thus one less exon is incorporated into the mature mRNA.
If the exon has a length that is a multiple of three, then a certain region
of the resulting protein is excised; whereas if its length is not a multiple of
three, then a frame shift occurs with the above mentioned consequences.
Splicing vs. no splicing is similar to exon skipping, but instead of excising
an exon, an intron is incorporated instead of being spliced out. Once again

the length of the intron determines a possible frame shift.

Translation

The information in the mRNA is used to synthesize protein in a process
known as translation. The genetic code of this mRNA is read in consecutive,
non-overlapping sets of three nucleotides. Each of these triplets codes for a
particular amino acid — the subunits of a protein. Thus a sequence of DNA
has three frames, only one of which is used to make a particular protein.
Consider the sequence ... TACGGTAATCCGGGT .... Since the sequence
is read in triplets, it could be read as

...TAC GGT AAT CCG GGT...,

... T ACG GTA ATC CGG GT... or

...TA CGG TAA TCC GGG T...,
each of which would code for an entirely different amino acid sequence. The
triplets in the proper frame, which are used for protein synthesis, are called
codons.

There are 64 codons (four possible nucleotides in each of the three loca-

tions). Three of the codons ( TAA, TAG, and TGA, or their more commonly
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used mRNA counterparts: UAA, UAG, and UGA) signal that protein syn-
thesis should stop, and are thus known as stop codons. The other 61 each
code for one of the 20 amino acids. Some amino acids are coded for by only a
single codon, while others have as many as six. The correspondence between
a codon and its associated amino acid, or function as a stop codon, is so
consistent over all organisms (although exceptions exist), that it is known as
the “universal code.”

Protein synthesis occurs on a cellular organelle known as a ribosome.
When one of the many ribosomes in the cytoplasm of the cell comes in
contact with the 5’ end of the mRNA, the ribosome becomes attached to
it. The ribosome “reads,” or moves down the mRNA three bases, or one
codon, at a time. There are two sites on the ribosome each of which can
hold a codon from the mRNA, the transfer RNA (tRNA), and the tRNA’s
associated amino acid. Each tRNA has a three base anticodon on it. Only a
tRNA with an anticodon that matches the mRNA codon (by complementary
base pairing), which is docked on the ribosome, can dock at the ribosome site.
This assures that the correct amino acids are placed in close proximity. The
amino acid from the most recently attached tRNA is then attached to the
growing polypeptide chain. Thus the DNA message is faithfully transferred

via the mRNA to the final polypeptide.
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5.4 Overview of GeneSplicer

GeneSplicer [Pertea et al., 2001] is a computational splice site prediction
method which combines various techniques to provide a program which
gives accuracies comparable to, or better than, the best alternative programs
[Pertea et al., 2001].

GeneSplicer uses a binary decision tree method called maximal de-
pendence decomposition which was first introduced by Burge and Karlin
[Burge and Karlin, 1997], and improves it with the addition of Markov mod-
els which detect additional dependencies among nucleotides around the splice
site. Only relatively small windows of nucleotides are examined here, but
they seem to capture the majority of the biological information used by the
spliceosomes. In addition, the method uses longer windows to either side of
a splice site to detect statistical differences between the exon and intron re-
gions on both sides of a splice site. Finally, it employs a local score optimality
feature similar to that used by Brendel and Kleffe [Brendel and Kleffe, 1998|

to exclude many false positive splice sites.

5.4.1 Maximal Dependence Decomposition

Maximal dependence decomposition was developed to identify the most sig-
nificant dependencies between positions of a splice site. It is a generalization
of the weight array model [Zhang and Marr, 1993], and the weight matrix

method [Staden, 1984]. The weight matrix method uses the relative frequen-
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cies pj- of the j** nucleotide at position i to estimate the probability
Prob(X) = I} p}.

of generating the sequence X = x1,x9,...,2,. The weight array model,
which takes into account dependencies between adjacent sites, calculates the
probability as

Prob(X) = pL I} ,pi— 1

T1 Z:2pl'i—1 L4

where pﬁ“ is the conditional probability of nucleotide ) at position i given

that the nucleotide at position ¢ — 1 is z;.

Maximal dependence decomposition starts with a set D of N aligned
sequences of length k. These sequences could be any type of biological signal
for which dependencies between nucleotides is sought. Burge and Karlin
use the nine nucleotide sequence that corresponds to the last three bases
of an exon and the first six bases of the intron of a donor splice site. The
positions are denoted -3, -2 -1, 1, 2, 3, 4, 5, and 6 with positions 1 and
2 always being the canonical GT (or GU in the tRNA) in the set D. The
most frequently occurring base(s) at each position is/are called the consensus
base(s), and an indicator variable C; is assigned the value 1 if the i"* base
of a given sequence of D is equal to the consensus base(s), and 0 otherwise.
The nucleotide indicator X; identifies the nucleotide at position j. For each
pair of ¢, 7 with 4 # j, a contingency table is formed. The x? values with ¢ or
j equal to one or two are omitted from their table as these positions do not
have any variability in their data set. Of the remaining 42 4, j pairs, 31 have a

significant x? value at the relatively stringent level of P < 0.001, df = 3. This
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shows that there is a great deal of dependence among these nine nucleotides.
Next, the sum

Si = 32X’ (C, X)

is calculated, which gives a measure of the dependence between C; and the
nucleotides at the other positions. A binary decision tree is used to subdivide
their set as follows. Choose the value 4; such that S;, is maximal, and parti-
tion D into two subsets, D;, and D;,-. D;, contains all the sequences from D
which have the consensus nucleotide(s) at position i; and D;,- contains the
sequences which do not.

Each of these subsets is recursively subdivided until one of the following
three conditions is met: i) the k — 1%* level of the tree is reached (and thus
no further subdivision is possible); ii) no significant dependencies between
positions are found; or iii) the size of the subset is small enough that further
subdivision would result in weight matrix method frequencies that would be
unreliable. Burge and Karlin derive a separate weight matrix method model
for each subset of the tree, and use them in their larger hidden Markov model.
Pertea et al use these final subsets (or “leaves”) of the binary decision tree,
but in addition construct first-order Markov chain models using a 16 base
(29 base) region around the donor (acceptor) splice sites. First-order Markov
chain models are also constructed around false donor and acceptor splice sites
(GT and AG dinucleotides that did not correspond to true donor/acceptor
splice sites). The score given to a potential splice site is given by the difference

between the log-odds score of the site as computed by the true Markov model,
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and that of the false Markov model. The Markov model score of a sequence
is given in [Salzberg et al., 1998] and [Salzberg et al., 1999]. The score of
a particular site s;, s;;1,...,5; is computed for both the true and the false
Markov model. Let the score of the site starting at ¢ and ending at j be given
by

S(i,§) = S My,
where

F((sk—2, Sk—1,5k), k)
f((5k72a Sk*l): k — 1)

and f(s, k) is the frequency of the subsequence s ending at position k.

Ms,k =In

5.4.2 Sequence Statistic in Larger Windows

Pertea et al [Pertea et al., 2001] next construct two second-order Markov
models from the exon and intron regions to either side of the splice sites.
They used subsequences of length 80 bases to either side of a splice site.
Thus for exons or introns adjacent to the splice site that are shorter than 80
bases, some non-exon, or non-intron data is incorporated into their training
set, but they state that this is a relatively rare event, and only slightly alters
the Markov probabilities.

Let Scoms(k, ) be the score given above computed from the maximal de-
pendence decomposition with the added Markov chain, and let S..q(j) and
Shnoncod(J) be the scores from the coding and non-coding Markov models re-

spectively. Then the score given to a splice site is calculated as follows:

S(k) = Scomb(k; 16)+[Scod(k_80)_Snoncod(k_80)]+[Snoncod(k+1)_Scod(k+1)]
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and
S(k) = Scomb(ka 29)+[Snoncod(k_80)_Scod(k_SO)]+[Scod(k+1)_Snoncod(k+1)]

where £ is the position of the donor site in the first equation, and the position

of the acceptor site in the second.

5.4.3 Local Score Optimality Feature

Finally, Pertea et al [Pertea et al., 2001] apply a local score optimality fea-
ture similar to that of Brendel and Kleff [Brendel and Kleffe, 1998] which
eliminates many false positives. In particular, only the highest scoring splice

site, of a particular type (donor or acceptor), is kept in any 60 base window.

5.5 Methods

To combine the information from our multi-window method and that from
GeneSplicer, we found all locations where our predictions changed from exon
to intron, and then checked to see if there was a GeneSplicer predicted donor
splice site “close by.” Recall that due to the length of the window, our pre-
dictions are based on nucleotides that are downstream from the nucleotide in
question. Thus we expect our predictions to foreshadow the true classifica-
tion of the sequence by about one half of the length of the window. Therefore
we looked in a region centered one half a window length downstream from
our change in prediction, and if there was a GeneSplicer predicted donor

site with sufficiently high score, we changed all our predictions from intron

139



to exon for all bases in this region that are prior to GeneSplicer’s predicted
donor splice site. An analogous treatment was done for acceptor splice sites.

Both GeneSplicer cutoff score values and lengths of the aforementioned
regions were analyzed to maximize the combined method’s overall sensitivity

and specificity.

5.6 Results

Although combining the multi-window method with GeneSplicer enhanced
the accuracy of prediction of many bases, many inaccurately predicted bases
were left unchanged for two main reasons. First the majority of inaccurate
base predictions came not from bases close to a true splice site, but from
regions in introns that had triplet composition more closely approximating
that of the average exon rather than the average intron. To a lesser extent
we also found intron-like regions in exons.

Figures 5.2 and 5.3 are histograms of the distribution of distances from
inaccurately predicted bases to the nearest true splice site for a typical se-
quence. Distances are measured as (location of error - location of nearest
splice site), and thus can be positive or negative in both the donor and ac-
ceptor histograms. In the donor histogram, the majority of distances are
positive as these refer to errors in true introns; and as introns span a larger
portion of the entire sequence, we find more errors here. Similarly, for the
acceptor histogram, we find more negative distances. For both the donor

and acceptor cases, we see that there are more positive and negative dis-
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Figure 5.2: Frequency distribution of distances to donor splice sites

tances close to zero than any other category, but still the majority of errors
are farther from zero than the multi-steps window length, and thus can not
be correctly adjusted even if GeneSplicer correctly predicts all donor and
acceptor sites.

The second main problem with combining the two methods is that Gene-
Splicer misses some true splice sites, and gives quite a few false predictions. In
their paper, Pertea et. al [Pertea et al., 2001] give various values of true sites
missed for both acceptor and donor site detection and their corresponding
false positive values. At 20 percent of the true sites missed, for example, they
report a false positive rate of 1.1 percent for acceptor site detection. This 1.1
percent is calculated as the number of false positives they predict divided by
the number of what they term “false acceptors,” — AG dinucleotides which are
not true acceptor splice sites. If on the other hand one considers the number

of acceptor sites they predict which are not true acceptor sites, divided by the
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Figure 5.3: Frequency distribution of distances to acceptor splice sites

total number of acceptor sites they predict, (a common definition for the term
“false positive” ), then, for example, when 24 percent of the true acceptor sites
are missed, 79 percent of their predictions are not true acceptor sites. For
both of these reasons, with the former contributing more, many incorrectly
predicted bases are not changed when these methods are combined.

Table 5.1 gives the exon and intron sensitivity and specificity both with
and without the aid of GeneSplicer. Exon sensitivity and intron specificity
are increased by .0167 and .0219, respectively. Exon specificity and intron
sensitivity on the other hand are slightly lowered — .0022 and .0059, respec-

tively.

5.7 Discussion

Overall, the performance of the union of these two methods gave poorer than

expected results. Both the fact the GeneSplicer did not perform as well as
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Exon Sensitivity Intron Sensitivity Exon Specificity Intron Specificity

w/o GeneSplicer w/o GeneSplicer w/o GeneSplicer w/o GeneSplicer
mw 0.659582 - 0.660767 mw 0.650498 mw 0.886748 - 0.887218 mw 0.8132

w/ GeneSplicer w/ GeneSplicer w/ GeneSplicer w/ GeneSplicer
mw 0.676544 - 0.677179 mw 0.644608 mw 0.884756 - 0.88516 mw 0.835065

Table 5.1: Sensitivity and specificity of the multi-window method (mw) with

and without the use of GeneSplicer.

anticipated, and that the majority of the incorrect predictions of the multi-
window method were not due to the window overlapping regions of distinct

biological function, contributed to this lower performance.
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