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DATA MODELING AND PROCESSING IN DEREGULATED POWER
SYSTEM
Abstract
by Lin Xu, Ph.D.

Washington State University
May 2005

Chair: Kevin Tomsovic

The introduction of open electricity markets and the fastpaf changes brought
by modern information technology bring both opportunitiesl challenges to the
power industry. Vast quantities of data are generated bytikerlying physical
system and the business operations. Fast and low cost cdoations allow the
data to be more widely accessed. For electric utilities, litldcoming clear that data
and information are vital assets. Proper management andlmgaf these assets
is as essential to the engineering of the power system as isttherlying physical
system. This dissertation introduces several new mettodsgdress information
modeling and data processing concerns in the new utilitremment.

Presently, legacy information systems in the industry domake adequate
use of the data produced. Hence, a new information infretstrel using data ware-
housing - a data integration technology used for decisigrpan - is proposed
for novel management and utilization of data. Detailed gdamand discussion
are given on the schema building, extract transform and (&dd.) strategies for
power system specific data. The benefits of this approachhasgnsthrough a
new viewpoint of state estimation. Inaccurate grid infotiora especially topol-

ogy information, can be a major detriment to energy marlkeldrs’ ability to make



appropriate bids. A two-stage DC state estimation algariih presented to pro-
vide them with a simpler data viewpoint to make knowledgedtzding decisions.
Numerical results show how the results of a DC state estintaio be accurately
made available to all concerned.

Additionally, the proposed communication and informatiofrastructure al-
low for new formulations and solutions to traditional powsoblems. In this
vein, a new distributed communication model of the poweitesysusing pub-
lisher/subscriber paradigm is presented and simulateel sihulation results prove
its feasibility and show it has adequate performance uratknts communication
technology. Based on this model, a new state estimationitdgg which can de-
centralizes computations and minimizes communicatiomheae, is derived using
a set of overlapping areas to cover the entire network. Nizadexxperiments show
that it is efficient, robust, and has comparable accuradyeasdnventional full net-

work state estimation.
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Chapter 1

Introduction

1.1 Motivation

The introduction of open markets and the fast pace of chabgeght by mod-

ern information technology bring both opportunities andllgnges to the electric
power industry. Vast quantities of data are generated bextensive deployment
of new recording devices, such as, intelligent electromiciaks (IEDs). In ad-
dition, the need for new business data, such as, markengrddstory, bidding

information, and so on, has become important. Moreovet diad low cost com-
munications allow the data to be more widely accessed., 8tdllegacy informa-
tion systems may not make full use of the data produced. bBistamcy, inaccuracy
and other problems plague the quality of the data. The lamgauat of data may
decrease the performance of data processing in the coatrt@rs or regional trans-
mission operators (RTOs), which are already heavily loaddter recent serious
blackouts both in the US and abroad, people have a renewed tot reliability

and the secure operation of the grid. Users need to be ablertefibfrom the



ever increasing data. The following summarizes the vartaia and information

system changes:

e Increasing volume of data. Substation automation systems and IEDs [1]
are becoming locally integrated and better interconnewiitial the control
centers. These systems can generate far more data than camsbaably
used at the control center. In addition, the introductioreérgy markets

produces large amounts of business data every day.

e Greater complexity of data access requirementdJtility users and market
participants generally want to access data in a fast andytivwegy with the
expectation of high data quality. With the free trading @& &lectric energy,
the grid information needs to be appropriate for each of thekat players
while at the same time guaranteeing privacy. For examplerabprs need
complex, detailed data in the models used for power systenrige appli-
cations while traders may need simple grid informationgating the main

transmission bottlenecks.

e Improved communications. The communication network has become more
efficient with bandwidth increasing exponentially. The gnession of in-
formation technology, especially in the network and comitation areas,
makes the communication network far cheaper, more capablenare ro-
bust. This allows information exchange between differentities to be fea-
sible and more reliable. Most utilities are only just bedinthe process of

moving to modern distributed communication systems butinévitable.

e More decentralized computation and “intelligence”. [1-3]Modern sub-

stations have extensive computing capabilities and ‘ligexice” through

2



new sensors and self-diagnostic systems. Substation atitrnsystems are
increasingly common in the grid. At the same time, the abtlit process
data and extract information locally is tremendously ewkdnby new de-
vices with dedicated processors. With this abundant coatiout power,

more tasks can, and should, be done locally.

e Renewed focus on reliability. Following recent blackouts and new home-
land security concerns, the industry has returned to magiieater emphasis
on network security. The desire to make full use of the hugeuwarnof

available data to this end is apparent.

At the same, these changes are also creating new problentisef@xisting
data and control center systems widely used throughoutdivempindustry. This

includes:

e Legacy data systems [4] The legacy data system in most power utilities
cannot handle the massive increase in data efficiently aojmepy. The tra-
ditional approach of allocating the data and related infiiom processing
into separate infrastructures within the utility does netkenfull use of data
and information. New users want the information produceatasrately and
as timely as possible while avoiding the complexity of dedadiing issues.
The transparency of related infrastructures for collegtiprocessing, and
communicating data and information is the key to a succksgifplication
of the data. Making the process of integrating data and extigainforma-
tion fully automated while creating a major business achgatremains a
challenge. To establish the value of data and informationedsas to make

the process of data integration and the required informadidraction as ef-

3



ficient and as transparent as possible remain two of the roajarerns in the

utility industry today.

Inadequacy of existing security analysis toolsDeregulation has also put
more stress on the existing network security analysis toélsecent trend
is to broaden cooperation and attempt to run the power maregtan even
larger area in a so-called mega-RTO for better market effogieThe energy
management systems (EMS) are already overloaded strggglicope with
increasing large system models while the abundant conipatpbwer in

local substation automation systems is wasted.

Single information consumer. Currently, the control center is the only in-
formation consumer in the grid. The information is primatiard-wired
from the field to the control center. If the communicationhgatave a prob-
lem or the control center becomes overloaded, the effestgtem opera-
tions will cease. Nearly all the calculations are carried iauthe control
center, while available computational power in the grid &sted since they

lack access to the needed data.

Limited information for market participants. The information that RTO
makes available for the market participant is not sufficaraiccurate enough
for transparent trading. The constraint that the trandorisgrid poses on
the free trading of electrical energy is a constant sourdeusfration to both
power brokers and generation companies. The present sysdt@asting
available transfer capacities (ATC) on the OASIS systensdud provide
enough information for the traders to predict under whatlewf transac-

tion the system will face congestion. For such full transpay, each partic-



ipant should be able to determine this availability indeferily. One way
to achieve this is to make all control center data availabkltparticipants,

for example, the state estimator results can be postedlitimea There are
obviously privacy concerns and bandwidth problems in thigraach. Still,

this will certainly allow the traders to participate or \fgrall RTO decisions
on transmission constraints but it will also require thalérs to have the
same level of sophistication as the operators. The invedtmeeded in ex-
pertise and software for this level of information exchanggy be unfair to

the smaller brokers or generation owners.

1.2 Contributions of this Research

1.2.1 Data Warehousing

To better integrate the ever increasing amount of data, megse data warehous-
ing technology. Data warehousing is a technology to addresslata integration
problem for a large amount of data. A data warehouse is aéstifiented, inte-
grated, time-varying, non-volatile collection of datattisaused primarily in orga-
nizational decision making” [5]. Itis a kind of databasettbantains consolidated
data from many sources, augmented with summary data andmgwelong time
period. They usually are much larger than other kind of degab. Data warehous-
ing is also a process that brings data from heterogeneousesointo an organized
format that facilitate data analysis and decision making.

By using data warehousing technology, one can implement:

o efficient management of the huge amount of data availableaémiodern

power system;



a uniform view of the heterogeneous data, which masks trerdgeneous

data source;

a user-customizable the view appropriate for their own sged

data cleansing functions that reduce the amount of the gis@mcy in the

original data source; and

new analytical tools for historical analysis and predictad future trends.

In this dissertation, several examples are developed orttiganstruct a data
warehouse that meets the requirement of the power indsistkiethods to popu-
late the data warehouse from several common power systensaiatces are intro-

duced.

1.2.2 Two-stage DC State Estimation to Improve the Accuracyf the

Network Topology Information

One of the main goals in introducing data warehousing wasvtorgarket partic-
ipant simple useful tools to make their own decisions. Oreavgde, developed
in this section, is to provide all participants with a simpl€ power flow data for
real-time conditions. Given that many ISOs are adoptinghoag based on distri-
bution factors to make transmission decisions, the DC pdéi@armay be accurate
enough for the traders to anticipate transmission comstraind make informed
decisions. On the other hand, DC power flow data can be handtadreadily

available off-the shelf software or easily integrated iexisting trading software.
This work addresses how accurate DC power flow results oftiraal conditions

can be made available. A DC state estimator is proposed ardrechis developed



to correct for topology errors. In all state estimation, palogy error, unlike an
analog measurement error, can make the state estimatdtsreseless and much
research is available for topology error detection andemtion for the AC state
estimator. Here, a novel two-stage DC state estimator Hratorrect for topology
errors is introduced.

The traditional full AC state estimator has many technichlaatages in the
detection and identification of errors. Unfortunately,uffers from several disad-
vantages from a trader’s viewpoint. First, it requires géammount of data, all of
which may introduce new errors or observability problemd arost of which will
not be directly relevant to a given trade. Second, conves@noblems that often
arise in practice are an unnecessary complication for tiheogses of conducting
transactions. Third, many of the market rules that are oteonto a trader are
based on a simplified DC power flow, such as in the flowgate madethat the
resulting state estimate must be modified to be meaningfuhfomarket.

This dissertation addresses these problems by beginnitiganDC state es-
timator and adjusting the topology error processing fohsasystem view. The
author suggests that traders given access to real-timecdatd operate such an
estimator independently. The primary difficulty is in théément errors in the DC
model that limit topology error processing. In the propospgroach, state esti-
mation is performed at the bus/branch level. If any errogesdatected, the suspect
area is expanded into a bus-section/switching-device maddeen the state esti-
mate is repeated over this expanded model. A new method ged that more
effectively distinguishes between modeling approxinragorors and data errors.

There exists extensive literature that addresses theagpelrror identification

problem. All the approaches use full AC state estimatiorthénproposed method,



the modeling error is estimated in order to compensate foirtherent inaccuracy
of the DC method, while maintaining the advantages of rofesst and efficiency.
Further, these linear computations are more appropriate & market viewpoint.

Calculation proves the feasibility of the proposed method.

1.2.3 Distributed Information Infrastructure and Distrib uted State

Estimation

Since local processors are becoming more and more comminm, distributed
processing can ease the burdens on the control center anideghmetter perfor-
mance and more reliability. Instead of a centralized cdrmtnol processing model
of the existing power system information structure, a digted information process-
ing model that using the publisher/subscriber paradigmtiieduced. In this model,
each entity can be an information publisher or subscribdwotit and the relations
between different power system entities are peer to pestiorlinstead of master-
slave hierarchical relation in the traditional power sgse Each entity, such as a
substation, can publish its data, for example bus voltagdsbeeaker status. At
the same time, it can be an information subscriber for infdrom published from
other entities. A traditional control center can viewed darge information sub-
scriber that consumes the information published by substtpower plants, and
so on, throughout the network.

By using this model, one can achieve:

e greater flexibility, since the system can be easily recantd;

e increased reliability, since the information transfer isrmmdue to the possi-

bility of re-routing packets unlike in the existing hardrad network; and



e more evenly distributed computational load as the conteoker is not the
only entity that can receive the necessary information - aubscriber can

have the data it needs to perform computation locally.

In order to validate the distributed information infrastiwre, simulations are
performed on the IEEE testing systems. The simulationsatedethat the new
information structure is feasible and has acceptable paence.

State estimation is a major analysis tool that helps operatm the system
securely and efficiently. Based on the proposed informagiarctures, a complete
distributed state estimation that can make full use of thedlnt computation re-
source in the power grid while easing the burden of the cbagnater is introduced.

The idea of this distributed state estimation is to divide riletwork into over-
lapping areas. The whole network is covered by the unionebtierlapping areas,
that is, any bus or branch in the network is inside at leastdfrike areas. Each
area also has some overlap with the some of the rest of the. d&rka connections
between areas are assumed to form a connecting graph foetieri.

In each area, one local computation center subscribes tloeatiecessary data
inside the area, and carries out the conventional stataa&sbin for that area. The
local state estimation result is passed to a control cemgrtlze whole network
result is assembled in the control center. This approachplaimdecouples the
state estimation calculation inside each area, that israbelt of one area does
not depend on the result of another area. This can maxim&edhallelism and
minimize the communication cost between the areas. Thigaph is shown fea-
sible based on the simulation of the communication netwdoklay's network and
communication are able to provide an adequate communicatfastructure.

One of the advantages of this approach is that it can avoiddtmlled large

9



system problem. Since as the network is becoming largeraagdr convergence,
numerical stability and error data identification can begaibblem for the state
estimation calculation. This approach differs from mosthef current approaches
to distributed/parallel state estimation. Almost all tierent approaches are based
on the conventional information structure and formulat distributed state esti-
mation as an optimization problem for each area and use triggof the voltage
angle and magnitude on border buses from different areasresraints. Those
approaches have one thing in common, each iteration of @#& ar more areas,
depends on the result of another area. This impairs pasafiesince some calcula-
tion may stall while waiting for the result of other iteratm Numerical examples
reveal that this approach is feasible and has nearly the aacugacy as traditional

methods.

1.3 Organization of the Dissertation

In the following chapters, each individual approach is dssed in great detalil.
Chapter 2 addresses the data integration problem by ustagvd@ehousing tech-
nology. In Chapter 3, the two stage DC state estimation isldped to address the
topology error identification problem. Chapter 4 presemésdistributed informa-

tion infrastructure followed by Chapter 5 focuses on thegpsed distributed state
estimation algorithm. The result of simulations on diff#réEEE testing systems

and the test case of the distributed state estimation asemiexd and analyzed.

10



Chapter 2

Data Integration using Data
Warehousing Technology In

Power System

2.1 Introduction

Information in the power system plays a very important rg¥ith the introduction

of deregulation and IEDs, data in the power system are chgrigiboth quantity

and functionality. Utilities previously focused on the tratling data that reflected
the grid status. Today, such data is exploding due to the&sing number of IEDs
used in the field. Moreover, energy markets require thetiaslito face greater
competition and the proper management of vital business idaiften the key to
the success. In traditional power utilities, data are itgolan different departments
and frequently inconsistent. As it becomes clearer thatitiia and information

are one of their most important assets, information intégras becoming a vital
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area for the utilities to gain a competitive edge, provididreservice to customers,
gain market share and increase profits.

Data integration and data warehousing are not new to themsystem. Giller-
man [6] pointed out the problem of data duplication and isma His answer to
the problem is the Common Information Model (CIM) data mod#&lit the CIM
data model itself is not a very good model for historical d&t&rner [7] proposed
very good requirements for what a data warehouse for poveéeisyshould do. His
point of view is more from how to handle historical data in Bgpervisory Con-
trol and Data Acquisition (SCADA) system or EMS efficienthlis introductory
paper [8] talked about the concept of data warehousing bugHfert of implemen-
tation and related data model. Sundhararajan [9] repoitg Wata warehousing
in ERCOT for business history data.

In this work, we introduce data integration by using dataelmausing technol-
ogy. First, we present the challenge power utilities fackyo the isolated parts of
the data models/databases and ever increasing volumetarfitas data. We then
introduce the multi-dimensional modeling that is widelyedsn Online Analyt-
ical Processing (OLAP) followed by the methods to constdata warehousing.

Possible applications of the data warehousing are disdusse
2.2 Existing Problems

Two main data problems exist in many power companies:

e Thereis numerous duplicate and inaccurate data residiffénent systems
isolated across several departments. This arises froereliff user needs as

well as historical reasons.
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e There is a rapidly growing amount of data available due ta&oent intro-
duction of IEDs in the field, expanding business data fronegigiation and

increasing data exchange between utilities.

2.2.1 Data Duplication and Inconsistency

There are “sound” historical reasons for separate dataldasg@urchasing, plan-
ning, operations, maintenance purposes, and so on. Ditfdega users will have
varying needs and views of the data. Further, the fact trEethre multiple en-
tries for a single data element across those databasesrgige® the possibility
that across the enterprise incorrect data entries exceealtinber of correct data

entries. There are three main data considerations then:

e Duplication: similar or identical data may exist in diffatedepartments.

e Inconsistency: Since different departments place vargiegrees of impor-
tance on particular data, non-critical data for some depamt may be up-
dated infrequently or without proper verification, so thatls data is unreli-

able.

e Query construction: Users may have trouble constructitig gaeries even
if they know where they can find valid data since the databisdgferent

departments may have different schema.

As an illustration, consider the perspectives of severataufor transmission

line data.

Operation Engineer

13



The operation engineer is usually a user of the SCADA/EM$esyswhich
requires real-time data from the field. In order to carry adusity analysis, the
EMS system requires resistance, reactance, short-terrfoagderm flow limits,
the statuses of the breakers/switches at the ends of thealiieso on. Operation
schedules of that line may also be stored. Since EMS/SCAB#erys have a rela-
tively long history and many different vendors, there angotes database models.
These include hierarchical, network and some relationaletsowith each vendor
developing their own schemas. Thus, these proprietanpdsés usually have the

following characteristics:

e Describe the system with a bus-breaker model. The datalaggbd detailed
physical parameters for the power system analysis, busldaka for other

purposes, such as, cost, maintenance cost, physical donenand so on.
e Employ heterogeneous schema depending on the variousrgendo

e Emphasize real-time fast access so they typically userbldcal or network

models. Even if a relational database is used, it is usualiyparmalized.

Planning Engineer

Planning engineers usually select the type of the transmnidime and esti-
mate the resistance and reactance for an approximate @oofidhe transmission
line. They perform calculations to ensure the new line wilahsecurity and other
requirements. They also need cost information of the tréssam line to com-
plete their analysis. But after the line construction, th&adwill be duplicated and

refined in other department databases and the planning dbke\stale.
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Maintenance Engineer

Maintenance engineer data requirements include operstimedule of the line,
exact location of the towers, tree clearance informatioaintenance history, test-
ing data, and so on. Usually, these engineers are more cmutetith geographical

and related data of the line and operation schedules.

Market Participant

Market participants as business professionals are géneatlinterested in the
detailed physical parameters of the transmission lindl, By are concerned with
reaching correct business decisions, such as, the opesatfedule of the trans-
mission line or contribution to Available Transmission @eity(ATC). Databases
used in power markets are usually commercial relationalletes, such as Oracle,
DB2, and SQL Server. This kind of database differs signitigainom those used
in real-time SCADA systems. This is simply because the dhistory of, and the
commercial nature of, the power market.

The following are the different characteristics between power market and

the EMS/SCADA system databases. The power market databases

e mostly build upon the relation model,
e have much higher requirements on error recovery and traosamontrol,
o reflect more stringent security requirements, and

e access data primarily via canned queries.

Clearly, a single transmission line data object has meltipktances and re-

sides in different databases with multiple views. Thesdlgros become more
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troublesome since there may not be a uniform schema for tsegply even if

they know the location of accurate data.

2.2.2 Increasing Volume of Historical Data

As with other industries, power utilities have a need to rétbeir business process
as well as the operation of the power system. With the inttodn of IEDs, the
volume of data is rapidly increasing. Not surprisingly, tnBMS’ have functions
to store historical data in order to create reports and perfubsequent case stud-

ies. Still, most recording capabilities have the followiigitations:

e Many use proprietary database or files and are not easilgratted with
database standards for field devices. As a result, thereoastandard tools,
e.g., SQL, to access historical data. This situation lifaitder enhancement

to the post event analyses.

e The systems are not flexible. Typically, the data schemaesliand the user

can only select from a set of canned queries.

e Most are dedicated real-time systems so the performandediilt-in his-
torical functions is not good since those functions may dliown the real-

time SCADA/EMS system performance.

e There are almost no historical data analysis tools with trstesn since

SCADA/EMS is dedicated for real-time operations.
e Itis only accessible by operation engineers.

The problem that arises in this situation is how can, for eama planning

engineer not in operation department, easily access tharib@ data in order to
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make reasonable plan for future expansion.

2.3 Information Integration

2.3.1 Two Approaches

The answer to the above problems is by using appropriateinokgigration tech-

nologies. Providing integrated access to multiple, disted, heterogeneous data-
base and other data sources has become one of the leadiag issiatabase re-
search and industry. There are two methodologies availabéeldress the data

integration problem. One is called lazy approach [10]:

1. Accept a query, determine the appropriate set of infdonaources to an-
swer the query, and generate the appropriate subqueriesnmonands for

each information source.

2. Obtain results from the information sources, perfornrappate translation,
filtering, and merging of the information, and return the fimaswer to the

user or application (hereafter called the client).

We refer to this process as a lazy or on-demand approach ddrdagration,
since information is extracted from the sources only whesrigs are posed. (This
process also may be referred to as a mediated approach, temerodule that
decomposes queries and combines results often is refereexla mediator [11]).

The natural alternative to a lazy approach is an eager orvare@ approach

to data integration. In an eager approach:

¢ Information from each source that may be of interest is etedhin advance,
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translated and filtered as appropriate, merged with reteséormation from

other sources, and stored in a (logically) centralized sipxy.

e When a query is posed, the query is evaluated directly atepesitory,

without accessing the original information sources.

This approach is commonly referred to as data warehousincg the reposi-
tory serves as a warehouse storing the data of interest.

A lazy approach to integration is appropriate for inforroatithat changes
rapidly, for clients with unpredictable needs, and for igethat operate over vast
amounts of data from very large numbers of information sesircHowever, the
lazy approach may incur inefficiency and delay in query psecwy, especially
when queries are issued multiple times, when informatiamcas are slow, expen-
sive, or periodically unavailable, and when significantgessing is required for
the translation, filtering, and merging steps. In cases avtmgormation sources do
not permit ad-hoc queries, the lazy approach is simply ragtifde.

In the warehousing approach, the integrated informatiavadable for imme-
diate querying and analysis by clients. Thus, the warehguspproach is appro-

priate for [10]:

e clients requiring specific, predictable portions of theilame information.

e clients requiring high query performance (the data is atsd locally at the
warehouse), but not necessarily requiring the most redatd of the infor-

mation.

e environments in which native applications at the informatsources require

high performance (large multi-source queries are execitdte warehouse
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instead), and

e clients wanting access to private copies of the informasiorthat it can be
modified, annotated, summarized, and so on, or clients mgtdisave infor-

mation that is not maintained at the sources (such as hiatanformation).

The lazy and warehousing approaches are each viable sd@uiiothe data
integration problem, and each is appropriate for certaemaios. In this study
we address the existing data problems in power companiag aswarehousing

approach.

2.3.2 Data Warehousing

A data warehouse is a “subject-oriented, integrated, tiarging, non-volatile col-

lection of data that is used primarily in organizationaliden making” [9]. Itis a

database that contains consolidated data from many soaugsented with sum-
mary data and covering a long period of time. They usuallynaweh larger than
other databases. Data warehousing is a process that brawgdrdm heteroge-
neous sources into an organized format that facilitates aaalysis and decision
making. Such a database promises to provide uniform anefrisedly access to
all historical data, flexible enough to provide powerfulalatining capability and
powerful enough to handle the information pressure caugedéohuge amount of

inflow data from the power grid and energy market.

Difference between Data Warehouse and the Databases useNtS/SCADA
and Market Transaction
The databases used in EMS and power markets are operati@ais that

either reflect the change of the power grid in real-time otwapthe transaction of
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the trade business. The main priority of these systems epsing performance
and availability. Queries against these systems are ysuaitow, one-record-at-a-
time. The data warehouse does not directly record the daihgaction/operational
data. Instead, it is loaded for analytic usage. The reaswisaiing a different data

base are two-fold:

e Performance. Data warehouse has different characteribiat require quite
different implementation and tuning from the productig@mational data-

base. For example, special tuning for OLAP and data miniageis

e Data quality. Data inside the data warehouse is clean arfdronfor the
whole enterprise, instead of different forms and duplarafor different de-

partment and applications.

Data warehouse represents the merging of the traditiomalréstrative data
warehouse and the historical data from the online EMS. Tbeggthe entire com-
pany can access the same data warehouse, which greatleseithecdata duplica-

tion and maintenance cost.

2.3.3 Data Schema Used in Data Warehouse

Multi-Dimensional Database and Star Schema

The dominant conceptual data model for the data warehousenigtidimen-
sional model. In the multidimensional data model, the fasusn a collection of
numeric measures that are the objects of analysis, sucheagyeconsumption,
bills, revenue, cost, etc. Each measure depends on a sehehfsiions. Consider
as an example the monthly bill for a customer. The numericgdsures might be

the total consumption (kwH) the customer used and the toglgy charge. The
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Figure 2.1: Multi-Dimensional Model

dimensions associated with that price are customer nandegss] business type,
pricing plan, billing period, average temperature, andrsologether these dimen-
sions are assumed to uniquely determine the measure. Hleusuitidimensional
data views a measure as a value in multidimensional spaceh @mension is
described by a set of attributes. The attributes of a dinsansiay be related via
a hierarchy of relationships. In the above example, theestddress is related
to the city and county through such a hierarchical relahgmsThe business type
attribute has a similar hierarchical relationship.

The distinctive feature of the model is the stress on aggimyhy one or more
dimensions as one of the key operators, for example, célogl#éhe total con-
sumption of residential customers for a certain period. tAeocomparison could
be comparing the two different measures such as revenueoand c

For multi-dimensional data, other operators include p#ad drill-down, slice
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and dice, etc. Rollup corresponds to taking the current dafact and doing a

further grouping on one of the dimensions. Thus, it is pdegibroll-up the energy

consumption data, perhaps already aggregated on timejomddly by business

type. The drill-down operation is the converse of rollugc&hnd dice corresponds
to reducing the dimensionality of the data, i.e., taking @jgmtion of the data on

a subset of dimensions for selected values of the other diimen For example,

we can slice and dice sales data for a specific product toecegtatble that consists
of the dimensions plan and the period of bills. The other papaperators include

ranking (sorting), selections and defining computed aiteib [12].

Entity Relationship diagrams and normalization technigaie popularly used
for database design in OLTP environments. However, thebdatadesigns rec-
ommended by ER diagrams are inappropriate for decisionastippstems where
efficiency in querying and in loading data (including incesmtal loads) are impor-
tant. Most data warehouses useata schema to represent the multidimensional
data model. The database consists of a single fact table sindla table for each
dimension. Each tuple in the fact table consists of a poiffeeign key, often
uses a generated key for efficiency) to each of the dimengiatgrovide its mul-
tidimensional coordinates, and stores the numeric messoreéhose coordinates.
Each dimension table consists of columns that correspomdtributes of the di-

mension.

Design Examples
Here, we provide some design examples on multidimensiomalefing for
power companies. The following is a dimensional model foasueement data.

For measurement data, the fact table (numerical value efdst) is obviously the
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value of the meter reading. The dimensional data for thdud®s: device informa-
tion on which the meter is measured, the RTU informationnileasurement value
limits, and temporal information, such as, date and prauisasurement time. Fig-

ure 2.2 shows the associated star schema.

RTU

RTU_ID
RTU_NAME
SUBSTATION_NAME

T TIME

DEVICE Measurement
«— | TIME_ID
DEV_ID FK4 [RTU_ID p| | YEAR
PHY_DESC FK3 [LIMIT_ID MONTH
FK2 | TIME_ID DATE
FK1 | DEV_ID HOUR
MEAS_VALUE MINUTE
¢ SECOND
Limit
LIMIT_ID

SHORT_TERM_LIMIT_LOW
SHORT_TERM_LIMIT_HIGH
LONG_TERM_LIMIT_LOW
LONG_TERM_LIMIT_HIGH

Figure 2.2: Star Schema for Measurement Data

The marketer also needs a database that holds historieathdditcan help them

make proper decision during the bidding process. They caieatat predicate the
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trend by carefully examining the historical data. In the powarket, one can use
the bid price as the fact table. The related dimension coeldate and time, fuel
price at that time, weather info, and market type. The regulstar schema is

shown in Figure 2.3.

Generator

Bidder GEN_ID
TYPE Market

BIDDER_ID MARTKET TYPE_ID
NAME -
TYPE
DESC

FK1 [BIDDER_ID

T FK3 [GEN_ID
FK5 |WEATHER_ID —
FK6 |MARKET TYPE_ID
FK4 [FUEL_ID
TIME_ID FK2 [TIME_ID
YEAR PRICE
MONTH
i A 4
FUEL Weather
FUEL_ID WEATHER_ID
TYPE CONDITION
PRICE TEMPERATURE

Figure 2.3: Star Schema for Marketer

For the utility, a fact table could be the monthly usage of st@mer; the re-

24



lated dimension table could be the name and address of thanoels the account
number, the month and year, the average of the temperatuhatoperiod and so

on.

CIM and Multi-Dimensional Data Model

The CIM is a data model developed by the Control Center Appiia Pro-
gram Interface (CCAPI) task force of Electric Power Redeadnstitute (EPRI). It
provides a modern view of the power system of the entitiesgrichand provides a
vehicle for control centers to exchange data. However, BbES vendors still use
a proprietary database in most applications and only use &Mn information
exchange vehicle. The main reason for that is, of courseyghdor does not have
any financial motivation to replace their current databaske the CIM schema.

The CIM data model is more suitable for the operational degab For data
warehousing, users are more interested in aggregate \aide¢ke CIM data model
itself does not do a good job in recording temporal inforomati The CIM tends
to view the system at particular time instants and lackshcsl support. An-
other reason the CIM is not a good candidate for the data wasihg schema is
that it is too normalized and may have bad performance whalindewith large
amounts of historical data. Normalization functions tousslupdate and insertion

abnormality, which are not serious problems for the datehause.

2.3.4 Building Data Warehousing

Data conversion for large amounts of data usually involvesaet, transform and
load (ETL) phases. We discuss the data conversion accordithgpse phases fol-

lowed by some examples to explain the process in detail.
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Extract

The raw data coming from the source systems is read intostaisléoaded
into memory depending on the size. These tables or memaysare called the
staging area. It is the working space for ETL. There is mitiraatructuring with

no significant content transformation.

Cleaning

In some cases, the data quality and format in the data sondce éhe data tar-
get are different. For example, some data has incorrectdbomsome constraints
may need to be enforced in the data or the naming conventiocampatible and

SO on.

Transform

The transform work is carried out in the staging area. Tha tateorganized
and recalculated. For example, if the power system dataitesthe grid on a
bus-breaker level and the target is on node-branch modepadgy processor is

needed to construct the network and calculate certain pEesm

Loading

The data is loaded into target tables from staging area.

Performance Considerations

Data warehouses may contain extremely large volumes of detaanswer
queries efficiently, therefore, requires highly efficieot@ess methods and query
processing techniques. Several issues arise. First, daghouses use redundant

structures such as indices and materialized views. Chgagiich indices to build
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and which views to materialize is an important physical giegiroblem. The next
challenge is to effectively use the existing indices andemiaized views to answer
gueries. Optimization of complex queries is another chgileg problem. Also,
while for data-selective queries, efficient index scans tmayery effective, data-
intensive queries need the use of sequential scans. Thpsguing the efficiency
of scans is important. Finally, parallelism needs to be @igd to reduce query
response times.

Performance is a critical issue for realtime power systegratpns and con-
trols. Parallelism plays a significant role in processingssige data. All major
vendors of database management systems now offer datdopanty and parallel
guery processing technology. One technique relevant teetionly environment
of decision support systems is that of piggybacking scagaested by multiple
queries. Piggybacking scan is a technology that overlagrsssaf multiple concur-
rent requests. Therefore, it can reduce the total work alsasebsponse time.

The general way to speed up data conversion is to exploitlglise in the
conversion process. There are two common parallelismslipgd parallelism
and partitioned parallelism [13]. Pipelined parallelissnachieved by streaming
the output of one operator into the input of another operatderefore, the two
operators can work in series. Partitioned parallelism isea®d by partitioning the
incoming data among available operators so that each opexat work on a part

of the data.

2.3.5 Typical Data Conversion Scenario

Translate from CIM into target data warehousing may be vemrmaon. For
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example in [14], the authors emphasized on the level of nigl€bus-breaker

and node-branch), here we will address the process from Birit pf view.

From CIM Data to Data Warehouse

Translating CIM data efficiently into other data models i adrivial task.
Many of the existing data conversion programs require séveurs to load the
database from CIM format into its proprietary database.réhily, a typical data-
base may have a quarter of million measurement points, alelrandred gener-
ators, and close to ten thousand lines. The time constraitight for the data

conversion. We provide some suggestion on each stage offth@f6cess:

Extract and Clean

Extract and clean phase in ETL means successfully extrattimdata, clean-
ing the inconsistency and irregularities in the data andrging them properly in
staging area for future transformation. For a small amotidata, we recommend
reading data directly into memory and building a proper xadeor a large amount
of data, it would be best to first load data into a temporargistadatabase table.
The CIM data can exist in many formats, as a flat text file, aliegta image or
Extensible Markup Language (XML) format. With the widesgtefamiliarity of
XML, more and more data are encoded in this format. Theretbere are sev-
eral scenarios in extracting data from the CIM model, depgndn the format
of the data. The following sections, we discuss managing €48 data format

respectively.

e Text file

Plain text file is one of the most common ways to exchange datan be
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read directly into memory or load into database, since mbsbmmercial
databases have bulk loading utility. Another data cleapimoggram may be
needed to make sure the each data field is correct in both famdasemantic

meaning.

Database Table

The CIM data already exists in database tables. It shouldidenrelative
clean and we just need extract the table to the staging aréatioer process.
Typically, a ODBC/JDBC is needed in this case, or just pla@LSf the

transform database is the same as the source database.

XML

XML itself is little more than a tagged text file, but has adwayes of self-
descriptiveness and flexibility. Right now, it is gainingethiata exchanging
market by swiping speed. XML is good in several ways, butqrerfince
wise, it is not that awesome. Its native structure makedfitdit to exploit
parallelism. Usually, there are two existing ways to parb#iotata, Simple
API for XML (SAX) and Document Object Model (DOM). For the sinf
the CIM data for a typical power grid, it is not recommendedise DOM,
since it expands all the elements instantiated in the mentitowll be awk-
ward and inefficient for the system to handle that amount ¢&.ddf the
target data model is not at the same level as the CIM modelljimeker),
then a topology processor is needed. In this situation, vee m@ndom ac-
cess XML data. DOM is much better than SAX at random accesgiven
the size of the data itself, DOM is still not a good choice doéts large

memory footprint. We load XML data into database tables &rgt run the

29



topology processor on top of those tables. Even if the tatgiet model and
the CIM are at the same level, it is still better to utilize dadise since the
schema are very likely to be different and a database is fae superior in

the operations, such as, join and lookup.

Data warehouse and CIM data may have different naming cdiovenAnd
the limit constraint are different or model used (such assfi@mer, etc) can be
different. This needs to be addressed in the data clearéigg.st2.1 summarizes

the different ways to manage different CIM data formats.

Table 2.1: Different ways to deal with different CIM datarfat

Data Amount is Small| Data Amount is Large

Plain Text Build table (array) Load into database an
with index in memory build index
Relation Table] Read them into memory Use JDBS/ODBC
or plain SQL

XML

Build table with index

in memory, using eithef

DOM or SAX

Load into database

using bulk loader or

hand coded using SA

Data Transform

As mentioned before, CIM describes the power system at thidtraker level.
However, there is no consensus on the level the target datkelmdescribes.

EMS/SCADA usually models the power system at the same levbleaCIM, while
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analysis packages, such as PSS/E, view the power systemraadR-branch level.
In this situation, a topology program is needed to consthehnetwork topology.

There can be two scenarios in the translation,

e CIM data can be extracted, transformed and loaded into aiptap/ data-
base by using only relational calculations, if the targegadaodel and the
CIM are modeling the power system on the same level (buskbréavel). In
this case, one does not need to construct the network to tdhealata. Fur-
ther, we can leverage the existing database functionadity ot necessary
to develop new data extract and transform functions. Ctlyyesommercial
relational databases, such as, Oracle, DB2, and MicropiiS&rver have

very good performance in performing relational calculasio

e The conversion cannot be completed by ordinary relatiopatation. This
occurs because either the CIM or target data model are notlingdat the
same level. In this case, there is to choice but to write aesion program,

which is similar to a typical topology processor.

Specific Data Transform/Cleanse Applications

Beside business information such as those data from comsupport, energy
market, etc, the power system has a large amount of data fienuriderlying
physical system. However, if data warehousing is initiafigde for business data,
it needs to be adapted to work well for the power system.

Topology Processing A typical example is that the granularity of the data stored
in the warehouse is at bus-breaker level. This is the finestudarity of data, which
conform to the rule that a data warehouse should store thestguossible grain of

data [15]. System operators, of course, need the data inawat But not all
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the data warehouse users want data in that detailed lexainiAg engineer often
want the data in the node-branch level that can easily bealyzad by the load

flow, contingency analysis programs. Traders in the powaketanay want data
in even coarser granularity. They may only want the systelvetoepresented in
a simplified equivalent version, which has all the importaabsmission lines but
other things as few as possible. All though the data graitylisrbecoming more

and more coarse, the operation to get less fine grain datainspéesaggregation

operation mentioned above. In this case, a network topgboggessor is needed.
By using a topology processor, the user can actually rolang@ drill-down the

data.

Sate Estimation Another example of specific operation on the data warehous-
ing for power system is state estimation. Data in the buakanelevel may contain
errors such as measurement errors and communicationegittéhis common that
data should be cleaned before they are loaded into the tdadg#base. From the
data quality point of view, the state estimation acts as a daansing program in
the ETL process. On one hand, the state estimation clears#heg data by filter
out the measurement noise, on the other hand, state estmeatin also be used to
identify the topology error existed in the raw data. Itis omjant to have good data
since some department in the power utilities such as plgnmiéed sensible data to
carry out their calculation. Bad data will make their analyteols had to converge
or have wrong conclusion. Author presents a two stage DCQ:Hrabe used as part

of the hand-coded data cleansing program [16].

Data Loading

After data is transformed in the staging area, they can loebato target data
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warehousing tables by using either pure SQL or bulk loadirigyu After this, the

data is ready for user’s query.

2.3.6 Benefits of the Data Warehousing

Since data warehousing is one of the key technologies far id&tgration, it can
provide an accurate and uniformed view of the data througtih@uenterprise and
provide a feasible way to minimize the data duplication peobwithout overhaul-
ing the entire enterprise’s data system. Since the huge rinodualata stored in a
data warehouse and data inside are organized in a flexiblecaaguitable for a
kinds of analysis. Given the real-time nature of power systiata, this prevents
users from falling into the habit of viewing the power systahisolated time in-
stants while forgetting the historical data. Data wareimuenables one to explore
the history, find patterns and make projections into therbut@®ne of the greatest
benefits of the data warehousing is that it can easily achedsigtorical data in the
time dimension. Users can take advantage of this and antilgzgata over a long

time span. Following the earlier example, the benefits fercartlined below.

For generation company

A power generation company can store the actual generatedrpogether
with the contract price it was sold. By examining the earrtiagg over years, it
can re-evaluate its market strategies to see if it is realtgassful. Another usage
is, by integration the huge amount of power flow data over thesmission lines
at a series of very close time instants, one can precisetylea the energy flow

through for market clearing and settlement purpose.
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For planning engineer
Data warehousing makes it possible to store and analysigeadmount of his-

torical operational data without slowing real-time SCABMS operations down.
This makes it possible to evaluate, for example, the calediaansmission capac-
ities against the actual power transmitted through the orktws well as seasonal
load patterns. By studying the pattern and trend, planniggneer can decide the
long term plan of the network expansion, optimize the powangmission con-
tracts, and so on. Since the huge amount of data is alreadgdoato the data
warehouse and the planning engineers can easily retrievapsisot of the grid at
a particular instance. This gives planning engineers muatefteedom and more
accurate result can be expected. This is difficult to do withibe support of the
data warehouse, since the data may exist in heterogeneorgesa@nd extracting

data without slowing down the SCADA/EMS is difficult.

For maintenance engineer

Historical data provides significant information for ma&nance. For example,
they can identify the pending meter failures by examinirgttstory of that meter.
If they can find a frequent abnormal reading from the metergltould be a high

likelihood of failure.

For market participant
The data warehousing allows market participants to havalthity to forecast
future conditions by looking at the history. For exampletltan find patterns of

fuel prices along with the electricity price, providing angpetitive edge in bidding.

For customer service

34



Customer service is of growing importance with wholesale itail choices.
It is possible to investigate the common characteristichawm customers react to

different programs and preferences. This will help uéhtio design pricing.

2.4 Conclusion

Due to historical reasons, data in power utilities are tsalan different depart-
ments resulting in data duplication, numerous errors aadkadf uniform schema.
With deregulation and the rapid introduction of IEDs, tig must begin handling
an ever increasing amount of data effectively. In this waerk,propose data ware-
housing technology to solve the data integration problerataBRvarehousing can
provide a clean and uniform view of the data. More importémirovides a good
platform for possible data analysis and data mining. We ggemew system ap-
plications made possible by this structure. Power systegnadipns has a tendency
to focus only on instantaneous data. The data warehousim@agh provides en-
gineers the opportunity to explore the historical data aath better operational

decisions.
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Chapter 3

Topology Error Identification
using a Two-Stage DC State

Estimator

One of the fundamental tenets in deregulation of the powatesyis to provide fair
and open access to transmission facilities. This requirasrharket participants,
both power brokers and generation companies, have congridtémely informa-
tion as to the transmission availability. The present systé posting available
transmission capacities (ATC) is useful but limited beesilngre is no information
to predict how these ATCs will change with changing powengfars. It has been
proposed that all traders have access to the real-time d#ta €ull transmission
model, i.e. state estimator results from the control centart this may be too com-
plex and voluminous to be useful to the traders. Instead,ngdRC power flow

data for real-time conditions may provide enough transiorisdata for traders to
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make knowledgeable decisions. In this chapter, we show hewesults of a DC

state estimator can be accurately made available to alkecoad.

3.1 Introduction

The Constraint that the transmission grid poses on the feskng of electrical
energy is a constant source of frustration to both powerdyoland generation
companies. The present system of posting available tnanafecities (ATC) on
the OASIS system does not provide enough information foitrdwgers to predict
under what levels of transaction the system will face comges For such full
transparency, each participant should be able to determine this aviithalmde-
pendently. One way to achieve this is to make available tgatfticipants the
state estimator results that are available to the ISO/RTI®0Agh this will cer-
tainly allow the traders to participate or verify all ISO @@ans on transmission
constraints, it will also require the traders to have theeséawel of sophisticated
software tools as the ISOs to do so. The investment needegértese and soft-
ware for this level of information exchange may be unfairie smaller brokers or
generation owners.

An alternative suggestion is to provide all participantshwdC power flow
data for real-time conditions. Given that many ISOs are tdgpnethods based
on distribution factors to make transmission decisions, {C power flow may
be accurate enough for the traders to anticipate trangmissinstraints and make
informed decisions. On the other hand, DC power flow data eahamdled with
readily available off-the shelf software or easily intdgrhinto existing trading

software. This paper addresses how accurate DC power flakigesd real-time
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conditions can be made available. A DC state estimator igga®d and a method
is developed to correct for topology errors. In all stateénestion, a topology

error, unlike an analog measurement error, can make the etimator results
useless and much research is available for topology ertectign and correction
for the AC state estimator. We present a novel two-stage @te sistimator that
can correct for topology errors.

The traditional full AC state estimator has many technichlaatages in the
detection and identification of errors. Unfortunately,uffers from several disad-
vantages from a trader’s viewpoint. First, it requires gdammount of data, all of
which may introduce new errors or observability problemd mrost of which will
not be directly relevant to a given trade. Second, conves@noblems that often
arise in practice are an unnecessary complication for tiheoses of conducting
transactions. Third, many of the market rules that are oteonto a trader are
based on a simplified DC power flow, such as in the flowgate mtié), so that
the resulting state estimate must be modified to be meanifagfthe market.

This chapter addresses these problems by beginning with st&€ estimator
and adjusting the topology error processing for such a sysiew. The author
suggests that traders given access to real-time data cpetdte such an estimator
independently. The primary difficulty is in the inherentags in the DC model
that limit topology error processing. In the proposed apphy state estimation is
performed at the bus/branch level. If any errors are dedet¢k® suspect area is
expanded into a bus-section/switching-device model. Thestate estimate is re-
peated over this expanded model. A new method is proposedtive effectively
distinguishes between modeling approximation errors ata errors.

There exists extensive literature that addresses thedgpelror identification
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problem. Monticelli [18-20] used a physical level model anddeled the zero-
impedance branch by its power flow. By assessing this flowcaneell the status
of the zero-impedance branch. However, pinpointing thpisimis area is crucial,
otherwise the method suffers computationally. Liu and W, 2] and Clements
[23] both modeled the topology error as a change in the measnt matrix, and
subsequently identify the error analytically. Lugtu [24ed residual analysis
and empirical judgment to determine the topology error. rAf25] has proposed a
two-stage method similar to our approach. All of the aboy@ragaches use full AC
state estimation. In the proposed method, the modeling erestimated in order
to compensate for the inherent inaccuracy of the DC methdilewnaintaining

the advantages of robustness and efficiency. Further, linese computations are

more appropriate from a market viewpoint.

3.2 Background

3.2.1 DC State Estimation

In this section, we first review the classical formulatiortleé state estimation and
a liberalized version of it. A model is introduced that iraés the topology errors
and model (DC) error. The nonlinear equations relating tleasarements z and

the state vector x are:

z = h(xtrue) + € (31)

wheree is measurement error vector with zero mean and covariantiéxniia With
a linear model of the power system bus angjleas X;,..., real power injection?;

and line flowP;; as measurement 3.1 simplifies to:
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2= Hxpye + € (3.2)

whereH is the Jacobian matrix.
The state estimation problem usually is formulated as d Epgre problem

(WLS) to minimize:

J(z) = (2 — Hx)"W (2 — Hz) (3.3)

whereW is a weighting matrix (inverse of the covariance matrix) and the state

vector.

3.2.2 Error Modeling

There are three different types of errors in the DC model:

e Measurement error Measurement error can be modeled as a zero mean with

non-zero covariance, assuming no gross error exists.

e Model error Since the linear model is only an approximation to the real

system model, another error is added to the linear model:

z2=HXyye +v7+¢€ (3.4)

where~ is the model error vector, i.e., the difference between tueii@ate
model and DC model. It is not a random but a deterministic evéhat de-

pends on the current state of the system.

e Topology error If topology errors exist, the model becomes:
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z = (H + dH)xtrue +v+e (3-5)

where,dH is introduced by the incorrect topology. There are sevaralk

of topology errors of interest here.

Branch Outage and Addition - Incorrect information on the breaker of the line/branch
will cause false line outage condition. For example, thegfdihe: — j outage will

result in errors on:
e Branch flow measurement error on the row regarding the linesorement.
¢ Injection measurement error on the row;@nd;.

These can be modeled as additional or reduced line flow frencdirespond-
ing line or node [22,23]. Assume there is an error in the caiagine: — j as

illustrated in Figure 3.1.

® 0

Figure 3.1: Linei — j with impedancer

For a line flow measurement, the corresponding ro ohatrix related to the

flow measurement on line— j has the following change:

[ —1/2 - 1)z - ]
i J
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For an injection measurement, the corresponding row offhmatrix related

to the injection measurement on nadehanges by
[ =1z - 1z - ]
i J
and similarly for the row of thed matrix related to the injection measurement on

nodej.

Bus Split - False breaker status can result in a different configuraifahe sub-

station. The bus split can also be modeled as multiple linageu [21, 22].

@ o

e
® ®

close

i
open O\ | @

Figure 3.2: Modeling bus split as line outage and addition

3.3 Proposed Approach

The approach to topology error identification is using tiege state estimation.

The first stage is using state estimation on bus/branch mideispect area de-
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tected, this area is converted to detailed bus sectiorling device model, then a
second stage generalized state estimation is used on tieel miadel to to identify
the topology error. DC state estimation has an advantageAWwéere since the
DC estimator can greatly reduce the calculation burden emtixed model and
only moderate accuracy is needed at this stage. The printangeens are: one,
the relative accuracy of the DC state estimation, and twaic@s that can pinpoint
the error location. In the following section, various methdo improve DC state
estimation are presented. Two indices on topology ideatifia are introduced in

section V. Calculations on test cases reveal that this appris feasible.

3.4 DC State Estimation Solution Methods

3.4.1 Conventional WLS Method

The well-known solution to 3.3 is

G'HTW (3.6)

=
Il

whered is gain matrix, and

G=H'WH (3.7)

The residual value for an estimation is defined as:

r=z—Hz (3.8)

Assuming only measurement errors e are present, simplbralgaows:
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r = Se (3.9)

where

S=1-HHWHH'W (3.10)

The expected values farandr are then unbiased with covariance:

cov(z) =G (3.11)

cov(r) = SW! (3.12)

If model errors are present, 3.9 becomes:

r=S(e+7) (3.13)

expected values fak andr are no longer unbiased and become:

BE(&) = Tipue + G HT W (3.14)

E(r)= Sy (3.15)

3.4.2 WLS with Linear Equality Constraints

One way to improve the accuracy of conventional WLS DC statienation is to
treat virtual measurements (zero injections) as lineaalguconstraints. There

are several methods to deal with these constraints. A siaygdeoach used here
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is to simply weight heavily (i.e., assume some small coveed any virtual mea-

surement.

3.4.3 Singular Value Decomposition and Rank-Deficient LeaSquare

Problems

Singular Value Decomposition(SVD) [26—28]. Any m-by-n matrix A with can

be written as

A=UxvT (3.16)

whereU is m-by-n and satisfies/’U = I, and% = diag(oy, ...0,) With
o1 > ... > o, > 0. The columnsyy,...,u,, of U are called left singular vectors.
The columnsvy,..., v, of V are called right singular vectors. The, ... ,0,, are

called singular values.

Rank-Deficient Least Square Problems (RDLSP) [26—28When matrix A is

rank deficient or “close” to rank deficient, the least squambigms to minimize
||Az — b||]2 become the so called RDLSP SVD is one of the most commonly used
methods to solve this kind of problem. For the rank deficideegt square prob-
lem, let A be anm-by-n with m > n andrank(A) = r < n. There isam —r
dimensional set of vectors that minimize||Az — b||2. When A is singular, the

SVD of A is:

1 0 T T
S = [Uy,Us] Vi, W' =151 V; (3.17)
0 O

whereX; is » x r and nonsingular, an@; andV; haver columns. Letoc =
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omin(21), the smallest nonzero singular value 4f Then the solution: that

minimizes||Az — b|| can be characterized by:

1. All solutionsz can be written as

x=WVX U b+ Vaz (3.18)
wherez is an arbitrary vector.

2. the solutionz has a unique minimum noriz||2 precisely where = 0, in

which case

x =WV 'UD (3.19)

and

lzll2 < [lbll2/0 (3.20)

Thus, among the — r dimensional set of solutions, the minimal norm solu-

tion (42) for RDSLP exists and is unique.

3.4.4 Total Least Squares Method

Since the DC model is not an accurate due to model error, anpitssible im-
provement is to correct the matriX instead of estimating model error. This leads
to a class of problems called tAetal Least Squares Problems [10-12]. This is

described in the following. The objective is to x to minimize
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|IDIE, €lT||F (3.21)

subject to

(H+E)z=z+e¢ (3.22)

whereH, E € R™*" z € R"*! 2. e € R™*! andD € R™*™, T ¢ Rnt1x(n+1)
E ande are unknown;D, T' are weighting matrices.

Thus, the model error can be partially eliminated when eatiing x. The liter-
ature [29] and our calculations reveals that in typical gagibns, gains of 10-15%
in accuracy can be obtained by using TLS instead of stanéast squares meth-
ods.

The condition for the TLS problem to have a unique solutiothét the least
singular value ofH is larger than the least singular value[éf, z]. For typical
state estimations, these conditions are satisfied. The conmmethod to solve TLS

problem is using SVD. ID[H, 2]T = ULVT andU, %, V are partitioned as:

Y11 X2 n Vit Vio n
[ U1 Uz ]
U= DIE o1 Yoo 1 ,V= Vo1 Voo 1
n 1
n 1 n 1
then
D[H, 2T = —Us Y Vi, Vi) (3.23)

2
and lettingT} = diag(t1, ...t,) andTy = diag(t,+1)

x =T\ VigVay Ty (3.24)
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3.4.5 Multiple Scan Methods

The above derivation is based on a single measurement sdare are several
recursive estimation methods based on a dynamic stateagistinmodel that uses

a sequence of scans.

Averaging - A natural and simple extension to the common DC state eStima
is to average several consecutive results from the stdtesgst. Supposa scans

is used, in recursive form:

Tavgi = Ti/1+ (1 — 1)Zavgi-1/1 (3.25)

wherez; is the estimation from th&" measurement;. i = 1, ..., n, andz g,y =

Zavg,m - ASSuming measurement errors are independent betwees, scaan be

shown that
E(Zavg) = E(25) (3.26)
and
. 1 .
cov(Tavg) = Ecov(aci) (3.27)

Thus, the averaging method generally provides a more densisesult, but it

does not remove any bias that may arise, as would occur witbcelimg error.

Kalman Filter [30] - Assuming that the states of the power grid do not change
quickly in a short period, the following equations for thewmw system can be

established at snapshiot
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Tit1l = Ti + G (3.28)

whereg;, v; are Gaussian error vectors, with covariarigeand R, respectively,
assuming the covariances are constant in time. The cocar@iis assumed to be
small but could be approximated by any number of statistesainiques, including
Monte Carlo simulation. Each step of the Kalman filter for #ft®ve systems is as

follows.
o Start from the prior estimatiof;,” and its error covariance matr~. Com-
pute the Kalman gain matrik;:
K;=P H'(R+HP H")™! (3.30)

e Update the estimate; with thei'* scan measurement:

T, = & + Ki(zi — Hi'z_) (3.31)

e Compute the error covariance mat#xfor the updated estimate:

P =(1- KH)F (3.32)

e Project ahead to predict the new error covariance matx and new esti-

mationt;
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P =P+Q (3.33)

2

B, = & (3.34)

3.4.6 Generalized State Estimation

Monticelli [18-20] introduced the concept of generalizeéate estimation. Gen-
eralized state estimation is performed on a model in whiatspa the network

can be represented at the physical level, i.e. bus-sestiitoh-device level. This
allows modeling zero-impedance devices and switchingcgevi It expands the
state variables in the conventional state estimation biydlireg load flow through

those zero-impedance branches and switch devices. Fanda DC model, the
expanded state variable includes real power flows in thaseiggpedance devices.

Thus, one can judge the status of, say a breaker, by obseahganmpwer flow.

3.5 Toplogy Error Detection and Identification

Correct detection and identification of the suspect topplagor is critical for re-

ducing the calculation of the 2-stage estimation. The agpgraised in this work
is usingx2-test on.J(x) and if it fails (i.e., indicates likely errors), to use theopr
posed indices to identify the suspect nodes/area. Sinde@hmodel is used here,
coexisting modeling errors (4) corrupt the result, in bdta ¢2-test and residual
test. This makes correct error detection and identificatione difficult. The pro-

posed method tries to estimate and hence eliminate patte ofibdeling error for

a more accurate result.
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3.5.1 Error Detection

Hypothesis Testing and Residual Test - Hypothesis testanfppns ay?-test on

J(x). Since the state estimation is based on the hypothesishiba is no gross

error in the measurement, gross errors should result:ir) and some normalized

residualsr, to be above some threshold. When using the linearized D€ st

mation, the inaccuracies in the model itself may cause stest o fail. Typically,

for a large high voltage network, there may be as much as 5%ehsocbr. This

error corrupts the residual test in several ways:

e One cannot detect topology errors in lightly loaded aremsesthe errors

may be less than the model error.

e Numerous “false alarms” may occur because the model erlarger than

the residual threshold.

When model error is present(z) is

Jwithm odelerror (m) -

(21 — £)?/cov(z:) (3.35)

-

@
Il
—

wii((Si€)? +2(S;¢) (Siy) + (Si7)?)

IoE

@
Il
A

Jnomodelerv"m"(x) + Z wii((Si’Y)z + 2(S25)(S2’Y))
i+1

wherem is the number of measuremeng;is thei” row of the projection matrix

S; wy; is theit” diagonal element of matri¥’; 2 = Hi; v;, z; and 2 are theit”

component of the, z, andZ vector respectively.

From 3.36, one finds thak(x) changes with1, e, andy. With the existence

of the model errory, the variance of/ (x) will increase. Still for a particular case,
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the model errory and measurement errermay cancel each other leaving less
residue. From another point of view, the introduction of lagtrory changes the
distribution of theJ(z). So the threshold of thg?-test must increase significantly,
especially when the covariance of the measurements is émais large ande| <

|7]). This increases the difficulty of detecting topology esraith a DC model.

3.5.2 Estimation of the Model Error

In 3.13,¢ is a Gaussian random vector whileand~ are deterministic. One can
conceivably estimate throughr. Unfortunately,S is not of full rank but of rank
m — n (wherem is the number of measurements ands the number of states).
Thus,y cannot be estimated completely. This problem belongs ttegoey called

Rank-Deficient Least Square Problems.

e Method Using Singular Value Decomposition (SVD)

One common approach to solving a rank deficiency problemimgusVvD.

For the model error estimation, rewrite 3.13 as

r=Sv+ Se (3.36)

the minimal norm solution is

-1
y=ny Ul (3.37)

where
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1 0 T T
S = [Uh, U] Vi, Vo] = UhEaVy (3.38)

0 O
with Uy, Us, V1, Va2, and}_; as given in section 3.4.3.

Though SVD gives an analytically sound result, it requiresrencomputa-
tion than the normal equation. Typically, whem >> n, SVD is about
twice the cost of the normal equations and wheis small, SVD is about
four times of the cost of the normal equations. Since our gotd build a
simple sound method suitable for traders, by introducingesoeasonable

simplifications, a faster method is proposed.

e A Simplified Method

Based on some assumptions, portions of the erfet—n out ofn elements)
can be estimated. There are multiple ways to choosenthen dimension
subvector ofy. As [24] illustrates, if sufficient redundancy exists, tbpo
ogy errors tend to affect injection measurements much ninane line flow
measurements. Selecting those elements obrresponding to injections
should lead to a better overall result. Assuming, for sioigli injection
measurements are available at every node as well as line feagumements
on every line, the elements incorresponding to the injection at each node

can be selected as the modeling errors to be estimated.

Doing so is equivalent to assuming that model errors onlgteom the node
injection measurements with all the modeling errors setetm.z Based on this

assumption, 3.13 becomes:
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r= Snode/ynode + Se (339)

where, S,,.4. IS anm by n submatrix ofS obtained by deleting all columns that
correspond to flow measurements, and;. is the model error that arises on the

node injection measurements. Using similar WLS methods,afrtains

Ynode = (SgodeSHOde)_ISgodeT (340)

Thus, the modeling erroy is

Ynode

y = Ynode _ ' (341)

Yoranch

3.5.3 Error Identification

If errors are detected, the next step is identification ofttexific errors. Correctly
locating the suspicious area is the key to reducing the ctatipnal effort in the
generalized state estimation. If the model error does nangh greatly between
measurements, one can use the estimated model error fos@asbquent scan. In
this way,J (x) andr,, indices are representative of measurement errors. Tdfigent

topology errors, two indices are proposed in the following.

1. Node Index
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Usually, topology error causes larger errors in the vigiit those related
buses. Thus, simply grouping and averaging the normaligsidiwalr,, by

nodes will lead to a better index. The proposed index is bsilfollows:
Step 1: Initialize arraysodel ndex andnodeCount to 0.

Step 2: For all,,

e Case 1:r,(7) is flow measurement on line— j, then addr,(:)| to
nodelndex (i) andnodelndez(j), increase botmodeCount(i) and

nodeCount(j) by 1.

e Case 2:r,(7) is an injection measurement nodlehen addr,,(i)| to

nodelndex (i), increaserodeCount(i) by 1.

Step 3: For all nodes,

nodelndex (i) = nodeIndex(i)/nodeCount(i)

. Topology Index

When topology errors are present, the system is represegte?i4. Using
a similar method in estimating modeling error, the residwedtor can be

written as:

r= S(detrue +y+ 6) (3.42)

This formulates another estimation problem;yihas been approximated.
Lugtu [25] pointed out that if sufficient redundancy exist& topology er-

ror would cause the largest residual on the node injectioasomement. By
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using similar method to estimating model error, we can edtnthe mis-

matchy,oqe.rror ON €ach node injection.

r= Snodelynodeerror + Se (343)

The estimated;,, 4., -or IS Used as a topology error index. One expects that

large values will appear on the nodes that have topologysnearby.

3.6 Test Results

The proposed method is evaluated here on the IEEE 30, 3918 huk test systems
[15].

3.6.1 Case 1 - Comparison of DC and AC state estimation

First, a comparison of DC and AC state estimation is preseniables 3.1, 3.2,
3.3 show the estimation errors ad¢r) for each of the systems. Table 3.1 shows
the result of the WLS method with and without using linearaiy constraints.
One finds that using linear equality constraints, improigration accuracy. Ta-
ble 3.2 shows the estimation results using TLS. As expethedresults improve
slightly. Next, Table 3.3 shows the estimation result otgdiby using AC state
estimation. Itis listed here for comparison only. Obviguilis more accurate than
the DC methods. Still, the improvement is not tremendoustla@dC method ap-
pears sufficiently accurate. The results show that modeéction reduced when

no error is present, thus decreasing the chance of a “fasmal

Note Tables 3.1, 3.2, 3.3, 3.4, 3.5;
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Table 3.1: WLS Method with/without linear equality congtita

System with without Degree of freedoni
State error| J(x) | State error| J(x)
30 0.0801 | 38.64| 0.1467 | 33.30 41
39 0.1312 | 50.46| 0.1206 | 45.57 46
57 0.0988 | 270.0| 0.1278 | 78.81 80
118 0.1238 | 284.5| 0.1346 | 200.0 186

Table 3.2: DC State Estimation Using TLS

System DC(TLS)
State error| J(z) | Degree of freedon]
30 0.0938 | 34.41 41
39 0.1103 | 46.28 46
57 0.1349 | 98.17 80
118 0.1183 | 346.9 186
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Table 3.3: AC State Estimation

System AC
State error| J(z) | Degree of freedonj
30 0.0113 | 8.538 164
39 0.0217 | 1181 184
57 0.0236 | 23.46 320
118 0.0312 | 1135 744

e All measurements have 5% Gaussian noise

o StateError = /Y., (x; — ;)?

Table 3.4: Estimation with no model error correction

System IEEE 30 BUS
State error| J(z) | Degree of freedonm 2 > 0.99
Kalman| 0.021 |56.82 41 64.95
Average 0.021 80.12 41 64.95
DC 0.0238 | 47.12 41 64.95
AC 3.62e-0.5| 10.75 164 209.0

3.6.2 Case 2 - Benefit of model error correction

The result of three different estimation methods, conesati WLS method, av-

eraging, and Kalman filter are presented on the system withemsurement and

58



Table 3.5: Estimation with model error correction

System IEEE 30 BUS

State error| J(z) | Degree of freedonm ~2 > 0.99

Kalman| 0.0169 | 37.08 41 64.95
Average| 0.0238 | 55.09 41 64.95
DC 0.0167 | 33.95 41 64.95

topology errors. Tables 3.4 and 3.5 show the estimatiorrewith and without

model error correction, respectively, under typical logdtonditions.

3.6.3 Case 3 - Error detection and identification

1. Single topology error

A test is carried out on the IEEE 30 bus system [31]. In thiecage
simulate a false breaker status on line 15-14 (i.e., fals@adir outage on

branch 15-14).

e NoO gross measurement error
Here, there are 5% Gaussian errors on each measurement Quos®
measurement error. With the degrees of freedom- n) = 41, a con-
fidence level of 0.95, the threshold for the residual tes6i9 5We find
J(xz) = 172.18, which clearly indicates that errors exist. For identifi-
cation, the node and topology indices are used. The errthg &rgest
eight nodes, ranked in ascending order, are shown in Tale Fr

comparison, the,, index is also listed. From these three indices, one
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can immediately find that all indices are able to identify theology
error. Among them, the topology index most clearly pinppinbdes
15 and 14 as the largest. A second step using generalizex esttit
mation shows that the line flow on line 15-14 is 0.65, largeugihoto
indicate that the breaker is closed. The true value of ling fl6-14 is

0.70.

e With gross measurement error
Besides the 5% Gaussian error, a 70% gross error is incluatetthd
measurement on line 15-18.(x) is 4084, which clearly indicates er-
ror. Table 3.7 shows the three indices in this case. One fimals t
topology error has more impact on the indices than grossune@ent
error. And once again, these indices can identify the tapokerror.
Applying generalized state estimation, the estimatedevaluline 15-

14 is 0.65, indicating the incorrect breaker status.

2. Multiple topology errors

This test is using the IEEE 30 system [31]. Topology erroesiairoduced
for the breaker status on lines 27-30 and 10-20 i.e., falaadhr outages
on branch 27-30 and 10-20. The three indices are shown ire T&bh8.
In this case, the proposed indices especially, the topologdgx, are better
thanr,, index, since they provide a clearer view of the errors in trstesn.
This shows that the proposed methods are also valid forifgient multiple

topology errors.

Note in tables 3.6, 3.7, 3.8, the prefixes Inj, Ln in the Meadurmn represent

power injection and line flow measurement respectively. &owalues are in p.u.
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Table 3.6: Three indices (I)

Meas. | Abs(r,) | Node | Node Index| Node | Topology Index
Ln.12-14| 4.031 14 42.15 15 0.718
Lnj.14 4.010 46 23.89 14 0.624
Ln.22-24| 3.501 13 13.31 1 0.271
Inj.24 3.434 47 11.22 8 0.258
Inj.23 3.058 49 7.948 13 0.153
Ln.28-27| 3.052 15 7.363 9 0.127
Inj.2 2.661 51 6.073 3 0.0542
Inj.4 2.601 50 6.030 12 0.0518

Table 3.7: Three indices (II)

Meas. | Abs(r,) | Node | Node Index| Node | Topology Index
Inj.14 59.05 14 42.35 15 0.641
Ln.14-13 | 54.74 46 24.86 14 0.604
Inj. 46 49.68 13 13.31 7 0.359
Inj. 47 23.18 47 12.72 1 0.226
Inj. 15 16.71 15 7.637 13 0.185
Inj. 48 13.51 49 7.092 26 0.163
Inj. 14-46 | 13.25 48 7.043 23 0.154
Inj.13 12.69 51 5.720 8 0.147
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Table 3.8: Three indices (Il1)

Meas. | Abs(r,) | Node | Node Index| Node | Topology Index
Inj. 20 16.00 20 12.84 10 0.0983
Ln. 19-20| 9.687 30 9.026 20 0.0917
Inj. 30 9.275 19 7.456 27 0.0802
Ln. 29-30| 8.776 27 4.927 30 0.0683
Inj. 10 8.390 29 4.850 4 0.0560
Inj. 19 7.258 10 3.979 1 0.0480
Inj. 12 6.861 16 3.455 2 0.0472
Comparison Between SVD (Minimum Norm Solution) and Simplified method
(\\g‘ 04r- //Q\ C\\g ?\*
0351 \\® o &
0.3 \‘5/
0'20 2 4 6 8 10 1‘2 1‘4 1‘6 1‘8 20

scan times

Figure 3.3: Performance comparison between SVD and prdpos¢hod
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3.6.4 Case 4 - Comparison of SVD and the proposed method

A comparison is made based on the difference between thmeagst erro and
the actual model errar, i.e. />, (e; — é;)2, over successive scans. As one might
expect the SVD achieves more consistence results, but tfi@rpence is quite
similar. Since the proposed method requires far less catipuat it is suggested

here as the preferred method.

3.7 Discussion and Conclusions

A two-stage DC estimation is proposed to detect and idetifplogy errors. In
the first stage, state estimation is performed on the bustbréevel. When er-
rors are detected, the suspicious area is converted todotisfg'switching-device
level and the second stage state estimation is performedtipuscan DC state
estimation methods are introduced. The DC model modeliny & also partly
estimated. Results on several IEEE test systems show tiaitywalf the method.
The DC estimator is not proposed here to be a replacementffdr AC es-
timator, which might be needed by the system operator, boéras a simplified
view of the power system appropriate for certain marketigpents. An open
electricity market has many players with different viewpsiof the system and
needs for accuracy. DC state estimation has many advaraagesould easily be
implemented outside the control center given availabtlityelect measured data
and system parameters. Further, the results can be mote rdaied to typical
market rules. The author suggests that where the proposedats begins to
break down under the burden of modeling errors, it is alsal\ikhat the limits of

the trading rules will begin to be reached.
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Chapter 4

Power System Communication
System Based on Distributed

Event Service

4.1 Introduction

With the on-going deregulation, power system is facing shmdamental changes.
At the same time, the network and information technology ase undergoing
tremendous changes. The deregulation introduces morieipants beyond con-
trol centers, such as individual power traders and smakigdion companies, and
requires fair and transparent sharing of information tatlal participants in the
power energy market. The existing power communicatioresyss less in flexible
and may not fit the needs of the new environment. A new way oflliveq data
and information exchange in power system based on thellistd event service

(Fig. 4.1[32]) is proposed. Different architectures amresginted. The performance
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under certain architectures is also studied.

4.2 Motivation

The existing power communication network is a centralizatitired structure.
All the data generated for the RTU is passed directly to th@robcenter. This
model has served power system for decades and almost akisieg EMS/SCADA
systems still uses this model. It is hard to understand tlidehwithout taking a
look at the power system at first. The traditional power itigus a monopoly
franchise and owns all the generation, transmission arndhdigon facilities. It is
safe to say the control center and the centralized power aornmation infrastruc-
ture is the byproduct of the monopoly structure. The weakpéthis model is lack
of flexibility. In the days of centralized power system coigr this is not a prob-
lem since all the supervisory and controls are done by thaarenter. However,
power industries are under restructuring since the govenhtimelieves that the ad-
vantages of competition among energy suppliers and wide&elor electricity
consumers, outweighs the benefits of the long-establishadgement. They be-
lieve deregulation can bring the consumer long term bertafitsgh there might be
some new or potential problems. One of the requirementseadéhegulated power
system and open power energy markets is to make sure evéigigEnt has a fare
share of the power grid information. At this moment, almdkttre information
is location inside the control center and all others havebtaia the data from the
control center. The structure works but it is awkward. A nésucture of power
communication system is needed to fit the restructured psystem.

The proposed power system communication infrastructubased on distrib-
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uted event service, where a group of objects on differeration coordinate and
pass data through asynchrony events.

The service is implemented as a group of servers that praddess points to
clients. Clients using access points to advertise and glulik information. They
can also use these access points to subscribe on eventresiraad event service
can also notify the clients of the event of interest. Thishis $o0 called publish-
subscribe paradigm. The clients that publish data areccplliblisher and clients
that subscribe to events are called subscribers.

As for the power system communication network, the typiedilisher could
be a substation, generation plant, or so on, and typicatsibles could be a control
center, ISO, or power energy market traders. In fine graityléne publisher could
be the IEDs in the substations, and the subscribers coultehy@iver applications,

such as, a state estimator or a topology processor.

Object of interest Interested party

access point

server

event service

Figure 4.1: Distributed Event Service
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4.3 Architectures

It is hard to obtain reasonable simulation result of the camication system with-
out addressing the internal architecture of the system.rderao cooperate with
each other and deliver events across a wide-area netwerketkiers must therefore
be arranged into an interconnection topology and make useroé server/server
communication protocol. We refer both topology and prota® the architec-
ture of the event service system. There are several exidiffeggent architectures,
server topologies and protocols, including hierarchidigint/server, acyclic peer-
to-peer, general peer-to-peer and some hybrid archies{3e].

The architecture is assumed to be implemented on top of alewel network
infrastructure. In particular, a topological connecti@iveen two servers does not
necessarily mean a permanent or direct physical conndotitmeen those servers.
Moreover, the server/server protocol might make use of areyal a number of

existing network protocols.

4.3.1 Hierarchical Client/Server Architecture

A natural way of connecting event servers is according toesahthical topol-
ogy [32], as illustrated in Figure 4.2 [32]. In this topologyairs of connected
servers interact in an asymmetric client/server relatigmsHence, we use a di-
rected graph to represent the topology of this architectanel we refer to this
architecture as hierarchical client/server architectérgerver can have any hum-
ber of incoming connections from other “client” serverst bualy one outgoing
connection to its own “master” server. A server that has nastar” server of its

own is referred to as a root. The protocol between the “cliseitver and “master”
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server is similar to the client/server protocol. The adagatof the architecture is
that it is easy to manage and apply policy. It is a straightfod extension of a
centralized architecture.

The main problem exhibited by the hierarchical architeztisrthe potential
overloading of servers high in the hierarchy. Moreover,revaerver acts as a

critical point of failure for the whole network.

servers clients

client/server
protocol

Figure 4.2: Hierarchical Client / Server Architecture

4.3.2 Acyclic Peer-to-Peer Architecture

Acyclic peer-to-peer architecture [32] (figure 4.3 [32]Xgy@s name because its
topology forms an acyclic undirected graph. Servers conicatgwith each other
symmetrically as peers, using a protocol that allows a tgetional flow of sub-
scriptions, advertisements, and notifications. It is inguatr that the connections
among servers has the property of acyclicity, since rougiiggrithms might rely

on the property to assume, for instance, that any two searersonnected with at

68



most one path. However, ensuring this can be difficult ancistly in a wide-area
service in which administration is decentralized and aoioous.

As in the hierarchical architecture, the lack of redundandiie topology make
it difficult to ensure connectivity, since a failure in onena® S isolates all the

subnets reachable from those servers directly connectgd to

client/server
protocol

Figure 4.3: Acyclic peer-to-peer architecture

4.3.3 General Peer-to-Peer Architecture

General peer-to-peer architecture [32] (figure 4.4 [32]peger-to-peer architec-
ture without the constraint of acyclicity. As in the acycheer-to-peer architec-
ture, this architecture allows bi-directional communimatbetween two servers,
but the topology can form a general undirected graph, plyskidving multiple

paths between servers. The advantage of the general ppeeit@rchitecture over
the previous two architectures is that it requires lessdination and offers more
flexibility in the configuration of connections among sesveMoreover, allow-

ing redundant connections makes it more robust with regpdetilures of single
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servers. The drawback of having redundant connectionsissgecial algorithms
must be implemented to avoid cycles and to choose the bds.pabnsequently,
the server/server protocol using in the general peer-to-@eehitecture may require

additional information.

Figure 4.4: General peer-to-peer architecture

4.3.4 Hybrid Architecture

A wide-area, large-scale, decentralized service suchwaepgystem communica-
tion system poses different requirements at differentle@Eadministration. We
can potentially take advantage of these intermediatedduedain some efficiency
by considering the use of different architectures at déffittevels of network gran-
ularity [32]. One possible architecture using hierarchaahitecture is to build a
event service between different power utilities. Withineatain utility intranet, a
high degree of control and coordination is required. It isdyeo apply hierarchical
architecture here. However, between utilities, there ikigh level central control,

so applying general peer-to-peer architecture is moreogpiate(figure 4.5 [32]).
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intranets

Lk

Figure 4.5: Hybrid architecture

4.3.5 Proposed Architecture

The proposed structure (figure 4.6) is similar to the gengealr-to-peer server
architecture. The simulations here are based on this aothie. The publisher is
push out the data to the servers using multicast. The sblescibscribes the event
of interest and uses receiver select protocol to selectaiives) that has/have the
minimal delay(s). The subscriber also uses a slide wind&es thechanism to
eliminate duplicates, which is usually introduced by théuredancy. The servers
maintain a table that includes the information of all thessuilption and periodi-
cally exchange data and information. For a certain subtsanipthe processing is

mainly localized in one or more particular server(s).

Design Considerations

The most important consideration is to meet real-time caitgs. Power system

operations require real-time decisions. Most of the apgibeis have very tight
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( subscribe

Figure 4.6: Proposed architecture

time constraints. Thus, the proposed event service is imgiéed using UDP pro-
tocol to minimize the transmission overhead to meet thetieed requirements.
For similar reasons, acknowledge (ACK) is minimal to thessuiption request.
Other reasons for minimizing the use of acknowledge packtt feduce retrans-
mission, since historical data is only of very limited uskislunwise to compro-
mise the delay of new data to retransmit old data. Thus, ACK applies to those
important control messages that require very high religbil
The second goal is to achieve a high level of reliability. slivery important

for certain of messages to arrive in time and intact to entheeafe operation of
the system. A good design should be flexible and meet thereegants of a wide
spectrum of applications. One should be able to specifewifft quality of service

(QoS) requirements.

The State Transition of a Receiver/Subscriber

The implementation here adopts a receiver-select mecahdniselect the best ser-

vice access point. Initially, subscriber send subscrilogiest to the servers and
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wait for reply. Then, the messages might come from diffesamters that have
different delay. After a certain amount of time, the sulsenrireceiver is able to
tell which one has the least average delay and advice othearsdo stop sending
message to it. The state diagram is show below in figure 4.7.

TIMEOUT,
SEND sub
AGAIN

PACKET
ARRIVED,
SEND unsub

O PACKET

ARRIVED

SEND sub

n PACKETS
SEND unsub ARRIVED
PACKET
ARRIVE

Figure 4.7: State diagram of a subscriber/receiver

Mechanism to Eliminate the Duplicates

When redundancy is present, we need a mechanism to elindoateate mes-
sages. The method used is a slide window method. Since wetd@awe ACK in
many cases here, the protocol is different from the tradfticlide window pro-
tocol on how to advance the window. The receiver maintain vamables, the
window size, denoted WS, given the upper bound of the mesdagethe client
agent can hold; NME denotes the next message expected, &nowa.

The receive window advances only in two cases, that is, amyways can

increase NME.
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Figure 4.8: Receiver window

e Case 1:

The message just arrived has tBNum equal toNME. The window ad-
vances until to the first message expected to colMBIE is equal to the

SegNum of that message.

e Case 2:

The SegNum of the last received message is larger than NIME + WS
Then, the window advances to at le&stjNum - WS- 1, so that the receive
window can hold the latest arrived message. Incréd& accordingly. All
the messages have not come between theNSME and the newNME are
marked as lost. All the messages that come \BatiNum already received

or with SegNum less tharNME are discarded silently.

The reason we try to give the newest message higher priarityai, in the

power system, users are more interested in the most recent da

The sequence numb&xgNum may be modified with a timestamp and the

mechanism is still effective.
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4.4 Test Cases and Assumptions

Simulation is carried out on four IEEE testing systems, IEBBES7, 118, 300 bus
systems, which have 30, 57, 118, 300 nodes respectivelce Sictually system
topology structure and parameters of the communicationor&tare not available.

I make the following assumptions:

e Each node (except nodes that are connected to transforingr® system

represents a substation that is a publisher in the system.

e Each substation publishes two types of data in differemiruat

— Regular data, published periodically, every 4 seconds.
— Contingency data, sent as a Poisson Process

— Contingency data sent with higher priority than the regdkta type.

e The size of the data published by each substation in each syefual to or

less than 10k bytes.

e The communication line follows the power transmission.lidad according
experience, the distance can be estimated and is proptotitwe resistance

of power transmission line. (approximately 0.15 Ohm pegeinil

e Each server node has a fixed its own processing delay (seftarad hard-
ware) that is related to the arriving packet size. The dedathe result of
message pack/unpack and marshalling/unmarshalling. drneufa used in

the simulation is

delay = (1e — 7) = total_packet_size_in_server + 0.01 (4.1)
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e The capacity of the communication channel varies from 50G0KtOMb.

e The client/server ratio is kept constant in all testing eyst The ratio is 10.

The packet queue in each node implemented as Random Easygtlde (RED).
The minimum threshold is 50, maximum threshold is 90 andrit® cdnechanism
is random drop, which means that when the number of arrivaadket exceeds 50,
it begins to drop packets at random and when the number ogpmekceeds 90, it
begins to drop packets by force. The simulation uses cergéthinulticast and the

simulation is implemented in ns-2.

4.5 Results and Analysis

4.5.1 Varying Bandwidth
Packet Delay

Figures 4.9, 4.10, 4.11 and 4.12 are the delays of regulasages that are
generated periodically and the delays of urgent messagéebkdkie Poisson arrival
rate. They are the simulated result by setting all the trasson channels to the
specified bandwidth. One can find that the delay decreasbesmiteasing band-
width. However after certain point, the decrease in delayob®s minimal since
server delay dominates. From figures 4.9, 4.10, 4.11 and, dn2can also find
that the delay grows when system size grows, particularifhénlow bandwidth

situation. Although the growth is linear, one can find thdGEE 300 Bus system,
the mean delay is close to 1 second. This means that theremee 3ottlenecks
in the network. This can be easily solved by assigning morellalth to those

channels.
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Closer study can reveal that the delay is a little bit less floa regular mes-
sage. Itis because that the urgent message has smallet pizekand RED queue
favors small size packet. Also, the smaller size packetédmssttansmission delay.
As above, we need give some “busy” channels more bandwidtieteease the

message delay.

Packet Arrival Percentage

Figures 4.13, 4.14, 4.15 and 4.16 are the arrival percerdhtie regular and
urgent messages giving packet error rate of 0.0001. As &ghepacket arrival
percentage rises with increasing bandwidth. IEEE 30, 58 lilik systems all have
satisfactory mean percentage when bandwidth is large. wwie IEEE 300 bus
system still suffers from packet loss. Increasing bandwidt certain bottlenecks
should solve the problem. Since the RED queue favors to gmaekets. It is not

surprising that urgent message has lower packet loss rate.

4.5.2 Varying Message Size
Packet Delay

Figures 4.17, 4.18, 4.19 and 4.20 are the packet delay ofaregnd urgent

message when varying the packet size. The bandwidth fohatrmels used here
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Figure 4.9: Packet delay varying bandwidth for regular ragega) IEEEE 30 bus
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Regular Packet Delay
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Figure 4.10: Packet delay varying bandwidth for regularsage (a) IEEEE 118
bus system (b) IEEEE 300 bus system
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Figure 4.11: Packet delay varying bandwidth for urgent mgs4a) IEEEE 30 bus
system (b) IEEEE 57 bus system
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is 5 Mb. One can find that the delay grows linearly with packe¢.s And the
delay grows with the system size for fixed bandwidth. Thissieduse in the larger

system, the channel is easily overloaded and becomes tiheneak.

Packet Arrival Percentage

Figures 4.21, 4.22, 4.23 and 4.24 are for packet arrivalgngagie of regular and
urgent message when varying the packet size. The bandvaidéil thannels used
here is 5 Mb. One finds that the percentage remains unchangethe/packet size
changes. The only exception is for the IEEE 300 Bus systera.r&ason for that
is since 5 Mb is enough for small or medium size system. Howdge a larger

system, one needs higher bandwidth and better topologyoid aettlenecks.

4.5.3 Varying Packet Error Rate and Redundancy
Packet Delay

Figures 4.25, 4.26, 4.27 and 4.28 are the packet delay ofaregnd urgent
message when varying the packet loss rate and redundandun&ncy equals

to 1 means that each subscriber has one service access painb aedundancy
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exists. Redundancy equals to 2 means that each subscreigvdndifferent service
access points and has redundancy. The bandwidth for alhelansed here is 10
Mb. One can find that the packet delay is decreasing whendsicrg the error rate.
When we have a higher loss rate, since we build our system dn&id only have
ACK in some cases, there are actually less packets flowinggtihehe channel.
The result is that we have less packet delay. Introducingn@ancy will increase

packet delay since it increases the number of packets flowitige channel.

Packet Arrival Percentage

Figures 4.29, 4.30, 4.31 and 4.32 are the packet arrivaéptage of the regular
and urgent messages when varying the packet loss rate anttleetty. The band-
width for all channels used here is 10 Mb. As expected, ondindithat the packet
arrival rate drops as the error rate increases. The paceblcomes significantly
when the error rate exceeds 1le-3. By introducing redundaheyarrival packet
percentage rises. With redundancy, we have higher padkedlgrercentage, less

packet lost. This is particularly true when the error rateigg.
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Figure 4.32: Packet arrival percentage varying packet eate and redundancy

for urgent message (a) IEEEE 118 bus system (b) IEEEE 300yistens

103



4.6 Conclusion

From the simulation, we find that the system performancetisfaeatory if given
adequate bandwidth. The delay ranges from 0.05 to 1.5 sec@ridch is suffi-
cient for monitoring and supervisory control. We also findttthe delay grows
when the system size becomes larger. This may be caused leytsaitteneck in
the system. Thus, carefully plan the network topology amiitédth is important,
especially for large system. In addition, the assumptien ai nodes subscribe to
all information is not realistic or necessary for very lagystems. Other technolo-
gies, such as data caching, merging or fusion, can redudeaffie on the network

thus improve the system performance.
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Chapter 5

Distributed State Estimation

5.1 Introduction

State estimation is a fundamental component in power sysemork security
analysis. In modern Energy Management Systems (EMS), #e sstimation is
executed as snapshots, typically once every several rsinukbe desire to im-
prove market efficiency and prevent cascading failuresivéngy two recent trends
in state estimation: first, increasing the frequency of eken in order to more
closely track system state; and second, covering a muclraréa network with
the estimates. Both these trends pose challenges on thm@xdtate estimation
calculation. At the same time, the growing availability of cost sensors with
communications and computational capability offers psmrior improved esti-
mates.

Higher frequency of execution requires fast state estonadigorithms while
large system calls for more numerically stable algorithpasticularly with regard

to erroneous data. Traditional centralized state estimasi quite mature and rel-
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atively stable at this moment and significant improvementthe algorithm are
unlikely. Still, with the increase of network size, numalistability poses a seri-
ous problem, since the system matrix can become more elgibnditioned and

both computational speed and convergence suffer.

A natural way to increase speed and avoid the “curse of dimeality” is par-
allelism and distributed processing. The natural geodcaghistribution of power
system measurements can benefit from a similarly decergdainformation ar-
chitecture, where remote processors perform local stéitmatton and the result
is sent back to control center to refine the calculation. TDallestimate can be
continuously updated and used for local control purposes.

With the recent quantum leap of information technologygeesgdly in the com-
munication area, the distributed processing is more feasibraditional power
systems use a centralized information model with all infation passed to the
control center. In the distributed power system infornrativodel, one uses a pub-
lish/subscribe paradigm. Each power device entity can babéigher of its own
data while users, such as a traditional control center ahstation can subscribe
to desired portions of the data. This makes it possible focallprocessor to carry
out the state estimation for a specific area, since the looakgsor can access the
data required to perform a localized state estimation &atioum.

In this dissertation, based on the newly proposed dis&tbpublish/subscribe
communication model, we present an asynchronous distdbstate estimation
that takes the advantage of the conventional state estimatid the flexibility of
the communication network. The entire network is covered bgt of overlapping
areas, in which conventional state estimation is perfororeéach area indepen-

dently. That s, instead of the passing the result of eacétita back to the central
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processor, the result is held locally until the convergeisaeached. The central
processor consolidates the results to ensure the consisterthe bus states in the
overlapping area. Numerical experiments show that thegseg method is suffi-
ciently accurate for typical applications, computatidnelfficient and more robust

with respect to data errors.

5.2 Related Work

5.2.1 Distributed State Estimation

There are many existing parallel and distributed statemesibn algorithms. In
most approaches, the problem is formulated by first dividihnegnetwork into sev-
eral small areas. For each of these areas, a local optionzatoblem is solved and
constraints are placed on the boundary buses to ensurenbistemcy of the bus
states. This approach can be termed a synchronous method,esdch iteration
of a local state estimation must be coordinated with theraiheas. Among these
methods are the earliest attempts using so-called hiecatehethods [33], which
depend on a star or master-slave functional style and corication network. Sep-
arated processors calculate local iterations and thetefsehch iteration is passed
up to a central computer for further processing. The symihed result is passed
back to each local processor for the next iteration. This@gogh suffers from an in-
herent reliability and performance problem. The centradtergorocessor becomes
a bottleneck and parallelism cannot be further exploitadeseach processor must
wait for all others to complete their computations. Rec@praaches are based on
parallel processing for the linear system equations aswativith nonlinear state

estimation algorithms or optimization decomposition t@ghes. Lin [34] intro-
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duced dual recursive quadratic programming but this methdtkrs from poor
computational performance. Falcao, et al [35] proposed thodebased on the
conventional state estimation algorithm using a coupliogstraints optimization
technique. Baldick, et al [36] proposed an approach usirapéimization technol-
ogy based on the “Auxiliary Problem Principle” [37]. Both thfese approaches
require data exchange between different local state emtimauring iterations.
The object in this work is to minimize such communicationuiegments. Huang,
et al [38] used a similar approach as developed here thasreh overlapping
areas. Still, their emphasis is on the measurement exchztgeen utilities and
lacks a detailed analysis of the communication network eeédd support their

approach.

5.2.2 Time Skew Problem

Time skew is potentially a problem in a distributed approsicite there are more
stages in the communication. Several papers address temeskblems in tradi-
tional state estimation, e.g., [39,40]. Su and Lu [40] usstbahastic Extended
Kalman Filter to reduce errors. Dabbaghchi [39] studiedithe skew problem on
practical state estimators. Based on several experimerttsecAmerican Electric
Power system, he shows that the delay within 15 minutesdsable and concludes
that the impact of time skew is minimal if the delay is withgveral minutes. Data
exchange between different utilities is feasible at this.r&uch analysis does not
preclude the difficulty in reconstructing events followiogtages where the timing
of certain events may be important. Still, based on thisystwed assume that given
the communication requirements in the proposed formulatione skew is not a

problem.
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5.3 Algorithms

5.3.1 Conventional State Estimation

The nonlinear equation relating the measuremeratsd the state vectaris:

z = h(xtrue) + € (51)

wherez is a (n x 1) measurement vectaty,,.. is a (v x 1) true state vector,
h(.) is a (m x 1) vector of nonlinear function¢ is (m x 1) measurement error
vector with zero mean and covariance matixConventional least square (WLS)

state estimation is to fingl that minimizes:

J(2) = ||z = h(2)]]2 (5.2)

If the system is observable, the Gauss-Newton iteratioaraelhtan be used to

solve the nonlinear optimization problem:

Az’ = [HTR'H|7'HTR (2 — h(a?)) (5.3)

with H is the Jacobian matrix df(z), H = 0h/0z, 1 = 2* + Az’ andz?
is the result ofit” iteration. More details on this formulation are widely dahble,

e.g., [41].

5.3.2 Asynchronous Distributed State Estimation

The object of the proposed asynchronous distributed dfgoris to combine the
advantage of the existing conventional state estimatiahainsame time intro-

duce distributed processing to take advantage of todayismaaication capac-
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ity. The approach assumes a distributed communicatiomseliased on the pub-
lisher/subscriber model described elsewhere in thisghesi

In this algorithm, the network is partitioned into severakdapping areas.
Each area has its own local processor and subscribes to theumenents pub-
lished in that area and possibly neighboring regions. Thasaoverlap not just at
the boundary buses as in most distributed state estimatibpdssibly over sig-
nificant areas. This means more than one local processoisuwikcribe to the
information published by some measurements. The overigppieas serve two
purposes. First, the results from two different local eations on the overlapping
area can be used in the final stage to reduce the discrepaisgesnd, bad data
detection and identification near or on the boundary busedveamployed as in
traditional distributed state estimations.

Each area performs state estimation individually untilaobhg convergence
within a specified tolerance. The result is passed to a dgmtyeessor, which con-
solidates the results from all areas into a complete netngsult. If an individual
estimator fails to converge, it can be ignored in the ovarativork estimate. It
is also feasible for the estimator to expand or shrink cayelia such a case by
changing its subscription data. This introduces new proble/ith adequate cov-
erage and is not addressed here.

The algorithm steps are:

1. Overlapping areas are partitioned from the full netwoflis can be per-

formed centrally or by the local estimators and can be dyoami

2. Multiple local estimators distributed in the differentas are executed si-

multaneously and asynchronously until they converge iddally to the
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desired tolerance. There is assumed to be sufficient cotigmab power

available at some substation within a region to perform traputation.
3. Each local estimator runs bad data analysis individually

4. Based on the results of local estimators, determine #te sf the full system
according to the different accuracy and reliability of theividual estima-

tors.

Partition the Network

The distributed state estimation divides the network iet@esal overlapping areas.

The partition must be:

e Complete. Each bus is included in at least one area. Thissrtbahevery

measurement in the network is included in the estimate.

e Connected. Each area has some overlap with neighborinsar&onsider
the Area Connectivity Graph (ACG). Each area is a node in thedi 5.1
and an edge between two nodes in the graph is present if thasareas
have overlap. This criterion states the partition should bennected ACG.
The primary need for this condition is to ensure a commonergference

between different areas.

An important consideration in the partition is bad data pssing. In tradi-
tional distributed state estimation, bad data near/on dbedary buses is difficulty
to detect and identify. By enlarging the overlapping arbg difficulty can be al-
leviated to the degree that redundancy exists within an &&t, bad data in the

overlapping areas will plague the estimation result of mdha that include that bad
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Figure 5.1: Partition the Whole Network and Area Connetsti@raph

measurement. Greater local measurement redundancy dilteethe impact of

bad data.

Asynchronous Local State Estimation and Bad Data Processin

Existing conventional centralized state estimation atbor can be used. The only
difference that arises is in needing a reference bus for esgdn There are nu-
merous mature and numerically stable algorithms availdtdge, a fast decoupled
Newton algorithm with orthogonal transformation to impedtie numerical stabil-

ity is employed.

Complete Network State

Since the state estimations performed in different areasdifferent reference

buses, there are discrepancies in the bus states on theppiad areas. The major
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task for the central processor is to determine the bus arifgeehce between dif-
ferent areas. There will, of course, be differences in gatmagnitudes but these
differences are related to a common reference and can begedustatistically.

The following describes the methodology to consolidatesttanates:

1. Since any two areas may use different reference buseantte difference
needs to be calculated between these arbitrary refererides.angle dif-
ference is found by using the two different state estimatesults on the
overlapping boundary buses. A simple statistical weighsoheme based
on the estimation accuracy of different local estimatons loa formulated

as.:

Abap =>_ (07 = 0P)(git +92)/ D (gii + 953) (5.4)
€O €O

where

e Af,p is the angle difference of reference buses between lodatast

tor A and B,
e O is the set of all the overlapping buses of estimatand B,
e 07 is the estimated angle on bui estimator4,

e gi is thei™" diagonal element of gain matri of areaA , which is the

inverse of the covariance matrix of the state estimatiotizay.

2. Select a reference bus of one estimator as the globakreferous for the

grid.
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3. Determine the angle difference between this global eefes bus and refer-
ence bus in every local estimator. This can be implementddhlgrsing the
area connection graph. The depth-first graph traverseitiigoserves such

purposes well. Since angle difference has the transitivity

Absc = Al + Abpe (5.5)

By using ( 5.5), the areas that do not have overlap with thbajleference

area can be calculated.

4. The estimated angle of each local estimator will be adgufly the angle

difference between the global reference bus and the loffatelice bus.

5. For non-overlapping buses, the state variables of buag®@imagnitude are

determined by the current estimation result in local ediimsa

6. For overlapping bus belonging to multiple local estimators 7 € S, the

state variables; are found as:

vi= xgh/ > gl (5.6)

jes jes
where

mf is the state variable of busn local estimator;.

gfl is thei*" diagonal element of gain matri& of area;j, which is the in-
verse of the covariance matrix that measures the resuledtéiie estimation

accuracy.
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Bad Data Detection and Identification

Each local area performs bad data processing independd@ntigitional distrib-
uted state estimation has difficulty with detection and iifieation of the bad data
on the boundary buses. If the overlapping areas have saffi,éelundancy, the
problem is alleviated. Generally, speaking the local esttimshould subscribe to a
region of data sufficiently large to assure reasonable tobas with respect to bad
data. Too small of an area will leave the system more vulheradbad data while
too large of an area will make the system more vulnerable tamical instabili-
ties as well as taxing the communication network. No attelhgst been made to

optimize this tradeoff here.

5.4 Numerical Experiments

The IEEE 30-bus system (Figure 5.2 [31]) described elsesvirethis thesis is
used here as an explanatory example to verify the feagilifitl accuracy of the
proposed algorithm. Assume there are 5% Gaussian errativesio the true value
on all measurements. In this example, the network is pamttil into 4 areas. Areas
A, B, C, and D include buses (1-7), (5-11), (6, 9-22), and 211530), respectively.
The areas were chosen empirically and one can easily verifypteteness and
connectivity. Fast decoupled state estimation is perfdroteeach area. In each
area, the lowest numbered bus serves as the reference bhatfarea. Results are
shown in Table 5.1.

Following the local convergence, the results of each aresaasembled to-
gether, starting from ared, then B, C, D - the ordering is not important. For

comparison, a traditional fast decoupled state estimagigrerformed on the full
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Table 5.1: Result from Local Estimators

A=)

=

56,

O

Area A Angle (0, -0.0929, -0.1310, -0.1615, -0.2461, -0.1927
(1-7) -0.2240)
Magnitude|  (1.0600, 1.0431, 1.0208, 1.0118, 1.0102, 1.010]
1.0025)
Area B Angle (0, 0.0555, 0.0229, 0.0425, 0.0024, -0.0253,
(5-11) 0.0024)
Magnitude| (1.0092, 1.0103, 1.0019, 1.0101, 1.0509, 1.045
1.0819)
Area C Angle (0, -0.0512, -0.0780, -0.0512, -0.0645, -0.0645
(6, 9-22) -0.0801, -0.0815, -0.0749, -0.0810, -0.0925, -0.09
-0.0921, -0.0859, -0.0856)
Magnitude| (1.0102, 1.0510, 1.0450, 1.0823, 1.0570, 1.071
1.0421, 1.0376, 1.0444, 1.0400, 1.0282, 1.0257
1.0298, 1.0327, 1.0332)
Area D Angle (0, -0.0033, -0.0031, -0.0063, -0.0093, -0.0015
(15, 21-30) -0.0083, 0.0077, 0.0745, -0.0135, -0.0291)
Magnitude| (1.0377, 1.0328, 1.0333, 1.0272, 1.0216, 1.017

=

0.9992, 1.0230, 1.0065, 1.0033, 0.9918)
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network. The comparison is shown in table 5.2, where esiomairror is defined

asy/>; (x; — ii)Q. From table 5.2, one finds that the accuracy of the proposed

algorithm is comparable to the traditional full networktstastimation.

Table 5.2: Comparison of Estimation Error

Algorithm Distributed State Estimation Traditional State Estimation

Estimation Error 0.0145 0.0099

5.5 Conclusion

State estimation is a fundamental component in power sys&mork security
analysis. In modern Energy Management Systems (EMS), etétaation is exe-
cuted as shapshots, typically once every several minutés.chapter has reported
on a new approach to state estimation based on the propobtishewsubscriber
communication infrastructure. This infrastructure affoan opportunity to greatly
improve the existing approaches to system security.

The proposed algorithm is based on this new distributednmédion structure.
The algorithm is asynchronous and avoids a central coimgoliode during the
iteration, thus, improving system wide robustness. Eachllarea performs the
state estimation independently and the final result is asksehin a central proces-
sor. It is not expected that the local estimators, when coetbin this fashion,
can find the global maximum likelihood estimate. Still nuoalrtests verify that
the new algorithm is sufficiently accurate compared witlsxg conventional full

network state estimation algorithms. Moreover, the reallehge for modern state
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estimators is robustness with respect to missing and bad &aich a distributed

approach is far superior in this regard.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The introduction of open markets and the fast pace of chabgeght by mod-
ern information technology bring both opportunities andllgnges to the electric
power industry. Vast amounts of data are being generateldeogxtensive deploy-
ment of new recording devices, as well as the need for newéssidata, such as,
market trading history, bidding information, and so on. tidiéion, fast and low
cost communications allow the data to be more widely acdesS#ll, the legacy
information systems may not make full use of the data prodludeconsistency,
inaccuracy and other problems plague the quality of the. dakee large amount
of data may decrease the performance of data processing aotttrol centers or
RTOs, which are already heavily loaded. In addition, rezpients for system se-
curity are receiving renewed focus following recent blagko Users need to be
able to benefit from the ever increasing data.

The challenges discussed in the introduction:
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Changes

¢ Increasing volume of data from both physical systems anihess side such

as power market.
e Greater complexity of data access requirements.

e Improved communications due to readily available of mudjhbr band-

width, reliable and low cost communication networks andigments.

e More decentralized computation and intelligence. Sulmstautomation is

a typical example of this trend

e Renewed focus on reliability after several serious blatkou

Problems

e Legacy data systems can not handle the huge amount of dagarlyrand

efficiently.
¢ Inadequacy of existing security analysis tools.

e Hard-wired communication networks make ISO/RTO controkees the sin-
gle information consumer, while available computationalvpr in the grid

is wasted since they lack access to the needed data.
e Limited information for market participants.

To better integrate the ever increasing amount of data,wlatahousing tech-
nology are introduced. At the same time, effort is made orwidiog the user

higher quality data. A two stage DC state estimation is ohiced to address the
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inaccurate topology data problem that hampers the elatarmergy market traders.
To take advantage of today’s communication and informatémhnologies, a dis-
tributed communication framework using publisher/suibsrparadigm and a dis-

tributed state estimation based on that framework is ptedén the dissertation.

6.1.1 Data Warehousing

Data warehousing is a technology that can integrate huge@inobdata. By using

data warehousing technology, one can implement:

o efficient management of the huge amount of data availableamiodern

power system;

a uniform view of the heterogeneous data, which masks trerdgeneous

data source;

a user-customizable the view appropriate for their own sged

data cleansing functions that reduce the amount of the gis@mcy in the

original data source; and

new analytical tools for historical analysis and predictad future trends.

Different from most of the data warehousing used in the lassirarea, the data
warehouse has to deal with a lot of data that comes from thsigddysystem in
the power system. In this dissertation, several examplesieveloped on how
to construct a data warehouse that meets the requiremeiné pbtver industries.
Methods to populate the data warehouse from several comoweargsystem data

sources are discussed.
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6.1.2 Two-stage DC State Estimation to Improve the Accuracef the

Network Topology Information

One of the main goals in introducing data warehousing was/emarket partic-
ipant simple useful tools to make their own decisions. Gitret many ISOs are
adopting methods based on distribution factors to makenésion decisions, the
DC power flow may be accurate enough for the traders to aateifpansmission
constraints and make informed decisions. A two-stage Dighatbn is proposed
to detect and identify topology errors. In the first stagatestestimation is per-
formed on the bus/branch level. When errors are detectedsubpicious area is
converted to bus-section/switching-device level and duwrd stage state estima-
tion is performed. Multiple scan DC state estimation methack introduced. The
DC model modeling error is also partly estimated. Resultsereral IEEE test
systems show the validity of the method.

The DC estimator is not proposed here to be a replacementffdr AC es-
timator, which might be needed by the system operator, theras a simplified
view of the power system appropriate for certain marketigipents. An open
electricity market has many players with different viewpsiof the system and
needs for accuracy. DC state estimation has many advaraadgesould easily be
implemented outside the control center given availabtlityelect measured data
and system parameters. Further, the results can be mote rdaied to typical
market rules. The authors suggest that where the proposiedates begins to
break down under the burden of modeling errors, it is alsallikhat the limits of

the trading rules will begin to be reached.
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6.1.3 Distributed Information Infrastructure and Distrib uted State

Estimation

Instead of a centralized control and processing model oéxisting power system
information structure, a distributed information proéegsmodel that using the
publisher/subscriber paradigm is introduced.

By using this model, one can achieve:

e greater flexibility, since the system can be easily recantd;

e increased reliability, since the information transfer isrmmdue to the possi-

bility of re-routing packets unlike in the existing hardrad network; and

e more evenly distribute computational load as the controkereis not the
only entity that can receive the necessary information -smscriber can

have the data it needs to perform computation locally.

The simulations on IEEE testing systems revealed that theim@rmation
structure is feasible and has acceptable performance.

State estimation is a fundamental component in power sysétwork security
analysis. In modern EMS, the state estimation is executemasshots, typically
once every several minutes. This work has reported on a nevoagh to state
estimation based on the proposed publisher/subscribememication infrastruc-
ture. This infrastructure affords an opportunity to gngathprove the existing
approaches to system security.

The proposed algorithm is based on this new distributednimition structure.
The algorithm is asynchronous and avoids a central coimgofiode during the it-

eration, thus, improving system wide robustness. Eacthéwea performs the state
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estimation independently and the final result is assemhblectcentral processor. It
is not expected that the local estimators, when combinedisnfashion, can find
the global maximum likelihood estimate. Still numericadteeverify that the new
algorithm is sufficiently accurate enough compared witlstaxg conventional full

network state estimation algorithms. Moreover, the reallehge for modern state
estimators is robustness with respect to missing and bad &aich a distributed

approach is far superior in this regard.

6.2 Future Work

Several technologies and algorithms are introduced in igsedation to address
the problem brought by today’s deregulated power systerhereTare still many

open problems related to the communication and informaty@tems.

1. Data warehousing is introduced to deal with the data frbe husiness
world. But in power industries, there is also a huge amourdath com-
ing from the underlying physical system. Common data waunsimg prod-
ucts have efficient programs to deal with the business caatipatsuch as,
aggregation, but they have no tools to deal with data speaiftbe power
system. Effort still needs to be made to have efficient appbias to manage

the huge amount of physical system data.

2. Truly distribute power system operations are difficulheTsimulation done
in the dissertation proves it is feasible from a communicatiiewpoint.
Still, it is not clear the degree to which new communicaticas be inte-

grated with the existing infrastructure without sacrifgciperformance.
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3. With the introduction of the new communication networkgaan expect
that a lot of existing power system analysis tools need teebised to take
advantage of the distributed computation. The distribitiade estimation
proposed in the dissertation is one example, but many aiglits need to

be adapted to the new information infrastructure.
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