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PHOTO-INDUCED MOLECULAR REORIENTATION AND

PHOTOTHERMAL HEATING AS MECHANISMS OF THE

INTENSITY-DEPENDENT REFRACTIVE INDEX IN

DYE-DOPED POLYMERS

Abstract

by JEONG JOON PARK, Ph.D.
Washington State University

MAY 2006

Chair: Mark G. Kuzyk

In this dissertation we present a new method to distinguish between nonlocal (thermal

lens effect) and local (photoisomerization) optical response with modified time-dependent

Z-scan (TZ-scan). In our experiments, two dye-doped polymers are used under similar

conditions to illustrate the difference of a local and a nonlocal response. We find that

photoisomerization in short-time regime can delay the onset of the thermal lens effect by

means of energy storage within the molecules.
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Chapter 1

Introduction

1.1 Preliminaries

This dissertation deals with the mechanisms of how light interacts with matter to yield an

intensity-dependent refractive index. While the simple interaction between a photon and an

atom is well understood, a bulk material made of a dye molecule embedded in a transparent

polymer yields novel mechanisms. Light absorbed by the molecule can change its molecular

structure while the absorbed energy can diffuse as heat. These are examples of local and

nonlocal mechanisms.

A response of a material can be nonlocal in space and time, and a dye doped polymer

exhibits both. As we will show in this dissertation, two mechanism dominate: One is local

and the other nonlocal, with coupling between them.

First, let’s consider the mechanisms from the perspective of their special manifestations.

In a local mechanism, the effect of the light on the material is observed at the point of

interaction. In a nonlocal process, the response is transmitted through the material away

from the illuminated region. An example of a nonlocal effect is photothermal heating. The

photothermal heating mechanism has a long and rich history related to gas lasers. For

example, researchers developed a calorimetry technique using the thermal lens effect in a
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liquid. This line of research started in the 1960’s. Photoisomerization, on the other hand, is

an example of a local effect. Disperse red 1 (DR1) azo dye is a classic molecule that has been

extensively studied for its large reversible shape change in response to heat or excitation by

a laser source. We describe its history as a light-sensitive chromophore. Sekkat’s model of

light-induced photoisomerization is used as a starting point that we generalize as part of

this dissertation. Our modifications to his model in the short times and low intensity is

found to accurately describe our data. Our theory takes into account the coupling between

photothermal heating followed by angular diffusion and photoisomerization. This coupled

theory not only describes the dynamics of the observed light-induced refractive index change,

but also predicts new phenomena, such as a change in the minimum beam spot in the sample,

an effect that we directly measured and confirmed.

1.2 Historical background

Optics is the branch of physics that studies the light. Historically, ray optics was a good ap-

proximation to observation until diffraction required the development of wave optics which

led eventually to Maxwell’s equations. More recently, the particle nature of light has led

to the development of quantum optics. The quantum theory of light and matter made the

invention of the MASER (Microwave Amplification by Stimulated Emission of Radiation)

possible which led to the first LASER (Light Amplification by Stimulated Emission of Ra-

diation) and shorter wavelength light sources.

One subbranch of optics is nonlinear optics (NLO). Taking advantage of the invention

of the laser, the high intensities available make it possible to study nonlinear effects where

laser field strengths are a large fraction of typical fields in a molecule. Some applications

made possible by nonlinear optics are realtime holography, optical switching, optical fiber

communication, etc. In many applications, such as optical communications, large bandwidth

is required. To achieve large bandwidth, the response time for the device is required to be
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short, which makes signal recognition a challenge.[1][2] To have both a fast response and a

large signals appears incompatible.[3] The strength of a nonlinear process is determined by

the nonlinear susceptibility, which appears to be bounded by a fundamental limit.[4][5]

1.2.1 Materials

Inorganic and organic materials are two broad classes of nonlinear-optical materials. Our

work focused on organic dye-doped polymers. Polymers have several advantage over in-

organic materials: They are inexpensive, have good optical quality, and have a low glass

transition temperature compared to silica so they can easily be processed to make large-area

thin films and fibers. Furthermore, the low glass transition temperature allows the polymer

to be doped with organic chromophores with large nonlinear optical response. We use the

azobenzene DR1 because of its chemical stability and large nonlinear susceptibility due to

trans-cis conversion through photoisomerization.

1.2.2 Physics

Second harmonic generation was first observed the nonlinear optical effect in 1961, shortly

after the first working laser was made by Maiman in 1960.[6] In early laser systems, sta-

bility and reliability were important issues. Gordon observed the first thermal lens effect

by inserting polar or nonpolar liquid cells in the resonator of a HeNe laser.[7] Akhmanov

explained self-focusing in cubic nonlinear media with 2-D and 3-D gaussian beams in the

parabolic approximation.[8][9] Harris performed an experiment measuring thermally induced

beam distortion by solvents used in calorimetry.[10] At the time, these nonlinear processes

were found to be a nuisance in making reliable lasers. Today, they are central to the design

of optical devices.
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1.3 Motivation

1.3.1 The Z-scan technique

Sheik-Bahae developed a technique called Z-scan to measure nonlinear refraction. In the Z-

scan experiment, a laser beam is focused into a sample and the intensity measured through

an aperture while the sample is translated along the beam axis, hence the name Z-scan. He

modelled the experimental geometry and found that the technique has high sensitivity and

easily determines the sign and magnitude of nonlinear refraction.[11]

Castillo used pump-probe time-resolved Z-scan to study the thermal changes in refrac-

tive index originates from one- and two-photon absorption in organic solvents. In their

experiment, a strong pump beam induces a refractive index change in the sample while a

colinear weak probe beam is measured through the aperture. By using pulsed light, the

temporal dependence of the signal could be measured allowing the pure thermal signal to be

determined.[12]

Zhang studied the nonlinear refractive index n2 of two push-pull azobenzenes, which have

a similar molecular structure to DR1, using the single beam Z-scan method and suggested

that the origins of the large nonlinear optical response of the two doped polymer materials

are found to be cis-trans interconversion.[13]

After Catunda developed a method to distinguish between the thermal and nonthermal

lens effect with a transient Z-scan measurement by using a chopper in Argon laser, which

allowed the thermal lensing effect to be determined.[14] Mendonca developed a more ad-

vanced method. That uses a Fourier analysis of the transmitted time evolution at various

chopper frequencies at off resonance wavelengths and found the mechanism to be a ther-

mal effect.[15] An analysis of the data showed that the thermal diffusivity coefficient in

DR1-doped polystyrene contradicts the mechanism proposed by Zhang.

Falconieri studied the effects on Z-scan measurements of thermo-optical nonlinearities due

to cumulative heating in a liquid CS2 sample with a femtosecond mode-locked Ti:Sappire
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laser. At short times (15µs), a positive nonlinear refractive index is observed, but at longer

times (150−200µs), a large negative nonlinear refractive index is observed. Given that each

mechanism has a distinct sign and response time. Due to the opposite sign, it was possible

to separate the two mechanisms.[16][17]

Recently, Gnoli found that with a high repetition rate laser (76 MHz repetition rate with

120 fs pulse width) the cumulative thermal effects in CS2 and toluence could be controlled

by the method used by Falconieri.[18]

Cuppo analyzed intensity-dependent optical nonlinearities of the thermal lens model of

Gorden and the Z-scan model (a gaussian decomposition analysis) of Sheik-Bahae. The

thermal-lens model is nonlocal in space and time, whereas the Gaussian decomposition is

dependent on a strictly local response. Limitations of these models in describing Z-scan

experiments on systems with nonlocal response are discussed in the literature.[19]

Most recently, Z-scan with a CW laser (He-Ne) was used for the investigation of the refrac-

tive index change associated with the photoisomerization of azobenzene polymers (disperse

red 13-doped PMMA film). By using circularly and linearly polarized light, from the ratio

of the nonlinear refractive index due to the two polarized lights the dominant mechanism is

found to be photoisomerization.[20]

1.3.2 Mechanisms

Thermal effects are generally any kind of effects that are caused by a change in temperature.

Specifically, we are interested in two types of thermal effect. One is the thermal lens effect,

which is caused by temperature gradients. This occurs when light energy is absorbed by the

material and dissipated as heat. The second effect is the process by which thermal agitation

randomizes the orientation of molecules.

Due to a small potential barrier between the trans and cis isomer of an azo dye, the

trans isomer can be easily excited to a cis isomer by photons. The related phenomenon of

the reversible cis-trans photoisomerization of disperse red 1 (DR1) in PMMA thin films has
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been demonstrated previously by using the Attenuated Total Reflection (ATR) method. Two

mechanisms are identified in the literature: angular hole burning and angular redistribution

of molecules. The evolution of the second-order nonlinear susceptibility, χ(2), is monitored

by measuring the electro-optic effect by attenuated total reflection and by second-harmonic

generation.[21][22] For the most complete theoretical study, a phenomenon based on the

enhanced mobility of the azo chromophores during the isomerization process is used. It is

observed that irradiation with linearly polarized blue light induces a strong anisotropy in an

azobenzene-containing polyglutamate film. Also, a theoretical model that describes the trans

⇒ cis photoisomerization-induced reorientation of azobenzenes in a viscous environment is

presented.[23] A more detailed theoretical study of this phenomenon based on the enhanced

mobility of the azo chromophores during the isomerization process is presented including cis

⇒ trans photoisomerization and thermal relaxation. Analytical expressions are derived for

the photoinduced polar order and its related anisotropy for both cis and trans molecular

distributions.[24] Recently, Sekkat and Knoll summarized all their work and other related

recent work in photorefractive materials in films.[25]

1.4 Organization

Chapter 2 starts with the theory of geometrical optics in a nonlinear medium using Akhmanov’s

model under the condition that the radius of curvature of the beam wave front is infinite.

By solving a thermal diffusion equation for a heat source that originates directly form a

light source with a gaussian profile, the nonlinear refractive index as a function of time is

derived. We generalized Sekkat’s theory of photoisomerization of a polar azo-dye doped in

a polymer in the limit of short time and low intensity. The photothermal effect is included

by combining the temperature increase of the thermal lens effect and rotational diffusion of

rod-shaped molecules, using the Einstein relation.

In Chapter 3, sample fabrication and experimental procedures such as TZ-scan (Tran-
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sient Z-scan or Time-dependent Z-scan) and temperature-dependent OKE experiments are

described. The method of fabricating thin slabs of dye-doped PMMA from bulk mate-

rials is presented. The method of conversion of transient signals at fixed positions to

position-dependent Z-scan curves at fixed times is described. By using this method, the

time-dependent nonlinear refractive index is obtained, which we use as a tool to study

nonlinear mechanisms. To show time- and temperature-dependency of the refractive index

independent of optical excitation, temperature-dependent birefringence measurement using

an external, controllable oven is performed.

Chapter 4 presents our results and discusses their implications. Two different chro-

mophores were used in our studies: DR1 and disperse blue 14 (DB14). Their concentrations

in PMMA are adjusted so that their absorption coefficients are within the same order of

magnitude at their off-resonance wavelengths. This makes it possible to compare sample

and aids to separate the thermal lens effect and photoisomerization. In DB14/PMMA, an

increase of the effective beam waist is observed that fits our theory, which is developed in

Chapter 2 of the nonlinear refractive index due to the thermal lens effect and in Section

3.7 for physical justification. Our modification to the standard theory is motivated by the

comparison of the thermal conductivity, κ, of PMMA, to previously published results.[26][27]

When the modification of the beam waist as a function of time is taken account aside from

discrepancies due to the boundary of the air/sample interface which is not included in our

theory. In DR1/PMMA, TZ-scan data agrees with the theory developed in Chapter 2.

By using circularly and linearly polarized beams, polarization-dependent and -independent

mechanisms are demonstrated. In the polarization-dependent mechanism, a linearly polar-

ized beam shows more influence than a circularly polarized beam on quantum yield. The

ratio of the quantum yields and that of the nonlinear refractive indices as a function of time

are compared with values of the index ratios given in literature,[20] and good agreements is

found.

For the polarization-independent mechanisms such as thermal effects, instead of observ-
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ing an increase of the effective beam waist as in DB14/PMMA, energy storage in molecule is

proposed in DR1/PMMA, which delays the temperature diffusion to PMMA. Temperature-

dependent birefringence measurements are performed in DR1/PMMA to confirm that ther-

mal agitation of molecular orientation obtained by photoisomerization is the responsible

mechanism.

Chapter 5 serves a conclusion, and summarizes our interpretation of the results. Possible

applications and experiments for further studies are suggested.

1.5 Summary of the contribution of this work

The goal of our work is to understand complicated mechanisms of the nonlinear optical re-

sponse in azo dye-doped polymers. The mechanisms that are found to be photoisomerization,

photothermal heating, and coupling between them.

The method used in this work is an analysis of the time-dependent refractive index data

on two representative samples. To find the time-dependent refractive index, we developed

a new TZ-scan technique.[28] TZ-scan is a time sequence of Z-scan at fixed time frames.

Combining all sequences leads us to the time-dependent refractive index.

One of common nonlinear optical mechanisms is the thermal lens effect. The thermal

refractive index and its nonlinear refractive index are calculated by modifying Akhmanov’s

theory of self-focusing and thermal diffusion equation which originates from photothermal

effect.

Disperse Blue 14 (DB14) doped PMMA is used as a control sample to understand the

thermal lens effect related to the theory we developed because it does not have isomers.

Comparing the thermal conductivity of PMMA to our results confirms our experiment and

theory. When the thermal lens effect of DB14 is applied to DR1, it is found that there is

no thermal lens effect in DR1. We propose that the thermal lens effect is delayed due to

complicated mechanisms of DR1 molecules such as energy storage in the ground cis state.
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Another significant mechanism is photoisomerization. In short times and low intensities, the

photoisomerization mechanism is dominant due to the absorption of polarized photons. The

ratio of circular to linear polarization of light of the nonlinear refractive index of DR1 as a

function of time shows that the dominant mechanism is photoisomerization.
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Chapter 2

Theory

2.1 Introduction

The purpose of this chapter is to develop the theory of how a gaussian beam propagates in

a nonlinear medium in the parabolic approximation. The intensity dependence of changes

in the beam radius depend on time and the nature of the mechanisms that contribute.

We treat the case of a non-instantaneous response that includes both a spatial local and

nonlocal response that is capable of modeling the behavior of photothermal heating and

photo-isomerization.

We use Akhmanov’s self-(de)focusing theory[1][2] under the condition that the Rayleigh

length is much larger than the sample thickness in which self-(de)focusing is the sole nonlinear

optical phenomenon at work. We generalize the nonlinear refractive index by using a gaussian

beam-shaped light source and the intensity-dependent transmittance through an aperture

that is small compared to the beam waist-a geometry that is used in our experiments.

For nonlocal mechanisms, such as thermal lens effect, we calculate the spatial temperature

difference from ambient derived using the thermal diffusion equation with the beam as heat

source. As such, the heat source is proportional to the local beam intensity, which is used

as the source of the ray inclination in the wave equation to obtain the generalized thermal
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nonlinear refractive index distribution, leading to a model of photo-thermal heating.

For the local mechanisms of photo-isomerization, we calculate the nonlinear refractive

index for a continuous wave as the light source in low the intensity and short time regime

following the method of Sekkat and coworkers.[3]

The contribution of photothermal heating and photo-isomerization are necessarily cou-

pled since the absorbance depends on the degree of molecule alignment. To couple these

mechanisms, we combine the photo-thermal heating model with the Einstein relation for rod-

like molecules includes the order parameters that we calculate due to the photo-isomerization

mechanism.

The individual mechanisms can be separately tested by independent experiments that do

not yield coupling. For example, the temperature can be varied independently from the light

source, we yielding a measurement of how the temperature agitates the polymer leading to

angular molecular redistribution.

Our models are motivated by our observation of an intensity-dependent de-focusing effect

of the transmitted beam profile through a dye-doped polymer, which we propose is due to

two dominant mechanisms: a nonlocal effect and local effect, such as photo-thermal heating

and photo-isomerization.

Our approach is to first assume that those two mechanisms are uncoupled, so that we

can derive two separate models. Then, we generalize the theory to a coupled model of these

mechanisms by using the Einstein relation and generalized photothermal heating.

In all our calculations, we consider a spatial gaussian light source whose Rayleigh length

is much larger than the sample thickness so that we can make the assumption that the beam

is collimated in the sample. We assume that an intensity dependent refractive index causes

the beam radius of the transmitted beam to change while retaining the gaussian profile.

We are particularly interested in the intensity profile at the center of the beam since our

experiments use the transmittance through an aperture on the beam axis as a measure of

the beam shape. From this measurement, we can calculate how the beam size changes as
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long as the shape of the beam remains approximately gaussian.

Specially, our contribution to the calculations are

• Generalization of the nonlinear refractive index as a function of intensity and the

normalized transmittance through an aperture in modification of Akhmanov’s results

of the dimensionless of beam radius f when R À 1.

• The nonlinear refractive index for thermal lens effect as a function of time extended

from the generalization above.

• Analytical relationship between the photothermal effect and the photo-isomerization

followed by the molecular reorientation with the modification of Sekkat’s model to a

short time and low intensity regime via the Einstein relation.

2.2 The nonlinear refractive index

2.2.1 Geometrical optics of a nonlinear medium

In this section, we review self de-focusing based on Akhmanov’s theory.[2] In his paper,

Akhmanov made the assumption that the beam could be approximated in the geometric

limit as follows:

1. Diffraction is smaller than nonlinear refraction so that the wavevector, k →∞, or the

wavelength λ → 0.

2. Only terms to second order in the slowly varying amplitude are included in the eikonal.

For a slowly varying amplitude, A, the electric field ~E can be expressed as:

~E =
1

2
êA exp

[
i(ωt− ~k · ~r)

]
+ c.c, (2.1)

where ê is the polarization direction, ω the angular frequency, A = A0 exp (−iks), and s is

the eikonal. With the slowly varying amplitude approximation, substituting Equation (2.1)
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into Maxwell’s wave equation to second-order in the transverse derivative yields

2
∂s

∂z
+

(
∂s

∂r

)2

=
ε2

ε0

A2
0 (2.2)

and

∂A2
0

∂z
+

∂s

∂r

∂A2
0

∂r
+ A2

0

(
∂2s

∂r2
+

m

r

∂s

∂r

)
= 0, (2.3)

where ε2 is the intensity dependent refractive index defined through the dielectric function

ε = ε0 + ε2E
2. This term originates from a nonlinear term in the polarization in Maxwell’s

equations. m = 0 corresponds to a two dimensional beam and m = 1 to a three dimensional

beam. It is impossible to obtain an analytical solution to the coupled set of equations given

by Equation (2.2) and (2.3).

In a nonlinear medium (ε2 6= 0), the eikonal and the amplitude can be expressed in the

parabolic approximation by,

s =
r2

2
β(z) + ϕ(z)

A2
0 =

E2
0

f 1+m(z)

[
1− 2r2

a2f 2(z)

]
, (2.4)

where β−1(z) is the radius of curvature, ϕ(z) is the addition to the eikonal due to the intensity

dependent refractive index change., f(z) is the dimensionless width of the beam, and E2
0 is

the square of the field amplitude on the beam axis. Figure 2.1 shows a diagram of the beam

parameters. At the entrance to the nonlinear medium, we have,

β(0) =
1

R

ϕ(0) = 0

f(0) = 1

A2
0(r, 0) = E2

0

(
1− 2r2

a2

)
, (2.5)
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z

z = 0 z = L

a af(L)

r

q

q

af’

Figure 2.1: Schematic diagram of a beam propagating through the sample as given by the
self de-focusing theory. a and af(L) are the radius of the beam at the entrance and the exit
of the sample, respectively. r is the radial coordinate and z is the propagating axis. θ is
the divergence angle due to the self de-focusing effect. af ′ is the radius of the beam at the
closed aperture which is proportional to af(L) at a given time.

where A0 is the parabolic approximation of a gaussian beam near its center, i.e. for r ¿ a.

We find the solution of f 2(z) by substituting Equations (2.4) into Equations (2.3) and (2.2)

with the boundary condition of Equations (2.5).

For the case of a spherical wave (m = 1), the dependence of the beam width on the

distance is given by solving Equations (2.2) through (2.5), which yields:

f 2(z) =

(
1

R2
− 2ε2E

2
0

ε0a2

)
z2 +

2

R
z + 1. (2.6)

Appendix 2.8.1 shows the details of how Equation (2.6) is derived. In the experimental

setup, the radius of curvature is large compared to the length of the sample. Therefore, we

assume that the 1
R

terms can be ignored so that Equation (2.6) can be written as,

f 2(z) = −2ε2E
2
0

ε0a2
z2 + 1. (2.7)
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2.2.2 Transmittance through an aperture

A change of the beam waist is induced by the nonlinear refractive index by a change of

refractive index, which depends on the value of the intensity at a given point according to:

∆n = n2I, (2.8)

where n2 is related to ε2 in Gaussian units by,

n2

n0

I =
1

2

ε2

ε0

E2. (2.9)

Note that we will derive this relationship later. We now apply the theory in section 2.2.1 to

calculate the change in transmittance through an aperture due to a change in the beam waist

induced by an intensity dependent refractive index. We begin by considering the transmitted

power passing through an aperture that is small compared to the beam radius, a. When the

nonlinear refractive index is zero, the dimensionless width f is unity. Therefore, we do not

observe any transmittance change as a function of the intensity.

The intensity distribution of a gaussian beam is given by,

I(r) =
2P0

πa2
exp

(
− 2r2

a2f 2

)
. (2.10)

We assume that nonlinear absorption is very small compared to nonlinear refraction, i.e.,

the real part of nonlinear refractive index is much larger than its imaginary part. In our

experiment, power is measure by a photo detector as a voltage. Therefore, the transmitted
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power through an aperture with a radius rd is calculated as,

P (t) =

∫ rd

0

I(r)dA

=

∫ rd

0

2P0

πa2
exp

(
− 2r2

a2f 2

)
rdrdφ

= P0

[
1− exp

(
− 2r2

d

a2f 2

)]
. (2.11)

The transmitted power normalized to the initial value with ε2 = 0 (f = 1) yields the

normalized transmittance:

T =
P (t)

P (0)
=

1− exp
(
− 2r2

d

a2f2(t)

)

1− exp
(
−2r2

d

a2

)

=
1− exp

[
− 2r2

d

a2(1−2ε2(t)E2L2/ε0a2)

]

1− exp
[
−2r2

d

a2

] , (2.12)

where we assume that the nonlinear response is time dependent. As such, the dependence

of the transmittance on time is a measure of the time response of the nonlinearity of the

material. Note that in reality, the response will be given by a convolution of n2 and I, as we

will discuss later. We convert ε2 to n2 by using the relationship,

~D = ε ~E

=
(
ε0 + ε2E

2
)

~E (2.13)

and

n =
√

ε =
√

ε0

(
1 +

ε2

ε0

E2

)1/2

. (2.14)

Since the second term in Equation (2.14) is very small compared to unity, we can rewrite

Equation (2.14) as

n ' √
ε0

(
1 +

1

2

ε2

ε0

E2

)
. (2.15)
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By using the relationship n = n0 + n2I and Equation (2.15), we find

1

2

ε2

ε0

E2 =
n2

n0

I. (2.16)

Substituting Equation (2.16) into Equation (2.12) yields

T =
1− exp

[
− 2r2

d

a2(1−4n2IL2/n0a2)

]

1− exp
[
−2r2

d

a2

] . (2.17)

The argument of the exponential function in the numerator of Equation (2.17) can be ap-

proximated by a binomial expansion when the nonlinear phase shift is small:

Arg = −2r2
d

a2

[
1− 4

n2

n0

I

(
L

a

)2
]−1

' −2r2
d

a2

[
1 + 4

n2

n0

(
L

a

)2

I

]
. (2.18)

By substituting Equation (2.18) into Equation (2.17) and expanding the exponential func-

tion, we have the normalized transmittance,

T =
1− exp

[
−2

(
rd

a

)2
]
exp

[
−8n2

n0

(
rd

a

)2 (
L
a

)2
I
]

1− exp
[
−2

(
rd

a

)2
]

'
1− exp

[
−2

(
rd

a

)2
] [

1− 8n2

n0

(
rd

a

)2 (
L
a

)2
I
]

1− exp
[
−2

(
rd

a

)2
] . (2.19)

In experiments, it is straightforward to measure dT /dI. In our small n2 approximation, T
is a linear function of I, so the theory for the measured intensity dependent transmittance

from Equation (2.19) yields

dT
dI

=

8n2

n0

(
rd

a

)2 (
L
a

)2
exp

[
−2

(
rd

a

)2
]

1− exp
[
−2

(
rd

a

)2
] . (2.20)
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Therefore, given the experimental measure of the slope, dT/dI, we can get n2 by inverting

Equation (2.20),

n2 =
n0

8

(
a

rd

)2 ( a

L

)2 1− exp
[
−2

(
rd

a

)2
]

exp
[
−2

(
rd

a

)2
] dT

dI
. (2.21)

If the aperture radius rd is small compared to a, which we can experimentally control, the

exponentials can be approximated as

exp

[
−2

(rd

a

)2
]
' 1 and 1− exp

[
−2

(rd

a

)2
]
' 2

(rd

a

)2

. (2.22)

Finally, Substituting Equation (2.22) into (2.21) we get n2 in the form,

n2 =
n0

4

( a

L

)2 dT
dI

. (2.23)

2.2.3 Nonlinear absorption

In the previous section, we considered nonlinear refraction. Next, we consider the effects

of nonlinear absorption. The transmitted power, P (t), for open aperture case, where the

aperture is much larger than the beam waist, is given by

P (t) = P0 exp (−α(t)L) = P0 exp {− (α0 + α2(t)I) L} , (2.24)

where P0 is the power measured before the sample and α(t) is the loss as a function of

time. The normalized transmittance for the open aperture case can be evaluated with the

assumption that α2(t) is very small:

To =
P (t)

P (0)
=

P0 exp (−α(t)L)

P0 exp (−α(0)L)

= exp (−α2(t)IL)

' 1− α2(t)IL, (2.25)
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where we assume α(0) = α0. By taking the derivative with respect to I of Equation (2.25),

we get the experimentally determined quantity:

dTo

dI
= −α2(t)L. (2.26)

2.2.4 Nonlinear absorption and refraction

In this section we combine self de-focusing with nonlinear absorption. The goal is to de-

velop a theory that can separate the real and imaginary parts of n2 from the normalized

transmittance which has mixed information.

The intensity profile passed by the sample is given by

I(t) =
2P

πa2f 2
exp

[
− 2r2

a2f 2

]
exp [−α(t)L] (2.27)

By using Equation (2.19) and (2.25), the normalized closed aperture transmittance, T t, with

complex n2 yields

P (t)

P (0)
= T t = (1− α2(t)IL)

1− exp
[
−2

(
rd

a

)2
] [

1− 8n2

n0

(
rd

a

)2 (
L
a

)2
I
]

1− exp
[
−2

(
rd

a

)2
]

= 1− α2(t)IL +

8n2

n0

(
rd

a

)2 (
L
a

)2
exp

(
−2r2

d

a2

)

1− exp
(
−2r2

d

a2

) I

−α2(t)L

8n2

n0

(
rd

a

)2 (
L
a

)2
exp

(
−2r2

d

a2

)

1− exp
(
−2r2

d

a2

) I2. (2.28)

We assume that the nonlinear absorption coefficient has no significant effect on the path

of rays near the beam axis. This assumption is satisfied when the aperture size is small
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compared to the size of the beam. From Equation (2.28), the slope dT t

dI
is

dT t

dI
= −α2(t)L +

8n2

n0

(
rd

a

)2 (
L
a

)2
exp

[
−2

(
rd

a

)2
]

1− exp
[
−2

(
rd

a

)2
]

−
16α2(t)L

n2

n0

(
rd

a

)2 (
L
a

)2
exp

[
−2

(
rd

a

)2
]

1− exp
[
−2

(
rd

a

)2
] I. (2.29)

When only the center of the beam is considered so that rd ¿ a, we can expand Equation

(2.29) to first order in the nonlinearity,

dT t

dI
' −α2(t)L +

4n2

n0

(
L

a

)2

=
dTo

dI
+

dT
dI

. (2.30)

The first term on the RHS is the slope for the open aperture case as given by Equation (2.26)

and is related solely to nonlinear absorption. Therefore, the real part of n2 can be obtained

by subtracting the slope derived from the open aperture experiment from the closed aperture

data.

2.3 Nonlocal nonlinear optical effect

The previous calculation was a local one since it assumed that the refractive index change

at a point in the material depends on the intensity at that point only. There are many

mechanisms in which the refractive index is a function of the intensity at other points.

These are called non-local mechanisms, of which photo-thermal heating is one example. In

this section, we model the photo-thermal mechanism.
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2.3.1 Thermal diffusion

In the thermal mechanism, we assume that the temperature gradient response time of the

sample is very slow compared to the light transit time through the sample. Therefore,

the beam acts as the heat source with cylindrical symmetry and instantaneously follows the

beam’s intensity profile through the sample. We should also consider the boundary condition

at the surfaces of the sample due to its contact with the environment. We assume that the

ambient temperature outside the surfaces changes simultaneously as inside the surface of the

sample to simplify the heat transfer equation. Also, we assume that the beam waist is small

compared with the length of the sample so that the sample can be considered infinite. Along

the propagation direction, we assume that the temperature gradient is too small to cause

the beam’s shape to change appreciably compared to the effect in the radial direction. We

assume that there are no aberrations so that the beam shape remains the same, with only

a change in its width and amplitude,[4] and the amount of heat generation per unit length

along the propagation direction, per unit time at a point inside the material is instantaneous

and proportional to the beam intensity at that point. We introduce the dimensionless beam

width, f , so that the heat source term changes width within the sample as the beam width

changes, i.e.,

Q(r, z) =
2P

πa2f 2
exp

(
− 2r2

a2f 2

)
α exp (−αz)

= Ip exp

(
− 2r2

a2f 2

)
α exp(−αz)

f 2
, (2.31)

where α is an absorption coefficient and Ip is a peak intensity at the entrance to the medium.

The heat transfer equation is given by

cρ
∂

∂t
∆T (r, t)− κ∇2(∆T (r, t)) = Q(r, z), (2.32)
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where c, ρ, κ, and ∆T are specific heat, density, thermal conductivity, and temperature

difference from ambient in the sample, respectively. The solution to Equation (2.32) yields

the temperature, ∆T (r, z, t),which can be found by using

∆T (r, z, t) =

∫ ∞

0

∫ t

0

Q(r′)G(r, r′, t′)2πr′dr′dt′, (2.33)

where G(r, r′, t) is the Green’s function. The Green’s function in cylindrical coordinates for

the heat equation is given by[5]

G(r, r′, t′) =
1

4πκt′
exp

(
−r2 + r′2

4Dt′

)
I0

(
rr′

2Dt′

)
, (2.34)

where D is diffusivity given by κ/ρc and I0 is the modified Bessel function. By substituting

Equation (2.34) and (3.25) into Equation (2.33), we have

∆T (r, z, t) =

∫ t

0

∫ ∞

0

Ipα

2f 2

exp(−αz)

κt′
exp

(
−r2 + r′2

4Dt′

)
exp

(
− 2r′2

a2f 2

)

×I0

(
rr′

2Dt′

)
r′dr′dt′. (2.35)

By using the integral formula given by Equation (B-1), we can evaluate the r integral in

Equation (2.35) as follows (see appendix 2.8.2),

∆T (r, z) =

∫ ∞

0

exp

(
− 2r′2

a2f 2

)
exp

(
− r′2

4Dt′

)
I0

(
rr′

2Dt′

)
r′dr′

=
2Dt′

1 + 8Dt′/a2f 2
exp

[
r2

4Dt′ (1 + 8Dt′/a2f 2)

]
. (2.36)
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By substituting Equation (2.36) into Equation (2.35) and by using Equation (B-4) through

(B-7), the integration over time yields

∆T (r, z, t) =
Ipα exp(−αz)

a2f 2ρc

∫ t

0

dt′
1

1 + 8D
a2f2 t′

exp


− 2r2

a2f 2
(
1 + 8Dt′

a2f2

)



=
Ipα exp(−αz)

8κ


Ei

(
− 2r2

a2f 2

)
− Ei


− 2r2

a2f 2
(
1 + 8Dt

a2f2

)




 , (2.37)

where Ei is an exponential integral function given by Equation (B-7). Figure 2.2 shows a

plot of the temperature distribution as a function of the position in the sample for typical

experimental parameters used in Equation (3.26).

2.3.2 Time-dependent thermal lens effect

In this section, we generalize Akhmanov’s derivation of beam propagation in the parabolic

approximation to get the time dependence of thermal lensing. We begin with the ray incli-

nation to the beam axis determined from the eikonal Equation (2.4),[4]

u =
∂s

∂r
= rβ(z) =

r

f

df

dz
. (2.38)

Using the wave equation and the relationship δn = ∂n
∂T

δT , analogous to the case we developed

for δn = n2I, we have

∂u

∂z
+ u

∂u

∂r
= − 1

n0

∂n

∂T

∂∆T

∂r
, (2.39)

where the thermal lens effect is explicitly shown with a negative sign on the right hand side.

Taking the derivative of Equation (3.26) yields

∂∆T

∂r
=

Ipa
2α exp(−αz)

4κ


exp

(
− 2r2

a2f2

)
− exp

(
− 2r2

a2f2+8Dt

)

r


 . (2.40)
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DT(K)

r(cm)

z(cm)

Figure 2.2: Temperature gradient in space with a pump intensity of 600mW/cm2, absorption
coefficient α = 3cm−1, thermal conductivity κ = 0.193W/m ·K, beam radius a = 0.09cm,
density ρ = 1.19 × 103kg/m3, specific heat c = 1.42 × 103J/kg ·K, and thermal refractive
index change coefficient ∂n

∂T
= 1.5× 10−4. ∆T is the difference in temperature from ambient

according to Equation (3.26), r is the radial coordinate, and z is the beam propagation
direction in the sample at time t = τ = 1.77s.
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After substituting Equation (2.38) and (2.40) into Equation (2.39), we get (see Equation

(B-8))

d2f

dz2
=

Ipa
2α exp (−αz)

4κ

(
f

r

)(
− 1

n0

∂n

∂T

)



exp
(
− 2r2

a2f2

)
− exp

(
− 2r2

a2f2
(
1+ 8Dt

a2f2

)
)

r


 . (2.41)

We are interested only in the region close to the beam axis where r ¿ a. In the on-axis

condition, we can make a parabolic approximation, which leads us to (see Equation (B-9))

d2f

dz2
' Ipα exp(−αz)

2n0κf

∂n

∂T

[
1 + f 2 (τ/2t)

]−1
, (2.42)

where τ = a2/4D. We assume that the length of the sample is short enough that the beam

width does not change appreciable from one end to the other, which allows us to make the

approximation that f ' 1. We can rewrite Equation (2.42) as

d2f

dz2
' Ipα exp(−αz)

2n0κ

∂n

∂T

1

1 + τ/2t
. (2.43)

By solving Equation (2.43) with the boundary condition given by Equation (2.5), we get

f(z) =
Ip

2n0ακ

∂n

∂T

exp(−αz) + αz − 1

1 + τ/2t
+ 1 . (2.44)

We assume that the amount of absorption is small enough to expand exp(−αz) up to the

third term. With B = Ip

2n0κα(1+2τ/t)
∂n
∂T

, the dimensionless beam width, f 2(z), is approximated
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z(cm)
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Figure 2.3: Equation (2.45) with a pump intensity of 600mW/cm2, absorption coefficient
α = 3cm−1, thermal conductivity κ = 0.193W/m · K, beam radius a = 900µm, density
ρ = 1.19 × 103kg/m3, specific heat c = 1.42 × 103J/kg · K, and thermal refractive index
change coefficient ∂n

∂T
= 1.5× 10−4. z is in the beam propagation direction and t is the time.
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as

f 2(z) = B2 (exp(−αz) + αz − 1)2 + 2B (exp(−αz) + αz − 1) + 1

' B2

4
α4z4 + Bα2z2 + 1

' Bα2z2 + 1

=
αIp

2n0κ (1 + 2τ/t)

∂n

∂T
z2 + 1. (2.45)

Figure 2.3 shows a plot of f 2 as a function of time after the beam is turned on and propagation

distance in the sample, z, with typical value of experimental parameters substituted into

Equation (2.45). As we have discussed in Section 2.2.2, the normalized transmittance is

given by (see (B-10))

T =
1− exp

(
− 2r2

d

a2f2(L)

)

1− exp
(
−2r2

d

a2

)

' 1− αL2

2n0κ (1 + τ/2t)

∂n

∂T
Ip. (2.46)

The slope of transmittance with respect to the intensity is

dT
dI

= −r2
d

a2

exp
(
−2r2

d

a2

)
αL2

1− exp
(
−2r2

d

a2

) dn/dT

n0κ (1 + τ/2t)

' − αL2

2n0κ (1 + τ/2t)

∂n

∂T
. (2.47)

By substituting Equation (2.47) into Equation (2.23), we get the nonlinear refractive index

from the thermal response mechanism.

n2(t) = − αa2

8κ (1 + τ/2t)

∂n

∂T
. (2.48)
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Figure 2.4: n2 from Equation (2.48) as a function of time with a pump intensity of
600mW/cm2, absorption coefficient α = 3cm−1, thermal conductivity κ = 0.193W/m · K,
beam radius a = 0.09cm, density ρ = 1.19× 103kg/m3, specific heat c = 1.42× 103J/kg ·K,
and thermal refractive index coefficient ∂n

∂T
= 1.5× 10−4.

We note that our generalizations to the theory are required for the results to be properly

interpreted as we discuss later. Figure 2.4 shows Equation (2.48) plotted as a function of

time after a beam is turned on for typical experimental parameters.
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2.4 Mechanisms of local nonlinear optical effects

2.4.1 Photo-isomerization

It is known that the azo bond, a double bond between the nitrogen atoms, has low excitation

energy for nuclear conformational changes compared to other covalent double bonds. Figure

2.5 shows a typical azo molecule that has two isomers, trans and cis. The ellipse drawn

shows how the molecules can be approximated as a cigar shape of distinct aspect ratio. As

depicted in Figure 2.6, each isomer has an anisotropic absorption cross section. Figure 2.7

shows the energy diagram of photo-isomerization and thermal relaxation mechanisms. We

consider a molecule whose principle axis is aligned along the Euler angle axis represented by

~Ω as we see from Figure 2.8 and the direction of linear polarization of the incident beam of

light is in the 3-direction.

We assume that the rate of conversion of the number density of each isomer per unit time

in the direction ~Ω for photo-isomerization is proportional to the number density of molecules,

the number of absorbed photons per unit area per unit time associated with the quantum

yield, φ, and the cross section, σ, for a uniaxial system, which is given by σ⊥ sin2 θ+σ‖ cos2 θ,

where σ‖ and σ⊥ are the cross section for the long axis and perpendicular to the long axis,

respectively.

The change of number density of molecules per unit time is given by

dnt(~Ω)

dt
= −Iφtc

[
σt
⊥ +

(
σt
‖ − σt

⊥
)
cos2 θ

]
nt

(
~Ω

)

+Iφct

∫∫
nc

(
~Ω′

) [
σc
⊥ +

(
σc
‖ − σc

⊥
)
cos2 θ′

]

×P ct
(
~Ω′ → ~Ω

)
dΩ′

+
1

τc

∫∫
Q

(
~Ω′ → ~Ω

)
nc

(
~Ω′

)
dΩ′ + DtR ·Rnt

(
~Ω, t

)
(2.49)
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(a) Trans-isomer

(b) Cis-isomer

Figure 2.5: Schematic diagram of isomers of Disperse Red 1 azo dye.
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(a) Trans-isomer

(b) Cis-isomer
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Figure 2.6: The DR1 isomers are idealized as cigar-shaped molecules. The anisotropic
absorption cross section causes birefringence and dichroism. σt,c

‖ and σt,c
⊥ are the absorption

cross sections for the long axis and short axis of trans(t) and cis(c) molecules, respectively.
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and similarly for the cis population

dnc( ~Ω)

dt
= −Iφct

[
σc
⊥ +

(
σc
‖ − σc

⊥
)
cos2 θ

]
nc

(
~Ω

)

+Iφtc

∫∫
nt

(
~Ω′

) [
σt
⊥ +

(
σt
‖ − σt

⊥
)
cos2 θ′

]

×P tc
(
~Ω′ → ~Ω

)
dΩ′

− 1

τc

nc

(
~Ω

)
+ DcR ·Rnc

(
~Ω, t

)
. (2.50)

The first terms in each of Equations (2.49) and (2.50) show the depletion rate of cis and

trans molecules around the angle ~Ω due to angular hole burning by the pump polarization.

The second terms are the rate of angular redistribution of cis and trans molecules from other

angles (~Ω′) to fill the angular holes. We define the probability of the redistribution process

of cis to trans transition by P ct
(
~Ω′ → ~Ω

)
, and P tc

(
~Ω′ → ~Ω

)
for trans to cis. In the third

term, Q
(
~Ω′ → ~Ω

)
is the probability of redistribution due to thermal relaxation of cis to

trans molecule which has a 31
2

hour life time.[6] The last term is from the angular Brownian

motion due to temperature agitation. Dc,t are the angular diffusion constants in units of s−1

for the cis and trans isomer, respectively,[7] and R is the the rotational operator defined in

Equation (C-13). (See appendix 2.8.3).

Using the Legendre polynomials and the boundary condition, Equation (2.49) and (2.50)

become (see appendix 2.8.3):

dTn

dt
= −It{T}+ IcP

ct
n {C}+ γQnCn − Tnn (n + 1) Dt (2.51)

and

dCn

dt
= −Ic{C}+ ItP

tc
n {T} − γCn − Cnn (n + 1) Dc, (2.52)
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Figure 2.7: Energy diagram of photo-isomerization and cis to trans thermal relaxation mech-
anisms. σt and σc are the absorption cross sections of trans and cis molecule to their first
excited state per one photon absorbed, respectively. φtc and φct are non-radiative quantum
yields for trans to cis and cis to trans isomerizations, respectively. γ is the rate of thermal
relaxation from cis to trans molecule.

where Tn and Cn are the expansion coefficients given by Equation (C-2) and (C-3), and

{T} = 3ertκn+Tn+2 +
[
1 + ert (3κn − 1)

]
Tn

+3ertκn−Tn−2,

{C} = 3ercκn+Cn+2 + [1 + erc (3κn − 1)] Cn

+3ercκn−Cn−2,

κn+ =
(n + 1) (n + 2)

(2n + 1) (2n + 3)
, κn =

(2n2 + 2n− 1)

(2n− 1) (2n + 3)
,

and

κn− =
n (n− 1)

(2n− 1) (2n + 1)
. (2.53)

For the case of a linear polarized pump beam along the 3 axis, e = 1 because the probability

of the angular hole burning is proportional to cos2 θ. For other cases, such as for a circularly
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polarized pump beam on the plain containing axis 1 and 2, or an unpolarized beam, e = −1/2

because the probability is proportional to (sin2 θ)/2 instead of cos2 θ.

We assume that molecules are randomly distributed in angle. In a short time after the

pump is turned on, we can assume that the process of trans to cis conversion leading to

angular redistribution is dominant compared to that of cis to trans (P ct
n → 0). We can

also assume that the thermal conversion from cis to trans is also ignorable because thermal

relaxation is a slow process compared to angular hole burning and redistribution by photo-

isomerization (γ → 0 or 1/τc → 0).[6] Thus, we rewrite Equation (2.51) and (2.52) as:

dTn

dt
= −It{T} − Tnn (n + 1) Dt (2.54)

and

dCn

dt
= −Ic{C}+ ItP

tc
n {T} − Cnn (n + 1) Dc. (2.55)

We assume that the higher order terms do not appreciably affect conversion between isomers

at low intensity so we keep up to only the second-order parameters. By substituting n = 0

in Equation (2.54), we get

dT0

dt
= −It

[
2ertT2 + T0

]
. (2.56)

And when n=2, we get

dT2

dt
= −It

[
(1 +

4

7
ert)T2 +

2

5
ertT0

]
− 6DtT2. (2.57)

By solving for T2 in Equation (2.56) and substituting T2 into Equation (2.57), we get

d2T0

dt2
+

[
2It

(
1 +

2

7
ert

)
+ 6Dt

]
dT0

dt
+

[
I2
t

(
1 +

4

5
(ert)2 +

4

7
ert

)
+ 6DtIt

]
T0 = 0. (2.58)

We assume that d2T0

dt2
is negligibly small so that T0 varies roughly monotonically in time. By
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Figure 2.8: Coordinate systems of the molecules in two principle directions, ~Ω and ~Ω′. The
polarization direction of the pumping beam is along axis 3. For the molecules in direction
Ω, the angular hole burning probability is proportional to σ‖ cos2 θ+σ⊥ sin2 θ. χ is the angle

between ~Ω and ~Ω′.
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using the initial condition that at t = 0, T0 = 1 in Equation (2.58), we get

T0(t) = exp


−

It

(
1 + 4

5
(ert)

2
+ 4

7
ert + 6Dt

It

)

2
(
1 + 2

7
ert + 3Dt

It

) t


 , (2.59)

where we have normalized the number density to unity. Since the total number of molecules

is conserved, C0 is given by:

C0(t) = 1− T0

= 1− exp


−

It

(
1 + 4

5
(ert)

2
+ 4

7
ert + 6Dt

It

)

2
(
1 + 2

7
ert + 3Dt

It

) t


 . (2.60)

Equation (2.59) and (2.60) become

T0(t) = exp (−λ0t) (2.61)

and

C0(t) = 1− exp (−λ0t) , (2.62)

with the definition of that λ0 =
It

(
1+ 4

5
(ert)2+ 4

7
ert+6

Dt
It

)

2
(
1+ 2

7
ert+3

Dt
It

) . By substituting Equation (2.61) into

Equation (2.57) and by using the initial condition that when t = 0, T2 = 0, we can solve for

T2(t):

T2(t) =
at

λt − λ0

(exp(−λtt)− exp(−λ0t)) , (2.63)

where λt = It(1 + 4
7
ert + 6Dt

It
) and at = 2

5
Iter

t.

When n = 2, Equation (2.55) becomes

dC2

dt
= −Ic

[(
1 +

4

7
erc

)
C2 +

2

5
ercC0

]
+ ItP

tc
2

[(
1 +

4

7
ert

)
T2 +

2

5
ertT0

]
− 6DcC2. (2.64)

By substituting Equation(2.61), (2.62), and (2.63) into Equation (2.64) and by using the
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Figure 2.9: The order parameters T0, C0 in blue solid and red dashed line, respectively when
Dt = 0.0001 (low temperature) as a function of time. Dt is proportional to the temperature
difference in the sample compared to the ambient temperature. It = 0.011 and Ic = 0.00946.

initial condition that when t = 0, C2 = 0, we can solve for C2(t):

C2(t) =
ac (λt − λ0)− atP

tc
2 (λ0 − 6Dt)

(λt − λ0) (λc − λ0)
[exp (−λ0t)− exp (−λct)]

− atP
tc
2 (λt − 6Dt)

(λt − λ0) (λc − λ0)
[exp (−λtt)− exp (−λct)] , (2.65)

where ac = 2
5
Icer

c and λc = Ic

(
1 + 4

7
erc + 6Dc

It

)
. Figure 2.9 and 2.10 show the order

parameters in the low temperature limit with the physical dimensions we have estimated for

DR1. (see Appendix 2.8.3).
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Figure 2.10: The order parameters T2, C2 in blue solid and red dashed line, respectively when
Dt = 0.0001 (low temperatue) as a function of time. It = 0.011 and Ic = 0.00946.
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Figure 2.11: The changes of refractive indices of parallel (red dashed) and perpendicular
(blue solid) to the polarization of pump when Dt = 0.0001, It = 0.011, and, Ic = 0.0096.
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2.4.2 Calculation of the first order susceptibilities and the refrac-

tive indices

In our experiment, we use a CW light source whose energy is known to be weak enough

that the refractive index changes due to a change of the electron cloud around the nuclei is

smaller than the refractive index change due to isomerization. Ignoring this electronic χ(3)

effect, the relationship between the order parameters Ai and the tensor components of the

linear electronic susceptibilities χ(1) for a two dimensional molecule are given by,[3][8]

χ
(1)
11 = Nᾱ

ω

(1− rωA2) ,

χ
(1)
33 = Nᾱω (1 + 2rωA2) , (2.66)

where N is the density of molecules, ᾱω = (α∗‖ + 2α∗⊥)/3 is the isotropic molecular polar-

izability, rω = (α∗‖ − α∗⊥)/(α∗‖ + 2α∗⊥) is the molecule anisotropy and α∗‖,⊥ are the dressed

polarizabilities along and perpendicular to the long axis, respectively.

As we have seen in previous section, the order parameters are not constant in time nor

as a function of intensity. We can write the refractive index parallel and perpendicular to

the polarization of the pump as follows:

nzz(t) = n‖

=
[
ε0
zz + 4π

{
Nt(t)ᾱ

t
(
1 + 2rtT2(t)

)
+ Nc(t)ᾱ

c (1 + 2rcC2(t))
}] 1

2

' n0
zz +

2πN

n0
zz

{
T0(t)ᾱ

t
(
1 + 2rtT2(t)

)
+ (1− T0(t)) ᾱc (1 + 2rcC2(t))

}
(2.67)

and

nxx(t) = n⊥

=
[
ε0
xx + 4π

{
Nt(t)ᾱ

t
(
1− rtT2(t)

)
+ Nc(t)ᾱ

c (1− rcC2(t))
}] 1

2

' n0
xx +

2πN

n0
xx

{
T0(t)ᾱ

t
(
1− rtT2(t)

)
+ (1− T0(t)) ᾱc (1− rcC2(t))

}
, (2.68)
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where we have used the relationship, n =
√

1 + 4πχ(1) and that the change in refractive index

due to isomerization and reorientation is small compared to the initial refractive index. We

can determine the linear refractive index of dye doped PMMA at t = 0 or I = 0, as follows:

nxx(0) = n0
xx +

2πNᾱt

n0
xx

= n0
PMMA + n0

DR1

= n0 (2.69)

and

nzz(0) = n0
zz +

2πNᾱt

n0
zz

= n0
PMMA + n0

DR1

= n0, (2.70)

where n0
PMMA is the linear refractive index of PMMA and n0

DR1 is the additional linear

refractive index due to the DR1 dye molecules, which is consistent with the initial condition

(t = 0; I = 0) that most of the molecules are trans-isomers in random angular distribution

as we have assumed in section 2.4.1.

Finally, we can separate the linear and nonlinear part of refractive index as follows:

nxx = n0 + δn⊥

= n0 +
2πN

n0
PMMA

{
T0(t)ᾱ

t
(
1− rtT2(t)

)

+ (1− T0(t)) ᾱc (1− rcC2(t))− ᾱt
}

(2.71)
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Dn(t)

Time(s)

Figure 2.12: Birefringence, ∆n(t)when photothermal heating is negligible. It = 0.011 and
Ic = 0.00946.

and

nzz = n0 + δn‖

= n0 +
2πN

n0
PMMA

{
T0(t)ᾱ

t
(
1 + 2rtT2(t)

)

+ (1− T0(t)) ᾱc (1 + 2rcC2(t))− ᾱt
}

, (2.72)

where n0 is the linear refractive index of the host and dye and δn‖ and δn⊥ are the intensity

dependent refractive indices for parallel and perpendicular to the polarization of the pump,

respectively. Note that δn is a function of time.

We can define the birefringence as the difference between the parallel and perpendicular

refractive indices:

∆n = nxx − nzz

= − 2πN

n0
PMMA

{
3ᾱtrtT0T2 + 3ᾱcrc (1− T0) C2

}
. (2.73)
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Figure 2.13: The change of refractive indices of parallel(red dashed) and perpendicular(blue
solid) polarizations when t = 3 in low intensity region. The refractive index change is
negative.

Figure 2.12 shows the birefringence as a function of time when It = 0.011, Ic = 0.00946, and

Dt = 0.0001. Figure 2.13 shows the nonlinear refractive indices of parallel and perpendicular

in low intensity limit at t = 3s where the relationship between δn and It appear linear. On

the other hand, Figure 2.14 shows δn‖ and δn⊥ at high intensity. The refractive indices

saturate as the intensity increases and the high intensity limit, they are very close to each

other.

2.5 Brownian motion of dyes in a polymer

In this section, we review the effect of Brownian motion of dyes in polymers, based on

Reference,[7] considering cigar-shaped molecules as we have modeled in the previous section.

By understanding this process, we should be able to understand how local and nonlocal

optical effects are coupled.We begin by considering particle diffusion, followed by rotational

diffusion.
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Figure 2.14: The change of refractive indices of parallel(red dashed) and perpendicular(blue
solid) polarizations when t = 3 in high intensity region. The refractive index saturates as
the intensity increases.

2.5.1 Diffusion of particles in 1-D

The process of diffusion is phenomenologically described by Fick’s law, which says that if

concentration is not uniform, there is a flux, j(x, t), such as

j(x, t) = −D
∂C

∂x
, (2.74)

where C is the concentration of particles and D is the diffusion constant. When there is no

sink and source, the continuity equation,

∂C

∂t
= −∂j

∂x
, (2.75)

should be satisfied. By substituting Equation (2.74) into (2.75), we get the diffusion equation

for the concentration of molecules,

∂C

∂t
−D

∂2C

∂x2
= 0. (2.76)
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When the particles are in a viscous medium, a weak resistant force, F, is proportional to

the velocity:

F = −∂U

∂x

= ζv

or

v = −1

ζ

∂U

∂x
, (2.77)

where ζ is the friction constant. This leads to an additional flux Cv on Equation (2.74)

which becomes

j(x, t) = −D
∂C

∂x
− C

ζ

∂U

∂x
. (2.78)

In equilibrium, the concentration is given by the Boltzmann distribution,

Ceq ∝ exp[−U(x)/kBT ], (2.79)

and the flux, j(x, t), is zero, which gives us the Einstein relation,

D =
kBT

ζ
. (2.80)

By substituting Equation (2.80) into (2.78), the flux equation becomes

j = −1

ζ

(
kBT

∂C

∂x
+ C

∂U

∂x

)

= −1

ζ
C

∂

∂x
(kBT ln C + U) (2.81)

Note that kBT ln C + U is the chemical potential. By substituting Equation (2.81) into
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Equation (2.75), the continuity equation becomes

∂C

∂t
=

∂

∂x

1

ζ

(
kBT

∂C

∂x
+ C

∂U

∂x

)
, (2.82)

which is known as the Smoluchowski equation.

2.5.2 Rotational Brownian motion

In the previous section, we described Brownian motion in 1 dimension. In this section, we are

going to extend the translational Brownian motion in one dimension to the case of rotational

Brownian motion. In the rotational frame, the linear velocity is analogous to the angular

velocity and the force is analogous to the torque. The angular velocity is given by

ω = − 1

ζr

RU, (2.83)

where ζr is the rotational friction constant and R is the rotational operator given by u× ∂
∂u

and u is the unit vector in the direction of the long axis of the molecule. In a similar manner

as we have done in Equation (2.82), we get the angular diffusion equation,

∂C

∂t
=

1

ζr

R · (kBTRC + CRU)

= DrR ·
(
RC +

C

kBT
RU

)
, (2.84)

where the rotational diffusion constant,

Dr = kBT/ζr. (2.85)

Note that we have used this result when considering thermal rotational diffusion as given by

Equations (2.49) and (2.50).
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2.6 The refractive index due to coupling between photo

isomerization and photo thermal heating

In Section 2.4.1, we have calculated the nonlinear refractive index due to the change of order

parameters when molecules reorient due to photo isomerization. The order parameters are

related to the rotational diffusion constants Dt,c which are related to the temperature. Note

that Dt,c are the rotational diffusion constants for trans and cis isomers, respectively.

In Equation (2.85), Dt,c are proportional to temperature. We can vary the angular

diffusion constants by controlling the temperature directly with an oven and indirectly by

photothermal heating. In this section, we show how the refractive index changes in each of

these methods.

2.6.1 The refractive index as a function of the external tempera-

ture

We have calculated the dependence of the refractive indices on temperature in Equations

(2.71) and (2.72). In this section, we show how the refractive index changes relate to tem-

perature at a low fixed beam intensity with the assumption that photothermal heating is

negligible compared with the temperature change due to the external heat source.

Figures 2.15 and 2.16 show the time dependence of the refractive index. As the sam-

ple temperature increases, the magnitude of the parallel component of the refractive index

decreases while the perpendicular component of the refractive index increases. As such,

we control the temperature independently with the intensity of the pump beam. Figure

2.17 shows the birefringence change as a function of time and temperature. As the tem-

perature increases and the diffusion constants increase, the birefringence, ∆n decreases as

the molecules approach random orientation. We can test these results by measuring the

temperature-dependent optical kerr effect (OKE) of a sample in an oven.
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Figure 2.15: The refractive index parallel to the pump polarization. As the temperature
increases, Dt, the rotational diffusion constant of the trans molecules, increases and the
magnitude of the parallel refractive index decreases. It = 0.011 and Ic = 0.00946
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Figure 2.16: The refractive index perpendicular to the pump polarization. As the tempera-
ture increases, Dt, the rotational diffusion constant of the trans molecules, increases and the
magnitude of the refractive index increases. It = 0.011 and Ic = 0.00946.
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Figure 2.17: ∆n(T, t) as a function of Dt in the range from Dt = 0 to Dt = 0.003 and the
time in the range from t = 0 to t = 50. It = 0.011 and Ic = 0.00946.

2.6.2 The refractive index due to photothermal heating at fixed

beam intensity

In this section, we consider the beam of light as a heat source through photothermal heating

and include the thermal effect of angular diffusion by incorporating the laser heat source

into the diffusion constant.

We can find the change in temperature due to the intensity by using the relationship

∆n = n2I = − ∂n
∂T

δT , where δT is the temperature difference from ambient and the negative

sign is for defocusing. As we have derived in Section 2.3, by using Equation (2.48), we get

the temperature as follows:

δT =
αa2I

8κ (1 + τ/2t)

=
αP

4πκ (1 + τ/2t)
. (2.86)

Equation (2.86) shows that the temperature is proportional to the area of the beam waist

and the intensity. Therefore, the temperature is proportional to the power. The beam waist,
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Figure 2.18: Equation (2.86) as a function of time, with a pump intensity of 600mW/cm2,
absorption coefficient α = 3cm−1, thermal conductivity κ = 0.193W/m · K, beam radius
a = 900µm, density ρ = 1.19× 103kg/m3, and specific heat c = 1.42× 103J/kg ·K.

a, also contributes to the time constant τ since the temperature saturates faster as a gets

smaller, assuming of course, that all other parameters are held constant. Figure 2.18 shows

how the temperature increases in the sample as a function of time as given by Equation

(2.86).

To couple the thermal mechanisms leading to refractive index changes that we obtained

in Section 2.4.2, we use the diffusion constant defined by the Einstein relation, which includes
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the temperature. The Einstein relation for rod-like molecules is given by[7]

Dt,c =
4kBT

πηsL3
t,c

=
kBαa2I

2πηsκ (1 + τ/2t) L3
t,c

=
kBαP

π2ηsκ (1 + τ/2t) L3
t,c

, (2.87)

where we have used Equation (2.86) for T , Lt,c are the lengths of the trans and cis molecules

along their principle axes, and ηs is the viscosity of PMMA. The relationship between Dt

and Dc is found to be

Dt ' 6Dc, (2.88)

which we have calculated in appendix 2.8.3.

In Equation (2.87), the angular diffusion constant is a linear function of power. The time

constant, τ , is proportional to a2. Therefore, we predict that for small beam size and low

power, the temperature and the time constant are small, which results in a small thermal

effect. On the other hand, for larger beam size and larger power but with fixed intensity

as in the previous case, the thermal mechanism contributing to ∆n is larger with a larger

time constant. Figures 2.19 and 2.20 show the refractive index changes as a function of

time, where the temperature is controlled with the power. To keep the intensity fixed, the

gaussian beam waist is given by

a =

√
2P

πIp

, (2.89)

where Ip is the peak intensity. In this way, we are able to emulate temperature change

without affecting the intensity.
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Figure 2.19: The refractive index parallel to the pump polarization. As laser power increases,
the magnitude of the refractive index decreases.
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Figure 2.20: The refractive index perpendicular to the pump polarization. As the laser power
increases, the magnitude of the refractive index increases.
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Figure 2.21: The parallel component of the refractive index change becomes more negative
as power and intensity increases. Beam size a = 0.09cm and kinetic viscosity of PMMA,
ηs = 1010N · s/cm2 = 1014Pa · s.

2.6.3 The refractive index due to photothermal heating with a

fixed beam waist

When keeping the beam waist fixed and increasing the intensity, the power will increase in

proportion to the intensity. Figure 2.21 shows the change of the refractive index as a function

of time with increasing power while keeping the beam waist constant. As intensity increases,

the change of refractive index increases. By using the nonlinear refractive index relationship,

∆n = n2Ip, we get n2, which is plotted in Figure 2.22. As intensity increases, the magnitude

of the nonlinear refractive index, n2, decreases. In Figure 2.22, we see that thermal agitation

reduces the magnitude of n2 while increasing the temperature in the sample. Recall that an

increase of the beam waist (See the previous section) corresponds to thermal defocusing. On

the other hand, when the beam waist is constant, more thermal agitation of the molecules

results. This is observed in Z-scan experiments for DB14 and DR1, which we will discuss in

Chapters 3 and 4.

To eliminate the thermal effect, we need to use a small diameter and a low power of

the single beam Z-scan experiment. Since intensity is power per unit area, under these
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Figure 2.22: The parallel component of the nonlinear refractive index n
‖
2 = δn‖/Ip, where Ip

is the peak intensity for a given power, P. Parameters used are the same as in Figure 2.21

conditions, the intensity can be large. Note we will discuss the experimental results of how

power, intensity, and the beam size are related to the nonlinear refractive indices in Chapter

4.

2.7 Summary

In this chapter, we have derived our theory that generalized the nonlinear refractive index

by using the on-axis normalized transmittance through a small aperture and Akhmanov’s

self-(de)focusing theory under the condition that the beam waist is larger than the thickness

of the sample and the radius of the gaussian beam is large enough to consider it a collimated

beam (R À 1) over the thickness of the sample.

For the photothermal effect, we have derived the nonlinear refractive index as a function of

time as a nonlocal nonlinear optical process by solving the temperature-dependent diffusion

equation with a heat source of the laser related to the linear absorption in the sample.

Consequently, the spatial temperature gradient developed by the heat source causes the

refractive index change. The on-axis temperature in the sample as a function of time is

obtained as:
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T =
αP

4πκ (1 + τ/2t)
. (2.90)

For the photo-isomerization mechanism of our model, we have started with Sekkat’s

model[3] and modified it in the low intensity, short time regime (the probability of cis to

trans is ignorable in short time, P ct
n → 0), and for a slow rate of cis to trans thermal

relaxation (γ → 0) as:

dTn

dt
= −It{T} − Tnn (n + 1) Dt (2.91)

and

dCn

dt
= −Ic{C}+ ItP

tc
n {T} − Cnn (n + 1) Dc. (2.92)

Since CW laser in low intensity was used for our experiment, the refractive index changes

as a function of time due to the molecular reorientation which is directly related to the order

parameters. As such, we calculated the refractive index change as a function of time from

χ(1)(t):

δn⊥(t) =
2πN

n0
PMMA

{
T0(t)ᾱ

t
(
1− rtT2(t)

)
+ (1− T0(t)) ᾱc (1− rcC2(t))− ᾱt

}
(2.93)

and

δn‖(t) =
2πN

n0
PMMA

{
T0(t)ᾱ

t
(
1 + 2rtT2(t)

)
+ (1− T0(t)) ᾱc (1 + 2rcC2(t))− ᾱt

}
. (2.94)

Finally, we combined photothermal and photo-isomerization mechanisms by introducing

temperature-dependent coupling in the angular molecular diffusion constants, Dt,c, via the

Einstein relation which describes the effects of temperature agitation on the angular distri-

bution of the molecules. As we increase the intensity of the laser, the number of reoriented

molecules increase and also temperature in the sample increases from photothermal effect. In
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this final model, we understand how the photothermal and molecular reorientation following

photo-isomerization are competing each other, which is a new analytical theory.

Our theory shows:

1. The birefringence decreases in higher temperature to show how the temperature in the

sample agitates the anisotropic angular molecular distribution due to the molecular

reorientation following the photo-isomerization (See Figure 2.17).

2. The parallel component of the nonlinear refractive index, n
‖
2 reduces the magnitude as

the power of the beam increases since the power is linear to the temperature in the

sample due to photothermal effect. (See Figure 2.22).
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2.8 Appendices

In these appendices, we fill in the details of the calculations presented in this chapter.

2.8.1 Appendix A: Solving for the dimensionless beam waist func-

tion

In this Appendix, we show the details leading to Equation (2.6). Substituting Equation (2.4)

into Equation (2.2) and (2.3) yields

r2

[
β2 +

∂β

∂z
+

2

f 1+m

ε2

ε0

E2
0

a2f 2

]
+

∂ϕ

∂z
− ε2

2ε0

E2
0

f 1+m
= 0 (A-1)

and

2r2 E2
0

a2f 2

m + 3

f 1+m

(
1

f

∂f

∂z
− β

)
− (m + 1)E2

0

f 1+m

(
1

f

∂f

∂z
− β

)
= 0, (A-2)

respectively. Equation (A-1) and (A-2) leads to

∂ϕ

∂z
=

ε2

2ε0

E2
0

f 1+m
,

β =
1

f

∂f

∂z
, (A-3)

and

∂2f

∂z2
= −ε2

ε0

E2
0

f 2+ma2
. (A-4)

By multiplying Equation (A-4) by df
dz

and integrating over z, we get

(
∂f

∂z

)2

=
2

1 + m

ε2

ε0

E2
0

f 1+ma2
+ C. (A-5)
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We can determine C by using the boundary condition given by Equation (2.5). For a three

dimensional beam(m = 1), we have

(
∂f

∂z

)2

=
ε2

ε0

E2
0

a2

(
1

f 2
− 1

)
+

1

R2
. (A-6)

We do the integral by using

∂2f 2

∂z2
=

∂

∂z

(
∂f 2

∂z

)
=

∂

∂z

(
2f

∂f

∂z

)
= 2

(
∂f

∂z

)2

+ 2f
∂2f

∂z2

=
1

R2
− 2ε2

ε0

E2
0

a2
, (A-7)

where we have used Equation (A-4) and (A-5) with the condition of a 3-dimensional beam

(m = 1) to get the righthand side. Finally, we integrate Equation (A-7) by using the

boundary condition given by Equation (2.5),

f 2(z) =

(
1

R2
− 2ε2E

2
0

ε0a2

)
z2 +

2

R
z + 1. (A-8)

2.8.2 Appendix B: Thermal Diffusion

Integration of the radial component to get the temperature

In this appendix, we shows the details that lead to the derivation of Equation (2.36),

∆T (r, z) =

∫ ∞

0

exp

(
− 2r′2

a2f 2

)
exp

(
− r′2

4Dt′

)
I0

(
rr′

2Dt′

)
r′dr′. (B-1)

To be able to integrate Equation (B-1), we use the relationship:

∫ ∞

0

I0 (αr′) exp
(−p2r′2

)
r′dr′ =

1

2p2
exp

(
α2

4p2

)
, (B-2)
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By comparing Equation (B-1) and (B-2), we get that p2 = 2
a2f2 + 1

4Dt′ and α = r
2Dt′ , which

leads to

∆T (r, z) =
2Dt′

1 + 8Dt′/a2f 2
exp

[
r2

4Dt′ (1 + 8Dt′/a2f 2)

]
. (B-3)

Integration of time component to get the temperature

In this appendix, we shows the details of deriving Equation (3.26).

∆T (r, z, t) =
Ipα exp(−αz)

a2f 2ρc

∫ t

0

dt′
1

1 + 8D
a2f2 t′

exp


− 2r2

a2f 2
(
1 + 8Dt′

a2f2

)

 . (B-4)

By making the following substitutions,

y = (1 +
8Dt′

a2f 2
)−1 and dy = − 8D

a2f 2
y−2dt′, (B-5)

we evaluate the integral part of Equation (B-4) as follows:

∫ t

0

dt′
1

1 + 8D
a2f2 t′

exp


− 2r2

a2f 2
(
1 + 8Dt′

a2f2

)

 = −a2f 2

8D

∫ (1+ 8Dt
a2f2 )−1

1

exp
(
− 2r2

a2f2 y
)

y
dy

=
a2f 2ρc

8κ

[
Ei

(
− 2r2

a2f 2

)

−Ei


− 2r2

a2f 2
(
1 + 8Dt

a2f2

)




 , (B-6)

where we have used the definition of the exponential integral function Ei:

Ei (−ax) =

∫
exp (−ax)

x
dx. (B-7)
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Solving for the dimensionless beam waist of the thermal effect

In this appendix, we show the details for the derivation of Equation (2.39) to (2.42). We use

the ray inclination to the beam axis u = r
f

df
dz

, then Equation (2.39) gives us

− r

f 2

(
df

dz

)2

+
r

f

d2f

dz2
+

r

f 2

(
df

dz

)2

= − 1

n0

∂n

∂T

∂T

∂r
, (B-8)

which leads to Equation (2.41). Therefore, Equation (2.41) becomes

d2f

dz2
=

Ipa
2α exp (−αz)

4κ

(
f

r

)(
− 1

n0

∂n

∂T

)



exp
(
− 2r2

a2f2

)
− exp

(
− 2r2

a2f2
(
1+ 8Dt

a2f2

)
)

r




' −Ipa
2α exp (−αz)

4κ

(
1

n0

∂n

∂T

)(
f

r2

) 
1− 2r2

a2f 2
− 1 +

2r2

a2f 2
(
1 + 8Dt

a2f2

)



=
Ipa

2α exp (−αz)

4κ

(
1

n0

∂n

∂T

) (
f

r2

)(
2r2

a2f 2

)(
1 +

a2f 2

8Dt

)−1

=
Ipα exp(−αz)

2n0κf

∂n

∂T

[
1 + f 2 (τ/2t)

]−1
, (B-9)

where we have used the approximation of the on-axis condition.

Solving for the normalized transmittance for the thermal effect

In this appendix we show the details leading to Equation (2.46). By substituting f 2(L)

which we have found in Equation (2.45), we get

T =
1− exp

(
−2r2

d

a2

)
exp

(
2r2

d

a2 Bα2L2
)

1− exp
(
−2r2

d

a2

)

'
1− exp

(
−2r2

d

a2

)(
1 +

2r2
d

a2 Bα2L2
)

1− exp
(
−2r2

d

a2

)

' 1−Bα2L2

= 1− αL2

2n0κ (1 + τ/2t)

∂n

∂T
Ip, (B-10)
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where we have used the conditions that the argument
2r2

d

a2 Bα2L2 is very small compared to

unity and that rd ¿ a.

2.8.3 Appendix C: Photo-isomerization mechanism and parame-

ters

Simplifying the population differential equation

In this appendix, we show the details of deriving Equation (2.49) and (2.50) to Equation

(2.51) and (2.52) using the orthogonality of Legendre polynomials.

The normalization conditions are given by

∫∫
nt,c (Ω) dΩ = Nt,c,

Nt + Nc = N,
∫∫

P ct,tc (Ω′ → Ω) dΩ′ = 1,
∫∫

Q (Ω′ → Ω) dΩ′ = 1, (C-1)

where Nt and Nc are the molecular densities of the trans and the cis states, respectively, and

N is the total molecular density.

Since random molecular distribution is azimuthally symmetric about the pump beam

polarization direction, we consider the eigenfunction of the system in terms of the Legendre

polynomials[8]. The cis and trans populations can be described in terms of orientational

distribution functions nc(~Ω) and nt(~Ω):

nt (Ω) =
1

2π

∞∑
n=0

2n + 1

2
TnPn (cos θ)

and

nc (Ω) =
1

2π

∞∑

k=0

2k + 1

2
CkPk (cos θ) . (C-2)
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By using orthogonality of the polynomials, we find that

Tn =

∫ π

0

nt (θ) Pn (cos θ) sin θdθ

and

Cn =

∫ π

0

nc (θ) Pn (cos θ) sin θdθ. (C-3)

We can write the redistribution processes in the same fashion with the rotation angle χ

between Ω′ and Ω as follows:

P ct (χ) =
1

2π

∞∑
q=0

2q + 1

2
P ct

q Pq (cos χ) ,

P tc (χ) =
1

2π

∞∑
q=0

2q + 1

2
P tc

q Pq (cos χ) ,

and

Q (χ) =
1

2π

∞∑
m=0

2m + 1

2
QmPm (cos χ) , (C-4)

where P ct
q and P tc

q are the order parameters of angular redistribution of a cis to trans molecule

and a trans to cis molecule, respectively. By multiplying Equation (2.49) by Pn (cos θ) and by

using orthogonality of the Legendre polynomials, we get Equation (2.51) and (2.52). When

n = m, the LHS of Equation (2.49) is

d

dt

∫∫
nt(~Ω)Pm(cos θ)dΩ =

d

dt

[
1

2π

∫∫ ∞∑
n=0

2n + 1

2
TnPn (cos θ) Pm (cos θ) dΩ

]

=
dTm

dt
. (C-5)

The first term of the RHS of Equation (2.49) has the zeroth and the second order combina-

tions of Legendre polynomials. In the same manner as Equation (C-5), we can rewrite the
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RHS of Equation (2.49) to zeroth order as

−Iφtcσ
t
⊥

∫∫
nt(~Ω)Pm(cos θ)dΩ = −Iφtcσ

t
⊥Tm (C-6)

For the second order term, we need to use the recursion relationship:

x2Pn(x) =
(n + 1)(n + 2)

(2n + 1)(2n + 3)
Pn+2(x)

+

[
(n + 1)2

2n + 3
+

n2

2n− 1

]
Pn(x)

2n + 1

+
n(n− 1)

(2n− 1)(2n + 1)
Pn−2(x). (C-7)

After integrating the second order term in Equation (2.49), we get

−Iφtc

(
σt
‖ − σt

⊥
) ∫∫

nt(~Ω)cos2θPm(cos θ)dΩ

= −Iφtc(σ
t
‖ − σt

⊥)

[
m(m− 1)

(2m + 1)(2m− 1)
Tm−2

+

{
(m + 1)2

(2m + 3)(2m + 1)
+

m2

(2m + 1)(2m− 1)

}
Tm

+
(m + 1)(m + 2)

(2m + 1)(2m + 3)
Tm+2

]

= −Iφtc(σ
t
‖ − σt

⊥)

[
m(m− 1)

(2m + 1)(2m− 1)
Tm−2

+

{
2m2 + 2m− 1

(2m− 1)(2m + 3)

}
Tm

+
(m + 1)(m + 2)

(2m + 1)(2m + 3)
Tm+2

]

= −Iφtc(σ
t
‖ − σt

⊥)(κn−Tm−2 + κnTm + κn+Tm+2), (C-8)

where we have used the conventional notation κn−, κn, and κn+ defined in Equation (2.53).

We denote the anisotropic and the isotropic absorption cross sections,

rt,c =
σt,c
‖ − σt,c

⊥
σt,c
‖ + 2σt,c

⊥
, σ̄t,c =

σt,c
‖ + 2σt,c

⊥
3

, (C-9)
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respectively. We can rewrite Equation (C-9) in terms of σt,c
‖ and σt,c

⊥ as,

σt,c
‖ − σt,c

⊥ = 3σ̄t,crt,c, σt,c
⊥ = σ̄t,c(1− rt,c). (C-10)

Finally, We can add Equation (C-6) and Equation (C-8) together, which leads to the

photo-depletion terms as following:

−Iφtc

∫∫ [
σt
⊥ +

(
σt
‖ − σt

⊥
)
cos2θ

]
nt

(
~Ω

)
Pm(cos θ)dΩ

= −Iφtcσ
t
⊥Tm − Iφtc(σ

t
‖ − σt

⊥)(κm−Tm−2 + κmTm + κm+Tm+2)

= −Iφtcσ̄
t
[
(1− rt + 3κnr

t)Tm + 3rtκm−Tm−2 + 3rtκm+Tm+2

]

= −It

[{
1 + rt(3κm − 1)

}
Tm + 3rtκm−Tm−2 + 3rtκm+Tm+2

]

= −It {T} , (C-11)

where It = Iφtcσ̄
t. In the similar manner, we can rewrite the second term and the third term

of Equation (2.49)

[
Iφct

∫∫
nc

(
~Ω′

) {
σc
⊥ +

(
σc
‖ − σc

⊥
)
cos2θ′

}
P ct

(
~Ω′ → ~Ω

)
dΩ′

+
1

τc

∫∫
Q

(
~Ω′ → ~Ω

)
nc

(
~Ω′

)
dΩ′

]
Pm(cos θ)dΩ

= IcP
ct
m{C}+ γCmQm, (C-12)

where Ic = Iφctσ̄
c and γ = 1/τc. Note that It,c is the correction term that we have added to

generalize Sekkat’s theory.[3]
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Calculation for angular brownian relaxation

R is rotational operator in spherical coordinates with unit radius given by,

R = r̂ ×∇

= r̂ ×
(

r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

) ∣∣∣∣∣
r=1

.

(C-13)

Since nt(~Ω) is independent of φ due to azimuthal symmetry, we ignore φ. Using the chain

rule on the last term yields,

DtR ·Rnt(Ω) = Dt
∂2

∂θ2
nt(Ω)

= Dt

(
− cos θ

∂

∂ cos θ
+ sin2 θ

∂2

∂ cos θ2

)
nt(Ω), (C-14)

where we have used the chain rule as follows:

∂

∂θ
=

cos θ

∂θ

∂

∂ cos θ
= − sin θ

∂

∂ cos θ
(C-15)

and thus

∂2

∂θ2
= − sin θ

∂ (− sin θ)

∂ cos θ

∂

∂ cos θ
+ sin2 θ

∂2

(∂ cos θ)2

= − cos θ
∂

∂ cos θ
+ sin2 θ

∂2

(∂ cos θ)2 . (C-16)

The last term of Equation (2.49) requires the recursion relation,

d

dx

[
(x2 − 1)

dPn(x)

dx

]
= n(n + 1)Pn. (C-17)
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By substituting cos θ into x, we get

d

d cos θ

[
− sin2 θ

dPn

d cos θ

]
= 2 cos θ

d

d cos θ
− sin2 θ

d2

(d cos θ)2

= n(n + 1)Pn. (C-18)

After using Equation (C-18), we can rewrite Equation (C-14) as

DtR ·Rnt(~Ω) =
Dt

2π

∞∑
n=0

2n + 1

2

(
cos θ

dPn

d(cos θ)
− n(n + 1)Pn

)
Tn. (C-19)

As we did with previous terms, integrating Equation (C-19) over dΩ after multiplying

Pm(cos θ) yields

∫∫
DtR ·Rnt(~Ω)Pm(cos θ)dΩ =

Dt

2π

∫∫ ∞∑
n=0

2n + 1

2

(
cos θ

dPn(cos θ)

d(cos θ)

−n(n + 1)Pn(cos θ)) TnPm(cos θ)dΩ

= −m(m + 1)DtTm. (C-20)

The configuration of cis-isomer is symmetric to that of trans-isomer. Finally, by combining

all terms, Equation (C-11), (C-12), and (C-20), we have calculated, we have Equations (2.51)

and (2.52).

Estimation of parameters

In this section, we find the DR1 dye parameters by geometric means. As we have considered

DR1 molecules to be cigar shaped, use this fact to relate the cross sections to each other.

The angle between the principle axis of trans and cis-isomes are measured to 56.7◦.[3] By

using the assumption that the angle between the principle axes of trans and cis molecules is
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defined by the angle that the azo bond makes with the principle axis of trans-isomer, we get

Lc = Lt cos θ

= 0.55Lt. (C-21)

To estimate the relationship of widths between trans and cis molecules, we assume that we

can divide the width of the trans molecule by three, such as Wt = 3a, where a is the half

size of the benzene ring. By using a, we can estimate Wc as follow:

Wc ' 2a +
a

cos θ

' 3.8a ' 1.27Wt. (C-22)

The isotropic absorption cross section and the molecule anisotropy we have defined in

the previous section are given by

σ̄t,c =
σt,c
‖ + 2σt,c

⊥
3

(C-23)

and

rt,c =
σt,c
‖ − σt,c

⊥
σt,c
‖ + 2σt,c

⊥
. (C-24)

By substituting the parameters we have found from Figure 2.23 and using the assumption

that the length of the trans molecule is three times larger than its width, that is Lt = 3Wt,

we get

rt =
2

5
, rc =

1

13
, and

σ̄c

σ̄t
= 0.86. (C-25)

The Einstein relation for rod-like molecules is given by[7]

D =
kBT

ζ
=

4kBT

πηsL3
. (C-26)
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Figure 2.23: Geometric analysis to estimate relative cross section between trans and cis
isomer.
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Figure 2.24: The molecular structure of disperse red 1.

By using the ratio between length and width of trans isomers that we have assumed, we get

Dc ' 6Dt. (C-27)

Calculation of the cross section of DR1 trans isomer

We assume that, in the low intensity limit (i.e. less than µW/cm2), photo-isomerization can

be ignored. We have measured the linear absorption coefficient of DR1 in the low intensity

region to be 5.63cm−1. By using the absorption coefficient, we can calculate the cross section

of the tran-isomer.

We use a sample of DR1 (2% wt.) doped PMMA. To make the sample at this concen-

tration, we can calculate the weight of DR1 molecules in 1ml of MMA to be 0.019g. The

molecular weight of DR1 is 314.34g. The molecular number density, N , is given by

N =
mass of molecule per volume

molecular weight
×NA = 3.64× 1019cm−3, (C-28)

where NA is Avogadro number, 6.022× 1023. The cross section, σ̄t, is given by

σ̄t =
α

N
. (C-29)

Equation (C-29), with values of λ = 633nm and α = 5.06cm−1, λ = 647nm and α =

5.63cm−1, gives σ̄t = 1.39× 10−19cm2 and σ̄t = 1.55× 10−19cm2, respectively.
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Calculation of the parameter It and Ic

In this section, we calculate the number of photons absorbed per unit time including the

isotropic cross section of the trans isomer, which we have found in the previous section. The

number of photons that arrive per unit time per unit area for a peak intensity, Ip (W/cm2),

when λ = 647nm is given by

I =
Ip

Eph

= 3.26Ip × 1018cm−2s−1, (C-30)

where Eph is the energy of one photon. As we have defined It in Equation (C-11), It = Iσ̄tφtc.

By substituting σ̄t in previous section, we get It = 0.51φtcIp. In a similar manner, we can

easily find Ic = 0.43φctIp by using the relationship between σ̄t and σ̄c in Equation (C-25).

Calculation of the length and width of DR1 molecule

Table 2.1 shows the DR1 molecule’s bond lengths. As we see in Figure 2.24, we can find the

length of the molecule by adding all the bond lengths along the molecule while considering

the pyramid shape of the bonding angle in nitrogen, which is 109◦ (half of this angle is the

angle between the long axis and the N −C bond) and the tilt angle of the azo bond is 56.7◦.

The length of the trans isomer is given by

Lt = LO−N cos 54.5◦ + 4LC−N + LN=N cos 56.7◦

+2WBenzene + cos 54.5◦ (LN−C + LC−O + LO−H) + LC−C

= 22.38Å. (C-31)

We assume that the benzene hexagone is the main part of the width of trans isomer of DR1,

which give us Wt = 5.6Å ' 1/5Lt.
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Bonding type O – N N = N C – N C – C C – H Benzene hexagone
Bonding length (pm) 145 124 147 154 109 560

Table 2.1: Bond lengths for DR1 molecules.

2.8.4 Appendix D: Mathmatica code

en:=1(*1 for linear -1/2 for circular*)

alp:=0.000237 (*alp the absorption is calculated from n_DR1 value set to be \

0.001*)

n0:=1.49

rt:=2/5

rc:=1/13

a:=2/5 it kt(*at in equation T2*)

b:=2/5 ic kc (*ac in equation C2*)

c:=1+4/7 en rt (*where en is e in equation T2*)

f:= 1+4/7 en rc (*where en is e in equation C2*)

ra:=6(*diffusion constant ratio between cis and trans,

Theoretically length of the long axis of cis and trans are found. dc=

ra dt, ra=6*)

it:=0.011(*I_t in equation T2,

This intensity change is critical so we should use low intensity*)

ic:=0.00946(*I_c in equation C2, same here low intensity,

and when ic is larger than it, (*it looks same trendy in very low \

temperature. Q: high temperature cis is sensitive?*)*)

kt:=en rt (*in equation T2*)

kc:=en rc (*in equation C2*)

l0:=it (1 + 4/5 (en rt)^2 + 4/7 en rt +

6 d/it)/(2 (1 + 2/7 en rt +

3 d/it)) (*lambda_0 in equation T0 and C0*)

lt:=it c + 6 d (*lambda_t in equation T2*)

lc:=ic f +

6 ra d (*lambda_c in equation C2,

diffusion constant is controlled by a ratio, ra, to D_t*)

p2:=0.98 (*P_2^{tc}*)

T0:=Exp[-l0 x]

C0:=1-T0

d:=0.0001(*D_t in equation T2*)

T2:=a / (lt-l0) ( Exp[-lt x]-Exp[-l0 x])

C2:=a p2 (6 d - lt)/((lt-l0) (lt-lc))(

Exp[-lt x] -

Exp[-lc x]) + (b(lt-l0)-

a p2 (l0 - 6 d))/((lt- l0) (lc-l0)) (Exp[-l0 x] - Exp[-lc x])

n33:=2 Pi alp/n0 (T0 (0.14-2/5 T2 +0.86/13 C2) +0.86 (1-1/13 C2))

n11:=2 Pi alp/n0 (T0 (0.14 +4/5 T2 -2 0.86/13 C2) +0.86 (1+2 0.86/13 C2))

deln33:=n33- 2 Pi alp/n0

deln11:=n11-2 Pi alp/n0

(*At time t=3, plotting refractive indices in function of intensities*)

x:=3

Plot[{deln33,deln11}, {it,0,2}, PlotStyle\[Rule]{Hue[0.7],Hue[1]},

Frame\[Rule]True,

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]

Plot[{deln33,deln11}, {it,0,0.05}, PlotStyle\[Rule]{Hue[0.7],Hue[1]},

Frame\[Rule]True,

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]
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Plot[{T0,C0},{x,0,50}, PlotStyle\[Rule]{Hue[0.7],Hue[1]},Frame\[Rule]True,

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]

Plot[{T2,C2},{x,0,50}, PlotStyle\[Rule]{Hue[0.7],Hue[1]},Frame\[Rule]True,

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]

Plot3D[deln11,{d,0,0.003}, {x,0,50},

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]

Plot3D[deln33,{d,0,0.003}, {x,0,50},

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]

Plot[{deln33,deln11}, {x,0,50}, PlotStyle\[Rule]{Hue[0.7],Hue[1]},

Frame\[Rule]True,

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]

Plot[n33-n11, {x,0,50}, PlotStyle\[Rule]{Hue[0.7],Hue[1]},Frame\[Rule]True,

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]

Plot3D[n33-n11, {d,0,0.003},{x,0,50},

TextStyle\[Rule]{FontFamily\[Rule]"Times New Roman",FontSize\[Rule]18}]
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Chapter 3

Experiment

3.1 Introduction

In this chapter, we begin by introducing the procedure of making dye doped poly-methyl

methacrylate (PMMA) bulk samples of high optical quality. We use a recipe developed in our

lab for making a preform (which is a cylinder form which a fiber is drawn), which is amenable

to squeezing at high temperature to form the polymer into desired shape. Because the length

of nonlinear material determines the magnitude of the change of the beam diameter, we make

samples of about 1 mm.

To characterize the materials; we extend the well-known Z-scan technique to time-resolved

Z-scan using a continuous wave light source instead of the traditionally-used pulse laser. We

reduce the amount of hysterises in the dye-doped polymer sample in the closed-aperture

transmittance experiments by only exposing a particular point in the sample for a limited

amount of time, we can, thus, determine the relative contribution of the slow mechanisms,

such as the intensity-dependent refractive index due to photothermal heating and molecular

reorientation due to photo-isomerization. To isolate the thermal mechanism, we discuss a

temperature-dependent optical Kerr gate experiment that is performed to measure thermal

agitation independently of the photothermal heating.
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3.2 Sample fabrication

3.2.1 Preform preparation

We make our preform with mixture of MMA(Methyl Methacrylate) which turns into poly-

mer after polymerization, Chain Transfer Agent(CTA;1-Butanethiol) which limits the chain

length of the polymer, and initiator(tert-Butyl peroxide) which is a catalyst that starts the

polymerization reaction. MMA needs to be filtered by an alumina packed column so that we

eliminate the inhibitor that is added to commercial MMA to prevent polymerization during

shipment and storage. After extracting the inhibitor, MMA can be polymerized by room

light. To prevent filtered MMA from polymerization, the container needs to be wrapped

with aluminium foil. We use the optimized ratio of 2.2µl of CTA and initiator per 1ml of

MMA, which provides a balance between short chain length and brittleness.

The amount of CTA is adjusted to compensate for the added dyes, which also act as a

CTA. We have found that some dyes can make the polymer lengths so short that the polymer

becomes too brittle for further processions. When initiator is added to MMA, polymerization

starts by the addition of heat and/or light. Therefore, the dye must be added to the MMA

prior to the initiator.

Placing the MMA and dye into an ultrasonic bath is the most efficient means for ensuring

that the dye dissolves in the liquid monomer. However, a magnetic stir bar works well to

help PMMA polymer to dissolve in a solvent. Since the ultra-sonic bath adds energy to the

solution in the form of heat, cause must be exercised to ensure that polymerization does not

result. After the dye molecules are dissolved in MMA, we add 2.2µl of CTA and initiator

by using a micro-pipet. To prevent inhomogeneity in the liquid sample, we place the sample

bottle in the ultra-sonic bath for about 5 minutes. This process is critical to eliminate

small-sized bubbles in the liquid monomer.

After preparation of the dye/MMA solution, we transfer the liquid to a clean test tube

that is placed in an oven for polymerization. To reduce any possible pre-polymerized clusters
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or any undissolved residue of dye molecules or dust, we pass the solution through a disk

syringe filter (0.2 µm GHP ACRODISC). The capacity of the syringe can be varied by the

concentration of dye molecules. For 2 wt % DR1 (Disperse Red 1), one disk filter can be

used to fill one and 2/3 test tubes, a volume of amount 30ml.

The liquid solution in the test tube is placed in an oven. We set the oven temperature

to 85◦C and keep the sample in the oven until it is fully polymerized. When large volumes

of MMA are polymerized, the temperature of the oven is lowered to avoid explosion of the

monomer. Typical polymerization times are about 2-3 days, but we can offer add an extra

day to complete sure full polymerization.

When polymerization is complete, the test tube is transferred to a freezer so that the

polymer separates from the test tube by differential expansion. After 3-4 hours of cooling,

we take the test tube out of the freezer and break the glass tube to remove the rod-shaped

sample.

3.2.2 Sample polishing

The rod sample, made as described in Section 3.2.1, is too large in volume to squeeze down to

a thickness of 1 mm. Therefore, we cut the rod sample into short-length cylinders. Among

the cutting methods, lathing makes the cut surface clean compared to sawing. Since we

are squeezing the rod shape into a flat shape, all sides need to be as smooth to the level of

optical quality.

For the first polishing process, we use various kinds of sandpapers including P150, P320,

and P600. For the finest one, P600, we apply water to the sandpaper. Once we get a flat

opaque surface, we use lapping film as the second process with water to get optical quality.

To do so use a polishing pad, CTG913, from Thorlabs. After cleaning the glass plate, we

apply water to secure the contact between the lapping paper (5µm) and the glass plate. The

interface between the glass plate and the lapping paper is critical to avoid fine scratches in

the process of polishing. We polish the sample using a figure 8 pattern. The last process
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of polishing is done with an optical cloth by applying alumina polishing suspension diluted

in water. Both cut sides of the sample need of optical quality. This polishing process often

takes for several hours.

3.2.3 Squeezed bulk sample

Once we have a sample with an optical quality surfaced, we squeeze it by using a squeezer as

shown in Figure 3.1. We prepare the surfaces of glass plates by cleaning them with ethanol

as an usual method to clean lenses. It is important to center the rod between the glass plates.

Before the temperature is ramped up, the rod sample is squeezed by the screw enough to

hold it in place at the center.

We set the temperature of the oven to 115 to 120◦C. When the sample is heated for

about 30 minutes, it is soft enough that the thickness of the sample decreases without

further tightening of the screw. We tighten the screw again enough to hold the sample flat

and place it in the oven. The sample is squeezed every 10 to 15 minutes by the screw, while

keeping the glass plates parallel to each other, a thickness of 1mm is reached. Subsequently,

the sample is kept in the oven for about 20 to 30 minutes at a lower temperature around 95◦C

so that the polymer can relax. The relaxation time and temperature are critical because it

avoids bubbles, that normally form at the squeezing temperature. The sample is separated

from the glass plates after allowing the squeezer to cool to ambient over night. Figure 3.2

shows the initial and final shapes of the sample. The spacers are to keep the gap between

the glass plates constant through out the sample.

3.3 Z-scan

3.3.1 Z-scan theory

In 1990, Sheik-Bahae et al.[1] developed a sensitive self-(de)focusing measurement technique,

Z-scan, that involves focusing a laser beam through a thin sample and detecting the light
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Glass Plates
Sample

Metal Blocks

Screw

Figure 3.1: Squeezer used to compress a the sample.
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(a) (b)

Figure 3.2: The procedure of squeezing the sample as observed from the top and side views.
(a) The initial shape and size of the sample, (b) The final shape and size of the squeezed
sample. The spacers are placed between the glass plates to keep them parallel.

transmitted by a small aperture in the far field to measure the nonlinear refractive index.

The theory is developed assuming a TEM00 Gaussian beam propagating in the z-direction

with a beam waist, w0, such that

E(z, r, t) = E0(t)
w0

w(z)
exp

[
− r2

w2(z)
− ikr2

2R(z)

]
e−iφ(z,t), (3.1)

where w2(z) = w2
0(1 + z2/z2

0) is the beam radius, R(z) = z(1 + z2
0/z

2) is the radius of

curvature of the wave front at z, z0 = kw2
0/2 is the Rayleigh length, k = 2π/λ is the wave

number, and λ is the wavelength. Under the condition that the sample length is small

enough, changes in the beam diameter within the sample due to diffraction or nonlinear

refraction can be neglected. Note that in our experiment the thickness of the sample is not

thin enough to neglect changes in beam diameter due to self-(de)focusing. Therefore, we

need to consider the beam diameter as a separate parameter. The thickness of our sample,

however, is small compared to the Rayleigh length (L < z0), but not small compared to the

nonlinear refraction length.
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Using the Gaussian decomposition method,[2] the electric field at the aperture is given

by[1]

E(r, t) = E(z, r = 0, t)e−αL/2

∞∑
m=0

[i∆φ0(z, t)]
m

m!

wm0

wm

exp

[
− r2

w2
m

− ikr2

2Rm

+ iθm

]
, (3.2)

where

w2
m0 =

w2(z)

2m + 1

dm =
kw2

m0

2

w2
m = w2

m0

[
g2 +

d2

d2
m

]

Rm = d

[
1− g

g2 + d2/d2
m

]−1

and

θm = tan−1

[
d/dm

g

]
. (3.3)

The transmitted power through aperture is given by

PT (∆Φ0(t)) = cε0n0π

∫ ra

0

|Ea(r, t)|2rdr, (3.4)

where ra is the radius of the aperture. The time-averaged normalized transmittance over a

laser pulse is

T (z) =

∫∞
−∞ PT (∆Φ0(t))dt

S
∫∞
−∞ Pi(t)dt

, (3.5)

where Pi(t) = πw2
0I0(t)/2, the instantaneous input power within the sample and S = 1 −

exp(−2r2
a/w

2
a), the linear transmittance through the aperture.

For a CW laser, the input power is constant in time. The normalized transmittance can

be obtained by taking the ratio of the transmitted power with nonlinear refraction to the

82



-6 -4 -2 0 2 4 6
0.94

0.96

0.98

1.00

1.02

1.04

1.06

 

 

0
 

 
0

N
or

m
al

iz
ed

 T
ra

ns
m

itt
an

ce

z/z
0

Figure 3.3: Normalized transmittance when ∆Φ0 = ±0.25 and S = 0, which is an ideal case
for on-axis. It is easy to judge whether the refractive index is positive or negative from the
shape of the curve.

83



initial transmitted power:

T (z, t) =
PT (∆Φ0(t))

PiS

=
PT (∆Φ0(t))

PT (∆Φ0(0))
, (3.6)

where PT (∆Φ0(0)) is the initial transmitted power when the beam is on (t = 0) or when

∆Φ0 = 0. Equation (3.6) gives us the instantaneous normalized transmittance.

For the on-axis beam (r = 0) in the far-field condition (d À z0), and in the small

nonlinear phase change condition (|∆Φ0| ¿ 1), Equation (3.5) can be written as

T (z, ∆Φ0) ' 1 +
4∆Φ0x

(x2 + 9) (x2 + 1)
, (3.7)

where x = z/z0 and ∆Φ0 = k∆n0
[1−exp(−αL)]

α
. Figure 3.3 shows the normalized transmit-

tance as a function of z/z0. The negative sign of ∆Φ0 represents the negative refractive

index that leads change to de-focusing. Due to the de-focusing effect, where z/z0 < 0, the

converging beam will converge less, and where z/z0 > 0, the diverging beam will diverge

more. Therefore, when the sample is placed before the focal point, the normalized transmit-

tance will increase. On the other hand, when the sample is placed after the focal point, the

transmittance will be decrease. In our experiment, the sample length is thicker than in the

films typically used for Z-scan. Therefore, we need to consider nonlinear refraction in the

sample, which leads us to use the beam waist, w0, as a parameter.

Because we use our laser source in its “light mode”, drift in power is small compared to

the changes observed due to signal. We must detect the open and closed aperture signal

at the same time since sequential measurements suffer from the notorious history effect in

DR1-doped polymers. To be able to maintain high correlation between nonlinear absorption

and refraction, we must take both data sets simultaneously. The beam splitter downstream

from the sample allows both to be measured. A calibration of the detectors need to be
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Figure 3.4: Schematic diagram of a Z-scan experiment. BS is beam splitter and D1, D2 are
detectors.

performed prior to the data acquisition so that signals can be compared on the same scale.

The sensitivity of the two detectors is calibrated by measuring the ratio of their measured

voltage as power with the sample removed. After calibrating the detectors, we measure

the detected signal ratio, D1/D2 with the sample in place. The initial transmitted power,

PT (∆Φ0(0)), is the ratio (D1/D2) at t = 0.

3.3.2 Gaussian beam profile measurement

To be able to use the Z-scan technique, it is important for the beam profile to be gaussian.

As we see in Figure 3.4, by using two confocal lenses and a pinhole, we can spatially filter

other modes or noise and pass only the TEM00 mode. The position of the pinhole is critical

to produce a gaussian beam. The pinhole is mounted on a 3-Dimensional translation stage

for precise control of the position. By monitoring the quality of the beam profile on a screen,

as shown in Figure 3.5, the pinhole can be placed at the focal point. By scanning in the

x and y directions, we can find a position where the transmitted power is maximum. For

positioning in the z-direction, where the beam intensity varies slowly with position a set of

airy fringes is observed for a beam whose diameter is larger than the pinhole. As the beam

approaches the center of the pinhole and the center of the focal point, the edge of the beam
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Figure 3.5: Positioning the pinhole to get a gaussian beam.

shape gets smoother. To ensure the best placement of the pinhole, we iteratively scan in

x− y and z directions until we get a high quality gaussian beam. Figure 3.5 shows the setup

for beam filtering.

For a focused beam, we use the knife edge method to measure the beam profile, as shown

in Figure 3.6. We mount a knife on 2-dimensional translation stage controlling x and z

variables. At a fixed z position, we measure the transmitted power as a function of x. The

transmitted power is normalized to the incident power when the knife edge is not blocking

the beam as follows:

T (x, z) =

∫∞
−∞

∫ x

−∞ exp
(
−2x′2

a2

)
exp

(
−2y′2

a2

)
dx′dy′

∫∞
−∞

∫∞
−∞ exp

(−2x′2
a2

)
exp

(
−2y′2

a2

)
dx′dy′

=
1

2

[
1 + Erf

(√
2x

w(z)

)]
, (3.8)

where x is the position of the knife edge as shown in Figure 3.7. For example, Figure 3.7
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Figure 3.6: Transmittance measured as a function of knife edge position.
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shows the normalized transmittance fits to Equation (3.8) for the selected z positions. From

this fitting process, we determin w(z).

The uncertainty in w(z) is determined from the uncertainties in the fit parameters that

come from a least square fit which is used to determine the error bars in Figure 3.8. Gaussian

wave propagation leads to a beam waist of the form:

w(z) = w0

√
1 +

(
λz

πw2
0

)2

. (3.9)

Using Equation (3.9) a fit of the data to w(z) leads us to find beam waist, w0, as shown in

Figure 3.8.

3.4 Time-resolved Z-scan by continuous wave

3.4.1 Motivation

Z-scan technique is easy to use for measurement of the nonlinear properties, such as nonlinear

absorption and refraction. For time-dependent Z-scan, time delay technique is considered

with pulse laser.[3] In CW laser, time-resolved Z-scan is also developed by using various

chopper frequencies and Fourier transform.[4][5][6]

For materials that have history effect that lasts for a long time like DR1 in our research,

we found there is a problem to scan along z-direction by using pulse laser or chopped beam,

due to requirement of a fresh sample area to be a target. To be able to use a fresh part of

the sample, it is convenient to measure the transmittance as a function of time in virtue of

continuous wave as the light source at various z-positions at a time. By recombining the

data as a function of z at a fixed time series, we can find the nonlinear refractive index as a

function of time without affecting initial conditions of the sample.

As such, by time-dependent Z-scan technique in CW laser which we will show in this

section, we can analyze what the mechanisms are involved and how they are related.
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Figure 3.7: Normalized transmittance. Dots (•) are the measured data points. The line (−)
is a fit to Equation (3.8). z is the laboratory coordinate, which should be distinguished from
the variable “z”, which is zero at the focal point.
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Figure 3.8: The beam waist as a function of z near the focal point. The beam waist, w0, is
determined to be w0 = 40.87 ± 0.43µm. The circles (◦) are the data and the line (-) is the
theory in Equation (3.9). The error bars are obtained from the fitting parameters in Figure
3.7.
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Figure 3.9: Setup for time-resolved single beam Z-scan experiment

3.4.2 Experimental setup

We use a Kr laser (coherent Innova 70C spectrum) at λ = 647nm and λ = 457nm, which

are far from the absorption peaks of the DR1 dye (absorption coefficient α = 5.63cm−1)

and Disperse Blue 14 (DB14; absorption coefficient α = 1.72cm−1) samples, respectively.

We set the mode of the laser in “light mode” which keeps the power of the laser stable.

Figure 3.9 shows the experimental setup for time-dependent Z-scan using a CW laser. The

iris is placed well before the sample to block multi-reflected beam spots from the various

optical components. The first polarizer passes the dominant laser polarization. The second

polarizer selects the desired polarization direction. The shutter is controlled by a VMM-

T1 shutter driver/timer, can be set to an arbitrary exposure time and can be triggered by

computer. The shutter trigger signal is synchronized for enabling to the external channel of

the oscilloscope(LeCroy LT372) in auto mode, signals to be recorded from detector 1 and 2

in real time. As such, the trigger sets the time t = 0 when the shutter is opened. The PC

91



downloads the data in ASCII format from the oscilloscope through a GPIB cable through

Scope Explorer provided by LeCroy. We place the spacial filter near the sample to ensure a

gaussian beam profile in the sample, which is mounted on a 2-Dimensional translation stage

(x-z directions).

The transmittance is recorded as a function of time after the beam is turned on. Subse-

quently, the position of the sample is incremented and the sample is moved in the x−y plane

to a fresh spot to avoid hystereses. The shutter is opened and the measurement repeated

until the sample has been moved from a point well in front and well behind the focal point.

Because we use the “light mode” setting on our laser, the power drift is small compared to

the range of measured signal. We measure the open and closed aperture signal simultaneously

to avoid hystereses (an effect well documented in DR1-doped PMMA) To be able to maintain

high correlation between nonlinear absorption and refraction, we need to take both data sets

at the same time.

The calibration of detectors is performed prior to the data acquisition as previously

described. After calibration, we measure the linear transmittance (t = 0 or ε2 = 0), D1/D2,

which is the aperture ratio S = 1 − exp(−2r2
a/w

2
a), where ra is the radius of the aperture

and wa is the beam radius at the aperture.

3.4.3 Time-scanned transmittance at z positions

Before measuring the transmittance as a function of sample position in the z-direction, we

need to determine the range of travel of the translation stage to exceed the Rayleigh length.

The Rayleigh length z0 is determined from the beam waist, w0, which is is given by

z0 = πw2
0/λ. (3.10)

Once we determine the diffraction length, we set the scan distance to a value of about

±6z0. Note that it is important to measure w0 (as described in Chapter 2). Since it is
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required as an input to determining the relationship between power, intensity, and beam

waist which in turn is related to thermal de-focusing. At each z position, the transmitted

power through the aperture is measured. When fresh site of the sample is selected by moving

the sample in x or y direction, it is important that the incident beam is kept perpendicular

to the surface of the sample so that the center of the transmitted beam is not shifted at the

aperture.

When mechanisms with two different response times contribute to ∆Φ0(t) in a time-

dependent Z-scan experiment, ∆Φ0 can be expresses as

∆Φ0(t) = a1

[
1− exp

(
t

τ1

)]
+ a2

[
1− exp

(
t

τ2

)]
, (3.11)

where the parameters are selected as a1 = −0.05, τ1 = 0.5s and a2 = −0.5, τ2 = 2s. The

data from the time-dependent Z-scan technique can be used to reconstruct Equation (3.11).

The normalized transmittance for several selected positions are shown in Figure 3.10

using Equation (3.11). The initial transmittance through the aperture is the normalization

factor when there is no nonlinear refraction, which is set to unity. We observe that when z

is negative, the normalized transmittance is larger than unity because de-focusing shifts the

focal point downstream of the sample. For the same reason, the normalized transmittance

is less than unity for positive z positions. Figure 3.10 shows the normalized transmittance

for the case ∆Φ0 < 0 whose magnitude decreases as a function of time.

3.4.4 Time-resolved Z-scan

In the previous section, we analyzed the normalized transmittance data for various z posi-

tions. From the data in Figure 3.10, we can determine the normalized transmittance at a

fixed time ti for different values of z (see Figure 3.11):

T (t, zi/z0) → T (ti, z/z0) (3.12)
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As was shown in Section (3.3.1), the normalized transmittance from a Z-scan experiment

using a CW light source is given by

T (z, ∆Φ0(ti)) ' 1 +
4∆Φ0(ti) x

(x2 + 9) (x2 + 1)
, (3.13)

where x = z/z0 and ∆Φ0(ti) = k∆n0(ti)
[1−exp(−αL)]

α
. In contrast with a Z-scan measurement

using a pulsed laser, which requires a time average of the ratio of the transmitted power to

the input power, the on-axis phase shift for a CW laser is time-dependent only if the third-

order susceptibility depends on time. For our samples, we can assume that the transmitted

power depends on ∆Φ0 instantaneously with the intensity at time ti.

One of the assumptions of most Z-scan experiment is that the sample is “thin” in which

refraction is ignorable; but, the thickness of our sample is not “thin” as a thin film. Therefore,

we introduce an effective beam waist due to the effects of nonlocal mechanisms. We stress

that this is not a change in the real physical beam waist but this is a mathematical construct

to take into account the nonlocal mechanisms. Section 3.7 describes the justification for doing

so. This affects the Rayleigh length, z0 and the peak intensity at focus, I0(t) as:

z0 =
πw2

0(ti)

λ
(3.14)

and

I0 =
2P

πw2
0(ti)

, (3.15)

where w0(ti) is the effective minimum beam waist at t = ti.

The analysis of the data in Figure 3.11 needs to take into account the modification

in Equations (3.14) and (3.15) if changes in beam waist are appreciable. If the beam waist

additionally increases the peak width in the Z-scan is broadened and the valley. Additionally,

∆Φ0 will yield an increase of the beam size at the aperture. From data fits to the Z-scan

theory, we can get ∆Φ0(ti) for a series of ti values. Since we are interested in short time
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Figure 3.11: Normalized Z-scan transmittance as a function of position z/z0 at selected
times, t. The points are determined from Figure 3.10 at constant time slices and the curves
connect the points using the Z-scan theoretical model. ∆Φ0 becomes more negative as time
increases (see Equations (3.11) and (3.13)).
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scales, we use logarithmic sampling, which yields more data pints at early times (∼ ms) and

less at longer times (∼ s).

3.4.5 The time-resolved refractive index

We can determine ∆Φ0(ti) at time ti by fitting the data to Equation (3.13). Figure 3.12,

shows the result of a fit of the data to Z-scan theory. As shown by Figure 3.12, the fact that

the bi-exponential function given by Equation (3.11) fits so well validates our model.

As such from each data points of ∆Φ0(ti), we can determine the nonlinear refractive

index n2(ti) as a function of time by using the relationship:

n2(ti) =
∆Φ0(ti)

kI0(ti)

α

1− exp (−αL)
, (3.16)

where I0(ti) is the intensity in the sample at ti. Since the power of the laser is stable in its

“light mode” the only intensity changes in the sample will be due to changes of the beam

waist as a function of time. In cases when beam waist changes are large the intensity needs

to be corrected accordingly. To summarize, a fit of the measured value of n2(t) to our theory

will shed light on the mechanisms contributing to nonlinear refraction.

3.5 Temperature dependent birefringence experiment

(OKE)

3.5.1 Phase retardation by optical birefringence

As discussed in Chapter 2 for the DR1 molecule, an anisotropic molecular shape change

and orientation of the molecules leads to anisotropic phase retardation. In this section, we

derive the power (intensity) transmission for the OKE experiment using Jones matrices. The

normalized incident field of the probe beam is linearly polarized with an angle of 45◦ to the
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Figure 3.12: ∆Φ0(t) as determined from Figure 3.11. The circles (◦) are the data points,
which are determined by fitting the Z-scan theory to the normalized transmittance. The line
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polarization direction of the pump beam which is in the x-direction:

Ei =
1√
2




1

1


 . (3.17)

In general, the phase retardation matrix for the x and y directions is given by




eiφx 0

0 eiφy


 , (3.18)

where φx and φy are phase retardations for the x and y directions due to the pump beam.

Also, for a transmission axis at −45◦ the Jones matrix is given by

1

2




1 −1

−1 1


 , (3.19)

which represents the analyzer (crossed polarizer) for the probe beam. Therefore, the trans-

mitted field, Et, can be computed as:

Et =
1

2
√

2




1 −1

−1 1







eiφx 0

0 eiφy







1

1




=
1

2
√

2




eiφx − eiφy

− (
eiφx − eiφy

)


 . (3.20)

The corresponding normalized transmitted intensity of the probe beam is then:

|Et|2 = E∗
t Et

= sin2

(
∆φ

2

)

= T , (3.21)
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where ∆φ = φx − φy. Equation (3.21) represents the transmitted probe intensity when the

pump is off, where T = 0 when ∆φ = 0.

3.5.2 Motivation of temperature-dependent OKE experiment

The purpose of this dissertation is to study the mechanism of photothermal heating and

photoisomerization in dye-doped polymers, and how these mechanisms are coupled.

We do this by analyzing the photothermal effect and its role in agitating in molecular

orientational order, which reduces the order induced by photoisomerization/reorientation,

as we derived in Chapter 2. By controlling the temperature of the sample when the optical

intensity is low, the photothermal contribution can be made negligible. As such, we can

isolate the sole effect of the temperature.

3.5.3 Experimental setup

Two separate HeNe(632.8nm) lasers are used for pump (20 mW) and probe (5mW) beams.

Separate lasers are used to prevent gratings in the sample due to coherence between the

beams. Figure 3.13 shows the experimental setup for the temperature-dependent OKE

measurements. The pump is controlled by a shutter that is connected to a controller/timer,

similar to the time-resolved Z-scan experiment that used a CW light source. The pump

power is controlled by adjusting the angle of a half wave plate that is placed between two

polarizers. The second polarizer sets the polarization direction of the pump, which is at 45◦

related to the probe. A piece of black cardboard is used to absorb the pump beam after it

passes through the sample.

The sample is placed in the heat bath, which is connected to a temperature controller

and an oil bath. The temperature controller controls the temperature and circulation of

the oil in the bath. The internal temperature of the oil bath is set by a panel on the

controller. The temperature controller also monitors the temperature of the oil tank, which

is not necessarily at the same temperature as the sample; so, we monitor the temperature of
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Figure 3.14: Pump and probe beam profiles. Both beams fit a gaussian intensity profile.

the sample directly. The tip of a thermalcouple is embedded in a hole that is drilled in the

sample to monitor its temperature directly. Thermal conducting paste is added to this hole

to assure good thermal contact.

We have found that the polarization of the probe varies radially. As such, we use only

the center part of the beam, which is transmitted through polarizer P1 as a linear polarized

beam. The neutral density filter is used to reduce the power of the probe beam to 0.2 %

of the pump beam power. P1 and P2 are set with their polarization axes perpendicular to

each other. The iris after P2 is used to block any scattered light from the windows of the

heat bath and the sample. The beam profiles and the beam radii are shown in Figure 3.14.

102



In this experiment, since we are not interested in beam size change, the spatial filter is not

used to spatially filter the beam shape.

As in the time-resolved Z-scan experiment, the detectors need to be calibrated with each

other. When the pump is off, the transmitted probe power is zero. The pump beam causes

phase retardation due to birefringence that originates from molecular reorientation which

results in probe light passing to the detector. The birefringence, ∆n is the determined as

showed in Section 3.5.1.

Due to fluctuations of the probe power, a small amount of power is directed to Detector

2 while the rest passes through the sample and to Detector 1. With the pump turned off,

the transmission ratio obtained from the ratio of D1/D2 is proportional to P (L)/P (0), and

is constant as a function of time. Therefore, the transmission due to the birefringence of the

pump beam is obtained by subtracting the transmission at t = 0 from the values obtained

after the pump is turned on at t > 0:

T (t) =
P (L, t)

P (L = 0, t)
− P (L, 0)

P (L = 0, 0)
. (3.22)

By using Equation (3.21), we calculate the phase change after the sample as a function

of time as:

∆φ(t) = 2 sin−1
(√

T (t)
)

=
2π

λprobe

∆n
1− exp(−αL)

α
, (3.23)

where α is the linear absorption coefficient of DR1 (5cm−1). Finally, the birefringence,

∆n(t) = n‖(t)− n⊥(t), is obtained as:

∆n(t) =
αλprobe

π [1− exp (−αL)]
sin−1

(√
T (t)

)
. (3.24)
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3.6 Summary

In this chapter, we have shown how the transmittance of a probe beam as a function of

time at different z position of the sample can be used to determine the Kerr coefficient as

a function of time. Furthermore, we have shown how simulated data for a bi-exponential

material response function yields Z-scan data which can be used to separate mechanisms

with two time responses. As such, this experimental technique is appropriate for studying

photothermal and photoisomerization mechanisms of n2.

3.7 Appendix: The effective minimum beam waist

In this section, we analyze the effect of a nonlocal response, such as thermal lensing on

Z-scan measurements. We find that the intensity depends on the position of the sample in

a way that appears as a change in the Rayleigh length. We show that this effect can be

taken into account in the standard Z-scan analysis by allowing the minimum beam waist to

evolve in time. We stress that the true beam waist is not affected. Rather, our method is

the simplest way to generalize the Z-scan analysis for a nonlocal response.

We assume that the heat source is absorbed light so the energy absorbed at any point in

the material is proportional to the input beam profile as given by Equation (2.31):

Q(r, z) = Ip exp

(
− 2r2

a2f 2

)
α exp(−αz)

f 2
, (3.25)

where Q(r, z) is the heat absorbed per unit length per unit time.

The temperature profile can be calculated from the thermal diffusion equation as a func-

tion of time in cylindrical coordinates, which are we saw in Section 2.3.1 yields

∆T (r, z, t) =
Ipα exp(−αz)

8κ


Ei

(
− 2r2

a2f 2

)
− Ei


− 2r2

a2f 2
(
1 + 8Dt

a2f2

)




 . (3.26)
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Figure 3.15: Time evolution of the temperature profile and the input beam profile as an
input power of P = 1mW and a beam waist of w0 = 35µm. All times are expressed in units
of the thermal time constant.

The temperature profile evolves as a function of time via thermal diffusion of the heat

through the sample from the source to cooler parts of the sample. Figure 3.15 shows the

temperature profile at several times. For an infinitesimally small time such as t = 0.5ms

- which is much shorter than the thermal time constant τ , the temperature profile is the

same as the intensity profile. As a function of time, the temperature profile broadens due to

spatial thermal diffusion. Figure 3.16 shows how ∆n saturates by subtracting temperature

at t = 3s of two other times. For example, at the larger time (t > 10τ), the temperature

gradient is saturated.

The Z-scan experiment measures the transmittance as a function of sample position.

Figure 3.17 shows the position of the sample and the beam waist as a function of z. Since
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our aperture size is small, we need only to consider the on-axis phase shift, ∆φ0. As we saw

in Section 2.3.1, the thermal lens time constant is given by

τ =
a2

4D
, (3.27)

where a is the beam width at the input to the sample and D is the diffusivity, κ/ρc. Since

we are using a focused gaussian beam, the beam width as a function of z is given by,

w(z) = w0 (1 + z2/z2
0)

1/2
. The time constant depends on w(z) at the sample, which governs

the dynamics of the on-axis temperature increase. As such, the dynamics will depend on z

because w(z) is a function of z. Figure 3.18 shows the on-axis temperature increase, δT0, as

a function of lab coordinate, z. Since the on-axis ∆n is given by

∆n(t) = − αP

4πκ (1 + τ/2t)

∂n

∂T
, (3.28)

for fixed power and for t = τ , ∆n is independent of the beam waist. Figure 3.18 shows

that δT0 is the same for two beam waists, 35µm and 70µm, at z = 0. Note that on-axis,

∆n is linearly proportional to δT0. Because the Rayleigh length, z0, is determined by the

minimum beam waist and uniquely determines propagation of a gaussian beam in free space,

the normalized coordinate, z/z0, is more appropriate for comparing beams. Figure 3.19 shows

δT0(z/z0) for w0 = 35µm and w0 = 70µm. The behavior is identical so that ∆n is the same

as expected.

The on-axis phase shift due to the sample, ∆φ0, is proportional to δT0. ∆φ0(z) of an

equivalent local effect is plotted as the blue dotted line. The on-axis phase change for the

local effect, ∆φ0(z, t), obeys

∆φ0(z, t) =
∆Φ0(t)

1 + z2/z2
0

, (3.29)

where ∆Φ0(t) is the on-axis phase shift at the focal point. Comparing the local and nonlocal

on-axis phase change as shown in Figure 3.19, the nonlocal effect is broader, as a function
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of z/z0, than local one.

If we rescale the nonlocal thermal response so that the Rayleigh length, z0, is bigger,

all of the plots in Figure 3.19 can be made identical. Mathematically, this is equivalent to

increasing the minimum beam waist, w0. Since the Z-scan experiment is usually analyzed

under the assumption of a local response, we propose that increasing the beam waist by

an appropriate amount allows the standard Z-scan analysis to apply. We stress that the

physical beam waist is not affected; but rather, that this is a mathematical trick for allowing

the Z-scan data to be analyzed.

When using the standard Z-scan experiment on a material with a nonlocal response, the

transmitted intensity through the aperture will behave in a qualitatively different way from

the local response. To take into account nonlocal mechanisms, we will allow the effective

minimum beam waist act as an adjustable parameter. Thus, the deviation between the

actual beam waist and the effective one will be a measure of the strength of the nonlocal

response.

Motivated by the on-axis refractive index change as given by Equation (4.4), we propose

that the effective beam area obeys the same function, so that the change in the beam waist

is given by

(∆w0)
2 (t) → (∆w0)

2

1 + τ/2t
, (3.30)

where ∆w0 is the change of the beam waist at t →∞.
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Chapter 4

Results and Discussion

In this chapter, we study two dye-doped systems: DB14 dye doped in PMMA, which should

exhibit only a photothermal contribution to Z-scan data; and DR1 dye doped in PMMA,

which responds to light with both photothermal and photoisomerization. By using a combi-

nation of TZ-scan measurements on these two samples, as a function of time and polarization,

the slow third-order nonlinear optical mechanisms in DR1 can be decoupled and our theories

tested.

4.1 Thermal lens effect in Disperse Blue 14/PMMA

In this section, we study the photothermal effect due to linear absorbance in DB14 at a

concentration of 0.022 wt. % in PMMA (DB14/PMMA) in the off-resonant regime at

λ = 457nm. Since DB14 has no means for photoisomerization, the heating mechanism

can be measured directly. Furthermore the concentration of DB14 dye used yields about

the same amount of light absorption as in the DR1 experiments so we anticipate that the

parameters of the photothermal properties of the two samples will be similar. Given the low

dye concentrations used, the bulk properties of the dye-doped polymer should be similar to

that of PMMA. Thus, the physical constants for PMMA polymer obtained from the liter-

ature can be used to apply the theory, with no adjustable parameters, to the experimental
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Figure 4.1: Absorption spectrum of DB14 (0.022 wt.%). The inset is the molecular structure
of DB14. λ = 457nm is the wavelength used in the TZ-scan experiment.

results.

4.1.1 Linear absorbance DB14/PMMA

The thermal lens effect originates from the linear absorption of energy from the light source

by dye molecules in PMMA and the theory of the response is derived in Section 2.3.2.

DB14 dye is used as a baseline material with only thermal effect without other mechanisms

such as photo-isomerization. DB14 doped in a nematic liquid crystal can lead to molecular

reorientation;[1][2] but, the effect is due to interaction between DB14 and a highly ordered

liquid crystal system. Such an effect should not take place in an isotropic polymer, nor
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do we observe any evidence of such an effect. To minimize other potential mechanisms, an

off-resonance frequency light source is chosen. Figure 4.1 shows the absorption spectrum

and the molecular structure of DB14. It is obvious that 457 nm is in the off-resonance

regime. To more accurately measure the linear absorption coefficient at 457 nm we use,

the transmittance of a Kr. laser at 457 nm through a length of sample whose thickness is

measured with a micrometer. The absorption coefficient is obtained by the relationship:

α = − ln Tr

L
, (4.1)

where Tr is the transmittance and L is the length of the sample. The absorption coefficient

at 457 nm is determined experimentally to be 1.72 cm−1.

4.1.2 TZ-scan for DB14

Since the photothermal response is nonlocal, the beam and temperature profile are of different

widths so the change of beam waist in the sample is a parameter that needs to be monitored.

To center the z coordinate, the center parameter, zc, is introduced. As such, the normalized

transmittance is modified as follows: (See Section 3.4.4)

T (z, ∆Φ0(ti)) ' 1 +
4∆Φ0(ti) z/z0

((z/z0)2 + 9) ((z/z0)2 + 1)

= 1 +
4∆Φ0(ti)

(
(z−zc)λ
πw0(ti)

)
[(

(z−zc)λ
πw0(ti)

)2

+ 9

] [(
(z−zc)λ
πw0(ti)

)2

+ 1

] . (4.2)

The measured normalized transmittance is plotted in Figure 4.2 at four selected times,

with best fits to Equation (4.2). The method used to transform the normalized transmittance

as a function of time to the normalized transmittance as a function of z is described in Section

3.4.4. It is observed that the difference in peak and valley heights are increasing as a function
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Figure 4.2: A snapshot at four selected times of a TZ-scan of DB14 (points) and a fit to
theory (curves). The beam waist measured without the sample is 65.06 ± 0.44µm and the
input power is 0.755mW.
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of time, which implies that ∆n(ti) is increasing in magnitude and becoming more negative.

The width of the peak and valley increases as the effective minimum beam waist increase as

a function of time. In the fitting process, the so-called TZ-scan technique, ∆Φ0(ti), w0(ti).

and zc(ti) are obtained at a series of fixed times ti.

4.1.3 Comparison of TZ-scan with other work

The thermal lens effect has been studied with the Z-scan technique using a two-color pulsed

light source in the steady state[3], with a CW pump-probe setup[4], in the steady state

associated with calorimetry in response to a CW laser[5], in determination of the Soret

coefficients[6], and by using Fourier transform techniques with a CW laser[7].

The uniqueness of our method for analysis is as follows:

• Ability to analyze Z-scan data at discrete times: using a CW single beam.

• Takes into account nonlocal mechanisms by introducing an effective minimum beam

waist.

Figure 4.3 shows comparison between theory 1 (solid line), which accounts for the effective

minimum beam waist change and theory 2 (dashed line), the standard theory. In this

experiment, when w0 = 65µm, z0 = 2.9cm and when w0 = 35.1µm, z0 = 8.5mm, where each

value of z0 is larger than the thickness of the sample (1.4mm). Our sample is thick enough

to cause refraction within the sample and to be able to introduce a time evolution of the

effective minimum beam waist under the typically-assumed condition of Z-scan experiments

that z0 > L. The standard theory keeps the beam waist constant and is assumed to be

the same as beam profile without a sample so that a thin film sample is assumed to not

introduced refraction within the sample.

In Figure 4.3, the distance between peak and valley of the data is larger than what is

predicted by the standard theory but is well matched to our theory that the effective mini-

mum beam waist changes with time. The dashed arrows indicate the degree of broadening.
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Figure 4.3: The comparison between our theory (solid curve) which accounts for an effective
minimum beam waist, w0(t) and the standard theory (dashed curve) with w0 = 65µm when
t = 1s. Theory 1 is with time-dependent effective minimum beam waist, w0(t). The dashed
arrow indicates the increase of the Rayleigh length due to the time dependent effective
minimum beam waist, w0(t).

Even with a time dependence of w0(t) the condition that ∆zp,v ' 1.7z0 still holds.[8] For

example, ∆zp,v = 10.99cm ' 1.7z0 = 10.8cm but ∆Φ0 is the same (∆Φ0 = −0.143± 0.090)

for both cases. Since ∆Φ0 is invariant between cases w2
0(t) in the fitting process does not

affect ∆n(t) but affects for n2(t) through the intensities. We will discuss more about w2
0(t)

and how it is related to n2(t) in Sections 4.1.6 and 4.1.7.
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P (mW ) w0(µm) ∆nsat(×10−5) τ(ms)

0.755 65.06± 0.44 −0.857± 0.051 83.8± 2.8
1 65.06± 0.44 −1.31± 0.01 99.3± 2.7

7.19 35.11± 0.42 −6.452± 0.047 34.3± 1.2

Table 4.1: Parameters obtained from fits for ∆n of thermal effect for DB14/PMMA in Figure
4.4 –4.6.

4.1.4 The change of refractive index, ∆n as a function of time and

time constant τ

∆n(ti) is calculated from ∆Φ0(ti) which is obtained from fitting the Z-scan data at a discrete

time ti as follows:

∆Φ0(ti) = k∆n0(ti)Leff

= k∆n0(ti)
1− exp(−αL)

α
, (4.3)

where ∆Φ0(ti) is the on-axis change of the phase at time ti, k is the wave number, Leff is

the effective length, α is the linear absorption coefficient, and ∆n0(ti) is the on-axis change

of refractive index which for continuous time is denoted by ∆n(t) in Equation (4.4).

∆n at discrete times is plotted as a logarithmic function of time in Figures 4.4 – 4.6. Our

theory for the change of refractive index for the thermal lens effect as a function of time by

Equation (2.86):

∆n(t) = − αP

4πκ (1 + τ/2t)

∂n

∂T
, (4.4)

is used to fit the data, where the negative sign is for defocusing. Table 4.1 shows the fitting

parameters used in Figures 4.4 – 4.6.

The theoretical time constant is given by[9] (See Equations (B-9) and (2.42))

τ theory =
w2

0

4D
, (4.5)

where D is the diffusivity given by κ/ρc. Table 4.3 shows the comparison of τ exp and τ theory.
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α(cm−1) ∂n
∂T

(K−1) κ(W/m ·K) ρ(kg/m3) c(J/kg ·K)
1.72 1.5× 10−4 0.193 1.19× 103 1.42× 103

Table 4.2: Physical constants of PMMA.[10]

P (mW ) w0(µm) τ exp(ms) τ theory(ms)

0.755 65.01 83.8± 2.8 9.25
1 65.01 99.3± 2.7 9.25

7.19 35.11 34.3± 1.2 2.7

Table 4.3: Comparison between the theoretical and experimental time constants.

When we compare τ theoretically calculated by using parameters in Table 4.2, there are

disagreement from τ measured. The experimental values are about 10 times larger than the

theoretical values. More details about the time constant will be discussed in Section 4.1.8.

4.1.5 The time dependence of effective minimum beam waist w0(t)

and time constant τ

From TZ-scan fitting process, the time-dependence of w0 was obtained from the distance

between peak and valley and their widths. In this section, our theory is modified based

on these experimental results. Heat transfer from a heat source through the sample was

described in Chapter 2. The on-axis temperature as a function of time from Equation (2.85)

is given by

δT (t) =
αP

4πκ (1 + τ/2t)
. (4.6)

Since the photothermal heating is a nonlocal effect due to diffusion from the heat source

(the input beam shape) and that the change of thermal refractive index is proportional to the

temperature increase, the time dependence of effective minimum beam waist would follow

δT (t) in Equation (4.6). According to the boundary conditions:

w2
0(t = 0) = w2

0 (4.7)
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in Equation
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and

lim
t→∞

w2
0(t) = w2

0 + ∆w2
0, (4.8)

we propose that w2
0(t) as a function of time is:

w2
0(t) = w2

0 + ∆w2
0/(1 + τ/2t). (4.9)

Figures 4.7 – 4.9 show the experimental values of w2
0(t) as determined using Z-scan and

allowing w0 to be a free parameter at each time and fits to Equation (4.9). At small times,

the peaks and valleys of normalized transmittance data are small and difficult to measure.

Therefore, the error bars in the short-time regime (t < 10ms) are larger than those longer

times (t > 10ms).

In Figure 4.7, w0 = 54.6± 1.9µm and ∆w0 = 82.9± 1.3µm. w0 obtained from the knife

edge method is 65.06± 0.44µm. In Figure 4.8, w0 = 68.5± 0.4µm and ∆w0 = 71.0± 0.5µm.

w0 obtained from the knife edge method is 65.06±0.44µm. In Figure 4.9, w0 = 40.3±0.4µm

and ∆w0 = 31.4 ± 0.5µm. w0 obtained from the knife edge method is 35.11 ± 0.42µm. As

such, w0 ∼ ∆w0 and the measured beam waists without a sample are close to w0 determined

from the fits.

4.1.6 The nonlinear refractive index n2(t) of photothermal heating

Considering time-dependent intensities as a function of time associated with w2
0(t), ∆n(t) is

modified as follows:

∆n(t) = n2(t)Ip(t)

= n2(t)
2P

πw2
0(t)

. (4.10)
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By substituting w2
0(t) of Equation (4.9) into Equation (4.10) and solving for n2(t), we get

n2(t) = ∆n(t)
πw2

0(t)

2P

= − α

8κ

∂n

∂T

w2
0(t)

1 + τ1/2t

= − α

8κ

∂n

∂T

[
w2

0

1 + τ1/2t
+

∆w2
0

(1 + τ1/2t) (1 + τ2/2t)

]
, (4.11)

where τ1 and τ2 are the time constants of ∆n(t) and w0(t), respectively. In general, τ1 and τ2

are not necessarily the same. To obtain n2(ti) from ∆n(ti), the peak intensity of a gaussian

beam as a function of w2
0(t) is used in Equation (4.10), namely Ip(ti). In Figures 4.10 – 4.12,

Equation (4.11) is the theory function used to fit the data and a = − α
8κ

∂n
∂T

. The parameters,

w0 and ∆w0 found in Figures 4.7 – 4.9 fixed and only τ1 and τ2 are used as parameters in

fitting process of n2(t).

The two time constants, τ1 and τ2 are found to be almost identical. This implies that

the time evolution of w2
0(t) follows the time dependence of ∆n(t). We assume that w2

0(t)

behaves in the same manner as the on-axis temperature δT (t) in Equation (4.6). If n2(t) is

from a pure thermal lens effect, the assumption is consistent with the data for DB14.

∆n is proportional to the input beam power P with a negative constant of proportionality.

On the other hand, nsat
2 or n2(t →∞) is proportional to w2

0 + ∆w2
0, namely

nsat
2 = − α

8κ

∂n

∂T
(w2

0 + ∆w2
0). (4.12)

Note that Different combinations of beam waist and power can yield the same intensity.

Table 4.4 shows that case 3 has smaller nsat
2 than case 1 and 2 even though case 3 has a

larger intensity with a smaller beam waist than case 1 and 2, which is corresponding to

Equation (4.11) when t →∞. The relationship between nsat
2 and w0 related to the thermal

conductivity will be discussed in Section 4.1.7. When we increase the size of the beam

waist from 35.11µm (case 3) to 65.06µm (case 1 and 2), the time constant increases from
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Power(mW ) w0(µm) nsat
2 (×10−10cm2/mW ) τ(10−2s)

0.755 65.06 −18.13± 0.12 19.2± 0.5
1 65.06 −20.13± 0.08 19.1± 0.4

7.19 35.11 −3.68± 0.02 5.77± 0.14

Table 4.4: Parameters from fits for the nonlinear refractive index of the thermal lens effect
for PMMA/DB14 (0.022 wt. %). The data and fits are shown in Figure 4.10 – 4.12.

5.97s (case 3) to 19.1s (case 2) and 19.2s (case 1). This still hold the quadratic relationship

between the size of the beam waist and the time constant, such that τ exp ∝ w2
0 + ∆w2

0.

4.1.7 Thermal conductivity

The on-axis temperature change is obtained in Section 4.1.5 as follows:

δT =
αP

4πκ (1 + τ/2t)
. (4.13)

In the limit of t →∞, the saturated δT is given by

δTmax =
αP

4πκ
, (4.14)

which is independent of time constant. As such, an analysis using δTmax is not affected by

discrepancies between experimental and theoretical values of τ .

For data analysis, since the change of refractive index is linearly proportional to the

change of temperature, so δTmax is obtained from the experimental value of ∆nsat by

δTmax =

(
∂n

∂T

)−1

∆nsat, (4.15)

where ∆nsat is obtained from Figures 4.4 – 4.6 and ∂n
∂T

is given in Table 4.2. Figure 4.13

shows δTmax as a function of power. The thermal conductivity is obtained from a linear

fit to Equation (4.14). Figure 4.13 shows a comparison of κ of PMMA [10] and our dye-

doped polymer sample. Since the dye concentration is as small (0.022 wt. %), the thermal
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Parameter Literature[10] Literature[11] Figure 4.13 Figure 4.14

κ(W/m ·K) 0.193 0.16± 0.03 0.226± 0.011 0.167± 0.007

Table 4.5: The comparison of parameters.

conductivity of dye-doped polymer should be approximately equal to the value for pure

PMMA.

Recall that Equation (4.11) includes the effective minimum beam waist as a function of

time. In the limit of t →∞, the maximum value of n2 is related to w2
0 + ∆w2

0 as follows:

nmax
2 = − α

8κ

∂n

∂T

(
w2

0 + ∆w2
0

)
. (4.16)

Figure 4.14 shows another way to find the thermal conductivity by using the linear relation-

ship between |nmax
2 | and w2

0 + ∆w2
0 with α

8κ
∂n
∂T

as the slope. κ is obtained from the slope of

the graph by substituting α and ∂n
∂T

from the literature, as summarized in Table 4.2. We

get a result that is comparable to the literature value[10]. This result supports our theory

which includes the effective minimum beam waist. Table 4.5 shows the value of κ from the

literature and from our work.

4.1.8 Discrepancy of the time constants

In Section 4.1.4, a discrepancy between the theoretical and experimental time constants is

observed. τ exp is about 10 times larger than τ theory, where from Section 2.3.2,

τ theory =
ρc

4κ
w2

0. (4.17)

In Sections 4.1.6 and 4.1.7, we proposed that w0(t) should be modified to include a time

dependent effective minimum beam waist. By substituting Equation (4.9) into Equation

(4.17), our theory for the time constant can be generalized to

τ =
ρc

4κ

[
w2

0 + ∆w2
0/(1 + τ/2t)

]
. (4.18)
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As a result, the time constant τ is not a constant but a function of time. But, in the limit

of t →∞, the time constant approaches:

τ sat =
ρc

4κ

(
w2

0 + ∆w2
0

)
. (4.19)

In Section 4.1.7, κ is obtained by two different methods independent of the values of ρ and c.

The error range of κ is not enough to explain the discrepancy when using Equation (4.17).

However, by substituting the condition w0 ∼ ∆w0 found in Section 4.1.5, a factor of two is

obtained in the saturated value of τ :

τ sat =
ρc

4κ
2w2

0 = 2τ theory. (4.20)

As such, the only unknown parameter from the experimental results is the specific heat

which must be 4-5 times larger than that in reference[10] to explain the discrepancy between

τ theory and τ exp. It is unlikely that the literature value of the specific heat is that inaccurate.

We propose that the discrepancy is due to assumptions about the air-sample interface.

In our theory, heat dissipation at the boundary of the sample is not considered. Due to

the insulating effect of the air, it would take more time for the sample to reach thermal

equilibrium. Figure 4.15 shows a schematic representation of how heat transfers at the

boundary. The time delay of the heat transfer would explain the remaining discrepancy of

the time constant between theory and experiment.

4.1.9 Summary for DB14/PMMA

From experiments with DB14, our findings are:

1. The effective minimum beam waist increases as a function of time due to the pho-
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Figure 4.15: Heat transferring delays due to the air contact at the boundary.
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tothermal lens effect as follows:

w2
0(t) = w2

0 +
∆w2

0

1 + τ/2t
, (4.21)

where the experiment suggests that w0 ∼ ∆w0. Consequently, the saturated effective

beam waist is related to the initial beam waist, namely wf
0 ∼

√
2w0.

2. The nonlinear refractive index, n2 is a quadratic function of the beam waist as follows:

n2(t) = − α

8κ

∂n

∂T

[
w2

0

1 + τ1/2t
+

∆w2
0

(1 + τ1/2t) (1 + τ2/2t)

]
, (4.22)

where τ1 is the time constant of ∆n(t) and τ2 is the time constant of w2
0(t). The

condition that τ1 = τ2 is obtained experimentally from a fit of the theory to the data.

3. The thermal conductivity, κ is obtained by using Result 1 (See Figure 4.14). This

support that our modification for the second term in w2
0(t) is correct. Comparison of

the thermal conductivity, κ in PMMA[10] [12] and DB14/PMMA was made (See Table

4.5).

4. A discrepancy between the theoretically predicted time constant and the experimental

value was observed. We conclude that this effect originates from our theory’s neglect

of the sample/air interface.

4.2 Thermal effect and photoisomerization in DR1/PMMA

In Section 4.1, it was shown that the photothermal lens effect is the dominant nonlinear

optical effect in DB14/PMMA when the excitation wavelength is off-resonance. Although

the absorption coefficient of DB14/PMMA is as small as 1.72 cm−1, it is enough to act as a

heat source in the sample.

In this section, TZ-scan is performed in DR1/PMMA under similar conditions (beam
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waist, intensity, and linear absorption coefficient) used for DB14/PMMA. To understand

the photothermal contribution to n2 in DR1/PMMA, the analytical results determined for

DB14/PMMA under similar conditions is used.

4.2.1 TZ-scan fit

Figure 4.16 shows the absorption spectrum of 2 wt. % disperse red 1 doped PMMA

(DR1/PMMA). The inset shows the molecular structure of DR1. The off-resonance wave-

length of 647nm is used for the TZ-scan and as described in Section 4.1.2, the normalized

transmittance of the Z-scan run is obtained as shown in Figure 4.17 at 40ms, 100ms, 1s,

and 3s as an example. The beam waist measured without the sample using a knife edge is

40.87± 0.41µm.

As expected, the peak to valley amplitude increases as a function of time. At short times,

the systematic noise level is large enough to show as error bars. On the other hand, as the

amplitude of the transmitted signal gets larger, the noise level becomes small compared to

the transmittance making the error bars smaller than the data points. Consequently, the

theory fits better as time increases.

We use the effective minimum beam waist as a parameter for the fitting process in Figure

4.17 as described for the DB14 case. An increase of the effective beam waist is associated

with broadening of the peak and valley, increase in the distance between peak and valley,

and a sign of nonlocal photothermal heating as presented in Section 4.1.5.

One common assumption of Z-scan experiments is that the Rayleigh length is larger than

the thickness of the sample. In case of a thick sample (L > z0), the separation of the peak

and the valley is observed without broadening of peak and valley.[13] In our work, we used

large beam waists so that the Rayleigh length is larger than the thickness of our sample

(L < z0) to keep the assumption valid.

In the fitting process, the effective beam waist in the sample (w0(t)), the on-axis phase

change at the focal point (∆Φ0(t)), and the center point (zc(t)) are obtained as parameters
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Figure 4.16: Absorption spectrum of DR1 (2 wt.%). The inset is the molecular structure of
DR1. λ = 647nm is the wavelength used in the TZ-scan experiment.

140



0 2 4 6 8 10

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0 2 4 6 8 10

0.94

0.96

0.98

1.00

1.02

1.04

0 2 4 6 8 10
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

0 2 4 6 8 10
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

 

 

40ms

N
or

m
al

iz
ed

 T
ra

ns
m

itt
an

ce

 

 

 

100ms

 

 

1s

N
or

m
al

iz
ed

 T
ra

ns
m

itt
an

ce

z(cm)
 

 

3s

z(cm)

Figure 4.17: TZ-scan for DR1 at different time snapshots. The beam waist measured without
the sample is 40.87± 0.41µm. The input power of the beam is 0.033mW .
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DB14/PMMA DR1/PMMA
α(cm−1) 1.72 @457 nm 5.63 @647 nm; 5.06 @633nm
w0(µm) 35.11; 65.06 40.87; 70.83
P (mW) 0.755; 1; 7.19 0.033; 0.055; 0.11; 0.168; 0.22

Table 4.6: Experimental conditions for DR1/PMMA and DB14/PMMA

in the same manner as for DB14/PMMA.

4.2.2 The effective minimum beam waist

Recalling that the thermal lens effect originates from the heat source through the linear

absorption coefficient, a similar behavior of w0 as a function of time is expected in DR1 so

that w2
0(t) = w2

0(0) + ∆w2
0/(1 + τ/2t) with the assumption that dye at a concentration of 2

wt. % is not enough to change the thermal properties of the host polymer (PMMA).

Large off-resonant nonlinearity is reported for DR1/PMMA when measured by four wave

mixing.[14] Intensities are chosen to be about 10 times lower than used in DB14 to avoid

higher order nonlinearities. Since the nonlinear refractive index for the thermal lens effect

depends on the beam waist rather than the intensity, it is valid to use lower the intensities to

test the nonlinear refractive index of the thermal lens effect in DR1/PMMA. Table 4.6 shows

that the parameters are comparable in each sample. Both samples have a small concentration

of chromophore so that the thermal properties should be similar.

Figure 4.18 and Figure 4.19 show how w0(t) changes as a function of time. Figure 4.18

shows w0(t) with a small initial beam waist of 40.87 ± 0.41µm for P = 0.033, 0.055, 0.11,

and 0.22 mW with linearly and circularly polarized beam. Figure 4.19 shows w0(t) with a

large initial beam waist of 70.83± 0.49µm when P = 0.168mW with linearly and circularly

polarized beam. For both linearly and circularly polarized light, w0(t) is the same within

experimental uncertainty.

The initial beam waist before nonlinear refraction turns on is an important factor for the

thermal nonlinear refractive index since w0 ∼ ∆w0. The magnitude of the effective minimum

beam waists for DR1/PMMA are not as large as those found for DB14/PMMA under similar
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conditions. The increase of the effective beam waist is about 5µm in Figure 4.18 and 4.19,

which is smaller the 40% increase found in DB14/PMMA.

This implies that there is no photothermal lensing in DR1/PMMA. Where is the thermal

lens effect? Why does the minimum beam waist change so little? Is the photothermal heating

mechanism different in some fundamental way from DB14/PMMA? Those questions will be

answered in Section 4.3.

4.2.3 Time-dependent of δn for linearly and circularly polarized

beam from TZ-scan

According to the theory we developed, the change of the refractive index parallel to the

pump beam polarization is given by Equation (2.72),

∆n‖ =
2πN

n0
PMMA

{
T0(t)ᾱ

t
(
1 + 2rtT2(t)

)

+ (1− T0(t)) ᾱc (1 + 2rcC2(t))− ᾱt
}

, (4.23)

where T0 and C0 are the number of trans and cis isomers normalized to unity, and T2 and C2

are the second order parameters for each kind. Since we use a single beam in this TZ-scan,

the pump and probe are the same beam so the parallel component is measured.

A TZ-scan is performed with two different beam waists with a linearly and with a circu-

larly polarized beam. Figure 4.20 shows the refractive index changes for a linearly polarized

beam with w0 = 40.87µm. The parameters obtained from the best fits are shown in Table

4.7. Figure 4.21 shows the refractive index changes as a function time for a circularly polar-

ized beam with w0 = 40.87µm. Table 4.8 shows the parameters obtained from the best fits

in Figure 4.21.

In the thermal lens effect for DB14, the change of refractive index from the thermal effect

is related to the beam waist. Therefore, a TZ-scan for a larger beam waist is also performed

to study how the beam waist affects the results. Figure 4.22 shows data of ∆n(t) and fits
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Figure 4.18: Minimum beam waists measured by TZ-scan. (a) Linearly polarized beam and
(b) Circularly polarized beam. For both (a) and (b), the measured minimum beam waist
without the sample is 40.87± 0.41µm.
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Figure 4.19: Effective minimum beam waists measured by TZ-scan. (a) Linearly polarized
beam and (b) Circularly polarized beam. For both (a) and (b), the measured minimum
beam waist without the sample is 70.83± 0.49µm.
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P (mW ) 0.033 0.055 0.11 0.22 0.168
w0(µm) 40.87 40.87 40.87 40.87 70.83

ζt(×10−25J · s) 3.04± 0.3 4.22± 0.4 3.05± 0.3 5.81± 0.6 11.60± 1.2
φtc(×10−2) 3.20± 0.27 2.39± 0.14 3.30± 0.26 2.43± 0.21 2.39± 0.14

rt 0.84± 0.06 0.93± 0.05 0.86± 0.06 1± 0.07 1.00± 0.06
φtcr

t(10−2) 2.69± 0.42 2.22± 0.25 2.84± 0.42 2.43± 0.38 2.39± 0.28

Table 4.7: Parameters used in fitting n2 for linearly polarized beam.

P (mW ) 0.033 0.055 0.11 0.22 0.168
w0(µm) 40.87 40.87 40.87 40.87 70.83

ζt(×10−25J · s) 3.02± 0.3 4.30± 0.43 2.66± 0.27 4.76± 0.5 11.61± 1.2
φtc(×10−2) 1.62± 0.15 1.44± 0.13 2.15± 0.20 1.61± 0.20 1.32± 0.18

rt 0.89± 0.08 1± 0.07 0.93± 0.07 1± 0.08 1± 0.1
φtcr

t(×10−2) 1.44± 0.26 1.44± 0.23 2.00± 0.34 1.61± 0.33 1.32± 0.31

Table 4.8: Parameters used in fitting n2 for circularly polarized beam.

for a linearly and a circularly polarized beam with w0 = 70.83µm. The parameters obtained

for the best fits are shown in Table 4.7 and 4.8.

4.2.4 Physical behavior of the parameters from fit

In Section 4.2.3, the refractive index change, ∆n(t) as a function of time was found to fit the

theory that we developed in Section 2.4.2. In this section, the contribution of each parameter

and its physical meaning is presented.

In Equation (4.23), the order parameters are a complicated function of intensity, time,

and temperature (from photothermal effect or globally controlled by an oven). Due to the

complicated functions we need to analyze, Origin C (version 7.5) used to fit the data. (See

Appendix 4.4)

The increase in the refractive index due to the addition of DR1 dye in its trans state into

the polymer is given by,

n0
DR1 =

2πN

n0
PMMA

ᾱt. (4.24)

Since isomerization from the trans to the cis state leads to a decrease of the refractive index,

the largest possible index change for photoisomerization in ∆n < n0
DR1. For example, if n0

DR1
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Figure 4.22: The nonlinear refractive index as a function of time after the beam is turned on
for DR1. P = 0.168mW and w0 = 70.83µm. (a): Linearly polarized beam, (b): Circularly
polarized beam. Lines (–) are the theoretical fits.
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were on the order of 10−3, our theory for ∆n(t) would necessarily be consistently below the

data even for a perfectly linear molecule (rt = 1) and ideal quantum yield (φ = 1). On

the other hand, when n0
DR1 is on the order of 10−2, our theory fits observation as presented

in the previous section. Since ∆n(t) is obtained from the change of χ(1) as a function of

time, the limiting condition is self-consistent. The order of magnitude (10−2) agrees with

the literature[15]. As such, by controlling the parameter of n0
DR1 in Equation (4.24), it is

possible to test the validity of our theory.
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Figure 4.23: (a) Photoisomerization and (b) Photothermal diffusion.

4.3 Mechanisms

In the previous section, the theory of time-dependent ∆n was presented and compared with

data for various intensities, power, and beam waist.

In this section, we will discuss the physical meaning of the parameters in detail as follows:

• Quantum yield φ and molecular anisotropy r as a polarization-dependent local effect.

• Rotational friction ζr or viscosity η related to non-polarization-dependent nonlocal

photothermal diffusion.

Figure 4.23 shows photoisomerization and photothermal diffusion mechanisms. Figure

4.23 (a) represents photoisomerization which increases anisotropy of the sample by angular

hole burning. On the other hand, Figure 4.23 (b) represents photothermal diffusion, which

randomizes the orientation of molecules. There are two methods to introduce temperature-

dependent mechanisms: One is from the light source as a heat source through optical linear

absorption. The other method is to control the temperature externally and globally.
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4.3.1 Photoisomerization

The molecular anisotropy is defined by

rt,c =
σt,c
‖ − σt,c

⊥
σt,c
‖ + 2σt,c

⊥
. (4.25)

When a molecule is close to being 1-D such as a linear molecule (σ⊥ → 0), r → 1. On the

other hand, when a molecule is a symmetric 2-D one such as a circularly-shaped molecule

(σ‖ ∼ σ⊥), r → 0. According to the fit to the data, the anisotropy of the trans-isomer, rt

is close to unity which means the molecule is approximately 1-D. On the other hand, rc for

the cis-isomer is in order of 10−4 which means the molecular shape is nearly circular.

The ratio of rtφtc for circularly to linearly polarized light, namely C (rtφtc) /L (rtφtc),

for various intensities are shown in Figure 4.24. The average of the ratio is 0.62 ± 0.03.

C (rtφtc) /L (rtφtc) is equal to φC
tc/φ

L
tc since the molecular shape of a trans isomer, which

determines rt, is independent of light polarization. φC
tc and φL

tc are the quantum efficiencies

of an absorbed photon for converting the molecule from trans to cis for circular and linear

polarization, respectively.

To explain why φtc is larger for a linearly than for a circularly-polarized beam, we approx-

imate the trans-isomer as a rod and the cis-isomer as a ring or disk. The moment of inertia

for the trans isomer is 1
12

ML2, where M is the mass and L is the length of the trans-isomer.

The moment of inertia for a disk is 1
2
MR2, where R is the radius of the disk. Figure 4.25

shows how the length of trans molecule is related to the radius of the cis molecule assuming

that the circumference of the cis molecule is the length of trans molecule. Thus, R = L
2π

.

According to the fit of the data to the theory, the length of cis isomer is about 1/3 of that

of trans isomer although the theoretical estimation counting azobenzene part only gives us

0.55 in Section 2.8.3 Appendix C. Using the model in Figure 4.25, the moment of inertia of

trans molecule is about 6 times larger than cis molecule for a disk shape and about 3 times

larger than the cis molecule in the ring shape. A circularly polarized photon can transfer
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angular momentum to an object more easily than a linear polarized photon.[16] Since the

moment of inertia of trans-isomer is larger than that of cis-isomer, the angular momentum

from a circularly polarized photon can be transferred to cis-isomers more easily than to a

trans-isomers. In other words, incident circularly polarized photons are easily absorbed by

circularly-shaped cis-isomers than absorbed by linear trans-isomers. As a result, the quan-

tum yield of trans to cis transition, φtc for a circularly polarized beam is smaller than that

for a linearly polarized beam.

Figure 4.26 shows the ratio of nC
2 /nL

2 as a function of time. Due to our new TZ-scan ex-

periment, it is possible to show the ratio as a function of time. The common non-polarization

dependent effect such as photothermal heating cancels when taking the ratio but polarization-

dependent mechanisms are remain.

The magnitude of nonlinear refractive index depends on molecular anisotropy and quan-

tum yield. Since the molecular anisotropy is an intrinsic property of a molecule, the quantum

yield will determine the magnitude. The ratio of quantum yields agrees with the ratio of the

nonlinear refractive index in Figure 4.26.

The ratio 2/3 and 1/4 are reported for nonresonant electronic nonlinearity and for molecu-

lar reorientation, respectively.[18] Since our experiments are performed with CW light source,

the peak intensity is too low for ∆n to originate from an electronic mechanism. The ratios

observed in our experiment are not close to 1/4, which also means that in this time regime,

photoisomerization more dominantly contributes to ∆n than molecular reorientation. To

be able to observe molecular reorientation, the exposure time scale would need to be much

higher.

In limit of t → ∞, the ratio of the nonlinear refractive index in disperse red 13 azo

dye doped in PMMA is recently found to be 2/3[17], which agrees with our data. In the

reference, angular hole burning model and HeNe laser were used, which is similar to our

results.
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4.3.2 Temperature dependent birefringence of DR1/PMMA

In DB14/PMMA, the thermal lens effect was found to be a nonlocal effect by observing

the time-dependent effective 0minimum beam waist. In DR1/PMMA, the photothermal

mechanism was convoluted with molecular rotational friction through the Einstein relation.

In this section, temperature-dependent birefringence of DR1/PMMA is measured. Ther-

mal agitation can reduce molecular orientational order directly using a thermal bath.

Figure 4.27 shows the birefringence, ∆n, as a function of time for selected temperatures.

As the temperature of the sample increases, the transmittance decreases. The birefringence
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Figure 4.28: Birefringence as a function of temperature at t = 3s.

originates from an anisotropic molecular distribution. As temperature increases, the ther-

mal agitation to the molecular orientation increases, which reduces the birefringence of the

sample.

Figure 4.28 shows the birefringence when t = 3s as a function of temperature. At each

power of the pump beam, the birefringence decreases as temperature increases. T0 is room

temperature, about 22 to 25◦C, and δT is difference between the temperature oven and

room temperature. Although the temperature agitates the orientation of molecules, a larger

birefringence is observed at higher intensity than at lower intensity. Our theory agrees the
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decrease of birefringence at temperature for various optical input powers. Note that the

temperature-dependence of the viscosity is ignored to simplify the theory.

4.3.3 Summary for DR1/PMMA

Our goal is to find how the thermal lens effect (a non-local effect) is related to photoiso-

merization (a local effect). By means of fitting the experimental time-dependent change of

refractive index to our theory, the parameters related to those mechanisms were obtained.

For photoisomerization, the results are as follows:

• φC
tc is found to be smaller than φL

tc because the cis molecular shape is more sensitive to

circularly polarized as can be understood in terms of angular momentum transfer to

the molecules.

• φC
tc/φ

L
tc is found to be 0.62 ± 0.03, which agrees with the time-dependence of nC

2 /nL
2

and the ratio from Reference[17] in the steady-state. Consequently, the ratio shows

that the dominant mechanism in this time regime is photoisomerization.

Figure 4.29 shows the modified energy diagram based on our results. The time constant for

cis ⇒ trans transition due to the thermal relaxation is 31
2

hours.[19] Since our experimental

time scale is one to 3 seconds, thermal relaxation, as shown by the dotted arrow (γ), can

be ignored. The quantum yield from trans ⇒ cis for a circularly polarized beam is marked

with a dashed arrow implying a value smaller than that of the linearly polarized beam.

To understand the thermal lens effect separate from any other nonlinear optical effect, our

experiments were done with a similar value of absorption coefficient for both DR1/PMMA

and DB14/PMMA. The DB14/PMMA sample is prepared with the absorption coefficient

1.72cm−1 at 457 nm in close range to the absorption coefficient 5.63cm−1 at 647 nm of

DR1/PMMA sample. According to our observation in Section 4.1, the time-dependent effec-

tive beam waist originating from the thermal lens effect in DR1/PMMA is small compared

to DB14/PMMA.
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Figure 4.29: The modified energy diagram.

In DB14/PMMA, it is observed that the effective beam waist changes as a function of

time, which is a nonlocal thermal effect. On the other hand, the dramatic effective beam

waist change is not observed in DR1/PMMA implying mostly non-thermal local effect.

This result is peculiar because energy is being absorbed from the laser beam to the DR1

molecules; so, there must be a mechanism that stores this energy, releasing it as heat at a

later time or the energy is radiated without generating heat. The longer time behavior of

Figures 4.7 – 4.9 suggest such a time delay, which is beyond our measurement range.

One obvious source of energy storage is the ground state cis isomer, which has more

energy than the ground state trans isomer. Since the cis lifetime is long, the heat will be

given off at a later time. There are potentially other degrees of freedom that might lead

to emission, such as fluorescence within the transparent window of the polymer composite.

Such radiative and nonradiative processes may be quite complicated and treating them is

beyond the scope of this dissertation.

The important conclusion is that the data shows either the storage of energy in an excited

state of the system, which is later emitted as heat; or there are modes of de-excitation that
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do not contribute to heat.
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4.4 Appendix: Origin C code used for time-dependent

∆n

#include <origin.h>

#define en 1

//linear polarization case;-0.5 for circular polarization

#define alp 0.00328

//alp is N \bar{\alpha}^{t} in Equation (4.18) and

//calculated to give n_{DR1}^{0} to be 0.01

#define k 0.00193

// thermal conductivity for PMMA (W/cm-K)

#define delt 5.63

//absorption coefficient for DR1 at 647nm in unit of 1/cm

#define rho 1.19*pow(10.,-3.)

//Density of PMMA (kg/cm^3)

#define cp 1.42*pow(10.,3.)

//specific heat of PMMA (J/kg-K)

#define n0 1.49

//linear refractive index of PMMA

#define kb 1.38*pow(10.,-19.)

//Boltzmann constant with length in cm unit (kg cm^2/s^2 /K)

//Define function T_0(t) here

double T_0(double x, double eta, double Lt, double p0, double a0, double phi_tc, double phi_ct,

double rt, double rc, double ra)

{

double y, Ip, tau,at, ac,at, ac, It, Ic, lamb_t, lamb_c, lamb_0,Dc, Dt;

tau=pow(a0,2.0)*rho*cp/(4.0*k);

//time constant defined without considering

//change of the beam waist because it’s ignorable compared to DB14 case.

Dt=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt,3.0));

//angular diffusion constant of trans-isomer

Dc=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt/ra,3.0));

//angular diffusion constant of cis-isomer

Ip=2.0*p0/(pi*pow(a0,2.0));

//peak intensity of gaussian beam

It=0.51*phi_tc*Ip;

//phi_tc is quantum yield of trans to cis transition

//0.51 is obtained from the combination of one photon energy of 647nm

//and the absorption cross section of trans-isomer (See Equation (C-29, 30) in Ch. 2)

Ic=0.43*phi_ct*Ip;

//phi_ct is quantum yield of cis to trans transition

//0.43 is obtained from the combination of one photon energy of 647nm

//and the absorption cross section of cis-isomer (See Equation (C-29, 30) in Ch. 2)

lamb_0 = (It*(1.+4/5.0*pow(en*rt,2.) + 4/7.0*en*rt+6*Dt/It))/(2.0*(1+2/7.0*en*rt+3.0*Dt/It));
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lamb_t = It*(1+4/7.0*rt+6.0*Dt/It);

lamb_c = Ic*(1+4/7.0*rc+6.0*Dt/It);

at=2/5.0*It*rt;

ac=2/5.0*Ic*rc;

y=exp(- lamb_0*x);

return(y);

}

//Define function T_2(t) here

double T_2(double x, double eta, double Lt, double p0, double a0, double phi_tc, double phi_ct,

double rt, double rc, double ra)

{

double y, Ip, tau,at, ac,at, ac, It, Ic, lamb_t, lamb_c, lamb_0,Dc, Dt;

tau=pow(a0,2.0)*rho*cp/(4.0*k);

Dt=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt,3.0));

Dc=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt/ra,3.0));

Ip=2.0*p0/(pi*pow(a0,2.0));

It=0.51*phi_tc*Ip;

Ic=0.43*phi_ct*Ip;

lamb_0 = (It*(1.+4/5.0*pow(en*rt,2.) + 4/7.0*en*rt+6*Dt/It))/(2.0*(1+2/7.0*en*rt+3.0*Dt/It));

lamb_t = It*(1+4/7.0*rt+6.0*Dt/It);

lamb_c = Ic*(1+4/7.0*rc+6.0*Dt/It);

at=2/5.0*It*rt;

ac=2/5.0*Ic*rc;

y=at/(lamb_t-lamb_0)*(exp(-lamb_t*x)-exp(-lamb_0*x));

return(y);

}

//Define C_2 function here

double C_2(double x, double eta, double Lt, double p0, double a0, double phi_tc, double phi_ct,

double rt, double rc, double ra, double p2)

{

double y, Ip, tau,at, ac,at, ac, It, Ic, lamb_t, lamb_c, lamb_0,Dc, Dt;

tau=pow(a0,2.0)*rho*cp/(4.0*k);

Dt=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt,3.0));

Dc=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt/ra,3.0));

Ip=2.0*p0/(pi*pow(a0,2.0));

It=0.51*phi_tc*Ip;

Ic=0.43*phi_ct*Ip;

lamb_0 = (It*(1.+4/5.0*pow(en*rt,2.) + 4/7.0*en*rt+6*Dt/It))/(2.0*(1+2/7.0*en*rt+3.0*Dt/It));

lamb_t = It*(1+4/7.0*rt+6.0*Dt/It);

lamb_c = Ic*(1+4/7.0*rc+6.0*Dt/It);

at=2/5.0*It*rt;

ac=2/5.0*Ic*rc;

y=(ac*(lamb_t-lamb_0)-at*p2*(lamb_0-6.*Dt))/((lamb_t-lamb_0)*(lamb_c-lamb_0))

*(exp(-lamb_0*x)-exp(-lamb_c*x))

-at*p2*(lamb_t-6.*Dt)/((lamb_t-lamb_0)*(lamb_c-lamb_0))*(exp(-lamb_t*x)-exp(-lamb_c*x));

return(y);

}

//Define \Delta n function here

double Dn(double x, double eta, double Lt, double p0, double a0, double phi_tc, double phi_ct,

double rt, double rc, double ra, double p2)

{

double y, Ip, tau,at, ac,at, ac, It, Ic, lamb_t, lamb_c, lamb_0,Dc, Dt;

tau=pow(a0,2.0)*rho*cp/(4.0*k);

Dt=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt,3.0));

Dc=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt/ra,3.0));

Ip=2.0*p0/(pi*pow(a0,2.0));

It=0.51*phi_tc*Ip;

Ic=0.43*phi_ct*Ip;

lamb_0 = (It*(1.+4/5.0*pow(en*rt,2.) + 4/7.0*en*rt+6*Dt/It))/(2.0*(1+2/7.0*en*rt+3.0*Dt/It));

lamb_t = It*(1+4/7.0*rt+6.0*Dt/It);

lamb_c = Ic*(1+4/7.0*rc+6.0*Dt/It);
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at=2/5.0*It*rt;

ac=2/5.0*Ic*rc;

y=(2.*pi*alp/n0)*(

T_0(x,eta,Lt,p0,a0,phi_tc,phi_ct,rt,rc,ra)

*(1+2*rt*T_2(x,eta,Lt,p0,a0,phi_tc,phi_ct,rt,rc,ra))

+0.86*(1-T_0(x,eta,Lt,p0,a0,phi_tc,phi_ct,rt,rc,ra))

*(1+2.0*rc*C_2(x,eta,Lt,p0,a0,phi_tc,phi_ct,rt,rc,ra,p2))-1);

return(y);

}

\\Define n2 function here. Note that ip here is in W/cm^2.

double n2(double x, double eta, double Lt, double p0, double a0, double phi_tc, double phi_ct,

double rt, double rc, double ra, double p2)

{

double y, Ip, tau,at, ac,at, ac, It, Ic, lamb_t, lamb_c, lamb_0,Dc, Dt;

tau=pow(a0,2.0)*rho*cp/(4.0*k);

Dt=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt,3.0));

Dc=kb*delt*p0/(pow(pi,2.0)*eta*k*(1+tau/(2.0*x))*pow(Lt/ra,3.0));

Ip=2.0*p0/(pi*pow(a0,2.0));

It=0.51*phi_tc*Ip;

Ic=0.43*phi_ct*Ip;

lamb_0 = (It*(1.+4/5.0*pow(en*rt,2.) + 4/7.0*en*rt+6*Dt/It))/(2.0*(1+2/7.0*en*rt+3.0*Dt/It));

lamb_t = It*(1+4/7.0*rt+6.0*Dt/It);

lamb_c = Ic*(1+4/7.0*rc+6.0*Dt/It);

at=2/5.0*It*rt;

ac=2/5.0*Ic*rc;

y=Dn(x,eta,Lt,p0,a0,phi_tc,phi_ct,rt,rc,ra,p2)/Ip;

return(y);

}

//----------------------------------------------------------

//This part is the typing available part in nonlinear fitting manu in Origin program.

//Fit parameters have to be assigned accordingly to the functions defined above.

//

void _nlsfDn_DR1_zscan(

// Fit Parameter(s):

double eta, double Lt, double p0, double a0, double phi_tc, double phi_ct, double rt,

double rc, double ra, double p2,

// Independent Variable(s):

double x,

// Dependent Variable(s):

double& y)

{

// Beginning of editable part

y=Dn(x,eta,Lt,p0,a0,phi_tc,phi_ct,rt,rc,ra,p2);

// End of editable part

}
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Chapter 5

Conclusion

The goal of our work is to understand the mechanisms of the intensity-dependent refractive

index in azo dye-doped polymers. The mechanisms are photoisomerization, photothermal

heating, and coupling between them.

We generalized the formalism of Akhmanov’s self-focusing theory by introducing a vari-

able effective minimum beam waist and calculating the transmittance through a small aper-

ture to model the experiment. For the thermal lens effect, we take the heat source to follow

the intensity profile of the laser and thermal diffusion equation. The spatial temperature

distribution as a function of time is calculated. Combining our generalized formalism of

self-focusing theory with a dimensionless beam width, f , the nonlinear refractive index of

the thermal lens effect is calculated.

We model photoisomerization in the off resonance regime, using Sekkat’s model as a

starting point. We assume that the time scale of our experiment is short enough so that the

excitation rate of the cis isomer through photoisomerization from the trans state is higher

than the decay rate to the trans isomer. Furthermore, we assume that the molecules start out

randomly oriented and that reorientation times are faster than the cis to trans population

decay rate. We modified the standard theory by combining a photothermal increase of the

temperature and use the Einstein relation for rod-shaped molecules as proposed by Doi and
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Edward. This theory predicts that at high temperature, the angular orientation of molecules

is randomized, which decreases birefringence of the sample. This prediction is experimentally

confirmed in temperature-dependent our OKE experiment.

We developed a TZ-scan experiment to investigate mechanisms of a refractive index

change due to light as a function of time. This is a time sequence of Z-scan measurements at

fixed time frames. Combining all sequences leads us to the time-dependent refractive index.

In DB14/PMMA, the thermal lens effect is observed. We found that the effective min-

imum beam waist increases as a function of time, which shows that the thermal lens effect

is nonlocal in time and space. Experimentally, we find the increase of the effective mini-

mum beam waist to be comparable to the minimum beam waist without a sample, namely

w0 ∼ ∆w0. The thermal conductivity of DB14/PMMA is deduced from the increased effec-

tive minimum beam waist and compared with value for PMMA in literature. A discrepancy

of the time constants between theory and experiment is observed, which, we argue, comes

from neglect of the boundary at the air-sample interface.

In DR1/PMMA, two dominant mechanisms, photoisomerization (polarization-dependent

mechanism) and photothermal effect (polarization-independent mechanism), are found. By

comparing the ratio of the nonlinear refractive indices of a linearly and a circularly polarized

beam in a TZ-scan experiment, the dominant mechanism is found to be photoisomerization,

and the ratio is close to the ratio of quantum yields. From molecular anisotropy parameters,

the shape of trans and cis molecules are found to be rod-like 1-D and disk-like 2-D, respec-

tively. Comparing the minimum beam waist for DR1 and DB14/PMMA under the similar

conditions, the thermal lens effect in DR1 is not observed, suggesting delayed heating or

non-thermal energy release. On the other hand, DB14 molecules have no means to store the

photothermal energy so release the energy in the form of heat to polymer in shorter time.
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