
A MEDIUM-GRAIN RECONFIGURABLE ARCHITECTURE

FOR DIGITAL SIGNAL PROCESSING

By

MITCHELL JOHN MYJAK

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2006

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation

of MITCHELL JOHN MYJAK find it satisfactory and recommend that it be

accepted.

Chair

ii

Acknowledgment

This research has been performed in conjunction with the High Performance Computer

Systems (HiPerCopS) research group under the direction of Dr. José Delgado-Frias.

The author gratefully acknowledges the financial support received from the EECS Alumni

Fellowship at Washington State University, and the U.S. Department of Homeland Security

(DHS) Graduate Fellowship. The DHS Scholarship and Fellowship Program is administered

by the Oak Ridge Institute for Science and Education (ORISE) through an interagency

agreement with the U.S. Department of Energy (DOE). ORISE is managed by Oak Ridge

Associated Universities under DOE contract number DE-AC05-00OR22750. All opinions

expressed in this work are the author’s and do not necessarily reflect the policies and views

of DHS, DOE, or ORISE.

I would like to thank the members of the doctoral committee for all their help and

support. In particular, Dr. José Delgado-Frias has gone well beyond his role as advisor to

become a constant source of inspiration and encouragement. Special appreciation is also due

to the fellow students in the HiPerCopS research group for their hard work and dedication to

this project: Fredrick Anderson, Katie Blomster, Danny Blum, Seon Kwang Jeon, Jonathan

Larson, and Andy Widjaja.

Finally, I would like to convey special gratitude to my parents for always supporting me

in my educational pursuits and serving as a role model throughout my life. I also thank

David Betowski and Jennifer Streicher for all their help during my graduate school tenure.

iii

A MEDIUM-GRAIN RECONFIGURABLE ARCHITECTURE

FOR DIGITAL SIGNAL PROCESSING

Abstract

by Mitchell John Myjak, Ph.D.
Washington State University

May 2006

Chair: José G. Delgado-Frias

Reconfigurable hardware has become an attractive option for implementing digital signal

processing, especially in systems that require both high performance and flexibility. Field-

programmable gate arrays use fine-grain cells that implement simple logic functions. Some

proposed reconfigurable devices use coarse-grain cells that perform 16-bit or 32-bit opera-

tions. A third alternative is to use medium-grain cells with a word length of 4 or 8 bits. This

approach combines high flexibility with inherent support for word-length computations.

This dissertation presents a novel medium-grain reconfigurable architecture for digital

signal processing. The basic cell contains an array of small lookup tables, or “elements”,

that operate in two modes. In memory mode, the elements act as a random-access memory.

In mathematics mode, the elements perform 4-bit arithmetic. This two-level structure offers

good fine-grain flexibility without incurring the overhead of fine-grain devices.

Cells are grouped together to implement larger modules, such as multipliers, adders, and

memory units. The proposed architecture features a hierarchical interconnection network

that optimizes data transfer both within and between modules. Upper-level switches route

data in units of words rather than bits, saving considerable area. The entire system is

pipelined to maximize clock rate and throughput.

In all, the proposed architecture encompasses a large design space with many orthogonal

axes. Users can control the word length, data format, amount of parallelism, and number

iv

of modules used to implement algorithms. The circuit design can also be customized to

focus on a particular class of applications. For example, cells can perform computations in

bit-parallel or bit-serial fashion.

Layout simulations in 180-nm CMOS technology indicate that the architecture obtains

high performance. Initial prototypes have also been fabricated and tested for functionality.

The estimated execution times for several common benchmarks meet or exceed the reported

results of other reconfigurable devices in similar technologies.

v

Contents

Acknowledgment iii

Abstract iv

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Metrics for DSP hardware . 1

1.2 Types of DSP hardware . 3

1.2.1 General-purpose processors . 3

1.2.2 Digital signal processors . 3

1.2.3 Custom integrated circuits . 4

1.2.4 Fine-grain reconfigurable hardware 4

1.2.5 Coarse-grain reconfigurable hardware 5

1.2.6 Medium-grain reconfigurable hardware 7

1.3 Proposed architecture . 8

1.4 Outline . 9

2 Elements 11

2.1 Functionality . 11

vi

2.2 Designs . 12

2.2.1 Dynamic element . 13

2.2.2 Static element . 15

2.2.3 Pipelined element . 18

2.3 Analysis . 18

2.4 Summary . 20

3 Cells 21

3.1 Designs . 21

3.1.1 Parallel cell . 22

3.1.2 Serial cell . 24

3.2 Functions . 25

3.2.1 Multiplication . 27

3.2.2 Addition and subtraction . 28

3.2.3 Bit shifting . 29

3.2.4 Memory access . 30

3.2.5 Control logic . 32

3.2.6 Reconfiguration . 33

3.3 Analysis . 33

3.3.1 Circuit simulations . 33

3.3.2 Layout simulations . 35

3.3.3 Comparison of cells . 37

3.4 Verification . 38

3.4.1 Parallel-dynamic design . 38

3.4.2 Parallel-static design . 39

3.4.3 Serial-pipelined design . 42

3.5 Summary . 43

vii

4 Interconnections and Modules 44

4.1 Interconnection network . 45

4.1.1 Local mesh . 45

4.1.2 Global H-tree . 46

4.1.3 Pipelining . 49

4.2 Modules . 50

4.2.1 Multiplier . 50

4.2.2 Multiply-accumulate unit . 51

4.2.3 Adder and subtracter . 52

4.2.4 Shifter . 53

4.2.5 Memory unit . 54

4.2.6 Specialized memory unit . 55

4.2.7 Control logic . 57

4.2.8 Floating-point adder . 57

4.2.9 Floating-point multiplier . 58

4.3 Summary . 59

5 Hierarchical Multipliers 61

5.1 Structure . 61

5.1.1 Carry-save multiplier . 62

5.1.2 Proposed design . 63

5.1.3 Proof of functionality . 64

5.2 Data formats . 65

5.3 Cell functions . 68

5.4 Summary . 69

6 Algorithms 72

viii

6.1 Software tools . 72

6.2 Configuration . 74

6.3 Benchmarks . 75

6.3.1 FIR filter . 76

6.3.2 CORDIC unit . 78

6.3.3 Fast Fourier Transform . 79

6.4 Analysis . 82

6.4.1 Digital signal processors . 82

6.4.2 Fine-grain reconfigurable hardware 83

6.4.3 Coarse-grain reconfigurable hardware 85

6.5 Summary . 86

7 Conclusion 87

7.1 Contributions . 88

7.2 Future work . 90

Bibliography 91

A Clock Generator 95

A.1 NTVW design . 96

A.2 Proposed design . 97

A.2.1 Oscillator . 97

A.2.2 Shift register . 98

A.2.3 Decoder . 100

A.2.4 Operation . 100

A.3 Analysis . 102

B Pipeline Registers 106

ix

B.1 Existing designs . 107

B.1.1 Basic differential flip-flop . 107

B.1.2 SSTC . 108

B.1.3 SAFF1 . 108

B.1.4 SAFF2 . 109

B.2 Proposed design . 109

B.3 Analysis . 112

B.3.1 Methodology . 112

B.3.2 Results . 115

C Publications 118

C.1 Journal papers . 118

C.2 Conference papers . 118

x

List of Tables

1.1 Comparison of DSP hardware. 3

2.1 Comparison of elements. 20

3.1 Examples of cell operations. 26

3.2 Comparison of medium-grain cells. 37

3.3 Test cases to verify prototype. 40

4.1 Latency of cells and interconnection network. 49

5.1 Data formats for two’s-complement MAC unit. 68

5.2 Element functions in MAC cells. 69

6.1 Statistics of FIR filter. 77

6.2 Statistics of one CORDIC stage. 79

6.3 Statistics of FFT. 81

6.4 Performance comparison with digital signal processors. 83

6.5 Architecture comparison with fine-grain reconfigurable devices. 84

6.6 Performance comparison with fine-grain reconfigurable hardware. 85

B.1 Simulation results for differential flip-flops. 115

xi

List of Figures

1.1 Granularity of reconfigurable hardware. 7

1.2 Modules and global interconnection network. 8

1.3 Typical module with cells and interconnection network. 9

1.4 Elements inside cell configured for mathematics functions. 10

2.1 Functional diagram of element. 12

2.2 Organization of dynamic element. 13

2.3 Read datapath in dynamic element. 14

2.4 Write datapath in dynamic element. 15

2.5 Organization of static element. 16

2.6 Read datapath in static element. 17

2.7 Write datapath in static element. 17

2.8 Latch used in pipelined element. 18

2.9 Simulation of dynamic element. 19

2.10 Simulation of static element. 19

3.1 Parallel cell in memory mode. 22

3.2 Parallel cell in mathematics mode. 23

3.3 Serial cell in memory mode. 24

3.4 Serial cell in mathematics mode. 25

3.5 Equivalent parallel model of mathematics mode. 26

xii

3.6 Parallel cell used as bit shifter. 29

3.7 Serial cell used as bit shifter. 31

3.8 Parallel cell used to implement control logic. 32

3.9 Simulation of parallel cell with dynamic elements. 34

3.10 Simulation of parallel cell with static elements. 35

3.11 Simulation of serial cell with pipelined elements. 35

3.12 Simulation of parallel cell with pipelined elements. 36

3.13 Layout simulation of parallel cell with static elements. 36

3.14 Layout simulation of serial cell with pipelined elements. 37

3.15 Prototype of parallel cell with dynamic elements. 39

3.16 Verification of parallel cell with dynamic elements. 40

3.17 Prototype of parallel cell with static elements. 41

3.18 Verification of parallel cell with static elements. 41

3.19 Prototype of serial cell with pipelined elements. 42

3.20 Verification of serial cell with pipelined elements. 43

4.1 Steps for implementing DSP on the reconfigurable cell array. 44

4.2 Local interconnection structure. 45

4.3 Interface between cell and interconnection network. 46

4.4 Global interconnection structure. 47

4.5 Typical switch in global interconnection structure. 48

4.6 Link in global switch. 48

4.7 16-bit multiplier. 51

4.8 32-bit adder. 53

4.9 16-bit left shifter. 54

4.10 Dual-port memory unit. 55

4.11 Memory unit for Fast Fourier Transform. 56

xiii

4.12 32-bit exchange unit. 57

4.13 Diagram of floating-point adder. 58

4.14 Implementation of floating-point adder. 59

4.15 Diagram of floating-point multiplier. 59

4.16 Implementation of floating-point multiplier. 60

5.1 Carry-save multiplier. 62

5.2 Proposed multiply-accumulate unit. 63

5.3 Two’s-complement MAC unit. 66

5.4 Implementation of cell functions. 70

6.1 Screenshot of software tools. 73

6.2 Structure of cell array during reconfiguration. 75

6.3 Diagram of FIR filter. 76

6.4 Implementation of FIR filter. 77

6.5 Diagram of one CORDIC stage. 78

6.6 Implementation of one CORDIC stage. 79

6.7 Diagram of FFT. 80

6.8 Implementation of FFT. 81

A.1 Control signals required by serial cell. 95

A.2 Pulse generator proposed by Nilsson et al. (NTVW) [42]. 96

A.3 Functional diagram of differential clock generator. 97

A.4 Dual ring oscillator. 98

A.5 Shift register used to stop oscillator. 99

A.6 Decoder for initialization. 100

A.7 Layout of clock generator. 101

A.8 Reset and start of pulse train. 101

xiv

A.9 End of pulse train and initialization. 102

A.10 Layout simulation showing 2-GHz operation. 103

A.11 Simulation of NTVW clock generator [42]. 103

A.12 NTVW design cuts off pulse at lower frequencies. 104

A.13 Proposed design can operate at lower frequencies. 104

B.1 Basic differential flip-flop. 107

B.2 Static single-transistor clocked (SSTC) flip-flop [44]. 108

B.3 Sense amplifier flip-flop (SAFF1) [45]. 109

B.4 Modified sense amplifier flip-flop (SAFF2) [46]. 110

B.5 Proposed differential flip-flop. 110

B.6 Simulation of proposed flip-flop. 111

B.7 Comparison of differential and single-ended clock buffers. 112

B.8 Simulation of differential clock buffer. 113

B.9 Testbench for flip-flops. 114

B.10 Delay measurements. 114

B.11 Plot of setup time versus output delay. 116

B.12 Plot of total delay versus power consumption. 116

xv

Dedication

Pro Gloria Dei

xvi

Chapter 1

Introduction

Many digital systems rely on digital signal processing (DSP) to achieve their functionality.

For example, cellular phones use sophisticated compression and encryption algorithms to

transmit data securely over a wireless link. Digital multimedia devices such as DVD players

translate a stream of bits into images or music. Even hearing aids may contain complex

digital filters to enhance speech.

Digital systems may use a variety of components to implement DSP, ranging from cus-

tom integrated circuits to general-purpose microprocessors. Reconfigurable hardware has

become an attractive option in recent years, especially in applications that must combine

high performance and flexibility [1]. In this chapter, we first identify the primary metrics

for DSP hardware. We then use these criteria to compare the various components. Finally,

we give an overview of the reconfigurable architecture proposed in this dissertation.

1.1 Metrics for DSP hardware

Although DSP encompasses a wide range of applications, DSP hardware can be evaluated

with respect to several metrics:

1

• Performance: DSP places great demands on the processing power of the underlying

hardware. For example, a 512-point Fast Fourier Transform (FFT) requires around

16,000 multiplications and 9,000 additions [2]. Algorithms typically work with data in

vector or matrix form, so the hardware must apply the same basic operation to many

data points. Hence, the standard measure of performance is not latency, but rather

total execution time, or its reciprocal, throughput. Devices can exploit the inherent

parallelism of DSP to achieve high throughput.

• Flexibility: For commercial products, the total cost clearly influences the chosen

design strategy. Using flexible hardware eliminates the need to design, fabricate, and

test custom components. Furthermore, the functionality of the hardware can adapt to

changes in system requirements, leading to lower redesign costs.

• Power consumption: In recent years, the application space of DSP has shifted to

include wireless and mobile computing. Power consumption is a crucial metric for

these systems. This evolution requires novel hardware architectures to meet the new

demands and challenges.

• Fault tolerance: DSP hardware in mission-critical applications, such as commu-

nication satellites and real-time monitoring equipment, must contain mechanisms to

detect and handle faults. Radiation-induced errors, such as latch-up, burn-out, and

single event upsets, are of major concern in space.

Most applications require a balance between two or more of these metrics. Hence, the

ability of hardware components to trade off various parameters, such as performance for

power consumption, is another key factor that influences the design strategy.

2

Table 1.1: Comparison of DSP hardware.

Device Performance Flexibility Power Fault tolerance

General-purpose processors Poor Best Fair Poor
Digital signal processors Fair Good Good Poor
Fine-grain reconfigurable hardware Good Better Better Good
Medium-grain reconfigurable hardware Better Better Better Good
Coarse-grain reconfigurable hardware Better Good Better Good
Custom integrated circuits Best Poor Best Best

1.2 Types of DSP hardware

This section describes the main types of hardware available for DSP. Table 1.1 summarizes

these alternatives in terms of the four metrics described in the previous section.

1.2.1 General-purpose processors

General-purpose processors, such as the Intel Pentium 4 or AMD Athlon, can execute a wide

variety of software programs. A large number of compilers exist for software written in high-

level languages such as C++. Hence, implementing DSP is usually as simple as compiling

the appropriate source code.

The main drawback of general-purpose processors is their relatively low performance.

Most devices can only perform one multiplication at a time, creating a bottleneck for DSP.

The power consumption of general-purpose processors also falls behind other alternatives.

Fault tolerance is usually not present in commodity devices, with the possible exception of

error checking in cache memory.

1.2.2 Digital signal processors

Digital signal processors resemble general-purpose processors in many respects, but contain

specific enhancements to optimize DSP. For example, the instruction set architecture (ISA)

of the Texas Instruments TMS320C64 includes instructions to perform dot products and fast

3

multiplications. The hardware contains several functional units that each support multiply-

accumulate operations [3].

Compared to general-purpose processors, the increased performance for DSP incurs a

slight penalty in flexibility. The ISA typically lacks instructions such as division that do

not occur in most algorithms. However, the optimized datapath reduces the overall power

consumption.

1.2.3 Custom integrated circuits

At the other end of the spectrum are application-specific integrated circuits (ASICs). These

devices achieve the highest performance but the lowest flexibility, since they are designed

for a single algorithm. The hardware can be optimized for low power consumption or fault

tolerance as well. Due to their high development costs and limited applicability, ASICs only

become feasible for high-volume or very specialized applications.

1.2.4 Fine-grain reconfigurable hardware

In general, reconfigurable hardware contains an array of programmable cells and interconnec-

tions. This approach attempts to combine the performance of an ASIC with the flexibility

of a microprocessor. The continually expanding capabilities of very large-scale integration

(VLSI) have made reconfigurable hardware feasible for DSP [4, 5, 6].

Most reconfigurable hardware today is classified as a field programmable gate array

(FPGA). These fine-grain devices contain cells that perform simple logic functions. As a

result, FPGAs can implement completely generic operations. The desired functionality may

be specified in a hardware description language such as VHDL, or a high-level language such

as C. A logic synthesizer then divides the operation into small pieces and maps the result

onto a virtual model of the architecture. The synthesizer generates a configuration file used

to program the cells and interconnections. The device can be reconfigured at any time, even

4

after deployment.

Since FPGAs mimic dedicated hardware, they offer higher performance than digital signal

processors for computationally intensive algorithms. However, implementing a multiplier on

a fine-grain device requires a large number of cells. The resulting structure is hampered

by the interconnection delays. For this reason, some FPGAs embed fixed-length multipliers

within the reconfigurable fabric [7, 8]. The Xilinx Virtex-II Pro is one example of this

trend [9].

Another way to reduce the circuit complexity is to evaluate arithmetic functions such as

multiplication in bit-serial fashion. This approach requires fewer cells and interconnection

resources on reconfigurable hardware. For example, a bit-serial, n-bit multiplier typically

computes the product in 2n cycles using a linear chain of processing elements [10]. Recog-

nizing these benefits, researchers have developed FPGAs that perform bit-serial computa-

tions [11, 12]. The drawback of these designs is that the entire device runs off a single clock

signal. Aside from the problem of clock distribution, the interconnection structures within

the critical path limit the maximum clock frequency and hence the processing speed.

FPGAs can employ several measures to reduce the overall power consumption, such as

disabling unused portions of the hardware. The devices also contain some degree of fault

tolerance, in that the logic synthesizer can remap algorithms to avoid faulty areas. However,

some architectural enhancements are necessary to support this feature.

1.2.5 Coarse-grain reconfigurable hardware

Recently, researchers have proposed new types of reconfigurable hardware in which each

cell performs 16-bit or 32-bit operations [13]. These coarse-grain devices achieve high per-

formance for DSP. For example, the RaPiD architecture contains a linear array of 16-bit

functional units [14]. The KressArray family features a matrix of 32-bit processing units

with a hierarchical interconnection structure [15]. The FPOP architecture consists of cells

5

that perform digit-serial arithmetic, starting from the most significant digit [16]. This tech-

nique allows cells to compute simple functions such as addition or multiplication, as well as

complex functions such as division and square root.

One characteristic of coarse-grain devices is the limited number of functions available in

each cell. This approach does reduce the power consumption compared to fine-grain devices,

but can prevent the device from implementing the control logic necessary for DSP. Several

proposed designs address this problem by integrating a heterogeneous set of components on

the same die. For example, the Pleiades architecture combines a microprocessor with arith-

metic/logic units (ALUs), memory modules, and an embedded FPGA [17]. The MONTIUM

architecture integrates a microprocessor with an FPGA and an array of coarse-grain cells,

each containing several 16-bit ALUs [18].

Coarse-grain reconfigurable hardware has remained an active area of research, stretching

back to the systolic array architectures proposed two decades ago [19]. However, the idea

has made limited progress in the commercial sector, due to the prevalence of FPGAs and the

well-established software tools for logic synthesis. The coarse-grain architecture marketed by

PACT XPP Technologies contains one or more arrays of processing elements, each of which

holds an ALU or a memory [20]. The Adapt2000 ACM architecture from QuickSilver Tech-

nology uses a hierarchy of heterogeneous nodes; different types of nodes can implement 32-bit

binary arithmetic, bit-oriented operations, general-purpose code, and memory control [21].

Rather than manufacturing a series of commodity devices like Xilinx, both companies offer

intellectual property (IP) that customers can integrate within the target system.

Aside from these novel architectures, many high-performance FPGAs now include coarse-

grain components to accelerate DSP. The Xilinx Virtex-4, for example, contains special

XtremeDSP slices that can perform 18-bit multiplication and 48-bit addition [22].

6

FPGA

1 2 4 8 16

Granularity (bits)

32 64

Medium-grain Coarse-grain

Embedded multipliers

Figure 1.1: Granularity of reconfigurable hardware.

1.2.6 Medium-grain reconfigurable hardware

A third type of reconfigurable hardware contains cells that perform 4-bit or 8-bit functions.

These devices use multiple cells to implement 16-bit or 32-bit operations. We call this

approach “medium-grain” to distinguish it from architectures that perform word-length op-

erations in one cell. Figure 1.1 compares the granularity of the three types of reconfigurable

hardware.

Several examples of medium-grain devices exist in the literature. The CHESS architecture

contains a hexagonal array of 4-bit ALUs with embedded 256-byte memory modules [23]. The

PipeRench architecture contains an array of 8-bit cells organized into 128-bit stripes [24]. The

DReAM architecture places a lookup table and adder inside each cell, together with shifting

logic to implement multiplication [25]. In addition, the commercial D-Fabrix architecture

from Elixent uses 4-bit cells and switchboxes [26].

Medium-grain reconfigurable hardware achieves a good balance between performance,

area, and flexibility. Like coarse-grain devices and digital signal processors, arithmetic func-

tions can be optimized for speed. Unlike these devices, algorithms are not tied to a specific

word length. The higher granularity compared to FPGAs also benefits the power consump-

tion. Finally, medium-grain devices have the same potential for fault tolerance as other types

of reconfigurable hardware.

7

Mem Mem Mem Mem

Mem Mem Mem Mem

Figure 1.2: Modules and global interconnection network.

1.3 Proposed architecture

This dissertation proposes a novel medium-grain reconfigurable architecture for DSP [27, 28].

This architecture contains an array of 4-bit cells and a hierarchical interconnection network.

To implement DSP, the array is partitioned into discrete modules, such as multipliers, adders,

and lookup tables. A tree-based interconnection structure transfers data between modules

in word-length units. Figure 1.2 gives a top-level overview of the architecture for a sample

group of modules.

Each module, such as the 16-bit multiplier in Figure 1.3, occupies a block of cells. The 4-

bit granularity allows modules to be constructed for any word length. A local interconnection

network passes intermediate results between neighboring cells. The global network connects

the inputs and outputs of the module to other modules on the device.

To maximize performance, the interconnection network pipelines all operations into 4-bit

portions. This approach allows modules to initiate one operation per clock cycle. Since

every module uses the same pipelining scheme, the hardware maintains the maximum clock

frequency at all times, irrespective of the current configuration.

Cells in the architecture can perform a wide variety of functions, including multiply-

accumulates, addition and subtraction, combinational logic, and memory operations. To

8

x x x x

x+ x+ x+ x+

x+ x+ x+ x+

x+ x+ x+ x+

Figure 1.3: Typical module with cells and interconnection network.

implement this functionality, cells contain a small array of 1-bit processing elements. The

set of elements can only assume two structures: one optimized for memory operations, and

the other for mathematics functions. This innovative two-level architecture combines coarse-

grain performance with fine-grain flexibility. Figure 1.4 illustrates the contents of a cell in

mathematics mode.

Each element in the cell operates as a random-access memory (RAM) with four inputs

and two outputs. In memory mode, the RAM inside the elements combines to form a single,

larger memory. In mathematics mode, the RAM specifies a lookup table. In this way, the

cell can perform arithmetic or logic functions on signed or unsigned data, just by loading

the appropriate truth table into the elements.

1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 begins by describing

three circuit designs for the basic element. Each design uses a different clock approach, but

all have the same functionality. Chapter 3 presents two structures for the 4-bit cell: a parallel

9

Figure 1.4: Elements inside cell configured for mathematics functions.

version comprised of sixteen elements, and a serial version comprised of five. We compare

the overall clock rate and functionality of the two alternatives. Chapter 4 describes how the

interconnection network can group cells into word-length modules. The discussion includes

several examples, including multipliers, adders, and memory units. Chapter 5 gives more

details about mapping multipliers onto the parallel cells. The architecture can support both

unsigned and two’s-complement arithmetic. Chapter 6 demonstrates how modules can be

linked together to implement entire algorithms. We calculate the execution time for several

benchmarks and compare the results to other hardware components, including digital signal

processors and FPGAs. Finally, Chapter 7 gives some concluding remarks and summarizes

the contributions of this research.

The appendices give more details about specific aspects of the proposed reconfigurable

architecture. Appendix A describes the clock generator required by the serial cell. Appen-

dix B presents the pipeline register used in the architecture. Finally, Appendix C lists the

papers published during the course of this research.

10

Chapter 2

Elements

A notable characteristic of the medium-grain reconfigurable architecture is the absence of

functional units such as adders. Each cell uses an array of elements for memory and mathe-

matics operations. The element itself essentially implements a small memory. This strategy

leads to a compact circuit design that achieves high performance.

We begin this chapter by specifying the functionality of an element. We then describe

three circuit designs that realize this behavior. Finally, we compare the performance of the

alternatives.

2.1 Functionality

Figure 2.1 depicts a functional diagram of an element. The component implements a 32-bit

RAM with separate read and write ports. This feature allows the cell to read data from one

address and write data to another address simultaneously.

The memory inside the element is divided into two banks of sixteen latches. For read

operations, address ra0:3 selects the corresponding latch in each bank. Read enable re0:1

determines which bank is connected to the output ro. If neither bank is enabled, the element

drives ro with the input ri. Write operations proceed in a similar manner: address wa0:3

11

a
0 0

1 1

15 15

b

c

d

re0:1

we0:1

wa0:3

ra0:3

ri

ro

wi

y z

Figure 2.1: Functional diagram of element.

selects one latch in each bank, and write enable we0:1 determines which bank, if any, is driven

by the input wi.

When configured to perform mathematics functions, the cell uses each element as a 4-

input, 2-output lookup table. The four inputs are placed onto the bits of ra0:3. For clarity,

we also refer to these bits as a, b, c, and d. The outputs of the two selected latches are taken

directly to outputs y and z.

2.2 Designs

This section presents three circuit designs for the basic element. Each alternative uses a

different clocking scheme to optimize performance.

12

R
o
w

 D
e
c
o
d
e
r

Column Decoder

Column Selector
L
o
g
ic

L
o
g
ic

Latches

Column Precharger

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

wa0:1

we0:1 re0:1

ri

wi

y

z

ro

wa2:3

ra0:1

ra2:3

Figure 2.2: Organization of dynamic element.

2.2.1 Dynamic element

The first design relies on dynamic logic with alternating precharge and evaluation phases.

All inputs and outputs are represented as complementary lines, such as ra0 and ra0. During

the precharge phase, both lines are set high. During the evaluation phase, one line falls low:

ra0 for logic 0 or ra0 for logic 1. The circuit does not require a separate clock signal since

the inputs themselves contain the necessary timing information.

As shown in Figure 2.2, the dynamic element organizes the internal memory into four

rows and four columns. The row decoder uses ra0:1 and wa0:1 to enable individual rows for

reading and writing. Similarly, the column decoder uses ra2:3 and wa2:3 to enable individual

columns. The column selector connects one set of column data lines to the inputs or outputs.

The column precharger initializes these lines to high during the precharge phase. Finally,

the two logic blocks select which bank the element uses for reads and writes.

Figure 2.3 illustrates the datapath used for read operations. Suppose the element needs

to read the latch at address 0 in bank 0. During the precharge phase, all lines in ra0:3 and

ra0:3 remain high. The decoders activate a series of p-transistors that pull up all internal lines

13

re0 mdmd

v

ro

y

v

ro

y

ra2

ra2

Column Selector

Precharger

Column DecoderRow Decoder

Latch Logic

ra0 ra1 ra2 ra3ra0 ra0 ra2 ra2

Figure 2.3: Read datapath in dynamic element.

to VDD. When ra0 and ra1 fall low, the row decoder enables the n-transistors connected to

the latches in the last row. Data from these latches begins to propagate toward the outputs.

When ra2 and ra3 also evaluate, the column decoder enables the n-transistors connected to

the data lines in the last column. Finally, the output logic selects the latch from bank 0

when re0 falls low.

The output logic allows the cell to assume a different structure to compute mathematics

functions. The four bits in ra0:3, also named a, b, c, and d, now specify the four input bits

for the function. The selected latch in bank 0 drives y, while the selected latch in bank 1

drives z. These lines may connect to the c and d inputs of neighboring elements. Standard

read operations set y and z to default values, usually ra2 or ra3.

For write operations, the dynamic element uses the datapath depicted in Figure 2.4. The

circuit essentially mirrors the datapath used for read operations, but with wa0:3 instead of

ra0:3. Data propagates from the input wi into the latch at the selected row and column. Each

14

vwi

vwi

Column Selector

Column Decoder Row Decoder

LatchLogic

wa0 wa0wa2 wa2

Precharger

we0 wa0 wa1wa2 wa3

Figure 2.4: Write datapath in dynamic element.

latch contains a simple pair of inverters to store the value, as shown. Since the n-transistors

are bidirectional, other latches in the selected row are connected to the internal data lines.

Having the element precharge these lines beforehand prevents the latent charge from flipping

the state of the latch.

2.2.2 Static element

The second design for the element relies on a static approach with no internal clocking.

All inputs and outputs are still complementary signals, but use cross-coupled p-transistors

as pull-up devices. As shown in Figure 2.5, the overall organization of the static element

remains essentially the same, except for the absence of precharge circuitry. The row decoder

still handles the lower two bits of ra0:3 and wa0:3, while the column decoder handles the

upper two bits.

15

R
o
w

 D
e
c
o
d
e
r

Column Decoder

Column Selector

L
o
g
ic

L
o
g
ic

Latches
wa0:1

we0:1 re0:1

ri

wi ro

y

z

wa2:3

ra0:1

ra2:3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2.5: Organization of static element.

Figure 2.6 illustrates the read datapath. Data from the selected latch propagates through

a series of n-transistors controlled by the row and column decoders. These n-transistors pass

a strong low but a weak high. Cross-coupled p-transistors restore the rail-to-rail voltage

swing. Notice that the column selector buffers the data lines for improved driving strength.

As in the dynamic element, the element connects the selected data lines to y and z rather

than ro when the cell is configured for mathematics operations.

The write datapath has a completely new design, as shown in Figure 2.7. Each latch

uses a pair of minimum-size inverters to store the logic value. A network of n-transistors

implements the set and reset circuitry. The rest of the datapath contains a series of AND-

type logic gates that combine the enable signals with wi and wi. For the latch at address 0

in bank 0, the circuit sets v to low when wi, we0, and wa0:3 are all low. If wi is high, the

circuit sets v to low instead.

Although read operations execute in a combinational fashion, write operations require

some type of clocking to ensure that changes only occur when the inputs are stable. The

cell may gate we0:1 with a global clock for this purpose.

16

re0 mdmd

v

ro

y

v

ro

y

ra2

ra2

Column SelectorLatch Logic

Column DecoderRow Decoder

ra0 ra1 ra2 ra3

Figure 2.6: Read datapath in static element.

vwi

v

wi

we0

Column Decoder Row Decoder

LatchCol. SelectorLogic

wa0 wa1wa2 wa3

Figure 2.7: Write datapath in static element.

17

in

pul

pul

pul

pul

in out

out

Figure 2.8: Latch used in pipelined element.

2.2.3 Pipelined element

The third design for the element applies bit-level pipelining to maximize throughput. This

approach uses the same circuit design as the static element, but places pipeline latches on all

the outputs. Having latches rather than full registers cuts down the area and latency. The

latches are enabled by the pulse train pul. For proper operation, the width of each pulse

must be less than the propagation delay through the element.

Figure 2.8 depicts the latch used in the pipelined element. This circuit is essentially half

of the pipeline register described in Appendix B. When pul is high, data passes from the

input to the output. The cross-coupled p-transistors restore the rail-to-rail swing at the

inverter inputs. When pul is high, the p-transistors combine with additional n-transistors to

maintain the logic state.

2.3 Analysis

To verify that the designs implement the correct functionality, we have simulated the circuits

in 90-nm CMOS technology. Figure 2.9 illustrates the resulting waveforms for the dynamic

element. The circuit is reading logic 0 from a latch in bank 0 and writing logic 1 to a latch

in bank 1. Notice how ro and ro are precharged to high. The latency from the rising edge

18

0.2 0.4

ro

v

ro

v

0.6 0.8 1.0 (ns)

0

we0

re0

0

1

1

(V)

Figure 2.9: Simulation of dynamic element.

0.2 0.4

ro

v

ro

v

0.6 0.8 1.0 (ns)

0

we0

re0

0

1

1

(V)

Figure 2.10: Simulation of static element.

of re0 to the falling edge of ro is 112.1 ps. Similarly, the latency from the rising edge we0 to

the rising edge of v is 169.5 ps.

Figure 2.10 depicts the corresponding simulation for the static element. Now ro and ro

transition at the same time. The latency from re0 to ro is 170.8 ps, whereas the latency

from we0 to v is 202.9 ps. Read operations run faster due to the intermediate buffers in the

column selector. However, the write datapath operates more slowly, since the circuit only

drives one side of the latch.

As described in Chapter 3, the latency of mathematics computations determines the

19

Table 2.1: Comparison of elements.

Latency Dynamic Static Pipelined

re0:1 to ro 112.1 ps 170.8 ps 212.8 ps
we0:1 to v 169.5 ps 202.9 ps 202.9 ps
a to y 109.6 ps 168.5 ps 210.7 ps
c to y 61.8 ps 80.8 ps 122.8 ps

overall speed of the cell. We have optimized the read datapath in the three circuit designs

to achieve high performance. For example, the lower address bits a and b typically resolve

before the upper address bits c and d. Hence, the read datapath decodes the row first,

followed by the column. Data can propagate halfway through the element when a and b

become available. The most critical path extends from inputs c and d to outputs y and z.

Table 2.1 compares the latencies of the three elements using the results of the circuit

simulations. Although the dynamic element offers the lowest latency, it also requires a

separate precharge phase. The pipeline latches in the pipelined element add 42.0 ps to read

operations, but allow the design to achieve much higher throughput.

2.4 Summary

In this chapter, we have described three circuit designs for the basic element in the medium-

grain reconfigurable architecture. Each design implements a 32-bit RAM with separate read

and write ports. The dynamic element features a two-phase clock approach that precharges

all internal lines during the first phase, and performs the required operations during the

second phase. The static element dispenses with the precharge phase and uses differential

logic with cross-coupled p-transistors. Finally, the pipelined element adds a pipeline latch

to the output of the static element. Chapter 3 illustrates how 4-bit cells can use an array of

elements to perform binary arithmetic and memory operations.

20

Chapter 3

Cells

This chapter presents two designs for the 4-bit cell in the proposed reconfigurable architec-

ture. Each cell contains an array of elements that can assume two structures. In memory

mode, the elements collectively implement a RAM. This functionality is useful for specifying

constant coefficients and storing intermediate results. In mathematics mode, the elements

act as lookup tables so that the cell can evaluate binary arithmetic. The flexible elements

allow cells to perform a wide range of functions, ranging from simple combinational logic to

powerful multiply-accumulates.

After describing the two designs, we demonstrate how the cells can implement binary

arithmetic, bit shifting, and control logic. We then evaluate the two alternatives by means

of circuit simulations, layout simulations, and measurements taken from prototype chips.

3.1 Designs

The first design for the cell contains sixteen elements and operates in bit-parallel fashion.

The elements may be dynamic, static, or pipelined. This design is very similar to the parallel

cell presented in [27, 30, 31], but does implement more functionality in memory mode.

The second design contains five elements and computes binary arithmetic in bit-serial

21

D
e
c
o
d
e
r

ro3 ro2 ro1 ro0

wi ri3 3 wi ri2 2 wi ri1 1 wi ri0 0

wa0:7

clk

ra0:7

Figure 3.1: Parallel cell in memory mode.

fashion. Only the pipelined element is compatible with this design. We originally presented

the serial cell in [32].

3.1.1 Parallel cell

The sixteen elements in the parallel cell are arranged into a 4×4 matrix. In memory mode,

shown in Figure 3.1, the cell implements a 128×4-bit RAM with separate read and write

ports. Each element manages a 32×1-bit portion of the memory. Input ra0:7 specifies the

7-bit read address, with ra7 serving as the read enable. Similarly, wa0:7 specifies the write

address and write enable. Lines wi0:3 and ro0:3 define the input data and output data,

respectively. Finally, ri0:3 specifies the default value of ro0:3 when the read enable is off.

A separate decoder generates the required control signals for the matrix of elements. The

lower four bits of ra0:7 and wa0:7 are passed to each element. The upper four bits are used

to produce the read enable and write enable for each row of elements. The component may

22

a d3 3 a d2 2 a d1 1 a d0 0c3 c2

c

y

a

b

z

d

c1 c0

b0

b1

b2

b3

y0

y1

y2

y3y4y5y6y7

Figure 3.2: Parallel cell in mathematics mode.

gate the write enable with a global clock clk to isolate write operations from changes in the

inputs.

In mathematics mode, shown in Figure 3.2, the cell reuses the elements to implement

binary arithmetic. The matrix of elements assumes a structure resembling a carry-save

multiplier [29]. Each element now acts as a 16×2-bit lookup table. The cell broadcasts

inputs a0:3 and b0:3 across the rows and columns of the structure. Inputs c0:3 and d0:3 are

passed to the four elements in the top row. The cell collects the output y0:7 from the seven

elements on the right and bottom.

Notice that the y and z outputs of each element usually connect to the c and d inputs of

neighboring elements. Hence, elements generally receive the new values of a and b before the

new values of c and d. The critical path through the structure consists of seven elements.

23

wi ri4 4

Decoder

ro4 ro3 ro2 ro1 ro0

wi ri3 3 wi ri2 2 wi ri1 1 wi ri0 0ra0:5clk wa0:5

Figure 3.3: Serial cell in memory mode.

3.1.2 Serial cell

The serial cell reduces the area consumption by using five elements rather than sixteen.

Figure 3.3 depicts this design in memory mode. The array of elements implements a 32-

word RAM with separate read and write addresses. As before, each element manages a

32×1-bit piece of the total memory. With five elements, the memory works with 5-bit words

rather than 4-bit words. The motivation behind this additional element will become clear

shortly.

In the figure, ra0:5 and wa0:5 contain the read address and write address, with the most

significant bits serving as enable signals. A decoder uses these inputs to generate the control

signals for the five elements. The data lines include the input data wi0:4, output data ro0:4

and default output data ri0:4.

Figure 3.4 illustrates the serial cell in mathematics mode. The array of elements now

operates in bit-serial fashion with inputs a0:4, bi, c0:4, and d0:4. Input bi as well as output yi

have bit-serial format. Like the parallel cell, elements act as a 16×2-bit lookup tables. Each

computation consists of an initialization phase and nine execution phases. During initial-

ization, the cell applies the initial values of the inputs to the elements. During execution,

the cell takes away c0:4 and d0:4, and connects the elements into the structure shown. The

elements then run for nine cycles to produce the output y0:8. The pipeline latches inside the

elements, denoted by hash marks in the figure, separate data from adjacent phases.

To clarify how the cell operates in mathematics mode, Figure 3.5 expands the chain

24

Execution (= 1, 2, ..., 9)i

Initialization

a4

a4

c4 c3 c2 c1 c0d4 d3 d2 d1 d0

a3

a3

a2

a2

a1

a1

a0

a0

b0

bi

y0

yi

Figure 3.4: Serial cell in mathematics mode.

of elements into an equivalent parallel model. Each row of elements represents one phase.

Observe that the structure resembles an array multiplier. The cell collects the first output y0

when i = 1, and the final output y8 when i = 9. The light-colored elements do not contribute

to the results.

The serial cell uses the circuit described in Appendix A to subdivide the global clock ck

into the initialization and execution phases. The control signals generated by this circuit

drive the pipeline latches inside the elements.

3.2 Functions

This section demonstrates how the two cells can implement basic operations found in DSP.

These functions include multiplication, addition and subtraction, bit shifting, memory access,

and control logic. The cells also provide a means for reconfiguration. Table 3.1 summarizes

the operations discussed in this section.

25

c a4 4 d4 c a3 3 d3 c a2 2 d2 c a1 1 d1 c a0 0 d0

b0

b1

b2

b3

b4

b5

b6

b7

b8

y0

y1

y2

y3

y4

y5

y6

y7

y8

Initialization

Execution

Figure 3.5: Equivalent parallel model of mathematics mode.

Table 3.1: Examples of cell operations.

Operation Mode Remarks

MAC Mathematics Unsigned or two’s-complement
Add/subtract Mathematics Unsigned or two’s-complement
Shift Mathematics Right or left
RAM Memory Can read and write simultaneously
Lookup table Memory Read operations
Logic Both AND-OR, decoders, multiplexers
Reconfiguration Memory Write operations

26

3.2.1 Multiplication

In mathematics mode, both the parallel cell and the serial cell assume a structure that

resembles a multiplier. This property is not accidental, as multiplication is one of the most

critical operations in DSP. In fact, both cells can evaluate the expression

y0:7 = (a0:3 × b0:3) + c0:3 + d0:3. (3.1)

This powerful multiply-accumulate (MAC) allows the reconfigurable architecture to imple-

ment word-length multipliers on the array of 4-bit cells.

To perform the MAC on unsigned data, the parallel cell configures each element to

calculate

(2z + y) = (a ∧ b) + c + d. (3.2)

Here, “+” denotes addition, and “∧” the logical AND. The cell can also compute the MAC

on two’s-complement data with the following four element configurations:

(2z + y) = (a ∧ b) + c + d (3.3)

(−2z + y) = −(a ∧ b) + c − d (3.4)

(−2z + y) = −(a ∧ b) − c + d (3.5)

(−2z + y) = (a ∧ b) − c − d. (3.6)

Further details about this subject appear in Chapter 5.

The serial cell implements the MAC in a slightly different manner. Collectively, the five

elements compute the 5-bit MAC

y0:8 = (a0:4 × b0:4) + c0:4 + d0:4. (3.7)

27

Each input can encode a 4-bit unsigned number or a 4-bit two’s-complement number without

changing the function performed by the elements. Thus, the cell to work with a mixture of

unsigned and two’s-complement 4-bit inputs, a situation that occurs in word-length multi-

plier modules. Each element evaluates the expression

(2z + y) = (a ∧ b) + c + d, (3.8)

regardless of the format of the inputs.

3.2.2 Addition and subtraction

Addition and subtraction are special cases of the MAC. In the parallel cell, setting b0:3 = 1

reduces (3.1) to

y0:7 = a0:3 + c0:3 + d0:3. (3.9)

This function allows the cell to add two 4-bit terms plus a carry in. For unsigned inputs,

the cell configures elements in the top row to evaluate

(2z + y) = (a ∧ 1) + c + d = a + c + d, (3.10)

and all other elements to evaluate

(2z + y) = (a ∧ 0) + c + d = c + d. (3.11)

For two’s-complement inputs, one can substitute b0:3 = 1 into the MAC cells presented in

Chapter 5. Subtraction follows a similar process with b0:3 = −1.

Rather than redefining the functionality of each element, the serial cell implements ad-

dition and subtraction by fixing b0:8 to a constant value in the hardware. This approach is

28

a d3 3 a d2 2 a d1 1 a d0 0c3 c2 c1 c0

b0

b1

b2

b3

y4y5y6y7

Figure 3.6: Parallel cell used as bit shifter.

necessary because elements must retain the same configuration across all execution phases.

Each element computes the same function as in the 5-bit MAC.

3.2.3 Bit shifting

Another operation that appears in DSP is bit shifting. Figure 3.6 illustrates how the parallel

cell can implement a 4-bit shifter in mathematics mode. The elements can shift c0:3 left and

shift in d0:3, or equivalently shift d0:3 right and shift in c0:3. Inputs a0:3 and b0:3 control the

operation of the shifter, and output y4:7 contains the result.

To clarify how the shifter works, suppose the cell must shift c0:3 two places so that y4:7

is assigned to the string {c2, c3, d0, d1}. The control signals are set to the following values:

a0:3 = 00002

b0:3 = 11112.

(3.12)

29

Each element receives inputs b = 1 and a = 0. These inputs form a two-bit code that

specifies the number of places to shift the inputs. The four elements in the top row act as

two-way multiplexers, selecting the bits of c0:3 and d0:3 that appear in y4:7. Thus, the outputs

of these elements are d0, d1, c2, and c3. The six elements at the bottom left route these bits

to the proper positions of y4:7. The remaining elements in light gray pass data on without

modification.

The serial cell offers a more straightforward approach to implement bit shifting. Fig-

ure 3.7 uses the expanded parallel model of the cell to depict this operation. Here, b0:8

contains the shift data and y4:8 the output. Each element acts as a two-way multiplexer con-

trolled by a. When a = 1, the element passes the value of b diagonally to the outputs. When

a = 0, the element uses the output of the previous element instead. With the appropriate

bit asserted in a0:4, the cell can copy any 5-bit substring of b0:8 onto y4:8.

3.2.4 Memory access

In memory mode, both medium-grain cells implement a random-access memory. A multi-

stage algorithm can reserve a block of cells to store intermediate data. Having separate read

and write ports allows the algorithm to load data from memory, process each sample, and

store the results back into memory in a pipelined fashion. Notice that the write address need

not be the same as the read address. As described in Chapter 4, the memory unit used by

the Fast Fourier Transform relies on this functionality.

Memory mode has other uses as well. With appropriate address inputs, a cell can act as a

fixed-length queue, delaying the input data for a predetermined number of cycles. A cell can

also implement a read-only memory if the system defines the contents during reconfiguration.

In this case, the memory might specify a lookup table for a series of constant coefficients.

30

a4 a3 a2 a1 a0

b0

b1

b2

b3

b4

b5

b6

b7

b8

y4

y5

y6

y7

y8

Figure 3.7: Serial cell used as bit shifter.

31

a d3 3 a d2 2 a d1 1 a d0 0c3 c2 c1 c0

b0

y0

y1

y2

y3y4y5y6y7

Figure 3.8: Parallel cell used to implement control logic.

3.2.5 Control logic

Besides binary arithmetic and memory access, algorithms require some control logic for

proper operation. The parallel cell can evaluate basic logic expressions in both modes. In

memory mode, the 128×4-bit memory can act as a lookup table for the desired function. In

mathematics mode, the 16×2-bit memory inside each element can define two equations of up

to four variables. The cell can configure the first row of elements to implement the desired

function, and have the remaining elements pass the results to the outputs without modifi-

cation. Figure 3.8 depicts this scenario. Possible functions include AND-OR expressions,

decoders, and multiplexers.

The simplest way for the serial cell to implement control logic is to specify a lookup

table in memory mode. Recall that the array of elements can act as a 32×5-bit memory.

Hence, one cell can implement any combinational logic function with up to five inputs and

five outputs.

32

3.2.6 Reconfiguration

Cells default to memory mode during reconfiguration so the system can load new data into

the elements. Recall that each element contains 32 bits. The parallel cell requires 513 con-

figuration bits: 512 for the sixteen elements plus 1 to select memory mode or mathematics

mode. The serial cell requires 161 configuration bits: 160 for the five elements plus 1 for the

mode.

One advantage of the serial cell is that mathematics functions generally use the same

lookup table for each element. This property allows the system to write to all five elements

simultaneously, saving time. However, the system must sometimes set the initial value of b0:8

to use this optimization. Hence, the serial cell requires 42 configuration bits for mathematics

mode: 32 for the elements, 1 for the mode, and 9 for b0:8.

3.3 Analysis

This section compares the performance and flexibility of the proposed medium-grain cells.

Recall that we presented three designs for the basic element in Chapter 2. The parallel cell

is compatible with all three designs, whereas the serial cell must use pipelined elements.

Hence, this analysis considers a total of four alternatives. We first present a series of circuit

simulations detailing a worst-case operation. We then show layout simulations for two al-

ternatives: the parallel cell with static elements, and the serial cell with pipelined elements.

Finally, we analyze the functionality and overhead of the proposed cells.

3.3.1 Circuit simulations

For both cells, the worst-case operation occurs in mathematics mode. The critical path

involves seven elements in the parallel cell, and nine execution phases in the serial cell. To

measure the latency of a worst-case operation, we configured the elements to propagate data

33

1.5

y0 y6:7

2.0 3.02.5 3.5 (ns)

0

clk

1

(V)

Figure 3.9: Simulation of parallel cell with dynamic elements.

along the critical path. We then performed circuit simulations in 90-nm CMOS.

Figure 3.9 contains the simulated output of the parallel cell with dynamic elements.

When clk is low, the elements precharge all data lines to high. When clk is high, the

elements enter the evaluation phase. The outputs initially rise above the supply voltage due

to clock feedthrough. The calculated result is zero for this example, so all bits in y0:7 fall low.

Bit 0 evaluates first, followed by bits 1, 2, 3, and so forth. Bits 6 and 7 evaluate together

because the last element generates both simultaneously. The total latency for this operation

is 707 ps. Allowing 800 ps for the precharge phase and 800 ps for the evaluation phase, the

cell can run at 625 MHz.

Figure 3.10 depicts the corresponding simulation for the parallel cell with static elements.

Now the cell is driven by the input data rather than the clock. We configured the elements so

that a worst-case operation occurs when the inputs transition from low to high. The inputs

are represented by a0 in the figure. The output evaluates one bit at a time, starting with y0

and ending with y6:7. Measured from a0 to y6:7, the total latency is 828 ps. Allowing 1 ns to

account for latching and buffering, the cell can perform computations at 1 GHz.

We next simulated the serial cell with pipelined elements. As shown in Figure 3.11, the

circuit generates the pulse train pul to demarcate the nine execution phases. This signal has

a frequency of approximately 3.4 GHz. When pul is high, the cell collects the next bit of

y0:8. To examine the worst-case behavior, we configured the elements to alternate yi between

high and low. The glitches in yi occur because the signal drives an output register. This

34

0.5

y0 y6:7

1.0 2.01.5 2.5 (ns)

0

a0

1

(V)

Figure 3.10: Simulation of parallel cell with static elements.

1.5

yi

2.0 3.02.5 4.5 (ns)

0

pul

1

(V)

Figure 3.11: Simulation of serial cell with pipelined elements.

component lines up the bits in yi. Overall, the serial cell requires 3 ns per computation, so

the design runs at 333 MHz.

The final alternative combines the parallel cell with the pipelined elements. We proposed

this superpipelined approach in [33]. Figure 3.12 illustrates one of the simulations from this

paper, performed in 180-nm CMOS. Each pipelined element is configured to toggle the y and

z outputs in response to the a, b, c, and d inputs. A complete operation encompasses seven

of these pipeline stages, plus one extra stage for buffering. The worst-case latency through

the element occurs between the pulse train pul and the low-to-high transition of y. In this

simulation, pul has a frequency of 1.5 GHz. In 90-nm CMOS, pul runs at the same speed as

the serial cell, or 3.4 GHz.

3.3.2 Layout simulations

Due to its simple clock approach, the static element offers a good counterpart to the parallel

cell. We implemented this alternative in 180-nm CMOS and performed layout simulations

35

0.0

y

y

0.5 1.51.0 2.0 (ns)

0

pul

2

(V)

Figure 3.12: Simulation of parallel cell with pipelined elements.

0 1 2 3 4 5

a0 y0 y1 y2 y3 y4 y5 y6:7

(ns)

0

1

2

(V)

Figure 3.13: Layout simulation of parallel cell with static elements.

with all parasitic capacitances extracted. The simulated output appears in Figure 3.13. As

with the circuit simulation, the bits of y0:7 transition to high in sequence. The latency from

a0 to y6:7 is slightly less than 3.75 ns, so the cell can run at 267 MHz.

Figure 3.14 depicts a similar layout simulation for the serial cell. The cell has been

configured to perform the 4-bit MAC. In the simulation, the elements perform the following

calculation:

(011112 × 010102) + 010102 + 010102 = 01010 10102. (3.13)

These values represent a worst-case situation, since yi alternates between low and high. As

shown, the elements produce the correct output. The pulse train pul has a frequency of

1.65 GHz; the cell runs at 167 MHz overall.

36

2 3 4 5 6 87 9

pul yi

(ns)

0

1

2

(V)

Figure 3.14: Layout simulation of serial cell with pipelined elements.

Table 3.2: Comparison of medium-grain cells.

Parallel Parallel Parallel Serial
Parameter Dynamic Static Pipelined Pipelined

Word size (bits) 4 4 4 4–5
Memory per cell (words) 128 128 128 32
Memory configuration bits 513 513 513 161
Math configuration bits 513 513 513 42
Latency (cycles) 1 1 8 1
Frequency of circuit (MHz) 625 1000 3400 333
Frequency of layout (MHz) ∼167 267 ∼1650 167
Area of layout (mm2) 0.040 0.017

3.3.3 Comparison of cells

Table 3.2 compares the performance, area, and overhead of the medium-grain cells. We list

the clock frequency for the 90-nm circuit simulations and the 180-nm layout simulations.

For the parallel cell with dynamic and pipelined elements, we estimate the frequency of a

180-nm layout based on the results of other simulations. Clearly, the parallel cell achieves

higher speed at the expense of area.

In terms of performance, the parallel cell with pipelined elements offers the highest clock

frequency, but the latency from the inputs to the outputs is eight clock cycles. The dynamic

and static elements allow the cell to compute one operation per cycle. The system can use

the precharge phase of the dynamic element to transfer data between cells. In contrast, the

37

static element offers a higher clock frequency and a simpler clocking scheme.

The functionality of the two medium-grain cells is almost identical, as described in the

previous section. However, the parallel cell implements a 512-word RAM, whereas the serial

cell implements a 32-word RAM. Having more memory per cell offers an advantage when

creating large memory units, but a disadvantage when configuring the cell. The serial cell

has a very low configuration overhead for mathematics mode, since all elements generally

have the same lookup table. In contrast, the system may have to configure each element

separately in the parallel cell.

3.4 Verification

We have created three initial prototypes of the cells through the MOSIS Prototyping Service.

The chips used a full-custom design flow with a modest 500-nm technology. Functional

testing demonstrated that each design operates correctly. This section briefly describes the

three prototypes.

3.4.1 Parallel-dynamic design

The first prototype, shown in Figure 3.15, implements a preliminary version of the parallel

cell with dynamic elements. The elements use two datapaths: one for memory reads and

writes, and the other for mathematics computations. After fabrication, we found that the

current design for the dynamic element achieves better performance. However, the prototype

operates in a similar manner. The large block in the center contains the 4×4 matrix of

elements, whereas the other small blocks implement control circuitry.

Figure 3.16 contains a series of waveforms that demonstrate the functionality of the

prototype. In this test, the circuit is first configured to implement a 4-bit multiplier. Recall

that the configuration process uses standard write operations to load values into the lookup

38

Figure 3.15: Prototype of parallel cell with dynamic elements.

tables. The circuit then calculates all perfect squares from 1×1 to 15×15, as listed in

Table 3.3. The device functions correctly for all inputs, verifying both memory mode and

mathematics mode.

3.4.2 Parallel-static design

The second prototype, shown in Figure 3.17, contains another version of the parallel cell.

This design features the static elements described in Chapter 2. The transistor layout of

the cell is very regular. We subjected the prototype to the same functional testing as the

previous design. Figure 3.18 depicts the input and output waveforms as the prototype

calculates the perfect squares from 1 to 15. Notice that mathematics computations operate

in a combinational manner.

39

Table 3.3: Test cases to verify prototype.

Cycle Operation Output

1–65 Configuration
66 0 × 0 = 0 0000 00002

67 1 × 1 = 1 0000 00012

68 2 × 2 = 4 0000 01002

69 3 × 3 = 9 0000 10012

70 4 × 4 = 16 0001 00002

71 5 × 5 = 25 0001 10012

72 6 × 6 = 36 0010 01002

73 7 × 7 = 49 0011 00012

74 8 × 8 = 64 0100 00002

75 9 × 9 = 81 0101 00012

76 10 × 10 = 100 0110 01002

77 11 × 11 = 121 0111 10012

78 12 × 12 = 144 1001 00002

79 13 × 13 = 169 1010 10012

80 14 × 14 = 196 1100 01002

81 15 × 15 = 225 1110 00012

Figure 3.16: Verification of parallel cell with dynamic elements.

40

Figure 3.17: Prototype of parallel cell with static elements.

Figure 3.18: Verification of parallel cell with static elements.

41

Figure 3.19: Prototype of serial cell with pipelined elements.

3.4.3 Serial-pipelined design

The third prototype, shown in Figure 3.19, implements the serial cell with pipelined elements.

We optimized the cell to simplify functional testing. Hence, the chip does not contain all of

the clock generator circuitry described in Appendix A. Two external pins, reset and trigger,

specify the timing for mathematics computations. The chip does contain a pulse generator

controlled by the rising edge of trigger. This circuitry produces the pulse train required to

drive the pipeline latches. The latches are designed to hold their current state indefinitely

when this signal is low. Thus, trigger can run at low frequency.

The test results demonstrated that the serial cell operates correctly. We configured the

cell to perform a 4-bit MAC on two’s-complement inputs, and had the chip compute a series

of perfect squares, as before. Figure 3.20 illustrates the resulting waveforms. The output pins

connect to a shift register that receives the bit-serial output one bit at a time. Notice that

the mathematics computations require one initialization phase and nine execution phases.

42

Figure 3.20: Verification of serial cell with pipelined elements.

3.5 Summary

This chapter has presented two novel 4-bit cells for the proposed reconfigurable architecture.

The first design, which computes all results in bit-parallel fashion, offers the best perfor-

mance but consumes a relatively large area. The second design, which computes binary

arithmetic in bit-serial fashion, is significantly smaller but incurs a performance penalty.

Both designs use an array of elements that can assume two configurations: one optimized for

memory operations, and one optimized for binary arithmetic. Layout simulations in 180-nm

technology indicate that the parallel cell with static elements runs at 267 MHz, whereas the

serial cell with pipelined elements has an overall frequency of 167 MHz. Initial prototypes

provide further functional verification of the designs. As described in Chapter 4, cells can

be combined into word-length modules such as multipliers.

43

Chapter 4

Interconnections and Modules

Implementing DSP on the medium-grain reconfigurable architecture follows the three-step

process outlined in Figure 4.1. First, the desired algorithm is divided into a series of modules,

such as multipliers and adders. Other units may store intermediate data and control the

execution of the algorithm. Next, each module is mapped onto a block of 4-bit cells. Cells

within a block typically exchange partial results with neighboring cells. Finally, the modules

are connected together across the interconnection network. This form of communication

naturally occurs in word-length units.

We previously proposed a dual interconnection network that optimizes data transfer both

within and between modules [34]. A local mesh of busses connects neighboring cells. Su-

perimposed on the mesh is a global H-tree that routes data between modules. We recently

enhanced the design to increase throughput and simplify the mapping process [35]. This

chapter describes the interconnection network and illustrates how groups of cells can imple-

Divide
algorithm

into modules

Map
modules

onto device

Connect
modules
together

Figure 4.1: Steps for implementing DSP on the reconfigurable cell array.

44

m

Cell

Figure 4.2: Local interconnection structure.

ment various modules. These modules form the building blocks for the algorithms discussed

in Chapter 6.

4.1 Interconnection network

This section describes the dual interconnection network used in the medium-grain reconfig-

urable architecture.

4.1.1 Local mesh

Figure 4.2 depicts the local mesh. A series of m-bit busses allows cells to exchange data

with their eight neighbors in the horizontal, vertical, and diagonal directions. The parallel

cell uses m = 4, and the serial cell uses m = 5. All busses are unidirectional. The regularity

of the structure supports modules of any size.

Figure 4.3 examines the interface between the cell and the interconnection network. Each

input of the cell can connect to any incoming bus in the local mesh or the global H-tree.

Similarly, each output of the cell can connect to any outgoing bus. Two crossbar switches

perform the required routing. A control unit manages the reconfiguration process for the

45

m

m m

m

Input
Switch

Output
Switch

Elements

Control

L
o
c
a
l

L
o
c
a
l

G
lo

b
a
l

G
lo

b
a
l

clk clk clkcfg

Figure 4.3: Interface between cell and interconnection network.

cell and the crossbar switches. The pipeline registers shown in the figure will be described

shortly.

Some output lines of the cell are simply copies of the corresponding inputs. Hence, the

local network can route data through a chain of cells to its final destination. This property

is useful when multiple cells in a module are driven by the same inputs.

4.1.2 Global H-tree

Figure 4.4 illustrates the global H-tree. This structure can transfer data efficiently between

any two cells on the array. Each level of the tree contains four input busses and four output

busses. The number of bits per bus starts at m bits and doubles at every level. Thus, the

H-tree resembles a fat-tree, which has been recognized as an efficient routing structure for

parallel processing applications [36]. Data originating from a cell travels up the output path

until it reaches the highest level required. The data then switches to the input path and

descends to the destination cell. Hence, data routed between cells A and B traverses eight

levels.

Figure 4.5 details a typical switch in the global H-tree. These switches route data in

46

A

B

Cell

Switch

m

4m

2m

Figure 4.4: Global interconnection structure.

units of n bits, where n is a multiple of m. The architecture of each switch is identical; only

the number of bits per bus changes. On the input path, the 2n-bit busses from the upper

level can be routed onto the n-bit busses in the two lower levels. The least significant and

most significant n bits are handled separately. On the output path, each n-bit bus from

the lower level can be transferred to an outgoing 2n-bit bus. Alternatively, the switch can

transfer data from the output path to the input path on the same level.

Each link between n-bit busses has the structure depicted in Figure 4.6. The link contains

a series of programmable connections between the corresponding bits of each bus. Each m-

bit portion of the link can be configured separately. This feature allows multiple links to

connect to the same n-bit bus, provided that no two links drive the same m-bit portions.

Modules sometimes need to merge two busses on the output path in this manner. In most

cases, all m-bit portions of a link have the same state, so switches with larger n have about

the same configuration time as switches with smaller n.

To save area, one could maintain a constant bus size after a predetermined number of

levels. One could also use the techniques similar to those in [37] to fold the H-tree into an

47

n

n

n

n

2n 2n

clk

Figure 4.5: Typical switch in global interconnection structure.

n

n

m

Figure 4.6: Link in global switch.

48

Table 4.1: Latency of cells and interconnection network.

Parallel Parallel Parallel Serial
Parameter Dynamic Static Pipelined Pipelined

Latency of cell (cycles) 1 1 8 1
Latency of local mesh (cycles) 0 1 2 1
Latency of global H-tree (cycles per level) 0.5 0.5 1 0.5

smaller layout.

4.1.3 Pipelining

As shown in Figures 4.3 and 4.5, the interconnection network contains pipeline registers for

high throughput. This technique allows the architecture to exploit the inherent parallelism of

DSP. The exact pipelining scheme depends on the designs of the cell and element. However,

all cell computations and data transfers occupy one or more pipeline stages. Table 4.1 lists

the latencies of the cell, local mesh, and global H-tree. Initial simulations indicate that the

interconnection network can match the throughput of the cell with these parameters.

For example, consider the parallel cell with static elements. The cell completes all oper-

ations within one pipeline stage. The local mesh also consumes one cycle to transfer data

between cells. The latency of the global H-tree depends on the number of levels traversed

between cells. Here, each level requires half a cycle, so the latency between cells A and B in

Figure 4.4 would be four cycles.

The other designs for the cell and element have somewhat different latencies. With the

dynamic element, the local mesh can transfer data during the precharge phase of the clock

cycle. Hence, the latency is effectively zero. The parallel cell with the pipelined element has

increased latency for all operations, due to the increased clock frequency.

The local network contains some extra pipeline registers that cells can use to delay certain

inputs or outputs. This feature is useful in some of the modules described next.

49

4.2 Modules

This section describes how groups of cells can implement modules such as multipliers, adders,

memory units, and control logic. We give examples of both fixed-point and floating-point

arithmetic.

4.2.1 Multiplier

Most algorithms for DSP require some form of multiplication. Depending on the target

application, the algorithm may perform unsigned or signed multiplication of 16-bit, 20-

bit, 24-bit, 32-bit, or larger numbers. The 4-bit cells enable applications to implement a

multiplier of the required size, while exploiting the inherent parallelism of the operation.

Suppose the reconfigurable device must multiply two 16-bit inputs A0:15 and B0:15 to

generate the output Y0:31. The unit is to operate in parallel for maximum performance.

Figure 4.7 illustrates one possible approach. The structures shown in (a) and (b) are super-

imposed onto a 4×4 array of cells. The interconnection scheme scales easily to form n-bit

multipliers with (n/4)2 cells (assuming n is a multiple of 4). Notice the similarity between

this approach and the parallel cell in Chapter 3.

As shown in part (a), the H-tree passes 4-bit portions of A0:15 and B0:15 to cells on the

top and right. These lines are transferred horizontally and vertically to the a0:3 and b0:3

inputs of each cell. Typical cells compute the 4-bit MAC

y0:7 = (a0:3 × b0:3) + c0:3 + d0:3. (4.1)

The local mesh connects the y0:3 and y4:7 outputs to the c0:3 and d0:3 inputs of neighboring

cells. As shown in part (b), the H-tree collects the 4-bit portions of Y0:31 from the cells on

the right and bottom.

The interconnection network automatically pipelines the multiplier into 4-bit portions.

50

c0:3

y0:3

a0:3

(a) (b)

B
1
2
:1

5
B

8
:1

1
B

4
:7

B
4
:7

B
4
:7

B
8
:1

1

b0:3

y4:7

d0:3

x x x x x x x x

x+ x+ x+ x+ x+ x+ x+ x+

x+ x+ x+ x+ x+ x+ x+ x+

x+ x+ x+ x+ x+ x+ x+ x+

A
B

1
2
:1

5
0
:3

-

A
B

4
:7
-

0
:3

A
B

8
:1

1
-

0
:3

A
B

0
:3

0
:3

-

Y
0
:3

Y
4
:7

Y
8
:1

1
Y

1
2
:1

5

Y
1
6
:1

9

Y
2
0
:2

3

Y
2
4
:2

7
-Y

2
8
:3

1
Figure 4.7: 16-bit multiplier.

The hash marks in Figure 4.7 denote places where the cell must delay some outputs to align

the data in subsequent pipeline stages. The total latency through the multiplier depends on

the design of the cell and the element, but the module can initiate one operation per clock

cycle. The critical path involves a chain of 7 cells, or (n/2 − 1) cells in general. Notice that

the 4-bit portions of Y0:31 are generated across multiple pipeline stages.

Chapter 5 gives more details about mapping multipliers onto the array of cells. With

various cell configurations, the module can handle both unsigned and two’s-complement

inputs.

4.2.2 Multiply-accumulate unit

The cells in the top row of Figure 4.7 perform multiplication but not addition. Connecting

the c0:3 and d0:3 inputs of these cells to additional inputs C0:15 and D0:15, the module would

51

evaluate the 16-bit MAC

Y0:31 = (A0:15 × B0:15) + C0:15 + D0:15. (4.2)

4.2.3 Adder and subtracter

Most algorithms require addition as well as multiplication. In some cases, an addition may

be combined with another multiplication and implemented with the MAC unit described

previously. However, other situations require dedicated adders.

The module in Figure 4.8 uses eight cells to add 32-bit inputs A0:31 and B0:31. Parts (a)

and (b) are superimposed, as before. In general, an n-bit adder requires a chain of (n/4)

cells. Wrapping the structure into a rectangular shape achieves better utilization of the

interconnection network. The H-tree passes 4-bit portions of these inputs to each cell. Cells

then add the two terms, along with a carry-in:

y0:7 = a0:3 + b0:3 + c0:3. (4.3)

The local mesh routes y4:7 to the carry-in of the next cell. The H-tree collects y0:3 into the

final result, Y0:35.

As with the multiplier and MAC unit, the interconnection structure pipelines the adder

into 4-bit portions. Note that A0:31 and B0:31 should arrive in a staggered fashion: A0:3 and

B0:3 first, A4:7 and B4:7 next, and so forth. Many modules described in this section impose

similar requirements on the inputs. The output Y0:35 is generated in the same order.

With suitable configurations of each cell, the module can add or subtract inputs in

unsigned or two’s-complement format.

52

c0:3 y4:7

(a) (b)

A
B

1
2
:1

5
1
2
:1

5
-

Y
1
2
:1

5

A
B

1
6
:1

9
1
6
:1

9
- Y

1
6
:1

9

A
B

4
:7

4
:7

-

Y
4
:7

A
B

2
4
:2

7
2
4
:2

7
- Y

2
4
:2

7

A
B

8
:1

1
8
:1

1
-

Y
8
:1

1

A
B

2
0
:2

3
2
0
:2

3
- Y

2
0
:2

3

A
B

0
:3

0
:3

-

Y
0
:3

A
B

2
8
:3

1
2
8
:3

1
-

Y
Y

2
8
:3

1
3
2
:3

5
-

+ + + + + + + +

+ + + + + + + +

Figure 4.8: 32-bit adder.

4.2.4 Shifter

Shifters are a necessary component of many computations, including floating-point arith-

metic and CORDIC rotations. One can implement both linear and logarithmic shifters on

the reconfigurable cell array. A linear shifter has a simple structure that resembles the mul-

tiplier module. However, a logarithmic shifter usually requires fewer cells, as in the 16-bit

left shifter in Figure 4.9. An n-bit module occupies a (n/4) × ⌈log2(n/2)⌉ block of cells.

The logarithmic shifter contains three rows. The first row shifts the input X0:15 from

zero to four bits. Each cell implements the bit shifter described in Chapter 3. The second

and third rows apply optional shifts of four and eight bits, respectively. Here, each cell

implements a two-way multiplexer. A control word S0:7 determines the number of places to

shift.

Part (a) in the figure shows the inputs and outputs of the module, whereas part (b) details

the internal connections. Although the local mesh handles most communication within the

module, the H-tree does route some lines between the second and third rows. This situation

arises because data must travel between non-neighboring cells. The second row delays all

other outputs to match the additional latency of the H-tree.

53

Ü Ü

Ü Ü

Ü Ü

Ü Ü

Ü Ü

Ü Ü

Ü Ü

Ü Ü

¬ ¬¬ ¬¬ ¬¬ ¬

(a) (b)

X
S

1
2
:1

5
0
:3

-

X
4
:7
-S

0
:3

X
8
:1

1
-S

0
:3

X
0
:3
-S

0
:3

S
4
:7

S
4
:7

S
4
:7

S
4
:7

Y
1
2
:1

5

Y
4
:7

Y
8
:1

1

Y
0
:3

Figure 4.9: 16-bit left shifter.

4.2.5 Memory unit

Recall from Chapter 3 that cells can implement a memory with separate read and write

addresses. The parallel cell has a 128×4-bit capacity, whereas the serial cell has a 32×5-bit

capacity. Each cell divides the address space into two banks. Often, one bank implements a

read-only memory, while the other bank implements a write-only memory. This setup allows

algorithms to read data from the first bank, perform some calculation, and store results into

the second bank. The next stage of the algorithm then reads from the second bank and

writes to the first bank.

Figure 4.10 demonstrates one way to combine multiple cells into a dual-port memory. The

module contains twelve memory cells, labeled “M”, and four decoder cells, labeled “D”. Input

RA0:7 addresses the read memory, and WA0:7 addresses the write memory. The decoder cells

use RA4:7 and WA4:7 to enable rows of memory cells for reading and writing. The local mesh

transfers the remaining bits to each cell. The output data propagates downwards, while the

input data propagates upwards. All operations occur in a pipelined fashion.

54

M M

M M

M M

M M

M M

M M

M M

M M

M M

M M

M M

M M

D D

D D

D D

D D

(a) (b)

ra4:7

wa4:7

ra0:3

wa0:3

ri0:3

wi0:3

ro0:3

R
O

4
:7

R
O

8
:1

1

R
O

0
:3

R
A

0
:3

R
A

0
:3

R
A

0
:3

R
A

4
:7

W
A

4
:7

W
A

W
I

0
:3

8
:1

1
-

W
A

W
I

0
:3

4
:7

-

W
A

W
I

0
:3

0
:3

-

Figure 4.10: Dual-port memory unit.

With the parallel cell, the read and write memories have a 256×12-bit capacity. With

the serial cell, the memories have a 64×15-bit capacity. Larger memory units simply require

a larger block of cells.

4.2.6 Specialized memory unit

In Chapter 6, we describe a radix-4 implementation of the Fast Fourier Transform (FFT).

The kernel of this algorithm simultaneously reads four samples from memory and writes

four results back into memory. We developed the module shown in Figure 4.11 to support

this operation. A 4×4 block of cells can manage a 4-bit portion of all eight inputs and

outputs. As with the previous design, reads and writes operate independently. Each row of

cells implements a read memory for one of the inputs to the kernel. Each column, in turn,

implements a write memory for one of the outputs. A separate module, not shown, generates

the necessary control signals to enable individual rows and columns.

55

M M

M M

M M

M M

M M

M M

M M

M M

M M MM

M M MM

M M MM

M M MM

(a) (b)

ra4:7

ra4:7

ra0:3

wa4:7

wa4:7

ra0:3

wa0:3

wa0:3

ri0:3

wi0:3

ro0:3

R
E

4
:7

W
E

4
:7

R
E

8
:1

1

W
E

8
:1

1

W
E

1
2
:1

5

R
E

1
2
:1

5
-R

O
0
:3

W
A

W
E

0
:3

0
:3

-
-

W
I 0

:3

R
A

0
:3
-R

E
0
:3

R
O

4
:7

W
I 4

:7
W

I 8
:1

1
W

I 1
2
:1

5

R
O

8
:1

1

R
O

1
2
:1

5

Figure 4.11: Memory unit for Fast Fourier Transform.

56

c0:3

(a) (b)

A
B

1
2
:1

5
1
2
:1

5
-

Y
Z

1
2
:1

5
1
2
:1

5
-

A
B

1
6
:1

9
1
6
:1

9
-

Y
Z

1
6
:1

9
1
6
:1

9
-

A
B

4
:7

4
:7

-

Y
Z

4
:7

4
:7

-

A
B

2
4
:2

7
2
4
:2

7
-

Y
Z

2
4
:2

7
2
4
:2

7
-

A
B

8
:1

1
8
:1

1
-

Y
Z

8
:1

1
8
:1

1
-

A
B

2
0
:2

3
2
0
:2

3
-

Y
Z

2
0
:2

3
2
0
:2

3
-

A
B

0
:3

0
:3

-
-C

0
:3

Y
Z

0
:3

0
:3

-

A
B

2
8
:3

1
2
8
:3

1
-

Y
Z

2
8
:3

1
2
8
:3

1
-

SSSSSSSS

SSSSSSSS

Figure 4.12: 32-bit exchange unit.

4.2.7 Control logic

Control logic presents a problem for many reconfigurable devices that perform DSP. Ar-

chitectures that place a fixed number of functional units in each cell may not be able to

evaluate arbitrary logic expressions efficiently. Some systems work around this problem by

supplementing the reconfigurable device with a separate microprocessor: the microprocessor

handles the control operations, whereas the reconfigurable device executes the mathematical

functions [1]. In contrast, the proposed architecture has both coarse-grain and fine-grain

flexibility. Algorithms can map control logic alongside other modules.

To give an example, Figure 4.12 illustrates a unit that exchanges two 32-bit inputs A0:31

and B0:31 in response to a control signal C0:3. The outputs of the module are X0:31 and Y0:31.

A 32-bit multiplexer would have a similar structure.

4.2.8 Floating-point adder

Although the modules described so far use fixed-point arithmetic, the reconfigurable cell

array can also implement floating-point arithmetic. For example, Figure 4.13 illustrates a

floating-point adder that operates on inputs x and y. A comparator first determines the

57

EXCH

MUX

COMP

xs

zs

xe

ys

ye

ze

Figure 4.13: Diagram of floating-point adder.

difference between the exponents xe and ye. This result is used to align the significands xs

and ys by shifting one or the other to the right. A fixed-point adder computes the sum, while

a multiplexer selects the larger of the two exponents. For completeness, the module should

also realign the result, but this operation is best performed after completing all floating-point

manipulations.

Although one could design an adder to work with floating-point numbers in IEEE format,

a hybrid representation reduces the hardware required for individual operations. Suppose

that numbers contain a 28-bit denormalized significand and a 10-bit exponent, both in two’s-

complement format. Also assume that the last two bits of the exponent are always zero.

This property implies that the significand is only shifted in 4-bit units, reducing the size of

the shifter. Conversion to and from IEEE single-precision format would be straightforward.

Figure 4.14 shows the resulting implementation of the floating-point adder. The structure

requires 52 cells, or the equivalent of a 208-bit fixed-point adder. The critical path runs from

xe and ye to zs.

4.2.9 Floating-point multiplier

A diagram of a floating-point multiplier appears in Figure 4.15. This operation also reduces

to fixed-point manipulations. The structure multiplies the two significands xs and ys, and

adds the two exponents xe and ye. The final stages realign the result by shifting the signifi-

58

COMP

EXCH

MUX

Figure 4.14: Implementation of floating-point adder.

Encoder

xs

xe

zs

ys

ye

ze

Figure 4.15: Diagram of floating-point multiplier.

cand left and subtracting the appropriate value from the exponent. An encoder determines

the appropriate degree of shifting.

Figure 4.16 depicts the implementation of the floating-point multiplier. This example

uses the same number format as the floating-point adder. Notice that the outputs of the

multiplier connect directly to the encoder for high efficiency. The critical path runs from xs

and ys to zs. Much of the latency originates from the dependency of the shift register on the

final output of the multiplier and the encoder.

4.3 Summary

In this chapter, we have described how the interconnection network partitions the medium-

grain cell array into a hierarchy of modules. Each module performs a word-length operation

such as 16-bit multiplication. A local mesh of 4-bit busses connects neighboring cells within

59

Encoder

Figure 4.16: Implementation of floating-point multiplier.

a module, and a global H-tree transfers data between modules in word-length units. In

addition, we have shown the structure of several modules, including multipliers, adders,

and memory units. The interconnection network pipelines all cell computations and data

transfers, allowing the architecture to achieve high throughput.

60

Chapter 5

Hierarchical Multipliers

Multiplication is one of the most critical operations in DSP. Devices that cannot implement

this operation effectively will incur significant performance penalties. In this chapter, we

demonstrate how to map n-bit multipliers onto an array of m-bit cells. This architecture

is a generalization of the proposed reconfigurable cell array, in which m = 4. We consider

modules that work with unsigned and two’s-complement data. We then describe the neces-

sary configurations for each cell. The following sections parallel the discussion in [38], but

with some differences in terminology.

5.1 Structure

In this section, we develop an efficient structure to implement an n-bit multiplier on an

array of m-bit cells. Denoting the inputs as A0:n−1 and B0:n−1 and the output as Y0:2n−1, the

module performs the operation

Y0:2n−1 = (A0:n−1 × B0:n−1). (5.1)

We are not concerned with the data format at this time.

61

A12:15 A8:11 A4:7 A0:3

c0:3

x x x x

x+ x+ x+ x+

x+ x+ x+ x+

x+ x+ x+ x+

+ + + +

y0:3

a0:3

b0:3

y4:7

d0:3

B0:3

B4:7

B8:11

B12:15

Y0:3

Y4:7

Y8:11

Y12:15

Y16:19Y20:23Y24:27Y28:31

Figure 5.1: Carry-save multiplier.

5.1.1 Carry-save multiplier

As an initial approach, consider the structure of a carry-save multiplier [29]. Figure 5.1

illustrates this approach for n = 16 and m = 4. The module uses a rectangular array of

⌈n/m⌉ by ⌈n/m⌉ + 1 cells. The two inputs are divided into m-bit portions and broadcast

across the rows and columns of the array.

Cells in the top row multiply two m-bit portions of A0:n−1 and B0:n−1, passing the upper

and lower portions of result in separate directions. Cells in the middle rows perform the same

multiplication and may add one or two m-bit terms to the result. This function is known as

a multiply-accumulate (MAC). Finally, cells in the bottom row add two or three m-bit terms

together. As a function of n and m, the carry-save multiplier requires ⌈n/m⌉2 + ⌈n/m⌉ cells.

The critical path contains 2 ⌈n/m⌉ cells.

62

A12:15

C12:15 D12:15

A8:11

C8:11 D8:11

A4:7

C4:7 D4:7

A0:3

C0:3 D0:3

c0:3

x+ x+ x+ x+

x+ x+ x+ x+

x+ x+ x+ x+

x+ x+ x+ x+

y0:3

a0:3

b0:3

y4:7

d0:3

B0:3

B4:7

B8:11

B12:15

Y0:3

Y4:7

Y8:11

Y12:15Y16:19Y20:23Y24:27Y28:31

Figure 5.2: Proposed multiply-accumulate unit.

5.1.2 Proposed design

We can reduce the size of the multiplier by having all cells implement the worst-case MAC.

This enhancement is beneficial since reconfigurable devices typically contain an array of

identical cells. Figure 5.2 depicts the resulting structure for n = 16 and m = 4. Notice that

two additional terms C0:n−1 and D0:n−1 can be incorporated into the top row of cells. This

enhancement allows the module to evaluate the n-bit MAC

Y0:2n−1 = (A0:n−1 × B0:n−1) + C0:n−1 + D0:n−1. (5.2)

Each cell performs a similar MAC on m-bit words:

y0:2m−1 = (a0:m−1 × b0:m−1) + c0:m−1 + d0:m−1. (5.3)

63

In general, a0:m−1 and b0:m−1 represent two m-bit portions of A and B, whereas c0:m−1 and

d0:m−1 denote the two terms added to the result. The design requires ⌈n/m⌉2 cells and has

a critical path of 2 ⌈n/m⌉ − 1 cells.

5.1.3 Proof of functionality

To prove that the proposed MAC unit does implement the n-bit MAC in (5.2), we can use

mathematical induction on n. For simplicity, we restrict n to multiples of m. The base case

where n = m consists of one cell that computes (5.3), or equivalently (5.2). For the inductive

step, we assume that the structure works correctly for inputs of (n − m) bits, and extend

this result to n bits.

Suppose we partition the array of cells along the dashed line in Figure 5.2. Notice that

the main group of cells has the same structure as an (n − m)-bit array. Denote the output

of this portion with Y ′

0:2(n−m)−1. By the inductive hypothesis,

Y ′

0:2(n−m)−1 = (Am:n−1 × B0:n−m−1) + Cm:n−1 + Dm:n−1. (5.4)

Now consider the remaining cells along the right and bottom edges. These cells multiply

portions of A0:n−1 and B0:n−1 to produce the intermediate product

P0:2n−1 = (A0:m−1 × B0:n−m−1) + 2n−m(A0:m−1 × Bn−m:n−1)

+ 2n(Am:n−1 × Bn−m:n−1).

(5.5)

The cells then add P0:2n−1 to Y ′

0:2(n−m)−1, together with C0:m−1 and D0:m−1. Collectively, the

cells implement a two-input ripple-carry adder with m-bit stages. Hence, we can express

64

Y0:2n−1 as follows:

Y0:2n−1 = (A0:m−1 × B0:n−m−1) + 2n−m(A0:m−1 × Bn−m:n−1)

+ 2n(Am:n−1 × Bn−m:n−1) + 2mY ′

0:2(n−m)−1 + C0:m−1 + D0:m−1.

(5.6)

Substituting in (5.4),

Y0:2n−1 = (A0:m−1 × B0:n−m−1) + 2n−m(A0:m−1 × Bn−m:n−1)

+ 2n(Am:n−1 × Bn−m:n−1) + 2m(Am:n−1 × B0:n−m−1)

+ 2mCm:n−1 + 2mDm:n−1 + C0:m−1 + D0:m−1,

(5.7)

which simplifies to

Y0:2n−1 = (A0:m−1 + 2mAm:n−1) × (B0:n−m−1 + 2n−mBn−m:n−1)

+ (C0:m−1 + 2mCm:n−1) + (D0:m−1 + 2mDm:n−1)

(5.8)

= (A0:n−1 × B0:n−1) + C0:n−1 + D0:n−1. (5.9)

5.2 Data formats

The proposed MAC unit can work with data in both unsigned and two’s-complement format.

First we consider the unsigned case. Each cell evaluates the m-bit MAC in (5.3), where

a0:m−1, b0:m−1, c0:m−1, and d0:m−1 range from 0 to 2m − 1. Note that y0:2m−1 will not overflow

since

(2m − 1)(2m − 1) + (2m − 1) + (2m − 1) = 22m − 1. (5.10)

The two’s-complement case is more complex. Consider dividing an n-bit number in two’s-

complement form into m-bit portions. The most significant portion has two’s-complement

65

A12:15

C12:15 D12:15

A8:11

C8:11 D8:11

A4:7

C4:7 D4:7

A0:3

C0:3 D0:3

c0:3

a2 a1 a1 a1

a1a1

a1

g2

g3 b1

b1

b2b2d1

g3 a1

y0:3

a0:3

b0:3

y4:7

d0:3

B0:3

B4:7

B8:11

B12:15

Y0:3

Y4:7

Y8:11

Y12:15Y16:19Y20:23Y24:27Y28:31

Figure 5.3: Two’s-complement MAC unit.

format, but the remaining portions have unsigned format. Since each cell receives m-bit por-

tions of the n-bit inputs, various cells may work with all unsigned data, all two’s-complement

data, or some combination of the two.

Figure 5.3 depicts the proposed MAC unit with two’s-complement inputs. Solid lines

denote unsigned data; dashed lines denote two’s-complement data. Each cell in the module

computes one of seven functions, labeled α1, α2, β1, β2, γ2, γ3, and δ1. (The reason for

this nomenclature will become clear in the next section.) The α1 cells simply evaluate

the unsigned m-bit MAC in (5.3). However, other cells must accept one or more two’s-

complement inputs.

Consider the β1 cell in the figure. Three of the inputs (a0:m−1, b0:m−1, d0:m−1) have

unsigned format and can range from 0 to 2m−1. However, c0:3 has two’s-complement format

66

and can range from −2m−1 to 2m−1 − 1. The minimum value of the output is

(0)(0) + (−2m−1) + 0 = −2m−1, (5.11)

whereas the maximum value is

(2m − 1)(2m − 1) + (0) + (2m − 1) = 2m(2m − 1). (5.12)

This range cannot be represented by either an unsigned or two’s-complement 2m-bit number.

The two cells presented in Chapter 3 solve this problem in different ways. The serial cell

appends an extra bit to each input and output to prevent overflow. Each cell then evaluates

a two’s-complement MAC on the m + 1-bit inputs. In contrast, the parallel cell retains the

m-bit words but splits the output into two portions: y0:m−1 with two’s-complement format,

and ym:2m−1 with unsigned format. The complete output,

y0:2m−1 = y0:m−1 + 2mym:2m−1, (5.13)

can represent values from −2m−1 to 2m(2m − 1), as required.

Applying this scheme throughout the MAC unit yields the data formats shown in the

figure. For example, the α2 cell produces an output whose lower half and upper half are both

two’s-complement numbers. Observe that the final output, Y0:2n−1, has the correct two’s-

complement format. Table 5.1 lists the input and output format for the seven functions in

the MAC unit, plus a γ1 function used later. A + sign denotes unsigned format, whereas a

− sign denotes two’s-complement format.

67

Table 5.1: Data formats for two’s-complement MAC unit.

Name a0:m−1 b0:m−1 c0:m−1 d0:m−1 ym:2m−1 y0:m−1

α1 + + + + + +
α2 − + − − − −
β1 + + − + + −
β2 + − + − − +
γ1 + + + − + −
γ2 + − − + − +
γ3 − + − + − +
δ1 − − − − − +

5.3 Cell functions

The previous section demonstrated that the proposed MAC unit requires cells to implement

seven functions in general, assuming that the architecture does not append an extra bit to

each data word. A natural question is how one reconfigurable cell can realize this function-

ality. Generalizing the parallel cell in Chapter 3, suppose that the cell uses an m×m array

of 1-bit processing elements to compute binary arithmetic. The question then becomes how

each element should be configured.

For the α1 cells, the solution resembles the implementation of the unsigned MAC unit.

Each element computes the MAC with unsigned inputs, which in the 1-bit case reduces to

(2z + y) = (a ∧ b) + c + d. (5.14)

Here y and z denote the lower and upper outputs of the element, and “∧” the logical AND

operation. One can classify this function as type α1, since all inputs and outputs are unsigned

bits.

For the other cells, one can use Table 5.1 to determine the function implemented by each

element. Given the format for the four inputs (a, b, c, d), the table defines the format for

the two outputs (y, z). It happens that the resulting structure generates y0:2m−1 with the

68

Table 5.2: Element functions in MAC cells.

Name Expression

α1, α2 (2z + y) = (a ∧ b) + c + d

β1, β2 (−2z + y) = −(a ∧ b) + c − d

γ1, γ2, γ3 (−2z + y) = −(a ∧ b) − c + d

δ1 (−2z + y) = (a ∧ b) − c − d

correct format in all cases. Figure 5.4 depicts the implementation of the seven functions for

m = 4.

Now consider the function computed by α2 elements. From Table 5.1, a, c, d, y, and z

all have two’s-complement format, such that logic 0 denotes 0 and logic 1 denotes −1. Thus,

the elements evaluate the logic expression

(−2z − y) = (−a × b) − c − d, (5.15)

which simplifies to

(2z + y) = (a ∧ b) + c + d. (5.16)

Since this equation is equivalent to (5.14), the truth tables for α1 and α2 are identical.

Performing a similar analysis on the remaining functions reveals that only four distinct types

are required, as listed in Table 5.2. The reconfigurable device can exploit these similarities

to reduce the configuration time.

5.4 Summary

This chapter has described a novel scheme for performing n-bit MAC operations on a 4-bit

reconfigurable cell array. Each cell computes a 4-bit MAC function with two additive terms.

With small changes to the configuration of each cell, the structure can handle unsigned or

69

c a d3 3 3

c a d3 3 3

c a d3 3 3

c a d3 3 3

c a d3 3 3

c a d3 3 3

c a d2 2 2

c a d2 2 2

c a d2 2 2

c a d2 2 2

c a d2 2 2

c a d2 2 2

c a d1 1 1

c a d1 1 1

c a d1 1 1

c a d1 1 1

c a d1 1 1

c a d1 1 1

c a d0 0 0

c a d0 0 0

c a d0 0 0

c a d0 0 0

c a d0 0 0

c a d0 0 0

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1a1

a1

a1

a1

a1

a1

b1

b1

b1

b1

b1

g2

g3

g3

g3

g3

g3

d1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

g1

b1

b1

g2b2b2b2

a1

a1

a1

a1

a1

a1

a1a1

a1

a1

b2b2

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

b1

b1

b1

b1

a1

a1

a1

a1

a1

b1

b1

b1

g2b2b2b2

a1

a2

g3

g3

g3

g3

a2

Type a2

Type b2

Type g3

Type b1

Type g2

Type d1

b0

b0

b0

b0

b0

b0

b1

b1

b1

b1

b1

b1

b2

b2

b2

b2

b2

b2

b3

b3

b3

b3

b3

b3

y0

y0

y0

y0

y0

y0

y1

y1

y1

y1

y1

y1

y2

y2

y2

y2

y2

y2

y3

y3

y3

y3

y3

y3

y4

y4

y4

y4

y4

y4

y5

y5

y5

y5

y5

y5

y6

y6

y6

y6

y6

y6

y7

y7

y7

y7

y7

y7

Figure 5.4: Implementation of cell functions.

70

two’s-complement inputs. Each cell, in turn, can use a 4×m matrix of 1-bit processing

elements to compute the required functions. This approach corresponds to the design of the

parallel cell in Chapter 3. Only four element functions are required to construct multipliers

of any size.

71

Chapter 6

Algorithms

This chapter concludes the description of the reconfigurable cell array by evaluating its

capabilities for DSP. We illustrate how the device can implement common algorithms such

as the FIR filter and the FFT. These algorithms consist of a series of modules, similar

to those described in Chapter 4. The structure of the interconnection network makes the

mapping process very straightforward. Essentially, the modules are placed onto the array

of cells and connected using the global H-tree. We have created software tools to assist the

mapping process.

We begin this chapter with a brief description of these computer-aided design (CAD)

tools. Next, we summarize how the device configures the cells and interconnection net-

work. We then present the implementations of the selected benchmarks and analyze the

performance and flexibility of the proposed architecture.

6.1 Software tools

Mapping DSP onto any reconfigurable platform requires a set of CAD tools. Most commercial

software supports design synthesis, timing analysis, and circuit simulations. As an initial

step, we have created software tools that allow users to map algorithms by hand. These tools

72

Figure 6.1: Screenshot of software tools.

contain a virtual model of the array of cells and the interconnection network. The software

also features a built-in emulator that allows users to feed data into their designs and obtain

cycle-by-cycle results.

Figure 6.1 contains a screenshot of the editor used for designing modules such as mul-

tipliers. The user can define the configuration of each cell in a separate window and select

between memory mode and mathematics mode. The module shown in the figure is part of

the FIR filter described later in this chapter. The user can toggle the display of local and

global interconnections.

Unlike CAD tools for other reconfigurable platforms, the emulator does not estimate

the propagation delays on the physical device to determine the maximum clock rate. This

calculation is unnecessary for the proposed architecture, since the pipelined datapath allows

the device to run at a fixed frequency. Instead, the emulator allows users to count the

number of cycles required by the algorithm. Multiplying the cycle count by the clock period

produces the total execution time. Different circuit designs may run at different frequencies,

73

but all have the same basic architecture.

Reference [39] gives more information about the CAD tools.

6.2 Configuration

Before using the reconfigurable cell array for DSP, the device must be configured to imple-

ment the desired algorithm. The architecture reuses the global H-tree to pass the config-

uration data into the cells. Thus, affected portions of the device cannot perform regular

operations during this time. The system configures the cells first, followed by the switches

inside the cell interface, followed by the switches in the global network.

The configuration process begins when the system asserts a global cfg signal. In response,

all switches inside the architecture revert to a default setting so that the H-tree assumes the

structure in Figure 6.2. Each cell switches to memory mode so that new information can be

written into the elements. The system then loads configuration commands into the global

H-tree, which propagate into the cells along the input busses. Cells are programmed using

standard write operations in memory mode, whereas switches are programmed by placing

control words on specific data lines.

The time required to completely reconfigure the device depends on a number of factors,

including the size of the array, design of the cells, and number of configuration bits sup-

plied per cycle. A 32×32 array contains 1024 cells, 2048 internal switches, and 1023 global

switches. Assuming that the system uses the parallel cell, configuring the matrix of elements

requires 128 write operations. Adding 4 cycles to select the cell and specify the mode, each

cell requires 132 configuration cycles. We estimate that each switch requires 16 configuration

cycles in the worst case. Hence, the number of cycles required for complete reconfiguration

is

1024(132) + 2048(16) + 1023(16) = 184 304. (6.1)

74

Cell

Switch

Figure 6.2: Structure of cell array during reconfiguration.

Of course, most algorithms do not use all the resources of the device.

More details about the configuration process appear in [40]. Although the reference uses

a slightly different design for the interconnection network, the current architecture can use

some of the proposed optimizations. For example, the system can program multiple cells

simultaneously by exploiting the hierarchical nature of the H-tree.

6.3 Benchmarks

Assisted by the CAD tools, we have mapped various algorithms onto the reconfigurable cell

array. This section presents several examples: a 12-tap FIR filter, a 16-stage CORDIC unit,

and a 256-point Fast Fourier Transform (FFT). The filter and FFT in particular are common

benchmarks for DSP hardware, whereas the CORDIC unit demonstrates the versatility of

the architecture. The algorithms work with inputs in 16-bit fixed-point format, although

intermediate data may be calculated to higher precision. We originally presented these

results in [35].

75

x n[]

y n[]

b11 b10 b0

Figure 6.3: Diagram of FIR filter.

6.3.1 FIR filter

Figure 6.3 gives a block diagram of a 12-tap FIR filter. This structure harnesses the power

of the reconfigurable cell array by performing all operations in parallel. The input to the

filter, x, is passed to twelve multipliers. Each unit i is configured to multiply the data by a

fixed coefficient bi. The outputs of the multipliers are added in pipelined fashion so that the

output y becomes

y[n] = b0x[n] + b1x[n − 1] + . . . + b11x[n − 11]. (6.2)

Figure 6.4 depicts the implementation of the filter. The structure consists of four identical

modules, each of which handles three filter coefficients. Each module occupies an 8×8 block

of cells and contains three multipliers and three adders. To implement higher-order filters,

one would simply add more modules. The current design allows filter coefficients within the

range [−1, 1). However, the implementation does use 20-bit adders to mitigate rounding

errors.

The global interconnection network offers several features that simplify the mapping

process. The input lines of the H-tree broadcast x to all modules simultaneously. Each

module collects the outputs of the three multipliers into a bundle and passes them to the

inputs of the corresponding adders. All three outputs incur the same latency over the H-

76

3 adders

Figure 6.4: Implementation of FIR filter.

Table 6.1: Statistics of FIR filter.

Parallel Parallel Parallel Serial
Parameter Dynamic Static Pipelined Pipelined

Cells 256 256 256 256
Area (mm2) 30.7 24.8
Latency (cycles) 57 72 264 72
Time (cycles) 301 316 508 316
Time (µs) 1.80 1.18 0.31 1.89

tree, simplifying the implementation. The tree structure is also useful for connecting adjacent

modules in sequence. The arrows in the figure suggest one method for traversing the tree.

Table 6.1 lists the required area and execution time of the filter for each cell described in

Chapter 3. For the area, we estimated that the interconnection network consumes 0.08 mm2

per cell, including the local mesh and global H-tree. The latency specifies the number of

cycles from the arrival of x[n − 11] to the computation of y[n]. This path involves 20 cells,

15 local busses, and 74 levels of the H-tree. We also list the total execution time for a

256-point data stream. This parameter equals the latency plus 244 cycles.

77

Dec

x

y

z

y’

x’

z’

Figure 6.5: Diagram of one CORDIC stage.

6.3.2 CORDIC unit

CORDIC transformations offer one way to perform complex mathematics operations, such

as division, square root, trigonometry, and rectangular-to-polar conversion. A typical trans-

formation for n-bit inputs contains n stages, each of which follows the diagram in Figure 6.5.

Initially, the system sets x and y to the inputs (such as the rectangular coordinates) and z

to zero. Iteration i then updates the data as follows:

x′ = x ∓ 2−iy

y′ = y ± 2−ix

z′ = z + f(i)

(6.3)

The value of f(i) and the choice of addition or subtraction depends on the sign of y. After

n stages, x and/or z will contain the desired results, and y will be essentially zero.

We have mapped a 16-bit CORDIC stage onto the reconfigurable cell array, as shown in

Figure 6.6. A 4×8 block of cells contains two adder/subtracters, two shifters, one constant

adder, and a small decoder that determines the sign of y. The implementation contains a

number of features to improve performance. The two shifters translate data no more than

four bits to the right. The remaining shift amount is performed with hardwired connections.

In addition, the two values of f(i) needed for the current stage are hardcoded into the

78

Dec

Figure 6.6: Implementation of one CORDIC stage.

Table 6.2: Statistics of one CORDIC stage.

Parallel Parallel Parallel Serial
Parameter Dynamic Static Pipelined Pipelined

Cells 32 32 32 32
Area (mm2) 3.8 3.1
Latency (cycles) 18 23 88 23

constant adder. Finally, all modules work with 24-bit data rather than 16-bit data to alleviate

rounding errors.

DSP algorithms could compute CORDIC transformations in two ways. A low-area ap-

proach would use a single CORDIC stage to process a group of data points one iteration

at a time. After partial reconfiguration, the stage would be ready for the next iteration. A

high-performance approach would cascade 16 CORDIC stages to form a 16×32 block. In

this case, the throughput of the CORDIC transformation would be the reciprocal of the

clock rate. Table 6.2 gives the latency and area of a single CORDIC stage. The critical path

consists of 7 cells, 5 local busses, and 22 levels of the H-tree.

6.3.3 Fast Fourier Transform

We previously mapped a 256-point FFT on the reconfigurable architecture using a simple

radix-2 decomposition [34]. With the redesigned interconnection network, we can now up-

grade to a radix-4 decomposition. Figure 6.7 gives a diagram of this algorithm. The system

loads the input data into the specialized memory unit described in Chapter 4. Each sample

is represented as a complex number with 16-bit real and 16-bit imaginary portions. The

79

LUTY0

X0

X1

X2

X3 j

Y1 Y2 Y3

Y0

Y1

Y2

Y3

Figure 6.7: Diagram of FFT.

system then executes four computational stages. During each stage, the system reads four

samples from memory, calculates a so-called “dragonfly” operation, and stores the results

back into memory at different addresses. The process repeats for the remaining groups of

samples in the dataset.

The “dragonfly” is described by the matrix equation



















Y0

Y1

Y2

Y3



















=



















1 0 1 0

0 1 0 −j

1 0 −1 0

0 1 0 j





































1 0 1 0

1 0 −1 0

0 1 0 1

0 1 0 −1





































X0

W1X1

W2X2

W3X3



















. (6.4)

This operation consists of three complex multiplications and three complex additions or

subtractions. Coefficients W1, W2, and W3, called “twiddle factors”, are generated by a

lookup table. Note that multiplying by a factor of j or −j only requires the system to

exchange the real and imaginary portions of the data.

The implementation of the FFT appears in Figure 6.8. Each complex multiplier breaks

down into four real multipliers, one real adder, and one real subtracter. The multipliers work

with 16-bit data, but the adders work with 24-bit data to avoid rounding errors. With the

parallel cell, the implementation occupies a 32×16 block of cells, not including the lookup

80

Mem Mem Mem Mem

Mem Mem Mem Mem

Figure 6.8: Implementation of FFT.

Table 6.3: Statistics of FFT.

Parallel Parallel Parallel Serial
Parameter Dynamic Static Pipelined Pipelined

Cells 512 512 512 916
Area (mm2) 61.4 88.9
Latency per stage (cycles) 55 68 250 87
Time per stage (cycles) 118 131 313 150
Total time (cycles) 472 524 1252 600
Total time (µs) 2.83 1.96 0.76 3.59

table needed for the “twiddle factors”. With the serial cell, the memory unit consumes more

space since memory cells have a smaller capacity.

Table 6.3 shows the area and execution time of the FFT. The latency of one stage is the

number of cycles between the read port and the write port of the memory unit. With the

parallel cell, the critical path involves 19 cells, 13 local busses, and 72 levels of the H-tree.

With the serial cell, the memory unit is larger, so the critical path involves 27 cells, 21 local

busses, and 78 levels of the H-tree. Since each processing stage handles 64 groups of samples,

the time required per stage equals the latency plus 63 cycles. Multiplying this number by 4

yields the total execution time.

81

6.4 Analysis

In this section, we analyze the medium-grain cell array with respect to other hardware

components, including digital signal processors and FPGAs. We compare the characteristics

of the underlying architectures, as well as the execution times of selected benchmarks.

6.4.1 Digital signal processors

The proposed medium-grain architecture offers several advantages over digital signal proces-

sors. The pipelined array of cells exploits the inherent parallelism of DSP, while allowing

designers to tailor the datapath to application requirements. For example, designers can

choose the word length and data format of each processing stage. Both fixed-point and

floating-point operations are possible. In contrast, digital signal processors generally have a

fixed word length and data format. The lack of a customizable parallel datapath also inhibits

performance.

Table 6.4 compares the execution times of the FIR filter and FFT to the reported results

for several digital signal processors. The devices selected for this comparison represent some

of the most advanced processors available today. All components work with a 256-sample

dataset with 16-bit fixed-point data. The time required to load the data into memory is

not included. As shown, the medium-grain architecture surpasses the performance of digital

signal processors in similar technologies. The 180-nm parallel cell even approaches the results

of the 90-nm TMS320C64 processor, when combined with the static element. This alternative

yields lower execution times than the dynamic element. The parallel pipelined architecture

delivers maximum performance, but at the expense of high power consumption. Finally, the

serial pipelined architecture offers respectable results. The execution time for the FFT is

higher due to the large memory units required.

82

Table 6.4: Performance comparison with digital signal processors.

Analog TI TI
Parameter ADSP-BF533 TMS320C62 TMS320C64

Technology 150-nm 90-nm
Clock frequency (MHz) 750 300 1000
FIR filter time (µs) 2.39 9.02 1.29
FFT time (µs) 3.10 9.25 1.24

Parallel Parallel Parallel Serial
Parameter Dynamic Static Pipelined Pipelined

Technology 180-nm 180-nm 180-nm 180-nm
Clock frequency (MHz) 167 267 1650 167
FIR filter time (µs) 1.80 1.18 0.31 1.89
FFT time (µs) 2.83 1.96 0.76 3.59

6.4.2 Fine-grain reconfigurable hardware

Table 6.5 compares the proposed architecture with a typical FPGA for DSP. Although both

alternatives contain a reconfigurable array of cells, each uses a completely different approach

to implementing algorithms. On an FPGA, the synthesis tools translate the algorithm into

a series of logic expressions, which map onto the 1-bit cells. The interconnection structure

routes data between cells in bit-length units. In contrast, the proposed architecture repre-

sents algorithms as a set of modules composed of 4-bit cells. The elements inside the cell allow

the architecture to maintain 1-bit flexibility. The local mesh connects cells within a module,

while the global H-tree routes data between modules in word-length units. Higher levels

of the network use a longer word size. Since interconnection structures typically consume

the majority of the active area on reconfigurable devices, this optimization has a significant

effect.

The method used to implement several important operations also differs from FPGAs.

For example, the Xilinx Virtex-II features embedded 18-bit multipliers and fast carry logic

within the basic cells. The Xilinx Virtex-4 uses special DSP blocks that can perform 18-

bit multiplication and 48-bit addition. In contrast, the medium-grain cell array features

83

Table 6.5: Architecture comparison with fine-grain reconfigurable devices.

Parameter FPGA Proposed

Cell granularity 1-bit 4-bit with 1-bit flexibility
Interconnection structure Mesh with global lines Combined mesh and H-tree
Interconnection granularity 1-bit 4-bit to word-length
Multipliers Embedded Integrated
Memory units Integrated Integrated dual-port
Operating frequency Depends on algorithm Fixed at maximum

a homogeneous structure that can integrate multipliers and adders with other modules.

Each cell can perform mathematics functions or memory operations, so designers can create

powerful memory units as well. These modules work with separate read and write addresses,

simplifying multi-stage algorithms. As always, designers can customize the word length and

number of modules to the needs of the application. A 32×32 array of cells could contain

64 multipliers for 16-bit inputs or 16 multipliers for 32-bit inputs, for example.

The pipelined interconnection network unifies all computations on the medium-grain

reconfigurable architecture. Each module runs at the same clock frequency and initiates one

operation per cycle. With FPGAs, the ultimate clock rate depends on the complexity of

each module as well as the sophistication of the routing tools. The medium-grain cell array

always maintains the maximum clock rate, regardless of the current configuration.

Table 6.6 compares the performance of the proposed architecture with several high-

performance FPGAs. We present the execution time of the 256-point FFT, since results

for the FIR filter were not available. For the Xilinx FPGAs, the execution time corresponds

to a radix-4, burst-mode algorithm. The 90-nm Virtex-4 does outperform the proposed ar-

chitecture, but this gap narrows significantly with the 150-nm Virtex-II. Also recall that

preliminary circuit simulations have the parallel static architecture running at 1 GHz in

90-nm technology. At this speed, the FFT would complete in 0.52 µs, although this result

ignores parasitic interconnect capacitances.

Although not shown in Table 6.6, the reconfiguration time required by the two-level

84

Table 6.6: Performance comparison with fine-grain reconfigurable hardware.

Xilinx Xilinx Xilinx
Parameter Virtex-II Virtex-II Pro Virtex-4

Technology 150-nm 130-nm 90-nm
Clock frequency (MHz) 195 223 421
FFT time (µs) 1.48 1.30 0.69

Parallel Parallel Parallel Serial
Parameter Dynamic Static Pipelined Pipelined

Technology 180-nm 180-nm 180-nm 180-nm
Clock frequency (MHz) 167 267 1650 167
FFT time (µs) 2.83 1.96 0.76 3.59

architecture is comparable to FPGAs. The most basic Virtex-II device has 338 976 bits of

configuration memory that can be programmed at 50 MHz in 8-bit units. The reconfiguration

time for this device is thus 847 µs. As shown earlier, completely reprogramming a 32×32

array of parallel cells requires approximately 184 304 cycles, or 690 µs at 267 MHz.

6.4.3 Coarse-grain reconfigurable hardware

The proposed architecture shares many of the benefits of coarse-grain reconfigurable devices,

but also has several distinct characteristics. Coarse-grain cells generally perform a limited

number of 16-bit or 32-bit operations. To implement the control logic necessary for DSP,

some architectures integrate the coarse-grain array with a separate fine-grain array or micro-

processor. Another option is to use a heterogeneous array of cells, as with the PACT XPP

and QuickSilver Adapt2000. In contrast, the proposed architecture features a homogeneous

reconfigurable fabric that uses the same cells to perform binary arithmetic, memory opera-

tions, and control logic. The 4-bit granularity gives designers more flexibility over the word

length.

85

6.5 Summary

In this chapter, we have discussed the implementation of several benchmarks on the medium-

grain cell array. We estimated the execution times with the assistance of custom CAD

tools. The proposed architecture achieves comparable performance to advanced digital signal

processors and FPGAs in the same technology. In addition, the homogeneous design offers

maximum versatility.

86

Chapter 7

Conclusion

This dissertation has presented a novel medium-grain reconfigurable cell array for DSP. The

architecture features an array of 4-bit cells and a hierarchical interconnection network. Each

cell uses a smaller array of 1-bit processing elements to perform mathematics and memory

operations. The interconnection scheme allows cells to be grouped into discrete modules,

such as adders, multipliers, and memory units. Modules can then be connected to implement

entire algorithms.

We have evaluated two designs for the 4-bit cell and three designs for the basic element.

An initial prototype of the cell has been fabricated and tested for functionality. Layout sim-

ulations indicate that a bit-parallel cell that uses static elements achieves a clock frequency

of 267 MHz in a modest 180-nm technology. A bit-serial cell that uses pipelined elements

runs at 167 MHz in the same technology. In addition, we have mapped several benchmarks

onto the reconfigurable architecture and calculated the execution times. A 32×32 array of

parallel cells can perform a 16-bit, 256-point FFT in 1.96 µs. The architecture achieves

comparable performance to FPGAs in similar technology.

The remainder of this chapter discusses the contributions of this research, and proposes

directions for future work.

87

7.1 Contributions

This research encompasses a variety of architectural innovations, including the following:

• Two-level array: The reconfigurable architecture contains a two-level array of 4-bit

cells and 1-bit elements [30, 31, 28]. This approach allows the design to achieve the

coarse-grain performance required for binary arithmetic, as well as the fine-grain flexi-

bility required for control logic. Cells can implement all necessary operations, including

multiplication, addition, bit shifting, control logic, and data storage. Elements permit

the cell to handle various number formats, such as unsigned and two’s-complement.

The 4-bit granularity allows the device to match the word length of the application.

• Two-mode cell configurations: Traditional fine-grain reconfigurable hardware suf-

fers from complex interconnection structures. In contrast, the cell only assume two

configurations: one optimized for memory operations, and the other for mathematics

functions [30, 31, 28]. Hence, the design requires minimal routing resources at the fine-

grain level. Mathematics mode is optimized for the 4-bit MAC, and thus encompasses

multiplication and addition as well. Memory mode allows embedded random-access

memory and lookup tables to be distributed throughout the array of cells.

• Multiplication with 4-bit cells: This research also incorporates a novel parallel

multiplier structure that uses medium-grain processing elements [38]. In this way,

large multipliers and MAC units can be mapped onto the array of 4-bit cells. Unsigned

multipliers require one universal element configuration; two’s-complement multipliers

require three additional element types. The number, word length, and location of

these multipliers is only limited by the size of the array. This property makes the

proposed architecture a promising choice for cryptography and other applications that

use multiplication extensively.

88

• Hierarchical interconnection structure: The interconnection network used in the

medium-grain architecture recognizes that algorithms are composed of discrete mod-

ules, such as multipliers and adders [34, 35]. Hence, the architecture provides a mesh of

busses for data transfer within a module, as well as a global H-tree for connecting mod-

ules together. The higher levels of the H-tree manipulate data in word-length units,

allowing the inputs and outputs of modules to be routed together. All 4-bit portions

incur the same latency between modules. This approach contrasts with FPGAs, which

may route each bit on a different path.

• Pipelined execution: This is the first known study that applies deep pipelining to

reconfigurable cell arrays. Each 4-bit cell pipelines all input and output data. This

approach allows modules to initiate one operation per clock cycle, dramatically in-

creasing throughput. The upper levels of the H-tree contain pipeline latches as well so

that interconnection latencies do not adversely affect the maximum clock frequency.

Unlike FPGAs, the clock rate does not depend on the complexity of each module, but

remains constant at all times.

• Alternative cell designs: One alternative design for the cell carries pipelining even

further, down to the bit level [33]. This approach achieves performance comparable to

hardware in vastly superior technologies. Another alternative design computes opera-

tions in a bit-serial fashion [32]. This approach maintains the same functionality while

reducing the area. Serial computations are localized to the cell. The global clock runs

at moderate frequency to mitigate clock distribution problems.

Taken as a whole, the proposed reconfigurable architecture supports a large application

space with a number of orthogonal axes. Designers can customize the word length, amount

of parallelism, and number of modules to meet the needs of the application. In this manner,

systems can balance performance and flexibility while minimizing development costs.

89

7.2 Future work

Further research on the reconfigurable cell array will focus on several areas. On the hardware

level, we will migrate the cells to 90-nm technology to permit more accurate comparison with

current DSP hardware. We will also implement the interconnection network and consider

ways to improve its efficiency. The successful fabrication of additional prototype chips would

give important evidence in favor of the design.

On the software level, we will continue to develop the CAD tools that allow users to

map algorithms onto the architecture. Support for automatic placement and routing is the

ultimate goal of this effort. We will calculate the execution times of further benchmarks

to enable a more detailed assessment of the architecture. Further work can also focus on

improving the hardware-software interface in the form of the configuration process.

Finally, we will explore various enhancements to the basic design. The application space

of DSP has expanded in recent years to include devices with specialized requirements, such

as low power consumption and high reliability. Low power consumption is vital to wireless

communication devices, whereas high reliability is crucial for many real-time monitoring

systems. The development of methods to lower the power requirements and increase the

resilience of the device remains an important avenue for future work.

90

Bibliography

[1] K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and soft-
ware,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–210, Jun. 2002.

[2] J. McClellan, R. Schafer, and M. Yoder, DSP First: A Multimedia Approach, Upper
Saddle River, NJ: Prentice Hall, 1998, pp. 373–374.

[3] Texas Instruments, Inc., “TMS320C6000 CPU and Instruction Set Reference Guide,”
literature number SPRU189F, Oct. 2000.

[4] M.A. Wahad and D.J. Puckey, “Reconfigurable DSP systems,” in Proc. IEE Colloquium
on Applications Specific Integrated Circuits for Digital Signal Processing, London, UK,
pp. 3/1–3/6, Jun. 1993.

[5] N.W. Bergmann and J.C. Mudge, “An analysis of FPGA-based custom computers for
DSP applications,” in Proc. 1994 IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Adelaide, Australia, vol. 2, pp. 513–516, Apr. 1994.

[6] R. Tessier and W. Burleson, “Reconfigurable computing for digital signal processing:
a survey,” in Programmable Digital Signal Processors, Y. Hu, ed., Marcel Dekker Inc.,
2001.

[7] S.D. Haynes and P.Y.K. Cheung, “Configurable multiplier blocks for embedding in
FPGAs,” Electronics Letters, vol. 34, iss. 7, pp. 638–639, Apr. 1998.

[8] K. Rajagopalan and P. Sutton, “A flexible multiplication unit for an FPGA logic block,”
in Proc. 2001 IEEE Int. Symposium on Circuits and Systems, pp. 546–549, 2001.

[9] Xilinx, Inc., “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data
Sheet,” literature number DS083, v. 4.5, Oct. 2005.

[10] P.T. Balsara and D.T. Harper III, “Understanding VLSI bit serial multipliers,” IEEE
Trans. Education, vol. 39, iss. 1, pp. 19–28, Feb. 1996.

[11] T. Isshiki et al., “High density bit-serial FPGA with LUT embedding shift register
function,” in Proc. 2002 Asia-Pacific Conf. on Circuits and Systems, vol. 1, pp. 475–
480, Oct. 2002.

91

[12] S.A. Rahim and L.E. Turner, “A field programmable bit-serial digital signal proces-
sor,” in Proc. 4th IEEE Int. Workshop on System-on-Chip for Real-Time Applications,
pp. 295–298, Jul. 2004.

[13] R. Hartenstein, “Coarse grain reconfigurable architectures,” in Proc. 6th Asia South
Pacific Design Automation Conf., Yokohama, Japan, pp. 564–570, 2001.

[14] C. Ebeling, D. Cronquist, P. Franklin, and C. Fisher, “RaPiD—a configurable comput-
ing architecture for compute-intensive applications,” University of Washington Depart-
ment of Computer Science & Engineering Tech Report TR-96-11-03, Nov. 1996.

[15] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger, “Using the KressArray for
reconfigurable computing,” Proc. SPIE, vol. 3526, pp. 150–161, Oct. 1998.

[16] A. Tisserand, P. Marchal, and C. Piguet., “An on-line arithmetic based FPGA for low-
power custom computing,” in Proc. 9th Int. Workshop on Field Programmable Logic
and Applications, London, England, vol. 1673 of LNCS, pp. 264–273, Sep. 1999.

[17] H. Zhang et al, “A 1-V heterogeneous reconfigurable DSP IC for wireless baseband
digital signal processing,” IEEE J. Solid-State Circuits, vol. 35, iss. 11, pp. 1697–1704,
Feb. 2000.

[18] P. Heysters and G. Smit, “Mapping of DSP algorithms on the MONTIUM architecture,”
in Proc. Int. Parallel and Distributed Processing Symposium, pp. 180–185, Apr. 2003.

[19] A. Gunzinger, S. Mathis, and W. Güggenbuhl, “A reconfigurable systolic array for
real-time image processing,” in Proc. 1988 Int. Conf. on Acoustics, Speech, and Signal
Processing, New York, NY, vol. 4, pp. 2054–2060, Apr. 1988.

[20] PACT Informationstechnologie GmbH, “The XPP white paper,” v. 2.1, Mar. 2002.

[21] B. Plunkett and J. Watson, “Adapt2400 ACM Architecture Overview,” QuickSilver
Technology, Inc., white paper, 2004.

[22] Xilinx, Inc., “Virtex-4 Family Overview,” literature number DS112, v. 1.5, Feb. 2006.

[23] A. Marshall et al., “A reconfigurable arithmetic array for multimedia applications,” in
Proc. 7th ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, Monterey, CA,
pp. 135–143, 1999.

[24] S.C. Goldstein et al., “PipeRench: a reconfigurable architecture and compiler,” Com-
puter, vol. 33, iss. 4, pp. 70–77, Apr. 2000.

[25] J. Becker, T. Pionteck, C. Habermann, and M. Glesner, “Design and implementation
of a coarse-grained dynamically reconfigurable hardware architecture,” in Proc. IEEE
Computer Soc. Workshop on VLSI, Orlando, FL, pp. 41–46, Apr. 2001.

[26] Elixent, Inc., “Applications of the D-Fabrix Array,” white paper WP0001, 2001.

92

[27] M.J. Myjak, “A two-level reconfigurable cell array for digital signal processing,”
M.S. thesis, Washington State University, May 2004.

[28] M.J. Myjak and J.G. Delgado-Frias, “A two-level reconfigurable architecture for digital
signal processing,” Microelectronic Engineering, in press.

[29] J. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design
Perspective, 2nd ed., Upper Saddle River, NJ: Pearson Education, Inc., 2003, pp. 591–
592.

[30] J.G. Delgado-Frias, M.J. Myjak, F.L. Anderson, and D.R. Blum, “A medium-grain
reconfigurable cell array for DSP applications,” in Proc. 3rd IASTED Int. Conf. on
Circuits, Signals, and Systems, Cancun, Mexico, pp. 231–236, May 2003.

[31] M.J. Myjak and J.G. Delgado-Frias, “A two-level reconfigurable architecture for digi-
tal signal processing,” in Proc. 2003 Int. Conf. on VLSI, Las Vegas, NV, pp. 21–27,
Jun. 2003.

[32] M.J. Myjak and J.G. Delgado-Frias, “A bit-serial cell for reconfigurable DSP hardware,”
in Proc. 2005 IEEE Int. Midwest Symposium on Circuits and Systems, Cincinnati, OH,
pp. 960–963, Aug. 2005.

[33] M.J. Myjak and J.G. Delgado-Frias, “Superpipelined reconfigurable hardware for DSP,”
in Proc. 2006 IEEE Int. Symposium on Circuits and Systems, Kos, Greece, May 2006,
to be published.

[34] M.J. Myjak, F.L. Anderson, and J.G. Delgado-Frias, “H-tree interconnection structure
for reconfigurable DSP hardware,” in Proc. 2004 Int. Conf. on Engineering of Recon-
figurable Systems and Algorithms, Las Vegas, NV, pp. 170–176, Jun. 2004.

[35] M.J. Myjak, J.K. Larson, and J.G. Delgado-Frias, “Mapping and performance of DSP
benchmarks on a medium-grain reconfigurable architecture,” in Proc. 2006 Int. Conf.
on Engineering of Reconfigurable Systems and Algorithms, Las Vegas, NV, Jun. 2006,
to be published.

[36] C. Leiserson, “Universal networks for hardware efficient supercomputing,” IEEE Trans.
on Computers, vol. 34, iss. 10, 1985, pp. 892–901.

[37] A. DeHon, “Compact, multilayer layout for butterfly fat-tree,” Proc. 12th ACM Sym-
posium on Parallel Algorithms and Architectures, Bar Harbor, ME, 2000, pp. 206–215.

[38] M.J. Myjak and J.G. Delgado-Frias, “Pipelined multipliers for reconfigurable hard-
ware,” in Proc. 11th Reconfigurable Architectures Workshop, Santa Fé, NM, pp. 150–154,
Apr. 2004.

[39] J.K. Larson, “CAD tool emulation for a two-level reconfigurable cell array for digital
signal processing,” M.S. thesis, Washington State University, Dec. 2005.

93

[40] A. Widjaja, “H-tree based configuration schemes for a reconfigurable DSP architecture,”
M.S. thesis, Washington State University, May 2005.

[41] M.J. Myjak and J.G. Delgado-Frias, “A symmetric differential clock generator for bit-
serial hardware,” in Proc. 2005 Int. Conf. on Computer Design, Las Vegas, NV, pp. 159–
164, Jun. 2005.

[42] P. Nilsson, M. Torkelson, M. Vesterbacka, and L. Wanhammar, “CMOS on-chip clock
for digital signal processors,” Electronics Letters, vol. 29, iss. 8, pp. 669–670, Apr. 1993.

[43] D.E. Duarte, N. Vijaykrishnan, and M.J. Irwin, “A clock power model to evaluate
impact of architectural and technology optimizations,” IEEE Trans. VLSI Systems,
vol. 10, no. 6, pp. 844-855, Dec. 2002.

[44] J. Yuan and C. Svensson, “New single-clock CMOS latches and flipflops with improved
speed and power savings,” IEEE J. Solid-State Circuits, vol. 32, iss. 1, pp. 62-69,
Jan. 1997.

[45] B. Nikolić, V. Stojanovic, V.G. Oklobdzija, J. Wenyan, J. Chiu, and M. Leung, “Sense
amplifier-based flip-flop,” in Proc. 1999 Solid-State Circuits Conf., San Francisco, CA,
pp. 282-283, Feb. 1999.

[46] V. Stojanovic and V.G. Oklobdzija, “Flip-flop,” U.S. Patent 6,232,810, May 2001.

[47] V.G. Oklobdzija, V.M. Stojanovic, D.M. Markovic, and N.M. Nedovic, Digital System
Clocking: High-Performance and Low-Power Aspects, John Wiley and Sons, 2003.

[48] V. Stojanovic and V.G. Oklobdzija, “Comparative analysis of master-slave latches and
flip-flops for high-performance and low-power systems,” IEEE J. Solid-State Circuits,
vol. 24, iss. 4, pp. 536-548, Apr. 1999.

94

Appendix A

Clock Generator

Bit-serial architectures trade off physical size for time complexity by representing data words

as a stream of bits on a single line. The serial cell proposed in Chapter 3 consumes less

area than the parallel design described in the same chapter. However, computations in

mathematics mode consist of an initialization phase and nine execution phases. Figure A.1

illustrates the control signals required for this operation. A pulse train pul controls the

pipeline latches that separate each execution phase. After nine pulses, clr initializes the cell

again. The rising edge of the global clock clk triggers the next series of computations.

This appendix describes the circuit we developed to generate the control signals for the

clk

pul

clr

ExecutionInitialization Initialization

Figure A.1: Control signals required by serial cell.

95

Ring counter

clk

hld

rst

x

pul

pulx

Figure A.2: Pulse generator proposed by Nilsson et al. (NTVW) [42].

serial cell. The design is quite simple, allowing each cell to use a separate circuit. This

approach saves power by reducing the number of global signals on the reconfigurable device.

In addition, the circuit produces differential outputs that can drive the complementary inputs

of the serial cell. The remainder of this appendix parallels the discussion in [41]. We first

review a simple pulse generator found in the literature. Then, we present the proposed

design along with layout simulations that verify its functionality. A comparison of the two

alternatives concludes the discussion.

A.1 NTVW design

Figure A.2 illustrates a circuit proposed by Nilsson, Torkelson, Vesterbacka, and Wanham-

mar (NTVW) to control a bit-serial module [42]. A ring oscillator generates the pulse train

pul. The output of the oscillator controls a ring counter, which is reset to 1000 . . . on power-

on. After a given number of pulses, the ring counter asserts hld and stops the oscillator. The

rising edge of clk creates a negative pulse that enables the ring oscillator again, repeating the

cycle. This design is quite straightforward and functions properly at high frequencies. How-

ever, pul is not aligned with pul. Having symmetric outputs would improve the performance

of the serial cell and mitigate potential problems with clock overlap.

96

clk-clk

clr-clr

hld-hld

rst-rst

en-en

pul -0 pul0

pul -1 pul1

pul -2 pul2

Decoder

Shift register

Dual ring
oscillator

Figure A.3: Functional diagram of differential clock generator.

A.2 Proposed design

Figure A.3 depicts a functional block diagram of the differential clock generator. The design

contains a dual ring oscillator to generate the pulse train, a shift register to stop the oscillator

after the required number of execution phases, and a decoder to compute the initialization

signals. All input and output signals are differential.

The remainder of this section describes each component of the clock generator, and gives

a series of simulations to validate the design.

A.2.1 Oscillator

A schematic of the dual ring oscillator appears in Figure A.4. The circuit provides three

differential outputs: pul0-pul0 for the shift register, pul1-pul1 for the serial cell, and pul2-

pul2 for any parts of the cell that require delayed clocks. Due to variations in parasitic

capacitance, the two ring oscillators will likely have slightly different natural frequencies.

However, the weak cross-coupled p-transistors ensure that the internal nodes remain in anti-

phase. Although only one pair of p-transistors is necessary for this purpose, two pairs are

used for extra assurance. The numbers in the figure denote the transistor sizes, in units of

the minimum width.

97

x0

x1

x2

4

2

2

1

1

1

4

2

2

2

1

1

2/2

2/1

2/2en

en

pul0

pul1

pul2

pul0

pul1

pul2

x0

x1

x2

en

en

Figure A.4: Dual ring oscillator.

A.2.2 Shift register

As shown in Figure A.5, the shift register contains a chain of dynamic latches. The number

of latches determines the number of pulses generated by the oscillator. All control inputs are

buffered so that the register can be of any length. The initialization signals clr-clr connect to

the data input of the register. When clr is high, all the latches reset asynchronously. When

clr is low, the internal data shifts to the left through the register. The hld output remains

at high during the initialization phase, transitions to low at the first execution phase, and

transitions back to high during the last execution phase.

The shift register uses several techniques to increase performance. The pulse train pul0-

pul0 connects directly to the latches driving hld-hld so that the oscillator can be stopped

quickly. For the same reason, the circuit asserts hld on the rising edge of the last pulse

rather than the falling edge. Finally, notice that the shift register initializes by propagating

the reset data through each latch from the input end to the output end. To expedite this

process, some of the latches have an extra reset input.

98

hld hld

hld

pul0

pul0

clr

clr

Figure A.5: Shift register used to stop oscillator.

99

clk

rst

rst

clk

hld

hld

clr

en en

hld

clk

clkhld

clr

rst pul0

pul0

rst

Figure A.6: Decoder for initialization.

A.2.3 Decoder

The last component of the design, the decoder, appears in Figure A.6. This circuit reads the

hld-hld outputs of the shift register and generates the en-en signals to enable the oscillator.

The decoder is also responsible for producing the initialization signals clr-clr.

A.2.4 Operation

We implemented the differential clock generator in 180-nm CMOS. Figure A.7 gives a view

of the transistor layout, which occupies an area of 690 µm2. Each serial cell uses a separate

circuit to drive internal computations. Thus, the system does not have to distribute pul-pul

and clr-clr to each cell on the device, but only the relatively low-frequency global clock.

This approach saves considerable power and area. In addition, generating the control signals

locally allows the serial cell to achieve high performance. The frequency of pul-pul does not

depend on the propagation delay between cells, but rather the latency of the elements in

mathematics mode.

Figure A.8 depicts the initial state of the clock generator. To reset the circuit at power-

on, the system asserts rst and leaves clk low. The compound gates on the left of Figure A.4

assert en to disable the oscillators. Hence, internal node x1 is held low. The initialization

signal clr is also asserted, resetting the contents of the shift register. However, the hld signal

is set to high. When the system releases rst, en remains high so the circuit remains in

100

Figure A.7: Layout of clock generator.

0 1

x1

hld

rst clr

clk

x1

en

2 3 (ns)

0

0

2

2

(V)

Figure A.8: Reset and start of pulse train.

initialization state.

The rising edge of clk causes the decoder to deactivate en and clr, turning on the two

oscillators. In the shift register, hld falls low as the first internal values are shifted to the

output. The cross-coupled p-transistors in the oscillators align x1 and x1 very well, even at

this high frequency.

Figure A.9 illustrates how the clock generator returns to initialization state after produc-

ing nine pulses. Assume that clk has transitioned back to low. When pul0 rises for the last

time, the shift register sets hld to high. This event pulls en high as well, but the circuit does

not enter into initialization state yet. Observe in Figure A.4 that the p-transistor path to

101

4 5

hld

clr

clk

x1 1x

en

6 7 (ns)

0

0

2

2

(V)

Figure A.9: End of pulse train and initialization.

node x0 is cut off, preventing any more positive transitions, but the n-transistor path cannot

truncate the output pulse prematurely since x1 remains low. After a short time, x2 rises

and pulls down x0. Then x1 rises and holds x0 low. The decoder only asserts clr after x0

transitions low to prevent conflicts in the shift registers. The initialization state lasts until

clk rises again, repeating the process.

A.3 Analysis

Figure A.10 depicts an overall layout simulation for the differential clock generator. The

serial clock contains nine pulses at a frequency of 2 GHz. The system clock runs at 200 MHz,

providing some leeway for parameter variations. To increase the oscillation frequency, the

n-transistors within the ring oscillators could be enlarged. This change would augment the

driving capability of the pull-down stages compared to the cross-coupled p-transistors. Other

simulations have suggested that the design performs correctly up to 2.5 GHz, at which point

the internal signals no longer swing from rail to rail. To decrease the oscillation frequency,

the transistor widths could be decreased, or more stages added to the oscillators.

When scaled to the same 180-nm technology, the NTVW design can run above 2 GHz

but does not produce symmetric outputs. Figure A.11 contains simulated waveforms for this

102

0 2

x1

clrrst

clr

clk

x1

4 6 (ns)

0

0

2

2

(V)

Figure A.10: Layout simulation showing 2-GHz operation.

0 2

x

hldrst

clk

x

4 6 (ns)

0

0

2

2

(V)

Figure A.11: Simulation of NTVW clock generator [42].

design at 2 GHz. The outputs pul and pul are misaligned by approximately one-sixth of

a cycle. Using these outputs to drive data latches might lead to race conditions. Having

a symmetric differential clock allows the module to use high-performance elements such as

transmission gates and dynamic circuitry.

The NTVW design also has a problem generating the serial clock at lower frequencies. In

Figure A.12, the frequency of the ring oscillator has been reduced to about 1 GHz by adding

more inverter stages. The output H of the ring counter rises at the beginning of the last

pulse. This event reinitializes the circuit, cutting off the pulse prematurely. One solution to

this problem would be to modify the ring counter so that it asserted H at the falling edge

103

10 11

x

clk

hld

x

12 13 (ns)

0

0

2

2

(V)

Figure A.12: NTVW design cuts off pulse at lower frequencies.

10 11

x1

hld clr clk

x1

en

12 13 (ns)

0

0

2

2

(V)

Figure A.13: Proposed design can operate at lower frequencies.

of the last pulse. However, this change would prevent the design from operating at high

frequencies, due to the propagation delay between the ring counter and the oscillator.

Figure A.13 demonstrates that the proposed design supports lower frequencies with no

changes. As described earlier, stopping the oscillator requires a two-step process whereby

the serial clock must complete the last pulse before the circuit initializes. This property

also increases the resilience of the clock generator to parasitic capacitances and parameter

variations.

The average power consumption of the clock generator is 1.66 mW when running at

2 GHz. Although the NTVW design is not fully delineated in [42], circuit simulations

104

suggest that its power consumption is around 1.3 mW in the same situation. This result

does not include parasitic interconnect capacitances, so the actual power consumption would

be closer to the proposed design. Notice that both designs save power by turning off the

ring oscillator when not in use.

Future work could consider several improvements to the design. Currently, the system

clock must transition from high to low while the serial clock is still running; otherwise, the

oscillator does not stop correctly. Modifying the logic to correct this problem would be

straightforward. Another potential limitation of the circuit is that it has no mechanism to

change the oscillation frequency at runtime. This capability is not essential for the serial

cell, but would give the design more robustness against parameter variations. A tuning

element such as a current-starved inverter could be added into the oscillation loop. The

special initialization circuitry already permits the design to operate over a wide frequency

range.

105

Appendix B

Pipeline Registers

Deeply pipelined systems such as the proposed reconfigurable architecture face several chal-

lenges: numerous pipeline registers, extensive clock buffers, and increased power consump-

tion [43]. The delay overhead of the pipeline registers also becomes more significant as the

number of stages increases and clock frequencies scale upward. The register delay may actu-

ally approach the pipeline stage delay, greatly reducing the time available for computations.

For all these reasons, high-speed and low-power flip-flops are essential to sustaining high

throughput in deeply pipelined systems.

This appendix describes a novel differential flip-flop that we developed for the recon-

figurable architecture. The circuit achieves high energy efficiency by using cross-coupled

p-transistors as pull-up devices. We begin by reviewing a number of existing designs found

in the literature. We then present the proposed flip-flop and give several circuit simulations

that validate its functionality. Finally, we compare the delay and power consumption of the

proposed flip-flop with the existing designs.

106

d

1/1

2/1

2
q

clk

clk

clk

clk

d q

Figure B.1: Basic differential flip-flop.

B.1 Existing designs

Most flip-flops only generate a single-ended output, using an inverter to supply the com-

plement if required. The extra inverter carries a speed penalty and places the two signals

out of alignment. On the other hand, differential flip-flops generate both outputs simultane-

ously. This alternative works well with the complementary data lines used throughout the

reconfigurable cell array.

The remainder of this section describes five differential flip-flops: one basic design, and

four designs proposed in the literature. We limit our focus here to circuits that generate the

outputs at nearly the same time, and operate in a static fashion for the best noise tolerance.

B.1.1 Basic differential flip-flop

Figure B.1 depicts a basic differential flip-flop. The numbers in the figure denote the transis-

tor widths with respect to the minimum size. The circuit works with input data d-d, output

data q-q, and differential clock clk-clk. Two pairs of minimum-size inverters serve as memory

elements. When clk is low, data from the inputs overwrites the first memory element. The

rising edge of clk causes the data to overwrite the second memory element and propagate to

the outputs. We use this simple design in later analysis as a baseline for comparison.

107

d

r ss

r

clk

clkd

q q

3

1 1

4 4

5

1/1

3/1

1/1 1/1

Figure B.2: Static single-transistor clocked (SSTC) flip-flop [44].

B.1.2 SSTC

Researchers have proposed a number of flip-flops that provide complementary outputs. One

such design is the static single-transistor clocked (SSTC) flip-flop proposed in [44]. Figure B.2

illustrates how this design consists of a master portion and a slave portion. The role of the

master portion is to assert the set signal s or the reset signal r when clk is low. The slave

portion uses these signals to change the outputs when clk is high. The extra inverter and

n-transistors in the master portion reset s and r if the inputs change while clk is high. Notice

that the slave portion maintains the current state when s and r are both low. Unlike the

basic flip-flop, the SSTC does not require a differential clock.

B.1.3 SAFF1

Another design taken from the literature is the sense amplifier flip-flop (SAFF1) from [45].

As shown in Figure B.3, this design also contains a master portion and a slave portion. The

master portion generates a differential set signal s-s and a differential reset signal r-r. Both

s and r are charged to high when clk is low. The rising edge of clk causes one of these lines

to fall to ground. The slave portion then uses these signals to set the outputs of the flip-flop.

108

d

r

r

r

s

s

s

s

s

s

r

r

rclk

clk

clk

d

q q

2 1 22

2

2

11

1

1 2 2

2

2/1 2/12

1 1

1

2

3

4

1

3

Figure B.3: Sense amplifier flip-flop (SAFF1) [45].

A feedback loop maintains the current state of the outputs when s and r are high.

B.1.4 SAFF2

A slightly different sense-amplifier flip-flop (SAFF2) appears in [46]. This version uses the

same master portion, but reduces the number of transistors in the slave portion. The slave

portion now contains a memory element implemented by a pair of inverters. The s-s and r-r

signals control four transistors that set the state the memory element. As with the SAFF1,

the SAFF2 only requires a single clock. Figure B.4 depicts the design.

B.2 Proposed design

Figure B.5 illustrates the proposed differential flip-flop. The circuit consists of identical

master and slave latches. When clk is low, the input data overwrites the contents of the

master latch. When clk is high, the master latch overwrites the contents of the slave latch.

The design is fully static, so clk can run at any frequency up to the maximum.

As shown, the master latch contains minimum-size n-transistors that overwrite the stored

value when clk is low, and maintain the current state when clk is high. The slave latch

109

d

r r

q

s s

s

s

r

rclk clk

d

q

2 1 3

2

1

1 3

2/1

1/1

2/12

1

2

3

1

3

clk 4

Figure B.4: Modified sense amplifier flip-flop (SAFF2) [46].

d

clk

clk

clk

clk

clk

clk

clk

clk

d

q

q

1

1
1

2/1

Figure B.5: Proposed differential flip-flop.

110

d

q

clk

d

q

clk

0.1 0.2 0.3 0.4 0.5 (ns)

0

0

0

1

1

1

(V)

Figure B.6: Simulation of proposed flip-flop.

operates in a complementary manner. The latches also include cross-coupled p-transistors

as pull-up devices. These transistors improve noise tolerance by providing full-rail swing at

the inverter inputs. Since the minimum-size p-transistors are several times weaker than the

n-transistors in the write path, writing new data into the latches does not consume much

power.

Figure B.6 contains a circuit simulation of the proposed flip-flop in 90-nm CMOS tech-

nology. The input data propagates to the outputs on the rising edge of clk. Changing the

data again while clk is high has no effect on q and q. However, the voltage levels of d and

d deteriorate slightly when clk falls low and the external circuitry changes the state of the

master latch.

Unlike most of the other designs described in the previous section, the proposed flip-

flop uses a differential clock. This property might seem disadvantageous, since distributing

a global signal requires significant power. However, the system can use the circuit in Fig-

ure B.7(a) to generate the differential clock locally. Two cross-coupled NAND gates translate

111

inp

inp

clk

clk

clk

16/86/32/1

1/1 3/1.5 8/4

1/1

1

(a)

(b)

Figure B.7: Comparison of differential and single-ended clock buffers.

the clock input inp into relatively symmetric waveforms. Two chains of inverters then buffer

the outputs. The cross-coupled p-transistors after the first stage align the differential sig-

nals further. This technique resembles the clock generator circuit described in Appendix A.

Figure B.7(b) illustrates a single-ended clock buffer for comparison.

A circuit simulation of the differential clock buffer appears in Figure B.8.

B.3 Analysis

In this section, we compare the proposed differential flip-flop to the other alternatives. We

begin by defining the parameters we measured in the circuit simulations. Then, we discuss

the results of the study.

B.3.1 Methodology

We simulated the five flip-flops in 90-nm CMOS technology at a clock frequency of 2 GHz.

To ensure a fair assessment of each circuit, we used the testbench shown in Figure B.9. The

112

clk

inp

clk

0.2 0.4 0.6 0.8 1.0 1.2 (ns)

0

0

1

1

(V)

Figure B.8: Simulation of differential clock buffer.

differential inputs are driven by standard inverters for greater realism. Designs that only

require a single-ended clock have a double-size inverter as the clock driver. The total load

presented to the clock inputs equals 8 units in all cases. The differential outputs drive a

pair of triple-size inverters. This configuration models the basic setup in a high-performance

pipelined datapath.

We measured a number of delay parameters to characterize the flip-flops using the

methodology described in [29] and [47]. Referring to Figure B.10, the clock-output de-

lay tck−q depends on td−clk and tclk−d, which describe how long the input data remains stable

before and after the clock edge. Decreasing the window of stability increases the clock-output

delay until the flip-flop no longer captures the correct value. The setup time is the value of

td−clk that minimizes the sum td−clk + tclk−q. We call the corresponding value of tck−q the

output delay, and the sum the total delay. The total delay places an upper limit on the

clock rate in a pipelined system. The hold time is the value of tclk−d that minimizes the sum

tclk−d + tclk−q. The hold time is often negative, meaning that the input data can transition

before the clock edge without changing the sampled value.

We also measured the power consumption of the five flip-flops during the simulations.

We included the contributions of the input and output buffers in the testbench (Figure B.9),

113

d

d

4/2

2/1

d

d

2/1 8

4 4

Flip-flop

Flip-flop

2/1

(a)

(b)

clk

clk clk

6/3

6/3

q

q

q

q

Figure B.9: Testbench for flip-flops.

d

clk

q

td-clk tclk-d

tclk-q

Figure B.10: Delay measurements.

114

Table B.1: Simulation results for differential flip-flops.

Parameter Basic SSTC SAFF1 SAFF2 Prop.

Transistor count 20 16 26 22 20
Differential clock? Y N N N Y
Setup time (ps) 50.5 99.5 −4.8 −9.0 42.4
Hold time (ps) −20.9 45.1 30.7 30.7 −18.4
Output delay (ps) 77.9 74.6 83.6 85.1 66.7
Total delay (ps) 128.4 174.1 78.8 76.1 109.1
0% power (µW) 4.0 3.8 14.0 13.7 4.6
50% power (µW) 13.8 15.2 19.9 19.8 12.5
100% power (µW) 23.5 26.6 25.8 26.0 20.4
Power-delay (fJ) 1.78 2.64 1.57 1.51 1.36

since different designs have different internal loads. Now the power consumption of a flip-

flop depends on the utilization, or the probability that the data changes within a given clock

cycle. We determined the power consumption at 0% and 100% utilization, and averaged

the two values to find the power consumption for random data. Finally, we multiplied this

number by the total delay to compute the power-delay product. This parameter measures

the energy efficiency of the circuit.

B.3.2 Results

Table B.1 presents the results of the simulations. As shown, the proposed flip-flop achieves

above-average to excellent results in almost all parameters. For example, only the SSTC

requires fewer transistors.

The setup time varies widely between the five alternatives: from −9.0 ps for the SAFF2

to 99.5 ps for the SSTC. The proposed design falls in the middle at 42.4 ps. The hold time

ranges from −20.9 ps for the basic flip-flop to 45.1 ps for the SSTC. The proposed design

has a hold time of −18.4 ps, very close to the basic flip-flop. The output delay does not

show as much variation as the setup time or the hold time, although the proposed flip-flop

has the best value at 66.7 ps. As a result, the SAFF2 has the lowest total delay, the SSTC

115

0

Basic

Prop.

SSTCSAFF1

SAFF2

Setup time (ps)

O
u
tp

u
t

d
el

ay
 (

p
s)

20 40 8060 100
50

60

70

80

90

Figure B.11: Plot of setup time versus output delay.

80

BasicProp.
SSTC

SAFF1

SAFF2

Total delay (ps)

P
o

w
er

 (
W

)
m

100 120 140 160 180
0

10

20

30

40

Figure B.12: Plot of total delay versus power consumption.

has the highest, and the proposed flip-flop again falls in the middle. Figure B.11 plots the

setup time versus the output delay for each design. The diagonal lines in the figure represent

equal values of the total delay.

The experimental results show a clear tradeoff between delay and power. The power

consumption at 0% utilization is the lowest for the SSTC, and the highest for the SAFF1

and SAFF2. At 100% utilization, the proposed flip-flop has the lowest power consumption

at 20.4 µW. This design also emerges on top for the case of 50% utilization. A plot of the

total delay versus the power consumption appears in Figure B.12. Each vertical bar denotes

the range of power consumption from 0% to 100% utilization.

We also measured the power consumption of the single-ended and differential clock buffers

in Figure B.7. Driving an equivalent load of eight flip-flops, the single-ended circuit consumed

36.8 µW, whereas the differential circuit consumed 48.6 µW. The difference, 11.8 µW, is small

116

when divided among the eight flip-flops. Hence, the differential clock buffer carries only a

small penalty in incremental power consumption.

As a final remark, one difference between this study and related work such as [48] is that

the flip-flops do not drive a large output load. Thus, we used small transistors throughout

the five circuits. Many other studies assume that the flip-flops will be part of a standard-cell

library, and hence size the transistors for greater driving capacity. It is possible that the

relative performance of the five designs might be different in this case. However, the cited

study also found that the SAFF achieved better performance than the SSTC.

117

Appendix C

Publications

This appendix gives a list of papers published and submitted for publication during the

course of this research.

C.1 Journal papers

1. M.J. Myjak and J.G. Delgado-Frias, “A two-level reconfigurable architecture for digital
signal processing,” Microelectronic Engineering, in press.

2. M.J. Myjak and J.G. Delgado-Frias, “Medium-grain cells for reconfigurable DSP hard-
ware,” IEEE Trans. on Circuits and Systems, under second review.

3. M.J. Myjak and J.G. Delgado-Frias, “Array multipliers for reconfigurable DSP hard-
ware,” IEEE Trans. on Computers, submitted for publication.

4. M.J. Myjak and J.G. Delgado-Frias, “A medium-grain reconfigurable architecture for
DSP: VLSI design, benchmark mapping, and performance,” IEEE Trans. on VLSI
Systems, submitted for publication.

C.2 Conference papers

1. J.G. Delgado-Frias, M.J. Myjak, F.L. Anderson, and D.R. Blum, “A medium-grain
reconfigurable cell array for DSP applications,” in Proc. 3rd IASTED Int. Conf. on

118

Circuits, Signals, and Systems, Cancun, Mexico, pp. 231–236, May 2003.

2. M.J. Myjak and J.G. Delgado-Frias, “A two-level reconfigurable architecture for digital
signal processing,” in Proc. 2003 Int. Conf. on VLSI, Las Vegas, NV, pp. 21–27,
Jun. 2003.

3. M.J. Myjak and J.G. Delgado-Frias, “Pipelined multipliers for reconfigurable hard-
ware,” in Proc. 11th Reconfigurable Architectures Workshop, Santa Fé, NM, pp. 150–
154, Apr. 2004.

4. M.J. Myjak, F.L. Anderson, and J.G. Delgado-Frias, “H-tree interconnection struc-
ture for reconfigurable DSP hardware,” in Proc. 2004 Int. Conf. on Engineering of
Reconfigurable Systems and Algorithms, Las Vegas, NV, pp. 170–176, Jun. 2004.

5. M.J. Myjak, D.R. Blum, and J.G. Delgado-Frias, “Enhanced fault-tolerant CMOS
memory elements,” in Proc. 2004 IEEE Int. Midwest Symposium on Circuits and
Systems, Hiroshima, Japan, Jul. 2004.

6. D.R. Blum, M.J. Myjak, and J.G. Delgado-Frias, “Enhanced fault-tolerant data latches
for deep submicron CMOS,” in Proc. 2005 Int. Conf. on Computer Design, Las Vegas,
NV, pp. 28–34, Jun. 2005.

7. M.J. Myjak and J.G. Delgado-Frias, “A symmetric differential clock generator for bit-
serial hardware,” in Proc. 2005 Int. Conf. on Computer Design, Las Vegas, NV,
pp. 159–164, Jun. 2005.

8. M.J. Myjak and J.G. Delgado-Frias, “A bit-serial cell for reconfigurable DSP hard-
ware,” in Proc. 2005 IEEE Int. Midwest Symposium on Circuits and Systems, Cincin-
nati, OH, pp. 960–963, Aug. 2005.

9. M.J. Myjak and J.G. Delgado-Frias, “Superpipelined reconfigurable hardware for DSP,”
in Proc. 2006 IEEE Int. Symposium on Circuits and Systems, Kos, Greece, May 2006,
to be published.

10. M.J. Myjak, J.K. Larson, and J.G. Delgado-Frias, “Mapping and performance of DSP
benchmarks on a medium-grain reconfigurable architecture,” in Proc. 2006 Int. Conf.
on Engineering of Reconfigurable Systems and Algorithms, Las Vegas, NV, Jun. 2006,
to be published.

11. M.J. Myjak, J.G. Delgado-Frias, and S.K. Jeon, “An energy-efficient differential flip-
flop for deeply pipelined systems,” 2006 IEEE Int. Midwest Symposium on Circuits
and Systems, San Juan, Puerto Rico, Aug. 2006, submitted for publication.

119

