
A HIGH PERFORMANCE LOW POWER MESOCHRONOUS PIPELINE

ARCHITECTURE FOR COMPUTER SYSTEMS

By

SURYANARAYANA BHIMESHWARA TATAPUDI

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2006

 ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the

dissertation of SURYANARAYANA B. TATAPUDI find it satisfactory and recommend
that it be accepted.

Chair

 iii

ACKNOWLEDGEMENT

I would like to thank my advisor Dr. José Delgado-Frias for his valuable support and

guidance in mentoring me during the course of my education. It has been a wonderful

learning experience working with him. This dissertation would not have been possible

without his help. I would like to thank Dr. Jabulani Nyathi for his help in research and it

has been a fun experience working with him. I also would like to thank Dr. Valeriu Beiu

and Dr. Partha Pande for being on my committee and their guidance during my study at

WSU. I wish to thank my parents and brother for providing constant encouragement and

support. Finally, I would like to thank the School of Electrical Engineering and Computer

Science for awarding me a graduate teaching assistantship position. Without this support,

I wouldn’t have had the opportunity to write this dissertation.

 iv

A HIGH PERFORMANCE LOW POWER MESOCHRONOUS PIPELINE

ARCHITECTURE FOR COMPUTER SYSTEMS

Abstract

by Suryanarayana Bhimeshwara Tatapudi, Ph.D.
Washington State University

May 2006

Chair: José G. Delgado-Frias

In a conventional pipeline scheme each pipeline stage operates on only one data set at a

time. The clock period in conventional pipeline scheme is proportional to the maximum

pipeline stage delay. We propose a mesochronous pipeline scheme, where pipeline stages

operate on multiple data sets simultaneously. In this scheme the amount of logic in a

stage is more and number of stages is less compared to a conventional pipeline. The clock

period in this scheme is proportional to the maximum pipeline stage delay difference,

which means higher clock speeds are possible and number of pipeline stages is

significantly less. In mesochronous pipeline scheme, clock distribution network is simple

and load on it is less. A detailed analysis of the clock period constraints is provided to

show the performance gain and Speedup of mesochronous pipelining over other

pipelining schemes. In mesochronous pipeline scheme, overall current drawn is less,

resulting in significant power savings and also less IR drop on power lines. Also, the

variation in supply current (di/dt) drawn by clock network is significantly less in

mesochronous scheme, thus power supply noise is less. An 8×8-bit multiplier using

carry-save adder technique has been simulated in conventional and mesochronous

pipeline approach using TSMC 180nm (drawn length 200nm). The mesochronous

 v

pipelined multiplier is able to operate on a clock period of 350ps (2.86GHz). This is a

Speedup of 1.7 over conventional pipeline scheme and requires fewer pipeline stages and

pipeline registers. The over-all power dissipation in mesochronous pipeline multiplier is

less than 50% of the power dissipation in conventional pipeline multiplier. In the

conventional implementation, power dissipation in clock network and pipeline registers is

close to 80% of total power dissipation, while in the mesochronous implementation logic

is dissipating more power. Also, the variation in current drawn by clock network in

mesochronous scheme is less, causing less power supply noise.

 vi

 Table of Contents
 Page

ACKNOWLEDGEMENT ... iii

Abstract .. iv

List of Tables ... viii

List of Figures ... x

List of Figures ... x

Chapter 1... 1

Introduction... 1
1.1. Conventional pipeline scheme.. 1
1.2. Wave pipeline scheme... 6
1.3. Micropipeline scheme ... 9
1.4. Need for novel pipeline architecture ... 11
1.5. Summary.. 12
1.6. Organization of this dissertation ... 13

Chapter 2... 14

Mesochronous Pipeline Scheme... 14
2.1. Mesochronous pipeline scheme.. 14
2.2. Internal node constraints ... 17
2.3. Designing the clock signal path delay elements.. 20
2.4. Summary.. 22

Chapter 3... 23

Mesochronous Pipeline Performance Comparison ... 23
3.1. Comparison of clock cycle time ... 23
3.2. Conventional and Mesochronous pipeline performance comparison.... 25
3.3. Summary.. 27

Chapter 4... 29

 vii

Tackling Clock and Delay Variations ... 29
4.1. Clock variation tolerance ... 30
4.2. Tackling delay variation... 31
4.3. Summary.. 35

Chapter 5... 36

8×8-bit CSA Multiplier... 36
5.1. Carry-Save Adder multiplier... 36
5.2. Basic cells simulation .. 41
5.3. Mesochronous pipeline multiplier ... 44
5.4. Conventional pipeline multiplier ... 47
5.5. Mesochronous pipeline multiplier in ST Microelectronics 90nm
technology .. 48
5.6. Summary.. 51

Chapter 6... 56

Mesochronous power consumption and power supply current variation (di/dt) . 56
6.1. Carry-Save Adder multiplier implementation ... 57
6.2. Power consumption and power supply current variation....................... 60
6.3. Summary.. 71

Chapter 7... 73

Tiny Chip ... 73
7.1. 4×4-bit mesochronous CSA multiplier simulations 73
7.2. 4×4-bit mesochronous CSA multiplier chip test results 78
7.3. Summary.. 81

Chapter 8... 84

Concluding Remarks .. 84
8.1. Contributions of this research ... 87
8.2. Future Research .. 89

Bibliography ... 94

Appendix A... 97

Publications ... 97
A.1. Journal ... 97
A.2. Conference ... 97

 viii

List of Tables

 Page

TABLE 2.I. Combinations of N(i) and �(i) .. 21

TABLE 3.I. Comparison of clock cycle time (Tclk) .. 24

TABLE 4.I . Delay Variation in Digitally Variable Delay Element................................. 34

TABLE 5.I . Full Adder Delay Values ... 42

TABLE 5.II. SAFF Timing Values... 43

TABLE 5.III. MPP multiplier Results .. 46

TABLE 5.IV. Clock Period of CPP multiplier ... 48

TABLE 5.V. Full Adder Delay Values IN 90nm ... 49

TABLE 5.VI. Dynamic Two Phase D-FF Timing Values.. 51

TABLE 5.VII. MPP multiplier Results in 90nm .. 51

TABLE 6.I. Dynamic Two Phase D-FF Timing Values .. 59

TABLE 6.II. Clock Network Current Consumption... 65

TABLE 6.III. Pipeline Registers and Logic Current Consumption.................................. 65

TABLE 6.IV. Clock network Registers, and Logic Current.. 68

TABLE 6.V. CPP Clock Period for Various Values of M ... 70

TABLE 6.VI. Clock network, Registers, and Logic Current (CPP scheme).................... 70

TABLE 7.I. Full Adder Delay Values .. 74

TABLE 7.II. Clock Generator Results.. 75

TABLE 7.III. Stage Delays in Mesochronous CSA Multiplier .. 77

 ix

TABLE 7.IV. Performance Comparison .. 77

TABLE 7.V. Scaled Internal Clock Signal Period ... 79

TABLE 7.VI. Adjusted Delay Values .. 79

 x

List of Figures
 Page

Fig. 1.1. N stage pipelined system. .. 1

Fig. 1.2. Temporal/Spatial diagram of a pipeline stage i. .. 2

Fig. 1.3. Temporal/spatial diagram of a three stage CPP system. 3

Fig. 1.4. Temporal/spatial diagram of a three stage pipelined system............................... 4

Fig. 1.5. Structures of common clock distribution networks. .. 5

Fig. 1.6. Wave pipeline system... 7

Fig. 1.7. Temporal/spatial diagram of a three stage WPP system. 8

Fig. 1.8. Temporal/spatial diagram of a three stage WPP system. 8

Fig. 1.9. Micropipeline system. .. 10

Fig. 1.10. Temporal/spatial diagram of a three stage �PP system. 10

Fig. 2.1. Mesochronous pipeline scheme... 15

Fig. 2.2. Temporal/spatial diagram of proposed MPP system. ... 15

Fig. 2.3. Temporal/spatial diagram of a three stage MPP system.................................... 16

Fig. 2.4. Data sets collision.. 18

Fig. 2.5. Monotonically increasing delay difference. .. 19

Fig. 2.6. Clock period and delay element. ... 20

Fig. 3.1. Temporal/spatial diagram of a three stage CPP system. 25

Fig. 3.2. Computation cones of critical stage in MPP system. .. 26

Fig. 3.3. Mesochronous pipeline scheme... 26

Fig. 4.1. Sample stage computation cones in a MPP system. ... 32

 xi

Fig. 4.2. Variation in dmin value. .. 32

Fig. 4.3. Digitally variable delay element... 33

Fig. 4.4. Digitally variable delay element simulation... 34

Fig. 5.1. Architecture of a multiplier using carry-save adder technique.......................... 37

Fig. 5.2. 8×8-bit CSA multiplier implemented in CPP scheme....................................... 38

Fig. 5.3. 8×8-bit CSA multiplier implemented in MPP scheme...................................... 38

Fig. 5.4. Transistor level implementation of the full adder. .. 40

Fig. 5.5. Sense amplifier based flip-flop.. 40

Fig. 5.6. Propagation delay of the full adder.. 42

Fig. 5.7. Simulation waveforms... 45

Fig. 5.8. Propagation delay of the full adder in 90nm technology................................... 49

Fig. 5.9. D flip-flop and clkclk & circuit.. 50

Fig. 5.10. Setup time of the dynamic two-phase D-FF.. 50

Fig. 5.11. Full Adder layout in TSMC 180nm technology.. 53

Fig. 5.12. Sense amplifier based flip-flop layout in TSMC 180nm technology.............. 54

Fig. 5.13. 8×8-bit mesochronous pipeline multiplier layout (TSMC 180nm). 55

Fig. 6.1. 8×8-bit CSA multiplier implemented in CPP scheme....................................... 57

Fig. 6.2. 8×8-bit CSA multiplier implemented in MPP scheme...................................... 58

Fig. 6.3. D flip-flop and clkclk & circuit. ... 59

Fig. 6.4. Clock network current in CPP scheme at 2GHz.. 61

Fig. 6.5. Clock network current in MPP scheme at 2GHz... 62

Fig. 6.6. Clock network current in MPP scheme at 2GHz with reduced clock delay...... 63

Fig. 6.7. Clock network current (from Vdd) at 2GHz. .. 64

 xii

Fig. 6.8. Current drawn by registers and logic in CPP scheme at 2GHz. 66

Fig. 6.9. Current drawn by registers and logic in MPP scheme at 2GHz. 66

Fig. 6.10. Total current in CPP and MPP (reduced clock delay) schemes at 2GHz........ 68

Fig. 6.11. Total current in CPP and MPP (reduced clock delay) schemes at 2GHz........ 69

Fig. 6.12. Total current breakdown in CPP and MPP schemes @ 2GHz........................ 69

Fig. 6.13. Current consumption of CPP multiplier at various clock frequencies. 71

Fig. 7.1. 4×4-bit CSA multiplier schematic... 73

Fig. 7.2. Propagation delay of the full adder.. 74

Fig. 7.3. Clock generator schematic... 75

Fig. 7.4. Conventional 4×4-bit CSA multiplier schematic. ... 76

Fig. 7.5. Mesochronous 4×4-bit CSA multiplier schematic. ... 76

Fig. 7.6. Memory element in Input/Output bank. .. 78

Fig. 7.7. Internal clock signal from the chip. ... 79

Fig. 7.8. Chip test results (Sample 1)... 80

Fig. 7.9. Chip test results (Sample 2)... 81

Fig. 7.10. Mesochronous 4×4-bit CSA multiplier layout. ... 83

Fig. 8.1. Mesochronous pipeline scheme with feedback loops.. 90

Fig. 8.2. Shadow registers and scan-based testing... 92

 1

Chapter 1

Introduction

Pipelining is a technique used to design high performance computer systems.

Pipelining partitions a single large combinational logic block into small logic blocks

called pipeline stages, separated by pipeline registers (latches, flip-flops). Fig. 1.1 shows

a pipelined system with N stages. Pipelining is used to exploit the parallelism among

various operations. The result is a reduction in average execution time and a significant

speedup in a system’s operation.

R
eg

is
te

r 1 Logic
Stage 1

In
pu

t d
at

a

R
eg

is
te

r 2 Logic
Stage 2

Clock

R
eg

is
te

r 3

R
eg

is
te

r N Logic
Stage N

R
eg

is
te

r N
+1

O
ut

pu
t d

at
a

Fig. 1.1. N stage pipelined system.

1.1. Conventional pipeline scheme

In a Conventional Pipeline (CPP) system, pipeline stages operate on different data sets

simultaneously and each stage on only one data set at any given time. Pipeline registers

synchronize data movement from one stage to next with reference clock edge (typically

the leading edge). New data is admitted into a stage only after data in that stage has been

 2

cleared and latched by the register following it. In a pipelined system, pipeline stage with

the longest computation time dictates clock-cycle time for the entire system. In designing

a pipelined system the goal is to balance delays of all pipeline stages. However it is not

always possible to perfectly balance the stages and there is always a critical stage with

the longest computation time. Since all data synchronization in a pipelined system is

based on clock signal, clock uncertainties (skew, jitter) must be controlled for proper

functioning of the system. This is especially important as clock periods shrink further.

Fig. 1.2 shows a graphical representation of a combined temporal and spatial variation for

a generic pipeline stage i. Time and logic depth are represented in the horizontal and

vertical axes, respectively. The shaded region in Fig. 1.2 is called computation cone and

represents when computation is performed in this stage. The computational cones have

been made linear to allow for a simpler analysis.

Tclk

DR

∆clk

ts ∆clk∆+ clk th+

Output
clock

Input
clock
(to register i)

max(i)d

m
in

(i)
d

L
og

ic
 d

ep
th

∆

(to register
i+1)

Fig. 1.2. Temporal/Spatial diagram of a pipeline stage i.

The variables used in Fig. 1.2 are defined as follows.

Tclk Clock period
� Constructive clock skew
�clk Unconstructive clock skew or clock uncertainties

 3

DR Clock-to-output delay of the pipeline register
ts, th Pipeline register setup and hold times
dmin(i) Minimum propagation delay through a stage i of a multi-stage system
dmax(i) Maximum propagation delay through a stage i of a multi-stage system

Fig. 1.2 shows that delays in a pipeline are not only from pipeline stages (dmin and dmax)

but also from pipeline registers (DR, ts and th). This is the overhead involved in pipelining

a digital system. The delay of critical path includes DR (clock-to-output delay of register),

dmax (maximum stage propagation delay) and ts (register setup time).

Temporal and spatial diagram of a three stage pipelined system is shown in Fig. 1.3. It

is assumed that second stage in Fig. 1.3 is the critical stage in the system and has the

maximum propagation delay (dmax).

Tclk

dmax(1)

DR

d min(
2)

dmax(3)

dmax(2)

d m
in

(3
)

th

ts+∆clk th+∆clkd m
in

(1
)

L
og

ic
 d

ep
th

Time

St
ag

e
1

St
ag

e
2

St
ag

e
3

Fig. 1.3. Temporal/spatial diagram of a three stage CPP system.

Equation (1.1) defines the clock period for a conventional pipeline system, where Dmax

is the largest of maximum propagation delay (dmax) values of all stages in the pipeline,

Dmax = max(dmax(i)). For example in Fig. 1.3, Dmax=dmax(2). The registers are also an

overhead on the clock cycle time.

 4

clksRcppclk tDDT ∆+++≥ max_ (1.1)

For (1.1) to be valid, the following condition must be satisfied. Here Dmin=min(dmin(i)).

The condition in (1.2) ensures that new data does not appear at input of a register before

its hold time is up.

clkhR tDD ∆+≥+min (1.2)

From (1.1) it is clear that small clock periods are possible by decreasing delays: Dmax,

DR, ts and/or �clk. Scaling can help decrease these delays and achieve smaller clock

periods i.e. higher clock frequencies. However, in a given technology, to shrink the clock

period further, the only delay which can be reduced is Dmax. It is extremely difficult to

further decrease register delays (DR and ts) and �clk in the same technology. By

partitioning each pipeline stage into more stages as shown in Fig. 1.4(b), stage delays can

be reduced, in turn reducing Dmax and Tclk_cpp. The result of such a partition is super-

pipelines. In Fig. 1.4(a), it is assumed that stage B has the maximum propagation delay,

while in Fig. 1.4(b) it is stage d.

ts thD
R

min(B)
d

max(B)dR
eg

is
te

r

R
eg

is
te

r

Logic
Stage A

Logic Logic
Stage B Stage C

R
eg

is
te

r

Clock

R
eg

is
te

r

(a) Pipelined system and computation cone of stage B

ts th

D
R

m
in

(d
)

d

max
(d)

dR
eg

is
te

r

St
ag

e
a

R
eg

is
te

r

St
ag

e
b

R
eg

is
te

r

St
ag

e
c

R
eg

is
te

r

St
ag

e
d

R
eg

is
te

r

St
ag

e
e

R
eg

is
te

r

St
ag

e
f

Clock

R
eg

is
te

r

(b) Super−pipelined system and computation cone of stage d

Fig. 1.4. Temporal/spatial diagram of a three stage pipelined system.

 5

From Fig. 1.4, it can be observed that the clock period can be reduced by means of super-

pipelining [1]. However, this approach faces limitations imposed by the pipeline register

delays (namely, DR and ts) and the maximum logic propagation delay (dmax). By

partitioning the pipeline stages, stage propagation delay may become comparable to the

register delays. As shown in Fig. 1.4(b) the register delays are a significant portion of the

clock period. If this approach is used to reduce the clock period, the following issues

arise: 1) each stage needs to be made ultra-thin to reduce dmax; 2) pipeline register

becomes the dominant factor in the computation at each stage; 3) the number of pipeline

registers is increased, in the example the number of register sets goes from four to seven;

4) clock distribution network becomes more complex with additional pipeline registers;

5) higher power requirements as the number of pipeline registers, clock frequency, and

clock distribution network complexity increase; 6) tighter control on the clock skew will

be required.

Clock
Source

H−tree distribution

Clock
Source

X−tree distribution

Clock
Source

Mesh distribution

Clock
Source

Tree distribution

Fig. 1.5. Structures of common clock distribution networks.

The synchronization of data between various pipeline stages is very important for

proper function of a CPP system. A globally distributed clock signal is used to

synchronize all switching events and data movement in a CPP system. Today’s high

frequency clocks have to be generated on chip and distributed throughout the chip. In any

digital system, of all data and control signals, clock signal is the one with the largest fan-

 6

out, and fastest switching rate. The clock distribution network must be designed properly

so that the clock signal triggers all pipeline register stages simultaneously and the critical

timing requirements are satisfied. The clock signal must arrive at every registers in a CPP

system and at precisely the same time. The most general approach to clock distribution is

using buffered trees, H-trees, X-trees, and mesh network. The structures of these

distribution schemes are illustrated in Fig. 1.5.

Due to variations in process parameters, shrinking feature sizes, and environmental

variations, clock uncertainties like uncontrolled transmission line effects, clock skew and

clock jitter [2], [3] are increasing. Large portion of clock period is being spent to counter

these uncertainties. Thus the useful portion of clock period available for computation is

decreasing. With shrinking feature sizes, interconnects are becoming thin, long, and their

resistance is increasing. With high speed signals distributed on thin long wires, the

inductive component of wire parasitic is gaining significance [4]. Also, by using ultra-

thin super-pipelines shown in Fig. 1.4(b) to achieve higher operational (clock)

frequencies, the load on clock network is increasing and it is becoming extremely

difficult to distribute a clean giga-hertz frequency clock signal [5], [6]. With increase in

size of clock network its power consumption also has increased to around 50% of the

total chip power consumption [7].

1.2. Wave pipeline scheme

Wave pipelining (WPP) [8], [9] is one of the design methods that can be used in

implementing computer systems. This pipeline scheme significantly reduces clock load,

clock distribution area, power consumption and latency, compared to a CPP system.

 7

In the WPP design method, pipelines are implemented without using intermediate

pipeline registers. In this scheme no pipeline registers are used between logic stages. The

entire system is treated as a single logic stage and new data sets are applied to the inputs

of the logic stage before the outputs of previous data set are available. In this scheme,

logic gates sever as virtual storage elements and multiple data sets (or waves)

simultaneously propagate through different stages of logic without synchronization. This

approach results in multiple data sets admitted during different clock periods being in the

system at the same time and at various stages of computation. The wave pipeline

approach results in maximum utilization of logic and eliminates the need for intermediate

pipeline registers. The schematic of this scheme is shown in Fig. 1.6.

Logic Logic Logic

Stage 1 Stage 2 Stage N

In
pu

t d
at

a

O
ut

pu
t d

at
a

Clock

R
eg

is
te

r

R
eg

is
te

r

Fig. 1.6. Wave pipeline system.

The temporal and spatial diagram of WPP system is shown in Fig. 1.7. This diagram

can be used to derive the equation for clock period for a WPP system. A detailed

derivation of clock period is presented in [8], [9]. In Fig. 1.7, DMAX and DMIN are the

maximum and minimum propagation delays of the entire system.

 8

Tclk

DMIN

DMAX

DMIN_HOLD
t s+∆clk t h+∆clk

��

L
og

ic
 d

ep
th

Time

St
ag

e
1

St
ag

e
2

St
ag

e
3

Fig. 1.7. Temporal/spatial diagram of a three stage WPP system.

Following the direction of arrows in Fig. 1.8, the equation for clock period in WPP can

be written as follows

0_ ≥−∆−−∆−−+ MAXclksclkhMINwppclk DttDT

() clkhsMINMAXwppclk ttDDT ∆+++−≥ 2_ (1.3)

DMAX

DMIN

t s+∆clk t h+∆clk��

Tclk Time

Fig. 1.8. Temporal/spatial diagram of a three stage WPP system.

The clock period in this pipeline scheme is determined by the difference between the

maximum and minimum computation times of the entire system and safe time required

 9

before a new data wave is admitted into the system. From (1.3) it is clear that a smaller

delay difference would result in a higher clock frequency. The difference between DMAX

and DMIN can be a large value since it takes into account all the intermediate stages. The

delay difference can be minimized by delay balancing using buffers [8], [9].

In WPP scheme, the clock signal is distributed to the input and output registers only.

The input register determines the rate at which data sets are admitted into the system,

while the output register synchronizes the data sets at the end of computation. This is a

simple clock distribution scheme.

However in WPP scheme, due to the absence of intermediate pipeline registers, it is

extremely difficult to capture the state of intermediate nodes for test and debug purposes.

Since the entire system is considered as a single wave pipelined stage, significant care

must also be taken in designing the logic blocks and addition logic is required to keep the

system delay difference small for maximum performance.

1.3. Micropipeline scheme

Micropipelines (�PP) is another pipelining technique that was introduced by

I. Sutherland [10]. This scheme is an asynchronous pipeline scheme and it uses a two

phase handshake signal for synchronization, instead of clock signal. The schematic of this

scheme is shown in Fig. 1.9. A set of data at the inputs requests an operation R(in) and

event on the A(in) line acknowledges the data word. Once data is acknowledged, this is

passed to logic stage to perform the operation. At the end of the computation a request

signal is generated through a delay circuit.

 10

REG

C Pd

Cd P

REG

C Pd

Cd P

LOGIC LOGIC REG

C Pd

Cd P

LOGIC REG

C Pd

Cd P

LOGIC

DELAY

DELAY DELAY

DELAY
D

(i
n)

D
(o

ut
)

R(in)

A(in)

R(out)

A(out)

A(1)

R(1) A(2)

R(2) A(3)

R(3)
Stage 1 Stage 2 Stage 3

Fig. 1.9. Micropipeline system.

The temporal and spatial diagram of �PP system is shown in Fig. 1.10. It is assumed

that second stage in Fig. 1.9 has the maximum propagation delay. Equation (1.4) defines

the clock period for a micropipeline system, where Dmax is the largest of maximum

propagation delay (dmax) of all stages in the pipeline, Dmax = max(dmax(i)). For example in

Fig. 1.10, Dmax=dmax(2). The new term dAck_max is the time to produce and send back an

acknowledge signal in the stage with the longest delay (given by Dmax).

. max_max_ AcksRuppclk TtDDT +++≥ (1.4)

Tclk

dmax(1)

DR

d min(
2)

dmax(3)

dmax(2)

d m
in

(3
)

th

ts+∆clk th+∆clkd m
in

(1
)

L
og

ic
 d

ep
th

Time

St
ag

e
1

St
ag

e
2

St
ag

e
3

A(1)

A(2)

A(3)

Fig. 1.10. Temporal/spatial diagram of a three stage �PP system.

 11

The �PP scheme is an asynchronous pipeline scheme and does not require a globally

distributed clock signal. The necessary data synchronization is achieved using a pair of

request and acknowledge signals. These request and acknowledge signals perform

handshaking between stages before data transmission. This means that always worst case

path delays must be considered in designing the system. The handshaking protocol

introduces addition delay and is an overhead on system performance. In a conventional

pipeline implementation it is possible to design a system by considering the average path

delays instead of worst case delays [11]. By careful design of a CPP system and its global

clock distribution, better performance can be derived compared to the �PP scheme [11].

1.4. Need for novel pipeline architecture

In order to achieve significant performance gains compared to conventional pipeline

implementation, pipeline architecture has to be modified to eliminate large pipelines and

complex clock distribution mechanism. Architectures like wave pipelining [7], [8],

micropipelines [10] and package wiring [2] have been proposed, but the performance

gain is not significant. An asynchronous pipelining scheme like micropipelines may be

appealing since it does not require a clock signal. However, it is complex compared to

synchronous schemes and the performance improvement is higher in alternate

synchronous schemes [2], [11]. In order to improve the performance of pipelined

systems, and gain significant power savings we propose a novel pipeline scheme called

mesochronous pipelining.

 12

1.5. Summary

In this section we shall present a summary of important points from this chapter.

• Conventional pipeline (CPP) scheme: CPP scheme is often used in implementing

high performance digital systems. Clock period in CPP scheme is proportional

maximum propagation delay of the critical stage. clksRcppclk tDDT ∆+++≥ max_ . For

proper functioning of a CPP system, a globally distributed clock signal is used,

which has to be distributed throughout the system to trigger all pipeline registers

simultaneously.

• Super-pipelining: Performance of a CPP can be increased by further partitioning

the logic stages into smaller logic blocks. The result is large pipelines with large

number of pipeline stages and pipeline registers. This complicates clock

distribution and there is significant increase in power consumption.

• Wave pipeline (WPP) scheme: In WPP scheme, entire system is treated as a single

logic block and system is clocked such that multiple data sets are simultaneously

present in the system at various stages of computation. Clock period in WPP

scheme is proportional to the difference between maximum and minimum

propagation delay of the entire system. () clkhsMINMAXwppclk ttDDT ∆+++−≥ 2_ .

This scheme does not use any intermediate registers to synchronize data.

• Micropipeline (�PP) scheme: This is an asynchronous pipeline scheme, where a

pair of handshake signals is used for data movement and synchronization between

stages. So it does not require a globally distributed clock signal. Clock period of

this system can be determined using max_max_ AcksRuppclk TtDDT +++≥ .

 13

• Need for novel architecture: Novel architectures are required in future to design

high performance low power digital systems. We propose the Mesochronous

pipeline scheme.

1.6. Organization of this dissertation

The organization of this dissertation is as follows. In Chapter 2 we have a detailed

discuss of the proposed mesochronous pipeline architecture and its clock distribution

network. In Chapter 3 we compare performance of the proposed scheme with

conventional pipeline scheme. In Chapter 4 we discuss some methods to tackle delay

variations that could arise due to process and environmental variations. A Carry-Save

Adder (CSA) multiplier has been implemented in conventional and mesochronous

pipeline architectures, as a design example. A detailed discussion of their implementation

and performance is presented in Chapter 5. In Chapter 6, we discuss the power

consumption of the multiplier in conventional and mesochronous pipeline schemes. In

Chapter 7, we discuss the implementation of a 4-bit mesochronous pipeline multiplier in

AMI 0.5�m technology and the results obtained from the fabricated chip. In Chapter 8

some concluding remarks, contributions of this research and future research problems in

mesochronous pipeline scheme are presented.

 14

Chapter 2

Mesochronous Pipeline Scheme

The proposed Mesochronous Pipeline (MPP) scheme modifies conventional pipeline

scheme to achieve higher performance and significant power savings. The term

mesochronous has been used in the communications field; it has been defined as: the

relationship between two signals such that their corresponding significant instances occur

at the same rate. In this chapter the mesochronous pipeline architecture is discussed in

detail and the design of the clock distribution network is also described.

2.1. Mesochronous pipeline scheme

In the Mesochronous pipeline (MPP) scheme a digital system is partitioned into

pipeline stages like in the conventional pipeline (CPP) scheme. However it is clocked

such that a pipeline stage is operating on more that one data set simultaneously. At any

given time, multiple data sets can be present in a stage and these data sets are separated

based on physical properties of internal nodes. This eliminates the need for some pipeline

registers. This concept has some similarities to the wave pipeline scheme (WPP) [8], [9].

The number of registers that can be eliminated depends on how many simultaneous data

sets can be sustained in a stage without synchronization. Effectively, MPP

implementation of a digital system consists of more logic in pipeline stages and fewer

pipeline stages compared to a CPP implementation. The schematic of this scheme is

 15

shown in Fig. 2.1. Unlike the CPP scheme, clock signal in MPP scheme travels along

with data and it is possible that different pipeline registers are triggered at different times.

In the CPP approach it is absolutely necessary for all the pipeline registers to be triggered

simultaneously. In MPP scheme, clock signal path includes delay elements (�Si) which

emulate the delay experienced by data in pipeline stages. In this pipelining scheme

1)higher clock frequencies are possible, 2) complexity of clock distribution is greatly

reduced 3)influence of clock uncertainties is mitigated and 4) there are significant power

savings. This architecture can be used in design of any high performance pipelined

system.

clk1 clk2 clk3 clkK

∆S1 ∆S2 ∆SK

R
eg

is
te

r 1 Logic
Stage 1

In
pu

t d
at

a
C

lo
ck

 in

R
eg

is
te

r 2 Logic
Stage 2

R
eg

is
te

r 3

R
eg

is
te

r K
+1

O
ut

pu
t d

at
a

C
lo

ck
 o

ut

clk(K+1)

R
eg

is
te

r K Logic
Stage K

Fig. 2.1. Mesochronous pipeline scheme.

Tclk

d min(
2)

d m
in

(3
)

dmax(3)

dmax(2)

d m
in

(1
)

DR∆S1

∆S3

∆S2

ts th

dmax(1)

L
og

ic
 d

ep
th

St
ag

e
2

St
ag

e
3

St
ag

e
1

Time

Fig. 2.2. Temporal/spatial diagram of proposed MPP system.

 16

Temporal and spatial variation of the proposed MPP scheme is shown in Fig. 2.2 for a

three stage system. In Fig. 2.2 it is assumed that stage 2 has the maximum delay

difference. We shall refer to the difference between maximum and minimum propagation

delays (dmax(i) – dmin(i)) of a stage i as the delay difference of that stage. The delay

difference of any stage gives the amount of time the values generated at dmin have to be

held, till the computation is complete in that stage.

The temporal and spatial diagram of a MPP system, shown in Fig. 2.3 can be used to

derive the equation for clock period in this system.

dmax(3)

d m
in

(3
)

Tclk

DR

dmax(2) d min(
2)

d m
in

(1
)

� � �� � �� � �� � �

dmax(1)

th+∆clk

ts+∆clk

Time

Fig. 2.3. Temporal/spatial diagram of a three stage MPP system.

Following the direction of arrows in Fig. 2.3, the equation for clock period in MPP can

be written as follows. Here dhold(i) (=dmax(i) – dmin(i)) refers to the delay difference of a

stage i.

0)1max()2max(

)2min()1()1min(_

≥∆−−∆−−−−−−

+++++

clkhclksRR

RholdRmppclk

ttDdDd

dDddDT

A general expression for deriving the clock period for MPP system can be written as

 17

clkhs

j

i
ihold

j

i
i

j

i
imppclk ttdddT ∆+++��

�

�
��
�

�
+−≥ ���

−

===

2
1

0
)(

0
)min(

0
)max(_ (2.1)

In (2.1), j is the stage with the maximum delay difference (in Fig. 2.2 stage j is stage 2).

Equation (2.1) can be simplified as

() clkhs

j

i
ii

j

i
i

j

i
imppclk ttddddT ∆+++��

�

�
��
�

�
−+−≥ ���

−

===

2
1

0
)min()max(

0
)min(

0
)max(_

Eliminating the redundant terms in the above equation, we have the clock period equation

for a MPP system as

clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_ (2.2)

The clock period in MPP scheme is determined by the stage with the largest delay

difference and safe time required before a new data set can be admitted into this stage.

From (2.2) it is easy to see that for any stage i, dmax(i) � Tclk_mpp is always true. This means

that new data is admitted into a stage before computation on previously admitted data set

is complete. Depending on the dmax(i) value of a stage and Tclk_mpp, at any given time two

or more data sets can be present in a stage. From (2.2) it is clear that a smaller delay

difference would result in a higher clock frequency. The delay difference can be

minimized by delay balancing using buffers [8], [9].

2.2. Internal node constraints

Equation (2.2) indicates that the clock period is determined by the register setup and

hold times when the input to output logic paths are equalized i.e. when dmax(j) = dmin(j). It

should be understood that factors like signal rise/fall time, capacitive loading, and circuit

technology also influence the clock speeds. The limitations resulting from physical

properties of internal nodes must also be considered to prevent any two adjacent data sets

 18

from colliding. The fundamental circuit limitations determine the safe time to separate

any two adjacent data sets. Consider the example shown in Fig. 2.4, the clock period is

determined by the delay difference and register overhead, but the internal node variation

is large causing adjacent data sets to collide.

TCLK

t int_1

t int_3

t int_2

t int_4

ts th

Time

L
og

ic
 D

ep
th

Fig. 2.4. Data sets collision.

A more general representation of minimum clock period of the MPP system is

)2,max()min()max(int_ clkhsjjmppclk ttddTT ∆+++−≥ (2.3)

where Tint is the maximum value of all the internal node constraints

...),.........,,,max(4int_3int_2int_1int_int ttttT = (2.4)

The internal node constraints can be eliminated by designing pipeline stages such that a

stage’s delay difference is greater than the delay difference at any internal node in that

stage or in other words the delay difference should monotonically increase from input to

output of a stage [8], [9] as shown in Fig. 2.5.

 19

Tclk

t int_3

t int_4

t int_1

t int_2

ts+∆clk th+∆clk

Time

L
og

ic
 D

ep
th

Fig. 2.5. Monotonically increasing delay difference.

Assuming that stages are designed to have monotonically increasing delay difference,

we shall use (2.2) (clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_) to determine the clock

period for rest of the discussion.

In MPP sceme, as the delay difference (dmax(j) – dmin(j)) approaches the timing

requirements of the registers (setup time, hold time), the registers start to dictate the

achievable performance gains. Until this point, focus was on the delay difference and its

influence on the clock period, but the pipeline register could well be the dictating factor.

Re-writing (2.2) as follows, the limit on delay difference of combinational logic is

established.

()clkhsmppclkjj ttTdd ∆++−≤− 2_)min()max((2.5)

So the combinational logic between any two adjacent registers can be varied as long as

the above condition is valid. This discussion emphasizes that it is important to design fast

registers to derive improved performance. Unlike CPP scheme where a significant

 20

portion of clock period is the register delay, MPP scheme is immune to this delay as

computation takes place over multiple clock cycles.

In the MPP scheme, the clock signal travels with data (Fig. 2.1). Delays are included in

the clock signal path so that clock experiences the delay similar to data sets in pipeline

stages. In the next section we present some aspects of the clock path.

2.3. Designing the clock signal path delay elements

Consider the example of a stage shown in Fig. 2.6. The clock edge at A samples a data

set from the previous stage. After traveling through the register and the stage i, the data

set arrives at the next register before time E. The next register must latch this data for the

next stage (i+1) at time E. The clock edge at A must be delayed for time period AE

which can be represented as

clksRiAE tDdT ∆+++=)max((2.6)

D R

d max(i)

ts

th

TCE

TDE

d min(i)

TBE
TAE

St
ag

e
i

St
ag

e
i+

1

D EN
C

B
A

Fig. 2.6. Clock period and delay element.

 21

By delaying the clock edge at A till E, this clock edge triggers the register i, inputs the

data set into stage i. Then it travels with the data set till time E. By the time this clock

edge arrives at E, computation is complete on the data set. So the same clock edge

triggers the register i+1 to move the data into stage i+1. In this implementation, just as

there are multiple data sets simultaneously present in a stage, there multiple clock edges

present in the delay element �Si.

The delay value shown in (2.6) must be present in the clock signal path to ensure that

delays experienced by logic and clock satisfy the relation: clock delay � logic delay. This

value of delay required in clock signal path is large. Instead of using such a delay element

(�Si in Fig. 2.1) we can take advantage of the periodic nature of the clock signal. As

shown in Fig. 5, the delay AE can be expressed as a smaller delay (�(i)) plus an integer

multiple (N(i)) of clock period.

)(_)()max(imppclkiclksRiSiAE TNtDdT δ+=∆+++=∆= (2.6)

From the example in Fig. 2.6, possible combinations of N(i) and �(i) are shown in Table

2.I. By choosing a higher value of N(i) in designing the clock signal path, the delay values

can be reduced. This technique helps further reduce power consumption of clock network

in the MPP scheme.

TABLE 2.I. COMBINATIONS OF N(i) AND �(i)

N(i) �(i)

3
2
1
0

DE
CE
BE
AE

 22

2.4. Summary

The following is a summary of important points from this chapter.

• Mesochronous pipeline (MPP) scheme: In the MPP scheme, digital system is

partitioned into large pipeline stages. The system is clocked such that multiple data

sets, at different stages of computation are simultaneous present in every stage of

the system. In the proposed scheme clock period is determine by the stage with the

largest difference between its minimum (dmin) and maximum (dmax) propagation

delays. Let Stage j be the stage with largest difference between its minimum and

maximum propagation delays (delay difference), then clock period is defined by

clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_

• Small number of pipeline registers and pipeline stages: MPP scheme requires

fewer pipeline stages and pipeline registers to obtain similar or better performance

than a conventional pipeline scheme.

• Clock distribution network: Clock signal in MPP scheme travels along with data.

So the clock path is parallel to the data path. Delay elements (�Si) are included in

the clock signal path so that clock signal experiences the same delay as the data set

in the data path. This is a simpler clock distribution compared to the conventional

pipeline scheme. Since there are fewer pipeline registers in MPP scheme, the load

on clock network is also less.

• Clock signal path delay elements: The delay elements (�Si) included in clock

signal path can be simplified by taking advantage of periodic nature of clock

signal.)(_)(imppclkiSi TN δ+=∆ .

 23

Chapter 3

Mesochronous Pipeline
Performance Comparison

In this chapter we present a comparison of performance from the proposed pipeline

architecture with the conventional and other pipeline architectures introduced in Chapter

1. This performance comparison is in terms of clock period. Mesochronous pipeline

(MPP) scheme can operate with a smaller clock period, i.e. at a higher clock frequency

compared to the conventional pipeline (CPP), wave pipeline (WPP), and micropipeline

(�PP) schemes. The clock period for MPP scheme is proportional to maximum (stage)

delay difference instead of maximum (stage) delay, as derived in Chapter 2. Since the

CPP scheme is the most widely used pipeline architecture to implement computer

systems, we shall compare the speedup of our proposed MPP scheme with it.

3.1. Comparison of clock cycle time

Clock period for conventional pipeline, wave pipeline, micropipeline and the proposed

mesochronous pipeline schemes is shown in Table 3.I.

 24

TABLE 3.I. COMPARISON OF CLOCK CYCLE TIME (TCLK)

Pipeline Scheme Tclk

Conventional (CPP) clksR tDD ∆+++max

Wave (WPP) () clkhsMINMAX ttDD ∆+++− 2

Micropipeline (�PP) max_max AcksR TtDD +++

Mesochronous (MPP) clkhsjj ttdd ∆+++− 2)min()max(

In general, for a system implementation in any of the four pipelining schemes the

following three inequalities hold

dmax(j) � DMAX

dmin(j) � DMIN

(dmax(j) – dmin(j)) � Dmax

It is not difficult to show that for any system the following expression is valid.

() () ()clkhjjclkhMINMAXR tddtDDDD ∆++−≥∆++−≥+)min()max(max

This implies that

Tclk_mpp � Tclk_wpp � Tclk_cpp.

This in turn validates our claim that MPP scheme delivers an improved performance

compared to CPP, MPP and �PP schemes.

In WPP scheme, data propagation from one stage to the next is a function of delays

through the stages and synchronization with the global clock occurs at the output register.

This design approach leads to cumulative system delays, since the delays through the

stages are added. The stage clocks are determined from data dependencies and delays.

The global clock rate is higher in MPP scheme and this is shown in the equations derived

above. Delay minimization per stage would allow for ease of testing in MPP scheme

compared to WPP where the system delays are lumped; i.e. the minimum and maximum

 25

delays considered are for the entire system instead of a stage by stage delay

minimization.

3.2. Conventional and Mesochronous pipeline performance
comparison

To compare the performance gain from mesochronous pipeline scheme, we define a

Speedup [1] metric as follows

clkhsjj

clksR

mppclk

cppclk

ttdd
tDD

T

T
Speedup

∆+++−
∆+++

==
2)min()max(

max

_

_ (3.1)

ts thD
R

min(B)
d

max(B)dR
eg

is
te

r

R
eg

is
te

r

Logic
Stage A

Logic Logic
Stage B Stage C

R
eg

is
te

r

Clock

R
eg

is
te

r

(a) Pipelined system and computation cone of stage B

ts th

D
R

m
in

(d
)

d

max
(d)

dR
eg

is
te

r

St
ag

e
a

R
eg

is
te

r

St
ag

e
b

R
eg

is
te

r

St
ag

e
c

R
eg

is
te

r

St
ag

e
d

R
eg

is
te

r

St
ag

e
e

R
eg

is
te

r

St
ag

e
f

Clock

R
eg

is
te

r

(b) Super−pipelined system and computation cone of stage d

Fig. 3.1. Temporal/spatial diagram of a three stage CPP system.

 26

D
R

ts+∆clk th+∆clk

maxd
mind

Tclk

Fig. 3.2. Computation cones of critical stage in MPP system.

clk1 clk2 clk3 clkK

∆S1 ∆S2 ∆SK

R
eg

is
te

r 1 Logic
Stage 1

In
pu

t d
at

a
C

lo
ck

 in

R
eg

is
te

r 2 Logic
Stage 2

R
eg

is
te

r 3

R
eg

is
te

r K
+1

O
ut

pu
t d

at
a

C
lo

ck
 o

ut

clk(K+1)

R
eg

is
te

r K Logic
Stage K

Fig. 3.3. Mesochronous pipeline scheme.

We study performance gain with the Speedup metric using Fig. 3.1 and Fig. 3.2 as

reference. In Fig. 3.1(a) a three-stage CPP system and computation cone of the stage with

maximum propagation delay (dmax) are shown. A similar MPP system is shown in Fig.

3.3 and the computation cones of the stage with maximum delay difference (dmax – dmin)

are shown in Fig. 3.2. In Fig. 3.1(a) it is assumed that stage B has the maximum

propagation delay and in Fig. 3.3 stage 2 has the maximum delay difference.

Comparing Fig. 3.1(a) and Fig. 3.2 it can be observed that Dmax is far greater than

dmax(j) – dmin(j) and register delays (DR, ts and th), so the speedup in this case is

1
2

2

)min()max(

max

)min()max(

max

>
∆+++−

≈

∆+++−
∆+++

=

clkhsjj

clkhsjj

clksR

ttdd
D

ttdd
tDD

Speedup
 (3.2)

 27

Equation (3.2) shows that better performance can be obtained by using MPP scheme

and can be further improved by reducing the delay differences (dmaxIj) – dmin(j)).

Using the same technology, the performance of MPP scheme can be achieved in

conventional scheme by partitioning the pipeline stages further as shown in Fig. 3.1(b). In

Fig. 3.1(b) it is assumed that stage d has the maximum propagation delay. If Dmax is

approximately equal to dmax(j) – dmin(j), Speedup is close to 1 (without loss of generality it

can be assumed that DR+ts+�clk � ts+th+2�clk).

1
2)min()max(

max ≈
∆+++−

∆+++
=

clkhsjj

clksR

ttdd
tDD

Speedup (3.3)

To achieve the same performance (i.e. achieve Dmax � dmax(i) – dmin(j)), a large number

of stages (in turn more registers) will be required in conventional pipeline

implementation compared to MPP scheme.

It should be noted that using thin pipeline stages (i.e. reducing dmax) in conventional

scheme, will make register delays the main delay component in each stage. On the other

hand in MPP the objective is to decrease the delay difference.

The proposed MPP scheme has been shown to be superior to CPP scheme.

Mesochronous pipeline scheme achieves better performance that conventional pipeline

scheme, with a small number of pipeline registers.

3.3. Summary

The following is a summary of important points from this chapter.

• Higher clock frequencies: In the mesochronous pipeline scheme, clock period is

determined by the critical stage delay difference. In conventional and micropipeline

schemes, clock period is determined by the critical stage delay. In wave pipeline

 28

scheme, system delay difference determines the system clock period. It is easy to

show that critical stage delay difference in MPP scheme is less than the delays that

determine the clock period in CPP, WPP and �PP schemes. So, MPP scheme has a

smaller clock period i.e. it can operate at higher clock frequencies.

• Speed-up: MPP has a considerable Speed-up on CPP. Also, performance of a CPP

system can be achieved in MPP system using fewer pipeline stages and pipeline

registers.

 29

Chapter 4

Tackling Clock and Delay
Variations

In Chapter 2, the mesochronous pipeline (MPP) scheme’s clock signal path design has

been discussed. It was shown that periodic nature of clock signal can be used in designing

the delay elements �Si, in the clock path as shown in (4.1). This helps in reducing the size

of delay elements and saves significant amount of area and power in clock distribution.

)(_)(imppclkiSi TN δ+=∆ (4.1)

In this chapter, some of the implications of using small delay elements in clock signal

path are discussed. The emphasis is on how the value of N(j) of the critical stage j affects

the clock period of the MPP system.

Also, in this chapter, we shall discuss the issues resulting from variation in delay values

and how they can be handled. Process and environmental variations can cause variations

in the stage delay values. These variations could jeopardize the functioning of the system.

It is possible to adjust the clock signal path delays and clock frequency to restore the

system to a working condition.

 30

4.1. Clock variation tolerance

For a value of N(i) greater than one, data set no longer travels with its clock edge in a

given stage and the following inequalities must be satisfied to prevent two adjacent data

sets from colliding.

()
)(_)()max(

)(_)()min(1

imppclkiclksRi

imppclkiclkhRi

TNtDd

TNtDd

δ
δ

+≤∆+++

+−≥∆−−+
 1)(>∀ iN (4.2)

These conditions introduce a bound on the clock period. The minimum value clock

period can take is

()
�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

� −∆+++
∆+++−

)(

)()max(
)min()max(max,2max

i

iclksRi
clkhsjj N

tDd
ttdd

δ
 (4.3)

The maximum value clock period can take is

�
�

�

�

�
�

�

�

−
−∆−−+

1
min

)(

)()min(

i

iclkhRi

N

tDd δ
 (4.4)

Here j is the stage with the maximum delay difference and i is the set of all the stages.

When �(i) = dmax(i) (N(i) = 0) or dmin(i) (N(i) = 1), the upper bound on clock period

approaches infinity and the lower bound approaches the value given by (2.2)

clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_ .

This means that when a delay element is used to derive the entire delay on the clock

signal path, clock edge travels with data set and the system can run at any clock period.

For a value of N(i) greater than one, as N(i) increases, value of �(i) decreases rapidly and

the clock period bounds can be written as

�
�

�

�

�
�

�

�

−
−∆−−+

≤≤
�
�

�

�

�
�

�

� −∆+++
1

minmax
)(

)()min(
_

)(

)()max(

i

iclkhRi
mppclk

i

iclksRi

N

tDd
T

N

tDd δδ
 (4.5)

 31

So, the range of clock periods the system can operate decreases rapidly in this case.

Due to these limitations, it is recommended to design using small N(i) values. It should be

pointed out that if it is required to run the system at its maximum frequency, the limiting

factor would be the register delays as shown in the multiplier example (Chapter 5). This

in turn imposes a limitation on the number of data sets that can be computed within the

stage to a few. Thus maximum N(i) tends to be small.

4.2. Tackling delay variation

The cases which could necessitate change in clock period are when dmin(j) and/or dmax(j)

of the critical stage j change. This would cause the failure of setup and/or hold time

requirements and ultimately system failure. Variation in the stage delays would change

the bounds on clock period as given by (4.5). So the clock period must be adjusted so that

it falls in the range. In this case the delay units in clock signal path must also be adjusted

so that clock edge arrives at the register at the required time. This must be done for every

stage. These only arise if the value of parameter N(i) is greater than one. For example

consider this simple system with the temporal and spatial diagram of critical stage j

shown in Fig. 4.1.

 32

ts+∆clk th+∆clk

D
R

dmin(j)

dmax(j)

Fig. 4.1. Sample stage computation cones in a MPP system.

In Fig. 4.2(a), an example of variation in dmin(j) value is shown, which causes the

violation of hold time in stage j. Similarly an increase in dmax(j) would violate the setup

time requirement. In such cases the clock period must be increased as shown in Fig.

4.2(b). The increase shown in this example is more than the required amount and was

chosen for clarity.

(a) Hold time violation (b) Solution

Hold time violation

t
h

t
h

D
R

dmax(j)

dmin(j)_
new

Fig. 4.2. Variation in dmin value.

 33

We know that the following equations must be true for any stage i.

clkhsnewjnewjnewmppclk

clkhsoriginaljoriginaljoriginalmppclk

newinewmppclknewiclksRnewi

originalioriginalmppclkoriginaliclksRoriginali

ttddT

ttddT

TNtDd

TNtDd

∆+++−≥

∆+++−≥

+=∆+++

+=∆+++

2

2

)min()max()(_

)min()max()(_

_)()(__)(_)max(

_)()(__)(_)max(

δ
δ

 (4.6)

The delay element must be adjusted according to (4.7) for proper functioning of the

system.

()
()originalinewi

newmppclknewioriginalmppclkoriginalioriginalinewi

dd

TNTN

)max()max(

)(__)()(__)(_)(_)(

−+

−+= δδ
 (4.7)

Digitally variable delay elements can be used instead of static delay elements, in the

clock signal path to tackle variations. Fig. 4.3 shows the schematic of a starved inverter

used as a digitally variable delay element. In Fig. 4.3, the inputs C1, C2, C3 are used to

program the delay element to provide different delay values.

C1 C2 C3

IN OUT

C1 C2 C3

Fig. 4.3. Digitally variable delay element.

 34

Fig. 4.4. Digitally variable delay element simulation.

A sample digitally variable element shown Fig. 4.3 has been simulated. The simulation

results are shown in Fig. 4.4. In Fig. 4.4 it can be seen that by controlling the inputs C1,

C2, and C3, delay value can be varied. The delay values for various combinations of C1,

C2, and C3 are shown in Table 4.I. Sizing of transistors and using more control inputs,

higher delay variation can be achieved from the delay element. Complex variable delay

elements like: thyristor based delay elements [12], and programmable delay elements

[13] can also be used to achieve higher delay variation.

TABLE 4.I . DELAY VARIATION IN DIGITALLY VARIABLE DELAY ELEMENT

Control inputs
C1 C2 C3

Delay(ps)

0 0 1 139.94
0 1 1 110.81
1 1 1 96.03

 35

4.3. Summary

The following is a summary of important points from this chapter.

• Clock signal path: In MPP scheme, clock signal travels parallel to data path. Clock

path has delay elements (�Si), so that clock travels with data. Clock signal path can

be simplified by taking advantage of periodic nature of clock

as)(_)(imppclkiSi TN δ+=∆ . Using this concept, small delay elements can be used

and this saves a significant amount of power in the clock network. When the entire

delay in clock path is derived using physical elements (N(j)=0 or 1), the system can

operate on any clock period (lower limit given by

clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_ and there is no upper bound). However,

for values of N(i) greater than 1, upper and lower bounds appear on clock period

value. Great the value of N(j), tighter the bound on clock period. In practical

situations, due to other design limitations, value of N(i) tends to be small.

• Delay variations: Variations in pipeline delay values can cause system failure. The

system can be restored to working condition by modifying the clock period and

clock path delay values. Digitally variable delay elements can be used in clock path

for this purpose.

 36

Chapter 5

8×8-bit CSA Multiplier

In this chapter we present an 8×8-bit multiplier pipelined in the conventional pipeline

(CPP) scheme and the novel mesochronous pipeline (MPP) scheme, to compare its

performance. The multiplier architecture chosen is the Carry-Save Adder Multiplier. The

Carry-Save Adder technique, the CPP and MPP implementations of the multiplier,

simulations of the basic cells and the performance of the two multiplier implementations

are discussed in detail here.

5.1. Carry-Save Adder multiplier

Carry-Save Adder (CSA) technique [14], [15] is a well known technique often used to

realize fast multipliers. The general architecture of a multiplier using CSA technique is

shown in Fig. 5.1. In this technique, an M-bit multiplier requires M layers of 1-bit Full

Adders (FA) to reduce M-partial products to two partial products. Until this point data

flow (sum and carry signals from FA) is from one layer of adders to the next. To generate

the final product, the two M-bit partial products have to be merged in the last layer of the

multiplier as shown in Fig. 5.1. A fast M-bit adder can be used for the final merging;

however, propagation of the carry signal in this adder would make it the bottleneck stage.

Fast adder implementations like carry-look-ahead or carry-select structure can be used to

reduce delay in this layer; however these structures increase in complexity for large word

 37

lengths and produce diminishing returns. Instead of this, we added M-layers of 1-bit Half

Adders (HA) to merge the final two partial products. Effectively the multiplier

implementation has 2M layers of adders. This improves throughput, however there is

increase in latency. Increase in latency can be tolerated as the idea behind pipelining is to

increase the throughput.
ge

ne
ra

to
r

Pa
rt

ia
l p

ro
du

ct

Y

X

In
pu

t

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

Merging adder
O

ut
pu

t

Fig. 5.1. Architecture of a multiplier using carry-save adder technique.

To achieve a fast multiplier, the CSA architecture must be pipelined. In CPP scheme

according to (1.1)

clksRcppclk tDDT ∆+++≥ max_

minimum clock period can be achieved by making each of the 2M layers into stages of a

pipeline, separated by pipeline registers. Effectively, an M-bit CPP multiplier would have

2M stages with 2M+1 pipeline registers. An 8×8-bit pipelined multiplier implemented

has 16 pipeline stages and 17 sets of inter-stage registers. The schematic of this multiplier

 38

is shown in Fig. 5.2. To distribute the clock signal to all the pipeline register stages, a tree

network has been used as shown in Fig. 5.2.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+
+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

M<15>
M<14>
M<13>
M<12>
M<11>
M<10>
M<9>
M<8>
M<7>
M<6>
M<5>
M<4>
M<3>
M<2>
M<1>
M<0>

Y
<7

:0
>

X
<7

:0
>

+

+

+

+

+

+

+

Clk

#Clk

Clk1
#Clk1#Clk1 #Clk1 #Clk1

Fig. 5.2. 8×8-bit CSA multiplier implemented in CPP scheme.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

∆S1 ∆S2 ∆S3 ∆S4

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

Y
<7

:0
>

X
<7

:0
>

M<15>
M<14>
M<13>
M<12>
M<11>
M<10>
M<9>
M<8>
M<7>
M<6>
M<5>
M<4>
M<3>
M<2>
M<1>
M<0>

C
lo

ck

Fig. 5.3. 8×8-bit CSA multiplier implemented in MPP scheme.

 39

Fig. 5.3 shows the schematic of the same 8×8-bit multiplier implemented in MPP

scheme. Here the idea is to increase the amount of logic in a stage and clock the pipeline

registers such that there are multiple data sets simultaneously present in a logic stage at

different stages of processing. All of the logic enveloped between any two adjacent

register stages supports multiple data sets simultaneously. Also, the number of register

stages required to synchronize the data sets is small. In this implementation there are only

4 pipeline stages and 5 register stages. The placement of the registers is based on the

maximum delay difference that can be handled for a target clock frequency. Unlike a tree

distribution for clock signal in CPP scheme, the clock signal takes a linear path in MPP

scheme as shown in Fig. 5.3. The clock travels close to the data path and includes delay

elements realized using simple inverters.

A fast multiplier can be implemented if its basic cells have small propagation delays.

The basic cells in the multiplier schematic shown in Fig. 5.2 and Fig. 5.3 are FA, HA,

flip-flop, two input AND gate, two input OR gate, and buffers. The critical path in the

multiplier includes FA and HA. In this implementation FA and HA have to generate the

Sum (S) and Carry (Co) outputs simultaneously and the transmission-gate

implementation of FA satisfies this requirement. To reduce propagation delay and avoid

glitches, a differential implementation (complimentary inputs are used and

complimentary outputs are generated simultaneously) is used. The FA with a carry-in of

logic 0 is used to realize HA. The transistor level implementation of the FA is shown in

Fig. 5.4. The layout of this cell is shown in Fig. 5.11.

 40

Cin

Cin Cin

B

B

B

B

B

A

A

P

P

P

P

P

Cin

Cin Cin

P
Sum

Cout

Sum

Cout

B

P

P

P

P

P

P

B

B

A

A

Fig. 5.4. Transistor level implementation of the full adder.

D

RS

Q

D

Clock

Q

Fig. 5.5. Sense amplifier based flip-flop.

Since the FA and HA have been implemented in differential version, other basic cells

are also differential implementations. The registers in the multiplier were realized using

differential positive edge-triggered D flip-flop. A flip-flop samples its input at the clock

rising edge, generates the output for the next stage. Since the sampling is done at the

rising edge and all flip-flops in a register stage generate outputs simultaneously, the delay

variations in the inputs to the register are eliminated when presented to the next stage i.e.

the data is synchronized. An improved version of Sense Amplifier based Flip-Flop

 41

(SAFF) with complementary push-pull [5], [16] is the flip-flop implemented in the

register. The schematic of the SAFF is shown in Fig. 5.5 and layout is shown in Fig. 5.12

Since differential implementation has been chosen for FA, the SAFF is a good choice

for this system due to its differential implementation. The SAFF accepts true and

complimentary inputs and generates true and complimentary outputs simultaneously. It

uses single-phase clock and is a small load on clock network. The first stage of the flip-

flop is essentially a sense amplifier which assures accurate timing necessary in high

speed applications [17]. This flip-flop also has short setup and hold times.

5.2. Basic cells simulation

Simulations have been performed on multiplier layout in TSMC 180nm (drawn length

200nm), 1.8V CMOS technology, using SpectreS under Cadence environment. The

performance of the basic cells is presented in this section.

5.2.1. Full Adder
A number of simulations have been performed on the full adder to precisely

characterize performance of this cell. Iterative process has been used to optimize the

transistor sizes to achieve minimum propagation delay and delay variation. Co-incident

inputs were applied to the full adder cell and propagation delay was measured. There are

a total of 56 transitions possible for the 3 inputs to a full adder. Of these 56 transitions,

only 32 transitions trigger a transition on the Sum (S) and/or Carry (Co) output. For these

32 transitions propagation delay of the full adder was measured. Propagation delay values

obtained for these 32 transitions are graphically represented in Fig. 5.6. Using this plot,

 42

minimum and maximum delays values and delay variation of FA can be calculated.

These values are shown in Table 5.I.

TABLE 5.I . FULL ADDER DELAY VALUES

Maximum propagation delay (dmax) 280ps
Minimum propagation delay (dmin) 210ps
Delay variation (dmax – dmin) 70ps
Rate at which new inputs can be applied 175ps

Fig. 5.6. Propagation delay of the full adder.

From Table 5.I we see that the propagation delay of the full adder varies from 210ps

(dmin) to 280ps (dmax), resulting in a maximum delay variation of 70ps. Internal node

constraints dictate the rate at which new inputs can be applied to the full adder and from

simulations it was observed that the fastest rate at which inputs could be applied is once

every 175ps.

 43

In the multiplier schematic shown in Fig. 5.2 and Fig. 5.3, it can be observed that a

layer of logic has FAs along with AND, OR gates and buffers. These AND, OR gates and

buffers are designed to give a small propagation delay variation and since they are faster

than FA, delay is added so that their propagation delay is close to that of the full adder.

This would reduce the overall delay variation of a layer of logic.

5.2.2. Sense amplifier based flip-flop (SAFF)
The transistor sizes in SAFF [16] have been determined through an iterative process

with knowledge of input signal driving strength and output drive needed. Simulations

have been performed to determine the setup time (ts), hold time (th) and the sampling

time. Setup time is defined as the time for which data input must be stable before the

arrival of active clock edge for the flip-flop to successfully store the data. Hold time is

defined as the time for which the data must be held after the arrival of the active clock

edge for the flip-flop to store the data. The setup time, hold time (th) and clock-to-output

delay (DR) are shown in Table 5.II. Simulations performed on the flip-flop revealed that

the clock high time must be at least 160ps. Assuming a 50% duty cycle minimum clock

period required is 320ps.

TABLE 5.II. SAFF TIMING VALUES

Setup time (ts) 10ps
Hold time (th) 130ps
Clock-to-Q delay (DR) 295ps
Minimum clock period required 320ps

 44

5.3. Mesochronous pipeline multiplier

Simulations performed on the flip-flop revealed that the bottleneck in the system is the

register, which dictated the minimum clock period time. Though the FA can accept inputs

every 175ps, the flip-flop requires at least 320ps between successive samples. So, instead

of logic dictating the clock period in the multiplier, the clock period (determined by flip-

flop) determines the amount of logic that can be enclosed between any two adjacent

registers. This is given by (2.5)

()clkhsmppclkjj ttTdd ∆++−≤− 2_)min()max(.

Since the clock period has to be at least 320ps, compensating for possible clock

uncertainties a clock period of 350ps (≈2.86GHz) (Tclk_mpp) was targeted. Using the flip-

flop delays obtained from simulations and (2.5)

() psdd jj 1902013010350)min()max(=++−≤−

we know that the logic enclosed between any two adjacent register stages must have a

delay difference less than 190ps.

The placement of registers as shown in Fig. 5.3 is based on this calculated limit on

delay difference. The logic enclosed between any two adjacent register stages can handle

multiple data sets simultaneously and has a delay difference less than 190ps.

Simulations performed on the entire system revealed that the system can successfully

perform 8×8-bit multiplications every clock period i.e. 350ps [18], [19]. Some of the

simulation waveforms are shown in Fig. 5.7 to illustrate the delay variation concept. The

waveforms shown in Fig. 5.7 are of the first stage of multiplier.

 45

A

C

clk1

clk2

B

Second stage

pipeline register)

First stagese
t 1

se
t 2

se
t 3

se
t 4

(to second

(to first pipeline register)

se
t 1

se
t 2

se
t 3

se
t 4

se
t 2

se
t 3

se
t 4

se
t 1

se
t 1

se
t 2

se
t 4

se
t 3

cl
oc

k

Inputs to the second stage

Inputs to the first stage Outputs of the first stage

Fig. 5.7. Simulation waveforms.

 46

There are four data sets simultaneously present in the first stage. In Fig. 5.7 at label (A)

are the input data sets to the first stage of the multiplier. Each data set passes through the

logic blocks shown in Fig. 5.3, and as the data set propagates, each data path adds

different delay. As a result the delay variation of the data sets increases. In Fig. 5.7 at

label (B) are the data sets with delay variations at the end of first stage (inputs to second

register stage). Since the delay variation at this point is close to the calculated limit, a

register stage is used to synchronize the data sets. The synchronized data sets as stored by

the second register stage and presented to second stage at label (C) in Fig. 5.7. All the

delay variations in the data sets from first stage are eliminated when presented to second

stage. The small variation observed in the signals at label (C) is due to vertical clock

skew and load variation of the register stage.

The MPP implementation of the multiplier is able to achieve a clock period of 350ps,

with only 4 pipeline stages and 5 register stages. The layout of this multiplier is shown in

Fig. 5.13. The load on the clock network is also small. The required delay in the clock

signal path has been accomplished using inverters. Some important results of this

multiplier implementation are summarized in Table 5.III

TABLE 5.III. MPP MULTIPLIER RESULTS

FA delay variation 70ps
SAFF setup time 10ps
SAFF hold time 135ps
SAFF Clk-Q delay 295ps
MPP multiplier pipeline stages 4
MPP multiplier pipeline registers 5
MPP multiplier clock frequency 2.86GHz

 47

5.4. Conventional pipeline multiplier

Using the simulation results of the basic cells, performance of a super-pipeline

implementation of the same multiplier can be accurately predicted. Best performance in

CPP implementation would be possible if each layer of FA/HA is a pipeline stage. As

stated previously, in such an implementation the number of pipeline stages would be 16

and number of register stages would be 17. The clock distribution in such an

implementation is complex. According to (1.1)

clksRcppclk tDDT ∆+++≥ max_

achievable clock period is only 595ps

pstDDT clksRcppclk 5951010295280max_ =+++=∆+++≥ .

Using this clock period for CPP scheme, from (3.1)

clkhsjj

clksR

mppclk

cppclk

ttdd
tDD

T

T
Speedup

∆+++−
∆+++

==
2)min()max(

max

_

_

we have a Speedup of 1.7 times, from the MPP scheme over CPP scheme.

In the calculated clock period value of CPP scheme, a significant portion of clock

period is lost in the register delay. The amount of logic in a stage can be increased to

mitigate the effects of the pipeline registers in super-pipelining. Let us consider M as the

number of layers of FA considered as a single pipeline stage, Tclk_cpp(min) is minimum

value of clock period achievable. As the logic depth in a stage increases the propagation

delay of the logic influences the achievable clock period. Tclk_cpp(min) can be calculated as

() FAclksRFAcppclk MdtDdT min_max_(min)_ +∆+++=

where dmax_FA and dmin_FA are the minimum delays of FA. Here we linearize the delay of

additional layers of FA (for M >1) with dmin_FA instead of dmax_FA. This gives the least

 48

possible delay and the smallest achievable clock period. The clock-period values for

various values of M are shown in Table 5.IV. The results shown in Table 5.IV clearly

indicate that the mesochronous pipeline scheme outperforms conventional pipeline

scheme. In the multiplier, the MPP approach used fewer stages and gave higher

frequency of operation, higher throughput and lower latency. A pipelining scheme similar

to the proposed MPP scheme was used in the implementation of a network router [20].

TABLE 5.IV. CLOCK PERIOD OF CPP MULTIPLIER

M No. of stages Clock period
1 16 595ps
2 8 805ps
3 5 1015ps
4 4 1225ps

5.5. Mesochronous pipeline multiplier in ST Microelectronics
90nm technology

The 8×8-bit mesochronous multiplier has also been implemented in ST

microelectronics 90nm technology, with supply 1.0V. The basic cells and multiplier have

been simulated in the schematic tool. Some of the results obtained are discussed here.

A number of simulations have been performed on the full adder to precisely

characterize performance of this cell. Propagation delay was measured for the 32 possible

transitions that trigger a change in Sum (S) and/or Carry (Co) output. Propagation delay

values obtained for these 32 transitions are graphically represented in Fig. 5.8. Using this

plot, minimum and maximum delays values and delay variation of FA can be calculated.

These values are shown in Table 5.V.

 49

TABLE 5.V. FULL ADDER DELAY VALUES IN 90NM

Maximum propagation delay (dmax) 100ps
Minimum propagation delay (dmin) 62ps
Delay variation (dmax – dmin) 38ps

Fig. 5.8. Propagation delay of the full adder in 90nm technology.

From Table 5.V we see that the propagation delay of the full adder varies from 62ps

(dmin) to 100ps (dmax), resulting in a maximum delay variation of 38ps.

Instead of the SAFF implementation used in TSMC 180nm implementation, a simpler

dynamic two-phase D flip-flop [14], [15] has been used in this implementation. The

schematic of this flip-flop is shown in Fig. 5.9. This cell is simple to implement and the

minimum clock period requirement observed in SAFF implementation is less in the

dynamic two-phase D-FF. Also, the flop-flop timing values like set-up time, hold time

and clock-to-Q delay are less in the dynamic two-phase D-FF.

 50

Clk

Clk

Clk

Clk

Clk

C
lk

R
eg

D Q

Clk

Fig. 5.9. D flip-flop and clkclk & circuit.

Simulations have been performed on this cell to obtain it’s timing values. The

simulation waveforms for various setup time values are shown in Fig. 5.10. From this

waveform the setup time and clock-to-Q delay can be calculated.

Fig. 5.10. Setup time of the dynamic two-phase D-FF.

 51

The setup time, hold time (th) and clock-to-output delay (DR) for this flip-flop obtained

from simulations, are shown in Table 5.VI.

TABLE 5.VI. DYNAMIC TWO PHASE D-FF TIMING VALUES

Setup time (ts) 35ps
Hold time (th) 5ps
Clock-to-Q delay (DR) 37ps

The mesochronous multiplier implemented here is similar to Fig. 5.3. This

implementation has 3 pipeline stages and 4 pipeline registers. Simulations performed on

the entire system revealed that the system can operate with a clock frequency of 5GHz

(clock period of 200ps). Some important results of this multiplier implementation are

summarized in Table 5.VII.

TABLE 5.VII. MPP MULTIPLIER RESULTS IN 90NM

FA delay variation 38ps
SAFF setup time 35ps
SAFF hold time 5ps
SAFF Clk-Q delay 37ps
MPP multiplier pipeline stages 3
MPP multiplier pipeline registers 4
MPP multiplier clock frequency 5GHz

5.6. Summary

The following is a summary of important points from this chapter.

• Mesochronous pipeline multiplier: The Carry-Save Adder multiplier was pipelined

using the mesoschronous pipeline scheme. To improve performance of basic cells of

the multiplier i.e. full adder and half adder, fully differential transmission gate

 52

implementations have been used. A full differential Sense Amplifier based Flip-Flop

(SAFF) has been used in implementing pipeline registers. Due to the design

limitations imposed by the SAFF, a maximum clock frequency of 2.86GHz could be

used. Based on this limitation the multiplier was pipelined into 4 logic stages with 5

register stages. Each logic stage can handle 3 data sets simultaneously. Simulations

performed in TSMC 180nm, 1.8V technology, on the MPP multiplier showed that it

can operate at a maximum frequency of 2.86GHz (clock period of 350ps).

• Conventional pipeline multiplier: Based on the simulation results of the basic cells,

the performance of a conventional pipeline implementation of the multiplier was

calculated. The CPP multiplier can operate at a maximum clock frequency of

1.68GHz (clock period of 595ps). To achieve this performance, the multiplier should

be split into 16 logic stages and 17 pipeline register stages.

• MPP multiplier in 90nm technology: The MPP multiplier schematic was simulated

in ST microelectronics 90nm, 1.0V technology. The multiplier has 3 logic stages and

4 pipeline register stages and can operate on a clock frequency of 5GHz.

 53

Fig. 5.11. Full Adder layout in TSMC 180nm technology.

 54

Fig. 5.12. Sense amplifier based flip-flop layout in TSMC 180nm technology.

 55

Fig. 5.13. 8×8-bit mesochronous pipeline multiplier layout (TSMC 180nm).

 56

Chapter 6

Mesochronous power consumption
and power supply current variation
(di/dt)

In this chapter we present an 8×8-bit multiplier pipelined in the conventional pipeline

(CPP) scheme and the novel mesochronous pipeline (MPP) scheme, to compare its power

consumption. The power consumption is an important issue in chip design. In

conventional pipeline scheme, huge currents draw by clock network and large number of

pipeline registers is increasing the chip power consumption. Clock network’s power

consumption has increased to 50% of the total chip power consumption [7]. Power supply

network is essentially a huge RLC network, and the huge currents drawn from it are

causing higher IR drops in it. Increase in clock frequency, system size, and wire parasitic

values is introducing power supply noise [21], [22]. Also, the large current slew rates

(di/dt) coupled with on-chip inductance are generating significant amount of Ldi/dt noise

on power supply. These power supply noise affect the power supply integrity and this is

worsened due to decreasing supply voltage levels.

The results presented in this chapter prove that the mesochronous multiplier

implementation consumes less power than conventional implementation. Also, the

variation in current drawn from power supply is less in mesochronous scheme.

 57

6.1. Carry-Save Adder multiplier implementation

6.1.1. Conventional implementation of CSA multiplier
To achieve a fast multiplier the CSA architecture must be pipelined. In CPP scheme

according to (1.1) minimum clock period can be achieved by making each of the 2M

layers into stages of a pipeline, separated by pipeline registers. Effectively, an M-bit CPP

multiplier would have 2M stages with 2M+1 pipeline registers. An 8×8-bit pipelined

multiplier implemented has 16 pipeline stages and 17 sets of inter-stage registers. The

schematic of this multiplier was shown in Chapter 5 and is repeated here in Fig. 6.1.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+
+
+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

M<15>
M<14>
M<13>
M<12>
M<11>
M<10>
M<9>
M<8>
M<7>
M<6>
M<5>
M<4>
M<3>
M<2>
M<1>
M<0>

Y
<7

:0
>

X
<7

:0
>

+

+

+

+

+

+

+

Clk

#Clk

Clk1
#Clk1#Clk1 #Clk1 #Clk1

Fig. 6.1. 8×8-bit CSA multiplier implemented in CPP scheme.

To distribute the clock signal to all the pipeline register stages, a tree network has been

used as shown in Fig. 6.1. Inverters have been used in place of buffers, and a fan-out of

four has been used. The inverters in the tree network have sizes 50, 40, 25, 10 times the

 58

minimum sized inverter. Each register stage has another small tree network to deliver the

clock to all the flip-flops in that stage without any vertical skew.

6.1.2. Mesochronous implementation of CSA multiplier

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

∆S1

+

∆S2

+

+

+

+

+
++

+
+

+

∆S3

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+
+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

M<15>
M<14>
M<13>
M<12>
M<11>
M<10>
M<9>
M<8>
M<7>
M<6>
M<5>
M<4>
M<3>
M<2>
M<1>
M<0>

+

+

+

+

Y
<7

:0
>

X
<7

:0
>

ClkReg2 ClkReg3 ClkReg4ClkReg1

Fig. 6.2. 8×8-bit CSA multiplier implemented in MPP scheme.

Fig. 6.2 shows the schematic of the same 8×8-bit multiplier implemented in MPP

scheme. Here the idea is to increase the amount of logic in a stage and clock the pipeline

registers such that there are multiple data sets simultaneously present in a logic stage at

different stages of processing. All of the logic enveloped between any two adjacent

register stages supports multiple data sets simultaneously. Also, the number of register

stages required to synchronize the data sets is small. In this implementation there are only

3 pipeline stages and 4 register stages. The placement of the registers is based on the

maximum delay difference that can be handled for a target clock frequency. This

implementation is different from the one presented in Chapter 5, and the reason for this

will be explained later in this section. Unlike a tree distribution for clock signal in CPP

 59

scheme, the clock signal takes a linear path in MPP scheme as shown in Fig. 6.2. The

clock travels close to the data path and includes delay elements realized using simple

inverters.

The registers in the multiplier have been realized using a dynamic two-phase D flip-

flop [14], [15]. This cell is simple to implement and the minimum clock period

requirement observed in SAFF implementation (Chapter 5) is less in the dynamic two-

phase D-FF. Also, the flop-flop timing values like set-up time, hold time and clock-to-Q

delay are less in the dynamic two-phase D-FF. The schematic of this flip-flop is shown in

Fig. 6.3.

Clk

Clk

Clk

Clk

Clk

C
lk

R
eg

D Q

Clk

Fig. 6.3. D flip-flop and clkclk & circuit.

From simulations, the clock-to-output delay, set-up time, and hold time can be

calculated. These values are shown in Table 6.I

TABLE 6.I. DYNAMIC TWO PHASE D-FF TIMING VALUES

Setup time (ts) 65ps
Hold time (th) 5ps
Clock-to-Q delay (DR) 130ps

 60

In the CPP implementation of the multiplier, the minimum achievable clock period can

be calculated from (1.1)

Tclk_cpp>Dmax+DR+ts=280+130+65=475ps

A fair compare between the CPP and MPP schemes in terms of power consumption is

when they are operating at the same clock period. For this purpose a clock period of

500ps (2GHz) has been chosen. In the MPP multiplier implementation, for a clock period

of 500ps, the maximum delay variation of any stage can be calculated using (2.5) as

400ps.

dmax(j) – dmin(j) � Tclk_mpp – (ts + th+2�clk)=500-100=400ps

The placement of registers as shown in Fig. 6.2 is based on this calculated limit on

delay difference. The delay variation of the FA is 70ps, and maximum calculated delay

variation is 400ps, and so maximum number of FA layers in a stage is five. This

placement also accommodates additional variations that can occur in a stage. From Fig.

6.2 it can be seen that stage 2 is the critical stage as it has five FA/HA layers combined

into a single stage. The logic enclosed between any two adjacent register stages supports

two or more data sets simultaneously and the stage delay difference is less than 400ps.

6.2. Power consumption and power supply current variation

Simulations have been performed to calculate the average current drawn by the clock

network, registers, and logic in both the pipeline schemes. In this section the power

consumption by the three components is discussed and the CPP and MPP schemes are

compared.

 61

6.2.1. Clock network
In the CPP multiplier, a tree network has been used to distribute clock to all the register

stages. The small tree network used to distribute clock to all flip-flops in a register stage

has also been included in the global clock network for power consumption calculations.

The current drawn by the clock network in CPP scheme is shown in Fig. 6.4. In Fig. 6.4

the signals (Clk, #Clk, Clk1, #Clk1, Clk2, #Clk2) show the clock at various stages of the

tree distribution network. The peak current drawn from power supply line and peak

discharge current to the ground line clearly coincide with the switching event of the clock

applied to the pipeline registers. This is due to the large number of pipeline registers that

have to be driven simultaneously in CPP scheme. The average value of current drawn by

the clock network is 86.9mA.

Fig. 6.4. Clock network current in CPP scheme at 2GHz.

 62

In the MPP scheme, the clock signal takes a linear path and travels clock to the data

path. The current drawn by the clock network in MPP scheme is shown in Fig. 6.5. The

current draw here is for an implementation where maximum delay in clock path is

derived using physical delay elements (N=1). So, large delay values are present in the

clock path. In Fig. 6.5 ClkReg1, ClkReg2, ClkReg3, ClkReg4 signals are the clock

signals applied to the first, second, third and fourth register stages respectively. Due to

the clock distribution approach taken in MPP, the registers are not triggered at the same

time, which is clear from Fig. 6.5. The average current drawn by the clock network in this

implementation is 53mA. When compared to the CPP scheme, the current drawn in this

case is less. This means significant power savings in clock network.

Fig. 6.5. Clock network current in MPP scheme at 2GHz.

 63

The power consumed by the clock network in MPP scheme can be further reduced by

taking advantage of the clock periodicity as discussed in Chapter 2. When the necessary

delays in the clock signal path are realized using the periodic nature of the clock signal,

small delay values are required in the clock path. This results in less power consumption.

Fig. 6.6 shows the current drawn in this case (N=4) and the average current drawn is

24mA.

Fig. 6.6. Clock network current in MPP scheme at 2GHz with reduced clock delay.

Consider the current drawn by clock network in case of CPP scheme as shown in Fig.

6.7. The slew rate (di/dt) of the current from Vdd is approximately 1.23V/ns. Similarly

the slew rate of current discharged into the ground rail is approximately 1.67V/ns (Fig.

6.4). The large currents drawn can induce a large IR drop on the supply network, while

the large current slew rates (as shown in Fig. 6.7) can generate significant Ldi/dt noise

 64

[21], [22]. These drops are aggravated by technology scaling, decreasing supply voltages

and increasing clock frequencies. These voltage fluctuations can be suppressed by

increasing the on-chip decoupling capacitance, however this results in increased die size

and cost. Consider the case of MPP scheme as shown in Fig. 6.7, the current drawn by

the clock network is relatively small and has less variation compared to current in CPP

scheme. This means less power supply noise is induced in MPP scheme.

Fig. 6.7. Clock network current (from Vdd) at 2GHz.

The power consumption by clock network in CPP scheme can be reduced by operating

the system at a low speed. The CPP multiplier when simulated at 667MHz, its clock

network consumed an average current of 32.1mA which is close to the value achieved in

the MPP scheme with reduced clock path delay. So to achieve similar power

consumption, the CPP multiplier must be operated at one-third the speed of the MPP

 65

multiplier. The clock network current consumption values are shown for various cases, in

Table 6.II [17].

TABLE 6.II. CLOCK NETWORK CURRENT CONSUMPTION

Scheme Current (mA)
CPP @ 2GHz 86.9

CPP @ 667MHz 32.1
MPP @ 2GHz 53.0
MPP @ 2GHz

(reduced clock delay) 24.2

6.2.2. Pipeline registers and logic
The pipeline registers are the sources of high power consumption in CPP

implementation after the clock distribution network. The average current drawn by the

registers, and logic stages, is shown in Table 6.III [23]. The current drawn by the logic

stages has been calculated for a significant activity in these stages. Fig. 6.8 and Fig. 6.9

show the plots of currents drawn by the register stages and logic stages in CPP multiplier

and MPP multiplier implementations during a clock period.

TABLE 6.III. PIPELINE REGISTERS AND LOGIC CURRENT CONSUMPTION

Current (mA) Scheme
Registers Logic

CPP @ 2GHz 66.6 38.2
CPP @ 667MHz 21.2 9.3
MPP @ 2GHz 12.8 45.3

 66

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 15 15.1 15.2 15.3 15.4 15.5 15.6 15.7

C
ur

re
nt

 (m
A

)

time (ns)

Register

Logic

Fig. 6.8. Current drawn by registers and logic in CPP scheme at 2GHz.

 0

 10

 20

 30

 40

 50

 15 15.1 15.2 15.3 15.4 15.5 15.6 15.7

C
ur

re
nt

 (m
A

)

time (ns)

Logic

Registers

Fig. 6.9. Current drawn by registers and logic in MPP scheme at 2GHz.

 67

In the CPP multiplier implementation shown in Fig. 6.1, there are 17 pipeline register

stages, while in the MPP multiplier implementation shown in Fig. 6.2, there are only 4

register stages. Due to the small number of register stages in MPP multiplier the overall

current consumed in the register stages is significantly less than in the CPP multiplier.

The current drawn by the logic portion of the multiplier should be similar in both the

schemes, since the logic is identical. From Table 6.III it can be seen the current values are

close in both the scheme. However the small increase in current drawn by logic in MPP

multiplier can be attributed to the additional logic necessary to decrease the logic

variation (dmax – dmin) in the pipeline stages.

6.2.3. Total power
The over-all current drawn by the CPP implementation is approximately 192mA, while

the current drawn by the MPP multiplier is 82mA. This shows that significant power

savings are possible in MPP scheme. Fig. 6.10 shows the plot of total current drawn by

multiplier implemented in CPP and MPP scheme. The numerical values of currents

drawn by the clock network, register stages and logic are shown in Table 6.IV [23]. The

high currents drawn in CPP scheme imply higher power consumption and higher IR

drops in the power supply network. Apart from drawing higher current, the variation in

current drawn is higher in CPP scheme which could result in higher power supply noise.

 68

 0

 50

 100

 150

 200

 250

 300

 15 15.1 15.2 15.3 15.4 15.5 15.6 15.7

C
ur

re
nt

 (m
A

)

time (ns)

MPP

CPP

Fig. 6.10. Total current in CPP and MPP (reduced clock delay) schemes at 2GHz.

TABLE 6.IV. CLOCK NETWORK REGISTERS, AND LOGIC CURRENT

Current (mA)
Scheme Clock

network Registers Logic Total

CPP @ 2GHz 86.9 66.6 38.2 191.7
CPP @ 667MHz 32.1 21.2 9.3 62.6
MPP @ 2GHz 24.2 12.8 45.3 82.3

CPP/MPP @ 2GHz 3.6 5.2 0.84 2.3

A graphical comparison of the current results is shown in Fig. 6.11. In CPP scheme, the

amount of current drawn by the clock network and registers is greater than in MPP

implementation. This is due to the complex clock distribution and higher number of

register stages in CPP. The overall current drawn, in turn power consumption is

significantly higher in CPP scheme. Fig. 6.12 shows a bar-graph of current drawn by

clock network, registers and logic for both the schemes. On an average, the current drawn

 69

by the logic stages in MPP scheme is higher than CPP scheme, which represents useful

current drawn, as it is used for computation.

Fig. 6.11. Total current in CPP and MPP (reduced clock delay) schemes at 2GHz.

Fig. 6.12. Total current breakdown in CPP and MPP schemes @ 2GHz.

The CPP multiplier implementation has been simulated at clock frequencies 2GHz

(clock period=500ps), 1.33GHz (clock period=750ps), 1GHz (clock period=1ns), and

800GHz (clock period=1.25ns). In CPP scheme, clock period is determined by the stage

with largest delay value. For large values of clock period, more logic can be included per

 70

stage and few stages are required to pipeline system. The clock frequencies show above,

have been chosen according to the following equation.

sRFAavgFAcppclk tDdMdT ++−+> _max__)1(

In the above equation, M is the number of adders (FA or HA) considered as a single

stage and davg_FA is the average propagation delay of the FA. Considering the average

delay value would give a typical estimate of clock period. Considering the maximum

propagation delay (dmax) value would give a pessimistic estimate of clock period and

considering the minimum propagation delay (dmin) would be an optimistic estimate. The

possible clock periods for various values of M are shown in Table 6.V.

TABLE 6.V. CPP CLOCK PERIOD FOR VARIOUS VALUES OF M

M No. of stages Clock period Clock period chosen
1 16 Tclk_cpp > 475ps 500ps
2 8 Tclk_cpp > 720ps 750ps
3 5 Tclk_cpp > 965ps 1000ps
4 4 Tclk_cpp > 1210ps 1250ps

Table 6.VI also shows the current drawn by the CPP multiplier at different clock

frequencies. From the results shown in Table 6.VI, it is clear that CPP scheme consumes

less current (power) than MPP scheme only if operated at half the speed of MPP.

TABLE 6.VI. CLOCK NETWORK, REGISTERS, AND LOGIC CURRENT (CPP SCHEME)

Current (mA)
Scheme No. of

stages Clock
network Registers Logic Total

CPP @ 2GHz 16 86.9 66.6 38.2 191.7
CPP @ 1.33GHz 8 40.3 25.2 31.8 97.3

CPP @ 1GHz 5 23.8 13.1 22.9 59.8
CPP @ 800MHz 4 16.6 7.1 9.7 33.4
MPP @ 2GHz 4 24.2 12.8 45.3 82.3

 71

The trend of current consumption of the CPP multiplier is shown in Fig. 6.13.

Fig. 6.13. Current consumption of CPP multiplier at various clock frequencies.

6.3. Summary

The following is a summary of important points from this chapter.

• Simpler clock distribution. In the CPP multiplier implementation, the clock signal

must be distributed to all the 17 pipeline registers stages such that they are all

triggered simultaneously. In the MPP scheme clock signal path is parallel to data

path. Delays are included in the clock signal path so that clock signal can travel

with data. Also, there are only 4 register stages in MPP multiplier implementation,

so load on clock network is less. In implementing the clock path delay elements,

periodic nature of clock signal can be used to further reduce power consumption.

• Low power dissipation. The average power dissipation in MPP multiplier

implementation is 148.05mW, while in CPP implementation is 345.6mW at clock

frequency of 2GHz.

 72

• Clock network and registers: In the CPP multiplier, clock distribution network and

registers account for 80% of total power consumption. In the MPP multiplier logic

dissipates more power compared to clock network and registers.

• Lower power supply noise. In MPP multiplier implementation, due to the linear

clock distribution approach, there are fewer register stages and they all are not

triggered simulatneously. This reduces the current drawn and also the rate (di/dt)

at which it is drawn. The result is less variation in current drawn by clock

network. This means less power supply noise.

• CPP Power-performance tradeoff. CPP scheme can achieve similar power

consumption as MPP scheme only when operated at a much slower speed. The

CPP multiplier implementation consumes less power than the MPP

implementation only if operated at half the frequency of MPP multiplier.

 73

Chapter 7

Tiny Chip

In this chapter we shall discuss the implementation of a 4×4-bit mesochronous pipeline

Carry-Save Adder (CSA) multiplier in AMI 0.5�m, 5.0V technology. The design has

been fabricated through The MOSIS service. This chip has been tested using Onehotlogic

chip tester and we shall discuss the results obtained from these tests.

7.1. 4×4-bit mesochronous CSA multiplier simulations

The schematic of a 4×4-bit CSA multiplier is shown in Fig. 7.1. This multiplier has to

be pipelined to achieve high performance.

+

+

+

+

+
+

+

+

+
M<7>
M<6>
M<5>
M<4>
M<3>
M<2>
M<1>
M<0>

+

+

+

+ +

+

Y<3:0>

X<3:0>

Fig. 7.1. 4×4-bit CSA multiplier schematic.

All the basic cells used in this implementation are same as the ones used in 8×8-bit

CSA multiplier presented in Chapter 5 and Chapter 6. Extensive simulations have been

performed on the differential transmission gate full adder (FA) in AMI 0.5�m, 5.0V

 74

technology. For the 32 input transitions that trigger a change in one or both of the FA

outputs, propagation delay was measured. Propagation delay values obtained for these 32

transitions are graphically represented in Fig. 7.2. Using this plot, minimum and

maximum delays values and delay variation of FA can be calculated. These values are

shown in Table 7.I.

TABLE 7.I. FULL ADDER DELAY VALUES

Maximum propagation delay (dmax) 740ps
Minimum propagation delay (dmin) 460ps
Delay variation (dmax – dmin) 280ps

Fig. 7.2. Propagation delay of the full adder.

From Table 7.I we see that the propagation delay of the full adder varies from 460ps

(dmin) to 740ps (dmax), resulting in a maximum delay variation of 280ps.

The limiting factor in this design is the clock generator. A ring oscillator with a

multiplexer has been used to generate four different clock periods. The schematic of this

 75

clock generator is shown in Fig. 7.3. The clock periods achieved from the clock generator

for various values of the selection inputs (S1, S0) are shown in Table 7.II.

M
U

X

S1 S0

C
lo

ck

Fig. 7.3. Clock generator schematic.

TABLE 7.II. CLOCK GENERATOR RESULTS

Selection Inputs
S1 S0

Clock
period

Clock
frequency

1 1 1.95ns 513MHz
1 0 2.22ns 450MHz
0 1 2.51ns 400MHz
0 0 2.88ns 347MHz

To view this clock signal externally, the clock was slowed down (by an order of 218),

using a chain of JK flip-flops. For an internal clock period of 1.95ns, when multiplier by

218, the external clock period should be 458.75�s.

Since the minimum clock period is 1.95ns and maximum propagation delay (dmax) of

the FA is 740ps, the best scheme to pipeline is to have two FA/HA per stage as shown in

Fig. 7.4. From this schematic it is clear that system would have 4 logic stages and 5

pipeline register stages and would require a global clock distribution.

 76

+

+

+ +

+

+

+

+

+
+

+

+

+

+
+

M<7>
M<6>
M<5>
M<4>
M<3>
M<2>
M<1>
M<0>

Y<3:0>

X<3:0>

Clock

Fig. 7.4. Conventional 4×4-bit CSA multiplier schematic.

Using the mesochronous pipeline approach, the multiplier can be operated at the

minimum clock period of 1.95ns, with only two pipeline stages and simple clock

distribution. The schematic of this implementation is shown in Fig. 7.5.

+

+

+

+ +

+
+

+

+

+

+
+

M<7>
M<6>
M<5>
M<4>
M<3>
M<2>
M<1>
M<0>

Y<3:0>

X<3:0>

+

+

+

∆S1 ∆S2Clock

Fig. 7.5. Mesochronous 4×4-bit CSA multiplier schematic.

In this implementation the stage delay values have been calculated from simulations in

AMI 0.5�m, 5.0V technology and are shown in Table 7.III.

 77

TABLE 7.III. STAGE DELAYS IN MESOCHRONOUS CSA MULTIPLIER

Stage Delay
1 2.85ns

2 3.3ns

From the stage delay values shown in Table 7.III and clock period of 1.95ns, it is clear

that in the two logic stages two separate data waves can be present simultaneously. This

mesochronous multiplier is successfully able to operate on a clock period of 1.95ns

(513MHz) and only requires 2 logic stages and 3 pipeline registers. This is definitely a

performance gain. Also, the clock distribution is simple and the delay elements in the

clock signal path have been realized using simple inverters. The layout of this multiplier

is shown in Fig. 7.10.

From the delay values, we can estimate the clock period of conventional multiplier with

only 2 logic stages and 3 registers stages. The conventional multiplier can only operate at

303MHz (Stage 2 delay is 3.3ns), while the mesochronous multiplier can operate at

513MHz, which is a Speedup of 1.69. In Table 7.IV a comparison between the

mesochronous and conventional multiplier implementations is presented.

TABLE 7.IV. PERFORMANCE COMPARISON

Scheme Conventional Mesochronous
No. of pipeline stages 4 2 2
No. of pipeline registers 5 3 3
Clock frequency 513MHz 303MHz 513MHz
Clock distribution Complex Simple Simple

To facilitate the test of this design when fabricated, two slow speed memory banks have

been incorporated into the multiplier. One bank is at the input, in which operands can be

 78

stored and the other bank is at the output, which stores the multiplication result. Operands

can be written to the input bank at very slow speed, using external control and data

signals. Operands are read from this bank at the system speed and applied to the inputs of

the multiplier. Similarly, the output bank stores the multiplier output at the system speed

and can be read through external pins at a slower rate. The schematic of the memory

element in these banks is shown in Fig. 7.6.

W

W

R

R

Write bus Read bus

Fig. 7.6. Memory element in Input/Output bank.

7.2. 4×4-bit mesochronous CSA multiplier chip test results

The Mesochronous 4×4-bit CSA multiplier shown in Fig. 7.5 has been fabricated in

AMI 0.5�m, 5.0V technology. This chip has been tested using Onehotlogic chip tester.

The SPICE parameters from the AMI fabrication run have been used to re-simulate the

basic cells in the multiplier. Due to difference in the SPICE parameters from the

fabrication run and the ones used for simulations, all the delays are scaled-up by a factor

of 2.05 in the fabricated chip.

The chip test results of the externally monitored slow version (order of 218) of internal

clock signal for various values of the control inputs (S1, S0) are shown in Fig. 7.7. The

clock period values are shown in Table 7.V

 79

Fig. 7.7. Internal clock signal from the chip.

TABLE 7.V. SCALED INTERNAL CLOCK SIGNAL PERIOD

Selection Inputs
S1 S0

External clock
period

Internal clock
period

1 1 1.04ms 3.97ns
1 0 1.21ms 4.62ns
0 1 1.34ms 5.11ns
0 0 1.56ms 5.95ns

Based on these results we can estimate the internal propagation delays. Some of the

important delay values adjusted to the chip SPICE parameters are shown in Table 7.VI.

TABLE 7.VI. ADJUSTED DELAY VALUES

FA maximum propagation delay (dmax) 2.05×740ps = 1517ps
FA minimum propagation delay (dmin) 2.05×460ps = 943ps
FA delay variation (dmax – dmin) 2.05×280ps = 574ps
Mesochronous multiplier stage 1 delay 2.05×2.85ps = 5.84ns
Mesochronous multiplier stage 2 delay 2.05×3.3ns = 6.76ns
Internal clock period (S1=1, S0=1) 3.97ns (252MHz)

 80

Tests performed on the chip with various input vectors proved that the system was able

to operate on a clock period of 3.97ns (252MHz). Some of the chip test results are shown

in Fig. 7.8 and Fig. 7.9. In these figures, the operands are shown with the label

Inputs(Y, X). The multiplicand is the most significant bits, while the multiplier is the least

significant bits.

Fig. 7.8. Chip test results (Sample 1).

 81

Fig. 7.9. Chip test results (Sample 2).

NOTE: In the chip implementation due to a faulty interconnect in partial product

generation, some of the multiplication results are erroneous. However, this does not

affect the performance of the system.

7.3. Summary

In this section we shall present a summary of important points from this chapter.

• Tiny Chip: A 4×4-bit mesochronous pipeline CSA multiplier has been fabricated in

AMI 0.5�m 5.0V technology.

• Higher performance: The mesochronous multiplier has a Speedup of 1.69 over

conventional pipeline implementation with only two pipeline stages and three

pipeline registers. The performance of mesochronous multiplier can be achieved in

 82

conventional scheme, however this would require the CSA multiplier to be split into

four pipeline stages and five pipeline registers and requires a global clock

distribution.

• Chip test: The fabricated chip has been tested and it works successfully at a

frequency of 252MHz, which is significantly for an old technology.

 83

Fig. 7.10. Mesochronous 4×4-bit CSA multiplier layout.

 84

Chapter 8

Concluding Remarks

In this dissertation, mesochronous pipeline (MPP) architecture has been presented

which achieves better performance and power savings compared to conventional pipeline

(CPP) architecture. The power savings, performance improvement and design aspects of

this architecture have been discussed in detail here. A Carry-Save Adder (CSA)

multiplier implemented in conventional and mesochronous pipeline architectures as a

design example has been described in detail and the performance and power

consumptions of the two implementations has been discussed. Following are the features

of the MPP scheme in comparison with CPP scheme.

1) Shorter clock period (Tclk_mpp). The clock period in mesochronous pipeline scheme is

determined by the pipeline stage with the largest difference between its minimum and

maximum propagation delay. In conventional pipeline scheme, stage with maximum

propagation delay dictates the minimum clock period achievable. Maximum delay

difference is far less than maximum propagation delay, so smaller clock periods (i.e.

higher clock frequencies) are possible in the proposed scheme.

2) Smaller number of pipeline registers. The performance achieved in conventional

pipeline scheme can be easily achieved using mesochronous pipeline scheme with

fewer pipeline stages and small number of pipeline registers.

 85

3) Simpler clock distribution. In conventional pipeline scheme, clock signal must be

distributed to all the pipeline registers stages such that they are all triggered

simultaneously. In the mesochronous pipeline scheme, clock signal path is parallel to

data path. Delays are included in the clock signal path so that clock signal can travel

with data. This could cause the registers to be triggered at different times. Also

because of fewer register stages in MPP scheme, load on clock network is less. This

is a simpler clock distribution scheme and consumes less power compared to the

distribution in a CPP scheme. In implementing the delay elements in clock path,

periodic nature of clock signal can be used, so small delay elements are required. This

helps further reduce power consumption in MPP scheme.

4) Little influence of Clk-Q on Tclk_mpp. The clock-to-output (Clk-Q) delay of pipeline

registers has little influence on clock period in mesochronous pipeline as computation

in a stage is spread over multiple clock periods. In conventional scheme, since

computation in a stage is during a clock period, significant portion of clock period is

lost in the Clk-Q delay and performance is affected. This is further aggravated by

shrinking clock periods.

5) Fast multiplier (350ps clock period). A mesochronous pipeline implementation of an

8×8-bit Carry-Save Adder multiplier using modest TSMC 180nm technology, is able

to operate on a short clock period 350ps (2.86GHz). In conventional pipeline scheme,

the best clock period achievable is 595ps (1.68GHz). So, the mesochronous pipeline

achieves a Speedup of 1.7 times. The number of pipeline stages and the number of

pipeline registers required in this implementation is significantly less compared to

conventional pipeline approach.

 86

6) Low power dissipation. MPP implementation of the 8×8-bit carry-save adder

multiplier using modest TSMC 180nm CMOS technology is dissipating less power

compared to the CPP implementation. The average power dissipation in MPP

implementation is 148.05mW, while in CPP implementation is 345.6mW at clock

frequency of 2GHz. On an average 80% of total power consumption in CPP

multiplier is consumed by clock network and pipeline registers. In the MPP

multiplier, total power consumed is less than 50% of total power in CPP multiplier.

Also, in MPP multiplier around 55% of total power consumption is in logic which

represents useful power.

7) Lower power supply noise. In MPP scheme, due to the linear clock distribution

approach, there are fewer register stages and they all are not triggered simulatneously.

This reduces the current drawn and also the rate (di/dt) at which it is drawn. The

result is less variation in current drawn by clock network. This means less power

supply noise.

8) CPP Power-performance tradeoff. The CPP implementation can achieve similar

power consumption as MPP scheme only when operated at a much slower speed. The

CPP multiplier implementation consumes less power than the MPP implementation

only if operated at half the frequency of MPP multiplier.

9) Tiny chip. A 4×4-bit CSA multiplier implemented in mesochronous scheme has been

fabricated in AMI 0.5�m technology and successfully tested. This chip can operate at

a clock frequency of 252MHz. This implementation has a speedup of 1.69 over

conventional pipeline implementation and has only 2 pipeline stages and 3 pipeline

registers. This multiplier can be pipelined in conventional scheme to operate at

 87

252MHz, however it would have 4 pipeline stages, 5 register stages and a complex

clock distribution.

8.1. Contributions of this research

In the design of high performance digital systems, pipelining is an import design

concept. Pipelining essentially splits a single large combinational logic block into smaller

sequential blocks. This process increases logic utilization, allows parallelism among

independent operations. The result is higher performance, higher frequencies of

operation. In a Conventional Pipeline (CPP) scheme each stage operates on a single data

set or vector at any given time. Data movement between logic (pipeline) stages is

synchronized by pipeline registers with the help of globally distributed clock signal. With

continuing technology scaling, digital systems are increasing in area and are operating at

higher clock frequencies. This is also increasing the complexity of clock distribution and

chip power consumption. Novel pipeline architectures are required in future to gain

higher performance.

In this research, we proposed a novel Mesochronous Pipeline (MPP) scheme. This

scheme simplifies the pipeline architecture, achieves higher performance and higher

power savings compared to conventional pipeline scheme.

In this section we shall present the contributions of this research. Some of these points

have already been highlighted in the previous section.

1) Novel high performance pipeline scheme. Mesochronous pipeline scheme is a novel

pipeline scheme to design high performance digital systems. In this scheme a logic

system is divided into pipeline stages and clocked such that multiple data sets are

present in a pipeline stage at various stages of computation. This means new data is

 88

admitted into a pipeline stage before computation is complete on a previously

admitted data set. For this to be possible the logic per stage is considerably more

when compared to a conventional pipeline implementation. Fewer pipeline registers

are used to synchronize data movement. The clock period in mesochronous pipeline

scheme is determined by the pipeline stage with the largest difference between its

minimum and maximum propagation delay. In conventional pipeline scheme, stage

with maximum propagation delay dictates the minimum clock period achievable.

Maximum delay difference is far less than maximum propagation delay, so smaller

clock periods (i.e. higher clock frequencies) are possible in the proposed scheme.

2) Reduced clock distribution network complexity. In MPP scheme, the clock network

design has been modified from the CPP scheme. Instead of a global equipotential

clock distribution used in CPP scheme, clock signal travels along with data in MPP

scheme. This means clock signal path is parallel to data path and it includes delay

elements so that clock signal can travel with data.

3) Mathematical analysis for the performance of MPP scheme. Using extensive

mathematical analysis, equations have been derived to determine the performance of

the proposed MPP scheme. A detailed comparison of MPP scheme’s performance

with CPP scheme and other pipeline schemes like wave pipeline (WPP) scheme and

micropipelines (�PP), proved that MPP can achieve higher performance. A new

parameter Speedup has been defined to compare performance of MPP and CPP

schemes.

4) Boundaries of proposed scheme. Issues like design of clock signal path, tackling

variations in clock and delay values have also been addressed in detail. Also, detailed

 89

mathematical equations have been provided for the boundaries of proposed scheme

The bounds on clock period are

For N(i) value 0 or 1

mppclkclkhsjj Tttdd _)min()max(2 ≤∆+++−

For N(i) > 1

�
�

�

�

�
�

�

�

−
−∆−−+

≤≤
�
�

�

�

�
�

�

� −∆+++
1

minmax
)(

)()min(
_

)(

)()max(

i

iclkhRi
mppclk

i

iclksRi

N

tDd
T

N

tDd δδ
.

5) Power savings. In MPP scheme the clock distribution network is simple and drives

smaller load compared to CPP scheme. This helps in saving significant amount of

power in clock network. Also, in MPP scheme there are fewer pipeline registers

which add to the power savings. In MPP scheme, due to the clock distribution

approach, it is possible that not all pipeline registers are triggered at the same time, so

the rate at which current is drawn (di/dt) from power supply is less. This mean less

variation in current and less noise is induced in power supply network.

6) 8×8-bit multiplier simulations. Extensive simulations have been performed on a

Carry-Save Adder (CSA) multiplier to validate the mathematical analysis of the novel

pipeline scheme.

7) Tiny Chip. A sample 4×4-bit CSA multiplier in meschronous pipeline scheme has

been fabricated in AMI 0.5�m, 5.0V technology and successfully tested.

8.2. Future Research

Mesochronous pipelining scheme is a novel pipeline architecture to design high

performance and low power digital systems. Through extensive mathematical analysis we

 90

have carefully characterized the proposed architecture and compared its performance

with the conventional pipeline scheme and other alternate pipeline schemes like wave

pipelining and micropipelines. Carry-Save Adder multiplier has been implemented in

conventional and mesochronous pipeline architectures to prove the performance gain and

power saving from the proposed scheme. In this section we shall look into some

important issues that have to be researched to formalize the mesochronous pipeline

(MPP) scheme.

8.2.1. Feedback
Feedback is essential to any pipeline system. Data generated in a stage from a data set

has to be sent back to another stage to be used for computation on a different data set.

Fig. 8.1 shows the block diagram of a MPP system with feedback loops.

R
eg

is
te

r
Logic
Stage 3

Logic
Stage 4

R
eg

is
te

r

∆S1 ∆S2 ∆ S3 ∆ S3

C
lo

ck
 in

R
eg

is
te

r

Logic
Stage 1

In
pu

t d
at

a

R
eg

is
te

r

Logic
Stage 2

R
eg

is
te

r

O
ut

pu
t d

at
a

Fig. 8.1. Mesochronous pipeline scheme with feedback loops.

Presence of feedback loops introduces additional constraints on the clock period of the

system. To determine clock period (Tclk_mpp) with feedback loops, it should be observed

that latching at a particular pipeline register occurs exactly one cycle time later. Let S

represent the feedback stage distance. To synchronize the forward and feedback paths, a

minimum time of STclk_mpp has to occur between latching the output that needs to be fed

back. To determine this time, all the maximum delays and register delays for each stage

 91

that is included in the feedback loop are added. For the feed back from stage k to stage i,

the following inequality must be valid.

() �
=

+∆++≥
k

is
sclksRkimppclkki dtDSTS)max(_ (8.1)

Rewriting the above question we get the equation for clock period with feed back loops.

�
=

+∆++≥
k

is
s

ki
clksRmppclk d

S
tDT)max(_

1
 (8.2)

This limit on clock period has to be calculated for all the feed back loops. Let us consider

feedback loop Ski to be the longest feedback loop, and let stage j have the largest delay

difference in a MPP system. Then clock period is given by

() �
�
�

�
�
�
�

�
��
�

�
��
�

�
+∆++∆+++−= �

=

k

is
s

ki
clksRclkhsjjmppclk d

S
tDttddT)max()min()max(_

1
,2max (8.3)

There are several issues associated with feedback. Synchronization of both forward and

feedback paths needs be addressed to guarantee system operation. Synchronization can be

achieved using pipeline registers, insertion of delay circuits, and signal bypassing. A

detailed study is necessary on synchronization mechanism. A delay variation in the

feedback loop stages may affect performance and/or functionality of the pipelined

system. An in-depth analysis of feedback placement and constraints would lead to a

pipelined system that can tolerate delay variations in the feedback loop. Also, impact of

the number of stages that can be included in the feedback loop must be studied, as

increase in number of stages in the feedback loop makes synchronization of data difficult.

 92

8.2.2. Testing
Testing circuits is a critical factor in all VLSI designs. It is important to incorporate

testing methods at the architectural level itself. These test methods should be able to

exhaustively test the system for faults. In the current high speed designs, it is extremely

important to perform at-speed test to verify timing of hardware. Built-in Self-Test (BIST)

is a well know Design for Testability (DFT) approach that can be used for at-speed

testing. In the case of mesochronous pipeline scheme, it is extremely important to

identify delay faults (variations in delay values), at its design speed. However, in the

mesochronous pipeline architecture, controllability and observability are partially lost

due to large pipeline stages and fewer registers. Observability of a particular logic node is

the degree to which the node can be observed at the outputs of an integrated circuit [15].

Controllability of a circuit node is the ease of setting the node to logic 0 or logic 1 [15].

To solve this problem, shadow registers with scan chain capability, can be incorporated

in pipeline stages. This concept is illustrated in Fig. 8.2.

R
eg

is
te

r K
+1

∆SK

R
eg

is
te

r K

Logic
Stage K

scan−in

scan−out

Fig. 8.2. Shadow registers and scan-based testing.

Use of shadow registers in logic stages introduces additional delays and additional

power consumption. Also, any additional implications of these shadow registers have to

be carefully studied.

 93

In Chapter 4, tackling delay variations has been explained in detail. A possible solution

to tackle delay variations involved use of variable delay elements in the clock signal path.

This variable delay element has control inputs which have to be generated by the test

circuitry. It is important for the test method to have the ability to detect delay faults and

generate necessary control signal for the variable delay elements.

8.2.3. CAD tools
In current VLSI designs, it is necessary to have short design time. To facilitate ease of

design, it is important to have CAD tools. Mesochronous pipeline scheme is a novel

architecture, so CAD tools have to be modified or new tools have to be designed to

support this scheme. Since MPP scheme is similar to conventional pipeline scheme, it

should be easy to modify CAD tools to support it.

A detailed analysis of the proposed Mesochronous pipeline scheme and various

simulations performed on MPP multiplier implementation, prove the feasibility of this

scheme. Architectural improvements are required in future high speed designs and

mesochronous pipeline offers a viable scheme to this need. We also discussed the future

research potential in MPP scheme. The work from this research and some future work

will help formalize the novel mesochronous pipeline scheme.

 94

Bibliography
[1] J. L. Hennessy and D. A. Patterson, Computer Architecture, A Quantitative

Approach, 3rd ed., San Francisco, CA: Morgan Kaufmann, 2002.

[2] P. J. Restle, and A. Deutsch, “Designing the best clock distribution network,” Symp.

VLSI Circuits, pp. 2 – 5, June 1998.

[3] S. Tam, R. D. Limaye, U. N. Desai, “Clock Generation and Distribution for the

130-nm Itanium 2 Processor with 6-MB On-Die L3 Cache,” IEEE J. Solid-State
Circuits, vol. 39, no. 4, pp. 636 – 642, April 2004.

[4] Y. I. Ismail, and E. G. Friedman, “Effects of Inductance on Propagation Delay and

Repeater Insertion in VLSI Circuits,” IEEE Trans. VLSI Syst., vol. 8, no. 2, pp. 195
– 206, April 2000.

[5] G. Oklobdzija et. al., Digital System Clocking, Wiley-Interscience, 2002.

[6] F. Klass, et. al., “A New Family of Semidynamic and Dynamic Flip-Flops with

Embedded Logic for High-Performance Processors,” IEEE J. Solid-State Circuits,
vol. 34, no. 5, pp. 712 – 716, May 1999.

[7] D. E. Duarte, N. Vijaykrishnan, and M. J. Irwin, “A clock power models to evaluate

impact of architectural and technology optimizations,” IEEE Trans. on VLSI Syst.,
vol. 10, no. 6, pp. 844 – 855, Dec. 2002.

[8] C. T. Gray, W. Liu, and R. K. Cavin, “Timing constraints for wave-pipelined

systems,” IEEE Trans. on Computer-Aided Design, vol. 13, no. 8, pp. 987 – 1004,
Aug. 1994.

[9] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining: A tutorial

and research survey,” IEEE Trans. on VLSI Syst., vol. 6, no. 3, pp. 464 – 474, Sep.
1998.

[10] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol.32 no.6,

pp.720-738, June 1989.

 95

[11] E. G. Friedman, “Clock distribution networks in synchronous digital integrated
circuits,” Proc. IEEE, vol. 89, no. 5, pp. 665 – 692, May 2001.

[12] N. R. Mahapatra, S. V. Garimella, and A. Tareen, "An empirical and analytical

comparison of delay elements and a new delay element design, " Proc. IEEE Comp.
Society workshop on VLSI, pp. 81-86, April 2000.

[13] M. Maymandi-Nejad and M. Sachdev, “A digitally programmable delay element:

Design and analysis,” IEEE Trans. on VLSI Syst., vol. 11, no. 5, pp. 871 – 878,
Oct. 2003.

[14] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, 2nd

ed., Upper Saddle River: NJ, Prentice Hall, 2002.

[15] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems

Perspective, 3rd ed., Addison Wesley, 2005.

[16] V. Stojanovic and V. G. Oklobdzija, “Comparative analysis of master-slave latches

and flip-flops for high-performance and low-power systems,” IEEE J. Solid-State
Circuits, vol. 34, no. 4, pp. 536 – 548, April 1999.

[17] V. Stojanovic, V. G. Oklobdzija, “FLIP-FLOP,” US Patent No. 6,232,810, May 15,

2001.

[18] S. B. Tatapudi and J. G. Delgado-Frias, “Designing pipelined systems with a clock

period approaching pipeline register delay,” 48th IEEE Intl. Midwest Symp.
Circuits Syst., Aug. 2005.

[19] S. B. Tatapudi and J. G. Delgado-Frias, “A Mesochronous Pipelining Scheme for

High-Performance Digital Systems,” IEEE Trans. Circuits Syst. I, vol. 53, no. 5,
May 2006.

[20] J. Nyathi and J. G. Delgado-Frias, “Hybrid-wave pipelined network router,” IEEE

Trans. on Circuits Syst. I, vol.49, no. 12, pp. 1764 – 1772, Dec. 2003.

[21] S. Zhao, K. Roy, and C-K Koh, “Estimation of Inductive and Resistive Switching

Noise on Power Supply Network in Deep Sub-micron CMOS circuits,” Proc. Intl.
Conf. Comp. Design, pp. 65 – 74, Sept. 2000.

[22] W. H. Lee, S. Pant, and D. Blaauw, “Analysis and Reduction of On-Chip

Inductance Effects in Power Supply Grid,” Proc. 5th Intl. Symp. Quality Electronic
Design, pp. 131-136, 2004.

 96

[23] S. B. Tatapudi and J. G. Delgado-Frias, “A Mesochronous Pipeline Scheme for
High Performance Low Power Digital Systems,” IEEE Intl. Symp. Circuits Syst.,
May 2006.

 97

Appendix A

Publications

Following is a list of papers published in reputed Journals and Conference proceedings,

based on the research during M.S. and Ph.D. programs.

A.1. Journal

1. S. B. Tatapudi and J. G. Delgado-Frias, “A Mesochronous Pipelining Scheme for
High-Performance Digital Systems,” IEEE Trans. Circuits Syst. I, vol. 53, no. 5, May
2006.

2. J. G. Delgado-Frias, J. Nyathi, S. B. Tatapudi, “Decoupled Dynamic Ternary Content

Addressable Memories,” IEEE Transactions on Circuits and Systems-I, vol. 52, no.
10, Oct. 2005, pp. 2139-2147.

3. S. B. Tatapudi and J. G. Delgado-Frias, “A High Performance Mesochronous Pipeline

Scheme with Reduced Power and di/dt,” IEEE Trans. Circuits Syst. I, (submitted).

A.2. Conference

1. S. B. Tatapudi and J. G. Delgado-Frias, “A Mesochronous Pipeline Scheme for High
Performance Low Power Digital Systems,” IEEE Intl. Symp. Circuits Syst., May
2006.

2. S. B. Tatapudi and J. G. Delgado-Frias, “A pipelined multiplier using a hybrid-wave

pipelining scheme,” Proceedings IEEE Computer Society Annual Symp. VLSI, pp.
282 – 283, May 2005.

 98

3. S. B. Tatapudi and J. G. Delgado-Frias, “Designing pipelined systems with a clock
period approaching pipeline register delay,” 48th IEEE Intl. Midwest Symp. Circuits
Syst., pp.871 – 874, August 7-10, 2005.

4. S. B. Tatapudi and J. G. Delgado-Frias, “A pipelined multiplier using a hybrid-wave

pipelining scheme,” Proceedings 2005 Intl. Conf. On Computer Design, pp. 191 –
197, June 2005.

5. J. Nyathi, V. Beiu, S. B. Tatapudi, D. J. Betowski, “A charge recycling differential

noise immune perceptron,” Proc. IEEE Intl. Joint Conf. Neural Networks, vol. 3, pp.
1995-2000, July 2004.

6. S. B. Tatapudi and J. G. Delgado-Frias, “A VLSI Self-Compacting Buffer for Priority

Queue Scheduling,” 3rd IASTED International Conference on Circuits, Signals and
Systems (CSS), pp. 310 – 315, May 2003.

7. S. B. Tatapudi and V. Beiu, “Split-Precharge Differential Noise-Immune Threshold

Logic Gate (SPD-NTL),” International Work-conference on Artificial Neural
Networks (IWANN), June 2003.

8. S. B. Tatapudi and J. G. Delgado-Frias, “A Reduced Clock Delay Approach for High

Performance Mesochronous Pipeline,” 49th IEEE Intl. Midwest Symp. Circuits Syst.,
August 6-9, 2006. (submitted)

