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In a conventional pipeline scheme each pipeline stage operates on only one data set at a 

time. The clock period in conventional pipeline scheme is proportional to the maximum 

pipeline stage delay. We propose a mesochronous pipeline scheme, where pipeline stages 

operate on multiple data sets simultaneously. In this scheme the amount of logic in a 

stage is more and number of stages is less compared to a conventional pipeline. The clock 

period in this scheme is proportional to the maximum pipeline stage delay difference, 

which means higher clock speeds are possible and number of pipeline stages is 

significantly less. In mesochronous pipeline scheme, clock distribution network is simple 

and load on it is less. A detailed analysis of the clock period constraints is provided to 

show the performance gain and Speedup of mesochronous pipelining over other 

pipelining schemes. In mesochronous pipeline scheme, overall current drawn is less, 

resulting in significant power savings and also less IR drop on power lines. Also, the 

variation in supply current (di/dt) drawn by clock network is significantly less in 

mesochronous scheme, thus power supply noise is less. An 8×8-bit multiplier using 

carry-save adder technique has been simulated in conventional and mesochronous 

pipeline approach using TSMC 180nm (drawn length 200nm). The mesochronous 
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pipelined multiplier is able to operate on a clock period of 350ps (2.86GHz). This is a 

Speedup of 1.7 over conventional pipeline scheme and requires fewer pipeline stages and 

pipeline registers. The over-all power dissipation in mesochronous pipeline multiplier is 

less than 50% of the power dissipation in conventional pipeline multiplier. In the 

conventional implementation, power dissipation in clock network and pipeline registers is 

close to 80% of total power dissipation, while in the mesochronous implementation logic 

is dissipating more power. Also, the variation in current drawn by clock network in 

mesochronous scheme is less, causing less power supply noise. 



 vi 

 Table of Contents 
 Page 

ACKNOWLEDGEMENT ................................................................................................. iii 

Abstract .............................................................................................................................. iv 

List of Tables ................................................................................................................... viii 

List of Figures ..................................................................................................................... x 

List of Figures ..................................................................................................................... x 

Chapter 1............................................................................................................................. 1 

Introduction................................................................................................................... 1 
1.1. Conventional pipeline scheme...................................................................... 1 
1.2. Wave pipeline scheme................................................................................... 6 
1.3. Micropipeline scheme ................................................................................... 9 
1.4. Need for novel pipeline architecture ......................................................... 11 
1.5. Summary...................................................................................................... 12 
1.6. Organization of this dissertation ............................................................... 13 

Chapter 2........................................................................................................................... 14 

Mesochronous Pipeline Scheme................................................................................. 14 
2.1. Mesochronous pipeline scheme.................................................................. 14 
2.2. Internal node constraints ........................................................................... 17 
2.3. Designing the clock signal path delay elements........................................ 20 
2.4. Summary...................................................................................................... 22 

Chapter 3........................................................................................................................... 23 

Mesochronous Pipeline Performance Comparison ................................................. 23 
3.1. Comparison of clock cycle time ................................................................. 23 
3.2. Conventional and Mesochronous pipeline performance comparison.... 25 
3.3. Summary...................................................................................................... 27 

Chapter 4........................................................................................................................... 29 



 vii 

Tackling Clock and Delay Variations ....................................................................... 29 
4.1. Clock variation tolerance ........................................................................... 30 
4.2. Tackling delay variation............................................................................. 31 
4.3. Summary...................................................................................................... 35 

Chapter 5........................................................................................................................... 36 

8×8-bit CSA Multiplier............................................................................................... 36 
5.1. Carry-Save Adder multiplier..................................................................... 36 
5.2. Basic cells simulation .................................................................................. 41 
5.3. Mesochronous pipeline multiplier ............................................................. 44 
5.4. Conventional pipeline multiplier ............................................................... 47 
5.5. Mesochronous  pipeline multiplier in ST  Microelectronics 90nm 
technology ................................................................................................................ 48 
5.6. Summary...................................................................................................... 51 

Chapter 6........................................................................................................................... 56 

Mesochronous power consumption and power supply current variation (di/dt) . 56 
6.1. Carry-Save Adder multiplier implementation ......................................... 57 
6.2. Power consumption and power supply current variation....................... 60 
6.3. Summary...................................................................................................... 71 

Chapter 7........................................................................................................................... 73 

Tiny Chip ..................................................................................................................... 73 
7.1. 4×4-bit mesochronous CSA multiplier simulations ................................. 73 
7.2. 4×4-bit mesochronous CSA multiplier chip test results .......................... 78 
7.3. Summary...................................................................................................... 81 

Chapter 8........................................................................................................................... 84 

Concluding Remarks .................................................................................................. 84 
8.1. Contributions of this research ................................................................... 87 
8.2. Future Research .......................................................................................... 89 

Bibliography ..................................................................................................................... 94 

Appendix A....................................................................................................................... 97 

Publications ................................................................................................................. 97 
A.1. Journal ......................................................................................................... 97 
A.2. Conference ................................................................................................... 97 



 viii 

List of Tables 

 Page 

 
TABLE 2.I.  Combinations of N(i) and �(i) ........................................................................ 21 

TABLE 3.I. Comparison of clock cycle time (Tclk) .......................................................... 24 

TABLE 4.I . Delay Variation in Digitally Variable Delay Element................................. 34 

TABLE 5.I . Full Adder Delay Values ............................................................................. 42 

TABLE 5.II. SAFF Timing Values................................................................................... 43 

TABLE 5.III. MPP multiplier Results .............................................................................. 46 

TABLE 5.IV. Clock Period of CPP multiplier ................................................................. 48 

TABLE 5.V. Full Adder Delay Values IN 90nm ............................................................. 49 

TABLE 5.VI. Dynamic Two Phase D-FF Timing Values................................................ 51 

TABLE 5.VII. MPP multiplier Results in 90nm .............................................................. 51 

TABLE 6.I. Dynamic Two Phase D-FF Timing Values .................................................. 59 

TABLE 6.II. Clock Network Current Consumption......................................................... 65 

TABLE 6.III. Pipeline Registers and Logic Current Consumption.................................. 65 

TABLE 6.IV. Clock network  Registers, and Logic Current............................................ 68 

TABLE 6.V. CPP Clock Period for Various Values of M ............................................... 70 

TABLE 6.VI. Clock network, Registers, and Logic Current (CPP scheme).................... 70 

TABLE 7.I. Full Adder Delay Values .............................................................................. 74 

TABLE 7.II. Clock Generator Results.............................................................................. 75 

TABLE 7.III. Stage Delays in Mesochronous CSA Multiplier ........................................ 77 



 ix

TABLE 7.IV. Performance Comparison .......................................................................... 77 

TABLE 7.V. Scaled Internal Clock Signal Period ........................................................... 79 

TABLE 7.VI. Adjusted Delay Values .............................................................................. 79 



 x

List of Figures 
 Page 

Fig. 1.1.  N stage pipelined system. .................................................................................... 1 

Fig. 1.2.  Temporal/Spatial diagram of a pipeline stage i. .................................................. 2 

Fig. 1.3.  Temporal/spatial diagram of a three stage CPP system. ..................................... 3 

Fig. 1.4.  Temporal/spatial diagram of a three stage pipelined system............................... 4 

Fig. 1.5.  Structures of common clock distribution networks. ............................................ 5 

Fig. 1.6. Wave pipeline system........................................................................................... 7 

Fig. 1.7.  Temporal/spatial diagram of a three stage WPP system. .................................... 8 

Fig. 1.8.  Temporal/spatial diagram of a three stage WPP system. .................................... 8 

Fig. 1.9. Micropipeline system. ........................................................................................ 10 

Fig. 1.10.  Temporal/spatial diagram of a three stage �PP system. .................................. 10 

Fig. 2.1.  Mesochronous pipeline scheme......................................................................... 15 

Fig. 2.2. Temporal/spatial diagram of proposed MPP system. ......................................... 15 

Fig. 2.3.  Temporal/spatial diagram of a three stage MPP system.................................... 16 

Fig. 2.4.  Data sets collision.............................................................................................. 18 

Fig. 2.5.  Monotonically increasing delay difference. ...................................................... 19 

Fig. 2.6.  Clock period and delay element. ....................................................................... 20 

Fig. 3.1.  Temporal/spatial diagram of a three stage CPP system. ................................... 25 

Fig. 3.2.  Computation cones of critical stage in MPP system. ........................................ 26 

Fig. 3.3.  Mesochronous pipeline scheme......................................................................... 26 

Fig.  4.1.  Sample stage computation cones in a MPP system. ......................................... 32 



 xi

Fig. 4.2.  Variation in dmin value. ...................................................................................... 32 

Fig.  4.3.  Digitally variable delay element....................................................................... 33 

Fig.  4.4.  Digitally variable delay element simulation..................................................... 34 

Fig. 5.1.  Architecture of a multiplier using carry-save adder technique.......................... 37 

Fig. 5.2.  8×8-bit CSA multiplier implemented in CPP scheme....................................... 38 

Fig. 5.3.  8×8-bit CSA multiplier implemented in MPP scheme...................................... 38 

Fig. 5.4.  Transistor level implementation of the full adder. ............................................ 40 

Fig. 5.5.  Sense amplifier based flip-flop.......................................................................... 40 

Fig. 5.6.  Propagation delay of the full adder.................................................................... 42 

Fig. 5.7.  Simulation waveforms....................................................................................... 45 

Fig. 5.8.  Propagation delay of the full adder in 90nm technology................................... 49 

Fig. 5.9.  D flip-flop and clkclk &  circuit.......................................................................... 50 

Fig. 5.10.  Setup time of the dynamic two-phase D-FF.................................................... 50 

Fig. 5.11.  Full Adder layout in TSMC 180nm technology.............................................. 53 

Fig. 5.12.  Sense amplifier based flip-flop layout in TSMC 180nm technology.............. 54 

Fig. 5.13.  8×8-bit mesochronous pipeline multiplier layout (TSMC 180nm). ................ 55 

Fig. 6.1.  8×8-bit CSA multiplier implemented in CPP scheme....................................... 57 

Fig. 6.2.  8×8-bit CSA multiplier implemented in MPP scheme...................................... 58 

Fig. 6.3. D flip-flop and clkclk &  circuit. ....................................................................... 59 

Fig. 6.4.  Clock network current in CPP scheme at 2GHz................................................ 61 

Fig. 6.5.  Clock network current in MPP scheme at 2GHz............................................... 62 

Fig. 6.6.  Clock network current in MPP scheme at 2GHz with reduced clock delay...... 63 

Fig. 6.7.  Clock network current (from Vdd) at 2GHz. .................................................... 64 



 xii

Fig. 6.8.  Current drawn by registers and logic in CPP scheme at 2GHz. ........................ 66 

Fig. 6.9.  Current drawn by registers and logic in MPP scheme at 2GHz. ....................... 66 

Fig. 6.10.  Total current in CPP and MPP (reduced clock delay) schemes at 2GHz........ 68 

Fig. 6.11.  Total current in CPP and MPP (reduced clock delay) schemes at 2GHz........ 69 

Fig. 6.12.  Total current breakdown in CPP and MPP schemes @ 2GHz........................ 69 

Fig. 6.13.  Current consumption of CPP multiplier at various clock frequencies. ........... 71 

Fig. 7.1.  4×4-bit CSA multiplier schematic..................................................................... 73 

Fig. 7.2.  Propagation delay of the full adder.................................................................... 74 

Fig. 7.3.  Clock generator schematic................................................................................. 75 

Fig. 7.4.  Conventional 4×4-bit CSA multiplier schematic. ............................................. 76 

Fig. 7.5.  Mesochronous 4×4-bit CSA multiplier schematic. ........................................... 76 

Fig. 7.6.  Memory element in Input/Output bank. ............................................................ 78 

Fig. 7.7.  Internal clock signal from the chip. ................................................................... 79 

Fig. 7.8.  Chip test results (Sample 1)............................................................................... 80 

Fig. 7.9.  Chip test results (Sample 2)............................................................................... 81 

Fig. 7.10.  Mesochronous 4×4-bit CSA multiplier layout. ............................................... 83 

Fig. 8.1.  Mesochronous pipeline scheme with feedback loops........................................ 90 

Fig. 8.2.  Shadow registers and scan-based testing........................................................... 92 



 1 

Chapter 1 

Introduction 

Pipelining is a technique used to design high performance computer systems. 

Pipelining partitions a single large combinational logic block into small logic blocks 

called pipeline stages, separated by pipeline registers (latches, flip-flops). Fig. 1.1 shows 

a pipelined system with N stages. Pipelining is used to exploit the parallelism among 

various operations. The result is a reduction in average execution time and a significant 

speedup in a system’s operation.    
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Fig. 1.1.  N stage pipelined system. 

1.1. Conventional pipeline scheme 

In a Conventional Pipeline (CPP) system, pipeline stages operate on different data sets 

simultaneously and each stage on only one data set at any given time. Pipeline registers 

synchronize data movement from one stage to next with reference clock edge (typically 

the leading edge). New data is admitted into a stage only after data in that stage has been 
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cleared and latched by the register following it. In a pipelined system, pipeline stage with 

the longest computation time dictates clock-cycle time for the entire system. In designing 

a pipelined system the goal is to balance delays of all pipeline stages. However it is not 

always possible to perfectly balance the stages and there is always a critical stage with 

the longest computation time. Since all data synchronization in a pipelined system is 

based on clock signal, clock uncertainties (skew, jitter) must be controlled for proper 

functioning of the system. This is especially important as clock periods shrink further. 

Fig. 1.2 shows a graphical representation of a combined temporal and spatial variation for 

a generic pipeline stage i. Time and logic depth are represented in the horizontal and 

vertical axes, respectively. The shaded region in Fig. 1.2 is called computation cone and 

represents when computation is performed in this stage. The computational cones have 

been made linear to allow for a simpler analysis. 
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Fig. 1.2.  Temporal/Spatial diagram of a pipeline stage i. 

The variables used in Fig. 1.2 are defined as follows. 

Tclk Clock period 
� Constructive clock skew 
�clk Unconstructive clock skew or clock uncertainties 
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DR Clock-to-output delay of the pipeline register 
ts, th Pipeline register setup and hold times 
dmin(i) Minimum propagation delay through a stage i of a multi-stage system 
dmax(i) Maximum propagation delay through a stage i of a multi-stage system 

 

Fig. 1.2 shows that delays in a pipeline are not only from pipeline stages (dmin and dmax) 

but also from pipeline registers (DR, ts and th). This is the overhead involved in pipelining 

a digital system. The delay of critical path includes DR (clock-to-output delay of register), 

dmax (maximum stage propagation delay) and ts (register setup time). 

Temporal and spatial diagram of a three stage pipelined system is shown in Fig. 1.3. It 

is assumed that second stage in Fig. 1.3 is the critical stage in the system and has the 

maximum propagation delay (dmax). 
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Fig. 1.3.  Temporal/spatial diagram of a three stage CPP system. 

Equation (1.1) defines the clock period for a conventional pipeline system, where Dmax 

is the largest of maximum propagation delay (dmax) values of all stages in the pipeline,           

Dmax = max(dmax(i)). For example in Fig. 1.3, Dmax=dmax(2). The registers are also an 

overhead on the clock cycle time. 
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clksRcppclk tDDT ∆+++≥ max_  (1.1) 

For (1.1) to be valid, the following condition must be satisfied. Here Dmin=min(dmin(i)). 

The condition in (1.2) ensures that new data does not appear at input of a register before 

its hold time is up. 

clkhR tDD ∆+≥+min  (1.2) 

From (1.1) it is clear that small clock periods are possible by decreasing delays: Dmax, 

DR, ts and/or �clk. Scaling can help decrease these delays and achieve smaller clock 

periods i.e. higher clock frequencies. However, in a given technology, to shrink the clock 

period further, the only delay which can be reduced is Dmax. It is extremely difficult to 

further decrease register delays (DR and ts) and �clk in the same technology. By 

partitioning each pipeline stage into more stages as shown in Fig. 1.4(b), stage delays can 

be reduced, in turn reducing Dmax and Tclk_cpp. The result of such a partition is super-

pipelines. In Fig. 1.4(a), it is assumed that stage B has the maximum propagation delay, 

while in Fig. 1.4(b) it is stage d. 

ts thD
R

min(B)
d

max(B)dR
eg

is
te

r

R
eg

is
te

r

Logic
Stage A

Logic Logic
Stage B Stage C

R
eg

is
te

r

Clock

R
eg

is
te

r

(a) Pipelined system and computation cone of stage B  

ts th

D
R

m
in

(d
)

d

max
(d)

dR
eg

is
te

r

St
ag

e 
a

R
eg

is
te

r

St
ag

e 
b

R
eg

is
te

r

St
ag

e 
c

R
eg

is
te

r

St
ag

e 
d

R
eg

is
te

r

St
ag

e 
e

R
eg

is
te

r

St
ag

e 
f

Clock

R
eg

is
te

r

(b) Super−pipelined system and computation cone of stage d  

Fig. 1.4.  Temporal/spatial diagram of a three stage pipelined system. 
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From Fig. 1.4, it can be observed that the clock period can be reduced by means of super-

pipelining [1]. However, this approach faces limitations imposed by the pipeline register 

delays (namely, DR and ts) and the maximum logic propagation delay (dmax). By 

partitioning the pipeline stages, stage propagation delay may become comparable to the 

register delays. As shown in Fig. 1.4(b) the register delays are a significant portion of the 

clock period. If this approach is used to reduce the clock period, the following issues 

arise: 1) each stage needs to be made ultra-thin to reduce dmax; 2) pipeline register 

becomes the dominant factor in the computation at each stage; 3) the number of pipeline 

registers is increased, in the example the number of register sets goes from four to seven; 

4) clock distribution network becomes more complex with additional pipeline registers; 

5) higher power requirements as the number of pipeline registers, clock frequency, and 

clock distribution network complexity increase; 6) tighter control on the clock skew will 

be required. 

Clock
Source

H−tree distribution

Clock
Source

X−tree distribution

Clock
Source

Mesh distribution

Clock
Source

Tree distribution  

Fig. 1.5.  Structures of common clock distribution networks. 

The synchronization of data between various pipeline stages is very important for 

proper function of a CPP system. A globally distributed clock signal is used to 

synchronize all switching events and data movement in a CPP system. Today’s high 

frequency clocks have to be generated on chip and distributed throughout the chip. In any 

digital system, of all data and control signals, clock signal is the one with the largest fan-
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out, and fastest switching rate. The clock distribution network must be designed properly 

so that the clock signal triggers all pipeline register stages simultaneously and the critical 

timing requirements are satisfied. The clock signal must arrive at every registers in a CPP 

system and at precisely the same time. The most general approach to clock distribution is 

using buffered trees, H-trees, X-trees, and mesh network. The structures of these 

distribution schemes are illustrated in Fig. 1.5.  

Due to variations in process parameters, shrinking feature sizes, and environmental 

variations, clock uncertainties like uncontrolled transmission line effects, clock skew and 

clock jitter [2], [3] are increasing. Large portion of clock period is being spent to counter 

these uncertainties. Thus the useful portion of clock period available for computation is 

decreasing. With shrinking feature sizes, interconnects are becoming thin, long, and their 

resistance is increasing. With high speed signals distributed on thin long wires, the 

inductive component of wire parasitic is gaining significance [4]. Also, by using ultra-

thin super-pipelines shown in Fig. 1.4(b) to achieve higher operational (clock) 

frequencies, the load on clock network is increasing and it is becoming extremely 

difficult to distribute a clean giga-hertz frequency clock signal [5], [6]. With increase in 

size of clock network its power consumption also has increased to around 50% of the 

total chip power consumption [7]. 

1.2. Wave pipeline scheme 

Wave pipelining (WPP) [8], [9] is one of the design methods that can be used in 

implementing computer systems. This pipeline scheme significantly reduces clock load, 

clock distribution area, power consumption and latency, compared to a CPP system. 
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In the WPP design method, pipelines are implemented without using intermediate 

pipeline registers. In this scheme no pipeline registers are used between logic stages. The 

entire system is treated as a single logic stage and new data sets are applied to the inputs 

of the logic stage before the outputs of previous data set are available. In this scheme, 

logic gates sever as virtual storage elements and multiple data sets (or waves) 

simultaneously propagate through different stages of logic without synchronization. This 

approach results in multiple data sets admitted during different clock periods being in the 

system at the same time and at various stages of computation. The wave pipeline 

approach results in maximum utilization of logic and eliminates the need for intermediate 

pipeline registers.  The schematic of this scheme is shown in Fig. 1.6. 
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Fig. 1.6. Wave pipeline system. 

The temporal and spatial diagram of WPP system is shown in Fig. 1.7. This diagram 

can be used to derive the equation for clock period for a WPP system. A detailed 

derivation of clock period is presented in [8], [9]. In Fig. 1.7, DMAX and DMIN are the 

maximum and minimum propagation delays of the entire system.  
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Fig. 1.7.  Temporal/spatial diagram of a three stage WPP system. 

Following the direction of arrows in Fig. 1.8, the equation for clock period in WPP can 

be written as follows 

0_ ≥−∆−−∆−−+ MAXclksclkhMINwppclk DttDT  

( ) clkhsMINMAXwppclk ttDDT ∆+++−≥ 2_  (1.3) 

DMAX

DMIN

t s+∆clk t h+∆clk��

Tclk Time  

Fig. 1.8.  Temporal/spatial diagram of a three stage WPP system. 

The clock period in this pipeline scheme is determined by the difference between the 

maximum and minimum computation times of the entire system and safe time required 
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before a new data wave is admitted into the system. From (1.3) it is clear that a smaller 

delay difference would result in a higher clock frequency. The difference between DMAX 

and DMIN can be a large value since it takes into account all the intermediate stages. The 

delay difference can be minimized by delay balancing using buffers [8], [9]. 

In WPP scheme, the clock signal is distributed to the input and output registers only. 

The input register determines the rate at which data sets are admitted into the system, 

while the output register synchronizes the data sets at the end of computation. This is a 

simple clock distribution scheme. 

However in WPP scheme, due to the absence of intermediate pipeline registers, it is 

extremely difficult to capture the state of intermediate nodes for test and debug purposes. 

Since the entire system is considered as a single wave pipelined stage, significant care 

must also be taken in designing the logic blocks and addition logic is required to keep the 

system delay difference small for maximum performance. 

1.3. Micropipeline scheme 

Micropipelines (�PP) is another pipelining technique that was introduced by                 

I. Sutherland [10]. This scheme is an asynchronous pipeline scheme and it uses a two 

phase handshake signal for synchronization, instead of clock signal. The schematic of this 

scheme is shown in Fig. 1.9. A set of data at the inputs requests an operation R(in) and 

event on the A(in) line acknowledges the data word. Once data is acknowledged, this is 

passed to logic stage to perform the operation. At the end of the computation a request 

signal is generated through a delay circuit. 
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Fig. 1.9. Micropipeline system. 

The temporal and spatial diagram of �PP system is shown in Fig. 1.10. It is assumed 

that second stage in Fig. 1.9 has the maximum propagation delay. Equation (1.4) defines 

the clock period for a micropipeline system, where Dmax is the largest of maximum 

propagation delay (dmax) of all stages in the pipeline, Dmax = max(dmax(i)). For example in 

Fig. 1.10, Dmax=dmax(2). The new term dAck_max is the time to produce and send back an 

acknowledge signal in the stage with the longest delay (given by Dmax). 
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Fig. 1.10.  Temporal/spatial diagram of a three stage �PP system. 
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The �PP scheme is an asynchronous pipeline scheme and does not require a globally 

distributed clock signal. The necessary data synchronization is achieved using a pair of 

request and acknowledge signals. These request and acknowledge signals perform 

handshaking between stages before data transmission. This means that always worst case 

path delays must be considered in designing the system. The handshaking protocol 

introduces addition delay and is an overhead on system performance. In a conventional 

pipeline implementation it is possible to design a system by considering the average path 

delays instead of worst case delays [11]. By careful design of a CPP system and its global 

clock distribution, better performance can be derived compared to the �PP scheme [11]. 

1.4. Need for novel pipeline architecture 

In order to achieve significant performance gains compared to conventional pipeline 

implementation, pipeline architecture has to be modified to eliminate large pipelines and 

complex clock distribution mechanism. Architectures like wave pipelining [7], [8], 

micropipelines [10] and package wiring [2] have been proposed, but the performance 

gain is not significant. An asynchronous pipelining scheme like micropipelines may be 

appealing since it does not require a clock signal. However, it is complex compared to 

synchronous schemes and the performance improvement is higher in alternate 

synchronous schemes [2], [11]. In order to improve the performance of pipelined 

systems, and gain significant power savings we propose a novel pipeline scheme called 

mesochronous pipelining. 
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1.5. Summary 

In this section we shall present a summary of important points from this chapter. 

• Conventional pipeline (CPP) scheme: CPP scheme is often used in implementing 

high performance digital systems. Clock period in CPP scheme is proportional 

maximum propagation delay of the critical stage. clksRcppclk tDDT ∆+++≥ max_ . For 

proper functioning of a CPP system, a globally distributed clock signal is used, 

which has to be distributed throughout the system to trigger all pipeline registers 

simultaneously. 

• Super-pipelining: Performance of a CPP can be increased by further partitioning 

the logic stages into smaller logic blocks. The result is large pipelines with large 

number of pipeline stages and pipeline registers. This complicates clock 

distribution and there is significant increase in power consumption. 

• Wave pipeline (WPP) scheme: In WPP scheme, entire system is treated as a single 

logic block and system is clocked such that multiple data sets are simultaneously 

present in the system at various stages of computation. Clock period in WPP 

scheme is proportional to the difference between maximum and minimum 

propagation delay of the entire system. ( ) clkhsMINMAXwppclk ttDDT ∆+++−≥ 2_ . 

This scheme does not use any intermediate registers to synchronize data.  

• Micropipeline (�PP) scheme: This is an asynchronous pipeline scheme, where a 

pair of handshake signals is used for data movement and synchronization between 

stages. So it does not require a globally distributed clock signal. Clock period of 

this system can be determined using max_max_ AcksRuppclk TtDDT +++≥ . 
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• Need for novel architecture: Novel architectures are required in future to design 

high performance low power digital systems. We propose the Mesochronous 

pipeline scheme. 

1.6. Organization of this dissertation 

The organization of this dissertation is as follows. In Chapter 2 we have a detailed 

discuss of the proposed mesochronous pipeline architecture and its clock distribution 

network. In Chapter 3 we compare performance of the proposed scheme with 

conventional pipeline scheme. In Chapter 4 we discuss some methods to tackle delay 

variations that could arise due to process and environmental variations. A Carry-Save 

Adder (CSA) multiplier has been implemented in conventional and mesochronous 

pipeline architectures, as a design example. A detailed discussion of their implementation 

and performance is presented in Chapter 5. In Chapter 6, we discuss the power 

consumption of the multiplier in conventional and mesochronous pipeline schemes. In 

Chapter 7, we discuss the implementation of a 4-bit mesochronous pipeline multiplier in 

AMI 0.5�m technology and the results obtained from the fabricated chip. In Chapter 8 

some concluding remarks, contributions of this research and future research problems in 

mesochronous pipeline scheme are presented. 
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Chapter 2 

Mesochronous Pipeline Scheme 

The proposed Mesochronous Pipeline (MPP) scheme modifies conventional pipeline 

scheme to achieve higher performance and significant power savings. The term 

mesochronous has been used in the communications field; it has been defined as: the 

relationship between two signals such that their corresponding significant instances occur 

at the same rate. In this chapter the mesochronous pipeline architecture is discussed in 

detail and the design of the clock distribution network is also described. 

2.1. Mesochronous pipeline scheme 

In the Mesochronous pipeline (MPP) scheme a digital system is partitioned into 

pipeline stages like in the conventional pipeline (CPP) scheme. However it is clocked 

such that a pipeline stage is operating on more that one data set simultaneously. At any 

given time, multiple data sets can be present in a stage and these data sets are separated 

based on physical properties of internal nodes. This eliminates the need for some pipeline 

registers. This concept has some similarities to the wave pipeline scheme (WPP) [8], [9]. 

The number of registers that can be eliminated depends on how many simultaneous data 

sets can be sustained in a stage without synchronization. Effectively, MPP 

implementation of a digital system consists of more logic in pipeline stages and fewer 

pipeline stages compared to a CPP implementation. The schematic of this scheme is 
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shown in Fig. 2.1. Unlike the CPP scheme, clock signal in MPP scheme travels along 

with data and it is possible that different pipeline registers are triggered at different times. 

In the CPP approach it is absolutely necessary for all the pipeline registers to be triggered 

simultaneously. In MPP scheme, clock signal path includes delay elements (�Si) which 

emulate the delay experienced by data in pipeline stages. In this pipelining scheme 

1)higher clock frequencies are possible, 2) complexity of clock distribution is greatly 

reduced 3)influence of clock uncertainties is mitigated and 4) there are significant power 

savings. This architecture can be used in design of any high performance pipelined 

system. 
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Fig. 2.1.  Mesochronous pipeline scheme. 
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Fig. 2.2. Temporal/spatial diagram of proposed MPP system. 
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Temporal and spatial variation of the proposed MPP scheme is shown in Fig. 2.2 for a 

three stage system. In Fig. 2.2 it is assumed that stage 2 has the maximum delay 

difference. We shall refer to the difference between maximum and minimum propagation 

delays (dmax(i) – dmin(i)) of a stage i as the delay difference of that stage. The delay 

difference of any stage gives the amount of time the values generated at dmin have to be 

held, till the computation is complete in that stage. 

The temporal and spatial diagram of a MPP system, shown in Fig. 2.3 can be used to 

derive the equation for clock period in this system.  
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Fig. 2.3.  Temporal/spatial diagram of a three stage MPP system. 

Following the direction of arrows in Fig. 2.3, the equation for clock period in MPP can 

be written as follows. Here dhold(i) (=dmax(i) – dmin(i)) refers to the delay difference of a 

stage i. 

0)1max()2max(

)2min()1()1min(_

≥∆−−∆−−−−−−

+++++

clkhclksRR

RholdRmppclk

ttDdDd

dDddDT
 

A general expression for deriving the clock period for MPP system can be written as 
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In (2.1), j is the stage with the maximum delay difference (in Fig. 2.2 stage j is stage 2). 

Equation (2.1) can be simplified as 
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Eliminating the redundant terms in the above equation, we have the clock period equation 

for a MPP system as 

clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_  (2.2) 

The clock period in MPP scheme is determined by the stage with the largest delay 

difference and safe time required before a new data set can be admitted into this stage. 

From (2.2) it is easy to see that for any stage i, dmax(i) � Tclk_mpp is always true. This means 

that new data is admitted into a stage before computation on previously admitted data set 

is complete. Depending on the dmax(i) value of a stage and Tclk_mpp, at any given time two 

or more data sets can be present in a stage. From (2.2) it is clear that a smaller delay 

difference would result in a higher clock frequency. The delay difference can be 

minimized by delay balancing using buffers [8], [9]. 

2.2. Internal node constraints 

Equation (2.2) indicates that the clock period is determined by the register setup and 

hold times when the input to output logic paths are equalized i.e. when dmax(j) = dmin(j). It 

should be understood that factors like signal rise/fall time, capacitive loading, and circuit 

technology also influence the clock speeds. The limitations resulting from physical 

properties of internal nodes must also be considered to prevent any two adjacent data sets 
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from colliding. The fundamental circuit limitations determine the safe time to separate 

any two adjacent data sets. Consider the example shown in Fig. 2.4, the clock period is 

determined by the delay difference and register overhead, but the internal node variation 

is large causing adjacent data sets to collide. 
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Fig. 2.4.  Data sets collision. 

A more general representation of minimum clock period of the MPP system is 

)2,max( )min()max(int_ clkhsjjmppclk ttddTT ∆+++−≥  (2.3) 

where Tint is the maximum value of all the internal node constraints 

...),.........,,,max( 4int_3int_2int_1int_int ttttT =  (2.4) 

The internal node constraints can be eliminated by designing pipeline stages such that a 

stage’s delay difference is greater than the delay difference at any internal node in that 

stage or in other words the delay difference should monotonically increase from input to 

output of a stage [8], [9] as shown in Fig. 2.5. 



 19 

Tclk

t int_3

t int_4

t int_1

t int_2

ts+∆clk th+∆clk

Time

L
og

ic
 D

ep
th

 

Fig. 2.5.  Monotonically increasing delay difference. 

Assuming that stages are designed to have monotonically increasing delay difference, 

we shall use (2.2) ( clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_ ) to determine the clock 

period for rest of the discussion. 

In MPP sceme, as the delay difference (dmax(j) – dmin(j)) approaches the timing 

requirements of the registers (setup time, hold time), the registers start to dictate the 

achievable performance gains. Until this point, focus was on the delay difference and its 

influence on the clock period, but the pipeline register could well be the dictating factor. 

Re-writing (2.2) as follows, the limit on delay difference of combinational logic is 

established. 

( )clkhsmppclkjj ttTdd ∆++−≤− 2_)min()max(   (2.5) 

So the combinational logic between any two adjacent registers can be varied as long as 

the above condition is valid. This discussion emphasizes that it is important to design fast 

registers to derive improved performance. Unlike CPP scheme where a significant 
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portion of clock period is the register delay, MPP scheme is immune to this delay as 

computation takes place over multiple clock cycles. 

In the MPP scheme, the clock signal travels with data (Fig. 2.1). Delays are included in 

the clock signal path so that clock experiences the delay similar to data sets in pipeline 

stages. In the next section we present some aspects of the clock path. 

2.3. Designing the clock signal path delay elements 

Consider the example of a stage shown in Fig. 2.6. The clock edge at A samples a data 

set from the previous stage. After traveling through the register and the stage i, the data 

set arrives at the next register before time E. The next register must latch this data for the 

next stage (i+1) at time E. The clock edge at A must be delayed for time period AE 

which can be represented as 

clksRiAE tDdT ∆+++= )max(  (2.6) 
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Fig. 2.6.  Clock period and delay element. 
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By delaying the clock edge at A till E, this clock edge triggers the register i, inputs the 

data set into stage i. Then it travels with the data set till time E. By the time this clock 

edge arrives at E, computation is complete on the data set. So the same clock edge 

triggers the register i+1 to move the data into stage i+1. In this implementation, just as 

there are multiple data sets simultaneously present in a stage, there multiple clock edges 

present in the delay element �Si. 

The delay value shown in (2.6) must be present in the clock signal path to ensure that 

delays experienced by logic and clock satisfy the relation: clock delay � logic delay. This 

value of delay required in clock signal path is large. Instead of using such a delay element 

(�Si in Fig. 2.1) we can take advantage of the periodic nature of the clock signal. As 

shown in Fig. 5, the delay AE can be expressed as a smaller delay (�(i)) plus an integer 

multiple (N(i)) of clock period. 

)(_)()max( imppclkiclksRiSiAE TNtDdT δ+=∆+++=∆=  (2.6) 

From the example in Fig. 2.6, possible combinations of N(i) and �(i) are shown in Table 

2.I. By choosing a higher value of N(i) in designing the clock signal path, the delay values 

can be reduced. This technique helps further reduce power consumption of clock network 

in the MPP scheme. 

TABLE 2.I.  COMBINATIONS OF N(i) AND �(i) 

N(i) �(i) 

3 
2 
1 
0 

DE 
CE 
BE 
AE 
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2.4. Summary 

The following is a summary of important points from this chapter. 

• Mesochronous pipeline (MPP) scheme: In the MPP scheme, digital system is 

partitioned into large pipeline stages. The system is clocked such that multiple data 

sets, at different stages of computation are simultaneous present in every stage of 

the system. In the proposed scheme clock period is determine by the stage with the 

largest difference between its minimum (dmin) and maximum (dmax) propagation 

delays. Let Stage j be the stage with largest difference between its minimum and 

maximum propagation delays (delay difference), then clock period is defined by 

clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_  

• Small number of pipeline registers and pipeline stages: MPP scheme requires 

fewer pipeline stages and pipeline registers to obtain similar or better performance 

than a conventional pipeline scheme. 

• Clock distribution network: Clock signal in MPP scheme travels along with data. 

So the clock path is parallel to the data path. Delay elements (�Si) are included in 

the clock signal path so that clock signal experiences the same delay as the data set 

in the data path. This is a simpler clock distribution compared to the conventional 

pipeline scheme. Since there are fewer pipeline registers in MPP scheme, the load 

on clock network is also less. 

• Clock signal path delay elements: The delay elements (�Si) included in clock 

signal path can be simplified by taking advantage of periodic nature of clock 

signal. )(_)( imppclkiSi TN δ+=∆ . 
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Chapter 3 

Mesochronous Pipeline 
Performance Comparison 

In this chapter we present a comparison of performance from the proposed pipeline 

architecture with the conventional and other pipeline architectures introduced in Chapter 

1. This performance comparison is in terms of clock period. Mesochronous pipeline 

(MPP) scheme can operate with a smaller clock period, i.e. at a higher clock frequency 

compared to the conventional pipeline (CPP), wave pipeline (WPP), and micropipeline 

(�PP) schemes. The clock period for MPP scheme is proportional to maximum (stage) 

delay difference instead of maximum (stage) delay, as derived in Chapter 2. Since the 

CPP scheme is the most widely used pipeline architecture to implement computer 

systems, we shall compare the speedup of our proposed MPP scheme with it. 

3.1. Comparison of clock cycle time 

Clock period for conventional pipeline, wave pipeline, micropipeline and the proposed 

mesochronous pipeline schemes is shown in Table 3.I. 
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TABLE 3.I. COMPARISON OF CLOCK CYCLE TIME (TCLK) 

Pipeline Scheme Tclk 

Conventional (CPP) clksR tDD ∆+++max  

Wave (WPP) ( ) clkhsMINMAX ttDD ∆+++− 2  

Micropipeline (�PP) max_max AcksR TtDD +++  

Mesochronous (MPP) clkhsjj ttdd ∆+++− 2)min()max(  

 

In general, for a system implementation in any of the four pipelining schemes the 

following three inequalities hold  

dmax(j) � DMAX   

dmin(j) � DMIN  

(dmax(j) – dmin(j)) � Dmax 

It is not difficult to show that for any system the following expression is valid. 

( ) ( ) ( )clkhjjclkhMINMAXR tddtDDDD ∆++−≥∆++−≥+ )min()max(max  

This implies that  

Tclk_mpp � Tclk_wpp � Tclk_cpp. 

This in turn validates our claim that MPP scheme delivers an improved performance 

compared to CPP, MPP and �PP schemes. 

In WPP scheme, data propagation from one stage to the next is a function of delays 

through the stages and synchronization with the global clock occurs at the output register. 

This design approach leads to cumulative system delays, since the delays through the 

stages are added. The stage clocks are determined from data dependencies and delays. 

The global clock rate is higher in MPP scheme and this is shown in the equations derived 

above. Delay minimization per stage would allow for ease of testing in MPP scheme 

compared to WPP where the system delays are lumped; i.e. the minimum and maximum 
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delays considered are for the entire system instead of a stage by stage delay 

minimization. 

3.2. Conventional and Mesochronous pipeline performance 
comparison 

To compare the performance gain from mesochronous pipeline scheme, we define a 

Speedup [1] metric as follows 
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Fig. 3.1.  Temporal/spatial diagram of a three stage CPP system. 
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Fig. 3.3.  Mesochronous pipeline scheme. 

We study performance gain with the Speedup metric using Fig. 3.1 and Fig. 3.2 as 

reference. In Fig. 3.1(a) a three-stage CPP system and computation cone of the stage with 

maximum propagation delay (dmax) are shown. A similar MPP system is shown in Fig. 

3.3 and the computation cones of the stage with maximum delay difference (dmax – dmin) 

are shown in Fig. 3.2. In Fig. 3.1(a) it is assumed that stage B has the maximum 

propagation delay and in Fig. 3.3 stage 2 has the maximum delay difference. 

Comparing Fig. 3.1(a) and Fig. 3.2 it can be observed that Dmax is far greater than     

dmax(j) – dmin(j) and register delays (DR, ts and th), so the speedup in this case is 
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Equation (3.2) shows that better performance can be obtained by using MPP scheme 

and can be further improved by reducing the delay differences (dmaxIj) – dmin(j)). 

Using the same technology, the performance of MPP scheme can be achieved in 

conventional scheme by partitioning the pipeline stages further as shown in Fig. 3.1(b). In 

Fig. 3.1(b) it is assumed that stage d has the maximum propagation delay. If Dmax is 

approximately equal to dmax(j) – dmin(j), Speedup is close to 1 (without loss of generality it 

can be assumed that DR+ts+�clk � ts+th+2�clk). 

1
2)min()max(

max ≈
∆+++−

∆+++
=

clkhsjj

clksR

ttdd
tDD

Speedup   (3.3) 

To achieve the same performance (i.e. achieve Dmax �  dmax(i) – dmin(j)), a large number 

of stages (in turn more registers) will be required in conventional pipeline 

implementation compared to MPP scheme. 

It should be noted that using thin pipeline stages (i.e. reducing dmax) in conventional 

scheme, will make register delays the main delay component in each stage. On the other 

hand in MPP the objective is to decrease the delay difference.  

The proposed MPP scheme has been shown to be superior to CPP scheme. 

Mesochronous pipeline scheme achieves better performance that conventional pipeline 

scheme, with a small number of pipeline registers. 

3.3. Summary 

The following is a summary of important points from this chapter. 

• Higher clock frequencies: In the mesochronous pipeline scheme, clock period is 

determined by the critical stage delay difference. In conventional and micropipeline 

schemes, clock period is determined by the critical stage delay. In wave pipeline 
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scheme, system delay difference determines the system clock period. It is easy to 

show that critical stage delay difference in MPP scheme is less than the delays that 

determine the clock period in CPP, WPP and �PP schemes. So, MPP scheme has a 

smaller clock period i.e. it can operate at higher clock frequencies. 

• Speed-up: MPP has a considerable Speed-up on CPP. Also, performance of a CPP 

system can be achieved in MPP system using fewer pipeline stages and pipeline 

registers. 



 29 

Chapter 4 

Tackling Clock and Delay 
Variations 

In Chapter 2, the mesochronous pipeline (MPP) scheme’s clock signal path design has 

been discussed. It was shown that periodic nature of clock signal can be used in designing 

the delay elements �Si, in the clock path as shown in (4.1). This helps in reducing the size 

of delay elements and saves significant amount of area and power in clock distribution. 

)(_)( imppclkiSi TN δ+=∆  (4.1) 

In this chapter, some of the implications of using small delay elements in clock signal 

path are discussed. The emphasis is on how the value of N(j) of the critical stage j affects 

the clock period of the MPP system. 

Also, in this chapter, we shall discuss the issues resulting from variation in delay values 

and how they can be handled. Process and environmental variations can cause variations 

in the stage delay values. These variations could jeopardize the functioning of the system. 

It is possible to adjust the clock signal path delays and clock frequency to restore the 

system to a working condition. 
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4.1. Clock variation tolerance 

For a value of N(i) greater than one, data set no longer travels with its clock edge in a 

given stage and the following inequalities must be satisfied to prevent two adjacent data 

sets from colliding. 
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These conditions introduce a bound on the clock period. The minimum value clock 
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( )
�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

� −∆+++
∆+++−

)(

)()max(
)min()max( max,2max

i

iclksRi
clkhsjj N

tDd
ttdd

δ
 (4.3) 

The maximum value clock period can take is 
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Here j is the stage with the maximum delay difference and i is the set of all the stages. 

When �(i) = dmax(i) (N(i) = 0) or dmin(i) (N(i) = 1), the upper bound on clock period 

approaches infinity and the lower bound approaches the value given by (2.2) 

clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_ . 

This means that when a delay element is used to derive the entire delay on the clock 

signal path, clock edge travels with data set and the system can run at any clock period. 

For a value of N(i) greater than one, as N(i) increases, value of �(i) decreases rapidly and 

the clock period bounds can be written as 
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So, the range of clock periods the system can operate decreases rapidly in this case. 

Due to these limitations, it is recommended to design using small N(i) values. It should be 

pointed out that if it is required to run the system at its maximum frequency, the limiting 

factor would be the register delays as shown in the multiplier example (Chapter 5). This 

in turn imposes a limitation on the number of data sets that can be computed within the 

stage to a few. Thus maximum N(i) tends to be small. 

4.2. Tackling delay variation 

The cases which could necessitate change in clock period are when dmin(j) and/or dmax(j) 

of the critical stage j change. This would cause the failure of setup and/or hold time 

requirements and ultimately system failure. Variation in the stage delays would change 

the bounds on clock period as given by (4.5). So the clock period must be adjusted so that 

it falls in the range. In this case the delay units in clock signal path must also be adjusted 

so that clock edge arrives at the register at the required time. This must be done for every 

stage. These only arise if the value of parameter N(i) is greater than one. For example 

consider this simple system with the temporal and spatial diagram of critical stage j 

shown in Fig. 4.1. 



 32 

ts+∆clk th+∆clk

D
R

dmin(j)

dmax(j)

 

Fig.  4.1.  Sample stage computation cones in a MPP system. 

In Fig. 4.2(a), an example of variation in dmin(j) value is shown, which causes the 

violation of hold time in stage j. Similarly an increase in dmax(j) would violate the setup 

time requirement. In such cases the clock period must be increased as shown in Fig. 

4.2(b). The increase shown in this example is more than the required amount and was 

chosen for clarity. 

(a) Hold time violation (b) Solution

Hold time violation
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Fig. 4.2.  Variation in dmin value. 
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We know that the following equations must be true for any stage i. 

clkhsnewjnewjnewmppclk

clkhsoriginaljoriginaljoriginalmppclk

newinewmppclknewiclksRnewi

originalioriginalmppclkoriginaliclksRoriginali

ttddT

ttddT
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TNtDd

∆+++−≥

∆+++−≥

+=∆+++

+=∆+++

2

2

_)min(_)max()(_

_)min(_)max()(_
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δ
δ

 (4.6) 

The delay element must be adjusted according to (4.7) for proper functioning of the 

system. 

( )
( )originalinewi

newmppclknewioriginalmppclkoriginalioriginalinewi

dd

TNTN

_)max(_)max(

)(__)()(__)(_)(_)(

−+

−+= δδ
 (4.7) 

Digitally variable delay elements can be used instead of static delay elements, in the 

clock signal path to tackle variations. Fig. 4.3 shows the schematic of a starved inverter 

used as a digitally variable delay element. In Fig. 4.3, the inputs C1, C2, C3 are used to 

program the delay element to provide different delay values. 

C1 C2 C3

IN OUT

C1 C2 C3  

Fig.  4.3.  Digitally variable delay element. 
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Fig.  4.4.  Digitally variable delay element simulation. 

A sample digitally variable element shown Fig. 4.3 has been simulated. The simulation 

results are shown in Fig. 4.4. In Fig. 4.4 it can be seen that by controlling the inputs C1, 

C2, and C3, delay value can be varied. The delay values for various combinations of C1, 

C2, and C3 are shown in Table 4.I. Sizing of transistors and using more control inputs, 

higher delay variation can be achieved from the delay element. Complex variable delay 

elements like: thyristor based delay elements [12], and programmable delay elements 

[13] can also be used to achieve higher delay variation. 

TABLE 4.I . DELAY VARIATION IN DIGITALLY VARIABLE DELAY ELEMENT 

Control inputs 
C1 C2 C3 

Delay(ps) 

0 0 1 139.94 
0 1 1 110.81 
1 1 1 96.03 
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4.3. Summary 

The following is a summary of important points from this chapter. 

• Clock signal path: In MPP scheme, clock signal travels parallel to data path. Clock 

path has delay elements (�Si), so that clock travels with data. Clock signal path can 

be simplified by taking advantage of periodic nature of clock 

as )(_)( imppclkiSi TN δ+=∆ . Using this concept, small delay elements can be used 

and this saves a significant amount of power in the clock network. When the entire 

delay in clock path is derived using physical elements (N(j)=0 or 1), the system can 

operate on any clock period (lower limit given by 

clkhsjjmppclk ttddT ∆+++−≥ 2)min()max(_  and there is no upper bound). However, 

for values of N(i) greater than 1, upper and lower bounds appear on clock period 

value. Great the value of N(j), tighter the bound on clock period. In practical 

situations, due to other design limitations, value of N(i) tends to be small. 

• Delay variations: Variations in pipeline delay values can cause system failure. The 

system can be restored to working condition by modifying the clock period and 

clock path delay values. Digitally variable delay elements can be used in clock path 

for this purpose. 
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Chapter 5 

8×8-bit CSA Multiplier 

In this chapter we present an 8×8-bit multiplier pipelined in the conventional pipeline 

(CPP) scheme and the novel mesochronous pipeline (MPP) scheme, to compare its 

performance. The multiplier architecture chosen is the Carry-Save Adder Multiplier. The 

Carry-Save Adder technique, the CPP and MPP implementations of the multiplier, 

simulations of the basic cells and the performance of the two multiplier implementations 

are discussed in detail here. 

5.1. Carry-Save Adder multiplier 

Carry-Save Adder (CSA) technique [14], [15] is a well known technique often used to 

realize fast multipliers. The general architecture of a multiplier using CSA technique is 

shown in Fig. 5.1. In this technique, an M-bit multiplier requires M layers of 1-bit Full 

Adders (FA) to reduce M-partial products to two partial products. Until this point data 

flow (sum and carry signals from FA) is from one layer of adders to the next. To generate 

the final product, the two M-bit partial products have to be merged in the last layer of the 

multiplier as shown in Fig. 5.1. A fast M-bit adder can be used for the final merging; 

however, propagation of the carry signal in this adder would make it the bottleneck stage. 

Fast adder implementations like carry-look-ahead or carry-select structure can be used to 

reduce delay in this layer; however these structures increase in complexity for large word 
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lengths and produce diminishing returns. Instead of this, we added M-layers of 1-bit Half 

Adders (HA) to merge the final two partial products. Effectively the multiplier 

implementation has 2M layers of adders. This improves throughput, however there is 

increase in latency. Increase in latency can be tolerated as the idea behind pipelining is to 

increase the throughput. 
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Fig. 5.1.  Architecture of a multiplier using carry-save adder technique. 

To achieve a fast multiplier, the CSA architecture must be pipelined. In CPP scheme 

according to (1.1)  

clksRcppclk tDDT ∆+++≥ max_  

minimum clock period can be achieved by making each of the 2M layers into stages of a 

pipeline, separated by pipeline registers. Effectively, an M-bit CPP multiplier would have 

2M stages with 2M+1 pipeline registers. An 8×8-bit pipelined multiplier implemented 

has 16 pipeline stages and 17 sets of inter-stage registers. The schematic of this multiplier 
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is shown in Fig. 5.2. To distribute the clock signal to all the pipeline register stages, a tree 

network has been used as shown in Fig. 5.2. 
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Fig. 5.2.  8×8-bit CSA multiplier implemented in CPP scheme. 
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Fig. 5.3.  8×8-bit CSA multiplier implemented in MPP scheme. 
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Fig. 5.3 shows the schematic of the same 8×8-bit multiplier implemented in MPP 

scheme. Here the idea is to increase the amount of logic in a stage and clock the pipeline 

registers such that there are multiple data sets simultaneously present in a logic stage at 

different stages of processing. All of the logic enveloped between any two adjacent 

register stages supports multiple data sets simultaneously. Also, the number of register 

stages required to synchronize the data sets is small. In this implementation there are only 

4 pipeline stages and 5 register stages. The placement of the registers is based on the 

maximum delay difference that can be handled for a target clock frequency. Unlike a tree 

distribution for clock signal in CPP scheme, the clock signal takes a linear path in MPP 

scheme as shown in Fig. 5.3. The clock travels close to the data path and includes delay 

elements realized using simple inverters.  

A fast multiplier can be implemented if its basic cells have small propagation delays. 

The basic cells in the multiplier schematic shown in Fig. 5.2 and Fig. 5.3 are FA, HA, 

flip-flop, two input AND gate, two input OR gate, and buffers. The critical path in the 

multiplier includes FA and HA. In this implementation FA and HA have to generate the 

Sum (S) and Carry (Co) outputs simultaneously and the transmission-gate 

implementation of FA satisfies this requirement. To reduce propagation delay and avoid 

glitches, a differential implementation (complimentary inputs are used and 

complimentary outputs are generated simultaneously) is used. The FA with a carry-in of 

logic 0 is used to realize HA. The transistor level implementation of the FA is shown in 

Fig. 5.4. The layout of this cell is shown in Fig. 5.11. 
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Fig. 5.4.  Transistor level implementation of the full adder. 
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Fig. 5.5.  Sense amplifier based flip-flop. 

Since the FA and HA have been implemented in differential version, other basic cells 

are also differential implementations. The registers in the multiplier were realized using 

differential positive edge-triggered D flip-flop. A flip-flop samples its input at the clock 

rising edge, generates the output for the next stage. Since the sampling is done at the 

rising edge and all flip-flops in a register stage generate outputs simultaneously, the delay 

variations in the inputs to the register are eliminated when presented to the next stage i.e. 

the data is synchronized. An improved version of Sense Amplifier based Flip-Flop 
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(SAFF) with complementary push-pull [5], [16] is the flip-flop implemented in the 

register. The schematic of the SAFF is shown in Fig. 5.5 and layout is shown in Fig. 5.12 

Since differential implementation has been chosen for FA, the SAFF is a good choice 

for this system due to its differential implementation. The SAFF accepts true and 

complimentary inputs and generates true and complimentary outputs simultaneously. It 

uses single-phase clock and is a small load on clock network. The first stage of the flip-

flop is essentially a sense amplifier which assures accurate timing necessary in high 

speed applications [17]. This flip-flop also has short setup and hold times. 

5.2. Basic cells simulation 

Simulations have been performed on multiplier layout in TSMC 180nm (drawn length 

200nm), 1.8V CMOS technology, using SpectreS under Cadence environment. The 

performance of the basic cells is presented in this section. 

5.2.1. Full Adder 
A number of simulations have been performed on the full adder to precisely 

characterize performance of this cell. Iterative process has been used to optimize the 

transistor sizes to achieve minimum propagation delay and delay variation. Co-incident 

inputs were applied to the full adder cell and propagation delay was measured. There are 

a total of 56 transitions possible for the 3 inputs to a full adder. Of these 56 transitions, 

only 32 transitions trigger a transition on the Sum (S) and/or Carry (Co) output. For these 

32 transitions propagation delay of the full adder was measured. Propagation delay values 

obtained for these 32 transitions are graphically represented in Fig. 5.6. Using this plot, 
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minimum and maximum delays values and delay variation of FA can be calculated. 

These values are shown in Table 5.I.  

TABLE 5.I . FULL ADDER DELAY VALUES 

Maximum propagation delay (dmax) 280ps 
Minimum propagation delay (dmin) 210ps 
Delay variation (dmax – dmin) 70ps 
Rate at which new inputs can be applied 175ps 

 

 

Fig. 5.6.  Propagation delay of the full adder. 

From Table 5.I we see that the propagation delay of the full adder varies from 210ps 

(dmin) to 280ps (dmax), resulting in a maximum delay variation of 70ps. Internal node 

constraints dictate the rate at which new inputs can be applied to the full adder and from 

simulations it was observed that the fastest rate at which inputs could be applied is once 

every 175ps. 
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In the multiplier schematic shown in Fig. 5.2 and Fig. 5.3, it can be observed that a 

layer of logic has FAs along with AND, OR gates and buffers. These AND, OR gates and 

buffers are designed to give a small propagation delay variation and since they are faster 

than FA, delay is added so that their propagation delay is close to that of the full adder. 

This would reduce the overall delay variation of a layer of logic. 

5.2.2. Sense amplifier based flip-flop (SAFF) 
The transistor sizes in SAFF [16] have been determined through an iterative process 

with knowledge of input signal driving strength and output drive needed. Simulations 

have been performed to determine the setup time (ts), hold time (th) and the sampling 

time. Setup time is defined as the time for which data input must be stable before the 

arrival of active clock edge for the flip-flop to successfully store the data. Hold time is 

defined as the time for which the data must be held after the arrival of the active clock 

edge for the flip-flop to store the data. The setup time, hold time (th) and clock-to-output 

delay (DR) are shown in Table 5.II. Simulations performed on the flip-flop revealed that 

the clock high time must be at least 160ps. Assuming a 50% duty cycle minimum clock 

period required is 320ps. 

TABLE 5.II. SAFF TIMING VALUES 

Setup time (ts) 10ps 
Hold time (th) 130ps 
Clock-to-Q delay (DR) 295ps 
Minimum clock period required 320ps 
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5.3. Mesochronous pipeline multiplier 

Simulations performed on the flip-flop revealed that the bottleneck in the system is the 

register, which dictated the minimum clock period time. Though the FA can accept inputs 

every 175ps, the flip-flop requires at least 320ps between successive samples. So, instead 

of logic dictating the clock period in the multiplier, the clock period (determined by flip-

flop) determines the amount of logic that can be enclosed between any two adjacent 

registers. This is given by (2.5) 

( )clkhsmppclkjj ttTdd ∆++−≤− 2_)min()max( . 

Since the clock period has to be at least 320ps, compensating for possible clock 

uncertainties a clock period of 350ps (≈2.86GHz) (Tclk_mpp) was targeted. Using the flip-

flop delays obtained from simulations and (2.5)  

( ) psdd jj 1902013010350)min()max( =++−≤−  

we know that the logic enclosed between any two adjacent register stages must have a 

delay difference less than 190ps. 

The placement of registers as shown in Fig. 5.3 is based on this calculated limit on 

delay difference. The logic enclosed between any two adjacent register stages can handle 

multiple data sets simultaneously and has a delay difference less than 190ps. 

Simulations performed on the entire system revealed that the system can successfully 

perform 8×8-bit multiplications every clock period i.e. 350ps [18], [19]. Some of the 

simulation waveforms are shown in Fig. 5.7 to illustrate the delay variation concept. The 

waveforms shown in Fig. 5.7 are of the first stage of multiplier. 
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There are four data sets simultaneously present in the first stage. In Fig. 5.7 at label (A) 

are the input data sets to the first stage of the multiplier. Each data set passes through the 

logic blocks shown in Fig. 5.3, and as the data set propagates, each data path adds 

different delay. As a result the delay variation of the data sets increases. In Fig. 5.7 at 

label (B) are the data sets with delay variations at the end of first stage (inputs to second 

register stage). Since the delay variation at this point is close to the calculated limit, a 

register stage is used to synchronize the data sets. The synchronized data sets as stored by 

the second register stage and presented to second stage at label (C) in Fig. 5.7. All the 

delay variations in the data sets from first stage are eliminated when presented to second 

stage. The small variation observed in the signals at label (C) is due to vertical clock 

skew and load variation of the register stage. 

The MPP implementation of the multiplier is able to achieve a clock period of 350ps, 

with only 4 pipeline stages and 5 register stages. The layout of this multiplier is shown in 

Fig. 5.13. The load on the clock network is also small. The required delay in the clock 

signal path has been accomplished using inverters. Some important results of this 

multiplier implementation are summarized in Table 5.III 

TABLE 5.III. MPP MULTIPLIER RESULTS 

FA delay variation 70ps 
SAFF setup time 10ps 
SAFF hold time 135ps 
SAFF Clk-Q delay 295ps 
MPP multiplier pipeline stages 4 
MPP multiplier pipeline registers 5 
MPP multiplier clock frequency 2.86GHz 
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5.4. Conventional pipeline multiplier 

Using the simulation results of the basic cells, performance of a super-pipeline 

implementation of the same multiplier can be accurately predicted. Best performance in 

CPP implementation would be possible if each layer of FA/HA is a pipeline stage. As 

stated previously, in such an implementation the number of pipeline stages would be 16 

and number of register stages would be 17. The clock distribution in such an 

implementation is complex. According to (1.1) 

clksRcppclk tDDT ∆+++≥ max_  

achievable clock period is only 595ps 

pstDDT clksRcppclk 5951010295280max_ =+++=∆+++≥ . 

Using this clock period for CPP scheme, from (3.1)  

clkhsjj

clksR

mppclk

cppclk

ttdd
tDD

T

T
Speedup

∆+++−
∆+++

==
2)min()max(

max

_

_  

we have a Speedup of 1.7 times, from the MPP scheme over CPP scheme. 

In the calculated clock period value of CPP scheme, a significant portion of clock 

period is lost in the register delay. The amount of logic in a stage can be increased to 

mitigate the effects of the pipeline registers in super-pipelining. Let us consider M as the 

number of layers of FA considered as a single pipeline stage, Tclk_cpp(min) is minimum 

value of clock period achievable. As the logic depth in a stage increases the propagation 

delay of the logic influences the achievable clock period. Tclk_cpp(min) can be calculated as 

( ) FAclksRFAcppclk MdtDdT min_max_(min)_ +∆+++=  

where dmax_FA and dmin_FA are the minimum delays of FA. Here we linearize the delay of 

additional layers of FA (for M >1) with dmin_FA instead of dmax_FA. This gives the least 
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possible delay and the smallest achievable clock period. The clock-period values for 

various values of M are shown in Table 5.IV. The results shown in Table 5.IV clearly 

indicate that the mesochronous pipeline scheme outperforms conventional pipeline 

scheme. In the multiplier, the MPP approach used fewer stages and gave higher 

frequency of operation, higher throughput and lower latency. A pipelining scheme similar 

to the proposed MPP scheme was used in the implementation of a network router [20]. 

TABLE 5.IV. CLOCK PERIOD OF CPP MULTIPLIER 

M No. of stages Clock period 
1 16 595ps 
2 8 805ps 
3 5 1015ps 
4 4 1225ps 

 

5.5. Mesochronous  pipeline multiplier in ST  Microelectronics 
90nm technology 

The 8×8-bit mesochronous multiplier has also been implemented in ST 

microelectronics 90nm technology, with supply 1.0V. The basic cells and multiplier have 

been simulated in the schematic tool. Some of the results obtained are discussed here. 

A number of simulations have been performed on the full adder to precisely 

characterize performance of this cell. Propagation delay was measured for the 32 possible 

transitions that trigger a change in Sum (S) and/or Carry (Co) output. Propagation delay 

values obtained for these 32 transitions are graphically represented in Fig. 5.8. Using this 

plot, minimum and maximum delays values and delay variation of FA can be calculated. 

These values are shown in Table 5.V. 
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TABLE 5.V. FULL ADDER DELAY VALUES IN 90NM 

Maximum propagation delay (dmax) 100ps 
Minimum propagation delay (dmin) 62ps 
Delay variation (dmax – dmin) 38ps 

 

 

Fig. 5.8.  Propagation delay of the full adder in 90nm technology. 

From Table 5.V we see that the propagation delay of the full adder varies from 62ps 

(dmin) to 100ps (dmax), resulting in a maximum delay variation of 38ps. 

Instead of the SAFF implementation used in TSMC 180nm implementation, a simpler 

dynamic two-phase D flip-flop [14], [15] has been used in this implementation. The 

schematic of this flip-flop is shown in Fig. 5.9. This cell is simple to implement and the 

minimum clock period requirement observed in SAFF implementation is less in the 

dynamic two-phase D-FF. Also, the flop-flop timing values like set-up time, hold time 

and clock-to-Q delay are less in the dynamic two-phase D-FF. 
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Fig. 5.9.  D flip-flop and clkclk &  circuit. 

Simulations have been performed on this cell to obtain it’s timing values. The 

simulation waveforms for various setup time values are shown in Fig. 5.10. From this 

waveform the setup time and clock-to-Q delay can be calculated. 

 

Fig. 5.10.  Setup time of the dynamic two-phase D-FF. 
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The setup time, hold time (th) and clock-to-output delay (DR) for this flip-flop obtained 

from simulations, are shown in Table 5.VI.  

TABLE 5.VI. DYNAMIC TWO PHASE D-FF TIMING VALUES 

Setup time (ts) 35ps 
Hold time (th) 5ps 
Clock-to-Q delay (DR) 37ps 

 

The mesochronous multiplier implemented here is similar to Fig. 5.3. This 

implementation has 3 pipeline stages and 4 pipeline registers. Simulations performed on 

the entire system revealed that the system can operate with a clock frequency of 5GHz 

(clock period of 200ps). Some important results of this multiplier implementation are 

summarized in Table 5.VII. 

TABLE 5.VII. MPP MULTIPLIER RESULTS IN 90NM 

FA delay variation 38ps 
SAFF setup time 35ps 
SAFF hold time 5ps 
SAFF Clk-Q delay 37ps 
MPP multiplier pipeline stages 3 
MPP multiplier pipeline registers 4 
MPP multiplier clock frequency 5GHz 

 

5.6. Summary 

The following is a summary of important points from this chapter. 

• Mesochronous pipeline multiplier: The Carry-Save Adder multiplier was pipelined 

using the mesoschronous pipeline scheme. To improve performance of basic cells of 

the multiplier i.e. full adder and half adder, fully differential transmission gate 
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implementations have been used. A full differential Sense Amplifier based Flip-Flop 

(SAFF) has been used in implementing pipeline registers. Due to the design 

limitations imposed by the SAFF, a maximum clock frequency of 2.86GHz could be 

used. Based on this limitation the multiplier was pipelined into 4 logic stages with 5 

register stages. Each logic stage can handle 3 data sets simultaneously. Simulations 

performed in TSMC 180nm, 1.8V technology, on the MPP multiplier showed that it 

can operate at a maximum frequency of 2.86GHz (clock period of 350ps). 

• Conventional pipeline multiplier: Based on the simulation results of the basic cells, 

the performance of a conventional pipeline implementation of the multiplier was 

calculated. The CPP multiplier can operate at a maximum clock frequency of 

1.68GHz (clock period of 595ps). To achieve this performance, the multiplier should 

be split into 16 logic stages and 17 pipeline register stages. 

• MPP multiplier in 90nm technology: The MPP multiplier schematic was simulated 

in ST microelectronics 90nm, 1.0V technology. The multiplier has 3 logic stages and 

4 pipeline register stages and can operate on a clock frequency of 5GHz. 
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Fig. 5.11.  Full Adder layout in TSMC 180nm technology. 
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Fig. 5.12.  Sense amplifier based flip-flop layout in TSMC 180nm technology. 
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Fig. 5.13.  8×8-bit mesochronous pipeline multiplier layout (TSMC 180nm). 
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Chapter 6 

Mesochronous power consumption 
and power supply current variation 
(di/dt) 

In this chapter we present an 8×8-bit multiplier pipelined in the conventional pipeline 

(CPP) scheme and the novel mesochronous pipeline (MPP) scheme, to compare its power 

consumption. The power consumption is an important issue in chip design. In 

conventional pipeline scheme, huge currents draw by clock network and large number of 

pipeline registers is increasing the chip power consumption. Clock network’s power 

consumption has increased to 50% of the total chip power consumption [7]. Power supply 

network is essentially a huge RLC network, and the huge currents drawn from it are 

causing higher IR drops in it. Increase in clock frequency, system size, and wire parasitic 

values is introducing power supply noise [21], [22]. Also, the large current slew rates 

(di/dt) coupled with on-chip inductance are generating significant amount of Ldi/dt noise 

on power supply. These power supply noise affect the power supply integrity and this is 

worsened due to decreasing supply voltage levels.  

The results presented in this chapter prove that the mesochronous multiplier 

implementation consumes less power than conventional implementation. Also, the 

variation in current drawn from power supply is less in mesochronous scheme. 
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6.1. Carry-Save Adder multiplier implementation 

6.1.1. Conventional implementation of CSA multiplier 
To achieve a fast multiplier the CSA architecture must be pipelined. In CPP scheme 

according to (1.1) minimum clock period can be achieved by making each of the 2M 

layers into stages of a pipeline, separated by pipeline registers. Effectively, an M-bit CPP 

multiplier would have 2M stages with 2M+1 pipeline registers. An 8×8-bit pipelined 

multiplier implemented has 16 pipeline stages and 17 sets of inter-stage registers. The 

schematic of this multiplier was shown in Chapter 5 and is repeated here in Fig. 6.1.  
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Fig. 6.1.  8×8-bit CSA multiplier implemented in CPP scheme. 

To distribute the clock signal to all the pipeline register stages, a tree network has been 

used as shown in Fig. 6.1. Inverters have been used in place of buffers, and a fan-out of 

four has been used. The inverters in the tree network have sizes 50, 40, 25, 10 times the 
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minimum sized inverter. Each register stage has another small tree network to deliver the 

clock to all the flip-flops in that stage without any vertical skew. 

6.1.2. Mesochronous implementation of CSA multiplier 
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Fig. 6.2.  8×8-bit CSA multiplier implemented in MPP scheme. 

Fig. 6.2 shows the schematic of the same 8×8-bit multiplier implemented in MPP 

scheme. Here the idea is to increase the amount of logic in a stage and clock the pipeline 

registers such that there are multiple data sets simultaneously present in a logic stage at 

different stages of processing. All of the logic enveloped between any two adjacent 

register stages supports multiple data sets simultaneously. Also, the number of register 

stages required to synchronize the data sets is small. In this implementation there are only 

3 pipeline stages and 4 register stages. The placement of the registers is based on the 

maximum delay difference that can be handled for a target clock frequency.  This 

implementation is different from the one presented in Chapter 5, and the reason for this 

will be explained later in this section. Unlike a tree distribution for clock signal in CPP 
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scheme, the clock signal takes a linear path in MPP scheme as shown in Fig. 6.2. The 

clock travels close to the data path and includes delay elements realized using simple 

inverters. 

The registers in the multiplier have been realized using a dynamic two-phase D flip-

flop [14], [15]. This cell is simple to implement and the minimum clock period 

requirement observed in SAFF implementation (Chapter 5) is less in the dynamic two-

phase D-FF. Also, the flop-flop timing values like set-up time, hold time and clock-to-Q 

delay are less in the dynamic two-phase D-FF. The schematic of this flip-flop is shown in 

Fig. 6.3.  
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Fig. 6.3. D flip-flop and clkclk &  circuit. 

From simulations, the clock-to-output delay, set-up time, and hold time can be 

calculated. These values are shown in Table 6.I 

TABLE 6.I. DYNAMIC TWO PHASE D-FF TIMING VALUES 

Setup time (ts) 65ps 
Hold time (th) 5ps 
Clock-to-Q delay (DR) 130ps 
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In the CPP implementation of the multiplier, the minimum achievable clock period can 

be calculated from (1.1)  

Tclk_cpp>Dmax+DR+ts=280+130+65=475ps 

A fair compare between the CPP and MPP schemes in terms of power consumption is 

when they are operating at the same clock period. For this purpose a clock period of 

500ps (2GHz) has been chosen. In the MPP multiplier implementation, for a clock period 

of 500ps, the maximum delay variation of any stage can be calculated using (2.5) as 

400ps. 

dmax(j) – dmin(j) � Tclk_mpp – (ts + th+2�clk)=500-100=400ps 

The placement of registers as shown in Fig. 6.2 is based on this calculated limit on 

delay difference. The delay variation of the FA is 70ps, and maximum calculated delay 

variation is 400ps, and so maximum number of FA layers in a stage is five. This 

placement also accommodates additional variations that can occur in a stage. From Fig. 

6.2 it can be seen that stage 2 is the critical stage as it has five FA/HA layers combined 

into a single stage. The logic enclosed between any two adjacent register stages supports 

two or more data sets simultaneously and the stage delay difference is less than 400ps. 

6.2. Power consumption and power supply current variation 

Simulations have been performed to calculate the average current drawn by the clock 

network, registers, and logic in both the pipeline schemes. In this section the power 

consumption by the three components is discussed and the CPP and MPP schemes are 

compared. 
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6.2.1. Clock network 
In the CPP multiplier, a tree network has been used to distribute clock to all the register 

stages. The small tree network used to distribute clock to all flip-flops in a register stage 

has also been included in the global clock network for power consumption calculations. 

The current drawn by the clock network in CPP scheme is shown in Fig. 6.4. In Fig. 6.4 

the signals (Clk, #Clk, Clk1, #Clk1, Clk2, #Clk2) show the clock at various stages of the 

tree distribution network. The peak current drawn from power supply line and peak 

discharge current to the ground line clearly coincide with the switching event of the clock 

applied to the pipeline registers. This is due to the large number of pipeline registers that 

have to be driven simultaneously in CPP scheme. The average value of current drawn by 

the clock network is 86.9mA. 

 

Fig. 6.4.  Clock network current in CPP scheme at 2GHz. 



 62 

In the MPP scheme, the clock signal takes a linear path and travels clock to the data 

path. The current drawn by the clock network in MPP scheme is shown in Fig. 6.5. The 

current draw here is for an implementation where maximum delay in clock path is 

derived using physical delay elements (N=1). So, large delay values are present in the 

clock path. In Fig. 6.5 ClkReg1, ClkReg2, ClkReg3, ClkReg4 signals are the clock 

signals applied to the first, second, third and fourth register stages respectively. Due to 

the clock distribution approach taken in MPP, the registers are not triggered at the same 

time, which is clear from Fig. 6.5. The average current drawn by the clock network in this 

implementation is 53mA. When compared to the CPP scheme, the current drawn in this 

case is less. This means significant power savings in clock network. 

 

Fig. 6.5.  Clock network current in MPP scheme at 2GHz. 
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The power consumed by the clock network in MPP scheme can be further reduced by 

taking advantage of the clock periodicity as discussed in Chapter 2. When the necessary 

delays in the clock signal path are realized using the periodic nature of the clock signal, 

small delay values are required in the clock path. This results in less power consumption. 

Fig. 6.6 shows the current drawn in this case (N=4) and the average current drawn is 

24mA. 

 

Fig. 6.6.  Clock network current in MPP scheme at 2GHz with reduced clock delay. 

Consider the current drawn by clock network in case of CPP scheme as shown in Fig. 

6.7. The slew rate (di/dt) of the current from Vdd is approximately 1.23V/ns. Similarly 

the slew rate of current discharged into the ground rail is approximately 1.67V/ns (Fig. 

6.4). The large currents drawn can induce a large IR drop on the supply network, while 

the large current slew rates (as shown in Fig. 6.7) can generate significant Ldi/dt noise 
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[21], [22]. These drops are aggravated by technology scaling, decreasing supply voltages 

and increasing clock frequencies. These voltage fluctuations can be suppressed by 

increasing the on-chip decoupling capacitance, however this results in increased die size 

and cost. Consider the case of MPP scheme as shown in Fig. 6.7, the current drawn by 

the clock network is relatively small and has less variation compared to current in CPP 

scheme. This means less power supply noise is induced in MPP scheme. 

 

Fig. 6.7.  Clock network current (from Vdd) at 2GHz. 

The power consumption by clock network in CPP scheme can be reduced by operating 

the system at a low speed. The CPP multiplier when simulated at 667MHz, its clock 

network consumed an average current of 32.1mA which is close to the value achieved in 

the MPP scheme with reduced clock path delay. So to achieve similar power 

consumption, the CPP multiplier must be operated at one-third the speed of the MPP 
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multiplier. The clock network current consumption values are shown for various cases, in 

Table 6.II [17]. 

TABLE 6.II. CLOCK NETWORK CURRENT CONSUMPTION 

Scheme Current (mA) 
CPP @ 2GHz 86.9 

CPP @ 667MHz 32.1 
MPP @ 2GHz 53.0 
MPP @ 2GHz 

(reduced clock delay) 24.2 

 

6.2.2. Pipeline registers and logic 
The pipeline registers are the sources of high power consumption in CPP 

implementation after the clock distribution network. The average current drawn by the 

registers, and logic stages, is shown in Table 6.III [23]. The current drawn by the logic 

stages has been calculated for a significant activity in these stages. Fig. 6.8 and Fig. 6.9 

show the plots of currents drawn by the register stages and logic stages in CPP multiplier 

and MPP multiplier implementations during a clock period. 

TABLE 6.III. PIPELINE REGISTERS AND LOGIC CURRENT CONSUMPTION 

Current (mA) Scheme 
Registers Logic 

CPP @ 2GHz 66.6 38.2 
CPP @ 667MHz 21.2 9.3 
MPP @ 2GHz 12.8 45.3 
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Fig. 6.8.  Current drawn by registers and logic in CPP scheme at 2GHz. 
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Fig. 6.9.  Current drawn by registers and logic in MPP scheme at 2GHz. 
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In the CPP multiplier implementation shown in Fig. 6.1, there are 17 pipeline register 

stages, while in the MPP multiplier implementation shown in Fig. 6.2, there are only 4 

register stages. Due to the small number of register stages in MPP multiplier the overall 

current consumed in the register stages is significantly less than in the CPP multiplier. 

The current drawn by the logic portion of the multiplier should be similar in both the 

schemes, since the logic is identical. From Table 6.III it can be seen the current values are 

close in both the scheme. However the small increase in current drawn by logic in MPP 

multiplier can be attributed to the additional logic necessary to decrease the logic 

variation (dmax – dmin) in the pipeline stages. 

6.2.3. Total power 
The over-all current drawn by the CPP implementation is approximately 192mA, while 

the current drawn by the MPP multiplier is 82mA. This shows that significant power 

savings are possible in MPP scheme. Fig. 6.10 shows the plot of total current drawn by 

multiplier implemented in CPP and MPP scheme. The numerical values of currents 

drawn by the clock network, register stages and logic are shown in Table 6.IV [23]. The 

high currents drawn in CPP scheme imply higher power consumption and higher IR 

drops in the power supply network. Apart from drawing higher current, the variation in 

current drawn is higher in CPP scheme which could result in higher power supply noise. 
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Fig. 6.10.  Total current in CPP and MPP (reduced clock delay) schemes at 2GHz. 

TABLE 6.IV. CLOCK NETWORK  REGISTERS, AND LOGIC CURRENT 

Current (mA) 
Scheme Clock 

network Registers Logic Total 

CPP @ 2GHz 86.9 66.6 38.2 191.7 
CPP @ 667MHz 32.1 21.2 9.3 62.6 
MPP @ 2GHz 24.2 12.8 45.3 82.3 

CPP/MPP @ 2GHz 3.6 5.2 0.84 2.3 
 

A graphical comparison of the current results is shown in Fig. 6.11. In CPP scheme, the 

amount of current drawn by the clock network and registers is greater than in MPP 

implementation. This is due to the complex clock distribution and higher number of 

register stages in CPP. The overall current drawn, in turn power consumption is 

significantly higher in CPP scheme. Fig. 6.12 shows a bar-graph of current drawn by 

clock network, registers and logic for both the schemes. On an average, the current drawn 
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by the logic stages in MPP scheme is higher than CPP scheme, which represents useful 

current drawn, as it is used for computation. 

 

Fig. 6.11.  Total current in CPP and MPP (reduced clock delay) schemes at 2GHz. 

 

Fig. 6.12.  Total current breakdown in CPP and MPP schemes @ 2GHz. 

The CPP multiplier implementation has been simulated at clock frequencies 2GHz 

(clock period=500ps), 1.33GHz (clock period=750ps), 1GHz (clock period=1ns), and 

800GHz (clock period=1.25ns). In CPP scheme, clock period is determined by the stage 

with largest delay value. For large values of clock period, more logic can be included per 
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stage and few stages are required to pipeline system. The clock frequencies show above, 

have been chosen according to the following equation.  

sRFAavgFAcppclk tDdMdT ++−+> _max__ )1(  

In the above equation, M is the number of adders (FA or HA) considered as a single 

stage and davg_FA is the average propagation delay of the FA. Considering the average 

delay value would give a typical estimate of clock period. Considering the maximum 

propagation delay (dmax) value would give a pessimistic estimate of clock period and 

considering the minimum propagation delay (dmin) would be an optimistic estimate. The 

possible clock periods for various values of M are shown in Table 6.V. 

TABLE 6.V. CPP CLOCK PERIOD FOR VARIOUS VALUES OF M 

M No. of stages Clock period Clock period chosen 
1 16 Tclk_cpp > 475ps 500ps 
2 8 Tclk_cpp > 720ps 750ps 
3 5 Tclk_cpp > 965ps 1000ps 
4 4 Tclk_cpp > 1210ps 1250ps 

 

Table 6.VI also shows the current drawn by the CPP multiplier at different clock 

frequencies. From the results shown in Table 6.VI, it is clear that CPP scheme consumes 

less current (power) than MPP scheme only if operated at half the speed of MPP. 

TABLE 6.VI. CLOCK NETWORK, REGISTERS, AND LOGIC CURRENT (CPP SCHEME) 

Current (mA) 
Scheme No. of 

stages Clock 
network Registers Logic Total 

CPP @ 2GHz 16 86.9 66.6 38.2 191.7 
CPP @ 1.33GHz 8 40.3 25.2 31.8 97.3 

CPP @ 1GHz 5 23.8 13.1 22.9 59.8 
CPP @ 800MHz 4 16.6 7.1 9.7 33.4 
MPP @ 2GHz 4 24.2 12.8 45.3 82.3 
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The trend of current consumption of the CPP multiplier is shown in Fig. 6.13. 

 

Fig. 6.13.  Current consumption of CPP multiplier at various clock frequencies. 

6.3. Summary 

The following is a summary of important points from this chapter. 

• Simpler clock distribution. In the CPP multiplier implementation, the clock signal 

must be distributed to all the 17 pipeline registers stages such that they are all 

triggered simultaneously. In the MPP scheme clock signal path is parallel to data 

path. Delays are included in the clock signal path so that clock signal can travel 

with data. Also, there are only 4 register stages in MPP multiplier implementation, 

so load on clock network is less. In implementing the clock path delay elements, 

periodic nature of clock signal can be used to further reduce power consumption. 

• Low power dissipation. The average power dissipation in MPP multiplier 

implementation is 148.05mW, while in CPP implementation is 345.6mW at clock 

frequency of 2GHz. 
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• Clock network and registers: In the CPP multiplier, clock distribution network and 

registers account for 80% of total power consumption. In the MPP multiplier logic 

dissipates more power compared to clock network and registers. 

• Lower power supply noise. In MPP multiplier implementation, due to the linear 

clock distribution approach, there are fewer register stages and they all are not 

triggered simulatneously. This reduces the current drawn and also the rate (di/dt) 

at which it is drawn. The result is less variation in current drawn by clock 

network. This means less power supply noise. 

• CPP Power-performance tradeoff. CPP scheme can achieve similar power 

consumption as MPP scheme only when operated at a much slower speed. The 

CPP multiplier implementation consumes less power than the MPP 

implementation only if operated at half the frequency of MPP multiplier.
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Chapter 7 

Tiny Chip 

In this chapter we shall discuss the implementation of a 4×4-bit mesochronous pipeline 

Carry-Save Adder (CSA) multiplier in AMI 0.5�m, 5.0V technology. The design has 

been fabricated through The MOSIS service. This chip has been tested using Onehotlogic 

chip tester and we shall discuss the results obtained from these tests. 

7.1. 4×4-bit mesochronous CSA multiplier simulations 

The schematic of a 4×4-bit CSA multiplier is shown in Fig. 7.1. This multiplier has to 

be pipelined to achieve high performance. 
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Fig. 7.1.  4×4-bit CSA multiplier schematic. 

All the basic cells used in this implementation are same as the ones used in 8×8-bit 

CSA multiplier presented in Chapter 5 and Chapter 6. Extensive simulations have been 

performed on the differential transmission gate full adder (FA) in AMI 0.5�m, 5.0V 
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technology. For the 32 input transitions that trigger a change in one or both of the FA 

outputs, propagation delay was measured. Propagation delay values obtained for these 32 

transitions are graphically represented in Fig. 7.2. Using this plot, minimum and 

maximum delays values and delay variation of FA can be calculated. These values are 

shown in Table 7.I.  

TABLE 7.I. FULL ADDER DELAY VALUES 

Maximum propagation delay (dmax) 740ps 
Minimum propagation delay (dmin) 460ps 
Delay variation (dmax – dmin) 280ps 

 

 

Fig. 7.2.  Propagation delay of the full adder. 

From Table 7.I we see that the propagation delay of the full adder varies from 460ps 

(dmin) to 740ps (dmax), resulting in a maximum delay variation of 280ps. 

The limiting factor in this design is the clock generator. A ring oscillator with a 

multiplexer has been used to generate four different clock periods. The schematic of this 
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clock generator is shown in Fig. 7.3. The clock periods achieved from the clock generator 

for various values of the selection inputs (S1, S0) are shown in Table 7.II.  
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Fig. 7.3.  Clock generator schematic. 

TABLE 7.II. CLOCK GENERATOR RESULTS 

Selection Inputs 
S1 S0 

Clock 
period 

Clock 
frequency 

1 1 1.95ns 513MHz 
1 0 2.22ns 450MHz 
0 1 2.51ns 400MHz 
0 0 2.88ns 347MHz 

 

To view this clock signal externally, the clock was slowed down (by an order of 218), 

using a chain of JK flip-flops. For an internal clock period of 1.95ns, when multiplier by 

218, the external clock period should be 458.75�s. 

Since the minimum clock period is 1.95ns and maximum propagation delay (dmax) of 

the FA is 740ps, the best scheme to pipeline is to have two FA/HA per stage as shown in 

Fig. 7.4. From this schematic it is clear that system would have 4 logic stages and 5 

pipeline register stages and would require a global clock distribution. 
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Fig. 7.4.  Conventional 4×4-bit CSA multiplier schematic. 

Using the mesochronous pipeline approach, the multiplier can be operated at the 

minimum clock period of 1.95ns, with only two pipeline stages and simple clock 

distribution. The schematic of this implementation is shown in Fig. 7.5. 
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Fig. 7.5.  Mesochronous 4×4-bit CSA multiplier schematic. 

In this implementation the stage delay values have been calculated from simulations in 

AMI 0.5�m, 5.0V technology and are shown in Table 7.III. 
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TABLE 7.III. STAGE DELAYS IN MESOCHRONOUS CSA MULTIPLIER 

Stage Delay 
1 2.85ns 

2 3.3ns 
 

From the stage delay values shown in Table 7.III and clock period of 1.95ns, it is clear 

that in the two logic stages two separate data waves can be present simultaneously. This 

mesochronous multiplier is successfully able to operate on a clock period of 1.95ns 

(513MHz) and only requires 2 logic stages and 3 pipeline registers. This is definitely a 

performance gain. Also, the clock distribution is simple and the delay elements in the 

clock signal path have been realized using simple inverters. The layout of this multiplier 

is shown in Fig. 7.10.  

From the delay values, we can estimate the clock period of conventional multiplier with 

only 2 logic stages and 3 registers stages. The conventional multiplier can only operate at 

303MHz (Stage 2 delay is 3.3ns), while the mesochronous multiplier can operate at 

513MHz, which is a Speedup of 1.69. In Table 7.IV a comparison between the 

mesochronous and conventional multiplier implementations is presented. 

TABLE 7.IV. PERFORMANCE COMPARISON 

Scheme Conventional Mesochronous 
No. of pipeline stages 4 2 2 
No. of pipeline registers 5 3 3 
Clock frequency  513MHz 303MHz 513MHz 
Clock distribution Complex Simple Simple 

 

To facilitate the test of this design when fabricated, two slow speed memory banks have 

been incorporated into the multiplier. One bank is at the input, in which operands can be 
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stored and the other bank is at the output, which stores the multiplication result. Operands 

can be written to the input bank at very slow speed, using external control and data 

signals. Operands are read from this bank at the system speed and applied to the inputs of 

the multiplier. Similarly, the output bank stores the multiplier output at the system speed 

and can be read through external pins at a slower rate. The schematic of the memory 

element in these banks is shown in Fig. 7.6. 

W
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Write bus Read bus  

Fig. 7.6.  Memory element in Input/Output bank. 

7.2. 4×4-bit mesochronous CSA multiplier chip test results 

The Mesochronous 4×4-bit CSA multiplier shown in Fig. 7.5 has been fabricated in 

AMI 0.5�m, 5.0V technology. This chip has been tested using Onehotlogic chip tester. 

The SPICE parameters from the AMI fabrication run have been used to re-simulate the 

basic cells in the multiplier. Due to difference in the SPICE parameters from the 

fabrication run and the ones used for simulations, all the delays are scaled-up by a factor 

of 2.05 in the fabricated chip. 

The chip test results of the externally monitored slow version (order of 218) of internal 

clock signal for various values of the control inputs (S1, S0) are shown in Fig. 7.7. The 

clock period values are shown in Table 7.V 
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Fig. 7.7.  Internal clock signal from the chip. 

TABLE 7.V. SCALED INTERNAL CLOCK SIGNAL PERIOD 

Selection Inputs 
S1 S0 

External clock 
period 

Internal clock 
period 

1 1 1.04ms 3.97ns 
1 0 1.21ms 4.62ns 
0 1 1.34ms 5.11ns 
0 0 1.56ms 5.95ns 

 

Based on these results we can estimate the internal propagation delays. Some of the 

important delay values adjusted to the chip SPICE parameters are shown in Table 7.VI. 

TABLE 7.VI. ADJUSTED DELAY VALUES 

FA maximum propagation delay (dmax) 2.05×740ps = 1517ps 
FA minimum propagation delay (dmin) 2.05×460ps = 943ps 
FA delay variation (dmax – dmin) 2.05×280ps = 574ps 
Mesochronous multiplier stage 1 delay 2.05×2.85ps = 5.84ns 
Mesochronous multiplier stage 2 delay 2.05×3.3ns = 6.76ns 
Internal clock period (S1=1, S0=1) 3.97ns (252MHz) 
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Tests performed on the chip with various input vectors proved that the system was able 

to operate on a clock period of 3.97ns (252MHz). Some of the chip test results are shown 

in Fig. 7.8 and Fig. 7.9. In these figures, the operands are shown with the label     

Inputs(Y, X). The multiplicand is the most significant bits, while the multiplier is the least 

significant bits. 

 

Fig. 7.8.  Chip test results (Sample 1). 
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Fig. 7.9.  Chip test results (Sample 2). 

NOTE: In the chip implementation due to a faulty interconnect in partial product 

generation, some of the multiplication results are erroneous. However, this does not 

affect the performance of the system. 

7.3. Summary 

In this section we shall present a summary of important points from this chapter. 

• Tiny Chip: A 4×4-bit mesochronous pipeline CSA multiplier has been fabricated in 

AMI 0.5�m 5.0V technology. 

• Higher performance: The mesochronous multiplier has a Speedup of 1.69 over 

conventional pipeline implementation with only two pipeline stages and three 

pipeline registers. The performance of mesochronous multiplier can be achieved in 
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conventional scheme, however this would require the CSA multiplier to be split into 

four pipeline stages and five pipeline registers and requires a global clock 

distribution. 

• Chip test: The fabricated chip has been tested and it works successfully at a 

frequency of 252MHz, which is significantly for an old technology. 
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Fig. 7.10.  Mesochronous 4×4-bit CSA multiplier layout. 
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Chapter 8 

Concluding Remarks 

In this dissertation, mesochronous pipeline (MPP) architecture has been presented 

which achieves better performance and power savings compared to conventional pipeline 

(CPP) architecture. The power savings, performance improvement and design aspects of 

this architecture have been discussed in detail here. A Carry-Save Adder (CSA) 

multiplier implemented in conventional and mesochronous pipeline architectures as a 

design example has been described in detail and the performance and power 

consumptions of the two implementations has been discussed. Following are the features 

of the MPP scheme in comparison with CPP scheme. 

1) Shorter clock period (Tclk_mpp). The clock period in mesochronous pipeline scheme is 

determined by the pipeline stage with the largest difference between its minimum and 

maximum propagation delay. In conventional pipeline scheme, stage with maximum 

propagation delay dictates the minimum clock period achievable. Maximum delay 

difference is far less than maximum propagation delay, so smaller clock periods (i.e. 

higher clock frequencies) are possible in the proposed scheme. 

2) Smaller number of pipeline registers. The performance achieved in conventional 

pipeline scheme can be easily achieved using mesochronous pipeline scheme with 

fewer pipeline stages and small number of pipeline registers. 
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3) Simpler clock distribution. In conventional pipeline scheme, clock signal must be 

distributed to all the pipeline registers stages such that they are all triggered 

simultaneously. In the mesochronous pipeline scheme, clock signal path is parallel to 

data path. Delays are included in the clock signal path so that clock signal can travel 

with data. This could cause the registers to be triggered at different times. Also 

because of fewer register stages in MPP scheme, load on clock network is less. This 

is a simpler clock distribution scheme and consumes less power compared to the 

distribution in a CPP scheme. In implementing the delay elements in clock path, 

periodic nature of clock signal can be used, so small delay elements are required. This 

helps further reduce power consumption in MPP scheme. 

4) Little influence of Clk-Q on Tclk_mpp. The clock-to-output (Clk-Q) delay of pipeline 

registers has little influence on clock period in mesochronous pipeline as computation 

in a stage is spread over multiple clock periods. In conventional scheme, since 

computation in a stage is during a clock period, significant portion of clock period is 

lost in the Clk-Q delay and performance is affected. This is further aggravated by 

shrinking clock periods. 

5) Fast multiplier (350ps clock period). A mesochronous pipeline implementation of an 

8×8-bit Carry-Save Adder multiplier using modest TSMC 180nm technology, is able 

to operate on a short clock period 350ps (2.86GHz). In conventional pipeline scheme, 

the best clock period achievable is 595ps (1.68GHz). So, the mesochronous pipeline 

achieves a Speedup of 1.7 times. The number of pipeline stages and the number of 

pipeline registers required in this implementation is significantly less compared to 

conventional pipeline approach. 
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6) Low power dissipation. MPP implementation of the 8×8-bit carry-save adder 

multiplier using modest TSMC 180nm CMOS technology is dissipating less power 

compared to the CPP implementation. The average power dissipation in MPP 

implementation is 148.05mW, while in CPP implementation is 345.6mW at clock 

frequency of 2GHz. On an average 80% of total power consumption in CPP 

multiplier is consumed by clock network and pipeline registers. In the MPP 

multiplier, total power consumed is less than 50% of total power in CPP multiplier. 

Also, in MPP multiplier around 55% of total power consumption is in logic which 

represents useful power. 

7) Lower power supply noise. In MPP scheme, due to the linear clock distribution 

approach, there are fewer register stages and they all are not triggered simulatneously. 

This reduces the current drawn and also the rate (di/dt) at which it is drawn. The 

result is less variation in current drawn by clock network. This means less power 

supply noise. 

8) CPP Power-performance tradeoff. The CPP implementation can achieve similar 

power consumption as MPP scheme only when operated at a much slower speed. The 

CPP multiplier implementation consumes less power than the MPP implementation 

only if operated at half the frequency of MPP multiplier. 

9) Tiny chip. A 4×4-bit CSA multiplier implemented in mesochronous scheme has been 

fabricated in AMI 0.5�m technology and successfully tested. This chip can operate at 

a clock frequency of 252MHz. This implementation has a speedup of 1.69 over 

conventional pipeline implementation and has only 2 pipeline stages and 3 pipeline 

registers. This multiplier can be pipelined in conventional scheme to operate at 
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252MHz, however it would have 4 pipeline stages, 5 register stages and a complex 

clock distribution. 

8.1. Contributions of this research 

In the design of high performance digital systems, pipelining is an import design 

concept. Pipelining essentially splits a single large combinational logic block into smaller 

sequential blocks. This process increases logic utilization, allows parallelism among 

independent operations. The result is higher performance, higher frequencies of 

operation. In a Conventional Pipeline (CPP) scheme each stage operates on a single data 

set or vector at any given time. Data movement between logic (pipeline) stages is 

synchronized by pipeline registers with the help of globally distributed clock signal. With 

continuing technology scaling, digital systems are increasing in area and are operating at 

higher clock frequencies. This is also increasing the complexity of clock distribution and 

chip power consumption. Novel pipeline architectures are required in future to gain 

higher performance.  

In this research, we proposed a novel Mesochronous Pipeline (MPP) scheme. This 

scheme simplifies the pipeline architecture, achieves higher performance and higher 

power savings compared to conventional pipeline scheme. 

In this section we shall present the contributions of this research. Some of these points 

have already been highlighted in the previous section. 

1) Novel high performance pipeline scheme. Mesochronous pipeline scheme is a novel 

pipeline scheme to design high performance digital systems. In this scheme a logic 

system is divided into pipeline stages and clocked such that multiple data sets are 

present in a pipeline stage at various stages of computation. This means new data is 
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admitted into a pipeline stage before computation is complete on a previously 

admitted data set. For this to be possible the logic per stage is considerably more 

when compared to a conventional pipeline implementation. Fewer pipeline registers 

are used to synchronize data movement. The clock period in mesochronous pipeline 

scheme is determined by the pipeline stage with the largest difference between its 

minimum and maximum propagation delay. In conventional pipeline scheme, stage 

with maximum propagation delay dictates the minimum clock period achievable. 

Maximum delay difference is far less than maximum propagation delay, so smaller 

clock periods (i.e. higher clock frequencies) are possible in the proposed scheme. 

2) Reduced clock distribution network complexity. In MPP scheme, the clock network 

design has been modified from the CPP scheme. Instead of a global equipotential 

clock distribution used in CPP scheme, clock signal travels along with data in MPP 

scheme. This means clock signal path is parallel to data path and it includes delay 

elements so that clock signal can travel with data. 

3) Mathematical analysis for the performance of MPP scheme. Using extensive 

mathematical analysis, equations have been derived to determine the performance of 

the proposed MPP scheme. A detailed comparison of MPP scheme’s performance 

with CPP scheme and other pipeline schemes like wave pipeline (WPP) scheme and 

micropipelines (�PP), proved that MPP can achieve higher performance. A new 

parameter Speedup has been defined to compare performance of MPP and CPP 

schemes.  

4) Boundaries of proposed scheme. Issues like design of clock signal path, tackling 

variations in clock and delay values have also been addressed in detail. Also, detailed 
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mathematical equations have been provided for the boundaries of proposed scheme 

The bounds on clock period are 
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5) Power savings. In MPP scheme the clock distribution network is simple and drives 

smaller load compared to CPP scheme. This helps in saving significant amount of 

power in clock network. Also, in MPP scheme there are fewer pipeline registers 

which add to the power savings. In MPP scheme, due to the clock distribution 

approach, it is possible that not all pipeline registers are triggered at the same time, so 

the rate at which current is drawn (di/dt) from power supply is less. This mean less 

variation in current and less noise is induced in power supply network. 

6) 8×8-bit multiplier simulations. Extensive simulations have been performed on a 

Carry-Save Adder (CSA) multiplier to validate the mathematical analysis of the novel 

pipeline scheme. 

7) Tiny Chip. A sample 4×4-bit CSA multiplier in meschronous pipeline scheme has 

been fabricated in AMI 0.5�m, 5.0V technology and successfully tested. 

8.2. Future Research 

Mesochronous pipelining scheme is a novel pipeline architecture to design high 

performance and low power digital systems. Through extensive mathematical analysis we 
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have carefully characterized the proposed architecture and compared its performance 

with the conventional pipeline scheme and other alternate pipeline schemes like wave 

pipelining and micropipelines. Carry-Save Adder multiplier has been implemented in 

conventional and mesochronous pipeline architectures to prove the performance gain and 

power saving from the proposed scheme. In this section we shall look into some 

important issues that have to be researched to formalize the mesochronous pipeline 

(MPP) scheme. 

8.2.1. Feedback 
Feedback is essential to any pipeline system. Data generated in a stage from a data set 

has to be sent back to another stage to be used for computation on a different data set. 

Fig. 8.1 shows the block diagram of a MPP system with feedback loops. 
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Fig. 8.1.  Mesochronous pipeline scheme with feedback loops. 

Presence of feedback loops introduces additional constraints on the clock period of the 

system. To determine clock period (Tclk_mpp) with feedback loops, it should be observed 

that latching at a particular pipeline register occurs exactly one cycle time later. Let S 

represent the feedback stage distance. To synchronize the forward and feedback paths, a 

minimum time of STclk_mpp has to occur between latching the output that needs to be fed 

back. To determine this time, all the maximum delays and register delays for each stage 
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that is included in the feedback loop are added. For the feed back from stage k to stage i, 

the following inequality must be valid. 
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Rewriting the above question we get the equation for clock period with feed back loops. 
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This limit on clock period has to be calculated for all the feed back loops. Let us consider 

feedback loop Ski to be the longest feedback loop, and let stage j have the largest delay 

difference in a MPP system. Then clock period is given by 
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There are several issues associated with feedback. Synchronization of both forward and 

feedback paths needs be addressed to guarantee system operation. Synchronization can be 

achieved using pipeline registers, insertion of delay circuits, and signal bypassing.  A 

detailed study is necessary on synchronization mechanism. A delay variation in the 

feedback loop stages may affect performance and/or functionality of the pipelined 

system. An in-depth analysis of feedback placement and constraints would lead to a 

pipelined system that can tolerate delay variations in the feedback loop. Also, impact of 

the number of stages that can be included in the feedback loop must be studied, as 

increase in number of stages in the feedback loop makes synchronization of data difficult. 
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8.2.2. Testing 
Testing circuits is a critical factor in all VLSI designs. It is important to incorporate 

testing methods at the architectural level itself. These test methods should be able to 

exhaustively test the system for faults. In the current high speed designs, it is extremely 

important to perform at-speed test to verify timing of hardware. Built-in Self-Test (BIST) 

is a well know Design for Testability (DFT) approach that can be used for at-speed 

testing. In the case of mesochronous pipeline scheme, it is extremely important to 

identify delay faults (variations in delay values), at its design speed. However, in the 

mesochronous pipeline architecture, controllability and observability are partially lost 

due to large pipeline stages and fewer registers. Observability of a particular logic node is 

the degree to which the node can be observed at the outputs of an integrated circuit [15]. 

Controllability of a circuit node is the ease of setting the node to logic 0 or logic 1 [15]. 

To solve this problem, shadow registers with scan chain capability, can be incorporated 

in pipeline stages. This concept is illustrated in Fig. 8.2. 
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Fig. 8.2.  Shadow registers and scan-based testing. 

Use of shadow registers in logic stages introduces additional delays and additional 

power consumption. Also, any additional implications of these shadow registers have to 

be carefully studied. 
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In Chapter 4, tackling delay variations has been explained in detail. A possible solution 

to tackle delay variations involved use of variable delay elements in the clock signal path. 

This variable delay element has control inputs which have to be generated by the test 

circuitry. It is important for the test method to have the ability to detect delay faults and 

generate necessary control signal for the variable delay elements. 

8.2.3. CAD tools 
In current VLSI designs, it is necessary to have short design time. To facilitate ease of 

design, it is important to have CAD tools. Mesochronous pipeline scheme is a novel 

architecture, so CAD tools have to be modified or new tools have to be designed to 

support this scheme. Since MPP scheme is similar to conventional pipeline scheme, it 

should be easy to modify CAD tools to support it.  

 

A detailed analysis of the proposed Mesochronous pipeline scheme and various 

simulations performed on MPP multiplier implementation, prove the feasibility of this 

scheme. Architectural improvements are required in future high speed designs and 

mesochronous pipeline offers a viable scheme to this need. We also discussed the future 

research potential in MPP scheme. The work from this research and some future work 

will help formalize the novel mesochronous pipeline scheme. 
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