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BIDDING STRATEGY AND EMPIRICAL ANALYSIS OF BIDDING IN  

ELECTRICAL POWER MARKET 

Abstract 

 
by Tengshun Peng, Ph.D. 

Washington State University 
May 2006 

 
 

Chair:  Kevin Tomsovic 

 

Electric restructuring was started in the early 1990s as a way to increase electric power 

industry’ efficiency and lower the energy cost. The traditional integrated system has now been 

separated in many parts of the country and some degree of competition introduced throughout 

the power industry. This thesis focused on how market participants (primarily generators) 

react under this new market operation mechanism. Specifically, this work contributed with the 

following three investigations:  

1. Transmission system congestion influence on market clearing price and market participant 

bidding behavior in the framework of game theory was analyzed. The conclusion was 

drawn that deviation from idealized price-taker behavior is more serious when some 

market participants suffer disproportionately from the congestion. Due to the complexity 

of the calculations in the theoretical approach, this thesis suggests that a statistical analysis 

methodology is more appropriate. An intuitive probabilistic bidding methodology was 

proposed for the bidding problem to demonstrate feasibility.  

2. A detailed statistical analysis has been carried out on the California real time imbalance 

energy market. A linear regression model was applied to a zonal energy price prediction 



 v

process and a non-linear estimator based on a neural network was applied to predict 

bidding behavior. Sensitivity analysis was applied to understanding each factor’s 

influence on market participant bidding behavior.  

3. Statistical analysis results were applied to the optimal bidding strategy problem. The 

empirical conjecture approach was adopted using these results. Including risk as either an 

objective to be minimized or a constraint to be satisfied, a portfolio selection approach 

was applied. This method combines the statistical analysis technique with the optimal 

bidding problem. Although the results shown here are in the initial stage of development, 

it appears that this approach is more promising than an idealized game theoretic 

formulation. 
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CHAPTER ONE 

INTRODUCTION 

The last two decades, with the development of electric power markets and the 

introduction of competition, has initiated radical change for the power industry. These 

changes are still relatively poorly understood and this thesis addresses some basic questions 

around market operations. The main contributions of this thesis concern understanding 

bidding strategies of suppliers in a market with the possibility of transmission congestion. 

 

1.1 Power Markets 

Cope [1] divided the electric power industry in United State into three significant 

periods: the steady growth industry before 1973; the more turbulent and less predictable 

period between 1973 and 1992; and the deregulation period beginning in 1992. The electric 

power industry was generally considered not suitable for competition due to economies of 

scale, which is certainly true before the 1970s. The electricity price consistently decreased for 

almost 50 years before 1970s due in part to the advantage of integrated control over the entire 

system with such functions as: the Economic Dispatch (ED), Unit Commitment (UC) and 

other techniques. The traditional monopoly has an obvious advantage in coordination of the 

security control/reliability and economic operation. In the early 1980s, there was near 

universal agreement that the electricity supply was naturally vertically integrated (i.e., 

generation, transmission and dispatching should belong to same owner). The cornerstones of 

this assumption were: (1) that there were increasing economics of scale in building generation 

plants; and (2) that as a consequence of the physics of the electricity product, close 
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coordination was required between production and transmission and, accordingly, separation 

of these functions should result in inordinate transaction costs [2].  

In the1970s, the successful deregulation of the gas/fuel industry caused people to think 

more seriously about deregulation in the power industry. Technological advances in gas 

turbines and the falling price of natural gas made way for small generation units, which, 

coupled with the challenge posed by the changing institutional arrangements by Chile 

beginning in 1982 and in the UK beginning in 1988, led the way to commercialization and 

restructuring of the electric power industry [3]. Throughout the early 1990s many countries 

began the process of deregulation, including: Australia, Norway, and New Zealand among 

others. In the United States, following the publication by FERC (Federal Energy Regulatory 

Commission) of rules 888 and 889 in 1996, several regions began the deregulation process, 

most notably, New England, New York and California. Although some of states have slowed 

their steps toward deregulation since the 2000-2001 crisis in California electricity market, the 

overall trend has not changed. Currently, there are 17 states, who have taken steps toward full 

or partial deregulation. 

 

1.2  Market Based Operation 

The objective of market operation is to introduce competition into the supply and 

delivery of electric power. Under market operations, the integrated system of generation, 

distribution and transmission is typically separated into different entities. Electricity price is 

determined not by a regulatory agency but by the supply and demand relationship. In a 

centrally operated market, all entities, who wish to participate in the power market need, to 

submit bids. The market operator will clear the market based on these bids. The price of 
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electricity is found similar to other common goods, such as agricultural products.  When 

supply exceeds the demand, the price will decrease, while when the supply is less than 

demand, the price should increase until a balance between supply and demand is met. In 

practice, the operation tends to be far more complex. 

Market operation has experienced tremendous change from the first power markets in 

Chile and the UK. The UK electrical power market could be divided into three stages: first 

stage, England and Wales first, then Scotland and finally Northern Ireland [4]. The day-ahead 

spot market acts similar to a power pool, which is the heart of the UK power market. All 

market participants submit bids indicating the quantity and price at which they desire to buy 

and/or sell. The market operator will determine the energy price by clearing the market so that 

the aggregate supply equals the aggregate demand. In the uniform price auction, the highest 

successful bidder received price is paid by all consumers. There can also be several markets 

beyond simply the energy market. For example, the Norwegian power market, which is 

administered by the state-owned Statnett Market, consists of three distinct markets: day-ahead 

market, regulating market (also spot market, with shorter time span) and the weekly market.  

Both the UK and Norwegian markets have encountered difficulties. For example, early 

on the UK electrical power market did not show significant competition [5]. The supply side 

in UK is duopoly which has only two major company: National Power (70%) and PowerGen 

(30%). Thus, the electricity price is determined non-competitively by these two companies 

facilities and these two companies can easily exert the market power. As Thomas has pointed 

out, the new system displays a crucial weakness: “There is no explicit mechanism to balance 

supply and demand for power plants” [5]. Woo, et al. [6] evaluated the UK, Norway and 

California power markets as failures based on three criteria: Is the market competitive? Does 
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the market function properly? And does restructuring lead to marginal cost pricing?  These 

questions about the value of market operation continue to be a source of much debate. 

In the US, there were two major types of market operation in the mid 1990s, 

represented most characteristically by the Pennsylvania-Jersey-Maryland (PJM) and 

California Independent System Operator (CAISO) systems. PJM adopted a Locational 

Marginal Price (LMP) system that requires a system wide optimization problem and allows 

for different prices at different locations in the transmission network. CAISO created a 

simplified Zonal price system. The price spikes during 2000-2001 in the CAISO proved that 

the Zonal model as implemented by the CAISO has a number of problems and has since 

undergone major revisions. On July 31, 2002, FERC issued a Notice of Proposed Rulemaking 

(NOPR”) in Docket No. RMOI-12-000 and proposed a mandatory Standard Market Design 

(SMD) [7] that would be based upon: (1) the transfer of control of all transmission assets to 

Independent Transmission Providers (ITP); (2) a single transmission service known as 

Network Access Service; (3) security constrained bid-based dispatch for day-ahead and real-

time spot markets with LMP and Congestion Revenue Rights; and (4) uniform market power 

monitoring and mitigation provisions. The SMD is controversial, and has yet to be universally 

adopted, but it described in detail in the following since it is certain to be influential within 

the US. 

Under the SMD, a sample market operation could be represented by the diagram 

shown in Fig. 1.1. The diagram can be divided into three parts: market inputs, Regional 

Transmission Operator (RTO) or Independent System Operator (ISO) functions and market 

support. Market inputs refers to the all participants who will take part in market operations so 

not only generators and loads can be market participants but also transmission owners and 



 
Chapter One 

 5

third party representatives. By definition [8], a Market Participant (MP) is: (i) any entity that, 

either directly or through an affiliate, sells or brokers electric energy, or provides ancillary 

services to the RTO, unless the Commission (FERC) finds that the entity does not have 

economic or commercial interests that would be significantly affected by the RTO's actions or 

decisions; and  (ii) any entity that the Commission finds has economic or commercial interests 

that would be significantly affected by the RTO's actions or decisions. 

 

 

Fig.1.1 Market Operations under SMD 

The RTO has four important characteristics [9]: independence; scope and regional 

configuration; operational authority; and short-term reliability; that leads to eight major 

functions: (a) tariff administration and design; (b) congestion management; (c) parallel path 
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flow; (d) ancillary services; (e) OASIS, Total Transfer Capability and Available Transfer 

Capability; (f) market monitoring; (g) planning and expansion; and (h) interregional 

coordination.  The ISO is similar to an RTO, but the RTO terminology is preferred in this 

thesis. 

Most RTOs introduce centralized short-term real-time hourly markets and day-ahead 

markets for energy (i.e., spot markets) where sellers sell into the market and buyers buy from 

the market without matching a particular seller with a particular buyer. In this kind of market 

operation, market participants submit orders based on the business rules of RTO/ISO, and 

then based on the offers, the independent operator will run the security constrained algorithm 

to clear the market and ensure reliable operation of the system. 

The day-ahead market provides a level of price certainty by clearing the market 

several hours prior to the start of the operating day. The benefit is that only a portion of the 

energy required is exposed to the uncertainty of the real time price. The market is cleared after 

receiving key inputs such as transmission outages, demand bids, resource offers, physical 

schedules and the proposed network model. The outputs are the cleared supply and demand, a 

set of constraints and the ex-ante LMP (ex-ante LMP is LMP generated during day ahead/ 

real-time market clearing process and ex-post LMP is generally refer to LMP calculated based 

on SE data after market clear) values. 

 The real-time market refers to the time period following the close of the hour-ahead 

market during which the RTO, or the control area operator, balances the system by 

deployment of energy from energy service, regulation service, operating reserve–spinning, 

and operating reserve–supplemental. 
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 Different markets have different business rules. As a typical example, the rules from 

the Midwest ISO market operation [10] are given in the following for the day-ahead and real- 

time markets.  

Day-Ahead Market Timeline 

• By 10:00 a.m.: Operations engineers complete the preliminary transmission security 

assessment, such as generation outages, scheduled transmission outages, and expected 

transmission constraints that may occur for the next market day. 

• By 11:00 a.m.: Operations engineers begin to create the day-ahead market base case. 

At this time, the engineers will validate the input data to ensure the day-ahead market 

base case accurately reflects scheduled transmission system topology and limitations 

expected for the next day. 

• At noon: Day-ahead offers and bids are locked.  

• By Noon: Operations engineers begin clearing the day-ahead market. The market is 

cleared using a least-cost transmission security-constrained economic dispatch 

program.  This dispatch determines the generation offers and virtual supply offers that 

satisfy the fixed demand bids, cleared price sensitive demand bids, and virtual demand 

bids, while minimizing the total production costs.   

• By 4:00 p.m.: Hourly day-ahead energy market results are posted, including hourly 

MW schedules and LMPs. 

• From 4:00 to 6:00 p.m.: Generation owners submit an hourly schedule of operation for 

each generator for the upcoming market day. Generators must also update their 

availability data for the next seven days, and submit start-up and minimum load offer 

prices to be used in the current day’s reliability commitment. 
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• By 6:00 p.m.: The day-ahead resource adequacy assessment begins. This is done to 

ensure that sufficient generation resources are scheduled to satisfy the MISO load 

forecast and the control area reserve and regulation requirements.  As a result, a 

revised schedule of operation may be created for the next market day.  The schedule of 

operation will be communicated to each generation owner for the units for which it 

has submitted offers or schedules. 

• By 8:00 p.m. up to operating day: Additional reliability commitment runs may be 

performed, as necessary, based on updated load forecasts and updated unit availability. 

MISO will send out individual generation schedule updates to the schedule of 

operation for specific generation owners only, as required. 

 

Real-Time Market Timeline 

• From Day-Ahead 4:00 p.m. until 30 minutes prior to the start of the Operating Hour:  

MPs submit offers for the real-time energy spot market. Market Responsible Entities 

(MREs) may submit resource offers for the MISO real-time energy market. The 

energy offers cannot be revised after the hour-ahead market closes. Energy offers are 

selected through a security-constrained economic dispatch calculation with prices 

calculated using an LMP algorithm. 

• 10 minutes prior to the start of the Operating Hour: Participants submit load offers and 

other data for the operating hour. The resource supply curves, generation operational 

data, resource plans, and external schedules are loaded into the market system that will 

dispatch instructions and ex-ante LMP.  
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• Every five-minutes of the Operating Hour: Every five minutes, MISO accepts updates 

to the external schedules, forecasts generation needs, determines current generator 

output, uses the data loaded prior to the operating hour to calculate the dispatch set 

points for each dispatchable generator, then sends any necessary instructions to the 

appropriate market participants. 

 

1.3 Pricing 

A major issue faced by the power industry is how to price ancillary services and other 

transmission service as well as energy prices. There are essentially two different kinds of 

markets: contract markets and spot markets. In a contract market, the supplier and demander 

reach an agreement to sell/buy a certain kind of goods at a certain price. Both the price and 

quantity is specified. For example in the Australia power market, the energy price is settled 

mainly by contract price [11]. In the spot market, a MP will submit bids as a set of 

price/quantity pairs that represents the offer to provide energy.  Generally, for a supply curve, 

prices must be monotonically increasing, i.e., the price of the first block offered must be less 

than the price of the second block offered, and so on.  The participant may submit up to a 

given number of price/quantity pairs for each settlement interval to represent its incremental 

energy offer for the trading interval from each injection point.  Prices must be expressed per 

MWh for each MW block submitted and the energy price and MW are cleared dynamically. 

The energy price is set as the Market Clearing Price (MCP) at which the aggregate demand is 

equal to the aggregate supply. Pricing of transmission and ancillary services tends to be far 

more complicated and there is still relatively little agreement on the best approach.  Still, a 
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good pricing system should be able to give the right economic signals to all MPs, should be 

non-discriminating to all market participants, transparent and sufficient to cover costs [12]. 

Based on the transmission cost, the transmission pricing systems can be divided into 

three major groups: rolled-in transmission price, incremental transmission price and 

composite embedded/incremental price. In the rolled-in pricing system, all cost components 

are included. The total cost is allocated to the various system users. For example in the 

postage stamp pricing method [13], the transmission price is decided only by the MW to be 

transferred in the market. The charge of transmission usage can be represented by the 

following equation: 

peak

t
t P

P
TotalCostR ⋅=      (1.1) 

where tR represents the transmission usage charge due to transaction t, tP the MW to be 

transferred due to transaction t, and peakP  the system peak MW value.  

The postage stamp approach is the simplest transmission pricing method, but it has 

major shortcomings, including, providing incorrect economic signals by dividing the cost 

among all transmission customers. An alternative is the contract path method [14]. The 

contract path method attempts to consider the location information. Unfortunately, this 

method still may send incorrect economic signals since the transmission path is in fact 

complex, and a fictitious path between source and sink must be defined for contract purposes. 

The MW-mile [12] pricing method takes into account the distance between supply and 

demand. In [14] based on different voltage levels, the maximum distance is given. If the 

distance between the source and sink exceed this maximum value, then an excess charge will 

be incurred. This method considers the location’s influence based on a theoretical analysis, it 
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still does not take into account the actual power flow on the grid. To reflect the real power 

flow caused by each transaction, it is necessary to include the power flow equation. A power 

flow based MW-mile method introduced in [14] was among the first methods to consider the 

real transmission system conditions. The transmission charge to each transaction is 

represented by the following equation: 

( )
maxk

k

k
kt f

tf
CR ∑=      (1.2) 

where kC is the cost of transmission line k, ( )uf k  is the flow on line k caused by the 

transaction t, which is decided by the power flow and maxkf is the maximum allowable flow 

on line k. This method considers the real power flow, but since the power flow on each 

transmission line generally is less than the transmission capacity, the price cannot fully cover 

transmission costs. 

 Many methods have been proposed to improve this cost recovery situation. For 

example, the sum of absolute MW flow caused by all transactions instead of the transmission 

capacity is proposed in [15]. Others have tried to reward flow that reduces congestion. For 

example, by “zeroing out” counter flow the transmission charge related to this transaction can 

be set to be zero [16]. The advantage of these power flow based methods is that they take into 

account the real transfer path of each transaction.   

All of the above methods above are cost-based methods. Thus, no incentives are set 

for new investment in the transmission system. This shortcoming can be overcome by adding 

a penalty factor on the transmission usage charge, i.e., when the flow on transmission line 

approaches the limit, the charge increases to reflect the scarcity of the transmission line. 



 
Chapter One 

 12

Further, it is not sufficient to consider only the embedded cost in the transmission price, the 

operating cost must be included. The incremental cost pricing system is one approach to deal 

with this problem.  

Schweppe [17] first transferred the marginal pricing scheme to the electricity market. 

The generally idea of his work is model the electricity market as an optimization problem 

with the objective to maximize the overall social welfare subject to a number of limits, such 

as, power flow and generation limits, which could be represented by the following equations: 

linesntranmissiotobelongjipp

Gippp

lossesppts

pCpB

ijij

iii

Gi
i

Li
i

Gi
ii

Li
iipi

,,

,

..

)()(max

max

maxmin

∀≤

∈∀≤≤

−=

−

∑∑

∑∑

∈∈

∈∈

   (1.3) 

The outcome of the optimization problem is the nodal price, i.e., the spot prices/nodal 

prices. Under this schema, the energy price is priced not only based on the generation cost, it 

also considers the delivery cost. This is the basis for the LMP schema, which has been 

adopted by the SMD. The solution can be represented by the following equation:  

 

MLCMCCMECLMP ++=                                                       (1.4) 

 

where MEC is marginal energy costs, MCC is marginal congestion cost and MLC is marginal 

loss cost as explained below:  

• Marginal Energy Cost: This is the cost to generate one more unit of energy, say one 

MWh, which indicates the energy generation marginal cost for a particular operation 

scenario. If there is no congestion and no loss, then the energy price is the same at all 

locations. 
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• Marginal Congestion Cost: This cost relates to congestion in the transmission 

system. If there is congestion, then this cost should reflect how much would be saved 

if this transmission line’s capacity increases incrementally. This will result in price 

differences between different locations. 

• Marginal Loss Cost: This cost arises due to losses in the transmission system.  

 

This method is sometimes called short-term marginal cost method since the generator 

output limit and transmission line capacities are assumed to be fixed and only the operation 

cost is reflected in the price signal. If there is no congestion in the transmission system, the 

total transmission usage charge is zero. Some complementary methods [18, 19] have been 

proposed to adjust the spot price accordingly. In [20], the long-term marginal cost is 

introduced in which the investment cost such as system expansion is reflected in the prices.  

Still, all methods discussed are essentially cost-based methods. The embedded price 

system has advantages in terms of simplicity and cost recovery, but it fails to set an incentive 

for the new investment. Incremental prices provide the correct economic signals for the 

transmission scarcity but fail to recover the total system cost. In [14], auction-based 

alternatives to the cost-based approach have also been developed. These have yet to gain wide 

consideration and are not reviewed here.  

 

1.4 Congestion Management 

Congestion in a power system is a consequence of network constraints characterizing 

a finite network capacity that limits the simultaneous transfer of power from all required 

transactions [21]. The limits are from maximum current flows, bus voltage requirements, 
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equipment ratings and so on. In addition, these limitations involve system security, i.e., the 

ability of the system to withstand disturbances. In a traditionally integrated power system, the 

utilities control both the generation and transmission system and maintaining the system 

security is a trade off between the system wide economic operation and security. In market 

operation, the challenge of congestion management is to create a set of rules that ensure 

sufficient control over producers and consumers to maintain an acceptable level of power 

security and reliability in both the short term and the long term, while maximizing market 

efficiency [22].  

Generally, congestion management involves the economic re-dispatch of available 

resources based on the agreement among all MP and market rules. When re-dispatch is unable 

to solve the problem, curtailment is necessary. Curtailment is a reduction in firm or non-firm 

transmission service in response to a transmission capacity shortage or as a result of system 

reliability conditions. Curtailment is typically considered and integral component of 

congestion management. There are two major congestion management systems: LMP based 

congestion management and Zonal Price based congestion management. Based on the SMD, 

all congestion management in the US should be based on the LMP in the future. In LMP 

based congestion management, the LMP is used as price signal to mitigate the congestion. 

Zonal price based congestion management was adopted by CAISO, which will be discussed 

in detail in chapter 4. There are several other forms of congestion management, which do not 

involve optimization, for example, by allowing or disallowing bilateral transmissions to 

alleviate the congestion. The reader is referred to [22] for more details.  

For curtailment, most ISO’s choose the least cost strategy, including CAISO, MISO 

and PJM [23- 25]. All of them allow MPs to submit bids that reflect their willingness to 
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accept cutbacks. For example in CAISO, their objective of the re-dispatch is to minimize the 

total re-dispatch cost while main each scheduler coordinator’s total MW change equal to zero.  
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where p is the MW output, pΔ  is the MW to be curtailed, 0),( =upf  is the power flow 

equation constraints, ),( upg  represents the security constraints such as line flow, voltage, 

etc., W is the cost related matrix which represent an MP’s willingness to be curtailed, and 

jSC represent jth schedule coordinator. 

When all MPs’s willingness to get cut are equal, i.e, W  could be represented by a 

diagonal matrix with all diagonal elements equal to 1. This means that the cost of re-dispatch 

is only related to the MW value to be cut, which is the least curtailment method. In the least 

curtailment method, the objective is the amount of MW value to be curtailed, so the objective 

is to the make the new operation point as close to the original one as possible.  From a 

mathematical point of view, the lease curtailment method is a simplified version of the least 

cost method.  

  

1.5 Market Analysis and Monitor  

From economics theory, in a completely competitive market, the marginal cost is the 

optimal equilibrium point. No single buyer/seller can influence the price since there are many 

buyers/sellers. The market ensures an overall efficient outcome where the price is equal to the 

marginal cost. Unfortunately, at this stage of the electricity power market, the market is far 



 
Chapter One 

 16

from completely competitive. Two significant structural flaws are the lack of price-responsive 

demand (high degree of inelasticity of demand) and generation concentration in transmission-

constrained load pockets [7]. Given these flaws, it is very possible, or even likely, that prices 

will deviate from the ideal. For example in the CAISO, market analysis results showed costs 

in excess of competitive levels of over $6 billion for the period May 2000 through February 

2001 [26]. Sheffrin [27] examined bids by individual suppliers in the real-time imbalance 

energy market of CAISO, and the results showed that most of the five in-state suppliers and 

many of the large importers displayed bidding patterns which were consistent with the 

exercise of market power. This highlights the importance of market monitoring as a necessary 

function for the RTO. 

A major objective of market monitoring and market power mitigation measures is to 

deal with the consequences of major structural defects in wholesale electric markets by 

approximating the outcomes that a competitive market would produce. These measures 

should function in markets that are not workably competitive, but should not inhibit market 

operation in more competitive markets. The market power mitigation measures consist of the 

following 3 basic parts: local market power problem, safety-net bid cap and resource 

adequacy [7]. These should be conducted on an on-going basis by a market monitoring unit. 

Market monitoring requires using a set of questions and analytical techniques to assess market 

structure, participant behavior, market design and market power mitigation.  

Several researchers have addressed market monitoring issues.  For example in [28], 

the authors focused on developing a simulated competitive benchmark that can serve as a 

reasonable measure of the market’s overall efficiency. Others have examined where specific 

generator bidding behavior has been consistent with profit maximization under competitive 
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conditions [29].  Some monitors estimate whether average generator profitability would cover 

costs of a gas-fired peaking unit and provide sufficient inducement for entry. Others measures 

try to track bidding patterns so that sudden, inexplicable changes can be investigated promptly 

to evaluate whether market power is the cause of change. Also, there are monitors that track 

changes using concentration measures (summation based on probability), unplanned generator 

and transmission outages and changes in various operating parameters that may signify 

market power problems [30]. Based on an approach from the American Antitrust Institute, the 

concentration statistics methods relied on by FERC in deciding the competitive problem are 

absent of consistency, and simulation models appear to be better choices [43]. Wolak [31] 

proposed a method using financial hedge contracts as a means to mitigate market power in the 

Australian power market.  

A successful market monitoring tool requires a good market analysis technique. An 

examination of electrical power price for 14 deregulated markets reached the conclusion that 

North American markets show an unusual monotonic diurnal weekday price pattern while all 

other markets studied show more than one price peak [32]. A method for decomposing 

wholesale electricity payments into production costs, inframarginal competitive rent and 

payments resulting from the exercise of market power is presented in [33]. Borenstein, 

Bushell and Wolak draw the conclusion from 1998 to 2000 California experience, where the 

prices showed significant departure from competitive pricing, particularly during summer 

months. Still, it is very difficult to distinguish between source scarcity and market power and 

further research is needed. Currently, market monitoring by the ISO or RTO generally 

involves several indices which are used to compare market behavior.  For example, PJM 
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considers hourly LMPs, frequency of LMPs, and the comparison of day ahead LMP with real 

time LMP. 

 

1.6 Focus of Thesis  

There are many open questions concerning market-based operation for electric power, 

but from the MP perspective the central concern is the bidding strategies problem. This is the 

main focus of this thesis. This section summarizes the existing work on the bidding strategies 

and highlights illustrate the main contribution of this thesis. 

 

1.6.1 Bidding Strategies 

For generator entities, the main operations concern is how to bid their resources. 

Traditionally, the power industry is an integrated system in which generation, distribution and 

transmission belong to the same company. The system operator decides which generator 

should be committed and at what MW output based on a traditional integrated optimization 

problem, i.e., the unit commitment (UC) and economic dispatch (ED) problems. The retail 

electricity price is decided by the government regulations. The objective of the generators is 

to minimize the generation cost given a set of set of reliability constraints. 

In market operation, MPs (suppliers or loads) interact with the market through the 

submission of buy or sell prices for blocks of energy for specific periods of time, which are 

called “bids”. The participants achieve their respective performance goals by employing 

strategies with their bids. The market must be “impartial”, i.e., it cannot favor any particular 

participant’s performance, but instead has overall system savings optimization as its goal. 



 
Chapter One 

 19

The bidding problem of each participant is formulated to earn maximum return from 

their local, or independent, perspective. A strategy is a complete contingent plan, or decision 

rule, that specifies how the player will act in every possible distinguishable circumstance, in 

which one might be called upon to move. So, strategy is the way each participant chooses to 

take part in the competition. 

In a competitive market, a central feature of multi-player interaction is the potential 

for the presence of strategic interdependence. In multi-player situations with strategic 

interdependence, each agent recognizes that the payoff received (in utility or profit) depends 

not only on one’s own actions but also on the actions of other individuals. The actions that are 

best may depend on actions that other individuals have already taken, are taking at the same 

time, and or on future action that they may take. This problem can be represented in a game 

theoretic framework [34]. The classic formulation refers to a Nash Equilibrium [34], where 

each player’s strategy choice is a best response to the strategies actually played by his rivals 

so that 

  ( ) ( )iiiiii ssUssU −− ≥ ,,*       (1.6) 

where ii ss −, represents player i  and its rivals’ strategies, while iU  represents player i ’s 

utility function, and *
is  represent the player i ’s optimal strategy. 

In energy markets, participants have a number of different strategies from which to 

choose. For example, some participants may choose to bid prices above marginal costs in 

order to enlarge their profits by selling at a high price.  Still, the strategies must consider the 

principles of power system operation even if the participants have the freedom to price away 

from marginal production costs in the short-run.  
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Several researchers have looked at how to develop bidding strategies. Weber, et al. 

[35] developed a model in which a central operator solves an Optimal Power Flow (OPF) 

based on the maximization of social welfare to determine the generation/load dispatch and 

system price. The market chooses bids in order to maximize profit under the constraints that 

the dispatch and price are determined by the OPF. The approach uses price and dispatch 

sensitivity information available from the OPF to determine how a market participant should 

vary its bid portfolio in order to maximize its overall profit.  

 Chao-an Li, et al. [36] developed a revenue maximization bidding strategy in which 

they treat the energy trading problem under a competitive market structure as a centralized 

economic dispatch problem with a set of decentralized bidding sub problems for bidders 

participating in energy auction.  Lamont and Rajan [37] present a framework in which 

strategies may be developed for individual participants in an energy brokerage. A key point of 

energy brokerage is the amount of information that is made available to a participant 

regarding the state of the market. Dividing the different types of participant into investor 

owned utilities (IOU), independent power producers (IPP), generation companies (Genco), 

distribution companies(Disco), large industrial customers (LIC), and power marketers (PM), a 

sub-optimal bidding strategy is formulated. The strategy uses the expected value of the lower 

bound on the saving achieved by buyers as and objective.  

( ) ( ) ( )xc
d
bxxcxSElb −

−
=−⋅= 2

2
minmax )(    (1.7) 

where x  is the competitor’s buy bid; minb is the lower bound of quantities which the 

competitor won’t willing to bid; d is the distance between the competitor’s quantity lower 

bound the upper bound maxb ;  )(xS gives the probability of the competitor win the buy bid 
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given the buy bid x  and c  is the marginal generating cost. According to the first order 

condition, the sub-optimal bid is 
3

2 min* bcxlb
+

= ,. The same approach might be used for a 

seller to determine a sub-optimal bid.  

 Dekrajangpetch et al. [38] discuss problems arising when an LR method is used to 

implement auctions in energy markets. They point out two main categories of difficulties: 

identical units (units with identical cost characteristics) and multiple optimal solutions. When 

identical units exist, there are two primary possibilities either LR will find only sub-optimal 

solutions (possibly in the sense of inequitable) or it may be unable to find any feasible 

solutions. This can be viewed as a problem of the economic interpretation of the LR 

iterations. If an energy market is considered, the LR algorithm proposes a sequence of hourly 

prices (λ) to buy energy from GENCOs. GENCOs, each one independently, plan their output 

power in response to the price sequence, meeting their respective constraints. This results in a 

surplus of power in some hours and deficit of power in some other hours. They propose a 

rotating penalty for each company (unit) that should allow for equitable distribution among 

similar units.  

 In Richter et al. [39], trading agents use a genetic algorithm to evolve appropriate 

bidding strategies for current market conditions. The objective of the strategies used in the 

paper is strictly profit maximization. These strategies are coded in the form of finite automata 

coupled with genetic programming, which allows complex adaptive strategies to develop. Rau 

[42] used a mixed integer LP formulation to model the dispatch problem under competitive 

markets. The minimum up/down times of generating units are factored into the offer price by 

the intended supplier.  
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 Game theory [34] has been proposed by several researchers. Bai et al. [40] used game 

theory to analyze the transmission system. Similarly, Ferrero et al. [41] used game theory to 

simulate the decision making process for defining offered prices in a deregulated 

environment. In this model, pool participants interact by means of price signals. Each 

participant is introduced as a player, economic benefits constitute payoffs and player’s options 

are treated as strategies. Two classes of games are considered: a non-cooperative game and 

cooperative game. Spot price of electricity was introduced to simulate the player’s strategy: 

[ ] [ ]{ }∑
Ω∈

+++−++=
i

iTipicipibiaipicipibiar ρ)()()()()()()()()()()()(Benefit 22
00     (1.8) 

where a(i), b(i), and c(i) are generation cost parameters for player i, and ρ is spot price. After 

transactions are defined, each seller receives ρ)(iT  for generating excess power and each 

buyer pays - ρ)(iT  for imports. Finally, Ω is the set of generators for participant r. Assume 

each player is a utility (here the system is separated to three utilities for simplicity) that can 

either supply its local load or sell power to the pool depending on the market price. Three 

strategies are analyzed in paper [41]: 1) bid high (H), trading power at 1.15 times the marginal 

cost; 2) cooperate with pool, trading power at the marginal cost (M); and 3) bid low (L), 

trading power at 0.85 times the marginal cost.  Based on the marginal price, two utilities, say 

A and C, sell power in a grand coalition while the third, utility B, buys power. Given perfect 

competition (i.e, no capacity limits and no additional constraints, such as, transmission limits), 

the dominant strategic equilibrium is ((M, M), H) of the game. Interestingly, if a transmission 

constraint of the tie-line between utility A and C is considered, utility C will change from 

selling power to buying power and the grand coalition A-C will broken.    
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1.6.2 Thesis Contribution 

As discussed in above sections, there are many publications on the bidding strategy 

problem. Still, much of the research on bidding strategies in an electricity market has focused 

on idealized situations where participants have limited market power and the transmission 

system is not constrained. In practice, congestion often acts to effectively give a bidder 

market power, and consequently the ability to influence the market clearing price. In such a 

non-competitive situation, the bidding strategies of market participants will change. Thus, it is 

important to consider congestion’s influence in bidding problem.  

 As will be discussed in a later chapter, it is not a trivial task to analyze the bidding 

problem via a pure mathematical model. Even for a small system, this involves extensive 

computation. This thesis seeks a more empirical approach to the bidding problem. As 

discussed in the market monitoring section, there are number of approaches that could be 

termed empirical approaches to market analysis. This work seeks to take advantage of these 

analysis results as most such analysis involves system price and bidding behavior. A market 

participant may take these analysis results as reference in his bidding decision making 

process. Relatively few efforts apply the empirical analysis technique in bidding behavior 

analysis for market participant. 

Thus, the primary contributions of this thesis are outlined in the following. 

• Congestion’s influence on bidding strategies - In this work, the electrical power 

market is modeled as an oligopoly market and the Cournot quantity model is applied 

to the bidding strategy problem.  The bidding process with congestion management is 

modeled as a three level optimization problem. A statistical methodology is then 

proposed as a solution for large systems.  
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• Empirical analysis of bidding in California ISO real-time energy market – 

Bidding in the California ISO real-time energy is analyzed by an empirical technique.   

Through a combination of correlation analysis, linear regression models and neural 

network, the impacts of gas price, system load and congestion on the market overall 

supply’s bidding behavior and zonal energy price are analyzed. First, correlation 

coefficient and significant test technique was applied to analysis the supply behavior 

in CAISO real-time energy market, and the conclusion that the linear model is not 

suitable for the bids forecast has been drawn. Based on this conclusion, the neural 

network is applied in average bidding price forecast process. Sensitivity analysis is 

carried out for application to the optimal bidding strategy problem. Similarly, a linear 

regression method is applied to zonal price prediction, where a test and try method is 

introduced to divide the data set into several groups for linear price predicting. When 

load is light, the linear method is adequate to model the zonal energy price but under 

heavier loading conditions this does not hold.  

• Empirical conjecture model application to bidding problem – The bidding strategy 

problem is a decision making problem that involves numerous factors. Primarily the 

objective is to maximize its profit, but MPs need to consider not only system 

conditions but other MPs activity. The empirical analysis results are applied to the 

decision making process by modeling the optimal bidding strategy problem via a 

conjecture model. In addition, since risk plays a central role in the decision making 

process in practice, risk is controlled through constraining the standard deviation of 

profit. Thus, the optimal bidding strategy problem is modeled as a mean maximization 
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while minimizing standard deviation. The numeric result shows the feasibility of the 

methods proposed. 
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CHAPTER TWO  

CONGESTION INFLUENCE ON BIDDING STATEGIES IN AN 

ELECTRICITY MARKET 

 

Much of the research on bidding strategies in an electricity market has focused on 

idealized situations where participants have limited market power and the transmission system 

is not constrained. Yet, congestion may act to effectively give a bidder market power, and 

consequently the ability to influence the market clearing price. In such a non-competitive 

situation, the bidding strategies of market participants will change. In this chapter, the 

electrical power market is modeled as an oligopoly market and the Cournot quantity model is 

applied to the bidding strategy problem.  The bidding process with congestion management is 

modeled as a three level optimization problem. A statistical methodology is then proposed as 

a solution for large systems. 

 

2.1 Introduction 

Understanding how market participants bid into the electricity market is of 

fundamental importance for designing electricity markets. Generally, the objective of market 

participants is to maximize their expected profit. Since the expected profit of each participant 

depends upon the joint actions of others, effective decision-making requires that each 

participant evaluate the effects not only of their own actions, but also of the actions 

undertaken by the others. The complexity of these interactions makes it difficult to determine 

a priori the strategies that market players will employ in bidding. 
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There have been numerous attempts to model bidding strategies using optimization 

methods. For example in [1], a Lagrangian relaxation method was used to determine the 

utilities’ optimal bidding and self-scheduling, and based on the New England ISO, a closed 

form solution was found assuming a simple bidding model. In [2], the power market was 

treated as an oligopoly, and by “guessing” competitor’s bidding curves, a stochastic 

optimization model was built. Richter and Sheble applied a genetic algorithm to GENCO 

strategies and schedules, in which an intelligent bidding strategy was developed using a GP-

Automata algorithm [3]. In [4], the combination of different pricing systems and curtailment 

methods was analyzed so as to understand methods to prevent taking advantage of network 

congestion. Hao studied the bidding strategies in a clearing price auction [5]. Based on the 

clearing price auction, the author drew the conclusion that the market participants have 

incentives to mark up their bids above their production cost and the amount of mark up 

depends on the probability of how frequently they win the bid.  

Ni, et al., presented a unified optimization algorithm for the bidding strategy problem given 

a mix of hydro, thermal and pumped storage units [6]. Their algorithm manages bidding risk 

and self-scheduling requirements. Gan and Bourcier modeled the market as a single-period 

auction oligopoly market and examined the influence of suppliers’ capacity constraints [7]. 

Shrestha, et al., analyzed the effect of minimum generator output [8]. Others, such as Ferrero, 

et al. [9], applied game theory to analyze transactions. In their work, spot price was used to 

calculate the payoff matrix and both Nash equilibrium and characteristic functions were 

applied to the bidding analysis. Congestion charges were not considered in their work. Hobbs 

and Kelley applied game theory to electric transmission pricing [10]. Bai, et al. applied the 

Nash Game equilibrium concept to the transmission system [11]. Yu, et al. [12] investigated 



 
Chapter Two 

 33

transmission limits and the influence of wheeling charges on competitive and gaming 

behavior. It was shown that wheeling charges and transmission line limits stimulate gaming 

phenomena.  

While providing valuable insight into transmission system impacts, none of these 

efforts have fully incorporated transmission constraints into the bidding strategies. In practice, 

congestion management is separate from the bidding process and as such difficult to analyze 

in a single bidding framework. When congestion occurs, a non-competitive situation, i.e., 

deviation from price-taking behavior, is far more likely to occur. Much of the literature has 

ignored congestion or included it as part of the bidding process, as in [13]. That is, most 

researchers have included the congestion as constraints within the market clearing process. 

This is not representative of typical market rules.  

In this paper, the bidding strategy problem is modeled as a three level optimization 

problem, and the congestion’s influence is explicitly expressed in the profit function. Game 

theory is applied to the optimal bidding strategies problem based on a UK pricing system. 

Congestion’s influence is modeled and the curtailment due to congestion is calculated via a 

separate least curtailment method [14]. Numerical examples clarify congestion’s influence on 

price and bidding strategies. Subsequently, these results are modified to reflect behavior based 

on a statistical study of bidding in the California market. 

 

2.2 Hierarchical Model of Bidding Process 

In a power clearing market, each participant submits a bidding curve to a power 

exchange, or similar organization. The exchange will decide the market clearing price (MCP) 
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based on these bids. The security coordinator then checks to ensure that the resulting bidding 

schedule is feasible. When there is a security problem, curtailment will be performed. If the 

uniform price and least curtailment algorithm are used, the bidding problem can be 

represented by a hierarchical optimization problem developed in this section. Other 

congestion management approaches may differ in details but the approach is similar. 

The electricity power market is in practice an oligopoly [15]. In an oligopoly market, 

competition among the market participants is inherently a setting of strategic interaction. 

Thus, the appropriate tool for analysis is game theory. In the electric power market, the 

participants submit their bids first, and then the MCP is found by matching the aggregate 

demand to the aggregate supply. The bidding strategies have a clear influence on the MCP 

and price cannot be treated as a simple function of demand. The Cournot quantity model [16] 

is applied to the bidding strategy decision problem here. Other oligopoly market models, such 

as Bertrand’s price competition model, may be more appropriate in specific situations. The 

Cournot model assumes that generators compete more by quantity than by price and generally 

holds well when capacity changes more slowly than price.   

2.2.1 Market Clearing Price 

To determine MCP, the exchange looks at the aggregated supply bid curve and the 

aggregated demand curve with the highest accepted bid the MCP. Assume for simplicity, the 

bidding curves are given as continuous curves of the form:           

iiiii pabpIC +=)(                                                                  (2.1) 

where )( ii pIC  is the incremental price for generating at ip by the ith generator, and ia and ib  are 

the bidding coefficients. Here, we further assume that these two parameters have the 
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following relations with the generator costs, 

        
ic

i

ic

i
i a

a
b
b

k ==                                (2.2) 

where ica  and icb are parameters from the generator’s actual cost function. The true costs are 

given by: 

2
2
1)( iiciiciciic papbcpC ++=                                    (2.3) 

Thus, the bidding parameter ik  represents the proportion above (or below) marginal 

cost that a generator i decides to bid, i.e., the markup. Certainly, more complex functions for 

strategies are possible, e.g., the use of random variables [17]. Here, the focus is on the 

congestion’s influence and mark-up provides more insight to the direct impact. Further, the 

strategies that might pursued by consumers are ignored and instead a simple demand benefit 

function )( ii pB is used to model their role as:  

25.0)( iiiiii papbpB −=                                 (2.4) 

where ip  is the load consumed at bus i. The market clearing problem is represented by the 

following social welfare maximization problem (ignoring losses): 
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                               (2.5) 

where L  and G  represent the set of loads and generators, respectively; and ip  is the load in 

MW the ith player delivers or receives in the bidding. The cost function )( ii pC here is derived 

from bidding curves: 

25.0)( iiiiii papbpC +=                                   (2.6) 



 
Chapter Two 

 36

Solving (2.5) yields the MCP, the generator outputs *
ip  and demands that provides 

maximum benefit. The MCP is simply:  

)(maxMCP *
iiGi

pIC
∈

=       (2.7) 

2.2.2 Congestion Management 

When the bidding process is finished, the system security is analyzed. If there exists a 

security problem, curtailments must be carried out, either by modifying the generation 

dispatch or reducing load. While there are many different kinds of curtailment algorithms, 

here, the separate curtailment algorithm [14] is applied. Assuming a DC load flow model [18] 

(those equations are omitted for brevity) and no load curtailment (since demand side bidding 

is not considered here), this is formulated as: 

max

0..

min

ijij

Gi
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pts
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≤

=Δ

Δ⋅⋅Δ

∑
∈

Δ                                        (2.8) 

where T
npppP ],,[ 21 ΔΔΔ=Δ L  is the vector of the supplier’s curtailment, so that 0>Δ ip  means 

the ith supplier must increase its output, the Pij are the line flows; and W is a diagonal weight 

matrix whose elements denote the participant’s willingness to pay to avoid curtailment. In this 

paper, the weights are set to 1, i.e., the objective of curtailment is the least curtailment. When 

a generator’s output is reduced, it should be compensated for possible lost profits by receiving 

some payment. This is found here as 

[ ])(MCPRC iiiiiii pbpbap Δ++−Δ=                                       (2.9) 

The supplier is compensated based on the philosophy that their bid represents their 

actual costs and so this payment will account for the actual loss of profit. Again, there are 
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other approaches to compensation but the approach here can accommodate such methods. The 

assignment of costs to consumers and the transmission company is not germane to the 

development here. 

2.2.3 Bidding Strategy 

When uniform pricing is applied in the system, all power originally purchased and 

actually run is paid at MCP. Thus, the profit function of participant i is: 

iiiiciii ppCpp RC)()(MCPProfit +Δ+−Δ+⋅=                                      (2.10) 

MCP used here is the solution to (2.5), ipΔ  is the curtailment due to the congestion 

from (2.8) and RCi is found from (2.9) and )( iiic ppC Δ+ is the generator’s production cost. For 

participant i, the best strategy is the bidding parameter ik  that will maximize profit. When the 

congestion problem is taken into account, the ith player’s problem is represented by the 

following maximization problem: 

iki

Profitmax                               (2.11) 

while satisfying (2.5)-(2.8). Note, the true production costs from (2.3) should be used in the 

solution. 

2.2.4 Problem Formulation 

The bidding strategy problem is now seen more clearly as a hierarchical optimization 

problem. For simplicity, the generator capacity limits are omitted at first. The inner solution 

for (2.7) is  
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Simple algebraic manipulations shows: 
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The revenue from curtailment simplifies to: 

2RC iicii pak Δ=                           (2.15) 

The individual’s bidding problem (2.11) can be solved directly by substituting (2.12)-

(2.15) if ipΔ  is known. Unfortunately, ipΔ  will not be known until after congestion 

management. In many power markets, the PTDF (Power Transfer Distribution Factor) [19] is 

used to decide the curtailment/redispatch. Here, we use the GSF (Generation Shift Factor) 

[19], which is essentially same except the focus is on the sensitivity between the generation 

and transmission line. Assume the GSF is denoted by ijk ,ρ : 

i

jk
ijk p

P
Δ

Δ
=,ρ                                                 (2.16) 

where jkPΔ is the flow change on line j-k, and  j and k are the initial bus and terminal bus of 

the line. When the DC power flow is employed, the GSFs are constants related to the system 

topology parameters. The curtailment of each generator can be represented as a linear 

function of overflow of the congested line and the GSFs. Let’s take one congested path as an 
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example, assume there is only congested path with jkjk PP <max , then (2.8) can be solved and 

rewritten as (the derivation is given in Appendix A): 
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Without congestion, there is no curtailment, i.e., the 0=Δ ip , so we can rewrite (2.17) in 

general form as: 
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2.3 Solution Method 

The difficulty in this problem stems from the conditional constraint (2.18). This differs 

from an ‘either-or’ type constraint that can be modeled as mixed integer problem since the 

existence of the constraint depends on the solution of the problem. Here, a method similar to 

branch and bound is employed. Given the rivals response, a series of ranges that divide a 

player’s response into congestion and non-congestion situations are found. Thus, the problem 

divides into a series of relaxations. A simple example illustrates the approach. 

Consider the system from [13], there are two supplies and one demand whose 

parameters are shown in the Fig. 2.1. The power flow on the only line will be 112 qP = . With a 

limit of power flow on this line of max
ijP  (MW), then the conditional constraint can be written 

as: 

),0min( 1
max

1221 pPpp −=Δ−=Δ                 (2.19) 
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Fig. 2.1 Example System 1 

For player 1, simple substitution (2.11) in (2.12) yields: 
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If max
121 Pp > , then there is a congestion problem, otherwise, there is no congestion problem. 

Solving max
121 Pp = , yields  
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This function )( 2
max

1 kk divides the problem into the congested and non-congested strategies. 

That is, if )( 2
max

11 kkk ≤ , then there is congestion. Thus, the bidding problem is now the 

following two optimization problems: 
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Given player 2’s bidding parameters, both (2.22) and (2.23) can be solved. The more 

profitable solution of these two solutions is player 1’s best response. Repeating for all of 

player 2’s possible strategies will determine player 1’s optimal responses. If this is duplicated 

for determine player 2’s optimal strategies, then the market equilibrium point can be found by 

comparing solutions. While this procedure appears to be viable, even for larger systems with 

many players, complex relationships in )(max
ji kk  may arise that render finding market 

equilibrium points extremely difficult. 

2.4 Numerical Results 

To analyze congestion’s influence on the bidding strategy and price, we first look at 

the situation when no congestion management is included. Subsequently, transmission system 

limits are included in the calculation. Comparing these two results highlights the influence of 

congestion on the optimal bidding strategy. 

2.4.1 Example 1 

Consider the system as shown in Fig. 2.1 but neglecting transmission line capacity.  

Fig. 2.2 and 2.3 plot the optimal values for k1 vs. k2, with and without transmission 

constraints, respectively. The maximum for k1 and k2 is assumed to be 3. A maximum value 
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acts similarly to a price cap and is needed since the demand is relatively inelastic leading to 

unbounded mark up without the constraint. With no transmission constraints, the pure Nash 

equilibrium is for both players to choose to bid at 1.15 times marginal cost. When an 80 MVA 

transmission line capacity is included, the optimal strategies change radically. 

0 0.5 1 1.5 2 2.5 3
0 

0.5 
1 

1.5 
2 

2.5 
3 

Nash Equilibrium Point 

1k

2k

)( 21 kk

)( 12 kk

 

Fig. 2.2 Example 1 – Optimal strategies without transmission limit 
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Fig. 2.3 Example 1 – Optimal strategies with transmission limit 

As the constraint comes into force, this translates into sudden changes in strategy, i.e., 

a large variation in both k1 and k2. A pure Nash equilibrium does not exist. For player 1, 

values of k1 in [1.36, 1.69] result in identical profit when player 2 chooses to play at k2=1.78. 

Similarly, for player 2, values of k2 in [1.255, 3.0] result in identical profit when player 1 

chooses to play at k1=1.553. This is similar to the result in [1]. Thus, one should consider the 
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possibility of a mixed strategy equilibria. The mixed strategy for this problem is: player 1 will 

choose to play at k1=1.36 with probability 0.53 and k1=1.69 with probability 0.47, and player 

2 will choose to play at k2=3.0 with probability of 0.80 and k2=1.25 with probability of 0.20.  

An approach to computation of the mixed strategy equilibrium point is given in Appendix B. 

The above simple example shows that generator 2 should bid at the maximum feasible 

price most of the time.  This means that player 2 is willing to forego any sale in the first round 

bid and take profits from the congestion round. Notice in this system, only player 1 faces a 

congestion problem, i.e., since 112 qP = , the maximum output of generator 1 can only be max
12P . 

There is no transmission limit for generator 2. Thus, no matter how high generator 2 bids; it 

will finally win some bid when the curtailment is taken into account. When generator 2 

expects congestion, the higher bid will tend to increase MCP. The system’s potential 

congestion guarantees player 2 wins MWPD max
12− . This “biased” congestion situation (i.e., the 

congestion imparts more constraints on certain players) gives player 2 significant market 

power. 

2.4.2 Example 2 

In this example, both of the generators face transmission limits. Let the parameters of 

generators and loads remain the same, but the network is now the system [20] shown in Fig. 

2.4. When the transmission system limits are not included, the system will have same Nash 

Equilibrium at 15.121 == kk  as the former system. The line flows will be: 

2112 1.06.0 qqP −=  

3123 9.06.0 qqP +=  

2113 1.04.0 qqP +=  
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                                                   2
1 01.010)( pppC +=  
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Fig. 2.4  Example System 2 
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Fig. 2.5 Example 2 – Optimal strategies with transmission limit 

with limits of:  

78max
12 =P  

225max
13 =P  

300max
23 =P  

The result of the response of a player versus its rival is shown in Fig 2.5. There is a jump in k2 

from 3 to 1.16 when player 1 plays at 1.18. Again, there is no pure Nash Equilibrium, so a 

mixed strategy equilibrium point is sought. Since k1 is continuous, k1=1.18 with probability 

1.0. The best response of player 2 is to choose to play at 3 with probability of only 0.09, and 

at 1.16 with probability of 0.91. 
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Relative to the first example, both generators tend to decrease their bidding price as 

they are both at risk of losing a sale due to the congestion problem. Both generators will 

increase their bidding price if there is any possibility of congestion. Notice also that the more 

serious the congestion, the higher the bidding price.  When the transmission system is “fair” 

to each market participant, i.e., there is no obvious congestion problem for some participants, 

the market participants will have more incentive to bid at their marginal cost. 

2.4.3 Example 3 

A modified IEEE-30 bus system from [9] is applied in this example with two 

dominant market participants. System data and line limits can be found in [21]. Table 2.1 lists 

the respective cost functions. 

TABLE 2.1 

Generator Cost Functions 

Cost  Coefficients       Max Min Market 

Participant 

Bus

)(ia  )(ib  )(ic  [MW] 

A 1 

2 

22 

0 

0 

0 

2 

1.75 

1 

0.02 

0.0175 

0.0625 

0          80 

0          80 

0          50 

B 13 

23 

27 

0 

0 

0 

3 

3 

3.25 

0.025 

0.025 

0.00834

0          30 

0          40 

0          55 
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Fig. 2.6 Example 3 – IEEE-30 bus system with line limits 

For simplicity, the benefit function for all demands is assumed to be identical. 

Specifically: 

202.0136.18)( iiii DDDB −=  

When the congestion is not included in the bidding process, there is a pure Nash 

equilibrium point at (1.27, 1.19). Considering congestion, the result is as shown in Figure 2.6. 

Similar to the previous examples, the pure Nash Equilibrium point disappears with the 

introduction of the congestion’s influence. The mixed strategy equilibrium point is that player 

A chooses to play at 41.11 =k with probability 1.0; player B chooses to player at 0.32 =k  with 

probability equal to 0.23, and at 13.12 =k  with probability 0.73. 

Comparing these results with the simpler cases, player A has more incentive to play 

high under the influence of congestion while player B tends to remain near the pure Nash 

equilibrium point. An examination of the congestion at the Nash equilibrium points shows 

that the transmission line (2-6) is overloaded. The generator at bus 2 belongs to player A 

while bus 6 is an intermediate bus, which connects with several load buses. Thus in this 



 
Chapter Two 

 47

situation, player A has more possibilities to force congestion and incentive to increase mark 

up.  

Understandably as the system becomes more complex, finding the precise influence of 

congestion on the bidding strategy becomes more difficult. The possibility of more than one 

mixed strategy equilibrium point arises and other influences arise which make it is more 

difficult to apply the results. Thus, the next section introduces a new bidding strategy using 

statistics but following the basic form as the previous.  

2.5 New bidding strategy 

The above examples show analytically how congestion influences the bidding strategy 

problem, and at least for these scenarios, shows pure Nash equilibrium points are less likely.  

Unfortunately, even for these idealized problems, the optimal strategies are difficult to find. 

For a larger system with many participants and where precise information about transmission 

limits is more difficult to determine, it may not be feasible to construct a practical 

formulation. The authors’ analysis of actual bidding behavior in the California market will be 

used to modify the approach in the previous section.  Specifically, the optimal strategy 

problem is simplified to reflect the information that would be most readily available for all 

participants.  A few observations help clarify the approach. 

• Due to the complexity, and limited knowledge of the transmission limits by most 

participants, congestion is modeled as the probability of congestion. This probability is 

based on the percentage of time that congestion exists during an operating day. The 

participants are assumed to be aware of this general risk of congestion, and in fact, this 

can be determined from historical data. 
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• The generators have different relative locations to the congestion zones. So a given 

congested path will tend to influence some generators more than others and that may be 

reflected by either higher or lower bids.  

The analysis here looks at a base line when the possibility of congestion is low and 

compares this to congested time periods. The average bidding price is adopted as the index of 

bidding strategy and then the correlation coefficient between this index and congestion 

percent based on the day-ahead market are calculated. This coefficient can then be used as the 

indicator of adjustments due to the congestion. Here, we assume that a participant seeking to 

take advantage of congestion will modify k based on a linear function of the probability of 

congestion. For the examples here this is given as 

)congestion(275.0 Pk =Δ      (2.26) 

The following strategy is then employed. The bid will decrease k  for all those bids 

less than the optimal output ∗P and increase k  for all those bids greater than ∗P . By doing do, 

the bidding output (including MCP and ∗P ) without considering congestion’s influence will 

remain unchanged, i.e., the optimal strategy is chosen. When there is congestion, 

compensation will increase due to the difference between MCP and the bid price increase, and 

hence there will be greater profit. Also, since the higher the congestion possibility, the larger 

kΔ , greater profits are realized at times of high congestion. Fig. 2.7 shows the new bidding 

strategy. Notice the result has a similar characteristic to the earlier example.  
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Fig. 2.7 New bidding strategy 

From the earlier examples, the original optimal point is seen to be 15.1*
2

*
1 == kk  and 

the corresponding outputs are 08.101*
2

*
1 == PP  MW. When the 80 MVA line power limit is 

introduced and assuming a simple uniform distribution, the probability of congestion in the 

system is  

%53.26
80

800781.101)congestion( max
12

max
12

*
1 =

−
=

−
=

P
PPP    (2.27) 

Thus,  

%3.7=Δk    

08.1*
1

1 =Δ−= kkk     (2.28) 

22.1*
1

2 =Δ+= kkk   

This new bidding strategy is compared with the theoretical mixed Nash equilibrium 

and shown in Table 2.2. The results show that in the “biased” congestion case, when player 2 

chooses to bid at 3.0, the profits of both players will be significantly higher than in the 

proposed probabilistic approach. This case also requires a significant amount of load 

curtailment so the result is not surprising. The statistical approach shows similar results to that 

 

Bidding Strategy 
w/o congestion

New bidding

P* 

kkk Δ − = 1  

kkk Δ+=2  

MW 

k   
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obtained in the “fair” congestion case. 

TABLE 2.2 

STRATEGIES FOR ALL FOUR APPROACHES  

Player  1 Player 2  

k* P*(MW) Profit k* P*(MW) Profit 

No congestion 1.15 80 252.42 1.15 122.17 278 

1.36 67.3 320 1.255 114.74 491.39 “Biased” 
Congestion 
(mixed-strategy, 
two possibilities) 

1.36 80 761.71 3.0 72.99 833.68 

“Fair” Congestion 1.18 94.19 290.18 1.16 105.53 313.16 

Statistical  (discrete 
strategy) 

(1.08,1.22) 80 271.5 (1.08,1.22) 122.17 350.5 

Note: We list both possibilities for player2 since they have very similar probability in case 
2; while in case 4, the bidding strategy is a discrete strategy. 

 

2.6 Conclusion 

Congestion in the transmission system may allow some participants to enjoy effective 

market power, resulting in higher prices. This chapter analyzed this mechanism in the 

framework of game theory. We show that the deviation from idealized price-taker behavior is 

more serious when some market participants suffer disproportionately from the congestion 

problem. Based on this theoretical analysis, a probabilistic bidding methodology is proposed 

that shows similar profits to the game theoretic approach. Due to the complexity of the 

calculations in the theoretical approach, the statistical analysis methodology has clear 

advantages. We also believe these strategies reflect actual behavior in existing markets. Our 

on-going research is focusing on how bids change given the likelihood of congestion.  
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CHAPTER THREE 

ANALYSIS OF PRODUCER BIDDING STRATEGIES FROM 

ELECTRICITY MARKET DATA 

Modeling the bidding problem by the proposed mathematical model required 

extensive simplifications and numerous assumptions. It is necessary to consider historical data 

for verification and deeper understanding of the decision-making process. This chapter 

focuses on the analysis of producer bidding strategies by an empirical technique. Bidding in 

the California ISO (CAISO) real-time energy is analyzed statistically and through a 

combination of correlation analysis, linear regression models and a non-linear estimator 

(neural network). The impact of gas price, system load and congestion on the market overall 

supplier bidding behavior and zonal energy price are investigated. This analysis provides 

some insight to the optimal bidding strategy approach to be developed in the Chapter IV. 

3.1 Introduction 

Among the important functions in an electricity market is the importance of modeling 

and forecasting electricity prices. Under regulation, retail prices are set by state public utility 

commissions (PUC’s) so price variation is minimal and under the strict control of regulations. 

Under deregulation, price levels and variation become a concern and the number of energy 

based financial products has exploded. The recent experience in California has illuminated the 

importance of understanding electricity price volatility and the need for implementing 

hedging strategies. 

Before a market participant takes action in the market, it is necessary to predict what 

other market participants will do, perhaps collectively, and then, according to this prediction, 
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choose the best response to maximize profit. Market conditions such as, load level and the 

possibility of congestion, affect energy prices and profit. Successfully predicting rival 

behavior as well as the market condition is the foundation of the optimal bidding strategy 

problem.  

A number of researchers have empirically investigated energy price and bidding 

behavior prediction. For example, Knittel and Roberts [1] present an empirical analysis of 

deregulated electricity prices by investigating the behavior of California’s deregulated 

electricity prices. They draw the conclusion that the existing financial models of asset prices 

fail to capture the extremely erratic nature of electricity prices. Non-Markovian specification 

in conjunction with exogenous information, such as, weather, is a necessary starting point for 

practical application. This may be unsurprising to the power engineers who are very familiar 

with the importance of weather, particularly temperature, on system operating conditions.  

Wolak [2] presented an empirical method to derive a model of bidding behavior in a 

competitive electricity market that incorporated various sources of uncertainty and the impact 

of the electricity generator’s position in the financial hedge contract market on its expected 

profit-maximizing bidding behavior. Borenstein, et al. [3], suggest that traditional prediction 

and estimation by concentration measures is not suitable in the electrical power market. An 

alternative method based on market simulations and the use of plant level data is proposed in 

their work. They found that traditional reliance on concentration measures is likely to be 

inadequate for the task. This is in part because concentration measures frequently depend 

upon historical data, such as, energy sales and transmission congestion, which are of 

questionable value since the incentives of many firms will change significantly after 

restructuring.  
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Borenstein, et al. [4], examine the degree of competition in the market from June 1998 

to October 2000, just before the market effectively ceased operation. They found that 

significant departures from competitive pricing and observed that these departures were most 

pronounced during the highest demand periods, which tend to occur during summer. They 

found that 60% of the change in wholesale market expenditures, which rose from about $2.1 

billion in summer 1999 to over $9 billion in summer 2000, could be attributed to market 

power. Jerko, et al. [5], studied dynamic interactions between six electricity spot markets in 

the western United States using time series analysis and directed graphs. Results show the 

western trading region to be highly integrated. The California market appears to be the driving 

force for prices in contemporaneous time. Seasonal analyses suggest there are seasonal 

differences in the short-run price discovery mechanisms. In the longer run, price dynamics 

appear to be similar between seasons. The mid-Columbia spot market appears to be the 

dominant market in the long run in both seasons. 

Herguera [6], in examining spot markets in England and Wales and the Nordic 

countries, notes there is significant differences in the evolution of prices and volume traded. 

Yet in the United States, prices may not be as transparent because most trades are bilateral 

and futures trading volume is limited. DeVany and Walls [7] examined daily, peak and off-

peak electricity spot prices during 1994 and 1996 using an error correction model on 11 

regional markets in the western United States. They find spot markets are generally non-

stationary and co-integrated. Peak prices at Palo Verde, conversely, are co-integrated with the 

off-peak price at only one other market, suggesting transfer capacities are limited during peak 

periods in this part of the western grid. 

DeVany and Walls [8] use a vector autoregressive model to obtain impulse response 
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function and variance decomposition. Their impulse responses indicate shocks to a market 

impact neighboring markets first and then more distant locations along the transmission 

network. Variance decompositions suggest the California-Oregon border as one of the most 

important spot markets in determining prices throughout the network. Szkuta [9] used a three-

layered Artificial Neural Network (ANN) paradigm with back-propagation for short-term 

system marginal price prediction. Stoft [10] analyzed the operation reservation and price cap’s 

influence on the price spike. Stoft suggested that the high prices observed in present-day 

power markets do not reflect the desire of consumers for reliability, but reflect short-run 

regulatory and engineering policy. Munksgaard [11] analyzed the external environmental 

cost’s such as CO2 tax influence on the energy prices. They proposed a common producer tax 

method on power production to increase market efficiency.  

Most studies of electricity pricing have investigated market structure and power, 

reasons for deregulation, or impact of deregulation on price. These studies tend to focus on 

how to forecast the energy price according to the marginal generation cost. This requires 

information of the system operation, which in practice can only be performed by the system 

operator. But to understand bidding strategy, it is necessary to see the problem from the MP 

point of view. That is, an MP makes decisions based on the limited information they are able 

to obtain. Here, the analysis is separated into two processes: prediction of the price and rivals’ 

strategy and the determination of one’s own bid.  

This chapter provides a brief summary of the CAISO market processes. This is 

followed by analysis of generator bidding behavior and price prediction. All analysis is based 

on the CAISO real-time energy market. 
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3.2 California Electricity Market  

The competitive electric power market of the State of California began operation on 

March 31, 1998 with the CAISO and the now bankrupt Power Exchange (PX) as the main 

operationally independent market facilitators.  The three major utilities Pacific Gas and 

Electric Company (PG&E), Southern California Edison and San Diego Gas and Electric 

Company continued to own and maintain their transmission systems. In California, the ISO 

market participants are called Scheduling Coordinators (SCs). SCs are the sole point of 

contact with the ISO and coordinate all the scheduling activities [12]. 

 

3.2.1 CAISO Market model 

There are two main market structures: bilateral model and pool model. The bilateral 

model is based on the principle that a free market structure is the best way to harvest the 

benefits of competition for consumers of electricity [13]. In this model, consumers and 

suppliers independently arrange the transaction with one another based on their own interests. 

In the pool model, all generators and customers submit their bid to the pool, and the pool 

operator determines the price and quantity. The fundamental difference between the pool 

model and the bilateral model is the how the MPs bid their generation and demand. In the 

pool model, the transactions are through the pool operator, while in the bilateral model, the 

transactions are made directly through suppliers and demands. California chose the bilateral 

model, in which MPs or the SCs manage their own portfolios (resources and loads) and 

ensure that this portfolio is balanced. They also participate in the congestion management 

system on a voluntary basis.  



 
Chapter Three 

  59

The CAISO operates three markets, a day-ahead market consisting of 24 hourly 

schedules, an hour-ahead market pertaining to a specific operating hour and a real-time 

energy imbalance. The ISO’s Real Time Market for Imbalance Energy is an essential 

mechanism whereby the ISO controls the actual dispatch of resources to ensure the reliability 

of the transmission grid that it operates.  

 

3.2.2 Pricing in CAISO 

In CAISO, the entities directly participating in the wholesale market are Scheduling 

Coordinators. The schedules submitted by SCs to the Day-Ahead and Hour-Ahead market are 

“balanced”. California ISO’s primary mechanism for maintaining a balance between loads 

and generation in real time is the real-time market, which involves the dispatch of generation 

based on the real time Energy bid prices through the Balance Energy and Ex-post Pricing 

(BEEP) system. If increased supply is needed to match actual loads with generation, bids for 

additional generation are selected in increasing order of price and dispatched thought the 

BEEP system. If decreased supply is needed to match actual loads with generation (i.e., 

supply exceeds demand in real time), bids to decrease generation are selected in decreasing 

order of price through BEEP system. Bids available for dispatch through the BEEP system 

include the bids for incremental energy and ancillary services such as spinning, non-spinning 

and replacement reserve as well as supplemental energy bids for incremental and decremental 

energy submitted within and outside ISO system. The BEEP system ranks all such bids in 

merit order based on the price in order to create the aggregate supply curve of real time 

energy. The highest bid for incremental imbalance energy or lowest bid for decremental 

imbalance energy actually selected by the BEEP system for dispatch is the MCP.  
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In the absence of real-time congestion between the ISO’s active Zones (SP15, NP15 

and ZP26), the BEEP prices apply to all real-time imbalance system-wide. When real-time 

inter-zonal congestion occurs, the BEEP stack is constructed and applied separately for each 

zone and produces different prices for the zones on either side of the constrained interface. In 

this situation, the ISO frequently needs to decrement resources in one zone, while 

incrementing resources in the other zones to relieve the congestion. The adjustment bid is 

used to calculate the optimal curtailment for the system but the adjustment bid does not affect 

the MCP.  

 

3.2.3 Congestion Management 

CAISO congestion management was divided into two parts: inter-zonal congestion 

management and intra-zonal congestion management. Zones are defined as areas where 

congestion is infrequent and prices can easily be computed on an average cost basis. By 

definition, intra-zonal congestion is infrequent and impossible to predict while inter-zonal 

congestion is frequent, easy to predict and has great impact [13]. For example, the path 15 

connecting two zones NP15 and SP 15 is frequently constrained. CAISO’s congestion 

management process can define new zones when intra-zonal congestion becomes frequent and 

inefficiently prices at average cost [13]. In this way, path 26 was created around 2002 by 

dividing the old SP 15 into two zones [14]. Similarly, zones can be combined if the inter-

zonal congestion becomes infrequent and the average price could efficient reflect the cost.  

In intra-zonal congestion management, only the resources inside the zone are treated 

as a resource in congestion mitigation, and a simplified DC power flow equation is used in the 

optimization. Intra-zonal congestion management reschedules the resources within each zone 
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using the SC’s incremental and decremental bids. In inter-zonal congestion management, a 

centralized optimization problem is formed and only the interconnections between zones are 

included in the objective to mitigate the congestion. CAISO relieves inter-zonal congestion by 

reducing scheduled energy production on one side of the interface and increasing generation 

(or decreasing load) on the other side while keeping the SC profile separate, i.e., each SC’s 

total load/generation MW remains the same and the SC manages its own reschedule to keep 

load and generation balanced.  

 

3.3 Generator bidding strategy: analysis and prediction 

3.3.1 Modeling bids 

Before beginning any analysis, it is necessary to discuss how to model an MP’s 

bidding strategy. As discussed before for the CAISO, a bid is represented by MW-Price pairs, 

i.e., a set of data indicating an MP’s willingness to supply energy at given prices. To limit the 

number of inputs in the price forecast process, the price segments for a bid must be restricted. 

A straightforward approach is to measure or estimate some central tendency measure of an 

MP’s bidding. Statistically, there are three common ways to represent a “center” of a sample: 

mean, median and mode. Mean is a good index for a normal distribution while median tends 

to be better for skewed samples (a distribution is skewed if one of its tails is longer than the 

other [15a]). In this thesis, the bidding curve is represented by MW-Price pairs (up to 10 pairs 

in CAISO) and the weighted average bidding price (ABP) is used to represent the bidding 

behavior: 
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There are two possibilities in a real time energy market, either the supply exceeds the 

demand and or demand exceeds supply. If supply exceeds demand then one applies the 

incremental MCP and otherwise one must employ the decremental bids. In this thesis, only 

incremental bids are used in the ABP calculation as in practice, the scheduled load is typically 

less than actual load (e.g., from Feb 1, 2000 to Dec 24, 2000, this held for 6113 out of 7872 

hours). 

 

3.3.2 Bidding Behavior Analysis 

In order to allow any analysis to be manageable given the large number of generators 

in the market, it would be helpful if the suppliers could be grouped or classified based on 

similar behavior. Intuitively, one expects a link between different MP’s bidding behavior but 

this should be verified. As a simple test, correlation coefficients and a significance test were 

calculated for a randomly selected set of generators. Since normal distributions are not 

assumed, the distribution-free rank correlation coefficient [15] and F-test are applied here 

(and throughout this chapter). Bidding data is based on the ISO published offers. When 

CAISO publishes this data, a pseudo ID called resource ID (ResID) is used to represent each 

generator/load to obscure the actual entity. As we do not know the actual generation units,  20 

ResID are randomly chosen and the ABP is calculated. Using these ABP to perform 

correlation calculations, there are total of 190 correlation coefficients. Among the 190 

correlation coefficients calculated, only 44 failed to pass a significance test. This simple test 

indicates significant correlation among bids (full results are listed in Appendix C) and 

suggests that it may be possible to group generators based on this relationship.   
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Further, the generators are group based on the correlation coefficient relation without 

relying on detailed knowledge of the generators, i.e., since we assume no specific information 

(e.g., fuel type, location) about these generators. If more information is available, then it could 

be used to improve the bids.  Accordingly, the correlation coefficients between all bids and 

the four major inter-connection transmission lines (COI, Path 15, Palo Verde and Path 26) are 

calculated. The natural gas price is also included to help isolate the gas price influence. The 

following tables show the relevant correlations and p-values: 

Table 3.1: Statistical analysis of bids and gas prices  

 Hour 2  Hour 9  Hour 17  
Res ID R P R P R P 
199871 -0.618 0 -0.425 0 -0.212 0 
192115 -0.121 0.045 -0.003 0.963 0.036 0.554 
282606 -0.471 0 -0.558 0 -0.24 0 
108576 -0.578 0 -0.324 0 -0.001 0.985 
106100 -0.696 0 -0.675 0 -0.683 0 
599841 -0.692 0 -0.672 0 -0.679 0 
715337 -0.318 0 -0.004 0.948 0.101 0.094 
104351 -0.454 0 -0.261 0 0.131 0.03 
142494 -0.267 0 -0.288 0 0.024 0.692 
494629 -0.723 0 -0.698 0 -0.707 0 
918588 0.455 0 0.494 0 0.496 0 
102611 -0.434 0 -0.122 0.043 -0.058 0.34 
205249 0.256 0 -0.541 0 -0.545 0 
206887 -0.486 0 -0.487 0 -0.519 0 
453332 -0.225 0 0.027 0.662 0.076 0.212 
194543 -0.257 0 -0.259 0 -0.141 0.02 
168177 -0.342 0 -0.25 0 -0.142 0.018 
136212 -0.056 0.355 0.287 0 0.364 0 
461530 0.746 0 0.695 0 0.699 0 
475056 -0.222 0 0.648 0 0.533 0 

Note in this and all subsequent tables in this chapter:  1) a p-value >0.05 assumed non-significant and is shown 
in boldface; and 2) all data is rounded to three decimals. 

 
Most generators show significant correlation with the gas price, especially during off-

peak hour. It is interesting to see that during the peak (hour 9 and 17), more bids tend not to 

reflect the gas price influence. This appears reasonable since off-peak, more generators would 
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be likely to bid at the marginal cost reflecting the gas price. During peak hour, other factors 

may determine the bid. Interestingly, the correlations are mostly negative. Considering that 

hydro constitutes around 50% of total capacity and that hydro power has little relation to gas 

price, one has to assume this reflects some strategizing by these units. Specifically, the hydro 

units may tend to bid lower than gas units to ensure sales during peak times, thus, earning 

more overall profit. To test this hypothesis, we further examine the correlation coefficient of 

bids with total load (i.e., system daily total load as published by CAISO website).  

Table 3.2: Statistical analysis of bids and daily total load 

 Hour 2  Hour 9  Hour 17  
ResID R P R P R P 
199871 -0.232 0 -0.018 0.77 0.129 0.032 
192115 0.056 0.358 0.206 0.001 0.247 0 
282606 -0.288 0 -0.385 0 -0.1 0.097 
108576 -0.224 0 0.059 0.329 0.225 0 
106100 -0.379 0 -0.294 0 -0.285 0 
599841 -0.509 0 -0.392 0 -0.396 0 
715337 -0.197 0.001 0.134 0.027 0.265 0 
104351 -0.338 0 -0.15 0.013 0.151 0.012 
142494 -0.141 0.02 -0.174 0.004 0.129 0.032 
494629 -0.48 0 -0.351 0 -0.36 0 
918588 0.24 0 0.283 0 0.198 0.001 
102611 -0.249 0 0.046 0.45 0.138 0.023 
205249 0.413 0 -0.263 0 -0.348 0 
206887 -0.053 0.385 -0.052 0.393 -0.088 0.144 
453332 -0.09 0.138 0.188 0.002 0.278 0 
194543 -0.013 0.837 -0.042 0.493 -0.02 0.739 
168177 -0.105 0.084 -0.044 0.469 -0.02 0.743 
136212 -0.034 0.576 0.324 0 0.381 0 
461530 0.611 0 0.579 0 0.568 0 
475056 -0.076 0.208 0.336 0 0.38 0 

 

This simple test shows that on-peak bids tend to be influenced by the total load in peak 

load hours. Moreover, these bids are positively correlated so that prices increase with total 

load and clearly the MPs are considering total load when submitting bids.  
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Next the impact on bids of congestion on the four major interconnections (COI, Path 

15, Palo Verde and Path 26) is analyzed. No significance was found relative to Palo Verde 

and Path 26 congestion so only Path 15 and COI are shown here. Full results are shown in 

Appendix C.  

From Tables 3.3 and 3.4, we see that the relation between bids and congestion 

probability on Path 15 and the COI is strong and consistent for most generators. Note that 

especially for Path 15 bids show a strong relation with the congestion possibilities in all three 

hours. One can also discern a peak/off-peak pattern. For example, the resource 136212  shows 

a significant positive relation in both peak hours but nothing significant during off peak (hour 

2). This holds, with a few more exceptions, for the COI as well.  

Table 3.3 Statistical analysis of bids and path 15 congestion 

 Hour 2  Hour 9  Hour 17  
ResID R P R P R P 
199871 -0.571 0 -0.322 0 -0.249 0 
192115 -0.277 0 -0.119 0.048 -0.023 0.7 
282606 -0.502 0 -0.444 0 -0.095 0.115 
108576 -0.544 0 -0.287 0 -0.134 0.026 
106100 -0.5 0 -0.411 0 -0.404 0 
599841 -0.634 0 -0.605 0 -0.555 0 
715337 -0.341 0 -0.103 0.088 0.016 0.789 
104351 -0.438 0 -0.198 0.001 0.199 0.001 
142494 -0.286 0 -0.166 0.006 0.131 0.03 
494629 -0.659 0 -0.569 0 -0.535 0 
918588 0.432 0 0.496 0 0.43 0 
102611 -0.42 0 -0.185 0.002 -0.075 0.213 
205249 0.06 0.319 -0.342 0 -0.388 0 
206887 -0.434 0 -0.384 0 -0.422 0 
453332 -0.275 0 -0.116 0.056 0.02 0.741 
194543 -0.314 0 -0.344 0 -0.279 0 
168177 -0.332 0 -0.358 0 -0.286 0 
136212 -0.002 0.968 0.295 0 0.304 0 
461530 0.666 0 0.576 0 0.577 0 
475056 -0.137 0.023 0.52 0 0.486 0 
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Table 3.4 Statistical analysis of bids and COI congestion 

 Hour 2  Hour 9  Hour 17  
ResID R P R P R P 
199871 0.186 0.002 0.02 0.741 -0.074 0.222 
192115 0.094 0.121 -0.18 0.003 -0.077 0.205 
282606 0.242 0 0.095 0.116 0.012 0.844 
108576 0.111 0.068 -0.038 0.526 -0.125 0.038 
106100 0.23 0 0.03 0.623 0.053 0.386 
599841 0.146 0.015 -0.021 0.729 0.014 0.815 
715337 0.134 0.027 -0.175 0.004 -0.178 0.003 
104351 0.149 0.014 -0.131 0.03 -0.167 0.005 
142494 0.187 0.002 -0.081 0.183 -0.145 0.017 
494629 0.285 0 0.053 0.386 0.076 0.212 
918588 -0.127 0.035 -0.019 0.756 -0.005 0.935 
102611 0.14 0.02 -0.194 0.001 -0.092 0.13 
205249 -0.127 0.036 0.182 0.002 0.246 0 
206887 0.107 0.077 -0.215 0 -0.205 0.001 
453332 0.125 0.039 -0.206 0.001 -0.122 0.044 
194543 0.049 0.419 -0.194 0.001 -0.188 0.002 
168177 0.082 0.177 -0.215 0 -0.223 0 
136212 -0.105 0.084 -0.151 0.012 -0.274 0 
461530 -0.23 0 -0.139 0.021 -0.156 0.009 
475056 -0.043 0.481 -0.072 0.235 -0.249 0 

 

During peak load hours, fewer generators show significant relation with the 

congestion. This may be due to more generators during peak tending to bid based on load. 

Examining the correlation coefficient more closely shows that there are more positive 

relations with Path 15’s congestion. For example, resource 475056 shows negative significant 

relation with Path 15 off-peak and positive on-peak.  

So far, relationships have been examined between different generator units but it also 

interesting to observe how a particular MP bids relative to itself at different hours. To see this, 

we calculate the correlation coefficient between each generator’s ABP at different hours, a 

few such results are shown in Table 3.5 with the full results listed in Appendix C. 
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Table 3.5: Statistical analysis of bids at different hours 

Hour\ResID 205249 136212 461530 475056 avg_delta 
(2,17) -0.06 0.72 0.50 -0.12 0.52 
(2,9) -0.02 0.73 0.70 -0.15 0.65 
(9,17) 0.70 0.98 0.84 0.70 0.80 

 

From the above table, we can see that in most of cases, the bids submitted by one 

generator shows significant correlation between different hours, especially among peak hours, 

the smallest correlation coefficient is 0.7. Still, there are a few exceptions. For example, 

generator 205249 shows only a small correlation between hour 2 and the other hours.  

The above analysis, while far from comprehensive, has confirmed that clear patterns in 

bidding behavior can be observed even with very limited information. The general patterns 

observed were:  

1. Generators tend to bid more consistently during off-peak, typically relative to 

marginal cost.  

2. During peak hours, bids tend to depend more on load level and less on fuel price; one 

can assume the generators are bidding off of marginal cost in order to earn more profit 

at these hours.  

3. Similarly with regards to congestion information during off-peak, bids tend to be 

directly influenced by the congestion possibility; while during peak hours, the bidding 

strategy is more volatile. 

 

3.3.3 Bidding Prediction by Linear Regression 

Section 3.2 showed some simple general patterns found by statistical analysis but clearly 

such relationships may be non-linear and correlation analysis can give misleading 
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conclusions. In this section, more careful analysis is applied to support the previous 

conclusions. To simplify the work, the analysis concentrates on only three units, namely:  

136212, 461530 and 475056. 

Since bidding is a complex decision problem, one does not expect to capture all the 

factors by a simple linear approach. To see this, bids are first predicted using linear 

regression. The input variables include: gas price, congestion probabilities and total load. The 

percentage of variance (R2) that can be explained by the input variables is adopted to show the 

goodness of fit. Results are shown in Table 3.6 (see Appendix C for the complete regression 

results). 

Table 3.6: Linear regression for example generators - R2 for bids 

ResID Hour 2 Hour 9 Hour 17
136212 19.80% 36.00% 37.90% 
461530 26.00% 12.40% 12.00% 
475056 4.50% 38.60% 34.10% 
Overall 

Average 26.50% 31.90% 48.70% 
 

These results show that even in the best case the variance explained by these variables 

is less than 50%, which means that the linear regression is cannot successfully capture 

behavior based on these variables. One possibility to improve the regression result and 

capture some of the non-linearity is to use a piece-wise linear function. Here, the weekday and 

weekend bids are separated. The Kruskal-Wallis distribution free significance test [16] was 

used to test if such a grouping shows significance. Results are shown in table 3.7: 
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Table 3.7: F-value and P-value from K-W testing for weekdays vs. weekends 

ResID Hour 2 Hour 9 Hour 17 
136212 (0.4865, 0.8182) (0.5719,0.7519) (0.2566, 0.9563) 
461530 (0.2259, 0.968) (0.4848,0.8195) (0.4995, 0.8085) 
475056 (0.3382, 0.916) (0.6477,0.6919) (1.2627, 0.2749) 
Overall 

Average (0.2492, 0.959) (3.2099,0.000) (0.3151, 0.9288) 
 

Results show that all p values are great than 0.05, so from a statistical point of view, 

the proposed grouping is not important. Another possible grouping would be according to 

relative load level. To do so, one must decide on the appropriate separation of load levels. It is 

possible to find the best separation based on explained variance but this is a difficult 

optimization problem and more difficult than need be for the purposes here. Here, repeated 

trials were used to a “good” solution while realizing a better solution might be possible. The 

following split was formed on the total daily load:  

    Total load < 599.7 GWh;          with 137 cases 

599.7 GWh < Total load < 645 GWh;   with 73 cases 

Total load > 645.00 GWh;     with 64 cases 

As previously, the Kruskal-Wallis distribution free significance tests was used to test 

if this grouping shows significance. The results are shown in Table 3.8. For hour 2, only 

generator 461530 shows significance. For hours 9 and 17, the proposed grouping does satisfy 

significance and suggests that at peak hour, grouping by load level helps the predictive 

capability. As such, the linear regression was applied for this grouping with the results shown 

in Table 3.9. Still, comparing these results with the previous, there is no significant 

improvement in explained variance. 



 
Chapter Three 

  70

Table 3.8: F-value and P-value from K-W testing for load levels 

ResID Hour 2 Hour 9 Hour 17 
136212 (2.6693, 0.071131) (17.8288,0) (24.3134, 0.000) 
461530 (64.9827,0.00) (54.4399,0.000) (49.5588,0.000) 
475056 (1.5254, 0.219404) (15.8178,0.000) (21.2268,0.0000) 
Overall 

Average (1.6564, 0.192756) (25.7403,0.000) (33.8312,0.0000) 
 

Table 3.9: Linear regression results for load grouping during peak - R2 for bids  

 Hour 2  Hour 9   Hour 17   
ResID Low Middle\High Low Middle High Low Middle High 
136212 20.60% 9.10% 40.30% 16.20% 10.50% 40.40% 15.50% 22.40%

461530 17.40% 15.90% 6.50% 34.40% 19.20% 6.70% 39.40% 13.50%
475056 3.60% 14.80% 37.10% 37.90% 19.70% 25.70% 43.60% 23.80%
Overall 

Average 23.40% 35.10% 30.70% 38.70% 43.20% 50.20% 52.20% 32.40%
 

In the preceding analysis, important factors for bid prediction may have certainly been 

missed but using the available input information, linear methods, i.e., both simple linear and 

piecewise linear method works poorly in bidding prediction. It is necessary to consider other 

methods for prediction.  

 

3.3.4 Bidding Prediction by Neural Network 

Statistical regression only considers the linear relationship between inputs and outputs. 

But it is unrealistic to model a complex decision problem, such as the bidding strategy 

problem, by linear methods. One approach to including these complexities is to use a non-

linear estimator, such as, a neural network. The neural network is known as to be useful where 

[17]: 

• precise models or algorithmic solutions are not readily available,  
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• extensive unanalyzed sample data is available,  

• it is desired to identify structure from existing data.  

These characteristics match the problem under discussion and thus, a simple feedback 

neural network is introduced. The input variables remain the gas price, total load and four 

major transmission paths with the output the average bidding price (ABP). For comparison, 

the same three generators and the average bidding price are chosen. The same Feb 1, 2000 to 

Dec. 24, 2000 CAISO real time market data used in former sections are used for training. The 

neural network was defined with one hidden layer using sigmoid activation functions with a 

linear activation in the output layer. The number of hidden neurons was chosen to be 9. 

Training is chosen to be a simple back propagation. Figure 3.1-3.4 shows some of the neural 

network simulation results for hour 17.  
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Figure 3.1: ABP forecast by neural network - hour 17, ID 136212 
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Figure 3.2: ABP forecast by neural network - hour 17, ID 461530 
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Figure 3.3: ABP forecast by neural network - hour 17, ID 475056 
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Figure 3.4: ABP forecast by neural network - hour 17, overall bid average 

 
Generally, the results show the neural network provides some improvement but there 

is still significant error. Among these tests, the best match is of the overall ABP. That is, it 

appears far easier to predict the overall market bids than any individual MP’s bidding 

behavior. Notice that very large errors occur at some irregular points. These salient data 

points are likely the key to improving prediction. Further investigation of this observation is 

beyond the scope of the work presented in this thesis.  

In 2000, CAISO experienced a dramatic and volatile market that may not reflect 

behavior in a more mature market. Moreover, the input data is very limited and one expects 

an MP to use as much information as possible. One obvious data point to include is each 

MP’s own historical behavior. To emulate this scenario, we include an individual MP’s bids 

as an input variable. Results are shown in Figure 3.5-3.7 for each of three generators and the 

overall bidding price. Clearly, this information does lead to a significant improvement in 
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prediction capability. Similarly, this approach can be used for prediction of any specific MP’s 

bids. This is shown in Figures 3.8 and 3.9 at hour 17 using information from 475056 to 

predict bids from 4615330 and 136212, respectively. As expected, the performance improves 

greatly and merely reflects that different MP’s may act in a similar manner.  

The above analysis shows that the neural network shows promise for forecasting bids 

even with extremely limited information. Again, the work here is only to show the feasibility 

of the proposed approach so that inputs are available for the optimization that is the main 

thrust of this thesis. There are certainly numerous approaches to improve the forecast results, 

including not only increased input information but improved neural network design.  
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Figure 3.5 ABP forecast by neural network - hour 17 including 136212 bid information 
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Figure 3.6 ABP forecast by neural network - hour 17 including 461530 bid information 

 

0 5 10 15 20 25 30
-50

0

50

100

150

200

250

case

A
ve

ra
ge

 B
id

di
ng

 P
ric

e

Average Bidding Price

Real Value
Estimated W/ Bids
Estimated W/O Bids

 

Figure 3.7 ABP forecast by neural network - hour 17 including 475056 bid information  
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Figure 3.8: ABP forecast by neural network - hour 17, 136212 given 475606 bids 
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Figure 3.9: ABP forecast by neural network - hour 17, 461530 given 475606 bids  

3.3.5 Sensitivity analysis 

This chapter has mainly focused on forecasting bidding behavior given the load, gas price 

and congestion probability. Forecasts introduce errors and so it is important to understand the 

MP reactions to such uncertainties. Sensitivity analysis can indicate the factors that are most 
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important to the decision-making process. Three samples for hour 17 are selected as input to 

the last neural network trained result with the sample data information given in Table 3.10. To 

calculate the sensitivity, an input variable is changed by a small amount, both as an increment 

and a decrement, and then the overall ABP is recalculated. Results are shown in Table 3.11. 

Notice that the some of the decremental and incremental sensitivities show significant 

variation between cases. This indicates the strong non-linearity for the given variables, 

especially for bids. Another sensitivity of interest is relative to another MP’s bids. Results are 

shown in Table 3.12. 

Table 3.10: Sample input information for sensitivity analysis for unit 475056 

 Bids($/MWh) COI PATH15 PALO PATH26 Gas($/Mbtu) 
Load 
(GW) 

Case 1 27.53 0.00 0.00 100.00 94.00 3.14 23.53 
Case 2 120.26 0.00 13.00 0.00 56.00 5.10 30.45 
Case 3 125.00 0.00 25.00 0.00 31.00 5.08 27.60 

 

Table 3.11: Sensitivity results for overall ABP for unit 475056 

 Bids COI Path 15 Palo Verde Path 26 Gas Load 
 Inc Dec Inc dec Inc dec Inc dec Inc dec Inc dec Inc Dec 
Case 1 0.01 0.01 0.05 0.05 -0.33 -0.33 0.08 0.08 0.28 0.28 -0.02 -0.02 -0.20 -0.20
Case 2 -2.40 -2.37 -0.23 -0.22 -0.61 -0.61 -0.90 -0.89 -0.29 -0.29 0.57 0.58 -0.68 -0.67
Case 3 0.52 0.52 1.29 1.31 0.88 0.89 -0.96 -0.96 -0.24 -0.24 -2.04 -2.01 -0.04 -0.04

 

Table 3.12: Sensitivity results relative to 136212 and 461530 

Bids COI PATH15 PALO PATH26 Gas Load ResID 
Case Inc dec Inc dec Inc dec Inc dec Inc dec Inc dec Inc dec

136212 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.11 -0.09
 2 0.16 0.16 -1.75 -1.77 0.25 0.25 0.70 0.70 -0.17 -0.17 0.38 0.38 -0.02 -0.09
 3 0.00 0.00 -0.02 -0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.02 -0.10

461530 1 0.13 0.14 0.10 0.10 -0.06 -0.06 -0.03 -0.03 -0.11 -0.11 -0.13 -0.13 -0.05 -0.26
 2 0.54 0.55 -0.64 -0.64 -0.16 -0.16 0.52 0.52 0.50 0.51 4.40 4.39 -0.08 -0.22
 3 -0.03 -0.04 -0.51 -0.51 0.49 0.48 0.15 0.15 0.22 0.22 2.59 2.54 -0.06 -0.24
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In the bidding problem, we are mostly interested in a competitor’s response to a particular 

operation scenario. That is, given the forecasted operational situation, i.e., forecasted load, gas 

price and congestion possibilities, what is the relation between system overall ABP and a 

particular MP’s ABP. Using the data in Table 3.9, the individual bids of 475056 are varied 

from –0.5 to 3.0 (from normalized values) and the forecasted system overall ABP change is 

found (shown in Figure 3.10). Case 3 shows strong non-linearity at higher bids. As discussed 

before, the relation between individual bids and overall ABP varies significantly among 

different operation scenarios. This result reinforces the earlier claims of difficulty in using a 

linear model for bid prediction. Based on the sensitivity analysis, it is easy to apply these 

results in the bidding problem, the next chapter extends these sensitivities to the actual 

bidding strategy problem.  
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Figure 3.10: Sample sensitivity for overall ABP 
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3.4 Price Forecast 

Because of the lack of storage for electricity, the demand and supply of electricity are 

balanced on a “knife-edge” [18]. End user demand is largely weather dependent varying 

significantly from day to day and moreover the reliability of the grid is paramount. Thus, 

electricity price is often far more volatile than that of other commodities. Volatility makes it 

very difficult to accurately predict prices.  This section introduces a simple framework for 

price forecasting with a limited goal of providing input to the optimization processes 

developed in other chapters.  

Ideally, prices under competition are equal to the marginal cost of production. 

Although at this stage the power market is far from a mature market, the energy price should 

still be strongly related to the generation cost. Accordingly, the fuel price for fossil fuel units 

is one of the key elements to price prediction. The two primary types of fuels are gas and coal. 

In the CAISO area during 2000, the generation capacity of gas units was 47.4 GW [19], or 

roughly 29% of total capacity (162.1 GW). Gas price tends to be more influential on price as 

coal prices are more stable, and moreover, coal units are base loaded and rarely dispatched on 

the margin. Thus in the following, only gas price is considered in the price forecast. 

Intuitively, the higher the demand, the higher one expects the energy price to be. 

Given that energy price should be positively correlated with load, energy price should have 

similar weekday/weekend and seasonal patterns as the load. Thus, it is generally necessary to 

use different models for weekday vs. weekends, special holiday and seasons. This has been 

explored more fully in [20] where the seasonal factors were found to be the most important. 

The load forecast is very mature in power industry and includes many these salient features. 

Accordingly, the load forecast is used directly instead of the weather and other relevant 
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variables.  Later, statistical analysis will show that there is no need to separate the energy 

price into different groups based on these variables given a load forecast. 

Another major factor affecting price is the transmission system limits. To ensure 

power system security, it is necessary to keep the flows on major transmission paths within 

specified limits, which is the congestion management function of the system operator. 

According to the California inter-connection congestion management, the system is divided 

into zones, and each zone’s energy price is detemined by the supply and demand relation only 

within the zone. The factors affecting congestion status include not only load level, but also 

the load and generation dispatch pattern. Different locations lead to different congestion 

possibilities. As discussed previously for CAISO congestion management, the intra-zonal 

congestion could be treated as infrequent and less important as to the overall system price. 

Thus, while there are thousands of potentially congested transmission lines, it is reasonable to 

only consider the inter-zonal congestions for the zonal price forecast. In this analysis, only the 

four main inter-zonal paths’ congestion are considered, specifically Path 15, Path 26, COI and 

Palo Verde. The congestion probabilities are the CAISO daily performance reports, with the 

percentage of congestion hours treated as congestion possibility of each day for this particular 

path.  

Since energy prices are decided by the bids, it is impossible to ignore the bids in price 

prediction. Note that the CAISO publicly posts bidding information after 6 months, so that all 

MPs have access to bidding history information. Even with time delay, this bidding 

information is a useful reference. These bids implicitly contain a wide range of relevant 

information, including start up costs, ramp rates, and minimum up/down times that have 

direct influence on the unit commitment and in turn, the market clearing price. With this 
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observation and to simplify the analysis, only the energy price-MW is considered with all 

other cost and time information ignored. Finally, there are several other factors that affect 

energy price. Most obviously in the Western US, reservoir levels determine the amount of 

available hydro. This information is partially captured by the congestion information for the 

COI and Palo Vera, and so water levels are also not considered here even though one may 

expect this to affect prediction accuracy.   

 

3.4.1 Empirical analysis of prices in CAISO  

Similar to the previous analysis of bidding behavior, empirical analysis of energy price 

prediction was carried out for the CAISO real time market data from 2/1/2000 to 10/31/2000. 

In the absence of congestion between the ISO’s active zones, one system wide energy price 

applies to all the system but if there is congestion, differences in zonal prices arise.  Here for 

simplicity, only zone NP15 prices are chosen as a zonal price index and the daily average 

value is used in the prediction. The correlation coefficient between the energy price of NP15 

and SP15 are calculated (Table 3.13) to show that the price in these two zones are highly 

correlated and there is little need to distinguish between these two zones during the time range 

of interest for the purposes of the analysis here.  

Table 3.13: Correlation between NP15 and SP15: 

 Hour 2 Hour 9 Hour 17 
Corr_Coef 0.831119 0.869832 0.897459

 

Now consider the correlation between the congestion information, load level, gas price 

and the energy price. Correlation coefficients and corresponding t-test results are shown in 

Table 3.14. There is significant correlation with between congestion possibilities, gas price, 
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load and energy price in almost three sample hours, the only exception is the congestion for 

path 26, which shows insignificance for hour 9.  For resource bids, not all show significance, 

especially for on-peak (hour 9 and 17). This suggests that during peak times, it may be more 

difficult to predict the energy price from MP bids.  

Table 3.14: Statistical analysis results for price prediction 

  Hour 2  Hour 9  Hour 17  
  Corr_Coef P_value Corr_Coef P_value Corr_Coef P_value 

199871 -0.567 0 -0.392 0 -0.006 0.917 
192115 -0.199 0.001 -0.034 0.574 0.141 0.02 
282606 -0.47 0 -0.581 0 -0.155 0.01 
108576 -0.523 0 -0.282 0 0.148 0.014 
106100 -0.616 0 -0.562 0 -0.452 0 
599841 -0.689 0 -0.622 0 -0.506 0 
715337 -0.361 0 -0.037 0.546 0.207 0.001 
104351 -0.459 0 -0.299 0 0.189 0.002 
142494 -0.287 0 -0.319 0 0.125 0.038 
494629 -0.71 0 -0.625 0 -0.522 0 
918588 0.483 0 0.464 0 0.348 0 
102611 -0.458 0 -0.151 0.012 0.055 0.368 
205249 0.093 0.124 -0.475 0 -0.528 0 
206887 -0.472 0 -0.453 0 -0.294 0 
453332 -0.263 0 -0.025 0.685 0.193 0.001 
194543 -0.293 0 -0.226 0 -0.054 0.377 
168177 -0.331 0 -0.227 0 -0.042 0.493 
136212 -0.138 0.023 0.291 0 0.459 0 
461530 0.801 0 0.716 0 0.692 0 

ResID 

475056 -0.2 0.001 0.523 0 0.533 0 
System Overall Bids -0.478 0 -0.572 0 -0.559 0 

COI -0.275 0 -0.143 0.018 -0.258 0 
Path15 0.794 0 0.623 0 0.559 0 
PALO 0.132 0.028 -0.126 0.037 -0.244 0 

Congestion PATH26 -0.092 0.13 0.073 0.225 0.196 0.001 
Gas 0.842 0 0.84 0 0.775 0 
Load 0.61 0 0.691 0 0.799 0 
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3.4.2 Energy Price prediction   

Now the above factors will be used as input variables to predict the zonal energy price. To 

see the different influence on price prediction, the following five cases are considered: 

• Case 1: Base case – Gas price and total Load are the only input variables 

• Case 2: Base Case + congestion 

• Case 3: Case 1 + all 20 resources bid information 

• Case 4: Case 2 + all 20 resources bid information 

• Case 5: Case 2 + individual bids + overall bidding information 

The regression results are shown in Table 3.15 with detailed results in Appendix C 

Table 3.15: Linear regression results R2 for price estimation 

 Hour 2 Hour 9 Hour 17 
Case 1 63.90% 50.70% 35.40% 
Case 2 71.90% 53.30% 35.90% 
Case 3 74.60% 62.10% 50.60% 
Case 4 77.30% 63.60% 51.10% 
Case 5 75.40% 56.60% 36.90% 

 

From Table 3.15, observe the following: 

1. Load level and gas price explain about 64% of the zone NP15 energy price variance 

during off-peak, while these variables only account for 35% of the variance on-peak. 

2. By adding more information, the explained variance can be improved but only 

marginally. Comparing Cases 2, 3 and 4, explained variance increases with the 

number of individual bids known but is less helpful during on-peak.  

3. Comparing Cases 4 and 5, it is seen that overall bidding information is nearly as 

explanatory as the individual bids. This is consistent with the high correlation between 



 
Chapter Three 

  84

different MP’s bids. Thus, it is not necessary to including all 20 individual resource 

bids in the price prediction process and subsequent analysis will based on Case 5. 

4. Finally, note that linear regression does not work well since only 77% of the variance 

can be explained by these factors at off-peak and only 50% on-peak. 

 

There may certainly be other important considerations not included in the above analysis. 

One difficulty is insufficient information on the location of the bids since location certainly 

matters in determining a zonal price when congestion occurs. Another possibility for the 

inaccuracy of the result is non-linearities. It is possible that the including non-linearities can 

greatly improve the estimation. A crude attempt is made by using the piece-wise linear 

concept around a salient variable, e.g., dividing the data into several groups based on load 

level. Here, data is grouped based on weekdays and load level using the same grouping 

criteria as in the bid forecast. To test the significant of this separation, the Kruskal-Wallis 

significance tests results are calculated and shown in Table 3.16. As with the bids, there is no 

significant gain for the different weekdays in hour 2 and hour 17, although there is some 

difference at hour 9, with p-value equal to 0.02. Again, load grouping does show significance. 

Table 3.17 shows linear regression on these groups based on Case 5 with sample resource ID 

475056 and overall ABP (detailed analysis can be found in Appendix C). 

Table 3.16: Significance test results in price prediction for day and load level separation 

 Hour 2 Hour 9 Hour 17 
Load  (70.24, 0) (98.84,0) (177.90, 0.00) 
7-days (0.22,0.97) (2.50,0.02) (0.89, 0.51) 

* (test-value, p-value) pairs 
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Table 3.17: Linear regression results R2 for price estimation with grouping 

Group Hour 2 Hour 9 Hour 17
1 86.60% 80.40% 73.00% 
2 58.50% 54.10% 26.70% 
3 45.10% 30.60% 16.70% 

 

Table 3.18: Correlation coefficient and P-value for price prediction after grouping 

  475056 OverAll Gas Load COI Path15 PALO Path26 
Grp Hr R2 P R2 P R2 P R2 P R2 P R2 P R2 P R2 P 

2 -0.01 0.87 -0.47 0.00 0.51 0.00 0.29 0.00 -0.17 0.04 0.54 0.00 0.19 0.02 -0.07 0.39
9 0.37 0.00 -0.38 0.00 0.62 0.00 0.48 0.00 0.10 0.24 0.29 0.00 0.04 0.62 -0.16 0.07

1 

17 0.43 0.00 -0.38 0.00 0.71 0.00 0.51 0.00 0.04 0.67 0.29 0.00 -0.03 0.70 -0.18 0.03
2 -0.33 0.00 -0.62 0.00 0.73 0.00 0.18 0.14 -0.26 0.03 0.80 0.00 0.35 0.00 0.20 0.10
9 0.34 0.00 -0.62 0.00 0.71 0.00 0.12 0.30 -0.12 0.31 0.56 0.00 0.14 0.22 -0.16 0.18

2 

17 0.51 0.00 -0.36 0.00 0.53 0.00 0.27 0.02 -0.26 0.03 0.37 0.00 -0.03 0.83 0.07 0.56
2 -0.43 0.00 -0.46 0.00 0.53 0.00 -0.10 0.42 N\A 1.00 0.54 0.00 0.36 0.00 0.01 0.93
9 0.03 0.48 -0.25 0.93 0.41 0.00 -0.03 0.80 0.01 0.96 0.28 0.03 0.11 0.38 0.12 0.34

3 

17 0.09 0.00 0.01 0.00 -0.01 0.97 0.26 0.04 -0.11 0.41 0.10 0.44 -0.15 0.23 0.14 0.27
• For Hour2 group 3, all COI congestion possibility equal to 0, so no correlation 

coefficient to COI can be computed. 
 

For group 3, only 16.7% of variance can be explained by the input variables. To see why this 

happens, the relationship between the input variables and energy price is analyzed and shown 

in Table 3.18. Notice that for group 3, almost all the correlation coefficients have non-

significant relation with energy price, particularly at hour 17. The only variable showing 

significant correlation with price is total load. Thus, it is impossible to forecast energy price 

by a linear method using these input variables at peak hour with high loads. As with the 

bidding problem, there are two ways to address this problem: either increase the available 

information or apply non-linear methods. Since the worst performance occurs during peak, 

one can include not only total load but also the peak load information. This is analyzed with 

results shown in Table 3.19 where it is seen that peak load data is useful. 
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Table 3.19: Linear regression results R2 for price estimation adding peak load data 

Group Hour 2 Hour 9 Hour 17 
1 86.70% 80.40% 73.70% 
2 61.90% 56.10% 27.30% 
3 54.90% 53.10% 35.30% 

 

From the above analysis, we find that price prediction by a linear method works 

reasonably well when load is low but poor at higher loads.  Again, a neural network method is 

introduced (the same neural network parameters as in section 3.4 are applied) combining 

groups 2 and 3 for all hours. Results are presented in Figures 3.11-3.13. The most significant 

errors occur for extremely high prices. During the time period of examination, the CAISO 

energy market experienced some irregular price movements caused by market power and 

gaming. Better results are likely given a more stable market. 
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Figure 3.11: Price forecast by neural network at hour 2 
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Figure 3.12: Price forecast by neural net at hour 9 
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Figure 3.13: Price forecast by neural net at hour 17 
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3.5 Conclusion 

This chapter focused on an empirical analysis of supplier behavior and zonal (NP15) 

energy price in the 2000 CAISO real-time energy market. First, the relation between bidding 

behavior and the operation scenario are analyzed by a distribution free correlation and 

significance test method. Both linear and neural network methods are applied to predict bids.  

The results show that linear methods fail to adequately describe bidding behavior while the 

neural network shows some improvement but requires further development. Sensitivity 

analysis was applied based on the neural network predictor to determine the importance of 

different input variables. It was noted that non-linear prediction becomes increasingly 

important with high load.  

The analysis in this chapter is rudimentary and is based on limited information. In 

practice, a MP has access to much more detailed information, including, for example, 

generator/transmission line outage data, generator location, and so on. These, of course, play 

an important role in the bids and final prices. Still, the function of the analysis in this chapter 

was to verify the overall structure of the bidding problem developed in rest of this thesis as 

reflective of the type of non-ideal behavior that occurs in the practical market. 
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CHAPTER FOUR 

OPTIMAL BIDDING STRATEGIES: AN EMPIRICAL 

CONJECTURAL APPROACH 

   

  The main objective of this chapter is to suggest one use of historical data for 

purposes of strategic bidding. A conjectural model based on the market clearing process is 

presented. In this model, participants estimate a mark-up function for their competitors in the 

market. Based on these estimates, an optimal bid is found. Numerical examples highlight the 

methodology. CAISO real time imbalanced energy market data is applied to show that this 

methodology is viable in practice. 

 

4.1 INTRODUCTION 

The optimal bidding strategy problem is a complex decision making problem 

involving numerous uncertainties. Generally, all market participants attempt to refine their 

strategies to earn greater profit. Success in the market requires not only successful forecasting 

of demand and other market conditions but also anticipating rival behaviours. As a result, 

many researchers have proposed a game theoretic model to address this problem [1]~[4]. 

There is evidence to suggest that the energy market acts mostly like an oligopoly 

market [5]. Game theory is often applied in oligopoly markets and certainly gaming has taken 

place in real markets. In an oligopoly market, a market participant’s behavior will affect the 

market clearing price (MCP).  The participant’s bidding strategy problem is to determine the 

bids to maximize one’s own benefit.  
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In the typical electric power market, MP’s submit bids and the intersection between 

the aggregate supply and aggregate demand curve is the market equilibrium point that 

determines the MCP and the winning bids. According to economics theory, there are several 

ways to consider strategic market interactions, including: pure competition, Cournot strategy, 

Stackelberg model, conjectural model, and so on. Particularly appropriate for the bidding 

problem here is the Cournot model [6]  

Due to the complexity of a real market with numerous participants, most of these 

theoretical models are too unwieldy to apply to a representative system model.  Instead, 

numerous simplifications are needed to make application possible. For example, typically 

there are no pure Nash equilibrium points and instead a mixed strategy must be introduced 

[7]. Under mixed strategies, the optimal solution should be a probability density function. 

Unfortunately, this is difficult to apply as guidance to bidding activity.  A deterministic 

decision is needed despite the underlying risks and various probabilistic outcomes. 

A conjecture model can be used to consider MP interactions. The conjecture model 

acts as a generalized Cournot model in that each market participant attempts to guess a rival’s 

activity corresponding to the price change [8]. Since many power markets have now been in 

operation for some time (albeit with frequent changes in the market rules), there exists 

significant historical data that can be analyzed to help participants understand likely 

competitor behavior. At a minimum, MPs forecast energy prices based on historical prices. 

Beyond this, individual market bids are made publicly available in many markets (e.g., in 

California, all public bids are posted online by the ISO 6 months after the day of submission). 

Such information provides valuable information about a rival’s likely behaviors. Thus, it is 

feasible to apply a conjecture model to address bidding strategies. 
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The main objective of this chapter is to consider the best use of specific historical data. 

To begin, a model of the optimal bidding strategy problem is developed. Then, a statistical 

application method is introduced based on different price forecast techniques.  

 

4.2 PROBLEM DEFINITION  

In economics, there are two types of conjecture models: the general conjectural 

variations (GCV) and the conjectured supply function (CSF). While both models require a 

“guess” of rival activities beforehand, the difference between these two conjectural models 

lies in the focus on a rival’s price or the rival’s supply function. The CSF model is adopted in 

this paper as the more appropriate for assessing bidding strategies in an electricity market. 

 

4.2.1 CSF Model 
 
 Assume there are n market participants, let ik denote market participant i ’s decision. 

Both the market clearing price and the quantity are a function of all market participants’ 

decision variables denoted here by ),,( 21 nkkkMCP L  and ),,( 211 nkkkp L , respectively. 

Assume without loss of generality the bidding decision for individual market participant 1 is 

desired. The conjecture variation is defined as the belief of the ith market participant’s 

response to its rivals. Here, we are interested in the bidding strategy ik , and the conjecture 

variation can be represented by )( 1kki . This means that market participant 1 will guess all 

other decision variables ik  as the function of one’s own activity, that is, 

mikfkk ii ,,2),()( 11 L=∀=                (4.1) 



 
Chapter Four 

  95

Since it is not possible to know a rival’s actions precisely, it is necessary to represent 

the deviation of the ith firm’s behavior from this forecast. Here, the error is represented as: 

miekfkk iii ,,2),1)(()( 11 L=∀+=          (4.2) 

where )( 1kf i  are the forecast functions, which are static functions given the current market 

situation, and  ie  are random variables representing the error in the forecast process.  Since 

this function arises from historical data analysis, it represents the belief that these market 

participants will continue to bid in the same manner. Absent other information, the )( 1kki  are 

assumed to normally distributed since this is the most tractable mathematically.  Then 

mikfkkE ii ,,2),())(( 11 L=∀=       (4.3) 

miekfkkVar iii ,,2),var()())(( 2
11 L=∀=      (4.4) 

It follows that ),0(~ 2
ii Ne σ , since given a market situation )( 1kf i  is deterministic.  The 

decision problem is to maximize profit by choosing the decision variables 1k  such that: 
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=

=

−⋅=π

      (4.5) 

where )( 11 pC is the generation cost function, 1p  represents the MW output awarded in the 

auction and 0MCP is the market clear price in $/MWh for the time period of interest.  

4.2.2 Decision Variable ik  

Let the generation cost be represented by a quadratic function as  
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iiiiiii apbpcpC ++= 2

2
1)(      (4.6) 

Since the constant term ia  will not affect the maximization result (assuming a unit will be 

committed), let 0=ia  with the marginal generation cost function of the form: 

iii bpcMC +=           (4.7) 

In an electrical power market, the market participants submit bidding curves that 

provide the energy price for different levels of generation output. The market operator will 

determine the winning bids and the MCP according to the particular set of market rules. The 

decision problem of interest here is the optimal bidding curve that the market participant 

submits to the market. Normally, a staircase bidding curve is adopted, and for simplicity here, 

the linearization process as depicted in Fig. 4.1 is applied. This bidding curve is represented 

by the following linear function: 

iiii ppIC βα +=)(       (4.8) 

Variables iα and iβ  represent the bidding coefficients participant i  submits, which 

form the decision vector [ ]iiik βα=  for problem (4.5). We make a further assumption that 

both iα  and iβ  are directly related to the MC by a constant level of mark-up. Thus, (4.5) 

simplifies to determination of a scalar, ik . That is let: 

i

i

i

i
i bck βα ==       (4.9) 

Then it is easy to see that: 

)()( iiiiiiii bpckppIC +=+= βα           (4.10) 
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4.2.3 Conjecture Process 

Actually 
bidding curve 

linearized 
bidding curve 

p (MW) 

Price 
($/MW) 

pmin pmax  

Fig. 4.1 Linearized Bidding Curve 
 

While each market participant may have more than one bidding strategy, in the 

development here we consider only one bidding strategy, and then subsequently address 

multiple bidding strategies in the numerical examples. Under a single strategy assumption, 

there are 1−m  forecast functions needed by each decision maker to reach a decision with m 

market participants.  With a linearized bidding curve and market clearing process assumption, 

it follows that 

1

1

11

1121
1

))(,),(,(
c
b

ck
kkkkkMCP

p m −=
L

           (4.11) 

Since the ie are random variables, the )( 1kki  and ))(,),(,( 1121 kkkkkMCP mL  are random 

variables as well. Thus, the profit maximization problem is a maximum expected profit 

problem.  

4.2.4 Risk 

Since the rival behavior is not deterministic and knowledge of their behaviors is 

imperfect, there is risk in any bidding strategy. From a decision-making standpoint, it is 

necessary to consider the consequence of competitors’ actions that deviate significantly from 

the forecast function. In general, each MP is willing to take a certain amount of risk to earn 
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more in return. This problem is commonly modeled in investment with risk represented by the 

standard deviation in the expected profit. Then risk is addressed by the so-called Portfolio 

Selection Problem (4.8), which is adopted widely in analysis of stock investments.   

Portfolio management can be best characterized as obtaining the highest long-run 

return at the lowest risk [8].  There are two common formulations of portfolio selection: one, 

to minimize variance (risk) subject to achieving a specified level of return; and two, to 

maximize return subject to achieving a specified level of variance. Here, the former form is 

applied.  Rewrite (4.5) as follows 

( )

2
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2
2111

21

1

122

111

),,(
),,,(

)(

)(.

)()(max
1

σσ

π

π ≤

=
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=

−⋅=
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m

mm

k

kkkpp
kkkMCPMCP

kkk

kkkts

pCpMCPEE

L

M

     (4.12) 

where 2
*σ  represents the maximum acceptable risk determined a priori by the market 

participant. Those wishing to minimize the risk subject to achieving a specified level of return 

are essentially solving the dual of the above.  

Now since the cost function is quadratic and noting that the third and forth moments of 

ie  are 0)( 3 =ieE  44 3)( σ=ieE , simple algebraic manipulation yields: 
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where ( ) ( )2242
2 MCPEMCPE

mcp
−=σ , is the variance of 2MCP , 2

mcpσ  and mcpμ  are the 

variance and mean of the MCP, respectively. The following section introduces a price 

forecasting approach to determine the necessary inputs for solving this problem.  The 

expected profit and variance can be found by standard optimization routines given the 

statistics for errors in the prediction process.  

 

4.3 PRICE ESTIMATION MODEL 

This section places the preceding development in the context of an electricity market. Assume 

all other exogenous variables, including the load level, transmission limits, and fuel price, are 

known. The energy price is determined by the market participants’ bidding strategies. Using a 

linear model forecast, the expected price can be represented by: 

)1)(( 0
1

exp p

m

i
ii esksMCP ++= ∑

=

    (4.15) 

where is  are the sensitivity coefficients between price and bidding strategies, 0s  is a constant 

term corresponding to the exogenous variables, and ( )2,0~ pp Ne σ  represents the error from 

the price estimation model. Rearranging 

( )( ) ( )mcpi

m

i
ii esekfsksMCP +⎟

⎠

⎞
⎜
⎝

⎛
+++= ∑

=

11 0
2

111exp
   (4.16) 

with ie an independent random variable. Now, separating the deterministic and the random 

variables, and defining the deterministic term 

( ) 0
2

1110 skfsksp
m

i
ii ++= ∑

=

     (4.17) 

and the stochastic term,  
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We have the following: 

0exp )( pMCPEmcp ==μ      (4.19) 

and 
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As discussed before, to consider risk, it is necessary to know the third and fourth 

moments of the MCP. Based on the independence Gaussian distribution assumption, it is easy 

to calculate the third and fourth moments for the MCP from equations (4.21) and (4.22) below 
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And by properties of Gaussian distribution, we know the following: 

 ( )( ) ( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
++⎟

⎠

⎞
⎜
⎝

⎛
+++ ∑∑∑

===

m

i
iii

m

i
iii

m

i
ii kfsskfsksNsekfsks

2

22
1

2
0

2
1110

2
111 ,~1 σ  (4.23) 

( ) ( )2,1~1 pp Ne σ+       (4.24) 

Let X and Y represent the random variables in equation (4.23) and (4.24), we know the 

following: 

 [ ] ( )223 3 XXXXE σμμ +=       (4.25) 

[ ] 42244 36 XXXXXE σσμμ ++=       (4.26) 
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with ( ) 0
2

111 skfsks
m

i
iiX ++= ∑

=

μ  and ( )∑
=

=
m

i
iiiX kfs

2

22
1

22 σσ . Similarly, for random variable 

Y just replace the subscript X  by Y in equation (4.25) and (4.26), and corresponding 1=Yμ  

and 22
pY σσ = . By applying equation (4.21), (4.22), (4.25) and (4.26) to equation (4.14), the 

risk corresponding to any given bidding strategy a market participant submitted can be 

calculated.  

 

4.4 NUMERICAL EXAMPLE  

4.4.1 Numerical Example 1 

First, consider a system with four market participants. The forecast error variances and 

coefficients are given by:  

25.02
3

2
3

2
2 === σσσ , 1002 =mcpσ     (4.27) 

Assume that using statistical data analysis for a given market operation situation, participant 1 

forecasts that the rivals have split strategies as given by the following bidding functions: 

⎩
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Further assume the expected price function can be represented by the following linear 

function: 

)1)(014.46.1168.8246.4973.7( 4321exp mcpekkkkMCP +++++=    (4.29) 
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4.4.2 Discussion 

If there is no risk constraint, the higher the market participant 1 bids, the higher the 

expected profit. Thus, the optimal solution is 0.3*
1 =k (where we assume that 3.0 is the 

bidding cap.). Notice the risk will increase as the expected profit increases and this occurs 

particularly rapidly at the higher bidding prices. In the worst case, there could be significant 

losses. Worse from the generation company point-of-view, the expect profit changes very 

little beyond say k1=1.2, while the risk increases rapidly. It is advantageous to sacrifice some 

marginal profit to reduce the risk. The optimal decision depends on the risk level a firm would 

like to take. For example, if the risk tolerance is about 80% of the maximum risk level (shown 

as the black dashed line in Fig. 4.2), then the optimal solution is 2.1*
1 =k .  

Intuitively, another method to reduce risk is to employ a split bidding strategy, i.e., bid 

different type of generators at different strategies. For example, one may choose to bid low 

cost generators at a fairly low price (say, marginal cost) to ensure some profit while bidding 

some at a higher cost (so-called economic withholding). By doing so, risk should decrease. 

For simplification, here assume that market participant 1 employs such a split strategy labeled  
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Fig. 4.2 Example 1 showing expected profit σ±  
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for convenience as the main and minor bidding strategies. Figure 4.3 shows the results of such 

an approach. Since the split strategy is used, the figure is no longer a two-dimensional figure. 

To simplify the figure, only the main strategy is shown along the x-axis. The corresponding 

expected profit is the optimal value given this major bidding strategy that market participant 1 

found by choosing different levels of the minor bidding strategy. In this case, if there are no 

risk constraints, the optimal bidding strategy is k11=1.2 (major) and k12=3.0 (minor). Again, if 

the maximum risk level is added as a constraint, there are two new optimal bidding strategies, 

shown as 75.0*
11 =k  and 8.2*

11 =k  with in both cases k12=3.0 in Fig. 3. Thus, by withholding 

some generation, expected profit does not increase as rapidly but risk is reduced.  

 

4.4.3 Empirical Example 2: Simplified two market participant example  

In practice, it is difficult to estimate all competitors’ strategies accurately and it may 

not be particularly profitable to do so. That is, it is unnecessary to distinguish the different 

market participants when they are all acting as rivals. Further in our framework, several high 

order moments are needed to find the optimal mark-up and these will not be readily available. 

Accordingly, consider a single opponent with this forecast function: 
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Fig. 4.3 Example 1 showing expected profit with a split strategy 
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All variances are as before. The profit results are shown in Fig. 4.4. Again, when there 

is no risk constraint, the optimal solution is 0.3*
1 =k . When an 80% risk tolerance is applied, 

the optimal solution is 4.2*
1 =k . For this simple case, there is a significant difference between 

these two models simply due to the selection of the expected rival’s bidding strategy and other 

expected variables. In practice, it should be straightforward to obtain similar results with a 

two participant example. 
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Fig. 4.4 Example 1 showing expected profit with a single competitor. 
 

4.5 APPLICATION TO PRACTICAL MARKETS 

To exploit the above insights in a practical application, one must address the 

prediction of the energy price and the rival’s bidding strategy. The details of the prediction 

process are discussed in Chapter III. Here, the basic methodology is outlined on some 

representative examples in the California electricity market 
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4.5.1 Real-time electric power market  

The California market employs a zonal pricing scheme as discussed in the 

introduction, which is briefly reviewed again here. There are ostensibly 14 zones observed by 

the CAISO. In the day/hour ahead markets, the bids are stacked in the BEEP system, and the 

energy price is decided by identifying the point where the aggregate supply equals the 

aggregate demand. The ISO then performs congestion analysis to ensure there is no security 

problem. If there is congestion, then the ISO initiates the congestion management procedures. 

Congestion management in CAISO is divided into two sub systems: inter-zonal and intra-

zonal. The inter-zonal congestion management of California ISO ignores intra-zonal 

congestion and uses a DC optimal power flow program to dispatch between zones. The 

objective is to minimize the redispatch cost, as determined by the submitted adjustment bids 

that accompany the submitted schedules. Inter-zonal congestion management does not involve 

arranging or modifying trades between SCs.  Further, it does not address the optimization of 

SC portfolios within zones. When real-time inter-zonal congestion occurs, the BEEP stack is 

constructed and applied separately to each zone. Thus, price differences may arise across the 

constrained zonal interface. 

 

4.5.2 Price forecast  

Numerous sophisticated price prediction methods that employ a large number of 

variables can be found in the literature [e.g., 10-11]. In this work, our interest is to consider a 

minimum number of factors to allow price predictions useful for bidding. Since the prices in 

each zone are needed to make optimal strategic bids considering congestion, it is more 
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informative to use the zonal price then average price as the price index for bidding. There are 

several interesting zones in the CAISO, the particularly important NP15 zone is considered in 

this chapter.  

In the electric power market, the energy price is decided by the market clearing 

process that finds where aggregate demand equals the aggregate supply. To predict the zonal 

energy price, forecasted load and gas prices are the two main factors, which must included in 

the energy price prediction model. In the CAISO congestion management scheme, the zone 

prices deviate whenever there is interzonal congestion. Thus, the possibility of congestion 

provides some indication for the differences in the zonal energy prices. To predict the CAISO 

energy prices, our input variables include the forecasted values for load, gas price and the 

congestion probabilities.      

The CAISO real time energy market data from Feb. 2000 to Oct. 2001 is used as a 

sample for the proposed model. This was a particularly interesting time in the market, which 

helps in the analysis here. As discussed in chapter III, when load is light (in sample data, 

hourly average load < 25 GW), a linear model can predict prices accurately although the 

performance of such a linear model is poor under heavier loads. Still for simplicity, only a 

linear model is applied here. Using the sample data analyzed in Chapter III, the relevant input 

data is listed in Table 4.1. The corresponding output price at this point can be represented by 

equation (4.31): 

  )1)(8584.30756.107554.0( 21exp mcpekkMCP ++−=   (4.31) 

where )04.78,0(~ Ne p . The difference between linear regression results and actual energy 

price can be seen in Fig. 4.5. 
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Table 4.1: Sample input data for price prediction 

Transmission Path congestion Possibilities 
COI PATH15 PALO PATH26 

Gas 
($/Mbtu) 

Load  
(MW) 

0.00 0.00 100.00 94.00 3.14 23,529 
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Fig. 4.5 Price prediction by linear method 
 

From Fig. 4.5, one can see that the linear regression matches the general trend of the 

energy price but fails to track the price spikes.  A more complex model is necessary to 

investigate such price spikes and is beyond the scope of this chapter.  
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4.5.3 Forecast of bidding behavior 

Predicting competitor bidding strategies ideally follows from observing their behavior 

over time. Unfortunately, it may not always be possible to have accurate information on 

recent behavior. For our application, there are two components to the bidding strategies: one’s 

own past behavior, which must be considered when assessing competitor strategies, and 

competitor behavior. In California, producer bids are made public 6 months after the day in 

question. Simplistically, one can apply this old data assuming there have been no changes in 

strategy (while still considering the impact of congestion and forecasted load and prices). 

Still, a producer’s bidding strategies may change dramatically over time. There are two 

possibilities for identifying these changes. One approach is to observe changes over time and 

project these out over the 6-month lag. Another method is to feedback the actual MCPs to 

adjust the bidding parameters. The competitor bidding model then outputs the average bidding 

price as an index of bidding behavior based on the forecasted load, forecasted gas prices, 

congestion possibilities and historical bidding behavior.  

Bidding behavior can be extremely varied arising as it does from a complex decision-

making process considering numerous objectives. The author believes it is unrealistic to use 

linear models to predict competitor behavior. Here, a neural network is applied to capture 

some of the non-linearities although certainly more sophisticated models could be employed. 

Detailed results are listed in chapter III Section 2, Fig. 4.6 showing such a relationship is 

repeated here for convenience. Note, the x-axis refers to the case number and negative values 

means that in this situation, a generator is better off buying energy than selling.  
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The sensitivities discussed in chapter III and employed in the above development 

represent only an individual point and it is clear that such a linear method cannot fully 

represent the bid forecast problem. To find a suitable relationship between individual bids and 

system overall bids, we follow the procedure developed in Chapter 3. Specifically: 
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Fig. 4.6 Simulation Result 
 

• Obtain a representative training set, including all salient input and output variables as well 

as forecasted system operation information (load, gas price and congestion possibilities). 

While theoretically a market participant can do anything they desire as long as they abide 

by the market rules, one assumes that any market participant is rational. Based on this 

assumption, it is natural to find a range of possible bidding prices for a MP given the 

forecasted market operation scenario but this range can be quite large.  

• Input this information to a trained network to find the relevant input-output mapping as 

shown for same example system, again as discussed in chapter III.  
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The detailed forecasted input information is reiterated here in table 4.2 for convenience. 

Similarly, assume the market participant’s bidding strategy 1k will change from –0.5 to 3.0 

and the forecasted corresponding overall system response by the sensitivity analysis result is 

shown in Fig. 4.7. 

Table 4.2: Sample Input information for Sensitivity Analysis 

Transmission Path congestion 
Possibilities 

 
Bids 

($/MWh) COI PATH15 PALO PATH26
Gas 

($/Mbtu) 
Load 
(MW) 

Case 1 27.53 0.00 0.00 100.00 94.00 3.14 23529
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Fig. 4.7 Normalized sensitivity relationship for example 1  
 

This relationship can now be modeled as a piece-wise linear function. For the on-going 

discussion this gives: 
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     (4.32) 

with )2661.0,0(~ Nek . Assuming the aggregate generation cost function is the following: 

ppCost ⋅+⋅⋅= 04.120042.0
2
1 2      (4.33) 

and applying 4.32 and 4.33 to the optimization in 4.12, the optimal strategy result is as shown 

in Fig. 4.8. 
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Fig. 4.8 Example 1 showing expected profit with a single competitor. 
 

When risk is not considered, the optimal solution is 05.1* =ik (assuming the price cap is 3.0) 

and the corresponding price and rival’s bidding strategy is: 
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55.1* =−ik , MWhMCP /$9717.14=  

Assume an MP’s risk level is the expect profit plus the standard deviation and the 

objective function now is not to maximize the expect profit, but to maximize the expect profit 

minus one standard deviation of the expect profit. In this case, the optimal solution is:  

99.0* =ik , 5468.1* =−ik  and MWhMCP /$9683.14=  

Comparing these two optimal solutions, there is little difference. The MP’s expected profit 

will decrease from 12.498 M$ (millions of dollars) to 12.461 M$, which is a mere 0.3% 

decrease in the expected profit.  Now, let’s take a look at another example, assuming the 

input information given in Table 4.3: 

Table 4.3: Sample input data for price prediction 

COI PATH15 PALO PATH26 Gas($/Mbtu) Load (MW) 
0.00 0.00 0.00 25.00 2.9977 22024 

 

Fig. 4.9 plots the resulting sensitivities and the linearized function is now: 
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with )2661.0,0(~ Nek . The price model remains the same. The expect profit and standard 

deviation results are shown in Fig.4.10. 

The optimal bid without considering risk is: 

09.1* =ik , 71.1* =−ik  and MWhMCP /$30.13=  

when risk is considered, the new optimal solution is: 

0.3* =ik , 95.0* =−ik  and MWhMCP /$93.22=  
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In this case, by considering the risk, the expect profit decreases significantly from 13.27 M$ 

to 4.61 M$, a roughly 65% decrease in expected profit. Note the MCP is also significantly 

higher. 
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Fig. 4.9 Normalized sensitivity results for example 2. 
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Fig. 4.10 Example 2 showing expected profit with a single competitor.  

 
 
4.6 CONCLUSION 

This chapter presents an approach for determining an optimal bid into the market as a 

mark-up over actual costs. It requires as input an estimate of competitors’ bids in terms of 

price and possible variation. The solution then maximizes profit while maintaining a tolerable 

financial risk. Chapter III has shown the feasibility of forecasting competitor behavior, 

suggesting the approach in this chapter is practical. These techniques were applied to data 

from the California market further enforcing the feasibility of relative ease of applying this 

method. Results show that given the uncertainty of the market operation scenario as well as 

other MPs’ behavior, risk will play a fundamental role in the decision making process for 

determining the optimal bids.  
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CHAPTER FIVE 

CONCLUSION 

 
5.1 Summary of the thesis work 

Electric restructuring was started in the early 1990s as a way to increase electric power 

industry’ efficiency and lower the energy cost. The traditional integrated system has now been 

separated in many parts of the country and some degree of competition has been introduced 

throughout the power industry. This thesis focused on how market participants (primarily 

generators) react under this new market operation mechanism. Specifically, this work 

contributed with the following three investigations:  

 

1. Transmission system congestion influence on market clearing price and market participant 

bidding behavior in the framework of game theory was analyzed. The conclusion was 

drawn that deviation from idealized price-taker behavior is more serious when some 

market participants suffer disproportionately from the congestion. Due to the complexity 

of the calculations in the theoretical approach, this thesis suggests that a statistical analysis 

methodology is more appropriate. An intuitive probabilistic bidding methodology was 

proposed for the bidding problem to demonstrate feasibility.  

2. A detailed statistical analysis has been carried out on the California real time imbalance 

energy market. A linear regression model was applied to a zonal energy price prediction 

process and a non-linear estimator based on a neural network was applied to predict 

bidding behavior. Sensitivity analysis was applied to understanding each factor’s influence 

on market participant bidding behavior.  
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3. Statistical analysis results were applied to the optimal bidding strategy problem. The 

empirical conjecture approach was adopted using these results. Including risk as either an 

objective to be minimized or a constraint to be satisfied, a portfolio selection approach was 

applied. This method combines the statistical analysis technique with the optimal bidding 

problem. Although the results shown here are in the initial stage of development, it appears 

that this approach is more promising than an idealized game theoretic formulation.  

 

5.2 Future work 

It is very difficult to model the bidding strategy problem in a purely theoretical 

mathematical framework since practical bidding behavior is not so easily captured and 

includes significant difficult to model human factors. Still, much statistical analysis work has 

already been done for market operation analysis, and it is natural for a market participant to 

use these analysis results to learn the best strategy. The last chapter of this thesis initiates an 

alternative approach to this area, although a more thorough and detailed analyses are needed. 

Of particular difficulty is the continually evolving market rules which render conclusions 

based on past behavior suspect. The industry is working hard to improve market rules that 

prevent market power and ensure true competition. The longer a market operates under a 

given set of rules, the more one can accept the validity of the bidding data, which should lead 

to a more reliable statistical analysis.  

Market power detection and correction is the key to market monitoring and one of the 

major functions for ISO/RTO. So far, most of market monitors have adopted the conduct and 

impact testing concepts. The conduct test compares the bids with a reference level generally 

based on the historical bids or on cost information Independent Market Monitor (IMM) 
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collected beforehand. The impact test evaluates the influence of the failed bids failed on the 

energy price. If replacing some of the failed bids failed in conduct testing results in a 

significant overall pricing improvement, then such failed bids should be analyzed. For 

example, in the New York ISO, the AMP (Automated Mitigation Procedure) will runs the 

impact tests if it appears prices will exceed $150/MWh [1]. MISO’s IMM process will be 

triggered if there is any active binding constraint. These conduct and impact testing concepts 

have been criticized for failing to distinguish between resource scarcity and market power. 

The Edison mission objected to New York ISO’s AMP proposal arguing that outside New 

York City the AMP could mitigate when temporary shortages, rather than market power [2]. 

Others have argued that reliability must be considered in these analyses. Such arguments arise 

as there is no widely accepted method to distinguish between market power and resource 

shortage. To solve this problem, more detailed studies of market operation and bidding 

behavior are needed. Market power mitigation remains one of the major challenges facing 

market analysis today.  

  



 
Chapter Five 

  120

Reference: 

[1] 99 FERC order, Docket No. ER01-3155-002, et al., 

http://elibrary.ferc.gov/idmws/nvcommon/NVViewer.asp?Doc=1045537:0 

[2] Edison Mission Energy, Inc. And Edison Mission Marketing & Trading Inc., “United 

Stated Court of Appeals for the district of Columbia Circuit”, Oct. 18, 2004 

http://elibrary.ferc.gov/idmws/nvcommon/NVViewer.asp?Doc=1045537:0


 
Appendix A 

  121

Appendix A 

Equation (17) can be found as follows. Assuming equal weightings rewrite (8) as: 
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With a DC power flow, the GSF is constant. So the power flow on each line can be given by: 
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Applying the Kuhn-Tucker conditions to (8), the inner solution will be: 
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Note for line flows within limits, theμ  must equal to zero. The above can then be solved to 

find the ipΔ . Assuming a single violation in least curtailment, algebraic manipulation results 

in (17) with quadratic terms found by substituting the solution to (A.5) into (A.6) and (A.7).
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Appendix B 

Computing mixed strategy Nash Equilibriums can be a challenging task; however, 

there is a particular observation about the equilibrium that can often greatly simplify this task. 

Note that in a mixed strategy Nash Equilibrium, the expected payoffs for any player will 

remain the same if he or she switches to any pure strategy that has a positive probability of 

being picked by the equilibrium mixed strategy. Consider a very simple example with the 

payoff matrix of Table B.1. There is no pure Nash Equilibrium. To calculate the mixed 

strategy equilibrium, player 2’s probability of play L and R are y and 1-y. Then player 1’s 

expected payoff if he chooses either U or D must be equal. Let 2σ  represents player 2’s best 

response, so  

)1(42),( 21 yyUE −+−=σ     (B.1) 

and  

)1(22),( 21 yyDE −+=σ      (B.2) 

Solving ),(),( 2121 σσ DEUE = , yields 3
1=y . Thus, the Nash Equilibrium mixed strategy for 

player 2 is given by )3
2,3

1(*
2 =σ . Similarly, player 1’s is found to be )5

2,5
3(*

1 =σ . It is easy 

to apply this process to the problem in this paper. 

TABLE B.1  
PAYOFF MATRIX 

 L R 

U (-2,2) (4,0) 

D (2,1) (2,4) 
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Appendix C 

 
TABLE C.1  

Correlation coefficient and corresponding p-value between different bids 
  Hour17  Hour9  Hour2  
ID1  ID2 CorrCoef P_value CorrCoef P_value CorrCoef P_value 
(199871, 192115) 0.27 0.00 0.33 0.00 0.32 0.00
(199871, 282606) -0.06 0.30 0.20 0.00 0.37 0.00
(199871, 108576) 0.46 0.00 0.74 0.00 0.85 0.00
(199871, 106100) 0.38 0.00 0.50 0.00 0.50 0.00
(199871, 599841) 0.39 0.00 0.51 0.00 0.53 0.00
(199871, 715337) 0.19 0.00 0.25 0.00 0.17 0.00
(199871, 104351) -0.20 0.00 0.01 0.84 0.15 0.01
(199871, 142494) -0.14 0.02 0.03 0.65 0.07 0.22
(199871, 494629) 0.36 0.00 0.51 0.00 0.53 0.00
(199871, 918588) -0.39 0.00 -0.36 0.00 -0.42 0.00
(199871, 102611) 0.27 0.00 0.30 0.00 0.28 0.00
(199871, 205249) 0.10 0.09 0.33 0.00 0.02 0.75
(199871, 206887) 0.43 0.00 0.44 0.00 0.46 0.00
(199871, 453332) 0.22 0.00 0.27 0.00 0.31 0.00
(199871, 194543) 0.23 0.00 0.35 0.00 0.13 0.03
(199871, 168177) 0.22 0.00 0.30 0.00 0.18 0.00
(199871, 136212) 0.04 0.53 0.06 0.35 -0.04 0.55
(199871, 461530) -0.14 0.02 -0.30 0.00 -0.46 0.00
(199871, 475056) -0.12 0.04 -0.30 0.00 0.15 0.01
(199871, 999999) 0.20 0.00 0.43 0.00 0.55 0.00
(192115, 282606) -0.10 0.11 0.03 0.63 0.19 0.00
(192115, 108576) 0.25 0.00 0.42 0.00 0.29 0.00
(192115, 106100) 0.16 0.01 0.13 0.03 0.09 0.15
(192115, 599841) 0.16 0.01 0.15 0.01 0.13 0.04
(192115, 715337) 0.56 0.00 0.66 0.00 0.43 0.00
(192115, 104351) -0.21 0.00 -0.18 0.00 -0.06 0.31
(192115, 142494) -0.15 0.01 -0.12 0.04 0.11 0.06
(192115, 494629) 0.16 0.01 0.26 0.00 0.23 0.00
(192115, 918588) -0.21 0.00 -0.16 0.01 -0.15 0.01
(192115, 102611) 0.72 0.00 0.71 0.00 0.58 0.00
(192115, 205249) 0.00 0.95 0.03 0.67 0.22 0.00
(192115, 206887) 0.21 0.00 0.25 0.00 0.28 0.00
(192115, 453332) 0.69 0.00 0.82 0.00 0.71 0.00
(192115, 194543) 0.30 0.00 0.44 0.00 0.20 0.00
(192115, 168177) 0.29 0.00 0.46 0.00 0.14 0.02
(192115, 136212) -0.07 0.22 -0.02 0.81 -0.12 0.06
(192115, 461530) 0.00 0.99 -0.04 0.48 -0.11 0.08
(192115, 475056) -0.06 0.35 -0.12 0.04 -0.10 0.09
(192115, 999999) -0.08 0.21 0.29 0.00 0.25 0.00
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  Hour17  Hour9  Hour2  
ID1  ID2 CorrCoef P_value CorrCoef P_value CorrCoef P_value 
(282606, 108576) -0.13 0.04 0.17 0.01 0.36 0.00
282606, 106100) 0.13 0.04 0.31 0.00 0.35 0.00
(282606, 599841) 0.01 0.84 0.29 0.00 0.45 0.00
(282606, 715337) -0.09 0.15 -0.01 0.93 0.28 0.00
(282606, 104351) 0.38 0.00 0.61 0.00 0.65 0.00
(282606, 142494) 0.52 0.00 0.66 0.00 0.67 0.00
(282606, 494629) 0.13 0.03 0.33 0.00 0.45 0.00
(282606, 918588) 0.17 0.00 -0.20 0.00 -0.14 0.02
(282606, 102611) -0.16 0.01 0.06 0.33 0.32 0.00
(282606, 205249) -0.02 0.77 0.23 0.00 -0.16 0.01
(282606, 206887) 0.13 0.03 0.37 0.00 0.37 0.00
(282606, 453332) -0.03 0.65 0.02 0.71 0.21 0.00
(282606, 194543) -0.15 0.01 0.19 0.00 0.25 0.00
(282606, 168177) -0.15 0.02 0.19 0.00 0.26 0.00
(282606, 136212) -0.28 0.00 -0.31 0.00 -0.18 0.00
(282606, 461530) -0.10 0.10 -0.46 0.00 -0.44 0.00
(282606, 475056) -0.04 0.55 -0.30 0.00 0.03 0.63
(282606, 999999) 0.01 0.93 0.18 0.00 0.15 0.01
(108576, 106100) 0.20 0.00 0.42 0.00 0.51 0.00
(108576, 599841) 0.15 0.01 0.46 0.00 0.58 0.00
(108576, 715337) 0.23 0.00 0.29 0.00 0.13 0.03
(108576, 104351) -0.14 0.02 -0.04 0.54 0.13 0.03
(108576, 142494) -0.10 0.10 -0.03 0.68 0.07 0.28
(108576, 494629) 0.10 0.10 0.40 0.00 0.51 0.00
(108576, 918588) -0.30 0.00 -0.39 0.00 -0.39 0.00
(108576, 102611) 0.25 0.00 0.40 0.00 0.25 0.00
(108576, 205249) -0.02 0.79 0.34 0.00 0.08 0.21
(108576, 206887) 0.30 0.00 0.39 0.00 0.43 0.00
(108576, 453332) 0.21 0.00 0.33 0.00 0.23 0.00
(108576, 194543) 0.12 0.06 0.37 0.00 0.09 0.12
(108576, 168177) 0.12 0.06 0.34 0.00 0.14 0.03
(108576, 136212) 0.06 0.32 0.01 0.89 -0.05 0.38
(108576, 461530) 0.08 0.21 -0.20 0.00 -0.42 0.00
(108576, 475056) -0.06 0.33 -0.30 0.00 0.10 0.11
(108576, 999999) -0.01 0.84 0.37 0.00 0.55 0.00
(106100, 599841) 0.71 0.00 0.70 0.00 0.75 0.00
(106100, 715337) 0.08 0.19 0.08 0.18 0.18 0.00
(106100, 104351) -0.20 0.00 0.05 0.38 0.21 0.00
(106100, 142494) -0.11 0.07 0.06 0.37 0.16 0.01
(106100, 494629) 0.71 0.00 0.69 0.00 0.74 0.00
(106100, 918588) -0.48 0.00 -0.45 0.00 -0.42 0.00
(106100, 102611) 0.25 0.00 0.21 0.00 0.31 0.00
(106100, 205249) 0.33 0.00 0.29 0.00 -0.15 0.01
(106100, 206887) 0.53 0.00 0.54 0.00 0.43 0.00
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  Hour17  Hour9  Hour2  
ID1  ID2 CorrCoef P_value CorrCoef P_value CorrCoef P_value 
(106100, 453332) 0.07 0.28 0.06 0.32 0.11 0.06
(106100, 194543) 0.14 0.02 0.29 0.00 0.26 0.00
(106100, 168177) 0.15 0.02 0.29 0.00 0.28 0.00
(106100, 136212) -0.14 0.02 -0.13 0.04 0.13 0.04
(106100, 461530) -0.44 0.00 -0.42 0.00 -0.52 0.00
(106100, 475056) -0.41 0.00 -0.47 0.00 0.24 0.00
(106100, 999999) 0.47 0.00 0.45 0.00 0.47 0.00
(599841, 715337) 0.07 0.23 0.13 0.03 0.25 0.00
(599841, 104351) -0.28 0.00 0.02 0.79 0.31 0.00
(599841, 142494) -0.20 0.00 0.06 0.36 0.23 0.00
(599841, 494629) 0.84 0.00 0.84 0.00 0.86 0.00
(599841, 918588) -0.57 0.00 -0.55 0.00 -0.47 0.00
(599841, 102611) 0.30 0.00 0.25 0.00 0.36 0.00
(599841, 205249) 0.44 0.00 0.40 0.00 -0.12 0.05
(599841, 206887) 0.44 0.00 0.43 0.00 0.37 0.00
(599841, 453332) 0.11 0.08 0.12 0.04 0.20 0.00
(599841, 194543) 0.28 0.00 0.37 0.00 0.22 0.00
(599841, 168177) 0.28 0.00 0.36 0.00 0.24 0.00
(599841, 136212) -0.18 0.00 -0.09 0.15 0.13 0.03
(599841, 461530) -0.53 0.00 -0.52 0.00 -0.62 0.00
(599841, 475056) -0.41 0.00 -0.53 0.00 0.25 0.00
(599841, 999999) 0.60 0.00 0.60 0.00 0.46 0.00
(715337, 104351) -0.12 0.05 -0.15 0.02 0.21 0.00
(715337, 142494) -0.07 0.28 -0.10 0.12 0.19 0.00
(715337, 494629) 0.08 0.19 0.19 0.00 0.25 0.00
(715337, 918588) -0.16 0.01 -0.12 0.04 -0.10 0.11
(715337, 102611) 0.61 0.00 0.72 0.00 0.76 0.00
(715337, 205249) -0.04 0.51 -0.04 0.52 0.07 0.23
(715337, 206887) 0.14 0.02 0.18 0.00 0.35 0.00
(715337, 453332) 0.75 0.00 0.75 0.00 0.64 0.00
(715337, 194543) 0.36 0.00 0.37 0.00 0.32 0.00
(715337, 168177) 0.37 0.00 0.38 0.00 0.25 0.00
(715337, 136212) 0.12 0.06 0.07 0.28 0.10 0.11
(715337, 461530) 0.00 0.97 -0.04 0.49 -0.31 0.00
(715337, 475056) 0.09 0.15 -0.06 0.29 0.06 0.33
(715337, 999999) -0.03 0.58 0.27 0.00 0.27 0.00
(104351, 142494) 0.78 0.00 0.82 0.00 0.75 0.00
(104351, 494629) -0.23 0.00 0.06 0.32 0.35 0.00
(104351, 918588) 0.31 0.00 0.00 0.99 -0.04 0.55
(104351, 102611) -0.22 0.00 -0.08 0.17 0.30 0.00
(104351, 205249) -0.18 0.00 0.16 0.01 -0.24 0.00
(104351, 206887) -0.05 0.46 0.34 0.00 0.30 0.00
(104351, 453332) -0.12 0.06 -0.16 0.01 0.01 0.82
(104351, 194543) -0.21 0.00 0.05 0.45 0.30 0.00
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  Hour17  Hour9  Hour2  
ID1  ID2 CorrCoef P_value CorrCoef P_value CorrCoef P_value 
(104351, 168177) -0.21 0.00 0.05 0.45 0.32 0.00
(104351, 136212) 0.10 0.10 -0.09 0.14 -0.06 0.33
(104351, 461530) 0.23 0.00 -0.21 0.00 -0.43 0.00
(104351, 475056) 0.28 0.00 0.02 0.79 -0.02 0.78
(104351, 999999) -0.25 0.00 -0.05 0.43 0.00 0.96
(142494, 494629) -0.13 0.04 0.10 0.10 0.29 0.00
(142494, 918588) 0.29 0.00 0.03 0.63 0.10 0.10
(142494, 102611) -0.18 0.00 -0.07 0.26 0.23 0.00
(142494, 205249) -0.13 0.03 0.12 0.04 -0.19 0.00
(142494, 206887) 0.09 0.14 0.35 0.00 0.35 0.00
(142494, 453332) -0.03 0.64 -0.09 0.14 0.12 0.06
(142494, 194543) -0.11 0.06 0.03 0.59 0.26 0.00
(142494, 168177) -0.11 0.06 0.06 0.34 0.30 0.00
(142494, 136212) 0.06 0.34 -0.13 0.04 -0.16 0.01
(142494, 461530) 0.10 0.10 -0.20 0.00 -0.23 0.00
(142494, 475056) 0.22 0.00 -0.06 0.35 -0.08 0.20
(142494, 999999) -0.14 0.02 -0.03 0.65 -0.06 0.34
(494629, 918588) -0.51 0.00 -0.52 0.00 -0.43 0.00
(494629, 102611) 0.21 0.00 0.22 0.00 0.37 0.00
(494629, 205249) 0.47 0.00 0.46 0.00 -0.13 0.03
(494629, 206887) 0.48 0.00 0.46 0.00 0.37 0.00
(494629, 453332) 0.11 0.08 0.15 0.01 0.22 0.00
(494629, 194543) 0.21 0.00 0.37 0.00 0.20 0.00
(494629, 168177) 0.21 0.00 0.36 0.00 0.21 0.00
(494629, 136212) -0.29 0.00 -0.21 0.00 0.04 0.56
(494629, 461530) -0.53 0.00 -0.53 0.00 -0.63 0.00
(494629, 475056) -0.48 0.00 -0.58 0.00 0.18 0.00
(494629, 999999) 0.56 0.00 0.55 0.00 0.43 0.00
(918588, 102611) -0.33 0.00 -0.20 0.00 -0.20 0.00
(918588, 205249) -0.41 0.00 -0.31 0.00 -0.07 0.24
(918588, 206887) -0.41 0.00 -0.28 0.00 -0.26 0.00
(918588, 453332) -0.15 0.02 -0.11 0.08 -0.18 0.00
(918588, 194543) -0.30 0.00 -0.33 0.00 -0.22 0.00
(918588, 168177) -0.30 0.00 -0.34 0.00 -0.19 0.00
(918588, 136212) 0.13 0.04 0.12 0.05 -0.25 0.00
(918588, 461530) 0.43 0.00 0.43 0.00 0.43 0.00
(918588, 475056) 0.46 0.00 0.54 0.00 -0.24 0.00
(918588, 999999) -0.44 0.00 -0.50 0.00 -0.49 0.00
(102611, 205249) 0.03 0.63 0.00 0.96 0.04 0.51
(102611, 206887) 0.19 0.00 0.24 0.00 0.40 0.00
(102611, 453332) 0.58 0.00 0.67 0.00 0.61 0.00
(102611, 194543) 0.43 0.00 0.50 0.00 0.38 0.00
(102611, 168177) 0.42 0.00 0.49 0.00 0.31 0.00
(102611, 136212) 0.08 0.16 0.14 0.02 0.15 0.02
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  Hour17  Hour9  Hour2  
ID1  ID2 CorrCoef P_value CorrCoef P_value CorrCoef P_value 
(102611, 461530) -0.15 0.02 -0.18 0.00 -0.35 0.00
(102611, 475056) -0.02 0.71 -0.08 0.18 0.05 0.40
(102611, 999999) 0.10 0.11 0.40 0.00 0.37 0.00
(205249, 206887) 0.18 0.00 0.21 0.00 0.03 0.62
(205249, 453332) -0.07 0.28 -0.05 0.45 0.10 0.09
(205249, 194543) 0.14 0.02 0.11 0.06 0.14 0.02
(205249, 168177) 0.12 0.04 0.12 0.04 0.02 0.71
(205249, 136212) -0.36 0.00 -0.21 0.00 0.14 0.02
(205249, 461530) -0.44 0.00 -0.39 0.00 0.22 0.00
(205249, 475056) -0.47 0.00 -0.38 0.00 -0.05 0.43
(205249, 999999) 0.39 0.00 0.36 0.00 0.25 0.00
(206887, 453332) 0.21 0.00 0.22 0.00 0.30 0.00
(206887, 194543) 0.15 0.01 0.39 0.00 0.39 0.00
(206887, 168177) 0.17 0.01 0.40 0.00 0.38 0.00
(206887, 136212) -0.07 0.27 -0.09 0.12 0.01 0.83
(206887, 461530) -0.39 0.00 -0.36 0.00 -0.38 0.00
(206887, 475056) -0.23 0.00 -0.31 0.00 0.07 0.24
(206887, 999999) 0.32 0.00 0.28 0.00 0.40 0.00
(453332, 194543) 0.30 0.00 0.40 0.00 0.24 0.00
(453332, 168177) 0.32 0.00 0.42 0.00 0.22 0.00
(453332, 136212) 0.04 0.50 0.02 0.74 -0.03 0.59
(453332, 461530) -0.02 0.81 0.00 1.00 -0.20 0.00
(453332, 475056) 0.05 0.42 -0.08 0.19 0.00 0.96
(453332, 999999) -0.09 0.14 0.26 0.00 0.28 0.00
(194543, 168177) 0.96 0.00 0.91 0.00 0.86 0.00
(194543, 136212) 0.08 0.19 0.11 0.07 0.08 0.20
(194543, 461530) -0.26 0.00 -0.32 0.00 -0.24 0.00
(194543, 475056) -0.05 0.43 -0.21 0.00 0.00 0.95
(194543, 999999) 0.32 0.00 0.43 0.00 0.32 0.00
(168177, 136212) 0.10 0.10 0.09 0.13 0.00 0.98
(168177, 461530) -0.25 0.00 -0.33 0.00 -0.29 0.00
(168177, 475056) -0.02 0.71 -0.21 0.00 0.00 0.96
(168177, 999999) 0.32 0.00 0.43 0.00 0.25 0.00
(136212, 461530) 0.26 0.00 0.16 0.01 -0.11 0.07
(136212, 475056) 0.53 0.00 0.45 0.00 0.42 0.00
(136212, 999999) -0.07 0.28 0.07 0.26 0.29 0.00
(461530, 475056) 0.43 0.00 0.45 0.00 -0.19 0.00
(461530, 999999) -0.54 0.00 -0.51 0.00 -0.40 0.00
(475056, 999999) -0.33 0.00 -0.40 0.00 0.25 0.00
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TABLE C.2 
Correlation Coefficient Between Bids and PALO, PATH26 

 
 Hour2 Hour9 Hour17 
  PALO  PATH26  PALO  PATH26  PALO  PATH26 
ResID R P R P R P R P R P R P 

199871 -0.17 0.01 0.06 0.11 -0.07 0.27 0.10 0.09 -0.08 0.21 0.00 0.27
192115 -0.20 0.00 0.89 -0.01 -0.25 0.00 0.14 0.02 -0.14 0.02 0.03 0.13
282606 -0.12 0.05 0.01 0.16 0.05 0.43 0.11 0.08 -0.01 0.94 0.58 0.03
108576 -0.14 0.02 0.07 0.11 -0.12 0.04 0.06 0.34 -0.19 0.00 0.00 0.18
106100 -0.11 0.06 0.69 0.02 -0.02 0.78 0.04 0.49 -0.01 0.86 0.74 0.02
599841 -0.13 0.03 0.05 0.12 0.00 0.98 0.04 0.47 0.02 0.77 0.70 -0.02
715337 -0.15 0.01 0.22 0.07 -0.24 0.00 0.11 0.06 -0.21 0.00 0.02 0.14
104351 0.02 0.69 0.00 0.17 0.04 0.55 0.30 0.00 -0.11 0.07 0.01 0.16
142494 -0.01 0.88 0.01 0.16 0.07 0.23 0.29 0.00 -0.06 0.29 0.00 0.23
494629 -0.09 0.13 0.07 0.11 0.03 0.61 0.06 0.32 0.05 0.41 0.77 0.02
918588 0.28 0.00 0.40 -0.05 0.04 0.49 0.00 0.98 0.08 0.19 0.57 -0.03
102611 -0.14 0.02 0.49 0.04 -0.17 0.01 0.11 0.07 -0.14 0.02 0.19 0.08
205249 -0.27 0.00 0.01 -0.15 0.11 0.06 -0.04 0.54 0.09 0.15 0.11 -0.10
206887 -0.33 0.00 0.00 0.19 -0.08 0.21 0.35 0.00 -0.06 0.33 0.00 0.35
453332 -0.26 0.00 0.23 0.07 -0.30 0.00 0.11 0.06 -0.15 0.01 0.02 0.15
194543 -0.33 0.00 0.25 0.07 -0.21 0.00 0.23 0.00 -0.24 0.00 0.03 0.13
168177 -0.25 0.00 0.19 0.08 -0.20 0.00 0.23 0.00 -0.22 0.00 0.01 0.16
136212 -0.12 0.05 0.46 0.05 -0.06 0.29 0.17 0.01 -0.09 0.15 0.00 0.27
461530 0.09 0.15 0.01 -0.17 -0.12 0.04 0.03 0.69 -0.14 0.02 0.75 0.02
475056 -0.15 0.01 0.67 0.03 0.03 0.59 0.03 0.66 -0.06 0.35 0.00 0.18

Overall -0.29 0.00 0.33 0.06 -0.02 0.73 -0.01 0.94 0.04 0.55 0.80 0.02
 
 

TABLE C.3 
Correlation Coefficient Between same resource ID while different hours 

 
 Hour (2,9)  (2,17)  (9,17)  
 Corr_Coef P-value Corr_Coef P-value Corr_Coef P-value 

199871 0.79 0.00 0.54 0.00 0.70 0.00 
192115 0.58 0.00 0.41 0.00 0.51 0.00 
282606 0.67 0.00 0.34 0.00 0.46 0.00 
108576 0.77 0.00 0.42 0.00 0.62 0.00 
106100 0.89 0.00 0.84 0.00 0.94 0.00 
599841 0.81 0.00 0.78 0.00 0.92 0.00 
715337 0.38 0.00 0.15 0.02 0.46 0.00 
104351 0.75 0.00 0.29 0.00 0.46 0.00 
142494 0.86 0.00 0.41 0.00 0.49 0.00 
494629 0.80 0.00 0.79 0.00 0.93 0.00 
918588 0.88 0.00 0.83 0.00 0.82 0.00 
102611 0.42 0.00 0.15 0.01 0.49 0.00 
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 Hour (2,9)  (2,17)  (9,17)  
 Corr_Coef P-value Corr_Coef P-value Corr_Coef P-value 

205249 0.08 0.19 0.06 0.35 0.78 0.00 
206887 0.96 0.00 0.94 0.00 0.96 0.00 
453332 0.50 0.00 0.36 0.00 0.55 0.00 
194543 0.50 0.00 0.30 0.00 0.56 0.00 
168177 0.44 0.00 0.22 0.00 0.56 0.00 
136212 0.27 0.00 0.30 0.00 0.79 0.00 
461530 0.87 0.00 0.82 0.00 0.93 0.00 
475056 -0.15 0.01 -0.10 0.09 0.67 0.00 

Overall 0.67 0.00 0.56 0.00 0.79 0.00 
 
 

TABLE C.4 
Bids Linear Regression Result including 

 Hour Gas TotalLoad COI 15 PALO 26 dummy 
136212 2 115.96 -0.01 -3.18 -0.57 -1.55 -0.14 -157.90

 9 176.76 -0.01 -1.44 -1.36 -0.80 1.09 -468.65
 17 173.47 -0.02 -1.65 -1.12 -0.77 1.50 -459.29

461530 2 44.34 0.01 -0.22 0.08 0.26 0.02 -365.76
 9 34.11 0.01 -0.34 -0.14 -0.14 -0.05 -221.84
 17 32.19 0.00 -0.45 -0.08 -0.15 -0.14 -125.17

475056 2 -9.03 0.00 -0.25 -0.02 -0.15 -0.05 38.80
 9 44.87 -0.01 0.10 0.08 0.14 0.05 -27.94
 17 32.01 0.00 -0.30 0.11 0.09 0.37 -104.04
Overall 2 -30.65 0.02 0.12 -0.54 -0.49 -0.29 -51.05
 9 -33.36 0.00 -0.23 -0.49 -0.17 0.03 296.20
 17 -34.69 -0.01 -0.32 -0.32 0.10 0.15 337.22

 
TABLE C.5 

Bids Linear Regression Result after grouping  
  Hour Gas TotalLoad COI 15 PALO 26 dummy 
Group1 136212 2 173.45 -0.06 -3.53 -1.30 -1.91 0.22 780.85
  9 263.90 -0.08 -2.15 -2.31 -0.61 3.41 588.38
  17 259.00 -0.07 -2.22 -2.04 -0.61 3.82 492.11
 461530 2 44.31 0.00 -0.20 0.17 0.15 -0.25 -145.16
  9 24.18 0.01 -0.50 -0.32 -0.04 -0.88 -212.91
  17 27.13 0.01 -0.43 -0.34 -0.05 -0.73 -129.62
 475056 2 -1.72 0.00 -0.33 -0.06 -0.05 0.18 156.40
  9 50.95 -0.01 0.17 0.02 0.11 0.14 73.76
  17 38.98 -0.01 -0.04 0.03 0.10 0.13 131.67
 Overall 2 -15.50 0.01 -0.02 -0.52 -0.45 0.40 128.39
  9 -7.71 -0.01 -0.40 -0.65 -0.20 0.66 319.36
  17 -18.25 -0.01 -0.51 -0.59 0.15 0.67 459.20
Group2 136212 2 59.43 0.01 1.59 -0.32 0.00 -1.62 -479.44
  9 54.39 0.02 0.63 0.05 -3.13 0.48 -709.11
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  Hour Gas TotalLoad COI 15 PALO 26 dummy 
  17 48.04 0.02 0.23 0.08 -2.30 0.53 -748.39
 461530 2 38.54 0.00 -1.71 0.79 0.21 -0.67 -102.60
  9 52.96 -0.01 -0.85 0.53 -1.84 -0.36 159.99
  17 37.14 -0.01 -1.02 0.85 -8.36 -0.16 53.93
 475056 2 -6.37 0.01 0.37 -0.05 -0.11 -0.82 -215.77
  9 39.68 0.00 -0.06 0.06 3.59 -0.28 -212.61
  17 22.40 0.02 -0.97 0.31 -8.63 0.08 -481.62
 Overall 2 -31.26 0.02 2.20 -0.59 -0.28 -1.99 -255.16
  9 -58.01 0.02 0.44 -0.52 -4.96 0.33 -178.27
  17 -60.36 0.00 -0.15 -0.02 -3.98 -0.14 385.06
Group3 136212 2 -41.24 0.00 0.52 -0.53 1.13 142.47   
  9 5.78 0.02 -0.04 0.09 -1.01 -0.29 -405.64
  17 24.75 0.01 -1.14 0.35 -2.10 0.13 -320.01
 461530 2 194.41 0.04 -0.88 1.16 -2.62 -1848.76   
  9 70.92 0.04 0.48 0.32 -0.33 1.52 -1352.40
  17 69.16 0.02 -0.24 0.33 -1.00 0.81 -900.90
 475056 2 -44.62 0.01 0.21 -0.86 0.28 145.15   
  9 17.90 0.00 -0.10 0.34 3.85 0.27 -128.81
  17 43.06 0.01 -0.75 0.35 0.39 0.61 -443.40
 Overall 2 -200.11 0.03 -0.39 -0.73 3.44 422.09   
  9 -154.62 0.01 0.53 0.45 -0.53 -0.14 441.24
  17 -73.35 0.00 1.01 0.34 0.00 0.08 470.62

 
 
 

TABLE C.6 
Price linear regression with only gas and load  

 Gas TotalLoad dummy R2 
2 28.61 0.00 -48.46 0.64
9 27.57 0.00 -109.87 0.51

17 12.44 0.03 -738.54 0.35
 
 
 

TABLE C.7 
Linear regression result of price for only with gas & load, cong 

 Gas TotalLoad COI 15 PALO 26 dummy R2 
2 18.09 0.00 -0.17 0.28 0.11 -0.08 -28.96 0.72
9 22.35 0.00 -0.09 0.23 0.06 0.02 -104.40 0.53

17 8.57 0.03 -0.20 0.17 -0.03 0.21 -707.90 0.36
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TABLE C.8 
Linear regression result of price only with gas & load, all Bids 

Hr 199871 192115 282606 108576 106100 599841 715337 104351 142494 494629 918588 102611
2 16.07 0.00 -0.01 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01
9 10.91 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.02 0.01 0.00 0.02 -0.02

17 24.91 0.02 0.01 0.01 -0.01 0.01 -0.04 0.04 0.03 0.12 0.13 0.08
Hr 205249 206887 453332 194543 168177 136212 461530 475056Overall  gas  TLd dummy 

2 0.00 0.01 -0.02 -0.02 0.01 0.00 0.00 -0.01 0.02 -0.04 -0.05 -25.67
9 0.00 -0.01 -0.02 -0.02 -0.01 0.02 0.00 -0.01 0.05 -0.04 0.00 -71.04

17 0.03 -0.01 -0.07 -0.10 0.00 -0.10 0.10 0.03 0.10 0.02 -0.02 -600.11
 

 
 

TABLE C.9 
Linear regression result of price with all information 

Hr 199871 192115 282606 108576 106100 599841 715337 104351 142494 494629 918588 102611 205249dummy 
2 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 -0.02 -14.37
9 0.00 0.00 -0.01 -0.01 -0.01 -0.02 0.01 0.00 0.01 -0.02 0.00 -0.02 -0.02 -70.95

17 0.01 0.02 -0.01 0.02 -0.05 0.05 0.03 0.12 0.13 0.09 0.03 -0.02 -0.07 -606.69
2 206887 453332 194543 168177 136212 461530 475056Overall  gas  TlLd COI Path15PALO Path26
9 -0.02 0.00 0.00 0.00 -0.01 0.02 -0.03 -0.04 12.06 0.00 -0.16 0.20 0.05 -0.09

17 -0.02 -0.01 0.02 0.00 -0.01 0.05 -0.04 0.01 8.10 0.01 -0.07 0.19 0.09 0.03
 -0.09 -0.01 -0.10 0.11 0.04 0.11 0.00 -0.03 17.90 0.02 -0.03 0.35 0.16 -0.05

 
TABLE C.10 

Linear regression result of price with only 2 bids 

 475056 Overall  gas 
 
TotalLoad COI 15 PALO 26 dummy 

2 -0.04 -0.07 15.75 0.00 -0.17 0.24 0.07 -0.11 -30.87
9 -0.01 -0.06 20.76 0.00 -0.10 0.20 0.05 0.02 -87.51

17 0.01 0.10 11.63 0.03 -0.16 0.20 -0.04 0.19 -740.28
 
 

TABLE C.11 
Linear regression result of price with only 2 bids by grouping 

Group Hour 475056 Overall  gas  TotalLoad COI 15 PALO 26 dummy 
2 0.01 -0.06 18.39 0.00 -0.04 0.13 0.10 0.01 -26.74
9 0.05 -0.05 18.51 0.00 0.04 0.05 0.08 0.01 -87.58

1 17 0.01 -0.03 24.72 0.00 -0.08 0.04 0.03 -0.04 -117.75
2 -0.11 -0.13 14.32 0.00 -0.54 0.41 -0.14 -0.75 -90.06
9 -0.03 -0.16 13.87 -0.01 -0.52 0.48 0.38 0.08 195.65

2 17 0.45 -0.15 4.42 0.01 -0.24 -0.21 -1.87 -0.09 -207.40
2 -0.13 0.00 23.44 0.00 n/a 0.28 0.41 -0.40 -93.05
9 -0.27 0.09 26.53 0.00 -0.07 0.67 1.36 0.25 -52.28

3 17 -0.66 0.76 -7.02 0.06 -1.47 1.54 -3.91 0.94 -1383.47
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TABLE C.12 

Linear regression result of price with only 2 bids by grouping with peak load 
Group Hr 475056 Overall  gas  TLd PeakLoad COI 15 PALO 26 dummy 

2 0.01 -0.06 18.35 0.00 0.00 -0.04 0.13 0.10 0.00 -26.27
9 0.05 -0.05 18.52 0.00 0.00 0.04 0.05 0.08 0.01 -87.57

1 17 0.01 -0.03 24.74 0.00 0.01 -0.08 0.03 0.02 -0.01 -120.70
2 -0.11 -0.13 14.71 0.01 0.00 -0.55 0.41 -0.15 -0.74 -97.87
9 -0.09 -0.13 20.69 0.01 -0.01 -0.51 0.44 -0.64 0.02 37.69

2 17 0.39 -0.10 11.73 0.03 -0.01 -0.27 -0.26 -3.59 -0.11 -408.78
2 -0.09 -0.03 19.20 0.02 -0.01  0.30 0.20 -0.51 -97.32
9 -0.20 0.01 18.33 0.04 -0.04 0.16 0.52 -0.18 0.03 -65.17

3 17 -0.80 -0.08 -39.06 0.23 -0.14 0.00 1.18 -8.82 0.32 -1283.74
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