CHARACTERIZATION OF A TYMOVIRUS CAUSING DISEASE IN DIASCIA ORNAMENTAL PLANTS

By
AMOGELANG THETHE SEGWAGWE

A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Plant Pathology
MAY 2007

To the Faculty of Washington State University:
The members of the Committee appointed to examine the thesis of AMOGELANG THETHE SEGWAGWE find it satisfactory and recommend that it be accepted.

ACKNOWLEDGEMENTS

Acknowledgements:

I would like to express my appreciation for Dr. Ken Eastwell who not only inspired me but encouraged me to be positive until the very end. His guidance and patience were enormous and I am very thankful for that. I appreciate the time he spent to go through the dissertation and come up with suggestions on making it better. My sincere appreciation goes to my committee members Drs. Jack Rogers, Hanu Pappu and Richard Larsen for all their valuable suggestions and critical comments during the time I spent in Washington State University.

Keri Druffel has been very inspirational in providing me most of the sequence information that was used to validate the Diascia yellow mottle virus (DiaYMV) sequence. Initial sequencing and the polyclonal antibody to DiaYMV were all initiated by her, and she was kind enough to provide that information. All the phylogenetic analysis and sequence alignments were completed with the help of Dr. Ken Eastwell. I thank all the people in our lab who helped me gather enough data and for their daily inspiration.

I am grateful for the financial assistantship from the Botswana College of Agriculture in partnership with Washington State University for giving me an opportunity to advance my studies. My sincere thanks to all the students in Plant Pathology and all the friendships I made in Prosser and Pullman.

I appreciate the tremendous effort my extended family members have made to take care of my son and be there for me always. Thank you so much for all your sincere work and patience. Big appreciation to Stuart and all my friends in Botswana for their greatest support.

CHARACTERIZATION OF A TYMOVIRUS CAUSING DISEASE IN DIASCIA ORNAMENTAL PLANTS

Abstract
by Amogelang Thethe Segwagwe, Ph.D.
Washington State University
May 2007

Chair: K. C. EASTWELL
Two tymoviruses were isolated from Diascia \times hybrida 'Sun chimes ${ }^{\mathrm{TM}}$ coral' plants exhibiting chlorotic mottling of the leaves and reduced growth. The nucleotide sequence of the entire genome from one isolate was determined. The genome is 6,290 nucleotides long and contains three potential open reading frames (ORFs). The 5 '-untranslated region is 154 nucleotides long and RNA folding into four hairpin structures is predicted in this region of the genome. The putative products of ORF I, II and III are 637, 1,790, and 192 amino acids, respectively. Based on homology to other tymovirus sequences, it is predicted that ORF I encodes the movement protein, ORF II the replicase and ORF III the coat protein. Secondary structure analysis of the 3 '-terminus show that the RNA can form a transfer-like RNA structure that has an anticodon specific for histidine. The name Diascia yellow mottle virus (DiaYMV) is proposed for this novel virus. Based on the coat protein sequence analysis, it was revealed that the plants are also infected by a strain of the Nemesia ring necrosis virus (NeRNV). The isolate of NeRNV from Washington (NeRNV-WA) and DiaYMV share 99.5% and 94.5% amino acid sequence identity to the coat protein of NeRNV from Nemesia fruticans (NeRNV-Nf). The product of ORF II from DiaYMV shares 54.0\% amino acid sequence identity with ORF II of NeRNV-Nf. When the entire genomic nucleotide sequences are compared, 77.8% identity to NeRNV-Nf is revealed.

DiaYMV could not be distinguished from NeRNV by serology using a murine monoclonal antibody M3-7•A6•1 developed in this study. DiaYMV and NeRNV commonly occur in the Pacific Northwest in diascia and nemesia ornamental plants with the exception of Diascia \times hybrida 'Coral belle'. DiaYMV host range includes many representatives within the family Scrophulariaceae and Solanaceae with the exceptions of Datura stramonium, Chenopodium quinoa, some members of Nicotiana tabacum and members of the genus Antirrhinum. A reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay based diagnostic assays were developed for rapid detection of DiaYMV and NeRNV in nurseries. The developed diagnostic assays, however, did not discriminate between the two viruses.
Page
ACKNOWLEDGEMENTS iii
ABSTRACT iv
LIST OF TABLES viii
LIST OF FIGURES x
DEDICATION xiii
CHAPTER 1
CHARACTERIZATION OF A TYMOVIRUS CAUSING DISEASE IN DIASCIA ORNAMENTAL PLANTS
GENERAL INTRODUCTION 1
REFERENCES 7
CHAPTER 2
MOLECULAR CHARACTERIZATION OF A TYMOVIRUS CAUSING DISEASE IN DIASCIA ORNAMENTAL PLANTS
SUMMARY 11
INTRODUCTION 12
MATERIALS AND METHODS 13
RESULTS AND DISCUSSION 27
CONCLUSION 61
REFERENCES 62
CHAPTER 3
MONOCLONAL ANTIBODY PRODUCTION AND SEROLOGICAL DIFFERENTIATION OF THE DIASCIA YELLOW MOTTLE VIRUS
SUMMARY 67
INTRODUCTION 67
MATERIALS AND METHODS 69
RESULTS 78
DISCUSSION 84
CONCLUSION 89
REFERENCES 90
CHAPTER 4
HOST RANGE STUDIES AND SYMPTOMATOLOGY OF DIASCIA YELLOW MOTTLE VIRUS
SUMMARY 93
INTRODUCTION 94
MATERIALS AND METHODS 95
RESULTS 102
DISCUSSION 126
CONCLUSION 129
REFERENCES 131
CHAPTER 5
GENERAL CONCLUSIONS 134

LIST OF TABLES

TABLE
PAGE

1. List of names, acronyms and accession numbers of viruses used in the multiple sequence alignment and phylogenetic comparisons of tymoviruses 29
2. Percentage identities of the amino acid sequences of the open reading frames (ORF) I, ORF II and ORF III of selected tymoviruses of the Ononis yellow mosaic virus cluster.41
3. Detection of immunoglobulin heavy and light chains in hybridoma culture supernate M3-7•A6•179
4. Botanical names and common names of plants used in the study 96
5. Reverse transcription-polymerase chain reaction (RT-PCR) and double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) on diascia and nemesia species purchased from nurseries in Washington and Oregon103
6. Impatiens necrotic spot virus (INSV) detection and symptom expression on plants kept in the greenhouse Prosser-Washington State (Spring, 2005)................................... 108
7. Impatiens necrotic spot virus (INSV) detection in plants purchased from nurseries in the States of Washington and Oregon (Spring, 2006)110
8. Symptom expression and detection of Diascia yellow mottle virus on leaves by triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) on nemesia and diascia plants following mechanically inoculation with DiaYMV.112
9. Detection of Diascia yellow mottle virus (DiaYMV) by triple antibody sandwichenzyme linked immunosorbent assay in leaf samples of various cultivars of the genus Antirrhinum
10. Symptom expression and virus detection by triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) on leaves of various Nicotiana plants inoculated with Diascia yellow mottle virus (DiaYMV)
11. Diascia yellow mottle virus (DiaYMV) detection by triple antibody sandwichenzyme linked immunosorbent assay (TAS-ELISA) on leaves of different plants following mechanical inoculation with DiaYMV.
12. Mean absorbance values for triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) on Diascia yellow mottle virus (DiaYMV) inoculated leaves of various plants121
13. Temperature effect on healthy and Diascia yellow mottle virus (DiaYMV) infected Diascia barberae 'Apricot queen' plants growing in temperature controlled growth chambers.. 124

LIST OF FIGURES

FIGURE
PAGE

1. Gel analysis of double strand RNA (dsRNA) extracted from healthy and virus infected plant tissues28
2. Virus profile from infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' following linear \log density gradient centrifugation30
3. Locations of cDNA clones used in the sequencing of the entire genome of Diascia tymovirus of the Diascia yellow mottle virus (DiaYMV) ... 32
4. Nucleotide sequence of the deduced genome organization of Diascia yellow mottle virus (DiaYMV) isolated from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'33
5. Deduced genome organization of Diascia yellow mottle virus (DiaYMV) showing locations of the 5^{\prime} '-untranslated region (UTR), open reading frames (ORF) I, ORF II, ORF III and 3'-untranslated region (UTR) in reference to the entire genome 40
6. Predicted secondary structures of the 5 '-terminus of Diascia yellow mottle virus
\qquad
7. Cluster dendograms based on the amino acid similarity of the movement proteins of Diascia yellow mottle virus (DiaYMV) and other tymoviruses from GenBank47
8. Cluster dendograms based on the amino acid similarity of the replicase proteins of Diascia yellow mottle virus (DiaYMV) and other tymoviruses from GenBank49
9. Cluster dendograms based on the amino acid similarity of the coat proteins of Diascia yellow mottle virus (DiaYMV) and other tymoviruses50
10. Nucleotide sequence alignment of open reading frame (ORF) III and the 3 'untranslated region (UTR) of Nemesia ring necrosis virus (NeRNV) and Diascia yellow mottle virus (DiaYMV) isolates... 52
11. Amino acid sequence alignment of the ORF III of Nemesia ring necrosis virus (NeRNV) and Diascia yellow mottle virus (DiaYMV) isolates54
12. Secondary structure model of the 3 '-terminus of RNA from tymoviruses found in members of the Scrophulariaceae55
13. The effect of antibody concentration and sample dilution on the mean absorbance values $\left(\mathrm{A}_{405}\right)$ of Diascia yellow mottle virus (DiaYMV) in a plate trapped antigen-enzyme linked immunosorbent assay (PTA-ELISA) using virus infected Nicotiana occidentalis
14. Time course of the plate trapped antigen-enzyme linked immunosorbent assay (PTA-ELISA) with monoclonal antibody M3-7•A6•1
15. Comparison between double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) and triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) on the virus detection in different host plants83
16. The effect of sample dilution on the mean absorbance value of triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) results using monoclonal antibody M3-7•A6•185
17. Western blot analysis using purified monoclonal antibody M3-7•A6•1 to detect protein in purified immunoglobulin and Diascia yellow mottle virus (DiaYMV) in infected plant tissue extracts
18. Electron micrograph of tymovirus infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' showing the distribution of double membrane vesicles in the cytoplasm
19. Symptoms on Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' infected with Diascia yellow mottle virus (DiaYMV) and Impatiens necrotic spot virus (INSV)107
20. Virus induced symptoms on Nicotiana occidentalis observed one week after inoculation with Diascia yellow mottle virus (DiaYMV)
21. Virus induced symptoms on Diascia barberae 'Apricot queen' and Nicotiana benthamiana one week after inoculation with Diascia yellow mottle virus (DiaYMV)
22. Plants showing symptoms on Nicotiana plants following mechanical inoculation with Diascia yellow mottle virus (DiaYMV).
23. Effect of sample dilution on the mean absorbance values $\left(\mathrm{A}_{405}\right)$ of Diascia yellow mottle virus (DiaYMV) using monoclonal antibody M3-7•A6•1 at $1 / 200$ dilution
24. Absorbance values of plate trapped antigen-enzyme linked immunosorbent assay (PTA-ELISA) of diascia plants over time after the addition of substrate in a PTAELISA
25. Effect of temperature on growth and symptom expression on healthy and Diascia yellow mottle virus (DiaYMV) inoculated Diascia barberae 'Apricot queen' seedlings growing in a $15^{\circ} \mathrm{C}$ growth chamber .

Dedication

To my son Tefo, my mother and all the women in Botswana who are trying to make it in Science.

CHAPTER 1

GENERAL INTRODUCTION

Plants in the genera Diascia and Nemesia belong to the snapdragon family Scrophulariaceae. Diascia are native to the southern and eastern parts of Africa, and many are native to the Drakensburg Mountains of South Africa and Lesotho (Batten, 1986; Benham, 1987; Garbutt, 1994). Diascia is a desirable ornamental plant because it provides a range of colors from "scarlet through salmon and coral into pink" (Schoellhorn, 2003) and possess larger, open canopies and larger flowers relative to nemesia. It is believed that they were introduced to Europe in the 1800s (Grey-Wilson, 1986; Boulby, 2001) and were bred and modified to suite different growing conditions of the world. There are several major species of diascia currently available for commercial use as well as many hybrids. Some of the currently popular species of diascia include Diascia barberae, D. cordata, D. integerrima and D. rigescens Benth. (Batten, 1986; Grey-Wilson, 1986; Garbutt, 1994), however there seems to be confusion of naming species (Boulby, 2001). Diascia species are characterized very generally as disease resistant, but of the few reports of disease problems in this genera and the most commonly cited diseases include impatiens necrotic spot, arabis mosaic, nemesia ring spot (APS/APHIS Virology working group, 2005) and a fungal disease caused by Botrytis cinerea (Boulby, 2001).

The ornamental industry in the USA is rapidly increasing and nursery crops have been one of the fastest growing sectors with horticultural sales estimated at $\$ 45$ billion. Floral and nursery crops contributed about a $\$ 15$ billion in 2003 (Hammond and Dodds, 2005). Floriculture crop sales increased to $\$ 5.4$ billion in 2005 (Jerardo, 2006). The 2006 ornamental crop sales were projected to reach $\$ 16.5$ billion with $\$ 100$ million from
floriculture and $\$ 200$ million from nursery crops. In Washington State, annual gross income contributed by potted flowering plants and bedding plants was $\$ 69$ million in 1999 (Copes, 2000). The USA imports 14.1% of its floriculture consumption, mainly in the form of unrooted cuttings and slips of plants (Jerardo, 2005).

The price of ornamental plants is directly related to their physical appearance and disease problems in nurseries or flowering plant production systems cause significant revenue losses due to failure to meet market standards (Copes, 2000). Virus-induced diseases of greenhouse grown floral crops result in substantial economic losses to growers each year, and it has been shown that a variety of viruses that infect floral crops are very often moved from plant to plant by insects (Nameth, 2006). Symptoms associated with floral crop viruses vary substantially with the virus and the host that is affected. Symptoms usually include, but are not limited to, general yellowing, stunting, wilting, mosaics, necrotic spots, ringspots, leaf blistering and deformation. These generic symptoms complicate diagnosis as they could be associated with other floral crop pathogens such as fungi or physiological disorders. Lack of clinically verified diagnostics procedures complicates survey information (Copes, 2000). The USA imports planting material from all over the world, and while there are mechanisms in place to test incoming material for diseases, this is challenging when the host plants do not show any symptoms and when diseases that are not listed for quarantine inspection are extant. This in turn posses danger and risk for disease spread between different crops, countries and States.

The potential for new virus diseases increases as different crops are introduced and grown in new areas, hence methods for reliable and rapid detection and identification of these viral agents are essential to facilitate production of virus free plants. At least 125
different viruses have been identified that infect and cause disease in ornamental plants (Hammond and Lewanodowski, 2005). There are few sources of virus resistance in the available germplasm of ornamental crops even though virus diseases are a major production constraint in the industry. It is possible to generate certain plant species free of some viruses by propagation through seed, but this option is limited to a few crops. The majority of the ornamental plants are hybrids, self-incompatible and vegetatively propagated. Therefore, the use virus-free stock and effective methods to control vectors are essential to limit the spread of virus diseases for these plants and to other potential crop plants. It is common for virus-free plants to become infected in commercial settings mainly due to vectors and mechanical transmission from infected tools. It is important to study and understand mechanisms of infection and transmission for new viruses so that effective control measures can be instituted to reduce the spread of diseases and revenue loss.

Diascia and nemesia plants obtained from nurseries were found to display virus-like symptoms which included a mild mosaic and vein yellowing. At the time the plants were first suspected of disease problems, little was known about the pathogens that affect diascia and nemesia ornamental plants. It soon became evident that the symptoms were a result of a virus infection and efforts were then made to identify and characterize the virus. Proper diagnosis is important to preserve the aesthetic value of these plants. In 2005, there were reports published of a tymovirus that causes diseases in diascia, nemesia and verbena ornamental plants in Europe (Skelton et al., 2004; Barends et al., 2005) and North America (Mathews and Dodds, 2006). This appears to be a recent infection and there is little information available on the causal agent, so it is difficult to ascertain the impact of the disease. The increased studies in virus diseases of ornamental crops in the USA will
eventually increase disease awareness due to viruses, and this trend is already gaining popularity as shown by the number of USDA-ARS projects that are focusing on ornamental crops (USDA-ARS, 2006). Some of the pathogens studied in nemesia and diascia include tymoviruses, tobamoviruses, carmoviruses, potyviruses and tospoviruses. Recent identification of Nemesia ring necrosis virus (NeRNV) in diascia, nemesia and verbena is evidence of the increased importance of the study of new and emerging viral diseases of nursery crops (Mathews and Dodds, 2006). Since partial genomic sequences are available for both the European and North American isolates of the tymovirus(es) infecting diascia and nemesia (Koenig et. al., 2005; Mathews and Dodds, 2006), the disease may soon receive more attention as there may be rapid assays for detection.

The available detection assay systems available for the tymovirus infecting diascia and nemesia ornamental plants include the use of a double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA) that also detects Scrophularia mottle virus (ScrMV) and NeRNV. ScrMV, Ribgrass mosaic virus and Impatiens necrotic spot virus have been reported on diascia and nemesia plants (APS/APHIS Virology working group, 2005). Nemesia ring necrosis is a newly reported disease caused by NeRNV that belongs to the family Tymoviridae, genus Tymovirus and it has been found to cause disease in susceptible Nemesia fructicans Benth. and some diascia hybrids. NeRNV was first characterized in 2005 (Koenig et al., 2005). NeRNV is a virus with isometric tymovirus-like particles which has been found to be widely spread in various ornamental plant species belonging to the Scrophulariaceae and Verbenaceae (Barends et al., 2005). Symptoms displayed on Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' often resemble those associated with infections by viruses within the genus Tymovirus. The type species of the tymovirus group is Turnip yellow
mosaic virus (TYMV), and it is among the first discovered of the spherical viruses and perhaps the most thoroughly studied by physico-chemical methods (Hirth and Givord, 1988). Tymoviruses typically infect a narrow range of host plants (Gibbs, 1994; Larson et al., 2000), and geographical distribution of individual species varies from restricted to widespread (Martelli et al., 2002). Purified preparations of most members of the genus Tymovirus contain two components when analyzed by sucrose density centrifugation (Scott and Moore, 1972; Bercks, 1973), consisting of the bottom component of complete virions and the top component of empty capsids (Gibbs, 1994). Transmission electron micrographs of tymoviruses often show numerous nucleoprotein particles and empty capsids 25 to 28 nm in diameter, thin sections from infected tissues show chloroplasts that developed small peripheral vesicles bounded by double membranes (Bercks, 1973; Lesemann, 1977; Koenig and Lesemann, 1979; Rana et al., 1988). Tymoviruses are transmissible by mechanical inoculation and in vegetatively propagated crops. Virus dissemination is primarily via infected propagating material (Martelli et al., 2002). The majority of tymovirus virions are acquired from the parenchyma cells by coleoptera (beetles) in the families of Chrysomelidae and Curculionidae, which then transmit the virus in a semi-persistent manner.

Classification of NeRNV was based on molecular data and sequence comparisons that showed this virus was a new species in the genus Tymovirus. Nemesia ring necrosis disease has been reported in ornamental plants such as diascia, nemesia, verbena and alonsoa (Skelton et al., 2004; Koenig et al., 2005; Mathews and Dodds, 2006). There is limited information on the host range and symptoms displayed in susceptible hosts. Lack of detailed descriptions of the nemesia ring necrosis disease creates problems for disease diagnosis as symptoms alone may be similar to those caused by other viruses. Moreover, the causal agent
is being reported as either NeRNV or ScrMV based on ELISA results with a polyclonal antibody. The two viruses are distinct species that are serologically related (Koenig et al., 2005). This situation makes accurate assessment of the occurrence of the two viruses difficult. Currently, NeRNV and ScrMV can be differentiated by reverse transcriptase polymerase chain reaction using primers that are specific to NeRNV (Mathews and Dodds, 2006).

A viral disease of ornamental plants may be the source of future infections of food crops and hence it is important to study new diseases so that there is a thorough understanding of the biology and epidemiology of the pathogens. The major focus of our study was to understand the mechanisms of infection, pathogenicity and transmission of a viral disease in diascia. The overall objectives of this study were to characterize the virus(es) associated with disease in diascia, use molecular data and physico-chemical properties of the virus(es) to describe and classify the virus, and to develop diagnostic assays for rapid detection of the virus.

REFERENCES:

APS/APHIS Virology working group-Report from Agdia, Inc. 2005. A listing by state of the positive viral pathogens detected in Agdia Testing Services Laboratory from July 1, 2003 through June 30, 2005. Report from Agdia, Inc.

Barends, S., Koenig, R., Gultyaev, A. P., Lesemann, D. -E., Vetten, H. J., Loss, S. and Pleij, C. W. A. 2005. NeRNV, a new tymovirus with a genomic RNA having a histidylateable tobamovirus like 3'end (Abstract). Fourth Joint meeting of Dutch and German plant virologists. Wageningen, March 10 and 11, 2005.

Batten, A. 1986. Flowers of Southern Africa. Frandsen Publishers, Sandton (South Africa).
Benham, S. 1987. Diascia - A survey of the species in cultivation. The Plantsman 9:1-17.
Bercks, R. 1973. Scrophularia mottle virus. CMI/AAB Descriptions of Plant Viruses, No. 113.

Boulby, C. 2001. National collection of Diascias. Accessed November, 2006.
Copes, W. 2000. Crop profiles for bedding plants in Washington. USDA Regional IPM Centers Information System. Accessed September, 2006.

Garbutt, S. 1994. The up-and-coming Diascia. The Garden Journal of the Royal Horticultural Society. 119:18-21.

Gibbs, A. 1994. Tymoviruses. Pages 1500-1502 in: Encyclopedia of Virology, Vol. 3. Webster, R. G and Granoff, A. eds. Academic Press, San Diego.

Grey-Wilson, C. 1986. Diascia rigescens. Kew Magazine. 3:99-102
Hammond, J. and Dodds, J. A. 2005. Detection of viruses in Verbena at all stages of its propagation cycle. Floral and Nursery Plant Research Unit. 2004 Annual Report: United

States Department of Agriculrure-Agriculture Research Services (USDA-ARS). Accessed online June, 2006.

Hammond, J. and Lewandowski, D. 2005. Studies on multiplication, movement and distribution of Tobacco mosaic virus and other tobamoviruses with Petunia. Floral and Nursery Plant Research Unit. 2005 Annual Report USDA-ARS. Accessed online October, 2006.

Hirth, L. and Givord, L. 1988. Tymoviruses. Pages 163-212 in: The Plant Viruses. R. Koenig, ed. Plenum, New York.

Honetslegrova, J., Petrzik, K., Spak, J. and Pelikanova, J. 1994. Comparison of the Czech Scrophularia isolate with the Italian Anagyris strain of Scrophularia mottle virus. Acta Virol. 38: 21-24.

Jerardo, A. 2005. Floriculture and Nursery crops Yearbook/FLO-2005 /September 2005. Economic Research service, USDA. Accessed online October, 2006.

Jerardo, A. 2006. Floriculture and Nursery Crops Yearbook /FLO-2006/June 2006. Economic Research service, USDA. Accessed online November, 2006.

Jordan, R., Hsu, H. T., Huang, Q. and Hammond, J. 2005. Development of detection and protection technologies for viruses and bacteria of major significance to ornamental and nursery crops. Floral and Nursery Plant Research Unit. 2005. Annual Report USDAARS. Accessed online October, 2006.

Koenig, R. and Lesemann, D. -E. 1979. Tymovirus group. CMI/AAB Descriptions of Plant Viruses No. 214.

Koenig, R., Barends, S., Gultyaev, A. P., Lesemann, D-E., Vetten, H. J., Loss, S and Pleij, C.W.A. 2005. NeRNV, a new virus with genomic RNA having a histidylatable tobamovirus-like 3'end. J. Gen.Virol. 86:1827-1833.

Larson, S. B., Day, J., Canady, M. A., Greenwood, A. and McPherson, A. 2000. Refined structure of Desmonium yellow mottle tymovirus at $2.7 \AA$ Resolution. J. Mol. Biol. 301:625-642.

Lesemann, D. -E. 1977. Virus group-specific and virus-specific cytological alterations induced by members of tymovirus group. Phytopathol. Z 90:315-336.

Mathews, D. M. and Dodds, J. A. 2006. First report of Nemesia ring necrosis virus in North America in ornamental plants from California. Plant Dis. 60:1263.

Nameth, S. 2006. Virus diseases of greenhouse floral crops. The Ohio State University Extension Factsheet HYG-3065-96.

Rana, G. I., Castellano, M. A. and Koenig, R. 1988. Characterization of a tymovirus isolated from Anagyris foetida as a strain of Scrophularia mottle virus. J. Phytopathol. 121:239249.

Schoellhorn, R. 2003. Nemesia and Diascia-great crops for giving a kick. University of Florida-Greenhouse Product News. Accessed online November, 2006.

Scott, H. A. and Moore, B. J. 1972. A comparison of certain properties of Desmonium yellow mottle and turnip yellow mosaic viruses. Virology. 50:613-614.

Skelton, A. L., Jarvis, B., Koenig, R., Lesemann, D. -E. and Mumford, R. A. 2004. Isolation and identification of a novel tymovirus from nemesia in the UK. Plant Path. 53:798

Steiner, K. E. 1990. The Diascia (Scrophulariaceae) window: an orientation cue for oilcollecting bees. Botanical Journal of the Linnean Society 102:175-195.

United States Department of Agriculture-Agricultural Research Service (USDA-ARS). 2006. Plant Diseases National Program (NP 303). Accomplishment report. http://www.ars.usda.gov/research/programs/programs.htm?np_code=303\&docid=11887. Accessed online December, 2006.

CHAPTER 2

MOLECULAR CHARACTERIZATION OF A TYMOVIRUS CAUSING DISEASE IN DIASCIA ORNAMENTAL PLANTS

SUMMARY:

Diascia \times hybrida 'Sun chimes ${ }^{\mathrm{TM}}$ coral' developed virus-like symptoms of mild yellowing and mottling. Infected plants also displayed reduced vigor. RNA was extracted from infected tissues, and the entire genome was cloned and sequenced. A sequence consistent with a member of the genus Tymovirus was obtained. The genome consists of a positive sense, single-stranded RNA molecule and is 6,290 nucleotides (nt) long. Three potential open reading frames (ORFs) were identified. ORF I overlaps the 5 '-terminus of ORF II and its predicted product is similar to the movement protein of tymoviruses. The putative product of ORF II is a viral replicase. The smallest ORF, ORF III, encodes the putative coat protein. The 3 '-terminus has the potential to form a transfer RNA-like structure and the 5 '-terminus can potentially form secondary structures similar to those formed by other tymoviruses. When the entire genome is considered, it shows the 77.8% nucleotide sequence identity to Nemesia ring necrosis virus-Nemesia fruticans isolate (NeRNV-Nf). Sequence alignments from cloned reverse transcription-polymerase chain reaction (RT-PCR) products using primers for the coat protein region revealed the presence of a mixture of two tymovirus-like sequences. The two isolates are denoted as Nemesia ring necrosis virus Washington State strain (NeRNV-WA) and Diascia yellow mottle virus (DiaYMV). Analysis of the predicted coat protein amino acid sequence of NeRNV-WA showed 99.5\% sequence identity to NeRNV-Nf while DiaYMV showed 94.5% sequence identity to

NeRNV-Nf. Amino acid sequence comparison of the DiaYMV movement protein showed 54.0% identity to NeRNV-Nf. Cluster analysis of ORF I, ORF II and ORF III places DiaYMV in the same cluster as the NeRNV-Nf. Analysis of genomic sequence data suggests that DiaYMV is a unique virus in the genus Tymovirus.

INTRODUCTION:

The use of nucleic acid sequences to classify and characterize plant viruses is becoming an essential tool in virus differentiation and identification. The use of other virus criteria such as serological relationships has proved to be limiting and less discriminating in cases where several species in a genus are serologically related. This has been the case in many genera and the genus Tymovirus is no exception. Isolation and characterization of viral specific double-stranded RNA (dsRNA) has also been used for the rapid detection and diagnosis of viral infections directly from host tissue (Morris and Dodds, 1979; Valverde et al., 1990). Nucleotide sequence based on the genotype of the virus has been helpful in discriminating viruses into species and identifying the emergence of new viruses, as well as virus variants that exist in natural virus populations (Lin et al., 2003).

Sequences of the coat protein (CP), the replicase protein (RP) and the tRNA-like structure with the corresponding sequences of other tymoviruses have been used to show that Physalis mottle virus (PhyMV) is a separate species that was previously identified as the Iowa strain of Belladonna mottle virus [BDMV-I] (Jacob et al., 1992). There has been added emphasis on molecular criteria as the most reliable for demarcating new virus species in the genus Tymovirus and in many other plant virus genera. These criteria have been used to differentiate Scrophularia mottle virus (ScrMV), Plantago mottle virus (PlMoV), Ononis
yellow mosaic virus (OYMV), Anagyris vein yellowing virus (AVYV) and the recently named Nemesia ring necrosis virus (NeRNV) (Koenig et al., 2005a; 2005b). The NeRNV isolates obtained in Europe from Nemesia fruticans and Diascia species will be referred to as NeRNV-Nf and NeRNV-Dia, respectively. An isolate of NeRNV that was reported from infected diascia species in California is referred to as NeRNV-isolate 3 (Mathews and Dodds, 2006). In order to understand the biology of a disease associated with Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral', molecular data was used to further understand how virus isolates in these plants relate to other confirmed viruses causing disease in diascia elsewhere.

Tymovirus genomes have three open reading frames (ORF), a tRNA-like structure at the 3 '-terminus, and a conserved sequence that serves as a subgenomic RNA (sgRNA) promoter known as the "tymobox" (Ding et al., 1990; Gibbs, 1994; Edwards et al., 1997). The physical-chemical criteria for genus demarcation include genome size (6.0 to 6.5 kilo bases) and molecular mass of the CP (20kDa) (Martelli et al., 2002; Dreher et al., 2004). The criteria for species demarcation within the genus Tymovirus include: overall sequence identity of less than 80%; capsid protein identity less than 90%; differential host range; differences in the 3 '-terminal structure, and serological specificity. The objectives of this study were to use molecular data to characterize a virus causing disease in diascia ornamental plants collected in States of Oregon and Washington in 2001.

MATERIALS AND METHODS:

Plant source: Diascia \times hybrida 'Sun chimes ${ }^{\mathrm{TM}}$ coral' plants showing virus like symptoms were used in this study. Initially, plants were received from the Oregon State University Plant Diagnostic Clinic (M. Putnam) for diagnosis, and subsequently, plants were
obtained from regional nurseries. Plants were kept in glasshouses with 16 hr daylight and 8 hr night cycle. In the winter months, day length was supplemented with sodium vapour lamps. The virus isolated from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' will be referred to as Diascia yellow mottle virus (DiaYMV) based on symptoms displayed on the host.

Double stranded RNA (dsRNA) extraction: Plant tissue (7g) was frozen overnight at $-20^{\circ} \mathrm{C}$ before use. Liquid nitrogen was added to tissue in a pre-cooled mortar and pestle and allowed to evaporate; the tissue was then triturated. The ground tissue was added to 9 ml glycine-phosphate saline buffer (GPS) [0.2 M glycine, $\mathrm{pH} 9.5 ; 0.1 \mathrm{M} \mathrm{Na} 2 \mathrm{HPO}_{4} ; 0.6 \mathrm{M}$ $\mathrm{NaCl}], 9 \mathrm{ml}$ water-saturated phenol containing 0.01%-hydroxyquinoline and 0.5 ml 2 mercaptoethanol. The contents were briefly shaken and $0.5 \mathrm{ml} 20 \%$ sodium dodecyl sulfate (SDS) was added and then mixed at room temperature for one hour. Using a swinging bucket rotor (Jouan SWM 180.5; Thermo Fisher Scientific, Waltham, MA), the mixture was centrifuged at $3,071 \mathrm{xg}$ for 20 min at $4^{\circ} \mathrm{C}$. The aqueous layer was collected, and the organic layer was re-extracted with 10 ml GPS buffer and centrifuged as above. The aqueous layer was collected and combined with the previous aqueous layer. The combined layers were reextracted with an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) and centrifuged as above. The aqueous layer was collected and 95% ethanol was added to a final concentration of 18%. One gram cellulose (CC-41; Whatman Inc, Florham Park, NJ) was added and the suspension was allowed to shake on ice for 45 min and centrifuged for 2 min in a swinging bucket rotor at $1,428 \times g$ (IEC clinical centrifuge; Needham Heights, MA). The supernate was discarded and the cellulose was resuspended in 20 ml cold $\mathrm{STE}[1 \times \mathrm{STE}=$ 0.1 M NaCl; 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0 ; 1 \mathrm{mM}$ EDTA $\cdot \mathrm{Na}_{2}$,] containing 18% ethanol (referred to as 18% STE). The mixture was centrifuged and the supernate discarded; this step was
repeated three times. The pellet was resuspended in 15 ml cold 18% STE, and the slurry was poured onto a $1.5 \mathrm{~cm} \times 15 \mathrm{~cm}$ chromatography column (Bio-Rad, Hercules, CA). The packed column was washed with $300 \mathrm{ml} 18 \%$ STE. The column was purged with air and the dsRNA was eluted onto a 50 ml sterile centrifuge tube with $3 \mathrm{ml}, 2 \mathrm{ml}$ and 2 ml of 0.5 mM EDTA• $\mathrm{Na}_{2}, \mathrm{pH}$ 8.0. The dsRNA was precipitated by the addition of 0.1 volume 5 M sodium acetate, pH 5.1 , mixed well and then three volumes 95% ethanol were added. The mixture was stored overnight at $-70^{\circ} \mathrm{C}$. The pellet was collected by centrifugation at $4^{\circ} \mathrm{C}$ at $21,252 \times g$ for 45 min . After carefully decanting off the solution, the pellet was drained and allowed to air dry for 10 min . The dried pellet was resuspended in $30 \mu \mathrm{l} 0.5 \mathrm{mM}$ EDTA• $\mathrm{Na}_{2}, \mathrm{pH} 8.0 ; 10$ μl of the dsRNA was analyzed by electrophoresis in 0.8% agarose (SeaKem LE; Cambrex Bio Science, Rockland, ME) with 1X TAE (0.04 M Tris-acetate, $\mathrm{pH} 8 ; 1 \mathrm{mM}$ EDTA) at 70 V for 2 hr . The gel was stained with ethidium bromide $(1 \mu \mathrm{~g} / \mathrm{ml})$ and dsRNA was visualized with a UV transilluminator.

Virus purification: Virus was isolated from infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' tissue using a modification of the bentonite extraction procedure outlined by Dunn and Hitchborn (1965). Five grams of tissue were ground in liquid nitrogen with a mortar and pestle. The ground tissue was transferred to a 50 ml centrifuge tube to which 10 ml Buffer 1 (0.01 M Tris, $\mathrm{pH} 7.6 ; 10 \mathrm{mM} \mathrm{MgSO}_{4}$) was added and mixed thoroughly. The mixture was centrifuged at $1,428 \times g$ for 10 min . The collected supernate was mixed with 0.2 volumes of bentonite suspension $\left(0.01 \mathrm{M} \mathrm{Na}^{2} \mathrm{PO}_{4}, \mathrm{pH} 7.5 ; 10 \mathrm{mM} \mathrm{MgSO} 4,40 \mathrm{mg} / \mathrm{ml}\right.$ bentonite). The mixture was centrifuged at $10,842 \times g$ for 10 min , and the supernate was collected and brought to a final concentration of 0.2 M NaCl by the addition of 5 M NaCl . Polyethylene glycol (PEG) was added to a final concentration of 8% by stirring in finely
ground powder (PEG-6000; Sigma-Aldrich, St. Louis, MO). The mixture was shaken gently at $4^{\circ} \mathrm{C}$ for 1 hr and centrifuged at $10,842 \times g$ for 45 min . The pellet was resuspended in 4 ml Buffer 1 overnight at $4^{\circ} \mathrm{C}$ and then stored at $-20^{\circ} \mathrm{C}$ for use in cDNA synthesis.

For extraction from a larger mass of tissue, the volumes of reagents described above were increased proportionately. The PEG precipitation step was omitted but the supernate was centrifuged at $50,000 \times \mathrm{g}$ for 1 hr at $4^{\circ} \mathrm{C}$ and the pellet was resuspended in $1 \mathrm{ml} \mathrm{Na} / \mathrm{K}-\mathrm{PO}_{4}$ buffer (0.05 M sodium-potassium phosphate, pH 7.4) at $4^{\circ} \mathrm{C}$ overnight. The partially purified virus preparation was further purified using a 0 to 30% sucrose log-linear gradient (Brakke and Van Pelt, 1970) and centrifuged at $104,630 \times g$ for 2 hr at $4^{\circ} \mathrm{C}$. The top and bottom translucent layers were collected separately, diluted five-fold in $\mathrm{Na} / \mathrm{K}-\mathrm{PO}_{4}$ buffer and centrifuged at $104,630 \times g$ for 3 hr at $4^{\circ} \mathrm{C}$ to pellet the virus. The pellet was resuspended in $\mathrm{Na} / \mathrm{K}-\mathrm{PO}_{4}$ buffer and the A_{260} and A_{280} absorbance readings were measured (UV160U Visible recording spectrophotometer; Shimadzu Corp., Japan). An estimate of virus concentration was based on the extinction coefficient of ScrMV as a reference for which an A_{260} reading of 8 was equivalent to a virus concentration of $1 \mathrm{mg} / \mathrm{ml}$ (Bercks, 1973).

A butanol:chloroform virus extraction procedure was adapted from Koenig et al., (2005b) protocol for isolation of NeRNV. Infected Nicotiana occidentalis tissue (100 g) was homogenized in a blender with $200 \mathrm{ml} 0.1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$, pH 7.5 containing $0.02 \mathrm{M} \mathrm{NaSO}_{3}$. The mixture was strained through four layers of cheesecloth and then 0.2 volumes butanol:chloroform ($1: 1 \mathrm{v} / \mathrm{v}$) were gradually added while stirring at room temperature for 15 min. The mixture was centrifuged at $21,252 \times g$ for 15 min at $4^{\circ} \mathrm{C}$. The supernate was collected and centrifuged as above for another 15 min , and the supernate was centrifuged at $104,630 \times g$ for 2 hr . The supernate was discarded and 100 ml 0.01 M Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$ was
added to the pellet and allowed to dissolve the pellet overnight at $4^{\circ} \mathrm{C}$. The virus suspension was centrifuged at $21,252 \times g$ to pellet insoluble debris. The supernate was centrifuged at $104,630 \times g$ for 2 hr . The glassy pellet was re-dissolved in 0.01 M Tris-HCl, pH 7.5 overnight at $4^{\circ} \mathrm{C}$. The partially purified virus preparation was further purified using the log-linear sucrose gradient procedure as described above.

RNA extraction: RNA was isolated from intact virus by treatment with proteinase K. For a $78 \mu \mathrm{l}$ reaction; $60 \mu \mathrm{l}$ virus preparation was mixed with $4 \mu \mathrm{l}$ proteinase $\mathrm{K}(100 \mathrm{mg} / \mathrm{ml}$; Sigma-Aldrich), $10 \mu \mathrm{l} 10 \%$ SDS and $4 \mu \mathrm{l} 0.5 \mathrm{M}$ dithiothreitol (DTT) and incubated at $37^{\circ} \mathrm{C}$ for 10 min followed by incubation at $65^{\circ} \mathrm{C}$ for 10 min . An equal volume of phenol:chloroform ($1: 1 \mathrm{v} / \mathrm{v}$) was added to the mixture, mixed briefly and centrifuged at $16,000 \times g$ for 5 min to separate phases. The upper aqueous layer was transferred to a new microcentrifuge tube. The nucleic acid was precipitated by adding $3 \mu l$ linear polyacrylamide (LPA) carrier (Gaillard and Strauss, 1990), 0.5 volumes 3 M sodium acetate (NaOAc), pH 5.4 and 3 volumes 95% ethanol. The mixture was stored at $-80^{\circ} \mathrm{C}$ for 1 hr , and then centrifuged at $16,000 \times g$ for 3 min . The supernatant was discarded and the pellet was overlaid with 70% ethanol. The mixture was centrifuged at $16,000 \times g$ for 2 min and the supernate was decanted, followed by a pulse spin; excess ethanol was removed. The pellet was air dried and used for cDNA synthesis.
cDNA synthesis and cloning: The RNA pellet from above was dissolved in $24 \mu \mathrm{l}$ sterile double distilled water $\left(\mathrm{ddH}_{2} \mathrm{O}\right)$, and the following were added to a final concentration of: 1X first strand buffer (Invitrogen, Carlsbad, CA) containing 50mM Tris-HCl (pH 8.3), 75 mM KCl and $3 \mathrm{mM} \mathrm{MgCl} 2,0.4 \mathrm{mM}$ deoxyribonucleotide triphosphate (dNTP) mix (0.4 mM each dATP, dCTP, dGTP, dTTP), 0.01 M DTT and $10 \mu \mathrm{M}$ primer Tymo c6300
(5^{\prime}-GGAGTTGCACCC-3') designed from aligned sequences of members of the genus Tymovirus. The mix was incubated at $65^{\circ} \mathrm{C}$ for 5 min , placed on ice water and 25 Units (U) Superscript ${ }^{\mathrm{TM}}$ II reverse transcriptase (Invitrogen) and 0.25 U RnaseOUT ${ }^{\mathrm{TM}}$ (Invitrogen) were added. The reagents were gently mixed and incubated for 2 hr at $42^{\circ} \mathrm{C}$. The entire $40 \mu \mathrm{l}$ first strand cDNA mixture was used for the second strand DNA synthesis.

For a $150 \mu \mathrm{l}$ second strand cDNA synthesis reaction, $60 \mu \mathrm{ldH} \mathrm{d}_{2} \mathrm{O}$ was added to the $40 \mu \mathrm{l}$ first strand cDNA reaction, and a mixture containing second strand synthesis buffer (Invitrogen), [20mM Tris-HCl (pH6.9); $90 \mathrm{mM} \mathrm{KCl} ; 4.6 \mathrm{mM} \mathrm{MgCl}{ }_{2} ; 0.15 \mathrm{mM} \beta-\mathrm{NAD}^{+} ; 10$ $\left.\mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right] ; 0.2 \mathrm{mM}$ dNTPs each of dATP, dCTP, dGTP, dTTP; 0.133 mM NAD; 0.133 U Escherichia coli (E. coli) DNA polymerase I (Invitrogen); 6.67 mU RNase H (Invitrogen) and 1.33 mU E. coli DNA ligase (Invitrogen) was added. The contents were briefly mixed, and incubated at $16^{\circ} \mathrm{C}$ overnight. The second strand cDNA mix was extracted with phenol:chloroform, and precipitated with ethanol as above. The cDNA-containing pellet was used for the blunt end cloning reaction.

For blunt-end cloning, the pellet was resuspended in $14.5 \mu \mathrm{l} \mathrm{ddH}_{2} \mathrm{O}$, and the following reagents were added to a final concentration of: T4 DNA polymerase buffer [33 mM Tris-acetate, $\mathrm{pH} 7.9 ; 66 \mathrm{mM} \mathrm{NaOAc} ; 10 \mathrm{mM} \mathrm{MgOAc} 2 ; 1 \mathrm{mM}$ DTT] (Invitrogen), 0.625 mM dNTPs (Invitrogen), 0.125 U T4 DNA polymerase (Invitrogen) and 0.25 U T4 polynucleotide kinase (Invitrogen). The $20 \mu \mathrm{l}$ mixture was incubated at $37^{\circ} \mathrm{C}$ for 1 hr . The phosphorylated cDNA mix was heated at $70^{\circ} \mathrm{C}$ to inactivate the T 4 polynucleotide kinase. For ligation, $3 \mu 1$ phosphorylated cDNA were added to $0.5 \mu \mathrm{l}$ EcoRV digested pBluescript II KS+ dephosphorylated vector (Stratagene, Cedar Creek, TX), T4 ligation buffer [50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.6$), $10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ ATP, $1 \mathrm{mM} \mathrm{DTT} 5 \$,$% weight /volume (w/v) PEG$

8000] (Invitrogen), and 0.025 U T4 DNA ligase (Invitrogen). The final volume was brought to $20 \mu 1$ with $\mathrm{ddH}_{2} \mathrm{O}$. The combined reagents were mixed gently and incubated at $37^{\circ} \mathrm{C}$ for 3 hr. E. coli DH5 α competent cells (Invitrogen) were transformed by the addition of $3 \mu \mathrm{l}$ of the ligation reaction and incubating on ice for 30 min . The cells were subjected to heat shocking at $42^{\circ} \mathrm{C}$ for 90 sec , and placed back on ice for 5 min . One ml Luria-Bertani Broth (LB), $[10 \mathrm{~g} / \mathrm{L}$ tryptone (Difco Laboratories, Detroit, MI), $5 \mathrm{~g} / 1$ yeast extract (Difco), $10 \mathrm{~g} / \mathrm{l}$ NaCl and $5 \mathrm{~g} / \mathrm{l}$ glucose (Sigma-Aldrich)] media containing $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin (LB+amp) was added to the transformed E. coli cells and shaken for 1 hr at $37^{\circ} \mathrm{C}$. Transformed cells $(200 \mu \mathrm{l})$ were plated onto LB+amp+X-gal agar plate [LB broth with $15.0 \mathrm{~g} / \mathrm{l}$ agar (Difco), 50 $\mu \mathrm{g} / \mathrm{ml}$ ampicillin, 2\% (w/v) 5-bromo-chloro-3-indoyl- β-D-galactopyranoside (X-gal) and 100 mM isopropylthiogalactoside (IPTG)]. The plates were incubated at $37^{\circ} \mathrm{C}$ overnight. Thirty white colonies were picked with sterile toothpicks and transferred to a grid-labeled LB + amp +X gal agar plates and the same toothpick was then used to inoculate 1 ml of $\mathrm{LB}+\mathrm{amp}$ media. The bacterial cells were allowed to grow overnight at $37^{\circ} \mathrm{C}$ and then the plasmid DNA (pDNA) was extracted (Sambrook et al., 1989). An aliquot ($1 \mu \mathrm{l}$) of the pDNA was digested with 0.5 U EcoR I (Invitrogen) at $37^{\circ} \mathrm{C}$ for 1 hr and the restriction digestion products were resolved by electrophoresis in a 1\% agarose gel and visualized on a UV transilluminator. Colonies that contained substantial inserts as shown by restriction analysis were transferred to $\mathrm{LB}+\mathrm{amp}+\mathrm{X}$-gal agar grid plate and were simultaneously used to inoculate 5 ml liquid LB amp media. Liquid cultures were grown overnight at $37^{\circ} \mathrm{C}$ and plasmid DNA was extracted (Sambrook et al., 1989). An aliquot of plasmid DNA (1 $\mu \mathrm{l})$ was digested with restriction enzyme 0.5 U EcoR I (Invitrogen) and the restriction products were characterized as above. One clone was found to have a 5,500 base pair (bp) insert and is
referred to as clone Diascia \#14. The remaining $49 \mu \mathrm{l}$ of the Diascia \#14 clone were extracted with phenol:chloroform and precipitated by ethanol as outlined earlier. The pellet was resuspended in $10 \mu \mathrm{l}$ diethylpyrocarbonate (DEPC)-treated water. An aliquot ($0.5 \mu \mathrm{l}$) of the purified plasmid DNA was used for sequencing the plasmid DNA. The sequences derived from Diascia \#14 clone were used as the basis for subsequent cloning reactions.

Rapid amplification of cDNA ends (RACE): RNA from a mini-virus preparation was isolated by treatment with the proteinase K above. For 5 '-RACE, first strand cDNA synthesis was synthesized using a virus specific primer Amo1904di-466c designed from the Diascia \#14 sequence. The first strand cDNA reaction was initiated by dissolving the RNA pellet in $18 \mu \mathrm{l} \mathrm{ddH}_{2} 0$ and adding $1 \mu \mathrm{l} 100 \mu \mathrm{M}$ Amo1904di-466c (5'-GTTGGTGAGT-TCGTCGAAGT-3'), the mixture was heated to $70^{\circ} \mathrm{C}$ for 10 min and quickly chilled in ice water, and then mixed with the following cDNA reagents to a final concentration of: 1 X first strand buffer (Invitrogen), $0.01 \mathrm{M} \mathrm{DTT} \mathrm{(Invitrogen)}$,0.4 mM each dNTP (Invitrogen). The contents were mixed briefly, incubated at $37^{\circ} \mathrm{C}$ for 2 min , and then placed on ice. Twenty five units Superscript ${ }^{\mathrm{TM}} \mathrm{II}$ reverse transcriptase (Invitrogen) and 0.25 U RNaseOut ${ }^{\mathrm{TM}}$ (Invitrogen) were then added to the mixture. The mixture was gently mixed and incubated at $42^{\circ} \mathrm{C}$ for 2 hr . One microliter RNase mix ($1 / 1$ volume/volume Rnase H and Rnase T1) was added to the first strand cDNA and incubated at room temperature for 30 min . The first strand cDNA was purified with a QIAquick spin column (Qiagen Inc, Valencia, CA) following the manufacturer's protocol and eluted in $20 \mu \mathrm{ldH} \mathrm{H}_{2} \mathrm{O}$. A homopolymeric tail was added to the 3 '-terminus of the cDNA using terminal deoxynucleotidyl transferase (TdT) (Invitrogen) and dCTP (Invitrogen). The tailing reaction contained the following: $16.5 \mu \mathrm{l}$ first strand cDNA; 2 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.4 ; 5 \mathrm{mM} \mathrm{KCl} ; 0.3 \mathrm{mM} \mathrm{MgCl} 2$; and 0.5 mM dCTP.

After mixing gently, the solution was heated to $94^{\circ} \mathrm{C}$ for 3 min , and quick chilled in ice water after which 10U TdT (Invitrogen) were added and the $25 \mu 1$ reaction was incubated at $37^{\circ} \mathrm{C}$ for 2 hr . The reaction was stored at $-20^{\circ} \mathrm{C}$ until needed. An aliquot was used for PCR with the 5^{\prime} '-RACE primer (${ }^{\prime}$ '-GGCCACGCGTCGACTAGTACGGGGGG-3') and a virus specific primer Amo1904di-171c (5'-TCTCGGTGAGAGGTGGTGGA-3') designed from the sequence of Diascia \#14. The 5 '-RACE reaction contained the following: 50 mM KCl , 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 9.0,0.1 \%$ Triton- $\mathrm{X}, 2 \mathrm{mM} \mathrm{MgCl}_{2}, 0.15 \mathrm{mM}$ each dNTP, $0.6 \mu \mathrm{M}$ primer Amo1904di-171c, $0.6 \mu \mathrm{M}$ 5'-RACE primer, 0.025 U Taq DNA polymerase (Invitrogen) and $2 \mu 1$ of 5 '-terminus tailing reaction in a final volume of $20 \mu 1$. The amplification conditions were: 1 cycle of $94^{\circ} \mathrm{C}$ for 10 min followed by 50 cycles (denaturing $94^{\circ} \mathrm{C}$ for 30 s , annealing $54^{\circ} \mathrm{C}$ for 20 s , extension $72^{\circ} \mathrm{C} 1 \mathrm{~min}$) and a final extension of 30 min at $72^{\circ} \mathrm{C}$. After amplification, the 5^{\prime} '-RACE products were cloned into pCRII-TOPO vector (Invitrogen) following a modification of the manufacturer's specifications as follows: $4 \mu 1$ ''-RACE PCR product, $1 \mu 1$ salt solution ($0.2 \mathrm{M} \mathrm{NaCl} ; 0.01 \mathrm{M} \mathrm{MgCl}_{2}$ (Invitrogen)) and $1 \mu 1 \mathrm{pCRII}$-TOPO vector (Invitrogen). The mixture was incubated at room temperature for 15 min . Two microliters of ligation reaction were added to thawed TOPO 10 one shot chemically competent E. coli cells (Invitrogen) and mixed gently before incubating on ice for 30 min . The E. coli cells were then heat shocked at $42^{\circ} \mathrm{C}$ for 30 s and returned to ice for 20 min . Two hundred fifty microliters SOC medium (2\% Tryptone, 0.5% yeast extract, $10 \mathrm{mM} \mathrm{NaCl}, 10$ $\mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{MgSO} 4,20 \mathrm{mM}$ Glucose) (Invitrogen) were added to the transformed bacterial cells and held at room temperature for 10 min prior to shaking at $37^{\circ} \mathrm{C}$ for 1 hr . Transformed cells $(50 \mu \mathrm{l})$ were mixed with $50 \mu \mathrm{l}$ SOC medium and spread on prewarmed $\mathrm{LB}+\mathrm{amp}+\mathrm{X}$ gal plates. The plates were incubated at $37^{\circ} \mathrm{C}$ overnight. The following day,
twenty white colonies were picked and transferred with toothpicks onto LB+amp+X gal agar grid plates and the toothpick then placed in $50 \mu 1 \mathrm{ddH}_{2} \mathrm{O}$ at $65^{\circ} \mathrm{C}$. An aliquot $(1 \mu \mathrm{l})$ of the suspension was used in PCR amplification using $20 \mu \mathrm{M}$ M13 forward primer and $20 \mu \mathrm{M}$ M13 reverse primer provided with the cloning kit following manufacturer's instructions. The PCR products were checked for DNA by electrophoresis as outlined above. Bacterial colonies containing plasmid inserts were selected from agar and were grown in 5 ml LB+amp media with gentle shaking overnight at $37^{\circ} \mathrm{C}$. The plasmid DNA was extracted (Sambrook et al., 1989), and $1 \mu \mathrm{l}$ was digested with restriction enzyme 0.5 U EcoR I (Invitrogen) following manufacturer's suggestions. The restriction products were analyzed by electrophoresis in a 1% agarose gel at 100 V for 2 hr . The agarose gel was stained with ethidium bromide (5 $\mu \mathrm{g} / \mathrm{ml}$) and the DNA bands were visualized using a transilluminator at ultra violet light (260 $\mathrm{nm})$. The remaining plasmid DNA was extracted with phenol: chloroform and precipitated with ethanol as outline earlier. The pellet was dissolved in $10 \mu \mathrm{ldH} \mathrm{d}_{2} \mathrm{O}$ and $1 \mu \mathrm{l}$ aliquot used for sequencing.

Double-stranded RNA was used for determining the 3 '-terminal end of the virus. An oligonucleotide CLSc377 primer (5^{\prime} '-GTGGTTCTCCAGAGTTTT-3') was phosphorylated prior to use. The 25μ polynucleokinase reaction to phosphorylate the primer was made of the following components: $80 \mu \mathrm{M}$ primer CLSc377, T4 polynucleotide kinase forward buffer (70 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.6 ; 10 \mathrm{mM} \mathrm{MgCl} 2 ; 100 \mathrm{mM} \mathrm{KCl} ; 1 \mathrm{mM}$ 2-mercaptoethanol) (Invitrogen), 10 mU ATP, and 20 U T4 polynucleotide kinase (PK). The mixture was incubated at $37^{\circ} \mathrm{C}$ for 1 hr , followed by phenol:chloroform extraction and ethanol precipitation with $2 \mu \mathrm{l} 5 \mathrm{M} \mathrm{NaCl}$ and $62.5 \mu \mathrm{l} 95 \%$ ethanol. The pellet from the 5'-phosphorylated primer was resuspended in $19 \mu \mathrm{ldH} \mathrm{H}_{2} \mathrm{O}$, and the following reagents were
added to a final concentration of: TdT buffer (0.1 M potassium cacodylate, $\mathrm{pH} 7.2 ; 2 \mathrm{mM}$ cobalt chloride $\left(\mathrm{CoCl}_{2}\right)$; and 0.2 mM DTT) and 10 U TdT (Invitrogen). The mixture was incubated at $37^{\circ} \mathrm{C}$ for 1 hr and the reaction was terminated by adding $1.6 \mu \mathrm{l} 0.25 \mathrm{M}$ EDTA. The mixture was ethanol precipitated as above, and the pellet was resuspended in $10 \mu \mathrm{l}$ $\mathrm{ddH}_{2} \mathrm{O}$. An aliquot $(1 \mu \mathrm{l})$ of the 5^{\prime} '-phosphorylated 3'-blocked primer mixture was used in a ligation reaction containing T4 RNA ligase buffer [100 mM Tris-HCl, pH 7.5; 4 mM MgCl ; 2 mM DTT; $80 \mu \mathrm{M}$ ATP] (New England Biolabs, Ipswich, MA), $15 \mathrm{mg} / \mathrm{ml}$ bovine serum albumin (BSA), $40 \mu \mathrm{U}$ rATP, 1 U RnaseOut ${ }^{\mathrm{TM}}$ and 20 U T4 RNA ligase (Invitrogen). The contents were mixed with $14 \mu \mathrm{l}$ dsRNA to make a total volume of $20 \mu \mathrm{l}$, and incubated at $37^{\circ} \mathrm{C}$ for 2 hr . First strand cDNA synthesis was set up with the following: $5 \mu \mathrm{l}$ aliquot of the ligation mix, 1 X first strand buffer (Invitrogen), 0.5 mM dNTPs, 0.01 M DTT and $5 \mu \mathrm{M}$ CLSV377 primer (5^{\prime}-AAAACTCTGGAGAACCAC-3'). The mixture was heated at $70^{\circ} \mathrm{C}$ for 3 min , then placed in an ice bath to which 5 U Superscript ${ }^{\mathrm{TM}}$ II reverse transcriptase and 0.5 U of RnaseOUT ${ }^{\mathrm{TM}}$ were added and the cDNA mix was incubated at $42^{\circ} \mathrm{C}$ for 3 hr . The first strand cDNA mixture was diluted five fold and $2 \mu l$ of the diluted product was used for PCR. The general PCR protocol was followed; $2 \mu \mathrm{l}$ of the diluted cDNA was mixed with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.3,50 \mathrm{mM} \mathrm{KCl}, 2.5 \mathrm{mM} \mathrm{MgCl} 2,0.001 \%$ gelatin, 0.15 mM dNTPs, 0.6 $\mu \mathrm{M} \mathrm{AmoCP-41C} \mathrm{(5’-GATCTCCATTCCTCTGC-3')} ,0.6 \mu \mathrm{M} \mathrm{CLSV377}$,0.25 U Taq DNA polymerase (Invitrogen) and brought to $20 \mu \mathrm{l}$ with $\mathrm{ddH}_{2} \mathrm{O}$. The reaction mixture was incubated in a thermocycler (Model icycler; Bio-Rad) with the following conditions: 1 cycle at $94^{\circ} \mathrm{C}$ for 10 min , followed by 50 cycles of (denature $94^{\circ} \mathrm{C}$ for 30 s , annealing $54^{\circ} \mathrm{C}$ for 20 s and extension $72^{\circ} \mathrm{C} 30 \mathrm{~s}$) and a 1 cycle final extension at $72^{\circ} \mathrm{C}$ for 30 min and holding at $4^{\circ} \mathrm{C}$. The PCR products were resolved by electrophoresis in 3% low melting temperature
agarose (NuSieve GTG agarose; Cambrex BioScience) gel to confirm the presence of the desired product.

Ligation and cloning were carried using the TOPO-TA cloning kit (Invitrogen). The procedures were as described above. Two independent RT-PCRs were performed and three clones from each were selected for sequencing in both directions.

In order to obtain sequence information between clone Diascia \#14 and the 3'-terminus product, a forward RT-PCR primer was designed from the 3'-terminus of Diascia \#14 and the reverse primer was designed from the aligned sequence of 5 '-RACE of the compliment of 3 '-terminal end. The procedure for first strand cDNA synthesis was followed as described earlier, but $1 \mu \mathrm{l}$ of $100 \mu \mathrm{M}$ TymoCPR (5'-CCATTCCTCTG-CCCATGAACTC-3') was used. The cDNA was amplified by PCR in a $20 \mu 1$ reaction containing the following final concentrations: $0.6 \mu \mathrm{M}$ each of primers Di1865-188c (5'-AGACTCTAGCTCTGATGCACGA-3') and TymoCPR (5'-CCATTCCTCTGCCCATG-AACTC-3') while the rest of the components were not changed. A PCR program of 1 cycle of $94^{\circ} \mathrm{C}$ for 10 min followed by 40 cycles of $94^{\circ} \mathrm{C}(30 \mathrm{~s}), 55^{\circ} \mathrm{C}(1 \mathrm{~min}), 72^{\circ} \mathrm{C}(1 \mathrm{~min})$ and one cycle of $72^{\circ} \mathrm{C}$ final extension for 30 min was performed. The PCR products were analyzed in a $2.5 \%(\mathrm{w} / \mathrm{v})$ low gelling temperature agarose (NuSieve GTG agarose) in 1X TAE buffer, and stained in ethidium bromide for visualization with a transilluminator (UV light box at 260 nm). A DNA product of approximately 800 bp was excised from the gel and purified using Gel Elute Ethidium bromide minus gel purification kit (Sigma-Aldrich) following the manufacturer's protocol. An aliquot $(1 \mu \mathrm{l})$ of the purified DNA product was used for cloning using the TOPO TA cloning kit (Invitrogen) following the manufacturer's
guidelines for ligation, cloning and analysis of clones. Two independent RT-PCR assays were carried out and for each assay, three positive clones were selected for sequencing.

Sequencing: Plasmid DNA was extracted from bacteria and screened for inserts of the correct size as described earlier. The purified plasmid DNA was dissolved in $10 \mu \mathrm{l}$ Rnase-free water and prepared for automated sequencing in both directions using Sanger's dideoxy chain termination sequencing method (Sambrook et al., 1989). A $10 \mu \mathrm{l}$ sequencing reaction mixture was made with $0.5 \mu \mathrm{pDNA}, 0.5 \mu \mathrm{l} 20 \mu \mathrm{M}$ M13 forward or reverse primer (provided with TOPO TA cloning kit), $4 \mu \mathrm{l}$ sequencing reaction mix (Laboratory for Biotechnology and Bioanalysis (LBB), Washington State University, Pullman, WA) and $5 \mu \mathrm{l}$ $\mathrm{ddH}_{2} \mathrm{O}$. The reagents were briefly mixed well and a PCR was conducted with the following parameters: 50 cycles of denaturing at $96^{\circ} \mathrm{C}$ for 30 s , annealing at $50^{\circ} \mathrm{C}$ for 15 s and
 was then eluted through a performa gel filtration cartridge spin column (Edge Biosystems, Gaithersburg, MD) at 800 rpm in a microcentrifuge (Eppendorf, Model 5415C) for 2 min . The eluted DNA was dried using a speed vacuum at medium heat (SpeedVac Model DNA110; Thermo Savant; Waltham, MA) for 30 min . The DNA samples were analyzed at LBB.

Following the initial cloning and DNA sequencing, the nucleotide sequences of the virus found in diascia were aligned and assembled using the software program Xesee version 3.2 (Carbot \& Beckenback, 1989). The complete genome sequence was designated Diascia tymovirus 1 and was used to design primers for RT-PCR, cloning and sequencing. The primers were such that overlapping clones of about 600 nt were produced. Twelve sequences each of 5'- and 3'-terminal sequences were generated using 5'-RACE procedures as outlined
above. For each overlapping clone, two independent RT-PCRs were performed using different RNA templates from the same host. For each RT-PCR and cloning procedure, three clones of the expected size were isolated and processed for sequencing in forward and reverse directions, thus generating 12 sequences for each overlapping cloning reaction. The sequence that occured most frequently was regarded as the representative sequence; this process was repeated to assemble the entire genome. The sequence from the second set of sequencing reactions was designated Diascia tymovirus 2. The final genome sequence was aligned together based on sequence information from both Diascia tymovirus 1 and 2 . In cases where a primer pair did not yield reliable sequence, a new primer pair was designed to produce clones overlapping existing sequences.

Sequence alignments and analyses: Sequence fragments were aligned with the aid of Pairwise BLAST search (Altschul et al., 1997) and then combined manually by using the Xesee sequence editor version 3.2. Completed sequences were compared to the GenBank database sequences using advanced BLAST algorithm search program from the National Center for Biotechnology Information, Bethesda, MD (NCBI) website. Clustal W version 1.83 (Thompson et al., 1994) was used to generate multiple sequence alignments with other viruses for use in phylogenetic analysis and subsequent primer designs. The open reading frames (ORFs) search was done with the ORFinder program from NCBI. Aligned sequences were analyzed with PHYLLIP (Felsenstein, 1993) programs to infer phylogeny and place confidence limits on phylogeny. The program SEQBOOT was used to generate 100 bootstrap sequence alignments from the Clustal W aligned sequences. The bootstrapped samples were then analyzed by the maximum parsimony method using the program

PROTPARS. The trees generated by PROTPARS were analyzed by the program CONSENSE to deduce a consensus tree.

RESULTS AND DISCUSSION:

The acronym DiaYMV was used here to denote the virus being studied even though no formal classification has been proposed at this time. DsRNA extraction from infected diascia samples revealed a major band corresponding to between 6.0 to 7.0 kilobase pairs (kbp) (Fig. 1). DsRNA from Nicotiana benthamiana yielded a more intense band of this size. The bands found in the dsRNA profile of infected samples were not evident in preparations from healthy Nicotiana benthamiana. Viruses known to infect plants in the family Scrophulariaceae and produce a predominant dsRNA with a size between 6 and 8 kbp include Maracuja mosaic virus, Papaya mosaic xvirus, Poplar mosaic virus, Scrophularia mottle virus and Plantago mottle virus. RT-PCR with broad spectrum universal primers for potexviruses and carlaviruses did not give a positive reaction suggesting that members of these genera were not present in the infected tissue. Since the virus associated with disease in diascia and nemesia plants had a genome size of 6.0 to 7.0 kbp , induced double membrane vesicles in the cytoplasm and yielded two bands in the sucrose density gradient profile of purified virus, it was speculated that the virus may be a member of the genus Tymovirus (Table 1). At the start of this study, there was no sequence information published for the tymoviruses ScrMV or PlMoV.

Virus purification yielded a banding pattern with two visible layers in the sucrose density gradients (Fig. 2). The top band was less opaque compared to the bottom band. Virus recovery estimates from 100 g of plant tissue for the bottom layer ranged from 6.0 mg

Figure 1. Agarose gel analysis of double stranded RNA (dsRNA) extracted from healthy and infected plant tissues. Lane M: 1 kb plus molecular weight marker (Invitrogen); 1: healthy Nicotiana benthamiana, 2: N. benthamiana inoculated with Diascia yellow mottle virus (DiaYMV); 3: Infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'. Band "a" is the putative genomic dsRNA and '" b "' is subgenomic dsRNA.

Table 1. List of names, acronyms, and accession numbers of virus sequences used in multiple sequence alignments and phylogenetic comparisons. Virus sequences were acquired from the National Center for Biotechnology Information (NCBI) - GenBank database.

Virus	Acronym	Accession number
Anagyris vein yellowing virus	AVYV	AY751780
Andean potato latent virus	APLV	AF035402
Belladonna mottle virus	BeMV	X54529
Calopogonium yellow vein virus	CalYVV	U91413
Chayote mosaic virus	ChMV	NC002588
Desmodium yellow mottle virus	DYMV	AF035201
Diascia yellow mottle virus	DiaYMV	this study
Dulcamara mottle virus	DuMV	AY789137
Eggplant mosaic virus	EMV	NC001480
Erysimum latent virus	ErLV	NC001977
Kennedya yellow mosaic virus	KYMV	NC001746
Nemesia ring necrosis virus	NeRNV-Nf	AY751778
Nemesia ring necrosis virus	NeRNV-Dia	AY751781
Nemesia ring necrosis virus	NeRNV-D1 isolate 1 (Diascia)	DQ648150
Nemesia ring necrosis virus	NeRNV-D2 isolate 2 (Diascia)	DQ648151
Nemesia ring necrosis virus	NeRNV-D3 isolate 3 (Diascia)	DQ648153
Nemesia ring necrosis virus	NeRNV-N1 isolate 1 (Nemesia)	DQ648154
Nemesia ring necrosis virus	NeRNV-WA	this study
Okra mosaic virus	OkMV	AF035202
Ononis yellow mosaic virus	OYMV	NC1513
Petunia vein banding virus	PetVBV	AF210709
Physalis mosaic virus	PhyMV	NC003634
Scrophularia mottle virus	PlMoV	NCrMV
Turnip yellow mosaic virus	TYMV	
		AY751777
Nirus	Ne63	

Figure 2. Density gradient profile of virus from infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' following sucrose linear log density gradient centrifugation.
from Nicotiana occidentalis to 0.1 mg from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'. The concentrations were estimated based on the calculation used for virus concentration of ScrMV (Bercks, 1973).

The initial cloning of the viral genome yielded clone Diascia \#14 and this clone was $5,500 \mathrm{bp}$ in length. A sequence of 800 bp was derived from clones 28 and 30 which overlap some parts of Diascia \#14 and the 3 '-RACE sequences. The 5'-RACE clones overlapped Diascia \#14 and the sequences were about 500 nt in length while products of the 3 '-RACE overlapped clones 28 and 30 and the sequence was also about 500 nt long. All together, these clones represented the complete viral genome (Fig. 3).

Pairwise blast comparison (Altschul et al., 1997) showed that the nucleotide sequence of DiaYMV is similar to members of the genus Tymovirus (data not shown). The complete sequence of DiaYMV is $6,290 \mathrm{bp}$ (Fig. 4). Its similarity to tymoviruses suggests that the genome is a monopartite, positive-sense, single-stranded RNA molecule. The positive-sense nature of the genome is supported by the presence of large open reading frames in this orientation only.

The entire sequence of the virus associated with disease in Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' was determined, thus giving insight into the possible uniqueness of the virus and its relationship with other viruses in the genus Tymovirus. Three putative ORFs were detected (Fig. 5). Genome organization comparison with other members of the tymovirus (Table 2) led to the following deductions: ORF I is $1,914 \mathrm{nt}$ long and encodes the putative movement protein (MP); ORF II is $5,373 \mathrm{nt}$ and encodes the putative replicase protein (RP), often referred to as the overlapping protein (OP) in other tymoviruses since the sequence starts seven nucleotides downstream from the start of ORF I; ORF III is 579 nt and encodes a

Figure 3. The locations of the cDNA clones used in the sequencing of the entire genome of Diascia tymovirus of the Diascia yellow mottle virus (DiaYMV). The locations of the clones are not drawn to scale.

Figure 4. Sequence and deduced genome organization of the Diascia yellow mottle virus (DiaYMV) isolated from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'. The numbers on the right side indicate either nucleotide or amino acid positions respectively. An asterisk indicates the stop codon. The open reading frames are capitalized and the 5^{\prime} - and 3^{\prime} 'untranslated regions (UTR) are in lower case.
DiaYMV gtaattcgtttccagctcagcccgattcatttcgccetgagttttcttttccttaccttgcttagctctccggccctaagcaccttttcc
DiaYMV gcttcccagcttcgctctccggcccgaagctttacctctaacagaccgactcgtccctctgttaATGGACCATGGCCTTCCAGCTTGCCC 180
ORFI $\quad \mathrm{M} \quad \mathrm{D} \quad \mathrm{H} \quad \mathrm{G} \quad \mathrm{L} \quad \mathrm{P} \quad \mathrm{A} \quad \mathrm{C} \quad \mathrm{P}$

DiaYMV TCGAAGCCCTGTCCACCACCTCTCACCGAGATTCTTCCCTGAATCCGGTTCTGTATCACTCCGTGAGTCCGCTCCAGCGCTCTCTCGACC 270

ORFII L E E A L
DiaYMV TCTTTCCTTGGATAATCACCAGGGACGCTCTCCCCTTCCTCAACTCATGCGGCATTCCTGTCTCCGGATTTGGAACCACCCCGCACCCCc 360

ORFII L

DiaYMV ATGCTGTCCACAAGGCCATAGAGACCTTCCTCCTTTTCTCCCACTGGAGTTCTCTGGCCTCCACTCTCAGCTCCGTCATGTTTATGAAAC 450

DiaYMV CTTCCAAGTTTCGAAAACTGGCTGCCATCAACCCAAACTTCGACGAACTCACCAACTTTCGTCTCACTCCCGCCGACACCGTTCGGTACC 540
 ORFII $\mathrm{P} \quad \mathrm{S}$

DiaYMV CGACGACCTCCTCATCACTCCCCCAACACGAGATCGTCTTCATGCACGACGCTCTCATGTACTTCACCCCTCATCAAATCGTCGATCTTT 630

DiaYMV TCGAACGTTGCCCTCTGCTCAACAGGCTCCACTGCAGCCTCGTTGTCCCTCCAGAGAGCAGCTTCACGGATCTCTCTCTCTTCCCAACCA 720

DiaYMV TCTACACATACCAACTAAACTCGAACAACCTCCACTACACCCCCGAAGGGCATCACGCCGGAAGCTACGACCAACCTCGGTCCGCCATCC 810
 ORFII I

DiaYMV GGTGGTTGAAGCTCCGACGCATCACCAGCCCCTTCTTCAACCTGTCCGTGACCATTCTGGAATCTTGGGGCCCTGTCCACTCGATTCTCA 900

ORFII R

DiaYMV TTCAACGTGGGCTTCCGATCAGCGATTCTCTCGCGCCCCCGCACGCATCCTTCAAGGTGCCCCAGGCCCGAGTGCTGCCAGAAGCCACGT 990

DiaYMV TTCTCAACCAACCTCTCCGCCATCGGATGGTCCCTTCCGAGGTGTACGACGCCCTGTTCACGTACACTCGAGCCGTCCGCACCCTCCGAA 1080

DiaYMV CCTCCGATCCAGCCGGCTTCGTCAGGACCCATTCAAACAAGCCGAAGCACGCCTGGGTCACTCCCCAAGCGTGGGACAACCTTCAAACCT 1170

DiaYMV ACGCCCTCCTAAACGCGCCGGTACGCCCAAGAGTGGTGTACAACTTCTTCCTCTCCCCCATTCAGAAGGCCCATCTCTACTTGGCCCAGC 1260

DiaYMV ACCTCAACCCCTTCCTGGTACGAGCGCTTCCATTCTTGGGCCTCGTCCTCCCTGCCTTGAAGGTGCTCACCACTGGCTTACCAGTCCCCA 1350

DiaYMV GGGTATCGTCCCTTCAAGTTGCTCATCGTCAACTGGTCGGGCCCCACCCCGAGCCCTCTCCCACAGCTCACCCCATTCTCCGCCAAATCG 1440
 ORFII R

DiaYMV TTGCGTTCTCTCAGCAGAATCCCTTCtTTTTGGAACTCTGCCAAAGAACTCCGTTCCTCAACAGGTTCTTCCGGTCCGCTTGTCGGCCAC 1530

DiaYMV CGTCGGCCTTCCGCTTGGAGCTCCAACGATCCACACTCCCCCTCCCATCGTGGCTAGCTGTGCTGCTGATCTCCATGATCCCAGTGATGG 1620

DiaYMV CCTCTCCAACTCTCACCCTCGTGCTGCCGCAGTCGGTCCAAAGCCTTCACGACGGCTATCACACACACCTTCACCCCTCCGAGTTCAACC 1710

DiaYMV TGAGCTGGCCGCTGGAATCCTTCCACGTGCCCACTCGTCGGAACTTTCTGCCCCCGGGCATGGCTTCCAACCCGAGCCCGCCCCCAACTC 1800
 ORFII L

DiaYMV CCTTCGTGGCACCTCCCTTCGCCACCAACTCTCCCCATCCACCTCCCCCCGAGCCCCCCACCGCAAGCCTaGGTCCGAGTCAGCCCCTCG 1890

DiaYMV CGCCTCATCACCCGACGCCACCGACAAACCCGCCAGCTCCAGCGAGCTCTTCCGCTCCCCCGGAGCTCTCGTTGTCCCAGAACCCCCGCT 1980

DiaYMV CCGAGACCTCGAGCCCCCCCTCTCAGCCCTCTCCTTCTCCTTCCCAAAGTTCCCCGCTTCCAGCCGGGCCTCCACCTCACCCGTCTGACG 2070

DiaYMV GTTCCTGCAGGTGCGCCGACTGCCAGCCAGAGCATCAGCACCTCCGCTCCATAAACGAGTTTGGTGCGCTCAACCAAAATCCAGCTCCCA 2160
 DiaYMV CCCCCAGTCCCTTGCTCAACCGTTCGGAGCCTAAGGCCGATCTCCCTGGTTCGGACCTGCTCTCCGATCCGTCTTGCGTGGGCCCGGTCG 2250

DiaYMV TGGAGTTCGAGTGTCTCTTTCCCGGAGTCTACCATAACTCAAACGGAACCTTTCTCACTCGACAACGGGCTCAGGCCAGCTCCTCCGCTC 2340

DiaYMV CCCTACCAGCCAAGAGATGTCTGCTCACATCCATCTCACCTCAGTTAGGTGTTCCGGAGGCAACTCTCTGGAATTACCTCTGCGAGATGC 2430

DiaYMV TGCCAGACAGTCTCTTGGACAACCCAGAGATCAGGAACTATGGTCTCTCCACCGACCACCTCACGGCTTTGGCGTCCCGCCTCAACTTTG 2520

DiaYMV AATGCGTGATTCACACTGGACACACAACCCTCCCTTACAGCTGTGTTGGTGCATCCACTCGCGTTCAGATCACATTCCATCCGGGCCCGC 2610

DiaYMV CCAAGCACTTCTCCCCCAACATCCGTCTTTCCGCCTCCGCCCCTGGATCCAACCCCTCCAAGTCCCCACTGGTTCGGGCCGCTCTCCGTT 2700

DiaYMV TCCAGCTGAACGGGGACTTCCTTCCGTTCATGAACTCTCACAAACACAAGGTCTCAGTTCCCCACGCCAAGAATCTTGTGTCCAACATGA 2790

DiaYMV AgAACGGCTTTGACGGCATCACATCCCAGCTCTCTGAGTCCTCTGGCCGCTCCCCCAAGCAAAAACTCCTAGAGCTTGACGCGACCATCG 2880 ORFII K
DiaYMV ACGTTGCCTTCCCTCGCGAAGTAGACGTGATCCACATAGCTGGTTTCCCTGGCTGCGGCAAATCCCACCCAGTCCAAAAACTCCTGCAGA 2970
ORFII D V $\mathrm{A} \quad \mathrm{F} \quad \mathrm{P} \quad \mathrm{R}$
DiaYMV CCAAGGCTTTCAGACACTTCCGCCTTTCTGTGCCCACTAACGAGCTCAGAACCGAGTGGAAATCGGACATGTCCTTGCCTGAGTCCGAAA 3060
DiaYMV TTTGGCGCCTCTGCACCTGGGAAACCAGCCTCTTCAAGAGCTCCAGTATTCTCGTGATTGATGAGATTTACAAGCTCCCCCGAGGGTATT 3150
DiaYMV TGGATCTGGCCCTTCTTGCTGACCCCTCTACATCCCTCGTTATCCTTCTCGGAGATCCACTCCAAGGAGAGTACCACTCCTCTCACCCCT 3240
DiaYMv CTTCATCCAACAACCGCCTCGAGTCTGAAACCTCTCGCCTCTCCAAGTACATTGATTGCTATTGCTGGTGGACTTACCGCTGCCCCCGGG 3330

DiaYMV CAGTGGCCGACCTCTTTGGCGTCAAGACGTTCAACACCGAGCAGGGTTTCATTCGAGGTGAGCTCTCCCATCCTCAAGGTCTTCCGAACC 3420

DiaYMV TTGTCAACAGTATAGCCACCGCCACAACCATGCAAAACCTTGGCCATCACGCGCTCACGATCTCAAGCAGCCAAGGCATGACCTACTCTT 3510

DiaYMV CTCCGACTACCATCCTCCTCGACCGCCACAGCACCCTGCTTTCGCCTCAAAACTGTTTTGTGGCCCTCACCCGCAGCCGCAAGGGCATCA 3600

DiaYMV TCTTCATCGGTAACATGTAcCAAGCGTCCGGTtACTTTGGCaCTTCGTACATGTTCACcCAAGCACTCACAGGCTCTCCGGTCGACCTGA 3690

DiaYMV TGTGTGCTTTTCCTTTGTATCACACCCTGCCGCTCATCTTCGACCCTATCAAATCCCGTCGACAACGACTGGTCGCCGGCGATCCCCTTC 3780

DiaYMV CCATTTCCACCTCCGAATCTGCCATACGCAACTATGGCCGACTCCCACCTCACATTCCCACAGACTACGCCAAAGACTGCTTTGTCTCCT 3870

DiaYMV CACAAGTGGTTTTCTCCGAAGGCGAGGACCGCACCTTGCCTACCCTCCACCTTCCACCAAGTCGCCTCCCACTCCACTTGCTCACTGAAC 3960

DiaYMV CGGCTGCCCCTTCCGAAGTCCTCCTCTCCGAGACCGAGCCCTCCAAGAGCCCCATCACCTTGGCCCTCCTCGGAGAGTCTTTCGAGGAGC 4050

DiaYMV TGGCAGCTCACTTCCTTCCCGCACACGACCCCGAACTCAAGGAAATCATCTTTGCTGACCAGAGCAGCTCCCAGTTTCCCTTCCTTGATG 4140
 DiaYMV TTCCCTTCGAACTGTCGTGCCAACCATCTTCCCTCCTCGCAGCTTCTCACAGGCCTGCTTCGGATCCGACTCTTCTGGTGTCCTCCATCA 4230

DiaYMV AGAAGCGACTCAGATTCAGGCCATCCGACTGCCCCTACTTCATTTCCTCGAATGACATTCTACTGGGGCAGCACCTCTTCAACTCCCTCT 4320

DiaYMV GCAGGGCGTTCAAcAGGAGCCCCCTGGAAGTCATTCCCTTTGATCCTGTGCTGTTCGCGGAGTGCATTGCTCTCAACGAGTACGCACAGC 4410
 DiaYMV TCTCTTCCAAAACCAAGGCCACCATCGTCGCCAATGCTtCTCGCTCCGACCCGGACTGGCGCTTCACCGCCGTTCGGATATTTGCGAAAG 4500
 DiaYMV CTCAGCACAAGGTCAATGACGGGTCCATTTTTGGGTCCTGGAAAGCTTGCCAGACTCTAGCTCTGATGCACGACTACGTCATCATGACGC 4590 ORFII $\mathrm{A} \quad \mathrm{Q} \quad \mathrm{H} \quad \mathrm{K}$ DiaYMV TCGGCCCTGTCAAGAAATACCAGCGAATTTTGGACCACCAAGATCGCCCCTCACACATCTACACCCACTGCGGCAAGACCCCAGCTCAGC 4680
 Diaymv TTTCTTCGTGGTGCCAGAAATTTTCCCTGGATGGTCCCTCCCTGTGCAACGACTACACTTCTTTCGATCAGAGTCAACACGGAGAAGCCG 4770 ORFII L

DiaYMV TCGTTCTCGAGTGTCTCAAGATGCGCCGGTGCAGTATCCCGGACAACCTCATCCAGCTTCACCTGCACCTGAAGACCAACATATCCACCC 4860

DiaYMV AGTTCGGTCCGCTCACCTGCATGCGCTTAACTGGAGAGCCCGGCACTTATGATGACAACACGGACTACAATCTTGCTGTCATCTACTCTC 4950

DiayMv AgTATCAGATGGGCGCCACCCCCTGCATGGTCTCTGGTGACGACTCCGTCATCTTCGCCAACCCACCGATCCATCCCACTTGGCCAGCCG 5040

DiaYMV TTGAGAACCTCCTTCATCTTCGATTCAAAACTGAGTCAACCACCCAACCTCTGTTCTGCGGTTACTATGTCGGACCCTCCGGCTGCTGCC 5130 ORFII V

DiaYMV GCAACCCTCTCGCCCTTTTCGCCAAGCTCATGATCACCACCGACAAGGGCAATCTTGACGACACTCTCTCCTCATACTTGTATGAGTACT 5220 ORFII R

DiaYMV CGATCGGTCATCGTCTCGGCGACGCCTGCCTCAGTCTCTTGCCCAGCCATCTCCACTCTTACCAAAGCGCCTGCTTCGATTTCTTCTGTC 5310

DiaYMV GGAAGGCCTCCCCATTGCAGAAAACTCTTCTCAGCTTTGAAGAACCTTCTCCCTCTTTGTTGAAGAAGCTCGCCTCGAGTTCGGCCTGGG 5400

DiaYMv CCTCTGGTCCACTTCTAGCCCAACTCGACAACGATTCGCTACAAAGCCTTCTTGAACGCTCCAATCTCCCAAGCTCCCATCTTGACGCCA 5490

DiaYMV GGGTTCAAAGACTTGAGTCTGAATTGCTTCACTCATTTCAATAACATGGAAGAACTCAAGCCGATCAGCGTCAAGCAGCCCTCTATCCCG 5580 ORFII R

DiaYMV GCACCTGGCACCAAGCTGCCCCCTGCTCCTGGCCAGCAATCGTCCGCGATCGTCCAACCTTTTCAGGTCTCTGTAGCTGACCTCGGCGTC 5670

DiaYMV TCCGAAGTCAACGTGCAGATAACCCTCTCGTCCGATCCCACCCTTTCTCAGCTCACCGCTTTCTACCGCCACGCTGATCTCGTCGAGTGC 5760

DiaYMV TCCGCCGTTCTGTTTCCGAATTTCACTTCCTCTTCCAACCCAACCCATTGCGACCTCGCCTGGGTGCCTGCGAATTCGACTGCGTCTCCC 5850

DiaYMV AAGAACATCTTGAAGACCTACGGCGGCAACCGCTTCACCCTCGGCGGCCCGATCACCGCCAACGAGGTCATATCCGTGCCCCTGCCCATG 5940

DiaYMv AACTCTGTCAACTGCACCATCAAGGACAGCGTTCTGTACACGGACTCCCCCCGACTCTTGGCTCACTCGCCCGCCCCTCTCACGGCCAAG 6030

Diaymv AcGATCCCCTCTGGCACCTTAGTCATTCGTGGCAAGGTTCGCCTTTCTTCTCCCCTCCCTCAGCCTCTCACAGCTTCTTCGTGAgggcgg 6120

DiaYMV cgcatgccataatgcgcagtgtttcggcttccacttaaatcgaaagccaacccctccagcccgtctggttgttccctggatcactacgtc 6210
DiaYMV aacttgctttgtgtaagcaagccgttgggaacacaaaattgtgaggagttcgaatctccccctgtcccgggtagggaacc 6290

Figure 5. Genome organization of the Diascia yellow mottle virus (DiaYMV) showing the locations of the 5^{\prime} '-untranslated region and cap \bigcirc, Open reading frames (ORF) I $\mathbf{N D} \mathbf{\nabla}$, ORF
 refer to the nucleotide positions for each region.

Table 2. Percentage identity of the amino acid sequences of the movement protein (Open reading frame (ORF I)); replicase protein (ORF II) and the coat protein (ORF III) of selected tymoviruses of the 'Ononis yellow mosaic virus (OYMV) cluster' using Clustal W multiple sequence alignment .

Species name	ORF	DiaYMV	NeRNV	ScrMV	PlMoV	AVYV	OYMV
DiaYMV	I	100	54	29	31	24	28
	II	100	87	65	63	62	64
	III	100	95	74	72	68	71
NeRNV-Nf	I		100	33	31	32	35
	II		100	70	67	62	69
	III		100	74	72	67	69
ScrMV	I			100	31	33	39
	II			100	67	70	69
	III			100	72	65	71
PlMoV	I				100	31	34
	II				100	67	67
	III				100	61	65
AVYV	I					100	35
	II					100	69
	III					100	62
OYMV	I						100
	II						100
	III						100

putative CP with a predicted molecular weight of 21 kDa . In addition to the ORFs, there are 5'- and 3'-untranslated regions (Fig. 4). The DiaYMV total genome size is 6,290 nt long and shares 77.8% nucleotide sequence identity to NeRNV-Nf. The 5'-untranslated region (UTR) of DiaYMV is a region 154 nt long compared the same region in NeRNV that is 153 nt long. Nucleotide sequence comparison for the DiaYMV 5'-UTR is 90% identical to NeRNV-Nf. Tymoviruses have been shown to have a 5'-7-methyl guanosine cap (Ding et al., 1989; Gibbs, 1994; Bernal et al., 2000; Koenig et al., 2005a). In this study, the existence of a 5'-7methyl guanosine cap structure is inferred solely by the similarity of DiaYMV to other tymoviruses.

The 5'-terminal secondary structure and RNA folding was predicted using Structure analysis of RNA software (STAR version 5: Leiden University, The Netherlands) followed by manual alignment of the nucleotides using NeRNV and OYMV RNA folding as guides (Koenig et al., 2005a). Based on the high sequence similarity of DiaYMV with NeRNV-Nf, it was observed that the 5^{\prime} '-terminus RNA of DiaYMV can be folded into four potential hairpin (HP) structures labeled 1 through 4 (Fig. 6) as predicted by STAR.

The occurrence of an additional nucleotide at position 125 of the DiaYMV 5'-UTR sequence did not change the RNA folding or the occurrence of hairpin 4 (HP4). Although there are nucleotide differences between the sequences of the two RNAs, the predicted secondary structures are similar. The hairpins in tymoviruses are characterized by internal loops that contain C-C or U-C mismatches. The U-C mismatch is found only in members of the 'OYMV serological cluster' and is highly conserved within that group (Koenig et al., 2005a). DiaYMV has U-C mismatches in hairpin loops 2 and 3 which are also found in NeRNV-Nf. Based on the 5^{\prime} '-UTR, DiaYMV is similar in RNA secondary structure to

Figure 6. Predicted secondary structures of the 5^{\prime}-UTR of Diascia yellow mottle virus (DiaYMV) genomic RNA. The potential hairpin (HP) structures are labeled HP1 to 4. Bold letters in gray background represent the nucleotides that differ from the Nemesia ring necrosis virus (NeRNV) nucleotide sequence. The highlighted nucleotides with dark gray background show the start codons of open reading frame (ORF) I and ORF II sequences.

		HP1	HP2	HP3	HP4
	C A				
		U U			
	U ${ }_{\text {A-U }}$				U C
			C C	C C	C G
	G-C		U G	U G	A-U
	C-G		C-G	C-G	G-C
		C C	U C	U C	C C
		C C	C C	C C	C C
	G-C		G-C	G-C	A-U
\pm	A-U		A-U	C-G	G-C
	C-G		U-A	U-A	A-U
	U-A		U-A	U-A	C-G
	C-G		C-G	C-G	A-U
	G-U		G-C	G-C	A-U
	A-U		U-A	A-U	U-A
	GUAAUUCGUUUCC	C U	U CC		UC

NeRNV and OYMV with the occurrence of four hairpin loops while ScrMV, AVYV, and PlMoV have three (Koenig et al., 2005b).

The putative movement protein (MP) coding region (ORF I) is 1,914 nt long, starting at nucleotide number 155. Amino acid (aa) sequence comparison showed that the MP is 54% identical to the NeRNV-Nf, and 38 and 33% identical to PlMoV and ScrMV, respectively. However, ORF I of DiaYMV is 637 aa long compared to the same region of NeRNV-Nf that is 632 aa long. This protein is also referred to as the overlapping protein (OP) (Morch et al., 1988; Ding et al., 1989; Ranjith-Kumar et al., 1998) since ORF I overlaps the 5'-terminus of ORF II in a manner similar to that found in several animal viral genomes (Keese et al., 1989). Rajith-Kumar et al. (1998) observed that MP sequences of tymoviruses are variable in length and exhibit a sequence identity of 26 to 34% when compared across species. The same authors noticed that there is a tetra-peptide "GILG" found in all tymoviral ORF I for which sequence is reported and this is also true for DiaYMV. This sequence is located at aa positions 239 to 242 of DiaYMV ORF I. It is suggested that the tetrapeptide may have a structural or functional role. NeRNV ORF I is thought to have a role as a suppressor of RNA silencing (Koenig et al, 2005a). Studies of TYMV showed that the MP is involved in the systemic spread of virus within the plant and possibly also in cell-to-cell movement (Bozarth et al., 1992). Thus, the MP may play a major role in host susceptibility to virus infection and ultimately in determining host range.

The MPs of tymoviruses are variable at the amino acid level, even within the 'OYMV cluster' (Table 2). Pairwise comparison of the amino acid sequences of the MP of four strains of TYMV showed that their sequence identities ranged from 89 to 97%. This range of amino acid identities is high relative to the aa identities revealed when the MPs of DiaYMV
and NeRNV-Nf are compared (54\%). This analysis suggests that sequence differences between DiaYMV and NeRNV-Nf are greater than those expected between strains of the same tymovirus. Thus, DiaYMV and NeRNV-Nf represent different and unique virus species. Cluster analysis of ORF I amino acid sequences showed that DiaYMV and NeRNVNf are in the same cluster, and associated with the other serologically related viruses such as ScrMV, PlMoV and AVYV of the 'OYMV cluster' (Fig. 7). Phylogenetic analysis of the same regionas reported by Koenig et al., 2005b places NeRNV in the 'OYMV cluster'. Sequence variability within the MP is not currently considered as one of the criteria for species demarcation in the genus Tymovirus, however it is worth noting this large variation. There is an apparent high rate of mutation within the movement protein genes and this has led to limited sequence conservation even within compact groups of viruses that share common genome organization and functional properties (Mushegian and Koonin, 1993). This is why the MP genes are not a viable criterion for use in the species demarcation of many viruses.

The putative ORF II, also called the replicase protein (RP), spans from nucleotide position 162 to 5,536 terminating with TAA codon. The ORF II starts 7 nt downstream of the ORF I, a feature that has been observed in most members of the genus Tymovirus (Ding et al., 1990; Rajith-Kumar et al., 1998 and Koenig et al., 2005a). This is the longest ORF in the DiaYMV genome encoding a protein of 1,790 aa and this region is regarded as the most conserved of all the proteins in tymoviruses (Gibbs, 1994). This protein is also referred to as the polyprotein (Keese et al., 1989, Koenig et al., 2005a,) as it encodes a protein some parts of which show sequence similarity to the possible RNA replicase and nucleotide binding sites of other viruses. Sequence analysis of the DiaYMV coding region shows the highest

Figure 7. Cluster dendogram based on amino acid similarity of the movement proteins of Diascia yellow mottle virus (DiaYMV) and other known tymoviruses. Percentage values show the unrooted bootstrap values and only branches exceeding 65% are shown. Virus acronyms are defined in Table 1.
amino acid sequence identity of 87% with NeRNV-Nf and 70% identity with ScrMV (Table 2), whereas the average amino acid sequence identity for the RP in tymoviruses is reported to be in the range from 48% to 60% (Rajith-Kumar et al., 1998) or 65% to 71% (Koenig et al., 2005a). The RP for DiaYMV has a highly conserved 16 nucleotide "tymobox", a feature found in all tymoviruses. The tymobox sequence for the DiaYMV is 5'-GAGTCTGAA-TTGCTTC-3' and it is located in the 3 '-terminal region of ORF II. The initiation box CAAT, is located 8 nt downstream of the tymobox and this region has been found in many tymoviruses with the exception of CYVV and the Port Davis strain of KYMV (Ding et al., 1990). The last nucleotide of the initiation box is also the first nucleotide of ORF III in DiaYMV, and hence the initiation box is thought to initiate the synthesis of CP by a subgenomic RNA (Schirawski et al., 2000).

Phylogenetic analysis of the RP amino acid sequences of tymoviruses also places DiaYMV in the same cluster as NeRNV within the 'OYMV cluster', again showing the close relationship of DiaYMV with NeRNV (Fig. 8). The NeRNV RP is 1,789 aa long whereas the RP of DiaYMV is 1,790 aa long reflecting a single amino acid addition in the sequence of DiaYMV.

The CP (ORF III) sequence of DiaYMV starts at nucleotide position 5,538 and terminates at 6,114 of DiaYMV, and there is a single nucleotide between the stop codon of ORF II and the start codon of ORF III. However, in AVYV, OYMV, ScrMV and PlMV, the stop codon of the ORF II is located downstream of the start codon of ORF III (Koenig et al., 2005a). DiaYMV ORF III has 95% aa identity with NeRNV-Nf and NeRNV-Dia while the average amino acid sequence identity to other tymoviruses is between 36% and 74%. Phylogenetic analysis of ORF III amino acid sequences of tymovirues places DiaYMV in the

Figure 8. Cluster dendogram based on amino acid similarity of the replicase proteins of Diascia yellow mottle virus (DiaYMV) and other known tymoviruses. Percentage values show the unrooted bootstrap values and only branches with bootstrap values greater than 65% are shown. Acronyms as listed in Table 1.

Figure 9. Cluster dendogram based on amino acid similarity of the coat proteins of Diascia yellow mottle virus (DiaYMV) and other known tymoviruses. Percentage values show the unrooted bootstrap values and only branches with bootstrap values greater than 65% are shown. Acronyms as listed in Table 1.
same cluster with NeRNV-Nf within the 'OYMV cluster' (Fig. 9), indicating the close relatedness of the tymoviruses in this cluster. Based on the CP sequence identity with other tymoviruses, it is speculated that DiaYMV ORF III is also synthesized via a subgenomic RNA, even though it was difficult to visualize a corresponding band in this region of the dsRNA profile (Fig. 1). The tymobox is thought to be the promoter element for the subgenomic RNA synthesis (Ding et al., 1990; Rajith-Kumar et al., 1998; Martelli et al., 2002). It is proposed that the separated conserved regions of the tymobox and the initiation box in tymoviruses may have different functions in which the tymobox may act as a signal sequence to be recognized and/or bound by viral RNA replicase whereas the initiation box may help in the precise start of the subgenomic RNA transcription (Ding et al., 1990).

Analysis of virus-specific sequences obtained from these plants revealed the occurrence of two distinct genotypes. This phenomenon suggested that there might be a mixed infection by either two viruses or different strains of the same virus. In addition to the sequence reported here for DiaYMV, a commonly occurring sequence corresponding to ORF III was 99.5% identical at the amino acid level to NeRNV-Nf and NeRNV-Dia. Because of this high degree of identity, it is proposed that these plants are also infected with a Washington isolate of NeRNV (NeRNV-WA) (Fig. 10 and 11).

The 3 '-UTR extends from position 6,115 to the end of the sequence at nucleotide 6,290. Sequence comparison of the DiaYMV 3'-UTR revealed highest nucleotide identity of 86% with NeRNV-Nf. The 3'-UTR of DiaYMV is 176 nt long while the NeRNV-Nf 3'UTR is 175 nt long. Despite several differences in nucleotide sequence, compensating base changes in the sequence of DiaYMV would maintain the secondary structure predicted for NeRNV-Nf (Fig. 12). The pattern of RNA folding for DiaYMV was redrawn based on the

DIAYMV	ATGGAAGAACTCAAGCCGATCAGCGTCAAGCAGCCCTCTATCCCGGCACCTGGCACCAAG	60
NeRNV-Nf	ATGGAAGAACTCAAACCGATCAGCGTCAAACAGCCCTCTATTCCCGCTCCCGGCACCAAG	60
NeRNV-WA	ATGGAAGAACTCAAACCTGTCAGCGTCAAACAGCCCTCTATTCCCGCTCCCGGCACCAAG	60
NeRNV-D1	ATGGAAGAACTCAAACCTATCAGCGTCAAACAGCCCTCTATTCCCGCTCCCGGCACCAAG	60
NeRNV-D2	ATGGAAGAACTCAAACCTATCAGCGTCAAACAGCCCTCTATTCCCGCTCCCGGCACCAAG	60
NeRNV-D3	ATGGAAGAACTCAAGCCTATCAGCGTCAAACAGCCCTCTATTCCCGCTCCCGGGACCAAG	60
NeRNV-N1	ATGGAAGAAATCAAGCCTATCAGCGTC	27
DIAYMV	CTGCCCCCTGCTCCTGGCCAGCAATCGTCCGCGATCGTCCAACCTTTTCAGGTCTCTGTA	120
NeRNV-Nf	СTTCCTCCTGCACCGGGTCAGCAATCATCCGCCATCGTTCAACCCTTCCAGATCTCCGTC	120
NeRNV-WA	CTTCCTCCTGCACCGGGTCAGCAATCATCCGCCATCGTTCAACCCTTCCAGATCTCCGTC	120
NeRNV-D1	CTTCCTCCTGCACCGGGTCAGCA	83
NeRNV-D2	CTTCCTCCTGCACCGGGTCAGCA	83
NeRNV-D3	СTTCCTCCTGCACCGGGTCAGCAATCAT	88
NeRNV-N1		
DIAYMV	GCTGACCTCGGCGTCTCCGAAGTCAACGTGCAGATAACCCTCTCGTCCGATCCCACCCTT	180
NeRNV-Nf	ACCGACCTCGGCGTCGCCGAAGTCAACGTTCAGATCACCCTCTCCTCGGACCCCACTCTC	180
NeRNV-WA	ACCGACCTCGGCGTCGCCGAAGTCAACGTTCAGATCACCCTCTCCTCGGACCCCACTCTC	180
NeRNV-D1		
NeRNV-D2		
NeRNV-D3		
NeRNV-N1		
DIAYMV	TCTCAGCTCACCGCTTTCTACCGCCACGCTGATCTCGTCGAGTGCTCCGCCGTTCTGTTT	240
NeRNV-Nf	TCTCAGCTCACAGCTTTCTACCGTCATGCTGACCTCGTGGAATGCTCCGCTGTACTCTTC	240
NeRNV-WA	TCTCAGCTCACAGCTTTCTACCGTCATGCTGACCTCGTGGAATGCTCCGCTGTACTCTTC	240
NeRNV-D1		
NeRNV-D2		
NeRNV-D3		
NeRNV-N1		
DIAYMV	CCGAATTTCACTTCCTCTTCCAACCCAACCCATTGCGACCTCGCCTGGGTGCCTGCGAAT	300
NeRNV-Nf	ССАААСТTСАССТСТТСАTССААССССАСТСAСTGCGATCTCGCCTGGGTTCCCGCСАAT	300
NeRNV-WA	ССАААСТTСACСTCTTCATCCAACCCCACTCACTGCGATCTCGCCTGGGTTCCCGCCAAT	300
NeRNV-D1		
NeRNV-D2		
NeRNV-D3		
NeRNV-N1		
DIAYMV	TCGACTGCGTCTCCCAAGAACATCTTGAAGACCTACGGCGGCAACCGCTTCACCCTCGGC	360
NeRNV-Nf	TCCACCGCGTCACCCAAGGCAATCCTTCGAACCTACGGTGGCAATCGCTTCACCCTCGGA	360
NeRNV-WA	TCCACCGCGTCACCCAAGGCAATCCTTCGAACCTACGGTGGTAATCGCTTCACCCTCGGA	360
NeRNV-D1		
NeRNV-D2		
NeRNV-D3		
NeRNV-N1		
DIAYMV	GGCCCGATCACCGCCAACGAGGTCATATCCGTGCCCCTGCCCATGAACTCTGTCAACTGC	420
NeRNV-Nf	GGCCCCATCACCGCGAACGAGGTGATCTCCATTCCTCTGCCCATGAACTCTGTCAACTGC	420
NeRNV-WA	GGCCCCATCACCGCGAACGAGGTGATCTCCATTCCTCTGCCCATGAACTCTGTCAACTGC	420
NeRNV-D1		
NeRNV-D2		
NeRNV-D3		
NeRNV-N1		
DIAYMV	ACCATCAAGGACAGCGTCTTGTACACGGACTCCCCCCGACTCTTGGCTCACTCGCCCGCC	480
NeRNV-Nf	ACCATCAAGGACAGCGTCATGTACACCGACTCACCCCGTCTCCTAGCCTACTCTCCGGCC	480
NeRNV-WA	ACCATCAAAGACAGCGTCATGTACACCGACTCACCCCGTCTTCTAGCCTACTCTCCGGCC	480
NeRNV-D1		
NeRNV-D2		
NeRNV-D3		
NeRNV-N1		

```
DIAYMV CCTCTCACGGCCAAGACGATCCCCTCTGGCACCTTAGTCATTCGTGGCAAGGTTCGCCTT 540
NeRNV-Nf CCTCTCACGGCCAAAACCACCCCTTCCGGCACTCTTGTCATTCGTGGCAAGGTCCGTCTC 540
NeRNV-WA CCTCTCACGGCCAAAACCACCCCTTCCGGCACTCTTGTCATTCGTGGCAAGGTCCGTCTC 540
NeRNV-D1
NeRNV-D2
NeRNV-D3
NeRNV-N1
DIAYMV
NeRNV-Nf
NeRNV-WA
NeRNV-D1
NeRNV-D2
NeRNV-D3
NeRNV-N1
DIAYMV
NeRNV-N
NeRNV-WA
NeRNV-D1
NeRNV-D2
NeRNV-D3
NeRNV-N1
DIAYMV
NeRNV-N
NeRNV-WA
NeRNV-D1
NeRNV-D2
NeRNV-D3
NeRNV-N1
DIAYMV
NeRNV-N
NeRNV-WA
NeRNV-D1
NeRNV-D2
NeRNV-D3
NeRNV-N1
\begin{tabular}{|c|c|c|}
\hline DIAYMV & CCTCTCACGGCCAAGACGATCCCCTCTGGCACCTTAGTCATTCGTGGCAAGGTTCGCCTT & 540 \\
\hline NeRNV-Nf & ССTСTCACGGCCAAAACCACCCCTTCCGGCACTCTTGTCATTCGTGGCAAGGTCCGTCTC & 540 \\
\hline NeRNV-WA & CCTCTCACGGCCAAAACCACCCCTTCCGGCACTCTTGTCATTCGTGGCAAGGTCCGTCTC & 540 \\
\hline NeRNV-D1 & & \\
\hline NeRNV-D2 & & \\
\hline NeRNV-D3 & & \\
\hline NeRNV-N1 & & \\
\hline DIAYMV & TCTTCTCCCCTCCCTCAGCCTCTCACAGCTTCTTCGTGAgggcggcgcatgccataatgc & 600 \\
\hline NeRNV-Nf & TCTTCCCCCCTCCTCCAGCCTCTCACAGCTTCCTCGTGAgggtggcgcacaccacagtgc & 600 \\
\hline NeRNV-WA & TCTTCCCCCCTCCTCCAGCCTCTCACAGCTTCCTCGTGAgggtggcgcacaccatagtgc & 600 \\
\hline NeRNV-D1 & & \\
\hline NeRNV-D2 & & \\
\hline NeRNV-D3 & & \\
\hline NeRNV-N1 & & \\
\hline DIAYMV & gcagtgtttcggcttccacttaaatcgaaagccaaccectccagccegtctggttgttcc & 660 \\
\hline NeRNV-Nf & gtagtgtttcggcttccacttaaatcgaaagccaacccctccagtttt ctggttgttcc & 659 \\
\hline NeRNV-WA & gtagtgtttcggcttccacttaaatcgaaagccaacccctccagtttt ctggttgttcc & 659 \\
\hline NeRNV-D1 & & \\
\hline NeRNV-D2 & & \\
\hline NeRNV-D3 & & \\
\hline NeRNV-N1 & & \\
\hline DIAYMV & ctggatcactacgtcaacttgctttgtgtaagcaagccgttgggaacacaaaattgtgag & 720 \\
\hline NeRNV-Nf & ttggattgctacgttcaccagatttgtgtaatctggccgttaggaacttaaaattgcgcg & 719 \\
\hline NeRNV-WA & tcggatcgctacgtccaccagatttgtgtaatctggccgttaggaacttaaaattgcgcg & 719 \\
\hline NeRNV-D1 & & \\
\hline NeRNV-D2 & & \\
\hline NeRNV-D3 & & \\
\hline NeRNV-N1 & & \\
\hline DIAYMV & gagttcgaatctccccotgtcocgggtagggaacc & 755 \\
\hline NeRNV-Nf & gagttcgaatctccccotgtcccgggtagggaacc & 754 \\
\hline NeRNV-WA & gagttcgaatctccccctgtcccgggtagggaacc & 754 \\
\hline NeRNV-D1 & & \\
\hline NeRNV-D2 & & \\
\hline NeRNV-D3 & & \\
\hline NeRNV-N1 & & \\
\hline
\end{tabular}
```

Figure 10. Nucleotide sequence alignments of open reading frame (ORF) III and the 3'-untranslated region of Nemesia ring necrosis virus (NeRNV-Nf); NeRNV-WA; Diascia yellow mottle virus (DiaYMV); NeRNV-D1 isolate 1 from diascia; NeRNV-D2 isolate 2 from diascia; NeRNV-D3 isolate 3 from diascia and NeRNV-N1 isolate 1 from nemesia. Bold letters show the base changes relative to DiaYMV. Partial sequences for NeRNV-D1, NeRNV-D2, NeRNV-D3 and NeRNV-N1 provided (Mathews and Dodds, 2006). The numbers on the right side indicate nucleotide positions. The open reading frame (ORF) III is capitalized and the 3 ' untranslated region (UTR) is in lower case.

```
DiaYMV MEELKPISVKQPSIPAPGTKLPPAPGQQSSAIVQPFQVSVADLGVSEVNVQITLSSDPTL 60
NeRNV-Nf MEELKPISVKQPSIPAPGTKLPPAPGQQSSAIVQPFQISVTDLGVAEVNVQITLSSDPTL 60
NeRNV-WA MEELKPVSVKQPSIPAPGTKLPPAPGQQSSAIVQPFQISVTDLGVAEVNVQITLSSDPTL 60
NeRNV-D1 MEELKPISVKQPSIPAPGTKLPPAPGQ 27
NeRNV-D2 MEELKPISVKQPSIPAPGTKLPPAPGQ 27
NeRNV-D3 MEELKPISVKQPSIPAPGTKLPPAPGQQS 29
NeRNV-N1 MEEIKPISV 9
DiaYMV SQLTAFYRHADLVECSAVLFPNFTSSSNPTHCDLAWVPANSTASPKNILKTYGGNRFTLG 120
NeRNV-Nf SQLTAFYRHADLVECSAVLFPNFTSSSNPTHCDLAWVPANSTASPKAILRTYGGNRFTLG 120
NeRNV-WA SQLTAFYRHADLVECSAVLFPNFTSSSNPTHCDLAWVPANSTASPKAILRTYGGNRFTLG 120
NeRNV-D1
NeRNV-D2
NeRNV-D3
NeRNV-N1
DiaYMV GPITANEVISVPLPMNSVNCTIKDSVLYTDSPRLLAHSPAPLTAKTIPSGTLVIRGKVRL 180
NeRNV-Nf GPITANEVISIPLPMNSVNCTIKDSVMYTDSPRLLAYSPAPLTAKTTPSGTLVIRGKVRL 180
NeRNV-WA GPITANEVISIPLPMNSVNCTIKDSVMYTDSPRLLAYSPAPLTAKTTPSGTLVIRGKVRL 180
NeRNV-D1
NeRNV-D2
NeRNV-D3
NeRNV-N1
DiaYMV SSPLPQPLTASS* 192
NeRNV-Nf SSPLLQPLTASS* 192
NeRNV-WA SSPLLQPLTASS* 192
NeRNV-D1
NeRNV-D2
NeRNV-D3
NeRNV-N1
```

Figure 11. Amino sequence alignment of the open reading frame (ORF) III of Nemesia ring necrosis virus (NeRNV-Nf); NeRNV-WA; Diascia yellow mottle virus (DiaYMV); NeRNVD1 isolate 1 from diascia; NeRNV-D2 isolate 2 from diascia; NeRNV-D3 isolate 3 from diascia and NeRNV-N1 isolate 1 from nemesia. Bold letters show the differences in amino acids relative to DiaYMV. An asterisk indicates the stop codon. Partial sequences for NeRNV-D1, NeRNV-D2, NeRNV-D3 and NeRNV-N1 provided (Mathews and Dodds, 2006).

Figure 12. Secondary structure model of the 3'-terminus of RNA from tymoviruses found in members of the Scrophulariaceae. a) Nemesia ring necrosis virus (NeRNV) RNA secondary structure redrawn from Koenig et al., 2005a. b) Secondary structure model of the 3' end of the RNA of Diascia yellow mottle virus (DiaYMV) as drawn based on nucleotide sequence identity with Nemesia ring necrosis virus (NeRNV) RNA folding and predicted secondary structures (Koenig et al., 2005a). Bold highlighted areas are differences in nucleotides between NeRNV and DiaYMV.

t-RNA like structure(TLS)

model for NeRNV-Nf (Koenig et al., 2005a). There is a high degree of similarity in the potential for RNA folding of the two viruses which is different from the tRNA-like structure found in other tymoviruses. DiaYMV appears to have a 3'-terminus similar to NeRNV-Nf which can accept histidine while TYMV and other tymoviruses have a tRNA-like structure that can accept valine (Dreher, 1999; Dreher, 2004; Koenig et al., 2005b). The anticodon sequence GUG of DiaYMV is different from CAC found in TYMV and GUU found in Tobacco mosaic virus (Dreher, 1999), but similar to GUG anticodon sequence in NeRNVNf. The GUG is the histidine codon in the anticodon sequence of both DiaYMV and NeRNV. Some of the similarities of the DiaYMV and NeRNV-Nf include: three upstream pseudo-knot domains (UPD) labeled PK 1 to 3 (Figs. 12a and 12b); sequence of the acceptor arm sequence, and the locations of the D-loop and the T-loop. The hairpin loop is located between the UPD and the tRNA-like structures; despite a few nucleotide changes between DiaYMV and NeRNV-Nf, the structural organization of the HP was not changed. A similar HP structure has been found in some furovirus and pomovirus RNAs, although it was not found in tobamovirus RNAs and its presence is thought to ensure that there is a proper mutual orientation of the UPD and the tRNA-like structure (Koenig, et al., 2005a). One interesting observation was that despite the differences in the base pairing, the overall tRNAlike structure was maintained, suggesting the importance of the structure in the genomes of positive strand RNA viruses. The 3 '-terminus is thought to be the site for regulating important events leading to the onset of the replication of the genome since the minus strand must be synthesized from this region, and it is also the site of events that maintain an intact 3' end (Dreher, 1999). Differences in the 3 '-terminal structure is another criterion that is used in the classification of tymoviruses, and many of the tymoviruses have been shown to
have their 3'-terminus folded into a tRNA structure and the amino-acyl arm of the tRNA can be a pseudo knot structure. The 3 ' terminal secondary structure is further supporting the evidence that DiaYMV is more closely related to NeRNV than to other members of the 'OYMV cluster'. The occurrence of sequences similar to NeRNV-Nf is highly suggestive of a mixed infection by NeRNV and DiaYMV in Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'. A tymovirus isolated from diascia and verbena plants in California was recently identified as NeRNV. There is an 88% aa identity between DiaYMV and the NeRNV-isolate 1 from variety 'Red Ace' (Fig. 11) isolated from diascia plants in California (Mathews and Dodds, 2006). However, the amino acid sequence being compared consists of only 267 amino acids representing 14% of ORF II and 27 amino acids of ORF III. Hence it is difficult to make a meaningful comparison based on this small sequence. There have been two separate occurrences of NeRNV isolated from different cultivars of diascia in Europe (Skelton et al., 2004; Koenig et al., 2005a). Based on the sequence of 890 nucleotides from ORF II and ORF III, Mathews and Dodds (2006) demonstrated the presence of NeRNV in three diascia cultivars in California. This confirmed the presence of NeRNV in North America.

Diascia plants 'Red Ace' and 'Hannah Rose' are reported to be infected with viruses that are not tymoviruses based on dsRNA patterns (Mathews and Dodds, 2004). In this study it was observed that the plants were also susceptible to Impatiens necrotic spot virus (INSV). This study has also shown that Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' is infected with both NeRNV and another tymovirus for which a name Diascia yellow mottle virus is being suggested. Due to limited literature on NeRNV and its impact on its hosts, it has been difficult to ascertain if mixed infections with other tymoviruses are common. It is not clear what impact or role the mixed infection with two tymoviruses would have on the replication
of the viruses, and how this might impact symptomatology and general growth of the diascia plants. Diascia and nemesia plants belong to the family Scrophulariaceae and are often raised under similar management practices in nurseries; hence, it is possible that the plants are exposed to the same pathogens. Although this could not be confirmed for all the nurseries, diascia and nemesia plants collected from one nursery in Oregon all tested positive for NeRNV-Nf and DiaYMV and the nursery had the same supplier for both plants. This observation suggests that cultural practices in nurseries may help disseminate the two viruses.

Virus species classification can be cumbersome, and it is the polythetic nature of viruses that drives us to believe that DiaYMV is a new species. The ICTV guidelines for species demarcation for the tymovirus (Martelli et al., 2002) includes capsid protein sequences less than 90% identity, and overall sequence identity of less than 80%. The occurrence of quasi-species has not been ignored, and variations in the sequences are thus expected. For this reason, molecular criteria alone should not be the criteria used to classify tymoviruses. Other criteria used to classify viruses have been employed and the results of those findings will be discussed in subsequent chapters. On the other hand, it is not uncommon to find nucleotide differences in tymoviruses, the occurrence of variations within plants by hybrid mismatch polymorphisms and also by the use of sequence data of the TYMV isolates have been reported (Skotnicki et al., 1993; Skotnicki et al., 1996). In the genus Pomovirus, nucleotide differences have been reported between clones that varied considerably in different parts of the genome of Beet soil-borne pomovirus (BSBV) (Koenig et al., 2000). These differences were also found in plantlets which were grown in the same
soil sample. The report however ruled out PCR artifacts and maintained that the high variability in parts of the BSBV genome were most probably due to higher mutation rates.

CONCLUSION:

Based on the analysis of overall genome data, it is evident that DiaYMV is a unique virus in the genus Tymovirus. This proposal for a new species is based primarily on the sequence differences observed in ORF I, despite amino acid identities of the putative coat protein to that of NeRNV. This report however acknowledges that NeRNV also occurs in Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'.

REFERENCES:

Alexandre, M. A. V., Duarte, L. M. L., Rivas, E. B., Chagas, C. M. and Barradas, M. M. 2000. Petunia vein banding virus: characterization of a new tymovirus from Petunia x hybrida. Plant Dis. 84:739-742.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, Z. Z, Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.

Bercks, R. 1973. Scrophularia mottle virus. CMI/AAB Descriptions of Plant Viruses, No. 113. Accessed October, 2006.

Bernal, J. J., Jimenez, I., Moreno, M., Hord, M., Rivera, C., Koenig, R. and RodriguezCerezo, E. 2000. Chayote mosaic virus, a new virus infecting Cucurbitaceae. Phytopathology 90:1098-1104.

Bink, H. H. J. and Pleij, C. W. A. 2002. RNA-protein interactions in spherical viruses. Arch.Virol. 147:2261-2279.

Bozarth, C. S., Weiland, J. J. and Dreher, T. W. 1992. Expression of ORF-69 of Turnip yellow mosaic virus is necessary for viral spread in plants. Virology 187:124-130.

Brakke, M. K. and Van Pelt, N. 1970. Linear-log sucrose gradients for estimating sedimentation coefficients of plant viruses and nucleic acids. Anal. Biochem. 38:56-64.

Cabot, E. and Beckenback, A. T. 1989. Simultaneous editing of multiple nucleic acid and protein sequences with Xesee. Comp. Appl. Bios. 5:233-234.

Ding, S., Howe, J., Keese, P., Mackenzie, A., Meek, D., Osorio-Keese, M., Skotnicki. M., Srifah, P., Torronen, M. and Gibbs, A. 1990. The tymobox, a sequence shared by most
tymoviruses: its use in molecular studies of tymoviruses. Nucleic Acids Res. 18:11811187.

Ding, S., Keese, P and Gibbs, A., 1989. Nucleotide sequence of the Ononis yellow mosaic tymovirus genome. Virology 172:555-563

Dreher, T. W. 1999. Functions of the 3'-untranslated regions of the positive strand RNA viral genomes. Annu. Rev. Phytopathol. 37:151-174.

Dreher, T. W. 2004. Turnip yellow mosaic virus: transfer RNA mimicry, chloroplasts and Crich genome. Mol. Plant Path. 5:367-375.

Dreher, T. W., Edwards, M. C., Gibbs, A. J., Haenni, A. -L., Hammond, R. W., Jupin, I., Koenig R., Sabanadzovic, S., Abou Ghanem-Sabanadzovic, N. and Martelli, G. P. 2004. Tymoviridae. Pages 1067-1076 in: Virus taxonomy, VIIIth report of the ICTV. C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger and L. A. Ball, eds. Elservier Academic Press, San Diego.

Dunn, D. B. and Hitchborn, J. H. 1965. The use of Bentonite in the purification of plant viruses. Virology 25:171-192.

Edwards, M. C., Zhang, Z. and Weiland, J. J. 1997 Oat blue marafivirus resembles the tymoviruses in sequence, genome organization, and expression strategy. Virology 232:217-229

Felsenstein, J. 1993. PHYLIP (Phylogeny Interface Package), Version 3.5c. Department of Genetics. University of Washington, Seattle.

Gaillard, C and Strauss, F. 1990. Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Res. 18:378

Gibbs, A. 1994. Tymoviruses. Pages 1500-1502 in: Encyclopedia of virology. Vol. 3. R.G. Webster and A. Granoff, eds. Academic Press, San Diego.

Gibbs, A., Mackenzie, A. M. and Abdul-Samad, N. 1997. A tymovirus from Calopogonium mucunoides in Malaysia is not Clitoria yellow vein tymovirus. Arch.Virol. 142:16971702

Hall, J. S., Adam, B., Parson, T. J., French, R., Lane, L. C. and Jensen, S. G. 1998. Molecular cloning, sequencing and phylogenetic relationship of new potyvirus; Sugarcane streak mosaic virus; and a reevaluation of the classification of the Potyviridae. Mol. Phylogenet. Evol. 10:323-332

Hayden, C. M., Mackenzie, A. M. and Gibbs, A. 1998. Virion protein sequence variation among isolates of Turnip yellow mosaic tymovirus. Arch.Virol. 143:191-201.

Heinze, C., Lesemann, D. -E., Ilmberger, N., Willingmann, P. and Adam, G. 2006. The phylogenetic structure of the cluster of tobamovirus species serologically related to Ribgrass mosaic virus (RMV) and the sequence of Streptocarcus flower break virus (SFBV). Arch. Virol. 151:763-774.

Hord, M., Villalobos, W., Macaya-Lizano, A. V. and Rivera, C. 1997. Chayote mosaic, a new disease in Sechium edule caused by tymovirus. Plant Dis. 81:374-378.

Jacob, A.N., Murthy, M.R. and Savithri, H. S. 1992. Nucleotide sequence of the 3'terminal region of Belladonna mottle virus-Iowa (renamed Physalis mottle virus) RNA and analysis of the relationship of tymoviral coat proteins. Arch. Virol. 123:367-77.

Koenig, R., Pleij, C.W.A. and Büttner, G. 2000. Structure and variability of the 3' end of RNA of Beet soil-borne pomovirus - a virus with uncertain pathogenic effects. Arch Virol 145:1173-1181.

Koenig, R., Pleij, C. W. A., Lesemann, D. -E., Loss, S. and Vetten, H. J. 2005a. Molecular characterization of isolates of Anagyris vein yellow virus, Plantago mottle virus and Scrophularia mottle virus -comparison of various approaches for tymovirus classification. Arch. Virol. 150:2325-2338.

Koenig, R., Barends, S., Gultyaev, A. P., Lesemann, D. -E., Vetten, H. J., Loss, S. and Pleij, C.W.A. 2005b. NeRNV, a new virus with genomic RNA having a histidylatable tobamovirus-like 3'end. J. Gen.Virol. 86:1827-1833.

Lin, H., Rubio, L., Smythe, A., Jiminez, M. and Falk, B. W. 2003. Genetic diversity and biological variation among California isolates of Cucumber mosaic virus. J. Gen Virol. 84:249-258.

Martelli, G P., Sabanadzovic, S., Abou Ghanem-Sabanadzovic, N., Edwards, M. C. and Dreher, T. 2002. The family Tymoviridae. Arch. Virol. 147:1837-1846.

Mathews, D. M. and Dodds, J. A. 2006. First report of Nemesia ring necrosis virus in North America in Ornamental plants from California. Plant Dis. 60:1263.

Mathews, D.M. and Dodds, J.A. 2004. Detection of multiple viruses in verbena, diascia and lobelia plants (Abstract). $11^{\text {th }}$ International Symposium on virus diseases of ornamental plants. Taichung, Taiwan.

Morris, T. J. and Dodds, J. A. 1979. Isolation and analysis of double-stranded RNA from virus infected and fungal tissue. Phytopathology 69:854-858

Mushegian, A. R. and Koonin, E. V. 1993. Cell-to-cell movement of plant viruses: Insights from amino acid sequence comparisons of movement proteins and from analogies with transport systems. Arch Virol. 133:239-257.

Osorio-Keese, E., Keese, P. and Gibbs, A. 1989. Nucleotide sequence of the genome of Eggplant mosaic tymovirus. Virology 172:547-554.

Ranjith-Kumar, C. T., Gopinath, K., Jacob, A. N., Srividhya, V., Elango, P. and Savithri, H. S. 1998. Genomic sequence of Physalis mottle virus and its evolutionary relationships with other tymoviruses. Arch.Virol. 143:1489-1500.

Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press. Plainview, New York.

Schirawski, J., Voyatzakis, A., Zaccomer, F. B and Haenni, A. Identification and functional analysis of the Turnip yellow mosaic tymovirus subgenomic promoter. Virology 74:11073-11080

Skelton, A. L., Jarvis, B., Koenig, R., Lesemann, D. -E. and Mumford, R. A. 2004. Isolation and identification of a novel tymovirus from nemesia in the UK. Plant Path. 53:798

Skotnicki, M. L., Ding, S. W., Mackenzie, A. M. and Gibbs, A. J. 1993. Infectious eggplant mosaic tymovirus and ononis yellow mosaic virus tymovirus from cDNA. Arch. Virol.1993:47-60

Skotnicki, M. L., Mackenzie, A. M. and Gibbs, A. 1996. Genetic variation in populations of Kennedya yellow mosaic tymovirus. Arch. Virol. 141:99-110.

Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-80.

Valverde, R. A., Nameth, S. T. and Jordan, R. L. 1990. Analysis of double-stranded RNA for plant virus diagnosis. Plant Dis. 74:255-258.

CHAPTER 3

MONOCLONAL ANTIBODY PRODUCTION AND SEROLOGICICAL
 DIFFERENTIATION OF THE DIASCIA YELLOW MOTTLE VIRUS

SUMMARY:

Three mice (BALB/c) were immunized with virus purified from Diascia \times hybrida 'Sun chimes ${ }^{\mathrm{TM}}$ coral' infected with a tymovirus. Hybridoma cell lines were identified following somatic cell fusion between the myeloma cell line FOX-NY and spleen cells from immunized mice. A total of 35 antibody-secreting hybridoma cell lines were isolated after screening by triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA). One cell line designated M3-7•A6 $\cdot 1$ produced an antibody of isotype IgA and the specificity of this antibody was determined. The purified antibody M3-7•A6•1 reacted strongly with virus-infected tissue but not with healthy tissue demonstrating that it discriminates between virus infected and non-infected samples in a TAS-ELISA as well as in plate trapped antigen-ELISA (PTA-ELISA). The antibody detected DiaYMV in various plant samples tested. Monoclonal antibody M3-7•A6•1 will be useful for rapid detection of this virus.

INTRODUCTION:

Serological techniques have long been used for detecting plant viruses and enzymelinked immunosorbent assay (ELISA) is the most convenient, reliable, fast and relatively inexpensive procedure (Nikolaeva et al., 1998). The introduction of ELISA into plant virology (Clark and Adams, 1977) in combination with the use of monoclonal antibodies
permits detection of virus in nanogram quantities (Sander and Dietzgen, 1984). The production of monoclonal antibodies is based on the fusion of antibody-secreting spleen cells with myeloma cells, and the resulting hybrid cells (hybridomas) are cloned so that cell lines are established from a single hybridoma. Each cell line or clone produces antibodies of only one type and valency (Barrett, 1983; Sander and Dietzgen, 1984). To increase the fraction of hybridomas producing antibodies against the desired antigen, the splenocyte donor is immunized with highly purified immunogen. However, partially purified antigen also can be used but more vigorous screening may be required to obtain hybridomas of interest (Dietzen and Sander, 1982).

Monoclonal antibodies have some advantages and disadvantages over polyclonal antibodies. Since hybridomas secreting monoclonal antibodies are immortal, they can be stored and revived almost indefinitely to provide a stable source of antibody. This feature ensures uniform results, better comparison over time and allows for protocol standardization. Polyclonal antibodies do not provide a consistent supply of the same antiserum due to inherent variability of individual bleedings from an immunized animal (Van Regenmortel and Dubs, 1993). Another advantage in plant virology is that a less pure immunogen is acceptable with monoclonal antibodies whereas this leads to high backgrounds and difficulties in interpreting assays with polyclonal antibodies. Some of the limitations of monoclonal antibodies are that they are time consuming to develop, and they tend to be more assay specific than polyclonal antibodies. Production of monoclonal antibodies was selected for this research because of the fact that there was a mixed virus infection in the diascia host plants used in this study, and this technique may provide a means to obtain serological reagents that would discriminate between the two viruses found in diascia and nemesia.

Koenig et al. (2005) has shown that NeRNV and ScrMV belong to a cluster of tymoviruses that are serologically related and cross-react. Consequently, producing a polyclonal antibody would provide limited options if we wished to differentiate the two viruses based on serology. The primary objective of the study was to develop a robust serologically based diagnostic assay that can be used in nurseries and for general detection of tymoviruses causing disease in diascia and nemesia ornamental plants.

MATERIALS AND METHODS:

Virus Purification: Purified virus was isolated from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' using the protocol for purifying the virus from Nicotiana occidentalis described in Chapter 2. Previous results have shown that Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' was infected with DiaYMV and NeRNV-WA.

Immunizations: Three six-week old BALB/c female mice (Taconic: Hudson, NY) were immunized with purified virus. Each mouse was administered an intraperitoneal injection of $50 \mu \mathrm{~g}$ purified virus in phosphate-buffered saline (PBS) $\left(1.5 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4} ; 4 \mathrm{mM}\right.$ $\left.\mathrm{Na}_{2} \mathrm{HPO}_{4} ; 137 \mathrm{mM} \mathrm{NaCl} ; 0.2 \mathrm{mM} \mathrm{KCl}\right) \mathrm{pH} 7.4$, and emulsified in an equal volume of Freund's complete adjuvant (Sigma Aldrich, St. Louis, MO). After three weeks, each mouse was given an intraperitoneal injection of $50 \mu \mathrm{~g}$ virus in Freund's incomplete adjuvant (Sigma), followed by two more booster injections every two weeks. Serum was collected by tail bleeding method as described by Harlow and Lane (1988). The final dose of $50 \mu \mathrm{~g}$ virus in PBS was delivered intravenously. Five days after the final injection, spleen cells were extracted from euthanized mice and used for the cell fusion.

Hybridoma production: One week before the fusions, FOX-NY myeloma cells (ATTC: Manassas, VA) were cultured in 15 ml Dulbecco's modified Eagle's medium (DMEM with sodium pyruvate, L-Alanyl-L-Glutamine and high glucose) (Cat no. 10569: Invitrogen, Carlsbad, CA) containing 20% certified, heat-inactivated fetal bovine serum (FBS) (Cat no.10082-139: Invitrogen) and $50 \mu \mathrm{~g} / \mathrm{ml}$ gentamicin (Invitrogen). This tissue culture media was referred to as 20\% DMEM. Cells were placed in a humidified incubator at $37{ }^{\circ} \mathrm{C}$ with $7 \% \mathrm{CO}_{2}$ and maintained so that approximately 10^{6} actively growing myeloma cells were available at the time of each fusion.

Cell fusion protocols were adapted from established protocols (Harlow and Lane, 1988; Goding, 1996) and modified to our conditions. All procedures were performed at room temperature. On the day of the fusion, 200 ml myeloma cells were collected by centrifugation at $800 \times g$ for 10 min for each mouse. The supernate was carefully decanted and the cells were consolidated into a single 50 ml tube and gently resuspended in serum-free DMEM and set aside to be used for cell fusion.

Each of three spleens were obtained from immunized BALB/c mice and processed separately. Each spleen was surgically removed, extraneous connective tissue was removed and the spleens were rinsed three times in serum-free DMEM. Spleen cells were isolated by placing the spleen into 10 ml of serum-free DMEM and covered with four layers of cheesecloth mesh. The spleen cells were gently released by pressing the spleen with a sterile blunt end of a 20 ml syringe plunger. The spleen cells were released into the media by repeatedly washing the mesh with media. The splenocytes were collected in a 50 ml centrifuge tube and gently centrifuged at $400 \times g$ for 10 min at room temperature. The supernate was discarded and the cells were washed again in serum-free DMEM and the myeloma cells were also
centrifuged in a separate tube as above. After the final wash, the two cell pellets were resuspended in 10 ml serum-free DMEM pre-warmed to $37^{\circ} \mathrm{C}$ and combined at equal ratios of packed cell volumes. The cells were centrifuged together at $800 \times g$ for 5 min . Excess liquid was removed and the cells in the dry pellet were mixed by gentle agitation. One ml of 50% polyethylene glycol (PEG 4000) in Dulbecco's phosphate buffered saline (Cat. No. 14030-035: Invitrogen) was slowly added over 1 min by stirring with the end of the pipette, and then stirred for an additional minute. A 10 ml pipette was filled with pre-warmed serumfree DMEM; 1 ml was added to the cell suspension over the next minute while stirring with the end of the pipette. The remaining 9 ml were added over a 2 min period while stirring. The cells were centrifuged at $500 \times g$ for 5 min at room temperature. The supernate was removed and the cells were resuspended in $10 \mathrm{ml} 20 \%$ DMEM supplemented with $100 \mu \mathrm{M}$ hypoxanthine, $0.4 \mu \mathrm{M}$ aminopterin, $16 \mu \mathrm{M}$ thymidine ($1 \times \mathrm{HAT}$) (Invitrogen). The cells were transferred to 200 ml of 20% DMEM containing $1 \times$ HAT and dispensed into ten 96 -well microtiter plates (Nalge Nunc International, Rochester, NY), and the plates-maintained in the $7 \% \mathrm{CO}_{2}$ humidified incubator at $37^{\circ} \mathrm{C}$.

Cells were nourished with 10% DMEM containing $1 \times$ HAT as necessary depending on cell density. Two weeks after the fusion, the cells were supplemented with $100 \mu \mathrm{l}$ per well of 10% DMEM containing $1 \times$ HAT, and screened for antibody secreting hybridomas.

Hybridoma screening: Flat bottom 96-well Maxisorp plates (NUNC) were used to screen for antibody-producing hybridomas by TAS-ELISA. The wells were coated with 125 $\mu 1$ DiaYMV antiserum solicited against expressed coat protein and produced in sheep (provided by K. C. Eastwell) diluted 1:250 in carbonate buffer ($15 \mathrm{mM} \mathrm{Na} \mathrm{CO}_{3}, 35 \mathrm{mM}$ $\mathrm{NaHCO}_{3}, \mathrm{pH}$ 9.6). Wells were washed three times with PBS containing 0.05%
polyoxyethylene sorbitan monolaurate (Tween-20) (PBST). Plates were tapped dry and the wells were blocked with 300μ of blocking buffer (PBST plus 3% dried non-fat milk) for 30 min at room temperature.

Young upper leaves of healthy and infected Nicotiana occidentalis plants were collected separately into sample grinding bags (Agdia Inc, Elkhart, IN), and the tissue was ground at a ratio of 1 part tissue to 10 volumes of sample extraction buffer (20 mM NaSO , 0.5 mM polyvinylpyrrolidone molecular weight $40,000,0.2 \%$ powdered egg (chicken) albumin, in PBST). Each well was loaded with 125μ l sample extract; the plates were incubated at $4^{\circ} \mathrm{C}$ for 2 hr , followed by washing three times with PBST. The wells were blocked with $300 \mu \mathrm{l}$ blocking buffer for 30 min at room temperature. The blocking solution was discarded and $25 \mu \mathrm{l}$ blocking buffer was added to each well followed by $100 \mu \mathrm{l}$ tissue culture supernate. Plates were incubated at $4^{\circ} \mathrm{C}$ overnight in a humidified container. Plates were washed as above and wells were blocked with blocking buffer for 30 min as described above. Phosphatase-labeled affinity purified antibody to mouse (GAM) (Goat anti-mouse $\operatorname{IgG}+\mathrm{IgM}+\operatorname{IgA}$: Kirkegaard and Perry Laboratories, Gaithersburg, MD) at a dilution of 1:3000 ($\mathrm{v} / \mathrm{v})$ in blocking buffer was added at $125 \mu \mathrm{l}$ per well. The plates were then incubated at room temperature for 2 hr and washed as before. After the final wash, wells were filled with PBST and allowed to stand for 2 min . The assay was completed by adding $125 \mu \mathrm{l}$ substrate buffer mixture (0.1% p-nitrophenyl phosphate in 9.7% diethanolamine, $\mathrm{pH} 9.6 ; 1$ mM MgCl 2). The plates were incubated at room temperature and absorbance at 405 nm $\left(\mathrm{A}_{405}\right)$ was measured (Multiskan Ascent: Thermo electron Corporation, Waltham. MA) at 30 $\mathrm{min}, 60 \mathrm{~min}$ and 120 min intervals. Positive wells were defined as those with A_{405} twice the average reading of a healthy control sample (Sutula et al., 1986). Positive control sample
was DiaYMV-infected Nicotiana occidentalis while the negative control was non-inoculated Nicotiana occidentalis that had tested negative by RT-PCR; a buffer-only well was also used as a check.

Cells in wells that yielded positive ELISA results in the first screen were transferred to 48 -well plates and re-screened. Cells that yielded positive results in a TAS-ELISA were transferred to 24 -well plates. The positive wells from 24 -well plates were transferred to 6 well plates and screened as described for 48 -well plates. Cells from positive wells in 6 -well plates were single cell cloned and the bulk of the cells were frozen and kept in vials in liquid nitrogen for future use.

The procedure for freezing cells for storage was outlined in Harlow and Lane (1988). Healthy and rapidly dividing cells were transferred to a sterile centrifuge tube and centrifuged at $400 \times g$ at $4^{\circ} \mathrm{C}$ for 5 min . All the supernatant was removed and cells were gently resuspended in cold 8% dimethyl sulphoxide (DMSO) (Sigma) in FBS. The cell suspension was dispensed into 1 ml cryotube vials (Nalgene Nunc) and transferred to a prechilled freezing container to cool the cells at $1^{\circ} \mathrm{C}$ per minute (Nalgene Nunc). The freezing container was kept at $-80^{\circ} \mathrm{C}$ overnight and the vials were then transferred to liquid nitrogen for long term storage.

Single cell cloning: A 3% agarose gel was made by dispersing 1.5 g ultra-low gelling temperature agarose (Sea Prep: Cambrex, Rockland, ME) in 50 ml glass distilled water and autoclaved. DMEM was prepared at double standard concentrations ($2 \times$ DMEM) by stirring powdered DMEM (Cat. No. D-7777; Sigma-Aldrich) into 450 ml of sterilized glass distilled water until dissolved, then 3.7 g of sodium bicarbonate (Sigma) was added and the solution was diluted to 500 ml . The $2 \times$ DMEM was sterilized by filtering by positive
pressure. Prior to use, the 3% agarose was melted by heating in a microwave and kept in a $37^{\circ} \mathrm{C}$ water bath, $2 \times$ DMEM was supplemented with $20 \% \mathrm{FBS}, 20 \mathrm{mM}$ HEPES, $\mathrm{pH} 7.5,100$ $\mu \mathrm{g} / \mathrm{ml}$ gentamicin, 0.1 mM sodium hypoxanthine and 0.016 mM thymidine and equilibrated at $37^{\circ} \mathrm{C}$ in the $7 \% \mathrm{CO}_{2}$ incubator until use.

The agarose and $2 \times$ DMEM were mixed in a ratio of $1: 1(\mathrm{v} / \mathrm{v})$ and kept in a $37^{\circ} \mathrm{C}$ water bath. Single cell cloning was then carried out by serial dilution of cell cultures ($5^{-1}, 5^{-2}$ $, 5^{-3}, 5^{-4}$, and 5^{-5}) in 5 ml soft agar in $60 \mathrm{~mm} \times 15 \mathrm{~mm}$ Petri-dishes that were then incubated at $37^{\circ} \mathrm{C}$ in a $7 \% \mathrm{CO}_{2}$ incubator for approximately 2 wks until colonies were large enough to pick under a dissecting microscope. Colonies were individually picked for each hybridoma cell line and cultured in 96 -well plates containing $200 \mu 120 \%$ DMEM until ready to screen by TAS-ELISA as described above. One hybridoma cell line that tested positive from each cloning was then subjected to a second round of single cell cloning.

Monoclonal antibody production: The cell-line M3-7•A6•1 was transferred to 50 ml culture flasks in 30 ml 20\% DMEM supplemented to a final concentration of 1% glucose and 25 mM HEPES. Cultures were allowed to overgrow but not die and the media was collected and replaced with fresh media. Cells were removed from the media by centrifugation and the collected monoculture supernate was used for screening DiaYMV infected plants and also purified for further analysis.

Immunoglobulin isotype determination: Antibody isotype produced by hybridoma cell line M3-7•A6•1 was determined in tissue culture supernate using a TAS-ELISA procedure (mouse monoclonal ID kit (AP): Zymed Laboratories, San Francisco, CA) following the manufacturer's recommended protocol.

Immunoglobulin purification: A protocol for hypoxyapatite chromatography was followed with slight modifications from published procedures (Harlow and Lane, 1988; Gagnon, 1998). The culture supernate was dialyzed against $50 \mathrm{mM} \mathrm{Na} \mathrm{NPO}_{4}, \mathrm{pH} 6.8$ overnight at $4^{\circ} \mathrm{C}$. A column $(1.5 \mathrm{~cm} \times 50 \mathrm{~cm})$ was packed with hydroxyapatite (HA Ultrogel: Sigma) and the column was allowed to settle. The column was washed with 500 ml $300 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, pH 6.8 at a flow rate of $2 \mathrm{ml} / \mathrm{min}$ (BioLogic LP: BioRad, Hercules, CA). The column was equilibrated with 10 column volumes (CV) 50 mM 3 -(N-morpholino) propane sulfonic acid (MOPS) buffer, pH 6.8 , at a flow rate of $2 \mathrm{ml} / \mathrm{min}$. The dialyzed culture supernate was loaded onto the column $(2 \mathrm{ml} / \mathrm{min})$ followed by washing with 5 CV 50 mM MOPS, pH 6.8 with $100 \mathrm{ml} 50 \mathrm{mM} \mathrm{Na}-\mathrm{PO}_{4}, \mathrm{pH} 6.8$ at a flow rate of $5 \mathrm{ml} / \mathrm{min}$ and the eluate was collected in 20 tubes. The column was developed sequentially with 100 ml of 100 $\mathrm{mM} \mathrm{Na}-\mathrm{PO}_{4}, 100 \mathrm{ml}$ of $150 \mathrm{mM} \mathrm{Na}-\mathrm{PO}_{4}$ in the next 20 tubes and $100 \mathrm{ml} 300 \mathrm{mM} \mathrm{Na}-\mathrm{PO}_{4}$ buffer. After collection, the column was regenerated with $300 \mathrm{mM} \mathrm{Na}-\mathrm{PO}_{4}$ buffer, pH 6.8 .

The collected fractions from the columns were tested for the presence of the antibody using a PTA-ELISA. Maxisorp plates were coated with column fractions diluted 50:50 in carbonate buffer, the plates were incubated at room temperature for 4 hr and washed in PBST buffer three times and tapped dry. After washing and blocking as described above, $100 \mu 1$ GAM is added to each well. The plates were incubated for 2 hr at room temperature, washed and tapped dry. Fractions containing immunoglobulin were detected adding substrate and the absorbance reading were recorded after 30 min and 1 hr .

Fractions with high ELISA readings ($\mathrm{A}_{405} \geq 0.200$) were pooled and immunoglobulin was concentrated by (NH4) $)_{2} \mathrm{SO}_{4}$ precipitation (Harlow and Lane, 1988). One-half volume of cold saturated (NH4) ${ }_{2} \mathrm{SO}_{4}$ was slowly added to the pooled column fractions and maintained at
$4^{\circ} \mathrm{C}$ overnight. The suspension was centrifuged at $3,000 \times g$ for 30 min , and the supernate was transferred to a beaker. Another one-half volume of cold saturated (NH 4$)_{2} \mathrm{SO}_{4}$ was added drop wise with stirring and then stored at $4^{\circ} \mathrm{C}$ overnight. The precipitated protein was collected by centrifugation at $3,000 \times g$ for 30 min . The pellet was resuspended in one-tenth volume PBS and dialyzed (Slide-A-Lyzer dialyzing cassette 10K: Pierce, Rockford, IL) against three changes of PBS buffer every 3 hr , and final buffer change held at $4^{\circ} \mathrm{C}$ overnight. The absorbance of the immunoglobulin was measured (Shimadzu UV-160A spectrophotometer: Shimadzu Corporation, Koyto, Japan). The protein concentration was adjusted with PBS buffer to $1 \mathrm{mg} / \mathrm{ml}$ assuming an absorbance of 1.4 at 280 nm .

Standard ELISA conditions: For PTA-ELISA, plant tissue was extracted in carbonate buffer (1 g in 10 ml buffer) in sample grinding bags (Agdia). For each plant sample two wells were coated with $100 \mu \mathrm{l}$ sample extract and the plates were incubated overnight at $4^{\circ} \mathrm{C}$. Wells were washed three times with PBST tapped dry and blocked with blocking buffer for 30 min and the blocking buffer was discarded. A 1:500 v / v dilution of purified antibody in blocking buffer was added and incubated at room temperature for 2 hr , washed and blocked again with blocking buffer. A 1:3000 dilution of alkaline phosphatase labeled GAM in blocking buffer and detection was carried out as outlined earlier.

To optimize reaction conditions, purified virus from Nicotiana occidentalis was diluted in healthy plant extract using four fold serial dilutions. A four fold dilution series of the monoclonal antibody were also done. During virus detection, absorbance readings were taken at 10 min intervals for up to 3 hr .

A commercially available polyclonal antibody detection kit for NeRNV was obtained (Agdia Inc., Elkhart, IN). The manufacturer's recommended protocol was followed.

Western blot analysis: The procedure for preparation and casting of a 12% gel for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using the BioRad mini protean II apparatus was followed as outlined in the manufacturer's manual (BioRad, Hercules, CA). The total protein extract of healthy or infected leaf sample was obtained by homogenizing plant samples in $4 \mathrm{ml} / \mathrm{g} 0.5 \mathrm{M}$ Tris- HCl buffer, $\mathrm{pH} 6.8(1: 4 \mathrm{w} / \mathrm{v})$ in a precooled mortar and pestle. Extracts were centrifuged at $14,000 \mathrm{rpm}$ in a microcentrifuge (Eppendorf Model 5415C: Brinkmann) for 3 min . Twenty microliter of the supernate was added to $5 \mu \mathrm{l}$ loading buffer to yield a final concentration of 62.5 mM Tris- $\mathrm{HCl}, \mathrm{pH} 6.8 ; 10 \%$ glycerol, 2% SDS, 5\% 2-mercaptoethanol (2-ME) and 0.05\% bromophenol blue. The sample was boiled for 5 min and allowed to cool before loading onto the gel. Each lane was loaded with $12 \mu \mathrm{l}$ sample or $5 \mu \mathrm{l}$ Benchmark protein ladder (Invitrogen). Electrophoresis was performed at 100 V until the tracking dye reached the bottom of the gel. The gel was stained in 45% methanol, 10% glacial acetic acid, 45% double distilled water $\left(\mathrm{ddH}_{2} \mathrm{O}\right), 0.25 \%$ Coomassie Brilliant Blue R-250 overnight and destained in 45\% methanol, 10\% glacial acetic acid in $\mathrm{ddH}_{2} \mathrm{O}$ (Sambrook et al., 1989). The proteins resolved in SDS-PAGE were electrophoretically transferred to a nitrocellulose membrane $(0.45 \mu \mathrm{M}$, Micron Separations Inc., Westborough, NJ) using a MiniTransblot apparatus (BioRad) following the manufacturer's recommendations. The blot was washed three times with 0.1 M Tris buffer, pH 6.5 containing $0.9 \% \mathrm{NaCl}$ and 0.1% Tween (TBS-T) for 15 min followed by incubation in a solution of 3% non-fat milk in TBS-T at room temperature for at least 0.5 hr and then rinsed with TBS-T. The membrane was incubated with the antibody diluted at $1: 1000$ in TBS-T plus 3% non-fat milk for 2 hr at room temperature or overnight at $4^{\circ} \mathrm{C}$ and then washed as above. The membrane was incubated at room temperature for 2 hr in a solution of

GAM diluted 1:3000 in TBS-T plus 3\% non-fat milk. The membrane was washed with TBST as above and finally incubated in 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (SigmaFast BCIP/NBT: Sigma). The reaction was stopped by transferring the membrane to $\mathrm{ddH}_{2} \mathrm{O}$ after sufficient intensity of the signals was attained. The nitrocellulose membrane was air dried and preserved.

RESULTS:

Cell fusion and hybridoma isolation: Initially, two fusions were performed. After screening 1,600 wells, no hybridomas producing antibodies that reacted strongly and specifically with DiaYMV were identified. Fibroblast contamination further hampered selective screening of positive cell lines. At later stages of screening, fungal contamination also occurred. Consequently, only one hybridoma cell line was recovered from these fusions. Antibodies from hybridoma cell line M3.C1•6 reacted weakly with extracts of infected DiaYMV plants

A second set of three fusions yielded 2,400 wells, of which a large proportion contained multiple hybridomas. Screening against healthy and virus infected tissue yielded a total of 35 hybridoma cell lines secreting antibodies that reacted with virus infected tissue only, of which, hybridoma cell line M3-7•A6•1 was selected for further characterization. An ELISA assay used to identify the isotype of this antibody yielded the highest absorbance values for the IgA heavy chain and kappa light chain (Table 3). A weak reaction was also evident with antibodies for isotype IgG_{1}.

Evaluation of monoclonal antibody M3-7•A6•1: A preliminary test comparing TASELISA and PTA-ELISA showed that the TAS-ELISA assay was more sensitive than

Table 3. Detection of immunoglobulin heavy and light chains in hybridoma culture supernate M3-7•A6•1

Type of Immunoglobulin	Absorbance ratio:
Heavy chain	0.204 ± 0.410
IgG $_{1}$	0.076 ± 0.004
IgG $_{2 \mathrm{a}}$	0.074 ± 0.001
IgG $_{2 \mathrm{~b}}$	0.076 ± 0.001
IgG_{3}	1.659 ± 0.127
$\mathrm{IgA}^{\text {IgM }}$	0.082 ± 0.002
Light chain	1.679 ± 0.247
Kappa	0.085 ± 0.004
Lambda	
Controls	0.071 ± 0.001
Buffer	0.071 ± 0.001
Native rabbit serum	

PTA-ELISA. The signal-to-background ratio for TAS-ELISA absorbance was higher than for PTA-ELISA. However, PTA-ELISA reliably distinguished between healthy and infected tissues, and eliminated an extra step in the assay; hence further evaluation of the antibody was done using the PTA-ELISA.

In an experiment to show the effect of monoclonal antibody concentration and sample dilution on DiaYMV absorbance values, it was shown that purified virus can be detected by PTA-ELISA to as low as $6.25 \mu \mathrm{~g}$ per well when the antibody concentration was $0.39 \mathrm{ng} / \mu \mathrm{l}$ (Fig. 13). By increasing the antibody concentration to $100 \mathrm{ng} / \mu \mathrm{l}$, the absorbance values of the ELISA increased linearly, but there is no appreciable increase in the lower limit of virus detection. At the highest level of antibody concentration ($100 \mathrm{ng} / \mu \mathrm{l}$) used in this trial, the assay was not saturated suggesting that further increases in antibody concentration may produce higher ELISA readings. At $1.563 \mathrm{ng} / \mu 1$ monoclonal antibody concentration and with $10 \mu \mathrm{~g}$ purified virus per well diluted in healthy plant extract, the PTA-ELISA yielded a linear time course until the absorbance value reached 4.0 (Fig. 14). There were no significant differences between the replicate wells indicating that assay was reproducible. Comparison of the purified virus solution and healthy sap showed that the purified virus solution reached optimal absorbance value $\left(\mathrm{A}_{405}=2.0\right)$ in just after 30 min following the addition of the substrate and the reaction was more gradual with the sample dilution at $1: 100(10 \mu \mathrm{~g}$ purified virus) (Fig. 14).

The commercial NeRNV antibody detected both the DiaYMV and Scrophularia mottle virus (ScrMV) whereas the M3-7•A6•1 detected only NeRNV and not ScrMV (Fig. 15). In both assays there were significant difference in the absorbance values between the TAS-ELISA and DAS-ELISA.

Figure 13. A graph showing the effect of antibody concentration and sample dilution on the mean absorbance values of a plate trapped antigen-enzyme linked immunosorbent assay (PTA-ELISA) using virus infected Nicotiana occidentalis. Absorbance readings (A_{405}) were recorded 30 min after the addition of the substrate and the readings were calculated as a difference from the healthy control readings.

Figure 14. Graph showing course of the plate trapped antigen-enzyme linked immunosorbent assay (PTA-ELISA) with monoclonal antibody M3-7•A6•1. Absorbance values at 405 nm were measured for samples tested by PTA-ELISA. The samples were healthy extracts of Nicotiana occidentalis ($\mathbf{\Delta}$); and $10 \mu \mathrm{~g}$ purified tymovirus from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' (\star). The monoclonal antibody concentration was $1.6 \mathrm{ng} / \mu \mathrm{l}$.

Figure 15. Comparison between double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) using commercial Nemesia ring necrosis virus (NeRNV) antibody conjugate, and triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) using monoclonal antibody M3-7•A6•1 for virus detection in different host plants. Absorbance values were measured 30 min after the addition of the substrate. Black bars are values from DAS-ELISA and gray bars are from TAS-ELISA.

Bfr : Buffer only (negative check); No (-) : Healthy Nicotiana occidentalis; No (+) : tymovirus infected Nicotiana occidentalis; NVS : Infected Nemesia \times hybrida 'Vanilla sachet ${ }^{\text {TM }}$ ’; DAQ (-): Healthy Diascia barberae 'Apricot queen’; DAQ (+): tymovirus infected Diascia barberae 'Apricot queen'; DSCC : tymovirus nfected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'; NeRNV (+): NeRNV positive control from Agdia ; ScrMV (+): Scrophularia mottle virus positive control.

Extracting the virus from infected tissue using a 1 in 100 extraction buffer for TAS-ELISA did not negatively affect the absorbance values but the reaction was slower and reached the optimal absorbance values later. There were significant differences on absorbance values of different hosts infected with the DiaYMV, when the TAS-ELISA was performed at different sample dilutions. Generally a 1 in 10 sample dilution reached the optimal absorbance value of 2.0 in 20 min after adding the substrate in assays of DiaYMVinfected Nicotiana occidentalis whereas the DiaYMV-infected Diascia barberae 'Apricot queen' yielded an absorbance value of 1.0 within the same time period (Fig. 16). There was a gradual linear decline in the absorbance values with Nicotiana occidentalis when samples were diluted further, whereas there were no significant differences in the absorbance values for Diascia barberae 'Apricot queen' when samples were diluted 1 in 10 or at 1 in 100.

Results of the Western blot analysis showed that the monoclonal antibody was not able to detect DiaYMV in the infected plant extracts (Fig. 17, Lane 3-7). However, the alkaline phosphatase labeled GAM detected the purified immunogloblulin M3-7•A6•1 (Fig. 17, Lane 1-2). Two protein products of the IgA were detected in the lanes with the purified monoclonal antibody; their estimated molecular masses were ~ 55 kilodaltons (kDa) for heavy chain and ~ 25 kilodaltons for the light chain.

DISCUSSION:

The immunoglobulin (Ig) isotype detected in cell culture supernate from cell line M3-7•A6•1 was an IgA heavy chain with a kappa light chain. The culture supernate also yielded a weak positive reaction for the IgG_{1} heavy chain in ELISA. The most common immunoglobulins detected in culture supernate typically are the IgG subclasses; however,

Figure 16. The effect of sample dilution on the mean absorbance $\left(\mathrm{A}_{405}\right)$ value of triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) results using monoclonal antibody M3-7•A6•1. Absorbance values $\left(\mathrm{A}_{405}\right)$ were measured 20 min following the addition of the substrate. Samples were uninfected Diascia barberae 'Apricot queen' (\times), tymovirus infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' (\triangle) and Nicotiana occidentalis inoculated with the tymovirus from Diascia \times hybrida 'Sun chimes ${ }^{\mathrm{TM}}$ coral' $(*)$.

Figure 17. Western blot analysis of the purified monoclonal antibody of M3-7•A6•1 and Diascia yellow mottle virus (DiaYMV) infected plant tissue extracts. Lane M: benchmark ladder (Invitrogen); lane 1: 1/50 dilution of the purified immuglobulin; lane 2: 1/500 dilution of the purified immunoglobulin; lane 3: 1/100 dilution of the purified DiaYMV from infected Nicotiana occidentalis; lane 4: 1/5 dilution of the healthy Nicotiana occidentalis; lane 5: 1/5 dilution of the DiaYMV infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'; lane 6: 1/5 dilution of the healthy Diascia \times hybrida 'Coral belle'; lane 7: $1 / 5$ dilution of the DiaYMV infected Nemesia \times hybrida 'Vanilla sachet ${ }^{\mathrm{TM}}$ '; lane 8: $1 / 5$ dilution of the healthy Diascia barberae 'Apricot queen'. The molecular weights of the two protein products of IgA are 25 and 55 kilodaltons.
other immunoglobulins such as IgA and IgM can occur. Kappa light chain is the predominant light chain class (Sander and Dietzgen, 1984). Wang (1985) found that 2% of the hybridoma cell lines for Bean common mosaic virus (BCMV) produced the IgA heavy chain. Wang (1985) also reported that 25% of the hybridoma cultures produced after fusion contained mixed cell lines producing different immunoglobulin heavy chains and with different serological specificity. In the current study, the cell line M3-7•A6•1 was subjected to two cycles of single cell cloning before being characterized, so the possibility of a mixed cell culture was minimized.

During the screening of the supernate of the growing cell cultures, it was found that TAS-ELISA was more sensitive in detecting antibody secreting hybridomas than using the PTA-ELISA method. The increased sensitivity of TAS-ELISA increases the possibility of detecting hybridomas that produce low concentrations of antibody and/or antibodies with low avidity for the immunizing antigen (Al Moudallal et al., 1984). The antibodies secreted by M3-7.A6•1 reacted specifically with virus infected samples only and not to healthy tissue.

DAS-ELISA absorbance values are relatively low for ScrMV (PV 269: ATCC) when the commercial NeRNV antibodies are used, but still significantly different from the healthy control (Fig. 15). This recognition of NeRNV and ScrMV by polyclonal antiserum indicates that they share common epitopes. In TAS-ELISA, M3-7•A6•1 did not detect ScrMV in Scrophularia nodosa, whereas M3-7•A6•1 recognizes both DiaYMV and NeRNV. Therefore, monoclonal antibody M3-7•A6•1 recognizes an epitope present on DiaYMV and NeRNV that is not displayed on ScrMV. Failure to detect ScrMV with the monoclonal antibody is supporting evidence that DiaYMV is not a strain of ScrMV. These results further support the findings in Chapter 2 that NeRNV, NeRNV-WA and DiaYMV have high amino
acid identities at the coat protein level (94-99\%) and so the chances of possessing similar antigenic sites are very high. It has been shown that there are two major distinct serological groups within members of the genus Tymovirus, and that the serogroup to which NeRNV is a member includes the other tymoviruses AVYM, ScrMV, OYMV and PlMV (Koenig et al, 2005). It is not clear at this stage whether monoclonal antibody M3-7•A6•1 could discriminate between other tymoviruses of this serogroup; perhaps this could be a feature worth exploring in the future in order to further understand the antigenic structure of the virus and studying more on the serological relationships among closely related tymoviruses.

Although M3-7.A6•1 monoclonal antibody reacted with virus proteins in PTAELISA, the monoclonal antibody M3-7•A6•1 did not detect coat protein from infected samples nor purified virions in Western blot analysis. This suggests that the antibody does not recognize denatured virus. Failure to detect virus in Western blots has been found in other viruses such as Carnation ringspot virus (Tremaine and Dodds, 1985; Lommel, 2000). Due to the specificity of monoclonal antibodies, small alterations in the conformation of a viral polypeptide brought about by test conditions may alter the epitope to the extend that it is no longer recognized by the monoclonal antibody (Van Regenmortel and Dubs, 1993; Goding, 1996).

In Western blot analyses of the purified monoclonal antibody, two peptides of approximately 55 kilo Daltons (KDa) and 25 KDa reacted with the GAM, consistent with identification of the antibody as an IgA isotype.

CONCLUSION:

The monoclonal antibody produced in this study can detect the virus(es) isolated from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' plants both in the original diascia virus source material and Nicotiana occidentalis plants inoculated with extracts from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' and purified virus. The immunoglobulin possesses an IgA heavy chain and kappa light chain. A weak reaction to reagents for IgG_{1} heavy chains was also noted. Serological evidence shows that the viruses detected in diascia and nemesia species are distinct from ScrMV.

REFERENCES:

Al Moudallal, Z., Altschuh, D., Briand, J. P. and Van Regenmortel, M. H. 1984. Comparative sensitivity of different ELISA methods for detecting monoclonal antibodies to viruses. Dev. Biol. Stand. 57:35-40.

Barrett, J. T. 1983. Textbook of Immunology: An introduction to immunochemistry and immunobiology. 4th ed. The C.V. Mosby Company. St. Louis, MO.

Carter, M. J. and ter Meulen, V. 1984. The application of monoclonal antibodies in the study of viruses. Adv. Virus Res. 29:95-130.

Chen, J., Torrance, L., Cowan, G. H., MacFarlane, S. A., Stubbs, G. and Wilson, T. M. A. 1997. Monoclonal antibodies detect a single amino acid difference between the coat proteins of soilborne Wheat mosaic virus isolates: Implications for virus structure. Phytopathology 87:295-301

Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of the enzyme-immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475483

Dietzgen, R. G. and Sander, E. 1982. Monoclonal antibodies against a plant virus. Arch. Virol. 74:197-204.

Gagnon, P. 1998. An enigma unmasked: How hydroxyapatite works, and how to make it work for you. Validated Biosystems, Inc. Validated Biosystems quarterly resource guide for downstream processing. Accessed online November, 2006.

Goding, J. W. 1996. Monoclonal antibodies: principles and practices. 3rd ed. Academic Press, San Diego, CA.

Hajimorad, M. R., Dietzgen, R. G. and Francki, R. I. 1990. Differentiation and antigenic characterization of closely related Alfalfa mosaic virus strains with monoclonal antibodies. J. Gen. Virol. 71:2809-2816.

Harlow. E. and Lane. D. 1988. Antibodies: A laboratory manual. Cold Spring Harbor, N.Y.
Hsu, H. T., Barzuna, L., Hsu, Y. H., Bliss, W. and Perry, K. L. 2000. Identification and subgrouping of Cucumber mosaic virus with mouse monoclonal antibodies. Virology. 90:615-620

Koenig, R., Pleij, C. W. A., Lesemann, D. -E., Loss, S. and Vetten, H. J. 2005a. Molecular characterization of isolates of Anagyris vein yellow virus, Plantago mottle virus and Scrophularia mottle virus -comparison of various approaches for tymovirus classification. Arch. Virol. 150:2325-2338.

Lommel, S. A. 2000. Carnation ringspot virus. CMI/AAB Descriptions of Plant Viruses, No. 308.

Rajamäki, M., Merits, A., Rabenstein, F., Andrajeva, J., Paulin, L., Kekarainen, T., Kreuze, J. F., Forster, R. L. S. and Valkonen, J. P. T. 1998. Biological, serological and molecular differences among isolates of Potato A potyvirus. Virology. 88:311-321

Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press. Plainview, New York.

Sander, E. and Dietzgen, R. G. 1984. Monoclonal antibodies against plant viruses. Adv. Virus Res. 29:131-168

Sutula, C. L., Gillett, J. M., Morrissey, S. M., and Ramsdell, D. C. 1986. Interpreting ELISA data and establishing the positive-negative threshold. Plant Dis. 70:722-726.

Tremaine, J. H. and Dodds, J. A. 1985. Carnation ringspot virus. Descriptions of Plant Viruses, No. 371.

Van Regenmortel, M. H. and Dubs, M. -C. 1993. Serological procedures Pages 159-214 in: Diagnosis of plant virus diseases. R.E.F. Matthews ed. CRC Press. Boca Raton, FL.

Wang, W. -Y. 1985. Production and characterization of hybridoma cell lines and a broad spectrum monoclonal antibody against Bean common mosaic virus. PhD thesis, Washington State University, Pullman. 189 pages

CHAPTER 4

HOST RANGE STUDIES AND SYMPTOMATOLOGY OF DIASCIA YELLOW MOTTLE VIRUS

SUMMARY:

Most of the diascia and nemesia ornamental plants purchased from nurseries around Washington State and Oregon were found naturally infected by a tymovirus. Symptoms observed on infected leaves of diascia were vein yellowing and mottling. Reverse transcription-polymerase chain reaction (RT-PCR) was used to test plants bought in nurseries while both RT-PCR and an enzyme linked immunosorbent assay (ELISA) were used to test plants for DiaYMV following inoculation with extracts from virus infected plants. Natural infection was confirmed in six accessions of Nemesia \times hybrida and seven accessions of Diascia \times hybrida. The only diascia tested that was not infected with tymovirus was 'Coral belle'. Susceptible hosts to DiaYMV include Nicotiana benthamiana, Nicotiana clevelandii and Nicotiana occidentalis and several species and cultivars in the genus Nemesia namely Nemesia caerulea, Nemesia cheiranthus 'shooting stars', Nemesia strumosa 'Nebula F1 hybrid' and 'KLM'. Diascia barberae 'Apricot queen' and 'Rose queen' grown from seed also showed systemic infections when inoculated with extracts from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'. Systemic infection was not detected in mechanically inoculated Nicotiana alata 'Nicki Red', Nicotiana tabacum 'Bright yellow' and '423', Chenopodium quinoa, Vicia faba L. 'Broad Windsor' or Datura stramonium.

Ultrastructural studies of symptomatic diascia tissues showed the presence of double membrane vesicles that are frequently associated with tymovirus replication in chloroplasts.

Murine monoclonal antibody M3-7•A6•1 was developed and detected tymovirus in infected host tissue diluted 100 -fold.

INTRODUCTION:

The initial description of a virus is often based on phenotypic characters such as symptomatology, host range, vector type, serology and virion shape (Hull, 2002). Details of its genetic information are used to refine the initial characterization. Currently, more emphasis is placed on initial characterization by sequencing gene fragments (Gibbs and Gibbs. 2006). Biological properties are important even when nucleotide sequences have been determined.

There is limited information on the host range and symptom expression induced by the tymoviruses infecting diascia, including the newly described Nemesia ring necrosis virus (NeRNV). Its host range needs to be explored beyond members of the genera Nicotiana, Diascia, Nemesia, Verbena and Lobelia (Mathews and Dodds, 2004; Mathews et al., 2004; Skelton et al., 2004; Mathews and Dodds, 2006). There is no published information on methods of natural dissemination for NeRNV, and speculation is that the virus of ornamental plants raised in nurseries is mainly disseminated by vegetative propagation from infected germplasm.

The use of enzyme-linked immunosorbent assay (ELISA) has been enormous in large scale testing of perennial and vegetatively propagated crops (Van Regenmortel and Dubs, 1993) and the international recognition of its potential as a practical sero-diagnostic technique has been very rapid (Clark, 1981). Even with the increased use of molecular diagnostics to detect and classify viruses down to the species level, ELISA is still a viable
option in many cases. ELISA is not as sensitive as RT-PCR but it is adequately sensitive for routine use in many diagnosis and virus detection situations (Van Regenmortel and Dubs, 1993). A valuable feature of ELISA is that it can be used to provide quantitative data when used in kinetic studies, and perhaps the data generated can be used to advance our knowledge on the complex interactions between plants and pathogens (Clark, 1981).

The objectives of the study were to study the host range of Diascia yellow mottle virus (DiaYMV), to develop serological methods of its detection, and to study the effect of temperature on the accumulation of virus infected plants.

MATERIALS AND METHODS:

Virus sources: Nemesia and diascia plants were purchased from nurseries in Oregon and Washington at different times throughout the study period. Plants were tested for the presence of the tymovirus by RT-PCR assay using primers specific to the coat protein (CP) region (see below).

Virus purification: Initially, virus isolation and purification from infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' used bentonite in aqueous extracts and polyethylene glycol precipitation (Dunn and Hitchburn, 1965) followed by further purification by linear-log sucrose gradient centrifugation (Brakke and Van Pelt, 1970) (see also Chapter 2). In later studies, a butanol:chloroform extraction method was used (Koenig et al., 2005b).

Virus propagation: Plants in the families Solanaceae Juss., Chenopodiaceae L. and Fabaceae L. (Table 4) were grown from seed until they reached the two true leaf stage. Two true leaves were dusted with silicon carbide (grit size 600) and then inoculated with partially purified virus from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' using a cotton swab. The leaves

Table 4. Botanical and common names of plants used in this study.

Botanical name	Cultivar name	Common name
Nemesia \times hybrida	Blueberry sachet ${ }^{\text {TM }}$	Nemesia ${ }^{1}$
Nemesia \times hybrida	Sunsatia peach	Nemesia ${ }^{1}$
Nemesia \times hybrida	Vanilla sachet ${ }^{\text {TM }}$	Nemesia ${ }^{1}$
Nemesia caerulea Heirn.	NS^{3}	Nemesia ${ }^{2}$
Nemesia cheiranthus E.Mey.ex.Benth	Shooting stars	Nemesia ${ }^{2}$
Nemesia fruticans Benth.	Safari plum	Nemesia ${ }^{1}$
Nemesia fruticans Benth.	Safari Pink	Nemesia ${ }^{1}$
Nemesia fruticans Benth.	Compact innocence	Nemesia ${ }^{1}$
Nemesia strumosa Benth.	KLM	Nemesia ${ }^{2}$
Nemesia strumosa Benth.	Nebula hybrid mixed colors	Nemesia ${ }^{2}$
Antirrhinum nanum	Peaches ad cream	Snapdragon ${ }^{2}$
Antirrhinum nanum	Tequila sunrise	Snapdragon ${ }^{2}$
Antirrhinum majus L.	Brazilian carnival	Snapdragon ${ }^{2}$
Antirrhinum majus \times nanum	Frosted flames	Snapdragon ${ }^{2}$
Antirrhinum majus \times nanum	LaBella red and white	Snapdragon ${ }^{2}$
Nicotina alata Link and Otto	Nicki red	Tobacco ${ }^{2}$
Nicotiana benthamina Domin.	NS	Tobacco ${ }^{2}$
Nicotiana clevelandii A.Gray	NS	Tobacco ${ }^{2}$
Nicotiana occidentalis Wheeler	37B	Tobacco ${ }^{2}$
Nicotiana tabacum L.	Bright yellow	Tobacco ${ }^{2}$
Nicotiana tabacum L.	423	Tobacco ${ }^{2}$
Datura stramonium L.	NS	Datura ${ }^{2}$
Chenopodiun quinoa Willd.	NS	Quinoa ${ }^{2}$
Vicia faba L.	Broad Windsor	Fava bean
Diascia barberae Hook. F.	Apricot queen	Twinspur ${ }^{2}$
Diascia barberae Hook. F.	Rose queen	Twinspur ${ }^{2}$
Diascia \times hybrida	Coral belle	Twinspur ${ }^{1}$
Diascia \times hybrida	Sun chimes ${ }^{\text {TM }}$ coral	Twinspur ${ }^{1}$
Diascia \times hybrida	Sun chimes ${ }^{\text {TM }}$ blush	Twinspur ${ }^{1}$
Diascia \times hybrida	Sun chimes ${ }^{\text {TM }}$ rose	Twinspur ${ }^{1}$
Diascia \times hybrida	Little charmer	Twinspur ${ }^{1}$
Diascia \times hybrida	Flying colors - Apple blossom	Twinspur ${ }^{1}$
Diascia \times hybrida	Flying colors - Apricot	Twinspur ${ }^{1}$

1. Plants purchased from nurseries in Oregon and Washington State.
2. Plants sown from seed and used in the mechanical transmission studies.
3. $\mathrm{NS}=$ Cultivar name not specified.
were allowed to partially dry for 20 min after inoculation at which time the leaves were sprayed with water to wash off residual virus and buffer salts. Plants were monitored for symptom development and seedlings were tested for DiaYMV by RT-PCR at 10 and 21 days after inoculation. Plants that tested positive for DiaYMV were used as source of inoculum for subsequent transfers of virus to healthy seedlings.

Host range studies: Seeds of plants from families Solanaceae Juss. and Scrophulariaceae Juss. (Table 4) were planted into 10 cm pots of vermiculite and germinated in a humid chamber at $25^{\circ} \mathrm{C}$. Seedlings were transplanted individually after 4 to 6 weeks into 10 cm pots of potting mix. Seeds of Vicia faba L. 'Broad Windsor', Datura stramonium L. and Chenopodium quinoa Willd. were sown directly in 10 cm pots of potting mix, four seeds per pot; after germination, seedlings were thinned to one seedling per pot for V. faba and Datura stramonium and two seedlings per pot for C. quinoa. Inoculum was prepared from symptomatic leaves of Nicotiana occidentalis collected 3 weeks after inoculation with DiaYMV and ground with a pre-cooled sterilized mortar and pestle containing $0.05 \mathrm{M} \mathrm{K} / \mathrm{Na}$ $\mathrm{PO}_{4}, \mathrm{pH}$ 7.4. Inoculations were carried out as described above. Plants were monitored for symptom development and tested for DiaYMV by RT-PCR using primers that amplify the CP region of the virus and by ELISA using a commercially available polyclonal antibody for NeRNV (Agdia Inc, Elkhart, IN). Mechanical inoculations were repeated on two occasions. Plants in the second replication of the host range study were tested for virus by triple antibody sandwich-ELISA (TAS-ELISA) with monoclonal antibody M3-7•A6•1.

For each host range experiment, six plants were inoculated with the virus sap and another six plants were mock inoculated with $\mathrm{K} / \mathrm{Na}-\mathrm{PO} 4$ buffer pH 7.4 as the control treatment. Samples collected 10 days and 21 days after inoculation consisted of either the
inoculated leaf or leaves that were potentially infected systemically. Samples from mock inoculated plants were a composite of mock inoculated and newly developed leaves.

Temperature studies: Two plants each of virus infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' and virus-free Diascia \times hybrida 'Coral belle' were selected for the study. Plants were grown in a growth chamber at either $15^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$ with a 16 hr light: 8 hr dark cycle. Each growth chamber contained a virus-infected plant and a virus-free plant; plants were monitored for symptom development and general growth. Plants were tested for DiaYMV by both RT-PCR and plate trapped antigen -enzyme linked immunosorbent assay (PTA-ELISA) after 8 weeks.

The experiment was repeated using Diascia barberae 'Apricot queen' plants in which each growth chamber contained three plants inoculated with partially purified DiaYMV from Nicotiana occidentalis and the other three plants were mock inoculated. Seedlings were acclimatized for a week prior to inoculation. After 12 wks , five side shoots were randomly selected from each plant and measurements of leaf area and fresh weight were collected. The tissue was transferred to brown paper bags and dried in a $60^{\circ} \mathrm{C}$ incubator for a week and their dry weights measured. Plants were also tested for DiaYMV by RT-PCR and PTA-ELISA. Data analysis was done with Statistical analysis software (SAS version 9.1.3).

RNA extraction: RNA was extracted from samples using commercial kits (Qiagen RNeasy mini plant kit: Qiagen, Inc., Carlsbad, CA). Manufacturer's specifications were followed for extraction of samples of less than 0.5 g . For more than 0.5 g , tissue was ground in sample bags (Agdia) containing 2 ml water with $30 \mu 1 / \mathrm{ml}$ 2-mercaptoethanol. The plant extract ($150 \mu \mathrm{l}$) was mixed with $450 \mu \mathrm{l}$ RLT buffer (Qiagen); incubated at $56^{\circ} \mathrm{C}$
for 3 min and then processed following the manufacturer's protocol. The eluted RNA was stored at $-70^{\circ} \mathrm{C}$ and aliquots were used for RT-PCR.

RT-PCR: RT-PCR was initially done using a two tube RT-PCR protocol as previously outlined (Chapter 2). For first strand cDNA synthesis, $2.5 \mu \mathrm{M}$ complementary primer TymoCP-R (5'TTATGGATCCTCACGAGGAAGCTGT3') (Integrated DNA Technologies Inc., Coralville, IA) was used. PCR used primers TymoCP-R and TymoCP-F (5'-TTTTTTCATATGGAAGAACTCAAGCCGA-3'). PCR conditions were: denaturation at $94{ }^{\circ} \mathrm{C}$ for 10 min ; thirty five cycles of denaturation at $94^{\circ} \mathrm{C}$ for 15 sec , annealing at $55^{\circ} \mathrm{C}$ for 30 sec and extension at $72^{\circ} \mathrm{C}$, for 1 min and final extension at $72^{\circ} \mathrm{C}$ for 30 min followed by cooling to $4^{\circ} \mathrm{C}$. PCR products were analyzed by electrophoresis through 2% low melting agarose (NuSieve GTG: Cambrex, Rockland, ME) in TAE. The gel was stained with ethidium bromide $(1 \mathrm{mg} / \mathrm{ml})$ for 30 min and visualized on an ultraviolet transilluminator at 260 nm . Reactions yielding amplicons of the expected size of 600 bp were designated positive for DiaYMV. Where results were ambiguous, other primer pairs were used to confirm the results. NeRNV-WA primers Amo5642 (5’-CAACCTTTTCAGGTCTCTGT-AGC-3') and Amo5854c (5'-TCAAGATGTTCTTGGGAGACG-3') yielded an amplicon with the predicted size of 212 bp . DiaYMV primer pair Amo5721 (5'-CATGC-TGACC-TCGTGGAATG-3') and Amo5993c (5'-CGGAGAGTAGGCTAGAAGACG-3') were derived from the DiaYMV sequence and would amplify a product of 272 bp . Another primer pair designed from DiaYMV sequence was DiaYMV1338 (5'-GTGCTCACCACTGGC-TTACC-3') and DiaYMVc2033 (5'AGAAGGAGAGGGCTGAGAGG3') with the amplicon size of 695 bp .

ELISA: DAS-ELISA was done in the 2006 growing season when a commercial polyclonal antibody for NeRNV became available (Agdia Inc.) and manufacturers' instructions were followed. For TAS-ELISA, wells of flat bottom 96-well Maxisorp polystyrene plates were coated with $100 \mu \mathrm{l}$ NeRNV-capture antibody (Agdia) diluted 1:200 in carbonate buffer, pH 9.6. The plates were incubated at room temperature for 4 hrs and then washed three times with PBST. The remainder of the protocol for TAS-ELISA was followed as previously described (Chapter 3).

Transmission electron microscopy: Thin leaf sections of virus-infected Diascia \times hybrida 'Sun chimes ${ }^{\mathrm{TM}}$ coral' were fixed overnight at $4^{\circ} \mathrm{C}$ in 2.5% glutaraldehyde and 2% paraformaldehyde in $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{pH} 7.4$. The tissue was rinsed three times for 10 min each with $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{pH} 7.4$. Leaf samples were post fixed with 1% osmium tetroxide for 2 hr , and rinsed two times for 10 min each with $0.05 \mathrm{M} \mathrm{Na} \mathrm{NPO}_{4}, \mathrm{pH} 7.4$. Samples were dehydrated in graded dilutions of ethanol (30,50, 70, 80, and 95\%) for 10 min each and then dehydrated with 100% ethanol three times for 10 min each. This was followed by another dehydration step in $1: 1$ (vol:vol) ethanol:acetone for 10 min , followed by dehydration with 100% acetone twice for 10 min each. Tissue infiltration with Spurrs resin was performed in a series of Spurrs:acetone of 1:3, 1:2, 1:1 and 3:1 (vol:vol) overnight at each step. Finally, samples were infiltrated with three daily changes of 100% Spurrs resin. Individual leaf sections together with labels were embedded in 100% Spurrs resin and the molds kept at $60^{\circ} \mathrm{C}$ until the resin polymerized. Leaf samples were thin sectioned (silver sections) using an ultramicrotome (Reichert-Jung, Leica Microsystems Holdings AG, Wetzlar, Germany). Ultrathin sectioned samples were transferred to formvar coated nickel grids and stained with 2% uranyl acetate and Reynold's lead. Grids were examined with a
transmission electron microscope (JOEL 1200 EX: JOEL Ltd, Tokyo, Japan). During the time when this study was done, all the Diascia plants were infected and hence there was no negative control.

Impatiens necrotic spot virus detection: In the spring of 2005, symptomatic plants were tested for Impatiens necrotic spot virus (INSV) using INSV Immunostrips (Agdia, Inc.) as per manufacturers' instructions.

Primers were designed for INSV detection by RT-PCR, the primers used were adapted from Tanina et al. (2001). A Superscript ${ }^{\mathrm{TM}}$ III one -step RT-PCR system with Platinum® Taq DNA polymerase kit was used (cat no: 12574-026) (Invitrogen). One microliter of RNA and $0.3 \mu \mathrm{l}$ of Superscript ${ }^{\mathrm{TM}}$ III RT/ Platinum ${ }^{\circledR}$ Taq mix were added to following reaction mix at a final concentration of 0.2 mM each dNTP, $1.6 \mathrm{mM} \mathrm{MgSO} 4,0.2$ $\mu \mathrm{M}$ Forward primer (5^{\prime} '-TAACACAACACAAAGCAAACC-3'), and $0.2 \mu \mathrm{M}$ reverse primer (5'-CCAAATACTACTTTAACCGCA-3'). The reaction tubes were placed in a thermal cycler (Bio-Rad) that was preheated to $55^{\circ} \mathrm{C}$, and programmed such that cDNA synthesis was followed immediately by PCR amplification. Complementary DNA (cDNA) synthesis proceeded at $55^{\circ} \mathrm{C}$ for 30 min , and PCR conditions were: denaturation at $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 35$ cycles of denaturation at $94^{\circ} \mathrm{C}$ for 15 sec , annealing at $50^{\circ} \mathrm{C}$ for 30 sec and extension at $68^{\circ} \mathrm{C}$, for 1 min and final extension at $68^{\circ} \mathrm{C}$ for 5 min followed by cooling to $4^{\circ} \mathrm{C}$. PCR products were analyzed by electrophoresis through 2% low melting agarose (NuSieve GTG: Cambrex, Rockland, ME) in TAE. The PCR amplicon predicted for a positive sample was 906 bp .

All incoming plants in the spring of 2006 were regularly tested for INSV by RT-PCR and by DAS-ELISA using the commercial polyclonal antibody purchased from Agdia Inc. Manufactures guidelines were followed.

RESULTS

Natural infections: Most diascia and nemesia plants purchased from nurseries in Oregon and Washington State tested positive for tymovirus by RT-PCR. The only exceptions were Diascia \times hybrida 'Coral belle' and one out of two plants of Nemesia \times hybrida 'Blueberry sachet ${ }^{\text {TM }}$ (Table 5). All primer combinations used in this portion of the study could not distinguish between the DiaYMV and NeRNV, so the identity of the tymovirus was not confirmed. Cytopathology studies on leaf sections of Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' showed the occurrence of double membrane vesicles in the cytoplasm and no virus particles could be identified (Fig. 18)

All plants purchased in 2005 were determined by RT-PCR to be infected with Impatiens necrotic spot virus (INSV) two months after the initial tests with the INSV immunostrips determined that the plants were not infected (Table 6). Symptoms included necrotic ring spots and necrotic stem lesions (Fig. 19). Diascia barberae 'Apricot queen' seedlings growing in the $15^{\circ} \mathrm{C}$ growth chamber tested negative for INSV by immunostrips but tested positive by RT-PCR, while those plants kept at $25^{\circ} \mathrm{C}$ tested positive for INSV by both methods. Plants purchased in 2006 were determined to be free from INSV by DASELISA and RT-PCR (Table 7). Plants purchased in 2006 were free from INSV and they were regularly tested throughout the summer of 2006 to insure that they had not become infected with INSV.

Experimental host range: All nemesia cultivars tested displayed similar systemic symptoms of mild mosaic with distinct yellow veins, but plant vigor was not obviously impacted. Nemesia \times hybrida 'Nebula F1 mixed hybrid' also displayed necrotic spots in leaves as well as reddening of the veins and leaves later in the season. The reddening was

Table 5. Plants purchased from nurseries in the States of Washington and Oregon were tested for the presence of tymoviruses Nemesia ring necrosis virus (NeRNV) and Diascia yellow mottle virus (DiaYMV) by reverse transcription polymerase chain reaction.

Host	Symptoms	$\begin{gathered} \text { RT-PCR }^{1} \\ \text { \# positive } \\ \text { \# tested } \\ \hline \end{gathered}$	$\begin{gathered} \text { DAS- } \\ \text { ELISA }^{2,3} \end{gathered}$	Origin State (County)
Nemesia \times hybrida				
'Blueberry sachet ${ }^{\text {TM }}$ '	tip necrosis; chlorosis	1/2	+++	OR (Multnomah)
'Sunsatia peach'	chlorosis; vein yellowing	2/2	NT	WA (Benton)
'Vanilla sachet ${ }^{\text {TM }}$ '	mild mosaic; necrotic spots	30/30	+++	OR (Multnomah) WA (Benton, Skagit)
Nemesia fruticans				
'Compact innocence'	chlorosis; stem lesions	2/2	NT	WA (Benton)
'Safari pink'	chlorosis; stem lesions	3/3	NT	WA (Benton)
'Safari plum'	chlorosis; stem lesions	3/3	NT	WA (Benton)
Diascia \times hybrida				
'Coral belle'	no symptoms	1/48	-	WA (Skagit)
'Flying colors-Apple blossom'	mild mosaic; vein yellowing	2/2	NT	WA (Benton)
'Flying colorsApricot'	mild mosaic; vein yellowing	2/2	NT	WA (Benton)
'Little charmer'	mild mosaic; vein yellowing	2/2	NT	WA (Benton)
'Sun chimes ${ }^{\text {TM }}$ blush'	mild mosaic; vein yellowing	2/2	+++	OR (Multnomah)
'Sun chimes ${ }^{\text {TM }}$ coral'	mellow mottle; stunting	40/40	+++	OR (Multnomah)
'Sun chimes ${ }^{\text {TM }}$ rose'	mild mosaic; vein yellowing	2/2	+++	OR (Multnomah)

1. RT-PCR based on primers designed from the CP region of DiaYMV.
2. DAS-ELISA was performed with a commercial NeRNV assay (Agdia Inc.).
3. Absorbance reading $\left(\mathrm{A}_{405}\right)$ greater than 2.0 after 30 min with substrate were positive $(+++)$; readings below 0.100 were negative $(-)$.

Figure 18. Electron micrographs of tymovirus-infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral showing the distribution of double membrane vesicles in the cytoplasm. a) Magnification $5,000 \times$, $\mathrm{Bar}=5 \mu \mathrm{~m}$ showing the distribution of double membrane vesicles (D) in the cytoplasm; b) The same double membrane structure at magnification at $50,000 \times$, $\mathrm{Bar}=$ $500 \mathrm{~nm} ; \mathrm{c})$ Plant cell showing the location of double membrane vesicles (D), nucleus (N) and chloroplast (C), magnification $75,000 \times, \mathrm{Bar}=0.2 \mu \mathrm{~m} ; \mathrm{d}$) Higher magnification of electron micrograph of the double membrane vesicle $\operatorname{Bar}=0.3 \mu \mathrm{~m}$.

Figure 19. Diascia \times hybrida 'Sun chimes ${ }^{\mathrm{TM}}$ coral' infected with Diascia yellow mottle virus (DiaYMV) and Impatiens necrotic spot virus (INSV). A and B) Mild mosaic and yellowing typical of DiaYMV infection. A and C) Necrotic lesions associated with INSV infection.

Table 6. Impatiens necrotic spot virus (INSV) detection and symptom expression on plants kept in the greenhouse at Prosser-Washington State (Spring, 2005).

Host	Symptoms	RT-PCR $\frac{\text { \# positive }}{}$	Serology ${ }^{2,3,4}$
Nemesia \times hybrida			
'Sunsatia peach'	necrotic lesions on leaves and	$2 / 2$	$+^{2}$
'Vanilla sachet'TM,	stems necrotic lesions on leaves and stems	$20 / 20$	$+{ }^{2}$

Nemesia fruticans

'Compact innocence'	leaf ringspots; stem necrotic lesions	$2 / 2$	$+^{2}$
'Safari pink'	leaf ringspots; stem necrotic	$3 / 3$	$+^{2}$
'Safari plum'	lesions leaf ringspots; stem necrotic lesions	$3 / 3$	$+^{2}$

Diascia \times hybrida

'Flying colors-Apple blossom'	leaf ringspots; stem necrotic lesions	2/2	$+^{2}$
'Flying colors- Apricot'	leaf ringspots; stem necrotic lesions	2/2	$+^{2}$
'Little charmer'	leaf ringspots; stem necrotic lesions	2/2	$+^{2}$
'Sun chimes ${ }^{\text {TM }}$ coral'	leaf ringspots; stem necrotic lesions	20/20	$+^{2,3}$
'Coral belle'	no symptoms	1/24	- ${ }^{3}$
'Sun chimes ${ }^{\text {TM }}$ blush'	leaf ringspots; stem necrotic lesions	2/2	+++ ${ }^{3,4}$
'Sun chimes ${ }^{\text {TM }}$ rose'	leaf ringspots; stem necrotic lesions	2/2	$++^{3,4}$

Diascia barberae

'Apricot queen' $15{ }^{\circ} \mathrm{C}$	leaf necrotic ringspots	$2 / 2$	$-^{2}$
'Apricot queen' $25^{\circ} \mathrm{C}$	leaf necrotic ringspots	$2 / 2$	$+^{2}$

Antirrhinum spp	Leaf necrotic ringspots	$2 / 2$	$+^{2}$
Datura stramonium	Leaf necrotic ringspots	$2 / 2$	$+^{2}$
Nicotiana occidentalis	Necrotic spots and lesions	$0 / 2$	$-^{2}$
Nicotiana clevelandii	Necrotic lesions and lesions	$2 / 2$	$+^{2}$
Nicotiana tabacum 'Samsun'	No symptoms	$0 / 2$	$-^{2}$

1. Reverse transcription-polymerase chain reaction (RT-PCR) based on primers designed from the nucleocapsid protein (N) segment of the RNA.
2. INSV assay was performed with a commercial INSV Immunostrips assay (Agdia Inc.).
3. Double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) was performed with a commercial INSV assay (Agdia).
4. Absorbance reading $\left(\mathrm{A}_{405}\right)$ greater than 2.0 after 30 min with substrate were positive $(+++)$; readings below 0.100 were negative controls (-) for DAS-ELISA only.

Table 7. Impatiens necrotic spot virus (INSV) detection in plants purchased from nurseries in the States of Washington and Oregon (Spring, 2006)

Host	RT-PCR \# positive \# tested	Serology ${ }^{2,3}$
Nemesia \times hybrida	$0 / 16$	$-{ }^{2,3}$
'Vanilla sachet ${ }^{\text {TM }}$ '	$0 / 2$	-
'Blueberry sachet ${ }^{\text {TM }}$ '		
Diascia \times hybrida	$0 / 24$	-
'Sun chimes ${ }^{\text {TM }}$ coral'	$0 / 24$	-
'Coral belle'		

1. Reverse transcription-polymerase chain reaction (RT-PCR) based on primers designed from the nucleocapsid protein (N) segment of the RNA.
2. Double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) was performed with a commercial INSV assay (Agdia).
3. Absorbance reading $\left(\mathrm{A}_{405}\right)$ greater than 2.0 after 30 min with substrate were positive $(+++)$; readings below 0.100 were negative controls (-) for DAS-ELISA only.
also observed on non-inoculated leaves and so is not associated with infection by DiaYMV. Diascia barberae 'Apricot queen' and 'Rose queen' exhibited chlorotic spots on inoculated leaves and a mild yellow mosaic on systemically infected leaves; the leaves were generally smaller than the non-inoculated leaves (Table 8).

Mechanical inoculations of Antirrhinum majus, Antirrhinum nanum and Antirrhinum majus \times nanum hybrids (snapdragons) resulted in no apparent symptom development. Sporadic chlorotic spots appeared on inoculated leaves as well as non-inoculated plants, hence, the symptom could not be associated with any cultivar and/or virus inoculation and could be a result of mechanical or insect damage. The inoculated plants however yielded positive TAS-ELISA readings only on inoculated leaves (local) but not on systemic leaves (Table 9).

Symptom expression in genera other than Scrophulariaceae: Nicotiana occidentalis '37B' (Fig. 20) displayed local necrotic lesions that expanded with time resulting in necrosis, while the systemically infected leaves showed necrotic spots accompanied by yellow netting and leaf distortion, and the plants were stunted. Nicotiana clevelandii showed more severe yellow mosaic and necrotic lesions on inoculated leaves, and systemically infected leaves had a severe yellow mosaic, and the plants were stunted. Nicotiana benthamiana (Fig. 21) displayed fewer necrotic spots on inoculated leaves and systemically infected leaves displayed a mosaic that later became chlorotic. Symptoms were not as severe as those observed in Nicotiana occidentalis and Nicotiana clevelandii although the TAS-ELISA absorbance values were equal for both Nicotiana occidentalis and Nicotiana clevelandii. Nicotiana alata 'Nicki red' and Nicotiana tabacum 'Bright yellow' and '423' (Fig. 22) both exhibited no symptoms on inoculated leaves and were symptomless on

Table 8. Symptom expression and detection of Diascia yellow mottle virus (DiaYMV) on leaves by triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) on nemesia and diascia following mechanical inoculation with DiaYMV.

Host	Leaf	Symptoms	TAS-ELISA ${ }^{\text {1,2 }}$
			$\left(\mathbf{A}_{405}\right)$
Nemesia caerulea	Healthy	None	0.033 ± 0.002
	Systemic	Yellow veins; mild mosaic	0.339 ± 0.104
Nemesia cheiranthus	Healthy	None	0.039 ± 0.015
'Shooting Stars'	Systemic	Yellow veins; mild mosaic	0.595 ± 0.226
Nemesia strumosa	Healthy	None	0.034 ± 0.002
'KLM'	Systemic	Yellow vein; mild mosaic	0.869 ± 0.094
Nemesia strumosa	Healthy	None	0.037 ± 0.006
'Nebula Hybrid'	Systemic	Yellow mosaic, necrotic spots;	0.508 ± 0.100
Diascia barberae	Healthy	None	
'Apricot queen'	Systemic	Yellow veins, stunting; mild	0.976 ± 0.007
Diascia barberae	Healthy	None	
'Rose queen'	Systemic	Yellow veins, stunting; mild	0.852 ± 0.030
		mosaic	0.041 ± 0.009
Nicotiana	Negative	None	0.044 ± 0.010
benthamiana	control		0.550 ± 0.105
	Positive	Yellow mosaic	
control			

1. TAS-ELISA was performed with the monoclonal antibody M3-7•A6•1 one week after inoculations with DiaYMV.
2. Absorbance reading $\left(\mathrm{A}_{405}\right)$ greater than 0.088 after 30 min with substrate were positive.

Table 9. Detection of Diascia yellow mottle virus (DiaYMV) by triple antibody sandwichenzyme linked immunosorbent assay (TAS-ELISA) in leaf samples of various cultivars of the genus Antirrhinum.

Plant	Cultivar	Leaf status	Absorbance $A_{405}^{1,2}$	Result ${ }^{3}$
Antirrhinum majus	'Brazilian	Healthy	0.036 ± 0.003	-
	carnival'	Inoculated	0.623 ± 0.161	++
		Systemic	0.033 ± 0.004	-
Antirrhinum nanum	'Tequila sunrise'	Healthy	0.042 ± 0.009	-
		Inoculated	1.285 ± 0.279	+++
		Systemic	0.037 ± 0.005	-
Antirrhinum nanum	'Peaches and	Healthy	0.037 ± 0.003	-
	Cream'	Inoculated	0.589 ± 0.257	++
		Systemic	0.036 ± 0.005	-
Antirrhinum majus	'Frosted flames'	Healthy	0.035 ± 0.009	-
\times nanum		Inoculated	0.658 ± 0.195	++
		Systemic	0.027 ± 0.003	-
Antirrhinum majus \times nanum	'La Bella red and	Healthy	0.035 ± 0.003	-
	white"	Inoculated	0.447 ± 0.076	+
		Systemic	0.030 ± 0.002	-
Nicotiana		Negative control	0.032 ± 0.003	-
benthamiana		Positive control	1.000 ± 0.080	+++

1. Absorbance values at A_{405} measured 30 min after the addition of substrate
2. Data values are mean absorbance readings \pm standard deviation. The threshold value for positive samples was $\mathrm{A}_{405}=0.064$
3. Positive absorbance values at $\mathrm{A}_{405} ;(+)$ Absorbance value ≥ 0.064 but $\leq 0.500 ;(++)$ Absorbance values ≥ 0.5 and $<1.00 ;(+++)$ Absorbance values greater than 1.00

Figure 20. Diascia yellow mottle virus (DiaYMV) infected Nicotiana occidentalis '37B' showing virus induced symptoms one week after inoculation. a) Necrotic lesions and leaf distortion of inoculated leaf; b) Close-up view of an inoculated leaf showing the necrotic lesions and the extent of leaf distortion.

Figure 21. Seedlings of Diascia barberae 'Apricot queen' and Nicotiana benthamiana showing virus-induced symptoms. a) Diascia barberae 'Apricot queen’ inoculated with Diascia yellow mottle virus (DiaYMV); b) DiaYMV-infected Nicotiana benthamiana systemic infected leaf.

Figure 22. Plants showing symptoms on Nicotiana plants following inoculation with buffer only (healthy) and plants inoculated with Diascia yellow mottle virus (DiaYMV). a) Healthy Nicotiana tabacum 'Bright yellow'; b) DiaYMV-infected Nicotiana tabacum 'Bright yellow'; c) Healthy Nicotiana alata 'Nicki red'; d) DiaYMV-inoculated Nicotiana alata 'Nicki red'.
potentially systemically infected leaves, however, a positive ELISA was obtained from inoculated leaves only (Table 10).

Preliminary studies on the effect of sample dilution on DiaYMV detection by ELISA was performed. It was determined that extracting the samples at a concentration of 1 g in 10 ml extraction buffer yielded higher absorbance values in both of the inoculated samples of Nicotiana benthamiana and Nicotiana occidentalis. PTA-ELISA of Nicotiana benthamiana may yield a false negative result if the sample is prepared at the rate of 1 g per 50 ml extraction buffer although the sample gave a positive ELISA reading at 1 g tissue per 10 ml extraction buffer (Fig. 23). Sample extraction at 1 g per 1000 ml extraction buffer resulted in negative ELISA results for both Nicotiana occidentalis and Nicotiana benthamiana plants. The plants tested positive by RT-PCR prior to the ELISA test.

Mechanical inoculations on Datura stramonium, Vicia faba 'Broad Windsor' and Chenopodium quinoa failed to produce systemic infections. TAS-ELISA was positive for the inoculated leaves but not systemic leaves (Table 11).

In an effort to distinguish between residual virus on inoculated leaves and virus produced by localized infections, inoculated leaves were tested by TAS-ELISA 1 hr after inoculation and again after 1 week. It is evident that the virus quantities measured by TASELISA were high when inoculated leaves were tested 1 hr following inoculation, and were higher than that of the remaining half leaves tested 1 week later (Table 12). The high ELISA values obtained from leaves 1 hr after inoculation precluded making definitive conclusions about virus replication in inoculated leaves.

Effect of temperature on virus accumulation and symptom development: The initial temperature studies using Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' and Diascia \times hybrida

Table 10. Symptom expression and virus detection by triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) on leaves of various Nicotiana plants inoculated with Diascia yellow mottle virus (DiaYMV).

Host ${ }^{1}$	Leaf	Symptoms ${ }^{2}$	$\begin{gathered} \text { TAS-ELISA }^{3,4} \\ \left(A_{405}\right) \end{gathered}$
Nicotiana alata	Healthy	N/A	0.033 ± 0.002
	Inoculated	no symptoms	0.430 ± 0.020
	Systemic	no obvious symptoms	0.042 ± 0.008
Nicotiana benthamiana	Healthy	N/A	0.033 ± 0.010
	Inoculated	chlorotic, irregular spots	2.329 ± 0.210
	Systemic	yellow veins; mosaic	2.356 ± 0.125
Nicotiana	Healthy	N/A	0.062 ± 0.040
clevelandii	Inoculated	yellow mosaic	0.725 ± 0.155
	Systemic	yellow veins; severe mosaic	2.205 ± 0.241
Nicotiana	Healthy	N/A	0.035 ± 0.008
occidentalis '37B'	Inoculated	necrotic spots that coalesce with time, yellow netting	1.855 ± 0.220
	Systemic	mosaic, yellow netting; small curled leaves	2.205 ± 0.105
Nicotiana tabacum	Healthy	N/A	0.032 ± 0.007
'Bright yellow'	Inoculated	no symptoms	0.520 ± 0.200
	Systemic	no obvious symptoms	0.031 ± 0.007
Nicotiana tabacum	Healthy	N/A	0.041 ± 0.006
'423'	Inoculated	no symptoms	0.625 ± 0.175
	Systemic	no obvious symptoms	0.027 ± 0.004
Nicotiana	Negative control	N/A	0.044 ± 0.010
occidentalis PV	Positive control	N/A	2.725 ± 0.050

1. PV is the purified DiaYMV isolated from infected Nicotiana occidentalis $(10 \mu \mathrm{~g})$
2. $\mathrm{N} / \mathrm{A}=$ Healthy plants, no symptoms observed
3. Absorbance values (A405) measured 30 min after substrate addition
4. Threshold value for positive samples is Absorbance value $\left(\mathrm{A}_{405}\right)=0.088$

Figure 23. The effect of sample dilution on the mean absorbance value of Diascia yellow mottle virus (DiaYMV) using monoclonal antibody M3-7•A6•1 at $1 / 200$ dilution. Samples used were from systemically infected leaves one week post-inoculation with purified virions of DiaYMV. PV $1 / 100=$ Purified virus diluted in plant extracts to give final virus concentrations of $6.5 \mathrm{ng} /$ well in N. occidentalis or $3.5 \mathrm{ng} /$ well in Nicotiana benthamiana extract; $\mathrm{H}=$ Non-inoculated tissue at $1 / 10$ dilution in general sample extraction buffer.

Table 11. Diascia yellow mottle virus (DiaYMV) detection by triple antibody sandwichenzyme linked immunosorbent assay (TAS-ELISA) on leaves of different hosts mechanically inoculated with DiaYMV.

Plant	Leaf	Absorbance $\boldsymbol{A}_{405} \mathbf{1 , 2 , 3}$	Result
		$0.062 \pm 0.080 \mathrm{a}$	-
Datura stramonium	Healthy	ND	ND
	Inoculated	$0.042 \pm 0.009 \mathrm{a}$	-
Chenopodium quinoa	Healthy	$0.036 \pm 0.005 \mathrm{a}$	-
	Inoculated	ND	ND
Vicia faba	Systemic	$0.034 \pm 0.027 \mathrm{a}$	-
'Broad Windsor'	Healthy	$0.032 \pm 0.004 \mathrm{a}$	-
Nicotiana	Inoculated	$0.518 \pm 0.186 \mathrm{~b}$	++
benthamiana	Systemic	$0.039 \pm 0.008 \mathrm{a}$	-

1. Absorbance readings \pm standard deviation measured 30 min after adding the substrate
2. $\mathrm{ND}=$ not determined. At the time the assay was done inoculated leaves were not tested.
3. The threshold value for positive samples was $\mathrm{A}_{405}=0.088$. Samples with the same letter were not significantly different and plants with different letters were significantly different from the negative control ($\mathrm{p}<0.001$)

Table 12. Mean absorbance values for triple antibody sandwich-enzyme linked immunosorbent assay (TAS-ELISA) for Diascia yellow mottle virus (DiaYMV) on inoculated leaves of various plants.

Host	Status	Mean Absorbance value (A 405) ${ }^{1}$	Mean Absorbance value (A405) ${ }^{2,3}$
Nicotiana	Healthy	$0.044+0.002$	$0.035+0.021$
benthamiana	Inoculated leaf	$1.733+0.0100$	$1.948+0.056$
Chenopodium quinoa	Healthy	$0.023+0.012$	$0.045+0.002$
	Inoculated leaf	$1.284+0.008$	$0.445+0.004$
Antirrhinum majus	Healthy	$0.029+0.005$	$0.045+0.003$
'LaBella red and white'	Inoculated leaf	$1.391+0.015$	$0.398+0.045$

1. Mean absorbance value $\left(\mathrm{A}_{405}\right)$ of TAS-ELISA on leaves tested one hour after mechanical inoculation.
2. Mean absorbance value $\left(\mathrm{A}_{405}\right)$ of TAS-ELISA on leaves tested one week after mechanical inoculation.
3. The threshold value for positive samples was $\mathrm{A}_{405}=0.090$
'Coral belle' showed no obvious symptom differences in plants maintained at $15^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$, but there were noticeable differences in virus titers as measured in TAS-ELISA. Infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' kept at $25^{\circ} \mathrm{C}$ yielded higher TAS-ELISA absorbance values compared to those grown at $15^{\circ} \mathrm{C}$ (Fig. 24).

Diascia barberae 'Apricot queen' seedlings grown at $15^{\circ} \mathrm{C}$ were smaller than those seedlings kept at $25^{\circ} \mathrm{C}$, and the inoculated plants were smaller in size compared to healthy plants kept at the same temperature (Table 13). Virus infected plants showed the typical mild vein yellowing and mosaic on systemically infected leaves, however these symptoms were similar in plants kept at both temperatures. Other parameters of plant growth such as mean leaf area, fresh weight and dry weight per branch were used to evaluate the differences in growth patterns due to temperature and inoculation with the virus. There were highly significant differences in mean leaf area per branch at the two temperatures ($\mathrm{p}<0.0001$), and significant differences due to treatments (healthy versus virus inoculated) ($\mathrm{p}<0.05$) (Table 13). The only significant difference imposed by temperature was noticed when plants were maintained at $15^{\circ} \mathrm{C}$; virus inoculated plants were smaller and had relatively small leaves (Fig. 25), while plants kept at $25^{\circ} \mathrm{C}$ showed no differences in growth as a result of virus inoculation. Regardless of virus status, plants grown at $25^{\circ} \mathrm{C}$ grew more vigorously than plants kept at $15^{\circ} \mathrm{C}$. There were no significant differences in the mean leaf area per branch for plants kept at $25^{\circ} \mathrm{C}$. TAS-ELISA results showed that DiaYMV-infected plants kept at $25^{\circ} \mathrm{C}$ had higher absorbance values $\left(\mathrm{A}_{405}\right)$ than plants kept at $15^{\circ} \mathrm{C}$ although the differences were not statistically significant (Table 13). All plants used were not infected by INSV.

Figure 24. A graph showing the absorbance values $\left(\mathrm{A}_{405}\right)$ of plate trapped antigen-enzyme linked immunosorbent assay (PTA-ELISA) of diascia plants over time after the addition of substrate in a PTA-ELISA. The plants were grown at $15^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ in growth incubators for a period of eight weeks prior to analysis by ELISA. Purified virus (100 ng) isolated from infected Nicotiana occidentalis was used as a positive control and healthy Nicotiana occidentalis was used at the normal 1:10 sample dilution as a negative control. Diascia \times hybrida 'Coral belle' (C-belle) represented the non-infected plants since there were no available healthy Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' (DSCC).

C-belle 15: Diascia \times hybrida 'Coral belle' maintained at $15^{\circ} \mathrm{C}$
C-belle 25: Diascia \times hybrida 'Coral belle' maintained at $25^{\circ} \mathrm{C}$
DSCC 15: \quad Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' maintained at $15^{\circ} \mathrm{C}$
DSCC 25: \quad Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' maintained at $25^{\circ} \mathrm{C}$

Table 13. Temperature effect on healthy and Diascia yellow mottle virus (DiaYMV) infected Diascia barberae 'Apricot queen' plants growing in temperature controlled growth chambers.

Temperature	Treatment	Mean leaf area	Mean fresh	Mean dry weight/	Absorbance value
$\left({ }^{\circ} \mathrm{C}\right)$		$\left(\mathrm{cm}^{2}\right)^{1,2}$	weight/branch	branch 4	$\left(\mathrm{~A}_{405}\right)^{5}$
15	Healthy	$0.669+0.203 \mathrm{a}$	$0.201+0.134 \mathrm{a}$	$0.028+0.005 \mathrm{a}$	$0.037+0.005 \mathrm{a}$
	Infected	$0.346+0.036 \mathrm{~b}$	$0.146+0.013 \mathrm{~b}$	$0.015+0.002 \mathrm{~b}$	$1.006+0.069 \mathrm{~b}$
25	Healthy	$1.764+0.104 \mathrm{c}$	$0.554+0.144 \mathrm{c}$	$0.061+0.017 \mathrm{c}$	$0.045+0.011 \mathrm{a}$
	Infected	$1.788+0.221 \mathrm{c}$	$0.621+0.153 \mathrm{c}$	$0.065+0.209 \mathrm{c}$	$0.980+0.017 \mathrm{~b}$

1. Average size of an individual leaflet measured in cm^{2}
2. Numbers with the same letter(s) per column have non-significant differences at $\mathrm{p} \leq 0.001$
3. Mean fresh weight per branch, measured as an average of five branches per plant.
4. Mean dry weight per branch, measured as an average of five branches per plant.
5. Mean absorbance value $\left(\mathrm{A}_{405}\right)$ in a triple antibody sandwich-enzyme linked immunosorbent assay.

Figure 25. Healthy and Diascia yellow mottle virus (DiaYMV)-infected Diascia barberae 'Apricot queen' seedlings growing in a growth chamber maintained at $15^{\circ} \mathrm{C}$. Photographs were taken eight weeks after inoculation with virus or buffer only (healthy). Virus-infected plants are stunted in growth compared to healthy seedlings.

DISCUSSION:

Most diascia and nemesia plants purchased from the nurseries in Oregon and Washington were infected with a tymovirus as determined by RT-PCR and DAS-ELISA using a NeRNV-specific commercial kit. Plants of each cultivar were uniformly infected with the exceptions of Diascia ×hybrida 'Coral belle' in which one plant of 48 plants tested positive by RT-PCR but all were negative by DAS-ELISA, and one of two plants of Nemesia \times hybrida 'Blueberry sachet ${ }^{\text {TM }}$ ' were positive by both RT-PCR and TAS-ELISA. Since 2005, there have been reports of diascia, nemesia and verbena plants infected with NeRNV (Skelton et al., 2004; Koenig et al., 2005a; Mathews and Dodds, 2006). There are also reports of Scrophularia mottle virus (ScrMV) being detected in diascia and nemesia ornamental plants in eight other US States, and in other plants in the genera Verbena, Torenia, Phlox, Petunia and Ageratum (APS/APHIS Virology working groupReport from Agdia, Inc. 2005). The status of the disease in the USA is unclear because the only commercially available ELISA diagnostic test detects ScrMV, NeRNV and DiaYMV and does not discriminate between the three viruses. Until there is a discriminatory assay for these viruses, it will be unclear to determine which virus is more prevalent. An earlier report from California associated the disease in diascia plants with ScrMV (Mathews et al., 2004), but this was later confirmed as NeRNV (Mathews and Dodds, 2006). NeRNV in ornamental plants from California were identified by RT-PCR (Mathews and Dodds, 2006). The confusion created by the DAS-ELISA assay is evidence that there is a need to improve the diagnostic assays for both ScrMV and NeRNV. Evidence based on serological studies of tymoviruses in the OYMV subgroup have shown that it is common for antibodies of these viruses to fail to distinguish
between specific tymoviruses even when coat protein sequences of the two viruses infer that the viruses are distinct (Koenig et al., 2005a). This situation was observed with several tymoviruses such as NeRNV and ScrMV; CalYVV and CYVV; and also in ScrMV and AVYV (Koenig et al., 2005a). A thorough evaluation of members of the OYMV subgroup has shown that although the viruses in this subgroup are serologically indistinct, amino acid sequences of their CP regions show that they are distinct species. The increased reporting of both NeRNV and ScrMV in the USA and Europe is evidence for the importance of the viruses associated with the tymovirus disease in the ornamental plant industry.

Nicotiana benthamiana and Nicotiana occidentalis were used as propagation hosts for the virus because of the higher virus titer in systemically infected leaves. Symptoms on the inoculated leaves were severe in the genus Nicotiana but relatively mild in Nemesia and Diascia species. Observations made on diascia and nemesia plants showed that the symptoms became mild in the winter, and became more intense in the spring as young tissue developed. Symptoms on Nicotiana occidentalis plants were more severe after one passage through Nicotiana occidentalis compared to inoculation directly from in Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'. This suggests that the virus titer builds to higher levels in Nicotiana occidentalis than in Diascia \times hybrida 'Sun chimes ${ }^{\mathrm{TM}}$ coral' as also corroborated by the PTA-ELISA results.

Mechanical inoculation of Diascia barberae 'Apricot queen' resulted in mild symptoms on systemically infected leaves and, in the summer, growth was as vigorous as non-inoculated plants indicating that the virus may go unobserved in the nursery. There were no systemic infections of Nicotiana alata or the two cultivars of Nicotiana tabacum
tested, although the plants showed chlorotic lesions on inoculated leaves. Chenopodium quinoa, Datura stramonium and Vicia faba 'Broad Windsor' have been reported as diagnostic hosts for ScrMV (Becks, 1973; Honetslegrova et al., 1994; Brunt et al., 1996), however DiaYMV was not successfully transmitted to these hosts suggesting that it is a distinct virus from ScrMV. Datura stramonium and Chenopodium quinoa were also identified as non-hosts to a tymovirus detected in diascia, nemesia and verbena plants in California now identified as NeRNV (Mathews et al., 2004). There was strong serological cross-reactivity between antibodies produced against ScrMV and NeRNV and other viruses such as Plantago mottle virus (PlMV), Anagyris vein yellow virus (AVYV) and Ononis yellow mottle virus (OYMV) (Koenig et al., 2005a). The results from this study are in agreement and have shown that a commercial NeRNV antibody reacts with both NeRNV and ScrMV. However, this trend was not observed in PTA-ELISA with murine monoclonal antibody M3-7•A6•1. The monoclonal antibody M3-7•A6•1 detected NeRNV but not ScrMV (Chapter 3).

It is still not clear why inoculated leaves tested positive for NeRNV and DiaYMV while the systemic leaves were negative. One possible explanation may be that the virus inoculum was not completely washed from the leaves following inoculations, and the positive test was the residual virus, even though this could not be determined. Plants in the greenhouse are normally watered from the base of the stem and not directly onto leaves, hence, the assumption that there might be residual virus on leaves if not completely washed off. Another possibility could be that the virus could be replicating in the inoculated leaves but fail to move systemically. In this experiment, our definition of successful infection was measured by the ability of the virus to infect leaves systemically.

Tymovirus infected Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' contained double membrane vesicles in the chloroplasts (Fig. 18) and the chloroplasts appear clustered together, a feature that has been associated with tymovirus infections (Lesemann, 1977; De Souza et al, 1990; Gibbs, 1994; Alexandre et al., 2000; Hull, 2002). The role of DiaYMV insect vector(s) was not included in this study and there is no current literature that demonstrates involvement of a vector in NeRNV transmission. Studies on vector transmission may provide valuable information of disease epidemiology.

It is difficult to ascertain if DiaYMV is a different species distinct from NeRNV based on serology alone. This uncertainty could be resolved if there was a local lesion host identified that would facilitate single lesion inoculations and infection. The scope of the host range needs to be expanded to determine other plant families that might be susceptible to both viruses and those unique to DiaYMV only.

CONCLUSION:

The results of the natural infection studies indicated that DiaYMV as well as NeRNV are present in nurseries. It was evident from the results that not all members of the family Scrophulariaceae are susceptible to DiaYMV. This has been shown by the failure to induce systemic infection in members of the genus Antirrhinum. Other hosts susceptible to DiaYMV include Nicotiana occidentalis, Nicotiana benthamiana and Nicotiana clevelandii while Nicotiana tabacum 'Bright yellow', Nicotiana tabacum '423' and Nicotiana alata 'Nicki red' were not susceptible. Cytopathological studies only confirmed the presence of a tymovirus. Temperature does not have an impact on virus
titer as detrmined by PTA-ELISA A_{405} values, but the DiaYMV infected plants showed reduced shoot development and were stunted compared to healthy plants.

REFERENCES:

Alexandre, M. A.V., Duarte, L. M. L., Rivas, E. B., Chagas, C. M. and Barradas, M. M. 2000. Petunia vein banding virus: characterization of a new tymovirus from Petunia \times hybrida. Plant Dis. 84:739-742.

APS/APHIS Virology working group -Report from Agdia, Inc. 2005. A listing by state of the positive viral pathogens detected in Agdia Testing Services Laboratory from July1, 2003 through June30, 2005.

Bercks, R. 1973. Scrophularia mottle virus. CMI/AAB Descriptions of Plant Viruses, No. 113.

Brakke, M. K. and Van Pelt, N. 1970. Linear-log sucrose gradients for estimating sedimentation coefficients of plant viruses and nucleic acids. Anal. Biochem. 38:5664.

Clark, M. 1981. Immunosorbent assay in plant pathology. Ann. Rev. Phytopathol. 19:83106.

Daughtrey, M. L. and Benson, D. M. 2005. Principles of plant health management for ornamental plants. Annu. Rev. Phytopathol. 43:141-169.

De Souza, V. B.V., Gergerich, R. C., Kim, K.S. and Langham, M. A. C. 1990. Properties and cytopathology of a tymovirus isolated from eggplant. Phytopathology 80:10921098.

Dreher, T. W., Edwards, M.C., Gibbs, A. J., Haenni, A-L., Hammond, R. W., Jupin, R., Koenig R., Sabanadzovic, S. and Abou Ghanem-Sabanadzovic, N. 2004. Tymoviridae. Pages 1067-1074 in: Virus taxonomy, VIII ${ }^{\text {th }}$ report of the ICTV. C. M.

Fauquet., M. Mayo., L. Maniloff., U. Desselberger, and L. A. Ball, eds. Elservier/Academic Press, San Diego.

Gibbs, A. 1994. Tymoviruses. Pages 1500-1502 in: Encyclopedia of Virology, Vol. 3. R. G. Webster, and A. Granoff, eds. Academic Press, San Diego.

Gibbs, A. J. and Gibbs, M. J. 2006. A broader definition of 'the virus species'. Arch. Virol. 151:1419-1422.

Honetslegrova, J., Petrzik, K., Spak. J. and Pelikanova, J. 1994. Comparison of the Czech Scrophularia isolate with the Italian Anagyris strain of Scrophularia mottle virus. Acta Virol. 38:21-24.

Hull, R. 2002. Matthews' Plant Virology. $4^{\text {th }}$ Edition. Academic Press, San Diego
Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibb, A. J., Watson, L. and Zurcher, E. J. eds. 1996. 00.077 Tymoviridae. 'Plant Viruses online: Descriptions and Lists from the VIDE Database. Version $20^{\text {th }}$ August 1996'.

Koenig, R. 1976. A loop structure in the serological classification system of tymoviruses. Virology 72:1-5.

Koenig, R. and Lesemann, D.-E. 1979. Tymovirus group. CMI/AAB Descriptions of Plant Viruses, No. 214.

Koenig, R., Pleij, C. W.A., Lesemann, D. -E., Loss, S and Vetten, H. J. 2005a. Molecular characterization of isolates of Angyris vein yellow virus, Plantago mottle virus and Scrophularia mottle virus -comparison of various approaches for tymovirus classification. Arch. Virol. 150:2325-2338.

Koenig, R., Barends, S., Gultyaev, A. P., Lesemann, D-E., Vetten, H. J., Loss, S and Pleij, C.W.A. 2005b. NeRNV, a new virus with genomic RNA having a histidylatable tobamovirus-like 3'end. J. Gen.Virol. 86:1827-1833.

Lesemann, D. -E. 1977. Virus group-specific and virus-specific cytological alterations induced by members of tymovirus group. Phytopathol. Z 90:315-336.

Mathews, D. M. and Dodds, J. A. 2006. First report of Nemesia ring necrosis virus in North America in Ornamental plants from California. Plant Dis. 90:1263

Mathews, D. M. and Dodds, J.A. 2004. Detection of multiple viruses in verbena, diascia and lobelia plants (Abstract). $11^{\text {th }}$ International symposium on viruses of ornamental plants. Taichung, Taiwan.

Mathews, D. M., Heick, J. A. and Dodds, J. A. 2004. Isolation of a tymovirus from ornamental plants in southern California. APS Pacific Division Abstracts.

Skelton, A. L., Jarvis, B., Koenig, R., Lesemann, D. -E and Mumford, R. A. 2004. Isolation and identification of a novel tymovirus from nemesia in the UK. Plant Path. 53:798

Sutula, C. L., Gillett, J. M., Morrissey, S. M. and Ramsdell, D. C. 1986. Interpreting ELISA data and establishing the positive-negative threshold. Plant Dis. 70:722-726.

Tanina, K., Inoue, K., Date, H., Okuda, M., Hanada, K., Nasu, H. and Kasuyama, S. 2001. Jpn. J. Phytopathol. 67:42-45

Van Regenmortel, M. H. and Dubs, M. -C. 1993. Serological procedures. Pages 159-214 in: Diagnosis of plant virus diseases. R. E. F. Matthews, ed. CRC Press. Boca Raton, FL.

CHAPTER 5

GENERAL CONCLUSIONS

Studies on the diseased ornamental plants Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' have shown the disease is caused by tymoviruses. In the nursery, the disease is expressed as a mild mosaic accompanied by vein yellowing in susceptible diascia plants. The original concern about the occurrence of disease in diascia arose when symptoms appeared in early spring regrowth. Hence, temperature may be a factor in symptom development. However, there were no significant differences in absorbance values of PTA-ELISA between inoculated plants grown at $15^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ suggesting that temperature did not affect the virus concentration in the plant. In studies with Diascia barberae 'Apricot queen', there were no visible differences between virus infected and virus-free plants at $25^{\circ} \mathrm{C}$, but at $15^{\circ} \mathrm{C}$ the virus infected plants were stunted compared to virus free plants. This result suggests that warmer temperatures favor disease expression. In this growth chamber experiment, there were no mottling symptoms on the infected plants. Immunohistological studies may provide more insight into the effects of temperature as it relates to virus replication and localization. A more quantitative assay that can measure virus titer such as real-time reverse-transcription polymerase chain reaction could also be employed in the future to study virus titer differences in plants grown at different temperatures.

This study revealed that tymoviruses were widely distributed in nemesia and diascia ornamental plants from Washington and Oregon nurseries. A notable exception is Diascia ×hybrida 'Coral belle'. The virus was not detected in either of two separate
years. Mechanical inoculation of Diascia ×hybrida 'Coral belle' resulted in infection showing that these plants are susceptible to infection. Different cultivars from the same supplier were positive for tymoviruses. This suggests that the origin of propagation material and propagation techniques used in nurseries may be determining factors in the distribution and widespread occurrence of these viruses. In most cases clonal propagation from vegetative tissue is employed in nurseries for production of these ornamental plants. Efforts to eliminate the disease should focus on using virus-free stock for clonal propagation. Nursery management practices such as meristem tip culture could be used to eliminate the disease from propagation stock that is already infected.

Members of genus Antirrhinum could not be confirmed as hosts for DiaYMV since virus movement into non-inoculated leaves was not detected by ELISA. DiaYMV was detected in inoculated leaves only but not in non-inoculated leaves two weeks after inoculations. This could imply that the virus is replicating but not moving systemically. Our studies on host range could be expanded to include more hosts such as wild species in the family Scrophulariaceae and other families of important crops. We established that some members of the Solanaceae, mainly in the genus Nicotiana, were susceptible. This study has demonstrated that the virus from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' causes mild symptoms in its natural diascia and nemesia species hosts, but can reach very high titers in Nicotiana occidentalis and Nicotiana benthamiana where it causes severe mosaic and necrosis. Based on host range studies, it was established that the disease of Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' was not caused by Scrophularia mottle virus (ScrMV) because no symptoms developed on the ScrMV indicator hosts Datura stramonium and Chenopodium quinoa, and because the monoclonal antibody developed against the virus
from Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral' failed to detect ScrMV in Scrophularia nodosa. These serological results support the conclusion based on host range that ScrMV is distinct from the viruses found in Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral'. Because of the similarity between the coat protein regions of the two viruses, monoclonal antibody M3-7 A6 $\cdot 1$ could not distinguish between DiaYMV and NeRNV. Since there are ten amino acid differences out of 192, it may be possible to identify a monoclonal antibody that distinguishes between these viruses but many more hybridoma cell lines would have to be screened. Alternatively, antibodies can be prepared against synthetic peptides centered on these amino acid differences. On the other hand, a monoclonal antibody that can detect more species and strains of a virus group in a single assay would be advantageous and less expensive for use in nurseries to screen plants.

In Diascia \times hybrida 'Sun chimes ${ }^{\text {TM }}$ coral', two viruses were identified, a strain of NeRNV (NeRNV-WA) and a second tymovirus DiaYMV. DiaYMV is closely related to NeRNV with respect to the nucleotide sequences of the coat protein ($>90 \%$ identity), and the 3'-untranslated region (UTR), features that are used to classify members of the genus Tymovirus. However the movement protein (MP) region is different between DiaYMV and NeRNV-Nf showing only 54% amino acid sequence identity. The movement protein (MP) is responsible for virus movement and consequently, has a major role in symptomatology, disease development and host range. It has been shown elsewhere that the MP is a variable region of the tymovirus genome (Koenig et al., 2005) and it is not considered a better indicator of speciation in tymoviruses and other viruses because of higher mutation rates. The overall genome size of DiaYMV and NeRNV-Nf are different. DiaYMV (6,290 nt) has five additional nucleotides in its genome relative to

NeRNV (6,285 nt) and the two genomes differed in many regions, especially ORF I. The overall nucleotide identities for the two viruses was 77.8%, while the tymovirus species demarcation critera is $>80 \%$ for same species.

Criteria for species demarcation in the genus Tymovirus indicate that DiaYMV is a variant (strain) of NeRNV based on ORF III (CP) amino acid identity ($>90 \%$). The 3'UTR is more closely related to NeRNV-Nf than other tymoviruses in the Ononis yellow mosaic virus (OYMV) cluster. Within members of the OYMV cluster, only NeRNV accepts a histidine at its 3 '-terminus while other members accept a valine. DiaYMV is capable of accepting a histidine and further analysis showed that despite base changes in the sequences between DiaYMV and NeRNV, there is no change in RNA folding of this region.

Other factors used in species demarcation of tymoviruses include the host range and serological relatedness of the viruses. In host range studies it has been shown that DiaYMV and NeRNV share similar hosts and the range of symptoms are variable within hosts. Host range and symptomatology cannot be used as reliable indicators because it is well known that symptoms can be similar for different viruses or can be different even for strains of the same virus. A wider host range needs to be explored.

Members of the 'OYMV cluster' are serologically related. It has been shown that tymoviruses can be divided into four serological groups, and members within a group very often cannot be differentiated into species based on serology although amino acid sequences of the CP regions suggest that they are distinct species. The monoclonal antibody produced in this study did not differentiate between DiaYMV and NeRNV and, CP sequence comparisons show that DiaYMV and NeRNV are similar. Criteria based on
the CP sequence favor classification of DiaYMV and NeRNV as the same species, while other data support DiaYMV as a distinct species. MP has not been formally considered as an option for species demarcation in tymoviruses, partly because for many viruses the MP has not fully sequenced. Perhaps as more complete viral sequences of plant viruses become available, the contribution of MP sequences to species demarcation maybe accessed differently in the future.

In conclusion, diascia and nemesia in nurseries in the Pacific Northwest are frequently infected with tymoviruses. A newly described virus, DiaYMV, and a strain of NeRNV were identified. It was shown that these two viruses can occur in mixed infections. Because the assays used in the study do not differentiate between DiaYMV and NeRNV, no conclusions on the relative frequencies of these two viruses can be developed. These viruses degrade the quality of ornamental hosts, but they likely pose little threat to agronomic crops since tymoviruses typically have a limited host range. Until further studies are completed, it should be considered that wild members of the family Scrophulariaceae could be impacted by the introduction and wide spread distribution of these viruses.

