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PHASE SPACE RECONSTRUCTION: METHODS IN APPLIED  
ECONOMICS AND ECONOMETRICS 

 
Abstract 

 
 

By Michael Paul McCullough, PhD. 
Washington State University 

MAY 2008 
 
 
 
Co-Chairs:  Thomas L. Marsh and Ray Huffaker 
 
 

 Market responses to unpredictable events such as preference change, food 

contamination, or changes in technology and information are not always known.  Phase 

space reconstruction, a tool designed to analyze nonlinear time series, is investigated for 

use as an econometric tool to detect nonlinear dynamics economic time series.  It is 

applied to examine consumer responses to unpredictable events, changes in dynamic 

livestock cycles, and nonlinear structure in regression residuals.  The empirical 

application of phase space reconstruction analyzing economic behavior demonstrates an 

intuitive, appealing, and straightforward demonstration as to the use of this diagnostic 

tool.     

 The first essay investigates how to reconstruct dynamic consumer reactions from 

market events using phase space reconstruction.  This approach can provide important 

and unique empirical insights into consumer reactions to product recall or contaminant 

events. We apply phase space reconstruction analysis to U.S. meat demand, 

demonstrating distinct differences between intertemporal shorter run impacts from food 

safety incidents (e.g., E. Coli and BSE) relative to longer run health effects (e.g., 
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cholesterol).  Moreover, we show that consumers have reacted to food safety events 

differently depending on the particular food contaminate associated with that event. 

 In the second essay, phase space reconstruction is investigated as a diagnostic tool 

for determining the structure of detected nonlinear processes in regression residuals.  

Empirical evidence supporting this approach is provided using simulations from an Ikeda 

mapping and the S&P 500.  Results in the form of phase portraits (e.g., scatter plots of 

reconstructed dynamical systems) provide qualitative information to discern structural 

components from apparent randomness and provide insights categorizing structural 

components into functional classes to enhance econometric/time series modeling efforts. 

 The third essay applies the technique of phase space reconstruction to investigate 

U.S. livestock cycles.  Results are presented for both pork and cattle cycles, providing 

empirical evidence that the cycles themselves have slowly diminished.  By comparing the 

two livestock cycles important insights can be made.  The phase space analysis suggests 

that the biological constraint has become a less significant factor in livestock cycles while 

technology and information are relatively more significant. 
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INTRODUCTION 
 
The following are three essays concerning the integration of a nonlinear tool developed in 

the physics literature to economic analysis.  Each essay has its own set of questions 

addressed in a different manner but all incorporate the tool phase space reconstruction.  

This dissertation was influenced greatly on the need for a flexible, unassuming tool that is 

able to distinguish dynamic properties in a system.   

 The evidence presented in previous research concerning the differences between 

consumer reactions to health and food safety concerns was the initial question of interest.  

After applying a phase space analysis to that particular series in the first essay, 

Reconstructing Consumer Reactions to Health and Food Safety Concerns, the usefulness 

of phase space reconstruction became evident.  The analysis confirms previous research 

techniques, and applies phase space reconstruction to demonstrate that health events 

result in more permanent consumer behavior changes than food safety concerns.  In 

addition, the phase space analysis shows that generally the attributes of food safety 

contaminates are of particular importance when determining the duration and magnitude 

of consumer reactions to food safety events.  

 The second essay, Nonlinear Structure in Regression Residuals, expands on the 

technical questions addressed in the first essay.  The realization that the tool was 

inefficiently estimated in the physics literature came from current work in Information 

and Entropy Economics where information theory is being used in a diagnostic 

framework.  This essay investigates phase space reconstruction as a diagnostic tool for 

determining the structure of detected nonlinear processes in regression residuals.  

Outcomes of phase space reconstruction can be used to create phase portraits, providing 
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qualitative information to discern structural components from apparent randomness in 

regression residuals and providing insights into categorizing structural components of 

regression residuals into functional classes.  

 As a compliment to the first essay the third, Have Livestock Cycles Diminished 

Over Time?, uses the technique of phase space reconstruction is applied to empirically 

investigate hog and cattle cycles in the U.S. The central idea is to reconstruct cattle and 

hog cycles to establish further evidence in evolving patterns of cycle length, magnitude, 

and volatility.  Recent livestock and business cycle literature is then drawn on to provide 

plausible explanations for recent changes in livestock cycles. 

 This dissertation adds an innovative tool to economic analysis.  The three essays 

address important questions individually and do so in a way that is both unique and 

interesting.  It is the author’s belief that by incorporating an interdisciplinary tool to the 

field of economics strengthens the discipline as a whole.  
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ESSAY ONE: 

RECONSTRUCTING CONSUMER REACTIONS TO  

HEALTH AND FOOD SAFETY CONCERNS 

 
 

 
 

Abstract:   
 
We investigate how to reconstruct dynamic consumer reactions from market events using 

phase space reconstruction, which has been developed to analyze nonlinear dynamical 

systems.  This approach can provide important and unique empirical insights into 

consumer reactions to product recall or contaminant events. We apply phase space 

reconstruction analysis to U.S. meat demand, demonstrating distinct differences between 

intertemporal shorter run impacts from food safety incidents (e.g., E. Coli and BSE) 

relative to longer run health effects (e.g., cholesterol).  Moreover, we show that 

consumers have reacted to food safety events differently depending on the particular food 

contaminate associated with that event. 

 

Key Words:  nonlinear time series, phase space reconstruction, food safety, health 

effects 

JEL Classification:  D12, C14 
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Introduction 

It is well known that the consumption of a food product such as beef follows a regular 

seasonal pattern and is sensitive to health and food safety events (Kinnucan et al, 1997; 

Piggott and Marsh, 2004; Marsh et al, 2004; Mazzocchi, 2006; USDA, 2006; Zhen and 

Wohlgenant, 2006a).  However, when impacted by health and food safety concerns, 

characteristics of consumer reactions (i.e., the duration and magnitude of the deviations 

from persistent consumption patterns) are generally unknown.  For instance, during the 

isolated Bovine Spongiform Encephalopathy (BSE) incident in the state of Washington in 

2003 a rash of newspaper articles speculating on consumer reactions were published.  

Soon after, an article in the December 31, 2003 issue of Agriculture Online stated, "The 

impact of the news on consumer prices remains a giant question mark."  This illustrates 

the uncertainty about consumer reactions to the BSE event.  The uncertainty of consumer 

demand or confidence trickled down the supply chain from the retailer through the 

packing and processing sectors to the feeders and producers.   

 There is evidence that consumer reactions to health events, those events that deal 

with the dissemination of information concerning attributes of a good that have an effect 

on consumer health, persist for a much longer period of time than reactions to food safety 

events, those events that pertain to contaminate outbreaks in a particular consumption 

good, which affect the public’s perceived quality of that good e.g. Escherichia Coli (E. 

coli), salmonella, and BSE.  Kinnucan et al (1997) estimated the presence of a structural 

change in beef consumption due to the release of information in the late eighties on the 

link between heart disease and cholesterol in red meat.  On the other hand, consumer 

reactions to food safety events in beef have been shown to be small and short-lived 
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(Piggott and Marsh, 2004; USDA, 2006).  Confirming previous research techniques, this 

paper applies nonlinear analysis to demonstrate that health events result in more 

permanent consumer behavior changes.  In addition, we show that care should be taken 

controlling for these impacts when modeling consumer reactions to subsequent food 

scares.    

 There has only been limited research as to how consumers react during food 

scares to different contaminate outbreaks (Piggott and Marsh, 2004; Mazzocchi, 2006).  

In particular, outbreaks of E. coli and isolated incidents of BSE have been studied with 

little evidence differentiating their impacts on consumption (Piggott and Marsh, 2004; 

Resende-Filho and Buhr, 2007).  These studies have been limited in scope due to 

restrictions on economic and econometric modeling assumptions; therefore a proper 

overall delineation of the dynamic consumer reactions to different food safety events has 

yet to be performed.  We show that consumer reactions to E. Coli and BSE events are in 

fact different.  We show that generally the attributes of contaminates are of particular 

importance when determining the duration and magnitude of consumer reactions to food 

safety events.   

 Studies attempting to investigate the impacts of health (e.g., Kinnucan et al, 1997) 

and food safety events (e.g., Piggott and Marsh, 2004; Mazzocchi, 2006) have provided 

important empirical results using a wide variety of econometric tools.  However, the 

standard techniques used have been limited in their capability to identify the differences 

between particular food safety and health events. Zhen and Wohlgenant (2006b) 

conceptualized a model based upon Becker’s theory of rational addiction, providing 

evidence that beef consumption in the United States is persistent and that consumers may 
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be grouped by their persistence.  They argued that the more myopic the consumer the less 

responsive they are to food scares and health effects.  Much like Kinnucan et al (1997), 

Zhen and Wohlgenant also show that when the incident that affects perceived quality of a 

good is permanent, i.e., health effects, consumption will gradually decrease to a new 

equilibrium at a lower level. Mazzocchi created a dynamic almost ideal demand system 

to determine the time-varying reactions consumers have to outbreaks.  He showed that 

the inclusion of autoregressive parameters as consumer reactions provided decent short 

term forecast ability when estimating the impact of food scares (Mazzocchi, 2006).  If, 

however, a nonlinear process generates the reaction to a food scare or health effect the 

autoregressive parameter will fail to correctly structure consumer behavior.  Piggott and 

Marsh used a general almost ideal demand system to examine the impacts of public food 

safety information on US meat demand.  They found the 1993 E. coli and non-domestic 

BSE food safety incidents to have small and short-lived, but statistically significant 

impacts on meat demand.1 However, the impacts of food safety information about 

different events could not be distinguished from one another.  This previous empirical 

evidence has also suggested that impacts from food safety outbreaks are short run and 

structurally different from health effects that tend to be long run.  Inherently, the 

theoretical basis for these approaches has been static in nature that is then estimated by an 

empirical model augmented with dynamic components, which may or may not fully 

capture the dynamic impacts present in beef consumption.   

In response to such pitfalls, novel techniques that are inherently dynamic provide 

alternative means to examine time series data.  Phase space reconstruction is one such 

                                                
1 General AIDS models such as these are very useful in determining short term adjustments in behavior, as 
both Mazzocchi and Piggott and Marsh did, but the models are fundamentally restricted to this type of 
analysis.  They have difficulty delineating long run dynamics from short run dynamics. 
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technique that has been developed to analyze nonlinear dynamical systems.  Phase space 

reconstruction, using nonparametric nonlinear time series techniques, allows for the 

extraction of an underlying structural system from a single observed time series that can 

clearly delineate qualitative dynamic impacts of health or food safety impacts on 

consumer demand.  It is an innovative empirical tool that provides unique insights about 

an economic agent by identifying dimensions of the phase space in which an attractor lies 

that characterize economic behavior.2   Chavas and Holt (1991, 1993) illustrate the 

usefulness of using nonlinear equations of motion to model market cycles on the supply 

side, using time series analysis and a simple model of nonlinear dynamics.  They do not 

use phase space reconstruction nor examine the demand side of the market process. 

 Indeed, our results from a phase space reconstruction analysis exhibits nonlinear 

dynamics in consumer meat demand.  It further demonstrates distinct differences among 

the intertemporal responses (i.e., health versus food safety effects).  Through phase space 

reconstruction we are able to delineate the effects of different types of contaminate 

outbreaks on beef consumption.   

The study proceeds in the following manner; an overview of nonlinear time series 

methods is presented followed by the theory and method for reconstructing phase space 

in the Theoretical Framework.  An application of phase space reconstruction to United 

States beef consumption follows in the section Consumer Beef Demand with results and 

discussion.  Consumer reactions to health effects and food safety are then delineated and 

compared to existing research with concluding remarks for future modeling purposes. 

 

                                                
2 Phase space reconstruction does not necessarily lead to a final definitive model in-of-itself, but rather can 
provide information to specify a more complete structural model.  
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Theoretical Framework 

Since its development phase space reconstruction has become an essential part of 

nonlinear dynamics (Packard et al, 1980; Takens, 1980).  It has been incorporated into 

various areas of research from Schaffer and Kot’s SEIR model of epidemics to Zaldívar’s 

forecasting of Venice water levels, phase space reconstruction is the qualitative 

benchmark for nonlinear analysis (Schaffer and Kot, 1985; Zaldívar et al, 2000).  It 

allows for the basic properties of the system to be identified and subsequent qualitative 

analysis to be performed without imposing prior knowledge of a system3.  This is 

analogous to nonparametric regression, which allows for the relationship of variables to 

be determined without imposing restrictions or prior functional form.  

 The nonlinear time series methods discussed in this paper are motivated and based 

on the theory of dynamical systems in phase space (Takens, 1980).4  Dynamical systems 

are usually defined by a set of first-order ordinary differential equations (or discrete time 

analogs).  Assuming the phase space is a finite-dimensional vector space m
R and a state is 

defined by a vector m
R!X , then the continuous (or discrete) time system governing the 

system is [ ]( )
, ( )

d t

dt
t t=

X
f X  [ ]( )1

or 
n n+ =X F X .  The mathematical theory of ordinary 

differential (difference) equations ensures the existence and uniqueness of the 

trajectories, if certain conditions are met (Packard et al, 1980; Shone, 2002). For 

example, Becker and Murphy (1988) and Becker, Grossman, and Murphy (1994) derived 

continuous and discrete time systems to model rational addiction and empirically analyze 
                                                
3 Phase space reconstruction has been widely used as a tool to detect chaos in market behavior much like 
those used in Chavas and Holt (1991).  We make no assumptions as to the chaotic behavior of consumption 
nor are we trying to test for it.  Rather, the primary goal of using phase space reconstruction in this analysis 
is to better understand the qualitative dynamics of consumer behavior. 
4 Typically phase space is defined as the space in which some geometric structure exists.  In very general 
terms every trajectory of the structure of question may be represented as a coordinate in its particular phase 
space.  For qualitative analysis we will always be referring to phase spaces of two and/or three dimensions.   
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cigarette addiction, respectively.  Moreover, Chavas and Holt (1991) illustrate the 

usefulness of using nonlinear equations of motion to model market cycles on the supply 

side. The general idea of phase space reconstruction is that a single scalar time series may 

have sufficient information with which to reconstruct a dynamical system, much like a 

single stain of DNA contains sufficient information to reproduce an entire organism.   

 Data are often observed as a temporal sequence of scalar values.  For any event, 

n  outcomes are observed as a subset of the total population and are denoted by the time 

series vector

! 

X
t

= x t( ),x t "1( ),...,x t " n( )[ ]#.  For future reference the th!  lag of this vector 

will be referred to as 

! 

X
t"# = x t " #( ),x t "1" #( ),...,x t " n " #( )[ ]$.  The challenge is to 

convert the sequence of scalar observations into state vectors and reproduce dynamics in 

a lower dimensional phase space.  Then one can study the dynamics of the system by 

learning the dynamics of the phase space trajectories, which is particularly useful in 

complex systems (see examples in Kantz and Schreiber, 1997). 5   This reproduction 

makes it possible to qualitatively delineate short or long run behavioral processes that 

evolve over time and generally better understand the nature of the underlying dynamical 

system.  This is the essence of phase space reconstruction, which we solve using a 

nonparametric approach called the method of delays discussed ahead.6   

 

 

                                                
5 Phase space reconstruction is a diffeomorphism that reproduces a time series on a plane that mirrors the 
phase portrait of the underlying system.  A diffeomorphism is a smooth function, Φ, that maps one 
differential manifold, M, onto another, N, whose inverse, Φ’, is also a smooth function that maps N onto M.  
This mapping preserves all geometric properties of the original figure.  Much like a topographical map 
preserves all geometric properties of the earth. 
6 The phase space reconstruction algorithms used in this paper were written in the GAUSS programming 
language.  
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Embedding 

The idea of embedding attractors onto different spaces and in different dimensions is an 

important concept in the theory of dynamical systems.7    It was not until Packard first 

proposed that this be done from measured time series that the idea of phase space 

reconstruction was formed (Packard et al, 1980).  Packard proved that the embedding of 

the geometry of a strange attractor may be represented by a series of differential 

equations.8  Takens (1980) extended this proof to encompass what is now known as the 

method of delays.  The Method of Delays is a diffeomorphism of an attractor with 

dimension m  onto a phase space of dimension n  where 12 +! mn .  For empirical 

application, the Method of Delays requires an optimal time lag ! be chosen followed by a 

minimum embedding dimension ! .  Once the two parameters are estimated, the time 

series 
t
X  will generate a reconstructed phase space matrix 

( )[ ]!"!!" 12
,...,,, ####=

tttt
XXXXY  with dimension ( )[ ]!!" #$n .9 

The time lag !  is paramount to empirical applications of Takens’ theorem.  While 

the condition 12 +! mn  is sufficient, it is not necessary.  By choosing a time lag that 

yields the highest independence between the column vectors in matrix !Y  the geometry 

of the original manifold will be preserved even when the time series is contaminated with 

noise.   

                                                
7 An embedding is the mapping process used to reproduce geometric figures onto different spaces.  Again it 
is analogous to creating a two-dimensional map of the three-dimensional world.  Not all embeddings are 
diffeomorphisms, just like not all maps contain all the properties of the area they cover.  Nonetheless, even 
though road maps don’t usually contain elevation gain they provide a great deal of information. 
8 An attractor is a subset of a space onto which a system evolves to over time.  A strange attractor is an 
attractor that allows for a greater degree of flexibility in that the subset of the space may be fractal, i.e., the 
dimension of the space does not have to be a real integer. 
9 As discussed before, the process of phase space reconstruction is much like map making.  The 
reconstruction is a map containing all geometric properties of the original system that drives the dynamics 
of the observed time series.  Through Takens’ embedding theorem it is possible to extract this map of the 
underlying dynamics from a single time series.  
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The time lag needs to be chosen optimally.  If it is too small the approximation 

will be smooth but there will exist a high degree of correlation between components.  

This has the potential to force the trajectories of the attractor to lie on the diagonal in the 

embedding space (Broomhead and King, 1986).  If, on the other hand, the time lag is 

chosen to be too large the dynamics of the system may unfold between components and 

therefore be unobserved.  The optimal time lag is that which preserves the largest amount 

of information between components while achieving the largest degree of independence. 

Time Lag for Embedding - Mutual Information 

The mutual information coefficient was developed as an entropy measure of global 

dependencies between two random variables (Fraser and Swinney, 1986).  The 

dependencies measured are both linear and nonlinear making it an ideal candidate for 

choosing an optimal time lag.  In estimating the optimal time lag we are essentially 

asking the question: How dependent is 

! 

X
t
 on 

! 

X
t"# ?  To answer this question Fraser and 

Swinney defined dependence based upon conditional entropies and called it the mutual 

information function10 

! 

I X
t
,X

t"#( ) = H X
t
X
t"#( ) = H X

t"# ,Xt( )"H X
t"#( )   

where 

! 

H X
t( )  is Shannon’s entropy  

! 

H X
t( ) = " P

x
t

x t( )( ) logPx
t

x t( )( )
t

#   

and  

                                                
10 When phase space reconstruction was first developed the autocorrelation function was used to find the 
optimal time lag.  This measure of dependency is severely inferior for nonlinear analysis as it is strictly a 
measure of linear relation.  Furthermore, the autocorrelation function hinges on estimating the sample 
moments of a time series.  The mutual information function makes no assumptions about moments or the 
underlying distributions of time series; it is strictly observation dependent and therefore void of all 
misspecification and assumption errors.   
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! 

H X
t"# ,Xt( ) = " P

x
t
x
t"#
x(t),x(t " #)( ) log Px

t
x
t"#
x(t),x(t " #)( )[ ]

t ,t"#

$ ;  

with 

! 

P
x
t

x t( )( )  being the probability density of x occurring at time t (Shannon and 

Weaver, 1949).  

 The Mutual Information Function is defined as the combination of joint and 

marginal probabilities of the outcomes from an event in a sequence while increasing the 

time lag !  between components:  

  

! 

I X
t
,X

t"#( ) = P X
t
,X

t"#( )
n"#

$
n"#

$ log P X
t
,X

t"#( ) P X
t( )P X

t"#( )[ ].   

Based upon the standard definition of independence the

! 

log •[ ] will equal zero, and thus 

the mutual information function as well, if the vectors are perfectly independent, and will 

tend to infinity as they become more and more dependent.  

 This measure is independent of the coordinates of x as the probability density 

functions are dimensionless.  Since the mutual information function is based upon joint 

probability density functions it is a global measure of dependence and not a function of 

the individual time vectors (Fraser and Swinney, 1986).  Choosing the time lag that yields 

the first local minimum of the mutual information function ensures independence of 

components with a maximum amount of new information (Fraser and Swinney, 1986).11  

The first minimum is chosen as the optimal time lag based on the optimality conditions 

                                                
11 There have been many entropy measures of dependence developed over the years in economics, see 
Granger et al (2004), and Maasoumi and Racine (2002).  The main points stressed are usually to the extent 
which measures are a metric, so that comparisons may be made, and which are just measures of divergence.  
Phase space reconstruction only requires the independence of its coordinate vectors, which may be 
measured as either distance or divergence.  It is out of the scope of this paper to compare measures of 
dependence so the mutual information function, with improvements, is used, as it is the norm in phase 
space reconstruction literature.      
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defined above so that it is neither too small nor too large, ensuring that the attractor 

unfolds correctly.12     

Estimating the mutual information function hinges on estimating the probability 

density function of a time series and its lagged values.  This has traditionally been done 

using histogram estimators that are perceived as the “most straightforward and 

widespread approach”  (Dionísio et al, 2006).  The histogram method of estimating 

density functions uniformly weights observations within a predetermined window.  If the 

time series contains a large portion of observations located close together and some that 

are spread out, the histogram method will inconsistently estimate the probability density 

function.  Algorithms have been developed that vary the window size based upon how 

close observations are located to each other but they are computationally intense and not 

easily programmed (Fraser and Swinney, 1986).   

As an alternative approach we apply nonparametric estimation using kernel 

density approximations as a method for estimating the mutual information function.13  In 

every instance the nonparametric approach took substantially less computational time.  In 

addition to being less computationally burdensome, under appropriate conditions, the 

nonparametric method of estimating the mutual information function is also 

asymptotically efficient.  By using kernel weights the possible inefficiencies encountered 

with the histogram method of estimating the mutual information function are minimized.  

                                                
12 If the global minimum of the mutual information function were used as the optimal time lag the potential 
would be for the nonlinear system to have already completed a full cycle so that the estimate would include 
redundancy of the system as well.  This could force the phase space reconstruction to no longer be 
monotonic, thus enveloping dynamical structure. 
13 Mittelhammer et al (2000) provides detailed information on nonparametric estimation and GAUSS 
coding examples.  Simulations comparing the nonparametric and histogram methods (not reported here) 
demonstrated improved performance of nonparametric methods over the histogram approach in smaller 
sample situations.  Improved performance measures included both in accuracy and precision for estimates 
of the time lag parameter and in computational time.  Both methods converged to one another as the sample 
size increased as anticipated. 



 14 

Embedding Dimension - False Nearest Neighbors 

Given the choice of optimal time lag, the minimum embedding dimension !  can be 

estimated.   Kennel et al (1992) developed the False Nearest Neighbors technique 

(discussed below) for choosing a minimum embedding dimension.  Aittokallio et al 

(1999) suggested the embedding dimension must be chosen properly or the 

reconstruction may not reflect the original manifold.  If !  is too small the reconstruction 

cannot unfold the geometry of the possible strange attractor.14  If !  is too large 

procedures used to determine basic properties of the system and qualitative analysis may 

become unreliable (Aittokallio et al, 1999; Kennel et al, 1992). 

The False Nearest Neighbors technique uses Euclidean distances to determine if 

the vectors of !Y  are still “close” as the dimension of the phase space is increased.  By 

calculating the Euclidean distance between !Y  vectors before and after an increase in 

dimension, it is possible to determine if the vectors are actual nearest neighbors or “false” 

nearest neighbors.  The test statistic developed by Kennel et al (1992) defining neighbors 

to be false is: 

! 

x t+d( )"x n (t)+d( )
yt"yn ( t )

> Rtol  where ( )dtx +  denotes the last coordinate in the th
t  row 

of the phase space reconstruction matrix 
1+!Y , )(tn  denotes the nearest neighbor in 

Euclidean distance of t  for each row vector 
t
y  in matrix !Y , and 

tol
R  is the desired 

tolerance level.  When the percentage of false nearest neighbors is minimized or drops 

below a preset threshold for the entire system, the minimum embedding dimension for 

phase space reconstruction is found (Kennel et al, 1992).   

                                                
14 An example of an embedding dimension being too small would be a 2-dimensional representation of a 
cube.  In 2-dimensional space the cube appears to be a square.  In 3-dimensional space the true geometry of 
the cube is clearly not a square but a much more complex figure.   
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The graphical false nearest neighbor test works in similar fashion; the test plots 

the density of false nearest neighbors in time delay space.  Using the same notation as 

above 

! 

x t+d( ) " x n ( t)+d( )  is plotted on the y-axis against 

! 

yt"yn ( t )

d
 on the x-axis.  The first 

embedding dimension which yields the entire density of points contained below a 90° 

line is the minimum embedding dimension (Aittokallio et al, 1999).   

 

Consumer Beef Demand 

The empirical application is to reconstruct consumer demand for beef in the U.S.  

It is a useful application because it is intuitive, economically appealing, and 

straightforward, and at the same time interesting and important.  Consumer reactions to 

recent health and food safety issues in beef and other meat products have received much 

attention in the popular press and academic literature with particular interest to policy 

makers and industry.  Phase space reconstruction complements the available data and 

existing literature, as well as providing additional insights drawn out below. 

Beef is a well-known staple in the American diet, and has been extensively 

studied (Chavas, 2000; Kinnucan et al, 1997; Mazzocchi, 2006; Patil et al, 2005; Piggott 

and Marsh, 2004; Zhen and Wohlgenant, 2006a; Zhen and Wohlgenant, 2006b).  United 

States consumers eat roughly as much beef as they did forty years ago with consumption 

peaking in the 1970s.  See Figure 1 for the time series graph of quarterly beef 

consumption per capita from 1960-2005. Table 1 reports descriptive statistics.  Figure 1 

illustrates the seasonal patterns and trends that have occurred throughout the history of 

beef consumption.  Demand peaks in the summer months and is lowest in the winter.  

The average difference between the first and third quarter is 0.71, see Table 1.  This 



 16 

difference increases slightly for the period after 1980 and then stays relatively consistent.  

In addition to the seasonal behavior, there appears to be an average level about which 

consumption has fluctuated since 1990.   

 We examine four events for three different quality concerns that stand out in the 

beef consumption literature.  First is the reaction consumers had to the information 

regarding the negative health effects of cholesterol.  The cholesterol health effect is 

commonly associated with the downward trend that consumption takes in the mid-

eighties.  The next two events can be attributed to food safety scares regarding E. coli 

outbreaks.  The first E. coli outbreak took place in 1993 when several people became sick 

after consuming Jack-in-the-Box products.  The second outbreak of E. coli occurred in 

the mid-west in 1997 and resulted in a large recall of beef.  The last event is the result of 

BSE being detected in cattle in the Northwest in 2003.  These events are also identified in 

Figure 1.    

Empirical Issues 

The empirical process progresses in several steps.  First, the optimal lag is estimated and, 

second, the appropriate embedding dimension is determined.  Third, the phase space 

reconstruction is completed and interpreted for U.S. beef demand.  Fourth, further 

statistical tests are investigated to identify different health and food safety events.     

 The first minimum of the mutual information function determines the optimal 

time lag for the phase space reconstruction.  The optimal time lag for beef consumption is 

estimated to be 

! 

" = 3, as indicated in Table 2 where the mutual information function 

reaches its first local minimum. Interestingly, the autocorrelation function has a first 

minimum at lag two and is nonzero throughout the study period.  At this time lag the 
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mutual information function indicates that there is still some redundancy between the 

time series and its lagged vector.  If used, the autocorrelation function would have 

resulted in a phase space reconstruction erroneously forced upon the 45° line.  The 

difference in the mutual information and autocorrelation functions suggests evidence of 

nonlinear time series processes present in the data series.   

 The first local minimum of the mutual information function being at lag 3 

demonstrates the intuitive aspect of phase space reconstruction.  Beef consumption is 

seasonal so there would be a large amount of redundancy after thee lags.  As such, the 

mutual information function reaches its first minimum at lag 3 and oscillates with 

increasing lags.   

The graphical false nearest neighbors test is implemented, shown in Figure 2, to 

determine the minimum embedding dimension for the phase space reconstruction.  

Clearly the entire density of observations is contained below a line of degree less than 90 

for the two-dimension case making the minimum embedding dimension 2=! .  Using 

the two parameter estimates we can create a graphical representation of the underlying 

dynamics that drive beef demand from 1960 to 2005, see Figure 3.   

Before interpreting Figure 3, several general observations are in order relative to 

the underlying dynamical system.  First, it is important to point out that linear 

deterministic equations of motion with constant coefficients can only have exponential or 

periodic solutions.  Moreover, linear systems always need irregular inputs to produce 

bounded irregular signals (Kantz and Schreiber, 1997).  Indeed, because linear models 

exhibit well-known analytical properties and are empirically tractable they have been 

applied to investigate dynamic economic behavior.  Second, the reconstructed phase 
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space in Figure 3 exhibits qualitatively different behavior relative to linear equations of 

motion.  Nonlinear equations of motion can exhibit dynamic patterns that cannot be 

reconstructed from a system of linear equations.  Third, the period that may most be 

reflective of linear equation of motions is from 1990 to 2005.  In this period there appears 

to be periodic trajectories or trajectories that resemble a limit cycle. 

 Interpreting the phase space reconstruction becomes clearer by comparing the 

original series in Figure 1 and the reconstructed phase space in Figure 3.  In Figure 3, the 

horizontal axis is the observed time series and the vertical axis is the time series lagged 

three periods.  Beginning in 1960, per capita consumption was below 16 pounds per 

person per quarter, which appears in the lower left hand corner of Figure 3.  As per capita 

consumption increased and peaked in the mid to late 1970s, the trajectory moved to the 

upper righted hand portion of the phase space.  As per capita consumption began 

declining, the reconstructed trajectory began transitioning back towards the lower left 

hand part of the phase space during the 1980s.  By the early 1990s the consumption series 

stabilized to seasonal pattern just under 17 pounds per person per quarter, reflecting a 

persistent cycle in the lower left part of phase space.         

Seasonality of beef consumption is exhibited in the original time series and the 

reconstruction; people consistently eat more beef in the summer than in the winter.  The 

reason, traditional American winter dishes consist mostly of beef’s biggest substitutes 

poultry and pork, turkey for Thanksgiving; duck and ham for the holidays, while the 

traditional American summer dish is primarily barbequed beef.  What is apparent from 

the reconstruction is that the difference between winter and summer consumption has 

been relatively stable over recent time, which is consistent with findings from previous 
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studies.  If, however, seasonality were the only persistent nonlinear process in beef 

consumption the phase space reconstruction would be contained solely on the 45° line.  

This indicates the complexity of consumer behavior and the need for flexible techniques 

when analyzing it.  

 The phase space reconstruction in Figure 3 shows the period from 1961-1980 was 

a time of transitions.  In the early part of the series, the consumer increasingly 

incorporated beef as a part of their daily diet.  Fast food restaurants such as McDonalds 

founded in the early fifties were beginning to takeoff.  Then in the late seventies the price 

of beef began to increase dramatically.  The consumer decreased the amount of beef she 

ate until a relatively stable (albeit brief) trajectory emerged in the early 1980s.      

The main purpose of this application is to examine the subsequent period from 

1980 to 2005, focusing on reported consumer reactions to the health concern cholesterol 

and food safety concerns Escherichia coli (E. coli) and bovine spongiform 

encephalopathy (BSE).  Narrowing the analysis on the period from 1980-2005 allows for 

an easier delineation of the health and food safety effects on beef consumption. 

Consumer Reactions to Health Effects 

During the late eighties information was published on the negative effects cholesterol in 

beef has on health.  Evidence suggested that health effects resulted in a decrease in U.S. 

beef consumption (Kinnucan et al, 1997).  Figure 4 shows a subspace of the 

reconstruction from 1980 to 2005.  The reconstruction shows a period of consumption in 

the early 1980s (the cyclical pattern in the upper right sector), a transition period 

(reflecting consumer reaction to cholesterol), and the set of more recent stable cycles at a 

lower level of consumption (in the lower left sector).  Using a k-means clustering 
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algorithm further delineates these patterns and transition periods.15  The result of the 

cluster analysis places all the trajectory data prior to 1989 in one cluster and all the 

trajectory data after 1990 in another.  The clustering results support the phase space 

reconstruction that the effects of negative information concerning health are statistically 

and economically significant.  Consumers reacted to the information by decreasing their 

average level of consumption permanently while retaining a persistent seasonal pattern. 

The adjustment period illustrated in Figure 4 is consistent with a longer run behavioral 

response.  This aligns with the empirical findings of Kinnucan et al (1997).   

Modeling consumer reactions to health effects requires proper behavioral 

responses to be delineated.  Using a trend to account for health information, cultural, or 

other variables that might affect lifestyle choices implies that consumer reactions are 

constantly changing.  The phase space reconstruction shows that consumption has not 

been continually decreasing since the dissemination of the negative effects cholesterol 

has on health.  Rather, an adjustment period occurred after which consumption returned 

to its regular trajectory at a permanently lower level.  The two clusters in Figure 4 are 

almost identical in shape suggesting that consumer behavior, post health effects, is almost 

identical to consumer behavior before the health effect information was released.  This 

suggests a long run shift in consumption levels that would be correctly modeled as a 

structural change or intercept shift opposed to a change in behavior, as a trend adjustment 

would imply.  An incorrect specification of health effects in the 1980’s with a downward 

trend in consumption will cause the underestimation of subsequent food safety effects. 

                                                
15  The algorithm chooses two clusters at random and then calculates the Euclidean distance from all to the 
cluster means.  Each observation is then reclassified to the cluster that contains the mean it is closer to.  The 
new clusters are defined and the process repeats until observations no longer change clusters (Johnson and 
Wichern, 2002). 
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Consumer Reactions to E. Coli and BSE 

To examine consumer’s reactions to more recent E. coli and BSE concerns the phase 

space trajectory is presented in Figure 5 from 1990 to 2005.  As can be seen in the phase 

space reconstruction, the reactions from E. coli and BSE outbreaks are different for 

health concerns, and from one another.  During an outbreak of E. coli or BSE, beef 

consumption was perturbed for a brief period of time until returning to the normal 

cyclical behavioral pattern.     

 The magnitude and duration of the outbreaks are delineated using Euclidean 

distances from the phase space mean and normal confidence ellipsoids.  Observations 

from the phase space reconstruction are comprehensively tested under the null hypothesis 

of being normally distributed.  First, the two coordinate vectors of the phase space 

reconstruction, 

! 

x t( )  and 

! 

x t " 3( ) , are tested for normality independently using the 

Shapiro-Wilk W test for normal data (Royston, 1983).  The decision rule is to reject the 

null hypothesis of an underlying normal distribution if the test statistic, W, is greater than 

the critical level.  For an α = 0.10 confidence level in each case the null hypothesis 

cannot be rejected, see Table 3 for the test statistic and critical values.  For the individual 

vectors testing normal, the next step is to test for joint normality.  To do this we employ 

the methods described by Johnson and Wichern (2002).  Constructing a Chi-Square plot 

of the squared generalized distances reveals that the joint probability is in fact bivariate 

normally distributed (the Chi-Square plot is analogous to the Normal Quantile Plot but 

for checking bivariate normality).  Another check of bivariate normality is to check the 

percentage of observations that lie within the 50% confidence ellipsoid, 

! 

(x "µ # ) $"1
(x "µ) % &2

2
(.5), see Tables 4 and 5.  With the normal distribution assumption 
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verified outlying observations are those defined as lying on the largest confidence 

ellipsoids defined above so that the probability of that observation is very small; see 

Tables 4 and 5.  The chi-square probability values reported in Tables 4 and 5 refer to the 

confidence ellipsoid that the trajectories lie on.  Applying this outlier analysis to the 

phase space reconstruction makes it possible to differentiate the perturbation magnitude 

of E. coli and BSE events discussed ahead.  

E. coli 

Figure 6 includes the phase space trajectory from 1990 to 2005 and the 1993 E. Coli 

event but not the 1997 E. Coli nor the 2003 BSE event.  The reconstruction of the first 

outbreak of E. coli in 1993, Figure 6, is noticeably larger than the second E. coli outbreak 

of 1997, Figure 7.  This is also evident in the results reported in Tables 3 and 4 where the 

1993 (1997) E. coli trajectory has a maximum chi-square probability of 0.865 (0.71).  

The corresponding Euclidean distance from the phase space mean is larger for 1993 than 

for 1997 as well.  The difference between the two outbreak trajectories can be attributed 

to the fact that consumers may have become less sensitive to E. coli (as E. coli can be 

cooked out of beef, which will decrease the impact of the outbreak if the consumer takes 

the proper measures).  Indeed, due largely to educational efforts of the United States 

government, consumers have become much more aware of the risks concerning food 

scares and the contaminate E. coli. One of the major findings of the Research Triangle 

Institute’s evaluation of the 1996 Pathogen Reduction; Hazard Analysis and Critical 

Control Point (PR/HACCP) Systems Final Rule for the U.S. Department of Agriculture, 

Food Safety and Inspection Service was that consumers have become more 

knowledgeable of better food handling procedures and practice them often (RTI, 2002).      
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BSE  

The 2003 BSE incident, Figure 8, resulted in a greater perturbation of consumption than 

those due to E. coli.  The Euclidean distance from the cluster mean is larger for the 2003 

BSE trajectory than the 1993 E. coli trajectory.  In addition, the 2003 BSE trajectory lies 

outside the 95% confidence ellipse of it cluster while the 1993 E. coli trajectory does not.  

Unlike E. coli, BSE cannot simple be cooked out of beef.  The uncertain nature of BSE 

appears to play an important role in consumer reactions.  There are no preventions for 

being contaminated by BSE other than abstaining from eating contaminated beef product.  

As well as the lack of preventative measures, some evidence has been found for a causal 

link between BSE and Creutzfeldt-Jakob disease.  BSE is shown to be present in the 

central nervous system and bone marrow of cattle, portions not normally consumed, 

while E. coli may be found in meat.  Interestingly, the risk of becoming contaminated by 

BSE is much lower than E. coli.  This gives evidence that people’s behavior is affected 

more by the latent hazard of a potential longer run health impact. 

 Since the 2003 BSE incident in the state of Washington there have been two other 

confirmed cases of BSE in the United States, one in Texas in June of 2005 and another in 

Alabama in March of 2006.  The phase space reconstruction shows that although 

consumers reacted in a much more sever manner during the 2003 BSE incident there is 

no discernable reaction to the 2005 incident.  This illustrates the value of knowledge 

regarding contaminate attributes.  In the same fashion that consumer response to the 1997 

E. coli outbreak was significantly smaller than that towards the 1993 E. coli outbreak 

were there responses smaller to the latter BSE incidents.  Consumers evidently have 

become less sensitive to BSE since its initial appearance in the United States. Effectively, 
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in the same manner as E. coli, BSE has had no long-term effect on beef consumption at 

all.16  

Further Discussion 

 The difference between the E. coli and BSE events is an important and interesting 

result.  Piggott and Marsh (2004) estimating a demand system of beef, pork, and poultry 

found no significant difference between non-domestic BSE information and E. coli public 

food safety information as measured by the number of newspaper articles.  However, the 

media index used by Piggott and Marsh (2004) did not include information from the 2003 

BSE event in Canada or the US.  Resende-Filho and Buhr (2007) modify the same model 

to identify the willingness to pay for a National Animal Identification System and are 

unclear as to the impact the 2003 BSE outbreak had on beef consumption. In addition, the 

marginal values tested in both these models were restricted to the individual commodity.  

The phase space reconstruction gives a basis for allowing variability within the marginal 

values of the individual contaminates.  It is proof that a more flexible model needs to be 

developed in order to test the hypothesis of differing marginal effects from specific 

contaminates.  In all, the nonlinear time series approach suggests different behavioral 

responses due to the BSE and E. Coli events, which should be taken into account when 

specifying theoretical models and recognized when making policy or industry 

recommendations.    

 The phase space reconstruction has provided further evidence concerning the 

consumption behavior of beef.  The persistent phase space trajectories since 1990 

qualifies previous research as to a habitual pattern of consumption (Piggott and Marsh, 

                                                
16 This is in spite of the nearly 1,000 articles found through a simple LexisNexis search on BSE printed 
since July 2005. 
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2002; Zhen and Wohlgenant, 2006b).  It also provides evidence as to the importance of 

consumer knowledge of a good’s attributes.  If consumers had been more knowledgeable 

of the attributes of BSE contaminated beef, the 2003 BSE incident might possibly have 

resulted in a smaller or no perturbation from the mean phase space trajectory, as did the 

latter BSE incident in 2005.  Quite possibly, once U.S. consumers learned that the 

probability of infection from BSE contaminated beef is real but very small, they quickly 

returned to normal behavior.  Considering this possible behavioral response, and if in fact 

the smaller consumer response to E. coli in 1997 was due to the intervention of groups 

like the Partnership for Food Safety Education or USDA’s risk communication strategies, 

it follows that consumer educational endeavors can effectively mitigate negative 

consumer responses to food safety concerns.   

 

Concluding Remarks 

The implementation of phase space reconstruction provides a novel approach to 

investigate dynamical systems that are pervasive in interesting and complex economic 

problems.  The diagnostic tool provides a theoretically consistent approach based on the 

theory of dynamical systems to represent and reconstruct economic behavior.   It offers 

additional nonparametric tools to enhance classification and diagnostics of nonlinear time 

series that complements existing methods for both the theoretical and empirical 

economist.  It further opens a door for future research in nonlinear time series 

econometrics and provides important motivation by which to use empirical information 

to better specify theoretical models.  Our empirical analysis provides relevant, interesting, 

and unique insights into the consumer demand for beef and to the impacts of health and 
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food safety on beef demand.  More generally, this approach could be used to study 

market reactions to recall events for alternative products. 

 The recent empirical evidence suggesting a different consumer response to health 

effects and food safety is exhibited in the phase space reconstruction.  The long run 

health effect of cholesterol has caused consumers to shift their consumption behavior to a 

lower level while retaining a persistent seasonal pattern.  This lower level contains some 

of the same behavioral dynamics present before the health information was released.   

 The effects of food safety information in the phase space reconstruction are 

shown as temporary adjustments from the consumer’s phase space trajectory. These 

adjustments appear to be dependent on the particular contaminate.  The impact of E. coli 

outbreaks in beef have lessened over time and may be attributed to what previous 

research has confirmed; consumers are more knowledgeable about the contaminate and 

are learning to better prepare their food.  The evidence regarding the more dramatic 

reaction to the first BSE incident shows that consumers might be affected more by the 

latent hazard of a potential longer run health impact.  The indiscernible reaction to the 

second BSE incident in 2005 confirms that the novelty of a contaminant in a society 

might possibly be a large determinant of consumer’s reactions.  For a predetermined 

consumption good such beef, outbreaks of contaminates have short run negative impacts.  

Consumers return to a steady trajectory when they believe the risk of contamination has 

decreased to a significant level.  

 This analysis has also provided a framework for better understanding consumer 

behavior in general.  As shown, if knowledge of the consumption good, contaminate, or 

factor that affects perceived quality is relatively small, consumers will have a larger 



 27 

reaction to changing attributes.  This suggests the need for further research into the 

effects that increased consumer knowledge of a particular contaminate (or positive 

attribute) pre-incident has on decreasing (increasing) the consumer response during the 

incident.   
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Table 1: Descriptive statistics for United States beef consumption. 

Mean 18.62

Standard Deviation 2.14

Minimum 14.92

Maximum 24.38

Mean post Health Effects 16.61

Average Seasonal Adjustment 0.71

Average Seasonal Adjustment 1980 - 1990 1.01

Average Seasonal Adjustment 1990 - Present 0.96

Descriptive Statistics
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Table 2:  The Mutual Information Function and Autocorrelation Function for the United 

States Beef time series.   

Lag Mutual Information Function Autocorrelation Function

1 12.832321 0.93398562

2 13.16868 0.88915847

3 10.675077 0.89276679

4 15.64411 0.89938676

5 9.3894612 0.84142258

6 11.614153 0.7980301

7 8.3321991 0.80056196

8 10.42145 0.79877481

9 7.0329578 0.73660526

10 9.6901346 0.68506057

11 5.9306914 0.68480521

12 8.5038975 0.67389864

13 6.0765665 0.61758272

14 7.9425017 0.57791756

15 4.7249772 0.59158978

16 6.7885208 0.59141034

17 4.987119 0.54004567

18 7.0196091 0.50942787

19 4.3248576 0.51685105

20 6.0548875 0.52364019

21 4.3643202 0.4736557

22 5.7147465 0.4465524

23 3.7226371 0.45503268

24 5.4606001 0.46283112

25 3.9729883 0.41268237

26 4.6753803 0.39274703

27 3.5112068 0.39660277

28 4.6453013 0.39379443

29 3.495097 0.34909124

30 4.5347639 0.32961898
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Table 3: Shapiro-Wilk test for normality. 

Variable W V z Prob>z
x(t) 0.96543 1.879 1.359 0.087

x(t-3) 0.96085 2.128 1.628 0.05175

Shapiro-Wilk W test for normal data
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Table 4:  Chi-Square test based on the Confidence Ellipsoid for the phase space 

reconstruction 1991-1998.  The Chi-Square probability indicates which confidence 

ellipsoid each trajectory lies on.  

Year Quarter X(t) X(t-3) EDMa Z-Score Chi-Square Prob.

1991 :1 15.94566 17.36501 0.997686 3.1795338 0.796026848

1991 :2 16.99344 17.40165 0.884672 2.3553583 0.692007285

1991 :3 17.49375 16.40234 0.919458 2.7350217 0.745259742

1991 :4 16.14206 15.94566 0.805991 1.9608056 0.624840038

1992 :1 16.3169 16.99344 0.475318 0.71812132 0.301668011

1992 :2 16.86232 17.49375 0.922186 2.5603657 0.722013534

1992 :3 17.12036 16.14206 0.701380 1.5818642 0.546578023

1992 :4 15.80377 16.3169 0.846760 2.2471471 0.674884102

1993 :1 15.7764 16.86232 0.859502 2.3930159 0.697752164

1993 :2 16.07941 17.12036 0.727514 1.6981674 0.572193246

1993 :3 16.89766 15.80377 0.860295 2.3061907 0.684341817

1993 :4 15.80742 15.7764 1.149105 4.011897 0.865467369

1994 :1 16.09441 16.07941 0.731758 1.6269465 0.556684356

1994 :2 16.71562 16.89766 0.310530 0.29008778 0.135015672

1994 :3 17.18974 15.80742 0.997263 3.1616041 0.794190038

1994 :4 16.28458 16.09441 0.603624 1.0981133 0.42250566

1995 :1 16.14104 16.71562 0.469055 0.7117537 0.299441111

1995 :2 16.89846 17.18974 0.652727 1.2824296 0.47334774

1995 :3 17.40735 16.28458 0.872313 2.4664355 0.708646435

1995 :4 16.11935 16.14104 0.670327 1.367895 0.495378933

1996 :1 16.82493 16.89846 0.366784 0.40701662 0.184136575

1996 :2 17.40494 17.40735 1.134194 3.9152339 0.858805506

1996 :3 16.88762 16.11935 0.569895 1.0253005 0.401093773

1996 :4 16.00658 16.82493 0.629281 1.2833884 0.473600157

1997 :1 16.01267 17.40494 0.987066 3.0972393 0.787458847

1997 :2 16.99463 16.88762 0.483924 0.72030949 0.302431627

1997 :3 16.74025 16.00658 0.620157 1.1875078 0.447749703

1997 :4 15.9315 16.01267 0.895226 2.4459972 0.705653784

1998 :1 16.3621 16.99463 0.451069 0.64311621 0.274981496

1998 :2 16.85652 16.74025 0.289286 0.26009426 0.121945953

1998 :3 17.13265 15.9315 0.863951 2.3776729 0.695424553

1998 :4 16.32551 16.3621 0.368609 0.41450085 0.187183925
a
Euclidean distance from the cluster mean



 32 

 

 

 

 

 

Table 5:  Chi-Square test based on the Confidence Ellipsoid for the phase space 

reconstruction 1999-2005.  The Chi-Square probability indicates which confidence 

ellipsoid each trajectory lies on.   

Year Quarter X(t) X(t-3) EDMa Z-Score Chi-Square Prob.

1999 :1 16.33342 16.85652 0.361548 0.41996993 0.189403567

1999 :2 17.36981 17.13265 0.931913 2.674087 0.737379039

1999 :3 17.42001 16.32551 0.869826 2.451809 0.706507883

1999 :4 16.38007 16.33342 0.352362 0.37564564 0.171238464

2000 :1 16.69684 17.36981 0.765975 1.7742395 0.588159748

2000 :2 17.1003 17.42001 0.952866 2.7369851 0.745509698

2000 :3 17.54635 16.38007 0.975781 3.0810532 0.785731762

2000 :4 16.41529 16.69684 0.202291 0.13261837 0.064158528

2001 :1 16.07483 17.1003 0.716928 1.6510895 0.56200367

2001 :2 16.79001 17.54635 0.955593 2.754619 0.747743663

2001 :3 17.03063 16.41529 0.474427 0.72951923 0.305636454

2001 :4 16.39706 16.07483 0.571897 0.98399534 0.388596207

2002 :1 16.19647 16.79001 0.440034 0.62758717 0.269330164

2002 :2 17.50916 17.03063 1.003378 3.1368781 0.791629816

2002 :3 17.36452 16.39706 0.795511 2.0491237 0.641046293

2002 :4 16.63321 16.19647 0.415243 0.52716766 0.231706786

2003 :1 16.18452 17.50916 0.989511 3.0682214 0.784352619

2003 :2 16.90426 17.36452 0.814059 1.9935851 0.6309387

2003 :3 16.87853 16.63321 0.281369 0.25277519 0.118726796

2003 :4 14.95477 16.18452 1.697575 9.097842 0.989421387

2004 :1 15.96204 16.90426 0.700735 1.5914138 0.548737861

2004 :2 16.88647 16.87853 0.393883 0.47298947 0.210609961

2004 :3 16.9217 14.95477 1.686787 8.7615424 0.987484297

2004 :4 16.28722 15.96204 0.718883 1.5550338 0.540454295

2005 :1 15.63747 16.88647 0.999561 3.2356196 0.801667388

2005 :2 16.91096 16.9217 0.441471 0.5930573 0.25660567

2005 :3 17.00067 16.28722 0.516134 0.85859924 0.349035141

2005 :4 16.52987 15.63747 0.975146 2.8828018 0.763403921
a
Euclidean distance from the cluster mean
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Figure 1:  United States consumption of beef with indicated Health Effects and Food 

Scares; 1960-2005. 
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Figure 2: Graphical false nearest neighbors test for minimum embedding dimension 

indication a dimension of λ = 2. 
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Figure 3: Reconstructed phase space for U.S. beef consumption; 1960-2005. 
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Figure 4: The effects of cholesterol on U.S. Beef consumption; 1980-2005. 
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Figure 5: Reconstructed phase space with the effects of cholesterol controlled for; 1990-

2005. 
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Figure 6: Reconstructed phase space isolating the effects of the Jack-in-the-Box E. coli 

outbreak of 1993; 1990-2005 (without other E. coli and BSE food scares). 



 39 

 

 

 

 

 

 

Figure 7: Reconstructed phase space isolating the effects of the Hudson Beef E. coli 

outbreak of 1997; 1990-2005 (without other E. coli and BSE food scares). 
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Figure 8: Reconstructed phase space isolating the effects of the BSE outbreak in the state 

of Washington in 2003; 1990-2005 (without E. coli food scares). 
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ESSAY TWO: 
   

NONLINEAR STRUCTURE IN REGRESSION RESIDUALS 
 
 
 
 
Abstract:  

Phase space reconstruction is investigated as a diagnostic tool for determining the 

structure of detected nonlinear processes in regression residuals.  Empirical evidence 

supporting this approach is provided using simulations from an Ikeda mapping and the 

S&P 500.  Results in the form of phase portraits (e.g., scatter plots of reconstructed 

dynamical systems) provide qualitative information to discern structural components 

from apparent randomness and provide insights categorizing structural components into 

functional classes to enhance econometric/time series modeling efforts. 

 

Key Words: phase space reconstruction, mutual information, information and entropy 

economics, residual diagnostics 

JEL Classification:  C52 

 

 
 



 45 

Introduction 

This paper investigates phase space reconstruction as a diagnostic tool for determining 

the structure of detected nonlinear processes in regression residuals.  Outcomes of phase 

space reconstruction can be used to create phase portraits, providing qualitative 

information to discern structural components from apparent randomness in regression 

residuals and providing insights into categorizing structural components of regression 

residuals into functional classes.  In effect, this approach can be thought of as an 

alternative to simple scatter plots in linear or nonlinear models that are standard 

techniques in the practice of econometrics and statistics.   

Although novel to analyzing regression residuals, the use of phase space 

reconstruction to analyze the structural nature of nonlinear processes has been applied in 

a variety of fields.  The medical and engineering research used phase space 

reconstruction to separate different processes observed in the same time series (Richter 

and Schreiber, 1998).  Physics and econometrics research have used phase space 

reconstruction as a tool to detect chaos (Takens, 1980; Chon et al, 1997; and Barnett and 

Chen, 2004).  Epidemiological studies have used phase space reconstruction as a 

qualitative “check” for dynamic system of (Schaffer and Kot, 1985).     

At the same time econometrics research has addressed the issue of detecting 

dependence consistent with nonlinear processes (Maasoumi and Racine, 2002; Granger, 

Maasoumi, and Racine, 2004; and Dionísio, Menezes, and Mendes, 2006).  While it is 

important that the presence of nonlinear processes be detected, being able to make 

qualitative inferences about the structure of the nonlinear process may improve model fit.  

These three papers show that in the event dependence between random variables is a 
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result of some process which is either nonlinear or of some complicated nature, i.e. non-

Gaussian, traditional time series routines that are functions of the correlation coefficient 

fail.  They provide a measure of dependence based upon entropies that does well in 

detecting relationships between random variables be they discrete, non-Gaussian, or 

driven by nonlinear functions.   If dependence were detected in regression residuals, 

inference on the structure of the dependence would provide help in determining the 

appropriate modeling routine.  If one knew the specific form of the dependence of two 

random variables, or model residuals, it would be possible to fit a more specific 

functional form opposed to a blanket nonlinear approach such as GARCH models. 

 Through a series of simulated illustrations and a real world example, we 

demonstrate how nonlinear structure in time series data may be analyzed using phase 

space reconstruction.  The application follows along the lines of detection of nonlinear 

processes as demonstrated by Granger, Maasoumi, and Racine (2004) in that it employs 

the use of mutual information, an entropy measure of dependence, as a fundamental part 

of identifying parameters of the embedding process in phase space reconstruction.  The 

current analysis extends Granger, Maasoumi, and Racine (2004) by reconstructing phase 

planes and interpreting phase portrait. 

 The paper proceeds in the following manner.  First, residual reconstruction is 

motivated using phase space reconstruction and Takens’ embedding theorem.  Second, 

methods to apply phase space reconstruction are discussed.  Third, the Ikeda system is 

simulated to demonstrate the use of phase space reconstruction in the presence of 

nonlinear processes and their performance in the presence of noise.  Then, an application 

to the S&P 500 is performed.  Finally, concluding remarks are provided.  Appendix A 
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presents a step procedure for empirical application and a software package written in the 

Gauss programming language. 

 

Residual Reconstruction 

The central idea is to construct a phase portrait of regression residuals using outcomes 

from phase space reconstruction that provides qualitative or quantitative information in 

the econometric or statistical modeling effort.  A single time series of residuals is 

analyzed applying the process of phase space reconstruction, which extracts existing 

nonlinear dynamics inherent in the dynamical system from which the data series arises.  

For example the reconstruction could provide a foundation for model building and 

prediction, as in Schaffer and Kot (1985), where causal relationship is inferred based on a 

dynamic model replicating the phase space reconstruction. The dimension of the phase 

portrait and the appropriate lag length are determined in the phase space reconstruction, 

which we now discuss.     

 Initially developed to analyze fluvial dynamics, Takens (1981) proved an 

embedding theorem for a time series (void of noise), demonstrating that it was possible to 

approximate the systems state space through reconstruction.  Takens’ embedding 

theorem, based upon Whitney’s definition of embedding (Whitney, 1936), has been used 

widely in practice to motivate all types of nonlinear analysis.   

To motivate phase space reconstruction, the theory of dynamical systems in phase 

space needs to be addressed.  Dynamical systems are usually defined by a set of first-

order ordinary differential equations (or discrete time analogs).  Assuming the phase 

space is a finite-dimensional vector space m
R and a state is defined by a vector m

R!X , 
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then the continuous (or discrete) time system governing the system is [ ]( )
, ( )

d t

dt
t t=

X
f X  

[ ]( )1
or 

n n+ =X F X .  The mathematical theory of ordinary differential (difference) 

equations ensures the existence and uniqueness of the trajectories, if certain conditions 

are met (Packard et al, 1980; Shone, 2002; Takens, 1981).   

 Phase space reconstruction is a diffeomorphism that reproduces a time series on a 

plane that mirrors the phase portrait of the underlying system.  A diffeomorphism is a 

smooth function, Φ, that maps one differential manifold, M, onto another, N, whose 

inverse, Φ´, is also a smooth function that maps N onto M.  Given that the phase space 

reconstruction is a diffeomorphism, it has the desirable property of differentiable 

equivalence.  This ensures the qualitative dynamic representation of the vector field 

! 

F[X
n
] that is the underlying system structure, in the reconstructed vector field 

! 

"(F[X
n
]). 

 There have been two methods used to reconstruct phase space: Takens’ (1981) 

method of delays and Broomhead and King’s (1986) singular value decomposition.  Each 

method has its positive and negative attributes in empirical applications.  We focus on the 

method of delays as it has the more easily interpretable results.  

Method of Delays 

The method of delays concentrates on time valued vectors of observed time series.  When 

reconstructing a system from the time series 

! 

X
t

= x t( ),x t "1( ),...,x t " n( )[ ]#, the method 

of delays requires an optimal time lag ! be chosen followed by a minimum embedding 

dimension ! .  Once the two parameters are estimated, the time series 
t
X  will generate a 
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reconstructed phase space matrix ( )[ ]!"!!" 12
,...,,, ####=

tttt
XXXXY  with dimension 

( )[ ]!!" #$n . 

The time lag !  is paramount to empirical applications of Takens’ theorem.  While 

the Whitney’s embedding condition 12 +! mn  is sufficient, it is not necessary.  By 

choosing a time lag that yields the first minimum of redundancy between the column 

vectors in matrix !Y  the geometry of the original manifold will be preserved even when 

the time series is contaminated with noise. However, if the estimated time lag !  is too 

small the approximation will be smooth but there will exist a high degree of correlation 

between components.  This has the potential to force the trajectories of the attractor to lie 

on the diagonal in the embedding space (Broomhead and King, 1986).  If, on the other 

hand, the time lag is chosen to be too large the dynamics of the system may unfold 

between components and therefore be unobserved.  The optimal time lag is that which 

preserves the largest amount of information between components while achieving the 

smallest degree of redundancy.  The incorporation of advances in information, entropy, 

and nonparametric economics make estimating the optimal time lag asymptotically 

efficient as well as computationally less burdensome as discussed below. 

Mutual Information 

There have been many entropy measures of dependence proposed for diagnostic 

modeling (see Granger, Maasoumi, and Racine (2004) and references therein).  

Analogous to the autocorrelation function, these measures have been used widely to test 

for peculiarities in error terms of econometric and time series models.  However, unlike 

the autocorrelation function entropy dependence is both linear and nonlinear making it a 

much more suitable candidate for nonlinear analysis.  Furthermore, the autocorrelation 
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function hinges on estimating the sample moments of a time series.  Entropy dependence 

measures generally make no assumptions about moments or underlying distributions of a 

time series; they are only limited in the probability density estimation technique used. 

 The method of delays only requires the independence of its reconstructed 

coordinate vectors, which may be measured as either distance or divergence.  For this 

reason we shall only focus on the conditional entropy measure of global dependence 

between two random variables called the mutual information function developed by 

Fraser and Swinney (1986).  In estimating the optimal time lag we are essentially asking 

the question: How dependent is 

! 

X
t
 on 

! 

X
t"# ?  To answer this question Fraser and 

Swinney defined dependence based upon conditional entropies and called it the mutual 

information function 

! 

I X
t
,X

t"#( ) = H X
t
X
t"#( ) = H X

t"# ,Xt( )"H X
t"#( )   

where 

! 

H X
t( )  is Shannon’s entropy  

! 

H X
t( ) = " P

x
t

x t( )( ) logPx
t

x t( )( )
t

#   

and  

 

! 

H X
t"# ,Xt( ) = " P

x
t
x
t"#
x(t),x(t " #)( ) log Px

t
x
t"#
x(t),x(t " #)( )[ ]

t ,t"#

$ ;  

with 

! 

P
x
t

x t( )( )  being the probability density of x occurring at time t (Shannon and 

Weaver, 1949).  

 The mutual information function is defined as the combination of joint and 

marginal probabilities of the outcomes from an event in a sequence while increasing the 

time lag !  between components:  

  

! 

I X
t
,X

t"#( ) = P X
t
,X

t"#( )
n"#

$
n"#

$ log P X
t
,X

t"#( ) P X
t( )P X

t"#( )[ ].   
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Based upon the standard definition of independence the argument 

! 

log •[ ] will equal zero, 

and thus the mutual information function as well, if the vectors are perfectly independent 

and will tend to infinity as they become more dependent.  

 This measure of dependence is independent of the coordinates of x as the 

probability density functions are dimensionless.  Since the mutual information function is 

based upon joint probability density functions it is a global measure of dependence and 

not a function of the individual time vectors (Fraser and Swinney, 1986). Choosing the 

time lag that yields the first local minimum of the mutual information function ensures 

independence of components with a maximum amount of new information (Fraser and 

Swinney, 1986). The first minimum is chosen as the optimal time lag based on the 

optimality conditions defined above so that it is neither too small nor too large, ensuring 

that the attractor unfolds correctly.17     

Estimating the mutual information function hinges on estimating the probability 

density function of a time series and its lagged values.  This has traditionally been done 

in the phase space reconstruction literature by using histogram estimators that are 

perceived as the “most straightforward and widespread approach” (Dionísio et al, 2006).  

The histogram method of estimating density functions uniformly weights observations 

within a predetermined window.  If the time series contains a large portion of 

observations located close together and some that are spread out, the histogram method 

will inconsistently estimate the probability density function.  Algorithms have been 

developed that vary the window size based upon how close observations are located to 

                                                
17 If the global minimum of the mutual information function were used as the optimal time lag the potential 
would be for the nonlinear system to have already completed a full cycle so that the estimate would include 
redundancy of the system as well.  This could force the phase space reconstruction to no longer be 
monotonic, thus enveloping dynamical structure. 
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each other but they are computationally intense and not easily programmed (Fraser and 

Swinney, 1986).   

Following the information and entropy literature we apply nonparametric 

estimation using kernel density approximations as a method for estimating the mutual 

information function.  In addition to being less computationally burdensome, under 

appropriate conditions, the nonparametric method of estimating the mutual information 

function is also asymptotically efficient.  By using kernel weights the possible 

inefficiencies encountered with the histogram method of estimating the mutual 

information function are minimized (Pagan and Ullah, 1999).  

False Nearest Neighbors 

Given the choice of optimal time lag, the minimum embedding dimension !  can be 

estimated.   Kennel and Brown (1992) developed the False Nearest Neighbors technique 

(discussed below) for choosing a minimum embedding dimension.  Aittokallio (1999) 

suggested the embedding dimension must be chosen properly or the reconstruction may 

not reflect the original manifold.  If !  is too small the reconstruction cannot unfold the 

geometry of the strange attractor. If !  is too large artificial symmetry is created and 

procedures used to determine basic properties of the system and qualitative analysis may 

become unreliable (Aittokallio, et al., 1999, Kennel, et al., 1992). 

The false nearest neighbors technique uses Euclidean distances to determine if the 

vectors of !Y  are still “close” as the dimension of the phase space is increased.  By 

calculating the Euclidean distance between !Y  vectors before and after an increase in 

dimension, it is possible to determine if the vectors are actual nearest neighbors or “false” 
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nearest neighbors.  The test statistic developed by Kennel and Brown defining neighbors 

to be false is: 

 

! 

x t+d( )"x n (t)+d( )
yt"yn ( t )

> Rtol   

Where ( )dtx +  denotes the last coordinate in the th
t  row of the phase space 

reconstruction matrix 
1+!Y , )(tn  denotes the nearest neighbor in Euclidean distance of t  

for each row vector 
t
y  in matrix !Y , and 

tol
R  is the desired tolerance level.  When the 

percentage of false nearest neighbors is minimized or drops below a preset threshold, the 

minimum embedding dimension for phase space reconstruction is found (Kennel, et al., 

1992).   

 Given the efficient estimation of the embedding and time lag parameters required 

in phase space reconstruction the tool may be used to embed residuals driven by a 

nonlinear process to make qualitative inference on the structure of the process.  As with 

any statistical estimation technique, phase space reconstruction is affected in the presence 

of noise.  The simulations below are designed to demonstrate that if nonlinear 

dependence is detected it can be qualitatively analyzed under a threshold level of noise. 

 

Simulations:  The Ikeda Map  

Prior to examining phase space reconstruction on actual regression residuals, we apply it 

to a set of data simulations generated from a variation of a known nonlinear process, the 

Ikeda Map, and contaminated versions of the process.  Investigating the effect of noise 

contamination is important because real world data and dynamics will likely be due to 

both deterministic and noise components.  Further, this will illustrate the process of 
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drawing qualitative information from the structure of existing nonlinear processes in the 

form of a phase portrait with and without data contamination.   

The simulations use a numerically iterated deterministic time series, 

! 

X
n
, from the 

Ikeda Map, discussed below, added to randomly generated time series, 

! 

"
n ,i , as the full 

data generating process.  The simulation follows that in Chon et al (1997), except that we 

add noise post numerical iteration of the map and focus on the structural analysis of 

dependence whereas Chon et al (1997) included a noise term within the numerical 

iteration of the Ikeda map and focused on the detection of chaos.  This allows us to 

separate the two components more distinctly, in particular 

! 

X
n+1  is independent of 

! 

"
n
.   

The isolation of 

! 

X
n
 in the data generating process allows for a comparison of the 

degree of structure that can be detected with various levels of noise.  This type of additive 

noise is analogous to measurement error in an economic time series, as measurement 

error is defined by the independence of the error and the unobserved process.  In 

economics, measurement error can severely decrease the ability to determine 

relationships between variables, and the opportunity cost of observing a naturally 

occurring time series without measurement error is arguably very high.  By controlling 

the volatility of the random component, this simulation illustrates the general usefulness 

of phase space reconstruction as a residual diagnostic tool.  The variance of the randomly 

generated component is determined as a fraction, 10%, 25%, 50% and 100%, of the 

variability of the deterministic component.  Each series is tested for structure with 

conventional methods discussed below and then embedded using the method of delays.18 

   
                                                
18 For demonstrations of the application of phase space reconstruction as a diagnostic modeling tool refer to 
McCullough (2008), Schaffer and Kot (1985), and Zaldívar, et al (2000). 
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Ikeda Map 

The Ikeda Map is a system of discrete-time difference equations that produces chaotic-

like behavior for different values of the parameter 

! 

u .  

 

! 

X
n+1 =1+ u(X

n
cos t

n
"Y

n
sin t

n
)  

 

! 

Y
n+1 = u(X

n
sin t

n
+Y

n
cos t

n
) 

and 

   

! 

t
n+1 = 0.4 "

6

1+ X
n

2
+Y

n

2 . 

For initial conditions

! 

(X
0
,Y
0
,t
0
) = (0,.1,.4), and parameter value 

! 

u = .85  (Figure 1 

shows a plot of 

! 

X
n
 for 500=n  and a plot of randomly generated data from a normal 

distribution.  A casual inspection of the time series 

! 

X
n
 in Figure 1 might suggest a noisy 

process.  We use this type of structure for our simulations in order to demonstrate the 

simple nature of phase space reconstruction that allows for complex qualitative analysis.  

If a nonlinear process was detected in the residuals of a model it could be analyzed in the 

fashion we employ here.   

To contaminate the Ikeda data series, a randomly generated time series, 

! 

"
n
, is 

drawn from four different Gaussian distributions each with increased standard deviations.  

By increasing the standard deviation of the random component it is possible to observe 

the point at which phase space reconstruction can no longer differentiate structure from 

noise.  Five hundred observations are numerically iterated and used in each of the 

simulations to illustrate the full dynamic structure of the Ikeda map.   
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 More explicitly the simulations are defined as 

! 

"
i
(t)  such that 

Model 1:  

! 

"
1
(t) = X

n  

Model 2:  

! 

"
2
(t) = X

n
+#

n ,1  

Model 3:  

! 

"
3
(t) = X

n
+#

n ,2   

Model 4:  

! 

"
4
(t) = X

n
+#

n ,3   

Model 5:  

! 

"5(t) = X
n

+#
n ,4  

Model 6:  

! 

"6(t) = #
n ,4 . 

where 

! 

X
n  is defined in the Ikeda map above and 

! 

"
n ,i  are independently identically 

distributed as: 

! 

"
n ,1
~ N 0,0.05( ) , 

! 

"
n ,2
~ N 0,0.125( ) , 

! 

"
n ,3
~ N 0,0.25( ) , and 

! 

"
n ,4
~ N 0,0.5( ) .   

In the analysis below, Model 1 or 

! 

"
1
(t) = X

n , the uncontaminated deterministic 

time series, is used as the benchmark to compare the remaining models.  The similarity of 

the phase space reconstructions of )(),...,( 52 tZt!  to 

! 

"
1
(t) is what is referred to as the 

degree at which nonlinear structure can be detected.  Model 6 or 

! 

"6(t) = #
n ,4 , has no 

underlying structure but a pure random noise process.   

Results 

The six time series, 6,...,1),( =! it
i , are tested in a manner similar to diagnostic 

residual analysis in a typical econometric setting.  The Skewness-Kurtosis and Shapiro-

Wilks test for normality are used to assess the distribution of the time series.  These tests 

are based upon estimated moment conditions of the observed time series (see Kutner et 

al, 2005; or Mittelhammer, 1996).  The Portmanteau test is a function of the 
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autocorrelation coefficients of a time series and is used to determine if it is white noise 

(Tsay, 2002).  Table 1 contains the outcomes of each test and, as expected, after applying 

the conventional tests each time series appears to have some sort of deviation from the 

tests null hypotheses.  

 The highly deterministic time series, 

! 

"
1
(t),...,Z

4
(t) , reject normality and white 

noise hypotheses.   Autocorrelation and mutual information functions, reported in Figure 

2 for 

! 

"
1
(t), are plotted and have significant lag components.  The misgiving is that these 

functions cannot contribute to the structure of the determinism; they only report the 

presence of dependence.  It is especially critical to be able to analyze the nature of 

dependence in a case such as this because both linear and nonlinear measures detect 

dependence.  When both types of measures detect dependence it is natural to assume 

linear dependence, as it is the simpler of the two.  Given the nonlinear process of the 

Ikeda Map, measures to correct for linear dependence will fail.  As demonstrated below, 

by applying phase space reconstruction, it becomes apparent that the nature of the 

dependence is not linear and more complicated measures are needed to capture the true 

effect.   

 Using the parameter estimation techniques described above, Figure 3 provides the 

phase portraits of the reconstructed phase space for the Ikeda map with increasing 

randomness.  For example, it is clear in the first phase space reconstruction of 

! 

"
1
(t), the 

top left graph, that the process is of a nonlinear structure.   

Model 1:  The first phase space reconstruction simulation, see Figure 3a, is that of the 

uncontaminated time series, 

! 

"
1
(t). The traditional statistical tests reported in Table 1 all 

reject the null hypothesis of normal a distribution and white noise.  Both mutual 
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information and autocorrelation functions shown in Figure 2 have significant lags.  All 

the tests of dependence confirm the presence of a nonlinear process.  The phase portrait, 

demonstrates the structure of the nonlinear process that drives the time series.  The 

structure of the process is well defined and appears to follow a stable trajectory.  The 

interpolating lines show the triangular flow of the phase space trajectory while the 

observations appear to lie on a very distinct attractor.  It would be up to the analyst in 

how they would control for this type of nonlinear process.  For instance, if the purpose of 

the regression analysis were to isolate the impact that the specific variables in the design 

matrix have on a dependent variable, modeling the nonlinear process structurally in the 

error term would be sufficient.  If the purpose were to detail all the possible variables that 

impact the dependent variable, the phase space reconstruction could help identify an 

omitted variable.     

Model 2: The second phase space simulation contains the same deterministic component 

as the first with the addition of the noise term, 

! 

"
n ,1
~ N 0,0.05( ) .  It is clear in Figure 3b 

that the contamination increases the spread of the phase space trajectories about their 

respective paths.  The difference between the phase space reconstructions of 

! 

"
1
(t) to 

! 

"
2
(t) is relative level of clarity.  For nonlinear processes, being able to distinguish the 

paths that trajectories lie on is the most important part in analyzing the structure.  With a 

small level of contamination, as Figure 3b shows, it is possible to delineate the structure 

of the paths, i.e. direction and intertemporal differences between observations, from the 

variability about those paths.  

Model 3: For the third simulation, the noise component has a variance roughly equal to 

25% of the deterministic process, 

! 

"
n ,2
~ N 0,0.125( ) .  Takens’ embedding theorem 
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states that for a process void of noise reconstruction is always possible.  However, as we 

see in Figure 3c when the noise component of the time series increases, the ability to 

distinguish structure becomes harder.   While the general direction of the trajectory paths 

remain the tightness, or clarity, of the paths has greatly diminished.  The noise 

component decreases the ability to discern intertemporal differences between 

observations on the phase space trajectory through time.  In Model 1, accurate predictions 

of future observations conditional on known observations could be made; it is not the 

case in Model 3.  The added noise stretches the phase space trajectories towards the 

telltale “ball” that is the phase space reconstruction of Gaussian white noise seen in the 

sixth simulation of 

! 

"6(t), Figure 3f. 

Model 4: When the additive noise variability is 50% of the deterministic process, the 

phase space reconstruction in Figure 3d shows signs of a nonlinear process that is only 

slightly distinguishable from noise.  The phase portrait appears to fall within a triangular 

pattern.  While the ability to discern the exact structural nature of the nonlinear process 

has been lost, it is still possible to follow the general direction of the phase space 

trajectories.  We see that when an error component such as measurement error has a 

variance that is half that of the nonlinear component it becomes nearly impossible to 

determine the exact structure of the nonlinear process, however general observations of 

the nature of the process can still be made.  

Model 5:  For simulation five, Figure 3e, the standard deviation of the randomly 

generated time series is equal to that of the deterministic time series.  The phase portrait 

is nearly identical to that of pure Gaussian randomly generated data.  The traditional 

methods of determining independence can no longer detect suspect behavior.  In fact, 
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! 

"5(t) tests as being both normally distributed by the skewness/kurtosis and Shapiro-

Wilk tests, and white noise by the Portmanteau test.  The volatility of the random 

component has overcome the deterministic component so that phase space analysis can 

no longer distinguish the structure of the nonlinear process.     

Model 6:  The final simulation of variable 

! 

"6(t), Figure 3f, is that of the same noise 

component in the fifth simulation with no component from the Ikeda map.  When 

comparing the phase portrait of the sixth simulation to that of 

! 

"5(t), it appears that 

! 

"5(t) is randomly drawn from a Gaussian distribution with a larger variance than 

! 

"6(t). 

 The simulations above illustrate the ability to analyze the structure of detected 

dependence.  It was found that after the variance of the additive error component 

increased above 25% of the variance of the deterministic component only general 

structure could be inferred.  Below this level more detailed descriptions of the nonlinear 

structure may be made.  After the variance of the error component increased passed 50% 

of the deterministic component the ability to distinguish structure from noise decreased 

rapidly.    

If the first four time series of the simulation happened to be the residuals of an 

econometric model, the conclusion of model misspecification would be made and the 

analyst would be left to ad hoc or blanket measures for correction.  Having that 

qualitative representation of the residual structure in the phase space reconstruction will 

undoubtedly make the necessary additional modeling easier.  This representation can be 

related to basic regression diagnostic analysis. For example, if two variables had an 

unknown quadratic relationship, simple linear regression analysis would result in a high 
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R2 value.  However, if a plot of the residuals vs. predicted values were performed it 

would be clear that the model was misspecified and further analysis would dictate 

regressing the one variable on the other, squared.  

In the case that nonlinear dependence in regression residuals is found and 

structural analysis is performed with phase space reconstruction, numerous model 

correction techniques may be employed.  The technique used would depend on the scope 

of the regression analysis and the nature of the detected dependence.  For cases in which 

the dependence followed a simple nonlinear form, as in the simple linear regression 

example above, polynomial functions of autoregressive parameters could be fit.  In the 

same case, independent variables may be used to extract causal explanation for the 

structure.  When more complex structures are found and no causal explanations can be 

made, it may be appropriate to employ blanket nonlinear time series methods such as 

ARCH and GARCH processes or heteroskedastic residual correction techniques like 

Robust Regression.  There is also the possibility that a dynamic system of equations may 

be created that exhibit structure in their simulated phase portraits that mirror the structure 

of the detected dependence.  For example, Schaffer and Kot (1985) use phase space 

reconstruction on measles data to confirm the SEIR model of epidemics.  Phase space 

reconstruction may be used on regression residuals in the same framework.  

 

Application:  The S&P 500 

An empirical demonstration of phase space reconstruction as a residual diagnostic tool is 

applied to regression residuals from a nonlinear time series model of the weekly opening 

value of the Standards and Poor (S&P) 500 from January 3, 1996 to December 22, 1997. 
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For those models in which nonlinear processes are detected a phase space reconstruction 

can be used to add insight as to the nature of the nonlinear structure.  For residual series 

in which no dependency is detected, phase space reconstruction can be used to confirm 

the absence of nonlinear structure, as we do here.19 

An Integrated Auto Regressive model with ARCH and GARCH structured 

residuals has been used in the past to estimate the S&P 500 (see Granger, Maasoumi, and 

Racine (2004); Dionísio, Menezes, and Mendes, 2006; and references therein) so we do 

the same.  Table 2 contains the model results, and Figure 4 presents the residual time 

series from the estimated model.  The lagged variables were chosen to minimize the 

Akaike’s information criterion and maximize R2 as demonstrated in Tsay (2002).  This 

estimation technique follows the previously indicated literature on entropy in which the 

residuals of the nonlinear time series model are tested for nonlinear dependence. 

To demonstrate the absence of nonlinear structure the residuals, the residuals are 

reconstructed using the method of delays.  The optimal time lag is estimated with the 

mutual information function to be 

! 

" = 2; see Table 3.  This is the lag at which the mutual 

information function reaches its first minimum.  Next, the minimum embedding 

dimension is estimated using the false nearest neighbors technique to be 

! 

" = 3.  Both the 

graphical and traditional methods confirm this as the minimum embedding dimension; 

see Figure 5 and Table 4.   

 The S&P 500 reconstructed phase portrait, Figure 6, resembles the ‘bird’s nest’ 

that appears in the phase space reconstruction of Model 6 in the above simulation, 

                                                
19 Barnett and Chen (2004) suggest using phase space reconstruction, as well as other nonlinear measures, 
as a test for detecting chaos in a time series.  While the purpose of this paper is not to demonstrate that 
which was done in Barnett and Chen, the S&P 500 application helps to define the range of phase space 
reconstruction as a residual diagnostic tool. 
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randomly generated data from a Gaussian distribution.  For further comparison, a three-

dimensional reconstructed phase portrait of white noise is presented in Figure 7.  It is 

clear that Figure 6 and Figure 7 share very similar qualitative structure confirming the 

speculation of random noise.  Figure 7 has a larger spread than Figure 6 but the apparent 

cluster or ‘bird’s nest’ is similar for the two.  For the S&P 500, since the phase space 

reconstruction of the residual time series resembles that of the reconstruction for a 

randomly generated time series, we can conclude that the time series is random error or 

speculate that if there are any underlying nonlinear processes present their influence is 

outweighed by noise as was the case in Model 5 of the previous simulation. 

 Like Barnett and Chen (2004) we illustrated the usefulness of mutual information 

function in detecting dependence.  In addition to the entropy measures of dependence 

discussed above, embedding residuals allows for further distinction between random and 

nonlinear processes.  Unlike previous research we reconstruct residuals for a qualitative 

analysis of the structure of the underlying nonlinear process.  In cases when it is not 

sufficient to just detect dependence, phase space reconstruction can add valuable insight 

on the nature of the dependence.         

 

Conclusions  

This paper investigates phase space reconstruction as a diagnostic tool for determining 

the structure of detected nonlinear processes in regression residuals.  Outcomes of phase 

space reconstruction are used to create phase portraits, providing qualitative information 

to discern structural components from apparent randomness in regression residuals and 

providing insights into categorizing structural components of regression residuals into 
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functional classes.  Empirical evidence supporting this approach is provided using 

simulations from an Ikeda mapping and the S&P 500.  Results provide qualitative 

information to discern structural components from apparent randomness and provide 

insights categorizing structural components into functional classes to enhance 

econometric/time series modeling efforts.   

 Specifically, the set of simulations provided evidence that if nonlinear structure 

persists in the residuals of an econometric/time series model, they may be embedded in a 

manner to be qualitatively analyzed with phase space reconstruction.  This approach is 

different from using phase space reconstruction in the detection of chaos or providing 

evidence of dependence using entropy metrics, which previous research has done.  

Rather, the current approach may be thought of as an alternative to simple scatter plot 

analysis on linear or regression models.  An important product of this approach is that it 

supplies qualitative evidence of nonlinear structure potentially providing the foundation 

for causal explanations (as in the Ikeda mapping).  The S&P example shows the general 

use of phase space reconstruction and phase portraits for analysis of regression residuals. 

 Moreover, since phase space reconstruction is an extension of Takens’ embedding 

theorem, it is relatively free of a priori assumptions and restrictive constraints.  The 

approach does not require specification of functional forms and can be estimated using 

nonparametric econometric methods.  It is not a “data mining” technique and is not 

affected by discrete or non-Gaussian processes.  In all, phase space reconstruction can be 

thought of as a scatter plot for dynamical systems.   It is a tool with a relatively low 

marginal cost of implementation and potential high marginal benefit, making it an 

appealing addition to the regression toolbox.
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Tables 

 

 

 

    Variable Obs        W          V          z     Prob > z

Z1(t) 498 0.96125 12.989 6.163 0

Z2(t) 498 0.96603 11.387 5.846 0

Z3(t) 498 0.97928 6.946 4.658 0

Z4(t) 498 0.99226 2.594 2.291 0.01098

Z5(t) 498 0.99607 1.318 0.664 0.2534

Z6(t) 498 0.99677 1.083 0.191 0.4241

Shapiro-Wilk W test for normal data

  

 

    Variable Pr(Skewness)   Pr(Kurtosis)  adj. X2(2)    Prob > X2(2) 

Z1(t) 0.912 0 22.3 0

Z2(t) 0.933 0 21.1 0

Z3(t) 0.928 0 15.5 0.0004

Z4(t) 0.915 0.006 7.26 0.0266

Z5(t) 0.905 0.186 1.77 0.4123

Z6(t) 0.095 0.863 2.82 0.2439

Skewness/Kurtosis tests for Normality

 

 

Variable Q-statistic Prob > X2(40) 

Z1(t) 2078.2247 0.0000

Z2(t) 2053.8117 0.0001

Z3(t) 1844.4558 0.0003

Z4(t) 1273.9056 0.0104

Z5(t) 445.4445 0.4378

Z6(t) 42.6208 0.359

Portmanteau test for white noise

 

 

Table 1:  Conventional econometric residual tests applied to 

! 

"
i
(t) . 
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Model Section Variable Coefficient Standard Error Z-Value P>|z|

Exogenous Constant -0.9504154 0.4428517 -2.15 0.032 -1.818389 -0.082442

ARIMA ARI(1,1) at lag 10 0.1132148 0.0413289 2.74 0.006 0.0322117 0.1942179

ARCH/GARCH ARCH(1) 0.0679655 0.0190663 3.56 0 0.0305962 0.1053348

GARCH(1) 0.9083263 0.0266032 34.14 0 0.8561851 0.9604676

Constant 2.212102 1.129958 1.96 0.05 -0.0025753 4.426779

[95% Confidence Interval]

 

 

Table 2:  Nonlinear time series model results for the S&P 500.
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Lag Mutual Information

1 0.081168171

2 0.065175734

3 0.0753686

4 0.080049195

5 0.064124407

6 0.09124448

7 0.064965585

8 0.069914514

9 0.065449536

10 0.081261469   

 

Table 3:  The average mutual information function for S&P 500 residual series. 
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Dimension Percentage of False Nearest Neighbors

1 1.189066059

2 0.797266515

3 0.400911162

4 0.348519362

5 0.355353075

6 0.410022779

7 0.464692483

8 0.574031891

9 0.649202733

10 0.776765376  

 

Table 4:  The percentage of false nearest neighbors for the S&P 500 residual series. 
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Figures

 

Figure 1:  Time series for 

! 

"
1
(t) generated by the Ikeda Map and

! 

"6(t) randomly 

generated data from a 

! 

N(0,0.5) distribution.
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Figure 2: The autocorrelation and mutual information functions for 

! 

"
1
(t). 
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       a) Z1(t)        b) Z2(t) 
 

 
       c) Z3(t)        d) Z4(t) 
 

 
       e) Z5(t)        f) Z6(t) 
 

Figure 3:  The phase space reconstructions of 

! 

"
i
(t)  for 

! 

i =1,...,6. 
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Figure 4:  Residuals from the nonlinear time series model of the S&P 500.
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Figure 5:  Graphical false nearest neighbors method for determining the minimum 

embedding dimension for the S&P 500. 
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Figure 6: Reconstructed phase space of the residuals of the S&P 500 model. 
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Figure 7:  Phase space reconstruction for a randomly generated Gaussian time series. 
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Appendix A: 

Step-by-Step Procedure for Phase Space Reconstruction 

Phase space reconstruction of economic or soft science time series is starting to break 

through.  It provides a useful benchmark for dynamical model building and insights into 

previously unknown properties of the system.  A proposed method of approach for phase 

space reconstruction was developed and follows as such, keeping in mind that the 

reconstructee has thorough knowledge of the time series being analyzed: 

 

Phase Space Reconstruction: 

1. Check the time series a for potential unit root.  If present, proceed directly to the 

implementation of singular value decomposition.  If not present, proceed to the 

method of delays. 

 

Method of Delays: 

2. Choose an optimal time lag τ by means of the mutual information function and/or 

the 45º linear dependency graphical method depending on time series length. 

3. Using the time lag τ, estimate the minimum embedding dimension using the false 

 nearest neighbors technique.  Again, if the time series is too short for this method, 

 (300 observations has appeared to be a useful cutoff amount), use the graphical 

 false nearest neighbors technique to approximate the minimum embedding 

 dimension.   

4. If possible create a graphical representation of the reconstructed phase space for 

 qualitative analysis and proceed with the desired use of the reconstructed space.  
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 If the minimum embedding dimension is estimated to be larger than 3 and a 

 graphical representation is desired, proceed to singular value decomposition for a 

 possible reduction in dimensions. 

 

Singular Value Decomposition: 

5. Using a time lag of τ = 1, estimate the minimum embedding dimension using the 

 false nearest neighbors technique. 

6. Perform principal component analysis on the reconstructed phase space vectors’ 

 covariance matrix. 

7. Choose the number of principal components to use based on the proportion of 

 variance explained.  Rotate the reconstructed phase space vectors by the principal 

 components. 

8. If singular value decomposition was successful in reducing the number of 

 dimensions to 3 or less, create a graphical representation of the reconstructed 

 phase space.  As this reconstruction is related to that in step 4 of the method of 

 delays by a diffeomorphism, it contains all the same qualitative and quantitative 

 properties and may be used in the same desired fashion. 
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Gauss code for implementing phase space reconstruction 
 
new; 
cls; 
gausset; 
library gaussplot pgraph; 
// Set up library and include file with structure 
definitions 
#include gp.sdf 
// Create gpData structure 
struct gpData gdat; 
struct gpPlotControl gp; 
 
 
pqgwin many; 
 
 
print "Phase Space Reconstruction ... written by Michael 
McCullough"; 
print ""; 
print "The purpose of this program is to allow users to 
implement"; 
print "phase space reconstruction on a given time series.  
Phase space"; 
print "reconstruction may be implemented in a number of 
ways.  This"; 
print "program utilizes the standard Method of Delays and 
Singular Value"; 
print "Decomposition.  The Method of Delays is the primary 
method for"; 
print "phase space reconstruction with the most up-to-date 
parameter"; 
print "estimation techniques employed.  Singular Value 
Decomposition"; 
print "is implemented in the instance where the Method of 
Delays does not"; 
print "yield a phase space reconstruction embedding under 
four dimensions.";   
print "This program is included in Appendix A of the 
dissertation"; 
print "PHASE SPACE RECONSTRUCTION:”; 
print "METHODS IN APPLIED ECONOMICS AND ECONOMETRICS"; 
print "by Michael McCullough (contact author)"; 
print "The program is usable for academic purposes only 
with explicit permission"; 
print "from the contact author."; 
print ""; 
print "Press any key to continue..."; 
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waitc; 
cls; 
 
print "The Method of Delays uses a two step procedure:"; 
print ""; 
print "Step 1  An optimal time lag is chosen so that the"; 
print "coordinates of the reconstructed phase space 
contain"; 
print "the largest amount of new information without 
redundancy."; 
print ""; 
print "Step 2 A minimum embedding dimension is chosen."; 
print "The embedding dimension must be large enough for 
the"; 
print "strange attractor to completely unfold and yet not 
so"; 
print "large that the attractor becomes indiscernible."; 
print ""; 
print "Press any key to continue..."; 
waitc; 
cls; 
 
print "Let's get Started"; 
print "First the data set needs to be loaded"; 
print "Remember Gauss doesn't like spaces in the load 
statement"; 
print "so make sure the file path doesn't have any.  Also, 
the data should be"; 
print "organized as a single column vector without headings 
saved as a tab"; 
print "delineated 'txt' or 'dat' file."; 
print ""; 
print "Please type the file path below:"; 
print "For example c: gauss7.0 example.txt"; 
print ""; 
filepath = cons; 
print ""; 
print "Please enter the number of observations for your 
time series;"; 
nobs = con(1,1); 
print ""; 
load x[nobs,1] = ^filepath; 
cls; 
 
 
print "The following is the graph of your time series."; 
 
tim = seqa(1,1,nobs); 
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ylabel ("Your time series"); 
xlabel("Observation Number"); 
xy(tim,x); 
 
 
print "Now the first Step of the Method of Delays: Choosing 
the optimal time lag."; 
print ""; 
print "A few different methods have been proposed for 
choosing the optimal time lag."; 
print "The first and most efficient is the Mutual 
Information Method.  First introduced"; 
print "by Fraser and Swinney in 1986 the accompanying paper 
provides an asymptotically efficient"; 
print "nonparametric method of estimation.  The Mutual 
Information Function plots the"; 
print "average amount of predictable information 
(redundancy) between time lagged vectors"; 
print "when increasing the time lag.  The optimal time lag 
is chosen when the MIF reaches its"; 
print "first minimum.  This maximizes global information 
between lagged time series vectors."; 
 
print ""; 
print "For comparison and reference illustration two other 
methods used in the past have been included."; 
print "By plotting the time series against itself lagged to 
the mth period a reference"; 
print "is made as to the optimal time lag.  Chose the time 
lag where one of the following occur:"; 
print "The scatter plot losses form about the 45degree 
line.  If the scatter plot exhibits"; 
print "a strong nonlinear pattern choose the time lag after 
which the scatter plot either"; 
print "losses form or no new form is added."; 
print ""; 
print "The plot of the autocorrelation function is also 
supplied.  Previous research has"; 
print "suggested choosing the time lag where the ACF 
reaches the first minimum or decreases"; 
print "below the tolerance 1/e.  This estimation technique 
generally is no longer in use"; 
print "but the plot may add valuable insight into the 
linear behavior of the time series."; 
print ""; 
print "Press any key to continue..."; 
 
waitc; 
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cls; 
 
maxlag: 
print "Please input the maximum number of lags to include 
in the analysis below:"; 
lag = con(1,1); 
 
if lag > 100; 
 print "It takes some time to compute the Mutual 
Information Function so maybe a"; 
    print "smaller maximum time lag should be used."; 
    print ""; 
    print "Do you really want to use this lag?  Please 
enter Yes or No ..."; 
ans = cons; 
if(ans $== "No") or (ans $== "N") or (ans $== "n") or (ans 
$== "no") or (ans $== "NO"); 
 cls; 
 goto maxlag; 
endif;  
elseif lag > rows(x); 
    print "Woops, you can't test more lags than there are 
observations! Try a smaller max lag."; 
    goto maxlag; 
endif; 
//print "Press any key to find the Optimal Time Lag for 
Phase Space Reconstruction..."; 
//waitc; 
cls; 
 
n=rows(x); 
{akMI} = mike(x,lag,n); 
{mifmin} = firstmin(akMI); 
{auto} = OTL(x,lag); 
{acfmin} = firstmin(auto); 
cls; 
print "The Mutual Information estimate of the Optimal time 
lag is..."; 
mifmin; 
print ""; 
print ""; 
print "The first minimum of the ACF is..."; 
acfmin; 
print ""; 
print ""; 
print "Press any key to continue on to the Second part of 
the Method of Delays:"; 
print "Finding the minimum embedding dimension."; 
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waitc; 
print ""; 
print ""; 
print "For the minimum embedding dimension two estimation 
techniques will be utilized:"; 
print "The False Nearest Neighbors test and the Graphical 
False Nearest Neighbors Test."; 
print "The False Nearest Neighbors test was introduced by 
Kennel et al. in 1992 with the"; 
print "the later Graphical test introduced by Aittokallio 
et al. in 2003.  Combining the"; 
print "two techniques decreases the chances of a 
conservative bias in the minimum embedding"; 
print "dimension.  The Minimum Embedding Dimension should 
be chosen where either the False"; 
print "Nearest Neighbors falls below some specified minimum 
percentage (Usually specified"; 
print "between 10% - 20%) or the density of observations in 
the Graphical False Nearest"; 
print "Neighbors test may be plotted below a line having an 
angle less than 90 degrees."; 
print ""; 
print "Press any key to continue..."; 
 
waitc; 
cls; 
 
print "Both tests for a minimum embedding dimension require 
the previously estimated"; 
print "optimal time lag.  Please indicate below the chosen 
optimal time lag from the"; 
print "previous estimation techniques."; 
print "The first minimum of the Mutual Information function 
was."; 
mifmin; 
 
 
tau = con(1,1); 
 
 
fnntoll: 
print "Please input the desired tolerance level for the 
False Nearest Neighbors test below:"; 
print "Remember the normal tolerance level is between 0.1 - 
0.2."; 
tol = con(1,1); 
 
if tol < 0; 
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 cls; 
 print "The tolerance level must be non-negative."; 
 goto fnntoll; 
endif; 
 
 
maxdim: 
print "Please input the maximum number of dimensions to 
include in the analysis below:"; 
print "The normal amount of maximum dimensions is usually 
under 100 for computational time"; 
 
mdim = rows(x)/tau; 
print ""; 
print ""; 
mdimm = mdim - 5; 
print "The maximum amount of dimensions you should test 
with your time series is " mdimm; 
print "The minimum shouldn't be below 5"; 
FNNDIM = con(1,1); 
 
if FNNDIM > 100; 
 print "It takes some time to compute the False Nearest 
Neighbors test so maybe a"; 
    print "smaller maximum dimension should be used."; 
    print ""; 
    print "Do you really want to use this dimension?  
Please enter Yes or No ..."; 
ans = cons; 
if(ans $== "No") or (ans $== "N") or (ans $== "n") or (ans 
$== "no") or (ans $== "NO"); 
 cls; 
 goto maxdim; 
endif;  
elseif FNNDIM*tau > rows(x); 
    print "Woops, you can't test this many dimensions with 
the length of your time series."; 
    print "Try a smaller maximum embedding dimension."; 
    goto maxdim; 
endif; 
//print "Press any key to find the Minimum Embedding 
Dimension for Phase Space Reconstruction..."; 
//waitc; 
cls; 
 
{FalseNN,d} = FNN(FNNDIM,tau,x,tol); 
cls; 
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print "The False Nearest Neighbors drops below the 
tolerance level at the following dimension"; 
d; 
 
print ""; 
print ""; 
print "If the Graphical test yields a dimension containing 
the density of observations"; 
print "below a line with angle less than 45 degrees use 
that as the minimum embedding"; 
print "dimension."; 
print ""; 
print "Please indicate the chosen minimum embedding 
dimension below based on the False"; 
print "Nearest Neighbors and Graphical tests"; 
 
d = con(1,1); 
print ""; 
print ""; 
print "Now we're ready to reconstruct phase space.  The 
following graph is the"; 
print "reconstructed phase space for your time series.  If 
the time series is greater"; 
print "than three dimensions then obviously it cannot be 
graphed but quantitative analysis"; 
print "may still be performed.  If a visualization is still 
desired a prompt will ask if"; 
print "singular value decomposition should be implemented"; 
print "";   
print "The phase space reconstruction matrix may be 
accessed by"; 
print "clicking on the symbols tab and then on the Matrices 
tab.  The matrix labeled 'PSR'"; 
print "is the phase space reconstruction matrix."; 
print ""; 
print "Press any key to continue..."; 
waitc; 
print ""; 
print ""; 
if d > 3; 
cls; 
print "It appears that the minimum embedding dimension 
estimated using the Method of Delays"; 
print "is too large to graph.  Would you like to implement 
Singular value decomposition?"; 
ans = cons; 
if(ans $== "Yes") or (ans $== "Y") or (ans $== "y") or (ans 
$== "yes") or (ans $== "YES"); 
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 cls; 
 goto singular; 
endif;  
endif; 
 
 
mod: 
cls; 
print "The following graph is the phase space 
reconstruction of your time series."; 
print "Use it to perform qualitative and/or quantitative 
analysis on the time series."; 
print "If nonlinear dynamics drive your time series they 
will have been embedded one-to-one"; 
print "onto the phase space reconstruction."; 
print ""; 
//print "Press any key to continue..."; 
//waitc; 
 
/*---------------------------Plotting the Phase Space 
Reconstruction------------------------*/ 
 
 
if d == 2; 
goto twodim; 
elseif d == 3; 
goto threedim; 
elseif d > 3; 
goto maxdimm; 
endif; 
 
 
twodim: 
 
n = rows(x); 
y = zeros(n-tau,2); 
 
i=1; 
do until i > n-tau; 
y[i,1]=x[i]; 
y[i,2]=x[i+tau]; 
i=i+1; 
endo; 
graphset; 
ylabel ("X(t)"); 
xlabel("X(t-tau)"); 
xy(y[.,1],y[.,2]); 
goto finish; 
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threedim: 
 
gp = gp3DCartesianPlotCreate; 
 
 
n=rows(x); 
y = zeros(n-2*tau,3); 
 
i=1; 
do until i > n-2*tau; 
y[i,1]=x[i]; 
y[i,2]=x[i+tau]; 
y[i,3]=x[i+2*tau]; 
i=i+1; 
endo; 
 
 
// Create gpPlotControl structure and set members to 
default values 
struct gpPlotControl gp; 
gp = gp3DCartesianPlotCreate; 
// Put data for each zone into a different array 
a = aconcat(y[.,1],y[.,2],3); 
a = aconcat(a,y[.,3],3); 
 
// List variable names 
string vnames3 = { "X(t)", "X(t-tau)", "X(t-2tau)" }; 
 
// Set data in gpData structure 
gdat = gpInitPlotData(vnames3); 
ret = gpAddZone(&gdat,"Phase Space Reconstruction",a); // 
field zone one 
 
// Write data file 
ret = gpWritePlotData(&gdat,"psr.plt"); 
 
// Specify names for macro file to be created and data file 
to use  
gpSetMacroFile(&gp,"psr.mcr"); 
ret = gpSetDataFile(&gp,0,"psr.plt"); 
 
// Set axes titles 
ret = gpSetXAxisTitle(&gp,1,1,"X(t)"); 
ret = gpSetYAxisTitle(&gp,1,1,"X(t-tau)"); 
ret = gpSetZAxisTitle(&gp,1,"X(t-2tau)"); 
 
// Set the offset of the Z-axis title from the axis line 
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ret = gpSetZAxisTitleOffset(&gp,1,12); 
 
// Change plot fit type so that you can see the entire grid 
in the frame 
ret = gpSetPlotFit(&gp,1,2); 
 
// Add field zone legend  
ret = gpAddFieldZoneLegendFrame(&gp,1); 
ret = gpMoveFieldZoneLegend(&gp,1,99,9); 
ret = gpSetFieldZoneLegendFont(&gp,1,"helv",14,2); 
ret = gpSetFieldZoneLegendLineSpacing(&gp,1,1.25); 
 
// Plot the graph  
ret = gpPlot(&gp); 
 
goto finish; 
 
 
maxdimm: 
n=rows(x); 
p=D*tau; 
y = zeros(n-p,D); 
 
for h (1,n-p,1); 
    for u (0,D-1,1); 
    y[h,u+1] = x[h+u*tau];   
    endfor; 
endfor;  
goto finish; 
 
 
finish: 
PSR = y; 
 
goto done; 
 
 
 
singular: 
cls; 
print "The following graphs are the phase space 
reconstruction using singular value"; 
print "decomposition for one and two dimensions.  Choose 
which one to use based on"; 
print "proportion of variance explained by each eigenvalue 
displayed in the third graph."; 
print ""; 
print "Press any key to continue..."; 
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waitc; 
{PSR} = SVD(X,d); 
 
goto done; 
 
done: 
end; 
 
 
/*--------------------------Procedures Used in PSR---------
-----------------*/ 
 
/* MIKE() Procedure {akMI} = mike(X,lag,n); 
** 
** This procedure calculates the mutual information 
function I(x) for increasing 
**  time lags for use in phase space reconstruction (Fraser 
and Swinney, 1986).   
**  The procedure uses the Epanechnikov kernel density 
estimator to calculate  
**  the joint and marginal density functions (Mittelhammer 
et al., 2000). 
** 
** 
** The required inputs to the procedure are 
** 
**     X      an (n x 1) column vector time 
series. 
**      lag         the number of lags to include in the 
analysis. 
**      n           number of observations in time series 
X. 
** 
** The output returned by the Average Mutual Information 
Procedure is 
** 
**  AKMI  the average mutual information function 
from kernel density estimator. 
**      
*/ 
 
 
 
/*============================= Procedures used in MIKE 
=============================*/ 
 
/* Procedure for the two-dimensional kernel function */ 
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proc Mkernel(xo, x, h); 
 local kernvals, u, points; 
 u = (xo - x)/h; 
 points = sumc((u.*u)'); 
 kernvals = (2/pi)*(1 - points).*(points .<= 1); 
 retp(sumc(kernvals)/(rows(x)*h*h)); 
endp; 
 
 
/* Procedure for the one-dimensional kernel function */ 
 
proc kernel(xo,x,h); 
 local kernvals,u; 
 u= (xo-x)/h; 
  kernvals = .75*(1-u^2).*(abs(u).<=1); 
 retp(sumc(kernvals/(rows(x)*h))); 
 endp; 
 
 
/* Procedure for the convolution of the Epanechnikov 
kernel function  */ 
 
proc EpanConv(u); 
 local epn, a, signs; 
 
 signs = (u .>= 0) - (u .< 0); 
 a = u - signs; 
 epn = (u/2)-((a^5)/5)+(u.*(a^4)/2)+(2*(a^3)/3)-
((a^3).*(u^2)/3)-(u.*a.*a)-a+(a.*(u^2)); 
 epn = signs.*epn + (8/15) - (2*(u^2)/3); 
 
retp(0.5625*(abs(u) .< 2).*epn); 
endp; 
 
 
 
/* Procedure to calculate Mutual Information using Kernel 
density Estimation */ 
 
 
proc mike(x,lag,n); 
local hx,hy,hz,akmi,m,i,p,y,k,fxi,fxj,fxij,j,a,laga; 
 
/* Calculate the Mutual Information function using the 
Epanechnikov Kernel  
**  density Estimation function 
*/ 
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akmi = zeros(lag,1); 
m = rows(x); 
{hx} = hopt(x,m); 
i=1; 
do until i > lag; 
 
 
 
format /mat /rd 5,1; 
 locate(5,1); 
 print /flush "  Evaluating the mutual information 
functions at the time lag " i " out of " lag; 
 
p = m-i; 
 
y = zeros(p,i+1); 
for h (1,p,1); 
    for u (0,i,1); 
    y[h,u+1] = x[h+u];   
    endfor; 
endfor;  
 
k=rows(y); 
 
//{hy} = hopt(y[.,i+1],k); 
// hz  = (hx+hy)/2; 
 
 
fxi = zeros(k,1); 
 
for jj (1, k, 1); 
 j = jj; 
 fxi[j] = kernel(y[j,1], y[.,1], hx); 
endfor; 
 
fxj = zeros(k,1); 
for jj (1, k, 1); 
 j = jj; 
 fxj[j] = kernel(y[j,i+1], y[.,i+1], hx); 
endfor; 
 
fxij = zeros(k,1); 
for jj (1, k, 1); 
 j = jj; 
 fxij[j] = mkernel(y[j,1 i+1], y[.,1 i+1], hx); 
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endfor; 
 
AkMI[i] = sumc(fxij.*ln(fxij./(fxi.*fxj))); 
i = i+1; 
endo; 
 
 
laga = seqa(1,1,lag); 
 
cls; 
     
ylabel ("Mutual Information Function"); 
xlabel("Lag"); 
bar(laga,akmi); 
 
retp(akMI); 
endp; 
 
 
/* Procedure to calculate the optimal h using the 
Epanechnikov kernel function  */ 
 
proc hopt(x,n); 
local 
hgrid,ngrid,mh,u,h,holdit,hstar,hstarind,sumpart,xMINUSi; 
hgrid = seqa(0.1, 0.1, 50); 
ngrid = rows(hgrid); 
mh = zeros(ngrid,1); 
u = zeros(n,n); 
 
for k (1,ngrid,1); 
 h = hgrid[k]; 
  
for i (1,n,1); 
for j (1,n,1); 
    u[i,j] = (x[i] - x[j])/h; 
endfor; 
endfor; 
 
 mh[k] = mh[k] + sumc(sumc(EpanConv(u))); 
 mh[k] = mh[k]/(h*n*n); 
 sumpart = 0; 
 for i (1, n, 1); 
  xMINUSi = setdif(x, x[i], 1); 
  sumpart = sumpart + kernel(x[i], xMINUSi, h); 
 endfor; 
 sumpart = 2*sumpart/n; 
 mh[k] = mh[k] - sumpart; 
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endfor; 
holdit = hgrid~mh; 
hstarind = minindc(holdit); 
hstarind=hstarind[2,1]; 
hstar = holdit[hstarind,1]; 
 
retp(hstar); 
endp; 
 
/* Procedure to calculate the first minimum of a vector
 */ 
 
proc firstmin(x); 
local diff,fmin,i,n; 
diff = zeros(rows(x)-1,1); 
fmin = 1; 
n = rows(x); 
for i (1,n-1,1); 
diff[i] = x[i+1]-x[i]; 
endfor; 
 
if maxc(diff) < 0; 
fmin = maxindc(diff) + 1; 
goto fin3; 
endif; 
 
i=1; 
do until diff[i] >= 0;  
if diff[i] <= 0; 
    fmin = fmin + 1; 
endif; 
i=i+1; 
endo; 
fin3: 
retp(fmin); 
endp; 
 
/*====================  Optimal Time Lag Graphical 
Plots =====================*/ 
 
proc OTL(x,lag);                       
local m,p,y,a,auto,pauto; 
 
 
m = rows(x); 
p = m-lag; 
y = zeros(p,lag+1); 
for h (1,p,1); 
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    for u (0,lag,1); 
    y[h,u+1] = x[h+u];   
    endfor; 
endfor;  
 
a = lag; 
auto = acf(x,a,1); 
lag = seqa(1,1,a); 
 
graphset; 
_plctrl = {-1}; 
begwind; 
window(3,3,0);    
setwind(1);      
xlabel ("X(t)"); 
ylabel("X(t-1)"); 
xy(y[.,1],y[.,2]); 
 
nextwind;      
ylabel("X(t-2)"); 
xy(y[.,1],y[.,3]); 
 
nextwind;      
ylabel("X(t-3)"); 
xy(y[.,1],y[.,4]); 
 
nextwind;      
ylabel("X(t-4)"); 
xy(y[.,1],y[.,5]); 
 
nextwind;      
ylabel("X(t-5)"); 
xy(y[.,1],y[.,6]); 
 
nextwind;      
ylabel("X(t-6)"); 
xy(y[.,1],y[.,7]); 
 
nextwind;      
ylabel("X(t-7)"); 
xy(y[.,1],y[.,8]); 
 
nextwind;      
ylabel("X(t-8)"); 
xy(y[.,1],y[.,9]); 
 
_plctrl = {0}; 
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_pline = {1 1 0 0 50 0 1 5 0}; 
nextwind;      
ylabel ("Autocorrelation Function"); 
xlabel("Lag"); 
bar(lag,auto); 
 
endwind;       
 
retp(auto); 
endp; 
 
 
 
 
/*------------------------False Nearest Neighbors Tests----
---------------------*/ 
/* FNN() Procedure {FalseNN,d} = FNN(FNNDIM,tau,x,tol); 
** 
** This procedure is designed to perform the false 
nearest neighbors test 
**  on a given time series.  The procedure calculates the 
percent of false  
**  nearest neighbors for a given optimal time lag and 
tolerance level as proposed 
**  by Kennel et al. (1992).  The procedure also implements 
the Graphical method  
**  for a minimum embedding dimension proposed by 
Aittokallio et al. (2003). 
**   
** 
** The required inputs to the procedure are 
** 
** X  an (n x 1) column vector time series. 
** tau  the optimal time lag. 
**      FNNDIM      the maximum number of dimensions. 
**      tol          tolerance level of false nearest 
neighbors. 
** 
** The outputs returned by the False Nearest Neighbors 
procedure are 
** 
** D  the minimum embedding dimension. 
** FalseNN      the percent of false nearest neighbors 
for each dimension. 
**      Plot         Plot of percent of false nearest 
neighbors by dimension 
** 
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*/ 
 
 
proc (2) = FNN(FNNDIM,tau,x,tol);  
local 
m,p,y,n,D1,k,FalseNN,atol,rtol,rd,rdelta,DEN,nei,NUM,dim1,d
im,j,i,d,dims,ra; 
 
m = rows(x); 
p = m-FNNDIM*tau; 
y = zeros(p,FNNDIM+1); 
for h (1,p,1); 
    for u (0,FNNDIM,1); 
    y[h,u+1] = x[h+u*tau];   
    endfor; 
endfor;  
 
n = rows(y); 
D1 = zeros(n,1); 
k=1; 
FalseNN = zeros(FNNDIM,1); 
rd = zeros(n,FNNDIM); 
rdelta = zeros(n,FNNDIM); 
do until k > FNNDIM;                           
 
format /mat /rd 5,1; 
 locate(5,1); 
 print /flush "  Evaluating the False Nearest Neighbors 
for dimension " k " out of " FNNDIM; 
 
dim = k; 
atol = 2;                                  
 /*False Nearest Neighbor Tolerance Level*/ 
rtol = 10; 
ra = (stdc(x));   
 
 
 
for i (1,n,1); 
    j = 1; 
    do until j > n; 
    D1[j] = sqrt((y[i,1:k]-y[j,1:k])*(y[i,1:k]-y[j,1:k])');  
 /*Euclidean Distance*/ 
    j = j+1; 
    endo;        
        D1[i] = 10000000;                                   
 /*Delete Distance from self*/ 
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    DEN = minc(D1);                                        
 /*Nearest Neighbor Distance*/ 
     nei = minindc(D1); 
        dim1 = dim + 1; 
     
    NUM = abs(y[i,dim1] - y[nei,dim1]);                     
 /*Coordinate Distance of Nearest Neighbor increased 
Dimension*/ 
 
        if (NUM/DEN) > rtol; 
            FalseNN[k] = FalseNN[k] + 1/n; 
        endif; 
        if (DEN^2+NUM^2)/(ra^2) > atol; 
            FalseNN[k] = FalseNN[k] + 1/n; 
        endif; 
 
    rdelta[i,k] = NUM;     
    rd[i,k] = DEN/sqrt(dim);    
endfor; 
k=k+1; 
     
 
endo;   
if minc(FalseNN) > tol; 
d=0; 
goto fin2; 
endif; 
 
d = 1; 
i=1; 
do until FalseNN[i] < tol;  
if FalseNN[i] > tol; 
    d = d+1; 
endif; 
i=i+1; 
endo; 
 
cls; 
 
fin2: 
 
cls; 
 
begwind; 
_plctrl = {-1}; 
window(3,2,0);    
setwind(1);      
ylabel (""); 
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xlabel("Dimension 1"); 
xy(rd[.,1],rdelta[.,1]); 
 
nextwind;      
xlabel("Dimension 2"); 
xy(rd[.,2],rdelta[.,2]); 
 
nextwind;      
xlabel("Dimension 3"); 
xy(rd[.,3],rdelta[.,3]); 
 
nextwind;      
xlabel("Dimension 4"); 
xy(rd[.,4],rdelta[.,4]); 
 
nextwind;      
xlabel("Dimension 5"); 
xy(rd[.,5],rdelta[.,5]); 
endwind; 
 
/*Plot of False Nearest Neighbors with increasing 
Dimensions*/ 
_pline = {1 1 0 .2 50 .2 1 5 0}; 
_plctrl = {0}; 
dims = seqa(1,1,rows(FalseNN)); 
ylabel("Percent of False Nearest Neighbors"); 
xlabel("Dimension"); 
xy(dims,FalseNN); 
       
cls; 
retp(FalseNN,d); 
endp; 
 
 
/*------------------------Singular Value Decomposition-----
--------------------*/ 
 
proc SVD(X,FNN); 
local 
SVDdim,m,p,y,n,vary,psr,e1,e2,e3,evalues,evectors,var,por,d
ims; 
 
SVDdim=FNN; 
m = rows(x); 
p = m-SVDdim; 
y = zeros(p,SVDdim); 
for h (1,p,1); 
    for u (0,SVDdim-1,1); 
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    y[h,u+1] = x[h+u];   
    endfor; 
endfor;  
n = rows(y); 
vary = vcx(y); 
{ evalues,evectors } = eigv(vary); 
PSR = zeros(n,3); 
 
e1 = evectors[.,1]; 
PSR[.,1] = y*e1; 
e2 = evectors[.,2]; 
PSR[.,2] = y*e2; 
e3 = evectors[.,3]; 
PSR[.,3] = y*e3; 
psr = real(psr); 
 
evalues = real(evalues); 
var=sumc(evalues); 
por=evalues/var; 
dims = seqa(1,1,rows(por)); 
por; 
/*Plot of Eigenvalues*/ 
begwind; 
window(3,1,0);    
setwind(1);      
 
graphset; 
ylabel("Eigenvalues"); 
xlabel("Number"); 
xy(dims,por); 
 
nextwind; 
ylabel("e1"); 
xlabel("e2"); 
xy(psr[.,1],psr[.,2]); 
 
nextwind; 
ylabel(""); 
xlabel(""); 
xyz(psr[.,1],psr[.,2],psr[.,3]); 
endwind; 
retp(psr); 
endp; 
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ESSAY THREE: 
 

HAVE LIVESTOCK CYCLES DIMINISHED OVER TIME? 
 
 
 
 
Abstract:  

This paper applies the technique of phase space reconstruction to investigate U.S. 

livestock cycles.  Results are presented for both pork and cattle cycles, providing 

empirical evidence that the cycles themselves have slowly diminished.  By comparing the 

two livestock cycles important insights can be made.  The phase space analysis suggests 

that the biological constraint has become a less significant factor in livestock cycles while 

technology and information are relatively more significant. 

 

Key Words:  cattle cycles, pork cycles, nonlinear time series, phase space reconstruction, 

technological change 

JEL Classification: C14, Q11 
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Introduction 

The technique of phase space reconstruction is applied to empirically investigate hog and 

cattle cycles in the U.S.  Current research on hog and cattle cycles employs a variety of 

modeling techniques to analyze the dynamic properties found in the cycles.  In particular, 

the focus of this literature, discussed in detail below, has been to identify the primary 

factors driving these cycles. Concurrently, innovations modeling macroeconomic 

business cycles suggest that the business cycle in-and-of-itself has been changing over 

time.   The central idea of the current paper is to reconstruct cattle and hog cycles to 

establish further evidence in evolving patterns of cycle length, magnitude, and volatility.  

We then draw on recent livestock and business cycle literature to provide plausible 

explanations for recent changes in livestock cycles.   

 It is well known in business cycle literature that variability in output growth 

across the G-7 nations has greatly decreased.  Recent contributions to this literature: 

Stock and Watson (2005); Doyle and Faust (2005); and Canova, Ciccarelli, and Ortega 

(2007) estimate the converging properties of these cycles.  The debate therein lies in the 

cause of volatility change; whether or not it is due to good monetary policy, inventory 

management, or simply reduced external shocks. McConnell and Perez-Quiros (2000); 

Kahn, McConnell, and Perez-Quiros (2002); and Stock and Watson (2003) effectively 

show that for the United States the reduction of volatility in output growth can be 

attributed to changes in technology and information.   

Through phase space reconstruction, we are able to identify short and long run 

dynamics and other qualitative features of livestock cycles.  Phase space reconstruction, 

using nonparametric nonlinear time series techniques, allows for the extraction of an 
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underlying structural system from a single observed time series.  In the spirit of Chavas 

and Holt (1991) the dynamic properties of the cattle and hog cycles are illustrated using 

Takens’ (1981) embedding theorem.  

Results from the phase space reconstruction exhibit nonlinear dynamics consistent 

with previous findings, while also suggesting a longer run change in the characteristics of 

the livestock cycle much like that observed in business cycles.  We show through a 

combination of descriptive statistics, phase space analysis, and previous literature that 

livestock cycles have been diminishing in recent years.   

The study proceeds in the following manner; previous livestock cycle research is 

discussed, followed by the theory and application of phase space reconstruction to United 

States cattle and pork inventories.  The next section makes specific comparisons between 

the two livestock cycles and draws upon past research and economic reasoning for 

plausible explanations for recent patterns.  Final remarks and suggestions for future 

research conclude the paper.  

 

Previous Livestock Cycle Research 

Both cattle and pork cycles have been researched extensively using a wide variety of 

methods.  The observation that cycles are prevalent in livestock markets is far from new.  

From Ezekiel’s (1938) treatment of the pork and milk industry with the cobweb theorem 

to recent contributions involving nonlinear time series analysis the previous assessments 

have genuinely shown the depth of ingenuity in the field of economics.  After John 

Muth’s (1961) theory of rational expectations the majority of this research has focused on 



 104 

explaining why cycles might exist in competitive markets such as these.  Five 

observations become apparent after a review of the livestock cycle literature: 

1) The biological constraints inherent in livestock accumulation have played a 

large role in the pervasive cyclical effect.      

2) Model results are driven by how ranchers are assumed to form expectations 

about markets. 

3)  Nonlinear methods such as dynamic and nonlinear time series models 

describe the cycles more accurately than linear methods. 

4) Since most of the research was published before 2003, data sets have been 

limited to the 19th and 20th centuries. 

5) The livestock cycle literature can be loosely split into two groups, dynamic 

models and time series models.   

Dynamic Livestock Models 

The dynamic model literature follows Jarvis (1974) in applying basic microeconomic 

principles to the cattle market.  Jarvis illustrated that by correctly modeling the cattle herd 

as being comprised of different capital goods, i.e. calves, cows, steers, etc., a better 

explanation of producer responses to prices can be found.  He also found the supply of 

beef to be backward bending.  By behaving rationally, producers react to price increases 

by decreasing slaughter rates in the short run to increase herd size thus increasing supply 

in the long run. 

 The next set of dynamic models came from Rosen in 1987 and Rosen, Murphy, 

and Scheinkman in 1994.  Rosen simplified the analysis and focused on the specific 

interaction of rational ranchers market decisions with the population dynamics of a herd.  
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The analysis concluded that the backward bending supply curve was a result of a 

permanent demand shock, and that transitory demand shocks result in what economists 

would view as “normal” behavior.  The second adaptation of Rosen, Murphy, and 

Scheinkman incorporated a more accurate adaptation of the biological constraints faced 

by ranchers in a rational expectation framework.  Through this framework they show that 

the cyclical process in cattle inventories is due to exogenous demand shocks. 

 In response to these models, Nerlove and Fornari (1998) created a model that 

tested the existence of quasi-rational expectations over fully rational expectations.  They 

find that in a dynamic framework their model follows the results of the previous research 

while allowing for a greater degree of flexibility.  

 In 2000, two papers were published independently that offered somewhat similar 

insights into what might be causing the cyclical effects.  Chavas estimated, using a novel 

dynamic model, the existence of heterogeneous expectations among ranchers.  The 

evidence presented confirms rational expectations in the cattle market while maintaining 

the persistence of the cattle cycle as a result of not all ranchers having these forward-

looking expectations.  Similarly, Hamilton and Kastens use the dynamic model 

incorporating what they call a “market timing effect.”  They proposed that if some 

ranchers behaved in a counter-cyclical fashion, i.e. had rational expectations, the cycle 

would eventually die out.  However, if there existed a mix of ranchers whom had 

different decision-making processes, countercyclical, constant-inventory, and 

representative of the aggregate, the cycle will persist. 

 The last set of dynamic models come from David Aadland and DeeVon Bailey.  

Aadland and Bailey (2001) incorporate the most sophisticated biological and market 



 106 

constraints to date.  Unlike the previous two articles, they assume producers to be the 

traditional identical forward-looking profit maximizers.  They separate the fed and unfed 

cattle sector and allow producers to make adjustment decisions between these two capital 

goods which allows for the possibility of Jarvis’ backward bending supply curve.  In 

Aadland (2004) the developments of Chavas (2000) are combined with the previously 

mentioned paper so that for the first time extensive biological and market constraints are 

combined with heterogeneous expectations.  The model made it possible for the observed 

decade long cattle cycle to be endogenously propagated.  He then related the periodicity 

of the cattle cycle to four large macroeconomic shocks. 

Time Series Livestock Models  

The time series models have experienced a similar development as the dynamic models.  

They are found more readily in the analysis of the pork cycle and are comprised of a rich 

array of econometric and time series techniques.  The first, Rucker, Burt, and LaFrance 

(1984) uses the flexibility of their estimation technique to estimate Jarvis’ model.  They 

find that by analyzing both fed beef and corn prices a superior model is built.  They also 

make the concession that aggregate models could be severely understating the differing 

regional production technologies and suggest this as potential future research.   

 In 1991 Chavas and Holt published their seminal paper on pork dynamics.  They 

expressed the importance of nonlinear state equations in dynamic models.  This type of 

setup allows for an exceptionally large scope of analysis as linear state equations, while 

useful, cannot fully capture nonlinear processes.  They use nonlinear time series analysis 

to estimate the pork cycle and show that given rational expectations the existence of a 
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pork cycle must be due to some unknown randomness; the cycle cannot be perfectly 

predictable for it to persist.20 

 Mundlak and Huang (1996) use autocorrelation and cross-correlation functions as 

well as spectral decomposition to show that, ceteris paribus, countries with differing 

production technologies exhibit similar production cycles and different price cycles.  

While their treatment does isolate interesting idiosyncrasies between countries, the use of 

linear time series techniques, as will be shown below, did not fully capture the cyclical 

effects. 

 The last paper published addressing livestock issues follows Chavas and Holt 

(1991).  Holt and Craig (2006) use sophisticated nonlinear time series techniques to 

analyze the hog-corn cycle from 1910-2004.  The variant STAR model allowed for the 

explicit modeling of structural change in addition to the inherent nonlinear behavior.  

They found that the cycle’s response to shocks has fundamentally changed over the years, 

and that by the end of their sample period has all but disappeared.  They hypothesize that 

the pork cycle has been evolving over time as a function of institutional and technological 

change.   

 

Reconstructing Livestock Cycles 

Since its development phase space reconstruction has become an essential part of 

nonlinear dynamics (Packard et al., 1980, Takens, 1981).  It has been incorporated into 

various areas of research from Schaffer and Kot’s SEIR model of epidemics to Zaldívar’s 

                                                
20 It is interesting to note that the embedding theorem that drives Chavas and Holt (1991) and Chavas and 
Holt (1993) is the same that motivates this paper.  While this application of the embedding theorem is novel 
in economics, through Chavas and Holt the theorem itself has laid the foundation for other important 
economic research. 
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forecasting of Venice water levels, phase space reconstruction is the qualitative 

benchmark for nonlinear analysis (Schaffer and Kot, 1985, Zaldívar et al., 2000).  It 

allows for the basic properties of the system to be determined and subsequent qualitative 

analysis to be performed without any prior knowledge of a system.  This is analogous to 

nonparametric regression, which allows for the relationship of variables to be determined 

without imposing restrictions or prior functional form.  

 The nonlinear time series methods used in this paper are motivated and based on 

the theory of dynamical systems in phase space (Takens, 1981).21  The general idea of 

phase space reconstruction is that a single scalar time series may have sufficient 

information with which to reconstruct a dynamical system, much like a single stain of 

DNA contains sufficient information to reproduce an entire organism.   

 Data are often observed as a temporal sequence of scalar values.  For any event, 

n  outcomes are observed as a subset of the total population and are denoted by the time 

series vector

! 

X
t

= x t( ),x t "1( ),...,x t " n( )[ ]#.  For future reference the th!  lag of this vector 

will be referred to as 

! 

X
t"# = x t " #( ),x t "1" #( ),...,x t " n " #( )[ ]$.  The challenge is to 

convert the sequence of scalar observations into state vectors and reproduce dynamics in 

phase space.  Then one can study the dynamics of the system by learning the dynamics of 

the phase space trajectories, which is particularly useful in complex systems (see 

examples in Kantz and Schreiber, 1997). 22   This reproduction makes it possible to 

                                                
21 Typically phase space is defined as the space in which some geometric structure exists.  In very general 
terms every trajectory of the structure of question may be represented as a coordinate in its particular phase 
space.  For qualitative analysis we will always be referring to phase spaces of two and/or three dimensions.   
22 Phase space reconstruction is a diffeomorphism that reproduces a time series on a plane that mirrors the 
phase portrait of the underlying system.  A diffeomorphism is a smooth function, Φ, that maps one 
differential manifold, M, onto another, N, whose inverse, Φ´, is also a smooth function that maps N onto M.  
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qualitatively delineate short or long run processes that evolve over time and generally 

better understand the nature of the underlying dynamical system; this is the essence of 

phase space reconstruction. 

Embedding 

The idea of embedding attractors onto different spaces and in different dimensions is an 

important concept in the theory of dynamical systems.23    It was not until Packard first 

proposed that this be done from measured time series that the idea of phase space 

reconstruction was formed (Packard et al., 1980).  Packard proved that the embedding of 

the geometry of a strange attractor may be represented by a series of differential 

equations.24  Takens extended this proof to encompass what is now known as the method 

of delays (Takens, 1981).  The Method of Delays is a diffeomorphism of an attractor with 

dimension m  onto a phase space of dimension n  where 12 +! mn .  For empirical 

application, the Method of Delays requires an optimal time lag ! be chosen followed by a 

minimum embedding dimension ! .  Once the two parameters are estimated, the time 

series 
t
X  will generate a reconstructed phase space matrix 

( )[ ]!"!!" 12
,...,,, ####=

tttt
XXXXY  with dimension ( )[ ]!!" #$n .25 

                                                                                                                                            
This mapping preserves all geometric properties of the original figure.  Much like a topographical map 
preserves all geometric properties of the earth. 
23 An embedding is the mapping process used to reproduce geometric figures onto different spaces.  Again 
it is analogous to creating a two-dimensional map of the three-dimensional world.  Not all embeddings are 
diffeomorphisms, just like not all maps contain all the properties of the area they cover.  Nonetheless, even 
though road maps don’t usually contain elevation gain they provide a great deal of information. 
24 An attractor is a subset of a space onto which a system evolves to over time.  A strange attractor is an 
attractor that allows for a greater degree of flexibility in that the subset of the space may be fractal, i.e., the 
dimension of the space does not have to be a real integer. 
25 As discussed before, the process of phase space reconstruction is much like map making.  The 
reconstruction is a map containing all geometric properties of the original system that drives the dynamics 
of the observed time series.  Through Takens’ embedding theorem it is possible to extract this map of the 
underlying dynamics from a single time series.  
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The time lag !  is paramount to empirical applications of Takens’ theorem.  While 

the condition 12 +! mn  is sufficient, it is not necessary.  By choosing a time lag that 

first minimizes the redundancy between the column vectors in matrix !Y  the geometry of 

the original manifold will be preserved even when the time series is contaminated with 

noise (Fraser and Swinney, 1986).   

 Given the choice of optimal time lag, the minimum embedding dimension !  can 

be estimated.   Kennel, Brown, and Abarbanel (1992) developed the False Nearest 

Neighbors technique for choosing a minimum embedding dimension. If !  is too small 

the reconstruction cannot unfold the geometry of the possible strange attractor.26  If !  is 

too large procedures used to determine basic properties of the system and qualitative 

analysis may become unreliable (Aittokallio, et al., 1999, Kennel, et al., 1992). 

Cattle Cycles 

Cattle cycle inventory data come from the National Agricultural Statistics Service 

(NASS) of the USDA.  The time series consists of yearly quantities of cattle and calves 

measured in January from 1887-2007.  We have provided descriptive statistics, Table 1, 

portioned every twenty years and refer the reader to the standard deviations as measures 

of unadjusted volatility.  The table provides some basic insights into the changing 

behavior of the cattle cycle over the sample period.  The mean is greater than the median 

for seven of the eight periods indicating that generally the time series has been 

increasing, hence the unit root.  The standard deviation decreased substantially from 

1867-1950 after which a large increase in volatility occurred.  The increase in volatility 

can be attributed to producer response in large fluctuations in retail beef consumption.  
                                                
26 An example of an embedding dimension being too small would be a 2-dimensional representation of a 
cube.  In 2-dimensional space the cube appears to be a square.  In 3-dimensional space the true geometry of 
the cube is clearly not a square but a much more complex figure.   
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The last observation period contains the smallest standard deviation of the entire sample; 

meaning that volatility has decreased to its minimum over the sample period in the last 

twenty years.  

The quantity of beef supplied to a market in a year by the rancher depends on the 

size of her stock of cattle.  The stock of cattle at the rancher’s disposal depends on the 

amount of cattle retained from the previous year.  This time dependent process is 

indicative of the statistical process known as a unit root and can be seen clearly in the 

supply time series in Figure 1.  The traditional methods for estimating the optimal time 

lag, the mutual information function, exhibits a long memory process that complicates the 

estimation of the optimal time lag.  This long memory process is presented in Table 2, the 

mutual information and autocorrelation functions for the supply of beef.  However, since 

the mutual information function is relatively small we know that the optimal time lag 

must also be small.   

Traditional methods of analysis like those presented in the section above are 

impeded in the presence of a unit root.  This is the motivation for the majority of the 

literature to analyze detrended livestock data. However, Broomhead, Huke, and Muldoon 

(1992) show that certain filters will eliminate nonlinear processes.  As phase space 

reconstruction was designed to analyze nonlinear processes, unit roots have no effect on 

the embedding theorem itself.  They do disrupt the nonparametric parameter estimation 

techniques so that they must be supplemented with the geometric methods discussed in 

McCullough (2008). In doing so this analysis is free of restrictive filters and 

intertemporal dynamics may be delineated whereas in previous research they could not.  

Using the geometric method the optimal time lag is estimated to be 

! 

" = 3.     
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To estimate the minimum embedding dimension we use the false nearest 

neighbors method described in Kennel et al (1992).  Table 3, contains the percentage of 

false nearest neighbors found for each dimension.  It is clear that the structure of the 

system may be embedded on a dimension as small as two, certainly no more dynamics 

will unfold by increasing the embedding dimension larger than three.  The phase space 

reconstruction is presented in Figure 2 and will be that which the qualitative analysis will 

be based upon.   

It is no surprise that the phase space reconstruction of cattle inventories exhibits 

an overlapping cyclical pattern from the beginning of the trajectory in the lower left 

corner of Figure 2.  The cluster of overlapping cycles in the phase space trajectory show 

that cattle inventories, while increasing slightly, followed the same pattern over the first 

three cycles.  What is not necessarily apparent in the original time series, Figure 1, is that 

these cycles have been steadily diminishing with time.   

Observing the middle portion of the phase space reconstruction indicated with a 

solid line, the overlapping cycles are distinctly decreasing so that by the time when the 

last overlap should occur only a slight bump appears.  This is an indication that the 

severity of the cycles has decreased.  In fact, it can be seen in the cycles of the original 

time series quit easily. Table 4 contains descriptive statistics that differentiate the cattle 

cycles.  Amplitude is the difference between the initial cycle inventory and its lowest 

inventory and can be thought of as a type of severity measure, or magnitude, for each 

cycle.  Table 4 also contains the wavelength of the cycles measured from peak to peak.  

Form the late 19th century a downward trend in amplitude is present with a large increase 

during the 1975-1981 cycle.  
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 The next few cycles of the phase space trajectory follow a recursive trend as the 

result of permanent demand shocks as well as other external factors.  After 1990, 

however, per capita consumption of beef reached a steady state in which only temporary 

adjustments about the mean have been observed.  McCullough (2008) shows that the 

steady pattern of beef consumption is permanent and should be expected baring any 

unforeseen large macroeconomic shocks or unlikely fundamental changes in behavior.  

Figure 3 overlays per capita consumption with total inventories to illustrate the point that 

since 1960, inventories have nearly mirrored consumption.  The phase space 

reconstruction during the final period shows a small cycle nearly half the size of its early 

counterparts, suggesting a mitigation of the cyclical process.  During the same period, the 

final two cycle amplitudes in Table 4 decrease substantially from the previous cycle.  

This is also the trend that is seen in the standard deviation reported in Table 1.  That 

which is called the “Great Moderation” in the business cycle (see Stock and Watson, 

2003) appears to be present in the cattle cycle as well.  Combining the change of hog 

cycles and general business cycles helps to explain the cause of this mitigation. 

Hog Cycles 

Yearly total inventory of hog and pigs in the United States from 1866-2006 are analyzed.  

Taken from NASS, inventory is measured on December 1 and descriptive statistics for 

every twenty years are provided in Table 5.  What was seen as slight moderation in cattle 

inventories is more than apparent in pork inventories.  The standard deviation has 

decreased ten-fold from the 1929-1949 cycle while the mean and median have slightly 

increased.  This is direct evidence of decreased volatility in pork inventories, which the 

following phase space analysis confirms. 
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As with the total inventory of cattle the time series of total inventory of hogs and 

pigs requires the use of methods unaffected by unit roots. The optimal time lag is 

estimated to be 

! 

" = 3.  The minimum embedding dimension is estimated using the false 

nearest neighbors test, see Table 6.  The percentage of false nearest neighbors decreases 

from 30% to 19.75% when increasing the embedding dimension from 

! 

" = 2  to 

! 

" = 3.  

For an application such as this, a percentage of false nearest neighbors between 20% and 

30% is quite acceptable.  For this reason, as well as for purposes of clarity, we present 

and draw inferences from a phase space in two dimensions.  

 The phase space reconstruction of pig and hog inventories requires a slightly more 

detailed analysis.  In Figure 4, the time series of total pig and hog inventories, the well-

documented hog cycle can be seen with a fluctuation between peaks and troughs between 

four and six years.  The first six or seven cycles are just as apparent in the phase space 

trajectory, Figure 5.  After this point the phase space trajectory enters what appears to be 

a birds nest type state, indeed Table 5 shows an increase in standard deviation from 1908-

1970.  This period was one of large macroeconomic shocks and technological change, 

after which volatility and amplitude, see Table 7, decrease to levels comparable to those 

before refrigeration.  Comparing volatility, wavelength, and amplitude post 1980 to that 

before 1910 raises the question whether or not the structure of pork cycles during these 

periods are the same as well.  To answer this question, Figure 6 shows the phase space 

reconstruction of total hogs and pigs between 1886-1910 and 1980-2006.  From this 

phase space reconstruction we can draw two general observations. 

1. The volatility of pork inventories has decreased substantially from previous 

decades to a level comparable to the time when pork markets were entirely local.  
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2. The cyclical nature of the pork cycle has changed.  The type of cyclical present 

pre-1910 is fundamentally different from that post-1980. 

 Figure 7 plots retail pork consumption overlaid with total hog and pig inventories 

and the same general effect seen in the overlay of cattle inventory and consumption can 

be seen, but with much more accuracy.  Total inventories follow retail consumption 

quarterly since 1990 nearly identically.  Seasonal patterns are met without fail, as are the 

slightly longer-run adjustments in consumption.  As it is with cattle cycles, the amplitude 

of the pork cycle has decreased significantly in the last twenty-five years. The volatility 

of the pork cycle is plotted in Figure 8 and as expected has decreased to a level that has 

not been seen since the time before refrigeration (see Table 7 for statistics). 

 

Comparing Livestock Cycles 

It is important to note that the phase space reconstruction was performed on inventories 

of both cattle and swine not slaughter rates or the commonly studied hog-corn price ratio.  

The amount of generality obtained from studying inventories as opposed to prices or 

slaughter rates increases due to the fact that it is not an analysis of the results of market 

equilibrium but one of the forces that drive to obtain market equilibrium.  In markets such 

as these where the product has short shelf lives it is up to the rancher to maintain the 

inventory to supply demand. 

 The existence of the livestock cycle has been attributed to biological constraints, 

weather, grain and beef trade, commodity programs, structural effects, exogenous 

demand shocks, and market-timing effects (Mathews et al, 1999).  Simple economic 

analysis agrees with these as determinants of market equilibrium.  However, since the 
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markets for the two species were almost entirely local in the 19th century, we can negate 

the effects of producer responses to timing and larger market shocks, and attribute the 

cycles to the biological constraints in stock accumulation and weather.  It was not until 

the markets began to grow nationally that these other determinants began to play a 

significant role, and it is at this time that the cycles appear to begin to change.  This trend 

is apparent in the volatility measure of standard deviation, Tables 1 and 5, and the 

amplitude measure of both livestock cycles, Tables 4 and 7. 

 As technology increased and operations became more efficient and confined, 

especially in the swine industry, the ability to meet demand increased dramatically.  

Regardless of how expectations are formed if biological effects restrict producers there 

will be a lag between increased demand and increased quantity supplied.  The decrease in 

the variability of the pork phase space reconstruction is a testament to the producers’ 

ability to match demand.  What is qualitatively apparent in the phase space reconstruction 

is also apparent in the decrease in standard deviation and volatility presented in Tables 1, 

4, 5, and 7.  This is parallel to the factors that affect beef producers.  The gestation period 

for swine is approximately four months compared to the approximate nine for cattle.  

Combined with the shorter time lag for births swine have litters comprised of around 10 

piglets.  The biological constraints for pig farmers a much less restrictive than those for 

cattle ranchers.  With consistent demand, they should therefore be able to meet demand 

with greater ease.  This is exactly what the phase space reconstructions, Figures 2 and 6, 

the demand-supply overlays, Figures 3 and 7, the measures of cycle amplitude, Tables 4 

and 7 and Figure 8, and the overall standard deviations, Tables 1 and 5, illustrate.         
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 In addition to decreased biological constraints the hog and pig industry has 

experienced a drastic change in the last twenty years.  The supply chain has become 

increasingly vertically integrated.  Having vertically integrated supply chains decreases 

the impact of restrictions such as lack of consumer information.  It is not uncommon now 

in the hog industry to have direct relations between retail suppliers and operations that 

breed and slaughter.  

 Mathews et al (1999) demonstrate this consolidation effect with their estimated 

effects of increasing concentration of the beef-packing sector.  Their estimate of the 

Herfindahl-Hirshman Index (HHI) for the packing industry suggests the ability for 

market power, however they reported that they industry does not appear to be exercising 

this power and that farm prices are actually slightly higher because of the concentration.  

They suggest that factors not included in their analysis associated with size and 

concentration to be more important than monopolistic pricing effects.  Two of the main 

factors associated with improved efficiency with economies of scale are better 

information and improved use of technology.  While the cattle industry appears to 

evolving in the same way the hog industry has, it is not nearly as vertically integrated.  

This difference between supply chain linkages is most likely one of the largest reasons 

for seeing a more severely diminished cycle in the hog industry.  

  The reduction of cycle volatility because of better adjustment of inventories due 

to technological advancement and vertical integration is not a new theory.  It is this 

argument that drives the business cycle research of McConnell and Perez-Quiros (2000) 

and Kahn, McConnell, and Perez-Quiros (2002).  They explicitly show that the 
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diminishing of the business cycle over the previous two decades was greatly influenced 

by:  

1) “the reduction in the volatility of durable goods”...“coincident with a break in the 

proportion of durables output accounted for by inventories”  

and  

2) “changes in inventory behavior stemming from improvements in information 

technology (IT)...” 

Improvements in information technology through supply chain management can be seen 

in livestock industries as well, indeed much more so for pork than beef.  This causal 

representation of changes in the United States business cycle can effectively be applied to 

the general change in the livestock cycle.  For example, the direct link of farm-gate 

supply in the pork industry to retail demand allows for an increase in consumer 

information and a more efficient supply response, resulting in decreased volatility of 

long-run cyclical processes. 

 The final remark by Holt and Craig (2006) suggests that which the phase space 

analysis has confirmed: “the hog-corn cycle” (in fact the inventory cycles of both hogs 

and cattle) “itself is not a stationary process, but rather a feature of these markets that has, 

itself, evolved through time as dictated by institutional and technological change.”  The 

research detailed above suggested many different causes of the livestock cycle that would 

eventually lead to a steady state of inventories given a consistent demand.  Over time 

producers have been able to adjust herd size at an increasing rate.  It is only because 

cattle inventories contain such a restrictive biological constraint that cattle producers 

cannot match demand as efficiently as hog producers.   
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 Given that beef consumption has settled on a steady state level, producers that cull 

an average percent of total inventory, especially with increasing prices, will receive 

consistent profits.  The profit maximizing decision, as detailed in the dynamic literature 

discussed above, of agents whom generate expectations in any form will converge to the 

same decision.  This is the response found in the swine industry where the biological 

constraints have been all but completely overcome.    

 

Final Remarks and Future Research 

As patterns of United States consumption stabilize over time while production 

technologies advance, and supply chains become more vertically integrated, the ability of 

the producer to match demand has inevitably increased.  Reductions in volatility and 

amplitude suggest the more efficient supply responses, and the phase space 

reconstructions of the hog cycle and the cattle cycle confirm this converging behavior.  

What has been called the “Great Moderation” in international business cycles is apparent 

in United States livestock cycles as well.  The persistence of the livestock cycle has 

diminished in the swine industry and has slowed considerably in the beef industry. 

 The observations made above on the livestock literature pertaining to biological 

constraints, producer expectations, nonlinear methods, and data limitations parallel the 

recent contributions to business cycle analysis.  The dynamic livestock models have 

shown that the early large cyclical effects are largely due to endogenously propagated 

exogenous shocks.  This is apparent in the phase space analysis, as the livestock cycles 

have diminished over time with an increased link from to farm-gate supply to retail 

consumption.  The time series livestock models suggest the use of nonlinear tools to 
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effectively analyze cycles and through phase space reconstruction, this analysis was able 

to circumvent the typical assumption problems that traditional models face and expose 

the similarities and differences between the swine and beef production decision.   

 The phase space reconstructions, demand-supply overlays, measures of cycle 

amplitude, and overall standard deviations have shown that whether or not all producers 

are forming fully rational expectations they have been able to greatly reduce the volatility 

of livestock cycles.  In particular, the level of vertical integration is the main difference 

between the cattle and hog industries.  The diminishing pork cycle is a testament to the 

greater ability of hog farmers to adjust inventories to match demand, and the diminished 

cattle cycle is indicative of the more binding biological constraint and smaller tendency 

to consolidate. 

 It seems prudent that future testing of the evidence of diminishing cyclical effects 

in a more traditional manner be done.  Methods similar to those used in the business 

cycle literature presented should be able to capture the effects hypothesized in this 

research.  What the phase space reconstruction has been able to provide is a clear idea on 

the direction that the livestock markets have taken.  The 19th century production cycles 

depended greatly on the biological constraints faced by producers, and after the advent of 

refrigeration, hormonally induced growth rates, stable demands, and other institutional, 

informational, and technological changes the biological constraints have lessened greatly.  

Conceptually, if the rate these cycles have decreased and whether or not they have been 

consistently decreasing over time can be estimated, as it has been done in the business 

cycle literature, it could be possible to determine a causal link to the particular 

institutional and technological factors driving these changes.  
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 The level of supply chain integration is certainly not consistent throughout the 

United States. In testing the determinants of livestock cycle reduction, the use of 

disaggregated data may prove informative.  Areas where environmental regulation 

prohibits the development of large closed hog operations may have more predominant 

inventory cycles than areas in which regulation is nonexistent. 
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Tables 

 

 

 

 

 

 

Period Mean Median Standard Deviation

1867-2007 77164 70979 25657.07

1867-1887 39867 37333 8692.03

1888-1908 58891 59739 5667.33

1909-1929 63614 63373 5702.66

1930-1950 72929 71755 7462.26

1951-1971 100457 97700 8958.55

1972-1992 111898 113360 11055.62

1993-2007 98623 98199 2678.38

Total Inventory of Cattle and Calves (1000 Head)

 

 

Table 1: Descriptive statistics for the total inventory of cattle and calves: 1867-2007.
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Table 2:  The mutual information and autocorrelation functions for the United States total 

inventory of cattle and calves.  The long memory process indicative of a nonstationary 

time series is clearly present.
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Dimension False Nearest Neighbors

1 0.604938272

2 0.222222222

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0  

 

Table 3: The percentage of false nearest neighbors found when increasing from the 

indicated dimension.  
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Cycle Wavelength Amplitude

1890-1903 14 10809

1904-1917 14 10767

1918-1933 16 15718

1934-1944 11 9120

1945-1954 10 8743

1955-1964 10 5416

1965-1974 10 217

1975-1981 7 21164

1982-1995 14 19628

1995-2007 12 8660  

 

Table 4:  Descriptive statistics differentiating the cattle cycles.  Wavelength refers to the 

number of years between cycle peaks; Amplitude is the difference between the initial 

cycle inventory and its lowest inventory.  
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Period Mean Median Standard Deviation

1866-2006 53756 55366 8526.07

1866-1886 40050 39794 4566.91

1887-1907 49593 49154 4149.28

1908-1928 58052 57578 5160.26

1929-1949 56727 56810 10067.80

1950-1970 57023 57125 5384.00

1971-1991 56792 55466 4419.90

1992-2006 59776 59722 1736.27

Total Inventory of Hogs and Pigs (1000 Head)

 

 

Table 5: Descriptive statistics for the total inventory of hogs and pigs: 1866-2006. 
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Dimension False Nearest Neighbors

1 0.851851852

2 0.308641975

3 0.197530864

4 0.135802469

5 0.271604938

6 0.296296296

7 0.283950617

8 0.395061728

9 0.469135802

10 0.567901235  

 

Table 6: The percentage of false nearest neighbors for embedding total hog and pig 

inventories.
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Cycle Wavelength Amplitude

1867-1871 5 734

1872-1878 7 4079

1879-1883 5 1761

1884-1888 5 5196

1889-1896 8 4478

1897-1906 10 5424

1907-1910 4 10316

1911-1914 4 2541

1915-1917 3 3018

1918-1921 4 5384

1922-1926 5 17199

1927-1931 5 7038

1932-1938 7 23061

1939-1942 4 6812

1943-1944 2 24368

1945-1949 5 6716

1950-1954 5 17155

1955-1958 4 3837

1959-1961 3 3466

1962-1967 6 12207

1968-1969 2 3783

1970-1972 3 8268

1973-1978 6 11347

1979-1982 4 12785

1983-1987 5 5692

1988-1991 4 1678

1992-1993 2 262

1994-1997 4 3614

1998-2000 3 2868

2001-2006 6 167  

 

Table 7: Descriptive statistics differentiating the hog cycles.  Wavelength refers to the 

number of years between cycle peaks; Amplitude is the difference between the initial 

cycle inventory and its lowest inventory.  
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Figures 

 

 

 

 

 

Figure 1: Total inventory of cattle and calves (1000’s): 1867-2007. 
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Figure 2: Phase space reconstruction of the total inventory of cattle and calves in the 

United States: 1867-2007. 
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Figure 3: Retail lbs per capita beef consumption and the total inventory of cattle and 

calves: 1960-2005. 
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Figure 4: Total inventory of hogs and pigs (1000’s): 1866-2006. 
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Figure 5: Phase space reconstruction of the total inventory of hogs and pigs in the United 

States: 1866-2006. 
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Figure 6: Phase space reconstruction of the total inventory of hogs and pigs in the United 

States: 1866-1910 and 1985-2006. 
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Figure 7: Retail lbs per capita pork consumption and the total inventory of hogs and pigs: 

1960-2005. 
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Figure 8:  The amplitude of the pork cycle defined by the difference between initial 

inventory and the minimum inventory for each cycle.  
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