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An Impulsive Dissertation: Experimental and Behavioral Validity

for a New Measure of Trait Impulsivity

Abstract

by Aaron Kirk Wirick, Ph. D.
Washington State University

May 2009

Chair: John Hinson

Two studies evaluated the validity of a new measure of impulsivity titled the Risk Seek-

ing and Response Inhibition Scales. This measure was derived from a two-factor theory of

impulsivity and was designed to replace the questionnaires currently used in the impulsivity

literature. The first study demonstrated good concurrent and discriminant validity with ex-

isting measures of impulsivity. Furthermore, marginal external validity was shown through

correlations with measures of compulsive buying, alcohol problems and gambling problems.

In the second study, structural models were constructed to measure the new scales’ ability

to predict two experimental decision making tasks, the Iowa Gambling Task and Balloon

Analogue Risk Task. These models demonstrated some validity, but also highlighted some of

the weaknesses still present in the new measure. Further refinement is needed before the sub-

scales can adequately replace currently used measures. However, these studies demonstrate

that a replacement is still very much needed.
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Chapter 1

Introduction

1.1 Overview

Many argue that the validity of a psychological theory can be summarized by the extent

to which it accurately predicts behavior. In the case of decision making, one approach to

addressing the validity of a theory is to predict failures in an individual’s decisions. These

deficits can range from temporary lapses in judgment to enduring patterns of poor decision

making. In the latter context, it invokes a personality trait of decision making that has been

labeled impulsivity.

Impulsivity provides a conduit for relating laboratory results to real world decision mak-

ing. As a personality trait, impulsivity can be studied in broader contexts than experimental

measures and as a result has been reliably linked to many different types of problematic real

world behaviors including substance abuse, gambling, financial loss and other maladaptive

decisions. From this, one can presumably infer that impulsivity is a valid analogue for mea-

suring real world problems in a lab setting. However, many theorists note that there is often

a weak or nonexistent correlation between experimental results and the trait of impulsivity

(Reynolds, Richards, & de Wit, 2006). Further complicating the problem is that experi-
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mental tasks also correlate poorly with real world difficulties. While these complications do

not imply that the experimental measures are invalid, they provide a sizable obstacle for

anyone wishing to validate their results. I argue that the reason for this difficulty is not

that the experimental tasks are unrelated to their personality analogues, but rather that

the presence of excessive error variance in many personality measures precludes researchers

from establishing a relationship. The goal of the present dissertation was to remedy that

situation by the validation of a new measure of impulsivity and the use of more appropriate

statistical methods to relate that measure with two experimental tasks.

In order to accomplish this goal, I begin by outlining our current understanding of im-

pulsivity as a personality trait, including a discussion of how impulsivity can be looked at

from an experimental approach. Next, I provide a brief review of the most widely used mea-

sures of impulsivity and highlight the problems that are leading to unreliable measurement.

Finally, I discuss the development of the new measure of impulsivity and the methodologies

employed to validate the measure in this dissertation.

1.2 Theoretical Background

Impulsivity is a multidimensional trait that varies normally in the adult population. Al-

though many different factor structures have been suggested through the years, current the-

ories concur that a two factor structure is preferred (Swann, Bjork, Moeller, & Dougherty,

2002; Evenden, 1999; Dawe, Gullo, & Loxton, 2004). Interestingly, these factors are the

combination of two distinct approaches to understanding impulsivity.

First, from social psychology, there is impulsivity related to reward or novelty seeking

(Zuckerman, 1994; Roberti, 2004). This facet of impulsivity is responsible for the attraction

of individuals towards risky or unsafe decisions. For consistency, I will refer to this subfactor

of impulsivity as reward seeking. It can be thought of as a motivational factor that draws
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individuals towards choices with the lure of reward in the presence of negative outcomes.

Reward seeking is described by many theorists more precisely as a hypersensitivity to

reward (Bechara, Dolan, & Hindes, 2002; Smillie & Jackson, 2006). For instance, in indi-

viduals with alcohol problems, reward seeking seems to account for the initial attraction to

alcohol use (Dawe & Loxton, 2004). Alcohol appeals to these individuals as a means of expe-

riencing euphoria and other positive emotions. Reward seeking maintains alcohol misuse by

keeping the possible benefits of alcohol in the forefront of an individual’s mind and masking

the potentially serious drawbacks of excessive use.

Reward seeking can manifest itself in many different ways but can be loosely described

as an attraction towards risky behaviors and thrilling experiences (e.g., skydiving, playing

the stock market). Categorizing reward seeking in this way focuses on the negative aspect

of this behavior (i.e., risk implies danger or loss). Furthermore, by leaving risk open-ended

(i.e., referring generally to risk rather than specifically to skydiving, etc.), the individual can

apply it to a variety of personally relevant activities. It should be noted that there are likely

other manifestations of reward seeking. But if we are interested in studying impulsivity as

a negative decision we can generalize reward seeking as a tendency towards risky behaviors.

The second factor of impulsivity comes from the neuropsychological and cognitive neuro-

science literature (Franken, van Strien, Nijs, & Muris, 2008; Fellows & Farah, 2005; Williams

& Taylor, 2006). This aspect of impulsivity relates to a lack of inhibitory control or response

inhibition. In this case, impulsivity is not defined by a motivational drive but rather by

a lack of cognitive control. For instance, individuals may intuitively know that a decision

has led to problems in the past, but they are unable to stop themselves from making the

same faulty choice again. Many theorists suggest that this aspect of impulsivity is related to

deficits in executive function and is therefore rooted in working memory (Hinson, Jameson,

& Whitney, 2003; Whitney, Jameson, & Hinson, 2004).

Compulsive buying provides a relevant demonstration of response inhibition problems.
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Individuals with normal or high levels of response inhibition recognize when they cannot

afford to buy something. These individuals therefore exercise self control in their shopping

and avoid the consequences of making an impulsive purchase. Individuals with abnormal

response inhibition may be so quick to act that they do not take the time to think about the

negative consequences of excessive spending. Alternatively, they may simply lack the mental

control to stop themselves from acting even if they know they cannot afford a purchase.

It’s often useful to frame response inhibition as a working memory function. Inhibitory

control problems often manifest themselves as an inability to maintain attention. This

provides an important route for measuring response inhibition for two reasons. First, it

is unlikely that individuals will endorse that they lack self control (or even that they are

aware of it), but many individuals will be willing to endorse that they are easily distracted.

Secondly, this frames response inhibition problems in terms of well understood working

memory processes. In particular, the focus on attention problems allows us to understand

response inhibition as a more general problem in executive control which has been heavily

studied in experimental decision making paradigms.

1.3 Current Measures

Personality psychology typically employs one of three scales when measuring impulsivity:

• Barratt’s Impulsivity Scale (BIS; Patton, Stanford, & Barratt, 1995)

• Zuckerman’s Sensation Seeking Scale (SSS; Zuckerman, 1994)

• Eysenck’s Impulsivity Scale (EIS; Eysenck, Pearson, Easting, & Allsopp, 1985)

These measures possess unique strengths and weaknesses. More recently, a new scale was

developed that coalesced these three separate measures and others into a unified scale by

using a large data-driven exploratory factor analysis. This scale, the Urgency Premeditation
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Perseverance and Sensation Seeking Impulsive Behavior Scale (UPPS) will be discussed here

as well (Whiteside & Lynam, 2001).

The first and most commonly cited measure, the BIS, is a 34-item questionnaire. Google

scholar currently lists more than 450 citations for the most recent revision of the BIS (Patton,

Stanford, & Barratt, 1995). From a two-factor impulsivity standpoint, the BIS singlehand-

edly defined the measurement of response inhibition problems. It has been used extensively

in neuropsychological research and is noteworthy for providing a way of relating personality

and experimental approaches. Furthermore, the BIS is important for connecting response in-

hibition problems to cognitive control mechanisms rooted in working memory and specifically

executive control. For these reasons, many people in cognitive psychology and the neuro-

sciences see the BIS as a very important tool for relating experimentally derived theories to

practical real world problems.

Unfortunately, the BIS contains some serious flaws that have not been addressed. First

and foremost among these is an unstable factor structure. In the 1994 article, the BIS

was factor analyzed using principal components and varimax rotation. The resulting factor

solution revealed three dimensions of impulsivity: Non-Planning, Attention and Motor. Sub-

sequent factor analyses have been rare (Miller, Joseph, & Tudway, 2004; Someya, Sakado,

Seki, Kojima, Reist, Tang, & Takahashi, 2001; Spinella, 2007) and weakly support the factor

structure of the BIS. Unpublished data on confirmatory factor analyses in a sample of 613

Washington State University undergraduates demonstrates a very unstable factor structure

in which the overall model fit is exceedingly poor (CFI = 0.6) unless large amounts of corre-

lated errors and cross-loadings are introduced. Furthermore, the BIS utilizes a four category

Likert-type scale. With so few options, interval level assumptions are violated and tech-

niques such as factor analysis are problematic at best (Flora & Curran, 2004). Therefore,

these factor analytic results should be interpreted with caution. These shortcomings should

not be taken as a criticism of the original authors intents but rather as a reminder that
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psychometric theory has come a long way since 1994, therefore an update is needed.

Zuckerman’s work on the SSS has been extremely influential, especially in social psychol-

ogy research. The SSS contains 40 items which measure reward seeking impulsivity. The SSS

contains four factors including thrill-and-adventure seeking, boredom susceptibility, experi-

ence seeking and disinhibition. Responses on the SSS are elicited using a two-option forced

choice format. Participants are given two seemingly diametrical options and indicate their

preference by circling the one they most agree with. Final scores on the SSS are calculated

by summing the frequency of responses that indicate sensation seeking (Zuckerman, 1994).

One of the major advantages of the SSS is that it intentionally relates the expression of

personality to biological bases (Zuckerman & Kuhlman, 2000). This is noteworthy because

the SSS does not merely describe personality but helps explain where personality comes

from. Increasingly, cognitive psychology is attempting to relate mental phenomena back to

brain function and the SSS has been doing so for some time.

Like the BIS, the SSS is also beginning to show its age and contains a number of issues

that need to be addressed. Gray and Wilson (2007) conducted a factor analysis of the SSS

after updating the scale to a Likert-type response format. Their analysis suggest that the

reliability of the SSS is questionable, that some items seriously threaten construct validity

and that the wording of the scale is somewhat out of date (e.g., references to the jet set,

swingers, etc.). Zuckerman (2007), in response to these criticisms, argues that the validity

of the scale is in its extensive use and its established relationship with risky behaviors.

Zuckerman (2002) recommended his own modifications to the SSS and these changes were

included in the Zuckerman-Kuhlman Personality Questionnaire (ZKPQ). Although this ques-

tionnaire is designed to measure personality from a larger five-factor perspective, it contains

a subscale that assesses both sensation seeking and impulsivity. The sensation seeking di-

mension evolved directly out of the SSS while the impulsivity dimension captures response

inhibition type behaviors. The addition of the impulsivity dimension was theoretically nec-
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essary but was not particularly successful. A recent evaluation of the ZKPQ demonstrated

that the items on the impulsivity scale (i.e., response inhibition) fit poorly into the overall

model (Aluja, Rossier, Garćıa, Angleitner, Kuhlman, & Zuckerman, 2006). For these rea-

sons, both the SSS and its descendant, the ZKPQ, should be used with hesitation when

examining the reward seeking facet of impulsivity.

The last commonly utilized measure of trait impulsivity is the EIS. Now in a seventh

revision, this scale contains 54 yes-no items grouped into three factors: Impulsivity, Ven-

turesomeness and Empathy. Impulsivity maps on directly to response inhibition and venture-

someness relates to reward seeking behavior. The empathy factor has been largely abandoned

in recent years due to reliability concerns and a lack of construct validity. It has therefore

been excluded from the present study.

One of the major advantages of the EIS is that it has been measuring impulsivity from

a two factor standpoint for 20 plus years. While both the BIS and SSS are more narrowly

focused on the subcomponents of response inhibition and reward seeking, the EIS has drawn

both components together into a single assessment. Thus, studies that have utilized the EIS

have helped to demonstrate evidence for a two-factor approach to impulsivity. Like the SSS,

the EIS is based on the assumption that personality traits are derived from biological pro-

cesses. Furthermore, Eysenck’s personality research was among the first theories to extend

across social and cultural groups (Barrett, Petrides, Eysenck, & Eysenck, 1998).

In spite of its definite value, the EIS has not been refined in recent years and has some

major psychometric issues. Like the other scales, it utilizes a categorical response format to

indicate either agreement or disagreement with a prompt (e.g., Do you quite enjoy taking

risks?). Scores are summed so that the total score reflects the number of agreements. Because

the scale was revised 20 years ago, items are becoming outdated (e.g., Are you happy when

you are with a cheerful group and sad when the others are glum?). Recently, exploratory

factor analyses were conducted on the EIS and the general factor structure was maintained
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(Caci, Nadalet, Baylé, Robert, & Boyer, 2003). However, these results should be interpreted

with extreme caution as the authors did not address the issue of categorical variables in their

analysis.

Whiteside and Lyman (2001) recognized the lack of a unified measure of impulsivity and

sought to modernize impulsivity assessment by combining the measures into one question-

naire. The result of this endeavor is the UPPS, a four factor impulsivity measure containing

45 items. A number of methodological problems during scale development may ultimately

limit the utility of the UPPS. First, the development of the scale was based entirely on an

exploratory factor analysis of 20 subscales from nine separate impulsivity measures. The

only apparent criterion for scale inclusion was that it come from some theory of impulsivity

and not necessarily an accepted theory. This atheoretical approach is problematic because

the resulting scale will be completely determined by the data and all conclusions pertaining

to what the scale ought to measure are decided by chance correlation rather than careful

construction. Without a strong theoretical orientation to drive the scale construction, the

resulting factor structure can be determined by spuriously arising factors that do not relate

to the intended construct of impulsivity. In this context, the urgency and lack of perse-

verance factors are not well accounted for by the impulsivity literature. This is primarily

because the authors utilized subscales from the NEO-PI-R and EAS-III which emerged as

dominant factors. Neither scale has empirical support as an impulsivity measures.

A second major criticism is that the resulting factor structure failed to fit adequately when

subjected to a confirmatory factor analysis (Magid & Colder, 2007). This likely occurred

because the original exploratory factor analysis was actually principal components rather

than a true common factor model. Principal components forces the factors to account for

all of the variance in the model including measurement error. Thus, when transitioning to

a common factor model as in confirmatory factor analysis, the loadings between items and

factors can weaken when error variance is accounted for. Finally, the UPPS has only marginal
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validity. Whiteside and Lyman (2005) demonstrated that their scale can predict antisocial

personality disorder and borderline personality disorder traits, but it failed to correlate with

either alcohol problems or gambling behavior. Taken as a whole, these criticisms suggest

that the UPPS is neither a reliable nor valid alternative to the older measures of impulsivity

which it intended to replace.

I want to reemphasize that the EIS, SSS and BIS have made unique and valuable contri-

butions to our understanding of impulsivity and decision making. However, the point of my

criticism is to illustrate that meaningful improvements are past due and that development

of a new measure will result in many of the advantages of these scales without their known

psychometric limitations.

1.4 Risk Seeking and Response Inihibition Scales

I set out to develop a new scale for assessing impulsivity that addressed the theoretical and

statistical limitations of current measures. The result of this work was a two-factor measure

of impulsivity named the Risk Seeking and Response Inhibition Scale (RSRIS). The RSRIS

was developed using item response theory (IRT). This approach has a number of advantages

including greater reliability at the item level, stronger dimensionality for factors and a more

accurate characterization of measurement error for individuals (Embretson & Reise, 2000, see

also Appendix A). A number of important considerations were made during the development

phase. First, I generated a number of items that dealt with the two factors of impulsivity

at a theoretical level. Good psychometric measures are theoretically driven and I wanted

my new measure to represent impulsivity from the perspective of response inhibition and

reward seeking. For the reward seeking elements, I was primarily concerned with items that

dealt with endorsing an interest in risky activities, financial problems and an aversion to

living a boring life. With response inhibition, the intent was to frame impulsivity in terms
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of executive control difficulties, such as attention problems, long term planning problems, a

dislike of waiting, etc. For each factor, 34 items that represent a broad range of impulsive

statements were generated.

A second objective of the new scale was to represent impulsivity as two factors with strict

unidimensionality between each factor. Unidimensionality is important for measurement in

order to accurately distinguish between similar constructs. For example, the authors of the

BIS acknowledge three separate subscales that are unique but correlate strongly. In many

experiments, the subscales themselves are ignored and only the total scores are examined.

This is cause for concern because an individual’s total score results from the summing of

theoretically diverse items associated with what should be conceptually different constructs.

In other words, it is possible for two individuals to get the same total score but endorse

completely different behaviors. Alternatively, strictly unidimensional scales will not correlate

with each other and are explicitly interpreted as unique constructs. An individual’s score

can be compared directly with another individual’s score without uncertainty about why

their scores are different or similar.

In addition to fitting a two-factor structure, I was also interested in the style used to

frame the items in the questionnaire. Since the BIS is the most widely utilized measure of

impulsivity, I adopted its style when generating items to provide face validity and a format

that would be familiar to current researchers. Questions are thus termed in self-reflective

statements that an individual can either agree with or disagree with (e.g., I dislike waiting,

or I want to live an adventurous life). Due to the problems with a limited number of response

options in the BIS, I chose a seven point Likert-type scaling, anchored from strongly agree to

strongly disagree. This provides enough points so that interval level analyses can be utilized

if other researchers so desired.

The last major consideration when developing the scale was that the end product should

be relatively brief so that it can be easily administered as part of larger experimental studies.
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From an IRT psychometric framework, shorter scales are preferred and justified by strong

reliability at the item level. This goes against the classical assumption that more is always

better and has been shown to be a better approach to measurement (Embretson & Reise,

2000). Therefore, the scale should contain enough strong items to maintain a high amount

of reliability but a concise scale is preferred to a marginally more reliable and longer scale.

This work resulted in a 14 item scale that contained two unidimensional factors with

seven items each (see Appendix D for the final scale).

1.5 Validation

A new scale is valuable to the extent that it predicts both impulsive real world outcomes

and impulsive behaviors in the lab. This dissertation attempted to validate the RSRIS by

subjecting it to two separate tests of validity. First, the RSRIS was utilized to predict scores

on three separate outcome measures, namely alcohol consequences, compulsive buying and

gambling problems.

Alcohol problems can develop from a variety of circumstances, but it has been repeatedly

demonstrated that impulsivity predicts alcohol problems (Simons & Carey, 2006). The

relationship is likely mediated by motives for drinking and overall alcohol use, but for the

purposes of validation I restricted analysis to a direct relationship (Martens, Neighbors,

Lewis, Lee, Oster-Aaland, & Larimer, 2008). From a two-factor standpoint, reward seeking

should be more strongly related to alcohol problems than response inhibition (Magid &

Colder, 2007).

Compulsive buying behavior has also been reliably related to trait impulsivity and specif-

ically response inhibition problems (Billieux, Rochat, Rebetez, & Van der Linden, 2008).

Clinically compulsive buyers demonstrate high levels of impulsivity (Mueller, Mueller, Al-

bert, Mertens, Silbermann, Mitchell, & de Zwaan, 2007) and impulsivity is positively related
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to college students with credit card debt (Pirog & Roberts, 2007).

Lastly, gambling problems are predicted by higher levels of impulsivity (Slutske, Caspi,

Moffitt, & Poulton, 2005; Nower, Derevensky, & Gupta, 2004). There is still some debate

as to the relative value of each factor of impulsivity, specifically whether reward seeking can

predict pathological gambling (Hammelstein, 2004; Blaszczynski, Steel, & Mcconaghy, 1997).

On the other hand, response inhibition has been reliably related to gambling problems (Wohl,

Matheson, Young, & Anisman, 2008; Slutske, Caspi, Moffitt, & Poulton, 2005; McDaniel &

Zuckerman, 2003; Vitaro, Arseneault, & Tremblay, 1999). Therefore, I expected that the

response inhibition measures would predict higher gambling problems but that a relationship

between reward seeking and gambling may or may not emerge.

To examine the validity of the RSRIS, correlation matrices were constructed in which the

total scores from the four impulsivity measures (RSRIS, BIS, EIS and SSS) were related to

the three outcomes. This provides both predictive validity (i.e., correlations with the prob-

lem behaviors) and demonstrates concurrent validity (correlations between the predictors).

Furthermore, a lack of correlation among different types of measures (e.g., risk-seeking vs

response inhibition) provides evidence for discriminant validity.

A second form of validity is the ability to predict laboratory behaviors. This is partic-

ularly important as measures of impulsivity are often used to lend external validity to the

results of experimental manipulations in cognitive studies. The second study examined how

the RSRIS predicts behavior in two common decision making paradigms, the Iowa Gambling

Task (IGT) and the Balloon Analogue Risk Task (BART). Structural equation models were

constructed as a way to test relationships between the RSRIS and these two tasks.

The IGT is one of the most widely cited experimental measures of decision making

(Bechara, Damasio, Damasio, & Anderson, 1994; Bechara, Tranel, Damasio, & Damasio,

1996; Bechara, Damasio, & Damasio, 2000). In this task, participants are asked to make

decisions by selecting cards from the top of four hypothetical decks. Each card results in a
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guaranteed win but periodically contains a loss. Two of the decks are considered good decks

because they result in small steady wins over time. The other two decks are considered bad

decks and result in large initial wins but even larger losses over time.

The IGT has been used extensively in neuropsychological studies and basic experimental

research (Dunn, Dalgleish, & Lawrence, 2006). Previous studies have attempted to corre-

late performance with both facets of impulsivity with limited success. For instance, Petry

utilized a variety of scales but was not able to establish significant correlations with IGT

performance (Petry, 2001). However, it should be noted that she did not report raw corre-

lations but correlations with factor scores. Others have demonstrated success in predicting

IGT performance using response inhibition (Zermatten, der Linden, Jermann, & Bechara,

2005) and sensation seeking (Breslin, Sobell, Cappell, Vakili, & Poulos, 1999).

One of the problems unique to the IGT is that the scoring often does not reflect actual

performance accurately. Task performance is typically quantified by averaging the number

of good decks that have been chosen in a block of trials. This is an ill-defined way of char-

acterizing performance because the good decks only become clear after the participant has

been playing for a while. In order to get around this, I will use a more complex methodology

for teasing apart IGT performance by using the estimates from a model of IGT performance

(Busemeyer & Stout, 2002). This model, called the expectancy-valence learning model, es-

timates three parameters that correspond to participant’s attention to losses, consistency

in choices and the degree to which their choices are based on recent information. These

parameters are respectively labeled attention to losses, consistency and recency. In particu-

lar, consistency and recency should be related to inhibitory control and attention to losses

should correspond to motivation or reward seeking (Busemeyer & Stout, 2002). This model

provides a way of decomposing performance into domains that, if accurate, can be predicted

by personality traits from the RS and RI scales.

The BART is a more recent measure of decision making that has garnered success for
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its face validity and for its ability to predict real world outcomes like smoking, substance

abuse and psychopathology (Hopko, Lejuez, Daughters, Aklin, Osborne, Simmons, & Strong,

2006; Hunt, Hopko, Bare, Lejuez, & Robinson, 2005; Lejuez, Aklin, Jones, Richards, Strong,

Kahler, & Read, 2003). During the task, participants are asked to fill hypothetical balloons

by instructing the computer to add air each time a button is pressed. Each additional pump

earns a set amount of money but also runs the risk of bursting the balloon. Participants

therefore try to pump the balloon as full as possible but must stop pumping the balloon

before it bursts.

The BART was developed explicitly as a method for measuring risk taking behavior

(Lejuez, Read, Kahler, Richards, Ramsey, Stuart, Strong, & Brown, 2002). The BART also

contains a strong component of response inhibition where a participant must stop pumping

the balloon or suffer the consequence of a burst balloon. For this reason, the BART has

modestly but reliably correlated with both reward seeking behavior as measured by the SSS

and response inhibition as measured by the BIS (Lejuez, Read, Kahler, Richards, Ramsey,

Stuart, Strong, & Brown, 2002). Unlike the IGT, the BART does not have a cognitive

model to estimate various subcomponents of the task. In fact, looking at the average number

of pumps per intact balloon provides the only reasonable measure of risk-taking behavior

(Hunt, Hopko, Bare, Lejuez, & Robinson, 2005). This is an important limitation because the

average number of pumps likely represents a combination of the reward seeking and response

inhibition facets of impulsivity. In order to get around this limitation, on approximately half

the trials the amount of money per pump was increased from $0.05 to $0.25. A difference

between the average number of pumps in the low vs. high reward condition should reflect the

motivational component of risk taking and this should allow me to partial out the remaining

variance as a measure of response inhibition.

Part of the goal for the second study was to determine if the RSRIS can reliably tease

apart what specifically is being measured by the BART and the IGT. Although both tasks
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correlate modestly with both facets of impulsivity, the strength of these relationships and

the theoretical differences between the two tasks should become clearer with a more refined

approach to measuring impulsivity. Therefore, I predicted that the RSRIS will be able to

accurately discriminate between the underlying processes of these two tasks.
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Chapter 2

Study 1

2.1 Method

The primary aim of the first study was to validate the RSRIS against other measures of

impulsivity and to validate the RSRIS by predicting outcome measures associated with

alcohol, compulsive shopping and gambling.

As stated before, impulsivity can be subdivided into response inhibition and reward seek-

ing. Response inhibition can be measured using the BIS, the Impulsiveness subscale of the

EIS (IMP) and the response inhibition (RI) scale. I therefore expected to see correlations

among these total scores. Reward seeking can be measured through the SSS, the Ven-

turesomeness subscale of the EIS (VENT) and the risk seeking (RS) scale. The presence of

meaningful correlations among the RSRIS and the older corresponding measures will provide

evidence for concurrent validity. It is likely that some degree of correlation may be expected

between response inhibition measures and reward seeking measures but these correlations

should be small, which would provide evidence for discriminant validity.

Demonstrating correlations among the various impulsivity measures and the measures

of problem behaviors will give evidence for predictive validity. I predicted that response
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inhibition scales (BIS, IMP and RI) will correlate with both compulsive buying and pos-

sibly gambling and alcohol problems. Alternatively, I predicted that the reward seeking

scales (SSS, VENT and RS) would correlate with alcohol problems and gambling but not

compulsive buying.

2.1.1 Measures

RSRIS – The Risk Seeking and Response Inhibition Scales contain two factors composed

of 7 items each. The questions are self-reflective (e.g., I often have trouble paying attention).

To indicate their preference, participants give a score of 1-Strongly Agree to 7-Strongly

Disagree. Factor scores are estimated using an empirical Bayesian approach and are given

as θ estimates which are similar to Z-scores.

BIS – Barratt’s Impulsivity Scale contains 34 items (four of which are fillers) divided into

three factors. The 30 useful items are routinely summed into a total score. The questions

are worded as self-reflective statements (e.g., I make up my mind quickly) and are scored on

a four point scale ranging from 1 - Rarely/Never to 4 Almost Always/Always.

SSS – Zuckerman’s Sensation Seeking Scale contains 40 items and four factors. Like the

BIS, scores are commonly summed into a total score. Each item gives two alternative choices

of statements and the participant selects which statement they agree with.

EIS – Eysenck’s Impulsivity Scale contains a total of 54 items divided into three subscales.

It is not recommended to use the total score for the entire scale but to only look at the

individual factors. Furthermore, the empathy factor is often left out of analyses. The items

are worded so that a participant can respond either yes or no (e.g., Do you quite enjoy taking

risks?). Factor scores are calculated by summing the ‘yes’ responses.
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YAACQ – The Brief Young Adult Alcohol Consequences Questionnaire was specifically

developed for use in college age students (Read, Kahler, Strong, & Colder, 2006). The

brief version of the YAACQ contains 24 items which fit into a unidimensional factor of

alcohol problems. This scale is both valid and reliable (Kahler, Strong, & Read, 2005) as

well as sensitive to changes over time (Kahler, Hustad, Barnett, Strong, & Borsari, 2008).

Participants endorse yes/no statements about the consequences of their drinking (e.g., While

drinking, I have said or done embarrassing things). ‘Yes’ items are summed up into a total

score that represents the severity of participant’s problems with drinking.

CBI – Compulsive buying was measured using the Compulsive Buying Instrument (Ed-

wards, 1993). This scale contains 13 items that can be divided into four factors. Items are

written as self-reflective statements (e.g., I hate to go shopping) and responses are solicited

from a five-point Likert-type scale ranging from strongly agree to strongly disagree. There

are some issues with the factor structure but total scores can be utilized successfully (Mano-

lis & Roberts, 2008). Importantly, this scale measures the continuum of compulsive buying

better than the other commonly used Compulsive Buying Scale (Faber & O’Guinn, 1992)

which was intended for more clinical applications (Manolis & Roberts, 2008).

SOGS – Gambling problems were measured using the South Oaks Gambling Screen -

Revised. The SOGS was originally developed to address pathological gambling criteria as

set forth in the Diagnostic and Statistical Manual of Mental Disorders - Third Edition

(Lesieur & Blume, 1987). The 20-item version of the SOGS addresses a variety of gambling

behaviors by asking participants a series of yes/no questions (e.g., Have people criticized

your gambling) as well as variable response questions with multiple options. Scoring consists

of counting the number of yes responses and, in the case of multiple choice responses, above

a critical cutoff. A score between 0 and 20 is obtained and higher scores indicate a greater
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likelihood of pathological problems. The SOGS is well validated and has been found to still

be reliable (Strong, Lesieur, Breen, Stinchfield, & Lejuez, 2004).

2.1.2 Participants

A total of 225 (154 females, 71 males) participants were recruited from the WSU Psychology

Department Human Subjects Pool. The sample ranged in age from 18 years to 36 years

(M = 20 years). The distribution of ethnicity is displayed in Figure Figure 2.1 and the

distribution of class standing is displayed in Figure Figure 2.2. The demographics generally

represent the composition of the WSU Subject Pool.
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Figure 2.1: Ethnicity Distribution for Study One. Y-axis indicates frequency, proportions
are listed under each group’s label.

2.1.3 Procedure

Participants completed the questionnaires in a single research session. At the beginning of

the session, participants read a brief form that provided directions for the experiment and
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Figure 2.2: Distribution of class standing for Study One. Y-axis indicates frequency, pro-
portions are listed under each group’s label.

also served as a way of obtaining informed consent. All the data were collected anonymously

to encourage honest responding from the participants. Following consent, questionnaires

were presented to the participants using a computerized response system at individual work-

stations. Questions were presented one at a time and participants indicated their choice by

clicking on the corresponding response using the mouse. Participants were informed that

they could go back and change responses as necessary and that they could choose to not

respond to questions if they were uncomfortable.1 After participants had completed the

questionnaires, they were fully debriefed and thanked for their participation.

1This did, unfortunately, result in rather high levels of missing data for some individuals, I’ll return to
this later (see section 2.2). In the future I would recommend not including a ‘no response’ option but instead
allowing participants to continue with some sort of prompt (e.g., Are you sure you would like to skip this
question?)
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2.2 Analysis

Before any analysis, the dataset was screened for missing data, aberrant patterns of scoring

and descriptive properties. All analysis were carried out in the R programming environ-

ment (R Development Core Team, 2007). Overall, there was a small proportion of missing

data (3.3%) across all questionnaires and participants. Approximately 22 individuals had

more than 10% missing data but were retained for future analysis as their pattern of miss-

ing data suggested that it was not missing completely at random (MCAR) but somewhat

systematically (Schafer & Graham, 2002).

Debriefing revealed that many individuals left data missing on the the gambling problems

questionnaire, the SOGS, because they simply did not gamble. To account for this, all

missing responses on the SOGS were assumed to indicate no gambling and/or drinking

behavior. Further examination of the missing data revealed that certain questionnaires were

also prone to missing data, especially the SSS which was missing 7.6% of cells. Anecdotally,

a number of participants indicated that questions on this measure were confusing, which

may account for the higher proportion of missing data.2

The remaining missing values were imputed using multivariate imputation by chained

equations (MICE; van Buuren & Oudshoorn, 2000; Schafer & Olsen, 1998). MICE imputes

values in a process by which each missing value is replaced using predictions from similar,

complete data. This process reiterates until convergence is reached and the missing value

does not change from one iteration to the next. One of the hallmarks of multiple imputation

is that unlike other missing data techniques it retains a certain degree of randomness which

reflects the somewhat unknown nature of missing data. It does this by producing not one

but several sets of complete data on which any subsequent statistics are analyzed and the

2I would like to point out that the RSRIS as a whole contained only 0.1% missing data. This is probably
due to the fact that it is shorter than the other questionnaires, presented first in the experiment and contains
a Likert-type response format that many students are familiar with.
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results of these statistics pooled together. This reflects what the complete data could have

looked like accounting for both the best estimate from the non-missing data as well as some

randomness. For this experiment, five imputed datasets were utilized in all subsequent

analyses.

Table 2.1: Descriptive Statistics for Study One, N = 225

Measure Mean SD Min Max Range Skew Kurtosis
RI -0.08 1.08 -3.38 3.5 6.88 0.16 0.25
BIS 61.58 8.91 42 88 46 0.36 0.06
IMP 6.57 3.88 0 17 17 0.43 -0.34
RS -0.06 0.89 -2.49 2.64 5.13 0.12 -0.21
SSS 19.29 6.2 4 33 29 -0.17 -0.44
VENT 10.2 3.18 1.4 16 14.6 -0.48 -0.59
CBI 34.87 11.17 13 65 52 0.33 -0.62
YAACQ 7.13 5.42 0 23 23 0.71 -0.21
SOGS 1.07 1.87 0 12 12 2.87 9.89

After dealing with missing data, the resulting scores were analyzed descriptively. Ta-

ble 2.1 shows the means, standard deviations, range, skewness and kurtosis for the data.3

A couple of points are worth noting. First, the overall means for the RI and RS scales are

fairly similar to the calibration sample (M = 0, N = 613), but the RS did show slightly

less variability than before. Second, the means of the BIS, SSS and IMP scales were all

significantly lower than those seen in the RSRIS calibration sample when compared using

non-parametric Welch T-Tests (all p′s < 0.01). Third, the means for the YAACQ and CBI

were similar to reports from other recent studies (Kahler, Hustad, Barnett, Strong, & Bor-

sari, 2008; Manolis & Roberts, 2008) although the CBI was higher than what was reported

when it was originally developed(Edwards, 1993). Last, as expected scores on the SOGS

were rather low and this resulted in high levels of skewness and kurtosis. However, these

scores are typical for non-clinical samples (Holt, Green, & Myerson, 2003).

3Histograms are also available in Appendix E
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Table 2.2: Concurrent and Discriminant Validity Matrix

Measure RI BIS IMP RS SSS VENT
RI 1.00
BIS 0.59 1.00
IMP 0.41 0.68 1.00
RS 0.15 0.35 0.45 1.00
SSS 0.18 0.37 0.41 0.62 1.00
VENT 0.03 0.14 0.17 0.59 0.68 1.00

2.2.1 Concurrent & Discriminant Validity

Following the descriptive analysis, a correlation matrix (Table 2.2) was constructed in or-

der to address discriminant and concurrent validity. In this table, concurrent validity is

demonstrated by large correlations in the upper left quadrant for the RI and the lower right

quadrant for the RS. As expected, the RI scale correlated highly with the BIS (r = .59) but

unfortunately only correlated moderately with the IMP (r = .41). Both the BIS and IMP

correlated strongly with each other (r = .68). On the other hand, the RS scale correlated

well with both the SSS (r = .62) and the VENT(r = .59) although it did not correlate to

the same degree as those two measures correlated with each other (r = .68). Generally,

this provides good evidence that the RS and RI scales both possess at least a fair degree of

concurrent validity.

The lower left quadrant displays the discriminant validity between the scales. As ex-

pected, the RI and RS show very good discriminant validity with each other. This is unsur-

prising as they are both clearly unidimensional measures by design. The RI also demonstrates

good discriminant validity with the SSS and the VENT. Alternatively, the RS shows a mod-

erate discrimination with the BIS but less than desirable discrimination with the IMP. In

fact, the RS correlates more highly with the IMP (r = .45) than the RI scale correlated with

the IMP. This would be problematic except that it appears that the IMP does not discrimi-

nate from either the SSS or the VENT as well. It is therefore likely that the IMP scale does
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not relate strictly to response inhibition, but rather contains a fair degree of overlap with

reward seeking type behaviors as well. In this case, the IMP represents a broad approach to

measuring impulsivity rather than a factor-defined approach.

2.2.2 Predictive Validity

With good concurrent validity demonstrated and some measure of discriminant validity, the

focus now turns to the correlations with the behavioral outcomes. Table 2.3 contains the

correlations that represent the predictive validity of the scales.

First, attention should be directed to the three leftmost columns which indicate the

response inhibition type scales. As hypothesized, the RI, BIS and IMP predict both shopping

problems and alcohol problems but not gambling. The RI does appear to perform more

poorly than either the BIS or IMP scales in the YAACQ but performs moderately well in

the CBI. All the correlations are fairly small, accounting for less than 10% of the variance

in the outcome scales. The one exception to this rule is the IMP which accounts for 16% of

the variance in the YAACQ.

The correlations in the three rightmost columns reveal a similar picture to what was hy-

pothesized. The hypothesis that reward-seeking type scales can predict alcohol and gambling

problems was partially upheld and these scales did not predict compulsive buying. The RS

performed more poorly than the SSS in predicting alcohol problems but was able to predict

them at a low level. The RS was the only measure beside the IMP that was able to predict

any measure of gambling behavior, even though this correlation was very small. Referring

back to the descriptive analysis this is not terribly surprising. The SOGS was developed

as a diagnostic scale and a score of two or more indicates probable pathological gambling.

However applying it to a non-clinical population produces a floor effect that severely atten-

uates any relationships. Interestingly, a subset of the 49 individuals who met the diagnostic

24



criteria showed a significant correlation between the RS and the SOGS (r = .46) but no

correlation with the IMP (r = .15)4. This provides marginal evidence that the RS is ‘best’

predictor of gambling behavior.

Table 2.3: Predictive Validity Matrix

Measure RI BIS IMP RS SSS VENT
CBI 0.26 0.32 0.29 0.08 0.06 -0.09
YAACQ 0.23 0.30 0.40 0.22 0.33 0.01
SOGS 0.12 0.13 0.21 0.19 0.10 0.09

In summary, study one revealed that the RS and RI scales performed sufficiently well

although there is definite room for improvement. The overall pattern across all the scales

suggests that the relationship between impulsivity as a personality trait and problem be-

haviors is weak. This may be especially true for a sample of college students who may not

represent the intended sample. It is possible that stronger relationships would emerge in

clinical samples in contrast to the college sample presented in this study.

4See section E.4 for scatter plots that help to illustrate the problem.
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Chapter 3

Study 2

3.1 Method

In the first study, the RS and RI scales were validated using concurrent, discriminant and

predictive validity. Predictive validity was limited to behavioral outcomes assessed through

self-report questionnaires. The present study extends that validation by examining two com-

mon measures of experimental decision making. In order to accomplish this, structural equa-

tion modeling was employed to examine predicted pathways between the latent constructs

(i.e., Risk Seeking or Response Inhibition) and the dependent variables from experimental

tasks.

Structural equation modeling requires a strong theoretical base on which the models

need to be built. For this reason, it was necessary to establish a priori hypotheses about

how the models were tested. With the BART, I hypothesized that the RS should predict the

difference score between pumps in the low and high reward conditions. Furthermore, this

difference score should also predict a portion of the variance in the global average for number

of pumps. The RI was hypothesized to predict the global average for number of pumps. An

individual with a high average of pumps per balloon should have lower inhibitory control.
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It’s also possible that the RS can predict global averages for the pumps, however I expected

that this relationship should be fully or partially mediated by the difference between the

high and low reward conditions.

In the case of the IGT, I expected that the RS would predict only the attention to

loss component of IGT performance which is motivationally based. The RI should predict

the recency and consistency components of the IGT which are more cognitive forms of

impulsivity.

3.1.1 Tasks

IGT - The Iowa Gambling Task is a simulated card game in which participants are required

to choose the top card off one of four decks. For this study, the task will be entirely based

on the original computer implementation (Bechara, Damasio, Damasio, & Anderson, 1994;

Bechara, Damasio, & Damasio, 2000). After selecting the card, a participant always wins

a set amount of money that depends on which deck was chosen. For decks A and B, the

amount won is consistently $100. Alternatively, decks C and D yield consistent gains of $50.

In the beginning of the task, decks A and B result in wins with no accompanying losses but

eventually begin to incur large losses (e.g $1250) that offset the large gains. Decks B and C

contain much smaller losses and result in an overall net gain over time. Participants initially

are attracted to the high gains of decks A and B but must learn over time to reverse their

preference towards the lower but consistent gains of decks C and D. The outcomes for the

entire gambling task are based off of a set script.

BART - The Balloon Analogue Risk Task is a simulated game in which participants fill

a hypothetical balloon full of air. This study will use a version of the BART that is almost

identical to the original implementation except for the manipulation of the amount won in

the high and low payoff conditions (Lejuez, Read, Kahler, Richards, Ramsey, Stuart, Strong,
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& Brown, 2002). For each pump that is added, the participant will earn a small amount of

hypothetical money. In the low payoff condition this will be $0.05 and in the high payoff

condition this will be $0.25. As participants continue to pump the balloon, their earnings

are added into a small pot of money. At any point, the participant can redeem this pot of

money and add it to their total earnings. However, if they continue to pump the balloon

and the balloon pops, they do not receive the pot of money. The balloons will randomly pop

between 1 and 128 pumps. This simulates a real life situation of diminishing gains where

each additional pump yields more money but increases the risk of popping the balloon as it

fills up.

3.1.2 Participants

In total, 229 participants (151 Females, 71 Males) were recruited from the WSU Psychol-

ogy Department Human Subjects Pool. The distribution of ethnicity is displayed in Fig-

ureFigure 3.1 and the distribution of class standing is displayed in FigureFigure 3.2. The

composition of the sample was similar to that in study one.

3.1.3 Procedures

Groups of up to 10 students participated in each experimental session. Each session began

with a brief overview of the experiment and the obtainment of consent. All the data for

study 2 were collected through computer responses. Instructions for the task were presented

both during the consent process and in structured practice trials during the experiments.

After completion of a brief demographic survey, participants filled out the RS and RI Scales.

Participants then moved on to the experimental tasks, first completing the IGT followed by

the BART. Once finished with the BART, participants were fully debriefed and dismissed.

Each session took approximately 30-40 minutes from start to finish.
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portions are listed under each group’s label.
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3.2 Analysis

Analysis for the study proceeds as follows. I begin with an analysis of the results from the

IGT and BART using a means-based (i.e., t-test and ANOVA) approach. Following this, I

discuss a series of structural models that were constructed to look at the relationship between

experimental performance and the RS and RI scales. All basic analysis were carried out in

the R programming environment and the structural models were analyzed using M-Plus

(Muthén & Muthén, 2006).

3.2.1 Iowa Gambling Task

To understand performance on the IGT, two separate approaches can be adopted. First, it is

possible to look at the group as a whole and analyze how participants learn to shift preference

from the bad, disadvantageous decks to the good, advantageous decks. The second approach

is to decompose task performance using an expectancy-valence model that describes the

extent to which participants base their decisions off of three parameters. These parameters

include attention to losses, consistency and recency.

Table 3.1: IGT Choice Proportions
IGT Advantageous Choice Proportion. 1 Block = 20 Trials.

Block # Mean SD Range
1 0.40 0.15 1.00
2 0.50 0.16 0.95
3 0.53 0.17 1.00
4 0.55 0.20 1.00
5 0.51 0.22 1.00

Overall 0.50 0.11 0.67

As a whole group, performance is depicted in Figure 3.3, Figure 3.4 and Table 3.1. In gen-

eral, performance starts with a preference for the disadvantageous decks and shifts towards

the advantageous decks as trials progress. The hypothesis that performance improves as a
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function of trial block was tested using a repeated measure ANOVA. There was a significant

effect of trial block (F (4, 912) = 28.319, p < 0.05, η2 = 0.11). Referring again to Figure 3.3,

this indicates that as the task progressed participants made significantly more advantageous

choices. However, although advantageous choices are generally increasing, participants are

overall performing quite poorly (M = 0.5 for all blocks combined). Participants only show a

significant preference for advantageous choices in blocks three and four as evidenced by a 95%

confidence interval. Thus, participants do appear to be leaning towards the advantageous

decks but as a group there is not a clear preference for the advantageous decks.

Following the means analysis, parameter estimates were obtained for each participant

using the Expectancy-Valence model (Busemeyer & Stout, 2002). Descriptive statistics for

the Expectancy-Valence model are displayed in Table 3.2. The means for the Recency

and Attention to Loss parameters are similar to previous reports, although the consistency

parameter is higher and shows more variation (Busemeyer & Stout, 2002). As an interesting

note, both Attention to Loss and Recency show negative kurtosis. Further examination

reveals that the model appeared to truncate a number of scores at either 0 or 1 which resulted

in a somewhat inverted-normal distribution. This was not a problem in the Consistency

parameter.

Table 3.2: Descriptive Statistics for the IGT Expectancy-Valence Model Parameters

Measure Mean SD Min Max Range Skew Kurtosis
Recency 0.38 0.44 0.00 1.00 1.00 0.61 -1.51
Attention To Loss 0.39 0.31 0.00 1.00 1.00 1.02 -0.21
Consistency 0.72 2.03 -5.00 5.00 10.00 0.03 0.86

In addition to parameter estimates, it is also possible to calculate Wilk’s G2 statistic

for the Expectancy-Valence Model and a Baseline model in which choices are independently

determined outside of prior experience. A G2 difference score can be calculated for each

individual and a simple comparison of this score allows one to determine if the cognitive

33



learning model predicts choices better than a model that assumes no learning. An alternative

approach to assessing model fit involves calculating the Bayesian Information Criteria for

each model. This analysis yields similar results. The Expectancy-Valence Model performed

better than a baseline model for 53% of participants (M = 3.63, SD = 17.36). This means

that for close to half of the participants, the Expectancy-Valence model did not provide a

good fit. This is a much lower proportion than reported in many studies, however the sample

size for this study is much larger (229 > 33) than that used in the original model evaluation.

A likely explanation is that these individuals simply never demonstrate a learning strategy.

This is confirmed if you look at many of these individual’s response patterns. Furthermore,

with the group on average performing close to chance (i.e., 50% advantageous choices) the

lack of model fit is not surprising.

3.2.2 Balloon Analogue Risk Task

For the BART, four scores were calculated for each participant. First, a global adjusted

average of the number of pumps per balloon was tallied. This average included the number

of pumps across all conditions, but only for balloons in which the participant earned money

and the balloon did not pop. The total number of bursts that occurred across all conditions

was calculated. Third, difference scores were calculated across the experimental conditions

by subtracting the average number of pumps in the low condition from the average in the

high condition (i.e., Mdif = MHigh −MLow)1. Last, the analogous difference score was also

calculated for the number of bursts by each experimental condition.

Table 3.3 displays the descriptive statistics for these four types of scores. For the aver-

age pumps and total bursts, these numbers are similar to what has been demonstrated in

prior research with some obvious differences likely due to higher number of trials and the

1Difference scores were chosen instead of a ratio in order to approximate a gaussian distribution. Ratio
scores demonstrated high kurtosis
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experimental manipulation.

Table 3.3: BART Descriptives
Descriptive statistics for the Balloon Analogue Risk Task

Measure Mean SD Min Max Range Skew Kurtosis
Average Pumps 36.99 13.97 9.03 81.33 72.31 0.52 0.3
Total Bursts 12.69 4.67 2 27 25 0.5 0.34
Difference in Pumps -1.94 9.47 -32.6 24.95 57.55 0.06 0.82
Difference in Bursts -0.39 2.79 -7 7 14 -0.16 -0.02

The difference scores can be interpreted as follows. A positive difference score indicates

that the individual was more sensitive to the rewards in the high payoff condition or more

inhibited during the low payoff condition. A negative difference score indicates higher re-

sponding in the low payoff condition. Figure 3.5 displays histograms for the difference scores

using the adjusted average of pumps.
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Figure 3.5: Histogram of the Difference Scores for Pumps
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A simple t-test on the difference scores demonstrates that participants were significantly

more conservative in the high condition than in the low condition (t(228) = −3.11, p <

0.05, CI95 = −3.18to − 0.71). However, Figure 3.5 also shows that there is a good deal of

variability and that while generally participants were more conservative in the high condition,

the experimental manipulation produced greater conservatism in some individuals while more

risky behaviors in others.

3.2.3 Structural Equation Modeling

Before fitting the structural models, the data for the RSRIS were analyzed descriptively as

seen in Table 3.4. There was moderate skew and kurtosis (skew < 3, kurtosis < 10), which

indicates that the data were approximately normal. Similar analyses were carried out on the

descriptives for the IGT and the BART (see Table 3.2 and Table 3.3).

Table 3.4: RSRIS Descriptives
Descriptive statistics for the RSRIS items

Item Mean Sd Skew Kurtosis
RS1 5.39 1.08 -1.29 2.37
RS2 4.28 1.31 -0.18 -0.74
RS3 5.72 1.07 -1 0.92
RS4 4.06 1.46 0.07 -0.64
RS5 4.6 1.35 -0.6 -0.03
RS6 3.73 1.37 -0.02 -0.68
RS7 4.91 1.35 -0.95 0.39
RI1 4.17 1.55 -0.15 -1.03
RI2 4.5 1.53 -0.55 -0.68
RI3 3.9 1.58 -0.18 -1.09
RI4 4.28 1.49 -0.28 -0.81
RI5 3.44 1.39 0.17 -0.81
RI6 4.28 1.49 -0.5 -0.71
RI7 3.68 1.28 0.1 -0.18

Each model was estimated using weighted least squares since the RS and RI scales uti-

lize ordered categories. This estimation is different from the normal maximum likelihood
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estimation and is recommended for IRT models. Because of this estimation technique, the

global fit parameters are different from what normally applies. All models were assessed for

global fit using the following criteria. The comparative fit index (CFI) should be above 0.90

and preferably above 0.95. The root mean square error of approximation (RMSEA) should

be below 0.10. Finally, the chi-square should ideally be nonsignificant but this criterion is

fairly flexible as chi-squares will almost always be significant with large or even moderate

sized samples (Kline, 2005).

An initial model was fitted that only included the RS and RI scales. This model is de-

picted in Figure 3.6 and is essentially a confirmatory factor analysis with ordered categorical

indicators. Fit indices (see Table 3.5) indicate that the model fits adequately well.2

The second model is depicted in Figure 3.7. In this model, the IGT parameters are being

predicted by the RS and RI factors. Again, model fit was good as seen in Table 3.5. The

Consistency and Recency parameters were not predicted by the RI factor(p > .05). The

Attention to Loss was significantly predicted by the RS factor (z = −10.585, p < 0.05). This

indicates that individuals higher in Risk Seeking tended to pay less attention to the losses

during the IGT. The R2 for this effect is approximately 10%.

The third and final model is shown in Figure 3.8. Here, pumps and the difference scores

for high/low conditions are being predicted by the RI and RS scales respectively. The

difference scores for high/low conditions also predicted the global average of pumps. Models

for both pumps and bursts were tested, but only the model with pumps is shown due to

superior fit both statistically as well as theoretically.

Because all parameters in this model were significant (p < 0.05) there are three paths

that need explanation. First, risk-seeking predicts the global average of pumps. This is

expected as risk is explicitly suggested as a component of the BART’s name although it

2The RMSEA is higher than it should be, however this is likely due to a relatively small sample for the
WLS estimator. Furthermore, in the calibration sample (N=613) the RMSEA for the same model was .085
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was originally hypothesized that response inhibition would be a better predictor. This is

a positive relationship which indicates that participants who endorsed higher levels of risk

pumped the balloon more than others. The second important path shows a positive relation-

ship between response inhibition and difference scores. In other words, individuals higher

in response inhibition have a higher difference score. Recall that higher, positive difference

scores indicate more pumps on the high condition than the low condition. Finally, the global

average of pumps can be predicted by the difference score. This suggests that the response

inhibition factor is indirectly related to the global average of pumps through its effects on

the difference in the high and low condition. This indirect effect is significant (standardized

coefficient = −.022, p < .05) but not meaningful. Thus the general form of the model is

similar to what was hypothesized, but the effects of the RI and RS were reversed.

Table 3.5: Summary of Model Fit Statistics

Model χ2 df p CFI RMSEA Description
1 363.56 76 .000 .970 .129 Two Factor RSRIS
2 607.74 115 .000 .971 .137 RSRIS & IGT
3 484.15 102 .000 .967 .128 RSRIS & BART
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Chapter 4

Discussion

Study one provided reasonable evidence for concurrent validity with both the RS and RI

scales, as they correlated highly with the scales that were considered to measure a common

facet of impulsivity. The one exception to this was the Impulsivity factor of the EIS which

correlated more highly with the RS than the RI. I will return to this curiosity later. Dis-

criminant validity was demonstrated through low correlations between the reward-seeking

type scale and the response-inhibition type scales.

The qualification for the validity of the RS and RI scales is due to the trouble that they

had with predictive validity in both studies. In all cases, the RI showed lower correlations

with the measures of problem behavior than either the BIS or the IMP. The RS also per-

formed worse than the SSS when predicting alcohol problems, but did perform better than

the other scales when predicting gambling behaviors for individuals who did endorse gam-

bling problems. Overall, the best measure of broadly-defined impulsivity is the IMP factor

from the EIS. One explanation for this finding is that the IMP measures a more general

form of impulsivity than was addressed by either the RI or RS scales. This is a problem

for a two-factor theory of impulsivity because a unitary measure of impulsivity should not

perform as well as more specifically defined measures. Of course, there could be a problem
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with specifying impulsivity as two factors. Recall that this definition was derived from two

lines of experimental research. As shown by study two, experimental measures of impulsivity

may not be the most reliable source for determining personality factors.

Both scales performed only moderately well in predicting the experimental tasks in study

two. In the BART, both scales predicted only a small fraction of behavior. Furthermore, the

model that ultimately fit was not the model that was originally expected. So while significant,

these paths were hardly meaningful. There are a number of possible explanations for this

outcome. The most parsimonious explanation is that the constructs measured by the RS

and RI scales are not meaningfully related to the construct measured in the BART. While

a disconnect between the constructs is likely a strong cause, I think that this is not the

sole explanation. Another likely reason for the weak relationship between the BART and

the RSRIS is a problem of reliability. In this model, the BART was treated as a manifest

or observed variable while the RS and RI factors were latent variables. Thus, the RS and

RI factors represent their respective constructs with the error variance statistically removed.

The outcomes on the BART, however, are assumed to be measured without error. Naturally,

this assumption is not strictly met but the hope is that there is enough meaningful variance

in the manifest variables that the assumption can be safely violated. The problem, is that if

there is an excess of error variance in the measure then any meaningful relationship would

be attenuated. In this case, it seems unlikely that the RS scale, which is a clear measure of

risk, does not relate more strongly to any variable measured by the Balloon Analogue Risk

Task. Again, the problem may likely be one of excessive error variance.

In regards to what can be extrapolated from the BART, it appears that the high and low

payoff manipulation influenced participants self-control. Specifically, an individual endorsing

higher levels of response inhibition was more likely to pump the balloon more in the high

payoff condition. Although people were more conservative in the high condition, the level of

that conservatism is influenced by their response inhibition trait. Second, individuals who
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are risk seeking were more likely to have a higher global average across both conditions.

Put another way, the risk seeking factor does not seem to influence their sensitivity to

the high/low manipulation but rather influences the mean number of pumps across both

conditions.

For the IGT, the situation was less fortunate. The RI scale was unable to reliably predict

any of the parameters from the IGT but the RS scale did reliably relate to participant’s

attention to losses. This makes good theoretical sense as the RS can be seen as a motivational

construct. However, the lack of relationship between the RI scale and the IGT is paradoxical.

The consistency parameter from the IGT is specifically referenced as relating to boredom

or distractibility. Participants high in consistency are cognitively focused while those low in

consistency are easily distracted or bored with the task. The lack of relationship between the

RI (which contains questions such as ‘I am easily distracted’) to a parameter that measures

inconsistency due to distraction seems odd. A possible explanation for this poor performance

is a little more straightforward. One of the features of the Expectancy-Valence model is that

model fit can be diagnosed through the G2 statistic. In this sample, the Expectancy-Valence

model provided a poor fit for 47% of participants. That lack of fit cannot be ignored,

suggesting that either the model is ill-specified or that it simply does not work with this

sample. I would argue that it is actually a combination of these two explanations. The classic

IGT has never worked particularly well with WSU samples (Wirick, 2006) and has performed

poorly in other samples as well (Glicksohn, Naor-Ziv, & Leshem, 2007). The expectancy-

valence learning model requires that participants eventually perform advantageously or at

least consistently. This may be a misspecification because many participants appear to

respond to other factors that are not assessed by a purely cognitive model of performance.

This has been confirmed qualitatively during debriefing where participants are asked about

the IGT. Many participants indicate that their responding is due to idiosyncratic behavior

that tries to predict the pattern of the payoffs as it relates to the different decks. This
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behavior occurs in spite of the fact that they are told at the beginning of the experiment

that each deck is completely independent of each other. A conclusion may therefore be that

many participants fail to ‘get’ the IGT. For the remaining 53% of participants, a learning

strategy does appear to accurately model their behavior.

So should the RS and RI scales be adopted as replacements for the older scales? Again

the answer should be qualified as maybe. It appears that the RS and RI scales perform

moderately well for their limited length. In a situation where an experimenter lacks the time

to utilize a longer measure of impulsivity, the RS and RI scales may suffice. However, it

appears that the predictive validity of these scales is somewhat lacking and therefore they

need revision before they can be adopted as replacements for the broader, older measures of

impulsivity.

An even larger issue when considering the results of this study is what it tells us about the

ability to predict outcome behaviors using personality. In the best case, the IMP subscale

was able to predict alcohol problems with r = 0.4, r2 = .16. While 16% of the variance is

considered a medium effect size, this leaves a lot of room for other factors to explain prob-

lem behaviors. Furthermore, many measures of impulsivity are used as mediators between

experimental results and real-world outcomes. Only accounting for 16% of the variance in

the outcomes means that even the best impulsivity measure provides only a modest ana-

logue for real world validity. One of the explicit goals for developing the RSRIS was that it

would provide a more accurate way of predicting impulsivity and would therefore be more

appropriate as a mediating bridge between experimental and real world outcomes. This goal

was simply not met. Therefore, a vacuum still remains between the experimental findings

and their validity in the real world.

Related to the issue of the validity of impulsivity measures is the problem that may

be inherent in how this data is collected. All of the measures utilized in study one were

self-report. As has been demonstrated numerous times, the validity of self-report measures
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is directly affected by the participant’s knowledge of themselves and by their willingness to

share that knowledge. Anecdotally, I can confirm that most people are willing to share that

they are impulsive. Each time that I begin to describe my research I am oftentimes met

with the comment ‘You should study me, I am extremely impulsive’ or some other derivative

remark. The question then becomes how much are people aware of their own impulsivity?

This question, to my knowledge, has not yet been answered. It is therefore possible that

future attempts to measure impulsivity should focus on more subtle forms of assessment.

This may result in a loss of face validity, but may increase the construct validity of these

measures.

4.1 Limitations

There are some limitations of this study that need to be addressed. Irrespective of the

outcome, different approaches may have produced different results. In the case of study

one, it may have been appropriate to utilize more outcome measures than just the CBI,

YAACQ and the SOGS. These were chosen because they represented prominent measures

in each of their respective fields. However, the SOGS in particular had strong floor effects

that precluded any meaningful interpretation. It may have been advantageous to use a wider

spectrum of measures to provide stronger evidence for the validity of the scales.

The use of a conventional, college sample may have also produced sample dependent

error. Predictive outcome validity may have been demonstrated more strongly through the

use of clinical samples who are known to demonstrate problem behaviors rather than college

students where problems were self-reported. This was a decision made for convenience and

it was an issue that I would have had difficulty getting around. It should be noted that

there were reasonable amounts of problem behavior reported. Therefore, any limitation due

to self-report would be an issue of reliability rather than the absence of problem behaviors.
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Third, the experimental tasks may also have been problematic. Both the IGT and the

BART are not easily decomposed. The IGT is not only a learning task, but also a reversal

task, a preference task that likely depends to some degree on emotional evaluations. This

may characterize some of the aspects of impulsivity but it complicates validity because it is

hard to determine which of these factors or combination of factors is explaining performance

in an individual. Similarly, the BART may also contain more than just preference for risk.

The experimental manipulation which was intended to modify participants preference for

risk, instead was influenced by their response inhibition. Thus, the task is not as clearly

defined as expected.

Last, there may be some inherent limitations from the development of the RS and RI

scales. Although there is evidence for their reliability, they may not be reliably measuring the

intended constructs. Furthermore, during their development a tradeoff was made between

more reliability and brevity. This tradeoff may not have been justified in the long run and

it may have contributed to their less than stellar performance in this dissertation.

4.2 Future Directions

The predictive validity demonstrated in study one suggests that none of the measures, old or

new, performed exceedingly well. There is still a need for a new measure of impulsivity. I have

already explained the need for a strong theoretical approach when developing a new measure

and I would reiterate that theories of impulsivity should guide future scale development.

Were I to continue the development of the RS and RI scales I would revisit the theoretical

understanding of impulsivity through qualitative interviews with clinicians, experimenters

and other subject matter experts. The RS and RI scales as they exist now are still very

preliminary and need extensive revision before they are ready for business. Going back to

the theory would be the best way to continue their development.
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Study two also demonstrates the need for better experimental methodologies. The IGT

in particular currently enjoys a sort of demigod status as a measure of decision making.

Unfortunately, nearly half of all participants fail to adopt an advantageous strategy even

in a non-neuropsychological sample. This is true using either the typical choice data or

when considering a cognitive model like expectancy-valence learning. The BART as well

appears to have many more factors contributing to behavior than suggested by the authors.

It should not be treated as a pure measure of risk taking, and its design, while definitely

interesting, provides more face validity than real construct validity. In both of these tasks,

the structural models also suggest a high degree of unexplained error variance. Thus new

experimental decision making tasks should focus on not only validity issues but also issues

of reliability.

4.3 Conclusions

This dissertation provided an approach to studying the validation for a new measure of trait

impulsivity. The results suggest that marginal validity was demonstrated but that improve-

ments are needed before the RSRIS can be utilized in further research. In particular, validity

needs to be improved in predicting the results from experimental research and demonstra-

tion that the RSRIS can predict outcomes from real-world behaviors and not just self-report

questionnaires.

These studies also suggest that improvements are needed in the understanding of what

real world impulsivity looks like and how impulsivity is measured in the laboratory. In the

former case, self-report measures of problem behaviors may not capture elements that can

be explained by personality or may themselves be invalid or unreliable. Experimental tasks

may also be unreliable or could be identifying phenomena that are interesting in the lab but

irrelevant for real life.
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Last, there is still a need for a refined measure of impulsivity. Study one demonstrated

that the older measures of impulsivity, while better than the RSRIS, are still lacking when

it comes to predicting real world problems. The criticisms of their psychometric properties

still apply and this dissertation demonstrates that their validity is still marginal. So while

the RSRIS is not the replacement, that does not mean that a replacement is not needed.

Therefore, future research should focus on developing an empirically sound measure of im-

pulsivity that deals with all of the statistical shortcomings of the current measures and the

theoretical shortcomings of the RSRIS.
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Appendix A

Comparison of Item Response Theory and

Classical Test Theory Approaches

Item response theory (IRT) and classical test theory (CTT) represent two different ap-

proaches for scaling tests and dealing with psychometric issues. In brief, CTT focuses gen-

erally on the scale as a whole entity while IRT focuses on the scalability of the items. The

cumulative properties of a scale suggest that if all the items are scalable under IRT then the

test as a whole should perform well. In this comparison, I will focus on the following key

factors in comparing IRT and CTT, especially highlighting the perceived benefits of an IRT

approach. First, I will begin by discussing the assumptions of IRT and CTT. Second, I will

discuss how IRT and CTT approach scale dimensionality. Third, I will deal with the issue

of scale length and reliability. Finally, I will finish by highlighting how these approaches can

be used in a complementary fashion.

To begin, IRT and CTT make very different assumptions about what it means to measure

constructs. CTT starts from the assumption that tests are able to measure constructs with

equal accuracy across all levels of the trait continuum. This means that if I am measuring a

hypothetical construct like clinical depression, my scale works equally well for both severely

56



depressed individuals and individuals who lack any depressive symptoms. Naturally, this

assumption is difficult to uphold because by giving a measure of clinical depression I am

specifically targeting my scale towards individuals with some level of depression. In other

words, I only care if my measure can distinguish non-depressed individuals from depressed

individuals. In contrast, IRT implicitly assumes that I will be more accurate at labeling

some levels of the trait continuum than others. When I am evaluating my clinical depression

scale, I am not only able to determine how well it measures the average individual, but also

how well it measures individuals with varying levels of depression.

A second assumption of CTT is that the responses for each item are equally good or are

able to equally distinguish between various levels of a construct. One way of thinking about

this statistically is that the factor loadings (or more realistically the item-total correlations)

should all be similarly high. Certain IRT models do not make this claim and recognize

that some items may simply be better than others and that these items ought to be given

more weight. More stringent IRT models may also require that items be equally good at

discrimination, but it does not merely assume this, it requires that the statistical model

demonstrates this property.

The third major assumption of CTT is that the total score reflects the latent construct

with a fair degree of accuracy. IRT models do not necessarily make this assumption and

usually try to estimate the latent construct by considering the full pattern of responses rather

than just the sum of each item. In this way, IRT gives an estimate for the individuals’ level of

latent construct and an estimate of how much error is expected due to inconsistent response

patterns. This can be useful for determining how well each individual has been scaled by

the test.

Moving on from the assumptions, IRT and CTT utilize very different approaches when

looking at scale dimensionality or how a scale describes the latent construct. Current IRT

theories require that scales be strictly unidimensional or in other words that there is no
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cross loaded items (from a factor analytic perspective). CTT scales do not require this and

it is common for a total score to be comprised of a number of individual factors that are

added together haphazardly. Part of the reason that this occurs is that CTT approaches

often utilize exploratory factor analysis where the psychometrician tries to obtain factors

that are good enough. It is usually assumed that a given scale will have multiple subfactors

in order to achieve a high enough item count for reliability. Exploratory factor analysis

also can produce problematic results because it subtly encourages post-hoc identification

of how a latent construct ought to be measured. I will return to this problem later. In

IRT, assumptions about unidimensionality must be strictly tested. The unidimensionality

assumption assures that when dealing with a latent construct only a single unitary aspect of

that construct is being measured. A note of caution should be inserted at this point. This

assumption requires that you have a very clear idea about what your latent construct is.

It is, after all, possible to formulate a unidimensional scale that measures an unimportant

factor very well.

The third major difference between CTT and IRT is the issue of scale length. I hinted

earlier that CTT prefers long scales in order to increase reliability. CTT, by nature, assumes

that the same trait must be measured over and over again in order to reliably estimate the

true level of the construct. Most of the reliability statistics associated with CTT reflect this

idea including Cronbach’s alpha which will always increase with a greater number of items.

IRT does not prefer short scales but rather prefers scales that are composed of good items.

Often times this leads to shorter scales that are more accurate. Thus an IRT approach would

prefer ten items that are very good predictors rather than 40 items that are a mix of good

and moderate predictors. From a pragmatic standpoint this allows for decreased participant

fatigue and can be utilized to construct multiple scales that have been equated for reliability.

Lastly, I would like to discuss how IRT and CTT can be used in a complementary way.

The overarching goal of both approaches is to develop valid and reliable measures. Further-
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more, a good measure that has been developed under IRT will also look like a good measure

when tested under CTT (although the opposite may not be true). For this reason, once an

IRT measure has been developed and/or refined, it can be used within the context of CTT

to explore larger theoretical issues such as validity and multi-construct statistical models.

This is especially important because IRT does not currently have its own set of methods for

dealing with these issues. For instance, CTT has a large body of research describing how to

explore the relationships among different constructs using structural equation modeling. An

IRT scale should perform very well at a measurement level and can then be used to build

structural models that interact with other constructs. IRT would also work exceedingly well

in the case of path models because the score from an IRT measure is essentially a latent

estimate that has accounted for measurement error. Essentially, when considering IRT as

a measurement approach, it is important to remember that it only concerns itself with the

scale and item level and does not consider the broader context. It will however deal with the

scale and item level from a much more structured and refined approach than current CTT

methods and this is where IRT really shines.
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Appendix B

Development of the Risk-Seeking and

Response-Inhibition Scales

Generally, the development of the RSRIS followed a four step process that will be elaborated

here. This appendix is a condensed version of the scale development that was presented in

a poster at the Washington State University Wiley Research Exposition. I will try to offer

some explanation for why analysis decisions were made at each step.

1. Item Creation

2. Item Selection using Mokken Scale Analysis

3. Scale Refinement using Samejima’s Graded Response Model

4. Final Scale Evaluation

B.1 Item Creation

There were a number of concerns that needed to be addressed when I created items for the

new measure of impulsivity. First, I needed to develop a conceptual framework from which

to write items. Secondly, I needed to consider the format of the items and their responses.
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Finally, the items had to be written from either a general personality perspective or from a

more specific assessment of target behaviors. I will discuss the second and third topics first

as they helped to explain the larger conceptual framework.

The general format of the items for my new measure of impulsivity was patterned off of

the Barratt’s Impulsivity Scale. The main reason for this was simply to provide some face

validity as the BIS is considered the measure of impulsivity. This decision also made it easy

to use a seven point response system that varied from Strongly Agree to Strongly Disagree.

1 Seven or more response options makes it easier to ensure that the response options are

treated as true intervals rather than just ordered categories. For IRT, this is not necessary,

but in order to use structural models this is important. In the end, the items were written

as self-reflective statements that the participant could either agree or disagree with (e.g., I

am easily distracted).

A decision also needed to be reached as to whether the items should reflect endorsement of

specific vs. general behaviors and attitudes. Using specific behaviors such as ‘I have trouble

controlling my spending’ is attractive because it establishes better criterion validity than

statements that are more generalized such as ‘I like to take risks’. Using specific behaviors

has a number of important drawbacks though. First, it forces the researcher to narrow

impulsivity down to a set of behaviors that may or may not share a common underlying

psychological construct (this presents a dimensionality problem). It also requires that the

participant endorse what could be considered socially inappropriate behaviors and therefore

might introduce response bias. For these reasons, I chose to use more generalized statements

in the hope of capturing a more general personality construct rather than a set of specific

problematic behaviors.

1I should mention that I made one poor decision at this point. As a middle point, I had a number of
options including statements like ‘neutral’, ‘undecided’ or ‘neither agree nor disagree’. Of course I chose the
worst possible option - undecided. This became evident in the Item Characteristic Curves during the IRT
analysis. I subsequently changed the middle option to neutral and the problem has resolved itself.
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This leads to the overall conceptual framework that was used to develop the new scales.

Theoretically I was trying to measure the two factors of impulsivity described by empirical

research. In this way, a pool of items was written to reflect the various aspects of sen-

sation seeking or reward seeking behavior. In particular, items asked about participants

attitudes towards risk, avoiding boredom and seeking out new experiences. A separate pool

of items was written to address response inhibition or impulse control problems. These items

asked participants about their attention, distractibility, patience, racing thoughts and snap

decisions. For a complete list of items that were generated, refer to Appendix C.

B.2 Item Selection

All the items were administered to a group of 613 participants in Fall of 2006. In addition

to the new items, participants also completed several other questionnaires. Initially, items

were screened for basic descriptive properties such as mean, standard deviation, skewness

and kurtosis. Most of the items were fairly normally distributed with one exception; a single

item in which no participant endorsed strongly agree.

At this point, a CTT approach would run an exploratory factor analysis to identify

an acceptable factor structure. Remember that I had made the decision a priori to have

two unique factors. Rather than utilize an exploratory analysis, I therefore chose to utilize

a non-parametric IRT technique called Mokken Scale Analysis. Essentially, Mokken Scale

Analysis constructs unidimensional scales by searching for items with similar covariance until

a specified cutoff. It is an exhaustive approach that will continue to construct scales until

all the items have been placed into a scale. A huge selling point for this technique is that it

automatically eliminates items that overlap with many scales. Thus the resulting scales are

completely unidimensional.

Like factor analysis, it is important to examine the scales that are constructed to make
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sure that you are in fact measuring the construct you set out to scale. The results of the

analysis indicated that I had three strong scales: One scale of 22 items from the risk seeking

pool, a second scale with three items from the response inhibition pool and a third scale with

eight items from the response inhibition pool. The three item scale was discarded because

it was a) too short and b) contained items that intuitively did not relate to the central

construct of response inhibition. The other two scales were retained for further analysis.

Mokken Scale Analysis also contains methods for assessing two other assumptions of IRT

scales: monotonicity and non-intersection. In particular, the monotonicity assumption must

be met and the items in both scales met this assumption without issue. Nonintersection is

important for determining whether to use a strict Rasch IRT model that assumes the items

are equally good predictors. This assumption is often hard to meet and I had previously

planned to use a non-Rasch model. It was therefore not surprising when non-intersection

was not demonstrated.

B.3 Scale Refinement

IRT excels at taking scales and providing copious amounts of information about the prop-

erties of the individual items. This is useful for scale development because it provides a tool

for determining which items to include in a final scale and which to discard. In particular,

researchers are often interested in determining two things about items. First, what range

of the latent continuum does an item accurately measure. This is referred to as the item’s

difficulty. Secondly, how well does an item discriminate between various levels of a latent

trait. Discrimination is especially important for determining which items are more accurate

at measuring a latent construct and this was the parameter that was primarily used in de-

termining which items to retain for the final scales. Table B.1 and Table B.3 display the

discrimination(α) and difficulty(β) parameters for each scale.
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Table B.1: Item Parameters for the RS scale

Item β1 β2 β3 β4 β5 β6 α
RS2 -3.075 -2.408 -1.630 -1.317 -0.159 1.412 2.015
RS3 -4.157 -2.154 -1.182 -0.697 0.494 1.903 1.740
RS4 -3.934 -2.817 -1.738 -1.060 0.276 1.638 1.645
RS5 -3.299 -2.009 -0.805 -0.375 0.826 2.294 1.847
RS6 -2.901 -1.988 -1.215 -0.726 0.426 2.003 1.514
RS7 -3.942 -2.767 -2.028 -1.341 -0.254 1.051 1.806
RS8 -3.000 -1.749 -0.286 0.244 1.387 2.876 1.538
RS9 -3.862 -3.464 -2.378 -1.813 -0.432 1.109 1.557
RS11 -2.617 -1.364 -0.513 0.141 1.318 2.258 1.764
RS12 -2.511 -1.457 -0.623 -0.032 0.967 1.771 2.453
RS15 -2.496 -1.131 -0.302 0.343 1.414 2.578 1.537
RS17 -3.338 -2.031 -0.794 -0.157 1.203 2.711 1.220
RS18 -2.334 -1.008 -0.194 0.409 1.532 2.474 2.128
RS19 -2.957 -1.792 -1.172 -0.672 0.759 1.929 1.751
RS20 -3.951 -2.796 -2.001 -1.316 0.134 1.674 1.625
RS21 -3.606 -2.062 -0.891 -0.391 0.696 2.140 1.374
RS28 -4.586 -2.860 -1.039 -0.161 1.540 3.418 1.082
RS30 -5.220 -3.475 -1.659 -0.611 0.929 2.949 1.126
RS31 -3.592 -2.487 -1.044 -0.395 0.970 2.685 1.464
RS32 -4.863 -3.564 -2.449 -1.519 0.091 1.748 1.395

Table B.2: Item Parameters for the RI scale

Item β1 β2 β3 β4 β5 β6 α
RI1 -2.260 -0.874 -0.294 -0.148 1.005 1.906 2.738
RI2 -1.177 1.560 3.082 3.302 4.288 6.062 1.027
RI3 -2.766 -1.406 -0.603 -0.290 0.826 1.832 2.412
RI4 -2.828 -1.032 -0.127 0.377 1.901 3.111 1.172
RI5 -3.156 -1.414 -0.477 0.080 1.206 2.530 1.623
RI9 -2.527 -0.891 0.281 0.945 2.158 3.871 1.633
RI15 -3.853 -1.615 -0.555 -0.031 1.756 3.889 1.167
RI19 -3.351 -1.842 -0.418 0.815 2.183 4.096 1.347
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The rule-of-thumb criterion for deciding between what constitutes a good item and a bad

item is typically whether the α parameter is greater than 1.0. This was the criteria that I

used and as you can see all of the items in each scale exceeded this standard. However, refer

to item RI2. The item’s difficulty parameters suggest that it is only measuring individuals

who have higher levels of response inhibition problems. This would not matter for a typical

IRT analysis, but it creates an extremely skewed item distribution which makes it difficult

to use in CTT analysis. This item was therefore discarded using this rationale.

B.4 Final Scale Evaluation

With two sets of good items, a decision needed to be made. Since the RS scale contained

a large number of good items, and the RI scale contained a small number, I could either

maintain two scales of unequal length or par down the RS scale to match the seven items

in the RI scale. As in CTT, more items means more information (or reliability) and the

question then became how much information would be lost by going to a smaller scale. To

determine this, I first needed to examine how much information I was starting with and how

much would be lost if I only used the seven best items from the RS scale. To do this, Total

Information Plots were obtained as seen in Figure B.1.

At this point, a lot of rationalization happened and for some reason I opted to drop the

RS scale down to the seven best items. This was a mistake, clear and simple. The rationale

for this mistake is understandable however. First, I wanted to keep the scales as short as

possible. This was to be a rapid measure so that it could be used in the context of large

experiment protocols without taking too much time. Secondly, the RS scales still provided

more information than the RI scale even when it’s length was dropped from 22 to 7 items.

Lastly, no one likes an unbalanced scale (of course no one likes invalid scales either...).
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Figure B.1: Total Test Information for the RI scale (7 items) and the RS scale (22 & 7 Items)
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To put into perspective the magnitude of this decision, let me share some numbers.

When estimating factor scores, in addition to a θ estimate, the expected standard error of

that estimate is also given. This standard error corresponds directly to the reliability of the

measurement for each individual. Using the 22-item RS scale, the average standard error in

the calibration sample (N=613) was 0.241. Using the 7-item RS scale, the standard error

rises to 0.326. Do a little math and this suggests 1.35 times more error in the shorter form.

This was giving up a lot of reliability.

Overall, the information obtained from both the RS and RI scales (at seven-item length)

is not ‘bad’. A score called the separation index can be calculated by using the formula

V ar[θ̂]−V ar[ε]
V ar[θ̂]

. This scores is analagous to Cronbach’s α. The separation index for both these

scales is a very high 0.99. This consistency is extremely high because all of the items are

individually reliable. This demonstrates the utility of the IRT approach. Of course, this says

nothing of the validity of the scales, but that is for another study.

In conclusion, the development of these scales utilized some of the most modern tech-

niques available to psychometrics. There were some large errors made, but the scales were

still quite reliable.
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Appendix C

Complete list of the original RSRIS Items

This appendix contains the original 68 items from the Response Inhibition and Risk Seeking

Scales.

Response Inhibition Items

1. I often have trouble paying attention.

2. I can focus on tasks when I need to.

3. I am easily distracted.

4. I drift off during long conversations.

5. I have difficulty tuning out distractions.

6. I have trouble slowing my mind down sometimes

7. I tend to get carried away easily

8. I have trouble keeping track of things

9. I have a really good attention span

10. I sometimes answer people before they are finished talking

11. I am quick to make decisions
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12. I like to follow my initial instinct

13. I dislike waiting

14. I try not to let my thoughts stray when I am working

15. I sometimes lose track of what I am doing

16. I sometimes make mistakes because I work too fast

17. I usually take my time before I make a decision

18. I often get impatient

19. I am able to focus better than most people

20. I think that most people move too slowly

21. I often wish others would hurry up

22. I have trouble keeping my hands still

23. I often find myself twitching my leg or playing with my hands to keep busy

24. I need to keep busy or I get bored

25. I dont like spending a lot of time on one task

26. I prefer to multitask rather than working on one task at a time

27. I think it is important to pace yourself when you work

28. I have trouble sitting still for long periods of time

29. I feel that I sometimes have problems with self-control

30. I sometimes make mistakes because I act without thinking

31. I usually make choices based on what seems easy or quick

32. I prefer a quick answer to a long thought out response

33. I dont mind making a few mistakes as long as I work as quickly as possible

34. I try not to make quick decisions

Risk Seeking Items
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1. I am a cautious person.

2. I enjoy taking risks from time to time.

3. I often do things on the spur of the moment.

4. I like to live in the moment.

5. I try to avoid taking risks.

6. I can be a ‘wild’ person sometimes.

7. I want to live an adventurous life

8. I like to play it safe

9. I like seeking out new experiences

10. I enjoy meeting people from all walks of life

11. I want to live fast and hard

12. I am always looking for a new thrill

13. I dont like people who are stuck in their ways

14. I like to drive fast

15. I am an adrenaline junkie

16. I think it would be fun to skydive

17. I like to keep changing things in my life

18. I live on the edge of life

19. I like a little danger every once in a while

20. I like events that make me feel alive

21. I dont get intimidated by new experiences

22. I really like it when I get to try new things

23. I prefer to stick to what I know works best rather than try new things

24. I really dont want to live a boring life

25. I would be happy with living a simple life
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26. I dont really worry about consequences

27. I really worry about getting hurt

28. I think it is really important to play it safe

29. I think that a lot of people take too many risks

30. I am wary of new experiences

31. I find it better to be cautious in life

32. I like to try out a wide variety of experiences

33. I buy things on impulse

34. I like instant gratification

71



Appendix D

Final RSRIS Scale

Items 1–7 are part of the Risk Seeking Scale. Items 8–14 are part of the Response Inhibition

Scale. Items with a * are reverse coded.

1. I enjoy taking risks from time to time.

2. I try to avoid taking risks.*

3. I want to live an adventurous life.

4. I want to live fast and hard.

5. I am always looking for a new thrill.

6. I live on the edge of life.

7. I like a little danger every once in a while.

8. I often have trouble paying attention.

9. I am easily distracted.

10. I drift off during long conversations.

11. I have difficulty tuning out distractions.

12. I have a really good attention span.*

13. I sometimes lose track of what I am doing.

14. I am able to focus better than most people.*
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Appendix E

Supplementary graphs

E.1 Histograms for Study 1 – Response Inhibition

RI

Fr
eq
ue
nc
y

-4 -2 0 2 4

0
5

10
15

20
25

30
35

Figure E.1: Histogram for RI Scale

73



BIS

Fr
eq
ue
nc
y

40 50 60 70 80 90

0
10

20
30

40
50

Figure E.2: Histogram for BIS
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Figure E.3: Histogram for EIS Impulsivity
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E.2 Histograms for Study 1 – Reward Seeking
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Figure E.4: Histogram for RS Scale
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Figure E.5: Histogram for SSS
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Figure E.6: Histogram for EIS Venturesomeness
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E.3 Histograms for Study 1 – Problem Behaviors
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Figure E.7: Histogram for CBI
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Figure E.8: Histogram for YAACQ
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Figure E.9: caption

78



E.4 Correlation Between RS and SOGS
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Figure E.10: Scatterplot depicting the correlation between the SOGS and the RS in the full
unrestricted sample. Note the floor effect for the SOGS.
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Figure E.11: Scatterplot depicting the correlation between the SOGS and the RS when
the sample is restricted to only include people who meet criteria for possible pathological
gambling.
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E.5 IGT Performance

Figure E.12 and Figure E.13 display IGT performance in two separate samples collected

at Washington State University. In both cases, performance is much lower than what is

reported by other authors with much smaller samples. This raises some concerns about

what ‘Bad’ performance on the IGT means. Some authors suggest that performance less

than 50% indicates probable frontal lobe dysfunction which would apparently include most

of these participants.
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Figure E.12: IGT Performance in the current study collected in early 2009. Error bars
indicate the 95% confidence interval. This data includes only the standard IGT.
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Figure E.13: IGT Performance in the author’s masters thesis collected in Fall 2005 and
Spring 2006. Error bars indicate the 95% confidence interval. This data includes both the
standard IGT and a modified IGT with a late reversal.
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Appendix F

A brief IRT analysis of the scales in Study

One

F.1 Impulsivity Measures

Although these analyses are extremely preliminary, they do tell a very interesting story. To

accomplish this, the BIS, SSS, IMP and EIS were subjected to a rudimentary IRT analyses

using all of the items available for each of the scales. No assumptions of unidimensionality,

monotonicity or nonintersection were examined but they aren’t important for demonstrating

my point. Total information plots were obtained to look at each of the scales ability to

predict impulsivity traits across the full latent continuum. These plots do not reflect a

common factor, so it is likely that impulsivity is defined differently for each of the scales

(i.e., the scales are not interchangeable). Essentially, this describes how well each of these

scales measures individuals from low levels (θ = −4) to high levels (θ = +4). For those

unfamiliar with IRT, ability roughly correlates to z-scores. Information corresponds to the

inverse of standard error, so higher information means less error.

Generally speaking, the scales that use Likert-type multiple response options do a better

job of measuring the full range of the latent continuum. This is not surprising. What is also
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Figure F.1: Comparison of RI, BIS and IMP under IRT parameterization
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Figure F.2: Comparison of RS, SSS and VENT under IRT parameterization
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not surprising is that the measures developed under IRT have more information across the

full continuum. Referring to Figure F.1 we can see that the RI and BIS both do a good job

across varying levels of impulsivity with the RI edging out the BIS by a slim margin. In

Figure F.2, the RS clearly excels at measuring all levels of the latent trait when compared

to the SSS or VENT. Lastly, Figure F.3 shows that the IMP has good information but that

this information is only high in a very narrow range of the latent continuum. In this case,

the IMP is good at measuring people who are slightly more impulsive than average, but not

good at measuring people outside of this region. This figure probably accounts for why the

RS does a better job of predicting the SOGS for the restricted sample.
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Figure F.3: Comparison of RS and IMP under IRT
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F.2 Behavioral Outcomes

The last interesting thing that can be learned is how well the outcome measures perform.

The SOGS (see Figure F.4) does an exceedingly good job of discriminating between people

with low vs high levels of gambling problems. This means that the SOGS is NOT precise

when it comes to giving people a score at various levels of the trait continuum but that it is

very accurate in the range which is diagnostically relevant. A quick note, the y scale is not

mistaken, the information is nearly 2000 in that particular range.

The CBI and YAACQ both perform quite well from an IRT perspective as seen in Fig-

ure F.6 and Figure F.5. Both scales do a particularly good job of identifying people from 0 to

+4. This means that the scales were designed to measure higher levels of problem behaviors

and that they will not do a good job for individuals who have fewer problems.
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Figure F.4: SOGS Information Under IRT
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Figure F.5: CBI Information under IRT
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Figure F.6: YAACQ Information under IRT
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