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BIOINFORMATICS TOOLS FOR EVALUATING

MICROBIAL RELATIONSHIPS

Abstract

Da Meng, Ph.D.
Washington State University

May 2009

Chair: Shira L. Broschat

Recent years have seen the rapid development of microbial genomics. The

vast amounts of microbial genomic information make it possible to study microor-

ganisms systematically. However, how to manipulate the huge amount of available

data, how to retrieve genomic information effectively, and how to effectively pro-

cess the large scale data are big challenges. To cope with these difficulties, more

sophisticated informatics methods have been widely used and have become an

essential part of genomics.

My research work is focused on developing new strategies for several of the

challenges mentioned above. First, we describe a new software tool, PLasmid Anal-

ysis System and Marker IDentification (PLASMID), for selecting an optimal set of

probes for the design of a classification microarray. The tool provides the user with

several clustering methods, a probe ranking method, probe redundancy reduction,

and probe selection using stepwise discriminant analysis. The software package has

been applied to data from a mixed-plasmid microarray, a virtual mixed-genome

microarray, and an expression microarray.
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Second, to increase discrimination accuracy, we have developed a fusion algo-

rithm that combines the information obtained from both Pulsed-Field Gel Elec-

trophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Anal-

ysis (MLVA) assays to obtain phylogenetic relationships. Results are assessed by

comparison with phage-typing assays and with known epidemiological relation-

ships. Our analysis shows that the fusion algorithm provides an improved ability

to discriminate between bacterial isolates and to infer phylogenetic relationships

compared with using either PFGE or MLVA analysis alone.

Many studies have shown that horizontal gene transfer (HGT) is common

among microbes. HGT can lead to mosaic-like gene sequences in plasmids which

makes it a challenge to build robust phylogenetic trees. Simply applying existing

phylogenetic methods to study the evolution of plasmids may lead to questionable

results. When multiple sequence alignment is used, most phylogenetic methods

assume the sequences are homologous. We consider several features of plasmids

that affect phylogeny analysis and introduce a method for establishing reliable

phylogenetic relationships.
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CHAPTER 1

Introduction

1.1 Microbiology in the genomic era

The last 20 years has seen the rapid development of prokaryotic ge-

nomics. Since Haemophilus influenzae was sequenced in 1985 [1], about 880

complete bacterial genomes have been sequenced, and currently there are

about 1000 ongoing genome projects (as of April 2009 in the NCBI database

http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome). Prokaryotic genomics

has had a revolutionary impact on our view of the microbial world and also on the

methodologies for microbiological studies.

1.1.1 Complexity of microbial genomes

Comparative genomics has revealed that microbial genomes are very diverse.

This is due to the complicated nature of microbial evolution. Differing from eu-

karyotic genomes where mutations play a key role in evolution, the contents of

prokaryotic genomes are also changed by gene losses, gene rearrangements, hori-

zontal gene transfer, and so on [2, 3]. This means that even strains from the same

species can differ significantly. For example, two Escherichia coli strains (O157:H7

and K-12) have more than 1000 different genes [4].

The dynamic nature of microbial genomes complicates several tasks in mi-

crobiology studies. One of these is the development of strategies to prevent and

treat microbe-related diseases. Since microbe-related diseases are common threats

to the public health, microbes (especially bacteria) have been studied for many

years. One point of progress was the introduction of antibiotics to treat bacterial

infections. However, the use of antibiotics has been challenged by the emergence

of antibiotic resistance among bacteria.

1



Antibiotic resistance has been found to exist widely in bacterial species [5]. It

is believed that antibiotic resistance evolves via natural selection. However, antibi-

otic resistance also can be introduced to bacteria via horizontal gene transfer [5].

Plasmids play an important role in this process. Plasmids are extrachromosomal

genetic elements that constitute up to 10% of the total DNA found in many species

of bacteria [6]. Because plasmids are capable of cell-to-cell transfer between bacte-

rial species, genes harbored by plasmids are widely shared, playing a critical role in

the evolution of bacteria [7]. Establishing accurate relationships between plasmids

will help us to understand an important factor in the dissemination of antibiotic

resistance genes, and establishing accurate relationships between bacteria will help

us to identify the factors that cause diseases, the risks of outbreaks, and methods

for preventing disease transmission. Unfortunately, the complexity of microbial

genomes is apparent when we try to compare the genetic contents of strains and

to build a phylogeny tree from them [3].

1.1.2 Molecular methods to obtain data

One characteristic of microbiology studies in the genomics era currently is that

we can generate a huge amount of data efficiently. Numerous different genomics-

based experimental methods are available. These methods are usually called molec-

ular methods since they are often based on genetic characteristics. Compared to

traditional phenotype-based methods, molecular methods are cost effective, easy

to implement, and generate highly-discriminatory data [8]. Of these methods,

pulse-field gel electrophoresis (PFGE) is considered the gold standard. Multiple-

locus variable-number tandem repeat analysis (MLVA) assays are also a potentially

powerful alternative or complementary typing tool.
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Pulsed-field gel electrophoresis

Pulsed-field gel electrophoresis (PFGE) is one of the most reproducible and

highly discriminatory typing techniques, and it has been widely and successfully

used for subtyping a variety of Salmonella enterica serovars [9–11]. One of the pri-

mary advantages of PFGE is that protocols are relatively simple to standardize,

results are robust, and for many situations the technique is able to discriminate

between closely related strains. In addition, extension of the assay to new serovars

does not require a great deal of modification as might be required with polymerase

chain reaction (PCR) dependent procedures. PFGE involves size separating chro-

mosomal DNA macro-restriction fragments in agarose gels, and strains are typed

depending on the resulting band pattern observed after electrophoresis has been

completed. Difficulties arise when strains are very closely related (i.e., poor dis-

crimination) or when bands either co-migrate in the gel or when identically sized

bands represent completely different fragments of chromosomal DNA [12]. These

complications are more pronounced when a large number of bands are generated

by the restriction digest. In addition, while band patterns convey a crude degree

of genetic relatedness, a large number of independent restriction digests would be

needed to infer an accurate phylogeny between isolates [12]. A final and somewhat

unavoidable criticism of PFGE is that the procedure is time-consuming and not

conducive to high-throughput screening [13].

Multiple-locus variable-number tandem repeat analysis

Multiple-locus variable-number tandem repeat analysis (MLVA) is a PCR-

based technique that relies on amplification of chromosomal or plasmid DNA that

encompasses short tandem repeats of a DNA sequence. The tandem repeats are

prone to higher than background mutation rates due to DNA-strand slippage dur-

ing DNA replication [14], and thus the amplified fragments will vary in length
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depending on the number of repeats harbored at a given locus. Different fragment

lengths are tallied either as the total length (base pairs) or the estimated number

of repeat units, and each discretely sized fragment is considered a unique allele

for the locus under investigation. Because the technique can be multiplexed and

automated, it is conducive to rapid and relatively high throughput typing needs.

MLVA assays are relatively robust [15], and while not perfect, these assays can

provide phylogenetically informative information even with a limited number of

loci [16]. While access to a sequenced genome dramatically speeds the ability to

establish new assays [17], this is not a requisite to assay development. The pri-

mary limitations of the technique include the potential need for a new set of loci

for every species or serovar under investigation and the fact that some loci are

very unstable and can disappear from some strains or lineages (this produces the

equivalent of an uninformative null allele). Mutation rates can also vary between

loci [18, 19], which, if ignored, can introduce bias into phylogenetic analyses.

Other molecular methods

Several other molecular methods are also widely used. Multi-locus sequence

typing (MLST) characterizes isolates of bacterial species using the sequences of

internal fragments (usually 450-500 bp) of housekeeping genes [20, 21]. The great

advantage of MLST is that it is an unambiguous typing method. However, it be-

comes very costly for a large number of strains. Randomly amplified polymorphic

DNA (RAPD) is based on the amplification of a random DNA segment under

the assumption that the patterns of bands may be different for individuals in a

population or closely related species [22, 23].

Much work has been done to compare different molecular methods, and it

has been shown that the discriminatory power depends not only on the techniques

themselves, but also on the types of strains to be studied [8, 24].
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1.1.3 High-throughput technology: DNA microarrays

DNA microarrays provide a powerful, high-throughput genomic method that

has been widely used in biological studies. To construct a DNA microarray, single-

strand fragments of DNA (also called probes) representing the genes of an organism

are attached to a surface of glass or plastic. Each fragment can bind to a com-

plementary DNA or RNA strand. Typically, more than 30,000 spots can be put

on one slide, and it is possible to create a microarray representing every gene in a

genome. Thus, microarrays can provide genome-wide information which allows a

comprehensive genetic analysis of an organism or a sample.

DNA microarrays have been used for genotyping, expression analysis, and

studies of protein-DNA interactions [25]. When used for assessing the genetic rela-

tionships of bacterial strains, microarrays may be whole-genome microarrays com-

posed of open reading frames (ORFs) of one complete genome sequence [26, 27].

However, this type of microarray is limited by the requirement of representing

one complete reference sequence which may not contain genetic content specific to

nonsequenced strains. One possible improvement is to include specific genes from

multiple whole-genome sequences or to use mixed-genome microarrays (MGMs)

which use randomly-selected gene fragments from many strains of bacteria as

probes [28–32].

1.2 Bioinformatics: From data to knowledge

The vast amount of microbial genomic information makes it possible to study

microorganisms systematically. However, how to manipulate the huge amount

of available data, how to retrieve genomic information effectively, and how to

process the large scale data efficiently are all challenging problems. Because of

these problems, the field of bioinformatics has emerged and has become an integral

part of microbial studies [33].
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1.2.1 Databases

Various databases have been established for storing genomic data, and the

internet makes it possible for these data to be accessed and shared by the pub-

lic. Since there are different types of genomic data, it is impossible to build

one database containing all data. Currently there are two types of genomic

databases. Primary databases contain sequences and structures (for example,

NCBI GenBank) and related annotations, bibliographies, and cross-references to

other databases and provide the basis for biological studies; secondary databases

contain biological knowledge obtained by analyzing genomic sequences and struc-

ture data. The database of Clusters of Orthologous Groups of proteins (COGs

http://www.ncbi.nlm.nih.gov/COG), for example, contains information for phylo-

genetic analysis [34]. The Ribosomal Database Project (RDP) provides ribosome

related data and annotated Bacterial and Archaeal small-subunit 16S rRNA se-

quences [35]. Several secondary databases are listed in Table 1, and the number of

such databases continues to increase. Knowledge from these databases can help to

process biological data efficiently. For example, the Gene Ontology database has

been used to process microarray datasets [36].

1.2.2 Data retrieval methods

In order to use the information available in databases, an efficient information

retrieval method should be used to obtain all related information quickly. Such

methods differ, depending on the type of data to be retrieved. FASTA and BLAST

are the two most widely used methods for retrieving sequence data.

FASTA was the first fast sequence searching algorithm used for comparing a

query sequence against a database [37]. The FASTA algorithm performs a rapid

and approximate search for matched sequence segments followed by application of

the Smith-Waterman alignment algorithm [38] to these segments.
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BLAST (Basic Local Alignment Search Tool) is a rapid sequence database

search tool which is more efficient than FASTA. BLAST generates a list of all

possible words of length k (protein sequence: k = 3 and nucleotide sequences:

k = 12) in the query sequence which is then expanded by finding high-scoring words

based on a scoring matrix (such as Blosum62 or PAM120) [37]. After forming the

query words, the database is searched for these words. When an exact match is

found, the algorithm looks in both directions for the rest of the sequence. The

output of BLAST is a list of high-scoring segment pairs (HSPs) and an “E value”

which is an estimate of the probability of finding an HSP with score S. The E value

is often used as a standardized measure for estimating the statistical significance

of sequence similarity.

1.2.3 Computational methods

A number of computational methods have been developed and used in ge-

nomic studies. Of these methods, genetic sequence alignment is the foundation

for many other methods and widely used in comparative genomics. A good align-

ment method should give biologically meaningful results and at the same time be

computationally efficient.

There are two types of alignment methods, local alignments and global align-

ments. The former methods try to identify similar segments between two sequences

while the latter try to align the entire length of two sequences. Methods for align-

ing two sequences are called pairwise alignment methods. BLAST and FASTA are

two widely used pairwise alignment methods. These methods can be extended to

multiple sequences; however, multiple sequence alignment (MSA) is more compli-

cated.

ClustalW [39] is a widely used MSA method which is efficient for aligning

protein sequences and short nucleotide sequences. However, it may fail for distantly
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related sequences [40]. PSI-BLAST [41] is a very successful method for detecting

weak similarities. Two recently developed algorithms, MLAGAN and MAVID

[42, 43], are designed for global alignment of both evolutionarily close and distant

megabase-length genomic sequences. However, a phylogenetic tree is assumed

to be known for use with MLAGAN. MAVID is a progressive global alignment

program that works by recursively aligning the ‘alignments’ at ancestral nodes of

the guide phylogenetic tree. MAUVE is used for comparing long genome sequences

efficiently and takes into account possible large-scale evolutionary events among

sequences [44].

1.2.4 From data driven to principle driven: Current status and future
directions

Currently, the focus of bioinformatics is to create new computational methods

for collecting and analyzing data for specific biological problems as well as to create

databases for saving more and more biological knowledge. Methodologies are data

driven. However, this is only the first step toward understanding the complexity

of biological systems [33]. The future will see more mathematics, physics, and

chemistry in the modeling of underlying biological processes in such a way that

the biological phenomena can be explained precisely. Systems biology is the first

attempt in this direction; its goals are to understand the structure of a biological

system, for example, gene networks at the cellular level, and to understand the

dynamics of the system [45].

1.3 Phylogenetic analysis

The goal of phylogenetic analysis is to reconstruct the evolutionary history of

a set of organisms. In molecular epidemiology, it helps to elucidate mechanisms

that lead to microbial outbreaks and epidemics.

Phylogenetic analysis usually begins with multiple sequence alignment of the
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sequences of a set of organisms. After obtaining an MSA, a number of different

phylogenetic methods can be used to compute phylogenetic trees. These meth-

ods can be broadly classified into maximum parsimony, distance, and maximum

likelihood methods [46–49]. The difference between these methods is how they

define which tree is best among all possible trees. Maximum parsimony tries to

find an evolutionary tree or trees which require a minimum number of changes

from the common ancestral sequences. For maximum likelihood methods, given

the MSA, the probability of a specific tree occurring is computed, and the one or

ones with the highest values are considered to be the evolutionary tree or trees.

Distance-based methods construct a tree by hierarchical clustering methods using

a distance matrix for all organisms that is computed using MSA. To use MSA for

phylogenetic analysis, it is necessary to assume an underlying mutation model. Of

the ones that have been proposed, the Jukes-Cantor (JC) model [50] is the sim-

plest one. In the JC model, each base in a DNA sequence has an equal mutation

rate and all complementary pairs of the four nucleotides A, T, C, and G have

equal substitution rates. These assumptions are not realistic in practice, so many

complex models have been proposed and tried. Successful phylogenetic analysis

requires a suitable model.

Phylogenetic analysis of microbial strains is problematic due to its dynamic

nature [51]. Different genes among strains may contain contradictory information

about their evolution. Consensus trees have been suggested as a solution. An alter-

native is the introduction of networks that represent the evolutionary relationships

between microbial strains [52]. According to a recent summary, currently there are

about 386 available packages and 52 servers for phylogenetic analysis. These tools

are different with respect to the methods implemented and the mutation models

used.
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1.4 Bioinformatics challenges

Many bioinformatics tools have been borrowed from the fields of artificial

intelligence, data mining, and statistical methods. However, the characteristics of

biological data may differ significantly from those of the original data for which

the methods were developed. Though many computational methods have been

introduced for genomic data analysis based on these methods, several challenges

still exist.

One challenge is the high dimensionality of data that results from high-

throughout methods, particularly microarray data. A typical DNA microarray

might have thousands of features (probes) for, at most, one hundred samples. For

traditional methods, including clustering methods and classification methods, the

rule of thumb is to use at least ten samples for each feature [53]. Feature reduction

is typically required before these sorts of analyses can be performed [54].

Another challenge is integrating data from different sources. These datasets

might show a high degree of heterogenity and might also vary in quality. They

might be generated using different experimental platforms or based on different

molecular methods. Using these data together efficiently requires developing suit-

able bioinformatics methods. Of these methods, the simplest one is to put several

datasets together to build a larger dataset and then analyze this larger dataset.

However, this method will not work if the formats of the original datasets differ.

Furthermore, the best processing methods for different datasets are not the same.

For example, Dice coefficents worked well for some PFGE data we used but did not

work well for some VNTR data. Thus, it might be an impossible task to choose

an optimal method for a combined dataset. An alternate method is to process

different datasets separately and then combine the results to obtain the final re-

sult [55–58]. The difficulties with this kind of method, however, are determining
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the extent to which the different sources of data should contribute and explaining

the combined results.

1.5 Consideration of programming languages

Selecting a programming language to use for a study might seem to be a trivial

matter at first. However, given the need for maintenance and the possibility of

use on different platforms, it is not actually trivial. Several factors play important

roles in the selection. The first is issue of speed. If speed is a major problem, C or

C++ is usually preferred. If it is important to interact with databases to retrieve

data or to write the output into a database, choosing a language such as Java,

Perl, or python will simplify the work. In our case, we chose to use C and Java

together or C and python together.

A key challenge in designing new computational methods to analyze genomic

data is verifying the results. One possibility is to build a simulator to generate

simulated data. In phylogenetic analysis, there are many simulators available

for generating simulated data. However, the simulated data may be biased in

the evaluation. For such cases, accumulating more analytical data and building

a gold standard would be very helpful. Finally, choosing a standard format for

representing data is important because it decreases the time needed to change

data formats when different tools are used.

1.6 Objectives of this research

The discovery of genes and DNA made it possible to study organisms directly

at the genetic level [59]. Compared to traditional biotechnology methods, modern

techniques give more precise results in less time. These methods, especially high-

throughput genomic technologies, provide efficient ways to study many important

biological questions, from antibiotic resistance to cancer. More and more data have
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been generated, and data acquisition is increasing exponentially.

Considering the complexity of bacterial genetics, however, acquiring more

biological data and even genome sequences is just the beginning. It is still very

challenging work to obtain biologically interesting information from these data. To

do so requires the development of suitable bioinformatics methods and associated

software tools. This is the focus of this thesis. In Chapter 2 we introduce a fusion

method for improving the accuracy of phylogenetic relationships by combining

heterogeneous information. In Chapter 3 a method for improving the design of

classification microarrays is presented. In Chapter 4 a method for constructing

reliable evolutionary relationships among plasmids is discussed. Possible directions

for future work are given in Chapter 5.
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Table 1. List of databases

Database URL

Primary

GenBank http://www.ncbi.nlm.nih.gov/Genbank/ DNA sequences
EMBL http://www.ebi.ac.uk/embl/ DNA sequences
SwissProt http://www.ebi.ac.uk/uniprot/ protein sequences
EC-ENZYME http://ca.expasy.org/enzyme/ enzyme nomenclature
RCSB PDB http://www.rcsb.org/pdb/home/home.do biological structures

Secondary

InterPro http://www.ebi.ac.uk/interpro/ protein function
PROSITE http://ca.expasy.org/prosite/ protein function
Pfam http://pfam.sanger.ac.uk/ protein function
SMART http://smart.embl-heidelberg.de/ protein function
COG http://www.ncbi.nlm.nih.gov/COG/ ortholog groups
GO http://www.geneontology.org/ gene ontology
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CHAPTER 2

A Java-based Tool for the Design of Classification Microarrays

2.1 Abstract

Mixed-plasmid and mixed-genome microarrays can be used to compare the

genetic content of plasmid and bacterial genomes for classification purposes. Se-

lection of probes is a key factor in designing successful mixed microarrays because

redundant sequences are inefficient and limited representation of diversity can re-

strict their application. We have developed a Java-based software tool, called

PLASMID, for use in selecting the minimum set of probe sequences needed to

distinguish between different groups of plasmids or bacteria.

The software program was successfully applied to several different sets of data.

The utility of PLASMID was illustrated using existing plasmid microarray data as

well as data from a virtual mixed-genome microarray constructed from different

strains of Streptococcus. Moreover, use of public data from expression microarray

experiments demonstrated the generality of PLASMID.

In this chapter we describe a new software tool for selecting a set of probes

for a classification microarray. While the tool was developed for the design of

mixed microarrays—and mixed-plasmid microarrays in particular—it can also be

used to design expression arrays. The user can choose from several clustering

methods (including hierarchical, non-hierarchical, and a model-based genetic al-

gorithm), several probe ranking methods, and several different display methods.

A novel approach is used for probe redundancy reduction, and probe selection is

accomplished via stepwise discriminant analysis. Data can be entered in different

formats (including Excel and comma-delimited text), and dendrogram, heat map,

and scatter plot images can be saved in several different formats (including jpeg
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and tiff). Weights generated using stepwise discriminant analysis can be stored for

analysis of subsequent experimental data. Additionally, PLASMID can be used to

construct virtual microarrays with genomes from public databases.

2.2 Background

How to use genetic information for classification is part of the larger question

of how to “capture” and quantify genetic diversity for any group of heterogeneous

entities. The majority of DNA microarrays in use today are created from single

genomes that do not reflect the heterogeneity of most populations. Mixed-DNA

microarrays offer an alternative for “capturing” genetic diversity for classification

purposes. Mixed-genome or mixed-plasmid microarrays include DNA from one

or more reference strains or plasmids that is shotgun-cloned, and a microarray is

generated from randomly selected, PCR-amplified clone inserts [1, 2]. Unlike most

fingerprinting tools, the mixed-array format permits identification of informative

probes that can be retrieved from the clone library for sequencing [3]. However, re-

dundant sequences and limited representation of diversity can limit the application

of these tools [2, 4]. Fortunately, a growing public database of genomes offers a

new opportunity to incorporate non-redundant and diverse sequences into a mixed-

microarray format. These arrays can be used to quickly assess the distribution of

genetic diversity across multiple species and niches.

This work focuses on the optimal design of classification arrays. By optimal

we mean minimizing the complexity and cost of an array by using as few probes as

possible while still rendering sufficient information to discriminate between strains

and to avoid bias. Selection of an optimal set of probes is a key factor in designing

a successful mixed microarray to suit a particular need. The effects of probe

length and the number of probes per gene have been discussed in [5]. A method
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for finding unique and valid oligonucleotides or probes was proposed in [6], which

tries to identify probes for a gene such that there is no similar occurrence in other

locations of a genome. A tool for choosing optimal DNA oligos is reported in [7],

which identifies oligo sequences that occur in members of the target group but not

in the non-target group. However, these methods are used for genome-wide probe

selection and are not intended to identify minimum probe sets for classification

problems.

A number of methods have been introduced for designing optimal probe sets.

Pre-filtering methods [8] use clustering of all probes to find similar probe groups.

Similar probes are discarded; the remaining probes are ranked, and top-ranked

probes are kept for further analysis. A similar method [9] uses K-means to cluster

all genes, and the means of different gene clusters are used as prototype genes. The

limitation of these methods is that the number of clusters must be specified. A

hybrid approach [10] ranks the probes first and selects a set of top-ranked probes.

Hierarchical clustering is then used on these probes to generate a dendrogram. The

optimal probes are selected by collapsing dense clusters. In this manner a small

set of probes is identified that has a similar prediction accuracy to one that uses

more probes.

The methods described above identify optimal probes using training data

when the structure of the data is given. Such information, however, is usually

unavailable for microarray data sets. A tool is still needed to help design mixed

microarrays when prior knowledge of a microarray data set is unavailable. The

focus of this chapter is a software program, PLASMID, used for selecting a mini-

mum set of probe sequences needed to distinguish between groups of plasmids or

bacteria. Data used to identify probe candidates can be either existing microar-
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ray data (or similar hybridization data) or sequence data from a public database

such as GenBank. The latter are converted to “probe” sequences, and virtual

hybridization is used to generate data for probe selection [11]. To demonstrate

the generality of PLASMID, we include an example whereby the program can also

be applied to develop a minimum probe set to distinguish between two classes of

leukemia using data from an expression array.

2.3 Methods
2.3.1 Finding meaningful clusters in hybridization data

Finding meaningful clusters in a given set of hybridization or sequence data

is a key task in optimal microarray design; our tool provides several clustering

options. Clustering methods can be classified into two general groups: distance-

based methods and model-based methods. Distance-based methods are either

non-hierarchical or hierarchical, and each method has its particular strengths and

weaknesses. Currently our tool includes the K-means non-hierarchical clustering

algorithm and hierarchical clustering by means of Unweighted Pair Group Method

with Arithmetic mean (UPGMA), neighbor joining, or Ward’s minimum variance

method, all of which are widely used in microarray data analysis. A model-based

method is also implemented.

Distance metrics. Distance-based methods require use of a distance metric.

There are different types of distance metrics that can be used to compute the

distance between two objects to be clustered. Selection of a suitable metric is

very important for the obtainment of reasonable clustering results. Unfortunately,

there are no selection guidelines except to choose the metric that gives the “best”

results based on an error function or the ability to classify particular data points.

Euclidean distance is the most commonly used metric; a large distance implies low

similarity. Pearson’s correlation coefficient is another commonly used metric that
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measures the extent to which two objects are linearly related. The value of the

correlation coefficient ranges from -1 to +1, and values of zero indicate a random

relationship between objects. If we assume a microarray data set with n samples

and p probes and xgs is the intensity value for sample s at probe g, then distances

are calculated using:

1. Euclidean distance

dij =

√√√√
p∑

g=1

(xgi − xgj)2 (1)

2. Pearson’s correlation coefficient

dij =

∑p
g=1 (xgi − x.i)(xgj − x.j)√∑p

g=1 (xgi − x.i)2
√∑p

g=1 (xgj − x.j)2
(2)

where x.i is the mean intensity of sample i across all probes.

Hierarchical clustering algorithms. In hierarchical clustering, a distance metric

is used to calculate the distance (or similarity) matrix for the N samples to be

clustered. The clustering algorithm functions as follows [12]:

1. Start by assigning each sample to a cluster. Thus, for N samples, there are

N clusters, each containing just one item. Let the distances between the

clusters be the same as the distances between the samples they contain.

2. Find the closest pair of clusters and merge them into a single cluster; there

are now N − 1 clusters.

3. Compute distances between the new cluster and each of the old clusters.

4. Repeat steps 2 and 3 until all samples are clustered into a single group of

size N .
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After completing these steps, a dendrogram is constructed. It is up to the user to

decide how to subdivide the dendrogram into meaningful clusters according to the

problem under consideration. In step 3, there are different ways of calculating dis-

tances between two clusters: the single-linkage method (also called neighbor join-

ing or minimum method), complete-linkage method (or maximum method), and

average-linkage method (also known as UPGMA). In the single-linkage method,

the distance between one cluster and another cluster is defined as the shortest

distance from any member of one cluster to any member of the other cluster; in

complete-linkage, distance is defined as the greatest distance from any member of

one cluster to any member of the other cluster; and in average-linkage clustering,

distance is the average distance from any member of one cluster to any member

of another cluster. Ward’s minimum variance is another hierarchical clustering

method that is widely used. At each step in the analysis, the union of every possi-

ble cluster pair is considered and the two clusters whose fusion results in minimum

increase in “information loss” are combined. Information loss is defined by Ward

in terms of an error sum-of-squares criterion.

Non-hierarchical clustering algorithm. The K-means clustering method is the

most widely used non-hierarchical clustering method [12]. In K-means clustering,

all samples in question are initially assigned to k clusters; the number of clusters

is assigned a priori. The k centroids, one for each cluster, are calculated, and

each sample is associated with its nearest centroid. After all samples have been

reassigned to different clusters, the centroids are recalculated. This process contin-

ues until the centroids no longer change locations. The objective of the K-means

clustering method is for the solution to have the minimum intra-cluster variance
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for all possible cluster partitions.

Model-based genetic clustering. Distance-based methods are simple to use, and

the clustering results are easy to explain. However, it is hard to obtain information

about the number of clusters, the confidence level of the clustering results, and so

on, from these methods. To avoid some of these issues, model-based clustering

methods can be used as an alternative. Model-based clustering methods assume

that the data can be clustered according to a set of underlying distributions. These

underlying distributions can be modeled, and finding a suitable model can be

construed as an optimization problem. We assume that M is the underlying model

for a data set X, and the best clustering result is represented by partition P . A

measure is used to determine which P is most likely for X. In our tool the measure

is the likelihood of all possible partitions P . A number of different optimization

methods can be used to find the solution for P . In our tool, we have chosen to use

a genetic algorithm because of its simplicity and efficiency in addition to its ability

to find the optimal solution. Usually model-based clustering methods are based

on the Expectation-Maximization (EM) method. However, EM algorithms tend

to break down for microarray data because an inversion of the covariance matrix

must be performed. In genetic algorithms, a search method is used to circumvent

the need for this computation, thereby making genetic model-based methods more

stable.

The simplest case is to assume that all samples (e.g., plasmids) xij in the

same cluster i for a given probe j share the same set of normal distributions, xij ∼
N(µij, σ

2
ij) where µ is the mean and σ2 is the variance. To find the best partition
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P we want to find the maximum value of the likelihood function L(x, µ, σ2, P )

L(x, µ, σ2, P ) = L(x|µ, σ2, P )L(µ, σ2, P )

= L(x|µ, σ2, P )L(µ, σ2|P )L(P )

where Bayes’ theorem has been used to obtain the equalities. Ideally we can assign

the likelihood of different partitions L(P ) according to prior knowledge; including

this information will improve the clustering performance. However, we may not

have this information a priori. In this case, we assume all partitions are equally

likely and set L(P ) to one.

We can obtain the likelihood of the product L(x|µ, σ2, P )L(µ, σ2|P ) by choos-

ing µ and σ2 for a particular distribution. For example, we could assume a

normal distribution centered about zero and obtain µ and σ2; this would give

us the maximum likelihood. Instead we assume all possible values of µ and

σ2 for a chosen distribution for each and integrate over these values to obtain

the average likelihood for all µ and σ2. This gives us the marginal likelihood

L(x|P ) = L(x|µ, σ2, P )L(µ, σ2|P ). For this work, we assume a normal distribu-

tion for µ and an inverse-Γ distribution for σ2. This gives:

L(x|P ) =
∏

k

∏

j

2σ2
0

Γ(1)

(2π)−(nk/2)

√
nk + 1

Γ(nk/2 + 1)

(2σ2
0 + 0.5(

∑
i x

2
kij

+ µ2
0 −

∑
i
(xkij+µ0)2

nk+1
))(nk/2+1)

(3)

where k is the index of clusters, j is the index of probes, nk is the number of

samples in the kth cluster, ki is the index of samples in the kth cluster, and µ0
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and σ2
0 are the overall mean and variance of all the data [13].

Using this as a measure, the genetic algorithm is used to find the partition

that maximizes the likelihood. The steps of the genetic algorithm are summarized

as follows:

1. Generate N random partitions. Each partition is represented by a vector

[1 2 1 · · ·] where each term is the index of a cluster.

2. Prior knowledge of pairs of samples highly unlikely to be in the same cluster

can be incorporated into the partition likelihood by creating a text file with

each pair of samples, together with a small weighting factor, on one line. The

weighting factor must be smaller than 1, but how much smaller has to be

determined empirically based on the end result. A weighting factor of zero

indicates that the pair cannot be in the same cluster.

3. Compute the likelihood L for all partitions.

4. Repeat the following steps until the maximum iterations (Max) has been

reached or the difference between the likelihood of two successive iterations

is less than ε, where Max and ε are given.

(a) Select the two partitions with the highest scores.

(b) Do crossover and mutation on these two partitions to generate new

partitions. Crossover is accomplished by randomly selecting sections of

equal length from each partition and exchanging them. Mutation is per-

formed following crossover and is accomplished by randomly selecting

one term in each of the partitions and changing it to a different value.

(c) Compute the likelihood L for these two new partitions (offspring).

(d) Replace the two lowest-ranked partitions with the offspring.
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Other measures can be used including Bayesian Information Criteria and min-

imum description length. These measures will be included in future versions of

PLASMID.

2.3.2 Probe ranking for classification

In a DNA microarray data set there are usually many more probes (features)

than the number of objects to be classified, and often many of these probes are

redundant. Thus, in the design of an optimal probe set for object classification,

our goal is to identify and remove irrelevant and redundant probes. Irrelevant

probes can be removed using probe ranking. There are two basic approaches

to probe ranking: filter techniques and wrapper techniques. Because of their

simplicity filter procedures are used most commonly for DNA microarrays. The

filter procedure ranks each probe using a metric based on its classification relevance.

Top-ranked probes are then selected to perform classification. Numerous filter

metrics are described in the literature [14]: probabilistic and distance metrics,

dependence measures, scores based on information theory, etc. In our tool, filter

metrics are determined using two different statistical tests, the ANOVA-F and

Brown-Forsythe tests. Other tests considered were the Welch, adjusted Welch,

Cochran, and Kruskal-Wallis test statistics [15].

The test statistic is used as a metric to evaluate the discriminating power of a

probe. Higher values represent more discriminating probes. If we assume that for

a microarray dataset with n samples and p probes, xgs is the intensity value for

sample s at probe g, then the microarray data set can be written in the following

matrix form:
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G =




x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

...
xp1 xp2 · · · xpn




Assuming that these n samples belong to k classes, we use yk
ij to represent the

intensity for the jth sample of the ith class on the kth probe. The ANOVA-F and

Brown-Forsythe formulas are given by:

1. ANOVA-F test statistic

F =
(n− k)

∑
ni(ȳi· − ȳ··)

(k − 1)
∑

(ni − 1)s2
i

(4)

where

ȳi· =
ni∑

j=1

yij/ni, (5)

ȳ·· =
k∑

i=1

niȳi·/n, (6)

and

s2
i =

ni∑

j=1

(yij − ȳi·)2/(ni − 1) (7)

Under the null hypothesis and assuming no differences in variance, this test

statistic follows the F distribution Fk−1,n−k.

2. Brown-Forsythe test statistic

B =

∑
ni(ȳi· − ȳ··)2

∑
(1− ni/n)s2

i

(8)
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Under the null hypothesis and assuming no differences in variance, this test

statistic follows the F distribution of Fk−1,v, where

v =
[
∑

(1− ni/n)s2
i ]

2

∑
(1− ni/n)2s4

i /(ni − 1)
(9)

For some applications, clusters may include an insufficient number of samples

for meaningful statistical analysis. Such cases can be handled by generating ran-

dom samples that differ only slightly from the original samples. These samples

can be included in the statistical analysis and then discarded without compro-

mising the probe ranking procedure. The purpose of adding these samples is for

computational convenience only; they do not add more information.

The end result of the probe ranking function is a list of all probes ranked by

their classification relevance. At this point, the user can either stop and use some

chosen number of the top-ranked probes for the array probe set or continue with

probe reduction and stepwise discriminant analysis to remove redundant probes

and assign weights to the probes.

2.3.3 Stepwise discriminant analysis

While the top-ranked probes are informative, at least some of them are likely

to convey redundant information. In our tool, redundancy is removed using K-

means clustering of probes followed by stepwise discriminant analysis (SDA) [16].

A set of top-ranked probes is clustered into κ groups; probes in the same group

are highly correlated with each other but uncorrelated or loosely correlated with

probes in other groups. The probe closest to the center of a group is chosen

to be representative of that group, and the κ representative probes are used in

the SDA that identifies the optimal probe set G. At each step of the SDA, an

F statistic is computed for each probe; this value is used to determine whether
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including the probe or excluding the probe from G will significantly improve sample

differentiation. The SDA process starts with an empty probe set G, and an iterative

process of adding a probe to G or removing a probe from G continues until no probes

can be added or removed. Fremove is used for the probes in G, and Fenter is used for

the probes not in G. The probe in G with the smallest value of Fremove less than a

chosen threshold value, usually 1.0, is removed; the probe not in G with the largest

value of Fenter greater than the threshold value is added to G. The formulas used

to compute F are

F values:

Fremove =
n− r − q + 1

q − 1

Λ(G \ p)− Λ(G)

Λ(G)
(10)

Fenter =
n− r − q

q − 1

Λ(G)− Λ(G|p)

Λ(G|p)
(11)

Wilks’ Λ:

Λ(G) =
det(W )

det(T )
(12)

Within-group covariance matrix:

W (G) =
q∑

m=1

nm∑

m=1

(xmki − xmi.)(xmkj − xmj.) (13)

Among-group covariance matrix:

T (G) =
q∑

m=1

nm∑

m=1

(xmki − xi..)(xmkj − xj..) (14)

where q is the number of clusters, nm is the number of samples in the cluster m,

xmki is the value of the ith probe for the kth sample in the mth cluster, n is the

total number of samples, r is the number of probes currently included in G, G|p
denotes a new group of probes which is obtained by adding the probe p to G, G \ p
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denotes a new group of probes which is obtained by removing the probe p from G.

At the conclusion of SDA, the optimal probe set is determined based on the

prediction accuracy of the selected probes. Because there are typically a small

number of samples associated with microarray data, prediction accuracy is com-

puted using the leave-one-out (LOO) cross validation method [10, 15]. The set of

probes associated with the highest LOO predication accuracy are written to a file

together with their associated weights. It is important to note that when SDA is

used to obtain the final probe set, the weights associated with the probes must

be used for classification of new empirical data obtained using the probes. The

probes should not be treated with equal weight.

2.3.4 Probe selection for a classification microarray

In summary, the steps in our design of an optimal probe set are:

1. Cluster the microarray or sequence data set and select clusters of interest

using a hierarchical, non-hierarchical, and/or model-based method. A priori

clustering is also permitted.

2. Use the probe ranking procedure to rank the probes for relevance.

3. Repeat K-means clustering for probe reduction until satisfied:

(a) Select j top-ranked probes.

(b) Repeat for κ in a chosen range:

i. Cluster the j top-ranked probes into κ clusters.

ii. Choose κ representative probes, one from each cluster.

iii. Use SDA to find a set of probes from the κ representative probes

and compute the LOO prediction accuracy.
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4. Save the set of probes associated with the highest LOO prediction accuracy

together with their weights. After constructing the optimized microarray, a

set of independent control samples should be hybridized to empirically assess

the accuracy of the microarray results.

A flowchart of the process is shown in Fig. 3. It should be pointed out that

the optimal number of probes computed by this process does not take into account

the effects of noise and other random experimental effects. The sample-to-feature

(SFR) ratio gives the minimum number of probes that should be used to create a

microarray. The rule of thumb is given by [17]:

SFR =
number of samples

number of features
≤ 1

5
.

In this chapter we refer to features as probes. The SFR should be used in

conjunction with the results to choose the optimal probe set.

2.4 System Overview

Our software tool PLASMID, which stands for PLasmid Analysis System and

Marker IDentification, is implemented as a Java application. The NetBeans plat-

form was chosen for development because addition of new features is easily imple-

mented. Also, many of the tasks common to desktop applications are provided by

NetBeans. These include user interface management (e.g., menus and toolbars),

user settings management, storage management (saving and loading any kind of

data), window management, and wizard framework (supporting step-by-step di-

alogs). Each function is implemented as a NetBeans module and can be installed

or removed easily. Java is a platform-independent programming language, so al-

though PLASMID has been developed using the Windows operating system, it
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will be relatively easy to adapt it to other operating systems. We intend to extend

PLASMID for use on both Apple and Linux computers. In addition to using Java,

PLASMID uses code written using the C programming language. C is needed for

computationally intensive tasks that require greater speed and efficiency. However,

the use of two different programming languages is transparent to the user.

PLASMID provides an integrated environment for designing an optimal clas-

sification microarray. As such, PLASMID v0.9 includes the following services:

1. Loading and management of different kinds of input data, including plasmid

sequence data, hybridization data, virtual hybridization data, and probe se-

quences. Data may be in tab-delimited or comma-delimited text format or

in Microsoft Excel spreadsheet format.

2. Different methods for processing hybridization data. The tool provides sev-

eral data preprocessing methods, including normalization and noise filtering.

It also provides hierarchical, non-hierarchical, and model-based methods for

clustering samples; two different statistical tests for ranking probes; use of

K-means clustering for reduction of probe redundancy; and stepwise discrim-

inant analysis with assignment of weights to probes.

3. Design of mixed arrays using existing hybridization data or virtual hybridiza-

tion data. An optimal set of probes is identified, and weights associated with

each probe are stored for analysis of experimental results.

4. Construction of virtual microarrays to obtain virtual hybridization data using

genomes from the National Center for Biotechnology Information (NCBI)

database. Genomes for probes can be chosen by accession number or by

gene sequence.
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5. Visualization of microarray data and data processing results, including den-

drograms, heat maps, and scatter plots. Plots can be saved in different image

formats.

6. Automatic probe design after the user has specified the parameters. A step-

by-step wizard guides the user through the various steps.

Experimental data obtained from microarrays designed using PLASMID can

be used as input data and analyzed using the weighted classification function ob-

tained in step 3.

2.5 Implementation

Implementation of the tool is based on the NetBeans system, using the Java

and C programming languages, where each function is implemented as a module.

A new function can easily be added without affecting existing functions. The

program was written for the Windows operating system, but in the future it will

be implemented for both the Linux and Mac OS X operating systems.

2.6 Results and Discussion

In this section we present results obtained using PLASMID to analyze a mixed-

plasmid microarray data set [4] and a simulated mixed-genome microarray data

set [11]. We also present results for publically-available leukemia expression array

data [18]. For this latter data set, clusters (i.e., types of leukemia) are pre-assigned

so only probe ranking, reduction of probe redundancy, and stepwise discriminant

analysis (SDA) are used to determine the optimal probe set. PLASMID’s per-

formance in probe selection is evaluated using the leave-one-out (LOO) approach

for which one sample is excluded and the remaining samples are used to obtain

the discriminant functions. Each sample is, in turn, excluded and a corresponding

set of discriminant functions is used to classify it. The prediction accuracy, the
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percentage of times a set of discriminant functions correctly classifies the withheld

sample, is used as the performance metric.

Mixed-plasmid microarray data. A mixed-plasmid microarray has been used

to compare the genetic composition of plasmids [4]. The microarray consists of

576 probes composed of randomly selected fragments of plasmid DNA, and the

samples consist of data from hybridization experiments with 43 plasmids. The

sample data are composed of hybridization signal intensities for each microarray

probe.

First we used the Ward’s minimum variance hierarchical clustering algorithm

to create a dendrogram. To test the two-class problem, we divided the dendrogram

into two clusters. One cluster consisted of 15 plasmids which, with one exception

(the peSSuTet plasmid), have the blaCMY−2 antibiotic resistance gene; the other

cluster consisted of 28 plasmids. We then used the probe ranking function, choosing

the ANOVA-F test statistic, and generated a scatter plot (Fig.1). The scatter plot

shows that the majority of the probes have statistical values close to zero and,

thus, that ANOVA-F test statistics can be used to distinguish between informative

(F > 0) and noninformative (F ≈ 0) probes. This result also serves to highlight

the need for optimization algorithms, as the majority of probes provide limited

discrimination.

For the two-cluster case, we chose 1, 20, and 200 top-ranked probes for com-

parison. Using reduction of probe redundancy and SDA, we found that one probe

(5-E3, a transposase gene associated with the blaCMY−2 element [19]) correctly clas-

sified all but two of the plasmids into the two original dendrogram clusters [4]. In-

terestingly, in the original study one of these two plasmids (pe1171sT) was grouped

with plasmids that harbor the blaCMY−2 gene even though it does not carry this
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gene. The present analysis separated pe1171sT from the blaCMY−2 plasmids. In ad-

dition, a different plasmid (pe7594T) that harbors the blaCMY−2 gene was rejoined

with other blaCMY−2 positive plasmids in the current analysis. Thus, analysis us-

ing PLASMID more accurately reflects the phenotypic properties of the plasmids

included in the study. The one exception was the peSSuT plasmid that was con-

sistently grouped with blaCMY−2 plasmids while not harboring this gene [7].

Next we divided the original dendrogram into five clusters and ranked probes

as before. As expected, the number of probe clusters κ specified for the reduction

of probe redundancy affects the prediction accuracy (Table 2). Small values of κ

certainly reduce redundancy, but they also reduce specificity. The optimal set of

probes is identified using SDA with the LOO method to determine the highest

prediction accuracy. In this case, the smallest number of probes from the top-

most ranked probes with the highest prediction accuracy is 10. Thus, PLASMID

analysis reduced the original data set of 576 probes to 10 probes that are needed

to accurately assign plasmids to one of five clusters. Note that both fewer and

greater numbers of probes can be used to achieve the same prediction accuracy,

and the choice of the number of probes to use must be made by the user. Non-

hierarchical clustering followed by probe ranking, probe reduction, and SDA gave

similar results (data not shown).

In addition to hierarchical and non-hierarchical clustering methods, we can

obtain classification results using our model-based method, which is based on a

genetic algorithm. The genetic algorithm predicted that the most likely number

of sample clusters is five (Table 3). Comparison of Tables 2 and 3 shows that

prediction accuracies depend on the initial clustering method used. For this case,

the prediction accuracies for the model-based clustering method are larger for a
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given number of probe clusters than those obtained via the hierarchical method.

Furthermore, the variance in prediction accuracies is lower as a function of the

number of top-ranked probes when clusters are initially assigned using the model-

based method. However, for other data sets another clustering model might give

the best results.

Based on the sample to feature ratio (SFR), at least nine probes (features) are

required for classifying 43 plasmids (samples). Table 3 shows several choices for

ten probes with equivalent performance. When additional information is available,

it should be used to assist with the choice of a set.

Virtual Streptococcus mixed-genome microarray data. A virtual Streptococ-

cus mixed-genome microarray was constructed by Wan et al. [11]. To create the

equally-represented, 4000-probe virtual array, 800 gene segments each 600-bp long

were randomly selected from genomes of fifteen strains of five bacterial species—

that is, each species was represented by 800 different probes. Virtual hybridization

was accomplished using BLAST scores as proxies for array probe intensities, and

PLASMID was used to analyze the data. In the initial analysis one species was

excluded from the study because it was represented by only a single strain (S.

mutans UA159). Because we knew a priori that the samples belonged to four

different species, the goal was to find an optimal set of probes to differentiate

these four. ANOVA-F tests were used to rank the 4000 probes, and LOO analy-

sis was performed on different numbers of the highest ranked probes. In fact, we

found the LOO prediction accuracy to be 100% for differentiating the four different

species using only the single top-ranked probe. Use of additional probes had no

effect on the results. While it appears that successful classification can be achieved

with a single probe when classification relies on differences in hybridization sig-
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nal, given inherent sources of variation in microarray hybridization data, it would

be prudent to include additional probes to increase classification confidence using

empirical data. For example, the minimum recommended probe set in this case

would be 3 (SFR).

In the second analysis, our model-based clustering method identified two clus-

ters, one with the two S. pneumoniae strains and the other with the remaining

13 strains. After probe ranking, reduction of probe redundancy, and SDA, it was

found that one probe could be used to differentiate these two groups. We also used

non-hierarchical clustering of the samples followed by probe ranking, probe reduc-

tion, and SDA. When the number of clusters was chosen to be k = 2, the result

was identical to the result obtained using our model-based cluster method. When

the number of clusters was chosen to be k = 3 or k = 4, the two S. pneumoniae

genomes were placed in different clusters. A dendrogram constructed using the

neighbor joining method shows a clear distinction between the two S. pneumoniae

samples and the remaining bacteria (Fig.2). When these two samples are excluded,

PLASMID groups the remaining thirteen samples correctly into four species clus-

ters. The results shown in Table 4 are obtained using non-hierarchical clustering,

probe ranking, probe reduction, and SDA. As this table illustrates, only two probes

are needed to obtain 100% prediction accuracy by species. These two probes are

from the genomes of S. pneumoniae TIGR4 and either S. pyogenes M1 GAS or S.

pyogenes MGAS5005. Based on the SFR rule of thumb, at least three probes are

needed. Several choices exist that suffice for this condition.

Public ALL/AML leukemia data. The ALL/AML leukemia data set, obtained

from expression arrays, has been widely used in the literature. It consists of two

classes of leukemia, acute lymphoblastic leukemia (ALL) and acute myeloblastic
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leukemia (AML), and there are 72 samples (47 ALL and 25 AML) and 7129 probes.

Table 5 shows prediction accuracy results after probe ranking, probe redundancy

reduction, and SDA have been performed. When the top 50 probes were selected,

the highest accuracy was achieved when probes were clustered into 10 groups.

A set of 10 probes was identified with a prediction accuracy of 97.22%. Using

additional probes does not lead to improvement. According to the SFR rule of

thumb, at least 20 probes should be used in the actual microarray design; several

choices of 20 probes exist and all produce robust prediction results (Table 5).

2.7 Conclusions

In this chapter we describe a new software tool, PLASMID, for selecting an

optimal set of probes for the design of a classification microarray. The tool pro-

vides the user with several clustering methods, a probe ranking method, probe

redundancy reduction, and probe selection using stepwise discriminant analysis.

Images can be saved in several different formats, and weights generated using SDA

can be stored for use in analysis of experimental data. In addition, PLASMID

can be used to construct virtual microarrays with genomes from public databases.

The software package has been applied to data from a mixed-plasmid microarray,

a virtual mixed-genome microarray, and an expression microarray. Robust results

have been obtained for all three sets of data.

Although many methods are available for determining a set of features for a

given microarray data set, these methods require the classification information to

be known in advance. PLASMID was designed to be used prior to implementation

of a microarray when no such information is available, although the program can

also be used when clusters are known a priori.

PLASMID can be obtained by following the link from

40



http://www.vetmed.wsu.edu/research vmp/microArrayLab/.
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Figure 1. Scatter plot of ANOVA-F test statistics for the mixed-plasmid microar-
ray probes: The scatter plot shows that the majority of the probes have statistical
values close to zero and, thus, that ANOVA-F test statistics can be used to dis-
tinguish between informative (F > 0) and noninformative (F ≈ 0) probes.

42



Figure 2. Dendrogram for Streptococcus MGM data: The dendrogram constructed
using the neighbor joining method shows a clear distinction between the two S.
pneumoniae samples and the remaining bacteria.
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Figure 3. Flowchart of PLASMID
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Table 2. Classification accuracy of mixed-plasmid data using hierarchical clustering
with five sample clusters. PA is the prediction accuracy.

Number of clusters of probes, κ
2 5 10 20 30 40

Number of PA No. of PA No. of PA No. of PA No. of PA No. of PA No. of
top-ranked probes (%) probes (%) probes (%) probes (%) probes (%) probes (%) probes

100 72.09 2 72.09 5 72.09 10 69.77 19 69.77 29 69.77 32
150 86.05 2 93.02 5 95.35 10 95.35 20 95.35 29 95.35 36
200 74.42 2 90.70 5 93.02 10 93.02 20 93.02 30 95.35 35
250 76.74 2 95.35 5 95.35 10 95.35 20 95.35 30 90.70 34
300 46.51 2 88.37 5 93.02 10 93.02 20 93.02 30 90.70 35
350 76.74 2 93.02 5 93.02 10 95.35 20 95.35 30 95.35 33
400 69.77 2 93.02 5 90.70 10 93.02 20 90.70 30 93.02 35
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Table 3. Classification accuracy of mixed-plasmid data with model-based cluster-
ing. PA is the prediction accuracy.

Number of clusters of probes, κ
2 5 10 20 30 40

Number of PA No. of PA No. of PA No. of PA No. of PA No. of PA No. of
top-ranked probes (%) probes (%) probes (%) probes (%) probes (%) probes (%) probes

100 83.72 2 95.35 5 95.35 10 95.35 19 95.35 36 95.35 33
150 53.49 2 90.70 5 93.02 10 93.02 20 93.02 36 93.02 28
200 79.07 2 93.02 5 93.02 10 93.02 20 93.02 36 93.02 35
250 76.74 2 95.35 5 95.35 10 95.35 20 95.35 35 93.02 32
300 69.77 2 93.02 5 93.02 10 95.35 20 95.35 34 95.35 35
350 67.44 2 93.02 5 93.02 10 93.02 20 93.02 35 93.02 35
400 69.77 2 93.02 5 93.02 10 93.02 20 93.02 37 95.35 35
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Table 4. Classification accuracy using mixed-genome array data with non-
hierarchical clustering for four sample (species) clusters. PA is the prediction
accuracy.

Number of clusters of probes, κ
2 5 10 20 30 40

Number of PA No. of PA No. of PA No. of PA No. of PA No. of PA No. of
top-ranked probes (%) probes (%) probes (%) probes (%) probes (%) probes (%) probes

50 100 2 100 5 100 7 100 7 100 1 75 1
100 100 2 100 5 100 7 100 7 100 7 100 1
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Table 5. Classification accuracy using ALL/AML leukemia data. PA is the pre-
diction accuracy.

Number of clusters of probes, κ
2 5 10 20 30 40

Number of PA No. of PA No. of PA No. of PA No. of Pa No. of PA No. of
top-ranked probes (%) probes (%) probes (%) probes (%) probes (%) probes (%) probes

50 94.44 2 94.44 5 97.22 10 97.22 20 97.22 30 97.22 39
100 88.89 2 95.83 5 94.44 10 97.22 20 97.22 30 97.22 40
150 83.33 2 95.83 5 97.22 10 97.22 20 97.22 30 97.22 39
200 79.17 2 80.56 5 97.22 10 97.22 20 97.22 30 97.22 39
250 79.17 2 79.17 5 97.22 10 97.22 20 97.22 30 97.22 39
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CHAPTER 3

A Fusion Algorithm for Assessing Intra-specific Genetic Relationships
between Bacterial Pathogens

3.1 Abstract

Determining phylogenetic relationships between bacterial strains is important

in molecular epidemiology studies. Two molecular typing methods, pulsed-field gel

electrophoresis (PFGE) and multiple-locus variable-number tandem repeat anal-

ysis (MLVA), are widely used in such studies. In this work, we propose a fusion

algorithm that combines the information obtained from both PFGE and MLVA

assays to obtain phylogenetic relationships. Two sets of Salmonella enterica are

examined; one set includes serovar Typhimurium isolates from a wide range of

sampling dates, locations, and host species while the other set includes a group of

serovar Newport isolates collected over a limited geographic and temporal scale.

Results are assessed by comparison with phage-typing assays and with known epi-

demiological relationships. The analysis shows that the fusion algorithm provides

an improved ability to discriminate between isolates and to infer phylogenetic re-

lationships compared with using either the PFGE or MLVA method alone.

3.2 Introduction

Salmonellosis is one of the most common food-borne diseases in the United

States [1]. Consequently, it is important to understand how Salmonella strains

disseminate within and between reservoirs and environments. For this purpose

many molecular typing tools have been used to elucidate the genetic relationships

between strains [2]. Of these methods pulse-field gel electrophoresis (PFGE) is

considered the gold standard for strain typing, and multiple-locus variable-number

tandem repeat analysis (MLVA) assays are powerful alternative or complementary
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typing tools. Both methods offer a high degree of resolution for strain typing

depending on several factors.

PFGE is one of the most reproducible and highly discriminatory typing tech-

niques, and it has been widely and successfully used for typing a variety of

Salmonella enterica serovars [3, 4]. One of the primary advantages of PFGE is

that protocols are relatively simple to standardize, results are robust, and for

many situations the technique is capable of discriminating between closely related

strains. In addition, extension of the assay to new serovars does not require a great

deal of modification as might be required with procedures that are dependent on

polymerase-chain reaction (PCR). PFGE involves size separating chromosomal

DNA macro-restriction fragments in agarose gels, and strains are typed depend-

ing on the resulting band pattern observed after electrophoresis has been com-

pleted. Difficulties arise when strains are very closely related (i.e., poor discrimi-

nation; [5, 6]) or when bands either co-migrate in the gel or when identically-sized

bands represent completely different fragments of chromosomal DNA [7]. These

complications are more pronounced when a large number of bands are generated

by the restriction digest. In addition, while band patterns convey a crude degree

of genetic relatedness, a large number of independent restriction digests would be

needed to infer an accurate phylogeny between isolates [7]. A final and somewhat

unavoidable criticism of PFGE is that the procedure is time-consuming (requiring

days), and thus it is not conducive to high-throughput screening.

Multiple-locus variable-number tandem-repeat analysis (MLVA) is a PCR-

based technique that relies on amplification of chromosomal or plasmid DNA that

encompasses short tandem repeats of a DNA sequence. The tandem repeats are

prone to higher than background mutation rates due to DNA-strand slippage dur-

ing DNA replication [8], and thus the amplified fragments will vary in length
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depending on the number of repeats harbored at a given locus. Different fragment

lengths are tallied either as the total length (base pairs) or the estimated number

of repeat units, and each discretely-sized fragment is considered a unique allele

for the locus under investigation. Because the technique can be multiplexed and

automated, it is conducive to rapid and relatively high-throughput strain typing.

MLVA assays are relatively robust [5, 9–11], and while not perfect, these assays

can provide phylogenetic information even with a limited number of loci [12, 13].

While access to a sequenced genome dramatically speeds the ability to establish

new assays [14], this is not a requisite to assay development. The primary limi-

tations of the technique include the potential need for a new set of loci for every

species or serovar under investigation and the fact that some loci are very unstable

and can disappear from some strains or lineages (this produces the equivalent of

an uninformative null allele). Mutation rates can also vary between loci [15, 16],

which, if ignored, can introduce bias into phylogenetic analyses.

The objective of this study was to determine if we could combine the informa-

tion that is obtained from both PFGE and MLVA assays to produce more rigorous

and discriminatory analyses of Salmonella isolates. Two sets of Salmonella isolates

were used in this study; one set included serovar Typhimurium isolates from a wide

range of sampling dates, locations, and host species while the other set included

a group of serovar Newport isolates collected over a limited geographic and tem-

poral scale. The results of different typing methods were assessed by comparison

with phage-typing assays and with known epidemiological relationships. To in-

terpret MLVA data we employed a metric that incorporates a stepwise-mutation

model, and to interpret the PFGE data we employed Dice coefficients to construct

a distance matrix. Our analysis shows that the fusion of the two typing methods

provides an improved ability to discriminate between isolates and to infer phylo-
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genetic relationships compared with using either method alone. We provide a PC-

based, stand-alone software package to assist practitioners with this type of analysis

(available at http://www.vetmed.wsu.edu/research vmp/MicroArrayLab/).

3.3 Materials and Methods

Salmonella strains. Two sets of isolates were used for this study. Set

A included 44 S. enterica serovar Typhimurium strains that were previously col-

lected from eight types of animal hosts and from different locations and differ-

ent time periods (see figures for strain designations and descriptors). Because

these isolates were epidemiologically unrelated, we assumed that they encom-

passed a high degree of genetic variability. Set B included 69 S. enterica serovar

Newport isolates, mostly collected from Washington State cattle in 2006, and

this set was assumed to represent less genetic diversity. Salmonella serovar Ty-

phimurium strains were phage typed at the National Microbiology Laboratory,

Canadian Science Center for Human and Animal Health, Winnipeg, Manitoba.

Serovar Newport isolates were tested for antibiotic resistance using a disc diffu-

sion method [17] according to Clinical and Laboratory Standards Institute guide-

lines [18, 19]. Northwestern bovine-origin isolates were tested for susceptibility to

a panel of antimicrobials that included ampicillin (10 µg), chloramphenicol (30

µg), gentamicin (10 µg), kanamycin (30 µg), streptomycin (10 µg), tetracycline

(30 µg), triple-sulfa (a combination of sulfadiazine, sulfamethazine, and sulfam-

erazine) (250 µg), trimethoprim-sulfamethoxizole (1.25 µg-23.75 µg), ceftazidime

(30 µg), amoxicillin-clavulanic acid (20/10 µg), and nalidixic acid (30 µg) (BD

Diagnostics, Sparks, Maryland, USA). The northeastern isolates were tested with

the same panel, except that a sulfisoxazole disc (250 µg) was substituted for the

triple-sulfa disc.

Pulse-field gel electrophoresis (PFGE). We followed a standard PFGE
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protocol for Salmonella enterica using an XbaI restriction digest [20]. Briefly,

genomic DNA was digested in agarose plugs with the restriction enzyme, XbaI,

and resulting DNA fragments were gel-separated using a CHEF DR II (BioRad,

Hercules, CA) apparatus. Electrophoresis conditions included an initial pulse time

of 2.2 s, final pulse time of 63.8 s, running temperature of 14◦C, and a run time

of 18-20 hours at 6 V/cm. PFGE gels were stained with ethidium bromide and

visualized on a UV transilluminator. Gel images were analyzed using Bionumerics

version 4.6 (Applied Maths, Sint-Martens-Latem, Belgium). Estimated band sizes

were exported from Bionumerics for the current study.

Multiple-locus variable-number tandem repeat analysis (MLVA). For

S. enterica serovar Typhimurium isolates, four of five previously described variable-

number tandem repeat (VNTR) loci were employed (STTR5, STTR6, STTR9, and

STTR10pl) following a published protocol [12]. For the S. enterica serovar New-

port strains, two Typhimurium loci (STTR5, and STTR6) [12] and four published

Newport-specific loci were employed (NewportA, NewportB, NewportM, and New-

portL) [21]. The PCR reactions for MLVA were completed in two separate reac-

tions, PCR1 and PCR2, to avoid overlap in combinations of fragment size and

dye color in the same reaction. Primers, including forward fluorophore-conjugated

primers, were purchased from Applied Biosystems (Foster City, CA). For each

isolate, a single colony was suspended in dH2O (100 µL) and boiled for 20 min fol-

lowed by centrifugation at 14,000 rpm for 5 min. The boiled lysate suspension (100

µL) was used for template in the PCR reactions. Two separate triplex reactions

(Table 6) were run using an iCycler thermal cycler (BioRad, Hercules, CA) in 25

L volumes. Cycling conditions for both reactions included an initial denaturation

at 94◦C for 15 min followed by 25 cycles of 94◦C for 30 s, 55◦C for 1 min, and

72◦C for 1.5 min with a final extension step at 72◦C for 10 min. Size standard
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(LIZ600, Applied Biosystems) (0.125 µL) and Hi Di formamide (19.375 µL) were

added to PCR products (0.5 µL) (total volume 20 µL for capillary electrophore-

sis). Capillary electrophoresis was carried out at the Washington State University

Genomics Core using a 3730 DNA Analyzer with Pop-7 polymer (Applied Biosys-

tems). The resulting electropherograms were analyzed using GeneMarker software

(Softgenetics LLC, State College, PA, USA).

Data Analysis. Dice similarity coefficients were calculated using Bionumer-

ics (Applied Maths, Sint-Martens-Latem, Belgium) from PFGE data to generate

the distance matrix and the unweighted pair group method with arithmetic mean

(UPGMA) algorithm was used to construct a dendrogram. For the MLVA data we

divided the total length of the tandem repeats by the estimated size of each repeat

to obtain the number of tandem repeats for each locus and each strain. There

were five loci with tandem repeats for S. enterica serovar Typhimurium, but data

from one locus were not used because they were from a plasmid locus and only a

subset of the 44 bacteria isolates were positive for this locus. Initially, data from

the remaining four loci were used, but there was very little variability among iso-

lates for two of the loci, and excluding these data did not alter the results. For

S. enterica serovar Newport there were six loci, all of which were used. Because

passage experiments indicate that VNTR mutations are usually composed of a sin-

gle step [9, 15], we modeled our data using a single-step stepwise-mutation model

(SMM). Based on this statistical model, we estimated the distance S (the total

number of single steps) between two lineages (two different isolates) and their most

recent common ancestor (MRCA) using the number of tandem repeats, XL, of the

two lineages. The distances S for all lineage pairs were then used to construct the

distance matrix and UPGMA was used to obtain a dendrogram.

If µ is the rate of stepwise mutations per generation and if we assume the gain
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or loss of a repeat is equally probable, then the following conditional probabilities

P characterize the single-step SMM:

P (Xt+1 = i + 1|Xt = i) = P (Xt+1 = i− 1|Xt = i) =
µ

2
(15)

P (Xt+1 = i|Xt = i) = 1− µ

P (‖Xt+1 −Xt‖ ≤ 2|Xt = i) = 0

where i denotes the number of tandem repeats at distance t, where t is an integer

number between zero and infinity. Based on these conditional probabilities, the

probability of the distance t is given by [22]:

P (t|n0, . . . , nk) = N(t)/D(t) (16)

where

N(t) = e(λ+2µn)t
k∏

j=0

[Ij(2µt)]nj (17)

D(t) =
∫ inf

0
e(λ+2µn)t

k∏

j=0

[Ij(2µt)]njdt

The equation for P assumes that the mutation rate µ is constant for all loci which

is approximately true for our S. enterica serovar Typhimurium data; nm denotes

the locus number where the subscript m = 0, 1, 2, . . . , k is the difference between

the number of tandem repeats for two lineages and m = k is the maximum number

of differences; n is the number of loci used; λ is a parameter associated with the

distance to a MRCA (in this work λ = 0.0002 was found to give satisfactory

results [22]); Ij is the jth order modified Bessel function of type 1. The distance S

is the value of t with the maximum probability.

Fusion algorithm. The dendrograms constructed using the PFGE-only or
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MVLA-only data differ substantially for both S. enterica serovar Typhimurium

and serovar Newport. Consequently, if we assume that both sets of data contain

useful information as well as error, it is possible that better results can be ob-

tained by combining the data. In fact, it is known that if two different algorithms

used with the same data give different results, if the error for each is less than

the error associated with randomly generated results, and if the error for both is

uncorrelated, a combination of these algorithms will give better results than either

of the two algorithms alone [23]. For our problem we have two different sets of

data but they are for the same sets of samples. We can safely assume that the

error for both the MLVA and PFGE algorithms is less than the error for ran-

dom clustering because both PFGE and MLVA can recapitulate epidemiological

relationships [21, 24]. Furthermore, we can assume that the error is uncorrelated

because the PFGE and MVLA assays measure different types of genetic differences.

Consequently, because the two methods provide different results, it is likely that

combining the PFGE and MLVA data will provide a more comprehensive picture

of the underlying population genetics of these strains.

Several strategies can be used to combine different types of data. One strategy

is to treat each data type independently and produce two independent dendrograms

that are then combined to form a single dendrogram. While conceptually simple,

this approach weights all sources of information equally, which may not be an

optimal approach. Another strategy is to combine the data sets together before

generating a dendrogram, but it may be difficult to combine the data if they are

different types (e.g., discrete and continuous), and even if this is accomplished, a

suitable approach for evaluating the combined data may not exist.

An alternative approach is to process each type of data using an algorithm that

is appropriate for that data type and then combine the results at some midpoint
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in the process; this is the approach we employed. We begin with two distance

matrices, one for the PFGE data set and one for the MLVA data set as described

previously. One distance matrix is used to construct a dendrogram, and a threshold

is selected (see below) to define distinct clusters from this dendrogram. If two

strains in the second distance matrix are grouped together in one of the clusters

formed from the first distance matrix, the distance between them is reduced (see

below); if these two strains are not grouped together, then the distance in the

second matrix is left unchanged. After all pairwise distance values are adjusted

based on the clusters from the first matrix, a final dendrogram is generated. Both

sets of data can be used in alternating roles: PFGE data are used to create the

clusters while MLVA data are used to create the distance matrix to be modified,

and MLVA data are used to create the clusters while PFGE data are used to create

the distance matrix to be modified.

For the fusion algorithm described above, values for two parameters must be

chosen. The first is the threshold value, thr, which divides one dendrogram into

distinct clusters. The second is the degree that each distance value should be

reduced in the second distance matrix. If D is the distance matrix to be modified

with elements d(i, j) and D∗ is the modified distance matrix, the elements of D∗

are given in terms of d(i, j) by:

d∗(i, j) = d(i, j) if bacteria samples i and j are not in the same cluster

d∗(i, j) = r d(i, j) if bacteria samples i and j are in the same cluster

with 0 < r ≤ 1. Thus, the weight parameter r dictates how much the distance

value will be reduced. The choice of these two parameters, thr and r, changes

the results, and there is no obvious way of knowing what values are the best to

use. Our approach was to use the entire range of values for the threshold thr, i.e.,

0.05-1 and several ranges of values for the weight parameter r. For the former,
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this range corresponds to having each strain form its own cluster (thr = 0.05) and

having all strains clustered into a single group (thr = 1). For each set of ranges

we created a dendrogram using UPGMA and the modified distance matrix; from

the resulting set of dendrograms we constructed a generalized tree using Consense

from the software package Phylip [25] with default parameters. In addition to the

question of the optimum parameter values is the question of whether results for

the generalized tree would be more accurate with the set of dendrograms obtained

using PFGE data to form the initial clusters (referred to as PFGE clusters), using

the set of dendrograms obtained using the MLVA data to form the initial clusters

(referred to as MLVA clusters), or using the combined sets of dendrograms (referred

to as All-clusters, i.e., data from both PFGE clusters and MLVA clusters). When

both PFGE and MLVA data are combined to obtain the All-clusters data, the

PFGE and MLVA data will create a conflict if they disagree completely on the

relationship between two strains. For example, the PFGE data may indicate that

strains A and B always occur as a pair while the MLVA data may indicate that

strains A and C always occur as a pair. If this happens, Consense [25] will construct

a tree that depends on the order of the input. To prevent such an occurrence, we

break the tie by multiplying the values of one set of data by 0.501 and the other

set by 0.499.

3.4 Results and Discussion

Comparison of genetically diverse strains of S. enterica serovar Ty-

phimurium. Generalized trees were constructed using the fusion, MLVA, and

PFGE algorithms described above. For the fusion algorithm, sets of dendrograms

were generated for the weight parameter r ranging between 0 and 1 at increments

of 0.1 and for the threshold thr ranging between 0.05 and 1 at increments of 0.05.

This produced a set of 220 dendrograms using PFGE clusters to implement the
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process and a set of 220 dendrograms using MLVA clusters to implement the pro-

cess. The Consense program was then used with these sets of dendrograms to

construct three generalized trees: one for PFGE cluster data, one for MLVA clus-

ter data, and one for All-clusters data. In the latter case we weighted discrepant

assignments by multiplying PFGE cluster data by a factor of 0.499 and multi-

plying the MLVA cluster data by a factor of 0.501. This weights the analysis in

favor of MLVA under the assumption that there is more phylogenetically relevant

information available from MLVA data compared with PFGE [7].

Three additional generalized trees were constructed using a subset of 80 of each

of the sets of 220 dendrograms. These subsets correspond to the weight parameter

r ranging between 0.3 and 0.6 at increments of 0.1 and the same threshold range

as previously stated. Thus, a total of eight algorithms were examined including

the six variations of the fusion algorithm described above together with analysis

of the PFGE-only and MLVA-only data.

Assessing the validity of our analysis is complicated by the lack of a gold

standard with which to compare our results. Indeed, barring a complete genome

sequence for each strain and suitable algorithms for assessing genetic relationships,

the only potential gold standards available are multi-locus sequence typing (MLST)

and phenotypic characteristics. Given the potential lack of genetic variation for

intra-serovar MLST comparisons [26], we chose to compare the S. enterica serovar

Typhimurium strains using susceptibility to a panel of lytic bacteriophage as a

measure of relatedness. Phage typing involves identification of the susceptibility of

each strain to a panel of lytic bacteriophage. Our analysis assumes that strains with

similar phage susceptibilities are more closely related than strains with dissimilar

phage susceptibilities. All of the strains were subjected to susceptibility testing

using a panel of 31 bacteriophage. Strains that were judged untypable with this
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panel were subject to testing with an additional 16 bacteriophage. Only one strain

(8745) was considered untypable using the combined panel of 47 lytic bacteriophage

(Tables 8 and 9).

The generalized tree constructed from the dendrograms that were obtained

when All-clusters data were used (r range 0-1) highlights the potential for the

discriminating power of the fusion algorithm (Fig. 4). For this tree, there are 14

instances of paired strains, i.e., strains that form a single node. Of these pairs,

6 are perfect matches, meaning that they share an identical response to the lytic

phage panel (Tables 7, 8, and 9). Three pairs are considered close matches because

they differ by 3 or fewer bacteriophage susceptibility tests. Three pairs are distant

matches with phage susceptibilities differing by 4 to 7 reactions. Two pairs do not

match according to the lytic phage panel (differ by at least 8 phage reactions and

usually many more). The presence of paired strains with incongruous bacterio-

phage susceptibilities is not entirely surprising given that horizontal transmission

of plasmids may be sufficient to alter the phage susceptibility profiles of S. en-

terica strains [27, 28]. Nevertheless, this analysis indicates that according to the

fusion algorithm the majority of pairs are perfect or close matches based on their

bacteriophage susceptibilities. An analysis across a subset of the range of r values

(r range 0.3-0.6) produced a similar pattern of matches (Table 7).

When the fusion algorithm was implemented using MLVA clusters or PFGE

clusters, there were more defined pairs and fewer perfect matches according to bac-

teriophage susceptibility (Tables 8 and 9). Nevertheless, the results for all six fusion

analyses demonstrate that strain matching results were relatively robust for both

the full range of r values and a subset of these values (Table 7). The MLVA-only

results (Fig. 5) were comparable to the results obtained using MLVA clusters,

but are not as good as those obtained using All-clusters. While the number of
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perfect matches for both All-clusters and MLVA-only is comparable, MLVA-only

mismatches five pairs whereas All-clusters mismatches two pairs. Moreover, if we

consider strains coupled with pairs, All-clusters gives better results. For example,

in the All-clusters dendrogram shown in Fig. 4, all three U291 phage types form a

cluster, and the two 99 phage types form a cluster with the closely related strain

744 (Table 8). Interestingly, PFGE-only analysis (Fig. 6) produced more strain

pairs [4], but relative to phage typing, PFGE was incapable of arriving at any

perfect matches (Table 7). Consequently, while PFGE-only data may be useful for

discriminating between strains, our results clearly demonstrate a failure of PFGE

to link closely related strains. We surmise that this reduces the likelihood that the

broader genetic relationships are captured accurately when this approach is used

as has been suggested elsewhere [7]. Because the fusion algorithm produces much

more robust matching results, we conclude that this strategy is more likely to re-

flect accurate intra-specific genetic relationships when examining epidemiologically

unrelated strains of S. enterica.

Comparison of genetically similar S. enterica serovar Newport

strains. Eight generalized dendrograms were constructed for S. enterica serovar

Newport using the PFGE-only data, MLVA-only data, and the fusion algorithm

with the same parameters discussed in the previous section except that the PFGE

cluster data were weighted by a factor of 0.501 and the MLVA cluster data were

weighted by a factor of 0.499 in the event of a completely discrepant assignment.

This weights the analysis is favor of PFGE under the assumption that there is

more phylogenetically relevant information available from PFGE data compared

with MLVA data. The results for All-clusters (r between 0 and 1), MLVA-only,

and PFGE-only are shown in Figs. 7, 8, and 9, respectively.

As with the serovar Typhimurium analysis, we lacked a gold standard for
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assessing the performance of our results relative to the true genetic relationships.

In addition, for serovar Newport, we did not have a bacteriophage panel to use

as a phenotypic surrogate for relatedness. Instead, we considered grouping within

farms as well as susceptibility to antibiotics. On this basis, the MLVA-only results

were poorest, and the fusion and PFGE-only algorithms performed comparably.

The All-clusters and PFGE-only trees grouped isolates within farm with relatively

high consistency (e.g., Farms A, J, and L; Figs. 7 and 9), whereas the MLVA-only

dendrogram did poorly at grouping within farm isolates (Fig. 8). Comparison of

the All-clusters tree (Fig. 7), with r ranging between 0 and 1, and the PFGE-

only tree (Fig. 9), shows that All-clusters gives somewhat better results than

PFGE-only. For example, the All-clusters tree groups seven Farm L strains and

ten Farm J strains while the PFGE-only tree groups six Farm L strains and nine

Farm J strains. Also, in the All-clusters tree all ten antibiotic-susceptible strains

are grouped within the same cluster. We conclude from this analysis that the

All-clusters fusion algorithm is best at identifying genetically related isolates and,

as a consequence, the broader topological relationships using All-clusters are more

likely to reflect the underlying genetic relationships.

3.5 Conclusions

In this chapter we presented a fusion algorithm that combines information

from two widely used methods for molecular typing, pulsed-field gel electrophore-

sis (PFGE) and multiple-locus variable-number tandem repeat analysis (MLVA),

to obtain phylogenetic relationships for two different sets of Salmonella strains.

The strains from one set were S. enterica serovar Typhimurium obtained from di-

verse geographic locations and diverse animal hosts over a long period of time; we

assumed these strains to represent a high degree of genetic diversity. The strains

from the other set were S. enterica serovar Newport obtained mostly from the state
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of Washington within a short period of time from bovine hosts only; we assumed

these strains to represent less genetic diversity. Results for the fusion algorithm

were compared with those obtained using PFGE-only and MLVA-only results, and

it was found that for both sets of data the fusion algorithm gave better results

than either the PFGE-only or MLVA-only method. Thus, the fusion algorithm

worked well to identify intra-specific genetic relationships for both strains with a

high degree of genetic diversity and strains more closely related. In the future, we

hope to have the opportunity to test the fusion algorithm with additional data.
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Figure 4. Generalized tree for 44 S. enterica serovar Typhimurium isolates gen-
erated from 160 dendrograms. The dendrograms were obtained using the fusion
algorithm with All-clusters (see text), the weight parameter r between 0 and 1,
and the threshold parameter thr between 0.05 and 1. Information includes isolate
designation, source, phage type, collection date, and state where the isolate was
collected.
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Figure 5. Dendrogram for 44 S. enterica serovar Typhimurium isolates constructed
using UPGMA and a distance matrix obtained using a single-step stepwise muta-
tion model for VNTR data. See Fig. 4 for isolate information.
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Figure 6. Dendrogram for 44 S. enterica serovar Typhimurium isolates constructed
using UPGMA with Dice coefficients for PFGE data. See Fig. 4 for isolate infor-
mation.
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Figure 7. Generalized tree for 69 S. enterica serovar Newport isolates generated
from 160 dendrograms. The dendrograms were obtained using the fusion algo-
rithm with All-clusters (see text), the weight parameter r between 0 and 1, and
the threshold parameter thr between 0.05 and 1. Information includes isolate desig-
nation, collection date, county where the isolate was collected (Washington State),
and antibiotic resistance phenotype (see methods). Resistance profile abbrevia-
tions: A, ampicillin; C, chloramphenicol; K, kanamycin; Sxt, trimethoprim-sulfa;
S, streptomycin; T, tetracycline; Amc, amoxicillin-clavulanic acid; Su, triple-sulfa;
Caz, ceftazidime.
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Figure 8. Dendrogram for 69 S. enterica serovar Newport isolates constructed using
UPGMA and a distance matrix obtained using a single-step stepwise mutation
model for VNTR data. See Fig. 7 for isolate information
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Figure 9. Dendrogram for 69 S. enterica serovar Newport isolates constructed using
UPGMA with Dice coefficients for PFGE data. See Fig. 7 for isolate information.
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Table 9. Additional phage panel results for 44 S. enterica serovar Typhimurium
isolates and 16 bacteriophage. Isolates without a positive response to the first
panel of 31 bacteriophage were subjected to further testing. A plus sign indicates
a lytic (positive) reaction. Common phage types are listed in the first column in
regular font. Atypical isolates are listed by their identification number in italic
font. nd means not determined. One isolate, 8745, was untypable using the 47
bacteriophage.

PT 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

8745
UT5 +
UT1 + +
195 + + nd nd nd nd nd nd nd nd nd nd nd nd
193 + + + + nd nd nd nd nd nd nd nd nd nd nd nd
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Table 10: S. enterica serovar Typhimurium VNTR data.

The strain number is given in the first column, and the

remaining five columns contain the total number of tan-

dem repeats for five different loci. Only STTR5 and

STTR6 data were used in the MLVA analysis. STTR11

and STTR9 provided very little variation, and too many

values were missing for STTR10pl.

SNUM STTR11 STTR9 STTR5 STTR6 STTR10pl

488 589 169 268 320 0
731 589 169 256 309 0
744 589 169 280 303 0
1613 598 160 233 309 348
2981 598 160 298 332 348
3572 589 160 210 279 0
4293 598 169 262 344 478
4768 589 160 210 279 0
5499 598 169 262 338 323
5577 589 178 286 303 341
5633 598 169 262 338 341
6167 0 169 262 338 341
6583 598 160 216 291 416
7084 598 169 262 338 341
7099 598 160 280 332 379
7657 598 160 274 332 379
8707 598 169 274 350 403
8745 589 169 304 309 0
8804 589 169 268 338 0
8902 0 169 262 332 471
8923 598 160 228 285 385
8971 589 169 280 0 341
9329 589 0 298 0 341
9333 598 160 304 350 354
9563 598 160 274 309 379
9675 598 160 274 332 385
10084 598 160 245 320 385
10180 598 160 239 291 372
10207 598 160 298 314 354
10506 598 160 245 332 379
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10538 598 160 280 291 397
10608 598 0 239 297 366
10803 589 160 210 279 0
10808 598 160 280 309 379
10901 598 160 280 332 385
11050 598 169 274 297 452
11062 598 160 239 297 354
11064 598 169 268 356 428
11451 598 160 245 0 360
12021 598 160 298 314 0
12052 0 160 216 291 379
12499 598 160 228 291 366
12562 589 169 256 297 0
12583 589 178 0 309 0
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Table 11: S. enterica serovar Newport VNTR data. The

strain number is given in the first column, and the re-

maining six columns contain the total number of tandem

repeats for six different loci.

SNUM STTR5 STTR6 NWPTA NWPTB NWPTM NWPTL

4770 227 325 406 349 380 531
6599 216 325 406 349 380 531
9897 216 313 406 349 380 0
9901 216 313 406 349 380 531
9915 221 319 406 349 380 531
9921 210 313 406 349 380 531
9935 216 313 406 349 380 531
10016 216 313 406 349 380 531
10025 216 313 406 349 380 531
10142 216 313 406 349 380 531
10145 216 319 388 337 380 531
10157 216 313 406 349 380 531
10834 216 319 406 349 380 531
10835 216 325 406 349 380 531
10844 216 319 406 349 380 531
10852 216 319 406 349 380 531
10855 216 319 406 349 380 531
10860 216 319 406 349 380 531
10878 216 343 406 349 380 531
10885 216 313 406 349 380 531
10886 216 313 406 349 380 531
10896 216 313 406 349 380 531
10924 216 313 406 349 380 531
10926 216 313 406 349 380 531
11218 216 307 415 349 380 531
11228 233 313 352 349 380 408
11295 216 313 406 349 380 531
11298 216 331 406 349 380 531
11299 216 313 406 349 380 531
11304 216 313 406 349 380 531
11325 216 319 406 349 380 531
11341 216 319 406 349 380 531
11512 233 313 352 349 380 408
11543 233 313 352 349 380 408
11629 221 0 388 337 335 430
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11721 233 307 352 349 380 408
11751 251 0 352 349 380 408
11878 216 313 406 349 380 531
11942 221 313 406 349 380 531
11975 227 0 379 0 344 430
12054 216 337 406 349 380 531
12061 216 325 406 349 380 531
12064 216 325 406 349 380 531
12087 216 307 406 349 380 0
12088 216 307 406 349 380 531
12089 216 307 406 349 380 531
12090 216 307 406 349 380 531
12091 216 307 406 349 380 531
12092 216 307 406 349 380 531
12093 216 307 406 349 380 531
12094 216 0 406 349 380 531
12095 216 307 406 349 380 531
12096 216 307 406 349 380 531
12175 216 313 406 349 380 531
12216 216 319 406 349 380 0
12306 233 307 370 349 380 0
12313 216 307 406 349 380 0
12551 216 319 406 349 380 0
12673 221 0 460 0 344 430
12675 221 0 460 0 344 430
12713 216 319 406 349 380 0
12715 216 325 406 349 380 0
12821 216 319 406 349 380 0
12826 210 325 406 349 380 0
12845 233 307 370 349 380 0
13571 221 313 406 349 380 0
13600 233 307 0 349 380 408
14069 216 331 406 349 380 0
14345 233 307 352 349 380 408
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CHAPTER 4

Studying the Evolution of Bacterial Plasmids

4.1 Introduction

Understanding the evolution of microbial organisms is one of the most impor-

tant objectives in microbiology. With the development of many bacterial genome

projects, molecular sequences have become widely used in phylogenetic analyses

of microbial organisms [1]. Often the sequences of housekeeping genes or con-

served structural sequences are used for these analyses. In particular, 16S rRNA

sequences are considered to be the gold standard in building a taxonomy for bac-

teria [2]. However, considerable incompatibility with the results of phylogenetic

analysis has been reported. Inconsistencies can occur for closely related species

and even for distantly separated taxa [3].

Studies have shown that a number of factors may affect the accuracy of phy-

logenetic analysis, including the biological processes underlying the molecular se-

quences and the computational methods used in the analysis [3]. From the per-

spective of biological sequences, it has been shown that evolution of molecular

sequences can only provide indirect and incomplete information for species evo-

lution. Different genes may contain inconsistent and even conflicting information

about species evolution. The heterogeneity of genes can be due to gene duplica-

tion, horizontal gene transfer, and the merging of genes (coalescence) [4]. Different

computational methods may also lead to incongruent results because of differing

assumptions about the underlying mutation models and also because of different

schemes for selecting the optimum phylogenetic results.

To overcome the effect of biological and computational factors, the analysis

of multiple genes rather than only one gene has been suggested [3, 5]. The results
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show that many conflicts can be resolved by using more genes in the phylogenetic

analysis; in addition, there is strong support for monophyly in phylogenetic analysis

with multiple gene usage [3, 5]. Nevertheless, the use of multiple genes may cause

issues because of their heterogeneity. Methods that model different evolution rates

for the genes have been proposed, and the results have shown that the effect of

heterogeneity can be reduced [6–8]. It has also been found that genes evolving

quickly may cause the phenomenon of long-branch attraction (LBA) in which

divergent but unrelated species appear to be closely related in phylogeny [6]. Thus,

it is suggested that slowly evolving genes are preferred for use in phylogenetic

analysis [5]. After gene selection, the “correct” evolution rates for different sites

among the genes can be modeled for phylogenetic analysis [9].

With the emergence and spread of antimicrobial resistance, interest in plas-

mids has grown. Because plasmids are capable of cell-to-cell transfer between

bacterial species, horizontal gene transfer (HGT) is common and can happen be-

tween genetically distant species. Over time plasmids can gain or lose DNA seg-

ments from different host chromosomes and other plasmids resulting in a mosaic

structure that often includes multiple genes for resistance to antibiotics. Because

of their heterogeneous structure, constructing a phylogenetic tree for plasmids is

challenging.

The focus of this work is constructing a reliable phylogenetic tree for mi-

crobes with dynamic genetic contents, especially for plasmids. We begin by study-

ing the effects of different factors, from selecting different set of genes to using

different computational methods for phylogenetic analysis. In particular, we iden-

tify a set of conserved genes based on their similarity and use only these con-

served genes in our phylogenetic analyses. The heterogeneity of genes is compared

using estimates of their evolution rates. We use our method on two different
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data sets, a set of eight plasmids [10] that harbor a blaCMY2 antibiotic resistance

gene and a set of 106 Gram-negative, enteric plasmids from the NCBI database

(http://www.ncbi.nlm.nih.gov/genomes/genlist.cgi?taxid=2157). Statistical tests

and expert knowledge are used to evaluate the results.

4.2 Methods
4.2.1 Detection of conserved regions

Because the genetic makeup of plasmids is often due to HGT, the composition

of different plasmids will reflect totally different evolutionary scenarios. Thus, a

phylogenetic analysis should begin by determining which DNA sequences should

be used and which should be excluded from the analysis. For a group of closely

related plasmids, most genetic content should come from a recent common an-

cestor; however, even these plasmids can contain diverse genetic content. Genes

from a common ancestor should contain more information about the evolutionary

relationship between plasmids so we refer to these as “conserved genes.” After con-

served genes have been identified, multiple sequence alignment can be performed

with these genes and the alignment results used for further analysis. Biologically,

the conserved genes are often important for plasmid transfer and maintenance.

Deleterious mutations in these sequences are likely to lead to plasmid loss [11].

A conserved region among several nucleotide sequences can be identified by

sequence comparison. For a set S of n plasmids S = (p1, p2, . . . , pn), a conserved

gene can be represented by the tuple Gi = (gi1, gi2, . . . , gin) where i denotes the ith

conserved gene and gik denotes the specific gene from the kth plasmid. Similarity

scores for each pair of genes in a tuple can be obtained via BLAST [12] using the

bl2seq program with the score defined as (length of matching sequence)*(BLAST

identity score)/(length of reference gene + length of matching sequence gene). A

tuple is considered conserved when all scores are above a chosen threshold. Doing a
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BLAST search for all pairs of genes is very time consuming and is only practical for

a small set of plasmids. An alternative method is to build a BLAST database using

all the genes from all the plasmids under consideration. Each plasmid sequence can

then be compared against the database and the results used to identify conserved

tuples.

As mentioned above, the selection of conserved genes is based on a threshold

value for the score obtained via BLAST. The maximum possible value, 0.5, occurs

when there is a perfect match between a gene pair. A threshold value of 0.3 is used

in this study. Typically it was found that scores are either between 0.3 and 0.5

or else less than about 0.1. Usually each gene has just one high score, but when

there is more than one high score for a particular gene, it is assumed to be the

result of gene duplication. When this occurs, the gene is removed from the pool

of conserved genes.

Virtual mixed-plasmid microarray

For a very large set of plasmids, it may be impossible to find conserved genes

shared by all the plasmids. In this case, a virtual mixed-plasmid microarray (MPM)

can be used efficiently to construct a preliminary tree for all the plasmids based

on gross similarity [13]. This tree can then be used to identify several smaller

subgroups of plasmids. If the similarity of all plasmids in a subgroup is higher

than a given threshold, shared genes can be identified and used to more precisely

determine the relationship between these plasmids.

For the study of 106 plasmids described below, 100 gene segments from each

plasmid sequence were randomly selected to create a virtual MPM. Virtual hy-

bridization of these probes was accomplished using BLAST scores as proxies for

array probe intensities. To construct a reliable dendrogram using a virtual MPM,

a number of virtual MPMs should be generated. The optimal dendrogram is ob-
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tained from the best virtual MPM which in turn is obtained when probes are of

optimal length. In practice this means that each virtual MPM is generated using

different probe lengths that range between 100 and 1000 bp. Distance matrices are

calculated from the “hybridizations,” and correlation coefficients between a given

distance matrix and all other distance matrices are calculated. Because each dis-

tance matrix represents one probe length, the optimal probe length occurs when

its correlation coefficient is high and those of its two neighboring probe lengths are

close in value, i.e., when a plot of the correlation coefficients as a function of probe

length is flattest. The optimal probe length for “hybridizations” representing the

106 plasmids was found to be 500 bp.

4.2.2 Multiple alignment of conserved genes

Having obtained the conserved genes for a group of plasmids, the next step is

to complete a multiple sequence alignment for these conserved genes. There are

two ways of doing this. If we assume that K conserved genes have been found G1 =

(g11, g12, . . . , g1n), G2 = (g21, g22, . . . , g2n), . . ., and GK = (gK1, gK2, . . . , gKn), then

by concatenating all conserved genes for each plasmid we get P1 = [g11g21 . . . gK1],

P2 = [g12g22 . . . gK2], . . ., and Pn = [g1ng2n . . . gKn]. The alignment can be done

for P1 to Pn. This method works when all conserved genes can be assumed to be

orthologous. This method does not scale very well when P1 to Pn is very long.

Another approach is to align each tuple separately, i.e., sequences of g11 to

g1n are aligned, and we denote the result as a1. The process is repeated for G2

to GK . Assuming that the gmn’s are orthologous, a1 to aK can be concatenated

to obtain the entire alignment. When ClustalW is used to perform the alignment

using this approach, the time complexity is reduced considerably. For example, to

compare a set of eight plasmids of average length 10 kbp, the time is reduced from

approximately 20 hours for concatenated sequences to approximately 30 minutes

87



for separate tuple alignment. This approach also allows the use of different muta-

tion models for different aj to compensate for the heterogeneity of different genes

in the plasmids.

Distance based phylogenetic methods were used to generate the evolutionary

tree from the results of the alignment. Various mutation models can be used to

generate the distance matrix. Of these methods the Jukes-Cantor (JC) model is

the simplest [14]. In the JC model, each base in a DNA sequence has an equal

mutation rate, and all complementary pairs of the four nucleotides A, T, C, and

G have an equal substitution rate, i.e., p(A ↔ G) = p(A ↔ C) = . . . = α, where

α is the substitution rate. The JC distance between two DNA sequences S0 and

S1 is defined as:

dJC = −3

4
ln(1− 4

3
p) (18)

where p is the fraction of the sites that disagree in S0 and S1.

After generating the distance matrix using the JC model, we chose to use the

Neighbor-Joining (NJ) method [15, 16] to generate a phylogenetic tree.

4.2.3 Heterogeneity of mutation rates among conserved genes

Several strategies can be used to deal with the possible heterogeneity of mu-

tation rates among conserved genes. The Gamma distribution is widely used to

model these mutation rate differences. Models for estimating the heterogeneity

of different genes have also been proposed in [8] where model parameters were

estimated using a maximum-likelihood method.

Among all conserved genes, those that undergo active selection and evolve

rapidly are usually the cause of a questionable tree structure. Removing these genes

should improve the resulting phylogenetic tree [5]. For this purpose, the evolution

rate for each gene is estimated. This requires an initial dendrogram which can

either be one that has already been constructed or one that is constructed using
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all the genes to be used in the analysis. From this initial dendrogram the species

that differs the most is chosen as the outlier species Sout and all other species are

denoted as inner species Sin. The idea is to calculate a distance between a gene

in the outermost species and the respective gene in each of the inner species [5].

We assume that this distance is related to the evolution rate of the gene under

consideration. For each shared gene, a distance matrix is computed based on this

shared gene assuming a JC model for mutations. An average branch length is

computed using this distance matrix by finding the distances between Sout and

each Sin, adding these values, and dividing by the total number of terms. The

average branch length for each gene is used as its evolution rate. Genes with high

values can be removed a few at a time and the effect on the resulting phylogenetic

tree can be observed [1].

4.2.4 Bootstrap test

After obtaining a final phylogenetic tree for the plasmids, we must verify it.

While it is possible that results can be verified based on expert knowledge, it is

important to develop a method for verifying results based on the data given when

such knowledge is unavailable. Bootstrapping is the most commonly used method

for evaluating the reliability of a phylogenetic tree [3]. To find the bootstrap values

in the phylogenetic tree, we assume that K conserved genes are used to construct

a branch of the tree. We randomly select L conserved genes with replacement

from these K conserved genes and use them to construct a branch. The process

is repeated N times, and the branches with different structures are counted. The

number of times a particular branch appears as a percentage of all N branches is

used as a bootstrap confidence value. This is repeated for all successive branches.
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4.3 Results and discussion
4.3.1 Analysis of blaCMY2 sequences

BlaCMY2 A/C plasmids have been reported in [10, 17–19]. In these papers,

eight plasmid sequences (including pSN254, pAR060302, peH4H, and pAM04528

which were presented therein and four other A/C plasmids, pYR1, pIP1202,

pP91278, and pP99018 from the NCBI database) were used for phylogenetic analy-

sis. A second and independent phylogenetic analysis was conducted by comparing

the gain and loss of large sequence segments among these plasmids. Through

analysis of these segments, a parsimonious tree was constructed. The dendrogram

presented in Fig. 11 shows that pYR1 is the outlier and is separate from all other

groups. To evaluate the evolution rate for different genes, a distance matrix Da for

each gene a was computed based on the JC model. From this distance matrix, we

found the average distance between pYR1 and the other seven strains which was

considered the evolution rate for gene a. A histogram of all 91 conserved genes for

all eight sequences is shown in Fig. 10. From this figure we see that the estimated

evolution rates of three genes differ from those of the 88 remaining genes. We ob-

tained dendrograms and performed bootstrapping tests first using all 91 conserved

genes and then removing the three genes with different evolution rates and using

the remaining 88 conserved genes. Comparing the results in Figs. 11 (a) and (b),

we see that the results are almost identical. This suggests that divergent mutation

rates for a minority of sequences (3/91) had no effect on the predicted phylogeny.

4.3.2 Analysis of Gram-negative plasmids

To test our method with a large dataset, 315 Gram-negative plasmid sequences

were downloaded from the NCBI website, and a primitive tree was obtained using

a virtual MPM. From this tree, 106 plasmids from Gammaproteobacteria were

selected for further analysis. Because these 106 plasmids are not closely related,
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we were unable to find a set of shared genes for all of them. Instead we used a

second virtual MPM to obtain a dendrogram of the 106 plasmid sequences Fig. 12,

and from this dendrogram we identified several subgroups of plasmids. A subgroup

of seven plasmids was chosen for which 17 conserved genes were identified and two

dendrograms were generated as shown in Fig. 13. For one dendrogram, it was

assumed that the rates of evolution were the same for all sites in all 17 genes; for

the other, a Γ distribution of evolution rates was assumed for these sites. The

differences between the two dendrograms indicate the importance of including

evolution rates in the phylogenetic analysis.

4.4 Conclusions

In this chapter, we studied the problem of constructing a dendrogram for a

set of plasmids that establishes their evolutionary relationships. Since the genetic

contents of plasmids are mosaic and dynamic, we proposed a method for construct-

ing a phylogenetic tree that uses only the conserved genes common to all plasmids.

Using a set of blaCMY2 plasmids, we were able to show that the conserved genes

that had been identified were homogeneous despite a difference in evolution rates.

The high bootstrapping values obtained indicate that the dendrogram is very sta-

ble. However, the analysis of the method on a set of 106 Gram-negative plasmids

suggests that different evolution rates in different sites of a gene may need to be

considered. Other factors that might be important in building a phylogenetic tree

for plasmids will be studied later.
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Figure 10. Histogram of the distribution of evolution rates for all 91 conserved
genes.
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Figure 11. Dendrogram obtained using the Neighbor-Joining method with the
Jukes-Cantor model and (a) all 91 conserved genes and (b) 88 conserved genes (3
genes with high evolution rates were removed).
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Figure 12. Dendrogram for 106 Gram-negative plasmids constructed using a virtual
mixed-plasmid microarray.
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Figure 13. Dendrogram for a subset of 106 plasmids constructed from 17 conserved
genes (a) assuming a Γ distribution of the evolution rates across sites and (b)
assuming all sites have the same evolution rate.
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CHAPTER 5

Conclusions

5.1 Conclusions

In Chapter 2 we described a new software tool for selecting a set of probes

for a classification microarray. While the tool was developed for the design of

mixed microarrays—and mixed-plasmid microarrays in particular—it can also be

used to design expression arrays. The user can choose from several clustering

methods (including hierarchical, non-hierarchical, and a model-based genetic al-

gorithm), several probe ranking methods, and several different display methods.

A novel approach is used for probe redundancy reduction, and probe selection is

accomplished via stepwise discriminant analysis. Data can be entered in different

formats (including Excel and comma-delimited text), and dendrogram, heat map,

and scatter plot images can be saved in several different formats (including jpeg

and tiff). Weights generated using stepwise discriminant analysis can be stored for

analysis of subsequent experimental data. Additionally, PLASMID can be used

to construct virtual microarrays with genomes from public databases, which can

then be used to identify an optimal set of probes.

Determining phylogenetic relationships between bacterial strains is important

in molecular epidemiology studies. Two molecular typing methods, pulse-field gel

electrophoresis (PFGE) and multiple-loci variable-number tandem repeat analysis

(MLVA), are widely used in such studies. In Chapter 3, we proposed a fusion

algorithm that combines the information obtained from both PFGE and MLVA

assays to obtain phylogenetic relationships. Two sets of Salmonella enterica were

examined; one set included serovar Typhimurium isolates from a wide range of

sampling dates, locations, and host species while the other set included a group of
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serovar Newport isolates collected over a limited geographic and temporal scale.

Results were assessed by comparison with phage-typing assays and with known

epidemiological relationships. The analysis showed that the fusion algorithm pro-

vides an improved ability to discriminate between isolates and to infer phylogenetic

relationships compared with using either the PFGE or MLVA method alone.

In Chapter 4, we discussed methods for improving the accuracy of phyloge-

netic analysis. Phylogenetic analysis of plasmids is complicated by the dynamic

nature of plasmid gene sequences. Considerable genetic content is obtained via hor-

izontal gene transfer. We proposed a method for including only conserved genes

for phylogenetic analysis. Experimental results on a set of eight plasmids showed

that the effect of gene heterogeneity had been reduced. Further analysis of a group

of Gram-negative, enteric plasmids from the NCBI database showed that using a

model that incorporates the different evolution rates among different sites of gene

sequences can improve the phylogenetic analysis of plasmids.

5.2 Future Work

More work can be done to improve PLASMID. Additional functions can be

included in the tool, for example, functions to design comprehensive microarrays

and to design PCR mapping assays. With more annotated information available in

public databases, it would be useful to extend PLASMID to utilize this information

to identify biomarkers. Finally, it is hoped that PLASMID will be used to develop

actual mixed microarrays and that its utility will be fully realized and tested.

We limited our discussion of the fusion algorithm to using two different

datasets to improve our understanding of epidemiological relationships among bac-

teria. In real applications, there is increasingly more information that can be com-

bined and exploited for greater precision and understanding. For example, text

mining methods have been proposed to search in public publication databases for
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available knowledge related to a biological problem. To handle mixed and compli-

cated data or knowledge together, more complex computation schemes need to be

developed. For example, a Bayesian network has been used to detect the causal as-

sociations among genes and diseases by combining microarray data and genotypic

data together [1].

For phylogenetic analyses of plasmids, a better model is needed for the dy-

namics of plasmid gene sequences. Different characteristics may contribute more

information beyond that of the sequence itself. For example, conservation of syn-

teny has been used to study plasmid evolution [2]. Another possibility is to combine

the insertions and deletions of genes in the phylogenetic analysis. Novel methods

should also be considered such as considering phylogenetic networks rather than

phylogenetic trees; network methods have been used to handle the complexity of

microbes with dynamic gene content [3]. In addition to finding a robust phylo-

genetic relationship among plasmids, we need to develop a classifier for inserting

new plasmids into an existing tree.

Determining the relationships between microbial strains is only the first step.

Our ultimate goal is to understand the underlying biological mechanisms, e.g., how

the strains evolved over time. Ideally, we would like to be able to create realistic

models of processes such as evolution which would allow us to predict future events.

In order to accomplish this, we will need to develop more advanced computational

methods to use with the vast amount of data available both now and in the future.
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Içgen, B., Gürakan, G. C., and Özcengiz, G., “Effects of plasmid curing on an-
tibiotic susceptibility, phage type, lipopoly saccharide and outer membrane
protein profiles in local Salmonella isolates,” Food Microbiol, vol. 18, pp. 631
– 635, 2001.

105



Jaeger, J., Sengupta, R., and Ruzzo, W., “Improved gene selection for classification
of microarrays,” Pac. Symp. Biocomput., pp. 53–64, 2003.

Jagota, A., Microarray Data Analysis and Visualization. Bioinformatics By The
Bay Press, 2001.

Jain, A. K., Duin, R. P., and Mao, J., “Statistical pattern recognition: a review,”
IEEE Trans Pattern Anal Mach Intell, vol. 22, pp. 4–37, 2000.

Jennrich, R. I., “Stepwise discriminant analysis,” in Statistical methods for digital
computers, Enslein, K., Ed. John Wiley & Sons Inc, 1977, vol. III, pp. 76–95.

Kanehisa, M. and Bork, P., “Bioinformatics in the post-sequence era,” Nat Genet,
vol. 33, pp. 305 – 310, 2003.

Kang, M.-S., Besser, T. E., and Call, D. R., “Variability in the region downstream
of the blaCMY−2 β–lactamase gene in Escherichia coli and Salmonella enterica
plasmids,” Antimicrob. Agents Chemother., vol. 50, pp. 1590–1593, 2006.

Kim, M.-J., Hirono, I., Kurokawa, K., Maki, T., Hawke, J., Kondo, H., Santos,
M. D., and Aoki, T., “Complete DNA sequence and analysis of the trans-
ferable multiple-drug resistance plasmids (R plasmids) from photobacterium
damselae subsp. piscicida isolates collected in Japan and the United States ,”
Antimicrob. Agents Chemother., vol. 52, pp. 606–611, 2008.

Kolaczkowski, B. and Thornton, J. W., “A mixed branch
length model of heterotachy improves phylogenetic accuracy,” Mol
Biol Evol, vol. 25, pp. 1054–1066, 2008. [Online]. Available:
http://mbe.oxfordjournals.org/cgi/content/abstract/25/6/1054

Koonin, E. V. and Galperin, M. Y., “Prokaryotic genomes: the emerging paradigm
of genome-based microbiology,” Curr Opin Genetics Dev, vol. 7, pp. 757 – 763,
1997.

Kubota, K., Barrett, T. J., Ackers, M. L., Brachman, P. S., and Mintz, E. D.,
“Analysis of Salmonella enterica serotype typhi pulsed-field gel electrophoresis
patterns associated with international travel,” J Clin Microbiol, vol. 43, pp.
1205–1209, 2005.

Lartillot, N. and Philippe, H., “A Bayesian mixture model for across-site hetero-
geneities in the amino-acid replacement process,” Mol Biol Evol, vol. 21, pp.
1095–1109, 2004.

Li, H. and Wang, W., “Dissecting the transcription networks of a cell using com-
putational genomics,” Curr Opin Genetics Dev, vol. 13, pp. 611 – 616, 2003.

106



Lindstedt, B. A., Heir, E., Gjernes, E., and Kapperud, G., “DNA fingerprinting
of Salmonella enterica subsp. enterica serovar typhimurium with emphasis on
phage type DT104 based on variable number of tandem repeat loci,” J Clin
Microbiol, vol. 41, pp. 1469–79, 2003.

Lindstedt, B. A., Torpdahl, M., Nielsen, E. M., Vardund, T., Aas, L., and Kap-
perud, G., “Harmonization of the multiple-locus variable-number tandem re-
peat analysis method between Denmark and Norway for typing Salmonella
typhimurium isolates and closer examination of the VNTR loci,” J Appl Mi-
crobiol, vol. 102, pp. 728–35, 2007.

Lindstedt, B. A., Vardund, T., Aas, L., and Kapperud, G., “Multiple-locus
variable-number tandem-repeats analysis of Salmonella enterica subsp. en-
terica serovar Typhimurium using PCR multiplexing and multicolor capillary
electrophoresis,” J Microbiol Methods, vol. 59, pp. 163–72, 2004.

Ling, J. M., Lo, N. W. S., Ho, Y. M., Kam, K. M., Hoa, N. T. T., Phi, L. T., and
Cheng, A. F., “Molecular methods for the epidemiological typing of Salmonella
enterica serotype typhi from Hong Kong and Vietnam,” J Clin Microbiol,
vol. 38, pp. 292–300, 2000.

Lipman, D. and Pearson, W., “Rapid and sensitive protein similarity searches,”
Science, vol. 227, pp. 1435–1441, 1985.

Loots, G. G., “Chapter 10 genomic identification of regulatory elements by evolu-
tionary sequence comparison and functional analysis,” in Long-Range Control
of Gene Expression, ser. Advances in Genetics, van Heyningen, V. and Hill,
R. E., Eds. Academic Press, 2008, vol. 61, pp. 269 – 293.

Lopez, P., Forterre, P., and Philippe, H., “The root of the tree of life in the light
of the covarion model,” J Mol Evol, vol. 49, pp. 496–508, 1999.

Lukinmaa, S., Nakari, U. M., Eklund, M., and Siitonen, A., “Application of molec-
ular genetic methods in diagnostics and epidemiology of food-borne bacterial
pathogens,” APMIS, vol. 112, pp. 908–29, 2004.

Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R.,
Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman,
M., and Spratt, B. G., “Multilocus sequence typing: A portable approach to
the identification of clones within populations of pathogenic microorganisms,”
PNAS, vol. 95, pp. 3140–3145, 1998.

Mailund, T., Brodal, G., Fagerberg, R., Pedersen, C., and Phillips, D.,
“Recrafting the neighbor-joining method,” BMC Bioinformatics, vol. 7, p. 29,
2006. [Online]. Available: http://www.biomedcentral.com/1471-2105/7/29

107



Naser, S., Thompson, F. L., Hoste, B., Gevers, D., Vandemeulebroecke, K., Cleen-
werck, I., Thompson, C. C., Vancanneyt, M., and Swings, J., “Phylogeny and
identification of Enterococci by atpa gene sequence analysis,” J Clin Microbiol,
vol. 43, pp. 2224–2230, 2005.

National Committee for Clinical Laboratory Standards, “Methods for dilution an-
timicrobial susceptibility tests for bacteria that grow aerobically: Approved
standard M7-A6,” NCCLS Villanova, PA, USA, 2003.

National Committee for Clinical Laboratory Standards, “Performance standards
for antimicrobial susceptibility testing, 14th informational supplement, 13th
ed. approved standard M100-S13.” NCCLS, Wayne, Pa., 2003.

Perna, N. T., Plunkett, G., Burland, V., Mau, B., Glasner, J. D., Rose, D. J., May-
hew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., Posfai, G., Hackett,
J., Klink, S., Boutin, A., Shao, Y., Miller, L., Grotbeck, E. J., Davis, N. W.,
Lim, A., Dimalanta, E. T., Potamousis, K. D., Apodaca, J., Anantharaman,
T. S., Lin, J., Yen, G., Schwartz, D. C., Welch, R. A., and Blattner, F. R.,
“Genome sequence of enterohaemorrhagic Escherichia coli O157:H7,” Nature,
vol. 409, pp. 529–533, 2001.

Philippe, H., Lartillot, N., and Brinkmann, H., “Multigene analyses of bilaterian
animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and
Protostomia,” Mol Biol Evol, vol. 22, pp. 1246–1253, 2005. [Online].
Available: http://mbe.oxfordjournals.org/cgi/content/abstract/22/5/1246

Porwollik, S., Wong, R. M.-Y., and McClelland, M., “Evolutionary genomics
of Salmonella: Gene acquisitions revealed by microarray analysis,” PNAS,
vol. 99, pp. 8956–8961, 2002.

Qin, Z. S., “Clustering microarray gene expression data using weighted chinese
restaurant process,” Bioinformatics, vol. 22, pp. 1988–1997, 2006.

Raes, J., Foerstner, K. U., and Bork, P., “Get the most out of your metagenome:
computational analysis of environmental sequence data,” Curr Opin Micro-
biol, vol. 10, pp. 490 – 498, 2007.

Raskin, D. M., Seshadri, R., Pukatzki, S. U., and Mekalanos, J. J., “Bacterial
genomics and pathogen evolution,” Cell, vol. 124, pp. 703 – 714, 2006.

Ribot, E. M., Fair, M. A., Gautom, R., Cameron, D. N., Hunter, S. B.,
Swaminathan, B., and Barrett, T. J., “Standardization of pulsed-field gel
electrophoresis protocols for the subtyping of Escherichia coli O157:H7,
Salmonella, and Shigella for PulseNet,” Foodborne Pathog Dis, vol. 3, pp.
59–67, 2006.

108



Rokas, A., Williams, B. L., King, N., and Carroll, S. B., “Genome-scale approaches
to resolving incongruence in molecular phylogenies,” Nature, vol. 425, pp. 798
– 804, 2003.

Ross, I. L. and Heuzenroeder, M. W., “Use of AFLP and PFGE to discriminate be-
tween Salmonella enterica serovar Typhimurium DT126 isolates from separate
food-related outbreaks in Australia,” Epidemiol Infect, vol. 133, pp. 635–644,
2005.

Saitou, N. and Nei, M., “The neighbor-joining method: A new method for recon-
structing phylogenetic trees,” Mol Biol Evol, vol. 4, pp. 406–425, 1987.

Smith, T. F. and Waterman, M. S., “Identification of common molecular subse-
quences,” J Mol Bio, vol. 147, pp. 195 – 197, 1981.

Somorjai, R., Dolenko, B., and Baumgartner, R., “Class prediction and discov-
ery using gene microarray and proteomics mass spectroscopy data: curses,
caveats, cautions,” Bioinformatics, vol. 19, pp. 1484–1491, 2003.

Soule, M., Kuhn, E., Loge, F., Gay, J., and Call, D., “Using DNA microarrays
to identify library-independent markers for bacterial source tracking,” Appl.
Environ. Microbiol., vol. 72, pp. 1843–1851, 2006.

Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D., and Levy, S., “A com-
prehensive evaluation of multicategory classification methods for microarray
gene expression cancer diagnosis,” Bioinformatics, vol. 21, pp. 631–643, 2005.

Stinchcombe, J. R. and Hoekstra, H. E., “Combining population genomics and
quantitative genetics: finding the genes underlying ecologically important
traits,” Heredity, vol. 100, pp. 158–170, 2007.

Su, Y., Murali, T., Pavlovic, V., Schaffer, M., and Kasif, S., “RankGene: identifi-
cation of diagnostic genes based on expression data,” Bioinformatics, vol. 19,
pp. 1578–1579, 2003.

Summers, D. K., The Biology of Plasmids. Oxford: Blackwell Science, 1996.

Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram,
U. T., Rao, B. S., Kiryutin, B., Galperin, M. Y., Fedorova, N. D., and Koonin,
E. V., “The COG database: new developments in phylogenetic classification
of proteins from complete genomes,” Nucleic Acids Res, vol. 29, pp. 22–28,
2001.

Tenover, F. C., Arbeit, R. D., and Goering, R. V., “How to select and inter-
pret molecular strain typing methods for epidemiological studies of bacterial
infections: a review for healthcare epidemiologists,” Infect. Control Hosp. Epi-
demiol., vol. 18, p. 426439, 1997.

109



Thomas, C. M., The Horizontal gene pool : bacterial plasmids and gene spread.
Amsterdam, The Netherlands: Harwood Academic, 2000.

Thompson, J. D., Higgins, D. G., and Gibson, T. J., “CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice,” Nucleic
Acids Res, vol. 22, pp. 4673–4680, 1994.

Toolan, T. M. and Tufts, D. W., “Detection and estimation in non-stationary
environments,” in Proceedings IEEE Asilomar Conference on Signals, Systems
& Computers, Nov. 2003, pp. 797–801.

Trevino, V., Falciani, F., and Barrera-Saldaa, H. A., “DNA microarrays: a power-
ful genomic tool for biomedical and clinical research,” Mol Med., vol. 13, pp.
527 – 541, 2007.

Uchiyama, I., “MBGD: microbial genome database for comparative analysis,” Nu-
cleic Acids Res, vol. 31, pp. 58–62, 2003.

Urwin, R. and Maiden, M. C. J., “Multi-locus sequence typing: a tool for global
epidemiology,” TIM, vol. 11, pp. 479 – 487, 2003.

Van Belkum, A., Scherer, S., van Alphen, L., and Verbrugh, H., “Short-sequence
DNA repeats in prokaryotic genomes,” Microbiol Mol Biol Rev, vol. 62, pp.
275–93, 1998.

Van Hellemont, R., Monsieurs, P., Thijs, G., De Moor, B., Van de Peer, Y.,
and Marchal, K., “A novel approach to identifying regulatory motifs in
distantly related genomes,” Genome Biol., vol. 6, 2005. [Online]. Available:
http://dx.doi.org/10.1186/gb-2005-6-13-r113

Van Riel, N. A., “Dynamic modelling and analysis of biochemical
networks: mechanism-based models and model-based experiments,”
Brief Bioinform, vol. 7, pp. 364–374, 2006. [Online]. Available:
http://bib.oxfordjournals.org/cgi/content/abstract/7/4/364

Vogler, A. J., Keys, C., Nemoto, Y., Colman, R. E., Jay, Z., and Keim, P., “Ef-
fect of repeat copy number on variable-number tandem repeat mutations in
Escherichia coli O157:H7,” J Bacteriol, vol. 188, pp. 4253–63, 2006.

Vogler, A. J., Keys, C. E., Allender, C., Bailey, I., Girard, J., Pearson, T., Smith,
K. L., Wagner, D. M., and Keim, P., “Mutations, mutation rates, and evo-
lution at the hypervariable VNTR loci of Yersinia pestis,” Mutat. Res., vol.
616, pp. 145–58, 2007.

110



Walsh, B., “Estimating the time to the most recent common ancestor
for the Y chromosome or mitochondrial DNA for a pair of indi-
viduals,” Genetics, vol. 158, pp. 897–912, 2001. [Online]. Available:
http://www.genetics.org/cgi/content/abstract/158/2/897

Wan, Y., Broschat, S. L., and Call, D. R., “Validation of mixed-genome mi-
croarrays as a method for genetic discrimination,” Appl. Environ. Microbiol.,
vol. 73, pp. 1425–1432, 2007.

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R., “Naive Bayesian classifier
for rapid assignment of rRNA sequences into the new bacterial taxonomy,”
Appl. Environ. Microbiol., vol. 73, pp. 5261–5267, 2007.

Wang, Y., Makedon, F. S., Ford, J. C., and Pearlman, J., “HykGene: a hybrid ap-
proach for selecting marker genes for phenotype classification using microarray
gene expression data,” Bioinformatics, vol. 21, pp. 1530–1537, 2005.

Welch, T. J., Fricke, W. F., McDermott, P. F., White, D. G., Rosso, M.-L., Rasko,
D. A., Mammel, M. K., Eppinger, M., Rosovitz, M., Wagner, D., Rahalison,
L., LeClerc, J. E., Hinshaw, J. M., Lindler, L. E., Cebula, T. A., Carniel,
E., and Ravel, J., “Multiple antimicrobial resistance in plague: An emerging
public health risk,” PLoS ONE, vol. 2, p. e309, 2007.

Welsh, J. and McClelland, M., “Fingerprinting genomes using PCR with arbitrary
primers,” Nucleic Acids Res, vol. 18, pp. 7213–7218, 1990.

Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J., and Tingey, S. V., “DNA
polymorphisms amplified by arbitrary primers are useful as genetic markers,”
Nucleic Acids Res, vol. 18, pp. 6531–6535, 1990.

Woese, C. R., “Bacterial evolution.” Microbiol. Mol. Biol. Rev., vol. 51, pp. 221–
271, 1987.

Yang, Z., “Maximum-likelihood models for combined analyses of multiple
sequence data,” J Mol Evol, vol. 42, pp. 587–596, May 1996. [Online].
Available: http://view.ncbi.nlm.nih.gov/pubmed/8662011

Yang, Z., “Among-site rate variation and its impact on phylogenetic analyses,”
Trends Ecol Evol, vol. 11, pp. 367 – 372, 1996.

Zhang, R. and Zhang, C.-T., “The impact of comparative genomics on infectious
disease research,” Microbes Infect, vol. 8, pp. 1613 – 1622, 2006.

Zheng, J., Keys, C. E., Zhao, S., Meng, J., and Brown, E. W., “Enhanced subtyp-
ing scheme for Salmonella enteritidis,” Emerg Infect Dis, vol. 13, pp. 1932–5,
2007.

111



Zhu, J., Wiener, M. C., Zhang, C., Fridman, A., Minch, E., Lum, P. Y., Sachs,
J. R., and Schadt, E. E., “Increasing the power to detect causal associations by
combining genotypic and expression data in segregating populations,” PLoS
Comput Biol, p. e69, 04 2007.

112


