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PSEUDOPONTENTIAL TREATMENT OF TWO BODY

INTERACTIONS

Abstract

by Krittika Kanjilal, Ph. D.
Washington State University

May 2009

Chair: Doerte Blume

Ultracold atomic gases have been of great theoretical and experimental interest in

the last two decades. In these systems, the de Broglie wavelength of the particles is

much greater than the two body van der Waals length. As a result, the details of the

two body interaction potential are irrelevant for a large number of applications and

the realistic two body interaction potential can be replaced by a simple finite range or

zero range model potential that reproduces the scattering quantities of the full interac-

tion potential. This thesis develops zero range pseudopotentials and applies them to

trapped two-particle systems.

Ultracold gases loaded into optical lattices can be used to realize two particle sys-

tems under approximately harmonic confinement. We use pseudopotentials to ob-

tain the eigenspectrum of two particles under external harmonic confinement semi-
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analytically.

Advancements in trapping technology have resulted in the realization of low dimen-

sional systems. We develop pseudopotentials to treat two body interactions in one and

two dimensions. We also elaborate on the physics that is unique to one and two dimen-

sional systems.

Feshbach resonances allow for the tunability of the effective two body interaction

strength in the presence of a magnetic field. To model Feshbach resonances in two and

three dimensions we develop coupled two channel zero range potentials.

Dipole-dipole interactions in Chromium and polar molecules have been the sub-

ject of a lot of recent research. Unlike the interactions between two alkali atoms, these

interactions are long range and anisotropic. We explore the scattering properties of

two aligned dipoles using a simple shape dependent model potential. To understand

a system two aligned dipoles under confinement, we develop a pseudopotential treat-

ment for cylindrically symmetric interaction potentials under cylindrically symmetric

harmonic confinement. This pseudopotential can be used to model any cylindrically

symmetric interaction potential. Our zero range treatment describes many features of

two aligned dipoles under spherically symmetric harmonic confinement accurately but

breaks down when applied to two aligned dipoles under cylindrically symmetric har-

monic confinement. The breakdown is unique to the long range nature of the dipole-
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dipole interaction and expected to be absent for short range interactions.
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Chapter 1

Introduction

The goal of this thesis is to investigate two body interactions at very low temperatures,

with a view towards understanding the behavior of degenerate quantum gases. Our

models accurately reproduce the wavefunction of two interacting particles at large in-

terparticle distances. They also enable us to analytically obtain the eigenenergies of the

two particle system under external harmonic confinement.

Due to the advancement in trapping technology it is possible to obtain effectively

low dimensional systems. We explore the effects of reduced dimensionality on two

body interactions and develop zero range potentials to model them in strictly one and

two dimensions.

Section 1.1 introduces quantum degenerate gases. The need to obtain a better un-

derstanding of some interesting systems, listed in Sec. 1.2, motivates the techniques

and ideas developed in this thesis. Section 1.3 discusses two body interactions and

Feshbach resonances. Section 1.4 deals with confining potentials and systems with re-

duced dimensionality. Section 1.5 introduces zero range pseudopotentials and Sec. 1.6

gives an overview of the thesis.
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1.1 Quantum degenerate gases

Recent reviews of quantum degenerate gases can be found in [1, 2, 3, 4]. The discussion

here follows [1, 5]. Consider a gas of non-interacting identical particles in a box. The

relevant length scales of this system are the average interparticle spacing d int (d int =

n−
1
3 , where n is the average number density of the gas), the length of the box L and the

de Broglie wavelength λdB of the particles. We assume that the box is very large, i. e.,

L � d int and L � λdB. In the regime where d int � λdB, the atoms or molecules of the

gas behave like point particles, Maxwell-Boltzmann statistics is valid, and the gas can be

treated classically. However, for d int ®λdB, the gas is in the quantum degenerate regime,

the atoms or molecules of the gas behave like extended wave packets that overlap with

each other, and the gas has to be treated quantum mechanically.

In a classical gas the particles are treated as identical but distinguishable, while in a

quantum gas they are treated as identical and indistinguishable. The particles in classi-

cal gases follow Maxwell-Boltzmann statistics. In a quantum gas the statistics followed

by the particles depends upon their spin. Gases of particles with integer spin (bosons)

follow Bose-Einstein statistics. For a Bose gas at temperature T , the mean occupation

number n B (E ) of a state with energy E is given by [5]

n B (E ) =
1

e
E−µB
k B T −1

, (1.1)

whereµB is the chemical potential of the Bose gas and k B is Boltzmann’s constant. A gas

is considered to approach quantum degeneracy if the occupation number correspond-

ing to some energy state approaches one or exceeds it. A dilute gas of bosonic atoms

undergoes Bose-Einstein condensation, a phenomenon in which, below a certain crit-

ical temperature, the bosons macroscopically occupy the single particle ground state
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(if the single particle picture is applicable). This corresponds to quantum degeneracy,

since the mean occupation number of the ground state is one or greater.

In contrast, gases of particles with half integer spin (fermions) follow Fermi-Dirac

statistics. For a Fermi gas at temperature T , the mean occupation number n F (E ) of a

state with energy E is given by [5]

n F (E ) =
1

e
E−µF
k B T +1

, (1.2)

where µF is the chemical potential of the Fermi gas. At very low temperatures the mean

occupation number of a gas of fermionic atoms at energies E < µ approaches one in-

dicating quantum degeneracy. The experimental realization of Bose-Einstein conden-

sates [6, 7] and degenerate Fermi gases [8] has led to a lot of research in cold atom

physics.

1.2 Motivation

Quantum degenerate gases exhibit interesting behavior in many different ways. They

can be loaded into periodic potentials called optical lattices (see Sec. 1.4.2 and for a re-

view see, e. g., Ref. [9]). This set up is reminiscent of an ionic lattice with an electron

gas in a crystal. Hence optical lattices loaded with degenerate ultracold gases can be

used as condensed matter analogs. These systems allow for an unprecedented degree

of control. Optical lattices with exactly n (n is an integer) atoms per lattice site can be

created [10] and, unlike real crystals, these systems have essentially no defects. Optical

lattices loaded with ultracold degenerate gases have been created in one, two and three

dimensions [11, 12, 13]. Pairwise two body interactions dominate the behavior of these

gases, while three body (and higher order) interactions can generally be neglected. In
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order to gain insight into these systems, it is important to first understand the inter-

action between just two particles. The two particle system itself is interesting and can

be realized in an optical lattice with exactly two atoms per lattice site, negligible inter-

actions between atoms in neighboring lattice sites and negligible tunneling between

lattice sites [14]. Chapters 2 to 4 treat two interacting particles in a harmonic trap in

one, two and three dimensions.

In addition to many alkali atoms like Rubidium (Rb) [6], Sodium (Na) [7], Potassium

(K) [15], Lithium (Li) [16, 17] and Cesium (Cs) [18], recently Chromium (Cr) [19] was

Bose condensed. Compared to alkali atoms, Cr has a large magnetic moment of 6 Bohr

magneton. This relatively large magnetic moment leads to a dipole-dipole interaction

between the Cr atoms, which has been observed to affect the cloud shape during ex-

pansion [20]. In addition there has been a lot of interest in the creation of ground state

polar molecules [21, 22, 23, 24, 25, 26]. These molecules can have a large induced elec-

tric dipole moment of the order of a few Debye, which can be tuned by varying an elec-

tric field [27, 26]. Polar molecules are a candidate for qubits in quantum computing [28]

and may be used in high precision measurements that aim at placing yet stricter limits

on the electric dipole moment of the electron [29]. Unlike the interaction between al-

kali atoms, the dipole-dipole interaction is long-range and anisotropic [30]. In Ch. 5, we

develop a zero range treatment for two aligned dipoles under harmonic confinement.

Since the dipole-dipole interaction potential is anisotropic, the nature of the interac-

tions (attractive or repulsive) depends on the relative orientation of the dipoles. This

results in the stability of a dipolar gas being dependent on the trapping geometry [31,

32]. In the case of cylindrical traps, e. g., it depends on the aspect ratio. In addition,

dipolar gases in pancake shaped traps are expected to show interesting structures like

biconcave condensates [33]. Chapter 5 also explores the complications that arise when

applying the anisotropic pseudopotential to systems confined in non-spherically sym-
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metric traps.

1.3 Two body interactions

So far, quantum degeneracy has been achieved in gases of alkali atoms [6, 7, 15, 18],

Cr [19], metastable helium (He) [34] and Ytterbium (Yb) [35]. Alkali atoms have one

outer s electron and much of their energy level structure is similar to that of hydro-

genic atoms [36]. For simplicity, this section considers the energy level structure of hy-

drogenic atoms as opposed to alkali atoms or Cr. The atomic energy level structure

becomes important when the atoms in the cloud have large interparticle distances.

The non-relativistic Schrödinger equation for hydrogenic atoms without electron

or nuclear spin results in quantized energy levels En (labeled by the principal quantum

number n) [36],

En =−
e 2

8πε0a 0

µ

m

Z 2

n 2
, (1.3)

where a 0 is the Bohr radius, ε0 is the permittivity of free space, µ is the reduced mass

of the electron and the nucleus, m is the mass of the electron, Z is the atomic number

and “−e ” is the charge on the electron. Each of these levels has a degeneracy of n 2

corresponding to different l (orbital angular momentum quantum number) and m l

(magnetic quantum number) and the level spacing between the lowest adjacent levels

is of the order of a few e V (electron Volts). Accounting for the two possible orientations

of the electron spin (ms =± 1
2

), changes the degeneracy of hydrogenic energy levels En

from n 2 to 2n 2.

Using the relativistic Schrödinger equation partially breaks the degeneracy in l and

reveals the fine structure [36]. The total electronic angular momentum ~J is given by
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~J = ~L + ~S, where ~L denotes the electronic orbital angular momentum and ~S the elec-

tronic spin. The quantum numbers corresponding to the operators ~J , ~L and ~S are given

by j , l and s , respectively. The total electronic angular momentum is conserved and the

relativistic energy levels depend on n and j , i. e., levels with the same principal quan-

tum number n and the same total electronic angular momentum quantum number j

(but possibly different l ) have the same energy. The fine structure splitting is of the or-

der of 10−5e V . Including the Lamb shift (radiative corrections that take into account

the interaction of the electron with a quantized electromagnetic field) lifts the partial

degeneracy in l and leads to a level splitting of the order of a few µe V .

The nuclear spin ~I (corresponding quantum number denoted by i ) and the finite

size of the nucleus introduce energy shifts of the order of a fewµe V s, which are referred

to as the hyperfine structure [36]. The total angular momentum of the atom ~F including

the nuclear spin is given by ~F = ~J+~I . The quantum number corresponding to ~F is given

by f . Each hyperfine level corresponds to a particular value of f . Each of these levels is

2 f + 1 fold degenerate with each of the degenerate levels corresponding to a different

m f (projection of total angular momentum) quantum number ranging from− f to f in

steps of one. This degeneracy is broken in the presence of an external magnetic field;

this is referred to as the Zeeman effect. For magnetic fields of a few hundred Gauss the

energy splitting is almost linear [37], i. e., the energy shift due to the magnetic field ~B is

approximately given by

∆Em f = ~µm f · ~B , (1.4)

where ~µm f is the magnetic dipole moment of the state with quantum number m f .

Figure 1.1 shows the n = 1 and n = 2 energy levels of the hydrogen atom with the

level splittings introduced by the relativistic corrections, the radiative corrections and

the inclusion of the nuclear spin. This leaves us with ~F = ~S+~I . In Fig. 1.1 each hyperfine
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Bohr
fine struc-
ture

Lamb shift
hyperfine
structure

n = 1

1.8×10−4 eV

1s1/2
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f = 1
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5.9×10−6 eV

n = 2

10.2 eV
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2p3/2

f = 2

f = 1

Figure 1.1: Fine structure and hyperfine structure splitting of the lowest two electronic
levels of the hydrogen atom. The energy levels are labeled using the spectroscopic no-
tation nl j . Figure is not to scale. Data taken from Ref. [38].
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level is labeled by its f quantum number. The Zeeman splitting of the hyperfine levels

in the presence of an external magnetic field is not shown. Having obtained the detailed

spectrum of a single atom we now look at interactions between two atoms.

In general, the interaction between two neutral atoms is quite complicated. For

reviews of two body interactions at low temperatures see Refs. [39, 40]. The interaction

potential between two neutral atoms, labeled A and B, with atomic numbers ZA and ZB ,

respectively, is given by [41]

Vint =
ZAZB e 2

4πε0|~RA − ~RB |
−

ZA+ZB
∑

i=1

e 2

4πε0|~ri − ~RB |
−

ZA+ZB
∑

i=1

e 2

4πε0|~RA − ~ri |
+

ZA+ZB
∑

i=1

i−1
∑

j=1

e 2

4πε0|~ri − ~rj |
,

(1.5)

where ~RA and ~RB are the position vectors of the nuclei of atoms A and B, respectively,

and ~ri is the position vector of the i th electron. The first term in Eq. (1.5) corresponds to

the repulsive Coulomb interaction between the two nuclei, the second and third terms

to the attractive interactions between the electrons and the nuclei, and the forth term

to the repulsive interactions between the electrons. The Schrödinger equation for two

interacting atoms in the relative coordinate is

HΨ= EΨ, (1.6)

where

H = TN +Te +Vint (1.7)

with

TN =−
ħh2

2M N

�

1

r 2

∂

∂ r

�

r 2 ∂

∂ r

�

+
1

r 2 sinθ

∂

∂ θ

�

sinθ
∂

∂ θ

�

+
1

r 2 sin2θ

∂ 2

∂ φ2

�

(1.8)
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and

Te =
ZA+ZB
∑

i=1

�

−ħh2

2m
∇2
~ri

�

. (1.9)

M N is the reduced mass of the two nuclei and ~r = ~RB− ~RA is the relative vector between

the two nuclei with spherical polar coordinates given by r , θ andφ.

Since the nuclei are heavy and move much slower than the electrons, the Born-

Oppenheimer approximation assumes a fixed internuclear distance r [41]. Under this

assumption, Eq. (1.6) can be numerically solved for different values of r to obtain the

eigenenergies E (r ). As an example, consider the adiabatic Born-Oppenheimer curves

E (r ) for the hydrogen molecule (ZA =ZB = 1). The large r Born-Oppenheimer energies

are in this case given by En A+En B , where En A and En B denote, respectively, the electronic

energies of the first and second hydrogen atom. The Born-Oppenheimer energies de-

pend on the electronic spin through the requirement that the electronic wavefunction

has to be antisymmetric under exchange of the two electrons. To illustrate this point,

let us as before, consider the hydrogen molecule. If ~SA and ~SB denote the electronic

spin of the first and second hydrogen atom, the quantum number s corresponding to

the total electron spin ~S, ~S = ~SA + ~SB , can take the values 0 and 1. If s = 0, the spatial

part of the electronic wavefunction has to be symmetric; if s = 1, the spatial part of the

electronic wavefunction has to be antisymmetric. Consequently, there exist two Born-

Oppenheimer potential curves (a singlet and a triplet curve), which asymptotically ap-

proach the same threshold energy. It is convenient to label the Born-Oppenheimer

potential curves Es (r ) by the electron spin s . In Sec. 1.3.1 we choose our energy scale

such that the energetically lowest lying Born-Oppenheimer potential curve approaches

zero as r →∞.

The adiabatic potential curves for neutral diatomic molecules vary to leading or-

der as −C6/r 6 for r →∞, where C6 [38] denotes the positive van der Waals coefficient.
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Hence these are short range interaction potential curves in the relative coordinate. The

van der Waals length l VdW [39], determined using the classical turning point of a bound

state, is given by

l vdW =
1

2

�

2M N C6

ħh2

�1/4

, (1.10)

is typically of the order of 100a 0.

1.3.1 Feshbach resonances

The Born-Oppenheimer adiabatic potential curves do not include relativistic correc-

tions or the nuclear spin. To account for these effects, the full effective potential of two

atoms A and B in the presence of an external magnetic field ~B , ~B = Bẑ , can be schemat-

ically written as [42]

Vtot(r ) = E (r )+H M
A +H HF

A +H M
B +H HF

B , (1.11)

where H HF
α (α= A, B) is the hyperfine Hamiltonian of the atom α,

H HF
α =C (~F 2

α − ~S
2
α− ~I

2
α), (1.12)

and H M
α is the Zeeman Hamiltonian of the atom α,

H M
α =−B [g eµeSαz + g αNµ

α
N I αz ]. (1.13)

Here,µN andµe refer to the magnetic moments of the nucleus and the electron, respec-

tively, and g e and g N are the g -factors for the electron and the nucleus, respectively. F αz ,

Sαz and I αz are the z projections of ~Fα, ~Sα and ~Iα, respectively. Finally, C is a constant that

depends on the hyperfine energy splitting and the nuclear spin. Equation (1.11) as-
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sumes s -wave scattering, i. e., l = 0. For l > 0, additional corrections, to be discussed

later, occur.

It is convenient to consider the effective potentials in two different regions [43]. For

small internuclear distances r the overlap of the electron clouds of the two atoms is

large and the system is most conveniently treated in the molecular basis. For large in-

ternuclear distances, in contrast, a basis of the eigenstates of two non-interacting atoms

is more suitable as can be seen from Eq. (1.11). For alkali atoms, the separation of these

two regions occurs at r ∼ 20a 0, where the overlap between the electronic clouds be-

comes exponentially small.

For two scattering atoms, the initial and final states are labeled by the atomic quan-

tum numbers corresponding to the atomic basis. The atomic basis consists of a di-

rect product of the eigenstates of the individual atoms and is labeled by | f A , m f A 〉 ⊗

| f B , m f B 〉 ≡ | f A , m f A , f B , m f B 〉, where f A and m f A are the hyperfine quantum numbers

of the eigenstate of atom A and f B and m f B are the hyperfine quantum numbers of the

eigenstate of atom B [42]. In the large r limit, the full effective potential curves Vtot(r ) are

labeled by | f A , m f A , f B , m f B 〉. The thresholds (which is the potential in the large r limit)

with different f values are separated by energies of the order of 10µe V . A magnetic field

of a few hundred Gauss shifts the thresholds corresponding to fixed f A and f B but dif-

ferent m f A and m f B , e.g., in 85Rb the states |3,−2, 2,−2〉 and |3,−3, 2,−1〉 are separated

by an energy of approximately 3µe V in a magnetic field of 600G [43] [see Eq. (1.4)].

During the scattering process, the atoms closely approach each other. Since E (r )

is not diagonal in the atomic basis, coupling between different atomic hyperfine states

arises during the collision. The molecular basis consists of states labeled by |s , ms , i , m i 〉 [42],

where ~I = ~IA + ~I B is the total nuclear spin, i denotes the quantum number correspond-

ing to ~I , and ms and m i are the electronic and nuclear spin projection quantum num-
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bers, respectively. The matrix elements of E (r ) in the atomic basis are given by [42],

〈 f ′A , m ′
f A

, f ′B , m ′
f B
|E (r )| f A , m f A , f B , m f B 〉=

∑

s ,s ′,i ,i ′,ms ,m ′
s ,m i ,m ′

i

〈 f ′A , m ′
f A

, f ′B , m ′
f B
|s ′, m ′

s , i ′, m ′
i 〉×

〈s ′, m ′
s , i ′, m ′

i |E (r )|s , ms , i , m i 〉×

〈s , ms , i , m i | f A , m f A , f B , m f B 〉. (1.14)

Using that E (r ) is diagonal in the molecular basis, we obtain

〈 f ′A , m ′
f A

, f ′B , m ′
f B
|E (r )| f A , m f A , f B , m f B 〉=

∑

s

Es (r )〈 f ′A , m ′
f A

, f ′B , m ′
f B
|s , ms , i , m i 〉〈s , ms , i , M i | f A , m f A , f B , m f B 〉, (1.15)

where Es (r ) denotes the Born-Oppenheimer potential curve corresponding to a partic-

ular s value, e. g., E0(r ) is the singlet potential curve and E1(r ) is the triplet potential

curve. Equation (1.15) shows that E (r ) [the effective short range interaction potential]

leads to a coupling between the different hyperfine states. Equation (1.15) also shows

that m ′
f A
+m ′

f B
=ms +m i =m f A +m f B , i.e., coupling occurs only between those chan-

nels for which the total m f quantum number is conserved. Physically this makes sense

since the Hamiltonian has cylindrical symmetry.

As an example, we consider the scattering between two neutral 85Rb atoms [44]

in a magnetic field ~B . We assume that both atoms are initially in the hyperfine state

| f , m f 〉 = |2,−2〉, i. e., | f A , m f A , f B , m f B 〉 = |2,−2, 2,−2〉. This hyperfine state has non-

zero coupling to four other hyperfine states with m f = 4, |3,−3, 2,−1〉, |3,−2, 2,−2〉,

|3,−3, 3,−1〉 and |3,−2, 3,−2〉. These states |3,−3, 2,−1〉, |3,−2, 2,−2〉, |3,−3, 3,−1〉 and

|3,−2, 3,−2〉 have energies in ascending order in the presence of a magnetic field in the
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range of zero to a thousand Gauss, and are energetically higher lying than the initial

state [43]. For the scattering of two 85Rb atoms at an energy larger than the threshold of

the |2,−2, 2,−2〉 state but lower than the threshold of the |3,−3, 2,−1〉 state, the adiabatic

potential curve corresponding to state |2,−2, 2,−2〉 constitutes an open channel while

the adiabatic potential curves corresponding to the states |3,−3, 2,−1〉, |3,−2, 2,−2〉,

|3,−3, 3,−1〉 and |3,−2, 3,−2〉 constitute closed channels. For sufficiently low scatter-

ing energy, this multichannel set up leads to a Feshbach resonance at B = 155.2G [45,

46]. It turns out that the scattering length near this Feshbach resonance can be modeled

using just two effective channels, one open and one closed.

Figure 1.2 gives a schematic picture of the two adiabatic potential curves corre-

sponding to the two effective channels as a function of the relative coordinate. The

lower curve is labeled channel one and corresponds to the effective open channel, and

the upper curve is labeled channel two and corresponds to the effective closed chan-

nel. Let ~µ1 and ~µ2 be the magnetic moments of the atoms in the states corresponding

to channels one and two, respectively. If channel one has a threshold at zero energy,

then channel two has a threshold at an energy of ε, where ε = |(~µ1 − ~µ2) · ~B |. For an

ultracold atomic gas the relative scattering energy E of the atoms is small. We assume

that the channel two supports a bound state. Since the difference ε in thresholds can

be adjusted by varying the magnetic field ~B , the value of the bound state can be varied.

When the relative scattering energy E of the two atoms corresponds to the bound state

energy Eb of the coupled channel system a Feshbach resonance occurs. The two body

scattering length diverges at the resonance. By varying the magnetic field around the

resonance value, the scattering length can be tuned to essentially any desired value. In

Sec. 3.2, we develop coupled two channel treatments using zero range and finite range

square well potentials [47, 48] and apply them to the 85Rb resonance at B = 155.2G . As

we will see in Chs. 2 to 5, the effective interaction strength of two interacting atoms is
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r

V(r)

ε

Eb

E

channel one

channel two

Figure 1.2: Adiabatic potential curves corresponding to two different hyperfine states.
The lower curve is labeled as channel one (effectively open channel) and the upper
curve as channel two (effectively closed channel). E is the relative scattering energy
and Eb is the bound state energy of the coupled channel system. ε is the difference in
threshold energies of the two channels.
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determined by their scattering lengths. A Feshbach resonance thus provides a power-

ful tool to tune the effective interaction strength between two particles to any desired

value.

So far, the effective potentials considered in Eq. (1.11) do not account for the dipole-

dipole interaction that arises due to the magnetic dipole moments of the electrons. For

s -wave scattering (l = 0), this term does not change the energy spectrum because the

dipole-dipole interactions average to zero for spherically symmetric l = 0 wavefunc-

tions. For higher partial waves, however, the dipole-dipole interaction has a nonzero

contribution and introduces a splitting of energy levels with different m l quantum num-

bers. The dipole-dipole interaction is given by [49]

Hs s =−α2 3(R̂ · ŜA)(R̂ · ŜB )− ŜA · ŜB

R3
, (1.16)

where α is the fine structure constant, R is the distance between the two electrons and

R̂ is the unit vector pointing from electron A to electron B. The Hamiltonian Hs s can be

simplified to isolate the spin and partial wave operators [43, 49, 50],

−
2
p

6π

5R3

2
∑

q=−2

(−1)q Y2q (Θ,Φ)(SA ⊗SB )2−q , (1.17)

whereΘ is the angle between R̂ and the z -axis (direction of the magnetic field vector),Φ

is the azimuthal angle of R̂ , and Y2q (Θ,Φ) is a spherical harmonic. The matrix elements

of this term in the atomic basis are

−
2
p

6π

5R3

2
∑

q=−2

(−1)q 〈l ′, m ′
l |Y2q (Θ,Φ)|l , m l 〉〈 f ′A , m ′

f A
, f ′B , m ′

f B
| (SA ⊗SB )2−q | f A , m f A , f B , m f B 〉.

(1.18)

For elastic s -wave scattering the term 〈0, 0|Y2q (Θ,Φ)|0, 0〉 vanishes (see above). For elas-
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tic (q = 0) p -wave scattering, however, the 〈1, m ′
1|Y2q (Θ,Φ)|1, m1〉 term is non-zero and

depends on m1 (m1 =m ′
1). It follows that the bound state energy Eb is slightly different

for m1 =m ′
1 = 0 and for m1 =m ′

1 = ±1 [49]. Consequently two closely spaced p -wave

Feshbach resonances can occur. Reference [49] shows, for the 40K resonance at 198.5G ,

that the spacing between the splitting of the resonance is larger than the width of the

resonances. As a result the m1 = 0 and m1 =±1 resonances can be modeled separately.

1.4 Confining potentials and reduced dimensionality

So far we have introduced two body interactions in free space. However any experiment

on degenerate quantum gases confines the atoms. Most commonly used trapping po-

tentials are harmonic or nearly harmonic. Section 1.4.1 introduces the harmonic trap-

ping potential and shows that for two particles in a harmonic trap, the center of mass

motion and the relative motion separate. Section 1.4.1 also introduces quasi-one and

quasi-two dimensional systems and Sec. 1.4.2 discusses optical lattices.

1.4.1 Harmonic traps

As explained in Sec. 1.3, each hyperfine state with a particular value of mF has a mag-

netic dipole moment µm f corresponding to it. Since the energy of an atomic state de-

pends on the external magnetic field, an inhomogeneous magnetic field can be used

to trap atoms. Magnetic traps like the time averaged orbiting potential (TOP) trap [51]

and the Ioffe-Pritchard [52] trap have an approximately quadratic spatial dependence

(for magnetic fields of the order of a few hundred Gauss) with a local minimum and are

therefore approximately harmonic [1]. In the case of the TOP trap, the magnetic field

is always linear , but averaging over the fast period of the bias field rotation makes it
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effectively quadratic for the atoms. A harmonic potential has the form

1
2

m
�

ω2
x x 2+ω2

y y 2+ω2
z z 2
�

, where m is the mass of the trapped particle,ωx ,ωy andωz

are the angular trapping frequencies along the x , y and z axes, respectively, and (x , y , z )

denotes the position of the particle in cartesian coordinates with respect to the center

of the trap.

Separability of center of mass coordinate

Consider a one dimensional system of two particles with masses m1 and m2 and posi-

tions z 1 and z 2 under harmonic confinement. We assume that the trapping frequency

ωz experienced by the two particles is the same. The classical Hamiltonian of the sys-

tem is

H =
p 2

z 1

2m1
+

p 2
z 2

2m2
+Vint(z )+

1

2
m1ω

2
z z 2

1+
1

2
m2ω

2
z z 2

2, (1.19)

where z = z 1−z 2, Vint(z ) denotes the interaction potential, and pz i is the momentum of

the i th particle.

The center of mass coordinate Z is given by

Z =
m1z 1+m2z 2

M
, (1.20)

where the total mass M is given by

M =m1+m2. (1.21)

Expressing z 1 and z 2 in terms of the center of mass and relative coordinates, we have

z 1 =Z +
m2

M
z (1.22)
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and

z 2 =Z −
m1

M
z . (1.23)

Using the center of mass and relative coordinates, the potential energy term in

Eq. (1.19) can be rewritten,

1

2
m1ω

2
z z 2

1+
1

2
m2ω

2
z z 2

2 =
1

2
Mω2

zZ 2+
1

2
µω2

z z 2, (1.24)

where the reduced mass µ is given by

µ=
m1m2

M
. (1.25)

Classically, pz i is given by m i ż i , where ż i is the first time derivative of z i . Consequently,

the kinetic energy term of H can also be rewritten in terms of the center of mass and

relative coordinates,
p 2

z 1

2m1
+

p 2
z 2

2m2
=

p 2
z

2µ
+

P2
Z

2M
, (1.26)

where pz = µż is the relative momentum and PZ =MŻ is the center of mass momen-

tum. Putting Eqs. (1.26) and (1.24) into Eq. (1.19), we obtain

H =

�

p 2
z

2µ
+Vint(z )+

1

2
µω2

z z 2

�

+

�

P2
Z

2M
+

1

2
Mω2

zZ 2

�

. (1.27)

The quantum mechanical operator for the center of mass momentum PZ is PZ =

−ıħh ∂
∂Z

and the relative momentum pz is pz = −ıħh ∂
∂ z

, where ı =
p
−1. Plugging this

into Eq. (1.27), we obtain

H =Hrel+Hcom, (1.28)

where
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Hrel =

�

−
ħh2

2µ

∂ 2

∂ z 2
+Vint(z )+

1

2
µω2

z z 2

�

(1.29)

and

Hcom =

�

−
ħh2

2M

∂ 2

∂Z 2
+

1

2
Mω2

zZ 2

�

. (1.30)

This shows that the center of mass and relative coordinates separate. The separation

of relative and center of mass Hamiltonians in the absence of an external trapping po-

tential simply follows by settingωz = 0. Further on, whenever we consider a system of

two particles in a harmonic trap or in the absence of an external confining potential, we

only consider the relative Hamiltonian Hrel. The solution to the center of mass Hamil-

tonian is well known, and can be multiplied by the solution obtained for Hrel to yield

the full solution.

Low dimensional systems

It is possible to have harmonic traps with different trapping frequencies ωx , ωy and

ωz . Here we consider cylindrically symmetric systems with ωx = ωy = ω⊥ different

from ωz . The trapping potential is thus characterized by two different length scales,

the oscillator length a⊥ in the x y -plane (or ρ direction) and the oscillator length a z in

the z -direction,

a⊥ =

r

ħh
µω⊥

(1.31)

and

a z =

r

ħh
µωz

. (1.32)

Cigar shaped traps are characterized by ω⊥ > ωz or a⊥ < a z and pancake shaped

traps are characterized by ω⊥ < ωz or a⊥ > a z . In the following, we are interested in
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traps geometrized with very large and very small aspect ratios η, where

η=
ω⊥

ωz
. (1.33)

Experimentally, quasi-one and quasi-two dimensional Bose and Fermi gases have been

realized [53, 54].

Consider a degenerate Bose gas consisting of N mass m particles under cylindrically

symmetric harmonic confinement. The chemical potentialµB
e is defined as the amount

of energy required to add a boson to the system. In the Thomas Fermi approximation,

the chemical potential is given by [55]

µB =
1

2

�

15ħh2N a m 1/2ωzω
2
⊥

�2/5
, (1.34)

where a is the scattering length. For the system to be quasi low dimensional, we must

have

µB � ħhωt , (1.35)

whereωt is the trapping frequency in the tight confining direction [53]. For cigar shaped

systems, we haveωt =ω⊥; if Eq. (1.35) is fulfilled, then excitations along theρ direction

are effectively frozen out and the system is quasi one dimensional. For pancake shaped

systems, we haveωt =ωz ; if Eq. (1.35) is fulfilled, then excitations along the z direction

are effectively frozen out and the system is quasi two dimensional.

Similarly, for a degenerate Fermi gas under cylindrically symmetric harmonic con-

finement, the system is considered quasi low dimensional if [3]

εF � ħhωt , (1.36)
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where εF is the Fermi energy of the system.

For a quasi one dimensional system, one might naively assume that the effective

one dimensional interaction potential V1D(~z ) can be calculated from the s -wave three

dimensional zero range potential V3D(~r ) by assuming that the wavefunction in ρ andφ

is given by the two dimensional harmonic oscillator wavefunctionψ2D
0 (ρ,φ),

V1D(~z ) =

∫

�

ψ2D
0 (ρ,φ)

�∗
V3D(~r )ψ2D

0 (ρ,φ)ρdρdφ. (1.37)

This treatment is only approximate and discussed in more detail in Sec. 2.3. Similarly,

one might naively expect that the quasi two dimensional zero range potential can be

obtained from the three dimensional zero range potential by freezing out the motion

along the z direction and integrating over z . This naive picture only holds for weak

interactions and is discussed in more detail in Sec. 4.1.4.

1.4.2 Optical lattices

An optical lattice is a periodic intensity pattern that can be created e. g., by interfering

two counter-propagating lasers. The resulting potential can be used to trap neutral

atoms [13]. The optical lattice potential in the special case of a cubic lattice has the

form

V (x , y , z ) =V0[sin2(k x )+ sin2(k y )+ sin2(k z )], (1.38)

where ~k is the wave vector of the laser light (k = |~k | with k = 2π
λ

, where λ is the wave-

length of the laser) and V0 is determined by the laser intensity and the detuning from the

atomic resonance. The above potential has local minima at x = nxπ
k

, y = n y π

k
and z = n zπ

k
,

where nx , n y and n z are integers. Consider one such local minimum at x = x0, y = y0
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and z = z 0. For small displacements from this local minimum, i. e., for k (x −x0), k (y −

y0) and k (z − z 0)� 1, V (x , y , z ) can be Taylor expanded about x = x0, y = y0 and z = z 0,

yielding to lowest order

V (x , y , z )≈V0k 2[(x −x0)2+(y − y0)2+(z − z 0)2]. (1.39)

Hence to lowest order, each optical lattice site can be considered to be a harmonic trap.

Optical lattices have been created in one, two and three dimensions [14, 12, 11].

It is possible to load an optical lattice with exactly two atoms per lattice site [56, 57,

10]. If the optical lattice is set up such that the tunneling between neighboring sites can

be neglected then each site acts as an approximately harmonic trap with two interacting

atoms [14]. This provides a good testing ground for the results obtained in Chs. 2 to 5.

1.5 Introduction to pseudopotentials

For ultracold quantum degenerate gases, the de Broglie wavelength λdB is typically of

the order of 105a 0 [39], and thus much larger than the van der Waals length l vdW [see

Eq. (1.10)]. To investigate physical systems we need to use probes. The resolution of in-

formation we gain depends on the size of the probe we use. For example, if we use light

to measure the position of a spherical object then the uncertainty in the position of the

object is of the order of the wavelength λ of the light used. Ideally, we would want this

uncertainty to be much smaller than the diameter D of the object. To accurately mea-

sure the position of the sphere, we must require, λ�D. An equivalent analysis can be

done in terms of energy scales. Any length scale corresponds to an energy scale. For ex-

ample, light of wavelength λ has an energy E , E = (hc )/λ, where h is Planck’s constant

and c is the velocity of light. The discussion presented to measure the position of the
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object translates straight forwardly to cold atomic gases, with D replaced by the typical

length scale of the atom-atom potential and λ replaced by the de Broglie wavelength

λdB. Since λdB � l VdW, the atoms are unable to probe the details of the atom-atom

interaction potential. Hence the complicated atom-atom interaction potential can be

replaced by simple model potentials, including zero range model potentials, that are

designed to reproduce the eigenfunctions of the two atom system at large r but fail to

reproduce the small r details of the eigenfunctions.

For ultracold systems, unless there is a resonance in a channel corresponding to one

of the higher partial waves, the scattering processes are usually dominated by the lowest

partial wave. Hence for a system of bosons, the scattering processes and some many-

body properties are s -wave dominated and can be described by a single atomic physics

parameter, the s -wave scattering length a . In many cases, a zero range pseudopotential

that depends only on the s -wave scattering length [58, 59, 60] can be used to model

a system of bosons. s -wave pseudopotentials have been extensively used to describe

both two-body and many-body systems of identical bosons. The mean field Gross-

Pitaevskii equation [61, 62, 63] that describes a gas of identical bosons can, e. g., be

derived with in a Hartree Fock framework that utilizes an s -wave pseudopotential.

In a system of identical fermions, s -wave scattering is forbidden by symmetry and

at low temperatures p -wave scattering dominates. A pseudopotential description of

spin polarized fermions [64] must thus account for the p -wave scattering length and

possibly also for other relevant length scales of the problem. If the p -wave scattering

length is the only parameter, it becomes important to include the energy dependence

of the scattering length in the strength of the pseudopotential to obtain an accurate

description of the system.

The scattering of higher partial waves may be important if there is a resonance in a

channel corresponding to one of them. A pseudopotential has been developed to de-
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scribe the scattering between two particles for all partial waves [65]. The pseudopoten-

tial (or equivalently, boundary condition) has proven extremely useful in solving few-

body problems [66]. Due to the advances in trapping technology quasi one and two

dimensional systems have been obtained. Pseudopotentials that describe atom-atom

interactions in low dimensional systems have been developed in Refs. [64, 67].

In the above examples, the interaction potential has been assumed to be spherically

symmetric. This assumption is usually justified for pseudopotentials that are designed

to describe scattering processes in ultracold alkali gases like Rb, K or Cs. In the case of

Cr atoms and in case of polar molecules, however, the interactions are long ranged and

anisotropic. Although the anisotropic interactions are long ranged (the leading behav-

ior at large r goes as 1/r 3), a zero range pseudopotential that reproduces the K -matrix

of the true atom-atom or molecule-molecule potential for aligned particles has been

suggested in Refs. [68, 69]. This pseudopotential was used, e.g., to obtain an analyti-

cal expression for the eigenenergies of two interacting aligned dipoles under external

spherically symmetric harmonic confinement [70, 71]. This application and extensions

thereof to cylindrically symmetric traps, which turns out to be non-trivial, is discussed

in Ch. 5.

1.6 Thesis overview

Chapter 2 deals with two body interactions in one dimension and develops zero range

pseudopotentials to model two body interaction potentials in one dimension. It com-

pares the different pseudopotential representations and obtains the eigenenergies of

two interacting particles in a harmonic trap in one dimension. It also discusses the

bound state spectrum of two interacting particles. The chapter relates the two body

scattering length in one dimension to its three dimensional counterpart.
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Chapter 3 discusses two body interactions in three dimensions using both single

channel and coupled channel model potentials. It obtains the eigenenergies of two

interacting particles under harmonic confinement in three dimensions using a single

channel model interaction potential. It uses a coupled two channel model to obtain a

description of a Feshbach resonance in three dimensions.

Chapter 4 treats two body interactions in two dimensions using zero range and fi-

nite range single and coupled channel models. It obtains the eigenenergies of two parti-

cles in a harmonic trap in two dimensions for any partial wave. It also uses a zero range

coupled channel model to describe a Feshbach resonance in two dimensions and stud-

ies the effect of varying the coupling strength on the energy levels and the molecular

fraction. The chapter also relates the two dimensional s -wave scattering length to its

three dimensional counterpart.

Chapter 5 deals with anisotropic interactions under spherically symmetric and cylin-

drically symmetric harmonic confinement. One example of an anisotropic interaction

is the interaction between two aligned dipoles. The chapter has a detailed discussion

on the scattering between two aligned dipoles. Although the dipole-dipole interac-

tion is long ranged, Ch. 5 successfully uses a zero range pseudopotential to obtain the

eigenenergies of two aligned dipoles under spherically symmetric harmonic confine-

ment. The pseudopotential treatment breaks down in treating two aligned dipoles un-

der cylindrically symmetric harmonic confinement, due to the long ranged nature of

the dipole-dipole interaction. However, Ch. 5 obtains an eigenequation to treat two

particles interacting via a short range anisotropic interaction potentials under cylindri-

cally symmetric harmonic confinement.

Chapter 6 summarizes the thesis and points out some interesting extensions of the

research done here.

25



Chapter 2

Two body systems in one dimension

We start with the simplest case of two interacting particles in one dimension. In this

chapter all Hamiltonian, potentials, wavefunctions, phase shifts and scattering lengths

are one dimensional. Since we are using relative coordinates in one dimension and,

as shown later, model interaction potentials with well defined symmetries, the wave-

functions have either even or odd parity. The even (denoted by subscript “+”) and odd

(denoted by subscript “-”) parity wavefunctions belong to orthogonal Hilbert spaces.

For two identical bosons only even parity solutions are allowed (as the wavefunction

describing two identical bosons must be symmetric under exchange), while for two

identical fermions only odd parity solutions are allowed (as the wavefunction describ-

ing two identical fermions must be antisymmetric under exchange). For non-identical

particles both even and odd parity solutions are allowed as there are no symmetry con-

straints. In three dimensions a system with even angular momentum l quantum num-

ber has even parity and can be mapped onto the even parity one dimensional system,

while a system with odd l quantum number has odd parity and can be mapped onto

the odd parity one dimensional system.

Section 2.1 defines the even and odd parity phase shifts and corresponding scatter-

ing lengths and Sec. 2.1.1 derives expressions for the phase shifts and scattering lengths
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for two particles interacting through a square well potential. Section 2.1.2 develops

zero range pseudopotentials that reproduce the scattering properties of the square well

potential. Section 2.1.3 derives boundary conditions, which are alternative, equiva-

lent representations of the zero range pseudopotentials, and then uses these boundary

conditions to derive the so-called Fermi-Bose duality. Section 2.2 compares the even

and odd parity eigenenergies for two particles in a harmonic trap interacting through

square well and zero range potentials. The excellent agreement between the two sets of

eigenenergies verifies the validity of the pseudopotential treatment.

2.1 Scattering in one dimension

The one dimensional Schrödinger equation for the relative coordinate z of two particles

interacting through the potential Vint(z ) is given by

H freeΨfree(z ) = EΨfree(z ), (2.1)

where

H free =−
ħh2

2µ

∂ 2

∂ z 2
+Vint(z ). (2.2)

Here, E denotes the positive relative scattering energy of the two particles, and the su-

perscript “free” corresponds to the absence of an external trapping potential. The po-

tential Vint(z ) is assumed to be short range, i. e., it is assumed to fall off faster than 1/z

as z →∞. In this case, there exists a distance z 0 such that the potential Vint(z ) can be

neglected for all |z |> z 0, i. e., Vint(z ) = 0 for |z |> z 0. We denote the two linearly indepen-

dent solutions of the second order differential equation Eq. (2.1) with Vint(z ) = 0 by f±(z )

(the regular solution) and g±(z ) (the irregular solution), where f free
+ (z ) =

z
|z | sin(k z ),

f free
− (z ) = sin(k z ), g free

+ (z ) = cos(k z ) and g free
− (z ) =

z
|z | cos(k z ). The relative wavefunc-
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tion in the outer region (|z |> z 0) can then be written as

Ψfree(>)
± (z ) =ℵ±(k )

�

f free
± (z )+ tanδ±(k )g free

± (z )
�

. (2.3)

In Eq. (2.3), ℵ±(k ) is the normalization constant and δ±(k ) is the energy dependent

phase-shift accumulated due to the interaction potential for |z |< z 0, where

k =
p

(2µE )/ħh2. (2.4)

Since the potential is neglected for |z | > z 0, no further phase is accumulated beyond

|z | = z 0. The solution Ψfree(<)
± (z ) for |z | < z 0 (this region is represented using the super-

script “<”) depends on the details of the interaction potential and has to be determined

explicitly for each interaction potential provided the interaction potential is finite for

|z | ≤ z 0. The phase shifts δ±(k ) can be determined by imposing the following two con-

tinuity conditions at z = z 0 (or at z =−z 0, which yields identical results),

Ψfree(<)
± (z 0) =Ψfree(>)

± (z 0) (2.5)

and
 

∂ Ψfree(<)
± (z )
∂ z

!

z=z 0

=

 

∂ Ψfree(>)
± (z )
∂ z

!

z=z 0

. (2.6)

The even and odd parity phase shifts define the energy dependent scattering lengths

a±(k ),

a±(k ) =−
tanδ±(k )

k
, (2.7)

and the energy independent scattering lengths a±,

a± = lim
k→0

a±(k ). (2.8)
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Since the details of the atom-atom interaction are in general unimportant to de-

scribe two body scattering in quantum degenerate gases, the next section uses a simple

shape dependent model potential, a square well potential, to represent the interaction

between the atoms. Section 2.2 confirms the validity of the zero range pseudopoten-

tials developed in Sec. 2.1.2 by comparing their eigenenergies with those for the square

well potential.

2.1.1 Finite range square well potential

We consider the scattering of two particles interacting through the square well potential

VSW(z ), where

VSW(z ) =







−V0 for |z |< z 0

0 for |z |> z 0,
(2.9)

with V0 > 0. Since VSW(z ) = 0 for |z |> z 0, the solution to Eq. (2.1) with Vint(z ) = VSW(z ) is

given by Ψfree(>)
± (z ) [Eq. (2.3)]. For |z |< z 0, the even parity solution is given by

Ψfree(<)
+ (z ) = A+(k )cos(k inz ), (2.10)

where A+(k ) is a constant that can be determined from the continuity condition given

in Eq. (2.5) and

k in =

r

2µ(E +V0)

ħh2 . (2.11)

Imposing the continuity conditions given in Eqs. (2.5) and (2.6), we get

tanδ+(k ) =
1+ k in

k
tan(k inz 0) tan(k z 0)

−k in

k
tan(k inz 0)+ tan(k z 0)

. (2.12)
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Plugging Eq. (2.12) into Eq. (2.8), the even parity energy independent scattering length

for the square well interaction potential becomes

a+ = z 0+
1

k in

cot(k inz 0), (2.13)

where

k in =

r

2µV0

ħh2 . (2.14)

The odd parity solution to Eq. (2.1) with Vint =−V0 is given by

Ψfree(<)
− (z ) = A−(k )sin(k inz ), (2.15)

where A−(k ) is a constant that can be determined using the continuity condition given

in Eq. (2.5). Following the same procedure as for the even parity case yields the one

dimensional odd parity energy independent scattering length a−,

a− = z 0−
tan(k inz 0)

k in

. (2.16)

Figure 2.1(a) shows the dimensionless even parity energy independent scattering

length a+/z 0 [Eq. (2.13)] as a function of the dimensionless quantity k inz 0. For vanish-

ing V0, a+ is infinitely large. a+ decreases till k inz 0 = π, where a+ diverges. Past this

divergence, a+ is again infinitely large and the cycle is repeated. In general, a+ diverges

when k inz 0 = nπ (n = 0, 1, 2 . . .). We have adopted a definition of the scattering length

such that the divergence of a+ coincides with the presence of a zero-energy even parity

bound state. The even parity eigenenergies (E < 0 for a bound state) of the square well
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Figure 2.1: Panel (a) shows the even parity scattering length a+ [Eq. (2.13)] as a function
of k inz 0/π, while panel (b) shows the odd parity scattering length a− [Eq. (2.16)] as a
function of k inz 0/π.
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potential are given by the solutions to the eigenequation [72]

k in tan(k inz 0) =−ı k . (2.17)

Equation (2.17) shows that the square well potential supports a zero energy bound state

if k inz 0 = nπ (n = 0, 1, 2 . . .); this condition agrees with that given above for a diverging

a+. In particular, the square well potential supports a bound state for an infinitesimally

small well depth V0, i. e., no minimum threshold value of V0 is required to support a

bound state . This can be explained by the fact that in the k → 0 limit, when V0 = 0,

the wavefunction extends to infinity and has zero slope everywhere. Consequently, the

expectation value of the kinetic energy, which is given by the slope of the wavefunction,

vanishes. The infinitesimally small V0 value in turn, results in an attractive potential

energy that leads to formation of a bound state.

Figure 2.1(b) shows the dimensionless odd parity scattering length a−/z 0 [Eq. (2.16)]

as a function of the dimensionless quantity k inz 0. The scattering length a− vanishes in

the absence of a potential (V0 = 0). As k inz 0 increases, a− decreases from zero to minus

infinity at k inz 0 =π/2. Past this divergence, a− is infinitely large and then decreases till

it reaches zero at tan(k inz 0) = 1.4303π. As k inz 0 increases further, the cycle is repeated.

In general, a− diverges when k inz 0 = nπ/2 (n = 1, 3, 5 . . .). Similarly to the even parity

case, we have adopted a definition of the odd parity scattering length such that the

divergence of a− coincides with the presence of a zero energy odd parity bound state.

The odd parity eigenenergies for the square well potential are given by the solutions to

the eigenequation [72]

k inz 0 cot(k inz 0) = ı k z 0. (2.18)

Equation (2.18) shows that the square well supports a zero-energy odd parity bound
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state if k inz 0 = (nπ)/2 (n = 1, 3, 5 . . .). Unlike the even parity wavefunction, the odd

parity wavefunction has a finite slope near z = 0, and the kinetic energy increases faster

than the absolute value of the potential energy for small k inz 0. For a bound state the

sum of the expectation values of kinetic and potential energies must be negative. As a

result, unlike in the even parity case, a− does not diverge at k inz 0 = 0 (V0 = 0).

2.1.2 Derivation of one dimensional delta function potentials

Realistic atom-atom interaction potentials are complicated and, in general, cannot be

treated analytically. However, since they are short range potentials, their outside wave-

functions (|z | > z 0) are given by Eq. (2.3). The outside wavefunction is characterized

by a single atomic physics parameter, the phase shift. The goal here is to design a zero

range pseudopotential that reproduces a given phase shift. The advantage of such a

zero range potential is that certain calculations can be performed analytically. Fur-

thermore, the pseudopotential depends on a single parameter that has a clear physical

interpretation. We will see later that the one dimensional even parity pseudopotential

has a very simple form. Although the algebra is quite simple and the result well known,

we present the details of the derivation to highlight the procedure. The procedure is

general and is later used to derive pseudopotentials for more complicated systems.

Using the idea of δ-shell interactions [65], we write the interaction potential Vint(z )

in one dimension as

V ±ps (z ) = lim
z 0→0
[δ(z + z 0)+δ(z − z 0)]Ô±(z ), (2.19)

where Ô±(z ) denotes an operator. The goal in the following is to determine Ô±(z ) such

that the even and odd parity pseudopotentials V +ps (z ) and V −ps (z ) produce the scattering

phase shifts δ+(k ) and δ−(k ), respectively. The potentials V ±ps (z ) are represented by a δ-
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shell of radius z 0, which in one dimension reduces to twoδ-functions centered at z = z 0

and z = −z 0. This implies that the potentials are infinitely large at those two points

and zero everywhere else, and that all the phase is accumulated at two isolated points

corresponding to z = z 0 and z =−z 0. The eigenfunctions of the Schrödinger equation

for Vint(z ) = V ±ps (z ) are continuous but have discontinuous derivatives at z = ±z 0 (z 0 is

non-zero and finite). In the following, we first determine the operator Ô±(z ) for a finite

z 0, and then take the limit z 0→ 0. In the even parity case, the operator Ô+(z ) turns out

to be a constant. The corresponding eigenfunctions are, in the limit z 0→ 0, continuous

at z = 0, but have discontinuous first derivatives. In the odd parity case, the operator

Ô−(z ) contains a derivative with respect to z . The corresponding eigenfunctions are, in

the limit z 0→ 0, discontinuous but have continuous first derivatives.

Since V ±ps vanishes for |z |> z 0, the solution to Eq. (2.1) is given byΨfree(>)
± (z ), Eq. (2.3).

The Schrödinger equation for |z |< z 0 is given by Eqs. (2.1) and (2.2) with Vint(z ) = 0. The

even parity solution to this Schrödinger equation is given by

Ψfree(<)
+ (z ) =α+(k )cos(k z ), (2.20)

where α+(k ) is a constant that can be determined by imposing the continuity of the

wavefunction at z = |z 0| [see Eq. (2.5)],

α+(k ) =ℵ+(k )[tan(k z 0)+ tanδ+(k )]. (2.21)

Since we are considering an infinite δ-function potential, the derivative of the wave-

function is not continuous at z = z 0. In fact, the difference in the derivatives of the

wavefunction for z → z+0 and z → z−0 can be obtained by integrating Eq. (2.1), with

Vint(z ) =V +ps (z ), from z 0−ε to z 0+ε and taking the ε→ 0 limit,
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lim
z 0→0







−
ħh2

2µ







 

∂ Ψfree(>)
+ (z )
∂ z

!

z→z 0

−

 

∂ Ψfree(<)
+ (z )
∂ z

!

z→z 0






+Ô+(z 0)Ψfree(>)

+ (z 0)







= 0. (2.22)

Inserting the expressions for Ψfree(>)
+ (z ) and Ψfree(<)

+ (z ) from Eqs. (2.3) and (2.20) into

Eq. (2.22) and using Eq. (2.21), we obtain

lim
z 0→0

¦

Ô+(z 0)[sin(k z 0)+ tanδ+(k )cos(k z 0)]
©

= lim
z 0→0

¨

ħh2k

2µ
[tan(k z 0)sin(k z 0)+ cos(k z 0)]

«

.

(2.23)

Lastly, taking the limit z 0→ 0, Eq. (2.23) becomes

Ô+ =
ħh2k

2µ tanδ+(k )
, (2.24)

which, using Eq. (2.7), can be re-expressed in terms of the scattering length,

Ô+ =−
ħh2

2µa+(k )
. (2.25)

Our derivation shows that Ô+ is independent of z and therefore the same for all z . Plug-

ging Eq. (2.25) into Eq. (2.19), the δ-shell pseudopotential becomes

V +ps (z ) =
ħh2 g +1D(E )

2µ
lim
z 0→0
[δ(z + z 0)+δ(z − z 0)] , (2.26)

or taking the z 0→ 0 limit explicitly,

V +ps (z ) =
ħh2

µ
g +1D(E )δ(z ), (2.27)
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where

g +1D(E ) =−
1

a+(k )
. (2.28)

The coupling strength g +1D(E ) of the even parity pseudopotential indicates the strength

of the interaction, i. e., the stronger the interaction, the greater the value of
�

�g +1D(E )
�

�.

The non interacting system has g +1D(E ) = 0, which corresponds toδ+(k ) =π/2. A weakly

interacting system corresponds to δ+(k ) = (π/2)+∆δ+(k ), where |∆δ+(k )| � 1. Hence,

for a weakly interacting system, we have

g +1D(k )≈ −k∆δ+(k ). (2.29)

Figure 2.2(a) shows that the wavefunction with positive∆δ+(k ) (dashed line) is shifted

to smaller |z | compared to the wavefunction for vanishing interaction potential (solid

line). Thus, a negative interaction strength g +1D implies an effectively attractive interac-

tion. Similarly, the wavefunction with negative ∆δ+(k ) (dotted line) is shifted to larger

|z | compared to the wavefunction for vanishing interaction potential. Thus, a positive

interaction strength g +1D implies an effectively repulsive interaction.

We now determine the operator Ô− of the odd parity δ-shell pseudopotential. In

the odd parity case, the solution to Eq. (2.1), with Vint(z ) =V −ps (z ) = 0 for |z |< z 0, is given

by

Ψfree(<)
− (z ) =α−(k )sin(k z ), (2.30)

where α−(k ) is a normalization constant. Following the same procedure as in the even

parity case, we obtain

V −ps (z ) =
ħh2 g −1D(E )

2µ
lim
z 0→0
[δ(z + z 0)+δ(z − z 0)]

1

z

∂

∂ z
, (2.31)
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Figure 2.2: Panels (a) and (b) show the even and odd parity wavefunctionsΨfree(>)
± for z >

|z 0|. Solid lines show the free particle wavefunctions (∆δ± = 0). Dashed lines show the
outside wavefunctions for∆δ± =π/10, while dotted lines show outside wavefunctions
for∆δ± =−π/10. Panels (a) and (b) have the same x -scale and label.

37



or taking the z 0→ 0 limit explicitly,

V −ps (z ) =
ħh2

µ
g −1D(E )δ(z )

1

z

∂

∂ z
, (2.32)

where

g −1D(E ) = a−(k ) (2.33)

denotes the coupling strength of the odd parity zero range pseudopotential.

The non interacting system has g −1D(E ) = 0, which corresponds to δ−(k ) = 0. A

weakly interacting system corresponds to δ−(k ) = ∆δ−(k ), where |∆δ−(k )| � 1. In this

case, the coupling strength becomes

g −1D ≈−
∆δ−(k )

k
. (2.34)

Figure 2.2(b) shows that the wavefunction with positive∆δ−(k ) (dashed line) is shifted

to smaller |z | compared to the wavefunction for vanishing interaction potential (solid

line). This indicates that a negative interaction strength g −1D implies an effectively at-

tractive interaction. Similarly, the wavefunction with negative ∆δ−(k ) (dotted line) is

shifted to larger |z | compared to the wavefunction for vanishing interaction potential.

This indicates that a positive interaction strength implies an effectively repulsive inter-

action.

The pseudopotential in Eq. (2.32) can be equivalently represented by the following

differential operator [64],

V −ps (z ) =
ħh2

µ
g −1D(E )

←−
d

d z
δ(z )

−→
d

d z
. (2.35)
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In Eq. (2.35), the first derivative acts to the left and the second to the right,

∫ ∞

−∞

φ∗(z )V −ps (z )χ(z )d z =
ħh2

µ
g −1D(E )

�

dφ∗(z )
d z

�

z→0

�

dχ(z )
d z

�

z→0

. (2.36)

The pseudopotential V −ps (z ) in both representations [Eqs. (2.32) and (2.35)] leads to dis-

continuous eigenfunctions with continuous first derivatives at z = 0.

We now determine the bound state or negative eigenenergies of V +ps and V −ps by an-

alytic continuation. For a negative energy state, the wavefunction Ψfree(>)
± (z ) in Eq. (2.3)

must decay exponentially for |z | → ∞. The corresponding wavevector k is imaginary

and can be written as

k = ıκ, (2.37)

where κ is a positive, real number,

κ=

r

−2µE

ħh2 . (2.38)

Using analytic continuation, we can rewrite the wavefunction Ψfree(>)
± (z ) in Eq. (2.3) for

negative energies in terms of exponentials,

Ψfree(>)
+ (z ) =

ℵ+(k )
2

��

tanδ+(ıκ)+ ı
z

|z |

�

e κz +
�

tanδ+(ıκ)− ı
z

|z |

�

e−κz

�

(2.39)

and

Ψfree(>)
− (z ) =

ℵ−(k )
2

��

z

|z |
tanδ−(ıκ)+ ı

�

e κz +
�

z

|z |
tanδ−(ıκ)− ı

�

e−κz

�

. (2.40)

Since Ψfree(>)
± (z )must decay exponentially in the |z | →∞ limit, we require that the pref-
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positive negative
a+(k ) bound state exists bound state does not exist
g +1D(E ) bound state does not exist bound state exists
a−(k ) bound state exists bound state does not exist
g −1D(E ) bound state exists bound state does not exist

Table 2.1: Conditions on one dimensional scattering lengths and scattering strengths
for the existence of a free-space bound state.

actor of the growing exponentials in Eqs. (2.39) and (2.40) vanishes; this implies

tanδ±(ıκ) =−ı . (2.41)

From Eqs. (2.7) and (2.41), we get a±(k ) = 1/κ. The conditions for the existence of a

bound state are summarized in Table 2.1. Sinceκ is positive by definition [see Eq. (2.38)],

this indicates that a bound state exists only for a±(k )≥ 0.

Combining Eqs. (2.7) and (2.41), the bound state energy E for V ±ps can be expressed

in terms of the scattering lengths a±(k ),

E =−
ħh2

2µ[a±(k )]2
. (2.42)

Equation (2.42) is an implicit eigenequation with energy dependence on both the left

hand side and the right hand side. Hence, the solution to Eq. (2.42) must be obtained

self-consistently. Realistic atom-atom interaction potentials generally support multi-

ple bound states for positive and negative values of the energy independent scattering

length. If the energy dependence of a± is known, Eq. (2.42) can be used to accurately

obtain the eigenenergies of all bound states (highest lying as well as deeply bound).

However, the eigenfunctions of deeply bound states cannot be described using the zero

range pseudopotential.
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If we neglect the energy dependence of the scattering lengths in Eq. (2.42) and ap-

proximate a±(k ) by a±, then the zero range pseudopotentials V+ and V− support a sin-

gle bound state for all positive a±. Since the zero range pseudopotentials are designed

to reproduce the outside wavefunction (|z | > z 0) of a given state, they accurately de-

scribe wavefunctions which have most of their amplitude in the region |z |> z 0. Bound

state wavefunctions decay for |z | > z 0. If λ is the size of the bound state, then the zero

range pseudopotential describes eigenfunctions with size λ� z 0 accurately, and corre-

spondingly eigenenergies with |E | � ħh2/(µz 2
0). By design, the zero range pseudopoten-

tial reproduces the eigenfunctions of weakly bound states accurately, but not of deeply

bound states.

2.1.3 Fermi-Bose duality

The zero range pseudopotentials derived in the Sec. 2.1.2 [Eqs. (2.27), (2.32) and (2.35)],

can be equivalently represented by a boundary condition for the wavefunction at z = 0.

Taking the first derivative of the even parity solutionΨfree(>)
+ (z )with respect to z , we find

the boundary condition at z = 0,







∂ Ψfree(>)
+ (z )
∂ z

Ψfree(>)
+ (z )







z→0

= g +1D(E ). (2.43)

Similarly, the boundary condition for the odd parity case reads







∂ Ψfree(>)
− (z )
∂ z

Ψfree(>)
− (z )







z→0

=−
1

g −1D(E )
. (2.44)

A system of two identical bosons can be characterized by the even parity boundary

condition [Eq. (2.43)], while a system of two identical fermions can be characterized by

41



the odd parity boundary condition [Eq. (2.44)]. Equations (2.43) and (2.44) imply that

the even and odd parity systems obey the same boundary condition, if we require

g +1D =−
1

g −1D

. (2.45)

If g +1D and g −1D are chosen so that Eq. (2.45) is fulfilled, then the outside solutions of the

even and odd parity systems agree to within a factor of ±1 [see Eq. (2.65) and Fig. 2.8

for the trapped system]. Since the energy spectrum is determined by the square of

the wavefunctions, the even and odd parity systems have the same energy spectrum

if Eq. (2.45) is fulfilled. In particular, the energy spectrum of two strongly interacting

identical bosons (large |g +1D |) coincides with that of a pair of weakly interacting iden-

tical fermions (small |g −1D |), and vice-versa. Note that the sign is also reversed, i. e.,

a strongly attractive two-boson system corresponds to a weakly repulsive two-fermion

system. Equation (2.45) together with the sgn() function, where

sgn(z ) =
z

|z |
, (2.46)

provides a rule for mapping a system of two interacting bosons onto a system of two

interacting fermions, and vice-versa.

The mapping derived here for the two-particle system generalizes to many-body

systems in one dimension and is referred to as Fermi-Bose duality [73, 74, 75, 76, 77].

The many body wavefunctionψB (z 1, z 2, . . . , z N ), where z i denotes the position of the i th

boson, of a system of infinitely strongly interacting N bosons (strongly interacting Bose

gas) is given by [78, 79]

ψB (z 1, z 2, . . . , z N ) = A(z 1, z 2, . . . , z N )ψF (z 1, z 2, . . . , z N ), (2.47)
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where ψF (z 1, z 2, . . . , z N ) is the wavefunction of a fictitious system of N non interacting

spinless fermions and

A(z 1, z 2, . . . , z N ) =
∏

j>i

sgn(z j − z i ). (2.48)

The many body wavefunction of the Bose gas is still symmetric under exchange of any

two bosons while that of the Fermi gas is antisymmetric under the exchange of any two

fermions.

The implications of this mapping for a many-body system is that local observables,

like the energy, are the same for bosonic and fermionic systems related by Eq. (2.45). In

particular, the amount of energy required to add a boson to a strongly interacting Bose

gas, is the same as that required to add a fermion to a non interacting Fermi gas with the

same chemical potential. However, nonlocal observables such as the momentum dis-

tribution are not the same for bosonic and fermionic systems related by Eq. (2.45)[80,

81].

The Fermi-Bose duality has practical implications: Although it may be difficult to

treat a strongly interacting system of bosons (fermions), one might be able to treat the

corresponding weakly interacting system of fermions (bosons) quite easily using tech-

niques such as perturbation theory, which are not applicable in the case of strong in-

teractions.

2.2 Atoms in a harmonic trap

While Sec. 2.1 considered two particle systems in one dimension without an external

trapping potential, this section considers two particle systems in one dimension under
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external harmonic confinement. The Schrödinger equation of this system is given by

HΨ(z ) = EΨ(z ), (2.49)

where

H =H free+
1

2
µω2

z z 2, (2.50)

and H free is given in Eq. (2.2). For a constant Vint(z ), the linearly independent solutions

to Eq. (2.49) are given in terms of the confluent hypergeometric functions M and U [82]:

M is well behaved at the origin and diverges for large z , and U diverges at the origin and

decays for large z . As in Sec. 2.1, we consider short range interaction potentials so that

Vint(z ) can be neglected for |z |> z 0. The even parity solution to Eq. (2.49) for |z |> z 0 is

given by

Ψ(>)+ (z ) =N+(k )exp

�

−
z 2

2a 2
z

�

U

�

−
E

2ħhωz
+

1

4
,

1

2
,

z 2

a 2
z

�

, (2.51)

while the odd parity solution is given by

Ψ(>)− (z ) =N−(k )exp

�

−
z 2

2a 2
z

�

U

�

−
E

2ħhωz
+

3

4
,

3

2
,

z 2

a 2
z

�

, (2.52)

where N±(k ) denote normalization constants.

Now consider two particles interacting through the square well potential Vint(z ). The

solution to Eq. (2.49) for |z |< z 0 has to be well behaved at z = 0. This implies

Ψ(<)+ (z ) = B+(k )exp

�

−
z 2

2a 2
z

�

M

�

−
E +V0

2ħhωz
+

1

4
,

1

2
,

z 2

a 2
z

�

(2.53)

and

Ψ(<)− (z ) = B−(k )exp

�

−
z 2

2a 2
z

�

M

�

−
E +V0

2ħhωz
+

3

4
,

3

2
,

z 2

a 2
z

�

, (2.54)
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where B±(k ) can be determined using the continuity condition given in Eq. (2.5). En-

forcing continuity of the wavefunction and its derivative at |z | = z 0, we obtain an im-

plicit quantization condition,

�

∂ Ψ(<)± (z )
∂ z

�

z=z 0

Ψ(<)± (z 0)
−

�

∂ Ψ(>)± (z )
∂ z

�

z=z 0

Ψ(>)± (z 0)
= 0. (2.55)

Equation (2.55) can be solved straightforwardly for the even and odd parity eigenen-

ergies for a given V0 and z 0. In particular, we can determine the eigenenergies for square

well potentials characterized by the same scattering length but different z 0. Pluses in

Figs. 2.3(a) and (b) show the even and odd parity eigenenergies of two trapped particles

interacting through the square well potential as a function of the range z 0. The pluses

in Fig. 2.3(a) are calculated for an energy independent even parity scattering length of

a+ = 0.2a z and V0 is adjusted so that VSW supports two even parity bound states in free

space. The pluses in Fig. 2.3(b) are calculated for an energy independent odd parity

scattering length of a− = −5a z and V0 is adjusted so that VSW supports one odd parity

bound state in free space.

Figure 2.3 shows that the eigenenergies for the square well potential vary nearly

linearly with z 0 for z 0 ® 0.05a z . This implies that the z 0 → 0 limit can be extrapolated

through a linear fit. Hence, it is always possible to find a small enough z 0, z 0 6= 0, so

that the difference between observables calculated for the zero range and finite range

potentials, is much smaller than the observable itself. In the rest of this chapter we fix

z 0, z 0 = 0.01a z ; for this range, the difference between the eigenenergy for the zero range

and the finite range potentials is very small (≈ 0.005ħhωz in Fig. 2.3).

Equations (2.28) and (2.33) define the interaction strengths g ±1D for the one dimen-

sional even and odd parity pseudopotentials. To compare the eigenspectrum for differ-
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Figure 2.3: Pluses in panels (a) and (b) show the even and odd parity eigenenergies of
two particles under harmonic confinement interacting through VSW as a function of the
range z 0. The depths V0 of VSW are chosen so that the even and odd parity energy inde-
pendent scattering lengths are a+ = 0.2a z and a− =−5a z , respectively, and so that the
free-space square well supports two even and one odd parity bound states. The dashed
lines indicate the corresponding eigenenergy for two particles under external harmonic
confinement interacting through the energy independent zero range pseudopotentials
V ±ps [Eq. (2.60) and Eq. (2.61)].
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ent interaction potentials, we define the interaction strengths g ±1D for finite range po-

tentials through their scattering lengths via Eqs. (2.13) and (2.13). Hence, the eigenen-

ergies obtained from Eq. (2.55) for different V0 and fixed z 0 can be plotted as a function

of the interaction strength g ±1D (see Figs. 2.5 and 2.6). Later in this section, we discuss

these figures in detail.

Next, we consider two atoms under external harmonic confinement interacting through

the δ-shell pseudopotentials V ±ps [Eqs. (2.27) and (2.32)]. In the even parity case, the so-

lution to Eq. (2.49) for |z |< z 0 is given by

Ψ(<)+ (z ) =β
+(k )exp

�

−
z 2

2a 2
z

�

M

�

−
E

2ħhωz
+

1

4
,

1

2
,

z 2

a 2
z

�

. (2.56)

Enforcing continuity of the wavefunction at z = z 0, we obtain a relationship between

N+(k ) and β+(k ),

β+(k ) =N+(k )







U
�

− E
2ħhωz

+ 1
4

, 1
2

,
z 2

0

a 2
z

�

M
�

− E
2ħhωz

+ 1
4

, 1
2

,
z 2

0

a 2
z

�






. (2.57)

As discussed in Sec. 2.1.2, the δ-shell interaction potential implies a discontinuity of

the derivative of the wavefunction at z = z 0. Integrating Eq. (2.49), with Vint(z ) = V +ps (z ),

over z/a z from (z/a z ) = (z 0/a z )−ε to (z/a z ) = (z 0/a z )+εwith ε→ 0, yields

lim
z 0→0







−
1

2







 

∂ Ψ(>)+ (z )
∂ (z/a z )

!

z→z 0

−

 

∂ Ψ(<)+ (z )
∂ (z/a z )

!

z→z 0






−

a z

2a+1D

Ψ(>)+ (z 0)







= 0. (2.58)

Inserting the expressions forΨ(<)+ (z ) andΨ(>)+ (z ) from Eqs. (2.56) and (2.51) into Eq. (2.58)

and using Eq. (2.57), we obtain
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lim
z 0→0







−
1

2







∂
�

exp
�

− z 2

2a 2
z

�

U
�

− E
2ħhωz

+ 1
4

, 1
2

, z 2

a 2
z

��

∂ (z/a z )







z→z 0







+ lim
z 0→0







1

2

∂

∂ (z/a z )







U
�

− E
2ħhωz

+ 1
4

, 1
2

,
z 2

0

a 2
z

�

M
�

− E
2ħhωz

+ 1
4

, 1
2

,
z 2

0

a 2
z

� exp

�

−
z 2

2a 2
z

�

M

�

−
E

2ħhωz
+

1

4
,

1

2
,

z 2

a 2
z

�







z→z 0







= lim
z 0→0

¨

a z

2a+1D

exp

�

−
z 2

0

2a 2
z

�

U

�

−
E

2ħhωz
+

1

4
,

1

2
,

z 2
0

a 2
z

�«

. (2.59)

Using the power series expansions of the confluent hypergeometric functions M and U

(see Ref. [83]) and taking the limit z 0→ 0, we get

a+(k )
a z

=
Γ
�

− E
2ħhωz

+ 1
4

�

2Γ
�

− E
2ħhωz

+ 3
4

� . (2.60)

The eigenequation derived here for the δ-shell potential with z 0 → 0 agrees with the

eigenequation derived in Ref. [60] for the interaction potential given in Eq. (2.27) by

means of a basis set expansion approach.

Following the same procedure, the odd parity eigenenergies for two particles inter-

acting through V −ps are determined by

a−(k )
a z

=
Γ
�

− E
2ħhωz

+ 1
4

�

2Γ
�

− E
2ħhωz

+ 3
4

� . (2.61)

This eigenequation is in agreement with that obtained in Ref. [64] by an alternative

approach. Reference [64] expands the eigenfunction Ψ(>)− (z ) in terms of the odd par-

ity eigenfunctions of two non-interacting particles under harmonic confinement. It
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then plugs this expansion into the Schrödinger equation [Eq. (2.49) with Vint(z ) =V −ps (z ),

where V −ps (z ) is given by Eq. (2.35)], performs the required infinite sums analytically and

obtains the implicit equation for the eigenenergy given in Eq. (2.61).

Figures 2.4(a) and (b) show the even and odd parity energy dependent scattering

lengths as a function of energy over the energy range −10ħhωz ≤ E ≤ 10ħhωz for a± =

0.2a z and z 0 = 0.01a z (V0 ≈ 49872ħhωz in the even parity case and V0 ≈ 111558ħhωz in

the odd parity case). Over the range of energies shown in Figs. 2.4(a) and (b), the even

and odd parity energy dependent scattering lengths vary by less than 0.01a z . Since

this variation is small, over the chosen energy range, the energy dependent scattering

lengths and interaction strengths can be replaced by the corresponding energy inde-

pendent ones.

The dashed lines in Fig. 2.3(a) and (b) show the eigenenergies of two particles in-

teracting through the energy independent zero range even and odd parity pseudopo-

tentials, with g ±1D =−5a z . In Figs. 2.3(a) and (b), the extrapolation of the eigenenergies

estimated for the square well interaction to z 0 = 0 closely matches the eigenenergies

obtained using the zero range pseudopotentials. The square well potential with z 0→ 0

and V0 adjusted so that the corresponding a± has some constant value has infact been

used as an alternative representation of the zero range pseudopotential [76, 84].

Figures 2.5 and 2.6 show the even and odd parity eigenenergies for two particles in a

harmonic trap as a function of the interaction strength g ±1D . Solid curves correspond to

the eigenenergies of two particles interacting through V ±ps (z )with g ±1D(E ). The solid lines

in Figs. 2.5 and 2.6 are obtained by solving Eqs. (2.60) and (2.61), respectively. For g ±1D =

0, the system is effectively non-interacting and the eigenenergies correspond to those of

two non-interacting particles with even and odd parity (solid lines in Figs. 2.5 and 2.6).

Positive and negative g ±1D correspond to effectively repulsive and effectively attractive

systems, respectively. Correspondingly, the energies are shifted up compared to the
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Figure 2.4: Panels (a) and (c) show the even parity energy dependent scattering length
a+(k ) over the energy ranges −10ħhωz ≤ E ≤ 10ħhωz and −2000ħhωz ≤ E ≤ 10ħhωz , re-
spectively, for V0 = 49872.91172171189ħhωz . Panels (b) and (d) show the odd parity en-
ergy dependent scattering length a−(k ) over the energy ranges −10ħhωz ≤ E ≤ 10ħhωz

and −2000ħhωz ≤ E ≤ 10ħhωz , respectively, for V0 = 111558.73382438572ħhωz . Panels
(a) and (b) have the same y -scale and so do panels (c) and (d). The range z 0 is fixed at
0.01a ho in all panels
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Figure 2.5: Even parity eigenenergies E for two one dimensional particles under har-
monic confinement as a function of the interaction strength g +1D . Solid lines cor-
respond to the eigenenergies for particles interacting through the energy indepen-
dent zero range interaction potential V +ps (z ) [Eq.(2.60)], while crosses correspond to
the eigenenergies for particles interacting through the square well interaction poten-
tial VSW(z ). Horizontal solid lines correspond to the even parity eigenenergies of two
non-interacting particles in a harmonic trap and horizontal dashed lines correspond to
the odd parity eigenenergies of two non-interacting particles in a harmonic trap. The
dashed curve for negative g +1D shows the free-space binding energy of two particles in-
teracting through V +ps (z ) [see Eqs. (2.42) and (2.62)]. The dotted curve includes the next
order correction [see Eq. (3.17)].
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non-interacting values for g ±1D > 0 and shifted down compared to the non-interacting

values for g ±1D < 0. For |g ±1D a z | � 1, the energy shifts away from the non-interacting

values can be calculated using first order perturbation theory. For |g ±1D a z | →∞, the shift

is ħhωz . As already pointed out in Sec. 2.1.3, the even parity eigenenergies for g +1D →∞

coincide with the odd parity eigenenergies of the non-interacting system and the odd

parity eigenenergies for g −1D → ∞ coincide with the even parity eigenenergies of the

non-interacting system.

The dashed curves in Figs. 2.5 and 2.6 indicate the binding energy in the absence of

an external trapping potential [Eq. (2.42) with a±(k ) = a±]. These free-space energies

lie below the eigenenergies of the trapped system since the trap pushes the energies

up. For comparison, Figs. 2.5 and 2.6 also show the eigenenergies for two particles in-

teracting through a square well potential with z 0 = 0.01a z that supports two bound

states. To obtain the eigenenergies, we adjust V0 to obtain the desired a± (or equiva-

lently g ±1D ). The excellent agreement between the eigenenergies for the square well and

pseudopotentials indicates that the zero range model, though simple, reproduces the

eigenenergies well. This agreement is encouraging.

The dashed curves in Figs. 2.5 and 2.6 can also be obtained from Eqs. (2.60) and

(2.61), respectively, by considering a very weak trap, i. e., by considering the limit

|E/(ħhωz )| →∞. A first order expansion of the right hand sides of Eqs. (2.60) and (2.61)

for large |E/(ħhωz )| gives
E

ħhωz
=−

a 2
z

2(a±(k ))2
. (2.62)

Equation (2.62) is identical to Eq.(2.42) obtained for the free system. This can be ex-

plained by the fact that the wavefunction of the state with large negative energy extends

out to about z 0 and is thus approximately zero when the trapping potential becomes

appreciable. The dotted curves in Figs. 2.5 and 2.6 are obtained by considering the next
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order term in the expansion of the right hand sides of Eqs. (2.60) and (2.61) for large

negative energies, i. e., by solving the approximate eigenequations

g +1D a z =−2

r

−
E

2ħhωz
+

1

4
+

1

4
Æ

− E
2ħhωz

+ 1
4

(2.63)

and
g −1D

a z
=

1

2
Æ

− E
2ħhωz

+ 1
4

�

1− 1

8
�

− E
2ħhωz

+ 1
4

�

� , (2.64)

respectively.

Figures 2.7(a) and (b) show the even and odd parity negative eigenenergies for two

particles in a harmonic trap as a function of the interaction strengths g ±1D . The solid

line corresponds to Vint = VSW. The dashed line corresponds to V ±ps with g ±1D(E ) = g ±1D .

For small energies [|E | ® 10ħhωz ; see also Figs. 2.4(a) and (b)], the agreement between

the eigenenergies calculated using the energy independent zero range pseudopotential

and those calculated using the square well interaction potential is quite good. This can

also be seen from Figs. 2.5 and 2.6. However, for large negative energies, Figs. 2.7(a)

and (b) show significant deviations between the two sets of eigenenergies (dashed and

solid lines). This is expected because there exists a significant difference between the

energy dependent and energy independent scattering lengths for large negative ener-

gies [see Figs. 2.4(c) and (d)]. The pluses in Fig. 2.7(a) and (b) show the eigenenergies

for two particles interacting through the energy dependent zero range even and odd

parity pseudopotentials, respectively. The agreement between the eigenenergies cal-

culated using the energy dependent zero range pseudopotential and those calculated

using the square well interaction potential is very good over the entire range of energies

considered.
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Figure 2.6: Odd parity eigenenergies E for two particles under harmonic confinement
as a function of the interaction strength g −1D . Solid lines correspond to the eigenen-
ergies for particles interacting through the energy independent zero range interaction
potential V −ps (z ) [Eq.(2.61)], while crosses correspond to the eigenenergies for particles
interacting through the square well interaction potential VSW(z ). Horizontal solid lines
correspond to the odd parity eigenenergies of two non-interacting particles in a har-
monic trap and horizontal dashed lines correspond to the even parity eigenenergies of
two non-interacting identical particles in a harmonic trap. The dashed curve for posi-
tive g −1D shows the free-space binding energy of two particles interacting through V −ps (z )
[see Eqs. (2.42) and (2.62)]. The dotted curve includes the next order correction [see
Eq. (2.64)].
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Figure 2.7: Panels (a) and (b) show the negative even and odd parity eigenenergies of
two particles in a harmonic trap as a function of the interaction strengths g +1D and g −1D ,
respectively. The solid line corresponds to Vint = VSW with z 0 = 0.01a z and V0 chosen so
that VSW supports one bound state. The dashed line in panel (a) [panel (b)] shows the
eigenenergies for two particles interacting through the energy independent zero range
even [odd] parity pseudopotential, while the pluses in panel (a) [panel(b)] show the
eigenenergies for two particles interacting through the energy dependent zero range
even [odd] parity pseudopotential.
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Figure 2.8: Panels (a) and (c) show the normalized even parity wavefunctions Ψ+(z ) of
the first excited state as a function of z for two particles in a harmonic trap interacting
through VSW(z ) and V +ps (z ), respectively, with interaction strength g +1D =−0.0199972/a z

(V0 = 1ħhωz ). Panels (b) and (d) show the normalized odd parity wavefunction Ψ−(z )
of the first excited state as a function of z for two particles in a harmonic trap inter-
acting through VSW and V +ps (z ), respectively, with interaction strength g −1D =−1/(g +1D) =
(1/0.0199972)a z . Panel (e) shows a blow up of panels (a) and (c) around z = 0, while
panel (f) shows a blow up of panels (b) and (d) around z = 0. Panels (a) and (b) have
the same y -scale and so do panels (c) and (d). Panels (a) and (c) have the same x -scale
and label and so do panels (b) and (d).
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So far, we have examined the Fermi-Bose duality in terms of the boundary condi-

tions implied by the zero range pseudopotentials and the eigenequations for the trapped

two-particle system. Next, we examine the eigenfunctions Ψ(>)± (z ) for two trapped par-

ticles interacting through the square well and pseudopotentials. For |z |> z 0, the wave-

function Ψ(>)+ (z ) for two identical bosons in a harmonic trap with interaction strength

g +1D can be mapped to the wavefunctionΨ(>)− (z ) for two identical fermions with interac-

tion strength g −1D , if the interaction strengths are related through Eq. (2.45),

Ψ(>)+ (z ) = sgn(z )Ψ(>)− (z ). (2.65)

The first four panels in Fig. 2.8 illustrate this mapping. A weak attractive even parity

interaction strength is chosen, g +1D =−0.0199972/a z . The wavefunction of this system

maps onto that for two identical fermions with a strongly repulsive odd parity interac-

tion strength given by g −1D = (1/0.0199972)a z = 50.075a z . The last two panels in Fig. 2.8

point out that, while for finite range interaction potentials the wavefunctions and their

derivatives are continuous, in the case of zero range pseudopotentials either the wave-

function or its derivative is discontinuous at z = 0.

Figure 2.8(a) shows the even parity wavefunction Ψ+(z ) for two identical bosons

interacting through VSW(z ) with g +1D = −0.0199972/a z in a harmonic trap. Since the

wavefunction has even parity, the wavefunction for positive and negative z values is the

same. Also since the interaction strength |g +1D | is small, the wavefunction is similar to

the wavefunction of the first excited state of two non-interacting bosons in a harmonic

trap.

For comparison, Fig. 2.8(b) shows the odd parity wavefunctionΨ−(z ) for two identi-

cal fermions interacting through VSW(z ) in a harmonic trap with g −1D = (1/0.0199972)a z =

50.075a z . The chosen value of |g −1D | is large indicating strong interactions. This is visi-
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ble from the wavefunction in Fig. 2.8(b), which is very different from the wavefunction

of non-interacting fermions. From Figs. 2.8(a) and (b), it can be seen that the mapping

rule in Eq. (2.65) is followed for |z |> z 0 (here, z 0 = 0.01a z ).

Figures 2.8(c) and (d) show the wavefunctions for the zero range pseudopotentials

V +ps and V −ps with the same g ±1D as in Figs. 2.8(a) and (b). It can be seen that the mapping

rule [Eq. (2.65)] is followed for all z 6= 0. Also note that, by construction, the wavefunc-

tions in Figs. 2.8(a) and (c), as well as in Figs. 2.8(b) and (d) are identical for |z |> 0.01a z .

Figure 2.8(e) compares the wavefunctions shown in Figs. 2.8(a) and (c) near z = 0.

While the wavefunction obtained for the square well potential and its derivative are

continuous at z = 0, the derivative of the wavefunction obtained for the zero range

pseudopotential is discontinuous at z = 0. The wavefunction itself, however, is con-

tinuous. Similarly, Fig. 2.8(f) compares the wavefunctions shown in Figs. 2.8(b) and

(d). While the wavefunction obtained for the square well potential and its derivative

are continuous at z = 0, the wavefunction obtained for the zero range pseudopotential

is discontinuous at z = 0. The derivative of the wavefunction, however, is continuous.

This has been discussed already in Sec. 2.1.2.

2.3 Quasi one dimensional systems

Although the real world is three dimensional, this chapter has so far considered strictly

one dimensional systems. As discussed in Ch. 1, advancements in trapping technology

have led to the realization of quasi one dimensional systems [53], where excitations

along ρ are frozen out. We now relate the one dimensional scattering strengths to the

three dimensional scattering quantities.

Just like in the one dimensional case, a zero range pseudopotential can be used

to model atom atom interactions in three dimensions. The three dimensional energy
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independent s -wave zero range pseudopotential V l=0
ps (~r ) is given in Sec. 3.1.2. For a

system of two bosons or nonidentical particles in a quasi one dimensional harmonic

trap we would naively assume that the motion in the ρ direction is frozen in the lowest

oscillator modeψ2D
0 (ρ),

ψ2D
0 (ρ) =

1

a⊥
p
π

e
− ρ2

2a 2
⊥ . (2.66)

Integrating over ρ and φ, we obtain the following one dimensional even parity pseu-

dopotential V +(z ),

V+(z ) =

∫

ψ2D
0 (ρ)V

l=0
ps (~r )ψ

2D
0 (ρ)ρdρdφ =

2ħh2a s (k )
µa 2

⊥
δ(z ). (2.67)

Comparing this with the energy independent even parity one dimensional pseudopo-

tential in Eq. (2.27), we obtain a relationship between the one dimensional and the

three dimensional energy independent scattering lengths,

a+ =−
a 2
⊥

2a s
. (2.68)

The naive derivation outlined here holds approximately for weak interactions. For stronger

interactions, however, coupling between the motion in z - and ρ- directions have to be

accounted for. A full treatment of the problem results in [80]

a+ =−
a 2
⊥

2a s

�

1−ζ(1/2)
a s

a⊥

�

, (2.69)

where ζ(.) denotes the Riemann zeta function and ζ(1/2) ≈ 1.4603. The term in the

round brackets on the right hand side of Eq. (2.69) can be interpreted as a renormaliza-

tion due to virtual excitations or the strong transverse confinement.

Figure 2.9(a) shows the interaction strength g +1D in a quasi one dimensional system
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Figure 2.9: (a) One dimensional even parity interaction strength g +1D in a quasi one
dimensional system as a function of the three dimensional scattering length a s [see
Eq. (2.69)]. (b) One dimensional odd parity interaction strength g −1D in a quasi one
dimensional system as a function of the three dimensional scattering volume Vp [see
Eq. (2.69)]
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as a function of the three dimensional scattering length a s obtained from Eq. (2.69). g +1D

diverges for a finite value of a s indicating that the quasi one dimensional system can

have infinitely strong interactions even though the corresponding three dimensional

system has a finite interaction strength. Such a resonance is called a confinement in-

duced resonance.

The relationship between the energy independent odd parity one dimensional scat-

tering length a− and the three dimensional p -wave scattering volume Vp has been ob-

tained in Ref. [75],

a− =
6Vp

a 2
⊥

�

1−12
Vp

a 3
⊥
ζH

�

−
1

2
,

3

2

�

�−1

, (2.70)

where ζH (., .) denotes the Hurwitz zeta function. Figure 2.9(b) shows the interaction

strength g −1D in a quasi one dimensional system as a function of the three dimensional

scattering volume Vp obtained from Eq. (2.70). This system exhibits a confinement in-

duced resonance for negative Vp .

2.4 Conclusions

Short range interaction potentials can be modeled by zero range pseudopotentials in

one dimension. While the eigenequations for particles interacting through the even

parity zero range pseudopotential under harmonic confinement in one dimension have

been obtained in Ref. [60], we [64] were the first to do this for the odd parity case. Al-

though most of the energy spectrum can be accurately reproduced using the energy

independent interaction strengths, for regimes where |E | is comparable to ħh
2

µz 2
0

it is ex-

tremely important to include the energy dependence. Boundary conditions and wave-

functions for two identical particles interacting through zero range pseudopotentials in

a harmonic trap can be used to demonstrate Fermi-Bose duality.
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Chapter 3

Spherically symmetric two body
systems in three dimensions

In this chapter all Hamiltonian, potentials, wavefunctions and phase shifts are three

dimensional. Section 3.1 introduces spherically symmetric three dimensional model

interaction potentials and Sec. 3.1.1 obtains the three dimensional single channel scat-

tering length for any partial wave. Section 3.1.2 considers two interacting particles un-

der spherically symmetric three dimensional harmonic confinement and obtains the

eigenenergies of two particles interacting through a single channel s -wave model po-

tential, while Sec. 3.1.3 does the equivalent for p -wave interactions. Section 3.2 intro-

duces spherically symmetric three dimensional model interaction potentials with two

coupled channels, having two distinct thresholds. Section 3.2.1 outlines the procedure

to obtain the coupled channel scattering length for any partial wave. Using this proce-

dure, Sec. 3.2.2 obtains the expression for the coupled channel s -wave scattering length

for two coupled square well potentials. Section 3.2.2 applies the results of Sec. 3.2.1 to

the 85Rb s -wave Feshbach resonance at 155.2G [45, 46]. Section 3.2.3 considers coupled

two channel zero range model interaction potentials.
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3.1 Single channel treatment

In this section all Hamiltonian, potentials and wavefunctions are for single channel

model interaction potentials.

3.1.1 Single channel scattering

The relative Schrödinger equation for two particles in three dimensions in free space is

given by

H freeΨfree(~r ) = EΨfree(~r ), (3.1)

where

H free =−
ħh2

2µ
∇2
~r +Vint(r ). (3.2)

Here, E denotes the relative scattering energy of the two particles in three dimensions.

We assume that the interaction potential Vint(r ) is spherically symmetric and short range,

i. e., that it falls off faster than 1/r 3. In general, an interaction potential in d dimen-

sional space that depends on the relative distance r is short range if it falls off faster

than 1/r d . There exists a distance r0 such that Vint(r ) can be neglected for r > r0, i. e.,

Vint(r ) = 0 for r > r0. A discussion on scattering by short range spherically symmetric

interaction potentials can be found in Ref [85]. The wavefunction Ψfree(~r ) can be ex-

pressed as a product of a radial wavefunction, denoted by Rl (r ), and the angular part

given by the spherical harmonics Yl ,m (θ ,φ),

Ψfree(~r ) =
∞
∑

l ′=0

l ′
∑

m ′=−l ′

R free
l ′ (r )Yl ′,m ′(θ ,φ), (3.3)

where θ andφ denote the polar and the azimuthal angle, respectively. Putting Eq. (3.3)

into Eq. (3.1), multiplying by Y ∗l ,m (θ ,φ) and performing the angular integrations, we
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obtain the radial Schrödinger equation

�

−
ħh2

2µ

�

∂ 2

∂ r 2
+

2

r

∂

∂ r
−

l (l +1)
r 2

�

+Vint(r )

�

R free
l (r ) = E R free

l (r ). (3.4)

For r > r0 (or Vint = 0), the two linearly independent solutions to the second order dif-

ferential equation [Eq. (3.4)] are given by the regular spherical Bessel function j l (k r ),

which is well behaved at r = 0, and the irregular spherical Neumann function n l (k r ),

which diverges at r = 0. The outer radial solution can be written as

R free(>)
l (r ) =ℵl (k )

�

j l (k r )− tanδl (k )n l (k r )
�

, (3.5)

whereℵl (k )denotes the normalization constant andδl (k ) the energy dependent phase-

shift accumulated in the region r < r0. Since the potential is neglected for r > r0, no

further phase is accumulated beyond r = r0. The phase shifts δl (k ) can be determined

by imposing the following two continuity conditions at r = r0,

R free(<)
l (r0) =R free(>)

l (r0) (3.6)

and
 

∂ R free(<)
l (r )
∂ r

!

r=r0

=

 

∂ R free(>)
l (r )
∂ r

!

r=r0

. (3.7)

The inner solutions R free(<)
l (r ) depend upon Vint. The phase shifts define the energy de-

pendent generalized scattering lengths a l (k ),

a l (k ) =−
tanδl (k )

k 2l+1
. (3.8)

64



The energy independent generalized scattering lengths a l are defined through

a l = lim
k→0

a l (k ). (3.9)

The generalized scattering lengths a l have units of (length)2l+1.

For ultracold atomic gases, the scattering processes are dominated by the lowest

partial wave allowed by symmetry unless there is a resonance in a higher partial wave

channel. This implies that the scattering between two identical bosons or two non-

identical particles is s -wave dominated, and that the scattering between two identical

fermions is p -wave dominated.

3.1.2 s - wave interacting atoms under harmonic confinement

We now consider two interacting particles under spherically symmetric harmonic con-

finement. The three dimensional harmonic oscillator Hamiltonian H osc is given by

H osc =−
ħh2

2µ
∇2
~r +

1

2
µω2

ho~r
2, (3.10)

where ωho denotes the angular trapping frequency. The corresponding Schrödinger

equation for the relative coordinate reads

HΨ(~r ) = EΨ(~r ), (3.11)

where

H =H osc+Vint(~r ). (3.12)
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This section briefly reviews Fermi Huang’s regularized s -wave pseudopotential, while

Sec. 3.1.3 solves Eq. (3.11) for a regularized p -wave zero-range potential analytically. To

illustrate the applicability of this p -wave pseudopotential, Section 3.1.3 also compares

the resulting relative eigenenergies E for two particles under harmonic confinement

with those obtained numerically for a shape-dependent short range model potential

and discusses the importance of including the energy dependence of the p -wave scat-

tering volume in the zero range model potential.

Using Fermi-Huang’s regularized s -wave (l = 0) pseudopotential V l=0
ps (~r ) [58, 59],

V l=0
ps (~r ) =

2πħh2

µ
a s (k )δ(~r )

∂

∂ r
r, (3.13)

where δ(~r ) denotes the radial component of the three dimensional δ-function,

δ(~r ) =
1

4πr 2
δ(r ), (3.14)

and a s (k ) the three dimensional energy dependent s -wave scattering length [a s (k ) =

a 0(k )], Busch et al. [60] derive a transcendental equation for the relative three dimen-

sional eigenenergies E for the Schrödinger equation given in Eq. (3.11),

a s (k )
a ho

=
Γ(− E

2ħhωho
+ 1

4
)

2Γ(− E
2ħhωho

+ 3
4
)
. (3.15)

Here, a ho denotes the oscillator length, a ho =
p

ħh/(µωho). Solid lines in Fig. 3.1(a) show

the s -wave energies E [the solution to Eq. (3.15) using a s instead of a s (k )] as a function

of a s . For large and negative E (and hence positive a s ), an expansion of Eq. (3.15) to
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lowest order results in

E =−
ħh2

2µ(a s (k ))2
, (3.16)

which corresponds to the binding energy of V l=0
ps (~r ) without the confining potential. A

dashed line in Fig. 3.1(a) shows the energy given by Eq. (3.16) [with a s (k ) replaced by

a s ], while a dash-dotted line shows the expansion of Eq. (3.15) including the next higher

order term, i. e., the solution to the equation

a ho

a s
=−2

r

−
E

2ħhωho
+

3

4
+

1

4
Æ

− E
2ħhωho

+ 3
4

. (3.17)

Since only s -wave wavefunctions have a non-vanishing amplitude at r = 0, Fermi-

Huang’s regularized pseudopotential leads exclusively to s -wave scattering (no other

partial waves are scattered). Equation (3.15) hence applies to two ultracold bosons or

two non identical particles under external confinement for which higher even partial

waves, such as d - or g -waves, are negligible [for d - or g -wave scattering, see Eq. (3.50)].

The irregular l = 0 solution n 0(k r ) diverges as r−1. The so-called regularization

operator ∂
∂ r

r of the pseudopotential V l=0
ps (~r ), Eq. (3.13), cures this divergence. The so-

lutionsΨ(~r ) of two particles interacting through V l=0
ps (~r ) under external confinement or

in free space obey the boundary condition





∂
∂ r
(rΨ(~r ))

rΨ(~r )





r→0

=−
1

a s (k )
; (3.18)

this boundary condition is an alternative representation of V l=0
ps (~r ).
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3.1.3 p -wave interacting atoms under harmonic confinement

The importance of angle-dependent p -wave interactions has been demonstrated ex-

perimentally for two potassium atoms in the vicinity of a magnetic field-dependent

p -wave Feshbach resonance [49]. Here, we use an isotropic p -wave pseudopotential to

model the in general anisotropic atom-atom interaction. As discussed in Sec. 1.3.1, the

anisotropy arises due to the magnetic dipole dipole interactions between the electrons

of the two atoms. This leads to a splitting of the Feshbach resonance and two sepa-

rate Feshbach resonances, corresponding to m l = 0 and m l = ±1. For 40K, e. g., the

splitting is about 0.5G . Since these Feshbach resonances are well resolved, they, in a

first attempt, can be treated separately. The scattering volume, which enters into the

pseudopotential (see below), can be calculated for each partial wave channel.

We use the following p -wave pseudopotential V l=1
ps (~r ),

V l=1
ps (~r ) = g 1(E )

←−∇ ~rδ
(3)(~r )

−→∇ ~r
1

2

∂ 2

∂ r 2
r 2, (3.19)

where the coupling strength g 1(E ) “summarizes” the scattering properties of the origi-

nal shape-dependent atom-atom interaction potential [86, 87],

g 1(E ) =
6πħh2

µ
Vp (k ) (3.20)

[Vp (k ) = a 1(k ), see Eqs. (3.8) and (3.9)]. The pseudopotential written in this way can be

conveniently used only for spherically symmetric external harmonic confinement and

the treatment that follows applies only to spherically symmetric harmonic traps. The

case of cylindrically symmetric external harmonic confinement is treated in Ch. 5. The

gradient
←−∇ ~r with respect to the relative vector ~r acts to the left, while the gradient

−→∇ ~r
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acts to the right,

∫

φ∗(~r )V l=1
ps (~r )χ(~r )d

3~r = g 1(E )

∫

�

~∇~rφ∗(~r )
�

δ(3)(~r )
�

~∇~r
�

1

2

∂ 2

∂ r 2

�

r 2χ(~r )
�

��

d 3~r . (3.21)

Just as the s -wave pseudopotential V l=0
ps (~r ) does not couple to partial waves with l 6= 0,

the p -wave pseudopotential V l=1
ps (~r ) does not couple to partial waves with l 6= 1 [88].

Pseudopotentials of the form g 1(E )
←−∇ ~rδ(3)(~r )

−→∇ ~r have been used by a number of re-

searchers before [86, 88, 87, 89]; discrepancies regarding the proper value of the coeffi-

cient g 1(E ), however, exist (see, e.g., Ref. [88]). In the Born approximation, we get

∫ ∞

0

j1(k r )V l=1
ps (~r )j1(k r )r 2d r = tanδ1(k ), (3.22)

indicating that our pseudopotential has the correct strength. Equation (3.19) intro-

duces the regularization operator 1
2
∂ 2

∂ r 2 r 2, which eliminates divergences that would arise

otherwise from the irregular p -wave solution (which diverges as r−2). A similar regular-

ization operator has been proposed by Huang and Yang in 1957 [59]; they, however, use

it in conjunction with a coupling parameter g 1 different from that given by Eq. (3.20).

By comparing with numerical results for a shape-dependent model potential, we show

that the pseudopotential V l=1
ps (~r ) describes the scattering behaviors of two spin-aligned

three dimensional fermions properly.

To determine the relative eigenenergies E of two spin-polarized three dimensional

fermions under harmonic confinement analytically, we expand the three dimensional

wave function Ψ(~r ) for fixed angular momentum, l = 1, in continuous harmonic oscil-

lator eigenfunctionsφnl m (~r ),

Ψ(~r ) =
∑

nm

cnmΦnl m (~r ), (3.23)
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where the cnm denote expansion coefficients.

The Φnl m (~r ) depend on the principal quantum number n , the angular momentum

quantum number l , and the projection quantum number m ,

H osc
3D Φnl m (~r ) = E osc

nl Φnl m (~r ) (3.24)

and

E osc
nl =

�

2n + l +
3

2

�

ħhωho, (3.25)

where n = 0, 1, · · · ; l = 0, 1, · · · , n − 1; and m = 0,±1, · · · ,±l . The Φnl m (~r ) can be written

in spherical coordinates [~r = (r,θ ,φ)],

Φnl m (~r ) = Rnl (r ) Yl m (θ ,φ), (3.26)

where the Rnl (r ) are given by

Rnl (r ) =

È

2l+2π

(2l +1)!!
p
π3 L(l+1/2)

n (0)a 3
ho

×
�

r

a ho

�l

exp

�

−
r 2

2a 2
ho

�

L(l+1/2)
n

�

r 2

a 2
ho

�

, (3.27)

with

(2l +1)!!= 1 ·3 · · · · · (2l +1). (3.28)

The normalizations of Rnl (r ) and Yl m (θ ,φ) are chosen as

∫ 2π

0

∫ π

0

|Yl m (θ ,φ)|2 sinθdθdφ = 1 (3.29)
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and

∫ ∞

0

|Rnl (r )|2 r 2d r = 1. (3.30)

If we plug expansion (3.23) into Eq. (3.11) [with H given by Eq. (3.12) with Vint(~r ) =

V l=1
ps (~r )], multiply from the left with Φ∗n ′l m ′(~r ) [with l = 1], and integrate over ~r , we ob-

tain an expression for the coefficients cn ′m ′ ,

cn ′m ′(E osc
n ′l −E ) =−

g 1(E )
4π

�

~∇~r R∗n ′l (0)
�

·



~∇~r

(

1

2

∂ 2

∂ r 2

 

r 2
∞
∑

n=0

cnm ′Rnl (r )

!)



r→0

, (3.31)

where

~∇~r R∗nl (0) =
�

~∇~r R∗nl (r )
�

r=0
. (3.32)

In deriving Eq. (3.31), we use that

~∇~r
�

Rnl (r )Yl m (θ ,φ)
�

=
�

~∇~r Rnl (r )
�

Yl m (θ ,φ)+Rnl (r )
�

~∇~r Yl m (θ ,φ)
�

, (3.33)

where the second term on the right-hand side goes to zero in the r → 0 limit. Since

the gradients ~∇~r in Eq. (3.31) act on arguments that depend solely on r , we can replace

them by êr
∂
∂ r

(where êr denotes the unit vector in the r -direction),

cn ′m ′(E osc
n ′l −E ) =−

g 1(E )
4π

∂ R∗n ′l (0)
∂ r





1

2

∂ 3

∂ r 3

 

r 2
∞
∑

n=0

cnm ′Rnl (r )

!



r→0

. (3.34)
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Equation (3.34) implies that the coefficients cn ′m ′ are of the form

cn ′m ′ = A

∂ R∗
n ′l (0)

∂ r

E osc
n ′l −E

, (3.35)

where A is a constant independent of n ′. Plugging Eq. (3.35) into Eq. (3.34) results in an

implicit expression for the three dimensional energies E ,







1

2

∂ 3

∂ r 3






r 2

∞
∑

n=0

∂ R∗nl (0)
∂ r

Rnl (r )

E osc
nl −E













r→0

=−
4π

g 1(E )
. (3.36)

To simplify the infinite sum over n , we use expression (3.27) for the Rnl (r ), and intro-

duce a non-integer quantum number ν ,

E =
�

2ν + l +
3

2

�

ħhωho. (3.37)

For l = 1, we obtain

1

3
p
π3





1

2

∂ 3

∂ r 3

 

exp

�

−
r 2

2a 2
ho

�

r 3
∞
∑

n=0

L(3/2)n (r 2/a 2
ho)

n −ν

!



r→0

=−
ħhωho a 5

ho

g 1(E )
. (3.38)

Using the identity

∞
∑

n=0

L(3/2)n

�

r 2/a 2
ho

�

n −ν
=Γ(−ν )U

�

−ν ,
5

2
,

r 2

a 2
ho

�

, (3.39)

the infinite sum in Eq. (3.38) can be rewritten,

Γ(−ν )
3
p
π3

�

1

2

∂ 3

∂ r 3

�

exp

�

−
r 2

2a ho

�

r 3 U

�

−ν ,
5

2
,

r 2

a 2
ho

���

r→0

=−
ħhωho a 5

ho

g 1(E )
, (3.40)
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where the r → 0 limit is well behaved, as discussed above, due to the regularization op-

erator of V l=1
ps (~r ). Expression (3.40) can be evaluated using the known small r behavior

of the hypergeometric function U (−ν , 5
2

, r 2

a 2
ho
) [82],

1

π
Γ(−ν )U

�

−ν ,
5

2
,

r 2

a 2
ho

�

≈−
�

r

a ho

�−3 1

Γ(− 1
2
)

−
�

r

a ho

�−1 (2ν +3)

Γ(− 1
2
)
+

Γ(−ν )
Γ(−ν − 3

2
)Γ( 5

2
)
+O (r ). (3.41)

If we insert expansion (3.41) into Eq. (3.40), evaluate the derivatives, and take the r → 0

limit, we find

−
ħhωho a 5

ho

g 1(E )
=

1
p
π

Γ(−ν )
Γ(−ν − 3

2
)Γ( 5

2
)
. (3.42)

Using Eqs. (3.20) and (3.37), we obtain our final expression for the relative eigenenergies

E for l = 1,

Vp (k )
a 3

ho

=−
Γ(− E

2ħhωho
− 1

4
)

8Γ(− E
2ħhωho

+ 5
4
)
. (3.43)

The above approach expresses the relative eigenfunction of the system in terms

of single particle harmonic oscillator eigenfunctions. Infinite sums are performed to

obtain the eigenenergies. This an alternative but equivalent approach to that used in

Sec. 2.2 for the one dimensional pseudopotential, where we started with a δ-shell of ra-

dius z 0, used boundary conditions to relate the inside and outside wavefunctions and

then took the limit z 0→ 0.

Solid lines in Fig. 2.1(b) show the relative three dimensional eigenenergies E (solu-

tion to Eq. (3.43) with Vp (k ) replaced by Vp ) for two spin-polarized fermions under ex-
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ternal harmonic confinement interacting through the energy independent zero-range

pseudopotential V l=1
ps (~r ) as a function of the energy independent three dimensional

scattering volume Vp . For vanishing coupling strength g 1 (or equivalently, for Vp = 0), E

coincides with the l = 1 harmonic oscillator eigenenergy. As Vp increases [decreases],

E increases [decreases].

Expansion of Eq. (3.43) for a negative and large in absolute value eigenenergy (and

hence negative Vp ), results in

E =−
ħh2

2µ(Vp (k ))2/3
, (3.44)

which agrees with the binding energy of V l=1
ps (~r ) without the confinement potential. A

dashed line in Fig. 2.1(b) shows this binding energy (with Vp (k ) replaced by Vp ), while a

dash-dotted line shows the expansion of Eq. (3.43) including the next higher order, i. e.,

the solution to the equation

−
a 3

ho

Vp
= 8

�

−
E

2ħhωho
−

1

4

�3/2

+3

�

−
E

2ħhωho
−

1

4

�1/2

. (3.45)

Compared to the eigenenergy of the system without confinement, Eq. (3.44), the lowest

eigenenergy given by Eq. (3.43) is downshifted. This downshift is somewhat counterin-

tuitive, and contrary to the s -wave case. This difference is explained later in the context

of Fig. 3.3.

In addition to the eigenergies E of two atoms with l = 1 under harmonic confine-

ment, we determine the corresponding eigenfunctions Ψ(~r ),

Ψ(~r )∝
Γ(−ν )
(a ho)3/2

r

a ho
exp

�

−
r 2

2a 2
ho

�

U

�

−ν ,
5

2
,

r 2

a 2
ho

�

, (3.46)
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which lead to the well-behaved boundary condition





∂ 3

∂ r 3

�

1
2

r 2Ψ(~r )
�

r 2Ψ(~r )





r→0

=−
1

Vp (k )
. (3.47)

This boundary condition is an alternative representation of the pseudopotential V l=1
ps (~r ),

and depends on only one parameter, that is, the scattering volume Vp (k ). This is in con-

trast to earlier work [90, 91], which treated a boundary condition similar to Eq. (3.47)

but evaluated the left hand side at a finite value of r , i.e., at r = re . The boundary condi-

tion containing the finite parameter re is not equivalent to a zero-range pseudopoten-

tial. References [92, 93, 94] discuss alternative derivations and representations of the

boundary condition given in Eq. (3.47).

To benchmark our p -wave pseudopotential treatment of two spin-polarized three

dimensional fermions under harmonic confinement, we solve the three dimensional

Schrödinger equation, Eq. (3.11), for the Hamiltonian given by Eq. (3.12) numerically

for the shape-dependent Morse potential Vmorse(r ),

Vmorse(z ) = d e−α(r−r0)
�

e−α(r−r0)−2
�

. (3.48)

Our numerical calculations are performed for r0 = 11.65a.u.,α= 0.35a.u.,ωho = 10−9a.u.

(2πνho =ωho), and m =m (87Rb). The well depth d is chosen such that the three dimen-

sional Morse potential supports between zero and two l = 1 bound states. Solid lines

in Fig. 3.2 show the resulting three dimensional eigenenergies E with l = 1 obtained

numerically as a function of the depth d .

To compare the l = 1 eigenenergies obtained numerically for the Morse potential

Vmorse(r ) with those obtained for the p -wave pseudopotential V l=1
ps (~r ), we first deter-

mine the energy-dependent free-space scattering volume Vp (k ) for the three dimen-
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Figure 3.1: Solid lines in panel (a) show the relative s -wave energies E [Eq. (3.15)] cal-
culated using the pseudopotential V l=0

ps (~r ) as a function of the scattering length a s .
Solid lines in panel (b) show the relative p -wave energies E [Eq. (3.43)] calculated us-
ing the pseudopotential V l=1

ps (~r ) as a function of the scattering volume Vp . Horizontal
solid lines indicate the harmonic oscillator eigenenergies [for l = 0 in panel (a), and for
l = 1 in panel (b)]. Horizontal dotted lines indicate the asymptotic eigenenergies E [for
a s →±∞ in panel (a), and for Vp →±∞ in panel (b)]. Dashed lines show the binding en-
ergies, Eq. (3.16) in panel (a) and Eq. (3.44) in panel (b), of the pseudopotentials V l=0

ps (~r )
and V l=1

ps (~r ), respectively, without confinement. Dash-dotted lines show the expansion
of Eq. (3.15) [panel (a)] and Eq. (3.43) [panel (b)] including the next order term.
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Figure 3.2: Relative three dimensional eigenenergies E with l = 1 for two spin-polarized
fermions under three dimensional harmonic confinement as a function of the well
depth d . Solid lines show the eigenenergies obtained by solving the three dimensional
Schrödinger equation, Eq. (3.11), for the Hamiltonian given in Eq. (3.12) numerically for
the Morse potential, Eq. (3.48). Symbols show the eigenenergies obtained for the pseu-
dopotential V l=1

ps (~r ), taking the energy-dependence of the three dimensional scattering
volume Vp into account, Vp =Vp (E ) (see text). This figure is taken from Ref. [64].
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sional Morse potential as a function of the relative scattering energy E for various well

depths d . We then solve the transcendental equation (3.43) self-consistently for E . Di-

amonds in Fig. 3.2 show the resulting l = 1 eigenenergies E for two three dimensional

particles under harmonic confinement interacting through the l = 1 pseudopotential

V l=1
ps (~r ). Excellent agreement between these eigenenergies and those obtained for the

Morse potential (solid lines) is visible for all well depths d . We emphasize that this

agreement depends crucially on the usage of energy-dependent three dimensional scat-

tering volumes. Figure 3.2 illustrates that the p -wave pseudopotential V l=1
ps (~r ) describes

p -wave scattering processes properly.

In obtaining the excellent agreement between the energies calculated using the

shape dependent and zero range potentials in Fig. 3.2 we used the energy dependent p -

wave scattering volume Vp (k ) in the zero range pseudopotential. We now elaborate on

the importance of the energy dependence of the scattering volume. Figure 3.3(a) shows

the eigenenergies for two interacting particles with l = 1 under harmonic confinement

as a function of the energy independent scattering volume Vp . The solid lines show the

eigenenergies for a square well potential with depth V0 and range r0 and crosses show

the eigenenergies for the energy dependent zero range p -wave pseudopotential. The

range r0 of the square well potential is chosen to be much smaller than the oscillator

length (r0 = 0.01a ho); finite range effects are not visible on the scale chosen in Fig. 3.3(a).

The dashed lines show the eigenenergies for the energy independent zero range p -

wave pseudopotential. Figure 3.3(a) illustrates that the eigenenergies for the square

well potential and the energy dependent pseudopotentials agree very well. The en-

ergies obtained for the energy independent pseudopotential, in contrast, differ sig-

nificantly from those obtained for the square well. For E < 1.5ħhωho, the energies for

the square well and the energy independent pseudopotentials differ even qualitatively.

Thus, for three dimensional p -wave interacting systems, it is extremely important to
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Figure 3.3: (a) Eigenenergies for two interacting particles with l = 1 under harmonic
confinement as a function of the energy independent scattering volume Vp . The solid
lines and crosses show the eigenenergies obtained by solving the Schrödinger equation,
Eq. (3.11), for the Hamiltonian given in Eq. (3.12) for the square well potential and the
energy dependent zero range p -wave pseudopotential, respectively. The dashed lines
show the eigenenergies obtained for the energy independent zero range p -wave pseu-
dopotential. The circles show the energies obtained by solving Eq. (3.44) including the
energy dependence of Vp , while the dotted curve is obtained by considering the energy
independent Vp . (b) The solid curve shows the energy dependent scattering length as a
function of energy for V0 = 49348.1ħhωho. The dashed curve shows the right hand side
of Eq. (3.43), while the dotted line shows the energy independent scattering length for
V0 = 49348.1ħhωho.
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include the energy dependence of the generalized scattering length. This is in contrast

to the one dimensional square well potential where the energy dependence becomes

important only for large values of |E |/ħhωz . It can be shown that any pseudopotential

treatment of higher partial wave scattering (l > 0) has to account for the energy depen-

dence of the generalized scattering lengths. The dotted curve and circles are obtained

using the free-space bound state energy expression for V l=1
ps , Eq. (3.44), with the energy

independent scattering volume Vp and the energy dependent scattering volume Vp (k ),

respectively. The circles lie slightly below the solid line and crosses (this cannot be seen

on the scale of Fig. 3.3), in agreement with the fact that the energy gets pushed up by

the trap [see also Fig. 3.1(a)].

Focussing on a particular value of Vp , Fig. 3.3(b) illustrates that the energy indepen-

dent p -wave pseudopotential results in a qualitatively incorrect eigenspectrum. The

solid and dashed curves in Fig. 3.3(b) show the right hand side and the left hand side of

Eq. (3.43) as a function of energy. If the curves cross, a solution exists. If the curves do

not cross, Eq. (3.43) has no solution in the chosen energy range. The dotted curve shows

the energy independent scattering volume Vp , Vp = 0.123465a 3
ho [energy independent

left hand side of Eq. (3.43)], of the square well potential. Since the dotted line does not

intersect the dashed curve in the range −0.5ħhωho < E < 1.5ħhωho, Eq. (3.43) with the

energy independent generalized scattering length does not have a root in this energy

range (see dashed curves in Fig. 3.3(a)). The solid curve, however, intersects the dashed

curve at E =−0.0212335ħhωho. Hence, Eq. (3.43) with the energy dependent generalized

scattering length has a root at E = −0.0212335ħhωho (see crosses in Fig. 3.3(a)). Due to

the strong energy dependence of the scattering length the eigenenergies obtained us-

ing the energy independent generalized scattering length gives us a misleading picture

of the energy spectrum. If we do not include the energy dependence, there appears to

be a diving weakly bound state only for negative values of Vp (effectively attractive in-
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teractions). The square well potential, however, supports, a weakly bound state only for

positive Vp (effectively repulsive interactions).

Following the δ-shell method described in Sec. 2.1.2, spherically symmetric pseu-

dopotentials for different l have been derived [65],

V l
ps(r ) =− lim

r0→0

ħh2

2µ

(2l +1)!!
(2l )!!

tanδl (k )
k 2l+1

δ(r − r0)

r l+2
0

∂ 2l+1

∂ r 2l+1
r l+1. (3.49)

The pseudopotential given in Eq. (3.19) is equivalent to that in Eq. (3.49) with l=1: This

can be seen e. g., by comparing the expectation value of the l = 1 pseudopotentials

for a radial function with l = 1. The eigenequation for two particles in a spherically

symmetric harmonic trap interacting through V l
ps(r ) is given by [65]

Γ( −E
2ħhωho

+ 1
4
− l

2
)

22l+1Γ( −E
2ħhωho

+ 3
4
+ l

2
)
= (−1)l

a l

a 2l+1
ho

. (3.50)

3.2 Coupled channel treatment

In this section all Hamiltonian, potentials and wavefunctions are for coupled two chan-

nel interaction potentials.

3.2.1 Coupled channel scattering length

So far we have considered only single channel models for the interaction potential

Vint(r ). We treat two channels with two distinct thresholds that differ in energy by ε

(ε > 0). For two atoms in the presence of an external magnetic field, the two channels

correspond to two non-degenerate hyperfine levels (see Sec. 1.3). The energy difference

ε, ε = ~B · ( ~µ2− ~µ1), where ~µ1 and ~µ1 are the magnetic moments of the atom in hyperfine
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levels corresponding to channels one and two, respectively, can be tuned by changing

the magnetic field. For the remainder of this chapter, subscript “(1)” corresponds to

channel one, while subscript “(2)” corresponds to channel two.

Assuming the coupled channel interaction potential Vint depends on r only,

Vint(r ) =







V(1)(r ) V(12)(r )

V(12)(r ) V(2)(r )






, (3.51)

the radial Schrödinger equation for two particles in three dimensions reads

H free
rad Ψfree

l (r ) =EΨfree
l (r ), (3.52)

where

H free
rad =−

ħh2

2µ
I

�

∂ 2

∂ r 2
+

2

r

∂

∂ r
−

l (l +1)
r 2

�

+Vint(r ), (3.53)

E = EI (3.54)

and

Ψfree
l (r ) =







Ψfree
l (1)(r )

Ψfree
l (2)(r )






. (3.55)

Above, I denotes the 2×2 identity matrix,

I =







1 0

0 1






. (3.56)

To define the coupled channel scattering length a cc
l , we require that V(1)(r ), V(2)(r ) and

V(12)(r ) are all short range potentials. Furthermore, the large r thresholds are given by 0,

ε and 0 for V(1)(r ), V(2)(r ) and V(12)(r ), respectively.

If the relative scattering energy E lies between 0 and ε, then channel (1) is an open
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channel and channel (2) is a closed channel. The solution to Eq. (3.52) for r > r0 is in

this case given by

Ψfree(>)
l (r ) = Acc(k )







j l (k r )− tanδcc
l (k )n l (k r )

Bcc(k )k̃ l (qr ),






, (3.57)

where Acc(k ) is a normalization constant, Bcc(k ) a proportionality constant, and δcc
l (k )

the coupled channel phase shift. The solution k̃ l in channel (2) is the spherical modi-

fied Bessel function of the second kind, which depends on q ,

q =

r

2µ(ε−E )

ħh2 , (3.58)

and decays exponentially.

The solution to Eq. (3.52) for r < r0, denoted by Ψfree(<)
l (~r ), depends on the details

of the interaction potential and has to be determined explicitly for each interaction po-

tential. To determine the coupled channel phase shift δcc
l (k ), we impose the following

two continuity conditions at r = r0,

Ψfree(<)
l (r0) =Ψfree(>)

l (r0) (3.59)

and
 

∂Ψfree(<)
l (r )
∂ r

!

r=r0

=

 

∂Ψfree(>)
l (r )
∂ r

!

r=r0

. (3.60)

The phase shift defines the energy dependent coupled channel scattering length a cc
l (k ),

a cc
l (k ) =−

tanδcc
l (k )

k 2l+1
, (3.61)
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and the energy independent coupled channel scattering length a cc
l ,

a cc
l = lim

k→0
a cc

l (k ). (3.62)

3.2.2 Coupled channel square well model: s -wave scattering

The coupled two channel square well potential has been successfully used to model a

Feshbach resonance in Refs. [47, 48]. This section determines the s -wave coupled chan-

nel scattering length for the lowest partial wave (l = 0) for a coupled channel square

well potential following Ref. [95]. The potential V cc
SW(r ) is parametrized by V1, V2 and V12,

V cc
SW(r ) =







−V1Θ(r0− r ) V12Θ(r0− r )

V12Θ(r0− r ) −V2Θ(r0− r )+ εΘ(r − r0)






, (3.63)

where V1 and V2 are positive constants and Θ(x ) denotes the step function (Θ(x ) = 0 for

x < 0 and Θ(x ) = 1 for x > 0). In this section we consider l = 0 and omit the subscript

“l ”. For r > r0, the solution to Eq. (3.52) with Vint(r ) = V cc
SW(r ) is given by Ψfree(>)(r ),

Eq. (3.57). We now illustrate the procedure to obtain the solution to Eq. (3.52) for r < r0.

For r < r0, we rescale Ψfree(<)(r ),

Ψfree(<)(r ) =
1

r
ufree(<)(r ). (3.64)

Equation (3.52) then becomes

−
ħh2

2µ

d 2

d r 2
ufree(<)(r )+Wufree(<)(r ) = 0, (3.65)

where W is given by

W =V cc
SW(r )−E. (3.66)
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Equation (3.65) represents two coupled second order differential equations with four

independent solutions. Imposing that ufree(<)(r ) vanishes at r = 0, leaves us with just

two independent solutions. W is a 2× 2 matrix, whose eigenvalues and eigenvectors

can be easily obtained. We denote the two eigenvalues of the matrix W by w 2
α (α= 1, 2)

and the corresponding eigenvectors (2×1 matrices) by Xα,

WXα =w 2
αXα. (3.67)

We define a 2×2 matrix X that consists of the eigenvectors Xα,

X =
�

X1 X2

�

. (3.68)

To diagonalize W , we multiply Eq. (3.65) by XT , where XT is the transpose of X .

The resulting uncoupled single channel second order differential equations read

d 2yα
d r 2

+w 2
αyα = 0, (3.69)

where

yα(r ) =XT ufree(<)(r ) (3.70)

is a 2× 1 eigenvector matrix. The regular solutions yα (α = 1 and 2) to Eq. (3.69) are

given by

y1(r ) =







sin(w1r )

0






(3.71)

and

y2(r ) =







0

sin(w2r )






. (3.72)
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Neither of the two short range solutions yα lead to a Ψfree(<)(r ) that can be smoothly

matched to Ψfree(>)(r ). Hence, we must use a linear combination of the two solutions

given by y(r )z. Here, y(r ) is a 2×2 matrix that consists of the eigenvectors y1 and y2,

y(r ) =
�

y1(r ) y2(r )
�

, (3.73)

and z is a 2×1 matrix,

z =







z 1(k )

z 2(k )






, (3.74)

where z 1(k ) and z 2(k ) are energy dependent constants. Using Eq. (3.70) and replacing

y(r ) by y(r )z, the inner solution is given by

ufree(<)(r ) =Xy(r )z. (3.75)

Equations (3.64) and (3.75) can be combined to obtain Ψfree(<)(r ). Having obtained

Ψfree(<)(r ), we proceed to find an expression for the energy independent coupled chan-

nel scattering length.

Applying the two continuity conditions in Eqs. (3.59) and (3.60) (this eliminates z,

and Acc(k ) can be used to determine Bcc(k )), we get the following expression for the

coupled channel s -wave phase shift,

tanδcc(k ) =−
(R22(E )+q )(−R11(E )sin(k r0)+k cos(k r0))+R2

12(E )sin(k r0)
(R22(E )+q )(R11(E )cos(k r0)+k sin(k r0))−R12(E )2 cos(k r0)

, (3.76)

where

R=







R11(E ) R12(E )

R12(E ) R22(E )






=
�

X
d y

d r
y−1XT

�

r=r0

. (3.77)

Using Eqs. (3.62) and (3.76) the energy independent coupled channel scattering
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length for the coupled channel square well potential becomes

a cc = r0−
R22+q

(R22+q )R11−R2
12

, (3.78)

where

q =

r

2µε

ħh2 (3.79)

and the energy independent R matrix elements are given by

Ri j = lim
E→0

Ri j (E ). (3.80)

The energy independent R matrix elements are given in Eqs. (B.2) to (B.4) in terms of

the parameters of the square well potential. The scattering length a cc in Eq. (3.78) has a

resonance for q =q0, where

q0 =
R2

12

R11
−R22. (3.81)

The magnetic field B at which this resonance occurs is given by B = B0. Close to reso-

nance, we Taylor expand ε in about B = B0. To first order in B − B0, we obtain

ε(B ) = ε(B0)+γM (B − B0), (3.82)

where γM ,

γM =
�

∂ ε(B )
∂ B

�

B=B0

, (3.83)

is the difference between magnetic moments of the atoms in the open and closed chan-

nels. Expressing ε in terms of q , we find

q (B ) =q0+
γM

R2
12

R11−R22

(B − B0). (3.84)
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Since the resonance occurs at B = B0, we have q0 = q (B0) . Using Eqs. (3.81) and (3.84),

Eq. (3.78) can be written as

a cc = r0−
1

R11
−

R2
12

�

R2
12

R11−R22

�

R2
11µγM (B − B0)

(3.85)

or Equation 3.85 can be written in the form

a cc = a bg

�

1−
∆

B − B0

�

, (3.86)

where a bg = r0 − 1
R11

and ∆ = R2
12

γM R11

R2
12

(r0R11−1)(R11−R22)
. a bg can be interpreted as the almost

unchanging value of the coupled channel scattering length away from resonance and

∆ as the width of the resonance.

The observed scattering length of 85Rb near an s -wave Feshbach resonance (B0 ≈

155G, see Sec. 1.3.1 [45, 46]) has been fit to the functional form in Eq. (3.86) [37] by treat-

ing a bg, ∆ and B0 as three independent fitting parameters. The solid curve in Fig. 3.4

shows the scattering length of 85Rb for a bg =−380a 0, ∆= 10G and B0 = 155.2G [96], as

a function of the magnetic field B near resonance. The crosses show the coupled chan-

nel scattering length for the square well potential, for γM =−3.5MHz/G (experimentally

determined for 85Rb at B ≈ 155G ), with R11, R12 and R22 adjusted so as to reproduce the

solid curve in Fig. 3.4. For r0 = 100a 0, we find R11 = 0.0023/a 0, R12 = 0.0005/a 0 and

R22 = −3.4/a 0. These R matrix elements impose a boundary condition on the outside

wavefunction, which in turn can be fulfilled by adjusting the three parameters V1, V2 and

V12 of the square well potential. The coupled channel scattering length for the square

well potential agrees well with the solid curve obtained by fitting to experimental data.

This agreement shows that the coupled channel square well model captures much of

the key physics near an s -wave Feshbach resonance.
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Figure 3.4: Energy independent coupled channel scattering length as a function of the
magnetic field B . The solid curve shows a fit of Eq. (3.86) to experimental data; the pa-
rameters of the fit are a bg =−380a 0,∆= 10G and B0 = 155.2G. The crosses are obtained
by using Eq. (3.85) with R11 = 0.0023/a 0, R12 = 0.0005/a 0, R22 =−3.4/a 0 and r0 = 100a 0.
Circles are obtained using Eq. (3.91) with a 1 =−435a 0, a 2 = 1.49a 0 and β = 0.00116/a 0.
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3.2.3 Coupled channel zero range model

Section 3.1.2 obtained the boundary condition for two particles interacting through the

zero range s -wave pseudopotential in three dimensions [see Eq. (3.18)]. This section

uses the boundary condition to develop a three parameter description of the coupled

channel s -wave scattering length. The discussion in this section follows Ref. [96]. The

radial Schrödinger equation for this system is given by Eq. (3.52) with Vint(r ) = 0 for

r > 0. The boundary condition in Eq. (3.18) determines the diagonal elements,

�

d

d r

�

Ψfree(>)(r )
�

�

r→0

=







− 1
a 1

β

β − 1
a 2







�

Ψfree(>)(r )
�

r→0
, (3.87)

where a 1 and a 2 are the single channel scattering lengths in the open and closed chan-

nels, and β is a constant coupling between the two channels. For r > 0, the two chan-

nels are uncoupled. Since Vint(r ) = 0 for r > 0, the wavefunction matrix Ψfree(>)(r ) is

given by Eq. (3.57). Forcing Ψfree(>)(r ) to obey the boundary condition given in Eq. (3.87)

determines the energy dependent coupled channel scattering length a cc(k ),

a cc(k ) =







1

a 1
+

β 2

Æ

2µ(ε−E )
ħh2 − (1/a 2)







−1

, (3.88)

and the energy independent coupled channel scattering length a cc,

a cc =





1

a 1
+

β 2

p

(2µε)/ħh2− (1/a 2)





−1

. (3.89)

The solid curves in Figs. 3.5(a) and (b) show the energy independent coupled chan-

nel scattering length [see Eq. (3.89)] and the coupled channel bound state energy, re-

spectively, as a function of ε. Just below resonance, the coupled channel scattering
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Figure 3.5: Results for zero range coupled channel model with parameters a 1 =−435a 0,
a 2 = 1.49a 0 and β = 0.00116/a 0. The solid curves in (a) and (b) show the coupled
channel scattering length and the coupled channel bound state energy, respectively, as
a function of ε. The dotted line in (a) and (b) indicates the resonance value of ε, which
is 2.8913× 10−6 hartree. For comparison, the dashed line in (b) shows the bound state
energy of the closed channel as a function of ε. The x -axis label and scale are the same
in (a) and (b).
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length is large and positive indicating the presence of a weakly bound state. Just above

resonance, the coupled channel scattering length is large and negative and the coupled

channel system does not support a bound state. For comparison, the dashed line in

Fig. 3.5(b) shows the bound state energy for the bare closed channel as a function of ε.

For small ε, the bound state energy of the closed channel closely agrees with the cou-

pled channel bound state energy. This indicates that the wavefunction of the coupled

channel system is dominated by the closed channel. Near resonance, deviations appear

between the closed channel and coupled channel bound state energies indicating that

there is a significant contribution from the open channel to the coupled channel wave-

function. Above resonance, the bound state in the closed channel has a positive energy

with respect to the threshold of the open channel and no coupled channel bound state

exists. This shows that the wavefunction of the coupled channel system is dominated

by the open channel.

On resonance (B = B0), the coupled channel scattering length diverges and

ε(B0) =
1

2µ

�

1

a 2
−a 1β

2

�2

. (3.90)

Plugging Eqs. (3.82) and (3.90) into Eq. (3.89) and neglecting terms that are quadratic or

higher order in B − B0, we get

a cc = a 1






1−

a 1β 2
�

1
a 2
−a 1β 2

�

µγM (B − B0)






. (3.91)

Equation (3.91) can be written in the form of Eq. (3.86), where a bg = a 1 and

∆= a 1β2

µγM

�

1
a 2
−a 1β 2

�

. Circles in Fig. 3.4 show Eq. (3.91) for a 1 =−435a 0, a 2 = 1.49a 0 and

β = 0.00116/a 0 [96]. The agreement between the coupled channel scattering length ob-

tained by fitting to experimental data and from the coupled channel zero range model
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is very good.

3.3 Conclusions

In this chapter we discussed scattering by three dimensional spherically symmetric in-

teraction potentials. Due to the spherical symmetry of the interactions, the angular

momentum is conserved and each partial wave can be treated separately. Zero range

pseudopotentials exist for all partials waves. For most purposes, however, s - and p -

wave pseudopotentials suffice. The first p -wave regularized zero range pseudopoten-

tial was proposed by us in Ref. [64].

A coupled two channel potential can be used to model a Feshbach resonance in

three dimensions. The model depends on three parameters and can be set up in differ-

ent ways using finite range or zero range coupled two channel potentials. In this chap-

ter we have adjusted the three parameters in the coupled two channel model potentials

to reproduce the s -wave Feshbach resonance in 85Rb.
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Chapter 4

Azimuthally symmetric two body
systems in two dimensions

This chapter considers two dimensional systems, for which the motion in the tight con-

fining direction, the z -direction, is frozen out [97, 98]. The equation of state then de-

pends on the generalized two dimensional scattering length. A thorough understand-

ing of the two-particle physics in two dimensions for any partial wave might aid studies

of the two dimensional many-body problem. Toward this end, Sec. 4.1 derives two di-

mensional zero range pseudopotentials for any partial wave m and Sec. 4.2 develops a

coupled channel model applicable to two particles with m = 0 across a Feshbach reso-

nance.

Experiments on ultracold gases routinely utilize Feshbach resonances, which al-

low the interaction strength between two particles to be tuned to essentially any value

through application of an external magnetic field. Confinement induced resonances in

two dimensions have been predicted [97, 99] and observed for p -wave interactions [100],

thus allowing the effective two dimensional coupling constant to be tuned to essentially

any value including zero and infinity. Assuming a strictly two dimensional geometry,

Sec. 4.2 proposes a coupled channel model for the lowest partial wave, i.e., m = 0, with

94



three parameters, the scattering lengths b1 and b2 of the “open” and “closed” channel

and the coupling strength β . The detuning is given by ε. While b1, b2 and β are fixed

for a given system, varying the detuning ε corresponds to changing the strength of an

external magnetic field.

The model predicts that the dependence of the effective two dimensional scattering

length on the external control parameter is distinctly different than that of the effective

three dimensional scattering length (see Ch. 3), thus highlighting the non-intuitive be-

havior of systems with reduced dimensionality. Section 4.2.2 determines the binding

energy and the occupation of the open and closed channel across a two dimensional

resonance. These observables have been measured across a three dimensional reso-

nance [14, 101] but not yet across a two dimensional resonance; however, we expect

measurements on quasi-two dimensional systems to be performed in the near future.

In this chapter all Hamiltonian, potentials, wavefunctions and phase shifts are two

dimensional.

4.1 Single channel treatment

4.1.1 Two dimensional scattering length

The Schrödinger equation for two identical particles in two dimensions in the relative

vector ~ρ is given by

H freeΨfree(~ρ) = EΨfree(~ρ), (4.1)

where

H free =−
ħh2

2µ
∇2
~ρ +Vint(ρ). (4.2)
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Here,∇2
~ρ is the two dimensional Laplacian operator,

∇2
~ρ =

∂ 2

∂ ρ2
+

1

ρ

∂

∂ ρ
+

1

ρ2

∂ 2

∂ φ2
, (4.3)

and ρ and φ denote the length and polar angle of ~ρ. We assume that the interaction

potential Vint(ρ) is radially symmetric and short range, i. e., it falls off faster than 1/ρ2.

There exists a distance ρ0 such that Vint(ρ) can be neglected for ρ >ρ0, i. e., Vint(ρ) = 0

for ρ >ρ0. The wavefunction Ψ(~ρ) can be expressed as a product of a radial wavefunc-

tion, denoted by Rm ′(ρ), and the angular part given by eı m ′φ,

Ψfree(~ρ) =
∞
∑

m ′=−∞

R free
m ′ (ρ)eı m ′φ, (4.4)

where m ′ denotes the orbital quantum number. Wavefunctions with even m ′ only have

even parity while those with odd m ′ only have odd parity. As in the three dimensions,

the even and odd parity sub spaces are completely decoupled from each other and

can be treated separately. m = 0 applies to scattering between two, two dimensional

identical bosons or two non-identical particles, m = 1 to that between spin-polarized

fermions, and so on. Putting Eq. (4.4) into Eq. (4.1), multiplying by e−ı mφ and doing the

angular integral overφ, we obtain the radial Schrödinger equation

�

−
ħh2

2µ

�

∂ 2

∂ ρ2
+

1

ρ

∂

∂ ρ
−

m 2

ρ2

�

+Vint(ρ)

�

R free
m (ρ) = E R free

m (ρ). (4.5)

For ρ >ρ0 (or Vint = 0), the two linearly independent solutions to the second order dif-

ferential equation [Eq. (4.5)] are given by the regular cylindrical Bessel function Jm (kρ),

which is well behaved atρ = 0, and the irregular cylindrical Neumann function Nm (kρ),
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which diverges at r = 0. The outer radial solution can be written as

R free(>)
m (ρ) = Am (Jm (kρ)− tanδm (k )Nm (kρ)), (4.6)

where Am (k )denotes the normalization constant andδm (k ) the energy dependent phase-

shift accumulated in the region ρ <ρ0.

Since the potential is neglected for ρ >ρ0, no further phase is accumulated beyond

ρ =ρ0. The phase shifts δm (k ) can be determined by imposing the following two con-

tinuity conditions at ρ =ρ0,

R free(<)
m (ρ0) =R free(>)

m (ρ0) (4.7)

and
 

∂ R free(<)
m (ρ)
∂ ρ

!

ρ=ρ0

=

 

∂ R free(>)
m (ρ)
∂ ρ

!

ρ=ρ0

. (4.8)

The inner solutions R free(<)
m (ρ) depend on Vint. For two dimensional s -wave scattering

(m = 0), the phase shift δ0(k ) determines the two dimensional energy-dependent scat-

tering length a 0(k ) [102],

a 0(k ) =
2

k
exp

�

π

2
cotδ0(k )−γ

�

, (4.9)

where γ denotes Euler’s constant. The energy-dependent scattering length a 0(k ), which

is always greater or equal to zero, is defined such that the scattering wave function has

a node at ρ = a 0(k ). The unusual functional form of a 0(k ), i.e., the exponential de-

pendence on the phase shift, is a direct consequence of the logarithmic dependence of

Nm (kρ) on kρ,

N0(kρ)≈
2

π
[ln(kρ/2)+γ] (4.10)
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for kρ→ 0. For higher partial waves, we define generalized energy-dependent scatter-

ing lengths a m (k ) [67], which have dimensions of (length)2m , as

a m (k ) =−
tan(δm (k ))

k 2m

Γ(m )Γ(m +1)22m

π
. (4.11)

Since a 1(k )has dimensions of (length)2, we refer to it as scattering area. Energy-independent

generalized scattering lengths a m are readily defined through

a m = lim
k→0

a m (k ). (4.12)

4.1.2 Derivation of pseudopotential

To derive two dimensional zero range potentials, we assume that the atom-atom poten-

tial Vint(ρ) depends only on the distance ρ between the two atoms, that is, we neglect

any angular dependence that may arise from spin-dependent interactions. The radial

Schrödinger equation in the relative coordinate is then given by Eq. (4.5). We now derive

m -dependent two dimensional zero range pseudopotentials, Vint(ρ) = V ps
m (ρ), which

reproduce the low-energy observables of a shape-dependent short-range potential.

We follow the δ-shell procedure illustrated in detail for the one dimensional case.

We write the pseudopotential V ps
m (ρ) in terms of a δ-shell of radius ρ0 and a yet to be

determined operator Ôm (ρ) [65],

V ps
m (ρ) = {δ(ρ−ρ0)Ôm (ρ)}ρ0→0. (4.13)

The solutions to Eq. (4.5) for Vint(ρ) = V ps
m (ρ) can be written in terms of the cylindrical

Bessel functions Jm (kρ) and Nm (kρ). Forρ <ρ0, only Jm , which is regular at the origin,
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contributes,

R free(<)
m (ρ) = Bm Jm (kρ). (4.14)

Since Vint(ρ) = V ps
m (ρ) = 0 for ρ > ρ0, the wave function is given by Eq.(4.6) [as in the

one dimensional case, the δ-shell introduces a phase shift δm (k ) of the m th partial]. In

Eq. (4.14), Bm denotes a constant to be determined below.

Imposing continuity of the wave function R free
m (ρ) atρ =ρ0, that is, requiring R free(>)

m (ρ0) =

R free(<)
m (ρ0), allows Bm to be expressed in terms of Am . Integrating the Schrödinger equa-

tion from ρ =ρ0−ε to ρ0+ε and then taking the limit ε→ 0, results in

ħh2

2µ

�

∂

∂ ρ
R free(>)

m (ρ)−
∂

∂ ρ
R free(<)

m (ρ)
�

ρ=ρ0

= Ôm (ρ0)R free(>)
m (ρ0). (4.15)

As in the one dimensional case, the derivative of the wavefunction is discontinuous at

ρ = ρ0 since the interaction potential V ps
m (ρ) is infinite at ρ = ρ0. The discontinuity

of the derivative is given by Eq. (4.15). Plugging Eqs. (4.14) and (4.6) into Eq. (4.15) and

taking kρ0� 1 determines the operator Ôm (ρ0), and hence the pseudopotential V ps
m (ρ).

For m = 0, we find [67]

V ps
0 (ρ) =







−ħh
2

µ
tan(δ0(k ))

�

1− 2 tan(δ0(k ))
π

f 0(k ,ρ)
�

πρ

∂

∂ ρ
ρδ(ρ−ρ0)







ρ0→0

, (4.16)

where f 0(k ,ρ) = 1+ γ+ ln(kρ/2). The explicit k dependence of the m = 0 zero range
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potential drops out when V ps
0 (ρ) is written in terms a 0(k ),

V ps
0 (ρ) =







ħh2

2µ
�

ln
�

ρ

a 0(k )

�

+1
�

ρ

∂

∂ ρ
ρδ(ρ−ρ0)







ρ0→0

, (4.17)

where the energy dependence enters only through the energy dependent scattering

length a 0(k ). The prefactor in the pseudopotential contains ln a 0(k ) [recall a 0(k ) > 0],

and can take both positive and negative values. The pseudopotential can thus be either

effectively repulsive or effectively attractive. Our s -wave pseudopotential agrees with

the Λ potential derived in Ref. [103] if one sets Λ equal to k (see also Ref. [104]). The

boundary condition at ρ = 0 corresponding to the pseudopotential V ps
0 (ρ) is









ρ
∂ R free(>)

0 (ρ)
∂ ρ

R free(>)
0 (ρ)−ρ ∂ R free(>)

0 (ρ)
∂ ρ

�

f 0(k ,ρ)−1
�









ρ→0

=
−1

γ+ ln(k a 0(k )
2
)
, (4.18)

which simplifies to









ρ ln( ρ

a 0(k )
) ∂ R free(>)

0 (ρ)
∂ ρ

R free(>)
0 (ρ)









ρ→0

= 1. (4.19)

As expected there is no explicit k dependence in the boundary condition. In Sec. 4.2,

we use Eq. (4.19) to develop a coupled channel zero range model for two dimensional

scattering.
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For m > 0, a straightforward yet somewhat tedious calculation gives [67]

V ps
m (ρ, k ) =







−ħh
2[Γ(m+1)]2 tan(δm (k ))

µ(2m )!π

�

2
k

�2m

(1+ tan(δm (k ))
π

f m (k ,ρ))ρm+1

∂ 2m

∂ ρ2m
ρmδ(ρ− s )







s→0

, (4.20)

where

f m (k ,ρ) = ψ̄(m )−2 ln

�

kρ

2

�

−
r=2m−1
∑

r=0

2

2m − r
. (4.21)

Here, ψ̄(m ) =ψ(1)+ψ(m +1), whereψ denotes the digamma function.

As written in Eq. (4.20), the m > 0 pseudopotential leads, despite the regularization

operator, to divergences at ρ → 0 if the energy-dependent coefficients Cm and Dm of

the ρ−m and ρm ln(ρ) terms in the expansion of the eigenfunction sought differ from

the corresponding coefficients cm and d m of the expansion of the irregular free particle

solution Nm (kρ). To cure this divergence, the right hand side of Eq. (4.20) has to be

multiplied by d m Cm/(cm Dm ), resulting in a pseudopotential that has to be determined

self-consistently.

For example, the ratio Cm/Dm for the harmonic oscillator eigenfunctions with non

integer quantum number χ [see Eq. (4.30)] is given by

Cm

Dm
= (−1)m+1 1

2

Γ(m )Γ(m +1)Γ(−χ −m )
2Γ(−χ)

. (4.22)

The ratio cm/d m for the free particle Neumann function Nm (kρ), in contrast, is given

by
cm

d m
=

1

2

�

2

k

�2m

Γ(m )Γ(m +1). (4.23)
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Combining Eqs. (4.22) and (4.23), we obtain

Cm d m

Dm cm
= (−1)m+1

�

k

2

�2m Γ(−χ −m )
2Γ(−χ)

. (4.24)

Hence the pseudopotential corresponding to the m th partial wave (m > 0) for two in-

teracting particles in two dimensions under radially symmetric external harmonic con-

finement is given by

V ps
m (ρ, k ) =(−1)m+1

�

k

2

�2m Γ(−χ −m )
2Γ(−χ)

×






−ħh
2[Γ(m+1)]2 tan(δm (k ))

µ(2m )!π

�

2
k

�2m

(1+ tan(δm (k ))
π

f m (k ,ρ))ρm+1

∂ 2m

∂ ρ2m
ρmδ(ρ−ρ0)







ρ0→0

. (4.25)

Interestingly, such a self-consistency condition is not needed for systems with odd di-

mensionality.

The bound state energies E of the pseudopotentials V ps
m (ρ) can be determined through

analytic continuation [65]. For m = 0, we recover the well known expression for the zero

range binding energy E [105],

E =
−ħh2

2µ(a 0(k ))2
4 exp(−2γ). (4.26)

For m > 0, the binding energies E are given by

E =
−2ħh2

µ[−ı (−1)m a m (k )]1/m

�

Γ(m )Γ(m +1)
π

�1/m

. (4.27)

The occurrence of an “ı ” in Eq. (4.27) appears odd at first sight. This puzzle is re-

solved by noting that the two dimensional generalized energy-dependent scattering
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lengths a m (k ) with m > 0 are, in contrast to the one dimensional and three dimen-

sional counterparts, complex. Consequently, the binding energies E are determined by

those a m (k ) [106, 107] for which the real part vanishes.

We now illustrate for a square well potential VSW with range ρ0 and depth V0 that

Eq. (4.27) predicts the binding energy E of the two dimensional dimer accurately. First,

we determine the generalized scattering area a 1(k ) analytically [see Eq. (C.1) for m = 1].

Dashed lines in Fig. 4.1(b) show the real part of a 1(k ), ℜ(a 1(k )), while solid lines show

the imaginary part of a 1(k ), ℑ(a 1(k )), as a function of E for a square well potential with

V0 = 9E0, where E0 = ħh2/(µρ2
0). ℑ(a 1(k )) vanishes for positive energies, and is non-

zero for negative E . ℜ(a 1(k )) changes from negative to positive values at E ≈−4.38E0.

The corresponding imaginary part of a 1(k ) at this energy value determines the binding

energy E , Eq. (4.27), in the zero range approximation. Asterisks in Fig. 4.1(a) show the

resulting E for various well depths V0. For comparison, a solid line shows the m = 1

binding energy for VSW(ρ). The energy for VSW(ρ) (solid line) and that determined from

the energy-dependent scattering area via Eq. (4.27) (asterisks) agree, by construction,

to many digits.

4.1.3 Atoms in a harmonic trap

We now use the proposed pseudopotentials to determine the eigenspectrum of two

atoms in two dimensions under external harmonic confinement. The radial Schrödinger

equation for this system is given by

�

−
ħh2

2µ

�

∂ 2

∂ ρ2
+

1

ρ

∂

∂ ρ
−

m 2

ρ2

�

+Vint(ρ)+Vext(ρ)

�

Rm (ρ) = E Rm (ρ), (4.28)

where Vext(ρ) = µω2ρ2/2 is the external two dimensional harmonic trapping potential.

The solutions for ρ < ρ0 and ρ > ρ0 are proportional to the confluent hypergeometric
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Figure 4.1: (a) Binding energy E for m = 1 as a function of V0/E0, where E0 = ħh2

µρ2
0

.

Asterisks show E predicted by the zero range potential, Eq. (4.27), and evaluated self-
consistently for VSW with ρ0 = 1. The solid line shows E for two particles interacting
through VSW with ρ0 = 1. (b) Real (dashed line) and imaginary (solid line) parts of a 1(k )
as a function of E/E0 for V0 = 9E0.
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functions M and U , i.e.,

R (<)m (ρ)∝ρ
m exp

�

−
ρ2

2a 2
ho

�

M

�

−χ , m +1,
ρ2

a 2
ho

�

(4.29)

and

R (>)m (ρ)∝ρ
m exp

�

−
ρ2

2a 2
ho

�

U

�

−χ , m +1,
ρ2

a 2
ho

�

, (4.30)

where χ denotes a non-integer quantum number, Emχ = (2χ + 1+m )ħhω. Following

steps similar to those detailed in Sec. 2.2, we derive an implicit eigenequation for the

eigenenergies Emχ ,

(−1)m+1Γ(−χ −m )
Γ(−χ)

m−1
∑

r=0

(−χ −m )r (−1)m−r

(1−m )r r !(2m −2r )!!

=
ln
�

χ + m+1
2

�

−ψ(−χ)
Γ(m )Γ(m +1)

+
a 2m

ho

a m (kmχ )
1

�

χ + m+1
2

�m , (4.31)

where kmχ =
p

2µEmχ/ħh and (x )r = x (x +1) · · · (x + r −1) with (x )0 = 1. Equation (4.31)

contains the generalized energy-dependent two dimensional scattering length a m (k )

evaluated at k = kmχ and is valid for m > 0; for m = 0, the eigenenergies are given by

ln

�

a 0(k0χ )
a ho

�

+
1

2
ψ

�

1

2
−

E0χ

2ħhω

�

−ψ(1) = 0. (4.32)

Asterisks in Fig. 2.6 show the m = 1 eigenenergies for two particles interacting through

the proposed zero range potential, Eq. (4.31), under harmonic confinement over a large

range of zero-energy scattering areas a 1. For comparison, solid lines show the exact

eigenenergies, determined semi-analytically, for two particles under harmonic con-

finement interacting through a square well potential with rangeρ0 = 0.01a ho. Figure 4.2

illustrates excellent agreement between the eigenenergies for two two dimensional par-
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Figure 4.2: E1χ as a function of the energy independent generalized scattering length
a 1 for m = 1 (ω= 2πν). Asterisks show E1χ , Eq. (4.31), for the energy-dependent pseu-
dopotential V ps

1 (ρ) and solid lines show E1χ for VSW with ρ0 = 0.01a ho. For comparison,
horizontal dotted lines indicate the energy levels for a 1 = 0.
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ticles interacting through the pseudopotential and those interacting through the square

well potential. We find similar behaviors for higher partial waves.

4.1.4 Quasi two dimensional systems

So far in this section we have considered strictly two dimensional single channel po-

tentials. As discussed in Ch. 1, advancements in trapping technology have led to the

realization of quasi two dimensional systems [53]. In quasi two dimensional systems

excitations along z are frozen out. The s -wave (m = 0) scattering wavefunction of a

strictly two dimensional system can be written as [108, 109]

ψ2D
0 (ρ) = J0(kρ)− f (k ,φ)H (1)

0 (kρ), (4.33)

where H (1)
0 is the Hankel function of the first kind and f (k ,φ) is the scattering ampli-

tude,

f (k ,φ) =−
ıπ/2

ln
�

k a 2D
0

2

�

+γ− ıπ
2

. (4.34)

In this section we use the superscript 2D to distinguish the two and three dimensional

wavefunctions and scattering lengths. The s -wave scattering wavefunction in a quasi

two dimensional system can be written as [108]

ψ0(ρ) =Qn (z )J0(kρ)−
∑

n ′

Qn ′(z ) f nn ′(kn ′ ,φ)H
(1)
0 (kn ′ρ), (4.35)

where Qn (z ) denote the one dimensional harmonic oscillator functions. If we naively

assume that the system occupies the lowest harmonic oscillator orbital in the z -direction,
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then in Eq. (4.35) we have n = n ′ = 0 and

ψ0(ρ) =Q0(z )J0(kρ)−Q0(z ) f 00(k0,φ)H (1)
0 (k0ρ), (4.36)

where [108]

| f 00|
2 =

2π

π2+
�p

2πa z

a s
+ ln

�

B
πk 2a 2

z

��2 (4.37)

and B ≈ 0.915. Comparing | f 00|2 from Eq. (4.37) and | f (k ,φ)|2 from Eq. (4.34), we get a

relationship between the two and three dimensional scattering lengths,

a 2D
0

a z
=

2
p
πe−γ/2
p

B
e−
p

π
2

a z
a s . (4.38)

This expression does not account for the virtual excitations and is only approximate. A

more accurate expression for a 2D
0 in terms of a s is given by [97, 110]

a 2D
0

a z
=

1
p

2
exp

�

Φ(0)
2
−
p
πa z

2a s

�

, (4.39)

where

Φ(x ) = 2− ln(1+x )+2
∞
∑

k=1

(2k )!
(2k k !)2

��

k +
1

2

�

ln
x +k

x +k +1
+1

�

(4.40)

and Φ(0) = 1.938.

Figure 4.3 shows the two dimensional scattering length a 2D
0 for a quasi two dimen-

sional system as a function of the three dimensional scattering length a s . Although a s

takes both positive and negative values, a 2D
0 is always positive. The interaction strength

for the two dimensional potential g 2D [108, 109, 97] that is used in the two dimensional

108



-2 -1 0 1 2
a

s
/a

z

0

5

10

a 02D
/a

z

Figure 4.3: Two dimensional m = 0 scattering length a 2D
0 in a quasi two dimensional

system as a function of the three dimensional scattering length a s [see Eq. (4.39)].
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mean-field Gross-Pitaevskii equation is given by

g 2D =−
πħh2

µ ln(k a 2D
0 )

. (4.41)

Since the interaction strength contains ln(a 2D
0 ), it can take both positive and negative

values, allowing for both effectively attractive and effectively repulsive interactions.

4.2 Coupled channel treatment

4.2.1 Coupled channel scattering length

To describe the two-body physics across a two dimensional Feshbach resonance for

two bosons or for two fermions with opposite spin, we develop a coupled channel zero

range model for m = 0. The procedure is similar to that outlined in Ch. 3 for a three

dimensional s -wave Feshbach resonance. In this section we consider m = 0 and omit

the subscript “m ”. For ρ > 0, the wave function with components R free
(1) (ρ) and R free

(2) (ρ)

satisfies the free particle Schrödinger equation in the relative coordinate,







h

ħh2

2µ
( ∂

2

∂ ρ2 +
1
ρ
∂
∂ ρ
)+E

i

R free
(1) (ρ)

h

ħh2

2µ
( ∂

2

∂ ρ2 +
1
ρ
∂
∂ ρ
)+E −ε

i

R free
(2) (ρ)






= 0, (4.42)

where ε denotes a detuning (ε≥ 0), which can be changed, e.g., by varying the strength

of an external magnetic field and subscripts “(1)” and “(2)” indicate channels one and

two respectively. Since R free
(1) (ρ) satisfies the free particle Schrödinger equation it is given

by [see Eq. (4.6)]

R free
(1) (ρ) = Am (Jm (kρ)− tanδm (k )Nm (kρ)). (4.43)
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We are interested in energies E in the range 0< E <ε. Since E is less than the threshold

energy ε of the closed channel (2), the wavefunction in channel two is given by

R free
(2) (ρ) = Fm Km (kρ), (4.44)

where Fm is a constant that can be determined through boundary conditions at ρ = 0

[see Eq. (4.45) below] and Km (kρ) is the modified cylindrical Bessel function of the sec-

ond kind. The two dimensional pseudopotential V ps
0 (ρ) imposes a boundary condition

at ρ = 0, which we parametrize as













ln(ρ/b1) β

β ln(ρ/b2)













ρ ∂
∂ ρ

R free
(1) (ρ)

ρ ∂
∂ ρ

R free
(2) (ρ)













ρ→0

=







R free
(1) (ρ)

R free
(2) (ρ)







ρ→0

. (4.45)

The coupling between the two channels is characterized by the dimensionless parame-

terβ . To ensure a divergence-free treatment, Eq. (4.45) takes this coupling parameter to

be proportional to the derivative of the wave function components, and not, as done in

three dimensions [96], to be proportional to the wave function components themselves.

In the absence of coupling (β = 0), Eq. (4.45) reduces to the single channel boundary

conditions given in Eq. (4.19). The scattering length a CC (E ,ε) predicted by Eqs. (4.42)

and (4.45) is

a CC (E ,ε) =b1 exp

¨

−β 2/

�

γ+
1

2
ln

�

µb 2
2

2ħh2 (ε−E )

��«

. (4.46)

To determine the behavior of the scattering length a CC (E ,ε) in the vicinity of the

resonance as a function of the magnetic field strength B , we Taylor-expand a CC (E ,ε)

about the resonance position εR , which is given by the binding energy E of the strongly

closed molecular channel, εR = 2 exp(−2γ)ħh2/(µb 2
2). We find a simple functional form
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for a CC (E = 0, B ) in terms of the background scattering length Ab g , the resonance width

∆ and the resonance position BR ,

a CC (E = 0, B ) = Ab g exp

�

−
∆

B − BR

�

, (4.47)

where Ab g = b1, BR = εR/γ and ∆ = 2β 2εR/γM (γM denotes the difference in magnetic

moment between atoms in the open and closed channel). The functional dependence

of the two dimensional coupled channel scattering length a CC on B near a resonance

is distinctly different from that of the three dimensional counterpart. In principle, the

parameters b1, b2 and β can be determined by comparing Eq. (4.47) with experimental

data for a specific two dimensional Feshbach resonance. Since no such data exist to

date, the inset of Fig. 4.4 illustrates the behavior of a CC as a function of ε for E = 0,

a 1 = 0.5a ho, a 2 = 0.05a ho and β = 0.1. The scattering length a CC changes from infinity

to zero at the resonance value εR , which is indicated by a vertical dotted line.

4.2.2 Coupled channel system under confinement

We now consider two particles interacting through the two dimensional coupled chan-

nel m = 0 zero range pseudopotential under radially symmetric external harmonic con-

finement. Forρ > 0, the wave function with components R(1)(ρ) and R(2)(ρ) satisfies the

harmonic oscillator Schrödinger equation in the relative coordinate,







h

ħh2

2µ
( ∂

2

∂ ρ2 +
1
ρ
∂
∂ ρ
)− 1

2
µω2ρ2+E

i

R(1)(ρ)
h

ħh2

2µ
( ∂

2

∂ ρ2 +
1
ρ
∂
∂ ρ
)− 1

2
µω2ρ2+E −ε

i

R(2)(ρ)






= 0. (4.48)

The boundary condition at ρ = 0 is given by Eq. (4.45) without the superscript “free”,

since this is for the trapped system. We find an implicit eigenequation [67] for the
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eigenenergies En , En < ε, of the coupled channel zero range model for two particles

under harmonic confinement with m = 0,

β 2

�

ln

�

b1

a ho

�

+
1

2
ψ

�

1

2
−

En

2ħhω

�

−ψ(1)
�−1

=
�

ln

�

b2

a ho

�

+
1

2
ψ

�

1

2
−

En −ε
2ħhω

�

−ψ(1)
�

. (4.49)

Figure 4.5 shows the eigenenergies En as a function of ε for b1 = 0.5a ho, b2 = 0.05a ho

and three different values of β , i.e., β = 0.03 (solid lines), 0.1 (dotted lines) and β = 0.3

(dashed lines). The non-vanishing coupling leads to a series of energy level crossings

at ε≈ εR , which become narrower as the coupling β decreases. For higher-lying states,

i.e., for larger En , the resonance of the energy-dependent scattering length a CC (ε, E ),

Eq. (4.46), moves to larger ε values. This explains why the energy level crossings move

to larger ε for higher n . The energy of the state n = 1 for ε < εR corresponds to the

binding energy of the open channel, i.e., of channel (1). A two dimensional coupled

channel square-well system (see Ref. [95] for the three dimensional analog) reproduces

the results obtained for our proposed coupled channel zero range system.

Our coupled channel model leads to a mixing of the strongly closed molecular chan-

nel R(2)n (ρ) and the open channel R(1)n (ρ). To quantify the admixture of the strongly

closed molecular level across the resonance, we define the molecular fraction Pn [95],

Pn =

∫

|R(2)n |2ρdρ/

�∫

�

|R(1)n |2+ |R(2)n |2
�

ρdρ

�

. (4.50)

The main part of Fig. 4.4 shows Pn for b1 = 0.5a ho, b2 = 0.05a ho and different β values as

a function of ε; a solid line shows P0 for β = 0.1, and dotted lines show P1 for β = 0.03,

0.1 and 0.3. The molecular fraction P0 is close to one for small ε, and drops to zero as

ε is swept across the resonance. This indicates that the character of the n = 0 state
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ε/(hν)

P
n

Figure 4.4: Molecular fractions P0 (solid line) and P1 (dotted lines), Eq. (4.50), for b1 =
0.5a ho, b2 = 0.05a ho and different coupling constants β as a function of ε. Inset: 2D
scattering length a CC (E ,ε) as a function of ε for E = 0, b1 = 0.5a ho, b2 = 0.05a ho and
β = 0.1.
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Figure 4.5: Eigenenergies En , Eq. (4.49), for b1 = 0.5a ho, b2 = 0.05a ho and three different
values of β , i.e., β = 0.03 (solid lines), 0.1 (dotted lines) and 0.3 (dashed lines) as a
function of ε.
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changes from “strongly closed molecular” to “weakly closed molecular” as ε changes

from ε < εR to ε > εR . The molecular fraction of the n = 1 state is close to zero away

from resonance for all coupling strengths considered. Near resonance, however, P1 de-

pends on β . For weak coupling, P1 approaches one on resonance. For strong coupling,

in contrast, P1 is comparatively small as shown in Fig. 4.4 for β = 0.3. This suggests

that the two dimensional analog of the BEC-BCS crossover can be best studied utilizing

two dimensional Feshbach resonances with strong coupling for which the admixture

of the strongly closed molecular channel is small. Similar behavior is found for three

dimensional systems [111].

4.3 Conclusions

This chapter derives a series of two dimensional zero range pseudopotentials, which

describe the low-energy scattering of two particles with partial wave m . The boundary

condition implied by the m = 0 pseudopotential is then used to develop an analytically

solvable coupled channel model, which describes the physics across a two dimensional

Feshbach resonance. The predicted dependence of the effective two dimensional scat-

tering length a CC on the strength B of the external magnetic field, Eq. (4.47), may prove

useful in analyzing experimental data for quasi-two dimensional Bose gases or two-

component Fermi gases. We also determine the binding energy of two dimensional

dimers, which can be measured with present-day technology by utilizing optical lattices

with doubly-occupied lattice sites in the no-tunneling regime [14], across a Feshbach

resonance.
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Chapter 5

Anisotropic two body systems in three
dimensions

In this chapter we treat anisotropic interactions. All Hamiltonian, potentials, wavefunc-

tions and phase shifts are three dimensional. Section 5.1 obtains the coupled chan-

nel energy dependent K -matrix elements K l ′m ′

l m (k ). Section 5.2 provides a detailed de-

scription of two aligned dipoles interacting through a shape dependent finite range

model potential in free space and under harmonic confinement. Section 5.3 presents

a zero range pseudopotential treatment. Section 5.3.1 introduces the pseudopotential,

Sec. 5.3.2 derives the eigenequation for the two-dipole system under confinement and

Sec. 5.3.3 discusses the eigenspectrum. Section 5.4 develops a zero range pseudopoten-

tial treatment for anisotropic interaction potentials applicable to cylindrically symmet-

ric harmonic confinement: Section 5.4.1 derives the pseudopotential, Sec. 5.4.2 derives

the eigenequation, and Secs 5.4.3 and 5.4.4 discuss the eigenspectrum.
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5.1 Scattering for coupled channel partial waves

Chapter 3 considered spherically symmetric model interaction potentials, while this

chapter considers scattering by anisotropic interaction potentials [112]. Unlike the spher-

ically symmetric interaction potentials that depend only on the distance between the

two particles, anisotropic potentials have an angle dependence, i.e., the interaction po-

tential between the two particles depends on the angle between the relative distance

vector and some symmetry breaking axis. For two dipoles aligned along the z axis, e.

g., the interaction potential depends on the angle between the relative distance vector

and the z -axis.

The Schrödinger equation for two particles in three dimensions in the relative co-

ordinate ~r is given by Eq. (3.1). For an anisotropic interaction potential, the solution to

Eq. (3.1) can be decomposed into different partial waves,

Ψfree(~r ) =
∞
∑

l ′=0

l ′
∑

m ′=−l ′

c l ′m ′R free
l ′m ′(r )Yl ′m ′(θ ,φ), (5.1)

where R free
l ′m ′(r ) is a function of r only. Putting Eq. (5.1) into Eq. (3.1), multiplying by

Y ∗l m (θ ,φ) and performing the angular integral yields

�

−
ħh2

2µ

�

∂ 2

∂ r 2
+

2

r

∂

∂ r
−

l (l +1)
r 2

�

−E

�

c l m R free
l m (r ) =

∞
∑

l ′=0

l ′
∑

m ′=−l ′

c l ′m ′V l ′m ′

l m (r )R free
l ′m ′(r ), (5.2)

where

V l ′m ′

l m (r ) =

∫

Y ∗l m (θ ,φ)Vint(~r )Yl ′m ′(θ ,φ)dΩ. (5.3)

Due to the angle dependence of the interaction potential, the angular momentum is

not conserved during the scattering process. This results in a coupling of different par-

tial waves and consequently non-vanishing matrix elements V l ′m ′

l m for l m 6= l ′m ′. We
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assume that there exists a distance r0 such that the interaction potential Vint(~r ) can be

neglected for all r > r0. The solution to Eq. (5.2) for r > r0 is then given by

R free(>)
l m (r ) =ℵ(k )



j l (k r )−
∑

l ′,m ′

K l ′m ′

l m (k )n l (k r )



 , (5.4)

whereℵ(k ) denotes the normalization constant and the K -matrix elements K l ′m ′

l m (k ) are

determined by the energy dependent phase shiftsδl ′m ′

l m (k ), i. e., K l ′m ′

l m (k ) = tanδl ′m ′

l m (k ) [112,

113]. As in the single channel case, the phase shifts are determined by requiring that the

wavefunction and its first derivative are continuous at r = r0. The K -matrix is symmet-

ric, i. e.,

K l ′m ′

l m (k ) = K l m
l ′m ′(k ). (5.5)

For potentials that have even parity, like the interaction potential between two aligned

dipoles, the K -matrix is block diagonal and each block can be treated separately. Even

partial waves are scattered only into even partial waves and odd partial waves are scat-

tered only into odd partial waves.

5.2 Dipole-dipole interaction: Finite range shape depen-

dent potential

This section determines the scattering properties of two aligned dipoles, either identi-

cal bosons or identical fermions, as functions of the dipole moment and the scattering

energy. Sequences of scattering resonances are found. The first types of resonances

(termed B1 and F1 for identical bosons and fermions, respectively) are associated with

the pulling in of a bound state in the lowest adiabatic potential curve, while the second

types (termed B2 and F2 for identical bosons and fermions, respectively) are associ-
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ated with the manifold of excited adiabatic potential curves. The resonances of type B1

have previously, due to the absence of a barrier in the lowest adiabatic potential curve,

been termed potential resonances, while those of type B2 have been termed shape res-

onances [114]. Following this nomenclature, resonances of types F1 and F2 are shape

resonances. The behavior of identical fermions differs, in certain respects, distinctly

from that of identical bosons. Contrary to our finding, Ref. [27] reported the absence

of scattering resonances for identical fermions. The resonance positions are correlated

with the appearance of bound states in free-space and trapped systems. The nature of

the resonances is further elucidated by analyzing the bound state wavefunctions.

Neglecting hyperfine interactions and treating each dipole as a point particle, the

interaction potential between two dipoles aligned along the z -axis is for large interpar-

ticle distances r given by Vdd,

Vdd(~r ) = d 2 (1−3 cos2θ )
r 3

, (5.6)

where d denotes the dipole moment. We model the short-range interaction Vsr between

the dipoles by a simplistic hardwall potential,

Vsr(~r ) =







∞ for r < rc

0 for r > rc ,
(5.7)

so that the full model potential is given by

Vmodel(~r ) =







Vsr(~r ) for r < rc

Vdd(~r ) for r > rc .
(5.8)
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The boundary condition imposed at rc can be thought of as introducing a short-range

K -matrix. Beyond rc , the interaction is purely dipolar; this long-range interaction mod-

ifies the short-range K-matrix [27]. The characteristic length scale of Vsr is given by the

hardcore radius rc and that of Vdd by the dipole length D∗, D∗ = µd 2/ħh2. The corre-

sponding natural energy scales are given by Erc and ED∗ , respectively [Erc = ħh
2/(µr 2

c )

and ED∗ = ħh
2/(µD2

∗ )]. A straightforward scaling of the relative Schrödinger equation

shows that D∗ and rc are not independent but that the properties of the system depend

only on the ratio D∗/rc [115, 116], which can be tuned experimentally through the ap-

plication of an electric field [27].

To obtain the K -matrix elements K l ′,m ′

l m we solve the relative Schrödinger equation

[Eq. (3.1)], with Vint(~r ) = Vmodel(~r ), for a fixed scattering energy E numerically. The az-

imuthal symmetry conserves the projection quantum number, and throughout we re-

strict our analysis to m = 0 (hence we omit the m label). The radial Schrödinger equa-

tion [Eq.(5.2)] is propagated using the Johnson algorithm with adaptive step size [117].

The K -matrix elements K l ′0
l 0 (k ) = tanδl l ′(k ) are found by matching the log-derivative

to the free-space solutions [Eq. (5.4)] at sufficiently large r . Since the long-range part of

Vmodel(~r ) is proportional to the spherical harmonic Y20(θ ,φ), the phase shifts δl l ′(k ) are

only non-zero if |l − l ′| ≤ 2.

To illustrate the convergence of K -matrix elements with increasing matching point

r0, crosses in Figs. 5.1(a), (b) and (c) show the zero-energy K -matrix elements K 00
00 , K 00

20

and K 20
20 , respectively, as a function of r0 for D∗ = 9.7329rc . Figure 5.1 shows that the K -

matrix elements converge with increasing r0. As can be seen from Fig. 5.1(a), K 00
00 con-

verges quickly (to an accuracy of about 0.5% of its converged value) near r0 = 100rc . K 00
20

converges more slowly (r0 = 1000rc ) and K 20
20 converges yet more slowly (r0 = 10000rc ).

The convergence depends on the functional form of the effective potential, which con-

tains the sum of V l ′0
l 0 (r ) and the angular momentum term −ħh

2l (l+1)
2µr 2 δl l ′ . For (l , l ′) given
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Figure 5.1: Panels (a), (b) and (c) show the zero-energy K -matrix elements K 00
00 , K 00

20 and
K 20

20 , respectively, as a function of r0 on a logarithmic scale for D∗ = 9.7329rc . Panels (a),
(b) and (c) all have the same x -axis label and scale.
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by (0, 0), the effective potential has no long range part and K 00
00 converges quickly. For

(2, 0), the effective potential varies to leading order as 1/r 3 for large r , which makes it

long range. Consequently, K 00
20 converges more slowly. For (2, 2), the effective poten-

tial varies to leading order as 1/r 2 for large r , which makes it more long range than the

effective potential for (2, 0). Consequently, K 20
20 converges slower than K 00

20 .

The energy dependent generalized scattering lengths a l l ′(k ) for the dipole-dipole

interaction potential (this definition applies only to the dipole-dipole interaction po-

tential), are defined through the K-matrix elements [112],

a l l ′(k ) =−
K l ′0

l 0 (k )
k

, (5.9)

so that the a l l ′(k ) approach a constant as k → 0 [39, 32]. The energy independent gen-

eralized scattering lengths are given by

a l l ′ = lim
k→0

a l l ′(k ). (5.10)

It has been shown that the K-matrix elements (except for K 00
00 ) for realistic poten-

tials, such as for the Rb-Rb potential in a strong electric field [118] or an OH-OH model

potential [115], away from resonances, are approximated with high accuracy by the K-

matrix elements for the dipolar potential only, calculated in the first Born approxima-

tion. Applying the Born approximation to Vdd(~r ), we find for m = 0 and l = l ′ (l ≥ 1)

a l l =−
2D∗

(2l −1)(2l +3)
, (5.11)
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Figure 5.2: Scattering data [(a)-(d) for identical bosons and (e)-(g) for identical
fermions]: Scaled scattering lengths (b) a 00/rc , (c) a 20/rc , (d) a 22/rc , (f ) a 11/rc , and
(g) a 31/rc as a function of the scaled dipole length D∗/rc for two dipoles interacting
through Vmodel for three different scattering energies: E = 9.36× 10−8Erc (solid line),
E = 9.36×10−6Erc (dashed line) and E = 9.36×10−5Erc (dotted line). In (a), crosses and
squares indicate the positions of B1 and B2 resonances, respectively. In (e), crosses and
squares indicate the positions of F1 and F2 resonances, respectively. The resonance po-
sitions are obtained by analyzing the WKB phase of the adiabatic potential curves (see
text). 124



and for m = 0 and l = l ′+2

a l l−2 =−
D∗

(2l −1)
p

(2l +1)(2l −3)
. (5.12)

For l ′ = 2 and l = 0, e.g., Eq. (5.12) reduces to a 20 = −D∗/(3
p

5), in agreement with

Ref. [68]. The scattering lengths a l−2,l are equal to a l l−2, and all other generalized scat-

tering lengths are zero. All non-zero scattering lengths a l l ′ , in the Born approximation,

are negative, depend on l and l ′, and are directly proportional to D∗. Furthermore, for

fixed D∗, the absolute value of the non-zero a l l ′ decreases with increasing angular mo-

mentum quantum number l , indicating that the coupling between different angular

momentum channels decreases with increasing l .

Figure 5.2 shows the generalized scattering lengths a l l ′ for two identical bosons

and two identical fermions for three different scattering energies E as a function of the

dipole length D∗. The generalized scattering lengths have units of length. The largest

D∗/rc value considered in Fig. 5.2 is 40. If we choose rc ≈ 100a 0, then the largest dipole

length considered in Fig. 5.2 is Dmax
∗ ≈ 4000a 0, implying a minimum dipole energy E min

D∗

of 1.27× 10−6 K. For the polar molecule OH, this corresponds to a maximum dipole

moment of 1.29 Debye, a value that should be attainable experimentally. The scatter-

ing energies in Fig. 5.2 range from 9.36× 10−8Erc to 9.36× 10−5Erc , or, using as before

rc = 100a 0, from 1.91×10−10 K to 1.91×10−7 K. Thus, the largest E/ED∗ value considered

in Fig. 5.2 is 0.15. This places the present study in the regime where the minimum value

of the cross section has been predicted to behave universally [119, 120], but where the

parameters of the two-body potential and the s -wave scattering length it results in, es-

pecially near resonance, are important [121]. Although the resonance positions depend

on the details of the short-range physics, the type of physics discussed here for Vmodel(~r )

in the vicinity and away from resonance should be to a large degree generic. In prin-
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ciple the K -matrix has infinite entries with l and l ′ taking values from zero to infinity

resulting in infinite generalized scattering lengths a l l ′ . In practice, the a l l ′ progressively

decrease with increasing l + l ′ in case of the dipole-dipole interaction potential for the

above energies and we cut it off at some large value of l (l = l ′ = l max).

Figure 5.2(b) shows the scattering length a 00 as a function of D∗ for two identi-

cal bosons interacting through Vmodel(~r ). Five B1 and two B2 resonances (located at

D∗ ≈ 23rc and 37rc ) are clearly visible. Figures 5.2(c) and 5.2(d) show the generalized

scattering lengths a 20 and a 22, respectively. In the Born approximation for Vdd, both a 20

and a 22 vary linearly with D∗ [see Eqs.( 5.11) and (5.12)] [32, 70].

a 20 and a 22 obtained from the full coupled channel calculation show deviations

from the Born approximation for certain D∗ values. The positions of the “spikes” co-

incide with the resonance positions of a 00. Notably, the widths of the spikes decrease

with increasing l + l ′.

For a given D∗, the adiabatic potential curves V (i )(D∗, r ) are obtained by diagonaliz-

ing the matrix, whose elements are the sum of V l ′0
l 0 (r ) and the angular momentum term

−ħh
2l (l+1)
2µr 2 δl l ′ , for different r values [114]. Solid and dashed curves in Fig. 5.3 show the

adiabatic potential curves V (i )(D∗, r ) for i = 0 and i = 1, respectively, for D∗ = 13.064rc

and even l . i = 0 labels the energetically lowest lying adiabatic potential curve, i = 1

labels the energetically next higher lying adiabatic potential curve and so on. V (0)(D∗, r )

is purely attractive for r > rc . V (1)(D∗, r ), in contrast, has a repulsive barrier, which stems

from the angular momentum barrier for l = 2.

The WKB phasesφ(i )WKB(D∗), are calculated by integrating over the adiabatic potential

curves V (i )(D∗, r ) between the inner and outer classical turning points rmin and rmax,

respectively,

φ(i )WKB(D∗) =

∫ rmax

rmin

r

−
2µV (i )(D∗, r )

ħh2 d r . (5.13)
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Figure 5.3: Adiabatic potential curves V (i )(D∗, r ) as a function of r , for D∗ = 13.064rc :
The solid curve shows the lowest adiabatic potential curve (i = 0) and the dashed curve
shows the energetically next higher lying adiabatic potential curve (i = 1).
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For the interaction potential Vmodel, the inner classical turning point of all the adiabatic

potential curves is given by rc . In the even l case, V (0)(D∗, r ) is attractive for r > rc and

the outer turning point is given by rmax =∞. For adiabatic potential curves with i > 0,

the outer classical turning point rmax is given by the the r value at which V (1)(D∗, r ) first

crosses zero. Hence the WKB phase is obtained from Eq. (5.13), by integrating over the

range of r values for which the adiabatic potential curves are negative. When the WKB

phase is an integral multiple of π a new bound state is pulled in. This corresponds to a

resonance in the scattering lengths a l l ′ .

Figure 5.2(a) shows the resonance positions as predicted by the WKB phase accu-

mulated in different adiabatic potential curves [114]. Crosses indicate the D∗ values at

whichφ(0)WKB(D∗) is an integral multiple of π and resonances occurring at approximately

these D∗ values are classified as B1 resonances. Squares indicate the D∗ values at which
∑∞

i=1φ
(i )
WKB(D∗) is an integral multiple of π and resonances occurring at approximately

these D∗ values are classified as B2 resonances.

Figures 5.2(f) and 5.2(g) show the generalized scattering lengths a 11 and a 31 for two

aligned identical fermions interacting through Vmodel(~r ) as a function of D∗. Away from

resonance, a 11 and a 31 vary approximately linearly with D∗ [see Eqs. (5.11) and (5.12)].

The spikes in Figs. 5.2(f) and 5.2(g) correspond to F1 and F2 resonances. Figures 5.2(f)

and 5.2(g) show five F1 and two F2 resonances (located at D∗ ≈ 23.5rc and 37.5rc ). A

key difference between dipole scattering of identical bosons and identical fermions is

that the lowest non-vanishing scattering length for bosons (i.e., a 00) cannot be approxi-

mated by applying the Born approximation to Vdd (the Born approximation for Vdd gives

a 00 = 0) while the lowest non-vanishing scattering length for fermions (i.e., a 11) can be,

away from resonance, approximated by the Born approximation for Vdd [32, 70]. The

crosses and squares shown in Fig. 5.2(e) indicate the positions of F1 and F2 resonances,

respectively, as predicted from the WKB phase of the lowest adiabatic potential curve
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and of all other adiabatic potential curves. The WKB prediction for the positions of F1

resonances is less accurate than that of B1 resonances.

We find that the widths of B1 and F1 resonances are in general larger than the widths

of B2 and F2 resonances, respectively. Furthermore, Fig. 5.2 shows that the widths

within each of the resonance sequences increases with increasing E for fixed D∗/rc and

with increasing D∗/rc for fixed E , and thus with increasing E/ED∗ .

To better understand the resonance structure in Fig. 5.2, we determine the bound

state energies of the two interacting dipoles in free space. The Schrödinger equation

for the relative coordinate is solved using two-dimensional B-splines. The two-dipole

system supports a new bound state at those D∗/rc values where the scattering lengths

a 00 and a 11 for two identical bosons and fermions, respectively, diverge. Solid lines in

Figs. 5.4(a) and 5.4(b) show the bound state energy for two identical bosons in the vicin-

ity of a B1 and a B2 resonance, respectively, while solid lines in Figs. 5.4(c) and 5.4(d)

show the bound state energy for two identical fermions in the vicinity of a F1 and a F2

resonance, respectively.

The two-body energy Eb of weakly-bound s -wave interacting systems is well de-

scribed by the s -wave scattering length a 00, Eb =−ħh2/(2µ[a 00(E )]2) [see Eq. (3.16)]. To

test if this simple zero range pseudopotential expression holds for dipolar systems, we

analytically continue the scattering lengths for Vmodel(~r ) to negative energies. We ob-

tain stable a 00(E ) and a 11(E ) for negative scattering energies by matching the coupled

channel solutions to the free-space solutions at relatively small r values (r0 ≈ |k |−1).

To illustrate the convergence of the scattering lengths for negative energies, crosses

in Figs. 5.5(a) and (b) show the K -matrix elements K 00
00 and K 10

10 , respectively, as a func-

tion of r0. The scattering energy E is about−3.285×10−6Erc in both panels correspond-

ing to |k |−1 ≈ 390rc . Correspondingly, the r0 chosen in Figs. 5.5(a) and (b) ranges from

0.1414|k |−1 to 1.98|k |−1. The size of a bound state is approximately given by |k |−1. If
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Figure 5.4: (Color online) Eigenenergies for two identical bosons in the vicinity of (a) a
B1 resonance and (b) a B2 resonance, and for two identical fermions in the vicinity of
(c) a F1 resonance and (d) a F2 resonance. Solid lines and circles show the bound state
energies for two dipoles in free space interacting through Vmodel(~r ) and Vpp, reg, respec-
tively. Dashed lines and crosses show the bound state energies for two dipoles under
external harmonic confinement interacting through Vmodel(~r ) and Vpp, reg, respectively.

The oscillator length a ho is given by
p

ħh/(µωho), and the hard core radius rc of Vmodel(~r )
is 0.00306 a ho. This figure is taken from Ref. [71].
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Figure 5.5: Panels (a) and (b) show the K -matrix elements K 00
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10 , respectively, as
a function of r0. In (a), the parameters are D∗ = 9.7329rc and E = −3.285× 10−6Erc . In
(b), the parameters are D∗ = 26.038rc and E =−3.285×10−6Erc . Panels (a) and (b) have
the same x -axis label and scale.
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r0 is much larger than |k |−1, then the exponentially decaying part of the wavefunction

is small compared to the exponentially growing part. In this case the exponentially

increasing and decreasing functions become “numerically” linearly dependent, which

prohibits the reliable extraction of the phase shift. On the other hand, r0 must be large

enough for most of the phase to be accumulated. This gives a small window of r0 values

for which the K -matrix elements are converged at negative energies.

The bound state energies for two identical bosons in free space, determined self-

consistently [107, 106] from Eb =−ħh2/(2µ[a 00(Eb )]2), are shown by circles in Figs. 5.4(a)

and 5.4(b). Similarly, we determine the bound state energies for two identical fermions

in free space by solving the equation Eb = −ħh2/(2µ[a 11(Eb )]2) [65, 64] self-consistently

[circles in Figs. 5.4(c) and 5.4(d)]. Somewhat surprisingly, the bound state energies in

the vicinity of all four resonance types are very well described by a single-channel ex-

pression.

In addition to the free-space system, we consider the trapped system. Dashed lines

in Fig. 5.4 show the energies for two dipoles interacting through Vmodel(~r ) under spheri-

cally symmetric external harmonic confinement Vtrap(r ), Vtrap(r ) = µω2
hor 2/2. Near res-

onance, the lowest state with positive energy changes rapidly and turns into a negative

energy state with molecular-like character. The energy of this “diving” state is slightly

higher than the energy of the free-space system (the trap pushes the energy up).

Figures 5.6(a) and 5.6(b) show the scaled eigenfunctions rψ(r,θ ) for two identical

bosons with E ≈ −0.88ħhωho as a function of r for different θ near a B1 and a B2 res-

onance, respectively. Similarly, Figs. 5.6(c) and 5.6(d) show the scaled eigenfunctions

for two identical fermions with E ≈ −0.88ħhωho near a F1 and a F2 resonance, respec-

tively. Although calculated for the simple model potential Vmodel(~r ), the wavefunctions

for r > rc are expected to share some key features with those obtained for more re-

alistic interactions between polar molecules. In all panels, the wavefunction cut for
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Figure 5.6: Eigenfunctions for two identical bosons in the vicinity of (a) a B1 reso-
nance (D∗ = 0.1061a ho) and (b) a B2 resonance (D∗ = 0.07147a ho), and for two identical
fermions in the vicinity of (c) a F1 resonance (D∗ = 0.07976a ho) and (d) a F2 resonance
(D∗ = 0.07167a ho) in a spherical harmonic trap interacting via Vmodel(~r ) for θ = 0◦ (solid
line), θ ≈ 18.2◦ (dashed line), θ ≈ 36.4◦ (dotted line) and θ ≈ 54.6◦ (dash-dotted line).
In all panels, rc equals 0.00306 a ho. Note the log scale for r and the different ranges of
the y -axis. This figure is taken from Ref. [71].
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θ = 0◦ has the largest amplitude, reflecting the fact that the dipole-dipole potential is

most attractive for θ = 0◦. Interestingly, the nodal structure of the wavefunction for two

identical bosons near the B1 resonance [Fig. 5.6(a)] has a similar structure to that of the

wavefunction of two identical fermions near the F1 resonance [Fig. 5.6(c)]: Both nodal

surfaces show approximately spherical symmetry. On the other hand, the nodal struc-

ture of the wavefunction for two identical bosons near the B2 resonance [Fig. 5.6(b)]

has a similar structure to that of the wavefunction for two identical fermions near the

F2 resonance [Fig. 5.6(d)]: The nodal surfaces depend on both r and θ .

To quantify the higher partial wave contributions, we project the wavefunctions

shown in Fig. 5.6 onto spherical harmonics. The projection p l onto the l th spherical

harmonic Yl 0 is given by

p l =

∫ ∞

rc

�

�

�

�

�

∫ 2π

0

∫ π

0

Yl 0(θ ,φ)ψ(r,θ )sinθdθdφ

�

�

�

�

�

2

r 2d r . (5.14)

The s -wave contribution p0 of the boson states near the B1 and B2 resonances is about

95%, while the p -wave contribution p1 of the fermion states near the F1 and F2 reso-

nances is about 95 and 80%, respectively. The gas-like states near resonance, in con-

trast, are dominated by a single partial wave (for bosons, e.g., the s -wave contribution

p0 of the energetically lowest-lying gas-like state is about 99% while the d -wave contri-

bution p2 of the energetically next higher-lying state is about 99%).
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5.3 Dipole-dipole interaction: Zero range pseudopoten-

tial

This section introduces a zero range pseudopotential that reproduces the wavefunc-

tion corresponding to the realistic interaction potential for r > r0, and then treats two

aligned dipoles under harmonic confinement.

5.3.1 Introduction of the pseudopotential

Within the mean-field Gross-Pitaevskii formalism, the interaction between two identi-

cal bosonic dipoles, aligned along the space-fixed ẑ -axis by an external field, has been

successfully modeled by the pseudopotential Vpp(~r ) [118],

Vpp(~r ) =
2πħh2

µ
a 00δ(~r )+Vdd(~r ). (5.15)

The s -wave scattering length a 00 depends on both the short- and long-range parts of

the true interaction potential. The second term on the right hand side of Eq. (5.15)

couples angular momentum states with l = l ′ (l > 0) and |l − l ′| = 2 (any l , l ′). For

identical fermions, s -wave scattering is absent and the interaction is described, assum-

ing the long-range dipole-dipole interaction is dominant, by the second term on the

right hand side of Eq. (5.15). Our goal is to treat two aligned dipoles interacting through

a pseudopotential.

The pseudopotential Vpp(~r ) cannot be used directly in Eq. (3.11) since both parts

of the pseudopotential lead to divergences. The divergence of the δ-function poten-

tial arises from the singular 1/r behavior at small r of the spherical Neumann function

n 0(r ), and can be cured by introducing the regularization operator ∂
∂ r

r [59]. Curing the
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divergence of the long-ranged 1/r 3 term of Vpp is more involved, since it couples an in-

finite number of angular momentum states, each of which gives rise to a singularity in

the r → 0 limit 1. The nature of each of these singularities depends on the quantum

numbers l and l ′ coupled by the pseudopotential, and hence has to be cured sepa-

rately for each l and l ′ combination to allow an analytical solution of the two-dipole

Schrödinger equation to be obtained.

In this work, we follow Derevianko [68, 69] and cure the divergences by replacing

Vpp(~r ) with a regularized zero-range potential Vpp, reg(~r ), which contains infinitely many

terms,

Vpp, reg(~r ) =
∑

l ,l ′

Vl l ′(~r ). (5.16)

The sum in Eq. (5.16) runs over l and l ′ even for identical bosons, and over l and l ′ odd

for identical fermions. For non identical particles the sum is over all l and l ′. However,

the sum over even l and l ′ can be treated separately from the sum over odd l and l ′

as there is no coupling between states with even and odd angular momentum quan-

tum numbers. This is because the interaction potential between two aligned dipoles is

parity conserving.

For l 6= l ′, Vl l ′ and Vl ′l are different and both terms have to be included in the sum.

In Sec. 5.3.2, we apply the pseudopotential to systems under spherically symmetric ex-

ternal confinement. For these systems, the projection quantum number m is a good

quantum number, i.e., the energy spectrum for two interacting dipoles under spheri-

cally symmetric confinement can be solved separately for each allowed m value. Con-

1The divergence of the 1/r 3 term arises if the repulsive short-range potential, which exists for realis-
tic atom-atom and molecule-molecule potentials, is removed and the long-range dipolar interaction is
taken to extend to r = 0. In numerical calculations this divergence can be cured, e.g., by introducing a
small r cutoff.
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sequently, a separate pseudopotential can be constructed for each m value. In the fol-

lowing, we restrict ourselves to systems with vanishing projection quantum number m ;

the generalization of the pseudopotential to general m is discussed at the end of this

section. The Vl l ′ are defined through their action on an arbitrary ~r -dependent function

Φ(~r ) [68, 69],

Vl l ′(~r )Φ(~r ) = g l l ′(k )
δ(r )
r l ′+2

Yl ′0(θ ,φ)

�

∂ 2l+1

∂ r 2l+1
r l+1

∫

Yl 0(θ ,φ)Φ(~r )dΩ

�

r→0

(5.17)

with

g l l ′(k ) =−
ħh2

2µ

K l ′0
l 0 (k )

k l+l ′+1

(2l +1)!!(2l ′+1)!!
(2l +1)!

. (5.18)

Since we are restricting ourselves to m = 0, the Vl l ′ are written in terms of the spherical

harmonics Yl m with m = 0. When applying the above pseudopotential we treat a large

number of terms in Eq. (5.16), and do not terminate the sum after the first three terms

as done in Refs. [68, 69, 122]. We note that the non-Hermiticity of Vpp, reg does not lead to

problems when determining the energy spectrum; however, great care has to be taken

when calculating, e.g., structural expectation values [123].

To understand the functional form of the zero-range pseudopotential defined in

Eqs. (5.16) through (5.18), let us first consider the piece of Eq. (5.17) in square brackets.

If we decompose the incoming wave Φ(~r ) into partial waves,

Φ(~r ) =
∑

n i ,l i ,m i

cn i l i m iQn i l i (r )Yl i m i (θ ,φ), (5.19)

where the cn i l i m i denote expansion coefficients and the Qn i l i radial basis functions, the

spherical harmonic Yl 0 in the integrand of Vl l ′ acts as a projector or filter. After the
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integration over the angles, only those components of Φ(~r ) that have l i = l and m i = 0

survive. The operator ∂ 2l+1

∂ r 2l+1 r l+1 in Eq. (5.17) is designed to then first cure the r−l−1 diver-

gences of theQn i l , which arise in the r → 0 limit, and to then second “extract” the coeffi-

cients of the regular part of the Qn i l (r ) that go as r l [59]. Alltogether, this shows that the

square bracket in Eq. (5.17) reduces to a constant when the r → 0 limit is taken. To un-

derstand the remaining pieces of the pseudopotential, we multiply Eq. (5.17) from the

left with Q∗no lo
Y ∗lo mo

and integrate over all space. The spherical harmonic Yl ′0 in Eq. (5.17)

then ensures that the integral is only non-zero when l ′ = lo and mo = 0. When perform-

ing the radial integration, the δ(r )/r l ′ term ensures that the coefficients of the regular

part of the Qno lo that go as r lo are being extracted (note that the remaining 1/r 2 term

cancels the r 2 in the volume element).

Alltogether, the analysis outlined in the previous paragraph shows that the func-

tional form of Vl l ′ ensures that the divergences of the radial parts of the incoming and

outgoing wave is cured in the r → 0 limit and that the l th component of the incoming

wave is scattered into the l ′th partial wave. The sum over all l and l ′ values in Eq. (5.16)

guarantees that any state with quantum number l can be coupled to any state with

quantum number l ′, provided the corresponding K -matrix element K l ′0
l 0 (k ) is non-zero.

We note that this pseudopotential can not only be used to model dipole-dipole scatter-

ing but also to model any interaction potential whose angular dependence is given by

Y00(θ ,φ) or Y20(θ ,φ), irrespective of its r dependence. The only requirement is that the

potential is characterized by well behaved K -matrix elements. Importantly, the reg-

ularized pseudopotential given by Eqs. (5.16) through (5.18) is only appropriate if the

external confining potential in Eq. (3.12) has spherical symmetry [99]. Generalizations

of the above zero-range pseudopotential, aimed at treating interacting dipoles under

elongated confinement, require the regularization scheme to be modified to addition-

ally cure divergences of cylindrically symmetric wavefunctions. These extensions are
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discussed in Sec. 5.4.

One can show readily that the K-matrix elements K l ′0
l 0 of Vpp, reg, calculated in the first

Born approximation, with a l l ′ given by Eqs. (5.11) and (5.12) coincide with the K-matrix

elements K l ′0
l 0 of Vpp. This provides a simple check of the zero-range pseudopotential

construction and proves that the prefactors of Vl l ′ are correct. In turn, this suggests

that the applicability regimes of Vpp and Vpp, reg are comparable, if the generalized scat-

tering lengths a l l ′ used to quantify the scattering strengths of Vl l ′ are approximated by

Eqs. (5.11) and (5.12). The applicability regime of Vpp, reg may, however, be larger than

that of Vpp if the full energy-dependent K-matrix of a realistic potential is used instead

(see, e. g., Fig. 5.9).

To generalize the zero-range pseudopotential defined in Eqs. (5.16) through (5.18)

for projection quantum numbers m = 0 to any m , only a few changes have to be made.

In Eq. (5.17), the spherical harmonics Yl 0 have to be replaced by Yl m , and the K l ′0
l 0 have

to be replaced by K l ′m ′

l m . Correspondingly, Eqs. (5.11) and (5.12) become m -dependent.

5.3.2 Derivation of the eigenequation for spherically harmonic con-

finement

To determine the eigenenergies of two aligned dipoles with m = 0 under spherical har-

monic confinement interacting through the zero-range potential Vpp, reg, we expand the

eigenfunctions Ψ(~r ) in terms of the orthonormal harmonic oscillator eigenfunctions

Rn i l i Yl i 0,

Ψ(~r ) =
∑

n i ,l i

cn i l i Rn i l i (r )Yl i 0(θ ,φ). (5.20)
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In contrast to Eq. (3.23), Eq. (5.20) contains a sum over the angular momentum quan-

tum number. The pseudopotential Vpp, reg enforces the proper boundary condition of

Ψ(~r ) at r = 0, and thus determines the expansion coefficients cn i l i . To introduce the key

ideas we first consider s -wave interacting particles [60], for which the pseudopotential

reduces to a single term, and then consider the general case, in which the pseudopo-

tential contains infinitely many terms.

Including only the term with l and l ′ = 0 in Eq. (5.16), the Schrödinger equation

[Eq. (3.11)] becomes

∑

n i ,l i

cn i l i (En i l i −E +V00)Rn i l i (r )Yl i 0(θ ,φ) = 0, (5.21)

where the En i l i denote the eigenenergies of the non-interacting harmonic oscillator,

En i l i =
�

2n i + l i +
3

2

�

ħhωho. (5.22)

In what follows, it is convenient to express the energy E of the interacting system in

terms of a non-integer quantum number ν ,

E =
�

2ν +
3

2

�

ħhωho. (5.23)

Multiplying Eq. (5.21) from the left with R∗no lo
Y ∗lo 0 with lo > 0 and integrating over all

space, we find that the cn i l i with l i > 0 vanish. This can be understood readily by re-

alizing that the s -wave pseudopotential V00 only couples states with l = l ′ = 0 (see

Sec. 5.3.1). To determine the expansion coefficients cn i 0, we multiply Eq. (5.21) from

the left with R∗no 0Y ∗00 and integrate over all space. This results in

cno 0(2no −2ν )ħhωho+R∗no 0(0)g 00 B0 = 0, (5.24)
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where B0 denotes the result of the square bracket in Eq. (5.17),

B0 =





∂

∂ r

 

r
∞
∑

n i=0

cn i 0Rn i 0(r )

!



r→0

. (5.25)

Note that B0 is constant and independent of n i . In Eq. (5.24), the r -independent term

R∗no 0(0) arises from the radial integration over the δ-function of the pseudopotential. If

we solve Eq. (5.24) for cno 0 and plug the result into Eq. (5.25), the unknown constant B0

cancels and we obtain an implicit eigenequation for ν ,

1= g 00(k )





∂

∂ r

 

r
∞
∑

n i=0

R∗n i 0(0)Rn i 0(r )

(2ν −2n i )ħhωho

!



r→0

. (5.26)

Using Eqs. (A.1) and (A.6) from Appendix A to simplify the term in square brackets, we

obtain the well-known implicit eigenequation for two particles interacting through the

s -wave pseudopotential under spherical harmonic confinement [60],

Γ
�

−E
2ħhωho

+ 1
4

�

2Γ
�

−E
2ħhωho

+ 3
4

� −
a 00(k )

a ho
= 0. (5.27)

The derivation of the implicit eigenequation for two dipoles under external har-

monic confinement interacting through the pseudopotential with infinitely many terms

proceeds analogously to that outlined above for the s -wave system. The key differ-

ence is that each Vl l ′ term in Eq. (5.17) with l 6= l ′ couples states with different angular

momenta, resulting in a set of coupled equations for the expansion coefficients cn i l i .

However, since Vpp, reg for dipolar systems couples only angular momentum states with

|l − l ′| ≤ 2 [see, e.g., the discussion at the beginning of Sec. 5.3.1 and around Eqs. (5.11)

and (5.12)], the coupled equations can, as we outline in the following, be solved analyt-
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ically by including successively more terms in Vpp, reg.

To start with, we plug the expansion given in Eq. (5.20) into Eq. (3.11), where the

interaction potential Vint(~r ) is now taken to be the pseudopotential Vpp, reg(~r ) with in-

finitely many terms. To obtain the general equation for the expansion coefficients cn i l i ,

we multiply as before from the left with R∗no lo
Y ∗lo 0 and integrate over all space,

cno lo (2no + lo −2ν )ħhωho+

�

R∗no lo
(r )

r lo

�

r→0

×
�

g lo−2,lo Blo−2+ g lo lo Blo + g lo+2,lo Blo+2
�

= 0. (5.28)

Here, the Blo−2, Blo and Blo+2 denote constants that are independent of n i ,

Blo =





∂ 2lo+1

∂ r 2lo+1

(

r lo+1

 

∞
∑

n i=0

cn i lo Rn i lo (r )

!)



r→0

. (5.29)

The three terms in the square bracket in the second line of Eq. (5.28) arise because the

Vl ′−2,l ′ , Vl ′l ′ and Vl ′+2,l ′ terms in the pseudopotential Vpp, reg couple the state R∗no lo
Y ∗lo 0, for

l ′ = lo , with three components of the expansion for Ψ, Eq. (5.20). Importantly, the con-

stants Blo−2, Blo and Blo+2, defined in Eq. (5.29), depend on the quantum numbers lo−2,

lo and lo + 2, respectively, which implies that Eq. (5.28) defines a set of infinitely many

coupled equations that determine, together with Eq. (5.29), the expansion coefficients

cn i l i . Notice that Eqs. (5.28) and (5.29) coincide with Eqs. (5.24) and (5.25) if we set lo = 0

and g l l ′(k ) = 0 if l or l ′ > 0.

We now illustrate how Eqs. (5.28) and (5.29) can be solved for identical bosons, i.e.,

in the case where l and l ′ are even (the derivation for identical fermions proceeds anal-

ogously). Our strategy is to solve these equations by including successively more terms

in the coupled equations, or equivalently, in the pseudopotential. As discussed above,

if K 00
00 is the only non-zero K -matrix element, the eigenenergies are given by Eq. (5.27).
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Next, we also allow for non-zero K 00
20 , K 20

00 and K 20
20 , i.e., we consider l and l ′ ≤ 2 in

Eq. (5.16). In this case, the coefficients cn i 0 and cn i 2 are non-zero and coupled, but

all cn i l i with l i > 2 are zero. Using the expressions for B0 and B2 given in Eq. (5.29),

we decouple the equations. Finally, using Eqs. (A.1) and (A.6) from Appendix A, the

eigenequation can be compactly written as

t0+
q2

t2
= 0, (5.30)

where

t l =
Γ( −E

2ħhωho
+ 1

4
− l

2
)

22l+1Γ( −E
2ħhωho

+ 3
4
+ l

2
)
− (−1)l

K l 0
l 0 (k )

k 2l+1a 2l+1
ho

(5.31)

and

ql =−

�

K l 0
(l−2)0(k )

�2

k 4l−2a 4l−2
ho

. (5.32)

Equation (5.30) can be understood as follows. If only K 00
00 (k ) is non-zero, it reduces to

t0 = 0, in agreement with Eq. (5.27). If only K 00
00 (k ), K 20

00 (k ) and K 00
20 (k ) are non-zero,

Eq. (5.30) remains valid if K 20
20 (k ) in t2 is set to zero. This shows that the term q2 and

the first term on the right hand side of t2 arise due to the coupling between states with

angular momenta 0 and 2. The second term of t2, in contrast, arises due to a non-zero

K 20
20 . Finally, for non-zero K 00

00 and K 20
20 but vanishing K 20

00 and K 00
20 , Eq. (5.30) reduces

to t0t2 = 0. In this case, we recover the eigenequations t0 = 0 for s -wave interacting

particles [60] and t2 = 0 for d -wave interacting particles [65].

We now consider l and l ′ values with up to l max = 4 in Eq. (5.16), i.e., we addition-

ally allow for non-zero K 40
20 (k ), K 20

40 (k ) and K 40
40 (k ), and discuss how the solution changes
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compared to the l max = 2 case. The equation for the expansion coefficients cn i 0 remains

unchanged while that for cn i 2 is modified. Furthermore, the expansion coefficients cn i 4

are no longer zero. Consequently, we have three coupled equations, which can be de-

coupled, resulting in the following implicit eigenequation, t0 + q2/(t2 + q4/t4) = 0. In

analogy to the l max = 2 case, the q4 term and the first part on the right hand side of the

t4 term arise due to the “off-diagonal” K -matrix elements K 40
20 (k ) and K 20

40 (k ), and the

second term of t4 arises due to the “diagonal” K -matrix element K 40
40 (k ).

Next, let us assume that we have found the implicit eigenequation for the case where

we include terms in Eq. (5.16) with l and l ′ up to l max − 2. If we now include terms

with l and l ′ up to l max, only the equations for the expansion coefficients cno lo with

lo = l max−2 and l max change; those for the expansion coefficients cno lo with lo ≤ l max−4

remain unchanged. This allows the (l max/2) + 1 coupled equations for the expansion

coefficients to be decoupled analytically using the results already determined for the

case where l and l ′ go up to l max − 2. Following this procedure, we find the following

implicit eigenequation

Tl max = 0, (5.33)

where Tl max itself can be written in a continued fraction type form. For identical bosons

we find,

Tl max = t0+
q2

t2+
q4

t4+···+
qlmax
tlmax

. (5.34)

Taking l max→∞ gives the eigenequation for two identical bosons under spherical har-

monic confinement interacting through Vpp, reg with infinitely many terms. For two

identical fermions, Eqs. (5.31) through (5.34) remain valid if the subscripts 0, 2, · · · in
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Eq. (5.34) are replaced by 1, 3, · · · . It is important to note that Eq. (5.34) is valid as long

as the denominators Dl ,l max 6= 0 for l = 2, 4, 6, . . . , l max, where

Dl ,l max = t l +
ql+2

t l+2+
ql+4

t l+4+···+
qlmax
tlmax

. (5.35)

For Dl ,l max = 0 extra unphysical roots arise, which are discussed in more detail in Sec. 5.4.4.

The derived eigenequation reproduces the eigenenergies in the known limits. For

the non-interacting case (all K l ′0
l 0 = 0), the eigenenergies coincide with the eigenener-

gies of the harmonic oscillator, i.e., Enl = (2n + l + 3/2)ħhωho, where n = 0, 1, 2, · · · and

l = 0, 2, 4, · · · (in the case of identical bosons) and l = 1, 3, · · · (in the case of identical

fermions). The k th levels, with energy (2k+3/2)ħhωho for bosons and (2k+5/2)ħhωho for

fermions, has a degeneracy of k+1, k = 0, 1, · · · . Non-vanishing K l ′0
l 0 lead to a splitting of

degenerate energy levels but leave the number of energy levels unchanged. If K l 0
l 0 is the

only non-zero K -matrix element, the eigenequation reduces to that obtained for spher-

ically symmetric pseudopotentials with partial wave l [see Eq. (3.50) and Ref. [65]].

5.3.3 Energy spectrum of the two dipole system under spherical har-

monic confinement

This section analyzes the implicit eigenequation, Eq. (5.33), for the zero-range pseu-

dopotential with m = 0 and compares the resulting energy spectrum with that ob-

tained for the shape-dependent model potential Vmodel(~r ). The implicit eigenequation,

Eq. (5.33), can be solved readily numerically by finding its roots in different energy re-

gions.

Lines in Figs. 5.7(a) and (b) show the eigenenergies obtained by solving Eq. (5.33)

for two identical bosons and two identical fermions, respectively, interacting through
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Figure 5.7: Relative eigenenergies E for (a) two identical bosonic dipoles and (b) two
identical fermionic dipoles interacting through Vpp, reg [using a 00 = 0 in (a)] under spher-
ical harmonic confinement as a function of D∗/a ho. The line style indicates the approx-
imate quantum number of the corresponding eigenstates. In (a), a solid line refers to
l ≈ 0, a dashed line to l ≈ 2, and a dotted line to l ≈ 4; in (b), a solid line refers to l ≈ 1,
a dashed line to l ≈ 3, and a dotted line to l ≈ 5.
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Vpp,reg(~r ) under external spherically symmetric harmonic confinement as a function of

the dipole length D∗. In both panels, we assume that the interaction between the two

dipoles is purely dipolar, i.e., in Fig. 5.7(a) we set a 00 = 0. The other scattering lengths

a l l ′ are evaluated in the Born approximation [see Eqs. (5.11) and (5.12)]. Interestingly,

for identical bosons, the lowest gas-like level, which starts at E = 1.5ħhωho for D∗ = 0,

increases with increasing D∗. For identical fermions, in contrast, the lowest gas-like

state decreases with increasing D∗.

In addition to obtaining the eigenenergies themselves, the pseudopotential treat-

ment allows the spectrum to be classified in terms of angular momentum quantum

numbers. To this end, we solve the implicit eigenequation, Eq. (5.33), for increasing

l max, and monitor how the energy levels shift as additional angular momenta are in-

cluded in Vpp, reg. Since a level with approximate quantum number l changes only little

as larger angular momentum values are included in the pseudopotential, this analy-

sis reveals the approximate quantum number of each energy level. In Fig. 5.7(a), the

eigenfunctions of energies shown by solid, dashed and dotted lines have approximate

quantum numbers l = 0, 2 and 4, respectively. In Fig. 5.7(b), the eigenfunctions of en-

ergies shown by solid, dashed and dotted lines have approximate quantum numbers

l = 1, 3 and 5, respectively. We find that the lowest excitation frequency between states

with approximate quantum number l = 0 [l = 1], increases [decreases] for identical

bosons [fermions]with increasing D∗. These predictions can be verified directly exper-

imentally.

To assess the accuracy of the developed zero-range pseudopotential treatment, we

consider two interacting bosons with non-vanishing s -wave scattering length a 00. We

imagine that the dipole moment of two identical polarized bosonic polar molecules is

tuned by an external electric field. As the dipole moment d is tuned, the s -wave scat-

tering length a 00, which depends on the short-range and the long-range physics of the
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“true” interaction potential, changes. The other scattering lengths are, as before, ap-

proximated by the expressions given in Eqs. (5.11) and (5.12). Solid lines in Fig. 5.8(a)

and (b) show the eigenenergies obtained for Vmodel as a function of D∗. Crosses show the

eigenenergies obtained for Vpp, reg using a value of l max that results in converged eigenen-

ergies. The overview spectrum shown in Fig. 5.8(a) shows that one of the energy levels

dives down to negative energies close to that D∗ value at which the two-body potential

Vmodel supports a new bound state. The blow-up, Fig. 5.8(b), around E ≈ 5.5ħhωho shows

excellent agreement between the energies obtained using Vpp, reg (crosses) and those ob-

tained using Vmodel (solid lines); the maximum deviation for the energy range shown is

0.05 %.

As before, we can assign approximate quantum numbers to each energy level. For

D∗ � a ho, the three energy levels around E ≈ 5.5ħhωho have, from bottom to top, ap-

proximate quantum numbers l = 2, 4 and 0. After two closely spaced avoided crossings

around D∗ ≈ 0.025a ho, the assignment changes to l = 0, 2 and 4 (again, from bottom

to top). If the maximum angular momentum l max of the pseudopotential is set to 2, the

energy level with approximate quantum number l = 4 would be absent entirely. This

illustrates that a complete and accurate description of the energy spectrum requires

the use of a zero-range pseudopotential with infinitely many terms. The energy of a

state with approximate quantum number l requires l max to be at least l for the correct

degeneracy be obtained and at least l +2 for a quantitative description.

The sequence of avoided crossings at D∗ ≈ 0.025a ho suggests an interesting experi-

ment. Assume that the system is initially, at small electric field (i.e., small D∗/a ho), pre-

pared in the excited state with angular momentum l ≈ 0 and E ≈ 5.52ħhωho. The elec-

tric field is then slowly swept across the first broad avoided crossing at D∗ ≈ 0.019a ho

to transfer the population from the state with l ≈ 0 to the state with l ≈ 2. We then

suggest to sweep quickly across the second narrower avoided crossing at D∗ ≈ 0.028a ho
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Figure 5.8: Panel (a) shows the relative energies E for two aligned identical bosonic
dipoles under external spherical harmonic confinement as a function of D∗/a ho.
Solid lines show the numerically determined energies obtained using Vmodel with rc =
0.0097a ho. Crosses show the energies obtained using Vpp, reg with essentially infinitely
many terms, and a 00 calculated for Vmodel. The other scattering lengths are, as before,
approximated by the expressions given in Eqs. (5.11) and (5.12). Panel (b) shows a blow-
up of the energy region around E ≈ 5.5ħhωho. Note that the horizontal axis in (a) and (b)
are identical. This figure is taken from Ref. [70].
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(the ramp speed must be chosen so minimize population transfer from the state with

l ≈ 2 to the state with l ≈ 4). As in the case of s -wave scattering only [96], the time-

dependent field sequence has to be optimized to obtain maximal population transfer.

The proposed scheme promises to provide an efficient means for the transfer of popu-

lation between states with different angular momenta and for quantum state engineer-

ing.

Figure 5.8 illustrates that the pseudopotential treatment reproduces the eigenen-

ergies of the shape-dependent model potential Vmodel. To further assess the validity of

the pseudopotential treatment, we now consider two interacting bosonic dipoles for

which the dipolar interaction is dominant, i.e., we consider a 00 = 0. For Vmodel with

rc = 0.0031a ho, we determine a set of D∗ values at which a 00 = 0. Note that the num-

ber of bound states with approximate quantum number l = 0 increases by one for

each successively larger D∗. Crosses in Figs. 5.9(a)-(c) show the eigenenergies for Vmodel

with a 00 = 0 as a function of D∗ in the energy ranges around 1.5, 3.5 and 5.5ħhωho. For

comparison, lines show the eigenenergies obtained for the regularized pseudopotential

with a 00 = 0. As in Fig. 5.7, the linestyle indicates the approximate quantum number

of the energy levels (solid line: l ≈ 0; dashed line: l ≈ 2; and dotted line: l ≈ 4). The

agreement between the energies obtained for the pseudopotential with a l l ′ given by

Eqs. (5.11) and (5.12) and for the model potential for small D∗ is very good, thus val-

idating the applicability of the pseudopotential treatment. The agreement becomes

less good, however, as D∗ increases. This can be explained readily by realizing that the

dipole length D∗ approaches the harmonic oscillator length a ho.

In general, the description of confined particles interacting through zero-range pseu-

dopotentials is justified if the characteristic lengths of the two-body potential are smaller

than the characteristic length of the confining potential. For example, in the case of s -

wave interactions only, the van der Waals length has to be smaller than the oscillator
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Figure 5.9: Crosses show the relative eigenenergies E as a function of D∗/a ho for two
identical bosons with a 00 = 0 interacting through Vmodel with rc = 0.0031a ho in three
different energy regions. Lines show E for two identical bosons with a 00 = 0 interacting
through Vpp,reg with a l l ′ given by Eqs. (5.11) and (5.12). As in Fig. 5.7(a) solid, dashed
and dotted lines show the energies of levels characterized by approximate quantum
numbers l ≈ 0, 2 and 4. The agreement between the crosses and the lines is good at
small D∗/a ho but less good at larger D∗/a ho. Squares show the eigenenergies obtained
for the energy-dependent pseudopotential at D∗ = 0.242a ho; the agreement between
the squares and the crosses is excellent, illustrating that usage of the energy-dependent
K-matrix greatly enhances the applicability regime of Vpp, reg. This figure is taken from
Ref. [71].
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length [106, 107]. The model potential Vmodel is characterized by a short-range length

scale, the hardcore radius rc , and the dipole length D∗; in Fig. 5.9, it is the relatively

large value of D∗/a ho that leads, eventually, to a break-down of the pseudopotential

treatment. As in the case of spherical interactions, the break-down can be pushed to

larger D∗ values by using energy-dependent generalized scattering lengths a l l ′(k ) [see

Eq. (5.9)] and by then solving the eigenequation, Eq. (5.33), self-consistently [106, 107].

Figure 5.10 shows three selected scattering lengths a l l ′(k ) for the model potential

Vmodel with D∗ = 78.9b as a function of energy. This two-body potential supports eight

bound states with projection quantum number m = 0 and approximate angular mo-

mentum quantum number l = 0. Both energy and length in Fig. 5.10 are expressed

in oscillator units to allow for direct comparison with the data shown in Fig. 5.9. The

scattering length a 00(k ), shown by a solid line in Fig. 5.10, is zero at zero energy and in-

creases with increasing energy. Both a 20(k ) (dashed line) and a 22(k ) (dash-dotted line)

are negative and their zero-energy values coincide with those calculated in the Born

approximation (horizontal dotted lines).

Using these energy-dependent a l l ′(k ) to parametrize the strengths of the pseudopo-

tential and solving the eigenequation, Eq. (5.33), self-consistently, we obtain the squares

in Fig. 5.9. The energies for Vpp, reg with a l l ′(k ) (squares) are in much better agreement

with the energies obtained for the model potential (crosses) than the energies obtained

using a l l ′ [Eq. 5.10 for l = l ′ = 0 and Eqs. (5.11) and (5.12) otherwise] to parametrize

the pseudopotential (lines). This suggests that the applicability regime of the regular-

ized zero-range pseudopotential can be extended significantly by introducing energy-

dependent scattering lengths.

The self-consistent solutions (crosses) for non-zero a 00 were already shown in Fig. 5.4.

These were obtained by solving Eq. (5.34) using the coupled channel energy dependent

scattering lengths a l l ′(k ) as input parameters. Hence these eigenenergies and those
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Figure 5.10: Energy-dependent scattering lengths a 00(k ) (solid line), a 20(k ) (dashed
line) and a 22(k ) (dash-dotted line) for the model potential Vmodel with D∗ = 78.9b
as a function of the relative energy E . In oscillator units, Vmodel is characterized by
rc = 0.0031a ho and D∗ = 0.242a ho. For comparison, horizontal dotted lines show the
energy-independent scattering lengths a 22, Eq. (5.11), and a 20, Eq. (5.12), calculated in
the first Born approximation. This figure is taken from Ref. [71].
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obtained for Vmodel (dashed lines) show excellent agreement even for fairly large values

of D∗/a ho.

We now use Vpp, reg to obtain the bound states of the system. For small |E |, the

eigenequation for the zero range pseudopotential results in an unphysical eigenenergy

[not shown in Figs. 5.4(a)-(d) but discussed in more detail in Sec. 5.4.4]. For two iden-

tical bosons, e.g., the eigenequation for Vpp, reg permits a solution with E ≈ 0.05ħhωho,

which is absent in the eigenspectrum of two identical bosons under external harmonic

confinement interacting through Vmodel(~r ). Importantly, if we restrict the zero range

pseudopotential to the V00 and V11 terms for two identical bosons and fermions, re-

spectively, the eigenspectra for Vpp, reg and Vmodel(~r ) agree very well for E ® 0.5ħhωho

(two identical bosons) and E ® 1.5ħhωho (two identical fermions), and the unphysi-

cal eigenenergies are absent. This shows (i) that the scattering lengths a 00 (identical

bosons) and a 11 (identical fermions) are dominant in this regime, and (ii) that the un-

physical eigenenergies are due to the higher partial wave contributions of Vpp, reg. The

latter can be understood as follows: The coupling strengths g l l ′(k ) for two interact-

ing dipoles are proportional to a l l ′(k )/k l+l ′ , and—since the a l l ′(k ) are defined so that

they approach a constant in the k → 0 limit—diverge as k goes to zero for l + l ′ > 0.

A detailed analysis of the eigenequation for Vpp, reg shows that these divergences give

rise to the unphysical eigenenergies for small |k |. No unphysical eigenenergies arise

for larger |k |; in this regime, the 1/k l+l ′ factor in g l l ′(k ) can be thought of as a simple

“rescaling”. Furthermore, the unphysical eigenenergies do not arise if the phase shifts

are obtained for a short-range model potential whose scattering lengths are defined by

− tanδl l ′(k )/k l+l ′+1. Although the zero range pseudopotential reproduces the eigenen-

ergies well, we note that the single-parameter description fails to describe the higher

partial wave admixtures discussed in the context of Fig. 5.6.
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5.4 Pseudopotential treatment under cylindrically sym-

metric confinement

5.4.1 Derivation of the pseudopotential

The goal in this section is to determine a pseudopotential that reproduces the K -matrix

of the true interaction potential for any positive scattering energy E and that can be ap-

plied to two interacting particles under external harmonic confinement of either spher-

ical or cylindrical symmetry. Although the pseudopotential is derived by considering

the relative Hamiltonian in Eq. (3.11) without an external confinement, it turns out that

its functional form needs to be chosen to “match” the symmetry of the Hamiltonian

that it is used in later on. We assume that the true interaction potential asymptotically

approaches a constant, but that coupling between different partial waves can occur at

shorter interparticle distances. These assumptions allow, e. g., for a treatment of in-

teracting dipoles but exclude the treatment of Feshbach resonances in a single partial

wave. The multi-channel pseudopotential Vps(~r ) can be written as

Vps(~r ) =
∞
∑

l=0

m=l
∑

m=−l

∞
∑

l ′=0

m ′=l ′
∑

m ′=−l ′

V l ′m ′

l m (~r ), (5.36)

where l and m denote the angular momentum and projection quantum numbers of the

incoming wave, and l ′ and m ′ those of the outgoing wave. V l ′m ′

l m couples the incoming

partial wave labeled by (l m ) and the outgoing partial wave labeled by (l ′m ′), and is
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defined by its action on ~r dependent functions χ and ξ [68, 69],

〈ξ(~r )|V l ′m ′

l m (~r )|χ(~r )〉= g l ′m ′

l m (k )×
�∫

δ(r )
r l ′+2

Yl ′m ′(θ ,φ)ξ∗(~r )r 2d r dΩ

��

∂ 2l+1

∂ r 2l+1

�

r l+1

∫

Yl m (θ ,φ)χ(~r )dΩ

��

r→0

, (5.37)

where r , θ andφ denote the spherical coordinates of the relative vector ~r . The coupling

strengths g l ′m ′

l m (k ) are given by

g l ′m ′

l m (k ) =−
ħh2

2µ

K l ′m ′

l m (k )
k l+l ′+1

((2l +1)!!)((2l ′+1)!!)
(2l +1)!

. (5.38)

For m =m ′ = 0, Eq. (5.38) reduced to Eq. (5.18). Since the g l ′m ′

l m (k ) are written in terms

of the K -matrix elements, the pseudopotential in Eq. (5.37) can be applied to any single

threshold interaction potential with well defined K -matrix elements. In Eq. (5.37), the

spherical harmonic Yl m (θ ,φ) together with the integration over the angles extracts the

(l m ) component of the incoming wavefunctionχ(~r ), while Yl ′m ′(θ ,φ) together with the

angular integration extracts the (l ′m ′) component of the outgoing wavefunction ξ(~r ).

For the derivation to follow, it will be useful to write Eq. (5.37) in a slightly modified

form,

〈ξ(~r )|V l ′m ′

l m (~r )|χ(~r )〉= g l ′m ′

l m (k )×
�∫

Yl ′m ′(θ ,φ)
l ′!

�

∂ l ′ξ∗(~r )
∂ r l ′

�

r→0

dΩ

��∫

Yl m (θ ,φ)
�

∂ 2l+1

∂ r 2l+1

�

r l+1χ(~r )
�

�

r→0

dΩ

�

. (5.39)

In determining Eq. (5.39), we used the identity δ(r )
r l ′ = (−1)l ′ δ

(l ′)(r )
l ′!

, whereδ(l ′)(r ) = ∂ l ′

∂ r l ′ δ(r ),

and performed the integration over r .

The pseudopotential defined through Eqs. (5.36) and (5.37) can be conveniently

used to model the interaction potential Vint(~r ) if the external potential Vext depends only
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on r and not on the angles θ andφ. However, if Vext does not possess spherical symme-

try and if the state of interest is expanded in terms of a set of basis functions that have

the same symmetry as Vext, then usage of Vps may lead to divergences. In the following,

we rewrite the V l ′m ′

l m in Eq. (5.37) so that they can be used conveniently when the ex-

ternal potential is cylindrically symmetric, i. e., when Vext = Vext(ρ, z ), where ρ and z

denote cylindrical coordinates defined through ρ2 = r 2− z 2 and z = r cosθ .

To rewrite Eq. (5.39) in cylindrical coordinates, we follow the procedure illustrated

in Ref. [99, 124]: We first work in cartesian coordinates and then switch to cylindrical

coordinates. To evaluate the r → 0 limit of
�

∂ l ′ξ∗(~r )
∂ r l ′

�

in Eq. (5.39), we Taylor expand ξ∗(~r )

in cartesian coordinates,

ξ∗(~r ) =
∞
∑

j=0

r j

j !







∑

q1

∑

q2

...
∑

qj

(nq1 nq2 ...nqj )

�

∂ jξ∗(~r )
∂ q1∂ q2...∂ qj

�







x ,y ,z→0

, (5.40)

where qi is x , y or z and nqi = r̂ ·q̂i (q̂i denotes the unit vector in the qi -direction). Using

Eq. (5.40), we find

�

∂ l ′ξ∗(~r )
∂ r l ′

�

r→0

=







∑

q1

∑

q2

...
∑

ql ′

(nq1 nq2 ...nql ′
)
�

∂ l ′ξ∗(~r )
∂ q1∂ q2...∂ ql ′

�







x ,y ,z→0

. (5.41)

To evaluate the second term in round brackets on the right hand side of Eq. (5.39), we

use
�

∂ 2l+1

∂ r 2l+1

�

r l+1χ(~r )
�

�

r→0

=
�

∂ l

∂ r l

�

r l

l !

∂ 2l+1

∂ r 2l+1

�

r l+1χ(~r )
�

��

r→0

, (5.42)

and Taylor expand r l

l !
∂ 2l+1

∂ r 2l+1 (r l+1χ(~r )). Applying the partial differential operator ∂ l

∂ r l to the

Taylor expanded expression and taking the r → 0 limit, we find
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�

∂ 2l+1

∂ r 2l+1

�

r l+1χ(~r )
�

�

r→0

=






∑

q1

∑

q2

...
∑

ql

(nq1 nq2 ...nql )







∂ l
�

r l

l !
∂ 2l+1

∂ r 2l+1

�

r l+1χ(~r )
�

�

∂ q1∂ q2...∂ ql













x ,y ,z→0

. (5.43)

If we plug Eqs. (5.41) and (5.43) into Eq. (5.39), we obtain an expression for 〈ξ(~r )|V l ′m ′

l m (~r )|Φ(~r )〉

in cartesian coordinates. Up to here, our treatment is general and can be used as a start-

ing point for rewriting Eq. (5.39) in any coordinate system. We now adopt cylindrical

coordinates and assume that both ξ and χ are cylindrically symmetric functions, i. e.,

ξ(~r ) = ξ(ρ, z ) and χ(~r ) =χ(ρ, z ). Furthermore, the cylindrical symmetry conserves the

projection quantum number, and we specialize to the m =m ′ = 0 case. To simplify the

notation, we replace V l ′m ′

l m by Vl l ′ and g l ′m ′

l m by g l l ′ ,

V 0
ps(~r ) =

∞
∑

l=0

∞
∑

l ′=0

Vl l ′(~r ). (5.44)

The approach outlined can be generalized to other m values (see, e. g., Refs. [99, 125]).

Performing the angular integrals in Eq. (5.39) and rearranging the terms, we obtain

〈ξ(ρ, z )|Vl l ′(~r )|χ(ρ, z )〉= h l l ′(k )
�

Y l ′0(~∇)ξ∗(ρ, z )
�

ρ,z→0
�

Y l 0(~∇)
�

r l ∂
2l+1

∂ r 2l+1

�

r l+1χ(ρ, z )
�

��

ρ,z→0

, (5.45)

where

h l l ′(k ) = g l l ′(k )β (l )β (l ′) (5.46)
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and

β (l ) =
(−1)l 2π

2[[
l
2 ]]−13[[

l
2 ]]
×

(2[[ l
2
]])!!Ξ(l )

(([[l /2]])!)2(2[[ l
2
]]−1)!!(2l +1)

 

[[l /2]]
∏

i=1

〈2i −2, 2, 0, 0|2i , 0〉2
!

. (5.47)

In Eq. (5.47), 〈l 1, l 2, m1, m2|l , m 〉 is a Clebsch Gordan coefficient and [[x ]] indicates the

greatest integer less than or equal to x . Further, we defined

Ξ(l ) =







1 for l ∈ even

1
2l−1

for l ∈ odd.
(5.48)

In Eq. (5.45), we introduced the differential operator Y l 0(~∇),

Y l 0(~∇) =
[[l /2]]
∑

p=0

Ap l (∇2)p
�

∂

∂ z

�l−2p

, (5.49)

where Ap l is the coefficient of (cosθ )l−2p in the spherical harmonic Yl 0(r̂ ). For example,

the Y40(r̂ ) spherical harmonic can be written as A24+A14 cos2θ +A04 cos4θ , where A24 =
9

16
p
π

, A14 =− 90
16
p
π

and A04 = 105
16
p
π

. Noting that ẑ · r̂ = cosθ , the Y40(r̂ ) can alternatively be

written as A24(r̂ ·r̂ )2+A14(r̂ ·r̂ )(ẑ ·r̂ )2+A04(ẑ ·r̂ )4. This expression motivates us to label the

operator defined in Eq. (5.49) by Y l 0(~∇): Keeping the order of r̂ and ẑ unchanged but

replacing r̂ by ~∇, the Y4,0(r̂ ) becomes A24(~∇· ~∇)2+A14(~∇· ~∇)(ẑ · ~∇)2+A04(ẑ · ~∇)4, which is

just Y 40(~∇). Writing the Laplacian operator in Eq. (5.49) in cylindrical coordinates and

159



expanding in a binomial series, the Y l 0(~∇) can be alternatively written as

Y l 0(~∇) =
[[l /2]]
∑

p=0

p
∑

q=0

Ap l
p !

q !(p −q )!

�

∂ 2

∂ ρ2
+

1

ρ

∂

∂ ρ

�p−q ∂ l−2p+2q

∂ z l−2p+2q
. (5.50)

Here, we omitted derivatives with respect to the azimuthal angle φ, since the Y l 0(~∇)

act, by construction, on wavefunctions that only depend on ρ and z .

The pseudopotential Vl l ′ in Eq. (5.45) is defined through its action on the functions

ξ and χ . Alternatively, we can interpret the Vl l ′ as differential operators given by

Vl l ′(~r ) = h l l ′(k )Y
†

l ′0(~∇)
δ(ρ)δ(z )

2πρ
Y l 0(~∇)r l ∂

2l+1

∂ r 2l+1
r l+1. (5.51)

Following Eq. (5.45), the operator Y
†

l ′0 acts to the left and all other differential operators

act to the right.

5.4.2 Derivation of the eigenequation for cylindrically harmonic con-

finement

This section determines the eigenequation [see Eq. (5.71) below] for two particles in-

teracting through V 0
ps(~r ) under external cylindrically symmetric harmonic confinement.

The confining potential in the relative coordinate is given by

Vext(ρ, z ) =
1

2
µω2

z (η
2ρ2+ z 2), (5.52)

where we have defined the aspect ratio η as the ratio between the radial and longitu-

dinal angular frequencies, η = ωρ/ωz . The relative Hamiltonian Hrel can be written
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as

H =Hosc+V 0
ps(~r ), (5.53)

where

Hosc =−
ħh2

2µ
∇2
~r +Vext(ρ, z ). (5.54)

In the following, we expand the eigenfunctions Ψ of H in terms of the eigenfunctions

Φnα of Hosc,

HoscΦnα(ρ, z ) = EnαΦnα(ρ, z ), (5.55)

where

Enα = [η(2n +1)+ (α+1/2)]ħhωz . (5.56)

The quantum number n takes integer values, n = 0, 1, 2..., while the quantum number

α takes even integer values (α= 0, 2, 4, ...) for even l and odd integer values (α= 1, 3, 5, ..)

for odd l . If the aspect ratio η equals 1/m , where m is an integer, the m energetically

lowest-lying energy levels are non degenerate, the next m energy levels have a degen-

eracy of two, the next m energy levels have a degeneracy of three and so on. We write

the oscillator functions Φn ,α as a product of the oscillator functions Rn (ρ) and Θα(z ) in

ρ and z , respectively,

Φnα(ρ, z ) =Rn (ρ)Θα(z ), (5.57)

where

Rn (ρ) =
1

a z

Ç

η

π
exp

�

−
ηρ2

2a 2
z

�

L(0)n (η(ρ/a z )2) (5.58)

and

Θα(z ) =
1

p
a zπ1/4

p
2αα!

exp

�

−
z 2

2a 2
z

�

Hα(z/a z ). (5.59)
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Throughout, lengths are measured in units of the oscillator length a z ,

a z =
p

ħh/(µωz ). (5.60)

In Eqs. (5.58) and (5.59), the L(0)n and Hα denote associated Laguerre and Hermite poly-

nomials, respectively.

The eigenfunctions Ψ of the full relative Hamiltonian are expanded in terms of the

complete orthonormal set Φnα(ρ, z ),

Ψ(ρ, z ) =
∞
∑

n=0

∞
∑

α=0

cnαΦnα(ρ, z ), (5.61)

where the cnα denote expansion coefficients. Plugging Eq. (5.61) into HrelΨ(ρ, z ) =

EΨ(ρ, z ), multiplying from the left with Φ∗n ′,α′(ρ, z ), integrating over all space and us-

ing orthonormality of the Φnα(ρ, z ), we get

cn ′,α′ =
〈Φn ′,α′(ρ, z )|

∑

l ,l ′ Vl l ′(~r )|
∑

n ,α cnαΦnα(ρ, z )〉
E −En ′,α′

. (5.62)

Importantly, the right hand side of Eq. (5.62) is independent of n andα since both these

indices are being summed over. Thus, Eq. (5.62) determines the expansion coefficients

cn ′,α′ . To evaluate the right hand side of Eq. (5.62) and to eventually arrive at an implicit

eigenequation for E , we plug Eq. (5.51) into Eq. (5.62), and, using the properties of δ-

functions, perform the integration over all space. This yields

cn ′,α′ =

∑

l ,l ′ h l l ′(k )
h

Y
†

l ′0(~∇)Φn ′,α′(ρ, z )
i

ρ,z→0
C l

E −En ′,α′
, (5.63)

where
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C l =





∑

n ,α

cnαÔlΦnα(ρ, z )





ρ,z→0

(5.64)

and

Ôl = Y l 0(~∇)r l ∂
2l+1

∂ r 2l+1
r l+1. (5.65)

Plugging Eq. (5.63) into Eq. (5.64), we find an equation for Cλ,

Cλ =









Ôλ









∑

n ,α

∑

l ,l ′ h l l ′(k )
h

Y
†

l ′0(~∇)Φnα(ρ, z )
i

ρ,z→0
C l

E −Enα
Φnα(ρ, z )

















ρ,z→0

. (5.66)

We now exchange the sums in Eq. (5.66) and collect the n and α dependent terms in Sl ,

Cλ =



Ôλ





∑

l ,l ′

h l l ′(k )Sl ′(ρ, z )C l









ρ,z→0

, (5.67)

where

Sl (ρ, z ) =








∑

n ,α

h

Y
†

l 0(~∇)Φnα(ρ, z )
i

ρ,z→0

E −Enα
Φnα(ρ, z )









. (5.68)

Bringing all terms of Eq. (5.67) to one side and defining

Mλl =
∑

l ′

h l l ′(k )
�

ÔλSl ′(ρ, z )
�

ρ,z→0
−δλ,l , (5.69)

Eq. (5.67) becomes
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∑

l

Mλl C l = 0. (5.70)

The eigenenergies E of the relative Hamiltonian H can thus be obtained by solving the

determinantal equation

det(M ) = 0, (5.71)

where the matrix elements of M are given by Eq. (5.69). The evaluation of the matrix

elements Mλl requires acting with Ôλ on Sl ′ , and then taking the ρ, z → 0 limits. Be-

fore detailing how the expression [ÔλSl ′]ρ,z→0 can be simplified, we discuss a number of

properties of Eq. (5.71).

Since the pseudopotential V 0
ps that describes the interaction between the particles

contains infinitely many terms, the matrix M has infinite dimensions. In practice, we

reduce the size of the matrix M to a manageable size. This can either be achieved

by truncating the pseudopotential itself or by setting certain coupling constants g l l ′

to zero. For example, if we consider only the l = 0 term in the pseudopotential, the

eigenequation det(M ) = 0 [see Eqs. (5.81)-(5.83) below] reduces to those derived in

Ref. [60] and Refs. [110, 126] for spherically and cylindrically symmetric traps, respec-

tively. Similarly, if we only allow for a non-zero g 1,1, we recover the p -wave eigenequa-

tions derived in Refs. [64, 99, 124] for the m = 0 case, and so on. If we consider an

interaction potential that couples different partial waves, such as the dipole-dipole po-

tential, then the matrix M contains non-vanishing off-diagonal elements. If the true or

model potential conserves parity, then even (odd) incoming partial waves are scattered

into even (odd) outgoing partial waves. In this case, all coupling strengths g l l ′ with l

even and l ′ odd (and l odd and l ′ even) vanish, and the matrix M is block diagonal:

The first block corresponds to even l and l ′, and the second block to odd l and l ′; the

164



eigenvalues of these blocks can be determined separately. If g l l ′ = 0 for |l − l ′|> 2, the

resulting determinantal equation forη= 1 can be rewritten in a continued fraction type

form and coincides with that obtained in Eq. (5.33). For η 6= 1, however, an eigenequa-

tion that accounts for the coupling between different channels has not been obtained

previously.

We now first simplify Sl (ρ, z ) and then evaluate the action ofÔλ on Sl . Using Eq. (5.56),

we write the denominator on the right hand side of Eq. (5.68) as

1

E −Enα
=−

1

ħhωz

∫ ∞

0

e (
E
ħhωz
−η−1/2)t−2ηnt−αt d t . (5.72)

This yields

Sl (ρ, z ) =
−1

ħhωz

∫ ∞

0

∑

n ,α

h

Y
†

l 0(~∇)Φnα(ρ, z )
i

ρ,z→0
Φnα(ρ, z )e (

E
ħhωz
−η−1/2)t−2ηnt−αt d t . (5.73)

Equation (5.72) is valid only if the exponent in the integrand is negative. Since n and α

take values starting from zero, Eq. (5.72) and the equations that follow from it are valid

only for E
ħhωz
<η+ 1

2
. Plugging Eqs. (5.50) and (5.57) into Eq. (5.73), we obtain

Sl (ρ, z ) =
−1

ħhωz

[[l /2]]
∑

p=0

p
∑

q=0

Ap ,l
p !

(p −q )!q !
∫ ∞

0

(

∞
∑

n=0

�

�

∂ 2

∂ ρ2
+

1

ρ

∂

∂ ρ

�p−q

Rn (ρ)

�

ρ→0

Rn (ρ)e−2ηnt

)

(5.74)

(

∞
∑

α=0

�

∂ l−2p+2q

∂ z l−2p+2q
Θα(z )

�

z→0

Θα(z )e−αt

)

e (
E
ħhωz
−η−1/2)t d t .
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The infinite sum over n can be evaluated using Eqs. (5.58) and (16) from Ref. [110],

∞
∑

n=0

�

�

∂ 2

∂ ρ2
+

1

ρ

∂

∂ ρ

�p−q

Rn (ρ)

�

ρ→0

Rn (ρ)e−2ηnt =

−
(−η)p−q+1

πa 2p−2q+2
z

((2p −2q )!!)2
p−q
∑

i=0

1

i !(p −q − i )!2p−q−i
D̂i







exp
�

−ηρ
2

2a 2
z

1+exp(−2ηt )
1−exp(−2ηt )

�

1−exp(−2ηt )






, (5.75)

where D̂i =
∏i−1

j=0(
−1
2η

d
d t
− j ). Similarly, the infinite sum over α can be performed using

Eqs. (5.59) and (18) from Ref. [110],

∞
∑

α=0

�

∂ l−2p+2q

∂ z l−2p+2q
Θα(z )

�

z→0

Θα(z )e−αt =
1

a z
p
π

exp

�

−
z 2

2a 2
z

�

×




∂ l−2p+2q

∂ x l−2p+2q

 

1
p

1− e−2t
exp

�

−x 2

2a 2
z

+
−(x 2+ y 2)e−2t +2x y e−t

a 2
z (1− e−2t )

�

!



x=0,y=z

. (5.76)

Plugging Eqs. (5.75) and (5.76) into Eq. (5.74), we find

Sl (ρ, z ) =
1

ħhωz

[[l /2]]
∑

p=0

p
∑

q=0

Ap ,l
p !

(p −q )!q !

(−η)p−q+1

a 2p−2q+3
z π3/2

((2p −2q )!!)2 exp

�

−
z 2

2a 2
z

�

×

∫ ∞

0







∂ l−2p+2q

∂ x l−2p+2q







exp
�

−x 2

2a 2
z
+ −(x

2+y 2)e−2t+2x y e−t

a 2
z (1−e−2t )

�

p

1− e−2t













x=0,y=z

p−q
∑

i=0

D̂i







exp

�

− ηρ
2

2a 2
z
( 1+e−2ηt

1−e−2ηt )
�

1−e−2ηt







i !(p −q − i )!2p−q−i
d t .

(5.77)

The quantity [ÔλSl ]ρ,z→0 can now be evaluated by expanding the integrand in Eq. (5.77)

in powers of ρ and z . This yields
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Sl (ρ, z ) =
1

ħhωa l+3
z

∞
∑

i=0

∑

j

u l
i j
∑

u=1

I l
i j u

�

ρ

a z

�2i � z

a z

�j

, (5.78)

where

u l
i j =






[[ l+2
4 ]]
∑

α=0

([[l /2]]+1−2α)2







�

[[(2i + j )/2]]+1+ i [[j /2]]
�

(5.79)

and

I l
i j u =

B l
i j u

2

∫ ∞

0

e (
E

2ħhωz
−a l

i j uη−b l
i j u )t

(1− e−ηt ) f
l
i j u (1− e−t )d

l
i j u

d t . (5.80)

In Eq. (5.78), j takes the values 0, 2, 4... if l is even and the values 1, 3, 5... if l is odd.

The quantities a l
i j u , b l

i j u , f l
i j u and d l

i j u in Eq. (5.80) are η-independent constants of the

form n +1/2, n +1/4, n and n +1/2, where n can take the values 0, 1, 2.... The B l
i j u are

real numbers that depend on η. We have not been able to find simple analytical expres-

sions for these coefficients. In practice, we perform the Taylor expansion of Eq. (5.77)

in Mathematica and tabulate the values of a l
i j u , b l

i j u , f l
i j u , d l

i j u and B l
i j u for all possible

i , j and u (and in case of B l
i j u , separately for each η).

The action of the operator Ôλ on Sl can now be evaluated readily. For ρ, z → 0, we

obtain
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[ÔλSl (ρ, z )]ρ,z→0 =
[[ λ2 ]]
∑

p=0

p
∑

q=0

Ap ,λ
p ![(2λ+1)!((2p −2q )!!)2(λ−2p +2q )!]

ħhωaλ+l+3
z q !(p −q )!

J l
p−q ,λ−2p+2q ,

(5.81)

where

J l
i ,j =

u l
i j
∑

u=1

I l
i j u . (5.82)

The prefactors in the square bracket on the right hand side of Eq. (5.81) can be under-

stood as follows: The (2λ+ 1)! term comes from the r -dependent part of Ôλ acting on

the ρ2p−2q z λ−2p+2q term of Sl , the ((2p −2q )!!)2 term comes from the ρ-dependent part

of Y λ,0(~∇) acting on theρ2p−2q term of Sl , and the (λ−2p+2q )! term comes from the z -

dependent part of Y λ,0(~∇) acting on the z λ−2p+2q term of Sl . The evaluation of the quan-

tity [ÔλSl ]ρ,z→0 requires knowing the energy-dependent integrals I l
i j u . Unfortunately,

no general expressions for I l
i j u are known. However, if the angular trapping frequencies

are integer multiples of each other, then the integral I l
i j u has a closed form [110]. For

pancake shaped traps with η= 1/m , where m denotes an integer, we find

I l
i j u =

m−1
∑

s1=0

m−1
∑

s2=0

....
m−1
∑

s
f l
i j u
=0

B l
i j u

2

Γ
�

s1+s2+....+s
f l
i j u

m
+

a l
i j u

m
+b l

i j u −
E

2ħhωz

�

Γ
�

1− f l
i j u −d l

i j u

�

Γ
�

s1+s2+....+s
f l
i j u

m
+

a l
i j u

m
+b l

i j u −
E

2ħhωz
+1− f l

i j u −d l
i j u

� .

(5.83)

The expression for I l
i j u contains f l

i j u sums (recall, f l
i j u is an integer). For a given i , j ,

l and m , the right hand side of Eq. (5.83) contains m f l
i j u terms. This number can be

quite large for anisotropic traps. The largest f l
i j u value for a fixed l is given by l + 1,
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resulting, e. g., in 107 terms for l = 6 and m = 10. In practical evaluations we reduce the

number of terms by realizing that the quantity s1 + s2 + ....+ s f l
i j u

can take only values

from 0 to f l
i j u (m − 1). Knowing the frequency with which each term occurs, Eq. (5.83)

can be rewritten as a sum of f l
i j u (m − 1) terms, thereby reducing the computational

efforts needed to evaluate the matrix elements Mλ,l drastically, especially for large m

and l .

The above derivation is valid if E
ħhωz
<η+ 1

2
. For E

ħhωz
>η+ 1

2
, Eq. (5.83) can be analyt-

ically continued so that the entire energy spectrum can be obtained if η= 1/m .

5.4.3 Application of the eigenequation to short range potentials

The pseudopotential in Eq. (5.44) was originally designed to treat dipole-dipole interac-

tions. However, due to the long range nature of these interactions we encounter some

problems in applying Eq. (5.71), which are elaborated on in Sec. 5.4.4. Similar prob-

lems are not expected to arise for short range potentials. Consequently, as a first test we

apply Eq. (5.71) it to two particles interacting via an attractive short range anisotropic

potential Vint(~r ),

Vint(~r ) =−d exp

�

−
r 2

2r 2
0

�

Y20(θ ,φ), (5.84)

where d > 0. In this case, the energy dependent generalized scattering lengths a l l ′(k )

are determined by [112]

a l l ′(k ) =−
K l ′0

l 0 (k )
k l+l ′+1

(5.85)

and the energy independent scattering lengths a l l ′ [a l l ′ = limk→0 a l l ′(k )] are constant.

Note that these generalized scattering lengths have a different threshold behavior from

those for the dipole-dipole interaction defined in Eqs. (5.9) and (5.10).

First, we test the diagonal elements of M . We confirmed that the diagonal elements
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corresponding to l = 0 and l = 1 are correct by comparing with the eigenequations

in Refs. [110, 126, 64, 99, 124]. Furthermore, we have checked that diagonal element

corresponding to l = 2 is correct by comparing the eigenenergies with those obtained

numerically for a short range shape dependent d -wave potential. Hence we believe

that the diagonal terms of the M -matrix are correct.

Second, we test the off diagonal elements of the M -matrix. To do this, we compare

the eigenenergies obtained numerically for the interaction potential in Eq. (5.84) with

those obtained semi-analytically from Eq. (5.71) by using in the K -matrix elements ob-

tained for the potential in Eq. (5.84). For the range of d values considered, the only

non-negligible scattering lengths are a 00(k ) and a 22(k ) and the eigenenergies obtained

using Eq. (5.71) are converged for l max = 2. This implies that the eigenenergies are only

sensitive to M 00, M 20, M 02 and M 22 matrix elements and that this example therefore

only allows us to test for these matrix elements. Another restriction of this test is that

the elements M 20 and M 02 only contribute significantly near a d -wave resonance.

To determine the eigenenergies for the pseudopotential [Eq. (5.44)], we use the K -

matrix elements obtained for Vint [Eq. (5.84)] with r0 = 0.01a z . Solid lines in Fig. 5.11

show the eigenenergies for two particles interacting via the potential in Eq. (5.84) under

cylindrically symmetric harmonic confinement with η= 1/2 as a function of d . Crosses

show the energies obtained from Eq. (5.71) with the K -matrix elements calculated for

the potential in Eq. (5.84). Figure 5.11(a) shows an overview of the eigenspectrum while

Figs. 5.11(b) and (c) show the blow ups of the levels near 3ħhωz and 1ħhωz , respectively.

The two lowest energy levels are non degenerate. For the lowest level this can be seen

from Fig. 5.11(c). The 3ħhωz level is two fold degenerate for non-interacting particles

[see discussion following Eq. (5.56)]. Figure 5.11(b) shows that the degeneracy is broken

due to the interaction potential, resulting in two closely spaced eigenenergies.

To see how the eigenspectrum changes with decreasing aspect ratio, Fig. 5.12 shows
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Figure 5.11: Energy spectrum for two particles under cylindrically symmetric external
confinement with η = 1/2 as a function of d . (a) Solid lines show the energies calcu-
lated numerically for the interaction potential given in Eq. (5.84) with r0 = 0.01a z , while
crosses show the energies obtained from Eq. (5.71). (b) Blow up of the energy levels near
3ħhωz . (c) Blow up of the energy level near 1ħhωz . The eigenenergies for the interaction
potential in Eq. (5.84) are provided by D. Blume.
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Figure 5.12: Energy spectrum for two particles under cylindrically symmetric external
confinement with η = 1/3 as a function of d . Solid lines show the energies calculated
numerically for the interaction potential given in Eq. (5.84) with r0 = 0.01a z , while
crosses show the energies obtained from Eq. (5.71). The eigenenergies for the inter-
action potential in Eq. (5.84) are provided by D. Blume.
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the eigenenergy of the fourth level for two particles interacting through the same poten-

tials as in Fig. 5.11 under cylindrically symmetric harmonic confinement with η= 1/3.

Figure 5.12 shows that the lowest three levels are non degenerate and that there are two

nearly degenerate levels around ≈ 2.833ħhωz [see discussion following Eq. (5.56)].

The good agreement between the two sets of eigenenergies in the above examples

indicates that Eq. (5.71) reproduces the degeneracy correctly and that the matrix ele-

ments M 20 and M 02 are correct when a 20 is negligible. We have not been able to test

the validity of M 20 and M 02 for non-negligible a 20 with the model potential given in

Eq. (5.84).

For any anisotropic short range interaction potential it is hard to obtain a large cou-

pling between the different partial waves and so it is difficult to use a short range po-

tential to extensively test the working of Eq. (5.71), i. e., to test the matrix elements

M 24, M 42, M 44, . . .. If a short range potential with more non-negligible scattering lengths

could be constructed, we believe the Eq. (5.71) should give the correct eigenenergies if

all relevant channels are included. However, we have not been able to test this using

the model potential given in Eq. (5.84).

The coupling between the different channels is larger for long ranged anisotropic

potentials like the dipole-dipole interaction potential. In the next section we use Eq. (5.71)

to obtain the eigenenergies of two aligned dipoles.

5.4.4 Application of the eigenequation to dipole-dipole potential

We have derived the eigenequation for two aligned dipoles under spherically symmetric

harmonic confinement in two different ways. Section 5.3.2 obtains the eigenequation

in the form of a continued fraction. Section 5.4.2 obtains the eigenequation for two

aligned dipoles in the form of a matrix. Although we have obtained the eigenequations
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for l max =∞, in the following illustration we restrict ourselves l max = 2. The key points

remain valid for larger l max values. For even l and l , l ′ ≤ l max = 2, the eigenequation for

η= 1 can be written as

t0t2+q2 = 0 (5.86)

or, in terms of T2, as

t2T2 = 0. (5.87)

The above equation implies that either T2 = 0 and t2 6=∞ or t2 = 0 and T2 6=∞.

In deriving Eq. (5.34), we required that D2,2 = t2 6= 0. Consequently, the latter case

does not need to be considered. We note, however, that while the t2 6= 0 condition

arises naturally in the derivation of the continued fraction, it does not appear to arise

naturally in the derivation of the eigenequation written as a matrix. This does, as we

show below, give rise to problems for η = 1/m (m > 1) that we do not know how to

resolve at the moment.

The former condition (T2 = 0 and t2 6= ∞) determines the eigenspectrum and is

discussed in Sec. 5.3.3. In those applications, we restricted ourselves to E ≥ 1ħhωho.

Now we show that the eigenequation T2 = 0, if applied to two aligned dipoles, has an

additional root as was already mentioned in Sec. 5.3.3. We will show that this root is

unphysical and has to be eliminated. The dashed dotted curve in Fig. 5.13(b) [and its

inset] shows T2 as a function of energy. The unphysical root occurs where T2 crosses

zero at E ≈ 0.062ħhωho. This root is unphysical as it is not seen in the full energy spec-

trum obtained numerically for Vmodel. We now investigate the origin of this unphysical

root. The left hand side of Eq. (5.30) has an expression for T2, which contains two terms.

For T2 to have a root, these terms must be equal in magnitude and be opposite in sign.

In the energy regime where the unphysical root arises, t0 is much greater than q2. Con-

sequently, t2 needs to be small in this regime for the equation T2 = 0 to have a root.
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Figure 5.13(b) shows that

t2 =
Γ( −E

2ħhω −
3
4
)

25Γ( −E
2ħhω +

7
4
)
−

K 20
20

k 5a 2l+1
ho

, (5.88)

assumes a very small value for E ≈ 0.06ħhωho. The solid curves in Fig. 5.13 show the

first term on the right hand side of Eq. (5.88) as a function of energy. The dotted curve

in Fig. 5.13 shows the second term on the right hand side of Eq. (5.88) as a function of

energy obtained for Vint(~r ) = Vmodel(~r ) with D∗ = 0.0306a ho and rc = 0.00306a ho. The

solid and dotted curves are nearly equal to each other for E ≈ 0.06ħhωho and hence t2

assumes a small value here. t2 assumes a small value because −K 20
20

k 5 diverges as k → 0

for the dipole-dipole interaction potential [see Fig. 5.13(a)]. The unphysical root can

be eliminated by the procedure discussed in Sec. 5.3.3. For comparison, the dashed

curve in Fig. 5.13(a) shows that a 22(k ) approaches a constant as k → 0 for the short

range anisotropic potential in Eq. (5.84) with d = 60000ħhωho and r0 = 0.01a ho. Since

the solid and dashed curves are not nearly equal to each other anywhere in the energy

range 0 < E < 0.5ħhω, t2 is not small in this range and T2 = 0 has no root in this energy

range.

For η = 1, the eigenequation with l max = 2 can be factored into two pieces yield-

ing the conditions that either T2 = 0 and t2 6=∞ or t2 = 0 and T2 6=∞. For larger l max,

an analogous though more complicated factorization holds. For η < 1, the eigenequa-

tion is more complicated and we have not been able to factorize the eigenequation in

a manner that would separate out the unphysical roots. In fact, we believe that the ad-

ditional coupling induced by the non-spherical confinement leads to a coupling of the

physical and unphysical roots if the derived eigenequation is applied to dipole-dipole

potentials. Importantly, the unphysical roots are not present for applications to short

range potentials.

175



0 2 4

-0.2

0

0.2
a 22

/a
ho

, E
q.

 (
5.

88
)

0.06 0.064 0.068
E/(hν

ho
)

-0.2

0

0.2

T
2, E

q.
 (

5.
88

)

0.06 0.064 0.068
E/(hν

ho
)

0

2

T
2

(a)

(b)

Figure 5.13: Solid curves show the first term on the right hand side of Eq. (5.88) as a
function of energy. Dotted curves show the negative of the second term on the right
hand side of Eq. (5.88) as a function of energy for Vint = Vmodel. (a) Dashed curves show
the negative of the second term on the right hand side of Eq. (5.88) as a function of
energy for Vint given by Eq. (5.84). (b) The dashed dotted curve shows T2 [see Eq. (5.33)]
as a function of energy. The parameters used are D∗ = 0.0306a ho and rc = 0.00306a ho

for Vmodel and d = 60000ħhωho and r0 = 0.01a ho in the potential in Eq. (5.84). The inset of
panel (b) shows T2 as a function of energy on a larger y -scale.
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5.5 Conclusions

This chapter pushes the pseudopotential treatment to regimes where it has never been

used before. It treats anisotropic two body interactions in three dimensions. It ob-

tains an eigenequation for two particles interacting through a cylindrically symmetric

potential under cylindrically symmetric harmonic confinement in terms of K -matrix

elements. For short range potentials, the threshold behavior of the scattering length

is 1/(k l+l ′+1) and the eigenequation works as expected. For the short range potentials

considered, however, the coupling between channels is significant only over a tiny re-

gion and the effects of channel coupling are generally small. For long ranged poten-

tials like the dipole-dipole interaction potential the coupling is more significant. This

chapter develops a pseudopotential treatment for two aligned dipoles under spheri-

cally harmonic confinement, which works well with the caveat of an extra unphysical

root. The chapter also identifies a simple procedure to eliminate this unphysical root.

The applicability of the pseudopotential to two aligned dipoles under cylindrically sym-

metric harmonic confinement breaks down, since the threshold behavior of the scat-

tering lengths is 1/k . The chapter also explores the scattering properties of two aligned

dipoles using a shape dependent model potential.
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Chapter 6

Summary and outlook

This thesis treats different two body interactions under various conditions. The key

results obtained and ideas developed are:

• We develop a zero range treatment for two particles interacting via a short range

potential in strictly one dimension and obtain the eigenenergies of the system

under harmonic confinement. We demonstate that our model is consistent with

Fermi-Bose duality predicted and observed in one dimensional systems.

• We also use zero range pseudopotentials to model interactions in low dimen-

sional systems. We analytically obtain the eigenequation of two particles inter-

acting through a strictly two dimensional short range circularly symmetric pseu-

dopotential under harmonic confinement for any partial wave. We also develop

a coupled zero range two channel model to characterize a two dimensional Fes-

hbach resonance.

• We analytically obtain the general eigenequation for two particles interacting through

cylindrically symmetric potentials under cylindrically symmetric external har-

monic confinement in three dimensions using a zero range pseudopotential. This
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eigenequation has been applied to spherically symmetric short range interac-

tions for any partial wave. It has also been applied to cylindrically symmetric

short range interactions. It has been applied to two aligned dipoles under spher-

ically symmetric harmonic confinement (cylindrical symmetry with η = 1) with

the caveat of an extra unphysical root. The eigenequation breaks down due to the

long range nature of the interaction when applied to two aligned dipoles under

cylindrically symmetric harmonic confinement (η< 1).

• We use a shape dependent model potential to study scattering between two aligned

dipoles. We observe two categories of resonances labeled B1 and B2 in the even

parity case and F1 and F2 in the odd parity case. We examine the eigenspectrum

of two aligned dipoles under spherically symmetric harmonic confinement near

each type of resonance. We also obtain the eigenfunctions near each type of res-

onance and calculate the contribution of each partial wave to the eigenfunctions.

We find that near B1 and B2 type resonances the major contribution to the lowest

lying state is s -wave and near F1 and F2 type resonances the major contribution

to the lowest lying state is p -wave.

In future research, it would be interesting to consider interactions between dipoles

that are not aligned. This would be useful in analyzing a two dipole system in the pres-

ence of a weak external field. The broken azimuthal symmetry would lead to a coupling

between the different m quantum numbers. The procedure to obtain the eigenenergies

of two non-aligned dipoles under spherically symmetric harmonic confinement would

be quite similar to that outlined in Sec. 5.3.2. It would be interesting to see if the zero

range treatment would work in spite of the long range nature of the interaction.

It would also be interesting to see if the weakly bound states (“molecules”) formed

across type 1 (B1 and F1) and type 2 (B2 and F2) resonances differ in their scattering
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properties, and to analyze their partial wave composition in more detail.

Treating long ranged anisotropic interactions in lower dimensions using zero range

pseudopotentials would also be of interest. Results obtained here may provide insights

into systems of dipolar gases loaded into low dimensional optical lattices.
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Appendix A

Evaluating an infinite sum

In this Appendix, we evaluate the infinite sum C l ,

C l =











∂ 2l+1

∂ r 2l+1







r l+1
∞
∑

n=0

h

R∗nl (r )
r l

i

r→0
Rnl (r )

2
�

ν −n − l
2

�

ħhω

















r→0

. (A.1)

Writing the radial harmonic oscillator functions Rnl (r ) in terms of the Laguerre polyno-

mials L(l+1/2)
n ,

Rnl (r ) =

È

2l+2

(2l +1)!!π1/2L(l+1/2)
n (0)a 3

ho

×

exp

�

−
r 2

2a 2
ho

�

�

r

a ho

�l

L(l+1/2)
n (r 2/a 2

ho), (A.2)

we find

�

Rnl (r )
r l

�

r→0

=

È

2l+2L(l+1/2)
n (0)

(2l +1)!!π1/2a 2l+3
ho

. (A.3)
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Using Eqs. (A.2) and (A.3), the C l can be rewritten as

C l =
2l+1

(2l +1)!!π1/2a 2l+3
ho

×






∂ 2l+1

∂ r 2l+1






exp

�

−r 2

2a 2
ho

�

r 2l+1
∞
∑

n=0

L(l+1/2)
n

�

( r
a ho
)2
�

�

ν −n − l
2

�

ħhω













r→0

. (A.4)

We evaluate the infinite sum in Eq. (A.4) using the properties of the generating func-

tion [83],

∞
∑

n=0

L(l+1/2)
n ((r /a ho)2)

ν −n − l
2

=

−Γ(−ν + l /2)U (−ν + l /2, l +3/2, (r /a ho)2). (A.5)

Using Eq. (A.5) together with the small r behavior of the hypergeometric function U [83],

the expression for the C l reduces to

C l =
(−1)l 22l+2(2l )!!
(2l +1)!!

Γ
�

−ν + l
2

�

Γ
�

−ν − l+1
2

�

1

ħhωa 2l+3
ho

. (A.6)
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Appendix B

Three dimensional square well potential

The generalized energy dependent p -wave scattering length a 1(k ) for the single chan-

nel square well interaction potential Vsq well(r ) is given by

a 1(k ) =Vp (k ) =

j1(k r0)
�

∂ j1(
p

2µ(E+V0)/ħh2r )
∂ r

�

r=r0

− j1(
p

2µ(E +V0)/ħh2r0)
�

∂ j1(k r )
∂ r

�

r=r0

k 3

�

j1(
p

2µ(E +V0)/ħh2r0)
�

∂ n 1(k r )
∂ r

�

r=r0
−n 1(k r0)

�

∂ j1(
p

2µ(E+V0)/ħh2r )
∂ r

�

r=r0

� . (B.1)

The energy independent R matrix elements for the coupled two channel square

well potential [Eq. (3.63)] are given by

R11 =
V 2

12p
2
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2
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(B.2)
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�
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and

R22 =

�

4V 2
12+D

�

D +
p
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where

D = ε+V1−V2 (B.5)

and

Ω=
r0

Æ

V1+V2− ε+
p

D2+4V 2
12p

2
. (B.6)
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Appendix C

Two dimensional square well potential

The generalized energy dependent scattering length of the square well interaction po-

tential for all m > 0 is given by

a m (k ) =
22mΓ(m )Γ(m +1)

πk 2m
×

Jm (kρ0)
�

∂ Jm (
p

2µ(E+V0)/ħh2ρ)
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�
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− Jm (
p
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�

∂ Jm (kρ)
∂ ρ

�

ρ=ρ0
�
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p
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�
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�

ρ=ρ0

−Nm (kρ0)
�

∂ Jm (
p
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∂ ρ

�
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� . (C.1)
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