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IMPROVEMENTS TO STRAIN COMPUTATION AND RELIABILTY ANALYSIS 

OF FLEXIBLE PAVEMENTS IN THE MECHANISTIC- EMPIRICAL     

PAVEMENT DESIGN GUIDE 

Abstract 
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May 2009 

 
 
 

Chair:  Balasingam Muhunthan 
 
 
 The first part of this study evaluates the effect of load-strain linear proportionality 

assumption employed in the Mechanistic-Empirical Pavement Design Guide (MEPDG) 

design of flexible pavements.  In the design procedure, the strains computed through 

Jacob Uzan Layered Elastic Analysis (JULEA) are used to accumulate the damage and 

distresses over the design period.  To minimize computing time, the MEPDG makes the 

assumption that the computed strains are linearly proportional to the applied load and 

exploits this assumption to extrapolate strains from an 18 kip single axle load and the 

specified tire pressure to the entire load spectrum in the traffic composition.  However, in 

reality, for truck loads of interest, the contact (tire inflation) pressure remains within a 

narrow range whereas the contact area changes with axle load.  The study showed that 

this assumption can lead to significant error in the prediction of Hot Mix Asphalt (HMA) 

rutting.  A method that computes strains at three reference axle loads, and extrapolates or 

interpolates the strain values for other axle loads is shown to provide a suitable 

alternative to the MEPDG assumption. 



 vi

The second phase of the study is on the improvements to the reliability analysis 

currently used by the MEPDG.  This procedure relies on the variability of the measured 

output (distress) obtained from a data base.  This does not directly account for the 

variability of the input parameters that induce such variability in distress in reliability 

predictions.  This study developed a reliability procedure that directly evaluates the effect 

of uncertainties in the model input parameters of HMA materials on the reliability of 

flexible pavements using Monte Carlo and Latin Hypercube simulation and 

Rosenblueth’s 2K+1 point estimate method.  The proposed reliability procedure also uses 

some techniques to reduce the extensive computational time involved in simulations.  

The Latin Hypercube simulation method is found to be an efficient alternative to the 

computationally intensive Monte Carlo simulation.  Rosenblueth’s 2K+1 point estimate 

method is not capable to capture the output distribution type.  Robust sensitivity analyses 

through Tornado plots and extreme tail analyses are used to identify the relative 

importance of the input variables on the predicted distress. 

 



 vii

TABLE OF CONTENTS 

 

 Page 

ACKNOWLEDGEMENTS................................................................................................ iii 

ABSTRACT..........................................................................................................................v 

LIST OF TABLES................................................................................................................x 

LIST OF FIGURES ............................................................................................................xii 

CHAPTER 

 1. INTRODUCTION .................................................................................................1 

   1.1 Scope and Outline of the Dissertation .......................................................3 

 2. BASICS OF MEPDG AND RELIABILITY ANALYSIS ....................................5 

   2.1 Introduction................................................................................................5 

   2.2 Mechanistic Empirical Pavement Design Guide .......................................5 

   2.3 Uncertainty of MEPDG Input Variables....................................................8 

    2.3.1 Probabilistic characteristics of variables.........................................12 

   2.4 Hierarchical Input Levels in MEPDG......................................................18 

   2.5 Flexible Pavement Materials....................................................................21 

    2.5.1 Hot mix asphalt materials ...............................................................22 

    2.5.2 Unbound and subgrade materials....................................................28 

    2.5.3 Poisson’s ratio.................................................................................30 

   2.6 Traffic ......................................................................................................31 

    2.6.1 Processing of traffic input data .......................................................34 

   2.7 Climate.....................................................................................................36 



 viii

   2.8 Distress.....................................................................................................38 

    2.8.1 Permanent deformation...................................................................40 

    2.8.2 Bottom-up fatigue cracking ............................................................47 

    2.8.3 Strain computation ..........................................................................50 

   2.9 Reliability Analysis in MEPDG...............................................................55 

   2.10 Simulation Techniques...........................................................................57  

    2.10.1 Monte Carlo simulation technique................................................57 

    2.10.2 Latin Hypercube sampling............................................................64 

    2.10.3 Rosenblueth’s 2K+1 point estimate method.................................66 

   2.11 Reliability Based Pavement Design.......................................................68 

   2.12 Summary ................................................................................................74 

 3. EFFECTS OF NONLINEAR LOAD-STRAIN BEHAVIOR ON DISTRESS 

PREDICTION......................................................................................................75 

   3.1 Introduction..............................................................................................75 

   3.2 Test Pavement Structure ..........................................................................77 

   3.3 Vertical Strain ..........................................................................................80 

   3.4 Horizontal Strain......................................................................................82 

   3.5 Traffic Spectrum ......................................................................................84 

   3.6 Permanent Deformation ...........................................................................86 

   3.7 Alternative Approach...............................................................................92 

 4. PROPOSED RELIABILITY PROCEDURES ....................................................95 

   4.1 Introduction..............................................................................................95 

   4.2 Proposed Reliability Procedure................................................................95 



 ix

   4.3 Check for Convergence..........................................................................113 

   4.4 Statistical Properties of Obtained Distress Distribution ........................115 

   4.5 Relative Merits of the Proposed Reliability Procedure..........................121 

 5. RELIABILITY TECHNIQUES AND SENSITIVITY ANALYSES................122 

   5.1 Introduction............................................................................................122 

   5.2 Latin Hypercube and Rosenblueth’s Point Estimate Methods ..............122 

   5.3 Effectiveness of Simulation Techniques................................................125 

   5.4 Validation of the Reliability Procedures................................................126 

   5.5 Sensitivity Analyses...............................................................................130 

    5.5.1 Need for robust sensitivity analyses .............................................136 

    5.5.2 Tornado plots ................................................................................137 

    5.5.3 Extreme tail analysis .....................................................................146 

 6. CONCLUSIONS AND FUTURE RECOMMENDATIONS............................160 

REFERENCE....................................................................................................................167 

APPENDIX 

 A. IDENTIFICATION OF REPRESENTATIVE LAYERED ELASTIC 

STRUCTURE ....................................................................................................170 

 B. RANK ORDER CORRELATION METHOD ..................................................177 



 x

LIST OF TABLES 

 

2.1 Common Distribution Type and their Parameters (after Ang and Tang, 1975) ....14 

2.2 Typical Variability in Input Data for Flexible Pavements (after Alsherri            

and George 1988) ..................................................................................................15 

2.3 Typical Variability in Input Data for Rigid Pavements (after Alsherri and   

George 1988) .........................................................................................................16 

2.4 Summary of Variability in Design Input Parameters (after Kim and                

Buch 2003) ............................................................................................................17 

2.5 Typical Variability in Pavement Design Inputs (Report No.                        

FHWA-RD-02-001) ..............................................................................................19 

2.6 Material Inputs Required in MEPDG (NCHRP, 2004).........................................21 

2.7 Traffic Inputs Required for Design Guide (NCHPR, 2004)..................................28 

2.8 Conversion of Random Number to Standard Normal Variate ..............................62 

3.1 Test Pavement Section ..........................................................................................79 

3.2  Summary of HMA Rutting Predicted....................................................................91 

4.1  Probabilistic Characteristics of the Inputs used in the Reliability Analysis........101 

4.2  Computation of Dynamic Modulus for Simulated Input Variables ....................105 

4.3 Effect of the Efficiency Procedure on Strain Values...........................................110 

4.4 Distress Predicted at 90% Reliability ..................................................................119 

4.5 Reliability Predicted at Target Distress ...............................................................120 

5.1 Comparison of Simulation Techniques ...............................................................124 

5.2  Execution Time for Reliability Analysis .............................................................126 



 xi

5.3 Probabilistic Characteristics used in Khazanovich et al. 2008............................127 

5.4 Distress at 90% Reliability ..................................................................................128 

5.5 Reliability predicted at Target Distress ...............................................................129 

5.6 Comparison of Distress Predicted at Mean Input Values (Pavement          

Structure from Khazanovich et al. 2008).............................................................130 

5.7  Comparison of Reliability Results: Proposed Method Vs Khazanovich et al 

(2008) ..................................................................................................................130 

5.8 Sensitivity of HMA Material Properties on Rutting (Permanent Deformation) .141 

5.9 Sensitivity of HMA Material Inputs on Fatigue Damage....................................143 

5.10 Effect of Most and Least Sensitive Variable on HMA Rutting...........................145 

5.11 Effect of Most and Least Sensitive Variable on Fatigue Bottom-up Cracking ...145 

5.12 Extreme Tail Analysis on HMA Rutting Distribution ........................................148 

5.13 Extreme Tail Analysis on Fatigue Cracking Distribution ...................................149 

5.14 Effect of Quality Control on Distress Distribution..............................................156 

 

A-1 Sample Database DB1 Generated in Stage 3 of the Reliability Procedure .........173 

A-2 Sample Database DB2 Generated in Stage 4 of the Reliability Procedure .........173 

A-3 Sample Database DB3 Generated in Stage 4 of the Reliability Procedure .........174 

A-4 Deviation from the Representative Layered Elastic Structure ............................175 

B-1 Spearman's Rank Order Correlation....................................................................179 

 

 

 



 xii

LIST OF FIGURES 

 

2.1 Flowchart for MEPDG Design Procedure...............................................................7 

2.2 Variation of International Roughness Index (IRI) with design period (after 

NCHRP, 2004) ........................................................................................................9 

2.3 Effect of Material Uncertainty on Probability of Failure in Rigid and Flexible 

Pavements (after Lemer and Moavenzadeh, 1971) ...............................................11 

2.4 Integrated presentation of types of uncertainties associated with M-E flexible 

pavement design (after Kim and Buch.  2003)......................................................12 

2.5 Variation of Equivalent Vertical Stress Pulse Time with Vehicle Velocity and 

Depth .....................................................................................................................24 

2.6 Utilized Permanent Deformation Concept (after Ayres and Witczak, 1998)........46 

2.7  Schematics of Strain Computation Location used in JULEA (after NCHRP,  

2004)......................................................................................................................50 

2.8 Relationships between Tire Load, Tire Inflation Pressure, and Tire Contact     

Area (Park et al. 2005)...........................................................................................54 

2.9  Dual Tire Imprint of 8.5 kip Axle on 17 kip Axle (Al-Qadi, 2007)......................54 

2.10 Depiction of Random Variable Generation Process (after Haldar and   

Mahadevan, 2000) .................................................................................................60 

2.11 Relationships between Reliability and Allowable Strain Repetitions (after     

Chou, 1989) ...........................................................................................................70 

3.1 Vertical Strain with Depth for Different Axle Loads with and without the     

Load-Strain Linear Proportionality Assumption ...................................................81 



 xiii

3.2 Effect of Load-Strain Linear Proportionality Assumption on Vertical Strain    

with Depth .............................................................................................................82 

3.3 Load-Strain Relationship at Mid-Depth of the HMA Sub-Layers ........................83 

3.4  Load-Strain Relationship at the Bottom of HMA Layer .......................................84 

3.5  Cumulative Load Repetition in Single Axle for a Typical Traffic Spectrum .......85 

3.6 Predicted Rutting in Pavement Layers by the MEPDG and the Stand-Alone 

Application with Load-Strain Linear Proportionality Assumption .......................88 

3.7 Predicted Rutting in Pavement Layers by Stand-Alone Application with and 

without Load-Strain Linear Proportionality Assumption......................................89 

3.8 Difference in Rutting Prediction in HMA Sub-Layers and Unbound Layers .......90 

3.9  Predicted Rutting in Pavement Layers without Load-Strain Linear  

Proportionality Assumption and 3-Point Extrapolation ........................................93 

3.10 Predicted Rutting in Pavement layers of Test Pavement Section-2 without     

Load-Strain Linear Proportionality Assumption and 3-Point Extrapolation.........94 

4.1 Developed Reliability Procedure for Flexible Pavements.....................................98 

4.2 Corrected and MEPDG generated Dynamic Modulus ........................................106 

4.3 Effect of JULEA Execution only on Representative Layered Elastic Structure .111 

4.4 Convergence Test on Monte Carlo Simulation ...................................................115 

4.5 Distribution of different Predicted Pavement Distress under HMA Material 

Variability............................................................................................................117 

4.6 Cumulative Distribution of the Predicted Pavement Distress under HMA  

Material Variability .............................................................................................118 



 xiv

4.7 Variability in Predicted Distress Computed by MEPDG and  Developed 

Procedure.............................................................................................................120 

5.1 Relationships between Input Variability and Strain Repetition    (after Chou, 

1990)....................................................................................................................132 

5.2 Percent Change in Design Life from Mean Input in Flexible Pavement (after 

Killingsworth And Zollinger, 1995)....................................................................133 

5.3 Extreme Values for Sensitivity Analysis of Normal Input Variable (after     

Haider et al. 2007) ...............................................................................................135 

5.4  Effects of Input Variables on Pavement Performance (after                           

Haider et al. 2007) ...............................................................................................136 

5.5 Sensitivity of HMA Material Inputs on Rutting..................................................141 

5.6 Sensitivity of HMA Material Inputs on Fatigue Cracking ..................................143 

5.7 Extreme Tail Analysis – Relation between HMA Rutting and Air Void      

Content ................................................................................................................150 

5.8 Extreme Tail Analysis – Relation between Fatigue Bottom-up Cracking and     

Air Void Content .................................................................................................150 

5.9 Extreme Tail Analysis – Relation between HMA Rutting and Effective        

Binder Content.....................................................................................................151 

5.10 Extreme Tail Analysis – Relation between Fatigue Bottom-up Cracking and 

Effective Binder Content .....................................................................................152 

5.11 Effect of Decrease in Sensitive Input Variability on HMA Rutting       

Distribution..........................................................................................................155 



 xv

5.12 Effect of Decrease in Sensitive Input Variability on Fatigue Bottom-Up   

Cracking Distribution ..........................................................................................157 

5.13 Effect of Increase in Least Sensitive Input Variability on HMA Rutting 

Distribution..........................................................................................................158 

5.14 Effect of Increase in Least Sensitive Input Variability on Fatigue Bottom-Up 

Cracking Distribution ..........................................................................................159 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1

CHAPTER 1 

INTRODUCTION 

 

 The Mechanistic-Empirical Pavement Design Guide (MEPDG) of the NCHRP 1-

37A project represented a major advancement to pavement design and analysis.  It uses 

elastic, plastic, viscous, and creep properties of materials to predict the fatigue and rutting 

performance of pavements.  The inclusion of basic material parameters that are obtained 

from element tests into distress prediction models in the MEPDG has facilitated the 

design of pavements based on site specific characteristics.  The design guide also 

includes provisions for incorporating rehabilitation procedures of existing pavements.  

The MEPDG can also accommodate improvements to distress prediction models, 

changes in construction materials, traffic pattern, vehicle types, and tire types and 

configuration. 

  The MEPDG is currently in its evaluation stages with updates from researchers 

before full implementation into practice by the state departments of transportation.  Some 

of these include the refinement of the distress prediction models, their validation of 

procedures, and the assumptions involved in the design analysis.  One of the key 

assumptions in the MEPDG involves the determination of strain under different loads.  

To minimize computing time, the MEPDG makes the assumption that the computed 

strains are linearly proportional to applied load and exploits this assumption to 

extrapolate strains from an 18 kip single axle load and specified tire pressure to the entire 

load spectrum in traffic composition.  This load-strain linear proportionality assumption, 

however, holds true only if the contact area remains the same as the load varies, resulting 

in similar variation in the contact pressure.  However, in reality, for truck loads of 
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interest, the contact (tire inflation) pressure remains within a narrow range whereas the 

contact area changes with axle load.  This reality is violated by the load-strain linear 

proportionality assumption. This study first evaluates the effect of non-linearity in strain 

extrapolation by the MEPDG on rutting prediction and puts forward an alternative 

scheme to overcome this drawback.  

 The MEPDG uses a set of mechanistic-empirical models to analyze distresses of 

flexible pavement structure in response to traffic, climate, and materials.  These models 

include prediction of rutting, fatigue cracking, and thermal cracking. Practically all input 

variables (traffic, climate and materials) are associated with some level amount of 

uncertainty in their measurement. For the pavement design to be effective, uncertainty in 

these variables must be incorporated in a consistent manner through a reliability-based 

design procedure. 

In order to evaluate the reliability of a selected pavement structure, the current 

MEPDG procedure utilizes the overall standard deviation of the measured distresses, 

obtained from calibration against distressed pavements, in comparison with predicted 

values.  This technique is relatively simple; however, it is far from accurate (Design 

Manual, NCHRP 1-37A).  It relies on a set of predetermined variability values obtained 

from a performance database rather than on those based on the site specific input 

parameters that induce such uncertainty in distress prediction.  Some other limitations of 

the current reliability analysis include standard deviation being calibration-site specific, 

as well as the assumption of normality of the distribution of measured distress levels. 

 Thus, the second phase of the study is concerned with the improvement of the 

reliability analysis currently used in the MEPDG by directly incorporating the effects of 
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variability and uncertainty of the material inputs on distress prediction with a focus on 

flexible pavements.  The reliability of pavement distress for a given level of uncertainty 

in material input is evaluated through Monte Carlo and Latin Hypercube simulation 

techniques and the Rosenblueth’s Point Estimate Method. 

 Current sensitivity analyses of the predicted distresses involve the quantification 

of their deviation based only on the variation of one input variable at a time.  This does 

not account for the combined influence of the input parameters on distress in the field.    

Robust techniques that account for their combined effect on the sensitivity of distress 

prediction are proposed.  The sensitivity analyses are performed with the simulated data 

obtained from the proposed reliability procedures. 

1.1 Scope and Outline of the Dissertation 

The main objectives of the study are to: 

1. Improve the prediction of load-strain behavior in MEPDG, 

2. Develop and validate methods to predict pavement distress reliability, and  

3. Develop improved methods of sensitivity analysis 

Chapter 2 reviews the basics of the flexible pavement design procedure described 

in the Mechanistic-Empirical Pavement Design Guide (MEPDG).  The materials 

properties, traffic and climatic inputs required for design analysis are discussed.  The 

probabilistic characteristics of the input variables as reported in past literature are 

reviewed.  The distress models and the reliability procedures used in the MEPDG relating 

to this study are also discussed.  This chapter concludes with the review of some 

simulation techniques that are used in the determination of system reliability and past 

studies that attempted reliability analysis for pavement design. 
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The effects of strain extrapolation on distress prediction are studied in Chapter 3. 

A computer code based on MEPDG design procedure is developed first. The code is then 

modified to compute the strain at each axle load level. The extent of the deviation by 

MEPDG procedures in distress prediction as a result of non-linearity is determined.  An 

alternate technique that overcomes this limitation is proposed.  

The techniques proposed to directly account for the uncertainty of input variables 

in pavement reliability analysis are provided in Chapter 4.  The study is focused on the 

development of efficient techniques to incorporate Hot Mix Asphalt (HMA) material 

variability into reliability analyses.  These procedures, however, are general enough to 

incorporate uncertainties in other input variables in the future.  Probabilistic 

characteristics of the material input variables are obtained from Long Term Pavement 

Performance (LTPP) literature.  Methods that reduce the extensive computational time 

involved in reliability simulation analysis are identified.  Design reliabilities obtained 

from the current MEPDG method are compared to the proposed methodology.   

The efficiency of the proposed procedure is compared with past studies in Chapter 

5.  This chapter also discusses the relative merits of the simulation techniques, Monte 

Carlo, Latin Hypercube, and Rosenblueth’s Point Estimate in terms of their efficiency, 

accuracy and computational feasibility in practice.  Robust methods to conduct sensitivity 

and extreme tail analyses with simulation data are presented.  The implications of these 

analyses to practice are discussed.  

A summary of the study findings and recommendation for future research are 

provided in Chapter 6. 
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CHAPTER 2 

BASICS OF MEPDG AND RELIABILITY ANALYSIS 

2.1 Introduction 

The basic principles of MEPDG are described first followed by a discussion of 

the salient features of some modern reliability analysis techniques.  Since the MEPDG 

design manual (NCHRP, 2004) is readily accessible, the review is confined to only 

sections that are used in this study.  The chapter concludes with a discussion of some 

notable simulation techniques of reliability analysis. 

2.2 Mechanistic Empirical Pavement Design Guide 

The MEPDG is a software that is used to predict the various pavement distresses 

for given material, traffic and climatic conditions.  The designer selects a trial design 

project and executes the software to compute the distresses to ensure that an established 

performance criterion is met.  The main steps involved in the procedure for the design of 

flexible (HMA) pavements are illustrated in Figure 2.1.  They are briefly described as 

follows: 

1. First, the guide requires as input, the details of pavement structure, material 

properties and expected site-specific data such as traffic and climate. 

2. For the given conditions, the Enhanced Integrated Climatic Model (EICM) and 

Global aging models which are integral within the software, develop moisture and 

temperature profile, and calculate the material and climatic input parameters 
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needed for the distress models.  The traffic data is processed to obtain the number 

of load repetitions for each axle load increment and type. 

3. For each incremental design period, structural responses at critical locations 

corresponding to the distresses are computed using a layered elastic analysis 

program. 

4. Nationally calibrated distress model coefficients in the design guide are modified 

for local conditions based on available long term performance data.  

5. The structural responses, material and traffic data are used by the distress models 

to compute the accumulated damage at the end of each month of the design 

period.  

6. The reliability of the predicted distress is determined based on predetermined the 

standard deviation values. 

7. Adequacy of the trial design is verified by comparing the distress prediction at the 

given reliability level with the expected performance values. 

The MEPDG evaluates the adequacy of the trial design based on key pavement 

distresses and profile smoothness for the chosen period.  The structural distresses 

evaluated by the design guide for flexible pavements include: 

o Fatigue Bottom-up (or alligator) cracking 

o Fatigue Surface-down (or longitudinal) cracking  

o Permanent deformation (or rutting) 

o Thermal cracking, and 

o Fatigue of chemically stabilized layers (for Semi-rigid pavements only) 
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Figure 2.1 Flowchart for MEPDG Design Procedure 

 

The structural response models built within the MEPDG form the core of the 

mechanistic-based design methodology.  The models for the design of flexible pavements 

in the guide are based on the response computed from the multi-layer elastic program 

JULEA (Jacob Uzan Linear Elastic Analysis) or on the 2-D finite element program, 

Disturbed State Concept DSC2D (for non linear analysis).  The DSC2D program is used 

only when the designer chooses to use the Level 1 input to characterize the non-linear 

response of unbound layer materials (such as bases, sub-bases and/or sub-grades). 

The computational procedure for flexible pavements can be summarized as 

follows: 

Input Analysis – EICM, 
Traffic

Structural Responses 
(є )

Damage Accumulation 
with timeStandard Deviation from 

Performance versus 
Predicted Distress 

Performance Data 
(LTPP) 

Distress models 

National and Local 
Calibration

Performance Summary at 
Design Reliability 

Inputs 
 • Structure 

• Materials
• Traffic 
• Climate 
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The trial design (thickness) is analyzed by dividing the target design life into 

smaller increments (usually monthly).  Linear or nonlinear models are used as chosen to 

compute the stress and/or strain values at specific critical locations for each distress type 

at each increment period.  Note that within each increment, factors such as traffic levels, 

modulus of asphalt concrete, base, subbase and subgrade that affect the flexible pavement 

responses are kept constant.  The critical stress and/or strain values are converted to 

incremental distresses, either in absolute terms (incremental rut depth) or in terms of a 

damage index (fatigue cracking) using appropriate performance models.  Incremental 

distresses and/or damage are summed over all increments.  The output of the MEPDG 

software is usually provided in the form of plots of accumulated damage at the end of 

each analysis period.   

Figure 2.2 shows a typical variation of International Roughness Index (IRI) with 

time obtained from the MEPDG software.  The input parameters of the trial section are 

modified and the procedure is repeated until a satisfactory design with the required 

reliability is achieved. 

2.3 Uncertainty of MEPDG Input Variables 

Pavement deterioration is the result of a combination of different types of distress.  

They include, fatigue cracking due to repeated loads or environmental cycles, shear 

deformation of the pavement structure, and disintegration of materials due to breakage of 

mechanical or chemical bonds as a result of weathering, infiltration, or loading.  Thus, an 

accurate prediction of the pavement deterioration characteristics over the whole life-cycle 

analysis period of the pavement design is important for pavement management.  

Pavement maintenance and rehabilitation programs depend on this prediction.  
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Consequently, the pavement performance prediction model forms an integral part of a 

pavement management system. 
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Figure 2.2 Variation of International Roughness Index (IRI) with Design Period (after NCHRP, 

2004) 

 

Pavement distress prediction models used in MEPDG are a function of different 

input variables.  These variables have a certain level of uncertainty associated with them.  

Thus, for a comprehensive reliability analysis, uncertainties associated with input 

parameters and the prediction models need to be quantified.  These include estimation of 

variance and uncertainties associated with design inputs such as traffic loadings, climate, 

material properties, layer thickness, and errors in the models themselves.   

The incremental distress analysis of the MEPDG requires inputs for each 

incremental period of the design period.  The inputs for the structural response model 

include: 
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o Traffic loading 

o Pavement cross-section 

o Poisson’s ratio for each layer 

o Elastic modulus for each layer 

o Thickness of each layer 

o Layer to layer friction 

o Coefficient of thermal contraction and expansion for HMA and PCC, 

respectively.  

o Temperature and its gradient in HMA materials 

o Moisture gradient in PCC slab. 

The effect of input uncertainty on the pavement distress prediction has been 

studied in the past by several investigators.  The effect of uncertainty in material strength 

and traffic growth on the performance of rigid and flexible pavements was studied using 

Monte Carlo simulation by Lemer and Moavenzadeh (1971).  By treating the uncertainty 

in material strength with different coefficients of variation, the authors studied the 

variation between probability of failure and axle loads (in terms of Equivalent Single 

Axle Load, ESAL) as shown in Figure 2.3.  It can be seen that for a given axle load, an 

increase in the coefficient of variation of material strength increases the probability of 

failure.  These authors have also quantified the effect of traffic growth rate on possible 

failure age.   

The inherent relationship between the probabilistic and deterministic prediction 

models was analyzed by Li et al. (1997).  The pavement distress in terms of Pavement 

Condition Index (PCI) was evaluated using two deterministic flexible pavement 
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deterioration models given by Ontario Pavement Analysis of Costs and AASHTO guide.  

The deterministic equations were converted to probabilistic ones by considering each 

design variable to be normally distributed.  The probability of the pavement at a certain 

level of deterioration in terms of PCI was tabulated for its design period.  Both 

deterministic and probabilistic designs were found to have similar deterioration during 

the early stages of the pavements but were found to diverge at later years.  

 

Figure 2.3 Effect of Material Uncertainty on Probability of Failure in Rigid and Flexible Pavements 
(after Lemer and Moavenzadeh, 1971) 

 

Kim and Buch (2003) categorized uncertainties affecting pavement performance 

into two groups.  The first group termed ‘Uncertainties of design parameters’ represented 

the spatial variability and inconsistent estimates of inputs.  The second group termed 
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‘Systematic errors’ represented model bias and statistical errors.  Uncertainties of design 

parameters led to variations of the shape of probabilistic distribution of the performance 

function.  Systematic errors were found to cause a shift in the location of the probabilistic 

distribution of the performance function resulting in consistent deviations (Figure 2.4).  

The representative ratio of the measured to predicted a pavement performance value was 

used to quantify ‘Systematic errors’.  This ratio, termed professional factor, reflected 

uncertainties of the assumption and simplifications used in design models.   

 
Figure 2.4 Integrated Presentation of Types of Uncertainties Associated with M-E Flexible Pavement 

Design (after Kim and Buch.  2003) 
 

2.3.1 Probabilistic characteristics of variables 

The technique of deriving probabilistic information from observational data 

makes use of statistical inference.  Information obtained from the sample data of the 
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population is used to make generalizations about population characteristics.  It should be 

noted, however, that the parameters obtained from these samples are only estimates and 

can only predict the occurrence of an event with an associated probability (Ang and 

Tang, 1975).  The underlying uncertainty may occur as the result of either variability 

(inherent or natural) or prediction error.  

Estimation of probabilistic parameters is divided into Point or Interval estimates.  

Point estimates calculate a single number, from a set of observational data, to represent 

the probabilistic parameter of the underlying population.  Interval estimates establish a 

confidence range for the quantity.  The point estimate method is used in this study.  

The most common point estimate methods are the method of moments and the 

method of maximum likelihood.  The method of moments estimates mean and variance 

from which other parameters of the probabilistic distribution can be determined.  Table 

2.1 is a summary of the common probabilistic distributions.  The table also highlights the 

characteristic parameters of these distributions.   

The mean and variance estimates of a sample size n, namely x1, x2,…, xn are 

given respectively by: 

2
n

1i
i

n

1i
i

)xx(
1n
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x
n
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∑
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    (2.1) 

where X is the population and  x1, x2,…, xn are its values 
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Table 2. 1 Common Distribution Type and their Parameters (after Ang and Tang, 1975) 

 

Distribution 
Probability Density Function (PDF) or 

mass function (PMF) 
Parameters

 
Relation to Mean and 

Variance 

Normal 
(Gaussian) 
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The method of maximum likelihood derives the point estimate of the parameter 

directly depending on the type of distribution.  The likelihood function of n independent 

observations x1, x2,…, xn is given by (Ang and Tang 1975): 

L (x1, x2,…, xn; µ1, µ2) = ( )∏
=

θθ
n

1i
21i ,;xf     (2.2) 

where µ1, µ2 are the parameters of the underlying distribution function f(X).  The 

maximum likelihood estimator is the value of the parameter µ that maximizes the 

likelihood function L (x1, x2,…, xn; µ1, µ2).  It can be obtained from the solution of the 

following differential equation (Ang and Tang 1975): 

  0µµ ; x,, x,L(x

j

2n21 =
θ∂

) ,…∂ 1       (2.3) 
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The probability density function (PDF) of the random variable is required in most 

reliability analyses.  The underlying distribution of the significant variable can be 

obtained through goodness-of-fit test such as Test of Skewness and Kurtosis, Chi-Square 

test or Kolmogorov- Smirnov (K-S) Test. 

 Limited availability of data in the past had constrained the development of 

suitable probabilistic distribution functions of the input variables for pavement design.  

Thus, researchers had usually proposed typical values for the coefficient of variation 

from their own experience.  For example, Alsherri and George (1988) developed a 

reliability analysis of the 1985 AASHTO design guide using the Monte Carlo simulation 

technique.  The variables were assumed to follow a normal distribution with coefficients 

of variation as summarized in Table 2.2 and Table 2.3, respectively for flexible and rigid 

pavements. 

 

Table 2. 2 Typical Variability in Input Data for Flexible Pavements (after Alsherri and George 1988) 

Material Characteristic  Mean Value Coefficient of 
Variation (%) 

Annual Traffic, 18kip ESAL application 600,000 30 

Subgrade Resilient Modulus (Mr) 34.4 MPa (5000 psi) 20 

Drainage Coefficient 

       Base 

       Sub-Base 

 

1 

1 

 

10 

10 

Model Error (σME) 0.46 NA 

Initial serviceability index 4.5 6.7 

Terminal serviceability index 2.5 16 
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Table 2. 3 Typical Variability in Input Data for Rigid Pavements (after Alsherri and George 1988) 

Material Characteristic   Mean Value Coefficient of 
Variation (%) 

Modulus of rupture 4.5 MPa (650 psi) 10 

Modulus of Elasticity 34,500 MPa (5E6 psi) 3.8 

Load transfer coefficient, J 3.2 (JCP) 

2.56 (CRC) 

0.32 

Modulus of subgrade reaction (k) 0.095 N/mm3 (350pci) 35 

Drainage Coefficient, (Cd) 1 10 

Annual precipitation 130cm 15 

Freezing index 0 20 

Initial serviceability index 4.5 6.7 

Terminal serviceability index 2.5 16 

 
 

With the availability of additional data (e.g. Long Term Pavement Performance 

(LTPP) database), refined estimates of the probabilistic characteristics for key input 

variables used in pavement models are reported in the literature.  The values are obtained 

from various design projects and hence a range of possible probabilistic characteristic 

values for each variable is reported.  Table 2.4 summarizes some published probabilistic 

characteristics values of the input variables used in flexible pavement structural response 

models. 

Variability associated with pavement thickness was analyzed by Jiang et al. 

(2003) from more than 4000 pavement layers including both flexible and rigid sections in 

the LTPP database.  The study included characterization of the spatial variation in layer 

thickness at different locations (distribution); comparisons within section layer thickness 
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measurements from elevation and core thickness measurements; and the extent of 

differences in layer thickness data between as-designed and mean as-compacted 

thicknesses. 

 

Table 2. 4 Summary of Variability in Design Input Parameters (After Kim and Buch  2003) 

Property Coefficient of 
variance, range % 

Type of Distribution 

3-12 Normal AC Thickness 

3-12 Normal 

10-40 Lognormal AC modulus 

10-20 Normal 

10-30 Normal Base Modulus 

5-60 Lognormal 

10-30 Normal Subbase Modulus 

5-60 Lognormal 

10-30 Normal Subgrade Modulus 

20-45 Lognormal 

Traffic 42 Lognormal 

 

Jiang et al. (2003) performed the goodness of fit test between the assumed 

theoretical distribution and the distribution of the observed data through Skewness and 

Kurtosis tests.  At 1% level of significance about 86% of all layer thickness frequency 

distributions were not rejected for being considered as normally distributed.  The 

variances of the layer thickness measured by elevation and core thickness methods were 
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statistically analyzed through F-test at 99% confidence level.  For more than 82% of the 

sections, the differences in variances were not statistically significant.  However, the 

mean layer thickness computed from these two methods show uniformity only in 56% of 

all layers analyzed through statistical t-test at 95% confidence level.  The differences 

were reported within 12.7 mm for 74% of the layers and within 25.4mm for 92% of the 

layers.  A summary of statistical deviation of design thickness and as-compacted 

thickness were presented for different pavement material types.  Also it was reported that 

for the same layer and material type, the mean constructed layer thickness tend to be 

above the designed value for the thinner layers and below the design value for the thicker 

layers.  The mean constructed layer thicknesses for PCC layers and LC base layers were 

reported as generally above the designed thickness values. 

 A report (FHWA-RD-02-001) summarizing the probabilistic characteristics of 

most variables involved in pavement design was published by Office of Infrastructure of 

Federal Highway administration (FHWA) at Turner-Fairbank Highway Research Center 

(TFHRC).  It was based on parameters available in LTPP database.  The variables were 

found to be normally distributed with probabilistic characteristics as given in Table 2.5.  

The current study utilizes only the probabilistic characteristics of the HMA mix variables. 

 

2.4 Hierarchical Input Levels in MEPDG 

The MEPDG provides the designer with flexibility to choose the level of inputs 

for a project, based on its criticality, sensitivity of the pavement performance to a given 

input, and the availability of resources.  This is done using a hierarchical approach with 
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regard to inputs relating to traffic, materials, and environment.  In general, three levels of 

inputs are provided (NCHRP, 2004). 

Table 2. 5 Typical Variability in Pavement Design Inputs (Report No.  FHWA-RD-02-001) 

Variable Standard Deviation COV  

Thickness  

            HMA – Overlay 

            HMA – Original Surface 

            Base 

            Sub-Base 

 

27 mm 

51 mm 

66 mm 

10 mm 

 

49.4 % 

74.6 % 

46.4 % 

10 % 

Air Void 1 to 2 %  

Bulk Specific Gravity  Max 2% 

Maximum Specific Gravity  Max 1% 

Asphalt content of HMA Max 0.5 % Max. 10% 

Aggregate Gradation 

          Coarse (4.75 to 12 mm) 

          Fine (75 μ to 2 mm) 

 

1.7 to 4.9 % 

0.4 to 2.8 % 

 

Subgrade Unconfined Compressive 
Strength 

           Fine Graded 

          Coarse Graded 

 

 

1.5 – 10 kPa 

1.7 –  49.2 kPa 

 

 

1.6 - 26.1 % 

2.6 – 26.8 % 

 

Level 1 input provides for the highest level of accuracy and, thus, would have the lowest 

level of uncertainty or error.  Level 1 input are typically used for designing heavily used 

pavements or wherever there is dire safety or economic consequences of early failure.  

Level 1 material input requires laboratory or field testing.  These include dynamic 
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modulus of hot-mix asphalt concrete, collection of site-specific axle load spectra data, 

and nondestructive deflection testing of existing pavement.  It is evident that Level 1 

inputs require more resources and time than for other levels. 

Level 2 input is used when resources or testing equipment are not available as in Level 1.  

These inputs typically could be user-selected, possibly from an agency database, derived 

from a limited testing program, or estimated from correlations.  Examples of level 2 input 

include, the estimation of asphalt concrete dynamic modulus from binder, aggregate, and 

mix properties, estimation of Portland cement concrete elastic moduli from compressive 

strength tests, and use of site-specific traffic volume and traffic classification data in 

conjunction with agency-specific axle load spectra.  Level 2 inputs thus provide an 

intermediate level of accuracy. 

Level 3 inputs provide the lowest level of accuracy.  This level is used for cases when 

there is minimal consequence of early failure as in low volume roads.  These inputs are 

typically user-selected based on averages for the region.  Examples include, default 

unbound materials resilient modulus values or default Portland cement concrete 

coefficient of thermal expansion for a given mix classes and aggregates used by an 

agency. 

For a given design project, inputs may be obtained using a mix of the three levels, 

such as concrete modulus of rupture from Level 1, traffic load spectra from Level 2, and 

subgrade resilient modulus from Level 3.  It is important to note regardless of the level of 

input used, the computational algorithms in the MEPDG perform the same distress 

calculations. 
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2.5 Flexible Pavement Materials 

Flexible pavement consists of a Hot Mix Asphalt material (HMA) layer followed 

by unbound layers.  The properties required for each of this material layer are 

summarized in Table 2.6.  The procedures outlined by the MEPDG to obtain the material 

properties at different hierarchal input levels are subsequently discussed. 

 

Table 2. 6 Material Inputs Required in MEPDG (NCHRP, 2004) 

Required Materials Inputs  

Materials  

Category  
Materials inputs 
required for critical 
response 
computations 

Additional 
materials 
inputs 
required for 
distress/trans
fer functions 

Additional materials 
inputs required for 
climatic modeling 

Hot-Mix Asphalt 
Materials  

(surface, binder, 
base, and sub-base 
courses)  

• Time-temperature 
dependent dynamic 
modulus (E*) of HMA 
mixture. 

 

• Poisson’s ratio. 

• Tensile 
strength, creep 
compliance, 
coefficient of 
thermal 
expansion. 

 

• Surface shortwave 
absorptivity (only required 
for surface course), thermal 
conductivity, and heat 
capacity of HMA. 

• Asphalt binder viscosity 
(stiffness) 

Unbound Base/ Sub-
base and Subgrade 
Materials  

• Seasonally adjusted 
resilient modulus (Mr). 

• Poisson’s ratio. 

• Unit weight. 

• Coefficient of lateral 
pressure. 

None • Plasticity index, gradation 
parameters, effective grain 
sizes, specific gravity, 
saturated hydraulic 
conductivity, optimum 
moisture contents, parameters 
to define the soil water 
characteristic curve. 

Bedrock  • Elastic modulus (E). 

• Poisson’s ratio. 

• Unit weight. 

None. None. 
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2.5.1 Hot mix asphalt materials 

The layered elastic analysis program (JULEA) requires the asphalt binder 

viscosity, dynamic modulus of the mix and Poisson’s ratio to compute the structural 

response for a given load.  Asphalt binder stiffness (G*) is used to obtain the relation 

between the asphalt viscosity and temperature.  The Global aging models apply the effect 

of aging, loading frequency and layer depth on viscosity.  The aged viscosity value is 

used to calculate the shift factors and then the dynamic modulus in each sub-layer.  These 

properties and procedures are explained below. 

Asphalt Binder Viscosity (η) 

For Level 1 and 2 inputs, the binder viscosity (η) is calculated from the binder 

stiffness data obtained from Dynamic Shear Rheometer test (AASHTO T315).  The 

relation between the viscosity and the temperature is used to compute regression 

parameters A and VTS as (NCHRP, 2004):  

RTVTSA log*loglog +=η        (2.4) 

where, TR is the temperature in Rankine, the parameters, A and VTS depend on the binder 

PG grade.  

For Level 3 input, values for A and VTS are obtained based on the PG grade used.  

Dynamic modulus (E*) Master Curve and Shift Factors  

Dynamic modulus (E*) is the primary stiffness property of interest in asphalt 

materials.  The dynamic modulus of asphalt concrete is a function of temperature, rate of 

loading, age, and mixture characteristics such as binder stiffness, aggregate gradation, 
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binder content, and air voids.  For input Level 1, dynamic modulus values for a given 

mixture are determined from tests conducted at different temperatures and frequencies.  

For Level 2 and 3 inputs the dynamic modulus is calculated from the mixture 

characteristics, temperature and frequency inputs through a predictive equation presented 

later (Eq. 2.7).  The derived dynamic moduli are transformed to a sigmoid function 

(termed master curve) at a reference temperature (usually 700 F).  The modulus of the 

asphalt concrete at all analysis levels is determined from the master curve using 

appropriate shift factors, to account for effect of temperature, rate of loading, and depth 

of the layer. 

Dynamic Modulus Estimation for different loading frequency and temperature 

conditions   

The time of loading varies along the depth of the pavement as shown in Figure 

2.5.  Since the loading frequency (inverse of load pulse time) decreases with depth, the 

dynamic modulus reduces with depth.  The Global aging model considers the variation of 

the frequency with depth and the aging that occurs in the asphalt under field condition 

and calculates the shift factor.  The shift factor computed for each season over the design 

period is used to get the corresponding asphalt dynamic modulus from the master curve.  

The procedure is as follows: 
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Figure 2. 5 Variation of Equivalent Vertical Stress Pulse Time with Vehicle Velocity and Depth 

 

Step 1: Development of Master Curve and Shift Factors at 70 °F for original condition. 

Master curves are constructed using the principle of time-temperature 

superposition.  First, a standard reference temperature is selected (in most cases, 70 °F).  

The data at various temperatures are shifted with respect to time (load frequency) until 

the curves merge into a single smooth function.  The master curve of modulus as a 

function of time formed in this manner describes the load time dependency of the 

material.  The amount of shifting at each temperature required to form the master curve 

describes the temperature dependency of the material.  Thus, both the master curve and 

the shift factors are needed for a complete description of the load rate and temperature 

effects. 
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Master curve can be represented by a sigmoidal function described by (NCHRP, 

2004): 

rte
E log

*

1
)log( γβ

αδ
++

+=         (2.5) 

where  

E* = Dynamic modulus (psi)  

tr = Time of loading at the reference temperature (shift factor) 

δ = Minimum value of E*  

δ + α = Maximum value of E*  

β, γ = Parameters describing the shape of the sigmoidal function 

The parameter δ is a function of aggregate gradation, and effective binder and air 

void contents.  The parameter α is dependent only on aggregate gradation.  Thus, the 

minimum (δ) and maximum (δ + α) dynamic modulus values are independent of the 

binder stiffness.  This is quite rational since binders tend toward similar high stiffness at 

very low temperatures.  At very high temperatures, internal friction dominates and the 

influence of the binder stiffness is small.  The rate at which the modulus changes from 

the maximum to the minimum depends on the characteristics of the binder. 

The shift factor at the reference temperature can be obtained by: 

))log()(log()log()log( Trr ctt ηη −−=      (2.6) 

where 

t = time of loading at given temperature of interest. 

c – material property  
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η = aged viscosity at evaluation depth and temperature,  

ηTr = viscosity at reference temperature and RTFO aging. (used for generating 

master curve) 

Level 1: Master curves and the corresponding shift factors are developed experimentally 

by shifting laboratory frequency sweep data from either dynamic modulus tests, NCHRP 

1-28A, or shear tests, AASHTO T320, “Determining Shear Strain and Stiffness of 

Asphalt Mixtures Using the Superpave Shear Test (SST)”.  The parameters δ, α, β, γ in 

Equation 2.5 and c in Equation 2.6 are obtained by nonlinear optimization of the master 

curve developed from the lab data. 

Level 2 or 3:   Master curves are developed directly from the dynamic modulus 

predictive equation below (Witczak and Fonseca for NCHRP, 2004): 
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where:  

E* 
= dynamic modulus, psi.  

η = bitumen viscosity, 10
6 
Poise.  

f = loading frequency, Hz.  

Va = air void content, %.  

Vbeff = effective bitumen content, % by volume.  

ρ34 = cumulative percentage retained on the ¾ in sieve.  

ρ38 = cumulative  percentage retained on the 3/8 in sieve.  
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ρ4 = cumulative percentage retained on the No. 4 sieve.  

ρ200 = percentage passing the No. 200 sieve. 

The parameters δ, α, β, γ in Equation 2.5 and c in Equation 2.6 are obtained by comparing 

the master curve and the sigmoidal function.  The relations are given by  

255882.1
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Step 2: Accounting for Asphalt Aging: 

The effect of aging is incorporated into dynamic modulus using the Global Aging System 

(NCHRP, 2004).  This system provides models that describe the change in viscosity that 

occurs during mixing and compaction, as well as long-term in-situ aging.  The Global 

Aging System includes four models:  

• Original to mix/lay-down model.  

• Surface aging model.  

• Air void adjustment.  

• Viscosity-depth model.  

The original to mix/lay-down model accounts for the short-term aging that occurs 

during mixing and compaction.  The surface aging model then predicts the viscosity of 

the binder at the surface of the pavement after any period of time using the viscosity at 

mix/lay-down.  If warranted, the surface viscosity from the surface aging model can be 
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adjusted for different air void contents using the air void adjustment model.  Finally, the 

viscosity as a function of depth is determined using the viscosity from the surface aging 

model or the air void adjusted model, along with the viscosity-depth model.  The output 

of the Global Aging System is a prediction of the binder viscosity at any time and any 

depth in the pavement system. 

Step 3: Calculation of Shift factors using appropriate Viscosity 

The shift factors (tr) are obtained at every evaluation depth for each season.  The term tr 

acts as a combined shift factor to include the effect of age and temperature and is as given 

in Equation 2.6.  In which the viscosity, η is the aged viscosity at evaluation depth and 

temperature obtained from Global Ageing Model 

Step 4: Calculation of Dynamic Modulus 

For each sub-layer, the shift factors are used in Equation 2.5 to calculate the dynamic 

modulus at the corresponding season.  The parameters δ, α, β, γ and c are constant for the 

given binder. 

2.5.2 Unbound and subgrade materials 

AASHTO and unified soil classification system (USCS) are used in the design 

guide to describe the different unbound granular and subgrade materials.  The material 

properties required for unbound granular materials, subgrade and bedrock are 

summarized in the Table 2.6.  The resilient modulus and Poisson’s ratio are used to 

quantify the stress related stiffness of these materials.  These two inputs are explained in 

detail below.  



 29

Resilient Modulus 

The suggested methods by MEPDG to obtain resilient modulus at different level 

of inputs are: 

Level 1: Laboratory Testing 

Level 2: Correlation with other material property 

Level 3: Typical values (based on calibration) 

Each Level is explained in detail below. 

Level 1: Laboratory Testing 

Level 1 resilient modulus values are determined by AASHTO T307 procedure for cyclic 

tri-axial test.  The lab resilient modulus values are fitted by the following equation: 
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where  

Mr = resilient modulus, psi  

θ = bulk stress = σ1 + σ2 + σ3 

σ1 = major principal stress.  

σ2 = intermediate principal stress = σ3 ,for Mr test on cylindrical specimen.  

σ3 = minor principal stress/confining pressure  

τoct = octahedral shear stress ( ) ( ) ( )2
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Pa = normalizing stress (atmospheric pressure)  

k1, k2, k3 = regression constants  
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The three regression coefficients (k1, k2 and k3) are the required inputs in design 

guide at input Level 1, therefore should be determined outside the design guide.  

Note: Level 1 input for unbound materials is not recommended in the current design 

guide as it utilizes a stress dependent FEM computation through DSC2D which has not 

been calibrated as yet for distress calculations. 

Level 2 – Correlations with other material properties 

Direct or indirect correlations between soil index, strength properties, and resilient 

modulus are used to estimate resilient modulus Mr.  The estimated temperature and the 

moisture profiles from the EICM is used to modify the representative Mr to account for 

the effects of climate on unbound materials. 

Level 3 – Typical Values (Based on Calibration) 

For Level 3 input Mr values recommended by the design guide at optimum moisture 

content are used.  EICM can be used to modify the representative Mr values for the 

seasonal effect. 

2.5.3 Poisson’s ratio  

As with other parameters, Poisson’s ratio is obtained for the three input levels as shown 

below. 

Level 1 – Laboratory Tests 

Poisson’s ratio is determined directly from the resilient modulus test data. 

Level 2 – Correlation with other Material Properties 
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Poisson’s ratio is estimated from appropriate models and correlations based on local 

knowledge and experience.  

Level 3 – Typical Values 

Poisson’ ratio values are recommended by the guide based on type of soil.  

Note that Poisson’s ratio has been found to have less significant effects on 

computed pavement responses.  As such a value of 0.35 is assumed in the design 

analyses. 

 

2.6 TRAFFIC 

Traffic data is one of the key input elements required for structural 

design/analysis of pavement structures.  It is required for estimating the loads and their 

frequency as applied to a pavement structure throughout its design life.  Agencies 

typically use three methods to collect traffic data; weigh-in-motion (WIM), automatic vehicle 

classification (AVC), and vehicle counts.  These data are analyzed to obtain the required 

input for the design guide.  Four basic types of traffic data are required by MEPDG for the 

structural design of pavements (NCHRP, 2004).  They are:  

• Traffic volume - base year information.  

• Traffic volume adjustment factors.  

• Axle load distribution factors.  

• General traffic inputs. 

 The information required in each basic traffic type is summarized in Table 2.7.  

They can be obtained through the different hierarchal levels as identified along with the 
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input variable.  Recommended values for Level 3 input are provided in the design 

software. 

 

Table 2. 7 Traffic Inputs Required for Design Guide (NCHPR, 2004) 

Data Elements Variables 

AADT or AADTT for base year*  

Number of lanes in the design direction# 

Percent trucks in design direction (DDF)* 

Percent Trucks in design lane (LDF)*  

Traffic volume—base year 
information.  

Vehicle operational speed# 

Truck monthly distribution factors (MDF)* 

Truck hourly distribution factors* 

Truck distribution/spectra by truck class for base 
year (NTP)* 

Traffic volume adjustment 
factors.  

Truck traffic growth function# 

Axle load distribution factors.  Axle load distribution/spectra by truck class and 
axle type (NA)* 

Tire pressure or hot inflation pressure# 

Number of axles by axle type per truck class (NAT)* 

Axle configuration#  

Truck lateral distribution factor(Wander)#  

General traffic inputs. 

Dual Tire Spacing# 

* - Input values obtained from site specific, regional and national WIM or AVC data for 
Hierarchal input Level 1, 2 and 3 respectively 
# - Hierarchical levels not applicable for this input 
 



 33

Traffic Volume -Base year information  

These inputs are used to compute the number of trucks in the design lane in a 

given base year.  The vehicle operational speed is used to find the load frequency at 

different AC depth.  Shift factors are obtained from frequency values (Figure 2.5), and 

are used to compute the dynamic modulus from the master curve. 

Traffic Volume Adjustment Factors 

The hourly truck distribution factors are not used in flexible pavement design 

procedure, though the input is required by the design software.  The truck class and 

monthly distribution factors are used to compute number of trucks in each class in given 

incremental period.  The growth factor gives the overall traffic growth from the base year 

information.  The growth can be described as linear or compound. 

The traffic characteristic over the design period is assumed constant year to year.  

A proportionate increase in traffic is computed based on traffic growth percentage.  The 

design guide does not account directly for all potential changes in traffic characterization 

over the design period from the base year input values  

Axle Load Distribution Factors  

The axle load distribution factors simply represent the percentage of the total axle 

applications within each load interval for a specific axle type (single, tandem, tridem, and 

quad) and vehicle class (classes 4 through 13).  A definition of load intervals for each 

axle type is provided below: 

• Single axles – 3,000 lb to 41,000 lb at 1,000-lb intervals.  

• Tandem axles – 6,000 lb to 82,000 lb at 2,000-lb intervals.  
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• Tridem and quad axles – 12,000 lb to 102,000 lb at 3,000-lb intervals.  

General traffic inputs 

 The number of axles based on axle type per truck class type (NAT) is used to 

compute the number of load repetition within each load increment.  Tire pressure, dual 

tire spacing and the axle configuration are used to compute the evaluation points for 

pavement response in the layered elastic analysis (detailed in section 2.8.3).  Tire 

pressure and dual tire spacing determine the contact area and distance between the two 

loads respectively in layered elastic analysis.  The traffic wander reduces the load 

repetition or the distress by spreading the traffic over a wide region.   

2.6.1 Processing of traffic input data 

The various traffic inputs discussed above are processed to obtain the number of 

axle loads within each load increment group for each axle type in the given incremental 

period.  This number is used in the distress computation as the number of repetition of the 

load.  The steps in computing the number of axle load repetition in each load increment 

from the traffic inputs are as follows: 

1. The average annual daily number of trucks, AADTT1 is calculated for the given 

year based on a selected growth function.  The total number of trucks (TTl,j,i) in 

the design lane at a given incremental period i of month j of year l is calculated 

using the base year information (Table 2.7).   

= (AADTTl)(MDFj)(DDF)(LDF)(No. of Daysj)    (2.10) 
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2. The total number of trucks (TTl,j,i) 
is multiplied by the normalized truck class 

distribution percentage for a particular truck class k (NTPk) to obtain the total 

number of trucks for each truck class, Tl,j,I,k.  

Tl,j,I,k 
= (TTl,j,I)(NTPk)        (2.11) 

3. The average number of axles based on axle type for each truck class NATk,a, is 

multiplied by the total number of trucks within each truck class (Tl,j,I,k) to obtain 

the total number of axles for each axle type, a (single, tandem, tridem, and quad) 

for that truck class, NAl,j,I,k,a.  

NAl,j,I,k,a 
= (Tl,j,I,k)(NATk,a)     

4. The total number of axles in each axle type for a specific truck class (NAl,j,I,k,a) are 

multiplied by the normalized axle load distribution percentage of a specific load 

group to obtain the number of axles (by axle type) within each load group for a 

specific axle type under a specific truck class, ALl,j,I,k,a,w.  

ALl,j,I,k,a,w 
= (NWPa,w)(NAl,j,I,k,a)    

5. The axle applications for each axle type (AL) are then summed for all truck 

classifications to obtain the total number of axle applications within each load 

group by axle type for that increment analysis period.  The total number of axle 

applications is used within the incremental damage module along with strain 

predicted by JULEA to predict the load related distresses at the incremental 

analysis period.  
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2.7 Climate 

Environmental conditions have a significant effect on the long term performance 

of both flexible and rigid pavements.  The material variables required for climatic 

modeling in flexible pavement were summarized above in Table 2.6.  These are the 

inherent variables that determine the susceptibility of the pavement materials to moisture 

and freeze-thaw damage, drainability of the paving layers and infiltration potential of the 

pavement.  On the other hand, precipitation, temperature, freeze-thaw cycles, and depth 

to water table are external factors that determine how much the pavement is subjected to 

deterioration due to environment. 

Enhanced Integrated Climatic Model 

The Enhanced Integrated Climatic Model (EICM) is essentially a one dimensional 

coupled heat and moisture flow program that simulates changes in pavement’s material 

characteristics in conjunction with climatic conditions over the design period.  The 

temperature and moisture profiles in the pavement structure over the design period are 

calculated in the design guide through EICM.  These profiles are used to compute the 

material property of the pavement structure as well in the distress computations.  EICM 

consists of three major components: 

• Climatic-Materials-Structural Model  

• Frost Heave and Thaw Settlement Model 

• Infiltration and Drainage Model  

The inputs required by the climatic model fall under the following category: 

• General  
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• Pavement structure and materials. 

• Weather 

• Ground water 

• Drainage and surface properties 

General information includes type of pavement and project time frame details 

such as construction completion month, traffic opening month. Pavement structure and 

material category includes details about layer thickness, and material properties as 

summarized in the last column of Table 2.6. 

 Weather category contains information about the following parameters on an 

hourly basis for a minimum of 24 months: 

• Hourly air temperature 

• Hourly precipitation 

• Hourly wind speed 

• Hourly percentage sunshine 

• Hourly relative humidity 

Ground water table depth plays a significant role in the overall accuracy of the 

pavement moisture contents.  Drainage and surface properties category includes 

information about the infiltration potential of the pavement, drainage path length and 

pavement cross-slope. 

The EICM uses these inputs and generates temperature values at 0.1 hours 

intervals over the analysis period along the depth of the pavement structure.  Since the 

asphalt material properties are very sensitive the temperature variation, using one 



 38

temperature value for the distress prediction will lead to erroneous predictions.  To 

account for extreme temperature variations, the temperatures over a given incremental 

period are divided into five different sub-seasons defined as ‘Quintile’.  In a given 

analysis incremental period (either monthly or 15 days) the temperature values at every 

0.1hours are represented by normal distribution.  For each sub-season the sub-layer 

temperature is defined by the mean temperature that represents 20% of the frequency 

distribution for pavement temperature.  Since hourly distribution of the traffic is not used 

in the design procedure, this sub-season also represents those conditions when 20% of the 

monthly traffic will occur.  This temperature is used to compute the variation of modulus 

with season along the depth of the AC layer.  The moisture variation is used to compute 

the variation in unbound layer modulus over the analysis incremental period.  The 

temperatures at the surface and 0.5 inch are used to estimate the thermal tensile strain.  

The tensile strains at these two depths are superimposed with the strains developed at top 

layer due to traffic loading to estimate top-down cracking. 

 

2.8 Distress 

The trial pavement structure is analyzed for adequacy by dividing the target 

design life into shorter design analysis periods or increments (usually months) beginning 

with the traffic opening month.  Within each increment (each analysis period), all factors 

that affect pavement responses and damage are held constant.  These include material 

properties, climate and traffic levels.  Hourly distribution of the traffic is not included in 

the current MEPDG flexible design analysis. 
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Critical stress and/or strain values for each distress type are determined for each 

analysis increment.  These critical stress and/or strain values are converted to incremental 

distresses, either in absolute terms (e.g., incremental rut depth) or in terms of a damage 

index (e.g., fatigue cracking).  Incremental distresses and/or damage are summed over all 

increments and the guide summarizes the distress at the end of each analysis period in a 

excel format.  

The distresses analyzed in the design guide for the new flexible pavements are:  

o Total Rut Depth and HMA, unbound layer rutting 

o Load Related Alligator Fatigue Cracking, Bottom Initiated Cracks 

(Bottom-up) 

o Load Related Longitudinal Fatigue Cracking, Surface Initiated Cracks 

(Top-down) 

o Non-Load Related Transverse Cracking (Thermal cracking) 

For the overlay/rehabilitated flexible pavements, in addition to above distresses 

the guide computes: 

o Reflection Cracking in HMA overlays of cracks and joints in existing 

flexible, semi-rigid, composite, or rigid pavements 

The occurrence of surface distress will result in increased roughness, or in other 

words, a reduction in smoothness.  Thus, pavement smoothness in terms of International 

Roughness Index (IRI) is predicted based on these primary distresses over the design 

period.  IRI is the overall indicator of the given pavement structure performance. 
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 The two major distresses; permanent deformation (rutting) and load related 

alligator fatigue cracking are discussed in detail below.  The rutting distress is predicted 

in absolute terms.  However, the fatigue alligator cracking is computed in terms of 

damage index and converted to cracking distress using calibrated transfer function.   

2.8.1 Permanent deformation 

Permanent deformation is one of the most important types of load-associated 

distresses occurring in flexible pavement systems.  It is the depression (rutting) along the 

wheel path, which develops gradually with the number of load repetitions.  These plastic 

deformations are typically the result of the pavement materials (HMA, aggregate base, 

and subgrade soils) subjected to (1) densification or one-dimensional compression and 

consolidation and (2) lateral movements or plastic flow  

Rut depths are predicted for each layer/sub-layer as a function of time.  The 

rutting damage is estimated for each sub-season at the mid-depth of each sub-layer of 

asphalt bound and unbound layers within the pavement system.  It is not calculated for 

chemically stabilized materials.  The software examines the type of layer, applies the 

model corresponding to the material type of the sub-layer, and then computes the plastic 

strain accumulated at the end of each sub-season.  The overall permanent deformation at 

a given season is the sum of permanent deformation for each individual layer/sub-layer 

and is mathematically expressed as:  

∑
=

=
nSublayers

i

ii
p hRD

1

ε         (2.14) 

where:  
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RD = Rut Depth  

nSublayers = Number of sub-layers  

εp
i = Total plastic strain in sub-layer i  

hi = Thickness of sub-layer i  

The process is repeated for each load level, axle type, sub-season, and incremental 

analysis period of the design period.  

Permanent Deformation in Asphalt Mixtures 

The asphalt rutting equation implemented in the design guide is:  

rrrrr kkk
zr

HMAr

HMAp TNk 33221101
)(

)( βββ
ε
ε

=      (2.15) 

where:  

ε
p 
= Accumulated plastic strain after N repetitions of load (in/in)  

ε
r 
= Resilient strain of the asphalt material as a function of mix properties, 

temperature and time rate of loading obtained from layered elastic analysis 

program (in /in)  

N = Number of load repetitions  

T = Temperature (degree Fahrenheit)  

k1r, k2r, k3r = Global field calibration parameters (from the NCHRP 1-40D 

recalibration; k1r = -3.35412, k2r = 0.4791, k3r = 1.5606). 

βr, β2r, β3r = Local or mixture field calibration constants; for the global 

calibration, these constants were all set to 1.0. 
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kz = depth parameter, to correct for the confining pressure at different depths 

given by 

 ( ) Depth
z DepthCCk 328196.021 +=  (2.16) 

  ( ) 342.174868.21039.0 2
1 −+−= acac HHC  

( ) 428.277331.10172.0 2
2 +−= acac HHC  

Depth = depth to computation point, inch 

Hac = asphalt layer thickness, inch 

The above model is based on the work of Leahy (1989), Ayres (1997), and Kaloush and 

Witczak (2000).  National calibration factors were obtained through numerical 

optimization and other comparison methods with the national field data. 

Permanent Deformation in Unbound materials 

The basic model for prediction of permanent deformation in unbound material 

layers is:  

v
N
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⎛
= 0         (2.17) 

where, 

εp  = Permanent strain in asphalt layer/sub-layer (in/in).  

N = Number of traffic repetitions.  

εr 
= Resilient strain imposed in laboratory test to obtain the above listed material 

properties, εo, β, and ρ (in/in).  
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εv 
= Vertical resilient strain in the layer/sub-layer as obtained from layered elastic 

analysis program (in /in)  

εo, β, and ρ = Material properties obtained from the following equations 

( )cWLog 017638.061119.0 −−=β      (2.18)  
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where:  

Wc 
= Water content (%).  

Er 
= Resilient modulus of the layer/sub-layer (psi).  

GWT = Ground water table depth (ft).  

a1 = 0.15 ;b1 = 0.0 ; a9 = 20.0; b9 = 0.0 

The above model was proposed by Tseng and Lytton (1989) 
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The model is calibrated for field performance data.  Local (βs1) and Global (ks1) 

calibration constants are attached to the model as follows: (NCHRP, 2004) 
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where:  

 ks1 = Global calibration coefficients; ks1=1.673 for granular materials and 1.35 

for fine-grained materials. 

 βs1       = Local calibration constant for the rutting in the unbound layers;  

 the local calibration constant was set to 1.0 for the global calibration effort. 

Permanent Deformation within infinite subgrade layer 

A different approach suggested by Ayres (1997) was used to evaluate the plastic 

deformation in the last infinite subgrade layer.  For this, the plastic strains at the top of 

the subgrade and at a depth of six inches from it are first computed using the Equation 

2.17.  Subsequently, the total plastic deformation in the infinite layer is calculated from: 
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where  

δ     = Total plastic deformation of the semi-infinite subgrade layer, in.  

hbedrock 
= Depth to bedrock, feet (z=0 represents top of subgrade) 
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 εP,z = 0 and εP,z = 6 are the plastic strain computed through Equation 2.17 at top of 

the subgrade and at depth of 6 inches from the top of the subgrade, respectively. 

Utilized Permanent Deformation Approach 

 Rutting or permanent deformation is not a linear function of the number of load 

repetitions.  Hence, the deformation in successive seasons may not be simply cumulative.  

Therefore, the ‘Utilized permanent deformation approach’ suggested by Ayres and 

Witczak (1998) is used to convert the deformation that occurred in previous season in 

terms of number of load repetition to the current season.  

The ‘Utilized permanent deformation approach’ is illustrated in Figure 2.6.  The 

total plastic strain εp,i-1 at a given season i-1 corresponds to a total number of traffic 

repetitions Nt,i-1 at T4°F (Point A).  In the next season i, the pavement temperature for the 

layer is T1°F.  For the new temperature condition, the pavement structure responds with a 

resilient strain equal to εr,i.  For this new condition (Point B) there is an equivalent 

number of traffic repetitions Ntequiv,i that is associated with the total deformation at the 

beginning of season i but under conditions (in this case temperature and resilient strain) 

prevailing in the new season i.  By adding the number of repetitions at season i (Ni) to the 

total equivalent number of repetitions Ntequiv,i, it is possible to estimate Point C, which 

corresponds to the accumulated plastic strain at the end of season i.  

In asphalt layers, Ntequiv,i is obtained by solving the permanent deformation model 

for N using the resilient strain and temperature of the new season i and the permanent 

strain from the previous season i-1 using: 
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Figure 2. 6 Utilized Permanent Deformation Concept (after Ayres and Witczak, 1998) 
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Similarly in unbound layers the material properties εo/εr, β, and ρ and resilient 

strain of new season i and permanent strain of the previous season, i-1 are used to 

calculate N using: 
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 This process is repeated for each sub-season and month over the design period 

and permanent deformation in each sub-layer is determined.  The design guide software 

summarizes the distress in each layer over the monthly period in an excel format. 

2.8.2 Bottom-up fatigue cracking (alligator cracking) 

Load-associated fatigue cracking is the other major distress types occurring in 

flexible pavement systems.  This type of fatigue cracking is a result of the repeated 

bending of the HMA layer under traffic.  Basically, the pavement and HMA layer 

deflects under wheel loads that result in the development of tensile strains and stresses at 

the bottom of the layer.  With continued bending (under repeated load applications), the 

tensile stresses and strains cause cracks to initiate at the bottom of the layer and then 

propagate to the surface.  This type of fatigue cracking first shows up as short 

longitudinal cracks in the wheel path that quickly spread and become interconnected to 

form a chicken wire/alligator cracking pattern.  

Bottom-up fatigue cracking is predicted in terms of a damage index, which is a 

mechanistic parameter representing the load associated damage within the pavement 

structure.  The incremental damage is accumulated for each analysis period using Miner’s 

law as: 
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1 ,

         (2.27) 

where:  

D = damage.  

T = total number of analysis periods.  
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ni 
= actual number of load repetition for period i.  

Nf,i 
= Number of load repetition allowed under conditions prevailing in i. 

The number of load repetition allowed in a given season, Nf,i is obtained from 

Asphalt Institute (1991) fatigue model, which is based on constant stress criterion.  The 

model is nationally calibrated for the field conditions and it is given by 

( )( ) ( ) ( ) 3322
11

ffff k
HMA

k
tfHff ECCkN ββεβ=     (2.28) 

where, 

Nf = number of load repetitions to fatigue cracking.  

εt 
= tensile strain at the critical location.  

EHMA = stiffness of the material.  

 k f1 ,kf2, kf3 = Global field calibration parameters (from the NCHRP 1-40D re-

calibration; kf1 = 0.007566, kf2 = -3.9492, and kf3 = -1.281).   

 βf1, βf2, βf3 
= Local or mixture specific field calibration constants; for the global 

calibration effort, these constants were set to 1.0. 

C = laboratory to field adjustment factor. 
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Vbe = effective binder content (%) 

Va = air voids (%) 

CH = Thickness correction term 
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Hac = Total thickness of the asphalt layer, inch 

The cumulative damage is converted to physical cracking using calibrated models 

(transfer functions) that relate the calculated damage to observable distresses.  The 

empirical transfer function to convert fatigue damage computed from Miner’s rule to 

fatigue cracking is given by (NCHRP, 2004): 
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where: 

FCBottom = Area of alligator cracking that initiates at the bottom of the HMA 

layers, percent of total lane area. 

DIBottom = Cumulative damage index at the bottom of the HMA layers. 

C1, C2, C4 = Transfer function regression constants; C4 = 6,000; C1 =1.00; and 

C2 =1.00 

  
*
2

*
1 2CC −=            

 ( ) 856.2*
2 1748.3940874.2 −+−−= acHC       

  Hac = Total thickness of the asphalt layer, inch 
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2.8.3 Strain computation  

 For each incremental design analysis period, the linear elastic analysis program 

JULEA is executed with the corresponding set of layer modulus to compute the critical 

strain values.  These strain values are evaluated at 70 locations (Figure 2.7) in x-y plane, 

the co-ordinates of which depend on the following: 

• Tire pressure and axle load 

• Dual tire spacing  

• Tandem/tridem/quad Axle spacing 

 
Figure 2. 7 Schematics of Strain Computation Location used in JULEA (after NCHRP, 2004) 
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 The X and Y co-ordinates of the locations are calculated using: 

X-Axis Locations:         (2.30)  

X1 = 0.0 {center of dual tires/tire spacing}  

X2 = ((TSpacing/2) - Tradius)/2  

X3 = (TSpacing /2) - Tradius  

X4 = TSpacing /2  

X5 = (TSpacing /2) + Tradius  

X6 = (TSpacing /2) + Tradius + 4 in  

X7 = (TSpacing /2) + Tradius + 8 in  

X8 = (TSpacing /2) + Tradius + 16 in  

X9 = (TSpacing /2) + Tradius + 24 in  

X10 = (TSpacing /2) + Tradius + 32 in  

where  

  TSpacing =Dual tire spacing, inch 

Tradius = tire contact radius calculated from tire pressure and axle load, inch 

 

Y-Axis Locations:          (2.31) 

Y1: y = 0.0 {center of dual tires/tire spacing}  

Y2: y = Standem  

Y3: y = Standem/2  

Y4: y = Stridem 
 

Y5: y = Stridem/2  

Y6: y = 1.5*Stridem  

Y7: y = 2*Stridem  

where 

  Standem 
= tandem axle spacing, inch 

  Stridem = tridem/quad axle spacing, inch 
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Evaluation points and the computational procedure differ when the traffic wander 

is included in fatigue and rutting analysis (NCHRP, 2004).   Since Miner’s Law used in 

fatigue analysis is linear with traffic, damage distribution with wander can be computed 

from the fatigue damage profile obtained with no wander (wander = 0 inch).  In rutting 

analysis, the design guide modifies the actual pavement response (strain values) for the 

effects of wander and uses this modified response for the calculation of the incremental 

permanent deformations within each layer. 

The depth of evaluation at each x, y co-ordinates is dependent on the type of 

distress under evaluation.  For rutting or permanent deformation, vertical strains are 

measured at the following critical depths: 

1. Mid-depth of each structural layer/sub-layer,  

2. Top of the subgrade,  

3. Six inch below subgrade surface.  

For Fatigue cracking, horizontal tensile strains are measured at the following critical 

depths: 

1. Surface of the pavement (z = 0),  

2. 0.5 inches from the surface (z = 0.5),  

3. Bottom of each HMA or stabilized layer.  

The strain values are computed on a dual tire single axle loaded with 18 kip 

corresponding to standard axle load.  The critical strain for the tandem, tridem and quad 

axles are computed by superimposing the strain values obtained from single axle as 

shown in Figure 2.7.  The maximum strain value computed on the chosen locations at a 

given depth for each axle is considered the critical strain for that depth. 
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The computation of critical strain values at all 39 load increments (discussed in 

Section 2.6) with the procedure explained above will lead to unpractical computational 

time.  To minimize computing time, the MEPDG makes the assumption that the 

computed strains are linearly proportional to the applied load and exploits this 

assumption to extrapolate strains from an 18 kip single axle load and the specified tire 

pressure to the entire load spectrum in the traffic composition.  This load-strain linear 

proportionality assumption, however, holds true only if the contact area remains the same 

as load varies, resulting in similar variation in the contact pressure.  However, in reality, 

for truck loads of interest, the contact (tire inflation) pressure remains within a narrow 

range whereas the contact area changes with axle load.  This reality is violated in the 

load-strain linear proportionality assumption made in the current MEPDG procedure.   

Park et al. (2005) studied the relation between axle tire load, tire inflation pressure 

and tire contact area for different types of tires.  Figure 2.8 shows the general decrease in 

contact area with increase in tire inflation pressure for different tire loads and types.  As 

expected, for each tire type at same tire pressure, the contact area increases with tire load 

(shown by arrow).  The traffic load spectrum input used in MEPDG analysis includes a 

much wider load levels than that used by Park et al. (2005), varying from 750 lbs to 

10,250 lbs per tire load, hence a much larger variation in tire contact area is expected. 

Al-Qadi (2007) also studied the variation in contact area with axle load.  Figure 

2.9 shows the dual tire imprint of an 8,500 lbf axle load over an imprint of a 17,000 lbf 

axle load.  It is evident that an increase in axle load results in an increase in tire imprint 

(contact area). 
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Figure 2. 8 Relationships between Tire Load, Tire Inflation Pressure, and Tire Contact Area for (a) 

11R22.5, (b) 295/75R22.5, (c) 11R24.5, and (d) 215/75R17.5 Tire Types (Park et al. 2005) 
 

 
 

 
Figure 2. 9 Dual Tire Imprint of 8.5 kip Axle on 17 kip Axle (Al-Qadi, 2007) 

 

The study analyzes the effect of this assumption on MEPDG rutting predictions in 

Chapter 3.  It quantifies the effect of the load-strain linearity assumption and the expected 

deviation in MEPDG rutting predictions in flexible pavements. 
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2.9 Reliability Analysis in MEPDG  

The reliability analysis of current MEPDG is simplified and is based on a 

predicted versus measured error-based approach.  The predicted output distress is 

increased from its mean value based on the reliability level required.  The reliability 

analysis carried out in MEPDG was summarized below with an illustration of reliability 

design for rutting in flexible pavement. 

Step 1:  Group data points by the level of predicted rutting 

A database with record to past performance of similar pavement structure is developed.  

All data points in the calibration database were divided into subgroups based on the level 

of predicted permanent deformation. 

Step 2: Compute descriptive statistics for each group of data. 

For each group HMA rutting data calculate the mean predicted, mean measured and 

standard deviation of measured value. 

Step 3: Determine relationship between standard deviation of the measured cracking and 

predicted cracking. 

Step 4: Reliability analysis: 

Adjust the mean value of the predicted distress (Value@mean) to calculate the 

distress level at the desired reliability level (P) using the following relationship 

Value@P = Value@mean + STDmeas*Zp      (2.32) 

where Zp  was the standard normal deviate corresponding to reliability level P. 
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 The standard deviation (STDmeas) computed in Step 3 includes the following 

sources of variation:  

•Errors in estimating traffic loadings. 

•Fluctuations in climate over many years. 

•Variations in layer thicknesses, materials properties, and subgrade characteristics 

along the project. 

•Differences between as-designed and as-built materials and other layer 

properties. 

•Errors in the measurement of the distress and IRI quantities. 

•Prediction model limitations and errors. 

Thus the standard deviation calculated in Step 3 is a function of the error 

associated with the ‘past’ predicted rutting and the data used to calibrate the permanent 

deformation models.  An improved procedure should make it possible to consider all of 

the key components of variability and uncertainty involved in the input of given 

pavement design instead of past status.  This would make it possible for the designer to 

input the mean, variance, and distribution of many key inputs and also incorporate the 

errors associated with the prediction models providing for much more accurate design 

reliability.  The designer would then be able to determine the sensitivity of the outputs 

(cracking, rutting, faulting, IRI, etc.) to variations in the inputs providing designers with 

improved knowledge of the most critical inputs that should be estimated with greater 

accuracy. 

The current study develops a reliability based pavement design procedure capable 

of including material variability and ways to perform it in a reasonable and practical 
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manner.  Some widely used simulation techniques are incorporated in the reliability 

approach developed here.  The following section gives a summary of the simulation 

techniques used in the study. 

 

2.10 Simulation Techniques 

A number of simulation techniques have been developed to establish the 

distribution of the response variable according to the probabilistic characteristics of the 

input random variable.  Considering each realization of all the random variables in the 

problem produces a set of numbers that indicates one realization of the problem itself.  

Solving problem deterministically for each realization is known as a simulation cycle, 

trial, or run.  Using many simulation cycles gives the overall probabilistic characteristics 

of the problem, particularly when the number of cycles, N, tends to infinity.  The 

following sections summarize the procedure for Monte Carlo simulation technique.  Also, 

the procedure of computationally efficient simulation techniques such as Latin 

Hypercube and Rosenblueth’s 2K+1 point estimate method are subsequently discussed. 

2.10.1 Monte Carlo simulation technique 

Monte Carlo simulation is one of the widely used techniques in reliability 

analysis.  The Monte Carlo method is often applied in the following three situations 

(Nowak and Collins 2000): 

a. To solve complex problems for which closed-form solutions are either not 

possible or extremely difficult to obtain.  For example, probabilistic problems 

involving complicated nonlinear finite element models can be solved by Monte 
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Carlo simulation provided that the necessary computing power is available and 

the required input information is known. 

b. To solve complex problems that can be solved (at least approximately) in closed 

form only if many simplifying assumptions are made.  Use of Monte Carlo 

simulation enables the “original” problem to be solved without these assumptions 

resulting in more realistic results. 

c. To check the results of other solution techniques. 

 

The Monte Carlo simulation technique consists of six essential elements: 

Step 1:  Formulation of the problem in terms of all the random variables. 

This first step in simulation is on identifying the variables having uncertainty or 

the variability.  The given problem is defined in terms of identified random variables.  

The deterministic variables are substituted into the explicit or implicit relations available 

to reduce the problem in terms of only response and random variables. 

Step 2:  Quantification of the probabilistic characteristics of all the random variables in 

terms of their probability density functions and the corresponding parameters. 

The underlying distribution of the random variable can be obtained in different 

ways, the common methods are (Nowak and Collins 2000, Haldar and Mahadevan 2000) 

(a) drawing a histogram or a frequency diagram, (b) plotting the data on probability 

paper, and (c) conducting some statistical tests known as goodness-of-fit tests for 

distribution.   
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Step 3:  Generation of the values of these random variables. 

Random numbers are generated according to a specific distribution.  In general, 

all modern computers have the capability to generate uniformly distributed random 

numbers between 0 and 1.  Corresponding to an arbitrary seed value, the generators will 

produce the required number (N) of uniform random numbers between 0 and 1.  By 

changing the seed value, different sets of random numbers can be generated.  Depending 

on the size of the computer, the random numbers may be repeated after generating large 

quantity. 

Step 4:  Evaluation of the problem deterministically for each set of realizations of all the 

random variables. 

The generated uniformly random variables (u) between 0 and 1 are to be 

converted to required distribution of the corresponding random variable X.  The process 

requires transformation of uniform random variable to standard normal variable and then 

to random numbers with the appropriate characteristics.  This process is commonly 

known as the inverse transformation technique or inverse cumulative density function 

(CDF) method and is illustrated in Figure 2-10.  For uniformly distributed random 

variable this transformation is not required.  This transformation process is used to 

convert the generated uniform random variable to normal, lognormal or other commonly 

used distribution.  As shown in the figure, the generated random number, u (Figure 2-

10a) between 0 and 1 is transformed in to its corresponding cumulative density function 

(CDF), FU(u) (Figure 2-10b).  Since ui is uniformly distributed its CDF will be a linear 

function.  The CDF of both u (FU(u)) and x (FX(x)) are equated and the corresponding 
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sample value xi is obtained as in Figure 2-10c.  Figure 2-10d shows the probability 

density function corresponding to the generated value, xi. 

 

Figure 2. 10 Depiction of Random Variable Generation Process (after Haldar and Mahadevan, 2000) 

 

In the case of uniformly distributed random variable, X between two values a and 

b ( )bxa ≤≤ , the distribution is obtained from the uniform random variables (u) 

generated using the following formulae 
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u)ab(ax −+=        (2-33) 

Thus the N generated random number in previous step is converted in to N realizations of 

uniformly distributed random variable X. 

A set of standard normal random numbers z1, z2, ….., zn, is generated from a set 

of uniformly distributed random variables u1, u2, …..  , un using the relation  

)(1
ii uz −Φ=         (2-34) 

where Φ -1 is the inverse of the standard normal cumulative distribution function. 

If z is the standard normal variable the relation with ‘u’ can be given by (Nowak 

and Collins 2000) 
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where  

 )uln(t 2−=  

c0 = 2.515517; c1 = 0.802853; c2 = 0.010328 

d1 = 1.432788; d2 = 0.189269; d3 = 0.001308 

 

If u > 0.5 

1−Φ  is calculated for u′  = 1-u and use z = 1−Φ (u) = - 1−Φ ( u′ ) (2-36) 
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The method of converting the random number ‘u’ to the standard normal variate 

is illustrated for a sample of 10 random numbers and presented in Table 2-8. 

Table 2. 8 Conversion of Random Number to Standard Normal Variate 

Random Number 
between 0-1, 

U 

Random Number 
corrected if u>0.5, u′
= 1-u; else u′  = u 

t )uln( 2−=  Z, calculated 
from the 
Equation 2-35 

Z, corrected if 
u > 0.5 

Equation 2-36

0.050203 0.050203 2.446091 -1.64325 -1.64325 

0.619129 0.380871 1.389456 -0.30276 0.302758 

0.872402 0.127598 2.029222 -1.1379 1.137896 

0.376568 0.376568 1.39761 -0.31407 -0.31407 

0.139927 0.139927 1.983247 -1.08068 -1.08068 

0.318491 0.318491 1.51272 -0.4715 -0.4715 

0.987671 0.012329 2.965064 -2.24716 2.247161 

0.033265 0.033265 2.608927 -1.83525 -1.83525 

0.234626 0.234626 1.702799 -0.72343 -0.72343 

0.623157 0.376843 1.397087 -0.31334 0.313344 

0.957884 0.042116 2.516874 -1.72703 1.727026 

0.518906 0.481094 1.209705 -0.04728 0.047281 

 

In the case of normally distributed random variable X with mean μX and standard 

deviation σX, the basic relationship between X and the standard normal variable Z is  

X

XXZ
σ

μ−
=         (2-37) 

from which 
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XX ZX σμ +=        (2-38) 

So, given a sample standard normal random value zi, the corresponding xi value can be 

calculated using: 

xixi zx σμ +=        (2-39) 

Step 5:  Extraction of the probabilistic information from N such realizations 

N corresponding realizations of random numbers (Xi) were obtained from N 

uniform random numbers generated for each of the random variables (Xi) in the problem.  

Thus, solving the problem using these N realizations deterministically will give N 

response variables.  The N response variables can then be used to calculate all the 

required sample statistics, the histogram, the frequency diagram, the PDF or PMF and the 

corresponding CDF, and the probability of failure considering various performance 

criteria.  The accuracy of the technique increases as the number of simulation N 

increases.   

Step 6:  Determination of the accuracy and efficiency of the simulation.   

The relation between the estimated probability of failure, pf and the number of 

simulations (N) is given by the ratio (Melchers, 2002) 

(N)  values)g(X simulated ofnumber  total
(n) 0 )g(X  timesofnumber 

p
i

i
f

<
=    (2-40) 

where n is the number of times(out of N simulations) that a particular criterion was 

achieved (mostly the limit state function, g(Xi) less than zero).  The estimated probability 

pf is a sample estimate and it may vary unless N is large.  Therefore, the estimated 
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probability itself can be treated as a random variable with its own mean, standard 

deviation, and coefficient of variation.   

 Let Ptrue be the theoretically correct probability to be estimated by calculating pf.  

Then 

E[pf] =Ptrue         (2-41) 

with following probabilistic characteristics 
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       (2-42) 

The uncertainty in the estimate of the probability decreases as the total number of 

simulations, N, increases.  The number of simulations (N) required to estimate true 

probability (PTrue) under a given variance (VP) can be calculated using the Equation 2-42  

2.10.2 Latin Hypercube sampling 

 The time required for running N Monte Carlo simulation makes much complex 

analysis unfeasible.  Alternate methods were developed to overcome this limitation.  The 

Latin hypercube method is one such technique for reducing the number of simulations 

needed to obtain a reasonable accurate result.  The technique works on the principle of 

partitioning the range of possible values of each random input variable into N ‘Groups’ or 

‘Strata’.  A representative value from each ‘Strata’ is randomly selected for each input 

variable.  These representative values of each input variable is randomly combined with 

representative random values of other input variables and used to calculate the response 
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variable.  Each representative values is considered once and only once in the simulation 

process.  Hence in this way, all possible values of the random variables are represented in 

the response variable simulation.  Thus N response variable are generated involving 

different combination of input variables. 

The procedure is explained in detailed step by step procedure below (Nowak and 

Collins 2000): 

 To simulate some values of function Y described by 

Y = f (X1,X2,………,Xk)      (2-43) 

where f( ) is some deterministic function (but possible not known in closed form) and the 

Xi (i = 1,2,….,K) are the random input variables.  The basic steps in Latin hypercube 

sampling are as follows: 

1. The range of each random variable Xi is partitioned in to N intervals based on its 

distribution.  The partitioning should be done so that the probability of a value of 

Xi occurring in each interval is 1/N.   

2. Randomly select a representative value for each Xi variable and each of its N 

intervals.  If the number of intervals is large the center point (i.e., the middle 

values) of each interval can be used for practical simplicity.  Now there will be N 

representative values for each of the K random variables.   

3. The objective of Latin hypercube sampling is to select N combinations out of Nk 

possible combinations such that each representative value appears once and only 

once in the N combinations.  To obtain the first combination, randomly select one 
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of the representative values for each of the K input random variables.  To obtain 

the second combination, randomly select one of the N-1 remaining representative 

values of each random variable.  The process is continued till all the 

representative values of each random variable are used to generate N 

combinations of values for the input random variables. 

4. Evaluate the value of the function Y for each of the N combinations of input 

variables.  This will lead to N values of the function.  From the simulated Y 

values statistical characteristics can be calculated. 

2.10.3 Rosenblueth’s 2K+1 point estimate method 

Another successful technique developed to complement Monte Carlo simulation 

technique is the Rosenblueth’s 2K+1 Point Estimate Method.  Problems involving 

complex analysis which will take long time if done by Monte Carlo simulation technique 

can be done using this point estimate method proposed by Rosenblueth (1975).  This 

method is thought as a simulation technique in which the number of simulations is 

N=2K+1, where K is the number of input random variables.  The basic idea is to evaluate 

a function of random variables at 2K+1 key points and then to use this information to 

estimate the mean and coefficient of variation of the function.  However, the drawback of 

this method will be that the Cumulative Distribution Function (CDF) of the response 

function cannot be obtained. 

The steps in Rosenblueth’s 2K+1 method is explained with a function Y 

described by  

Y=f(X1, X2, ….., XK)        (2-44) 
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where f(X1, X2, ….., XK) is some deterministic function (but possibly not known in 

closed form) of random input variables Xi (i = 1, 2,……..., K).   

1. The mean (μXi) and standard deviation (σXi) for each of the K input random 

variables are determined with the corresponding data available. 

2. Define y0 as the value of the function Y (Equation 2-44) when all input variables 

are equal to their mean values, that is, 

y0 = f (μX1, μX2, …..,μXK)     (2-45) 

3. The value of the function Y is evaluated at 2K additional points as follows.  For 

each random variable Xi, evaluate the function at two values of Xi which are 

shifted from the mean μXi by ±σXi while all other variables are assumed to be 

equal to their mean values.  These values of the function will be referred to as yi
+ 

and yi
-.  The subscript denotes the variable which is shifted, and the superscript 

indicates the direction of the shift.  In mathematical notation, 

yi
+ = f (μX1, μX2, …, μXi + σXi,.., μXK) 

yi
- = f (μX1, μX2, …, μXi - σXi,.., μXK)    (2-46) 

4. For each random variable, calculate the following two quantities based on yi
+ and 
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5. Calculate the estimated mean and co-efficient of variation of Y as follows 
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There are two distinct advantages to this method.  First, it is not necessary to 

know the distributions of the input random variables; only the first two moments are 

needed.  Second, the number of function evaluations (i.e., “simulations”) is relatively 

small compared to Latin hypercube sampling or general Monte Carlo simulation.   

 

2.11 Reliability Based Pavement Design  

The reliability based pavement design has been studied in the past.  Both 

simulation techniques and analytical methods have been explored.  However, there is a 

constant need of improvement in reliability analysis with the advancement in pavement 

design procedures.   

The importance and benefit of using reliability analysis over safety factor in the 

pavement design was discussed by Lemer and Moavenzadeh (1971).  They used Monte 

Carlo simulation with Markov models to predict pavement performance.  The special 

feature of Markov process was predictions of the probability that the process will be in 

any particular state at some future time, was based on observations of the current state.  A 

Markov model was used by first describing the service behavior of the facility in terms of 
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state and possibly interstate transitions, and then values of probabilities were estimated.  

Using Monte Carlo simulations the distribution of probability of normal failure as a 

function of axle load repetitions and construction quality was found.  The probability 

matrices were postulated for a 6-month computation period and this ‘subprocess’ was 

computed for 30 transitions to find failure distributions for a 15 year design.   

A simulation model to calculate the reliability of pavements was developed by 

Alsherri and George (1988).  A computer program using Monte Carlo simulation 

technique called Reliability Analysis and Performance of Pavements (RAPP –I) was used 

to solve the design equations.  The design models from AASHTO design guide 1985 

were used.  The scheme of computing the reliability involved comparison of Present 

Serviceability Index (PSI) at a specified time and Terminal Serviceability Index.  Errors 

due to idealization of the model were included in the PSI calculation through standard 

deviation of model prediction values.  The program calculated the PSI and the 

corresponding reliability at the end of each year through 500 simulation data, from which 

the expected life of the pavement was calculated. 

Chou (1989) used Rosenblueth’s point estimate method to estimate the mean and 

variance of allowable repetition strain in flexible pavements, based on the input 

variability of four independent parameters namely load, layer thicknesses and moduli of 

subgrade and asphalt concrete layers.  A computer program called RELIBISA was used 

to compute the reliabilities and allowable strain repetitions for given subgrade and asphalt 

concrete.  Figure 2.11 show the number of strain repetitions to achieve the desired 

reliability under different pavement layer thickness (The coefficient of variance and the 

values for other input variables were assumed).   
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Figure 2. 11 Relationships between Reliability and Allowable Strain Repetitions (after Chou, 1989) 
 

Monte Carlo simulation technique was also used by Montano et al (1989) to make 

an economical concrete pavement design with consideration for uncertainty in input 

parameters to evaluate the service life of the pavement.  Service life was considered to be 

influenced by variations in traffic, thermal effects and flexural fatigue of concrete.  

Simulation was carried out for one year since thermal effect has a return period of one 

year.  200 simulations were carried out with daily traffic volume.  The results showed 

that the standard deviation and the coefficient of variation were not influenced by the 

number of operation repetitions.  However, stable distribution (Skewness and kurtosis) 

were achieved after 150 operation repetitions.  Right-skewed Beta distribution was fitted 

to the simulated service life data and the reliability of concrete pavement was calculated 

for the design period. 
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Stochastic finite element analysis was used by Phoon et al (1990) to compute the 

reliability index for pile settlement.  A random variable was assigned as the spatial 

average of the soil modulus across the ith element in the finite element mesh.  The soil 

was assumed to be an isotropic linear elastic medium and the soil modulus was assumed 

to be axisymmetric.  The mean and coefficient of variation of the pile head settlement for 

single piles were evaluated using advanced first-order second moment (AFOSM) method 

using first-order Taylor series expansion about the mean.  The reliability index was 

calculated through Hasofer and Lind (1974) method through minimum distance from the 

origin to the limit state surface.  The search algorithm by Rackwitz and Fiessler was used 

in the study to determine the nearest point to the origin.  The relationship of reliability 

index with slenderness ratio of the pile, stiffness matrix of the soil, lateral and vertical 

scale of fluctuation and co-efficient of variance of soil modulus was found.  To avoid 

time consuming stochastic finite element analysis ‘reliability index charts’ were 

developed using the above relationships. 

A reliability based procedure to include the uncertainties in the analysis of 

existing and new airfield pavements was made by Sues et al (1993). Multi-nested Monte 

Carlo Simulation (MCS) technique was developed to handle the nonlinear complex 

damage models.  An outer loop using direct simulation of the entire pavement life and 

inner loop using stratified sampling of load variation was selected.  This able to 

incorporate large number of random variables in to the simulation and to obtain accurate 

results involving multiple failure modes. Computer code called PROJULEA capable of 

computing stress and strain incorporating variation in pavement properties and loading 

was used. A balanced design attaining similar probability of failure for both asphalt and 
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subgrade layer was targeted and achieved. A reliability curve with service life was 

generated at design thickness obtained through simulation technique.  

Val and Melchers (1997) studied the reliability of RC slab bridges with 

reinforcement corrosion.  A nonlinear finite element model was used to describe the 

structural behavior of the bridge.  The structural reliability was estimated using FORM.  

A two-dimensional model to study longitudinal flexural failure modes were used to 

reduce the computational effort.  The reliability index was developed for both brittle and 

ductile failure modes.   

As discussed previously, a mechanistic pavement model, WESLEA and empirical 

transfer functions were used to assess the effect of input variability on fatigue and rutting 

failure models by Timm et al., (2000).  Monte Carlo simulation technique was used to 

study the uncertainty through a computer program called ROADENT.  The results of the 

simulations were analyzed to reach a constant model output distribution.  The distribution 

was monitored by recording the percentile values of the output distributions as a function 

of the number of cycles.  By including the seasonal variations 5000 cycles was reported 

to be adequate to achieve a fair precision.  The model outputs were reported to follow the 

Extreme value Type I distribution.  The probabilistic properties of the input parameters 

were used from the existing literatures.  The reliability computed through ROADENT 

was reported lesser than that computed through AASHTO 1993 design guide. 

The advantage of reliability based design over old AASHTO 1993 procedure was 

discussed by Kim and Buch (2003).  They characterized the reliability of the performance 

function through Hasofer-Lind reliability index.  A Load and Resistance Factor Design 

(LRFD) format was used for practical reliability-based M-E flexible pavement design 
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procedure.  A safety factor reflecting specified target reliability was used; it depends on 

the partial safety factor of each random variable for reduction or amplification of its 

amount.  Thirteen pavement sections were designed using both AASHTO 1993 procedure 

and the newly suggested ‘Reliability Based Design’ procedure.  The thickness suggested 

by both methods were different, and the reliability index determined by the FORM 

method showed that it was successful in yielding cross sections whose reliability indices 

were close to the target reliability indices, whereas AASHTO 1993 method did not 

generally produce designs of uniform reliability for actual mechanistic failure criterion. 

 The result from U.S. Crops of Engineers equation for pavement thickness 

equation was analyzed by Huang (2004) through Taylor’s expansion (FOSM) and 

Rosenblueth’s 2K+1 method.  The design equation contained four uncertain variables.  

The coefficient of variation for each variable was taken as 0.1. The results showed close 

agreement between two methods, even though Rosenblueth’s method does not require 

computation of derivatives as in FOSM.  

The advancement in reliability analysis from AASHTO 1993 pavement design 

procedure to MEPDG was discussed in Darter et al. (2005).  The authors suggested 

improving the current “Predicted versus measured error-based approach” (MEPDG) by 

accounting the effect of design input variability on the design reliability through Monte 

Carlo Simulation.  The authors applied the Monte Carlo technique to the JPCP transverse 

cracking model.  Instead of incremental design procedure adopted in AASHTO 1993, 

Neural Networks (NNs) have been developed based on the ISLAB2000 finite element 

(FE) structural model to compute critical stresses and deflections virtually 

instantaneously.  The principles of dimensional analysis and equivalent pavement system 
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were used extensively in the development and implementation of the neural network.  

About 25 input pavement parameters for the model were included into pavement 

responses through the use of three composite parameters: equivalent slab thickness, 

radius of relative stiffness and Korenev’s non-dimensional temperature gradient.  The 

distributions of these parameters were obtained first before neural network was used to 

significantly improve computational speed.  For acceptable execution time the authors 

suggested the use of Monte Carlo based analysis to be propagated throughout the distress 

prediction process.   

 

2.12 Summary 

This chapter presented details of the basic MEPDG methodology as applied to 

flexible pavements.  It also presented details of the basic reliability procedures.  To 

facilitate the computations, the distress models in the MEPDG are coded in FORTRAN 

with the required inputs about traffic, material properties and climatic data. It is used in 

subsequent chapters.  The layered elastic analysis program JULEA is used to compute the 

stress-strain response.  JULEA code has been modified to compute only required 

structural responses.   
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CHAPTER 3 

EFFECTS OF NONLINEAR LOAD-STRAIN BEHAVIOR ON DISTRESS 

PREDICTION1 

3.1 Introduction  

The structural response computation (Chapter 2.8.3) in the MEPDG design 

procedure assumes that the load-strain relationship is linearly proportional (NCHRP, 

2004).  For example, the strain due to a 9,000 lbf load is assumed to be twice as that of 

4,500 lbf load.  This assumption is exploited to significantly reduce the computation time.  

For each time increment, the layered elastic analysis procedure JULEA is executed to 

compute strains for a 9,000 lbf dual tire load (representing a 18 kip single axle) and strain 

responses for the remaining load spectrum, ranging in dual-tire loads of 1,500 lbf to 

20,500 lbf are obtained from the load-strain linear proportionality assumption. 

The load-strain linearity assumption, however, holds true only if the contact area 

remains the same while load varies resulting in a similar variation in the contact pressure.  

For example, assuming a 120 psi tire inflation pressure for the 9,000 lbf dual tire load the 

contact area for a dual tire will be 75 sq. inches.  For the load-strain linear proportionality 

to be valid, the contact area must remain 75 sq. inches for all load levels.  Thus the tire 

inflation pressure has to vary from 20 psi (1500 lbf/ 75 sq. inch) for 1,500 lbf dual tire 

load to 273 psi (20,500 lbf/ 75 sq. inch) for 20,500 lbf dual tire load.  However, for truck 

loadings of interest, classes 4 through 13, the contact (tire inflation) pressure remains 

within a narrow range; thus the contact area changes with axle load.  For commonly used 
                                                 
1 - part of this chapter has been accepted for presentation and publication in 84th 
annual meeting of Association of Asphalt Paving Technologies 
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tires, the cold tire inflation pressure ranges from 96 psi to 120 psi (NCHRP, 2004).  

Under normal operating conditions, tires are inflated to these manufacturers’ 

recommended inflation pressures and are not adjusted to the instantaneous load being 

carried by the vehicle.  Instead, the contact area changes as the vehicle is operated at 

loads ranging from fully loaded to empty, as reflected in the traffic load spectrum.  The 

change in contact area may not necessarily be proportional to the change in load and is a 

function of tire characteristics and vehicle dynamics.  However, under the simplifying 

assumptions used in the MEPDG LEA procedure JULEA, the loaded area is assumed to 

be circular with uniform contact pressure.  Under this assumption, the change in contact 

area will be linearly proportional to the change in load. 

The MEPDG only accepts one tire pressure value for the entire load spectrum.  

Tire inflation pressures for the composition of trucks represented in the traffic load 

spectrum would mostly likely vary as a result of tire type and tires not being maintained 

always at the recommended inflation pressures.  However, as discussed in the previous 

paragraph, the recommended cold tire inflation pressures for commonly used truck tires 

falls within a narrow range (96 psi to 120 psi) and the use of single tire pressure in 

MEPDG analysis is not considered to be a significant limitation.  This tire inflation 

pressure variation is smaller and different than the systematic and much wider range (20 

psi to 273 psi) investigated in this study.   

The load-strain linear proportionality assumption was reached by looking at the 

strains at some depth (NCHRP, 2004) where the effect of constant contact pressure 

versus the constant contact area vanishes and incorrectly concluded that the load-strain 

relationship is linearly proportional.  Further discussion on this assumption was included 



 77

in a response to NCHRP (Highway Community EXchange, 2005) that referenced 

analyses done on typical tire loads, pressure and axle load configurations for the study 

where it was found that the as the axle load increased, tire pressure also increased while 

the tire contact area remained fairly constant.  However, this appears to contradict the 

physics of the problem and published experimental data reviewed in the next section. 

This study analyzes the deviation in MEPDG distress predictions due to the load-

strain linear proportionality assumption exploited in computing strains from one 

reference axle load to the full traffic load spectrum.  

 

3.2 Test Pavement Structure 

The effect of load-strain linear proportionality assumption on performance 

prediction was evaluated using a test pavement structure with climatic conditions 

corresponding to Dulles International Airport, Washington DC.  The pavement section, 

material properties and traffic data used in the analysis are summarized below. 

The pavement section 

o HMA Layer: Thickness 10 inch  

o Base Layer: Thickness 6 inch Crushed stone  

o Sub-Base Layer: Thickness 10 inch A-2-4 material 

o Subgrade Layer: Semi-infinite A-6 material 

o Poisson’s ratio is assumed to be 0.35 for all the layers. 

Material Properties 
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o Asphalt binder: PG 70-34 

o Mix properties: Effective binder content 11 % (by volume), Air Void 7.0 % (by 

volume), Total Unit weight 148 pcf. 

o Aggregate gradation: Cumulative percentage retained in 3/4 inch, 3/8 inch and #4 

sieves are 0, 21, and 60% respectively.  And 3% passing the #200 sieve. 

o Asphalt thermal conductivity and heat capacity are assumed with default Level 3 

input values. 

o Modulus and gradation for the unbound materials are taken as Level 3 input 

values. 

Traffic 

o AADTT: 2000, with 4% compound traffic growth. 

o Traffic wander is assumed zero.  

o Tire pressure: 120 psi.  

o Dual tire spacing: 12 inch.  

o Vehicle Class Distribution: Predominant single-unit Trucks. 

o Traffic volume adjustment factors, axle load distribution factors and other 

General traffic inputs are assumed with default Level 3 input values. 

 

The MEPDG divides pavement layers into sub layers to better model the 

temperature and moisture variations as well as material properties and thereby calculate 

more accurately the responses throughout the pavement structure.  The EICM and Global 

Aging models calculate the modulus of asphalt concrete and unbound sub-layers at each 
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time increment by applying adjustment factors for aging and environmental conditions.  

The thicknesses of the sub-layers utilized by the MEPDG are summarized in Table 3.1. 

The effect of load-strain linear proportionality assumption was evaluated both in 

terms of strain values computed using the layered elastic analysis program JULEA and 

rutting computed using calibrated distress prediction models. 

Table 3. 1 Test Pavement Section 

Material Layer Thickness, 
inch 

MEPDG Sub-layer 
Thickness, inch 

0.5 

0.5 

1.0 

1.0 

1.0 

4.0 

Asphalt Concrete 10 

2.0 

2.0 
Base 6 

4.0 

4.0 
Sub-Base 10 

6.0 

24.3 

24.3 

24.3 
Subgrade Semi-infinite 

252.0 
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3.3 Vertical Strain 

For permanent deformation or rutting prediction, the MEPDG distress models 

require vertical strain at mid-depth of each sub-layer.  Vertical strains were calculated for 

an 18 kip single axle load using JULEA and the principle of superposition is used to 

compute strains for other axle groups and load-strain linear proportionality assumption is 

used to compute strains for other axle load levels.  The principle of superposition is valid 

for layered elastic analysis and in this section the vertical strains for a single axle load are 

considered for evaluating the load-strain linear proportionality assumption on computed 

vertical strains.  The location where the critical strains will occur cannot be 

predetermined and MEPDG uses a matrix of computation points in JULEA to ensure that 

the critical strain is captured.  For single axle load, MEPDG uses 10 computational points 

(Section 2.8.3) and the same approach was followed in this analysis to determine 

maximum vertical strains for each sub-layer.  

Figure 3.1 shows the deviation in vertical strains computed using JULEA at 3, 18 

and 36 kip single axle loads corresponding to the following two criteria: 

• Constant contact area – as assumed in the MEPDG design software.  The strain 

values at 3 and 36 kip single axle loads are computed with load-strain linear 

proportionality assumption from values computed at 18 kip single axle load. 

• Constant tire pressure – strains are computed using JULEA for all three load levels 

with a constant tire pressure of 120 psi.  The contact area varies depending on the 

axle load.  The JULEA responses computed assuming constant tire pressure are 
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referred to as “actual values” in subsequent sections for brevity as this represents the 

field conditions more closely. 
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Figure 3. 1 Vertical Strain with Depth for Different Axle Loads with and without the Load-Strain 

Linear Proportionality Assumption 
 

It can be seen that the strains at 3 kip single axle load, computed from the 18 kip 

single axle load with the load-strain linear proportionality assumption (constant contact 

area condition) are much lower than the actual values (Figure 3.1).  Similar trends were 

observed for tandem, tridem and quad axle configurations.  The opposite is true for 36 

kip single axle load - the strains computed from the 18 kip single axle load with the load-

strain linear proportionality assumption are much higher than the actual values. 

The ratio between the strains computed with constant contact area to the actual 

values is used illustrate the effect of the constant contact area assumption.  The variation 

of this strain ratio with depth is shown in Figure 3.2 for 3 and 36 kip single axle load.  

Note that strain ratio of unity indicates that the strains computed by both criteria are 

equal.  It can be seen that the strains computed with constant contact area are less than 
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actual values for axle loads less than 18 kip but higher for loads greater than 18 kip.  The 

strains computed under both criteria converge as the evaluation depth increases. 
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Figure 3. 2 Effect of Load-Strain Linear Proportionality Assumption on Vertical Strain with Depth 

 

The load-strain response for the pavement structure at a number of evaluation 

depths is as shown in Figure 3.3.  It is seen that the load-strain response becomes linearly 

proportional only at a depth of 9 inches.  This implies that the strains used in the MEPDG 

distress models for the top several sub-layers of the pavement structure would deviate 

significantly from the actual values.  In the top few inches of the pavement structure, the 

strain decreases (in some cases, tensile strain) with increasing axle loads probably due to 

the confining effect of wider contact areas. 

 

3.4 Horizontal Strain 

The MEPDG uses the tensile strain at bottom of HMA layer to compute the 

fatigue damage caused by load repetitions.  Since the effect of load-strain linear 

proportionality assumption is more pronounced at the top few inches of the pavement 
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structure (Figure 3.2), it will have a significant bearing on fatigue prediction of thin 

overlays used in pavement rehabilitation. 
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Figure 3.3 Load-Strain Relationship at Mid-Depth of the HMA Sub-Layers 

 

A 2 inch overlay, having the same HMA material properties as the HMA layer of 

the test pavement structure previously described, was considered.  For the test pavement 

structure with overlay, the horizontal tensile strains at various axle load increments were 

calculated using JULEA at the bottom of the overlay and also at the bottom of the 

existing HMA layer, at depths of 2 inches and 12 inches, respectively. 

Figure 3.4 shows the load-strain response for the overlaid test pavement structure.  

At a depth of 2 inches, the load-strain response deviates significantly from the linear 

proportionality assumption and the assumption could introduce significant error in the 

fatigue damage prediction of the overlay.  However, at a depth of 12 inches, the load-

strain response is very close to being linearly proportional and the fatigue damage 

prediction at the bottom of existing HMA will not be significantly affected by this 

assumption. 
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Figure 3. 4 Load-Strain Relationship at the Bottom of HMA Layer 

 

3.5 Traffic Spectrum 

The default traffic spectrum included in the MEPDG for “Principal Arterials and 

Interstates” is used to quantify the effect of the load-strain linear proportionality 

assumption on rutting predictions. 

In the MEPDG, traffic data inputs are processed to determine the number of axle 

load repetitions within each load increment group for each axle type.  The load 

increments used in MEPDG for the four axle types are as follows: 

o Single axles – 3,000 lbf to 40,000 lbf at 1,000 lbf intervals.  

o Tandem axles – 6,000 lbf to 80,000 lbf at 2,000 lbf intervals.  

o Tridem and quad axles – 12,000 lbf to 102,000 lbf at 3,000 lbf intervals.  

The number of load repetitions by axle type and load group for each time 

increment are then used within the incremental damage module to predict and accumulate 

the load related distresses with time. 
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Figure 3.5 shows the cumulative percentage of axle load repetitions as a function 

of load group for single axle type.  The chart was developed using level 3 inputs with 

predominantly single-trailer trucks on Principal Arterials and Interstates and default level 

3 axle load distribution factors.  The trend is similar for other route categories, including 

Local Routes and Minor Collectors.  The figure shows that most of the traffic (96%) fall 

below the standard single axle load of 18 kip.  As discussed earlier, the MEPDG uses an 

18 kip single axle load as the reference load in JULEA and uses load-strain linear 

proportionality assumption to compute strains for other load levels.  Since, as shown in 

Figure 3.2 and discussed in the previous section, the strains computed assuming load-

strain linear proportionality are less than actual values for load levels less than the 

reference load, the distresses computed by MEPDG for the full traffic load spectrum will 

be less than that resulting from constant pressure condition. 
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Figure 3. 5Cumulative Load Repetition in Single Axle for a Typical Traffic Spectrum 
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3.6 Permanent Deformation 

The discussion up to now focused on the impact of load-strain proportionality 

assumption on vertical and horizontal strains.  This section discusses the impact of the 

deviation in vertical strains on rutting prediction.  The extent of deviation in distress 

predictions due to nonlinear load-strain behavior cannot be evaluated using MEPDG.  It 

requires an external analysis that models the MEPDG procedures without the load-strain 

linear proportionality assumption.  For this purpose, the MEPDG rutting models were 

coded and incorporated along with JULEA into a stand-alone application to conduct 

independent analysis for comparison with MEPDG predictions.  The stand-alone 

application utilizes the MEPDG computed climatic and material properties. 

The MEPDG pre-processes the traffic data to compute the number of load 

repetitions for each axle load and axle type for each month within the design period.  In 

addition, the MEPDG divides each month within the design period into one or two time 

increments based on climatic conditions.  The time increments are further divided into 

quintiles based on temperatures.  For each quintile, the modulus values for the different 

sub-layers are calculated from the specified material properties along with the EICM and 

Global Aging models.  The damage computed is then accumulated over the quintiles, 

time increment within each month and each month within the design period.  The 

quintiles within each time increment will be referred to as incremental period in 

subsequent sections for brevity.  Material modulus, number of load repetitions by load 

and axle type, and the number of incremental periods per month used in the MEPDG 

analysis were obtained from the output files generated by the MEPDG software during 

these steps. 
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Two sets of analyses were conducted.  The first analysis was to compare and 

validate predictions from the stand-alone application to that from MEPDG.  The second 

analysis was to evaluate the effect of the load-strain linear proportionality assumption on 

the predicted performance.  The stand-alone application was used to analyze the test 

pavement structure with load-strain linear proportionality assumption and the rutting 

predictions were compared with MEPDG predictions. 

For each incremental period, JULEA was used to calculate critical strains within 

test pavement structure with the corresponding set of layer moduli for an18 kip single 

axle load, the same standard axle load used in MEPDG.  The strains for other load levels 

were computed using load-strain linear proportionality assumption and for other axle 

types were computed using the principle of superposition.  The critical vertical strains at 

the midpoint of sub-layers were obtained as the maximum strains at a matrix of 

horizontal locations as referenced in the MEPDG documentation (Section 2.8.3). 

The rutting predictions from the stand-alone application were compared with the 

MEPDG predictions at 50% reliability.  Figure 3.6 shows the rutting predicted by the 

stand-alone application and the MEPDG at 50% reliability for the each of the structural 

layers.  The rutting predicted by the stand-alone application agrees within 7% of the 

MEPDG prediction for all layers for the entire design period.  It is hypothesized that the 

minor deviations are related to inherent differences in the numerical implementation of 

the distress models and damage accumulation equations in the stand-alone application 

and MEPDG. 
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Figure 3.6 Predicted Rutting in Pavement Layers by the MEPDG and the Stand-Alone Application 

with Load-Strain Linear Proportionality Assumption 
 

Permanent Deformation with Constant Tire Pressure Condition 

The effect of load-strain linear proportionality assumption exploited in MEPDG 

for predicting rutting performance was investigated by comparing the results obtained in 

the previous analysis with analysis that did not make this assumption.  In the latter, for 

each incremental period, the critical strains were calculated using JULEA for all 39 single 

axle load levels considered in the MEPDG traffic load spectrum, from 3 kip to 41 kip, in 

increments of 1 kip.  As with the previous analysis, the strains for other axle types were 

computed using the principle of superposition.  The rutting in each sub-layer was 

computed using the actual strains calculated at the respective load level in contrast to 

strains computed from the reference 18 kip single axle load using the load-strain linear 
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proportionality assumption used in MEPDG and in the previous analysis.  Figure 3.7 

compares the rutting predicted with and without the load-strain linear proportionality 

assumption used in the MEPDG.  As expected from Figure 3.2, the effect of the 

assumption is significant for the HMA layer but diminishes for the deeper layers.  The 

load-strain linear proportionality assumption significantly under predicts rutting in the 

HMA layer and for the test structure.  The trend is similar for three other pavement 

structures evaluated with different traffic load spectra. 
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Figure 3. 7 Predicted Rutting in Pavement Layers by Stand-Alone Application with and without 

Load-Strain Linear Proportionality Assumption 
 

Figure 3.8 shows the deviation in predicted rutting for each sub-layer at the end of 

the design period with and with out load-strain linear proportionality assumption.  The 

thickness of the each sub-layer is given in the Table 3.1.  The effect is again seen to be 
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more pronounced within top few inches of the pavement structure but to diminish for 

deeper sub-layers. 
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Figure 3. 8 Difference in Rutting Prediction in HMA Sub-Layers and Unbound Layers 
 

Table 3.2 compares the values of total rutting in HMA layer predicted by  

o MEPDG 

o stand-alone application with the load-strain proportionality assumption 

o stand-alone application without the load-strain proportionality assumption 

The table shows the deviation in the rutting prediction with time.  The load-strain 

linear proportionality assumption significantly under predicts rutting depths for the traffic 

spectrum considered, for the test pavement structure by as much as 90% in the HMA 

layer.  Three other pavement structures were analyzed under different traffic and climatic 

conditions and the load-strain linear proportionality assumption resulted in under 

prediction of rutting by over 50% in all three cases.  The amount of variation will depend 

on the pavement structure, material properties and traffic and climatic conditions. 
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Table 3. 2 Summary of HMA Rutting Predicted by (a) MEPDG, (b) Stand-Alone Application 
Considering Constant Contact Area and (c) Constant Tire Pressure 

Rutting in HMA layer, inch 

Load-Strain are Linearly 
Proportional 

Load-Strain are not 
Linearly ProportionalMonth 

MEPDG 

(a) 

Stand-Alone 

(b) 

Stand-Alone 

(c) 

 

% Deviation 

 

100*)(
b

cb −  

1 0.016 0.017 0.032 -88.2 

2 0.017 0.018 0.034 -90.6 

3 0.018 0.019 0.035 -83.7 

4 0.018 0.019 0.035 -86.3 

5 0.019 0.019 0.036 -91.6 

6 0.020 0.021 0.039 -84.8 

7 0.024 0.025 0.047 -88.8 

8 0.033 0.035 0.065 -85.4 

9 0.060 0.059 0.106 -79.4 

10 0.086 0.083 0.147 -77.6 

11 0.098 0.095 0.168 -76.9 

12 0.102 0.099 0.176 -77.6 

…… 

240 0.484 0.452 0.801 -77.3 
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3.7 Alternative Approach 

For each incremental period in the MEPDG, an analysis that uses the load-strain 

linear proportionality assumption requires one JULEA evaluation while conducting the 

same analysis without this assumption requires 39 JULEA evaluations corresponding to 

each single axle load increment.  This has significant computing time implications for 

routine analysis and is not a practical approach to overcome the error introduced by the 

load-strain linear proportionality assumption. 

A viable alternative to improve the accuracy while minimizing the impact on 

computing time was investigated.  The approach makes use of three appropriately 

selected reference load levels and interpolates or extrapolates the computed strain values 

to other load levels.  The reference loads were selected as 6, 18 and 24 kip single axle 

loads.  This is referred to as the 3-Point approach in the subsequent discussions. 

Figure 3.9 shows the predicted rutting for each layer of the test pavement 

structure using the 3-Point approach and the analysis described in the previous section, 

without the load-strain linear proportionality assumption.  There is good agreement 

throughout the design period.  The approach was validated with three other pavement 

structures with similar results.  For space consideration, the rutting predicted by 3-Point 

approach and without the load-strain linearity assumption is illustrated in Figure 3.10 for 

one additional pavement structures.  The analyses show that the 3-Point interpolation to 

be a promising alternative. 

 



 93

HMA Rutting

0.0

0.3

0.5

0.8

1.0

0 80 160 240
Pavement Age, Month

Ru
t, 

in
ch

 

Base Rutting

0.00

0.02

0.04

0.06

0 80 160 240
Pavement Age, Month

R
ut

, i
nc

h

Sub-Base Rutting

0.00

0.02

0.04

0.06

0 80 160 240
Pavement Age, Month

R
ut

, i
nc

h

SubGrade Rutting

0.0

0.1

0.2

0.3

0 80 160 240
Pavement Age, Month

R
ut

, i
nc

h

Total Rutting

0.0

0.5

1.0

1.5

0 80 160 240
Pavement Age, Month

R
ut

, i
nc

h without Load-Strain 
Lineraity Assumption

3Point Extrapolation

 
Figure 3. 9 Predicted Rutting in Pavement Layers without Load-Strain Linear Proportionality 

Assumption and 3-Point Extrapolation 
 

The 3-Point interpolation will results in approximately three times the 

computation time as that of current MEPDG.  However, the accuracy gained can be 

significant, particularly in the prediction of HMA layer rutting.  JULEA computing time 

increases almost proportionally with number of evaluation depths.  Computing efficiency 

can be achieved by limiting the 3-Point interpolation approach to only the top several 

inches since, as shown previously, the effect of load-strain linear proportionality 

assumption vanishes with increase in depth. 
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Figure 3. 10 Predicted Rutting in Pavement layers of Test Pavement Section-2 without Load-Strain 

Linear Proportionality Assumption and 3-Point Extrapolation 
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CHAPTER 4 

PROPOSED RELIABILITY PROCEDURES  

4.1 Introduction 

The pavement distress prediction models incorporated within the MEPDG are 

complex functions of many input variables.  As discussed before (Section 2.3) these input 

variables are associated with certain level of uncertainty.  Therefore, the effect of the 

uncertainties in input variables must be incorporated systematically in a reliability based 

design procedure to predict the probability of failure.  However, the current method for 

incorporating uncertainty into the MEPDG design guide (NCHRP 1-37A) is based only 

upon the assessment of the overall standard error of the predicted distress as compared to 

the observed distress.  This procedure is inherently incapable of predicting the cumulative 

effect of the uncertainties in input variables.  Reliability techniques that can incorporate 

their uncertainty in a systematic manner are presented here.    

4.2 Proposed Reliability Procedure  

The proposed reliability procedure is developed to include uncertainties in HMA 

material input parameters in the analysis of flexible pavement design.  The probabilistic 

characteristics of the input variables reported in Table 2.5 are used for this purpose.  The 

methodology is demonstrated on the prediction of two classical pavement distresses, the 

bottom up fatigue cracking and the permanent deformation (rutting).  The new procedure 

is general enough to be extended to other distress computations in the future.  The 

proposed procedure is shown in the form a flow chart in Figure 4.1.  It consists of the 

following five stages:  
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1) Simulation of the material input variables based on Monte Carlo simulation 

techniques.  Simulations using Latin Hypercube and Rosenblueth 2K+1 Point estimate 

method were also performed to identify their relative merits (See Chapter 5)) 

2) Execution of the MEPDG with mean material input values.  This is used to 

extract modulus values for each sub-layer, climate and traffic intermediate data to be used 

in Stages 3 and 5. 

3) Computation of the aged dynamic for each of the simulated set of material 

input values.  

4) Identification of the representative set of layered elastic (LE) structures.   

5) This stage consists of the computation of the strain response using layered 

elastic program JULEA, the prediction of the distress under each set of simulated 

variables and the computation of the design reliability.  Note that the computation using 

JULEA is only done for the representative LE structure.  

Detailed explanation of the techniques used in each of the stages is presented in 

the sections below.  

The developed procedure was analyzed using a test pavement structure with 

climatic conditions corresponding to a site in Rochester, Minnesota.  The pavement 

section, material properties and traffic data used in the analysis are summarized below: 
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Figure 4. 1 Developed Reliability Procedure for Flexible Pavements 

The pavement section 

o HMA Layer: Thickness 6 inch  

o Base Layer: A-1-a Granular material, Thickness 6 inch  

o Sub-Base Layer: A-3 Granular material, Thickness 18 inch  

o Subgrade Layer: A-6 material, Semi-infinite. 

o Poisson’s ratio is assumed to be 0.35 for all the layers. 

Material Properties 

Calculate distress in each simulation 
using models and the procedures laid 
out in NCHRP 1-37A documentation  

Use JULEA to calculate strains at 
critical locations for each 
representative LE structures 

Calculate Reliability of the given 
pavement structure under material 

variability 

A 

Identify representative sets of LE 
structures, differing more than 1% 
from each other  

Stage 4 

B 

B 

Stage 5 

Generate a database with 
representative sets of layer modulus
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o Asphalt binder: PG 58-34 

o Mix properties: Effective binder content 12.5 % (by volume), air void 6.5 % (by 

volume), total unit weight 148 pcf. 

o Aggregate gradation: Cumulative percentage retained in 3/4 inch, 3/8 inch and #4 

sieves are 4, 21, and 60% respectively, and 3% passing the #200 sieve. 

o Asphalt thermal conductivity and heat capacity are assumed with default Level 3 

input values. 

o Modulus and gradation for the unbound materials are taken at default Level 3 

input values. 

Traffic data 

o AADTT: 2000, with 4% compound traffic growth. 

o Traffic wander: 10 inch standard deviation.  

o Tire pressure: 120 psi.  

o Dual tire spacing: 12 inch.  

o Vehicle class distribution: Mixed truck traffic with a higher percentage of single-

trailer trucks. 

o Traffic volume adjustment factors, axle load distribution factors and other general 

traffic inputs are assumed with default Level 3 input values. 

Stage 1: Simulation of HMA Material Input Variables. 

 The HMA layer is characterized by material dynamic modulus (Section 2.5.1).  

For Level 3 input Equation 2.7 developed by Matthew Witczak (NCHRP 1-37A final 

report, 2004) is used to calculate the dynamic modulus.  The eight material input 

parameters needed in modulus predictive equation are: air void content, effective bitumen 
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content, cumulative percentage aggregate retained on the 3/4 in sieve, cumulative 

percentage aggregate retained on the 3/8 in sieve, cumulative percentage aggregate 

retained on the No. 4 sieve, percentage aggregate passing the No. 200 sieve, loading 

frequency, and binder viscosity.  The loading frequency is dependent on the operational 

speed on the pavement structure.  Binder viscosity (η) (Equation 2.1) is dependent on the 

performance grade (PG) of the binder.  These two inputs, loading frequency and binder 

viscosity, are considered as deterministic and equal to the mean input used in MEPDG. 

 The probabilistic characteristics of the six remaining parameters simulated based 

on LTPP data base (Table 2.5) are as shown in Table 4.1  The air void content and 

effective binder content are assumed as correlated input variables with a correlation 

coefficient of -0.2.  Monte Carlo simulation is first used in developing the proposed 

reliability analysis.  The Monte Carlo simulation technique with high number of 

simulations is supposed to yield the most accurate distress prediction and hence 4000 

iterations are made with Monte Carlo simulation technique.   

Stage 2: Running of the MEPDG with mean material input values 

The design software is executed with mean material input values along with other 

relevant pavement design information.  The following information is extracted from 

MEPDG output for use in the reliability analysis: 

1) The modulus values generated by the design software are used to compute 

modulus values with simulated input variables as explained in the next stage.  
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Table 4. 1 Probabilistic Characteristics of the Inputs used in the Reliability Analysis 

Simulated HMA 
Material Input Distribution Mean 

Standard 
Deviation 

(Target) 

Standard 
Deviation 

(Obtained) 

Cumulative Aggregate 
Retained in 3/4inch 
Sieve, % 

Normal 4 1.80 1.75 

Cumulative Aggregate 
Retained in 3/8inch 
Sieve, % 

Normal 21 2.50 2.56 

Cumulative Aggregate 
Retained in No.4 Sieve, 
% 

Normal 60 3.50 3.50 

Aggregate Passing 
No.200 Sieve, % 

Normal 3 1.00 1.02 

Air Void content, % Normal 6.5 1.50 1.49 

Effective Binder 
Content, % 

Normal 12.5 0.50 0.50 

 

2) The number of load repetition per day in each load increment for each axle type 

from the given mean traffic inputs.  Since uncertainty in traffic input is not 

accounted in the proposed reliability analysis, for each simulation, the load 

repetitions calculated by design software are used in the distress computation.  

However, if required, uncertainties in traffic data can be accounted for by using 

the procedure outlined in Section 2.5.  
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3) Temperature profile in each HMA sub-layer over the sub-season in each month of 

the base year.  This value is assumed to be the same for each simulation in the 

reliability analysis. 

Stage 3: Computation of Aged Dynamic Modulus for Simulated Material Inputs  

The pavement structure with different material layers are further sub-divided 

internally within MEPDG design software to sub-layers that are characterized by their 

corresponding material modulus (Section 2.5.1).  Distress prediction for each set of 

simulated material input requires the value of modulus to be determined for each sub-

layer over the design period.  The HMA dynamic modulus predictive equation 2.7 (in 

input Level 3) or the laboratory test (in input Level 1) computes the HMA layer modulus 

corresponding to the initial construction stage.  Note that the HMA and unbound layer 

modulus need to be corrected for temperature and moisture based on the depth of the sub-

layer and the environmental conditions.  The Enhanced Integrated Climatic Model 

(EICM) Chapter 2.6) in the design software is used to generate the temperature and 

moisture profile and the dynamic modulus is adjusted accordingly.  Global aging model 

(Section 2.5.1) corrects the asphalt dynamic modulus for environmental aging effects.  

An efficient scheme is developed to incorporate EICM and Global aging models 

in the reliability analyses.  It is used to compute the modulus values for the simulated 

input variables based on the modulus values extracted from the design software 

calculations in Stage 2.  The simulated modulus values are subsequently corrected for 

temperature, moisture and other environmental deterioration effects.  This process 

eliminates the need for repeated execution of the global aging model and the EICM 

(Chapter 2.6) for each iteration.   
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 The scheme to compute the layer modulus for each iteration is detailed as follows: 

Step 1:  Determination of the un-aged modulus master curve corresponding to mean input 

values using the prediction equation (Equation 2.7) for Level 3 inputs. 

Step 2: Use of the modulus prediction equation (Equation 2.7) and determine the un-aged 

modulus corresponding to a set of simulated input variables. 

Step 3: Calculation of the ratio of the un-aged modulus values computed using mean 

input variables (Step 1) and simulated variables (Step 2).  

Step 4: Multiplication of the asphalt dynamic modulus values obtained from MEPDG in 

Stage 2 by the ratio obtained in Step 3 to get the material property (dynamic 

modulus) of each asphalt sub-layer at each quintile (section 2.7) over the design 

period.  

Step 5: Repetition of Step 2 to 4 for N set of sampled input variables and generate a 

database with asphalt dynamic modulus for different pavement structure over the 

design period. 

Laboratory measurement of HMA dynamic modulus is required in input Level 1.  

Any uncertainty in its measurement can be handled by a direct simulation of the 

laboratory measured HMA dynamic modulus with the expected standard deviation 

without using Steps 1 and 2 in the above scheme.  The ratio between simulated and the 

mean modulus is obtained as in Step 3 for input Level 3 above, as are other remaining 

steps. 
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Validation 

The efficiency of the above in reproducing modulus value for simulated variables 

is validated by comparing the dynamic modulus computed by the developed procedure 

with that computed by the MEPDG.  The results are summarized in Table 4.2.  The 

column (a) consists of the modulus values (EM) as calculated by the MEPDG for the first 

sub-layer at the first quintile of the first month of the design period.  This value (Column 

a) is obtained by running the MEPDG using mean material input values (Stage 2).  The 

column (b) consists of the dynamic modulus (ES) values, for the same pavement 

structure, as calculated by the MEPDG, but with one set of simulated values for the HMA 

material input variables.  The objective of the scheme here is to compute the dynamic 

modulus values ES from EM without executing the MEPDG for each simulated material 

input.  

The dynamic modulus prediction Equation (2.7) is used to calculate the dynamic 

modulus values in top sub-layer with both mean and simulated input material variables, 

E1 and E2 respectively (column c and d).  These modulus values are not adjusted for 

environmental conditions. 

The ratio between E1 and E2 are then calculated (Column e).  It was found that the 

ratio remained constant not only throughout the design period but also for the different 

sub-layers.  Dynamic modulus values (EC ,Column f) for simulated material inputs are 

calculated by dividing the modulus values obtained from MEPDG at mean material input 

values (EM) by the ratio calculated (Column e).  Column (g) calculates the deviation 

between the predicted dynamic modulus values (EC) from the modulus values calculated 
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by MEPDG (ES) both at simulated material input values.  It can be seen that the 

maximum ratio of the deviation of the simulated values is less than 0.5 %. 

Table 4. 2 Computation of Dynamic Modulus for Simulated Input Variables  

Calculated by MEPDG Calculated from Equation 2.7

Mean 
material 

inputs,  EM 

(a) 

Simulated 
material 

inputs, ES 

(b) 

Mean 
material 

inputs, E1

(c) 

Simulated 
material 

inputs, E2 

(d) 

Ratio 

2

1
E

E
 

(e) 

Computed 
HMA 

Dynamic 
Modulus, EC 

(f) 

Ratio of 
Deviation from 
MEDPG values,

( )
100

ES

S

C

E
E−

 

(g) 

HMA Dynamic modulus, psi  psi % 

5369250 4430840 3453220 2845005 1.2138 4423565 0.164

5369170 4430770 3047253 2510541 1.2138 4423499 0.164

5359560 4422870 2538781 2091626 1.2138 4415581 0.165

5207210 4297510 1938478 1597054 1.2138 4290065 0.173

3858750 3187150 1436056 1183124 1.2138 3179109 0.252

2958400 2444870 1097294 904028 1.2138 2437337 0.308

2689780 2223250 1028756 847561 1.2138 2216029 0.325

2766180 2286290 1058742 872266 1.2138 2278973 0.320

3288220 2716870 1331462 1096952 1.2138 2709066 0.287

3764270 3109270 1913999 1576887 1.2138 3101270 0.257

5369500 4431040 2725581 2245525 1.2138 4423771 0.164

5369330 4430910 3478721 2866014 1.2138 4423631 0.164

 

The modulus corresponding to the third HMA sub-layer in the given pavement 

structure at third quintile is compared to demonstrate the efficiency of the proposed 

scheme as shown in Figure 4.2.  This figure shows the variation of modulus values 



 106

calculated by the proposed scheme and that calculated by MEPDG for the same 

simulated input material variable as a function of time.  It can be seen that the two results 

match very well demonstrating the accuracy of the proposed scheme.  The comparison 

was repeated for all asphalt sub-layers and sub-seasons (Quintiles) and found to hold 

well.  
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Figure 4. 2 Corrected and MEPDG generated Dynamic Modulus 

 

The difference between modulus determined using this scheme and that directly 

obtained from MEPDG using simulated values were found to be much less than 1% over 

the entire design period for different pavement structural conditions.  This minimal 

difference makes the use of the scheme to compute the HMA dynamic modulus 

applicable to any pavement structure.   
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The proposed schemes is thus used to generate a database ‘DB1’ that contains sets 

of layer modulus (each termed as ‘layered elastic structure’ or ‘LE structure’ in the 

subsequent sections) generated over the design period and ‘N’ number of simulations.  

Stage 4: Identification of Representative Layered Elastic Structures  

The MEPDG generates five layered elastic (LE) structures per incremental period 

(monthly or 15 days) to account for the environmental moisture and temperature 

variations more accurately.  The distress prediction requires the strain response at critical 

locations of each LE structure.  The design guide uses the layered elastic analysis 

program JULEA for determination of load-structure response.  In a typical analysis with 

20 year design period about 1400 LE structures are generated for each design iteration i.e. 

JULEA has to be executed 1400 times.  Since reliability computations require several 

hundreds of iterations,   execution of JULEA for each LE structure within database DB1 

is the single most time consuming process that requires a significant computational time 

usually in the order of a few weeks to complete.  It was identified as the main limitation 

to the use of reliability analysis as identified in the design manual (NCHRP Project 1-

37A Final Report, 2004).  

In order to minimize the number of JULEA executions, a technique was 

developed to identify a subset of representative layered elastic (LE) structures from the 

set of simulated LE structures (DB1) that will represent the entire set of LE without 

significant loss of accuracy.  When a reliability analysis is performed involving hundreds 

of iterations where each iteration involves hundreds of LE structures, a large number of 

them are bound to constitute near identical modulus values.  This fact is exploited here in 

developing a practical reliability analysis procedure.  Execution of JULEA is done only 
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for LE structures whose sub-layer modulus values are not within 1% of an LE structure 

that had already been analyzed.  This reduces the required number of JULEA executions 

significantly without compromising the accuracy of the final results.  For example, our 

computations have shown that for 4000 design simulations, such a choice could reduce 

the JULEA computational time down to about 1% of that for all LE structures. 

A database (DB1) is generated with a set of ‘n’ LE structures over the design 

period and for required number of simulation (as explained in Stage 3).  This stage 

generates two databases DB2 and DB3.  The database DB2 containing ‘m’ representative 

LE structures and database DB3 containing all ‘n’ simulated LE structures along with the 

identity number (ID) referring to the corresponding closest representative LE structure in 

DB2.  JULEA is executed only for the LE structures in database DB2.  

The procedure is explained in detail below and a sample calculation is provided in 

Appendix A. 

Step 1: Write the first LE structure from database DB1 to database DB2 and DB3.  Since 

first LE structure is always the representative one, m=1 

Step 2: Calculate the deviation between corresponding sub-layer modulus between LE 

structure ‘i’ in DB1 and ‘j’ in DB2 as  

( ) ( )
( ) 100*

,
,,

),(
ziE

ziEzjE
abszjDeviation

n

nDB −
=      (4.1) 

where  En(i, z)  - ith LE structure in database DB1. i = 2 to n 

EDB(j, z) –jth LE structures in database DB2. j = 1 to m.  

 z – Sub-layer in the LE structure. z = 1 to total number of sub layers 
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 n – Total number of LE structures in DB1 generated in stage 3. 

Step 3: Repeat Step 2 for all sub-layers and obtain the maximum deviation. 

Step 4: Repeat Step 2 and 3 for ‘m’ LE structures in DB2. 

Step 5: Obtain minimum of the deviation over ‘m’ LE structures in DB2.  If the minimum 

deviation is:  

(i) More than 1%: identify En(i, z) as representative LE structure and append to 

DB2 (m= m+1).  Also, mark the LE structure as mth representative LE 

structure and append to DB3. 

(ii) Less than or equal to 1%: Identify the LE structure En(i, z) by the ID of LE 

structure EDB(j, z) corresponding to minimum deviation and append the LE 

structure En(i, z) to DB3.   

Step 6: Repeat Step 2 to Step 5 for n LE structures in database DB1.  

Validation 

 The effect of the choice of representative LE structure on strain response was 

evaluated before it was used in reliability analyses.  For this purpose, one LE structure 

was taken as representative and the procedure was used to identify 20 similar LE 

structures from DB1 (whose modulus varied less than 1%).  The strain values at the 

critical locations were computed using JULEA with the actual sub-layer modulus values 

of 20 LE structures and the representative LE structure.  The strain values calculated for 

representative LE structure and each similar LE structure are compared and the deviation 

in strain values at each critical location were computed.  The maximum deviation in 
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strain values at any critical point (for the given pavement structure, strain is calculated at 

18 critical locations) between representative LE and the 20 actual LE structure is 

summarized in Table 4.3.  The proposed procedure of executing JULEA for the chosen 

LE structures results in a maximum of 3% deviation in computed strain values with 80% 

of the deviation less than 1%. 

Table 4. 3 Effect of the Efficiency Procedure on Strain Values 

Maximum Deviation from the 
reference LE structure, % 

 

Similar Layer 
Elastic Structure in Sub-layer 

Modulus in Strain Values 

1 0.72 1.5 

2 0.46 1.62 

3 0.99 1.3 

4 0.40 1.05 

5 0.32 1.03 

6 0.32 1.03 

7 0.32 1.03 

8 0.91 2.86 

9 0.72 1.44 

10 0.32 1.03 

11 0.91 2.93 

12 0.47 1.59 

13 0.67 1.45 

14 0.74 1.38 

15 0.18 1.98 

16 0.64 1.48 

17 0.73 1.45 

18 0.35 1.03 

19 0.91 2.93 

20 0.55 1.52 
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The choice was also analyzed with respect to computed HMA rutting.  The study 

was to quantify the effect of the deviation observed in strain over the distress predicted.  

The HMA rutting predicted by the Stand-Alone application (Section 3.6) was compared 

by running JULEA for 

1) All layered elastic (LE) structures generated. 

2) Only representative layered elastic (LE) structures (the procedure explained 

above). 

Figure 4.3 compares the HMA rutting predicted over the design period for both cases.  

The distress computed for both cases were found to be similar at the end of each month 

over the design period.  The results show that the proposed choice has little effect on 

predicted distress values. 
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Figure 4. 3 Effect of JULEA Execution only on Representative Layered Elastic Structure 
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Efficiency 

The developed technique leads to a significant reduction in computation time by 

limiting the required number of JULEA executions.  The efficiency increased with 

increase in the number of iterations.  For the pavement under evaluation for 300 

simulations, JULEA has to be executed 529,500 times (Total number of LE structures) 

without this technique.  The procedure has identified only 24734 (4.7%) set of LE 

structures whose moduli varied by more than 1% from other structures that are thus taken 

as the representative ones.  This number reduces to 0.8% when the number of simulation 

is increased to 4000.  

Stage 5: Prediction of Reliability of the Distress  

 This stage consists of computation of the distress in each simulation and the 

calculation of the reliability of each predicted distress.  The steps involved in this stage 

are detailed below.  

Step 1: Use the representative LE structures from database DB2 and JULEA to calculate 

strains at critical locations. 

Step 2: Calculate pavement distresses (Rutting and Fatigue cracking) at critical locations 

using the Stand-Alone application (Section 3.6) with the prediction models as 

given in the MEPDG user documentation.  The climate and traffic information 

obtained in Stage 2 are used. 

Step 3: Repeat Step 2 for required number of simulations.  

Step 4: Compute the reliability of the given pavement structure.  
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The database DB3 that contains all simulated LE structures is used in step 2.  The 

ID of each LE structure in the database DB3 is used to trace the strain values from the 

corresponding LE structure in DB2, for which JULEA has already been executed and 

strain values are computed at critical locations.  

The stand-alone application developed (Section 3.6) has been modified to perform 

the developed reliability procedure.  The procedure stated in MEPDG documentation to 

compute both rutting and fatigue bottom-up cracking has been incorporated in the stand-

alone application.  The required number of simulation with Monte Carlo sampling 

technique has been verified by a convergence test.  

 

4.3 Check for Convergence 

The number of iterations required for output distributions to converge is 

dependent on the model being simulated and the distribution functions included in the 

model.  More complex models with highly skewed distributions will require larger 

number of iterations than simpler models.  It is important to run sufficient number of 

iterations so that the statistics generated on outputs are representative.  However, there 

comes a point where results converge and the time spent for additional iterations is 

essentially wasted because the characteristics of the statistics generated do not change 

much.  

In the Monte Carlo simulation, convergence monitoring was deployed to evaluate 

the stability of the output distributions during simulation.  As number of iteration 

increases, output distributions become more “stable” as the statistics describing each 
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distress distribution change less with additional iterations.  The statistics describing each 

distress distribution was monitored at the end of every 100 iterations.  The number of 

simulations required for convergence is based on the calculation of the normalized error 

as defined below at five locations (10th, 25th, 50th, 75th and 90th percentiles) of the 

statistical distribution:   

 
simulationiiondardDeviatS

simulationiDValuesimulationiDValueError th

thth

@tan
))100@(@( −−

=   (4.2) 

where, DValue - distress value at pth percentile in the distress generated 

distribution.  

In addition, the normalized error in the standard deviation (taken as DValue) of 

the entire distribution is estimated using the above equation. The required number of 

simulations is assumed to be attained when the absolute maximum of the above six error 

measures falls below a specified convergence tolerance.  

Figure 4.4 (a) and (b) shows the variation of maximum error calculated after 

every 100 iterations respectively in HMA rutting and fatigue cracking distribution.  It can 

be seen that the fatigue model converges faster than the rutting model.  The maximum 

error in HMA rutting distribution (Figure 4.4 (a)) converges to a constant value of around 

1% after 3000 iterations.  In the case of fatigue cracking distribution (Figure 4.4 (b)) the 

maximum error converges to 2% just after 1800 iterations.  Thus for the given problem, if 

Monte Carlo sampling technique is used, it is necessary to run more than 3000 iterations 

in order to capture the actual statistical properties of the distress distribution.   
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Figure 4. 4  Convergence Test on Monte Carlo Simulation 
 

 
 
4.4 Statistical Properties of Predicted Distress Distribution 

Figure 4.5 (a), (b), and (c) show the distribution of predicted pavement distresses, 

HMA rutting, total rutting, and fatigue bottom-up cracking, respectively for a given level 

of HMA material uncertainty (Table 4.1) generated using Monte Carlo simulation 

method.  It can be seen that that the predicted distribution for HMA and total rutting 



 116

closely resemble normal distribution (Figure 4.5 (a) and (b)).  It was also found that the 

rutting pattern for base, sub-base and subgrade showed a similar distribution.  On the 

other hand, the distribution of fatigue bottom-up cracking closely resembles a log-normal 

one.  
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(c) Fatigue Bottom-Up Cracking 

Figure 4. 5 Distribution of different Predicted Pavement Distress under HMA Material Variability 
 

Figure 4.6 (a), (b), (c) show the cumulative distribution of HMA rutting, total 

rutting and fatigue bottom-up cracking predicted, respectively for the given level of 

HMA material uncertainty.  It can be seen that for HMA and total rutting the left tail of 

the normal distribution is truncated at 0.4 inch and 0.78 inch respectively (Figure 4.6 (a) 

and (b)) show.  The same effect is much pronounced in fatigue performance with log 

normal distribution (Figure 4.6 (c)), which indicate higher effect of material uncertainty 

on poor fatigue performance.  
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(c) Fatigue Bottom-Up Cracking 

Figure 4. 6 Cumulative Distribution of the Predicted Pavement Distress under HMA Material 
Variability 

 

For the combination of the site conditions, design features, and the binder grade 

considered in the simulation, Table 4.4 compares the distress predicted by MEPDG and 

the developed reliability procedure at 90% reliability.  It can be seen that distress values 

(both total rutting and fatigue bottom-up cracking in Table 4.4) predicted by the new 

procedure is less than that by the MEPDG.  This is due to the fact that the MEPDG 
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calculations at the given reliability level (90%) includes variability in layer thickness, 

binder type, error due to the model lack-of-fit, measurement error apart from the 

uncertainty in mix design.  However, the proposed procedure includes only the 

uncertainty in mix design in to the reliability analysis.  The potential distribution of 

distress predicted by the MEPDG and the developed reliability procedure is shown 

schematically in Figure 4.7.  As seen the use of HMA material uncertainty only in the 

new procedure leads to less variability in the predicted distress as seen in the values 

predicted by the developed procedure at 90% reliability. 

 

Table 4. 4  Distress Predicted at 90% Reliability 

Pavement Distress MEPDG 
Developed Reliability Procedure 

Monte Carlo Simulation 
(N=4000) 

HMA Rutting, inch N/A* 0.6736 

Base Rutting, inch N/A* 0.0867 

Sub-Base Rutting, inch N/A* 0.1114 

Subgrade Rutting, inch N/A* 0.2226 

Total Rutting, inch 1.1966 1.094 

Fatigue Bottom-up Cracking, % 22.15 9.14 
*- MEPDG doesn’t report the rutting at 90% reliability in individual layers 
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Figure 4. 7 Variability in Predicted Distress Computed by MEPDG and Developed Procedure 

 
 

The predicted reliability at the target distress by the MEPDG and the proposed 

technique is compared in Table 4.5.  The less variability in distress predicted by the 

proposed technique (Figure 4.7) translates into lesser reliability at target HMA and total 

rutting (both of which will be at the left tail of the distribution when predicted reliability 

is very less) and higher reliability at target fatigue bottom-up cracking (which will be at 

right tail of the distribution when the predicted reliability is very high). 

 
Table 4. 5 Reliability Predicted at Target Distress 

Predicted Reliability 

Pavement Distress Target 
Distress MEPDG 

Developed Reliability Procedure 

Monte Carlo Simulation 
(N=4000) 

HMA Rutting 0.25 inch 1.84 <0.01 

Total Rutting  0.75 inch 8.83 <0.01 

Fatigue Bottom-up 
Cracking 

25 % 
96.48 99.99999 
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4.5 Relative Merits of the Proposed Reliability Procedure 

The following summarizes the merits of the proposed reliability procedure 

compared to the existing one in the MEPDG. 

1) The procedure makes it possible to consider the variability in key HMA material 

inputs into pavement reliability analysis.  

2) The procedure can be expanded to include the uncertainties in other material inputs, 

traffic characteristics and also to incorporate the errors associated with the prediction 

models.  Thus, the designer can input the mean, standard deviation and distribution of 

input variable and obtain much more accurate design reliability values. 

3) The sensitivity of the distress to variations in the inputs can be analyzed from the 

reliability results obtained through the developed procedure (Chapter 5.5).  This provides 

the designer with improved knowledge of the most critical inputs that should be 

estimated with greater accuracy. 
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CHAPTER 5 

RELIABILITY TECHNIQUES AND SENSITIVITY ANALYSES 

5.1 Introduction 

The last chapter used the Monte Carlo simulation technique to develop reliability 

analysis of pavements.  While, this technique is one of the most powerful and accurate 

methods of reliability analysis, it is computationally very intensive for routine 

applications.  Monte Carlo simulation method with less number of iterations is not 

recommended because of the possibility of failing to replicate the input distribution 

adequately in the sampled inputs.  Therefore, two other methods, namely, the Latin 

Hypercube and the Rosenblueth’s Point Estimate Method, that are computationally less 

intensive to calculate the reliability of pavements are discussed in this chapter.  The 

results are compared with those from Monte Carlo simulation.  Finally, the effectiveness 

of the three simulation techniques is compared.  The methods are also verified with a 

similar study done in the past but with large computational time.  Sensitivity analyses of 

HMA input variables on computed distress is performed using the data obtained from the 

Monte Carlo simulation method.   

5.2 Latin Hypercube and Rosenblueth’s Point Estimate Methods 

Inputs were sampled with the probabilistic characteristics in Table 4.1.  Latin 

Hypercube sampling method (Section 2.10.3) is used with 300 simulations.  In the case of 

Rosenblueth’s 2K+1 point estimate method the number of simulation is dependent on the 

number of uncertain variables considered (Section 2.10.3).  In this study, uncertainty in 
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six material variables (K= 6) were considered and hence 13 simulations are required for 

Rosenblueth’s method.  

The proposed reliability analysis is performed on simulated set of input variables.  

Pavement section described in Section 4.2 is used in the analysis.  Table 5.1 summarizes 

the results from reliability analysis from the two simulation methods.  They include the 

values of the mean, co-efficient of variation (COV) and the distress at 90% reliability.  

For comparison purposes, the results using Monte Carlo simulation are also shown in the 

same table.  Equations 2.49 and 2.50 were used in the calculation of the mean and COV 

of the distress distribution for the Rosenblueth’s point estimate method.  The correlation 

coefficient between air void content and effective binder content is not used in 

Rosenblueth’s point estimate method.  Note that the Rosenblueth’s point estimate method 

is not capable of calculating the distress distribution (Section 2.10.3).  Thus, the distress 

reported at 90% reliability for Rosenblueth’s point estimate method (Table 5.1) was 

computed by assuming it to have a normal distribution.  Therefore, if the entire distress 

distribution characteristics (including distribution type) of a variable are required it is 

necessary to run actual simulation using either Monte Carlo or Latin Hypercube.  It can 

be seen that the mean and COV of the output distribution obtained from both Latin 

Hypercube and Rosenblueth’s 2K+1 point estimate method are quite close to values 

obtained from Monte Carlo Simulation. 
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Table 5. 1. Comparison of Simulation Techniques 

Latin Hypercube Simulation 
(N=300) 

Rosenblueth’s Point Estimate 
Method (N=13) 

Monte Carlo Simulation 
(N=4000) 

Distress 

Mean COV @ 90% 
reliability Mean COV @ 90% 

reliability Mean COV @ 90% 
reliability 

HMA Rutting, inch 0.575 14.2 0.692 0.575 13.7 0.676 0.574 13.7 0.674 

Base Rutting, inch 0.082 4.68 0.087 0.082 4.6 0.087 0.082 4.46 0.087 

Sub-Base Rutting, inch 0.108 2.9 0.112 0.108 2.8 0.112 0.108 2.7 0.111 

Subgrade Rutting, inch 0.22 1 0.223 0.22 0.89 0.220 0.22 0.95 0.223 

Total Rutting, inch 0.985 9.2 1.115 0.985 8.85 1.097 0.983 8.86 1.094 

Fatigue Bottom-up Cracking. % 4.86 73.3 9.01 4.79 62.9 8.65 4.8 72.1 9.14 
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5.3 Effectiveness of Simulation Techniques 

The convergence test on results from Monte Carlo simulations (Chapter 4.3) 

suggests that 4000 simulation is large enough to predict accurate results for the case study 

problem.  Hence, the results from Monte Carlo simulation are considered accurate and 

compared with the results from Latin Hypercube and Rosenblueth’s method in terms of 

accuracy and time efficiency.  

The reliability of pavement distress prediction for a given level of uncertainty in 

material input is evaluated using these different simulation techniques.  Table 5.2 

summarizes the execution time taken for different simulation runs based on computer 

with 3 GHz Intel processor and 1GB RAM.  Execution of 4000 simulations by Monte 

Carlo method required 4.5 days of computation time.  For the number of probabilistic 

variables involved, the convergence test in Chapter 4.3 suggested a minimum of 3000 

Monte Carlo simulations for accurate reliability analysis; which will take 3.5 days (since 

in the developed procedure JULEA is executed only for representative pavement 

structures, the number of simulations and computation time are not linearly proportional).  

For the reliability analysis to be time efficient there is a necessity to determine an 

alternate sampling method that can predict results at the same level of confidence to 

Monte Carlo simulation method with fewer number of iteration.   

Latin Hypercube sampling method, can compute entire probabilistic 

characteristics of the output distress distribution with accuracy that is comparable to that 

of the Monte Carlo Simulation within a reasonable computation time.  Also, the data 

from the Latin Hypercube simulation is required for a robust sensitivity analysis of the 

input data (Chapter 5.4).  Hence, Latin Hypercube is an efficient alternate to the Monte 



 

 126

Carlo simulation technique.  With few iteration, Rosenblueth’s 2K+1 point estimate 

method can compute the mean and co-efficient of variation of the distress characteristics 

to the accuracy close to Monte Carlo simulation method; however the method is not 

capable to determine the distress distribution type.  Hence, Rosenblueth’s 2K+1 point 

estimate method can only be used to get initial approximate distress distribution 

characteristics or a sensitivity estimate (as in past literatures Chapter 5.4). 

Table 5. 2 Execution Time for Reliability Analysis 

Simulation Method Execution Time 

Monte Carlo Simulation (N=4000) 4.5 day 

Monte Carlo Simulation (N=3000) 3.5 day 

Latin Hypercube Simulation (N=300) 25 hour 

Rosenblueth’s 2K+1 Point Estimate 
Method (N=13) 3 hour 

 

5.4 Validation of the Reliability Procedures 

The proposed reliability procedure is verified on a pavement structure studied by 

Khazanovich et al (2008) in their reliability analyses.  Khazanovich et al (2008) 

developed a framework to include the variability of HMA materials in pavement design 

reliability analysis by combining DAKOTA, a software toolkit for performing 

uncertainty quantification on engineering models, along with the MEPDG.  The variables 

along with their probabilistic characteristics used in the analysis are summarized in Table 

5.3.  DAKOTA software was used to simulate 300 samples for each uncertain input 

variable through Latin Hypercube sampling technique.  Macros were written in 

‘Workspace Macro Pad’ and ‘Excel’ to generate MEPDG project files with 
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corresponding input samples generated by DAKOTA.  The MEPDG was executed for 

300 iterations which took two computers 4 days of computational time.  This included the 

execution of EICM and the JULEA execution for each L-E structures 300 times.  The 

characteristics of the distress distribution were obtained from the values computed by 

MEPDG at 50% reliability level.  The drawback of the developed technique as reported 

in Khazanovich et al (2008) attribute to the computation time involved in repeated 

execution of MEPDG.   

Table 5. 3 Probabilistic Characteristics used in Khazanovich et al. 2008 

HMA Material Property Distribution Distribution Characteristics 

Effective Binder Content, % uniform  between 10 and 15 % 

Air voids, % Uniform between 5 and 8 % 

Cumulative of Aggregate Retained in 

3/4 inch sieve, % 

Deterministic 0 

Cumulative Aggregate Retained in 3/8 

inch sieve, % 

Normal Mean 21%, Standard 

Deviation 0.42% 

Cumulative Aggregate Retained in No. 

4 sieve, % 

Uniform between 57 and 63 % 

Aggregate Passing No.200 sieve, % Uniform between 2.85 and 3.15 % 

  

The problem studied by Khazanovich et al (2008) is repeated with the proposed 

reliability procedures.  Default values in the MEPDG were used for inputs that were not 

included in the paper.  Execution of JULEA for only the representative layered-elastic 

structures in the proposed procedure rather than for the entire layered-elastic structures 
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and also the avoidance of redundant EICM execution reduced the computational time to 

25 hours in one computer.  i.e. approximately eight times faster than that reported by 

Khazanovich et al (2008). 

Table 5.4 summarizes the distress predicted by the MEPDG and the developed 

reliability procedure at 90% reliability.  Table 5.5 compares the reliability predicted by 

the MEPDG and the developed reliability procedure at the target distress mentioned in 

the design analysis.  Note as detailed before (Section 4.2) the proposed reliability 

procedure is restricted to consideration of the variability corresponding to HMA mix 

only.  Thus, the distribution computed by the proposed procedure is expected to have less 

uncertainty in the predicted distress compared to the MEPDG values (See also Figure 

4.7).   

Table 5.4 Distress at 90% Reliability 

Distress @ 90% Reliability 

Distress 
MEPDG Developed Reliability 

Procedure  

HMA Rutting, inch NA 0.659 

Base Rutting, inch NA 0.086 

Sub-Base Rutting, inch NA 0.111 

Subgrade Rutting, inch NA 0.222 

Total Rutting, inch 1.227 1.078 

Fatigue Bottom-up Cracking. % 22.39 7.4 
NA – Not reported in MEPDG 
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Table 5. 5 Reliability predicted at Target Distress 

Reliability @ Target Distress 

 Distress 
Target Distress 
used in Design 
Analysis  MEPDG Developed Reliability 

Procedure  

HMA Rutting 0.25 inch 1.84 <1 

Total Rutting  0.75 inch 8.83 <1 

Fatigue Bottom-up Cracking 25 % 96.48 99.99999 

 

Table 5.6 summarizes the distress predicted by the MEPDG (both reported in 

Khazanovich et al (2008) and obtained by re-execution with available data) and the 

stand-alone application using the mean values for the uncertain input variables (Table 

5.3).  It is noted that even at 50% reliability, there is discrepancy in the HMA rutting 

values obtained directly from MEPDG and the values reported in Khazanovich et al 

(2008).  The MEPDG analysis reported here used MEPDG default input values except for 

those that were explicitly provided in Khazanovich et al. (2008).  It is possible that the 

discrepancy may be due to the difference in some non-default values that were used. 

Table 5.7 summarizes the COV of the distress distribution obtained by the 

developed reliability procedure and those reported in Khazanovich et al. (2008).  From 

the table it can be seen that the COV of the distress distribution of the developed 

reliability procedure and that by Khazanovich et al. match well. Therefore, even though 

the mean values were different, the fact that the COV of the distress matches well shows 

that the proposed reliability procedure captures the effect of uncertainty well. 
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Table 5. 6 Comparison of Distress Predicted at Mean Input Values (Pavement Structure from 
Khazanovich et al. 2008) 

Computed by MEPDG 

 Distress 

Reported in 
Khazanovich 
et al. (2008) 

Obtained in 
this Study 

Computed by 
Stand Alone 
Application 

HMA Rutting, Inch 0.326 0.557 0.584 

Base Rutting, Inch N/A* 0.091 0.083 

Sub-Base Rutting, Inch N/A* 0.126 0.108 

Subgrade Rutting, Inch N/A* 0.234 0.220 

Total Rutting, Inch 0.955 1.007 0.995 

Fatigue Bottom-up Cracking, % 3.63 4.41 4.08 

* - information not reported in Khazanovich et al. (2008) 

 

Table 5. 7 Comparison of Reliability Results: Proposed Method Vs Khazanovich et al (2008) 

Co-efficient of Variance, % 

 Distress 
Developed Reliability 

Procedure 
Khazanovich 
et al (2008) 

HMA Rutting 9.2 9.2 

Total Rutting 6 4.1 

Fatigue Bottom-up Cracking. % 47.3 52.5 

 

5.5 Sensitivity Analyses 

The design guide (MEPDG) recommends performing a sensitivity analysis of any 

new design project to identify its key variables and to group them according to their 

significance in affecting the output.  The inputs are grouped into Groups 1, 2 or 3 based 

on whether the input has a significant, moderate, or minor effect on the output, 
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respectively.  Based on such analysis, the designer can invest greater effort towards the 

accurate determination of inputs that are deemed sensitive. 

 In the past, sensitivity analyses were primarily carried out by changing a specific 

variable by some fixed measure (such as the coefficient of variation) while keeping other 

variables constant.  The percent change in distress was taken as a measure of sensitivity 

of the variable on the predicted distress. 

Chou (1990) studied the effect of load, layer thicknesses and moduli of subgrade 

and asphalt concrete on allowable load (strain) repetition  in flexible pavements.  The 

effect of each individual parameter was analyzed by keeping the variance of other five 

parameters as zero.  Figure 5.1 show the sensitivity of each variable on number of load 

repetition.  Based on this, it was found that the sensitivity of the pavement performance 

was most dependent on concrete thickness followed by load, asphalt concrete modulus, 

and subgrade modulus. 

Sensitivity analyses were also carried out by Sues et al. 1993 to study the 

importance of certain input variables on the pavement thickness and design reliability of 

air field pavements.  It was found that there was a significant reduction in probability of 

failure with the removal of heavy loads in the design highlighting the importance of 

estimating the exact number of heavier traffic loads.  Their sensitivity analyses also 

showed that the load wandering along the width of the pavement significantly increased 

the life of the pavement compared with that of channelized traffic.  The effect of 

increased construction quality (represented by the coefficient of variation of the mean 

thickness) on reducing the required pavement layer thickness was also verified by 

sensitivity analysis.  
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Figure 5. 1Relationships between Input Variability and Strain Repetition (after Chou, 1990) 
 

Sensitivity analyses of input parameters to pavement design were also performed 

by Killingsworth and Zollinger (1995).  The design inputs used in the study were the 

subgrade strength, the traffic level in ESAL per year, the surface layer modulus, and 

surface thickness.  Both rigid and flexible pavement designs were evaluated under low 

traffic- weak subgrade and heavy traffic-strong subgrade conditions.  The study was 

conducted by varying the chosen design inputs with an assigned positive or negative 

coefficient of variation from the mean value of the design inputs.  The results of the study 

are as shown in Figure 5.2 for the case of flexible pavement under low traffic.  Similar 

results were presented for rigid pavements.  It can be seen that at low traffic and weak 

subgrade design conditions, the flexible pavement was found to be moderately sensitive 

to changes in subgrade modulus, traffic load and surface modulus; however, it was much 
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less sensitive to changes in surface thickness.  On the other hand, for the same conditions, 

the rigid pavement design was not found to be sensitive to change in subgrade modulus 

and traffic loads.  The flexible pavements were more sensitive to surface thickness at 

higher traffic loads and stronger subgrade.  For rigid pavements, as the allowable traffic 

increased, the design became more sensitive to changes in subgrade modulus and input 

traffic but considerably less sensitive to variations in surface thickness. 

 

Figure 5. 2 Percent Change in Design Life from Mean Input in Flexible Pavement (after 
Killingsworth And Zollinger, 1995) 

 

Li et al. (1997) reported the results of a sensitivity analysis of the Ontario flexible 

pavement deterioration model (developed by Jung et al. 1975) with changes in major 

input parameters such as ESALs (Equivalent Single Axle Load), subgrade resilient 

modulus, and total equivalent granular thickness.  The effect of each of these input 

parameters on the pavement condition index (PCI) was studied by keeping the other input 
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parameters constant.  The results showed significant variation in design life (to maintain 

minimum PCI) with variation in any of these key variables. 

A mechanistic pavement model, WESLEA and empirical transfer functions were 

used to assess the effect of input variability on fatigue and rutting failure models by 

Timm et al. (2000).  The software ROADENT was used to conduct Monte Carlo 

simulations and study the sensitivity of input parameters in fatigue and rutting failure 

models keeping traffic load constant.  The thickness and stiffness of the AC layer were 

found to have the most significant effect on the fatigue prediction.  In the case of rutting 

failure, base thickness was also found to be significant.  When the traffic load was 

included in the analysis, the variability of the model doubled.  It was thus concluded that 

traffic load was the single most important input parameter in pavement design. 

Haider et al. (2007) identified 23 input variables to be significant in affecting the 

crack prediction in rigid pavements by MEPDG in the state of Michigan.  Based on site 

characteristics and analysis of input variables this number was reduced to six with two 

levels (high and low) and the climate with three levels (three different places in 

Michigan).  The levels were selected based on the inputs from Michigan Department of 

Transportation state of practice for rigid pavements. 

A series of frequency histograms were developed by Haider et al (2007) for each 

input variable for which the data was available in the LTPP Release 19.0 of DataPave.  

Sensitivity analyses were carried out using the extreme values (taken as mean ± standard 

deviation) of each input variable in MEPDG (Figure 5.3).  Two methods were used to 

determine the significance of the variable (Figure 5.4): performance threshold and age 

threshold.  In performance threshold method, the period required to reach the particular 
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distress level was measured (Figure 5.4a).  The variable was considered significant if the 

difference in age of the rigid pavement was more than 5 years from that calculated with 

mean value.  In the age threshold method the performance predicted by the extreme 

values were analyzed at given design period (Figure 5.4b).  Statistical analysis through 

Analysis of Variance (ANOVA) identified the significant input parameters and their 

interactions. 

 

Figure 5. 3 Extreme Values for Sensitivity Analysis of Normal Input Variable (after Haider et al., 
2007) 

 

 

(a) Performance Threshold 

+2σ -2σ 
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(b) Age Threshold 

Figure 5.4 Effects of Input Variables on Pavement Performance (after Haider et al. 2007) 
 

5.5.1 Need for robust sensitivity analyses 

 A sensitivity analysis which focuses only on one variable at a time in a design 

may not effectively capture the effects of interplay between variables that occur in the 

field.  For an effective sensitivity analysis, the potential uncertainty of each input variable 

in the field must be included collectively.  Thus, such a sensitivity analysis should 

include a simulation technique that could sample the input variables collectively based on 

their potential variability and evaluate their effect on a specific distress of a pavement 

structure. 

The sensitivity of an input on the distress prediction depends on the pavement 

structure and climatic and traffic conditions of a particular design or analysis.  Very 

often, a sensitive variable under a certain set of pavement conditions may not necessarily 

be sensitive under a different set of conditions.  The sensitivity of an input could vary 

with changes in design conditions.  Therefore, generalization of sensitivity analyses for 
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different problems may challenge the very purpose of sensitivity analysis.  Such 

generalization may misdirect the effort in the accurate determination of sensitive variable.  

Therefore, it is necessary to incorporate sensitivity analysis within the design procedure, 

instead of determining it a priori, so that the sensitive variables are accurately identified 

for the problem at hand and efforts are spent on the accurate prediction of problem 

specific sensitive variables.  

The reliability procedure developed here makes it possible for performing more 

robust sensitivity analyses.  ‘Tornado plots’ and ‘Extreme tail analyses’ are accepted as 

better methods of analyzing the sensitivity of the variable (Vose, 1997, Eschenbach, 

2006).  The Tornado plot is used to observe the effect of the input on the distress whereas 

extreme tail analysis is used to examine the effect of the variability in input on the 

variability in output.  The large number of Monte Carlo simulations in the new reliability 

method enables us to perform rigorous sensitivity analyses in an efficient manner.    

5.5.2 Tornado plots 

A sensitivity analysis is conducted to identify key material variables that have the most 

significant effect on overall pavement performance.  The sensitivity analysis of uncertain 

HMA material input on the predicted distress is studied.  The degree of correlation 

between the distress and material input parameter is calculated using rank order 

correlation coefficient.   

Rank order correlation is a non-parametric technique for quantifying the 

relationship between two variables.  The rank order correlation coefficient is independent 

of the relationship between the input and output.  Thus, it is suited for the study here that 
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involves non-linear distress models.  Rank order correlation uses the positions (rank) of 

the data point in an ordered list to compute correlation co-efficient.  The rank order 

correlation coefficient known as Karl Spearman’s ‘r’ is calculated between the output and 

each dependent variable as (Vose, 1997): 
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where 

 ΔR – difference in the ranks between the input and the output values in the same 

data pair 

 n – number of simulations 

The magnitude of ‘r’ identifies the extent of correlation between the input and 

output.  As the absolute value of r is close to one the effect of the variable on predicted 

distress is maximum and when the value of r is close to zero the effect of the variable on 

predicted distress is minimal.  A positive correlation value indicates low value from the 

input will lead to low value in output and a negative correlation indicates low value from 

the input will lead to high value in output.  A sample computation of the Karl Spearman’s 

correlation coefficient ‘r’ is provided in Appendix B.   

 A ‘Tornado plot’ is a pictorial illustration of the degree to which the predicted 

distress is affected by its dependent individual input variable.  In this study, rank order 

correlation coefficient is used to compute the degree of correlation and hence the 

‘Tornado plot for a distress’ is the plot of correlation coefficient of each dependent input 

variable. 



 

 139

For the case study pavement structure and probabilistic characteristics of the input 

variable considered (Section 4.2), ‘Tornado plots’ for the sensitivity of material inputs on 

HMA, base, sub-base, subgrade and total rutting are shown in Figures 5.5 (a) to (e), 

respectively.  Table 5.8 summarizes the spearman’s correlation co-efficient ‘r’ computed 

between each simulated material input and rutting of each layer.  The variation of each 

simulated variable in this study has a similar effect on rutting in both HMA and unbound 

layers (Figure 5.5 (a) to (e)) indicated by near identical correlation coefficients.  The 

design procedure transforms each set of simulated input variables to corresponding HMA 

layer stiffness (dynamic modulus).  The distresses in the unbound layers are dependent on 

the HMA stiffness.  Thus, a weaker HMA layer not only leads to increased rutting in it , 

but also in unbound layers since the stresses in unbound layers are higher thus resulting 

in near identical correlation coefficients.  However, as can be seen from COV in Table 

5.1, the effect of HMA stiffness on rutting performance of unbound layers is not as 

significant as it is for HMA layer and, as expected, decreases with the depth of unbound 

layer (with small COV).   
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(a) HMA Rutting 
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(c) Sub-Base Rutting 
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(d) Sub-Grade Rutting 
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(e) Total Rutting 

Figure 5. 5 Sensitivity of HMA Material Inputs on Rutting 
 

 
Table 5. 8 Sensitivity of HMA Material Properties on Rutting (Permanent Deformation) 

Spearman Correlation Co-efficient, r (Equation 5.1) 

HMA Material Input HMA Base Sub-Base Sub-Grade Total 

Air Void, % 0.83 0.83 0.83 0.83 0.83 

Aggregate Passing No.200 
Sieve, % -0.34 -0.34 -0.34 -0.35 -0.34 

Cumulative Aggregate 
Retained in No.4 Sieve, % 0.30 0.30 0.30 0.29 0.30 

Cumulative Aggregate 
Retained in 3/4inch Sieve, % -0.15 -0.16 -0.15 -0.16 -0.15 

Cumulative Aggregate 
Retained in 3/8inch Sieve, % -0.11 -0.11 -0.11 -0.12 -0.11 

Effective Binder Content, % -0.02 -0.02 -0.02 -0.03 -0.02 
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From Figure 5.5 (a), it can be seen that among the inputs studied, the air void 

content in HMA layer is the most sensitive in the prediction of HMA rutting.  The high 

positive correlation co-efficient indicates a significant positive relation between air void 

content and HMA rutting – higher air void content will lead to higher HMA rutting and 

vice versa.   

Aggregates passing No.200 sieve, which indicate percentage particles less than 75 

micrometer (μm) in aggregate gradation, is negatively correlated with predicted HMA 

rutting.  Hence, high percentage of fine particles reduces HMA rutting to a relatively 

significant level.  Cumulative aggregate retained in No.4 sieve, which indicate percentage 

particles larger than 4.75 millimeter (mm), is positively correlated with predicted HMA 

rutting.  However, cumulative aggregate retained in 3/4 inch (19mm) and 3/8 inch 

(9.5mm) sieves are negatively correlated with predicted HMA rutting though to a lesser 

extent.  Hence, high percentage of coarse particles between ¾ inch (19 mm) and 3/8 inch 

(9.5 mm) in aggregate gradation will lead to low rutting in the HMA layer.  The effective 

binder content in HMA is practically insensitive to the predicted HMA rutting. 

Figure 5.6 is the ‘Tornado plot’ for the sensitivity of material inputs on HMA 

fatigue bottom-up cracking.  Table 5.9 summarizes the spearman’s correlation co-

efficient (r) computed between each simulated material input and fatigue bottom-up 

cracking in HMA layer.  The fatigue cracking is most sensitive to the air void content in 

HMA layer, among the input variable studied.  A high correlation co-efficient close to 

unity indicates an increase in air void content will increase the fatigue cracking almost in 

every other condition.  Effective binder content which is insensitive to rutting is sensitive 

to the bottom-up fatigue cracking.  The negative correlation co-efficient indicates high 
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effective binder content can possibly reduce the bottom-up fatigue cracking.  Also, the 

aggregate gradation in HMA has little effect on bottom-up fatigue cracking. 

 

-0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00
Cumulative % Agg. Retained in 3/8inch Sieve

Cumulative % Agg. Retained in 3/4inch Sieve

Percent Passing No.200 Sieve

Cumulative % Agg. Retained in No.4 Sieve

Effective Binder Content

Air Void

Correlation Co-efficient

 
Figure 5. 6 Sensitivity of HMA Material Inputs on Fatigue Cracking 

  
 
Table 5. 9 Sensitivity of HMA Material Inputs on Fatigue Damage 

HMA Material Input 
Spearman Correlation Co-
efficient, r (Equation 5.1) 

Air Void, % 0.99 

Effective Binder Content, % -0.30 

Cumulative Aggregate Retained in No.4 
sieve, % 0.05 

Aggregate Passing No.200 Sieve. % -0.04 

Cumulative Aggregate Retained in 
3/4inch sieve, % -0.03 

Cumulative Aggregate Retained in 
3/8inch sieve, % -0.01 
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 For the pavement structure (Section 4.2) considered, the air void content and 

cumulative aggregate retained on 3/8 inch sieve for the HMA layer are the most and least 

sensitive variable, respectively, on the type of distress evaluated.  To illustrate the relative 

effect of these two variables on distress prediction and the effectiveness of sensitivity 

analysis described, the stand-alone application (Section 3.2) was executed for: 

• Case A: Mean values of the input variables (as in Table 4.1). 

• Case B: Air void content increased from 6.5% to 8% (by one standard deviation).  

All other variables are kept as in Case A. 

• Case C: Cumulative aggregate retained on 3/8 inch sieve is increased from 21% to 

23.5% (by one standard deviation).  All other variables are kept as in Case A.  

Table 5.10 shows the effect of the change in input variable on HMA rutting.  It 

can be seen that an increase in sensitive air void content (r = 0.83) as in case B results in 

an increase in the predicted HMA rutting depth from 0.562 inch to 0.637 inch (Table 

5.10) or an increase of 13.3%.  But an increase of insensitive ‘Cumulative aggregate 

retained on 3/8” sieve’ (r = -0.11) variable as in case C as decreased the predicted HMA 

rutting by only 2% from 0.562 inch to 0.551 inch (Table 5.10).   

Table 5.11 shows the similar effect of these two variables on fatigue bottom-up 

cracking.  The increase in sensitive air void content (r = 0.99) in case B as almost 

doubled (95.9%) the predicted cracking from 3.9% to 7.64% (Table 5.11).  But the 

increase in insensitive ‘Cumulative aggregate retained on 3/8” sieve’ (r = -0.01) as in 

case C as decreased the predicted cracking by only 1.5% from 3.9% to 3.84% (Table 
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5.11).  Also, it can be observed that the magnitude of Spearman’s correlation coefficient 

is a clear indicator of the effect of the variable on predicted distress.   

 

Table 5.10 Effect of Most and Least Sensitive Variable on HMA Rutting 

  

Spearman Correlation 
Coefficient (r) with 
Rutting Case A Case B Case C 

Air void , % 0.83 6.5 8 6.5 

Cumulative aggregate 
retained on 3/8” sieve, % -0.11 21 21 23.5 

other variables as in Table 
4.1  

HMA Rutting, inch  0.562 0.637 0.551 

Deviation from case A, %  - 13.3 -2.0 

 

Table 5.11  Effect of Most and Least Sensitive Variable on Fatigue Bottom-up Cracking 

  

Spearman Correlation 
Coefficient (r) with 
Fatigue Bottom-up 
Cracking Case A Case B Case C 

Air void, % 0.99 6.5 8 6.5 

Cumulative aggregate 
retained on 3/8” sieve, % -0.01 21 21 23.5 

other variables as in 
Table 4.1  

Fatigue Bottom-up 
Cracking  3.9 7.64 3.84 

Deviation from case A, 
%  - 95.9 -1.5 
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5.5.3 Extreme tail analysis 

Reliability analysis computes the predicted distress distribution under the given 

level of input uncertainty.  However, the reliability of pavement performance is related to 

the spread of this distribution.  Therefore, the extreme values in the distribution are 

critical to improving reliability predictions.  In general, the designer must limit the 

possibility of the occurrence of extreme distress in the pavement, so that the pavement 

structure could performs its function throughout the design period at higher reliability.  

Extreme tail analysis is a procedure that can be used to systematically identify uncertain 

critical input variables that contribute to the tail in the distribution of distress values.  

Identification of such input variables will assist in effectively reducing the extent of tail 

in distress distributions ensuring better quality control during construction or the 

development of better standards by reducing the uncertainty in such inputs. 

The procedure of conducting an extreme tail analysis on the distress consists of 

the following steps (Vose.1997): 

Step 1: Arrangement of the predicted distress values in an ascending order from the total 

simulations.  

Step 2: Identification of the extreme distress values and the grouping of their 

corresponding input values. 

Step 3: Calculation of the median of each input in the group. 

Step 4: Computation of a normalized variable α  for each input as: 
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( )
Total

TotalGroup MedianMedian
σ

α
−

=        (5.2) 

where: 

 MedianGroup – Median of the input in the group 

 MedianTotal – Median of the input in the total simulations 

 Totalσ - Standard deviation of the input in the total simulations 

Step 5: Rank each input variables based on the computed α  value.   

The extreme values of input variables in the group with 5.0≥α are generally 

considered to be significant and contribute to the extreme values of predicted distress.  A 

positive significant α  value for an input indicates that positive extreme values of the 

input is one of the possible reasons for positive extreme distress values and the vice versa 

for the negative significantα .  

 The result from 4000 Monte Carlo simulations performed in Chapter 4 is used in 

the extreme tail analysis to identify the set of input variables contributing to extreme 

distress values.  Extreme tail analysis is conducted for each computed distress output.  

The predicted distress values are arranged in ascending order.  For a reliable pavement 

performance, both left and right tails of the distribution are of interest.  The lower 5% of 

the distress distribution value is taken as left tail and the higher 5% as right tail.  The 

median of the each simulated input variable within left and right tail are computed and 

the corresponding α  value is calculated using Equation 5.2.  Table 5.12 and 5.13 

summarizes the results of extreme tail analysis for rutting in HMA and fatigue bottom-up 

cracking, respectively.  The results of extreme tail analysis on rutting at the base, sub-
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base and sub-grade yielded results similar to that found for HMA rutting.  As discussed in 

the previous section, change in HMA stiffness resulting from the changes in HMA 

material properties impacts the stresses in the unbound layers in the same manner and 

consequently their performance. 

 

Table 5.12 Extreme Tail Analysis on HMA Rutting Distribution 

Left Tail Right Tail 

HMA Material Input 
Overall

Median  
% Median, 

% 

α  

(Eqn. 5.2) 
Median , 

% 

α  

(Eqn. 5.2) 

Air Void, % 6.5 4.14 -1.59 9.10 1.74 

Aggregate Passing No.200 
Sieve, % 3.0 3.77 0.75 2.13 -0.86 

Cumulative Aggregate 
Retained in No.4 Sieve, % 60.0 57.28 -0.78 61.93 0.55 

Cumulative Aggregate 
Retained in 3/4 inch Sieve, % 4.0 4.96 0.54 3.44 -0.32 

Effective Binder Content, % 12.5 12.56 0.11 12.36 -0.29 

Cumulative Aggregate 
Retained in 3/8 inch Sieve, % 21.0 21.52 0.20 20.36 -0.25 

 

Figure 5.7 and 5.8 show the effect of variability in air void content on predicted 

values of HMA rutting and bottom-up fatigue cracking, respectively.  For the given 

pavement structure, and the HMA rutting distribution obtained from 4000 simulations, 

the left tail contributes to HMA rutting values less than 0.4667 inch and right tail 

contributes to HMA rutting more than 0.7133 inch (Figure. 5.7).  It is also evident that 
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high air void content percentage is the primary contributor to extreme values of HMA 

rutting values.  Similar characteristics are observed between air void content and extreme 

fatigue cracking values (Figure 5.8).  The variability in the air void content corresponding 

to extreme HMA rutting and fatigue cracking are computed through α  value of extreme 

tail analysis.   

Table 5.13 Extreme Tail Analysis on Fatigue Cracking Distribution 

Left Tail Right Tail 

HMA Material Input 
Overall

Median  
% Median, 

% 

α  

(Eqn. 5.2) 
Median , 

% 

α  

(Eqn. 5.2) 

Air Void, % 6.5 3.51 -2.01 9.31 1.89 

Effective Binder Content, % 12.5 12.75 0.50 12.12 -0.76 

Aggregate Passing No.200 
Sieve, % 3.0 2.96 -0.04 2.78 -0.22 

Cumulative Aggregate 
Retained in No.4 Sieve, % 60.0 59.83 -0.05 60.72 0.21 

Cumulative Aggregate 
Retained in 3/8 inch Sieve, % 21.0 20.76 -0.10 21.17 0.07 

Cumulative Aggregate 
Retained in 3/4 inch Sieve, % 4.0 4.20 0.11 3.91 -0.05 

 
 

The high α  value for air void content (Table 5.12 and 5.13) indicates that the 

extreme variation in air void content is the primary contributor to the extreme values in 

both rutting and fatigue crack prediction.  Thus, an effective quality control on extreme 

variability in air void content will reduce the uncertainty in distress prediction. 



 

 150

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 3 6 9 12 15
Air Void, %

H
M

A
 R

ut
, i

nc
h 

 . 

Left Tail Right Tail Other Data
 

Figure 5.7 Extreme Tail Analysis – Relation between HMA Rutting and Air Void Content 
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Figure 5. 8 Extreme Tail Analysis – Relation between Fatigue Bottom-up Cracking and Air Void 
Content 

 

 Figure 5.9 shows the relation between effective binder content (Vbe) and HMA 

rutting.  The effective binder content values corresponding to both right and left tails of 

predicted HMA rutting covers the entire uncertainty range of the input variable (Vbe).  

This is reflected in the α  values (0.11 for left tail and -0.29 for right tail) calculated 

through extreme tail analysis (Table 5.12).  Hence, it can be concluded that the extreme 

values in effective binder content may not contribute to extreme values in HMA rutting. 
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Figure 5.9 Extreme Tail Analysis – Relation between HMA Rutting and Effective Binder Content 
 

Figure 5.10 shows the relation between effective binder content values and 

corresponding bottom-up fatigue cracking.  The variability of effective binder content at 

right and left tail of predicted distress levels are again quantified in terms of α  values 

(Table 5.13).  From the extreme tail analysis, fatigue prediction are pushed to right 

extreme values when the effective binder content is close to the left extreme values (α = -

0.76).  Hence, decrease in effective binder content is one of the potential reasons for high 

fatigue damage prediction.  However, the variability in effective binder content is 

probably not the reason behind the extreme low values (left tail) of fatigue cracking (α = 

0.5).  

The α value (|α | > 0.5) corresponding to aggregate passing No.200 sieve 

indicates that the HMA rutting (Table 5.12) are affected by its extreme variability.  

Extreme high values of rutting are possible (α  = 0.75) when the variability leads to 

lower percentages of aggregates passing No.200 sieve values in HMA and vice versa (α 

= -0.86).  
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Figure 5.10 Extreme Tail Analysis – Relation between Fatigue Bottom-up Cracking and Effective 
Binder Content 

 

Cumulative aggregate retained in No.4 sieve is seen to affect the left tail 

distribution of HMA rutting (Table 5.12).  Decrease in aggregates larger than 4.75 mm in 

the HMA mix will possibly (α = -0.78) lead to lower extreme rutting values, but an 

increase does not necessarily lead to high extreme rutting values (since |α| ≅ 0.5).  α  

values less than 0.5 indicate that variability in cumulative aggregate retained in 3/4 inch 

and 3/8 inch sieve are not a potential contributors to extreme rutting values. 

From Table 5.13, all four input variables which represent aggregate gradation 

(Cumulative aggregate retained in 3/4 inch, 3/8 inch and No.4 sieve and passing No.200 

sieve) have α  values less than 0.5.  Hence, it can be concluded that the aggregate 

gradation have less effect on extremes of predicted fatigue cracking values. 

 For the pavement section considered in the study and among the variable 

considered in the reliability analysis, air void content is the most critical variable that 

affects both predicted rutting values in each structural layer and fatigue bottom-up 
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cracking percentage in the HMA layer.  The sensitivity analysis here suggest the need for 

more rigorous methods of determining the air void content in HMA layer (Table 5.8 and 

Table 5.9).  On the other hand, extreme tail analyses suggest the need for better control in 

variability of HMA air void content.  The effective binder content is critical on the 

fatigue bottom-up cracking; however it is least sensitive on the prediction of rutting in 

structural layers.  Hence, if fatigue bottom-up cracking is the crucial distress in the given 

pavement design, effective method of determination and variability control are necessary 

on the effective binder content values. 

 The aggregate gradation is found to have little effect on predicted fatigue 

cracking.  This may be due to the cold climatic conditions used in the chosen pavement 

structure.  The aggregate gradation plays a critical role on stiffness and deformation of 

HMA layer during the hot seasons when the load is carried through particle friction.  This 

is one illustration to show the necessity of repeating the sensitivity analysis with change 

in design conditions.  

Quality control effects on distress variability reduction 

For the pavement section studied, the results from the extreme tail analyses 

identified that the air void content in HMA mix is the single most critical variable 

affecting both HMA rutting and fatigue cracking values and thereby their distribution.  

Thus, the variability in air void content must be controlled to prevent extreme distress 

occurring in the pavement.  On the contrary, the extreme tail analysis results suggest that 

among the variables studied the variability in ‘cumulative aggregate retained in 3/8 inch 

sieve’ has the least effect on the predicted distress.  The following section compares the 
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effect of controlling the variability of most and least critical variable on distress 

distribution. 

The results of reliability analyses executed with 4000 Monte Carlo simulation are 

compared for the following three cases: 

Case 1: Probabilistic characteristics of the input variables as in Table 4.1  

Case 2:  Variability in ‘air void content’ reduced to 1.0% standard deviation from 

1.50% used in Case 1.  (The probabilistic characteristics of other variables are kept as in 

Table 4.1). 

Case 3:  Variability in ‘cumulative aggregate retained in 3/8 inch sieve’ increased 

to 4.0% standard deviation from 2.50% used in Case 1.  (The probabilistic characteristics 

of other variables are kept as in Table 4.1). 

Table 5.14 summarizes the probabilistic characteristics of the distress distribution 

obtained from the three cases analyzed above.  As expected, the variability in the 

predicted distress is reduced in Case 2, indicated by the decrease in standard deviation 

and co-efficient of variation (Table 5.14).   

Figure 5.11 (a) and (b) show the frequency and cumulative distribution of HMA 

rutting, respectively.  A similar plot for fatigue cracking distribution is presented in 

Figure 5.12 (a) and (b).  The frequency distribution of the HMA rutting and fatigue 

cracking distress (Figure 5.11 (a) and Figure 5.12 (a)) shows a narrow distribution for 

Case 2 (σ = 0.06 inch and 2.235 %) than in Case 1 (σ = 0.078 inch and 3.46 %).  The 

cumulative frequency distribution of the distress (Figure 5.11 (b) and Figure 5.12 (b)) 
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shows that in Case 2 there is less probability of the occurrence of extreme distress values 

than in Case 1 (i.e. truncated tail).  Thus, the designer can design a more reliable 

pavement without changing the pavement structure if the variability in few critical 

variables is well controlled.  In this study, effective control in variability of air void 

content can reduce the possibility of extreme distress occurrence in the field. 
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(b) Cumulative Distribution 

Figure 5. 11 Effect of Decrease in Sensitive Input Variability on HMA Rutting Distribution 
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Table 5. 14 Effect of Quality Control on Distress Distribution 

Case 1: Distribution with 
Probabilistic Characteristic of 

Table 4.1 (σAV = 1.5% and 
σcum3/8ret = 2.5%) 

Case 2: Distribution with 
reduced Air Void Standard 

Deviation  

(σAV = 1.0%) 

Case 3: Distribution with 
increased 'Cumulative % 

Aggregate Retained in 3/8 
inch' Standard Deviation 

(σcum3/8ret = 4.0%) Distress 

Standard 
Deviation 

COV 
% 

Distress  
@ 90% 

reliability 

Standard 
Deviation 

COV 
% 

Distress 
@ 90% 

reliability 

Standard 
Deviation 

COV 
% 

Distress 
@ 90% 

reliability 

HMA Rutting, inch 0.078 13.7 0.674 0.060 10.5 0.648 0.079 13.8 0.681 

Base Rutting, inch 0.004 4.5 0.087 0.003 3.5 0.086 0.004 4.5 0.087 

Sub-Base Rutting, inch 0.003 2.7 0.111 0.002 2.1 0.111 0.003 2.8 0.112 

Subgrade Rutting, inch 0.002 1.0 0.223 0.002 0.7 0.222 0.002 1.0 0.223 

Total Rutting, inch 0.087 8.9 1.094 0.067 6.8 1.066 0.088 8.9 1.103 

Fatigue Bottom-up 
Cracking. % 3.460 72.1 9.14 2.235 51.2 7.4 3.530 72.7 9.4 
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(b) Cumulative Distribution  

Figure 5. 12 Effect of Decrease in Sensitive Input Variability on Fatigue Bottom-Up Cracking 
Distribution 

 

Table 5.14 shows that the probabilistic characteristics of the predicted distress 

distribution are almost unchanged with the increase in variability of ‘cumulative 

aggregate retained in 3/8 inch sieve’ input variable (Case 1 versus Case 3).  Figure 5.13 

(a) and (b) show the frequency and cumulative distribution of HMA rutting, respectively.  

A similar plot for fatigue cracking distribution is presented in Figure 5.14 (a) and (b).  
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The resulting frequency and cumulative distributions from both HMA rutting and fatigue 

cracking in Case 1 and Case 3 nearly overlaps each other.  Thus, the variability in 

‘cumulative aggregate retained in 3/8 inch sieve’ input variable is not the one that 

contributes to the extreme distress values predicted.  Hence the strict quality control of 

this particular input variable may not be needed. 
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Figure 5. 13 Effect of Increase in Least Sensitive Input Variability on HMA Rutting Distribution 
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Figure 5.14 Effect of Increase in Least Sensitive Input Variability on Fatigue Bottom-Up Cracking 
Distribution 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

 

This study developed an improved procedure for strain computations and 

reliability analysis of the Mechanistic-Empirical Pavement Design Guide in the context 

of flexible pavements.  It has proposed improvements to the load-strain interpretations in 

the MEPDG, and has developed advanced techniques to predict pavement distress 

reliability.  The proposed reliability techniques were validated using a published case 

study.   

The first part of the study investigated the effects of the load-strain linear 

proportionality assumption made in the MEPDG and the extent of the error incurred in 

the prediction of pavement rutting.  The load-strain linear proportionality assumption 

holds true only if the contact area remains the same as axle load varies, resulting in 

similar variation in the contact pressure.  In reality, for truck loads of interest, the contact 

(tire inflation) pressure remains within a narrow range whereas the contact area changes 

with axle load.  This is violated by the load-strain linear proportionality assumption made 

in the current MEPDG procedure.  The analyses conducted here have shown that, for 

typical traffic load spectra, the linear proportionality assumption may result in significant 

under prediction of rutting, by over 50% for the four cases analyzed in this study (Section 

3.6).  However, relaxation of this assumption will result in impractical computing time 

for routine analyses.   
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The inaccuracy due to the load-strain linear proportionality assumption was 

shown to have the most effect on the prediction of HMA rutting and also in fatigue 

bottom-up cracking of thin HMA overlays.  The calibration constants of the distress 

models obtained from national and local efforts may lessen the effects of this inaccuracy.  

However, the magnitude of the error incurred indicates that the accuracy of the prediction 

could be affected significantly when the distribution of the traffic load spectrum deviates 

from those that were used in the calibration. 

A 3-Point approach, where strains were calculated at three reference load levels - 

selected as 6, 18 and 24 kip single axle loads - and interpolated or extrapolated for other 

load levels within the traffic load spectrum was developed to avoid this strain linear 

proportionality assumption.  It was shown to predict pavement distress accurately with a 

much reduced computing time. 

The second part of the study developed a new reliability based pavement design 

procedure.  The current reliability method incorporated in the Design Guide (MEPDG) is 

based upon predetermined standard deviation values obtained from a performance 

database rather than on those based on the site specific input parameters that induce such 

uncertainty in distress prediction.  The new procedure simulated the effects of uncertainty 

in HMA material inputs directly in the development of reliability based design analysis of 

flexible pavements. 

A similar reliability effort in the past by Khazanovich et al. (2008) had used 

repeated execution of MEPDG for each set of simulated input variables.  This resulted in 

eight days of computational time on a personal computer (Khazanovich et al. 2008).  

Most of this time was incurred as a result of the repeated execution of the inbuilt system 
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of procedures.  In this study, for each set of simulated input variables, the HMA material 

modulus was extrapolated from corresponding modulus values obtained by execution of 

MEPDG with mean input values.  This avoided the need for repeated execution of EICM 

and Global aging models (Step 2 and 3 of the design procedure, Section 2.2).  In addition, 

identification of representative layered elastic (LE) structures minimized the required 

number of JULEA executions involved in reliability analysis.  These sets of 

representative LE structures can replicate all LE structures with negligible loss in 

accuracy.  Critical strain values for LE structures can be obtained from the closest 

representative LE structure whose dynamic modulus value deviate no more than 1% in 

any of its sub-layers.  The efficiency obtained in incorporation of EICM, Global aging 

model and structural response computation made the proposed reliability analysis 

practical. For example, it reduced the computational time of the reliability analysis by the 

proposed technique for the same pavement structure by Khazanovich et al. (2008) to 25 

hours. 

The six input variables required for computation of dynamic modulus in the HMA 

layer at input Level 3 were simulated with the probabilistic characteristics obtained from 

the Long Term Pavement Performance (FHWA-RD-02-001, 2001) data.  The input 

variables included cumulative aggregate retained in 3/4 inch, 3/8 inch and No. 4 sieve, 

aggregates passing No. 200 sieve, and air void content and effective binder content in the 

HMA layer.  The Monte Carlo simulation technique was used to simulate these input 

variables and obtain the probabilistic characteristics of the two basic distresses, rutting 

and fatigue bottom-up cracking.  The stability of the distress distribution from the Monte 

Carlo simulation method was ensured using a suitable convergence measure.  



 

 163

Based on the pavement structure with the level of variability considered in the 

HMA material inputs (Section 4.2) the following conclusions can be drawn: 

• Pavement rutting values consisted of a normal distribution whereas fatigue 

bottom-up cracking is of a log-normal distribution.   

• The variability of the distress predicted by the developed procedure was 

less than that predicted by MEPDG.  This was expected since MEPDG 

includes errors in field distress measurement, construction quality, and 

model bias apart from variability in material inputs whereas the developed 

procedure included only input variability in HMA material. 

•  It is noted that the properties of the distress distribution would vary with 

the type of pavement structure or the magnitude of the variability 

considered in the input variable. 

The computational efficiency and accuracy of techniques such as Monte Carlo 

and Latin Hypercube simulation methods and Rosenblueth’s 2K+1 point estimate method 

were compared.  A minimum of 3000 Monte Carlo simulations were required to obtain 

stable output distribution characteristics that takes 3.5 days of computational time on a 

personal computer with a 3 GHz Intel processor and 1GB RAM.  Both Latin Hypercube 

(at 300 simulations) and Rosenblueth’s 2K+1 point estimate method compute distress 

distribution characteristics that were close to the accuracy of Monte Carlo simulation 

method, but in about a day and 3 hours of computation time, respectively on the same 

computer. 

Latin Hypercube simulation method is found to be an efficient alternate to the 

computationally intensive Monte Carlo simulation method.  The drawback in 
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Rosenblueth’s 2K+1 point estimate method is mainly attributed to its inability to capture 

the type of distress distribution.  Therefore, it is recommended that Latin Hypercube 

simulation is an effective tool to incorporate input uncertainty in reliability analysis.  On 

the other hand, if the need is to obtain the basic measures of probabilistic characteristics 

of the distress (such as mean and COV), Rosenblueth’s 2K+1 point estimate method can 

be used with minimal computing time. 

The proposed reliability procedure was validated with the pavement structure and 

uncertainty level reported in Khazanovich et al. (2008).  The coefficient of variations for 

HMA rutting and fatigue bottom-up cracking obtained by the proposed procedures was 

shown to match well with their results.   

Sensitivity analyses are recommended on any new design project to identify key 

variables and to group them according to their significance in affecting the output.  This 

would enable the designer to put more efforts on the determination of highly significant 

variables.  In the past, sensitivity analyses were primarily carried out by changing a 

specific variable by some fixed measure (such as the coefficient of variation) while 

keeping other variables constant.  Such analyses do not capture the typical interaction 

among the different variables in the field and their combined effect on the distress 

prediction.  This study showed that Tornado plots are a powerful means to study the 

combined effect of different variables and quantify the sensitivity of a specific input 

variable on distress for the given pavement design.  On the other hand, extreme tail 

analyses captured the extent of effects of variability in input parameter on the variability 

of predicted distress.  
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For the pavement structure considered in this study, the air void content in the 

HMA layer was found to be the most sensitive variable affecting the distress prediction.  

In addition, its variability is most critical in affecting the prediction of the variability in 

pavement distress.  Better control of variability in air void content in the HMA layer is 

shown to reduce the overall variability in distress prediction.  Effective binder content in 

the HMA layer is sensitive to fatigue cracking predictions, and its variability has to be 

controlled to minimize the variability in fatigue bottom-up crack predictions.  However, 

effective binder content or its variability has little effect on rutting prediction and its 

variability, respectively.   

The aggregate gradation and its variability did not have a significant effect on 

fatigue prediction.  However, aggregates finer than 75 μm (passing No.200 sieve) and 

cumulative aggregates coarser than 4.75 mm (retained on No.4 sieve) and their variability 

could affect the rutting prediction and its variability.   

It is necessary to repeat the sensitivity analysis with any change in pavement 

design or input.  Generalization of the criticality of the variable on distress for different 

design conditions would lead to erroneous conclusions. 

RECOMMENDATIONS FOR FURTHER RESEARCH 

The study developed an improved reliability based design procedure for flexible 

pavements.  However, only uncertainties corresponding to HMA material properties were 

included in the current developed procedure.  Though this covers the major part of 

uncertainty involved in the pavement design, it is recommended to include other design 

inputs such as variations and uncertainties in traffic loadings, climate, other material 
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properties, layer thickness and the errors associated with all predictive models 

incorporated in the design guide.  Such a comprehensive reliability approach would 

require an accurate estimate of variances of the different inputs and prediction models.  If 

not, the results obtained would be completely misleading and erroneous.  The sensitivity 

analyses must be coupled with the reliability analysis in the design procedure.  This way, 

the designers will have a sufficient knowledge of the critical inputs that need to be given 

additional effort in their determination for the pavement design considered.  

Similar reliability based design procedure that can include the input variability 

should be developed for concrete pavements.  The neural network technique used in the 

rigid pavement design may make the computationally intense simulation technique more 

practical. 
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IDENTIFICATION OF REPRESENTATIVE LAYERED ELASTIC STRUCTURE 

- Sample Calculation 

 

This appendix explains the procedure developed to identify the representative LE 

structure with sample calculation.  Table A-1 contains typical modulus values for a LE 

structure with 16 sub-layers.  Let us consider Table A-1 as the database DB1 (n = 10) 

generated after stage 3 of the reliability analysis (computation of aged dynamic modulus 

for simulated material inputs).  The objective of the efficiency scheme is to identify the 

representative LE structure.  The procedure generates two databases DB2 and DB3.  

Database DB2 contains only the representative LE structures.  Database DB3 contains all 

the LE structures in the DB1 along with the ID corresponding to the representative LE 

structure in DB2, with which it matches to less than 1% accuracy. 

 

Step 1:  The first LE structure is always representative, hence copy it to the databases 

DB2 and DB3 (Table A-2 and Table A-3 respectively). m = 1 

Step 2: 
( ) ( )

( ) 100*
,

,,
),( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

ziE
ziEzjE

abszjDeviation
n

nDB  

i = 2; j = 1; z =1;  

From Table A-1  En(i, z) = 2415000 

and Table A-2  EDB (j, z) = 2350000 
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7.2100*
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⎛ −

= absDeviation  

Step 3: The above step is repeated for all the sub-layers and the result is summarized in 

Table A-4. The maximum deviation is 44.6% (Table A-4) 

Step 4: Repeat Step 2 and 3 for m LE structures in DB2.  There is only one LE structure 

in DB2 at this stage. 

Step 5: The minimum deviation is 44.6% which is greater than 1%.  Hence En(2, z) is 

appended to DB2 (Table A-2).  m= 1+1 = 2.  Also, append En(2, z) to DB3 with 

ID m (Table A-3). 

Step 6: Step 2 to 5 is repeated for n (=10) LE structures in DB1 (Table A-1) 

 

The LE structure En(6, z) (i = 6)in the database DB1 has two representative LE 

structures (j = 2, 4) in DB2 with deviation less than 1%.  Step 5 identifies the minimum 

deviation, 0.6% and identifies the LE structure En(6, z) with ID of EDB (4, z), i.e., 4 

(Table A-3). 
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Table A-1 Sample Database DB1 Generated in Stage 3 of the Reliability Procedure 

Sub layer Layered 
Elastic 
Structure ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2350000 2056000 1779000 1530000 1360000 1180000 53080 52680 43910 41670 40080 38890 8656 9831 14200 8352
2 2415000 2347000 2283000 2226000 2185000 2129000 42640 49320 43530 42250 40690 39500 8555 9672 14050 8338
3 2415000 2347000 2283000 2226000 2185000 2129000 42640 49320 43530 42250 40690 39500 8555 9672 14050 8338
4 2099000 1905000 1742000 1621000 1540000 1466000 42640 49320 43530 42250 40690 39500 8555 9672 14050 8338
5 2448000 2376000 2284000 2226000 2185000 2129000 42640 49320 43900 42500 41000 39820 8512 9599 13950 8338
6 2435000 2367000 2283000 2213000 2185000 2129000 42640 49320 43850 42490 40920 39820 8512 9599 13950 8338
7 2415000 2347000 2283000 2213000 2132000 2021000 53080 52680 50460 57040 42780 39820 8512 9599 13950 8338
8 2085000 1912000 1818000 1768000 1770000 1777000 42640 49320 50460 57040 42780 39820 8512 9599 13950 8338
9 2415000 2347000 2283000 2226000 2185000 2129000 53080 52680 43530 42250 38860 40660 8454 9483 13750 8323

10 2415000 2347000 2283000 2226000 2185000 2129000 53500 52680 43530 42250 38860 40660 8454 9483 13750 8323
 

Table A-2 Sample Database DB2 Generated in Stage 4 of the Reliability Procedure 

Sub layer Layered 
Elastic 
Structure ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2350000 2056000 1779000 1530000 1360000 1180000 53080 52680 43910 41670 40080 38890 8656 9831 14200 8352
2 2415000 2347000 2283000 2226000 2185000 2129000 42640 49320 43530 42250 40690 39500 8555 9672 14050 8338
3 2099000 1905000 1742000 1621000 1540000 1466000 42640 49320 43530 42250 40690 39500 8555 9672 14050 8338
4 2448000 2376000 2284000 2226000 2185000 2129000 42640 49320 43900 42500 41000 39820 8512 9599 13950 8338
5 2415000 2347000 2283000 2213000 2132000 2021000 53080 52680 50460 57040 42780 39820 8512 9599 13950 8338
6 2085000 1912000 1818000 1768000 1770000 1777000 42640 49320 50460 57040 42780 39820 8512 9599 13950 8338
7 2415000 2347000 2283000 2226000 2185000 2129000 53080 52680 43530 42250 38860 40660 8454 9483 13750 8323
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Table A-3 Sample Database DB3 Generated in Stage 4 of the Reliability Procedure 

Sub layer Layered 
Elastic 
Structure ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2350000 2056000 1779000 1530000 1360000 1180000 53080 52680 43910 41670 40080 38890 8656 9831 14200 8352
2 2415000 2347000 2283000 2226000 2185000 2129000 42640 49320 43530 42250 40690 39500 8555 9672 14050 8338
2 2415000 2347000 2283000 2226000 2185000 2129000 42640 49320 43530 42250 40690 39500 8555 9672 14050 8338
3 2099000 1905000 1742000 1621000 1540000 1466000 42640 49320 43530 42250 40690 39500 8555 9672 14050 8338
4 2448000 2376000 2284000 2226000 2185000 2129000 42640 49320 43900 42500 41000 39820 8512 9599 13950 8338
4 2435000 2367000 2283000 2213000 2185000 2129000 42640 49320 43850 42490 40920 39820 8512 9599 13950 8338
5 2415000 2347000 2283000 2213000 2132000 2021000 53080 52680 50460 57040 42780 39820 8512 9599 13950 8338
6 2085000 1912000 1818000 1768000 1770000 1777000 42640 49320 50460 57040 42780 39820 8512 9599 13950 8338
7 2415000 2347000 2283000 2226000 2185000 2129000 53080 52680 43530 42250 38860 40660 8454 9483 13750 8323

7 2415000 2347000 2283000 2226000 2185000 2129000 53500 52680 43530 42250 38860 40660 8454 9483 13750 8323
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Table A-4 Deviation from the Representative Layered Elastic Structure 

  Deviation between corresponding sub-layer modulus 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Maximum 
Deviation 

Check DB1-ID 2    
With DB2-ID 1 2.7 12.4 22.1 31.3 37.8 44.6 24.5 6.8 0.9 1.4 1.5 1.5 1.2 1.6 1.1 0.2 44.6
  
Check DB1-ID 3   

  
  

With DB2-ID 1 2.7 12.4 22.1 31.3 37.8 44.6 24.5 6.8 0.9 1.4 1.5 1.5 1.2 1.6 1.1 0.2 44.6
With DB2-ID 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  
Check DB1-ID 4  

  
  

With DB2-ID 1 12.0 7.9 2.1 5.6 11.7 19.5 24.5 6.8 0.9 1.4 1.5 1.5 1.2 1.6 1.1 0.2 24.5
With DB2-ID 2 15.1 23.2 31.1 37.3 41.9 45.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.2
  
Check DB1-ID 5   

  
  

With DB2-ID 1 4.0 13.5 22.1 31.3 37.8 44.6 24.5 6.8 0.0 2.0 2.2 2.3 1.7 2.4 1.8 0.2 44.6
With DB2-ID 2 1.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.6 0.8 0.8 0.5 0.8 0.7 0.0 1.3
With DB2-ID 3 14.3 19.8 23.7 27.2 29.5 31.1 0.0 0.0 0.8 0.6 0.8 0.8 0.5 0.8 0.7 0.0 31.1
  
Check DB1-ID 6  

  
  

With DB2-ID 1 3.5 13.1 22.1 30.9 37.8 44.6 24.5 6.8 0.1 1.9 2.1 2.3 1.7 2.4 1.8 0.2 44.6
With DB2-ID 2 0.8 0.8 0.0 0.6 0.0 0.0 0.0 0.0 0.7 0.6 0.6 0.8 0.5 0.8 0.7 0.0 0.8
With DB2-ID 3 13.8 19.5 23.7 26.8 29.5 31.1 0.0 0.0 0.7 0.6 0.6 0.8 0.5 0.8 0.7 0.0 31.1
With DB2-ID 4 0.5 0.4 0.0 0.6 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.6
  
Check DB1-ID 7  

  
  

With DB2-ID 1 2.7 12.4 22.1 30.9 36.2 41.6 0.0 0.0 13.0 26.9 6.3 2.3 1.7 2.4 1.8 0.2 41.6
With DB2-ID 2 0.0 0.0 0.0 0.6 2.5 5.3 19.7 6.4 13.7 25.9 4.9 0.8 0.5 0.8 0.7 0.0 25.9
With DB2-ID 3 13.1 18.8 23.7 26.8 27.8 27.5 19.7 6.4 13.7 25.9 4.9 0.8 0.5 0.8 0.7 0.0 27.8
With DB2-ID 4 1.4 1.2 0.0 0.6 2.5 5.3 19.7 6.4 13.0 25.5 4.2 0.0 0.0 0.0 0.0 0.0 25.5



 

 

176

  
Check DB1-ID 8  

  
  

With DB2-ID 1 12.7 7.5 2.1 13.5 23.2 33.6 24.5 6.8 13.0 26.9 6.3 2.3 1.7 2.4 1.8 0.2 33.6
With DB2-ID 2 15.8 22.8 25.6 25.9 23.4 19.8 0.0 0.0 13.7 25.9 4.9 0.8 0.5 0.8 0.7 0.0 25.9
With DB2-ID 3 0.7 0.4 4.2 8.3 13.0 17.5 0.0 0.0 13.7 25.9 4.9 0.8 0.5 0.8 0.7 0.0 25.9
With DB2-ID 4 17.4 24.3 25.6 25.9 23.4 19.8 0.0 0.0 13.0 25.5 4.2 0.0 0.0 0.0 0.0 0.0 25.9
With DB2-ID 5 15.8 22.8 25.6 25.2 20.5 13.7 24.5 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.6
  
Check DB1-ID 9  

  
  

With DB2-ID 1 2.7 12.4 22.1 31.3 37.8 44.6 0.0 0.0 0.9 1.4 3.1 4.4 2.4 3.7 3.3 0.3 44.6
With DB2-ID 2 0.0 0.0 0.0 0.0 0.0 0.0 19.7 6.4 0.0 0.0 4.7 2.9 1.2 2.0 2.2 0.2 19.7
With DB2-ID 3 13.1 18.8 23.7 27.2 29.5 31.1 19.7 6.4 0.0 0.0 4.7 2.9 1.2 2.0 2.2 0.2 31.1
With DB2-ID 4 1.4 1.2 0.0 0.0 0.0 0.0 19.7 6.4 0.8 0.6 5.5 2.1 0.7 1.2 1.5 0.2 19.7
With DB2-ID 5 0.0 0.0 0.0 0.6 2.4 5.1 0.0 0.0 15.9 35.0 10.1 2.1 0.7 1.2 1.5 0.2 35.0
With DB2-ID 6 13.7 18.5 20.4 20.6 19.0 16.5 19.7 6.4 15.9 35.0 10.1 2.1 0.7 1.2 1.5 0.2 35.0
  
Check DB1-ID 10  

  
  

With DB2-ID 1 2.7 12.4 22.1 31.3 37.8 44.6 0.8 0.0 0.9 1.4 3.1 4.4 2.4 3.7 3.3 0.3 44.6
With DB2-ID 2 0.0 0.0 0.0 0.0 0.0 0.0 20.3 6.4 0.0 0.0 4.7 2.9 1.2 2.0 2.2 0.2 20.3
With DB2-ID 3 13.1 18.8 23.7 27.2 29.5 31.1 20.3 6.4 0.0 0.0 4.7 2.9 1.2 2.0 2.2 0.2 31.1
With DB2-ID 4 1.4 1.2 0.0 0.0 0.0 0.0 20.3 6.4 0.8 0.6 5.5 2.1 0.7 1.2 1.5 0.2 20.3
With DB2-ID 5 0.0 0.0 0.0 0.6 2.4 5.1 0.8 0.0 15.9 35.0 10.1 2.1 0.7 1.2 1.5 0.2 35.0
With DB2-ID 6 13.7 18.5 20.4 20.6 19.0 16.5 20.3 6.4 15.9 35.0 10.1 2.1 0.7 1.2 1.5 0.2 35.0
With DB2-ID 7 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8
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RANK ORDER CORRELATION METHOD 

 

This appendix shows a sample computation procedure for ‘Rank order 

correlation’ that is used in the generation of Tornado plots.  In this example, the 

sensitivity of the HMA air void content on rutting is computed through correlation 

coefficient.  A sample of 20 air void values used in the simulation is shown in Table B.1.  

The corresponding rutting predicted in HMA layer by the design procedure is also 

summarized.  The rank of air void and rutting (relative position of the value) is 

determined based on the 20 simulated values.  The difference in ranks is computed for 20 

simulations (Table B.1) 

Spearman’s rank order correlation coefficient is calculated using Equation 5.1 as  
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Based on the 20 simulation, air void content in HMA layer has positive 

correlation of 0.8729 with HMA rutting.  A high positive correlation implies the 

necessity of quality control over mix air void content to avert high degree of HMA 

rutting. 
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Table B. 1 Spearman's Rank Order Correlation 

No 
Air Void, 

% 

HMA 
Rutting, 

Inch 

Rank of 
Air Void

(R1) 

Rank of HMA 
Rutting 

(R2) 

Difference in 
Ranks 

ΔR2 = (R1-R2)2 

1 6.5 0.5952 12 12 0 

2 8 0.6570 20 18 4 

3 5.55 0.5498 5 4 1 

4 6.5 0.5744 12 10 4 

5 6.37 0.6173 11 13 4 

6 7.62 0.6379 18 17 1 

7 6.29 0.5589 10 6 16 

8 7.49 0.6175 17 14 9 

9 5.23 0.5599 2 7 25 

10 5.31 0.5243 3 3 0 

11 6.17 0.6175 8 14 36 

12 7.84 0.6705 19 20 1 

13 6.54 0.6268 14 16 4 

14 6.11 0.5617 7 8 1 

15 5.11 0.4736 1 1 0 

16 7.06 0.5746 16 11 25 

17 6.18 0.5499 9 5 16 

18 5.4 0.5069 4 2 4 

19 6.9 0.6570 15 18 9 

20 6.01 0.5743 6 9 9 

Sum of Difference 169 

 
 




