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EXTREMAL DEPENDENCE OF MULTIVARIATE DISTRIBUTIONS

AND ITS APPLICATIONS

Abstract

by Yannan Sun, Ph.D.
Washington State University

MAY 2010

Chair: Haijun Li

Stochastic dependence arises in many fields including electrical grid reliability, net-

work/internet traffic analysis, environmental and agricultural impact assessment, and

financial risk management. Models in these fields exhibit the stochastic behavior of

strong dependence—often among their extreme values. Extremal dependence is directly

related to the dynamics of a system. It is critically important to understand this rela-

tionship. If not, the extremal dependence can cause long term, contagious damage.

The tail dependence of multivariate distributions is frequently studied via the tool

of copulas, but copula-based methods become inefficient in higher dimensions. The

theories of multivariate regular variation and extreme values bring in many results for

multivariate distributions based on various measures. Applying these theories, however,

is difficult because the measures are not explicit. In this dissertation, we establish the

link between tail dependence parameters and the theory of multivariate regular variation.

For a multivariate regularly varying distribution, we show that the upper tail dependence

function and the intensity measure are equivalent in describing its extremal dependence

structure. With this new characterization we can efficiently evaluate tail dependence for

multivariate distributions when the copulas are not explicitly accessible.
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As applications, we derive tractable formulas for tail dependence parameters of

heavy-tailed scale mixtures of multivariate distributions. We discuss the structural traits

of multivariate tail dependence, such as the monotonicity properties of tail dependence

for bivariate elliptical distributions. We also give a general method to approximate

the Value-at-Risk for aggregated data in terms of the tail dependence function of the

data and the Value-at-Risk for one of the variables. Explicit approximations are ob-

tained for Archimedean copulas, Archimedean survival copulas and Pareto distributions

of Marshall-Olkin type. Additionally, to visualize the monotonicity properties of the

tail dependence parameters, we give some simulation results for Pareto distributions in

three and four dimensions.
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Chapter 1

Preliminaries

1.1 Introduction

Stochastic dependence arises in a wide range of applications, including financial risk

management, network/internet traffic analysis, and environmental and agricultural im-

pact assessment. In such applications, different physical processes exhibit the stochastic

behavior of strong dependence – often among their extreme values. Extremal depen-

dence is directly related to the system dynamics. It is critically important to understand

this relationship. If not, the extremal dependence can cause long term, contagious, cas-

cading damage. Take for example the global financial crisis during 2008; it is easy to

see the effects of extremal dependence.

To model extremal events and their dependence the most commonly understood dis-

tribution, the normal distribution, does not work. This is because its tails are too thin.

To allow for events in the tails to occur more often we need to use heavy-tailed (or reg-

ularly varying) distributions, such as t-distributions and various Pareto distributions.

Tail dependence exists when the dependence among random variables concentrates in

the extremely high (or low) values. In the bivariate case, tail dependence has been

studied using the tool of copulas. A copula is the joint distribution of the percentiles

of the random variables. By transforming all the marginal distributions to uniform dis-

tributions on the unit square (cube), the tail dependence structure is separated from
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the margins. Copula-based methods are widely used in financial risk management and

actuarial science for statistical modeling. Copula functions can help determine the mul-

tivariate distribution that a sample of data follows. Yet, they become increasingly

cumbersome and ineffective in higher dimensions. The theories of regular variation and

extreme values bring in many results for multivariate distributions based on various

measures. Applying these theories, however, is difficult because the measures are not

explicit. A remedy, which my research addresses, is to express the measures in terms of

tail dependence functions.

This dissertation focuses on characterizing the extremal dependence of high dimen-

sional distributions and determining an efficient algorithm for extremal dependence mea-

sures. In this Chapter, we introduce some of the notation needed in later chapters. We

review the definitions and basic properties of weak convergence and the generalized in-

verse of monotone functions to prepare for introducing copulas and regular variation.

More detail can be found in [32].

In Chapter 2, we review the definition and properties of copulas. Some fundamental

properties are given including Sklar’s Theorem and Fréchet bounds. The family of

Archimedean copulas is introduced because of its important role in modeling dependence

structures. Next, we review three types of dependence measures: linear correlation,

rank correlation, and the tail dependence parameters which are derived from copulas.

We will see that the tail dependence parameters have better properties than linear and

rank correlation. Tail dependence functions are defined in terms of copulas. Using tail

dependence functions we can obtain various types of tail dependence parameters. These

parameters describe the amount of dependence in the upper (lower) tail of a multivariate

distribution. They measure the interactivity (e.g. possibility of contagion) among the
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multivariate margins of the random vector and play an important role in analyzing

extremal dependence. Finally, elliptical distributions are introduced as the most widely

used radially symmetric multivariate distributions. Elliptical distributions do not have

explicit copulas in general. They play an important role, however, in analyzing tail

dependence.

In Chapter 3, we first review the theory of regular variation and its relationship to

extreme value theory. We survey the properties for regular variation of functions and

of measures in both single-variable and multi-variable cases. The equivalent condition

for elliptical distributions being multivariate regularly varying is given. In Section 3.3,

we establish the link between tail dependence and the theory of multivariate regular

variation. For a multivariate regularly varying distribution, we show that the upper tail

dependence function and the intensity measure are equivalent in describing its extremal

dependence structure. The proof employs the theory of regular variation even though

the tail dependence is defined in terms of copulas. With this new characterization we

can efficiently evaluate tail dependence for multivariate distributions when the copulas

are not explicitly accessible.

In Chapter 4, we give several applications of Theorem 3.3.1, the main result of Chap-

ter 3. First, we derive tractable formulas for the tail dependence parameters of heavy-

tailed scale mixtures of multivariate distributions whose copulas are not explicitly acces-

sible in general. These formulas depend on the joint moments and the heavy-tail index

of the mixing random variable. Unlike the copula method, they avoid taking the com-

plicated marginal transforms on the entire distribution. We also discuss the structural

traits of multivariate tail dependence, such as monotonicity properties of tail dependence

for bivariate elliptical distributions. Bivariate elliptical distributions possess the upper
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(lower) tail dependence property if their generating random variable is regularly varying

[17, 33]. The formula for the extremal dependence γ of bivariate elliptical distribu-

tions is also derived in [14]. Our method yields similar results for multivariate elliptical

distributions. Second, we give a general method to approximate the Value-at-Risk for

aggregated data in terms of the tail dependence function of the data and the Value-at-

Risk for one of the variables. The explicit approximations are obtained for Archimedean

copulas, Archimedean survival copulas and Pareto distributions of Marshall-Olkin type.

Last, to visualize the monotonicity properties of the tail dependence parameters, we give

some simulation results for Pareto distributions with three and four dimensions.

1.2 Notation

In this section, we introduce some notation that will be used throughout the dissertation.

We try to maintain notation consistent with the literature.

Numbers and Sets

N denotes the set of natural numbers along with zero {0, 1, 2, . . .}. R denotes the real

line (−∞,∞). R+ denotes the nonnegative reals (0,∞). Rd is the d-dimensional real

space R× · · · × R. Rd
+ is the first orthant of Rd, i.e., the space of all the d-dimensional

vectors with every component positive. The d-dimensional unit box is denoted [0, 1]d.

R denotes the extended real line [−∞,∞]. Rd
is the d-dimensional extended real space

R×· · ·×R. The notations a∨b and a∧b mean the maximum and the minimum of a and

b respectively. For a set S, |S| is the number of elements in S. The set I = {1, 2, . . . , d}

denotes the index set.
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Vectors and Matrices

We use vector notation for points in Rd
, e.g., x = (x1, . . . , xd). For two vectors

a, b ∈ Rd
we write a ≤ b if ai ≤ bi for each i; and a < b if ai < bi for each i. We denote

by [a, b] the Cartesian product [a1, b1]×· · ·× [ad, bd] for a ≤ b. Also denote (xp1, . . . , x
p
d)

by xp where p > 0, xi > 0 for each i.

For a matrix A, AT is the transpose of A. The matrix Id is the identity matrix in

Rd×d. D[a1, . . . , ad] is a d× d diagonal matrix with main diagonal entries a1, . . . , ad.

Functions

For a real function H : Rd → R, Dom(H) and Ran(H) denote the domain and the

range of H respectively. The terms “increasing” and “decreasing” are in the weak sense

and mean non-decreasing and non-increasing respectively. We will use “strictly” for the

strong sense of monotonicity. The function H is said to be monotone if it is monotone

in every component. For two functions f(x) and g(x), we use the notation f(x) ∼ g(x)

as x→ a if limx→a
f(x)
g(x)

= 1.

Probability

For two random variables X and Y , X
d
= Y means that X and Y follow the same

distribution.

1.3 Uniform Convergence

Let {hn, n ∈ N} be a sequence of real functions. On a set A ⊂ R, we say that hn

converges uniformly to h0 if

lim
n→∞

sup
t∈A
|hn(t)− h0(t)| = 0. (1.3.1)



6

If (1.3.1) holds for any close interval A ⊂ R, then we say that hn converges locally

uniformly to h0. Furthermore, if hn are increasing and h0 is continuous, then hn con-

verges locally uniformly to h0 if hn converges pointwise to h0, i.e., limn→∞ hn(t) = h0(t),

for all t ∈ R.

Let {Hn, n ∈ N} be a sequence of increasing real functions. Define

C(Hn) := {t ∈ R : Hn is finite and continuous at t}.

Then Hn converges weakly to H0 if Hn converges pointwise to H0 on C(H0), i.e.,

lim
n→∞

Hn(t) = H0(t), for all t ∈ C(H0). (1.3.2)

In probability and statistics, if Hn are distribution functions of random variables Xn

and (1.3.2) holds, then we say that Xn converges in distribution to X0.

1.4 Generalized Inverses of Monotone Functions

Let H : R → R be an increasing function. We define the (left-continuous) generalized

inverse H← : R→ R of H as

H←(t) := inf{s : H(s) ≥ t}. (1.4.1)

For a sequence of increasing real functions {Hn, n ∈ N} with range (a, b), let Hn

converge weakly to H0. Then we have

lim
n→∞

H←n (t) = H←0 (t), for all t ∈ (a, b) ∩ C(H←0 ).
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Chapter 2

Copulas and Dependence

In this chapter, we introduce the basic properties of copulas and several dependence

measures. The copula is widely used tool for modeling the dependence structure of a

random vector. The dependence measures derived from copulas have better properties

than linear correlations. Using copulas, we define tail dependence functions which can

be used to obtain various tail dependence parameters. Much of this chapter is based on

[28, 29]. Proofs, examples, more details and further references can be found there.

2.1 Copulas

In recent years, copulas have become a popular tool in analysis of dependence. Copula

functions are often used in financial risk management and actuarial science for model-

ing dependence structures in a sample of data. The basic idea is to transform all the

marginal variables so that each of them follows the uniform distribution on [0, 1]. For a

random variable X, if F is its distribution function (d.f.), then F (X) has a uniform dis-

tribution. Similarly, for a d-dimensional random vectorX = (X1, . . . , Xd) with marginal

distributions F1, . . . , Fd, the transformed vector (F1(X1), . . . , Fd(Xd)) has uniformly dis-

tributed margins and the copula of X is the joint distribution of the transformed vector.

Copulas separate the dependence of X from the margins, which is particularly helpful

in the understanding of the extremal dependence among the components of a random
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vector.

In this section, we give the definitions for copulas and survival copulas, and some

fundamental properties including Sklar’s Theorem and Fréchet bounds. Additionally,

we introduce an important family of copulas, Archimedean copulas. When proving or

applying the results given in this section, if the inverse of a monotone function does not

exist, then we use the generalized inverse (1.4.1) instead.

2.1.1 Definitions and Basic Properties

In order to define a copula, we need to introduce the following “volume” function first.

Definition 2.1.1 Let H be a d-dimensional real function on Rd
such that Dom(H) =

S1 × S2 × · · · × Sd, where Si are nonempty subsets of R. Let E be the set of all the

vertices of a d-dimensional box B = [a, b] such that E ⊆ Dom(H). Then the H-volume

of B is given by

VH(B) :=
∑
c∈E

sgn(c)H(c), (2.1.1)

where sgn(c) =

 1, if |{j : cj = aj}| is even;

−1, otherwise.

Take the bivariate case for example. Let H be a 2-dimensional real function such that

Dom(H) = S1×S2 where S1, S2 are nonempty subsets of R. Let B = [a1, b1]× [a2, b2] be

a rectangle and E = {(a1, b1), (a2, b1), (a1, b2), (a2, b2)} ⊆ Dom(H). Then the H-volume

of B is given by

VH(B) = H(a1, b1) +H(a2, b2)−H(a2, b1)−H(a1, b2). (2.1.2)
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Definition 2.1.2 A d-dimensional copula C(u) = C(u1, . . . , ud) is a distribution func-

tion, defined on the unit cube [0, 1]d, with uniform one-dimensional margins. In addition,

the following properties need to be satisfied:

(1) For any u ∈ [0, 1]d, C(u) = 0 if ∃i ∈ I such that ui = 0;

(2) C(1, . . . , 1, ui, 1, . . . , 1) = ui, for all i ∈ I;

(3) For any a, b ∈ [0, 1]d such that a ≤ b, VC([a, b]) ≥ 0.

The following theorem is the foundation of the theory of copulas. It reveals the

relationship between multivariate distribution functions and their univariate margins.

Theorem 2.1.3 (Sklar’s Theorem, [35]) Let F be a d-dimensional joint distribution

function with margins F1, . . . , Fd. Then there exists a copula C such that for all t ∈ Rd
,

F (t1, . . . , td) = C(F1(t1), . . . , Fd(td)). (2.1.3)

If F1, . . . , Fd are all continuous, then the corresponding copula C is unique and can

be written as C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)), (u1, . . . , ud) ∈ [0, 1]d. Thus,

for multivariate distributions with continuous margins, the univariate margins and the

multivariate dependence structure (as described by their copulas) can be separated.

For a random vector X with distribution function F and continuous margins F1, . . . ,

Fd, the copula of F (or X) is the distribution function C of (F1(X1), . . . , Fd(Xd)).

The following proposition shows that a copula is invariant under strictly increasing

transformations of the margins.

Proposition 2.1.4 Let (X1, . . . , Xd) be a random vector with copula C and continuous

margins. If T1, . . . , Td are strictly increasing functions, then the copula of the random

vector (T1(X1), . . . , Td(Xd)) is also C.
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Fréchet bounds are another important property of copulas. We give the bounds and

the copulas that achieve the bounds in the following theorem and examples.

Theorem 2.1.5 (Fréchet Bounds) For every copula C(u1, . . . , ud),

max{
d∑
i=1

ui + 1− d, 0} ≤ C(u) ≤ min{u1, . . . , ud}. (2.1.4)

We denote the lower and upper bounds by W (u1, . . . , ud) and M(u1, . . . , ud) respectively.

Example 2.1.6 Let (X1, . . . , Xd) be a random vector with copula C and continuous

margins. Here we give several fundamental copulas.

1. If X1, . . . , Xd are independent, then C(u) =
∏d

i=1 ui, which is called the indepen-

dence copula. We denote it by Π(u) hereafter.

2. If X1, . . . , Xd are perfectly positively dependent, i.e., Xi = Ti(X1), i = 2, . . . , d

where Ti are almost surely strictly increasing functions, then C(u) = M(u1, . . . , ud)

= min{u1, . . . , ud}, which is called the comonotonicity copula.

3. If X1, X2 are perfectly negatively dependent, i.e., X2 = T (X1) where T is an almost

surely strictly decreasing function, then C(u) = W (u1, u2) = max{u1 +u2− 1, 0},

which is called the countermonotonicity copula. It is easy to see that we cannot

extend this case to higher dimensions.

The survival copula is defined similarly. Consider a random vector (X1, . . . , Xd)

with continuous margins F1, . . . , Fd and copula C. Observe that F̄i(Xi) = 1 − Fi(Xi),

1 ≤ i ≤ d, is also uniformly distributed over [0, 1], thus

Ĉ(u1, . . . , ud) := Pr{F̄1(X1) ≤ u1, . . . , F̄d(Xd) ≤ ud}
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is a copula. Ĉ is called the survival copula of (X1, . . . , Xd). The joint survival function

of random vector (X1, . . . , Xd) is expressed as

F̄ (t1, . . . , td) := Pr{X1 > t1, . . . , Xd > td} = Ĉ(F̄1(t1), . . . , F̄d(td)), (t1, . . . , td) ∈ Rd.

It also follows that for any (u1, . . . , ud) ∈ [0, 1]d,

C̄(u1, . . . , ud) := Pr{F1(X1) > u1, . . . , Fd(Xd) > ud} = Ĉ(1− u1, . . . , 1− ud), (2.1.5)

where C̄ is the joint survival function of copula C.

2.1.2 Archimedean Copulas

Archimedean copulas are an important family of copulas and often used when modeling

dependence in loss data. They have simple forms by definition, yet we can construct

a variety of dependence structures using them. Many commonly used copulas belong

to this family such as Clayton copulas and Gumbel copulas. In later chapters, we will

see that many theorems can be easily applied on Archimedean copulas to derive simple

formulas. Here we start with bivariate Archimedean copulas and then extend to higher

dimensions.

Definition 2.1.7 (Pseudo-inverse) Let φ : [0, 1] → [0,∞] be a continuous strictly

decreasing function. Define φ[−1] : [0,∞]→ [0, 1] as follows:

φ[−1](t) =

 φ−1(t), 0 ≤ t ≤ φ(0);

0, φ(0) ≤ t ≤ ∞.
(2.1.6)

We say φ[−1] is the pseudo-inverse of φ.

It is easy to see that φ[−1] is continuous and decreasing on [0,∞]. Particularly, φ[−1]

is strictly decreasing on [0, φ(0)]. Moreover, if φ(0) =∞, then φ[−1] = φ.
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Theorem 2.1.8 (Bivariate Archimedean Copula) Let φ : [0, 1] → [0,∞] be a

continuous strictly decreasing function such that φ(1) = 0 and φ[−1] be the pseudo-

inverse of φ from (2.1.6). Then

C(u1, u2) = φ[−1](φ(u1) + φ(u2)) (2.1.7)

is a copula if and only if φ is convex.

Copulas of form (2.1.7) are called bivariate Archimedean copulas. The function φ is

called a generator of the Archimedean copula. In addition, if φ(0) = ∞, then φ is a

strict generator, in which case φ[−1] = φ and C(u1, u2) = φ[−1](φ(u1) + φ(u2)) is called a

strict Archimedean copula.

Proposition 2.1.9 Let C be a bivariate Archimedean copula with generator φ. Then

C has the following properties:

1. C is symmetric: C(u1, u2) = C(u2, u1) for any u1, u2 ∈ [0, 1];

2. C is associative: C(C(u1, u2), u3) = C(u1, C(u2, u3)) for any u1, u2, u3 ∈ [0, 1];

3. For any positive constant c, cφ is also a generator of C.

Example 2.1.10 The following two copula families are special cases of the Archimedean

copulas.

1. Let φ(t) = 1
θ
(t−θ − 1), θ ≥ −1, θ 6= 0. Then the Clayton copula is given by

C(u1, u2) = (max{uθ1 + uθ2 − 1, 0})−1/θ. (2.1.8)

When θ > 0, we have C(u1, u2) = (uθ1+uθ2−1)−1/θ. In this case, the Clayton copula

is a strict Archimedean copula. This type of copula is known as a comprehensive

copula, because its lower and upper limits are the Fréchet bounds.
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2. Let φ(t) = (− ln t)θ, θ ≥ 1. Then the Gumbel copula is given by

C(u1, u2) = exp(−((− lnu1)
θ + (− lnu2)

θ)1/θ). (2.1.9)

This copula is a strict Archimedean copula for any θ ≥ 1.

To construct a d-dimensional Archimedean copula, we use the same pattern as in

(2.1.7). We also need the following definition and theorem to define a proper distribution

function.

Definition 2.1.11 ([38]) A continuous function h(t) is called completely monotonic on

an interval [a, b] if it satisfies

(−1)k
dk

dtk
h(t) ≥ 0 (2.1.10)

for k = 0, 1, 2, . . . and t ∈ (a, b).

Theorem 2.1.12 ([20]) Let

C(u1, . . . , ud) := φ−1(φ(u1) + · · ·+ φ(ud)) (2.1.11)

where φ : [0, 1] → [0,∞] is a strict Archimedean copula generator. Then C is a d-

dimensional (Archimedean) copula if and only if φ−1 : [0,∞] → [0, 1] is completely

monotonic.

Now we generalize Example 2.1.10 to higher dimensional cases.

Example 2.1.13 1. Let φ(t) = 1
θ
(t−θ − 1), θ > 0. Then the d-dimensional Clayton

copula is given by

C(u) =

(
d∑
i=1

uθi − d+ 1

)−1/θ

. (2.1.12)
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2. Let φ(t) = (− ln t)θ, θ ≥ 1. Then the d-dimensional Gumbel copula is given by

C(u) = exp

−( d∑
i=1

(− lnui)
θ

)1/θ
 . (2.1.13)

Note that the lower bound for both of these copulas is the independence copula

Π(u) =
∏d

i=1 ui. This occurs when φ−1 is completely monotonic.

2.2 Dependence Measures

In this section we introduce three kinds of dependence measures: linear correlation, rank

correlation and tail dependence parameters. Linear correlation and rank correlation co-

efficients are only defined for two random variables. In higher dimensions, we need to use

a correlation matrix which consists of the correlation coefficients of the respective ran-

dom variables. Tail dependence parameters are defined as scalars for any d-dimensional

space in terms of copulas. Lastly, we introduce tail dependence functions which allow

us to analyze tail dependence structure in a more general manner. Tail dependence

functions are the primary tool in this dissertation.

2.2.1 Linear Correlation

Let X1, X2 be two random variables. The linear correlation coefficient ρ of X1 and X2

is defined as:

ρ(X1, X2) =
Cov(X1, X2)√

Var(X1)Var(X2)
. (2.2.1)

Linear correlation is a symmetric dependence measure with range [−1, 1]. Linear cor-

relation is invariant under strictly increasing linear transformations, but is not invariant

under nonlinear transformations. In addition, The linear correlation coefficient is only
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defined when the variances of X1 and X2 are finite and nonzero.These are drawbacks for

analyzing dependence structures of heavy tailed distributions. In many cases, the data

follow a joint heavy tailed distribution and have an increasing trend in their means so

that the variances are not finite. The marginal distributions of the data might not be

explicitly accessible. Moreover, taking any increasing transformation on the variables

should not change the dependence structure between them. Because of these restrictions,

linear correlation is of limited use in extremal dependence analysis.

2.2.2 Rank Correlation

Rank correlation coefficients of a pair of random variables measure the extent to which

one variable follows the other in an increasing/decreasing fashion. The coefficients have

negative values if one variable increases while the other variable decreases. Unlike linear

correlation, rank correlation depends only on the copula of a bivariate distribution and

not on the margins. Rank correlation coefficients are invariant under strictly increasing

transformations. We introduce the two most widely known rank correlation coefficients,

Kendall’s tau and Spearman’s rho [23]. The dependence that they measure is known as

concordance. Given two points (x1, x2), (x̃1, x̃2) ∈ R2, we say that they are concordant

if (x1 − x̃1)(x2 − x̃2) > 0 and discordant if (x1 − x̃1)(x2 − x̃2) < 0.

Definition 2.2.1 1. Let random vectors (X1, X2), (X̃1, X̃2) be independent and

identically distributed (i.i.d.). Then Kendall’s tau is given by

ρτ (X1, X2) = Pr{(X1−X̃1)(X2−X̃2) > 0}−Pr{(X1−X̃1)(X2−X̃2) < 0}. (2.2.2)

2. Let (X1, X2), (X̃1, X̃2), (X̂1, X̂2) be i.i.d. random vectors. Then Spearman’s rho
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is given by

ρS(X1, X2) = 3(Pr{(X1 − X̃1)(X2 − X̂2) > 0} − Pr{(X1 − X̃1)(X2 − X̂2) < 0}).

(2.2.3)

Spearman’s rho can also be given in terms of Kendall’s tau and the linear correla-

tion coefficient:

ρS(X1, X2) = ρ(F1(X1), F2(X2)), (2.2.4)

where F1, F2 are the marginal distribution functions of (X1, X2).

Kendall’s tau and Spearman’s rho share many properties. They are both symmetric

dependence measures with range [−1, 1]. It is necessary that they both have value

zero for independent random variables, but not sufficient. The following proposition

shows that they depend only on the copula of two variables, which implies that they are

invariant under strictly increasing transformations.

Proposition 2.2.2 Let (X1, X2) be a random vector with copula C and continuous

margins. Then we have

ρτ (X1, X2) = 4

∫ 1

0

∫ 1

0

C(u1, u2) dC(u1, u2)− 1, (2.2.5)

ρS(X1, X2) = 12

∫ 1

0

∫ 1

0

C(u1, u2)− u1u2 du1du2. (2.2.6)

Before introducing tail dependence parameters we reiterate that both linear corre-

lation and rank correlation are ill-suited to the task of extremal dependence analysis.

This is primarily because they do not scale well to higher dimensions.



17

2.2.3 Tail Dependence Parameters

Tail dependence parameters describe the amount of dependence in the upper (or lower)

tail of a multivariate distribution. They measure the interactivity (e.g. possibility of

contagion) among the multivariate margins of the random vector and play an impor-

tant role in analyzing extremal dependence. Like the rank correlation coefficients, tail

dependence parameters depend only on the copula of the random vector and thus are

invariant under strictly increasing transformations. We will look at the bivariate case

first. Then we give the definition for high dimensional cases.

Definition 2.2.3 Let (X1, X2) be a random vector with continuous margins F1, F2.

Then the upper tail dependence parameter of X1 and X2 is given by

λU := lim
u→1−

Pr{F2(X2) > u | F1(X1) > u}, (2.2.7)

and the lower tail dependence parameter of X1 and X2 is given by

λL := lim
u→0+

Pr{F2(X2) ≤ u | F1(X1) ≤ u}, (2.2.8)

provided the limits exist.

The range of both λU and λL is [0, 1]. If λU (or λL) is zero, then we say that X1

and X2 are asymptotically independent in the upper (lower) tail. To illustrate that the

tail dependence parameters depend only on the bivariate copula, we have the following

theorem.

Theorem 2.2.4 Let (X1, X2) be a random vector with continuous margins F1, F2 and

copula C. Then the tail dependence parameters of X1 and X2 can be expressed in terms
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of their bivariate copula:

λU = 2− lim
u→1−

1− C(u, u)

1− u
= lim

u→0+

Ĉ(u, u)

u
, (2.2.9)

λL = lim
u→0+

C(u, u)

u
, (2.2.10)

where Ĉ is the survival copula of C.

Example 2.2.5 (Bivariate Gaussian Copula) Let (X1, X2) have the standard bi-

variate normal distribution and (linear) correlation ρ. Then

Pr(X ≤ x, Y ≤ y) = C(Φ(x),Φ(y)),

where C is the bivariate Gaussian copula. Since C is exchangeable, i.e., C(u1, u2) =

C(u2, u1), applying L’Hopital’s rule we have

λ = λU = λL = 2 lim
u→0+

Pr(X2 ≤ Φ−1(u) | X1 = Φ−1(u)).

It is known that X2 | X1 = x ∼ N (ρx, 1− ρ2). Hence when ρ < 1 we have

λ = 2 lim
x→∞

(
1− Φ

(
x

√
1− ρ√
1 + ρ

))
= 0.

Therefore, the Gaussian copula is asymptotically independent in both the upper and

lower tails. In statistical modeling, whenever normal distributions are fitted to the data,

the Gaussian copula is inherent and extremal dependence can not be considered. In

most cases, however, extremal dependence exists and should not be neglected. It has

been said that the use of the Gaussian copula in credit derivatives was the primary cause

of the financial crisis in 2008. Whitehouse stated in [37] that “The Gauss-copula is the

worst invention ever for credit risk management”.
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Example 2.2.6 (Bivariate t Copula) Let (X1, X2) have the bivariate t-distribution.

Then we have the following stochastic representation

(X1, X2) =d (µ1, µ2) +

√
ν√
S

(Z1, Z2),

where S ∼ χ2
ν and (Z1, Z2) ∼ N2(0,Σ) are independent. Since the t copula is exchange-

able, using an argument similar to Example 2.2.5 we have

λ = −2tν+1

√
(ν + 1)(1− ρ)

1 + ρ
,

when ρ > −1. Hence the t copula is asymptotically dependent in both the upper and

lower tails. It is more reasonable to use the t copula than the Gaussian copula for data

that show extremal dependence.

In the following definition we define tail dependence parameters and the extremal

dependence parameter for any d-dimensional random vectors. This is a generalization

of the bivariate case. Detailed discussion can be found in [25, 33].

Definition 2.2.7 Let X = (X1, . . . , Xd) be a random vector with continuous margins

F1, . . . , Fd and copula C.

1. X is said to be upper-orthant tail dependent if for some subset ∅ 6= J ⊂ I, the

following limit exists and is positive.

τJ = lim
u→1−

Pr{Fj(Xj) > u,∀j ∈ I\J | Fi(Xi) > u,∀i ∈ J} > 0. (2.2.11)

If for all ∅ 6= J ⊂ I, τJ = 0, then we say X is upper-orthant tail independent.

2. X is said to be upper extremal dependent if the following limit exists and is positive.

γ = lim
u→1−

Pr{Fj(Xj) > u,∀j ∈ I | Fi(Xi) > u,∃i ∈ I} > 0. (2.2.12)

If γ = 0, then we say X is upper extremal independent.
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The limits τJ are called the upper tail dependence parameters. γ is called the upper

extremal dependence parameter. The lower tail dependence of a copula is defined as the

upper tail dependence of its survival copula in (2.1.5). Obviously, tail dependence is

a copula property; these parameters do not depend on the marginal distributions. If

X1, . . . , Xn are independent, then the corresponding upper tail (extremal) dependence

parameters are all zeros. Clearly, τJ ≥ γ, for all nonempty J ⊂ I. Thus, the extremal

dependence parameter provides a lower bound for orthant tail dependence parameters.

The multivariate tail dependence parameters τJ ’s have been used in [16] to analyze

the contagion risk in banking systems, and the extremal dependence parameter γ in

the bivariate case has been used in [7] to analyze the extremal dependence in financial

return data.

2.2.4 Tail Dependence Functions

Tail dependence functions are a more general tool for analyzing extremal dependence.

They can measure the dependence when the components approach to the tails at various

speeds.

Let F be the distribution function of a d-dimensional random vectorX = (X1, . . . , Xd)

with continuous margins F1, . . . , Fd and copula C. The lower and upper tail dependence

functions, denoted by b(·;C) and b∗(·;C) respectively, are introduced in [21, 30, 19] as

follows,

b(w;C) := lim
u→0+

C(uwj,∀j ∈ I)

u
, ∀w = (w1, . . . , wd) ∈ Rd

+;

b∗(w;C) := lim
u→0+

C(1− uwj, ∀j ∈ I)

u
, ∀w = (w1, . . . , wd) ∈ Rd

+, (2.2.13)



21

provided that the limits exist. Since b(w; Ĉ) = b∗(w;C) where Ĉ(u1, . . . , ud) = C(1 −

u1, . . . , 1 − ud) is the survival copula in (2.1.5), this dissertation focuses only on upper

tail dependence. The explicit expression of b∗ for elliptical distributions was obtained in

[21]. A theory of tail dependence functions was developed in [19, 30] based on Euler’s

homogeneous representation:

b∗(w;C) =
d∑
j=1

wjtj(wi, i 6= j | wj), ∀w = (w1, . . . , wd) ∈ Rd
+, (2.2.14)

where

tj(wi, i 6= j | wj) := lim
u→0+

Pr{Fi(Xi) > 1− wiu, ∀i 6= j | Fj(Xj) = 1− wju}, j ∈ I.

The tj’s are called upper conditional tail dependence functions. For copulas with explicit

expressions, the tail dependence functions are obtained directly from the copulas with

relative ease. For copulas without explicit expressions, the tail dependence functions

can be obtained from (2.2.14) by exploring closure properties of the related conditional

distributions. In [30], for example, the tail dependence function of the multivariate t

distribution is obtained by (2.2.14).

If follows from (2.2.11) and (2.2.13) that the upper tail dependence parameters can

be expressed as

τJ =
b∗(1, . . . , 1;C)

b∗(1, . . . , 1;CJ)
, for all ∅ 6= J ⊂ I, (2.2.15)

where CJ is the multivariate margin of C with component indices in J . It is shown in

[19] that b∗(w;C) > 0 for all w ∈ Rd
+ if and only if b∗(1, . . . , 1;C) > 0. Unlike the τJ ,

however, the tail dependence function provides all the extremal dependence information

of the copula C as specified by its extreme value copula (EV copula). The upper EV cop-

ula of C, denoted by CUEV , is defined as CUEV (u1, . . . , ud) := limn→∞C
n(u

1/n
1 , . . . , u

1/n
d )

for any (u1, . . . , ud) ∈ [0, 1]d if the limit exists [18].
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Define the upper exponent function a∗( · ;C) of copula C as

a∗(w;C) :=
∑

S⊆I,S 6=∅

(−1)|S|−1b∗S(wi, i ∈ S;CS), (2.2.16)

where b∗S(wi, i ∈ S;CS) denotes the upper tail dependence function of the margin CS of

C with component indices in S. It follows from (2.2.12) and (2.2.16) that the extremal

dependence parameter can be expressed as

γ =
b∗(1, . . . , 1;C)

a∗(1, . . . , 1;C)
. (2.2.17)

Similar to tail dependence functions, the exponent function has the following homoge-

neous representation:

a∗(w;C) =
d∑
j=1

wjtj(wi, i 6= j | wj), ∀w = (w1, . . . , wd) ∈ Rd
+, (2.2.18)

where

tj(wi, i 6= j | wj) = lim
u→0+

Pr{Fi(Xi) ≤ 1− wiu,∀i 6= j | Fj(Xj) = 1− wju}, j ∈ I.

It is shown in [19] that tail dependence functions {b∗S(wi, i ∈ S;CS)} and the exponent

function a∗(w;C) are uniquely determined by each other.

Theorem 2.2.8 ([19], [30]) Let C be a d-dimensional copula. Then the upper EV

copula

CUEV (u1, . . . , ud) = exp{−a∗(− log u1, . . . ,− log ud)}, ∀(u1, . . . , ud) ∈ [0, 1]d

where a∗ is given by either (2.2.16) or (2.2.18).

The following examples given in [19] show that the tail dependence functions of

Archimedean copulas have very simple forms. More detail can be found in [15, 19].
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Example 2.2.9 1. Consider a d-dimensional Clayton copula given in (2.1.12). The

margin of the last d− k variables has a similar copula form:

C(uk+1, . . . , ud) = (
d∑

i=k+1

u−θi − (d− k − 1))−1/θ. (2.2.19)

It is shown that the lower tail dependence function is

b(w1, . . . , wd) = (
d∑
i=1

w−θi )−1/θ. (2.2.20)

2. If a d-dimensional Archimedean copula given in (2.1.11) has generator φ and there

exists α > 0 such that

φ−1(st)

φ−1(t)
→ s−α as t→∞ for any s > 0, (2.2.21)

then we have

b(w) = (
d∑
i=1

w
−1/α
i )−α and a∗(w) = (

d∑
i=1

wαi )1/α. (2.2.22)

In the next chapter we will see that (2.2.21) is equivalent to saying that φ−1 is

regularly varying at ∞ or that φ is regularly varying at 1.

2.2.5 Elliptical Distributions

In this section we introduce a large family of radially symmetric multivariate distribu-

tions – elliptical distributions. Some well known distributions such as the normal, t-,

Laplace, Cauchy and logistic distributions belong to this family. In general, elliptical

distributions do not have explicit copulas. However, they play an important role in

analyzing tail dependence. Elliptical distributions are defined in terms of spherical dis-

tributions. More detail of the properties of spherical and elliptical distributions can be

found in [11, 28].
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Definition 2.2.10 A random vector X = (X1, . . . , Xd) is said to have a spherical dis-

tribution if UX
d
= X for any orthogonal matrix U ∈ Rd×d satisfying UUT = UTU = Id.

If X has a spherical distribution, then there exists a function ψ : R → R such that

for all t ∈ Rd we have

φX(t) = E(eit
TX) = ψ(tT t) = ψ(t21 + · · ·+ t2d), (2.2.23)

where φX is the characteristic function of X. The function ψ is known as the char-

acteristic generator of the spherical distribution. We use the notation X ∼ Sd(ψ) for

d-dimensional spherically distributed random vectors hereafter. The following theorem

characterizes spherical distributions.

Theorem 2.2.11 X ∼ Sd(ψ) if and only if X has the stochastic representation

X
d
= RU , (2.2.24)

where U is uniformly distributed on the unit sphere (with respect to Euclidean distance)

in Rd and R ≥ 0 is a random variable independent of U .

Example 2.2.12 Multivariate normal distributions are spherical. Suppose X has the

multivariate normal distribution N (0, Id). Then

φX(t) = E(eit
TX) = e−

1
2
tT t.

Hence X ∼ Sd(ψ) where ψ(t) = e−
1
2
t.

Definition 2.2.13 If a random vector X has the following stochastic representation

X
d
= µ+ AY ,

where µ ∈ Rd is a constant, A is a d× k matrix and Y ∼ Sk(ψ), then X is said to have

an elliptical distribution. We denote by X ∼ Ed(µ,Σ, ψ), where Σ = AAT .
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Like spherical distributions, elliptical distributions have an important stochastic rep-

resentation as well. This characterization is particularly useful when constructing ellip-

tically distributed random vectors.

Theorem 2.2.14 X ∼ Ed(µ,Σ, ψ) if and only if there exist R, A and U such that

X
d
= µ+RAU , (2.2.25)

where R ≥ 0 is a random variable independent of U , A is a d × k matrix such that

AAT = Σ and U is uniformly distributed on the unit sphere in Rk.

Linear combinations of elliptical random vectors are still elliptical, with the same

characteristic generator. If X ∼ Ed(µ,Σ, ψ), then for any B ∈ Rk×d and c ∈ Rd we have

BX + c ∼ Ek(Bµ+ c, BΣBT , ψ). (2.2.26)

Additionally, the marginal distributions of an elliptical distribution are elliptical with

the same characteristic generator as well. Consider a partition X = (XT
1 ,X

T
2 )T , where

X1 = (X1, . . . , Xk)
T and X2 = (Xk+1, . . . , Xd)

T , 2 ≤ k ≤ d − 1. Similarly we can

partition µ and Σ:

µ =

 µ1

µ2

 , Σ =

 Σ11 Σ12

Σ21 Σ22

 .

Then we have that X1 ∼ Ek(µ1,Σ11, ψ) and X2 ∼ Ed−k(µ2,Σ22, ψ).

The tail properties of elliptical distributions are closely connected with the regular

variation of the random variable R in the representation (2.2.25). The relationship will

be given in Example 3.2.4 in the next chapter. The upper tail dependence function of

a multivariate elliptical distribution is derived explicitly in [21]. We will discuss the

multivariate upper tail dependence and exponent functions, upper tail and extremal

dependence parameters for elliptical distributions in Section 4.1.
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Chapter 3

Multivariate Regular Variation

The theory of regularly varying functions is an important analysis tool for discussing the

tail dependence and properties of heavy tailed distributions. It is also closely related to

extreme value theory. This chapter discusses multivariate regular variation and its tail

dependence. In Section 3.1, we review the theory of regular variation. In Section 3.2,

the main theorem in Section 3.1 is made applicable to higher dimensions. The primary

resources for Section 3.1 and 3.2 are [6, 28, 32]. More detail and further references can

be found there. In Section 3.3, the tail dependence of multivariate regularly varying

distributions is analyzed by the intensity measure, which provides a link between tail

analysis and multivariate regular variation.

3.1 Regular Variation

A real function H : R+ → R+ is said to be regularly varying at ∞ with index ρ ∈ R

(written H ∈ RVρ) if

lim
t→∞

H(ct)

H(t)
= cρ.

ρ is called the exponent of variation.

If ρ = 0, H is a slowly varying function, usually denoted by L; that is, L is a positive

function on (0,∞) with property

lim
t→∞

L(ct)

L(t)
= 1, for every c > 0. (3.1.1)
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In this dissertation, we consider distributions with regular varying right tails,

F i(t) := Pr{Xi > t} = t−βL(t), t ≥ 0, (3.1.2)

where β > 0 is the marginal heavy-tail index.

Generally speaking, regularly varying functions behave asymptotically like power

functions. Additionally, RV0 is the set of slowly varying functions. If H ∈ RV∞, then

lim
t→∞

H(ct)

H(t)
= c∞ =


0, if 0 < c < 1;

1, if c = 1;

∞, if c > 1.

Similarly, H ∈ RV−∞ means

lim
t→∞

H(ct)

H(t)
= c−∞ =


∞, if 0 < c < 1;

1, if c = 1;

0, if c > 1.

3.1.1 Maximum Domains of Attraction

In this section, we illustrate the relationship between extreme value theory and regular

variation. More information about extreme value theory can be found in [8, 28].

Consider a sequence of i.i.d. random variables Xn, n = 1, 2, . . . with a common

distribution function F . These variables may be interpreted as various kinds of financial

losses in risk management. The most traditional models in extreme value theory are

concerned with the block maxima Mn := max(X1, . . . , Xn). Suppose that Mn converges

in distribution under an appropriate normalization. Then there exist two sequences of

real constants {cn} and {dn}, where cn > 0 for all n, such that

lim
n→∞

Pr{(Mn − dn)/cn ≤ x} = lim
n→∞

F n(cnx+ dn) = H(x) (3.1.3)
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for some non-degenerate distribution function H(x).

Definition 3.1.1 (Maximum Domain of Attraction) If (3.1.3) holds for some non-

degenerate d.f. H, then F is said to be in the maximum domain of attraction of H,

written F ∈ MDA(H).

Theorem 3.1.2 If F ∈ MDA(H) for some non-degenerate d.f. H(x), then H must be

a generalized extreme value (GEV) distribution Hθ which is defined as

Hθ(x) :=

 exp(−(1 + θx)−1/θ), if θ 6= 0;

exp(−e−x), if θ = 0.

where 1+θx > 0. The parameter θ is called the shape parameter of the GEV distribution.

There are three types of GEV distributions specified by different names according to

the value of θ. When θ > 0 the distribution is a Fréchet distribution; distributions in

this class include the t, F , inverse gamma and loggamma distributions. When θ = 0 it is

a Gumbel distribution; examples include the gamma, chi-squared, standard Weibull and

Gumbel itself. When θ < 0 it is a Weibull distribution; the beta distribution belongs to

this class.

Example 3.1.3 (Pareto Distribution) Assume that {Xn} have Pareto distribution

with F (x) = 1− 1
(1+x)α

, α > 0, x ≥ 0. Choose the normalizing sequences to be cn = 1
α
n1/α

and dn = n1/α − 1. Then from (3.1.3) we have

F n(cnx+ dn) =

(
1− 1

n

(
1 +

x

α

)−α)n
, 1 +

x

α
≥ n−1/α.

Hence

lim
n→∞

F n(cnx+ dn) = exp

(
−
(

1 +
x

α

)−α)
, 1 +

x

α
≥ 0.

This shows that F ∈ MDA(H1/α).
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The limiting behavior of minima can be obtained via maxima using the identity

min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn). (3.1.4)

It is shown that if the d.f. of −Xn, 1−F (−x), is in MDA(Hθ), then the GEV distribution

for minima is 1−Hθ(−x).

The following theorem shows the relationship between different types of extreme value

distributions and regularly varying functions. There are only results for the Fréchet and

Weibull classes. The characterization of Gumbel class is more complicated.

Theorem 3.1.4 1. (Fréchet MDA) For θ > 0,

F ∈ MDA(Hθ)⇐⇒ F̄ (x) = x−1/θL(x), (3.1.5)

for some L slowly varying at ∞.

2. (Weibull MDA) For θ < 0,

F ∈ MDA(H1/θ)⇐⇒ xF <∞ and F̄ (xF − x−1) = x1/θL(x), (3.1.6)

where xF := sup{x ∈ R : F (x) < 1} is the right endpoint and L is some slowly

varying function at ∞.

In Example 3.1.3, the survival function of Pareto distribution can be written as

F̄ (x) = 1
(1+x)α

= x−αL(x), where L(x) = (1 + 1
x
)−α is a slowly varying function. Thus

we can also use Theorem 3.1.4 to prove that F ∈ MDA(H1/α).

3.1.2 Properties of Regularly Varying Functions

Now we give some integral and differential properties of regularly varying functions,

assuming that all functions are locally integrable. We can see that a regularly varying

function with index ρ behaves roughly similar to xρ. The proofs can be found in [32].
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Theorem 3.1.5 (Karamata’s Theorem)

1. Let ρ ≥ −1 and H ∈ RVρ. Then
∫ x

0
H(t)dt ∈ RVρ+1 and

lim
x→∞

xH(x)∫ x
0
H(t)dt

= ρ+ 1. (3.1.7)

If ρ < −1 and H ∈ RVρ, then
∫∞
x
H(t)dt ∈ RVρ+1 and

lim
x→∞

xH(x)∫∞
x
H(t)dt

= −ρ− 1. (3.1.8)

2. If H satisfies that

λ := lim
x→∞

xH(x)∫ x
0
H(t)dt

∈ R+, (3.1.9)

then H ∈ RVλ−1. If H satisfies that

λ := lim
x→∞

xH(x)∫∞
x
H(t)dt

∈ R+, (3.1.10)

then H ∈ RV−λ−1.

Corollary 3.1.6 (The Karamata Representation)

1. A function L is slowly varying if and only if L has the following form,

L(x) = c(x) exp

{∫ x

1

ε(t)

t
dt

}
, x > 0, (3.1.11)

where c, ε : R+ → R+ such that limx→∞ c(x) is finite and positive and limt→∞ ε(t) =

0.

2. A function H is regularly varying with index ρ if and only if H has the represen-

tation below,

H(x) = c(x) exp

{∫ x

1

ρ(t)

t
dt

}
, x > 0, (3.1.12)

where limx→∞ c(x) is finite and positive and limt→∞ ρ(t) = ρ.
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Theorem 3.1.7 Let H : R+ → R+ be absolutely continuous with density h so that

H(x) =
∫ x

0
h(t)dt.

1. If H satisfies

lim
x→∞

xh(x)

H(x)
= ρ, (3.1.13)

then H ∈ RVρ.

2. If H ∈ RVρ, ρ ∈ R, and h is monotone, then (3.1.13) holds. In addition, if ρ 6= 0,

then |h| ∈ RVρ−1.

The following proposition provides further properties of regularly varying functions.

Proposition 3.1.8 1. Suppose H ∈ RVρ, ρ ∈ R. Then limx→∞
H(x)
log x

= ρ and

lim
x→∞

H(x) =

 0, if ρ < 0

∞, otherwise.

2. (Potter bounds) Suppose H ∈ RVρ, ρ ∈ R. For any ε > 0, there exists t0 such

that when x ≥ 1 and t ≥ t0 we have

(1− ε)xρ−ε < H(tx)

H(t)
< (1 + ε)xρ+ε. (3.1.14)

3. Suppose H ∈ RVρ, ρ ∈ R. Let {an} and {bn} be two positive sequences such

that limn→∞ an = limn→∞ bn = ∞. For c ∈ R+, if bn ∼ can as n → ∞, then

H(bn) ∼ cρH(an) as n→∞.

4. Suppose H1 ∈ RVρ1 and H2 ∈ RVρ2 , ρ2 < ∞. If limx→∞H2(x) = ∞, then

H1 ◦H2 ∈ RVρ1ρ2 .



32

5. Suppose H ∈ RVρ is an increasing function with H(∞) = ∞, ρ ∈ [0,∞]. Then

H← ∈ RVρ−1 .

6. Suppose H1, H2 ∈ RVρ are increasing, ρ ∈ R+. Then for c ∈ [0,∞], H1(x) ∼

cH2(x) as x→∞ if and only if H←1 (x) ∼ c−1/ρH←2 (x) as x→∞.

7. Suppose H ∈ RVρ, ρ 6= 0. Then there exists an absolutely continuous and strictly

monotone function H∗ such that H(x) ∼ H∗(x) as x→∞.

3.1.3 Vague Convergence

In this section we introduce the weak convergence of probability measures on metric

spaces. Since the results will be used on random vectors, we use Rd as the metric

space and give the definitions. In general, Rd can be replaced by any locally compact

topological space with a countable base.

Definition 3.1.9 (Radon Measure on Rd) A measure µ : E → [0,∞] is a map

defined on E ⊂ Rd such that

1. µ(∅) = 0 and µ(A) ≥ 0 for all A ∈ E .

2. If {An, n = 1, 2, . . .} are mutually exclusive sets in E , then the σ-additivity property

holds:

µ (∪∞i=1Ai) =
∞∑
i=1

µ(Ai).

The measure µ is called Radon if µ(K) <∞ for any compact set K ⊂ Rd.

Define M+(Rd) := {µ : µ is a non-negative Radon measure on E}, and C+
K(Rd) :=

{f : f is continuous and positive with compact support on Rd}, where a function with

compact support vanishes outside of a compact set.
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Definition 3.1.10 Suppose that µn ∈M+(Rd), n ∈ N. If for all f ∈ C+
K(Rd) we have

µn(f) :=

∫
Rd
f(x)µn(dx)→ µ0(f) :=

∫
Rd
f(x)µ0(dx) as n→∞, (3.1.15)

then we say that µn converges vaguely to µ0, written µn
v→ µ0.

For the regular variation of distribution functions, the following theorem is important.

The generalization to higher dimensions will be given in the next section.

Theorem 3.1.11 Let X be a non-negative random variable with d.f. F . The following

statements are equivalent:

1. F̄ ∈ RV−α, where α > 0 is the heavy-tail index.

2. There exists a sequence {bn} with bn →∞ such that

nF̄ (bnx)→ x−α, x > 0, as n→∞. (3.1.16)

3. There exists a sequence {bn} with bn →∞ such that

µn(·) := nPr

{
X

bn
∈ ·
}

v→ να(·), as n→∞ (3.1.17)

in M+(0,∞], where να(x,∞] = x−α.

3.2 Multivariate Regular Variation

Here we discuss the regular variation of functions and measures in high dimensions. The

goal is to generalize the results of Theorem 3.1.11.
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A set C ∈ Rd is called a cone if for any x ∈ C and any t > 0, tx ∈ C. Suppose that

1 = (1, . . . , 1) ∈ C and h ≥ 0 is a measurable function defined on C. Then h is said to

be multivariate regularly varying (MRV) with limit function λ(x) > 0 if

lim
t→∞

h(tx)

h(t1)
= λ(x), for all x ∈ C. (3.2.1)

One of the restriction arguments for regular variation is that the sets involved (cones)

need to be bounded away from the origin. This is satisfied when we are focusing on the

tail probabilities, which consider the probability of a neighborhood of infinity. However,

we also need the neighborhoods of infinity to be relatively compact sets (with no mass

on the boundary). By means of the one-point uncompactification, we can make semi-

infinite intervals compact. Suppose that E is a compact set and x ∈ E. The compact

sets of E\{x} are the compact sets K ⊂ E such that x /∈ K. In the following theorem,

we use the punctured space with a one-point uncompactification Rd\{0}. More detail

and equivalent properties are given in [13, 31, 32].

Theorem 3.2.1 (Multivariate Regular Variation) Let F be the distribution function of

a random vector X, then the following statements are equivalent:

1. F is an MRV distribution.

2. There exists a Radon measure µ ∈M+(Rd\{0}), called the intensity measure, and

a common normalization sequence {bn} with bn →∞ such that

nPr

{
X

bn
∈ ·
}

v→ µ(·), n→∞. (3.2.2)

3. There exists a Radon (intensity) measure µ on Rd\{0} such that

lim
t→∞

1− F (tx)

1− F (t1)
= lim

t→∞

Pr{X/t ∈ [0, x]c}
Pr{X/t ∈ [0, 1]c}

= µ([0, x]c), (3.2.3)
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for all continuous points x of µ, where µ([0, x]c) = c
∫

Sd−1
+

max1≤j≤d (uj/xj)
α S(du)

for some constant c and a probability measure S on Sd−1
+ := {x ∈ Rd

+ : ||x|| = 1}.

4. There exists a Radon (intensity) measure µ on Rd\{0} such that for every Borel

set B ⊂ Rd\{0} bounded away from the origin that satisfies µ(∂B) = 0, we have

lim
t→∞

Pr{X ∈ tB}
Pr{||X|| > t}

= µ(B). (3.2.4)

Remark 3.2.2 The intensity measure µ in (3.2.4) depends on the choice of norm || · ||,

but the intensity measures for any two norms are proportional, thus equivalent. If X is

MRV with µ([0, 1]c) > 0, where [0, 1]c denotes the complement of [0, 1] in Rd
, then for

every relatively compact set B ⊂ Rd\{0} with µ(∂B) = 0, we have

lim
t→∞

Pr{X ∈ tB}
Pr{X ∈ t[0, 1]c}

= µ̃(B), (3.2.5)

where µ̃(B) = µ(B)/µ([0, 1]c).

For any non-negative MRV random vector X, its non-degenerate univariate margins

Xi have regularly varying right tails. All the extremal dependence information of an

MRV vector X is encoded in the intensity measure µ, which can be further decomposed

into the rank-invariant tail dependence and marginal heavy-tail index using the copula

approach. The next theorem gives a property of random vectors with MRV tails when

multiplied by a thin-tailed scalar random variable. We will need this result in Section

4.1.

Theorem 3.2.3 Suppose that X is a non-negative random vector satisfying (3.2.2)

with exponent of variation −α. Let Y ≥ 0 be a random variable with a moment greater
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than α, that is, ∃ ε > 0 such that the expected value E(Y α(1+2ε)) <∞. Then

nPr

{
YX

bn
∈ ·
}

v→ E(Y α)µ.

In particular, if d = 1, we have

lim
n→∞

Pr{Y Z > x}
Pr{Z > x}

= E(Y α).

The following example shows that for an elliptical random vector X which has the

stochastic representation X
d
= µ + RAU given in (2.2.25), X is MRV if and only if R

has a regularly varying right tail. More detail can be found in [17, 33].

Example 3.2.4 Assume that X
d
= µ + RAU ∼ Ed(µ,Σ, ψ) and each element of Σ is

positive. If R has a regularly varying right tail with heavy-tail index α > 0, then the

upper and lower tail dependence parameter between Xi and Xj is given by

λL(Xi, Xj) = λU(Xi, Xj) =

∫ π/2
π/2−arcsin ρij

cosα(t) dt∫ π/2
0

cosα(t) dt
, (3.2.6)

where ρij is the (i, j)th element of the correlation matrix [∆(Σ)]−1Σ[∆(Σ)]−1 and

∆(Σ) := D[
√
σ11, . . . ,

√
σdd].

3.3 Tail Dependence of MRV Distributions

In this section we derive the main result of this dissertation from Theorem 3.2.1. Using

the intensity measure we are able to calculate tail dependence functions without taking

the marginal transforms required for the copula method.

Theorem 3.3.1 Consider a non-negative random vector X = (X1, . . . , Xd) with MRV

d.f. F and continuous margins F1, . . . , Fd. Let CF and µ denote, respectively, the copula
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and the intensity measure of F . If the margins are tail equivalent (i.e. F̄i(x)/F̄j(x)→ 1

as x→∞ for any i 6= j), then the upper tail dependence function b∗( · ;CF ) exists and

1. b∗(w;CF ) =
µ(
Qd
i=1[w

−1/α
i ,∞])

µ([1,∞]×Rd−1
+ )

and a∗(w;CF ) =
µ((
Qd
i=1[0,w

−1/α
i ])c)

µ(([0,1]×Rd−1
+ )c)

;

2. µ([w,∞])
µ([0,1]c)

=
b∗((w−α1 ,...,w−αd );CF )

a∗((1,...,1);CF )
, and µ([0,w]c)

µ([0,1]c)
=

a∗((w−α1 ,...,w−αd );CF )

a∗((1,...,1);CF )
.

Proof. Since each Fi, i ∈ I, is regularly varying, from (3.1.2) and (3.1.1) we have that

F̄i(x) = Li(x)/xα for x ≥ 0. To estimate F̄−1
i (wiu) when u → 0+ for fixed wi > 0,

consider

F̄i(w
1/α
i x) =

Li(w
1/α
i x)

wixα
= w−1

i F̄i(x)gi(wi, x),

where gi(wi, x) := Li(w
1/α
i x)/Li(x) → 1 as x → ∞. Substitute F̄i(x) = wiu into above

expression and take F̄−1
i on both sides, we obtain that

F̄−1
i (wiu) = w

−1/α
i F̄−1

i (ugi(wi, F̄
−1
i (wiu))).

Asymptotically, F̄−1
i (wiu) ≈ w

−1/α
i F̄−1

i (u) as u→ 0+.

For any fixed w = (w1, . . . , wd) with wi > 0, i ∈ I, consider

b∗(w;CF ) = lim
u→0+

Pr{Fi(Xi) > 1− wiu,∀i ∈ I}
Pr{F1(X1) > 1− u}

= lim
u→0+

Pr{Xi > F̄i
−1

(wiu),∀i ∈ I}
Pr{X1 > F̄1

−1
(u)}

= lim
u→0+

Pr{Xi > w
−1/α
i F̄−1

i (ugi(wi, F̄
−1
i (wiu))),∀i ∈ I}

Pr{X1 > F̄1
−1

(u)}
. (3.3.1)

Since F̄i(x)/F̄1(x)→ 1 as x→∞, we have from Proposition 3.1.8 that F̄i
−1

(u)/F̄1
−1

(u)→

1 as u→ 0+. For any small ε > 0, when u is sufficiently small,

1− ε < gi(wi, F̄
−1
i (wiu)) < 1 + ε, for all i ∈ I.

Thus, when u is sufficiently small,

F̄−1
i (u(1− ε))
F̄1
−1

(u)
≥ F̄−1

i (ugi(wi, F̄
−1
i (wiu)))

F̄1
−1

(u)
≥ F̄−1

i (u(1 + ε))

F̄1
−1

(u)
. (3.3.2)
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Since F̄1
−1

(u) is regularly varying at 0, or more precisely, F̄1
−1

(uc)/F̄1
−1

(u)→ c−1/α as

u→ 0+ for any c > 0, then by taking the limits in (3.3.2) we have

(1− ε)−1/α ≥ F̄−1
i (ugi(wi, F̄

−1
i (wiu)))

F̄1
−1

(u)
≥ (1 + ε)−1/α, as u→ 0+,

for any small ε > 0. That is, when u is sufficiently small,

(1− ε)−1/αF̄1
−1

(u) ≥ F̄−1
i (ugi(wi, F̄

−1
i (wiu))) ≥ (1 + ε)−1/αF̄1

−1
(u), ∀ε > 0, i ∈ I.

Combining these inequalities with (3.3.1), then for any ε > 0 we have

lim
u→0+

Pr{Xi > w
−1/α
i (1− ε)−1/αF̄1

−1
(u),∀i ∈ I}

Pr{X1 > F̄1
−1

(u)}

≤ b∗(w;CF ) ≤ lim
u→0+

Pr{Xi > w
−1/α
i (1 + ε)−1/αF̄1

−1
(u),∀i ∈ I}

Pr{X1 > F̄1
−1

(u)}
,

which implies, after substituting t = F̄1
−1

(u),

b∗(w;CF ) = lim
t→∞

Pr{Xi > w
−1/α
i t, i ∈ I}

Pr{X1 > t}
. (3.3.3)

Set A =
∏d

i=1[w
−1/α
i ,∞] and B = [1,∞]× Rd−1

+ , then (3.2.4) implies

b∗(w;CF ) =
µ(A)

µ(B)
=
µ(
∏d

i=1[w
−1/α
i ,∞])

µ([1,∞]× Rd−1

+ )
.

Similar to (3.3.1), it follows from (2.2.16) that

a∗(w;CF ) = lim
u→0+

Pr{Fi(Xi) > 1− wiu,∃i ∈ I}
Pr{F1(X1) > 1− u}

= lim
u→0+

Pr{Xi > w
−1/α
i F̄−1

i (ugi(wi, F̄
−1
i (wiu))),∃i ∈ I}

Pr{X1 > F̄1
−1

(u)}
.

Borrowing from the derivation of (3.3.3) then using (3.2.4), we have

a∗(w;CF ) = lim
t→∞

Pr{Xi > w
−1/α
i t, ∃i ∈ I}

Pr{X1 > t}
=
µ((
∏d

i=1[0, w
−1/α
i ])c)

µ([1,∞]× Rd−1

+ )
.



39

The expressions in part 2 can be easily obtained from part 1. �

Observe that the rescaled intensity measure µ̃(B) = µ(B)/µ([0,1]c) in (3.2.5) satisfies

that µ̃(([0, 1])c) = 1. The intensity measures µ and µ̃ are uniquely determined by each

other. In addition, Theorem 3.2.1 shows that the upper tail dependence function and the

intensity measure for multivariate regular variation are also uniquely determined by each

other. Therefore, the tail dependence function and intensity measure are equivalent in

the sense that the Radon measure generated by the tail dependence function is a rescaled

version of the intensity measure with marginal scaling functions being of Pareto type. In

contrast, the tail dependence function describes the rank-invariant extremal dependence

extracted from the intensity measure.

In general, F̄i(x)/F̄j(x) → rij as x → ∞ for any i 6= j. If 0 < rij < ∞, then Theo-

rem 3.3.1 still holds by properly adjusting the marginal scaling constants; for example,

substitute Xi by c
1/α
1i Xi for i = 2, . . . , d. If rij = 0 or rij =∞, then some margins have

heavier tails than others and more subtle separate marginal scalings are needed to derive

the limiting results.
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Chapter 4

Applications

4.1 Heavy-Tailed Scale Mixtures of Multivariate Dis-

tributions

One broad family of multivariate distributions has the form:

(X1, . . . , Xd) := (RT1, . . . , RTd), (4.1.1)

where (T1, . . . , Td) has the joint distribution G(t1, . . . , td) with some finite moments, and

the scale variable R, independent of (T1, . . . , Td), has a regularly varying right tail at

infinity with survival function of form (3.1.2). We call such distributions “heavy-tailed

scale mixtures”. The class of distributions of (4.1.1) has a variety of interpretations in

different applications, including, for example, multivariate elliptical distributions and

various multivariate Pareto distributions as special cases.

As we showed in Theorem 3.3.1, the upper tail dependence function represents a re-

scaled version of the intensity measure. The link presented in Theorem 3.3.1 allows us on

one hand to develop (via tail dependence functions) tractable parametric models for the

intensity measure. On the other hand we can derive (via multivariate regular variation)

tail dependence functions in the situations where copulas have neither explicit analytic

expressions nor closure properties for their conditional distributions. We illustrate the

latter part in this section for the random vectors of the form (4.1.1). We also give a
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monotonicity property of the tail dependence parameters with respect to the heavy-tail

indices.

4.1.1 Tail Dependence

Let Ti+ := Ti∨0, i ∈ I, and assume in this section that 0 < E(Tα+ε
i+ ) <∞ for some ε > 0.

Since R is regularly varying with survival function (3.1.2), then by Theorem 3.2.3, RTi+,

i ∈ I, is also regularly varying with survival function Pr{RTi+ > r} = E(Tαi+)Li(r)/r
α,

for some L such that Li(r)/Lj(r)→ 1 as r →∞ for i 6= j. Consider

(Y1, . . . , Yd)
T := D[(E(Tα1+))−1/αT1+, . . . , (E(Tαd+))−1/αTd+](R, . . . , R)T . (4.1.2)

Since Yi is strictly increasing in Xi ≥ 0, i ∈ I, (Y1, . . . , Yd) in (4.1.2) and (X1, . . . , Xd) in

(4.1.1) have the same upper tail dependence function. It can be shown that (Y1, . . . , Yd)

is regularly varying, and Pr{Yi > r}/Pr{Yj > r} → 1 as r → ∞. Thus, by Theorem

3.3.1, the expression of the upper tail dependence function of (X1, . . . , Xd) reduces to

the determination of the intensity measure of (Y1, . . . , Yd) in (4.1.2).

Proposition A.1 in [5] presents a general formula for the intensity measure of a random

affine transform of a random vector that is regularly varying. Applying this formula to

(4.1.2), the intensity measure µ of (4.1.2) is given by, for any Borel measurable subset

B ⊆ Rd

+,

µ(B) = E(ν(D[(E(Tα1+))1/αT−1
1+ , . . . , (E(Tαd+))1/αT−1

d+ ](B))) (4.1.3)

where ν is the intensity measure of (R, . . . , R). Using (3.2.3), we have for any non-

negative w = (w1, . . . , wd),

ν([0, w]c) = lim
t→∞

Pr{R > t ∧di=1 wi}
Pr{R > t}

= ∨di=1w
−α
i .



42

Using the inclusion-exclusion relation and the fact that
∑
∅6=S⊆I(−1)|S|−1∨i∈Swi = ∧i∈Iwi

for all non-negative w1, . . . , wd, we also have

ν([w,∞]) = ∧di=1w
−α
i .

Substitute these two expressions into (4.1.3), then

µ([0, w]c) = E

(
d∨
i=1

w−αi Tαi+
E(Tαi+)

)
, and µ([w,∞]) = E

(
d∧
i=1

w−αi Tαi+
E(Tαi+)

)
,

which lead to the expression of the upper tail dependence function.

In summary, we give the following theorem.

Theorem 4.1.1 Consider a random vector X = (RT1, . . . , RTd) in the form of (4.1.1)

with d.f. F and continuous margins F1, . . . , Fd. Assume that 0 < E(Tα+ε
i+ ) <∞, i ∈ I,

for some ε > 0, then the upper tail dependence and exponent functions are given by

b∗(w;CF ) = E

(
d∧
i=1

wiT
α
i+

E(Tαi+)

)
and a∗(w;CF ) = E

(
d∨
i=1

wiT
α
i+

E(Tαi+)

)
.

Applying Theorem 4.1.1 to (2.2.15) and (2.2.17), we obtain the following corollary.

Corollary 4.1.2 Making the same assumptions as Theorem 4.1.1, the upper tail and

extremal dependence parameters are given by

τJ =
E
(∧d

i=1 (E(Tαi+))−1Tαi+

)
E
(∧

i∈J (E(Tαi+))−1Tαi+
) for ∅ 6= J ⊆ I and γ =

E
(∧d

i=1 (E(Tαi+))−1Tαi+

)
E
(∨d

i=1 (E(Tαi+))−1Tαi+

) .
We illustrate our main results using multivariate elliptical distributions. Let Σ be a

d × d positive semi-definite matrix, and U = (U1, . . . , Um) be uniformly distributed on

the unit sphere in Rm. Consider the following stochastic representation,

(X1, . . . , Xd)
T = (µ1, . . . , µd)

T +RA(U1, . . . , Um)T ,
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where A is an d ×m matrix with AAT = Σ and R is a non-negative random variable

independent of U . By Theorem 2.2.14, (X1, . . . , Xd) has an elliptical distribution.

Let (T1, . . . , Td)
T = A(U1, . . . , Um)T , then we have

(X1, . . . , Xd) = (µ1, . . . , µd) +R(T1, . . . , Td),

which is a scale mixture of (T1, . . . , Td).

In the bivariate case, let

Σ =

 σ2
11 σ12

σ12 σ2
22

 and A =

 σ11 0

σ12

σ11
σ22

√
1− ρ2

 ,
where ρ = σ12

σ11σ22
. Thus,

T1 = σ11U1, T2 =
σ12

σ11

U1 + σ22

√
1− ρ2U2.

Observe that, marginally, RT1 and RT2 have one-dimensional elliptical distributions,

and σ−1
11 RT1 and σ−1

22 RT2 have the same distribution ([11] Chapter 2). Assume that

R has a regularly varying right tail with heavy-tail index α > 0. Since (X1, X2) and

(RT1, RT2) have the same tail dependence parameter, we have

τ1 = lim
t→∞

Pr{σ−1
22 RT2 > t | σ−1

11 RT1 > t}.

Obviously, (T1, T2) has a bounded support, thus it follows from Corollary 4.1.2 that

τ1 =
E(σ−1

11 T1+ ∧ σ−1
22 T2+)α

E(σ−1
11 T1+)α

=
E(U1+ ∧ (ρU1 +

√
1− ρ2U2)+)α

E(U1+)α
, (4.1.4)

where U1+ := U1 ∨ 0 and (ρU1 +
√

1− ρ2U2)+ := (ρU1 +
√

1− ρ2U2) ∨ 0.

If ρ = 1, then trivially τ1 = 1. Suppose that ρ < 1. Transferring to polar coordinates,

we have

U1 = cos Θ, U2 = sin Θ, and ρU1 +
√

1− ρ2U2 = sin(Θ + θ0),
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where Θ is uniformly distributed on [0, 2π] and θ0 = tan−1 ρ√
1−ρ2

. Clearly,

E(Uα
1+) =

1

2π

∫ π
2

−π
2

cosα θdθ =
1

π

∫ π
2

0

cosα θdθ =
1

π

∫ 1

0

uα√
1− u2

du.

To calculate the quantity in the numerator of (4.1.4), consider the boundary case when

u1 = ρu1 +
√

1− ρ2u2,

which leads to the solution θ1 = tan−1 u2

u1
= tan−1 1−ρ√

1−ρ2
. That is,

cos θ ≥ sin(θ + θ0) ≥ 0 if − θ0 ≤ θ ≤ θ1

0 ≤ cos θ ≤ sin(θ + θ0) if θ1 ≤ θ ≤ π
2
.

Simple trigonometric arguments show that θ0 + 2θ1 = π
2
. Thus,

E(U1+ ∧ (ρU1 +
√

1− ρ2U2)+)α =
1

2π

∫ θ1

−θ0
sinα(θ + θ0)dθ +

1

2π

∫ π
2

θ1

cosα θdθ

=
1

2π

∫ π
2
−θ1

0

sinα θdθ +
1

2π

∫ π
2

θ1

cosα θdθ.

Since cos θ1 =

√
1−ρ2√
2−2ρ

=
(

1+ρ
2

) 1
2 , we obtain that

E(U1+ ∧ (ρU1 +
√

1− ρ2U2)+)α =
1

π

∫ ( 1+ρ
2 )

1
2

0

uα√
1− u2

du.

Hence,

τ1 =

∫ ( 1+ρ
2 )

1
2

0
uα√
1−u2du∫ 1

0
uα√
1−u2du

,

which is identical to the parameter obtained in [17, 33].

4.1.2 Monotonicity

An intriguing issue is whether or not these tail dependence parameters are monotone in

response to changes in the heavy-tail index α. It was demonstrated by the numerical
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results in [33] that the tail dependence parameter τ1 is decreasing in α. We show that

this is indeed the case using the ratio-of-moments expressions obtained in Corollary

4.1.2.

A non-negative random variable X is said to be smaller than a non-negative random

variable Y in the hazard rate ordering, denoted by X ≤hr Y , if the hazard rate of X is

larger than that of Y . A detailed discussion on the hazard rate ordering can be found,

for example, in Chapter 1 of [34], from which, the following result also holds.

Lemma 4.1.3 Let X and Y be non-negative random variables. If X ≤hr Y , then EXα

EY α

is decreasing in α.

Proof. Theorem 1.B.12 in [34] states that if X ≤hr Y , then

Eg2(X)Eg1(Y ) ≤ Eg1(X)Eg2(Y ), (4.1.5)

for all non-negative real functions g1 and g2 satisfying that g1(·) is increasing and g2(·)
g1(·) is

increasing. Consider the situation that α1 ≤ α2, g1(x) = xα1 and g2(x) = xα2 for x ≥ 0.

Then (4.1.5) reduces to

EXα2EY α1 ≤ EXα1EY α2 .

The monotonicity of EXα

EY α
follows.

Proposition 4.1.4 Let RTi be the ith component of (4.1.1), where Ti and R satisfy

the regularity conditions specified in Theorem 4.1.2. Suppose that E(Tαi+) = E(Tαj+),

i 6= j.

1. If ∧di=1Ti+ ≤hr ∧i∈JTi+, then τJ is decreasing in α.

2. If ∧di=1Ti+ ≤hr ∨di=1Ti+, then γ is decreasing in α.
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Proof. If E(Tαi+) = E(Tαj+), i 6= j, then from Corollary 4.1.2,

τJ =
E(∧di=1Ti+)α

E(∧i∈JTi+)α
, for all ∅ 6= J ⊂ I, and γ =

E(∧di=1Ti+)α

E(∨di=1Ti+)α
.

The monotone properties follow from Lemma 4.1.3.

Notice that the inequality (4.1.5) resembles the property of total positivity of order

2, and in fact, Proposition 4.1.4 can be established directly by using the theory of total

positivity.

To show that τ1 of a bivariate elliptical distribution is decreasing in α, we need, by

virtue of Lemma 4.1.3, to establish that U1+ ≥hr U1+ ∧ (ρU1 +
√

1− ρ2U2)+. From [34]

(condition 1.B.3 in page 16), it is sufficient to show that

Pr{U1+ > t}
Pr{U1+ ∧ (ρU1 +

√
1− ρ2U2)+ > t}

is increasing in t ∈ [0, s], (4.1.6)

where s ≤ 1 is the right endpoint of the support of U1+ ∧ (ρU1 +
√

1− ρ2U2)+. Again,

using the polar coordinate system, we have for any t ∈ [0, s],

Pr{U1+ > t} =
cos−1 t

π
,

Pr{U1+ ∧ (ρU1 +
√

1− ρ2U2)+ > t} =
(cos−1 t− sin−1 t)+

2π
.

It is easy to verify that 1
2

cos−1 t
cos−1 t−sin−1 t

is increasing in t ∈ [0, s], and then (4.1.6) follows.

Therefore, τ1 is decreasing in α.

4.2 Tail Approximation of Value-at-Risk

In this section a general tail approximation method is given for the Value-at-Risk of any

norm of any random vector with a multivariate regularly varying distribution. The main

result is derived using the equivalence of the intensity measure of multivariate regular
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variation and the tail dependence function of the underlying copula (Theorem 3.3.1). In

particular, we extend the tail approximation discussed in [10] for Archimedean copulas.

The explicit tail approximations for random vectors with Archimedean copulas and

Pareto distributions of Marshall-Olkin type are also presented to illustrate the results.

The results obtained in the section are also included in [36].

Value-at-Risk (VaR) is one of the most widely used risk measures in financial risk

management [28]. Given a non-negative random variable X representing loss, the VaR

at confidence level p, 0 < p < 1, is defined as the p-th quantile of the loss distribution:

VaRp(X) := inf{t ∈ R : Pr{X > t} ≤ 1− p}.

In risk analysis for multivariate portfolios, we are more interested in calculating the

VaR for aggregated data than for a single loss variable. For a non-negative random

loss vector X = (X1, . . . , Xd) representing various losses in a multivariate portfolio, we

need to calculate VaRp(||X||) where the norm || · || determines the manner in which

the data are aggregated. Calculating VaRp(||X||) is in general a difficult problem, but

the tail estimates for VaRp(||X||) as p → 1 are often tractable for various multivariate

loss distributions. Good tail approximations of VaRp(||X||) as p → 1 can be used to

accurately estimate the risk, as measured by the VaR, for extreme losses.

Tail asymptotics for VaRp(
∑d

i=1Xi), as p→ 1, for loss vectors with Archimedean cop-

ulas and regularly varying margins are obtained in [1, 2, 3, 10, 22]. These tail estimates

for the VaR of sums are, asymptotically, linear functions of the VaR of the univariate

margin, with a proportionality constant that depends on the tail dependence of the

underlying Archimedean copula and the marginal heavy-tail index. These asymptotic

relations can also be used to analyze the structural properties of the VaR of aggregated
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data from multivariate portfolios, such as the subadditivity properties of the VaR and

how the dependence and marginal parameters would affect extreme risks. In this sec-

tion, we develop a general and more unified approach to derive the tail asymptotics of

VaRp(||X||), as p→ 1, for loss random vectors that have multivariate regularly varying

distributions. Our method is based on the link between multivariate regular variation

and tail dependence functions of copulas. The tail estimates previously obtained in the

literature can be obtained from our tail asymptotics as special cases.

Consider a non-negative MRV random vector X = (X1, . . . , Xd) with intensity mea-

sure µ and margins F1, . . . , Fd that are tail equivalent with heavy-tail index β > 0.

Without loss of generality, we use F1 to define the following limit:

q||·||(β, b
∗) := lim

t→∞

Pr{||X|| > t}
F 1(t)

, (4.2.1)

where b∗ denotes the upper tail dependence function of X. This limiting constant

depends on the intensity measure µ, which in turn depends on the heavy-tail index β,

tail dependence function b∗ and norm || · ||.

Theorem 4.2.1 If margins F1, . . . , Fd, d ≥ 2, are continuous and the partial derivative

∂db∗(v)/∂v1 · · · ∂vd exists almost everywhere, then q||·||(β, b
∗) has the following represen-

tation

q||·||(β, b
∗) = (−1)d

∫
W

∂db∗(w−β)

∂w1 · · · ∂wd
dw =

∫
W−1/β

∂db∗(v)

∂v1 · · · ∂vd
dv, (4.2.2)

where W = {w ≥ 0 : ||w|| > 1} and W−1/β = {v ≥ 0 : ||v−1/β|| > 1}.

Proof. It follows from (3.2.4) that

Pr{||X|| > t}
Pr{X1 > t}

=
Pr{X ∈ tW}
Pr{X ∈ tW1}

→ µ(W )

µ(W1)
, as t→∞,
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where W = {w : ||w|| > 1}, and W1 = {w : w1 > 1}. Let µ̃(·) := µ(·)/µ(W1),

then by Theorem 3.3.1 (1), µ̃(·) is the measure generated by b∗(w−β). Since margins

are continuous, µ̃(·) is absolutely continuous with respect to the Lebesgue measure, it

follows from the Radon-Nikodym Theorem that

q||·||(β, b
∗) =

µ(W )

µ(W1)
=

∫
W

µ̃′(w) dw,

where µ̃′(w) = (−1)d dd

dw1···dwd
µ([w,∞])

µ([1,∞]×Rd−1
+ )
≥ 0 is the Radon-Nikodym derivative of the

intensity measure µ̃ with respect to the Lebesgue measure. Therefore, using Theorem

3.3.1 (1) we obtain the first expression in (4.2.2). The second expression in (4.2.2) follows

upon substitution. �

Remark 4.2.2 1. It follows from the non-negativity of the Radon-Nikodym deriva-

tive that

0 ≤ (−1)d
dd

dw1 · · · dwd
µ([w,∞])

µ([1,∞]× Rd−1

+ )
=

∂db∗(v)

∂v1 · · · ∂vd
, with vi = w−βi , 1 ≤ i ≤ d,

which implies that ∂db∗(v)/∂v1 · · · ∂vd ≥ 0 for all v ≥ 0. It is easy to see that

W−1/β ⊆ W−1/β′ for any β ≤ β′, and thus by (4.2.2), q||·||(β, b
∗) is non-decreasing

in β. This extends Theorem 2.5 in [2] to multivariate regular variation with respect

to any norm.

2. If we choose || · || to be the `∞-norm, i.e., ||w|| = max{wi, i = 1, . . . , d}, then

W−1/β = {w ≥ 0 : ∧di=1wi < 1}. In this case, q||·||(β, b
∗) is independent of β and

depends on the tail dependence function only.

The limiting proportionality constant q||·||(β, b
∗) takes particularly tractable forms

for Archimedean copulas as shown in the following corollaries.
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Corollary 4.2.3 (Archimedean Copula) Consider a random vector (X1, . . . , Xd)

which satisfies the assumptions of Theorem 4.2.1. Assume that (X1, . . . , Xd) has an

Archimedean copula C(u1, . . . , ud) = ψ−1(
∑d

i=1 ψ(ui)), where the generator ψ is regu-

larly varying at 1 with heavy-tail index α > 0. Then

q||·||(β, b
∗) =

∫
W−1/β

∂d

∂v1 · · · ∂vd

∑
S⊆I,S 6=∅

[
(−1)|S|−1

(∑
j∈S

vαj
) 1
α

]
dv1 · · · dvd, (4.2.3)

where W−1/β = {v : ||v−
1
β || > 1}.

Proof. From [19], the upper tail dependence function b∗(v) can be expressed by the

upper exponent functions of the margins:

b∗(v) =
∑

S⊆I,S 6=∅

(−1)|S|−1a∗S(vi, i ∈ S),

where a∗S(vi, i ∈ S) = limvi→0,i/∈S a
∗(v) is the upper exponent function of the margin of

C with component indices in S. It is given in [15] that the upper exponent function of

Archimedean copula is a∗(v) = (
∑d

j=1 v
α
j )

1
α . Therefore, a∗S(vi, i ∈ S) = (

∑
j∈S v

α
j )

1
α and

the result follows. �

Corollary 4.2.4 (Archimedean Survival Copula) Consider a random vector

(X1, . . . , Xd) satisfying the assumptions of Theorem 4.2.1. Assume that (−X1, . . . ,−Xd)

has an Archimedean copula C(u1, . . . , ud) = φ−1(
∑d

i=1 φ(ui)), where the generator φ is

regularly varying at 0 with heavy-tail index α > 0. Then

q||·||(β, b
∗) =

∫
B

∂d

∂x1 · · · ∂xd
( d∑
i=1

x−αβi

)− 1
α dx1 · · · dxd, (4.2.4)

where B = {x : ||x−1|| > 1}.
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Proof. It is given in [19] that the upper tail dependence function of (−X1, . . . ,−Xd) is

b∗(w) = (
∑d

j=1w
−α
j )−

1
α . Therefore,

q||·||(β, b
∗) = (−1)d

∫
W

∂d

∂w1 · · · ∂wd
b∗(w−β) dw = (−1)d

∫
W

∂d

∂w1 · · · ∂wd
( d∑
j=1

wαβj
)− 1

α dw

where W = {w : ||w|| > 1}. If we substitute x−1
i for wi, then we obtain (4.2.4). �

Remark 4.2.5 1. In Corollary 4.2.3, if we choose || · || to be the `∞-norm, then the

explicit expression of the limiting constant can be easily computed for Archimedean

copulas. Take the bivariate case for example,

q||·||(β, b
∗) =

∫
W−1/β

∂2

∂v1∂v2

[v1 + v2 − (vα1 + vα2 )
1
α ] dv1dv2

where W−1/β = {v : v
− 1
β

1 ∨ v
− 1
β

2 > 1} = {v : 0 < v1 ∧ v2 < 1}. Hence,

q||·||(β, b
∗) =

(∫ ∞
0

∫ 1

0

+

∫ 1

0

∫ ∞
0

−
∫ 1

0

∫ 1

0

)
∂2

∂v1∂v2

[v1 + v2 − (vα1 + vα2 )
1
α ] dv1dv2

= 2[v1 + v2 − (vα1 + vα2 )
1
α ] |1v1=0|∞v2=0 −[v1 + v2 − (vα1 + vα2 )

1
α ] |1v1=0|1v2=0

= 2
1
α

which only depends on the tail dependence of the Archimedean copula.

2. In Corollary 4.2.4, if we choose || · || to be the `1-norm, i.e., ||x|| =
∑d

i=1 xi for

non-negative xi, i = 1, . . . , d, then the result is reduced to the limiting constant

obtained in Proposition 2.2 of [10]. Using the `1-norm is the most common way

to aggregate data. The monotonicity property of q||·||(β, b
∗) with respect to α for

d ≥ 2 is also given in [10]: q||·||(β, b
∗) is increasing in α when β > 1; q||·||(β, b

∗) is

decreasing in α when β < 1; q||·||(β, b
∗) = d when β = 1. It is further shown that

for α > 0 and β > 1 (β < 1), VaR is asymptotically subadditive (or superadditive),
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i.e., VaRp(
∑d

i=1Xi) <
∑d

i=1 VaRp(Xi) (or VaRp(
∑d

i=1Xi) >
∑d

i=1 VaRp(Xi)) for

p near 1.

Heavy-tailed scale mixtures of multivariate exponential distributions also have ex-

plicit tail dependence functions [26]. Thus the limiting constant q||·||(β, b
∗) can be cal-

culated using Theorem 4.2.1 for these distributions. Consider the following multivariate

Pareto distribution of Marshall-Olkin type:

X = (X1, . . . , Xn) =

(
T1

Z
, . . . ,

Tn
Z

)
, (4.2.5)

where Z follows a gamma distribution with shape parameter (Pareto index) β > 0 and

scale parameter 1. The random vector (T1, . . . , Tn), independent of Z, has a multivariate

Marshall-Olkin distribution [27]. Obtaining the limit q||·||(β, b
∗) for such X is straight-

forward using Theorem 3.1 of [26]. Here we give the bivariate case as an example.

Example 4.2.6 (Bivariate Pareto Distribution of Marshall-Olkin Type)

The Marshall-Olkin distribution with rate parameters {λ1, λ2, λ12} is the joint dis-

tribution of T1 := E1 ∧ E12, T2 := E2 ∧ E12, where {ES, S ⊆ {1, 2}} is a sequence of

independent exponentially distributed random variables, with ES having mean 1/λS. In

the reliability context, T1, T2 can be viewed as the lifetime of two components operating

in a random shock environment where a fatal shock governed by the Poisson process

with rate λS destroys all the components with indices in S ⊆ {1, 2} simultaneously.

In credit-risk modeling, T1, T2 can be viewed as the time-to-default of various different

counterparties or types of counterparty, for which the Poisson shocks might be a variety

of underlying economic events [9].

Let R = 1/Z in (4.2.5), then R has an inverse gamma distribution with shape

parameter β > 0 and scale parameter 1. It is known that R is regularly varying with
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heavy-tail index β and its survival function is given by

F (r) = Pr{R > r} = 1−
Γ(β, 1

r
)

Γ(β)
, r > 0, β > 0,

where Γ(β, 1
r
) =

∫∞
1
r
tβ−1e−tdt is the upper incomplete gamma function and Γ(β) =∫∞

0
tβ−1e−tdt is the gamma function. The classical Breiman Theorem (see, e.g., [31])

implies that the i-th margin Xi in (4.2.5) is regularly varying with heavy-tail index β.

From [26], the bivariate distribution of (RT1, RT2) is regularly varying, and its upper

tail dependence function is

b∗(w1, w2) = E

(
w1T

β
1

E(T β1 )

∧ w2T
β
2

E(T β2 )

)
. (4.2.6)

Since Ti is exponentially distributed with mean 1/(λi + λ12) for i = 1, 2, we have

ET βi = β!(1/(λi + λ12))
β for any positive integer β, thus

b∗(w1, w2) =
1

β!
E[w

1/β
1 (λ1 + λ12)T1 ∧ w1/β

2 (λ2 + λ12)T2]
β.

Consider

Pr
{

[w
1/β
1 (λ1 + λ12)T1 ∧ w1/β

2 (λ2 + λ12)T2]
β > t

}
= Pr

{
(λ1 + λ12)T1 > (t/w1)

1
β , (λ2 + λ12)T2 > (t/w2)

1
β

}
= Pr

{
T1 > (λ1 + λ12)

−1(t/w1)
1
β , T2 > (λ2 + λ12)

−1(t/w2)
1
β

}
= e

−
 

λ1

(λ1+λ12)w
1/β
1

+
λ2

(λ2+λ12)w
1/β
2

+
λ12

(λ1+λ12)w
1/β
1 ∧(λ2+λ12)w

1/β
2

!
t
1
β

.
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Thus, for any positive integer β,

b∗(w1, w2) =
1

β!

∫ ∞
0

e
−
 

λ1

(λ1+λ12)w
1/β
1

+
λ2

(λ2+λ12)w
1/β
2

+
λ12

(λ1+λ12)w
1/β
1 ∧(λ2+λ12)w

1/β
2

!
t
1
β

dt

=
1

β!

∫ ∞
0

βsβ−1e
−
 

λ1

(λ1+λ12)w
1/β
1

+
λ2

(λ2+λ12)w
1/β
2

+
λ12

(λ1+λ12)w
1/β
1 ∧(λ2+λ12)w

1/β
2

!
s

ds

=

(
λ1

(λ1 + λ12)w
1/β
1

+
λ2

(λ2 + λ12)w
1/β
2

+
λ12

(λ1 + λ12)w
1/β
1 ∧ (λ2 + λ12)w

1/β
2

)−β
.

(4.2.7)

Observing that b∗ is differentiable almost everywhere, the limiting constant follows upon

substitution of b∗ into (4.2.2). �

Remark 4.2.7 In Example 4.2.6, if we set λ12 = 0, then Ti = Ei, i = 1, 2. In this

case, it is known that the survival copula of (RT1, RT2) is a bivariate Clayton copula.

On the other hand, equation (4.2.7) becomes b∗(w1, w2) = (w
−1/β
1 + w

−1/β
2 )−β. This is

the upper tail dependence function of (−X1,−X2) from the bivariate case of Corollary

4.2.4, where the dependence parameter is 1/β.

The next theorem, an application of Theorem 4.2.1, provides a method of obtaining

VaR approximations in higher dimensions based on VaR in one dimension.

Theorem 4.2.8 Consider a non-negative random vector X = (X1, . . . , Xd) with MRV

distribution function F and continuous margins F1, . . . , Fd, d ≥ 2. Assume that the

margins are tail equivalent with heavy-tail index β > 0, and the tail dependence function

b∗ > 0. Then

lim
p→1

VaRp(||X||)
VaRp(X1)

= q||·||(β, b
∗)

1
β . (4.2.8)
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Proof. Let G be the distribution function of ||X||. From (4.2.1), G(t)

F 1(t)
→ q||·||(β, b

∗) as

t → ∞, i.e. F 1(t) ≈ q||·||(β, b
∗)−1G(t), where ‘≈’ denotes tail equivalence. Hence, we

have t ≈ F
−1

1 (q||·||(β, b
∗)−1G(t)).

Define u := G(t). Then G
−1

(u) ≈ F
−1

1 (q||·||(β, b
∗)−1u). Since F1 is regularly varying

at ∞ with heavy-tail index β > 0, we have from Proposition 2.6 of [32] that F
−1

1 (t)

is regularly varying at 0, or more precisely, F
−1

1 (uc)/F
−1

1 (u) → c−
1
β as u → 0+ for

any c > 0. Thus F
−1

1 (q||·||(β, b
∗)−1u)/F

−1

1 (u) → q||·||(β, b
∗)

1
β . Therefore, G

−1
(u) ≈

q||·||(β, b
∗)

1
βF
−1

1 (u), i.e., limu→0+ G
−1

(u)/F
−1

1 (u) = q||·||(β, b
∗)

1
β . Replace u by 1 − p,

then we have (4.2.8). �

This result gives an asymptotic estimate of VaRp(||X||). Value at Risk does not

generally have a closed form expression. The closed forms of tail dependence functions

occur more often than for explicit copula expressions. This is because we can obtain tail

dependence functions from either explicit copula expressions or the closure properties

of the related conditional distributions whose parent distributions do not have explicit

copulas. Using Theorems 4.2.1 and 4.2.8, when the confidence level is close to 1 and the

tail dependence functions exist, we can take q||·||(β, b
∗)

1
βVaRp(X1) as an approximation

to the VaR of the normed (aggregated) loss. Explicit forms of VaR approximations for

Archimedean copulas and Pareto distributions of Marshall-Olkin type can be derived

directly from our results. As mentioned in Remark 4.2.5, the additivity properties of

VaR under Archimedean copulas depend on the heavy-tail index of the margins and the

copula generators. Whether similar structural properties hold for multivariate regular

variation and how they hold are topics worth further investigation.
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4.3 Simulations

For bivariate elliptical distributions, we proved in Section 4.1 that τ1 is always decreasing

in the heavy-tail index α. This property is illustrated in the following Example 4.3.1.

To generate an elliptical random vector X ∼ E3(0,Σ, ψ), we have the following steps:

• Generate a random variable R which follows the Pareto distribution with d.f.

F (x) = 1− 1
(1+x)α

, x > 0, α > 0.

• Generate a 3-dimensional random vector U which follows the uniform distribution

on the unit sphere. Specifically, we generate two random variables u, v which are

uniformly distributed on (0,1). Then let

U = (1− 2u, 2
√
u(1− u) cos(2πu), 2

√
u(1− u) sin(2πu)).

This method of generating uniformly distributed data points on a sphere is given

in [12]. Figure 1 below shows 1000 uniformly distributed data on the unit sphere.

• Take the Cholesky decomposition of Σ = AAT , where Σ is a given d × d matrix,

A is a d× d lower triangular matrix with positive diagonal entries.

• Set X = RT , where T = AU .

Example 4.3.1 Let Σ =


8 6 7

6 8 7

7 7 8

 . From (2.2.7) we have

τ1 =
E
(∧3

i=1 (E(Tαi+))−1Tαi+
)

E
(
(E(Tα1+))−1Tα1+

) .

It is verified in Figure 2 that τ1 is decreasing in α.
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Figure 1: 1000 uniformly distributed data points generated on a sphere

Figure 2: τ1 decreasing in α

For higher dimensional cases, we have obtained some numerical results. Here we give

two conjectures based on our simulation results.

Conjecture 4.3.2 For a 3-dimensional elliptical random vector, the upper tail depen-

dence parameter τ12 increases as σ12 decreases (compare Σ and Σ1 below); τ12 increases

as σ13 or σ23 increase (compare Σ and Σ2), where σij is the (i, j) element of Σ. This

phenomenon should be true in general for higher dimensions.

For example, let Σ =


6 4 1

4 4 1

1 1 2

, Σ1 =


6 3 1

3 4 1

1 1 2

 and Σ2 =


6 4 2

4 4 1

2 1 2

. From

Figure 3 we can see that τ12(Σ) < τ12(Σ1), τ12(Σ) < τ12(Σ2).
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Figure 3: Comparison on τ12

Figure 4: τJ decreasing in α

Conjecture 4.3.3 All the tail dependence parameters τJ are decreasing in the heavy

tail index α.

For example, choose the dispersion matrix as Σ =



8 6 6 5

6 8 7 6

6 7 8 3

5 6 3 8


for a 4-dimensional

elliptical distribution.

From Figure 4 we can see that the four upper tail dependence parameters (randomly

chosen from all possible τJ) are all decreasing in α.
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Chapter 5

Concluding Remarks

In this dissertation, we discussed the copula method and the theory of multivariate

regular variation. We studied the tail dependence of regularly varying distributions.

After giving the overview we investigated the relationships among copulas and regular

variation; leading to an equivalence of the two methods. Tail dependence is defined by

copulas, but the copula of a random vector is difficult to obtain in high dimensions. Using

the equivalence that we established, we are able to express tail dependence in terms of

the intensity measure which scales well with the dimension. In addition, we showed in

Chapter 4 that the general method developed in this dissertation is convenient in tail

analysis and has many applications. We gave explicit tail dependence expressions for

heavy-tailed scale mixtures of multivariate distributions such as elliptical distributions;

we also gave a tail approximation for high dimensional Value-at-Risk. These are new

contributions, among others in this dissertation, to probability and risk management.

Particularly, we note that the Archimedean copulas, which are widely used in financial

risk management, have tractable properties in many aspects.

We also investigated the monotonicity properties of tail dependence parameters with

respect to heavy-tail indices. This is useful because there exist methods for approxi-

mating the heavy tail parameters. Any monotonicity property will help determine the

tail behavior. However, this problem was not fully resolved. We gave two reasonable
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conjectures in the last section, based on simulation results. Moreover, the tail depen-

dence discussed in this dissertation does not depend on the order of the variables. For

example, the tail dependence of a number of stocks does not depend on how the stocks

are listed. There are other types of dependence based on the nature and cause. For

example, some dependence might be unidirectional [24]. There could be a causal link

between the variables so that one variable taking an extreme value will cause the other

variables to do so as well. Further research on these new topics is needed.
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