
A KNAPSACK-TYPE CRYPTOGRAPHIC SYSTEM

USING ALGEBRAIC NUMBER RINGS

By

NATHAN THOMAS MOYER

A dissertation submitted in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Mathematics

MAY 2010

ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the

dissertation of NATHAN THOMAS MOYER find it satisfactory and

recommend that it be accepted.

William A. Webb, Ph.D., Chair

Bala Krishnamoorthy, Ph.D.

Judith J. McDonald, Ph.D.

iii

A KNAPSACK-TYPE CRYPTOGRAPHIC SYSTEM USING

ALGEBRAIC NUMBER RINGS

Abstract

by Nathan Thomas Moyer, Ph.D.

Washington State University

May 2010

Chair: William A. Webb

Since the advent of the public-key cryptosystem, the search for a secure and effi-

cient scheme has been ongoing. One such system makes use of the classical knapsack

problem to implement security. Though very efficient, this system was shown to

be insecure. This paper aims to use the underlying knapsack protocol, without the

vulnerabilities of previous systems.

To achieve such a result, two methods of constructing privates weights and en-

coding knapsack messages are posited. The first utilizes a new scheme to uniquely

represent integers with recurrence sequences. The second uses specific congruence con-

ditions of the weights to represent messages. Both techniques introduce constraints

that cannot be modeled by Basis reduction. Thus eliminating its effectiveness.

In order to defend against any other specialty attacks, modular multiplication

within an algebraic number ring is established and developed to disguise the private

weights. This is ultimately a generalization of the disguising in the Merkle-Hellman

system to integers in quadratic, bi-quadratic, and higher dimensional rings. Included

in this development are issues of complete residue systems, calculating inverses, and

number representations. The analysis of this modular multiplication reveals its im-

munity from attacks which seek to reverse or undo the disguising.

iv

Table of Contents

Table of Contents v

Introduction 1

0.1 A Brief History of Cryptography . 2

0.2 The RSA Code . 3

0.3 Knapsack Cryptosystems . 5

0.3.1 The Merkle-Hellman System 6

1 Attacks on Knapsack Codes 8

1.1 Introduction . 8

1.2 Basis Reduction . 9

1.3 Small Linear Dependencies . 11

1.4 Diophantine Approximation . 12

2 Other Knapsack-type Systems 14

2.1 Chor-Rivest Cryptosystem . 14

2.2 A Quantum Public-Key Cryptosystem 16

2.3 A Knapsack System using the Chinese Remainder Theorem 17

2.4 A Knapsack System built on NP-hard Instances 19

2.5 A Three Term Public-Key System . 21

3 Modular Arithmetic in Algebraic Number Rings 23

3.1 Quadratic Integers . 26

3.1.1 Modular Arithmetic . 27

3.1.2 Quadratic Integers as Vectors 30

3.1.3 CRS of Quadratics . 34

3.2 Bi-Quadratic Integers . 38

3.2.1 Bi-Quadratic Conjugates . 40

3.2.2 Bi-Quadratic Representation 41

v

3.2.3 CRS for Bi-Quadratics . 42

3.3 Higher Degree Representations . 44

3.4 The Disguising Method . 48

3.4.1 Modular Multiplication . 49

4 New Codes 53

4.1 Code Description . 54

4.1.1 Method 1: Congruence Condition 54

4.1.2 Method 2: Recurrence Relations 58

4.1.3 Disguising . 60

4.1.4 Encoding . 63

4.1.5 Disguising Reversal . 64

4.1.6 Summary . 66

5 Code Cryptanalysis 67

5.1 Diophantine Approximation . 67

5.1.1 Specialized Attack . 74

5.2 Basis Reduction . 75

6 Concluding Remarks 81

Bibliography 83

1

Introduction

Cryptography can be simply defined as the practice and study of hiding information.

Its primary goal is to achieve a secure means of transmitting information across an

insecure communication channel. The general situation can be stated as follows:

Bob wants to send a secret message to Alice. However, he and Alice know that

a third party, Eve, has the ability to eavesdrop on the message enroute. How can

Bob be assured that the content of his message is only made known to Alice? This

is where a secure method for hiding information is vital. Bob begins by converting

the secret message, known as plaintext, into an unintelligible message, known as

ciphertext. Through this encryption process, Bob conceals the content of the original

message. The ciphertext is now transmitted to Alice, who having secret knowledge of

the encryption process, is able to decrypt back to plaintext. Thus, Alice has retrieved

and revealed the original message from Bob. Now if Eve were to intercept a copy of

the transmission, she would only get the ciphertext. Without Alice’s secret knowledge

of decryption, Eve could not determine the original message. Hence, Bob and Alice

would have achieved secure communication.

For thousands of years, methods of encryption and decryption have been devel-

oped based on this simple principle. The descriptions and implementations of these

methods are called cryptographic codes or cryptosystems. The techniques for creating

2

these systems have varied dramatically over the years and require a closer look.

0.1 A Brief History of Cryptography

Modern cryptography has come a long way from its origins. Prior to the twentieth

century, most ciphers converted plaintext into ciphertext by means of scrambling

letters or substituting one letter for another. Of course, this had to be done in a

systematic and predictable way, so the legitimate recipient could decrypt properly.

These methods all require that both the sender and recipient have precise knowledge of

the cryptographic scheme used, i.e. how the letters are permuted. This information is

called the key and must be agreed upon by both parties before secure communication

can take place. The key must be kept secret because it reveals all the information

needed to decrypt an intercepted message.

Until 30 years ago, this framework, known as secret key cryptography, was the

only way new codes were created. Yet, with the advent of computers and digital

communication over insecure networks, a different framework was required to provide

efficient and practical security. Secret key codes were not up to the task because they

brought with them an inherent problem of key distribution.

A unique secret key is required for every pair of people who wish to communicate

securely. If the number of pairs is large, the logistics of creating and distributing all

the required keys becomes infeasible. For 100,000 people to securely communicate

with each other over an insecure network it would require
(

100000
2

)

≈ 5 billion keys.

The impracticality of distributing so many keys brought forth the quest for a new

breed of cryptosystem.

In 1976, Whitfield Diffie and Martin Hellman published their ground breaking

3

paper “New Directions in Cryptography” which introduced the concept of public

key cryptography [11]. This brand new paradigm opened up a whole new field of

research within the cryptographic community. Within this framework, Alice has

both a public key and a private key. To encrypt a plaintext message, Bob must

access and use Alice’s public key. That message can then only be decrypted by

the private key, possessed by Alice. The two keys are mathematically related, but

it is computationally infeasible to derive the private from the public. These types

of cryptosystems are based on intractable mathematical problems such as factoring

large numbers, solving a knapsack problem, or finding a discrete logarithm. Aside

from being difficult to solve, the problems must also be easy to create, i.e. it is easy

to multiply two large numbers together, but difficult to factor the product. These

problems provide the underlying one-way function necessary for security. Due to the

scarcity of these types of problems, it has proven to be a challenging task to develop

brand new public key cryptosystems.

0.2 The RSA Code

One of the first public key codes introduced was the RSA (named after its inventors

Rivest, Shamir, and Adleman)[33]. To create the keys with this system, Alice chooses

two large prime numbers p and q and computes their product n = pq. She then selects

a number, d, between min(p, q) and (p−1)(q−1) that is relatively prime to (p−1)(q−1)

and computes its inverse, e, mod (p − 1)(q − 1). So ed ≡ 1 mod ((p − 1)(q − 1)) or

there is an r such that ed = 1 + r(p − 1)(q − 1). The private key will consist of the

numbers p, q, and d. The public key will be the numbers e and n. Bob represents

his message in binary and converts it to the decimal message M . He then uses the

4

public key to compute the ciphertext C ≡ Me (mod n) and sends the message C. To

decrypt, Alice uses the private key d and calculates M by M ≡ Cd (mod n). The

effectiveness of decryption is based on a well know result in number theory known as

Euler’s Theorem. It states that if gcd(x, n) = 1, then xφ(n) ≡ 1(mod n), where φ(n)

is the number of integers less than n that are relatively prime to n. For n = pq, we

see that φ(n) = (p − 1)(q − 1). Thus, the decryption is successful because

Cd mod n ≡ (Me)d(mod n)

≡ Med(mod n)

≡ M1+rφ(n)(mod n)

≡ M(Mφ(n))r(mod n)

≡ M(1)r(mod n) = M

If Eve were to perform a factorization of n = pq efficiently, then the private value

of d could easily be found as well by solving the congruence

ex ≡ 1(mod (p − 1)(q − 1)) (0.2.1)

This would render the entire system insecure because the private key would now

be known to Eve. Thus, the security of the RSA code rests on the fact the public

value of n cannot easily be factored to yield the private values of p and q. For

sufficiently large choices of n, this has shown to hold true over the years. Significant

research has been done over the past decades in the area of factoring large integers

and numerous techniques have been implemented [21]. However, the success of these

methods remains incremental rather than dramatic. Thus, RSA has gained significant

prominence as the most widely used and trusted public key cryptosystem.

5

In 1991, RSA Laboratories posed a challenge to the mathematical community to

factor some specific large integers that are the product of two primes. As a result,

there has been some success for numbers up to the range of about 200 digits (663 bits).

Yet, these factorizations required significant time and computational power to acheive.

A 232 digit integer was factored in December 2009 by a collection of parallel computers

with the CPU time approximately equivalent to 1500 years on a single core 2.2 GHz

processor with 2 GB RAM [34]. Due to the current limitations of factoring algorithms,

the National Institute of Standards and Technology recommended a minimum RSA

key size of 1024 bits to ensure security through 2010. Currently, those are being

phased out for a key size of 2048 bits which is recommended through 2030 [31].

0.3 Knapsack Cryptosystems

The knapsack problem is a longstanding and well studied problem in the field of

combinatorial optimization. Given a set of positive integer weights A = {a1, a2, ..., an}

and a positive integer T , find a subset of A whose elements sum to T . Stated an

equivalent way, find a vector x = (x1, x2, ..., xn) such that

n
∑

i=1

xiai = T (0.3.1)

where xi ∈ {0, 1} for i = 1, 2, ..., n.

Even though the knapsack problem is known to be NP-hard (nondeterministic

polynomial-time hard), there are simple instances that are easily solvable. For exam-

ple, if ai = 2i then solving the knapsack problem is equivalent to finding the binary

representation of T . The following definition provides another simple instance.

Definition 0.3.1. A sequence of positive integers s1, s2, ..., sn is called superincreasing

6

if sj >

j−1
∑

i=1

si for j = 1, ..., n.

A superincreasing sequence has the property that every term of the sequence is

strictly larger than the sum of the previous terms. This ensures that the sums of

every possible subset of terms are distinct. Given a set S of knapsack weights with

this structure and a number T , a solution (if it exists) will be unique and simply found

by using a greedy algorithm. This provides the starting point the Merkle-Hellman

system.

0.3.1 The Merkle-Hellman System

The Merkle-Hellman Cryptosystem [23], proposed in 1978, was the first public-key

system introduced and made use of the classical knapsack problem. It is described as

follows.

Alice wants to receive messages securely from Bob, so she begins by randomly

creating a superincreasing set of knapsack weights S = {s1, ..., sn}. As shown above,

this is an easy knapsack for Alice to solve. She will then transform S via a modu-

lar multiplication. That is, Alice will choose a multiplier c and a modulus m with

gcd(c, m)=1, m >

n
∑

i=1

si and form the set W = {wi} where wi ≡ csi(mod m) for

1 ≤ i ≤ n. The private key stored by Alice consists of the secret parameters that she

chose, i.e., (S, c, m). The public key that is published for open access is the set W .

Note that the set W will appear to consist of random integers, retaining none of the

superincreasing structure of S.

To encode a message Z Bob must first convert it to binary in blocks of length n.

To encrypt one of the blocks x = (x1, x2, ..., xn) he computes

n
∑

i=1

xiwi = Z ′. He then

transmits the encoded message Z ′ to Alice.

7

Once the message is received, Alice decrypts it by utilizing the private key infor-

mation that she has available. First, she computes d ≡ c−1(mod m) so that dc ≡ 1

(mod m). Since c and m are relatively prime,the inverse d exists. She can then

compute

Z ≡ dZ ′(mod m)

≡ d

n
∑

i=1

xiwi(mod m)

≡ d

n
∑

i=1

xi(csi)(mod m)

≡ (dc)
n
∑

i=1

xisi(mod m)

≡
n
∑

i=1

xisi(mod m).

Recall that m was chosen such that m >

n
∑

i=1

si. Hence, Z is equal to

n
∑

i=1

xisi(mod

m) in standard integer arithmetic as well as mod m. The final step in the decoding

process is to solve this easy superincreasing knapsack problem for x. The resulting

binary vector is exactly the original message from Bob.

Assume that Eve is able to intercept this message en route to Alice. What dif-

ficulties does she face in trying to decipher this message? Since she only knows the

public knapsack W and the encrypted message Z ′, she must find the vector x = (xi)

where
n
∑

i=1

xiwi = Z ′. As mentioned before this is an NP-hard problem in general,

so for sufficiently large values of n it is infeasible for Eve to determine x. This fact

provided the perceived security of the Merkle-Hellman system. Yet, as will be shown

in the next chapter, this did not hold up well to further scrutiny.

8

Chapter 1

Attacks on Knapsack Codes

1.1 Introduction

The Merkle-Hellman knapsack cryptosystem survived for only a few years before it

was ultimately defeated by various attacks. Similar knapsack systems were created

soon after, but almost all have been shown to be insecure as well [6]. Assuming the

parameters of a knapsack code are chosen large enough that any brute force attempt

to solve the knapsack is infeasible, there are two main classifications for successful

knapsack cryptosystem attacks.

1. The man in the middle attack : An encrypted message is intercepted and it’s

corresponding knapsack weights are determined. How the weights were created

or disguised are irrelevant in this attack.

2. Specialty attack : The precise methods of creating and disguising the weights are

examined, and a back door way is discovered to determine the private weights.

The actual implementation of these attacks are based on the concepts of basis reduc-

tion and diophantine approximation, respectively. These specific attacks will now be

examined more closely.

9

1.2 Basis Reduction

Definition 1.2.1. An integer lattice L is an additive subgroup of Zn that contains n

linearly independent vectors over Rn.

Definition 1.2.2. The set {v1,v2,...,vn} ⊂ L is a basis of L, if L = span{v1,v2,...,vn}.

For any particular lattice, there are many different sets that qualify as bases, yet

particular interest is given to a basis with very short vectors. Here, length is defined

as the Euclidean norm ‖v‖ of the vector v=(v1, v2, ..., vn) by

‖v‖2 =
n
∑

i=1

v2
i .

The LLL Algorithm, named after its creators Lenstra, Lenstra, and Lovasz, takes

any basis of a lattice as input and finds a basis with short vectors, called a reduced

basis [22]. In most cases the absolute shortest vector in the lattice will appear within

the reduced basis. Thus, this algorithm may often find the shortest vector in a lattice.

By the construction of the Merkle-Hellman code, there is one unique solution to

(0.3.1). That is, there is only one 0-1 vector ê = (e1, e2, ..., en) such that

n
∑

i=1

eiwi = Z ′.

As it turns out, the shortest vector in a particular lattice generally corresponds to the

solution vector ê. As will be demonstrated, the knapsack problem can be transformed

into the problem of finding the shortest vector in a lattice. Hence, the LLL algorithm

can be seen as a direct method of solving the knapsack and breaking the security of

the cryptosystem.

Lagarias and Odlyzko made use of the LLL algorithm in the following way to do

that very thing. Their method for solving (0.3.1) is described in [19] and given below.

10

First, create a basis for an n + 1 dimensional lattice L by using the vectors

b1 = (1, 0, ..., 0,−a1)

b2 = (0, 1, ..., 0,−a2)

...

bn = (0, 0, ..., 1,−an)

bn+1 = (0, 0, ..., 0, T)

Notice that L contains the solution vector ê = (e1, e2, ..., en, 0) since

n
∑

i=1

eibi + bn+1 = (e1, ..., en,−
n
∑

i=1

aiei + T) = ê.

Also, ‖ê‖ is small, i.e. ê is short since ei ∈ {0, 1} for 1 ≤ i ≤ n. In fact, ê is the

shortest vector in L in most cases (especially with large weights ai) and hence is

likely to appear in a reduced basis. Thus, LLL is used on {b1,b2,...,bn+1}. Then the

resulting reduced basis is checked for containment of the vector ê, that is a solution

to (0.3.1). Empirical results have shown that, in most situations, this basis reduction

technique is successful in finding the solution vector. Additionally, theoretical bounds

have been established to guarantee success in most cases([8],[19]).

The concept of density is now introduced to quantify the likelihood of success of

basis reduction.

Definition 1.2.3. The density of a set of weights {a1, a2, ..., an} is given by

d =
n

log2(A)

where A = max
1≤i≤n

ai.

For unique encryption, the density cannot exceed a certain limit. Any subset sum
n
∑

i=1

xiai lies in [0, nA] and there are 2n ways to select the xi values. Thus, if 2n > nA

11

or equivalently, d > n
n−log2n

there must be a value for which

n
∑

i=1

xiai =

n
∑

i=1

x′
iai. By

the superincreasing nature of the Merkle-Hellman private weights, clearly d cannot

exceed 1. Plus, the disguise of modular multiplication will increase the size of the

weights. Thus, we will always have d < 1. The size of d is negatively related to

the effectiveness of Basis Reduction. With very small densities, the Basis Reduction

attack has more success at breaking the code. The qualifier ’very small’ has been

quantified with an upper threshold. Lagarias and Odlyzko originally stated that any

knapsack problem with d < 0.6463... could be solved in polynomial time[19]. The

most recent results found in [8] indicate that ”almost all” knapsack problems with

d < 0.9408... can be solved in polynomial time.

1.3 Small Linear Dependencies

One potential weakness that arises from disguising relatively small weights with mod-

ular multiplication is the existence of many small linear dependencies among the

weights. Among small numbers, it is common to find linear combinations with small

coefficients that sum to zero. Since modular multiplication is a linear operation, this

property carries over to the much larger disguised weights. This provides an avenue

of attack to the cryptanalyst. For example, assume the set S1 is transformed into the

set S2 via the following transformation.

S1 = {2, 5, 9, 19, 37} 43S1(mod 73)−−−−−−−−−→ S2 = {13, 69, 22, 14, 58}

Notice that in S1, 2 · 2 + 5 − 9 = 0. Thus, correspondingly in S2, 2 · 13 + 69 − 22 ≡

0(mod 73). From the cryptanalyst’s point of view, a guess of small coefficients for

weight in S2 may yield 2, 1, and -1. This would be sufficient to determine that 73

12

≡ 0(mod m), where m is unknown. Hence, the secret modulus is revealed as a factor

of 73. Even though this is a small example, it illustrates a potential point of attack

that must be eliminated in any future knapsack code.

1.4 Diophantine Approximation

Another successful attack against the Merkle-Hellman system is based on a simulta-

neous diophantine approximation problem. Unlike the basis reduction method, this

attack does not attempt to solve the knapsack problem from an intercepted message.

Instead, it seeks to reverse the disguising process on the weights, i.e. modular mul-

tiplication, thus revealing a superincreasing sequence and destroying the security of

the code. This process is described in [18]. In the previous chapter, the description of

the code reveals that Bob’s decryption congruence is dwi ≡ si(mod m). This shows

that the superincreasing sequence {si} has the following structure:

si = dwi − mki 1 ≤ i ≤ n (1.4.1)

for nonnegative integers ki. The goal of this attack is to determine a pair of integers

(d̂, m̂) such that the weights d̂wi(mod m̂) have a superincreasing structure. It is not

necessary to find the original pair (d, m). It is only required that d̂
m̂

≈ d
m

. To observe

this , let d̂ = τd and m̂ = τm + ǫ where τ is a scaling factor and ǫ is a small error.

Then,

d̂wi − m̂ki = τ(dwi − mki) − ǫk̂i = τsi − ǫki

For a sufficiently small value of ǫ, this will retain a superincreasing structure. The

field of Diophantine Approximation provides a method for attaining a ratio close to

the unknown fraction d
m

.

13

In general, the study of Diophantine Approximation deals with approximating real

numbers with rational numbers. In particular, this analysis requires approximating

a vector a = (a1

A
, ..., an

A
) of rational numbers with the same denominator, by another

vector p = (p1

p
, ..., pn

p
) of rational numbers with a smaller denominator. The vector

to be approximated comes about in the following manner.

Dividing both sides of (1.4.1) by mwi we obtain

si

mwi
=

d

m
− ki

wi
1 ≤ i ≤ n (1.4.2)

Notice that the left side of this equality is very small for small values of i due to the fact

that by construction si < 2i−nm and m >
∑n

i=1 si. Therefore, d
m

≈ k1

w1
. As described

in [4], k1 can be determined by solving an integer programming problem with a fixed

number of variables. Hence, the known quantity k1

a1
is a very good approximation to

d
m

. Performing a search in a small interval around k1

a1
will yield a fraction d̂

m̂
which

produces a superincreasing sequence, as shown above. The cryptanalyst can then use

the decoding algorithm on the newly created sequence to reveal the message. In this

way, all security has been lost and the system is rendered insecure.

In the creation of a new knapsack code, both of the above attacks must be consid-

ered. In Chapter 3, the framework for eliminating specialty attacks is established. In

Chapter 4, two methods of constructing knapsack weights that are resistant to Basis

Reduction are discussed.

14

Chapter 2

Other Knapsack-type Systems

After Merkle and Hellman’s initial cryptosystem, numerous attempts have been

made to utilize the knapsack problem as the means of achieving security. While the

key generation varies from code to code, the constant across all of these systems is

that the decryption process always involves finding a subset of weights that sum to

a target number. Most of these systems have been shown to be insecure over time.

These failures help to illuminate the inherent weaknesses within their designs and

direct new code makers beyond where others have gone. Some recent systems are

still facing scrutiny even today.

These systems are presented as examples of the type of ongoing research in this

field. Some of the concepts introduced will be examined further along in this paper.

A brief discussion of the important characteristics that will be incorporated into the

development of a new code will follow most system descriptions.

2.1 Chor-Rivest Cryptosystem

One of the most famous and seemingly viable knapsack systems was created in 1988 by

Ben-Zion Chor and his advisor Ronald Rivest. This was the first system of its type

15

that did not rely on a modular multiplication for disguising the weights. Instead,

the public key generation relies on intricate finite field computations. To describe

the system, we consider the finite field GF (ph) for some prime p and an integer

h. Parameters of p = 197 and h = 24 are suggested in [7]. The field elements

are represented as polynomials modulo P (x), where P (x) is a degree h irreducible

polynomial over GF (p). Additionally, the ordering of the subfield GF (p) is public,

i.e. {α0, ..., αp−1 = GF (p)} ⊂ GF (ph). The secret key consists of the following:

• an element t ∈ GF (ph) of degree h

• a generator g of GF (ph)

• an integer d ∈ Zph−1

• a permutation π of {0, 1, ..., p − 1}

The public key consists of the following weights:

ci = d + logg(t + απ(i)) mod(ph − 1) for i = 0, 1, ..., p − 1.

Clearly, computing discrete logarithms in GF (ph) is a required operation to create the

public weights. To ease the computations, p and h must be chosen carefully so that

p is small and h has only small factors. With these conditions, the Pohlig-Hellman

algorithm will be effective in these computations [32]. In order to encrypt a message, it

must first be written as a 0-1 vector m = (m0, ..., mp−1) such that m0+ ...+mp−1 = h,

that is, exactly h ones must be used. Note that this representation is different than

that of Merkle-Hellman. It requires a special set of weights such that all sums of

exactly h elements are distinct. The construction for such a sequence is given in [?].

16

The message is then encrypted in the usual way as

E(m) = m0c0 + ... + mp−1cp−1 mod(ph − 1).

In order to decrypt the message, one must compute

p(t) = gE(m)−hd

= g
∑p−1

i=0 mici−hd

=

p−1
∏

i=0

(glogg(t+απ(i)))mi

as a polynomial of degree at most h − 1 over GF (p), which equals

p−1
∏

i=0

(t + απ(i))
mi .

Notice that exactly h of these terms will contribute to the product since mi = 1 occurs

h times and mi = 0 occurs p − h − 1 times. Now for each i, mi can be computed as

the multiplicity of απ(i) as a zero of this polynomial. Thus the original message m is

recovered.

2.2 A Quantum Public-Key Cryptosystem

In [30], the authors introduced the idea of combining a public-key cryptosystem with

the quantum computing model. The underlying quantum mechanism is Shor’s dis-

crete log algorithm, which is employed in the key generation stage (see [36] for details).

The practical scheme proposed has an encryption and decryption process virtually

identical to the Chor-Rivest system. The differences lie in the type of number struc-

tures being used. This new system uses a ring of integers over an algebraic number

17

field, whereas Chor-Rivest utilizes a ring of polynomials over a finite field. Essentially,

this system generalizes the key generation process of Chor-Rivest to an arbitrary num-

ber ring K. Thus, instead of selecting an element t ∈ GF (ph) and a generator g of

GF (ph), they select a prime ideal, p, of the ring of integers OK and a generator of

the multiplicative group of the finite field OK/p. In addition, no information is re-

vealed as to which number field is being considered. So, the authors claim there are

exponentially many number fields, from which to select.

Both this system and the Chor-Rivest make use of the difficulty of computation

within abstracted rings and fields to provide security. Conceptually, this is the same

rationale behind the new systems presented in this paper. However, practically the

differences of implementation are great.

2.3 A Knapsack System using the Chinese Remain-

der Theorem

In 2006, Yasuyuki Murakami and Takeshi Nasako developed a knapsack public-key

cryptosystem that makes use of the Chinese Remainder Theorem to disguise their

weights [26]. The integer weights are originally created in two distinct sets: sP =

{s(P)
i } and sQ = {s(Q)

i } for i = 1, ..., n. The numbers in these sets are created to have

a very precise bit structure so that the most and least significant bits are specifically

18

engineered to be 0 or 1 (See Figure 2.1). Then integers P and Q are chosen so that

P >

n
∑

k=1

s
(P)
k

Q >

n
∑

k=1

s
(Q)
k

gcd(P, Q) = 1

and N = PQ.

Figure 2.1: Concept of trapdoor using CRT

These two sets are then combined into one set s = {si} ∈ Zn
N by the Chinese

Remainder theorem as follows:

si ≡
{

s
(P)
i (mod P)

s
(Q)
i (mod Q)

These now become the public weights after a permutation σ. The public key consists

of s and the private key is composed of sP , sQ, P, Q, N, and σ. Similar to the Chor-

Rivest system, the pre-encrypted message is a 0-1 vector m = (m1, ..., mn) with a

19

fixed number of ones, and the encryption process is performed as follows:

C =

n
∑

k=1

simi.

To decrypt, simply compute

CP = C(mod P)

CQ = C(mod Q)

Then, because of the bit structure in the weights, a short decryption algorithm is

used to reveal the original message m. Using the Chinese Remainder Theorem can

be very effective as a means of disguising weights. A method similar to this will be

discussed further in Section 4.1.3.

2.4 A Knapsack System built on NP-hard Instances

Recently, a cryptosystem was developed that claimed to be based upon NP-hard

instances of a knapsack [12]. It differs from the other codes because it makes use of

a bounded version of the knapsack problem. It seeks to find integers ǫi, 0 ≤ ǫi ≤ M

such that
∑

ǫiai = T for weights {ai} and target T . Obviously, this is the basic

knapsack problem when M = 1. The system also makes use of a one-way function

based on the following remark: it is easy to produce divisions ni = qxi +ri with small

remainders ri, but it is more difficult to recover such divisions once the numbers ni

are given.

The message to be encrypted is a column vector m = {m1, ..., ms} where mi ∈

{0, 1, ..., M−1}. To create the weights, begin with an s×s invertible integer matrix ǫ

where the norm of the ith row is given by ‖ǫi‖1 =
∑s

j=1 ǫij . Then construct s positive

20

rational numbers λi = pi

qi
such that (M − 1)λi‖ǫi‖1 < 1. The private key consists of ǫ

and the λi’s. The public key is created recursively as follows:

• Create a random row vector x0 with positive integer entries.

• Define the row vector xi by xi = qixi−1 + piǫi for i = 1, .., s.

This gives the public key xs. To encrypt a message, simply compute the number

C(m) = xsm.

To decrypt the message, do the following:

• Compute Ns−1, ..., N1 with the formula Ni−1 = ⌊Ni

qi
⌋ where ⌊.⌋ is the floor func-

tion.

• Compute Oi = (Ni − qiNi−1)/pi and let O be the column vector with entries

O1, ..., Os.

• Solve the system ǫm = O.

By construction (and verified in [12]) we have a system ǫm = O which can be solved

for the original message m.

The security of the system is based on the difficulty of finding divisions with

small remainders. From the private key, we know that xs = qsxs−1 + psǫs with

qs > ps‖ǫi‖1(M − 1). That is, psǫsi is a very small remainder of the division of xsi by

qs. In general, the sum of the remainders psǫsi for 1 ≤ i ≤ s is at most sqs since each

remainder is at most qs. However, by this construction, the sum
∑

i psǫsi = ps‖ǫi‖1

of all remainders is at most qs

M−1
, which is unusually small.

This cryptosystem introduces two unique factors in play a role in design consid-

erations. First, it provides a denser knapsack with coefficients larger than 0 and 1.

21

Second, it generalizes the idea of a single linear knapsack to a system of simultaneous

knapsacks.

2.5 A Three Term Public-Key System

A new class of public-key cryptosystem is introduced in [25]. For this system, only

three knapsack weights are used. The encryption process involves exponentiation of

these weights. So, in a strict sense, this is not a knapsack code, but it is close enough

in design to be classified as such.

The key generation process goes as follows:

• Generate random relatively prime (h+1)-bit integers b1, b2, b3.

• Generate a random multiplier u and modulus N that are relatively prime. These

along with the bi constitute the secret key.

• Let b′i = (b1b2b3)/bi and create your public key weights ai via the modular

multiplication ai = ub′i(mod N).

The messages to encrypt are h-bit positive integers m1, m2, and m3. The ciphertext

C is computed as C = a1m
e
1 + a2m

e
2 + a3m

e
3 where e ≥ 3 is a fixed integer.

To decrypt, let M = u−1C(mod N). Then we see that M can be written in the

form M = b′1m
e
1 +b′2m

e
2 +b′3m

e
3. Let di ≡ e−1(mod λ(bi)) where λ(x) is the Carmichael

Function i.e. the smallest positive integer t such that ct ≡ 1(mod x) for every integer

c relatively prime to x. We can obtain the messages m1, m2, and m3 as follows:

mi = (b′−1
i M)di(mod bi).

22

For example, to decode m1 we know that ed1 = kλ(b1) + 1 for some multiple k. Thus

the decoding of m1 will look like this:

(b′−1
1 M)d1 = (me

1 + b′−1
1 b′2m

e
2 + b′−1

1 b′3m
e
3)

d1(mod b1)

= med1
1 (mod b1)

= m
kλ(bi)+1
1 (mod b1)

= m1.

23

Chapter 3

Modular Arithmetic in Algebraic

Number Rings

The purpose of this chapter is to develop the properties necessary to disguise weights

in Z to weights in Zn. At it’s core, this method is a generalization of the modular

multiplication found in the Merkle-Hellman cryptosystem. What was constrained

to the realm of integers, is now extended to an algebraic number ring. The chief

motivation of this is to eliminate the effectiveness of diophantine approximation or

specialty techniques of cryptanalysis. To combat BR attacks we will need to address

the properties of the original undisguised weights. This will be discussed further in

Chapter 4.

Definition 3.0.1. The complex number α is an algebraic number of degree n if it

satisfies an nth degree polynomial pα(x) with rational coefficients.

For any algebraic number α we can create an extension field Q(α) over Q.

Definition 3.0.2. The n − 1 other zeros of pα(x), α2, α3, ..., αn are called the conju-

gates of α = α1.

Definition 3.0.3. The norm of α, N(α), is the product of all the conjugates of α,

24

i.e. N(α) = α1, α2, ..., αn.

With the following added restriction, we can identify a subset of algebraic num-

bers, called algebraic integers.

Definition 3.0.4. The number α is an algebraic integer of degree n if it is an alge-

braic number of degree n and pα(x) is monic, irreducible over Q, and has integral

coefficients.

The set of all such numbers in the field Q(α) make up Z[α], the ring of integers

in Q(α).

Definition 3.0.5. For α, β ∈ Z[θ], α divides β, or α|β, if there is a γ ∈ Z[θ] such

that β = αγ.

Some of the properties of norms are as follows within a degree n extension Z[θ]:

• N(αβ) = N(α)N(β)

• if α|β, then N(α)|N(β)

• if c ∈ Z, then N(c) = cn

• if N(α) ∈ Z, then α is an algebraic integer

Definition 3.0.6. Let α, β, and γ ∈ Z[θ]. We say α is congruent to β modulo γ,

written α ≡ β(modγ), if there exists an integer δ ∈ Z[θ] such that α − β = δγ.

Analogous to the concept of congruence in Z, this produces an equivalence relation

for a fixed γ that partitions the set of all numbers in Z[θ]. Each equivalence class is

defined as follows.

25

Definition 3.0.7. A complete residue system modulo γ ∈ Z[θ] is a nonempty subset

S of Z[θ] such that

1. No two numbers in S are congruent modulo γ.

2. Every number Z[θ] is congruent to some element in S.

A complete residue system modulo γ will be will be abbreviated as CRS (mod γ).

For rational integers in Z, the standard CRS mod n is simply the set {0, 1, 2, ...n−1}.

Of course, there are also other representations that allow for all members to be distinct

mod n. In general, the question of how to describe the structure of complete residue

systems of algebraic integers becomes more complicated. Geometrically, instead of

being restricted to a number line, one must now consider regions of dimension 2, 3,

and higher. Classifying and describing complete residue systems within the Gaussian

integers Z[i] is given in [16]. Fortunately, the representation of a CRS becomes much

more manageable when its modulus has a norm that is prime.

Theorem 3.0.1. If γ is an algebraic integer of degree n and N(γ) is prime, then a

CRS (mod γ) = {0, 1, 2, ..., |N(γ)| − 1}.

Proof. Let S = {0, 1, 2, ..., |N(γ)| − 1}. Let a, b ∈ S, a > b such that a ≡ b(mod γ).

Then c = a−b ≡ 0(mod γ). Therefore, γ|c and N(γ)|cn. Since N(γ) is prime, N(γ)|c.

However, this is a contradiction since c ∈ S. Hence, a 6≡ b(mod γ). So S consists of

N(γ) non-equivalent numbers mod γ.

Theorem 3.0.2. Let a, b ∈ Z and let γ be an algebraic integer of degree n with

N = N(γ) prime. Then, a ≡ b(mod γ) if, and only if a ≡ b(mod N).

Proof. ⇒ Assume that a ≡ b(mod γ). Then, γ|(a − b) and hence N |(a − b)n. Since

N is prime, N |(a − b). Therefore, a ≡ b(mod N).

26

⇐ Assume that a ≡ b(mod N). Then, N |(a − b) or equivalently γγ2γ3 · · · γn|(a − b)

where γ2γ3 . . . γn are the conjugates of γ. Then clearly, γ|(a − b). So a ≡ b(mod γ).

For the scope of this paper, the focus will primarily be on algebraic integers of

degrees 2 and 4, known as quadratic and biquadratic integers respectively. Higher

degree algebraic integers will also be considered. The purpose of this development is

not to provide an exhaustive and thorough analysis of these multi-dimensional rings.

It is to build up some of the theories and properties necessary for cryptographic use

such as computations, congruences, and complete residue systems.

3.1 Quadratic Integers

If a number α satisfies the equation x2 + bx + c = 0 with b, c ∈ Q, it must be of

the form α = −b±
√

b2−4c
2

. Let r be the discriminant, b2 − 4c, of the polynomial with

all square factors removed. Then α = l + m
√

r for l, m ∈ Q. The set of all such

quadratic numbers with a fixed value r forms a field denoted by Q(
√

r). The subset

of all quadratic integers within this field form a ring under addition and multiplication

denoted by Ẑ(
√

r). Further steps can be made in classifying quadratic integers by

the following well-known result [37].

Theorem 3.1.1. For any square-free r ∈ Z, the following cases hold:

1. If r 6≡ 1(mod 4), then Ẑ(
√

r) = Z(
√

r) = {l + m
√

r | l, m ∈ Z}

2. If r ≡ 1(mod 4), then Ẑ(
√

r) = Z(
√

r)
⋃

{ j+k
√

r
2

| j,k are odd integers }

27

Depending on the value of r(mod 4), every quadratic integer is in one of the two

forms given. For the cryptographic purposes at hand, we will only be concerned with

working in Z(
√

r) which is a subring of Ẑ(
√

r). Even though every quadratic integer

may not be accounted for in this set, Z(
√

r) still preserves the properties of a ring

that will be vital. For this reason, we will disregard the remainder of r upon division

by 4.

Since each quadratic integer α has only one conjugate, it is denoted by ᾱ. Based

on the definitions above, we now specify the concept of conjugate and norm to the

quadratic integers.

• a + b
√

r = a − b
√

r

• N(a + b
√

r) = a2 − b2r

Theorem 3.1.2. If N(a + b
√

r) is prime, then gcd(a,b)=1.

Proof. Assume that gcd(a, b) = g 6= 1. Then, a = gh1 and b = gh2 for h1, h2 ∈ Z.

Therefore, a2 − b2r = (gh1)
2 − (gh2)

2r = g2(h2
1 − h2

2r). So N(a + b
√

r) is not prime.

3.1.1 Modular Arithmetic

We now examine the concept of congruences of quadratic integers.

In order to begin classifying the congruence classes of Z(
√

r), the following theorem

is provided.

Theorem 3.1.3. Let N = N(m1 + m2

√
r) = m2

1 − m2
2r.

If a + b
√

r ≡ c + d
√

r(mod m1 + m2

√
r), then

∣

∣

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

∣

c m1

d m2

∣

∣

∣

∣

∣

∣

∣

(mod N).

28

Proof. Suppose a + b
√

r ≡ c + d
√

r(mod m1 + m2

√
r). Then there is an x1 + x2

√
r ∈

Z(
√

r) such that

(a + b
√

r) − (c + d
√

r) = (m1 + m2

√
r)(x1 + x2

√
r).

Thus, by equating the corresponding components of the numbers we get the following

system:

a − c = m1x1 + m2x2r (3.1.1)

b − d = m2x1 + m1x2 (3.1.2)

Then, multiplying (3.1.1) by m2 and subtracting the product of (3.1.2) and m1 yields

the equation m2(a−c)−m1(b−d) = N(−x2), which can be written as the congruence

am2 − bm1 ≡ cm2 − dm1(mod N). Therefore,

∣

∣

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

∣

c m1

d m2

∣

∣

∣

∣

∣

∣

∣

(mod N).

The converse of this theorem does not hold in general. To see this, consider

3+1
√

2 and 6+3
√

2 mod 6+4
√

2. Clearly,

∣

∣

∣

∣

∣

3 6

1 4

∣

∣

∣

∣

∣

≡
∣

∣

∣

∣

∣

6 6

3 4

∣

∣

∣

∣

∣

(mod 4), but 3+1
√

2 6≡

6+3
√

2 (mod 6+4
√

2), since this congruence would imply 3+2
√

2 ≡ 0 (mod 6+4
√

2).

That would require integers x and y such that 6x + 8y = 3, which is clearly not

possible. For this example, the modulus norm was 4. As shown in the next Theorem,

the norm must be a prime for the converse to hold.

Theorem 3.1.4. Suppose N = N(m1 + m2

√
r) is prime. Then the converse of The-

orem 3.1.3 holds.

Proof. Assume

∣

∣

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

∣

c m1

d m2

∣

∣

∣

∣

∣

∣

∣

(mod N). Then, am2−bm1 ≡ cm2−dm1(mod N).

This can be written as the congruence (a − c)m2 − (b − d)m1 ≡ 0(mod N). Hence,

29

there is an x ∈ Z such that (a − c)m2 − (b − d)m1 = x(m2
1 − m2

2r). Thus, m1(xm1 +

b − d) = m2(xrm2 + a − c). Since N is prime, gcd(m1, m2) = 1 by Theorem 3.1.2.

Now, m1 divides the left side of the equation, so it must divide the right side. So,

m1|(xrm2 + a− c). Similarly, m2|(xm1 + b− d). Then, since these divisibilities come

from a single equation, there is one y ∈ Z such that

y =
xrm2 + a − c

m1
=

xm1 + b − d

m2
.

This yields the two equations:

a − c = m1y + m2r(−x)

b − d = m2y + m1(−x)

As seen in the proof of Theorem 3.1.3, this is equivalent to the desired congruence.

Combining Theorems 3.1.3 and 3.1.4, we get the following condition for determin-

ing congruences.

Corollary 3.1.5. Suppose N = N(m1 + m2

√
r) is prime. Then a + b

√
r ≡ c +

d
√

r(mod m1 + m2

√
r) if and only if

∣

∣

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

∣

c m1

d m2

∣

∣

∣

∣

∣

∣

∣

(mod N).

The following corollary is a specific case of Theorem 3.0.1 for a degree 2 extension.

Corollary 3.1.6. Suppose N = N(m1 + m2

√
r) is prime. Then a CRS (mod m1 +

m2

√
r) is the set {0, 1, 2, ..., N − 1}.

Proof. Let a+b
√

r ∈ Z(
√

r) be arbitrary and let k =

∣

∣

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

∣

∣

. Then the congruence

cm2 ≡ k(modN) always has a solution for c ∈ {0, 1, ..., N − 1} since gcd(m2, N) = 1.

In addition, if k1 ≡ k2 for k1, k2 ∈ {0, 1, ..., N − 1}, then k1 = k2.

30

There are an infinite number of representations of residues given a particular mod-

ulus. What has been shown is that, given a prime norm N , every quadratic integer

is congruent to a rational integer less than N . This provides the most convenient

representation.

The next question that arises is how to calculate the rational integer representa-

tion. As in the previous proof, we see that c ≡ m−1
2 k(mod N). Thus, given a + b

√
r

and m1 + m2

√
r it is determined that a + b

√
r ≡ c(mod m1 + m2

√
r) where

c ≡ m−1
2

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

(mod N). (3.1.3)

Another result that must be established with congruence classes is the existence

and method of finding inverses. That is, given a quadratic integer a + b
√

r find a

nonzero d ∈ Z such that (a+ b
√

r)d ≡ 1(mod m1 +m2

√
r). Notice that we only need

to look for a rational integer inverse as long as the norm is prime. In order for the

inverse d to exist it must satisfy the congruence d

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

≡ m2(mod N).

If

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

≡ 0(mod N), then a + b
√

r clearly has no inverse because it’s CRS

representation is 0. In that case, a+ b
√

r divides m1 +m2

√
r. For any other instance,

an explicit formula for calculating d is given as the following Theorem.

Theorem 3.1.7. Suppose N = N(m1 + m2

√
r) is prime. Then the inverse, d, of

a + b
√

r (mod m1 + m2

√
r) is given by d ≡ m2

∣

∣

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

∣

∣

−1

(mod N).

3.1.2 Quadratic Integers as Vectors

The ring Z(
√

r) of quadratic integers can also be viewed as a lattice in the vector

space R2 where each number α = a + b
√

r can be represented as the two-dimensional

31

vector vα = (a, b) ∈ Z2. In this context, it is clear to see that any multiple of a

number a + b
√

r can be described as a linear combination of the two vectors (a, b)

and (br, a), i.e.

(a + b
√

r)(x + y
√

r) = x(a + b
√

r) + y(br + a
√

r).

Hence, these two vectors form the basis for this lattice.

Let α = a + b
√

r and β = c + d
√

r. We can create a correspondence between a

number α and the 2 × 2 matrix Mα =

(

a br

b a

)

so that multiplication within the

ring of quadratic integers can be computed as a matrix-vector multiplication. That

is,

αβ = γ ⇔ Mαvβ = vγ ,

since (a + b
√

r)(c + d
√

r) = (ac + brd) + (bc + ad)
√

r and

(

a br

b a

)(

c

d

)

=

(

ac + brd

bc + ad

)

.

Multiplication within the ring of quadratic integers can also be computed as a

matrix-matrix multiplication. That is,

αβ = γ ⇔ MαMβ = Mγ

or

(

a br

b a

)(

c dr

d c

)

=

(

ac + brd (bc + ad)r

bc + ad ac + brd

)

.

In the matrix representation, we see that the columns form the basis for the CRS

parallelogram. Additionally, the following convenient properties hold:

32

Theorem 3.1.8. Let α and β be quadratic numbers and let Mα and Mβ be their

respective matrix representations. Then,

• Mα + Mβ = Mα+β

• MαMβ = Mαβ

• det(Mα) = N(α)

• Eigenvalues of Mα = {α, ᾱ}.

The matrix-vector multiplication will be more generally used throughout this pa-

per. This provides an alternate context in which to discuss congruences. As we will

see, this discussion will generalize more readily to higher dimensions.

A restatement of Corollary 3.1.5 can now be given as:

Theorem 3.1.9. Let γ = m1 + m2

√
r where N(γ) is prime. Then α ≡ β(mod γ) if,

and only if,

vα − vβ = Mγx for some x ∈ Z2.

Proof. It is required that

M−1
γ (vα − vβ) ∈ Z2.

This is equivalent to saying that

1
N(γ)







m1 −m2r

−m2 m1













a − c

b − d






∈ Z2

which creates the system

33

m1(a − c) − m2r(b − d) ≡ 0(mod N(γ))

m1(b − d) − m2(a − c) ≡ 0(mod N(γ)).

So we have the two congruences:

∣

∣

∣

∣

∣

∣

∣

a m1

b m2

∣

∣

∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

∣

c m1

d m2

∣

∣

∣

∣

∣

∣

∣

(mod N(γ)) (3.1.4)

∣

∣

∣

∣

∣

∣

∣

a m2r

b m1

∣

∣

∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

∣

c m2r

d m1

∣

∣

∣

∣

∣

∣

∣

(mod N(γ)). (3.1.5)

Notice that (3.1.4) is simply the condition found in Corollary 3.1.5. Since N(γ) is

prime, (3.1.5) is an unnecessary added condition for two numbers to be congruent

since it follows directly from (3.1.4). This is shown below. It can be assumed that

a 6≡ c(mod N(γ)) and b 6≡ d(mod N(γ)), otherwise (3.1.5) follows trivially from

(3.1.4).

Assume (3.1.4) holds. Then, (b − d)m1 ≡ (a − c)m2(mod N(γ)). Since N(γ) is

prime the inverse of m1 mod N(γ) exists. Thus we have

(b − d) ≡ (a − c)m2m
−1
1 (modN(γ)). (3.1.6)

34

Now (3.1.5) is implied directly from this by the following argument:

m2
1 ≡ m2

2r(mod N(γ))

(a − c)m2
1 ≡ (a − c)m2

2r(mod N(γ))

(a − c)m1 ≡ [(a − c)m2m
−1
1]m2r(mod N(γ))

(a − c)m1 ≡ (b − d)m2r(mod N(γ)) (by substituting 3.1.6)
∣

∣

∣

∣

∣

∣

∣

a m2r

b m1

∣

∣

∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

∣

c m2r

d m1

∣

∣

∣

∣

∣

∣

∣

(mod N(γ)).

3.1.3 CRS of Quadratics

In [16], a depiction of various representations of complete residue systems is given

for the Gaussian Integers, that is, numbers of the form a + bi. This is a subset of

all quadratic integers of the form a + b
√

r where r = −1. The purpose here is to

generalize the structure of a CRS for any value of r. The view of quadratic integers

as vectors helps to give a visual representation of a CRS. Consider the two vectors

(a, b) and (br, a) plotted as arrows at the origin on the xy-plane. These vectors act as

a basis for the set of vectors that are multiples of a + b
√

r. Hence, any integral linear

combination of these vectors will produce a vector (algebraic integer) congruent to

0 mod (a + b
√

r). Adding an integral linear combination of (a, b) and (br, a) to any

arbitrary (x, y) point in the plane will yield an integer congruent to x + y
√

r mod

a + b
√

r.

Then, the parallelogram whose diagonal is the sum of these vectors is the region

containing a complete residue system (mod a + b
√

r). This parallelogram is called

35

Figure 3.1: A quadratic CRS

the fundamental CRS mod a + b
√

r. Figure 3.1 shows such a region where r < 0 and

b > a > 0.

Two numbers are congruent to each other mod a + b
√

r if their difference can be

expressed as a multiple of the vectors (a, b) and (−br,−a). Thus, a number can be

translated along these two vectors to reach any of its congruent forms. Since, (0,0) is

congruent to (a, b), (−br,−a), and (a− br, b− a) these points are not included in the

CRS. Also, since each pair of parallel line segments may contain congruent points, the

solid lines will be included while the dashed are excluded. This is to ensure exactly

one representative from each congruence class within the CRS. Then, every quadratic

integer has one and only one point with integer coordinates as a representative mod

a + b
√

r within this parallelogram.

Theorem 3.1.10. The norm of a quadratic integer α counts the number of incon-

gruent quadratic integers modulo α.

36

Proof. Consider the generic fundamental CRS given below.

This parallelogram is a simple polygon on a grid of integer coordinates with ver-

tices on those grid points. Pick’s Theorem [10] provides a formula for calculating

the area A of a such a polygon in terms of the number I of interior points located

in the parallelogram and the number of boundary points P on the parallelogram’s

perimeter. This formula is given as

A = I +
P

2
− 1.

The left hand side of this formula is given by N(α). Assume that the line segments

OA and CB both have m boundary points and OC and AB both have n boundary

points, not including the four vertices O, A, B, and C. Then, Pick’s formula can be

written as

N(α) = I +
2m + 2n + 4

2
− 1 = I + m + n + 1

Now, the right hand side of the formula counts number of incongruent quadratic

integers in the CRS as depicted in Figure 3.1, where the +1 indicates the inclusion

of the origin.

37

In order to maximize space efficiency, consider a rectangle with fixed bounds in

the x and y coordinates that contains this CRS. This rectangle will provided a simple

region that is guaranteed to contain all the residues of a particular modulus. One

method of creating this rectangle is shown in Figure 3.2.

Figure 3.2: A minimal rectangle containing a quadratic CRS

The numbers in the region A1 are congruent to numbers in the region A2. To

see this, simply add the vector (br, a) to any number in A1. Similarly, B1 and B2

contain congruent numbers. Therefore, considering only A2 and B2 along with the

rest of the parallelogram, the rectangle [0, a− br]× [0, b] contains a CRS with limited

wasted space in the shaded regions of the upper left and lower right corners. Recall

that r < 0.

Another method of describing an efficient region with fixed bounds containing a

CRS is to utilize a modulus a+ b
√

r such that a is significantly larger than br. In this

case, our parallelogram will virtually take the shape of a rectangle as seen in Figure

38

3.3 with a, b, r > 0. Thus, the very little grey-shaded space is wasted in describing

the rectangle [0, a + br] × [0, a + b] that contains a CRS.

Figure 3.3: A quadratic CRS with large first component

To determine a particular quadratic integer representation that falls within the

fundamental CRS (or bounding rectangle), it must satisfies Theorem 3.1.3 while re-

stricting its components to within the desired range.

3.2 Bi-Quadratic Integers

Consideration will now be focused on algebraic integers that satisfy fourth degree

polynomials. General descriptions of algebraic integers of higher degree are difficult

to establish. In fact, beyond the fourth degree little, if any, is known in this area.

The difficulty of representation is exhibited in a paper written in 1970 by Kenneth

Williams[38]. In it he examined the form of bi-quadratic integers along with an

integral basis in the field Q(
√

m,
√

n). Without loss of generality, it can be assumed

that (m, n) ≡ (1, 1), (1, 2), (2, 3), (3, 3)(mod4). Each of these cases produce a different

39

form of a bi-quadratic integer. For example, assuming m and n are relatively prime,

if (m, n) ≡ (1, 2)(mod 4), the integers are of the form:

1

2
(x0 + x1

√
m + x2

√
n + x3

√
mn) (3.2.1)

where x0 ≡ x1(mod 2) and x2 ≡ x3(mod 2). If (m, n) ≡ (3, 3)(mod 4), the integers

remain in the same form with the slightly different restriction that x0 ≡ x3(mod 2)

and x1 ≡ x2(mod 2).

It is a much more difficult task to classify the set of all such numbers. Thus, we

will only consider numbers in the following set with gcd(r, s) = 1:

Z(
√

r,
√

s) = {a + b
√

r + c
√

s + d
√

rs |a, b, c, d ∈ Z}

Clearly, this set does not account for all bi-quadratic integers, but it does consist ex-

clusively of bi-quadratic integers. With addition and multiplication, this set becomes

a sub-ring of the ring of all bi-quadratic integers.

Similar to the quadratic integers Z(
√

r), this ring is viewed as a lattice in the

vector space R4 where each number α = a + b
√

r + c
√

s + d
√

rs can be represented

as the four-dimensional vector vα = (a, b, c, d) ∈ Z4. In this context, it is clear to see

that any multiple of a number a + b
√

r + c
√

s + d
√

rs can be described as a linear

combination of the four vectors (a, b, c, d), (br, a, dr, c), (cs, ds, a, b) and (drs, cs, br, a),

i.e.

(a + b
√

r + c
√

s + d
√

rs)(w + x
√

r + y
√

s + z
√

rs) =

w(a + b
√

r + c
√

s + d
√

rs) +

x(br + a
√

r + dr
√

s + c
√

rs) +

y(cs + ds
√

r + a
√

s + b
√

rs) +

z(drs + cs
√

r + br
√

s + a
√

rs)

40

Thus, we can identify the following matrix correspondence:

α = a + b
√

r + c
√

s + d
√

rs ⇐⇒ Mα =















a rb sc rsd

b a sd sc

c rd a rb

d c b a















(3.2.2)

Notice that each column of the matrix is produced by multiplying vα by 1, r, s, and

rs from left to right.

3.2.1 Bi-Quadratic Conjugates

Recall that N(α) is equal to the product of the conjugates of α. To determine the

conjugate of a + b
√

r, one need only to negate the b term. A similar, but slightly

more complicated method will be used to determine the three conjugates of α =

a + b
√

r + c
√

s + d
√

rs with a, b, c, d > 0. Again, let a remain positive while b, c, and

d vary between positive and negative. Since, α = α1 and its conjugates α2, α3, α4

satisfy a fourth degree polynomial with integer coefficients, the coefficient of the x3

term, α1 +α2 +α3+α4 must be in Z. Hence, this sum must eliminate every term with

√
r,
√

s, and
√

rs. So two of the three conjugates must have a negative b, two of the

three conjugates must have a negative c, and two of the three conjugates must have

a negative d. This produces the following sign pattern for bi-quadratic conjugates:

α1 : + + + +

α2 : + − − +

α3 : + − + −
α4 : + + − −

41

Now the product α1α2α3α4 is given symbolically as

d4r2s2 − 2b2d2r2s + b4r2 − 2c2d2rs2 − 2a2d2rs + 8abcdrs − 2b2c2rs − 2a2b2r + c4s2 −

2a2c2s + a4.

Calculating the symbolic determinant of Mα verifies the claim that N(α) = det(Mα).

Notice that b, c, and, d are all raised to even powers except for the 8abcdrs term, so

negating two of them will not affect the norm.

3.2.2 Bi-Quadratic Representation

Consider the problem of finding an integer k ∈ Z such that α ≡ k(mod γ),

where N(γ) is prime. This will occur if and only if, vα − vk = Mγx for some

x = (x1, x2, x3, x4) ∈ Z4, where vk = (k, 0, 0, 0) and vα = (a, b, c, d). This process will

extend the concepts introduced for quadratic integers. So it is required that

M−1
γ (vα − vk) ∈ Z4.

Obviously, M−1
γ may not have integer entries, but since N(γ) = det(M), we know

that S = N(γ)M−1
γ does have integer entries. The matrix S is called the adjugate of

the matrix Mγ . So, 1
N(γ)

[Svα − Svk] = x. Then if we represent the first row of S as

the vector s=(s1, s2, s3, s4), we see that s · vα − ks1 = N(γ)x1. Hence we have the

congruence

s · vα ≡ ks1(modN(γ))

which can be solved for the unknown value of k as k ≡ s−1
1 s · vα(modN(γ)). We

know that s−1
1 exists since N(γ) is prime. In determining k, we could have also

considered the second row of S. In that case, a solution would have come in the form

k ≡ t−1
1 t · vα(modN(γ)) where t1 is the first component of the second row vector t.

42

Or we could have considered the third of fourth rows because they all produce the

same solution. This now provides a computational method of reducing an arbitrary

bi-quadratic integer to its equivalent representation in Z.

Through a similar process we can demonstrate a method for determining inverses

of an arbitrary bi-quadratic integer. Using the same notation as above, the goal

is to find an l ∈ Z such that lα ≡ 1(mod γ). Written in matrix-vector form,

lvα − v1 = Mγx where v1 = (1, 0, 0, 0) and x ∈ Z4. As above, this gives rise to

ls · vα − s1 = N(γ)x1 which produces the congruence l ≡ s1(s · vα)−1(modN(γ)).

Notice that l is simply the inverse of k(mod N(γ)). This demonstrates that once a

bi-quadratic integer is reduced to its rational integer form, inverses can be computed

mod the norm quite simply.

3.2.3 CRS for Bi-Quadratics

A complete residue system of quadratic integers could be described as a set of ra-

tional integers or a set of quadratic integers within some fundamental parallelogram,

called the fundamental CRS. The same is true of bi-quadratic integers, except now

the fundamental CRS is a four dimensional parallelepiped. This is the natural ex-

tension of the quadratic case. The columns of the modulus matrix Mα determine

the boundary of the parallelepiped. An important result found in [24] says that the

number of integer points in a fundamental parallelepiped is equal to the volume of the

parallelepiped. Within this context, the integer points are interpreted as elements of

the complete residue system mod α and the volume of the parallelepiped is the norm

of α, that is the det(Mα).

To illustrate a bi-quadratic integer CRS consider 1+
√

2+
√

3+
√

6 ∈ Z(
√

2,
√

3).

43

The norm of this integer is 4. Since 4 is not prime, the CRS is clearly not {0, 1, 2, 3}.

To construct a CRS, determine a simpler representation of an arbitrary integer 5 +

2
√

2 −
√

3 +
√

6 (mod 1 +
√

2 +
√

3 +
√

6). That is, find x1, x2, x3, x4 ∈ Z such that

5 + 2
√

2 −
√

3 +
√

6 ≡ x1 + x2

√
2 + x3

√
3 + x4

√
6 (mod 1 +

√
2 +

√
3 +

√
6)

Writing this congruence as an equation and equating the components on both sides

leads to the following system:

5 − x1 = m1 + 2m2 + 3m3 + 6m4

2 − x2 = m1 + m2 + 3m3 + 3m4

−1 − x3 = m1 + 2m2 + m3 + 2m4

1 − x4 = m1 + m2 + m3 + m4

for m1, m2, m3, m4 ∈ Z. The solution for this system has the following form:

m1 = 5 − 1

2
x1 + x2 − 3x3 +

3

2
x4

m2 = −9

2
+

1

2
x1 −

1

2
x2 −

3

2
x3 +

3

2
x4

m3 = −2 +
1

2
x1 − x2 −

1

2
x3 + x4

m4 =
5

2
− 1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x4

The requirement of mi ∈ Z forces x1, x3, and x4 to have the same parity while x2

has different parity. Thus, for the most simplified form, select x1 = x3 = x4 = 0 and

x2 = 1. Therefore,
√

2 can be one representation in the CRS.

By the same technique, a different member of the CRS will require that x1 and

x4 have one parity while x2 and x3 have a different parity. Thus, 1 +
√

6 will be a

representation in the CRS. All together, a CRS of 1 +
√

2 +
√

3 +
√

6 can be written

as {0, 1,
√

2, 1 +
√

6}.

44

CRS Bounding Box

Enclosing a fundamental parallelepiped within a four-dimensional rectangular prism

provides a convenient method of describing a region containing all incongruent mod-

ular representations. This allows strict bounds in each dimension, yet can be inef-

ficient due to enclosing multiple representations. This four-dimensional rectangular

prism can be described as follows for the number α = a + b
√

r + c
√

s + d
√

rs with

a, b, c, d, r, s > 0.

Let

B1 = max{a, rb, sc, rsd}

B2 = max{b, a, sd, sc}

B3 = max{c, rd, a, rb}

B4 = max{d, c, b, a}.

Then every element of Z(
√

r,
√

s) has a representative mod α within the region

{(x, y, z, w) ∈ Z4|0 ≤ x ≤ B1, 0 ≤ y ≤ B2, 0 ≤ z ≤ B3, 0 ≤ w ≤ B4}.

3.3 Higher Degree Representations

Every computation and procedure performed for quadratic and bi-quadratic integers

may be extended to integers of higher degree. It is well known that finding a closed

form for exact roots of arbitrary polynomials of high degree is impossible. Thus, we

will restrict our scope of algebraic integers to account for those of a particular form,

rather than a relation to a polynomial. This is necessary to establish a set whose

integers preserve the first three properties listed in Theorem 3.1.8. For any n ≥ 2, we

45

consider algebraic integers of degree n is of the form

α = a0 + a1r
1/n + a2r

2/n + ... + an−1r
n−1

n =
n−1
∑

i=0

air
i
n . (3.3.1)

with ai ∈ Z, ri/n 6∈ Z for 1 ≤ i ≤ n − 1. Notice the quadratic integers correspond

to n = 2. The bi-quadratic integers, as well as many other large degree extensions

of Z do not fit within this definition. This considers only numbers of the particular

form given. The set of all numbers of the form in (3.3.1) constitutes a ring. Closure,

the additive identity, and the additive inverses can easily be verified. Computation-

ally, multiplication within this ring would be a dreadful task, with numbers in their

current form. So we exhibit an isomorphic ring of matrices that allow for ease of

practical computations. This is a generalization of 2×2 matrices used with quadratic

integers back in Section 3.1.2. In general, each algebraic integer will have a matrix

representation in a ring containing n × n matrices of the form:

Mα =





















a0 an−1r an−2r · · · a1r

a1 a0 an−1r · · · a2r

a2 a1 a0 · · · a3r
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0





















This matrix is called persymmetric because it is symmetric in the northeast-to-

southwest diagonal. As such, the product of two persymmetric matrices will be

persymmetric. Due to its structure, Mα is completely determined by the n values

r, a0, a1, ..., an−1. Consider a mapping φ defined such that φ(α) = Mα. To ensure the

operations of addition and multiplication are preserved, it will be verified that for

any α =
∑n−1

i=0 air
i
n and β =

∑n−1
i=0 bir

i
n ,

1. φ(α + β) = φ(α) + φ(β)

46

2. φ(αβ) = φ(α)φ(β)

Unlabeled sums are assumed to go from i = 0 to n − 1. First,

φ(α + β) = φ(
∑

air
i
n +

∑

bir
i
n)

= φ(
∑

(ai + bi)r
i
n)

=





















a0 + b0 (an−1 + bn−1)r (an−2 + bn−2)r · · · (a1 + b1)r

a1 + b1 a0 + b0 (an−1 + bn−1)r · · · (a2 + b2)r

a2 + b2 a1 + b1 a0 · · · (a3 + b3)r
...

...
...

. . .
...

an−1 + bn−1 an−2 + bn−2 an−3 + bn−3 · · · a0 + b0





















=





















a0 an−1r an−2r · · · a1r

a1 a0 an−1r · · · a2r

a2 a1 a0 · · · a3r
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0





















+





















b0 bn−1r bn−2r · · · b1r

b1 b0 bn−1r · · · b2r

b2 b1 b0 · · · b3r
...

...
...

. . .
...

bn−1 bn−2 bn−3 · · · b0





















= Mα + Mβ = φ(α) + φ(β)

To show the multiplicative condition, note that if
∑

air
i
n

∑

bir
i
n =

∑

cir
i
n we must

have ck =
∑

i+j=k aibj + r
∑

i+j=k+n aibj since

∑

air
i
n

∑

bir
i
n = (

∑

i+j=0

aibj + r
∑

i+j=n

aibj) + (
∑

i+j=1

aibj + r
∑

i+j=n+1

aibj)r
1
n + ...

+ (
∑

i+j=n−1

aibj + r
∑

i+j=2n−1

aibj)r
n−1

n .

Observe that ck can also be written as

ck =

k
∑

i=0

aibk−i + r

n−1
∑

i=k+1

an+k−ibi (3.3.2)

47

Thus,

φ(αβ) = φ(
∑

air
i
n

∑

bir
i
n)

= φ(

n−1
∑

k=0

ckr
k
n)

But the product





















a0 an−1r an−2r · · · a1r

a1 a0 an−1r · · · a2r

a2 a1 a0 · · · a3r
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0









































b0 bn−1r bn−2r · · · b1r

b1 b0 bn−1r · · · b2r

b2 b1 b0 · · · b3r
...

...
...

. . .
...

bn−1 bn−2 bn−3 · · · b0





















yields a matrix whose first column is exactly these ck values. Hence,

φ(
n−1
∑

k=0

ckr
k
n) = MαMβ = φ(α)φ(β)

The process of finding an integer k ∈ Z such that α ≡ k(mod γ), where N(γ) is

prime is now generalized to the high dimensional cases. This will occur if, and only

if, vα − vk = Mγx for some x = (x1, x2, .., xn) ∈ Zn, where vk = (k, 0, ..., 0) ∈ Zn and

vα = (a1, a2, ..., an) ∈ Zn. So we require that

M−1
γ (vα − vk) ∈ Zn.

As before, M−1
γ does not have integer entries, but since N(γ) =det(M), we know that

the matrix S = [sij] = N(γ)M−1
γ does have integer entries.

48

So, 1
N(γ)

[Svα − Svk] = x. This gives rise to the following congruences:

n
∑

j=1

s1jaj ≡ ks11(mod N(γ))

n
∑

j=1

s2jaj ≡ ks21(mod N(γ))

...
n
∑

j=1

snjaj ≡ ksn1(mod N(γ))

We know that each s−1
i1 exists since N(γ) is prime. Hence, any one of these

congruences can be solved for k. So k can be written as s−1
11

∑n
j=1 s1jaj(mod N(γ)).

This produces a unique representation k of α where 0 ≤ k ≤ N(γ) − 1.

In the same way we can demonstrate a method for determining inverses of an

arbitrary algebraic integer of the form given in (3.3.1). Using the same notation

as above, the goal is to find a l ∈ Z such that lα ≡ 1(mod γ). Written in

matrix-vector form, lvα − v1 = Mγx where v1 = (1, 0, ..., 0) ∈ Zn and x ∈ Zn.

As above, this gives rise to 1
N(γ)

[lSvα − Sv1] = x. which produces the congruence

l ≡ s11(
∑n

j=1 s1jaj)
−1(mod N(γ)). Notice that l is simply the inverse of k(mod N(γ)).

Hence, inverses can be computed mod the norm quite simply once the algebraic in-

teger has been reduced to its integer form.

3.4 The Disguising Method

One of the fundamental weaknesses of knapsack codes has been the inability to ade-

quately disguise the “easy” weights into the “hard” weights. This has been demon-

strated in the success of Diophantine Approximation attacks, where the disguising

49

has been reversed. Thus, the efforts to combat this must lie in the complexity of

the disguising process. To achieve added complexity, we consider disguising weights

within the context of a ring of algebraic integers. There is a cryptographic purpose

to removing modular multiplication from the ordinary integers and placing it in the

setting of algebraic number rings. This is done to frustrate attacks that seek to

reverse the disguising of weights in this manner. The added complexity serves to

eliminate the possibility of modeling the modular multiplication, as was done with

the Diophantine Approximation attacks on previous codes.

The goal is to transform a sequence of integers {ai} ∈ Z into a sequence of vectors

in Zn through a system of modular multiplication using algebraic integers for the

moduli. While the private weights remain integers, our public weights will now be

a set of vectors of size n with integral components. Due to the linearity of such

a transformation, sums will be preserved. That is, a sum of private weights will

correspond to the exact same sum of public weights, and vice versa.

3.4.1 Modular Multiplication

Let {ai} ∈ Z be a sequence. Then two secret parameters must be established prior to

disguising. Let c ∈ Z be the multiplier and let the modulus be an algebraic integer

γ of degree n. This description will be general enough to account for quadratic, bi-

quadratic, or higher dimension algebraic integers. Define a function f : Z → Zn by

f(ai) = aic(modγ). This function is applied to each of the terms in the sequence,

resulting in a sequence of vectors. Clearly, there are many possible representations

of each f(ai). In order for this function to be well-defined, this representation must

lie in the fundamental CRS (mod γ). (For practical implementation, it is sufficient

50

to select any representation in a bounding rectangle of the fundamental CRS.) Call

that representative βi.

In order to invert this function f one must first compute c−1(mod N(γ)). We are

justified in using the norm of γ by Theorem 3.0.2. Then define f−1 : Zn → Z by

f−1(βi) = βic
−1(modγ). Here of course, the representative is given as an ordinary

nonnegative integer less than N(γ).

This modulus γ must be chosen such that (1) N(γ) is prime and (2) N(γ) >
∑

ai.

Condition (1) is required so that βi is congruent to a unique integer less than N(γ).

Condition (2) is necessary to ensure a unique inversion of any subset sum of the ai

weights. Consider some T =
∑

xiai > N(γ) such that f(T) = β. Then f−1(β) <

N(γ). So f−1(β) 6= T and the T could not be recovered through this process.

Quadratic Trees

In Section 3.1.1 modular multiplication was described in a quadratic number ring. It

was shown that an integer in Z can be transformed into a quadratic integer located

within a fundamental parallelogram. This was also shown to be a reversible trans-

formation from Z to Z2. This transformation can also be applied to each component

of vectors in Z2, to create another vector in Z2. This procedure can be repeated

indefinitely.

To visualize this process, consider a binary tree. The nodes of the tree are integers

and each of the child pairs are produced via a modular multiplication on the parent

node. Thus, each internal vertex corresponds to a modular multiplication. Each child

is a component of a vector in Z2. The root of the tree is the original integer that

begins the process. This would be considered one of the private weights. So there

51

is an ability to create a wide variety of tree structures based upon which nodes are

chosen to reproduce.

For example, Figure 3.4 depicts a transformation from Z to Z4 in the following

way. The integer a is transformed into the vector (b1, b2). Then b2 is transformed into

the vector (c1, c2). Finally, c1 is transformed into the vector (d1, d2). So, ultimately,

a has been transformed into (b1, d1, d2, c2) ∈ Z4. The leaves of the tree, from left to

right, constitute the final disguised vector.

a

b1 b2

c1 c2

d1 d2

Figure 3.4: One possible transformation from Z to Z4

If there are k leaves, this process yields a transformation from Z to Zk, where each

of the leaves is a component of a vector. In practice, using trees that are more full

will provide more uniformity in the size of the disguised weights. It will also make

more efficient use of the storage necessary to hold the disguised weights.

The number of rooted binary trees with n = 1, 2, ..., 10 internal vertices is given

by the sequence 1, 1, 2, 3, 6, 11, 23, 46, 98, 207 [28]. Thus, for n = 30, there are ≈ 1010

different ways to transform an integer into a vector in Z31. From a cryptanalytic

point of view, reversal of this disguising requires knowledge of the parameters used

in each modular multiplication as well as the particular tree structure. Without this

information, modeling a sequence of modular multiplications would be infeasible. One

could not analyze, let alone express, the equations in such a transformation.

52

Higher Degree Trees

As we have seen previously, the ideas presented regarding quadratic integers can be

extended to integers of higher degree. Thus, the modular multiplication trees need

not remain binary. We can discuss rooted trees with larger (arbitrary) degree vertices.

Obviously, the number of such trees exceeds the number of binary trees. In fact, there

is no exact count of trees having a specific number of leaves. However, we can get a

rough estimate by counting the number of binary, ternary, or in general p-ary trees.

In [2] it was shown that 1
(p−1)n+1

(

pn
n

)

counts the number of p-ary trees with n vertices.

Since we want a count on the number of leaves we must observe that about half of

the total vertices in a binary tree are leaves, about two-thirds of the total vertices

of a ternary tree are leaves, and in general about p−1
p

of the vertices of a p-ary tree

are leaves. So this will provide a rough number of trees with a specific leaf count.

Since the number of p-ary trees only accounts for vertices with degree zero or p, only

a lower bound for the tree count can be achieved. Even so, for n = 30 and p = 4,

there are more than 1026 such tree structures. Again, the number of trees limits a

cryptanalyst’s ability to enumerate all such options.

53

Chapter 4

New Codes

In the creation of a new secure cryptographic code, the previous chapter had demon-

strated a new method of disguising private weights. This chapter will describe in

detail the process of creating the private weights, disguising the private weights, en-

coding a message, and decoding a message. Two different methods of creating the

secret weights will be discussed. One is based on recurrence sequences and the other is

based on congruence properties. Both can be used in conjunction with the disguising

technique of modular multiplication mentioned previously. In this sense, the creation

of the weights and the disguising of the weights can be viewed as independent of

each other. For both methods, different processes will be used to convert a message

M into a vector vM=(ǫ1, ǫ2, ..., ǫn). Throughout this description, n is the number of

public/private weights.

54

4.1 Code Description

4.1.1 Method 1: Congruence Condition

Setup

Create an increasing sequence {rij} in the following manner. The sequences has n

terms grouped into k blocks of size P . The j subscript corresponds to the jth term

in the ith block. That is, {rij} = {r11, r12, ..., r1P /r21, r22, ..., r2P/.../ rk1, rk2, ..., rkP}.

With j fixed, {rij} should increase with a growth rate of approximately 2.

Create the increasing sequence {sij} in a similar manner to {rij}, subject to the

following two conditions:

• sij ≡ rij(mod P) (4.1.1)

• sh1 >
∑

i<h

siP for all h = 2, ..., k (4.1.2)

The second condition requires that the smallest term in each group must be larger

than the sum of the largest terms of all previous groups. The message, in its various

forms, will be represented as sums of rij or sij . The sequence {sij} is the set of private

weights and {rij} serves as the representation weights for the plaintext message.

Vector Representation

Let M = M1 be the secret message. This message will be converted into a vector

vM=(ǫ1, ǫ2, ..., ǫn) = (ǫ11, ǫ12, ..., ǫ1P /ǫ21, ǫ22, ..., ǫ2P /.../ ǫk1, ǫk2, ..., ǫkP) through a pro-

cess that generates a sequence M1, M2, M3, ... The value of each Mt (mod P) will de-

termine how a “greedy” rule will be used at each state. To begin, set vM=(0, 0, ..., 0).

The rule states that if Mt ≡ j (mod P), then use the largest possible term r∗ =

55

rij , i = 1, ..., k. Since the value of j corresponds to the jth term in a block, consider j

in the set {1, 2, ..., P} not the set {0, 1, ..., P −1}. That is, use the largest possible jth

number from one of the blocks. Indicate this usage by incrementing the corresponding

ǫ component in vM . Next, let Mt+1 = Mt−r∗. Continue the process until the smallest

rij grouping has been used. Then save the current value of Mt as C which will be

sent in the clear upon transmission of the encoded message. Thus, vM is the vector

representation of M with respect to {rij} such that
∑

ǫijrij+C = M . Or, disregarding

the groupings, we can represent M as the sum
∑n

i=1 ǫiri + C. Once the message has

been represented as a vector, it is encoding by the process described in Section 4.1.4.

Then the message is sent.

When the encoded message is transmitted, the receiver reverses the disguising

process,as described in Section 4.1.7, to express the message as a sum of the sij

weights. This process is described in Section 4.1.5. Then the receiver must express

the message as a sum of the rij weights. So for a known value of
∑

ǫijsij , the ǫij need

to be recovered. This is done in the same way that M was converted to vM above. In

this instance, a sequence T1, T2, T3, ... is generated to decode. Thus, M =
∑

ǫijrij +C

can be recovered from T =
∑

ǫijsij + C.

Example

To illustrate how a message M is converted into a vector vM , consider the following

example. Let n = 15, P = 3 and define the sets:

{ri} = {18, 19, 20/46, 47, 48/79, 81, 82/168, 170, 174/339, 342, 344/681, 684, 688}

{si} = {192, 193, 197/403, 407, 411/784, 789, 793/1458, 1466, 1472/

3015, 3027, 3077/5991, 6003, 6025}

56

Notice that ri ≡ si(mod 3).

Consider the message M = M1 = 900. Here are the required steps to encode this

as the vector vM .

M1 = 900 ≡ 3(mod 3) → use 688 increment ǫ6,3

M2 = 212 ≡ 2(mod 3) → use 170 increment ǫ4,2

M3 = 42 ≡ 3(mod 3) → use 20 increment ǫ1,3

C = 22 → send in clear

So, 900 = 688 + 170 + 20 + C, where C = 22, and

vM={0, 0, 1/0, 0, 0/0, 0, 0/0, 1, 0/0, 0, 0/0, 0, 1}.

Notice that the corresponding sij weights are 6025, 1466, and 197, which sum to

T = T1 = 7688.

For decoding, this process will be reversed to recover the ǫi such that
∑

ǫisi =

7688 + C. This is shown below.

T1 = 7688 + 22 ≡ 3(mod 3) → use 6025

T2 = 1663 + 22 ≡ 2(mod 3) → use 1466

T3 = 197 + 22 ≡ 3(mod 3) → use 197

C = 22

Once the ǫi have been recovered, the original message M can now be computed as

∑

ǫiri + C = 878 + 22 = 900.

57

Unique Decoding

It must be verified that the use of this greedy rule to decode will always produce the

same vM as was encoded. Using the rij weights, this construction yields a standard

{0, 1} knapsack with some additional constraints added. By construction, the greedy

algorithm always chooses the largest possible weight such that the following conditions

are satisfied: (1) at most one weight is chosen from each grouping and (2) each weight

is selected from the appropriate position within a group (determined by a congruence).

A weight that satisfies (2) is said to be allowable.

Within this context, consider the following argument. If it is determined that

T = si1j1 + si2j2 + ... + siqjq
by the decoding algorithm, then this same algorithm

should yield M = ri1j1 + ri2j2 + ... + riqjq
with the same representation for uniqueness

to hold. Suppose, at some point in the process there is agreement in representing Tk

such that

Mk = ri1j1 + ri2j2 + ...

Tk = s11j1 + si2j2 + ...

Assume rikjk
is used at this stage in representing Mk. Then for uniqueness, the weight

sikjk
must be used to represent Tk. Since rikjk

was chosen, it is allowable and the next

larger allowable r(ik+1)jk
is too large, i.e. larger than Mk. Hence sikjk

is also allowable

by (4.1.1). Because sikjk
≤ Tk, it will be chosen provided that the next allowable

weight s(ik+1)jk
is greater than Tk. This is verified by (4.1.2) since

s(ik+1)jk
≥ s(ik+1)1 >

∑

i≤ik

siP ≥ s11j1 + si2j2 + ... = Tk.

58

Therefore, the greedy algorithm, along with conditions (1) and (2), will always

yield a unique decoding.

4.1.2 Method 2: Recurrence Relations

Background

Let {ri} be a dth order recurrence sequence satisfying:

rn = a1rn−1 + a2rn−2 + ... + adrn−d (4.1.3)

In [13], is was shown that there is a unique representation for any positive integer N ,

given by

N =
k
∑

i=0

ǫiri (4.1.4)

provided that

a1 ≥ a2 ≥ ... ≥ ad ≥ 1. (4.1.5)

Here, the ǫi digits must satisfy ǫj ...ǫj−k ≤ a1...ad in the lexographical order for all

j ≥ 0 and 1 ≤ k ≤ d.

A common example of this type of representation is the well known Zeckendorf

representation using the Fibonacci numbers [39]. This process allows for unique rep-

resentation along with a high density sequence (large ǫi), which is a beneficial step

for defeating Basis Reduction. Furthermore, as shown recently in [15], the restric-

tion given in (4.1.5) can be eliminated, thus increasing the density, while preserving

uniqueness. If a1 + a2 + ... + ad = A, define a set of sequences S = {S0, S1, ..., SA−1}

as follows. Let S0 = 0 and Si for i ≥ 1 consist of all strings of length l, for each

l, such that a1...al−1 ≤ Si < a1...al. For example, if a1a2a3a4 = 2013, then S

= {0, 1, 200, 2010, 2011, 2012}.

59

The main result of [15] states that if {ri} is a sequence satisfying (4.1.3), then

any positive integer N can be uniquely represented as in (4.1.4) where the string of

digits ǫkǫk−1...ǫ0 is composed of blocks of digits in the set S. Thus, a representation is

unique if ǫkǫk−1...ǫ0 can be parsed into blocks in S reading left to right. This provides

the justification for the code construction that now follows.

Vector Representation

Select nonnegative integers d and a1, ..., ad to create a recurrence sequence {ri} that

satisfies (4.1.3). From the above comments, it is trivial to determine if a repre-

sentation is allowable, but how can the appropriate ǫi values be determined for

a given message M? Before we can answer this question, an equivalent formula-

tion must be considered. Let the sequence {wi} consist of all numbers of the form

b1rn + b2rn−1 + ... + bjrn−j+1 arranged in increasing order. The bi are chosen such

that:

1 ≤ b1 ≤ a1 if j = 1

a1...aj−1 ≤ b1...bj ≤ a1...aj if 1 ≤ j ≤ d (4.1.6)

a1...ad−1 ≤ b1...bd ≤ a1...(ad − 1) if j = d.

The wi consist of the all the allowable representations of sums of ri. They are directly

related to the set S of sequences above. Now the greedy algorithm can be used to

express M as

M =
k
∑

i=0

ǫ′iwi.

where ǫ′i ∈ {0, 1}. From this, M can also be represented as (4.1.4) with ǫi ≥ 0.

60

Example

Consider the recurrence sequence {ri} = {1, 2, 4, 9, 23, 56, 133, 316...} that satisfies

rn = 2rn−1 + rn−3 + 3rn−4.

Then by (4.1.6), the allowable sums of rn are rn, 2rn, 2rn + rn−2, 2rn + rn−2 + rn−3,

and 2rn + rn−2 + 2rn−3. Therefore,

{wi} = {1; 2; 4, 8; 9, 18, 20, 21, 21; 23, 46, 50, 52, 54; 56, 112, 121, 125, 129;

133, 266, 289, 298, 307; 316, 632...}

Consider the message M = 600. The greedy algorithm applied to {wi} yields

600 = 316 + 266 + 18. Hence, ǫ′i = 1 only for i = 5, 20, 24 otherwise ǫ′i = 0. Notice

also that ǫ3 = 2, ǫ6 = 2, and ǫ7 = 1, since 600 = w5 + w20 + w24 = r7 + 2r6 + 2r3.

Thus, M has been converted into the vector vM=(ǫi).

Unique Decoding

As shown in [15], the representation of an integer must be unique using this recurrence

method. Thus, the decoding process will always yield one, and only one, correct

message.

4.1.3 Disguising

Convert each {si} weight into an integer vector with m components, Ti = {tji}, 1 ≤

j ≤ m, 1 ≤ i ≤ n through modular multiplications in algebraic number rings. Let the

m×n matrix T consist of the columns Ti. For each of the m rows of T , choose a set of

primes {pjk}gj

k=1 such that
∏gj

k=1 pjk >
∑n

i=1 tji. Technically, the numbers need only

61

be relatively prime to each other for the Chinese Remainder Theorem, but choosing

primes will be simple and sufficient. The number of primes, gj, chosen for each row

may vary. Then, for each row compute the gj sets

{tji(mod pjk)} for k = 1, ..., gj.

Let G =
∑

gj be the total number of primes used for all rows combined. These

sets, in order, form the rows wi of a G × n matrix W . The rows of W are then

randomly permuted to form the matrix W ′ which is the public set of weights. The

weights {si} are kept private.

To summarize, here are the matrices produced in the process of disguising:

{si} =⇒ T =⇒ W =⇒ W ′ (4.1.7)

A Small Disguising Example

For the set {si} = {3, 8, 17, 36, 79} use the following modular multiplication tree

1

2

with these given parameters:

1. multiplier: 19 + 9
√

2, modulus: 23 + 13
√

2

2. multiplier: 5 + 9(3)1/3 + 6(3)2/3, modulus: 7 + 8(3)1/3 + 4(3)2/3.

Notice that the norm of the moduli (191 and 439 respectively) are prime and larger

than the sum of the weights to ensure unique decoding, as in the standard modular

62

multiplication of Merkle-Hellman. The quadratic transformation (1) produces the

weights
(

14 20 13 18 34

11 14 11 14 23

)

. (4.1.8)

Each column relates to its corresponding si value. So, for example,

3(19 + 9
√

2) ≡ 14 + 11
√

2(mod 23 + 13
√

2)

and so on. Then the cubic transformation acts on the first row of (4.1.8) to produce

the weights








28 7 30 30 23

19 4 18 17 16

14 4 12 12 10









. (4.1.9)

Now combine the second row of (4.1.8) with (4.1.9) to create the matrix

T =















28 7 30 30 23

19 4 18 17 16

14 4 12 12 10

11 14 11 14 23















Select the following primes to use:

{p1k} = {2, 3, 5, 7}, {p2k} = {7, 13}, {p3k} = {3, 5, 7}, {p4k} = {2, 5, 11}

Each one of the rows of T then breaks down into multiple rows which comprise

the following matrix:

63

W =



























































0 1 1 0 0

1 1 1 0 1

3 2 3 3 4

0 0 6 4 6

5 4 4 3 2

6 4 5 4 3

2 1 0 0 1

4 4 2 2 0

0 4 5 5 3

1 0 1 0 1

1 4 1 4 3

0 3 0 3 1



























































A secret permutation is then applied to the rows of W to yield the public weights

W ′.

4.1.4 Encoding

Once M has been completely transformed into vM , compute v′
M= W ′vM . The vector

v′
M is the encoded message that can be sent to the receiver. The corresponding

knapsack problem is given by the system W ′x=v′
M .

Two quick observations will be helpful to refer to for the reversal of the disguising.

By construction, the dot product of vM and {ri} is M . Consider the dot product

of vM and {si}. We will call this value K. That is,

n
∑

i=1

ǫisi = K. (4.1.10)

64

Second, the vector z = TvM has components (z1, z2, ..., zm) that satisfy the fol-

lowing relations:

n
∑

i=1

ǫit1i = z1

... (4.1.11)
n
∑

i=1

ǫitmi = zm

4.1.5 Disguising Reversal

The receiver has knowledge of the secret permutation and thus may apply its inverse

to W ′ to yield the matrix W . In the original order, one knows that the first g1 rows of

W correspond to the first row of T , the next g2 rows of W correspond to the second

row of T , and so on. Upon receiving the encoded message vector v′
M=(z′1, z

′
2, ..., z

′
G),

the Chinese Remainder Theorem is used to compute

z1 ≡















z′1 (mod p11)
...

z′g1
(mod p1g1)

z2 ≡















z′g1+1 (mod p21)
...

z′g1+g2+1 (mod p2g2)

and so on.

Now these z1, ..., zm are related to the ǫi as shown in (4.1.11).

The goal now is to express a sum involving {tji} as a sum involving {si}. All of

the parameters of moduli and multipliers in the disguising are known to the receiver

and reversible as shown in Section 3.1. One must apply the inverse of the modular

transformations to the m equations until one single equation remains. This will yield

65

a sum involving the known {si} weights. Hence, we can determine K such that

satisfies (4.1.10).

Small Disguising Example - Continued

First, the inverses of the multipliers used in the modular multiplications are below as

computed from techniques in Chapter 3:

1. inverse multiplier: 177, modulus: 23 + 13
√

2, norm = 191.

2. inverse multiplier: 242, modulus: 7 + 8(3)1/3 + 4(3)2/3, norm = 439.

By (4.1.11), the first three rows of T can be expressed as the single equation

(28 + 19(3)1/3 + 14(3)2/3)ǫ1 + (7 + 4(3)1/3 + 4(3)2/3)ǫ2 +

(30 + 18(3)1/3 + 12(3)2/3)ǫ3 + (30 + 17(3)1/3 + 12(3)2/3)ǫ4 +

(23 + 16(3)1/3 + 10(3)2/3)ǫ5 = z1 + z2(3)1/3 + z3(3)2/3

Multiplying this equation by 242 and reducing in Z mod 439 yields the equation

14ǫ1 + 20ǫ2 + 13ǫ3 + 18ǫ4 + 34ǫ5 = z∗

where z∗ is a known value. This equation, along with the equation determined by the

last row of T , can now be viewed as

(14 + 11
√

2)ǫ1 + (20 + 14
√

2)ǫ2 + (13 + 11
√

2)ǫ3 + (18 + 14
√

2)ǫ4 +

(34 + 23
√

2)ǫ5 = z∗ + z4

√
2

Multiplying this equation by 177 and reducing in Z mod 191 yields the equation

3ǫ1 + 8ǫ2 + 17ǫ3 + 36ǫ4 + 79ǫ5 = z∗∗

where z∗∗ is a known value. In this manner, a sum involving {ti} can now be expressed

as a sum involving {si}.

66

4.1.6 Summary

To summarize the previous steps consider the following short-hand version of the

process. It provides the four major steps for the implementation of the system.

Create Weights {ri} and {si}, 1 ≤ i ≤ n

Disguise Weights {si} =⇒ T ∈ Mm×n(Z) =⇒ W ∈ MG×n(Z) =⇒ W ′ ∈ MG×n(Z)

Encode Message 1. Express message M =
∑

ǫiri as
∑

ǫisi where vM=(ǫi) ∈ Zn

2. Compute secret message v′
M = W ′vM ∈ ZG

Decode Message 1. Reverse the disguising to express v′
M as

∑

ǫisi = K(known)

2. Determine ǫi through congruence condition to compute M =
∑

ǫiri

67

Chapter 5

Code Cryptanalysis

As mentioned in Chapter 1, the two primary method of attack on knapsack-type

codes are Diophantine Approximation and Basis Reduction. Therefore, this new

system must, at a minimum, withstand the techniques of these attacks. In this

chapter the security of this system will be demonstrated through its ability to resist

these cryptanalytic techniques.

5.1 Diophantine Approximation

The purpose of this attack is to reverse the disguising process and reveal the secret

weights {si}. The initiation of this method requires an equation relating the secret

weights to the public weights through the modular multiplication process, see (1.4.1).

For this code, the secret weights are integers and the public weights are integer vectors

in Zn. This necessitates that a system of at least n equations be used to relate the

weights. As will be shown, there are too many possible ways to create the public

vector for the cryptanalyst to analyze.

In addition, there is great deal of flexibility on the part of the code maker for

which the cryptanalyst will be unable to account. As described in Section 3.4.1, a

68

sequence of modular multiplications (of varying degrees) can be performed on the

weights. A specific representation of this sequence is given by the tree structure,

which is unknown to the cryptanalyst. Therefore, the correct systems of equations

cannot be expressed. For example, if the public weights are of degree 6, it is not known

whether they came from any of the following tree structures, or possibly another.

Each of these trees has 6 leaves and thus provides a valid transformation from Z

to Z6.

Suppose a modular multiplication transformation on {si} yields vectors in Z3.

First, assume this was done via two quadratic extensions as shown below. The two

multiplier-modulus pairs are given by (k1, a + b
√

r) and (k2, c + d
√

t) in that order.

The x1i, x2i, y1i, and y2i terms given below are integers.

si

w1i w2i

√
r

w3i w4i

√
t

Then,

69

si = k1(w1i + w2i

√
r) + (a + b

√
r)(x1i + x2i

√
r)

= (k1w1i + ax1i + bx2ir) + (k1w2i + ax2i + bx1ir)
√

r

and

w2i = k2(w3i + w4i

√
t) + (c + d

√
t)(y1i + y2i

√
t)

= (k2w3i + cy1i + dy2it) + (k2w4i + cy2i + dy1ir)
√

t

Together, these produce the equations:

k1w1i + ax1i + bx2ir = si

k1w2i + ax2i + bx1ir = 0 (5.1.1)

k2w3i + cy1i + dy2it = w1i

k2w4i + cy2i + dy1ir = 0

Next, assume that {si} is disguised by one modular multiplication in a cubic ring

as shown below with the single multiplier-modulus pair (k, f+gq
1
3 +hq

2
3). The z1i, z1i,

and z1i terms given below are integers.

si

w∗
1i w∗

2iq
1
3 w∗

3iq
2
3

Then,

70

si = k(w∗
1i + w∗

2iq
1
3 + w∗

3iq
2
3) + (f + gq

1
3 + hq

2
3)(z1i + z2iq

1
3 + z3iq

2
3) (5.1.2)

which yields the equations

kw∗
1i + fz1i + gx3iq + hz2iq = si

kw∗
2i + fz2i + gx1iq + hz3iq = 0 (5.1.3)

kw∗
3i + fz3i + gx2iq + hz1i = 0

In both cases, the only public information are triples of integers (w1i, w3i, w4i) or

(w∗
1i, w

∗
2i, w

∗
3i) and the analyst has no idea which system of equations to model, (5.1.1)

or (5.1.3).

The two major pieces of information the cryptanalyst needs to know are (1) the

value of each of the parameters and (2) the structure of the tree used in disguising.

The second produces the “template” or form of the system of equations and the

first provides the coefficients to solve the system. Neither of these are public. What

complicates this even more is that, in certain instances, knowledge of (2) is not

sufficient to determine the form of the system.

Another problem the cryptanalyst encounters is not knowing what “type” of alge-

braic numbers are being used. For example, assume that one modular multiplication

took place to yield a vector in Z4. This could have been produced either by a bi-

quadratic extension or another type of fourth degree extension, but there is no way

of knowing which was used. Furthermore, each type will give rise to different systems

of equations. Consider the following example.

71

Convert {si} ∈ Z into {(ai, bi, ci, di)} ∈ Z4 with a multiplier of k and a modulus

of γ = (m1, m2, m3, m4).

First assume that γ is the bi-quadratic integer m1 +m2

√
r+m3

√
t+m4

√
rt. Then

for each si, we have















si

0

0

0















=















ai rbi tci rtdi

bi ai tdi tci

ci rdi ai rbi

di ci bi ai





























k

0

0

0















−















m1 rb2 tc3 rtm4

m2 m1 tm4 tm3

m3 rm4 m1 rm2

m4 m3 m2 m1





























wi

xi

yi

zi















This produces the system of equations:

aik = m1wi + rm2xi + tm3yi + rtm4zi + si

bik = m2wi + m1xi + tm4yi + tm3zi (5.1.4)

cik = m3wi + rm4xi + m1yi + rm2zi

dik = m4wi + m3xi + m2yi + m1zi

where the known values are ai, bi, ci, and di, the fixed unknowns are r, t, k, m1, m2, m3,

and m4 and the unknowns for each si are wi, xi, yi, and zi.

Next assume that γ is the algebraic integer m1 + m2r
1/4 + m3r

2/4 + m4r
3/4. Then

for each si, we have















si

0

0

0















=















ai rdi rci rbi

bi ai rdi rci

ci bi ai rdi

di ci bi ai





























k

0

0

0















−















m1 rm4 rm3 rm2

m2 m1 rm4 rm3

m3 m2 m1 rm4

m4 m3 m2 m1





























wi

xi

yi

zi















72

This produces the system of equations:

aik = m1wi + rm4xi + rm3yi + rm2zi + si

bik = m2wi + m1xi + rm4yi + rm3zi (5.1.5)

cik = m3wi + m2xi + m1yi + rm4zi

dik = m4wi + m3xi + m2yi + m1zi

where the known values are ai, bi, ci, and di, the fixed unknowns are r, k, m1, m2, m3,

and m4 and the unknowns for each si are wi, xi, yi, and zi.

Notice that in each case, a completely different system of equations is generated,

both of which are non-linear. Yet, the trees associated with both transformations are

identical and given below.

Figure 5.1: The tree associated with a single transformation from Z to Z4

This system only represents one single modular multiplication transformation. In

a full scale implementation, the disguising process would consist of multiple layers

of transformations in an unknown order. This introduces the complexity of adding

an unknown number of unknown parameters, effectively eliminating the possibly of

expressing a system of equations to represent the disguising process.

Recall that the Diophantine Approximation attack described in Section 1.4 re-

versed the modular multiplication disguising by determining a ratio of integers suf-

ficiently close to the ratio of multiplier to modulus. To replicate that procedure in

73

this setting would require division of algebraic integers to be meaningful. It is easy to

express an algebraic integer in its decimal form, but it is impossible to take a decimal

representation and express it as an algebraic integer with unknown parameter values

(i.e. r and/or s). So finding ratios of algebraic integers becomes an infeasible task.

Thus, the techniques of Diophantine Approximation used with the standard knapsack

in Z do not apply here.

It is true that ai, bi, ci, and di are known values, but because they are permuted

in the disguising process, the cryptanalyst is not given them in the correct order. If,

for example, ai and bi are switched, the equations will solve to and incorrect solution.

The four weights must be selected in the correct order. Obviously, there are 4! = 24

different orderings from which to choose. In general, with k sets of weights, there are

k! possible orderings. Furthermore, only recovering the correct ordering will yield a

solution capable of reversing the disguising.

Though there is a very small likelihood of this occurring, even such a feat would

be insufficient to break the code. Recall that in the previous example, the cryptan-

alyst would not be able to determine whether to use (5.1.4) or (5.1.5) to invert the

disguising. Thus, the same tree in Figure 5.1 gives rise to two different systems. In

addition, there are many other systems that could produce vectors with four compo-

nents. Each one is associated with a rooted tree with four leaves. In total there are

11 different trees with 4 leaves (one of which yields 2 systems). For the cryptanalyst

to assure the correct ordering of the weights and the correct equations (tree), he must

consider at least 24 · 11 · 2 = 528 distinct possibilities. Assuming all the equations

can be solved, only one out of the 528 will yield the correct reversal of the disguise.

The assumption is that even with the correct permutation and “form” of the

74

equations, the cryptanalyst will be unable to actually solve the non-linear equations.

Yet, to prove such a statement would be extremely difficult in all situations. Hence,

the other arguments presented in this section provided the basis for security with this

type of disguising.

5.1.1 Specialized Attack

In addition to the previous discussion, we also show that the public weights (columns

of W ′) cannot be utilized to recover the rows of T . Recall that each row of T is broken

down modulo various primes to form the rows of W . The columns of W are then

permuted to form W ′. Thus, one does not know which, or how many, of the rows

must be recombined with the Chinese remainder theorem. The approximate size of

the primes can be deduced from the sizes of the row entries. In this sense, the primes

are not assumed to be completely hidden from the cryptanalyst.

For the sake of a simplified example, assume the prime values are known and that

each column of T is a vector in Z15. If 5 primes are used for each row of T , there

would be
(

75

5

)(

70

5

)

· · ·
(

5

5

)

≈ 1078

choices to recombine the primes with the Chinese Remainder Theorem. Each group of

5 rows must be selected in precisely the right way. If any grouping is taken incorrectly,

the resulting combination will be incorrect. Of course any number of primes can be

used to break down each weight. This simply demonstrates that even for a basic

case it is infeasible to begin reversing the disguising of the public weights without

knowledge of the secret permutation.

75

5.2 Basis Reduction

In contrast with the Diophantine Approximation attack, the Basis Reduction (BR)

approach has no regard for the various methods and techniques of disguising. Instead,

the knapsack problem of finding ǫi ∈ {0, 1} such that
n
∑

i=1

ǫiwi equals some target is

interpreted as the shortest vector problem in a lattice. In the proposed cryptosystem,

we have introduced a knapsack problem that involves a system of equations, rather

than just a single equation. Hence, a modified procedure (see [17]) that is different

from that of Section 1.2 is required. Notice that a solution to the G × n system

W ′x=v′
M (introduced in Section 4.1.3) is also a solution to the (G + n) × (n + 1)

system
(

W ′ −v′
M

In 0

)(

x

1

)

=

(

0

x

)

where 0 is the column vector (0, 0, ..., 0) ∈ ZG. Thus, the solution vector will be an

integer linear combination of the columns of

(

W ′ −v′
M

In 0

)

(5.2.1)

that has zeros in the first G coordinates. The set of all vectors that are integer linear

combinations of the columns of (5.2.1) form a lattice. Since these columns are linearly

independent, they form a basis for this lattice. Therefore, applying a BR algorithm

to (5.2.1) will yield a much shorter basis, that is, vectors with much smaller norms.

Since, the solution vector x is short, it generally appears in the reduced basis. In this

way, the solution to the system W ′x=v′
M can be recovered.

There are four possible outcomes when BR is run on this system:

1. The correct solution vector vM is found

76

2. A false solution vector is found such that W ′x=v′
M

3. A short vector is found such that W ′x6=v′
M

4. BR fails to complete the reduction

If outcome 1 occurs, the code is broken because the ǫ′is have been recovered and

M =
∑n

i=1 ǫiri can be computed. Outcomes 2, 3 and 4 yield no information on the

solution vector. It will be shown that the first outcome is insignificantly likely to

occur, rendering the system secure against the BR attack.

The cryptanalytic success of BR lies in the fact that the solution vector is a “short”

basis vector. Thus, it appears in the reduced basis. If, however, there exist many

vectors in the basis that are shorter than the solution vector, BR will not find the

solution. In this way, BR acts as a black box that seeks only to find the shortest

basis vector. Based on our construction, we can guarantee not only that the solution

vector is not the shortest, but that there are a significant number of shorter vectors

in the basis. This will make up the argument that BR is unsuccessful against this

cryptosystem.

This analysis will be restricted to the method of construction using the congruence

conditions. The recurrence relation method requires more advanced modeling of BR

constraints. The argument will be similar to the one given below, but omitted from

this paper.

For a given value of n, P, and k, the expected length of an encoded message vM ,

that is
∑

ǫi, can be found experimentally. Call is ℓ. This counts the number of the k

groups from which a weight is selected during encoding. Experimentally, ℓ = k
2
. Let

77

the vectors wi be the columns of W ′. Then the cryptanalyst tries to solve:

∑

xiwi = v′
M

where v′
M is the public target. The correct solution is (xi) = (ǫi).

The size of the public weights must now be considered in order to determine BR’s

effectiveness. Let A = the number of possible public targets and let B = the number

of vectors (x1, ..., xn) of length < ℓ that satisfy construction constraints that can be

modeled by BR. As will be shown, A is determined from the size of the private weights

and the amount of disguising, whereas the calculation of B requires knowledge of the

specific method of constructing the private weights. For example, in the congruence

construction, BR can model the constraint of at most one weight being selected from

each group. However, it cannot account for a specific congruence condition being

satisfied. Thus, the value of B can be computed as P ℓ
(

k
ℓ

)

where P ℓ counts the

number of possible weights selected from ℓ groups and
(

k
ℓ

)

counts the number of ways

to select the ℓ groups. Recall, k is the number of blocks or groups that partition all

n weights. A few values of B are given in Table 5.1.

The size of A is roughly the size of the public weights (vectors). That is, each

message is encoded by adding up a particular subset of these weights. Therefore, there

are two considerations necessary for the calculation of A: the size of the undisguised

private weights, and the amount of increase in the size of the weights due to disguising.

In this particular construction, the weights roughly double for each of the k groups.

Therefore the private weights are approximately 2k.

Due to the significant number of parameter choices in the disguising, the nature

of this analysis does not allow for very sharp bounds. This argument will consist of

rough estimates rather than precise sizes of weights. However, some general comments

78

can be made as to the amount of increase in size due to disguising.

The process of disguising consists of two distinct parts: modular multiplications

and the breakdown modulo various primes. To invert each modular multiplication

(mod α) requires that N(α) >
∑

ǫiwi. Thus, it suffices to have N(α) > max(wi)
∑

ǫi.

Here, wi stands for any generic weights being disguised. On average, N(α) can

be estimated as ℓ · max(wi). To give a more general bound assume that each ǫi = 1.

Then, N(α) > k ·max(wi). Similarly, each prime breakdown of the disguised weights

using moduli {p1, ..., pt} requires that p1 · · · pt > k · max(wi).

In both cases, each step in disguising increases the weights by a factor of k.

Table 5.1: n=2,000 weights
P k B A with disguising of Fig. 5.2 B

A

4 500 ≈ 10300 ≈ 10180 ≈ 10120

5 400 ≈ 10259 ≈ 10150 ≈ 10109

8 250 ≈ 10187 ≈ 10102 ≈ 1085

10 200 ≈ 10160 ≈ 1086 ≈ 1074

20 100 ≈ 1095 ≈ 1053 ≈ 1042

As described previously, the disguising procedure may be represented as a tree

where each internal vertex corresponds to a modular multiplication and each leaf is

split apart modulo a set of primes. Then each vertex increases the size of the weights

by a factor of k. Thus, if the tree has d vertices, the total increase in size due to

disguising is kd.

A set of private weights with parameters P = 10 and k = 200 will be roughly of

size 2200 ≈ 1060. Consider the small disguising tree given in Figure 5.2.

This disguising will increase the private weights to a size of 2200 · 20011 ≈ 1085

since the tree has 11 vertices. This is the value of A, the size of the public target

79

Figure 5.2: Five Modular Multiplications

vector. This is provided, along with two other parameter choices in Table 5.1.

A gauge of BR’s effectiveness can be determined by the ratio B
A
. The larger this

value, the less likely BR is to find the correct solution vector. This can be seen

through the following argument.

Each vector of B is matched with one target of A. Since the public weights are

essentially random (in the sense that they lack any particular structure), it can be

assumed that they are uniformly matched with targets in the target space. Thus, if B

is sufficiently larger than A, then each target should expect to match up with many

vectors. For example, from the last column of Table 5.1, each target would expect

anywhere from 1042 to 10120 vectors that “map” to it.

Of course, the solution to the knapsack problem involving the public weights is

one unique vector that“maps” to the public target. Hence, to be successful BR would

be required to find one out of all of these vectors. It would be difficult for BR to

make the number of possibilities smaller due to its inability to model the congruence

constraints.

There is a natural trade-off between providing security against both BR and spe-

cialized attacks. There is a limit to the amount of disguising that should be applied

80

to the private weights since every added disguise increases A, and hence decreases

B
A
. Yet sufficient disguising is warranted to ensure the reversal of the disguising re-

mains an intractable problem. The balance between these two concerns should yield

a suitable range of parameter values for practical use.

81

Chapter 6

Concluding Remarks

Cryptographic systems making use of the knapsack problem have had their highs

and lows over the past 30 years. While many in the mathematical community have

all but given up on the practicality of a secure code, the concepts and methods

brought forth in this paper give hope for the future. The generalization of modular

multiplication beyond the integers opens many door for further research. This new

linear and reversible method of disguising weights brings with it numerous parameter

choices, all of which potentially play a role in the effectiveness of the disguise. Thus,

the search for an optimal selection of parameter values may yield interesting results.

Due to the versatility of this new modular multiplication, it is compatible with

any sequence of private weights. So it provides a framework for disguising knapsack

weights beyond just the two given in this paper. In this sense, the search for a secure

knapsack code is reduced to finding a method of constructing weights that is only

immune to Basis Reduction attacks.

The two major successful attacks on knapsack codes are methods based on Ba-

sis Reduction and Diophantine Approximation. Yet many open questions remain.

What other methods of attack could be effective against this type of cryptosystem?

82

Are there any inherent weaknesses in the construction of the code that could be ex-

ploited? Could advances in computational efficiencies allow for any secrete data to

be uncovered? While these questions pertain to the particular code described in this

paper, they are not unique to this code. These questions are asked of all purposed

cryptosystems. There is no 100% provably secure public-key cryptosystem. Thus,

uncertainty will always be play a role. All that can be done is to provide sufficient

evidence that potential attacks will be fruitless.

83

Bibliography

[1] S. Alaca and K.S. Williams, Introductory Algebraic Number Theory, Cambridge

University Press, New York, 2004.

[2] J. Ava, Multivariate FussCatalan Numbers. Discrete Mathematics, 308(2008),

4660-4669.

[3] E. F. Brickell, The Cryptanalysis of Knapsack Cryptosystems, Applications of

Discrete Mathematics, R. D. Ringeisen and F. S. Roberts, eds., SIAM (1988), 3-23.

[4] E. F. Brickell, J. A. Davis, and G. J. Simmons, A Preliminary Report on the

Cryptanalysis of Merkle-Hellman Knapsack Cryptosystems, Advances in Cryptol-

ogy, (1983), 289-301.

[5] E. F. Brickell, Solving Low Density Knapsacks, Advances in Cryptology, (1983),

2537.

[6] E. F. Brickell and A. M. Odlyzko, Cryptanalysis: A Survey of Recent Results,

Proc. IEEE, 76(1988), 578-593.

[7] B. Chor and R. L. Rivest, A knapsack-type public key cryptosystem based on

arithemetice in finite fields. IEEE Trans. on Information Theory, 34(1988), 901-

909.

84

[8] M. J. Coster, B. A. LaMacchia, A.M. Odlyzko, and C.P. Schnorr, An improved

low-density subset-sum algorithm, Advances in Cryptology - EUROCRYPT’91

(LNCS 547), 54-67.

[9] T. Davis, ”Calalan Numbers”. 26 Nov. 2006. http://www.geometer.org/ mathcir-

cles/catalan.pdf.

[10] D. DeTemple, Pick’s Fromula: A Retrospective, Mathematics Noted from Wash-

ington State University, Vol. 32, Nos. 3-4, 1989.

[11] W. Diffie, and M. Hellman, New directions in cryptography, IEEE Trans. Inform.

Theory, 22(1976), 644-654.

[12] L. Evain, Knapsack cryptosystems built on NP-hard instances. Cryptology ePrint

Archive, Report 2008/106.

[13] A. S. Frankel, Systems of Numeration, American Mathematical Monthly,

92(1985), no. 2, 105-114.

[14] A. Frieze, On the Lagarias-Odlyzko Algorithm for the Subset Sum Problem.

SIAM J. Comput., 15(1986), no. 2, 536-539.

[15] N. Hamlin and W. Webb, Representing Positive Integers as a Sum of Linear

Recurrence Sequences. (not published yet).

[16] J. H. Jordan and C. J. Potratz, Complete residue systems in the Gaussian inte-

gers, Mathematics Magazine, 38(1965), 1-12.

[17] P. Kaski and P. R. J. stergrd, Classification Algorithms for Codes and Designs,

Springer, New York, 2006.

[18] J. C. Lagarias, Knapsack Public Key Cryptosystems and Diophantine Approxi-

mation, Advances in Cryptology: Proceedings of Crypto 83, (1984), 3-24.

85

[19] J. C. Lagarias and A. M. Odlyzko, Solving Low Density Subset Sum Problems,

J. Assoc. Comp. Mach., (32)1985, 229-246.

[20] M. Lai, Knapsack Cryptosystems: The Past and the Future. Technical report,

Department of Infor- mation and Computer Science,University of California, 2001.

http://www1.ics.uci.edu/mingl/ knapsack.html.

[21] A. Lenstra, Integers Factoring, Designs, Codes, and Cryptography, 19(2000),

101-128.

[22] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz, Factoring Polynomials with

Rational Coefficients, Mathematische Annalen, 261(1982), 515-534.

[23] R. C. Merkle and M. E. Hellman, Hiding Information and Signatures in Trapdook

Knapsacks, IEEE Transactions on Information Theory, 24(1978), 525-530.

[24] E. Miller, V. Reiner, and B. Sturmfels, Geometric Combinatorics, American

Mathematical Society, 2007.

[25] Y. Murakami and M.Kasahara, A New Class of Public-Key Cryptosystem with

Several Terms of Product-Sum Operation. Proceedings of SCIS, 2006.

[26] Y. Murakami and T. Nasako, Knapsack Public-Key Cryptosystem Using Chinese

Remainder Theorem. Proceedings of the Symposium on Information Theory and

Its Applications, 2006.

[27] N. J. A. Sloane, Ed. (2008), The On-Line Encyclopedia of Integer Sequences, pub-

lished electronically at www.research.att.com/ njas/sequences/, Sequence A000081.

[28] N. J. A. Sloane, Ed. (2008), The On-Line Encyclopedia of Integer Sequences, pub-

lished electronically at www.research.att.com/ njas/sequences/, Sequence A001190.

[29] P. Nguyen and J. Stern, Adapting density attacks to low-weight knapsacks, Ad-

vances in Cryptology - ASIACRYPT’05 (LNCS 3788), 41-58.

86

[30] T. Okamoto, K. Tanaka, and S. Uchiyama, Quantum Public-Key Cryptosystems.

Proceedings of the 20th Annual International Cryptology Conference on Advances

in Cryptology (August 20 - 24, 2000). M. Bellare, Ed. Lecture Notes In Computer

Science, vol. 1880. Springer-Verlag, London, 147-165.

[31] Recommendation for Key Management Part 1: General, NIST Special Publica-

tion 800-57. March, 2007.

[32] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms

over GF(q) and its cryptographic significance. IEEE Transactions on Information

Theory, 24(1978), 106110.

[33] R. L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems, Commun. ACM, 21(1978), 120-126.

[34] RSA Factoring Challenge. (2007, July 14). In Wikipedia, The Free Ency-

clopedia. Retrieved 19:05, November 21, 2007, http://en.wikipedia.org/w/ in-

dex.php?title=RSAFactoringChallenge.

[35] A. Shamir, A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman

Cryptosystem, IEEE Symposium on Foundations of Computer Science, (1982),

145152.

[36] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM J. Comput., 26(1997), no. 5, 1484-1509.

[37] H. M. Stark, An Introduction to Number Theory, Mit Press, 1978.

[38] K. S. Williams, Integers of Biquadratic Fields, Canadian Mathematical Bulletin,

13(1970), 519-526.

[39] E. Zeckendorf, Reprsentation des nombres naturels par une somme de nombres

de Fibonacci ou de nombres de Lucas Bull. Soc. R. Sci. Lige, 41(1972), 179182.

