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The computable expressions for the asymptotic distribution of the change-point 

maximum likelihood estimator (mle) were derived when a change occurred in the 

mean and covariance matrix at an unknown point of a sequence of independently 

distributed multivariate Gaussian series.  The derivation was based on ladder heights 

of Gaussian random walks hitting the half-line.  We then demonstrated that change in 

a single parameter or change-point analysis in a univariate series can be derived as 

special cases.  A simulation study was carried out to investigate the robustness of the 

asymptotic distribution to departure from normality, the sample size, location of 

change-point and amount of change under the multivariate and univariate case.  The 

comparison of the asymptotic mle with Cobb‘s conditional MLE and Bayesian 

estimation method using non-informative prior and conjugate prior was also carried 

out in the simulation study.  The asymptotic distribution of the change-point mle was 
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1 INTRODUCTION  

Classic change-point methods involve two fundamental inferential problems, detection 

and estimation.  Under the maximum likelihood based approach, the detection part is 

addressed through likelihood ratio statistics and their asymptotic sampling 

distributions.  The estimation part started with the point estimate of the change-point 

from the detection part.  Even though asymptotic distributions of change detection 

statistics are non-standard, much progress has been made in this regard, at least for the 

case of detecting a single unknown change-point in a time series.  The specific 

scenarios include changes in the parameters of univariate and multivariate exponential 

families, multiple linear regression models, autoregressive models, and even long 

range dependent time series models.  Chapter 2 gave a comprehensive review about 

the change-point analysis using maximum likelihood method and other alternative 

methods.  The maximum likelihood ratio statistics for change-point detection is also 

derived for the estimation problems in our study.  

Tackling the estimation problem, we derive in this study the computable expressions 

for the distribution of the change-point mle when a change occurs in the mean and/or 

variance/covariance of a univariate or multivariate Gaussian series.  The derived 

asymptotic distribution is quite elegant and can be computed in a simple and 

straightforward manner.  For the Gaussian case, Fotopoulos et al. (2009) 

demonstrates that the second suggested approximation in Jandhyala and Fotopoulos 

(1999) is the exact solution to the estimation of change-point mle.  In Chapter 3, the 

asymptotic distribution was derived for the change-point mle for change in mean only 
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in multivariate Gaussian series.  Chapter 4 derived the case for change in both mean 

and covariance.  As the estimation requires computing the distribution of a linear 

combination of non-central chi-square random variables, Chapter 4 also discussed this 

issue for presenting the algorithmic procedure for estimating change-point mle. 

It should be noted that the parameters of the distribution before and after the 

change-point are assumed known.  However, this should not pose difficulties, since 

Hinkley (1970) has shown that the asymptotic distribution of the change-point mle 

when the parameters are unknown is equivalent to that when the parameters are 

known.  From a practical point of view this asymptotic equivalence result is 

extremely important.  In practice, apart from the change-point being unknown, the 

parameters before and after the change-point also invariably remain unknown.  The 

problem of deriving the distribution of the change-point mle when the parameters are 

unknown is the one that practitioners would be most interested as opposed to the 

distribution of the change-point mle for the case when the parameters are known.  

There is no apriori reason to believe that the distributions of the change-point mle for 

the known and unknown cases be asymptotically equivalent.  It is in this sense that 

the asymptotic equivalence result of Hinkley (1972) plays a key role for practitioners.  

One only needs to examine whether this asymptotic property holds well for reasonable 

sample sizes, and for this we carried out a simulation study in Chapter 5, where the 

asymptotic distributions are computed under different combination of sample size, 

location of change-point, dimension of the observations, and the choice of estimating 

parameters before and after the change-point. 
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Since the solution derived in the paper assumes Gaussianity, we also explored the 

robustness of this computable expression when the series deviates from Gaussianity.  

If the derived result is indeed robust to such departures, then it can be applied more 

widely than merely Gaussian processes.  While a simulation study covering a wide 

class of non-Gaussian families of distributions may be of interest for practitioners, in 

this study, a limited robustness study is pursued by performing large scale simulations 

wherein the error terms follows the univariate or multivariate t-distribution.  The 

degrees of freedom were changed from being small to large, so that we are able to 

observe how the asymptotic distributions behave as the underlying distribution 

approaches the Gaussianity.  The simulation for univariate and multivariate case are 

carried out in Chapter 5. 

Hinkley‘s (1972) approach to deriving distribution of the change-point mle is 

perceived as the unconditional approach in the literature.  Against this, Cobb (1978) 

proposed a conditional approach to the distribution of the change-point mle, wherein 

the distribution of the mle is derived by conditioning upon sufficient information on 

either side of the unknown change-point.  It is relevant to compare the conditional 

and unconditional distributions in terms of their performance, including robustness 

properties.  Thus Cobb‘s conditional distribution is also included in the simulation 

study.  As pointed out by Cobb (1978), since the conditional distribution of the 

change-point mle can also be interpreted as the Bayesian posterior for the 

change-point under a uniform prior on the unknown change-point, the comparisons 

between the two distributions have a broader appeal than what might appear at first 
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glance.  The simulation study for Cobb‘s method in Chapter 5 also includes the cases 

for known and unknown parameters. 

In Chapter 6, we apply the methodology derived in Chapter 3 and 4 to multivariate 

analysis of hydrological and the climatology data.  The hydrological data, previously 

analyzed with Bayesian method using conjugate priors by Perreault et al. (2000), 

represents the average spring stream flows of six rivers during 1957-1995 in the 

northern Québec Labrador region.  The multivariate change-point analysis shows that 

a significant increase in mean stream flow has occurred 1984.  The climatology data, 

which was provided by Angell (2009), represents the mean annual air temperature for 

surface and upper layers (850 – 300, 300 – 100 and 100 – 50 mb) from 1958 to 2008 at 

north and south polar.  The analysis showed that at the south polar, a cooling effect has 

occurred at the lower stratosphere at 1981, where the change is in both mean and 

covariance matrix, and a warming effect at the surface temperature at 1976, where only 

change in mean has happened.  At the north polar, a cooling effect at the lower 

stratosphere and a warming effect at the surface occurred at 1988, and the change has 

happened in mean only. 
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2 LITERATURE REVIEW 

Maximum likelihood estimation of an unknown change-point first begins with 

obtaining the mle as a point estimate.  Interval estimates of any desired level, which 

are preferred over point estimates can be constructed around the mle provided 

distribution theory for the mle is available.  Hawkins (1977) and James et Al. (1987) 

studied change-point detection in the series following independent univariate normal 

distribution with possible change of mean.  Kim and Siegnumd, D. (1989) and Chu 

and White (1992) developed the detection for change in simple linear regression for 

slope and intercept.  Worsley (1988) and Henderson (1990) used likelihood ratio test 

for the change in hazard ratio.  Worsley and Srivastava (1986) tested change in mean 

in multivariate normal series.  As for real life applications of change-point detectioin, 

see Braun and Müller (1998) for application of change point methods in DNA 

segmentation and bioinformatics; Fearnhead (2006), Ruggieri et al (2009) for 

applications in geology; Perreault et al (2000a, 2000b) for applications in hydrology; 

Jarušková (1996) for applications in meteorology; Fealy and Sweeney (2005), 

DeGaetano (2006) for applications in climatology; Kaplan and Shishkin (2000), 

Lebarbier (2005) for applications in signal processing; Andrews (1993), Hansen 

(2000) for applications in econometrics; and Lai (1995), Wu et al. (2005), Zou et al. 

(2009) for applications in statistical process control.  However, distribution theory for 

a change-point mle can be analytically intractable, particularly when no smoothness 

conditions are assumed regarding the amount of change.  Convincing arguments have 

not yet been made in the literature regarding the appropriateness of imposing 
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smoothness conditions on the amount of change.  As a consequence of its 

intractability, only a few computationally useful results for the distribution of the 

change-point mle under abrupt change have been developed.  For univariate models, 

the distribution theory and computational procedures have been derived by Jandhyala 

and Fotopoulos (1999) for change in mean only of a normal distribution, Jandhyala et 

al (2002) for change in variance only of a normal distribution and Jandhyala and 

Fotopoulos (2007) for estimating simultaneous change in both mean and variance of 

the univariate normal distribution.  Earlier Jandhyala et al (1999) computed 

asymptotic distribution of the change-point mle for Weibull models and applied it to 

estimate change in minimum temperatures at Uppsala, Sweden.  For multivariate 

models, Jandhyala et al (2008) derived the estimation for change in mean vector only 

of a multivariate normal distribution.  However, distribution theory for change-point 

MLEs in the other parameters (covariance matrix only, or both mean and covariance 

matrix) of multivariate models, Gaussian or otherwise, has not yet been derived in the 

literature.  Similarly, the methodology has not been developed for estimating changes 

in the parameters of regression models, and thus one cannot yet handle changes in 

polynomial trends under the MLE approach.  Note that, as mentioned previously, the 

detection part has been developed for all these situations and it is the distribution 

theory of the change-point MLE that poses greater analytical difficulties.  In this 

sense, this project makes an important progress by considering the problem of 

estimating change in both the mean vector and the covariance matrix of a multivariate 
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normal distribution by the MLE method, and then by applying it to the analysis of 

zonal temperature deviations from surface to lower stratosphere layer. 

In contrast, advances in the Bayesian approach to change-point methodology have 

been occurring at a faster pace.  Ever since Markov Chain Monte Carlo (MCMC) 

methods were seen as a tool for overcoming the computational complexities in 

Bayesian analysis, there has been rapid progress in the overall development of this 

important methodological tool, and advances in Bayesian change-point analysis have 

not lagged behind.  The main advantage of the Bayesian approach to the 

change-problem is that both detection and estimation parts of the problem are solved 

simultaneously once posterior distribution of the unknown change-point is made 

available, mainly because all inferences about the unknown change-point are made 

from the posterior distribution.  Consequently, with recent advances in the 

methodology, the Bayesian approach to change-point analysis is able to provide 

inferential methods ranging from simple to complex situations, some of which include 

change in mean and/or variance of the univariate normal distribution (Perreault et al 

1999, Perreault et al 2000a, 2000b), change in the mean vector of a multivariate 

normal distribution (Perreault et al 2000), change in mean and/or covariance of a 

multivariate Guassian series (Son and Kim 2005), single change in the parameters of a 

multiple linear regression model (Seidou et al 2007), nonlinear change (Schleip et al. 

2009), and also the more complex case of estimating multiple change-points (Barry 

and Hartigan 1993, Fearnhead, 2005, 2006; Seidou and Ouarda 2007).  Carlin et al. 
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(1992) proposed hierarchical Bayesian change-points model using the Gibbs sampler 

with application to changing regressions, Poisson process and Markov chains. 

Clearly, developments in the mle methodology under abrupt changes lag behind its 

Bayesian counterpart.  As tools for statistical modeling and analysis, it is desirable 

that both methods be available for practitioners.  As such, data analysis will benefit 

from having a choice of competing methods for any given scenario and there is no 

need to curtail advances in either of the two approaches.  It is entirely possible that 

one of the methods may be more suitable for the analysis of a particular data series, 

and seen from this perspective, it is difficult to argue against further advancements in 

the mle methodology for change-point analysis.   

Asymptotic distribution theory for the change-point mle in the abrupt case was first 

initiated by Hinkley (1970, 1971, 1972).  While Hinkley (1970) derived the 

asymptotic theory for the change-point mle in a general set-up, the distribution was 

not in a computable form primarily due to the technical difficulties in nature.  It 

turned out that Hinkley (1970) computed the distribution for change in the mean of a 

normal distribution only through certain approximations.  While Hu and Rukhin 

(1995) provided a lower bound for the probability of the mle being in error of 

capturing the true change-point, Jandhyala and Fotopoulos (1999) and Fotopoulos and 

Jandhyala (2001) derived upper and lower bounds and also suggested two 

approximations for the asymptotic distribution of the change-point mle.  Similarly, 

Borovkov (1999) also provided only upper and lower bounds for the distribution of the 
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change-point mle.  Computable expressions for the asymptotic distribution of the 

change-point mle was derived in for multivariate Gaussian series with change in mean 

vector only by Jandhyala et al. (2008) and Fotopoulos et al. (2009), and in exponential 

distributions by Fotopoulos et al. (2001) . Thus, despite the attempts of various authors, 

the problem of deriving computable expressions for the asymptotic distribution of the 

change-point mle remained unsolved to the multivariate Gaussian series with the 

change occurred in both mean and covariance matrix.   

2.1 Change-point Detection for Mean and/or Covariance 

In this project, our main goal is one of advancing the mle method for the estimation of 

an unknown change-point in the mean vector and/or covariance matrix of a sequence 

of multivariate normal observations.  In Section 2.1, the procedures for the 

change-point detection for change in both mean and covariance/variance were 

presented following Jandhyala and Fotopoulos (1999).  The detection results would 

be applied in the change-point estimation and the applications. 

2.1.1 Change in both mean and covariance/variance 

Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time series valued independent random vectors 

such that Yi ∈ ℝd , i = 1, … , n. Furthermore, for each i = 1, 2, … , n, let 𝑌𝑖  follow the 

multivariate Gaussian distribution with mean vector 𝜇  and variance-covariance 

matrix Σ. Without loss of generality, we let the parameter set to be  𝜇, Σ , and the 

corresponding multivariate Gaussian density function to be 𝑓 ∙; 𝜇, Σ . Then, under the 

classical change point model in which the mean vector 𝜇 changes from an initial 



10 

 

value 𝜇0,𝜏𝑛
 to a subsequent value 𝜇1,𝜏𝑛

, and the covariance matrix Σ changes from 

Σ0,𝜏𝑛
 to Σ1,τn

,at some unknown change-point 𝜏𝑛 ∈  1,2, … , 𝑛 − 1 . For the purposes 

of this section, it will be assumed that the parameters 𝜇0,𝜏𝑛
, 𝜇1,𝜏𝑛

, Σ0,𝜏𝑛
 and Σ1,𝜏𝑛

 

are all unknown.  Under the change point model, one has 

 
𝑌𝑖  ~  

𝑓 ∙; 𝜇0,𝜏𝑛
, 𝛴0,𝜏𝑛

 , 𝑖 = 1, … , 𝜏𝑛

𝑓 ∙; 𝜇1,𝜏𝑛
, Σ1,𝜏𝑛

 , 𝑖 = 𝜏𝑛 + 1, … , 𝑛
  

(2.1) 

where 𝜏𝑛 ∈  1, … , 𝑛 − 1 .  

On the other hand, when there is no change occurs in the model, a single parameter set 

is applicable throughout the sampling period such that under the no change model one 

has 

 𝑌𝑖  ~𝑓 ∙; 𝜇0,𝑛 , 𝛴0,𝑛 , 𝑖 = 1, … , 𝑛  (2.2) 

One is confronted with having to decide whether the given data set can be modeled by 

the no change model (2.2) , or by the change point model (2.1) with a change 

occurring in the mean vector and covariance matrix at an unknown change point 𝜏𝑛 . 

Thus, the statistical problem is one of carrying out a test of the following hypotheses:  

 H0: The data conforms to no change model (2.2) 

Against H1: The data conforms to change point model (2.1) 

While a number of authors have addressed the above hypothesis testing problem at the 

univariate level under various approaches, the likelihood ratio approach to the 
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multivariate version of the problem has been adequately addressed by Csörgő and 

Horváth (1997) , Chen and Gupta (2000), and also earlier by Worsley and Srivastava 

(1986).  While the derivation of the statistic is fairly straight forward, its asymptotic 

distribution is nonstandard and requires careful analytical arguments. Below, we 

outline the details of deriving the likelihood ratio statistic and then state its asymptotic 

distribution. Under multivariate Gaussianity, given 𝜏𝑛 = 𝑡, where 𝑡 ∈  1, … , 𝑛 − 1 , 

the likelihood function under the change-point model (2.1) is  

 𝐿1 𝑡 = 𝑓 𝑌1, … , 𝑌𝑡 ; 𝜇0,𝑡 , Σ0,𝑡 𝑓 𝑌𝑡+1, … , 𝑌𝑛 ; 𝜇1,𝑡 , Σ1,t  

=  𝑓(𝑌𝑖 ; 𝜇0,𝑡 , Σ0,t)

𝑡

𝑖=1

 𝑓(𝑌𝑖 ; 𝜇1,𝑡 , Σ1,t)

𝑛

𝑖=𝑡+1

 

=  
1

 2𝜋 
𝑑
2  Σ0,t 

1
2

𝑡

𝑖=1

exp  −
1

2
 𝑌𝑖 − 𝜇0,𝑡 

𝑇
Σ0,t

−1 𝑌𝑖 − 𝜇0,𝑡  

∙  
1

 2𝜋 
𝑑
2  Σ1,t 

1
2

𝑛

𝑖=𝑡+1

exp  −
1

2
 𝑌𝑖 − 𝜇1,𝑡 

𝑇
Σ1,t

−1 𝑌𝑖

− 𝜇1,𝑡   

(2.3) 

The parameter estimates under the change-point model (2.1) are 

𝜇 0,𝑡 =
1

𝑡
 𝑌𝑖

𝑡

𝑖=1

, 𝜇 1,𝑡 =
1

𝑛 − 𝑡
 𝑌𝑖

𝑛

𝑖=𝑡+1

   
(2.4) 
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Σ 0,𝑡 =
1

𝑡
  𝑌𝑖 − 𝜇 0,𝑡  𝑌𝑖 − 𝜇 0,𝑡 

𝑇
𝑡

𝑖=1

 

 

Σ 1,𝑡 =
1

𝑛 − 𝑡
  𝑌𝑖 − 𝜇 1,𝑡  𝑌𝑖 − 𝜇 1,𝑡 

𝑇
𝑛

𝑖=𝑡+1

 
 

So the estimate for the log-likelihood function is  

 

log 𝐿 1 𝑡 = −
𝑡

2
log Σ 0,𝑡 −

1

2
  𝑌𝑖 − 𝜇 0,𝑡 

𝑇
Σ 0,𝑡

−1 𝑌𝑖 − 𝜇 0,𝑡 

𝑡

𝑖=1

−
𝑡𝑑

2
log 2𝜋 −

𝑛 − 𝑡

2
log Σ 1,𝑡 

−
1

2
  𝑌𝑖 − 𝜇 1,𝑡 

𝑇
Σ 1,𝑡

−1 𝑌𝑖 − 𝜇 1,𝑡 

𝑛

𝑖=𝑡+1

−
 𝑛 − 𝑡 𝑑

2
log 2𝜋 

= −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 

−
1

2
 𝑡𝑟  Σ 0,𝑡

−1 𝑌𝑖 − 𝜇 0,𝑡  𝑌𝑖 − 𝜇 0,𝑡 
𝑇
 

𝑡

𝑖=1

−
1

2
 𝑡𝑟  Σ 1,𝑡

−1 𝑌𝑖 − 𝜇 1,𝑡  𝑌𝑖 − 𝜇 1,𝑡 
𝑇
 

𝑛

𝑖=𝑡+1

−
𝑛𝑑

2
log 2𝜋 

= −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 −

𝑛𝑑

2
log 2𝜋 −

1

2
𝑡𝑟 Σ 0,𝑡

−1tΣ 0,t 

−
1

2
𝑡𝑟 Σ 1,𝑡

−1 𝑛 − 𝑡 Σ 1,t  

(2.5) 
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= −
𝑡

2
log Σ 0,t −

𝑛 − 𝑡

2
log Σ 1,t −

𝑛𝑑

2
log 2𝜋 −

1

2
𝑡 −

1

2
(𝑛 − 𝑡) 

= −
𝑡

2
log Σ 0,t −

𝑛 − 𝑡

2
log Σ 1,t −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
 

Similarly, the likelihood function under model (2.2) is  

 𝐿0 𝑡 = 𝑓 𝑌1, … , 𝑌𝑛 ; 𝜇0,𝑛 , Σ0,n  

=  𝑓 𝑌𝑖 ; 𝜇0,𝑛 , Σ0,n 

𝑛

𝑖=1

 

=  
1

 2𝜋 
𝑑
2  Σ0,n 

1
2

𝑛

𝑖=1

exp  −
1

2
 𝑌𝑖 − 𝜇0,𝑛 

𝑇
Σ0,n

−1 𝑌𝑖 − 𝜇0,𝑛   

 

The parameter estimates are 

 
𝜇 0,𝑛 =

1

𝑛
 𝑌𝑖

𝑛

𝑖=1

,    Σ 0,𝑛 =
1

𝑛
  𝑌𝑖 − 𝜇 0,𝑛  𝑌𝑖 − 𝜇 0,𝑛 

𝑇
𝑛

𝑖=1

 
(2 .6) 

So the estimate for the log-likelihood function is  

 
log 𝐿 0 𝑡 = −

𝑛

2
log Σ 0,𝑛  −

1

2
  𝑌𝑖 − 𝜇 0,𝑛 

𝑇
Σ 0,𝑛

−1  𝑌𝑖 − 𝜇 0,𝑛 

𝑛

𝑖=1

−
𝑛𝑑

2
log 2𝜋 

(2 .7) 
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= −
𝑛

2
log Σ 0,𝑛  −

1

2
 𝑡𝑟  Σ 0,𝑛

−1  𝑌𝑖 − 𝜇 0,𝑛  𝑌𝑖 − 𝜇 0,𝑛 
𝑇
 

𝑛

𝑖=1

−
𝑛𝑑

2
log 2𝜋 

= −
𝑛

2
log Σ 0,𝑛  −

𝑛𝑑

2
log 2𝜋

−
1

2
𝑡𝑟  Σ 0,𝑛

−1   𝑌𝑖 − 𝜇 0,𝑛  𝑌𝑖 − 𝜇 0,𝑛 
𝑇

𝑛

𝑖=1

  

= −
𝑛

2
log Σ 0,𝑛  −

𝑛𝑑

2
log 2𝜋 −

1

2
𝑡𝑟 Σ 0,𝑛

−1 𝑛Σ 0  

= −
𝑛

2
log Σ 0,𝑛  −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
 

The log likelihood ratio for a given 𝑡 can be obtained from (2.5) and (2.7) as follows 

 
log

𝐿 1 𝑡 

𝐿 0 𝑡 
= log𝐿 1 𝑡 − log𝐿 0 𝑡  

= −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 −

𝑛𝑑

2
log 2𝜋 −

𝑛

2

−  −
𝑛

2
log Σ 0,𝑛  −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
  

= −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 +

𝑛

2
log Σ 0,𝑛   

 

Denote  

 
𝑈𝑛 ,𝑡 = 2 log

𝐿 1(𝑡)

𝐿 0(𝑡)
= −𝑡 log Σ 0,𝑡 − (𝑛 − 𝑡) log Σ 1,𝑡 + 𝑛 log Σ 0,𝑛   

(2 .8) 
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Univariate case can be regarded as a special case of multivariate change-point problem 

with dimension 𝑑 = 1.  Thus 𝑈𝑛 ,𝑡  can be directly derived from (2.8) as  

 
𝑈𝑛 ,𝑡 = 2 log

𝐿 1(𝑡)

𝐿 0(𝑡)
= −𝑡 log 𝜍 0,𝑡

2 − (𝑛 − 𝑡) log 𝜍 1,𝑡
2 + 𝑛 log 𝜍 0,𝑛

2  
(2 .9) 

where 
𝜍 0,𝑡

2 =
1

𝑡
  𝑌𝑖 − 𝜇 0,𝑡 

2𝑡

𝑖=1
, 𝜍 1,𝑡

2 =
1

𝑛 − 𝑡
  𝑌𝑖 − 𝜇 1,𝑡 

2𝑛

𝑖=𝑡+1
 

 

 
𝜍 0,𝑛

2 =
1

𝑛
  𝑌𝑖 − 𝜇 0,𝑡 

2𝑛

𝑖=1
 

 

Then, by letting 𝑈𝑛 = max1≤𝑡≤𝑛−1 𝑈𝑛 ,𝑡 , twice the log likelihood ratio statistic is given 

by 

 𝑈𝑛 = max
1≤𝑡≤𝑛−1

 𝑈𝑛 ,𝑡  (2.10) 

From Csörgő and Horváth (1997), the asymptotic distribution of the above 

log-likelihood ratio statistic is based upon 

 𝑊𝑛 =  2 log log 𝑛𝑈𝑛 2 −  2 log log 𝑛 +
𝑝

2
log log log 𝑛 − log Γ  

𝑝

2
   

(2.11) 

where 𝑝 is the number of parameters.  Under the case of change in mean and 

covariance matrix, the number of parameters equals the sum of the dimension of the 

mean vector  𝑑 , and the unique number of parameters in the covariance matrix 

𝑑(𝑑 + 1)/2.  That is to say 
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𝑝 = 𝑑 +

𝑑 𝑑 + 1 

2
=

𝑑 𝑑 + 3 

2
 

(2.12) 

The limiting distribution of 𝑊𝑛  assumes the familiar Gumbel type of the extreme 

value distribution given by 

 lim
𝑛→∞

𝑃 𝑊𝑛 ≤ 𝑡 = exp(−2𝑒−𝑡) (2.13) 

where −∞ < 𝑡 < ∞  

For a given data set, if the computed value of 𝑊𝑛  equals 𝑤, then the approximate 

P-value associated with testing H0 against H1 is seen to be 

 lim
𝑛→∞

𝑃  𝑊𝑛  >  𝑤  = lim
𝑛→∞

 𝑃 𝑊𝑛 >  𝑤  + 𝑃 𝑊𝑛 < − 𝑤    

= 1 − exp −2𝑒− 𝑤  + exp −2𝑒 𝑤   

(2.14) 
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2.1.2 Change in mean only 

Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time series valued independent random vectors 

such that Yi ∈ ℝd , i = 1, … , n. Furthermore, for each i = 1, 2, … , n, let 𝑌𝑖  follow the 

multivariate Gaussian distribution with mean vector 𝜇  and variance-covariance 

matrix Σ. Under the classical change point model in which the covariance matrix Σ 

remains stationary throughout the sampling period, the mean vector 𝜇 changes from 

an initial value 𝜇0  to a subsequent value 𝜇1  at some unknown change point 

𝜏𝑛 ∈  1,2, … , 𝑛 − 1 .  It is still assumed that parameters 𝜇0 , 𝜇1  and Σ  are all 

unknown. Thus, under the change point model, one has 

 
𝑌𝑖  ~  

𝑓 ∙; 𝜇0,𝜏𝑛
, Σ𝜏𝑛

 , 𝑖 = 1, … , 𝜏𝑛

𝑓 ∙; 𝜇1,𝜏𝑛
, Σ𝜏𝑛

 , 𝑖 = 𝜏𝑛 + 1, … , 𝑛
  

(2.15) 

where 𝜏𝑛 ∈  1, … , 𝑛 − 1   

On the other hand, when there is no change point in the model, a single parameter set 

is applicable throughout the sampling period such that under the no change model one 

has 

 𝑌𝑖  ~𝑓 ∙; 𝜇0,𝑛 , Σ𝑛 , 𝑖 = 1, … , 𝑛  (2.16) 

One is confronted with having to decide whether the given data set can be modeled by 

the no change model (2.16) , or by the change point model (2.15) with a change 
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occurring in the mean vector at an unknown change point 𝜏𝑛 . Thus, the statistical 

problem is one of carrying out a test of the following hypotheses:  

 H0: The data conforms to no change model (2.16) 

Against H1: The data conforms to change point model (2.15) 

Using the likelihood function presented in (2.3), given 𝜏𝑛 = 𝑡, where 𝑡 ∈  1, … , 𝑛 −

1 , we have the log-likelihood function for (2.15) to be  

 

log 𝐿1 𝑡 = −
𝑡

2
log Σt −

1

2
  𝑌𝑖 − 𝜇0,𝑡 

𝑇
Σ𝑡

−1 𝑌𝑖 − 𝜇0,𝑡 

𝑡

𝑖=1

−
𝑡𝑑

2
log 2𝜋

−
𝑛 − 𝑡

2
log Σt −

1

2
  𝑌𝑖 − 𝜇1,𝑡 

𝑇
Σ𝑡

−1 𝑌𝑖 − 𝜇1,𝑡 

𝑛

𝑖=𝑡+1

−
(𝑛 − 𝑡)𝑑

2
log 2𝜋 

 

The estimates for the parameters under model (2.15) are 

 

𝜇 0,𝑡 =
1

𝑡
 𝑌𝑖

𝑡

𝑖=1

, 𝜇 1,𝑡 =
1

𝑛 − 𝑡
 𝑌𝑖

𝑛

𝑖=𝑡+1

   
 

 

Σ 𝑡 =
1

𝑛
   𝑌𝑖 − 𝜇 0,𝑡  𝑌𝑖 − 𝜇 0,𝑡 

𝑇
𝑡

𝑖=1

+   𝑌𝑖 − 𝜇 1,𝑡  𝑌𝑖 − 𝜇 1,𝑡 
𝑇

𝑛

𝑖=𝑡+1

  
 

The estimate for the log-likelihood function for model (2.15) is  
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log 𝐿 1 𝑡 = −
𝑡

2
log Σ t −

1

2
  𝑌𝑖 − 𝜇 0,𝑡 

𝑇
Σ 𝑡

−1 𝑌𝑖 − 𝜇 0,𝑡 

𝑡

𝑖=1

−
𝑡𝑑

2
log 2𝜋

−
𝑛 − 𝑡

2
log Σ t −

1

2
  𝑌𝑖 − 𝜇 1,𝑡 

𝑇
Σ 𝑡

−1 𝑌𝑖 − 𝜇 1,𝑡 

𝑛

𝑖=𝑡+1

−
(𝑛 − 𝑡)𝑑

2
log 2𝜋 

= −
𝑛

2
log Σ t −

𝑛𝑑

2
log 2𝜋 −

1

2
 𝑡𝑟  Σ 𝑡

−1 𝑌𝑖 − 𝜇 0,𝑡  𝑌𝑖 − 𝜇 0,𝑡 
𝑇
 

𝑡

𝑖=1

−
1

2
 𝑡𝑟  Σ 𝑡

−1 𝑌𝑖 − 𝜇 1,𝑡  𝑌𝑖 − 𝜇 1,𝑡 
𝑇
 

𝑛

𝑖=𝑡+1

 

= −
𝑛

2
log Σ t −

𝑛𝑑

2
log 2𝜋

−
1

2
𝑡𝑟  Σ 𝑡

−1    𝑌𝑖 − 𝜇 0,𝑡  𝑌𝑖 − 𝜇 0,𝑡 
𝑇

𝑡

𝑖=1

+  Σ 𝑡
−1 𝑌𝑖 − 𝜇 1,𝑡  𝑌𝑖 − 𝜇 1,𝑡 

𝑇
𝑛

𝑖=𝑡+1

   

= −
𝑛

2
log Σ t −

𝑛𝑑

2
log 2𝜋 −

1

2
𝑡𝑟 Σ 𝑡

−1𝑛Σ t  

=  −
𝑛

2
log Σ t −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
 

(2.17) 

Similarly, under multivariate Gaussianity, the likelihood function under model (2.16) 

can be directly adapted from (2.7) as  
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log 𝐿 0(𝑡) =  −

𝑛

2
log Σ n −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
 

(2.18) 

where 𝜇 0,𝑛 =
1

𝑛
 𝑌𝑖

𝑛

𝑖=1

,    Σ 𝑛 =
1

𝑛
  𝑌𝑖 − 𝜇 0,𝑛  𝑌𝑖 − 𝜇 0,𝑛 

𝑇
𝑛

𝑖=1

 
 

The log likelihood ratio for a given 𝑡 from (2.17) and (2.18) is 

 
log

𝐿 1 𝑡 

𝐿 0 𝑡 
= log𝐿 1 𝑡 − log𝐿 0 𝑡  

=  −
𝑛

2
log Σ t −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
 −  −

𝑛

2
log Σ 𝑛  −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
  

= −
𝑛

2
log Σ 𝑡 +

𝑛

2
log Σ 𝑛   

 

Then as in Section 2.1.1, twice the log likelihood ratio statistic is given by 

 𝑈𝑛 = max
1≤𝑡≤𝑛−1

 𝑈𝑛 ,𝑡  (2.19) 

where 𝑈𝑛 ,𝑡 = 2 log
𝐿 1(𝑡)

𝐿 0(𝑡)
= −n log Σ t + n log Σ n  

 

The p-value of the change-point detection follows (2.11), (2.13) and (2.14).  Under 

the change in mean only, the number of parameters, 𝑝, equals the dimension of the 

mean vector 𝑑.   
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2.1.3 Change in covariance/variance only 

Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time series valued independent random vectors 

such that Yi ∈ ℝd , i = 1, … , n. Furthermore, for each i = 1, 2, … , n, let 𝑌𝑖  follow the 

multivariate Gaussian distribution with mean vector 𝜇  and variance-covariance 

matrix Σ. Under the classical change point model in which the mean vector 𝜇 

remains stationary throughout the sampling period, and the covariance matrix Σ 

changes from an initial value Σ0  to a subsequent value Σ1  at some unknown 

change-point 𝜏𝑛 ∈  1,2, … , 𝑛 − 1 . It is still assumed that parameters 𝜇, Σ0 and Σ1 

are all unknown. Thus, under the change point model, one has 

 
𝑌𝑖  ~  

𝑓 ∙; 𝜇𝜏𝑛
, Σ0,𝜏𝑛

 , 𝑖 = 1, … , 𝜏𝑛

𝑓 ∙; 𝜇𝜏𝑛
, Σ1,𝜏𝑛

 , 𝑖 = 𝜏𝑛 + 1, … , 𝑛
  

(2.20) 

where 𝜏𝑛 ∈  1, … , 𝑛 − 1 . 

On the other hand, when there is no change point in the model, a single parameter set 

is applicable throughout the sampling period such that under the no change model one 

has 

 𝑌𝑖  ~𝑓 ∙; 𝜇𝑛 , Σ0,𝑛 , 𝑖 = 1, … , 𝑛  (2.21) 

One is confronted with having to decide whether the given data set can be modeled by 

the no change model (2.21), or by the change point model (2.20) with a change 
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occurring in the mean vector at an unknown change-point 𝜏𝑛 . Thus, the statistical 

problem is one of carrying out a test of the following hypotheses:  

 H0: The data conforms to no change model (2.21) 

Against H1: The data conforms to change point model (2.20) 

Using the likelihood function presented in (2.3), we have the log-likelihood function 

for (2.20) to be  

 

log 𝐿1 𝑡 = −
𝑡

2
log Σ0 −

1

2
  𝑌𝑖 − 𝜇 𝑇Σ0

−1 𝑌𝑖 − 𝜇 

𝑡

𝑖=1

−
𝑡𝑑

2
log 2𝜋

−
𝑛 − 𝑡

2
log Σ1 −

1

2
  𝑌𝑖 − 𝜇 𝑇Σ1

−1 𝑌𝑖 − 𝜇 

𝑛

𝑖=𝑡+1

−
(𝑛 − 𝑡)𝑑

2
log 2𝜋 

 

Let the estimate for the parameters under model (2.20) be: 

 
𝜇 𝑛 =

1

𝑛
 𝑌𝑖

𝑛

𝑖=1

   
 

 

Σ 0,𝑡 =
1

𝑡
  𝑌𝑖 − 𝜇 𝑛  𝑌𝑖 − 𝜇 𝑛 𝑇

𝑡

𝑖=1

 

 

 
Σ 1,𝑡 =

1

𝑛 − 𝑡
  𝑌𝑖 − 𝜇 𝑛  𝑌𝑖 − 𝜇 𝑛 𝑇

𝑛

𝑖=𝑡+1

 
 

The estimated log-likelihood function for model (2.20) is  
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log 𝐿 1 𝑡 = −
𝑡

2
log Σ 0,t −

1

2
  𝑌𝑖 − 𝜇 𝑛 𝑇Σ 0,t

−1 𝑌𝑖 − 𝜇 𝑛 

𝑡

𝑖=1

−
𝑡𝑑

2
log 2𝜋 −

𝑛 − 𝑡

2
log Σ 1,t 

−
1

2
  𝑌𝑖 − 𝜇 𝑛 𝑇Σ 1,t

−1 𝑌𝑖 − 𝜇 𝑛 

𝑛

𝑖=𝑡+1

−
(𝑛 − 𝑡)𝑑

2
log 2𝜋 

= −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 −

𝑛𝑑

2
log 2𝜋

−
1

2
 𝑡𝑟 Σ 0,𝑡

−1 𝑌𝑖 − 𝜇 𝑛  𝑌𝑖 − 𝜇 𝑛 𝑇 

𝑡

𝑖=1

−
1

2
 𝑡𝑟 Σ 1,𝑡

−1 𝑌𝑖 − 𝜇 𝑛  𝑌𝑖 − 𝜇 𝑛 𝑇 

𝑛

𝑖=𝑡+1

 

= −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 −

𝑛𝑑

2
log 2𝜋 −

1

2
𝑡𝑟 Σ 0,𝑡

−1tΣ 0,𝑡 

−
1

2
𝑡𝑟 Σ 1,𝑡

−1 𝑛 − 𝑡 Σ 1,𝑡  

=  −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
 

(2.22) 

Similarly, under multivariate Gaussianity, the likelihood function under no-change 

model (2.21) can be directly adapted from (2.7) as  

 
Log 𝐿 0(𝑡) =  −

𝑛

2
log Σ 0,n −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
 

(2.23) 
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where 
𝜇 𝑛 =

1

𝑛
 𝑌𝑖

𝑛

𝑖=1

, Σ 0,𝑛 =
1

𝑛
  𝑌𝑖 − 𝜇 𝑛  𝑌𝑖 − 𝜇 𝑛 𝑇

𝑛

𝑖=1

 
 

Then log likelihood ratio for a given 𝑡 is 

 
log

𝐿 1 𝑡 

𝐿 0 𝑡 
= log𝐿 1 𝑡 − log𝐿 0 𝑡  

=  −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 −

𝑛𝑑

2
log 2𝜋 −

𝑛

2
 

−  −
𝑛

2
𝑙𝑜𝑔 𝛴 0,𝑛  −

𝑛𝑑

2
𝑙𝑜𝑔 2𝜋 −

𝑛

2
  

= −
𝑡

2
log Σ 0,𝑡 −

𝑛 − 𝑡

2
log Σ 1,𝑡 +

𝑛

2
log Σ 0,n  

 

As in Section 2.1.1, twice the log likelihood ratio statistic is given by 

 𝑈𝑛 = max
1≤𝑡≤𝑛−1

 𝑈𝑛 ,𝑡  (2.24) 

where 𝑈𝑛 ,𝑡 = 2 log
𝐿 1(𝑡)

𝐿 0(𝑡)
= −𝑡 log Σ 0,𝑡 − (𝑛 − 𝑡) log Σ 1,𝑡 + 𝑛 log 𝛴 0,𝑛   

 

The p-value of the change-point detection follows (2.11), (2.13) and (2.14).  Under 

the change in covariance only, the number of parameters, 𝑝, equals the unique 

number of parameters in a covariance matrix, 𝑑(𝑑 + 1)/2.   
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2.2 Change-point Estimation Setup 

In change-point estimation, our interest here is to pursue the asymptotic distribution of 

the maximum likelihood estimator 𝜏 𝑛  when the parameters are unknown.  Now 

suppose that 𝜏 𝑛  is the mle of 𝜏𝑛  when the parameters are known.  Hinkley (1972) 

has shown that asymptotic distributions of both 𝜏 𝑛  and 𝜏 𝑛  are equivalent. Hence in 

the sequel, we shall first pursue the asymptotic distribution of 𝜏 𝑛  only. 

In deriving the asymptotic distribution of 𝜏 𝑛 , we first note that we can begin with the 

basic methodology that Jandhyala and Fotopoulos (1999) derived for the univariate 

situation and adapt it for the multivariate problems.  While it is true that Hinkley 

(1970, 1971) was the first to initiate the study of the distribution theory for the mle of 

a change point in a sequence of independent observations, the distribution theory was 

not detailed enough from a computational point of view.  In this regard, Jandhyala 

and Fotopoulos (1999, 2001), Jandhyala et al (2002, 2006), and Fotopoulos and 

Jandhyala (2001) studied the distributional aspects of Hinkley‘s (1972) mle, mainly to 

make the distribution of the mle computationally more tractable.  Importantly, by 

deriving alternative expressions for the distribution of the mle they developed an 

algorithmic approach for computing the lower and upper bounds and also good 

approximations.  Thus far, their algorithmic approach has been applied to compute 

the asymptotic distribution of the change-point to univariate datasets, and change in 

mean only for multivariate dataset.  Here we shall adapt their algorithm to compute 

the asymptotic distribution of the change-point mle for multivariate datasets with 

change in both mean and covariance matrix.   



26 

 

Assume that 𝑌1, 𝑌2, … , 𝑌𝜏𝑛
 are i.i.d. with common multivariate Gaussian density 

function 𝑓0 ∙ , and 𝑌𝜏𝑛 +1, … , 𝑌𝑛  are i.i.d. with common multivariate Gaussian density 

function 𝑓1 ∙ , where all the means and covariance matrices are known.  Following 

Hinkley (1972), 𝜏 𝑛  the mle of 𝜏𝑛  may be expressed as: 

 
𝜏 𝑛 = arg max

1≤𝑗≤𝑛−1
 𝑎(𝑌𝑖)

𝑗

𝑖=1
 

(2.25)  

where 𝑎 𝑌𝑖 = log 𝑓0(𝑌𝑖)/𝑓1(𝑌𝑖).  

For the purposes of establishing distribution theory, it is convenient to work with 

𝜉𝑛 = 𝜏 𝑛 − 𝜏𝑛 ∈ {−𝜏𝑛 + 1, … , 𝑛 − 𝜏𝑛 − 1} instead of 𝜏 𝑛 .  Then, it turns out that  

 
𝜉𝑛 = arg max

−𝜏𝑛 +1≤𝑗≤𝑛−𝜏𝑛 −1 
 𝑎(𝑌𝑖)

𝑗+𝜏𝑛

𝑖=1
 

(2.26)  

where the maximizer is a result of the following two-sided random walk Γ𝑛(∙) on ℤ 

such that: 

 Γ𝑛 𝑗; 𝜏𝑛 

=

 
 
 

 
  𝑎(𝑌𝑖

∗)
𝑗

𝑖=1
=  𝑋𝑖

∗
𝑗

𝑖=1
= 𝑆𝑗

∗  ,    𝑗 ∈ {1, … , 𝑛 − 𝜏𝑛 − 1}

0                                 ,     𝑗 = 0            

− 𝑎(𝑌𝑖
𝑜)

−𝑗

𝑖=1
=  𝑋𝑖

𝑜
−𝑗

𝑖=1
= 𝑆−𝑗

𝑜     ,    𝑗 ∈ {−1, … , −𝜏𝑛 − 1}   

  

(2.27)  

In deriving the asymptotic theory, both 𝜏𝑛  and 𝑛 − 𝜏𝑛  tend to infinity so that we 

will have enough information on both sides.  Denote 𝜏 ∞  to be the maximum 

likelihood estimate of 𝜏𝑛  based on the sample  𝑌1, … , 𝑌𝑛  with 𝑛 →  ∞.  Note that 

the distribution of 𝜉𝑛 = 𝜏 𝑛 − 𝜏𝑛  depends on the mean and covariance matrix before 
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and after the change-point, as well as 𝜏𝑛  and 𝑛 − 𝜏𝑛 , while 𝜉∞  depends only on the 

mean and covariance matrix after the change-point.  In practice, 𝜉𝑛  is rather 

inadequate since its distribution always depends on the unknown change-point 𝜏𝑛 .  

On the other hand, Fotopoulos and Jandhyala (2001) showed that 𝜉∞  is a proper 

random variable and 𝜉𝑛 → 𝜉∞  almost surely, which implies that the distribution of 

𝜉𝑛  can be well-approximated by 𝜉∞  for moderately large sample sizes. 

Let  𝑌𝑜 , 𝑌𝑖
𝑜 : 𝑖 ∈ ℕ  be a sequence of i.i.d. random vectors such that 𝑌𝑜  is distributed 

according to 𝑓0 ∙  and  𝑌∗, 𝑌𝑖
∗: 𝑖 ∈ ℕ  is another sequence of i.i.d. random vectors 

such that 𝑌∗ is distributed according to 𝑓1 ∙ . Furthermore the two sequences are 

independent of each other.  It follows that the sequences  𝑋𝑜 , 𝑋𝑖
𝑜 : 𝑖 ∈ ℕ   (before 

the change) and  𝑋∗, 𝑋𝑖
∗: 𝑖 ∈ ℕ  (after the change) defined in (2.27) are independent.   

The immediate goal is to establish the explicit functional relationship of 𝑋𝑜  with 𝑌𝑜  

and that of 𝑋∗ with 𝑌∗, respectively. These relationships will enable us in identifying 

the distributions of both 𝑋𝑜  and 𝑋∗, a step that is fundamental in the algorithmic 

procedure of Jandhyala and Fotopoulos (1999).  In Chapter 3 and 4, the estimation of 

change-point mle for possible combinations of change in mean and/or 

covariance/variance is explored. 
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3 INFERENCE FOR CHANGE-POINT IN THE MEAN ONLY OF A GAUSSIAN SERIES 

In classical change-point literature, model (2.15) is known as the abrupt change model 

for change in mean only.  On the basis of the detection statistics in Chapter 2, we 

begin this chapter by assuming that there is a change in the mean of observations 

𝑌1, 𝑌2, … , 𝑌𝑛  at some unknown point, with the underlying assumption that the variance 

remained constant throughout the sampling period.  In this chapter, the asymptotic 

distribution of the change-point mle is derived for both multivariate and univariate cases 

when the parameters for mean and variance/covariance are unknown. 

3.1 Multivariate Case 

Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time series valued independent random vectors 

such that Yi ∈ ℝd , i = 1, … , n.  The mean vector of the series changes from 𝜇0 to 

𝜇1  at some unknown point 𝜏𝑛  such that 𝜇0 ≠ 𝜇1 , and the covariance matrix Σ 

remained constant.  Both the mean vector and covariance matrix are unknown. 

As discussed in Section 2.2, the immediate goal is to establish the explicit functional 

relationship of 𝑋𝑜  with 𝑌𝑜  and that of 𝑋∗ with 𝑌∗, respectively for the two-sided 

random walk defined in (2.27) . These relationships will enable us in identifying the 

distributions of both 𝑋𝑜  and 𝑋∗ , a step that is fundamental in the algorithmic 

procedure of Jandhyala and Fotopoulos (1999). 

First, let the symmetric matrix Σ admit the usual orthogonal decomposition given by 

Σ = 𝑄Λ𝑄𝑇 where 𝑄 is an orthogonal matrix, and Λ is a real diagonal matrix with 

positive entries 𝜆1, … , 𝜆𝑑 .   
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It follows that 𝑌𝑜 , the random variable before the change-point, admits the 

representation  

 𝑌𝑜 =𝐷 𝜇0 + Σ1/2𝑍 (3.1)  

or  

 𝑌𝑜 − 𝜇0 =𝐷 Σ1/2𝑍 (3.2)  

where 𝑍 is the standard multivariate normal random variable.  Consequently, the 

random variable 𝑋𝑜  may be expressed as 

 
𝑋𝑜 = −𝑎 𝑌𝑜 = − ln

𝑓 𝑌𝑜 ; 𝜇0, Σ 

𝑓 𝑌𝑜 ; 𝜇1, Σ 
 

= − ln

1

 2𝜋 
𝑑
2  Σ 

1
2

exp  −
1
2

 𝑌𝑜 − 𝜇0 
𝑇Σ−1 𝑌𝑜 − 𝜇0  

1

 2𝜋 
𝑑
2  Σ 

1
2

exp  −
1
2

 𝑌𝑜 − 𝜇1 𝑇Σ−1 𝑌𝑜 − 𝜇1  

 

=
1

2
 𝑌𝑜 − 𝜇0 

𝑇Σ−1 𝑌𝑜 − 𝜇0 

−
1

2
 𝑌𝑜 − 𝜇0 + 𝜇0 − 𝜇1 𝑇Σ−1 𝑌𝑜 − 𝜇0 + 𝜇0 − 𝜇1  

=𝐷
1

2
 Σ1/2𝑍 

𝑇
Σ−1 Σ1/2𝑍 

−
1

2
 Σ1/2𝑍 + 𝜇0 − 𝜇1 

𝑇
Σ−1 𝛴1/2𝑍 + 𝜇0 − 𝜇1  
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=
1

2
 Σ1/2𝑍 

𝑇
Σ−1 Σ1/2𝑍 −

1

2
 Σ1/2𝑍 

𝑇
Σ−1 Σ1/2𝑍  

−
1

2
 Σ1/2𝑍 

𝑇
Σ−1 (𝜇0 − 𝜇1)

−
1

2
 𝜇0 − 𝜇1 

𝑇Σ−1 (Σ1/2𝑍)  −
1

2
 𝜇0 − 𝜇1 

𝑇Σ−1(𝜇0

− 𝜇1)  

=  𝜇1 − 𝜇0 
𝑇Σ−1 (Σ1/2𝑍)  −

1

2
 𝜇1 − 𝜇0 

𝑇Σ−1(𝜇1 − 𝜇0) 

Note as we can decompose Σ = 𝑄Λ𝑄𝑇, then 

 Σ−1 =  𝑄Λ𝑄𝑇 −1 = 𝑄Λ−1𝑄𝑇 = 𝑄diag λ1
−1, … , λd

−1 𝑄𝑇 

= 𝑄diag λ1
−1/2

, … , λd
−1/2

 diag λ1
−1/2

, … , λd
−1/2

 𝑄𝑇 

= 𝑄diag λ1
−1/2

, … , λd
−1/2

 QTQdiag λ1
−1/2

, … , λd
−1/2

 𝑄𝑇 

∶= 𝑄Λ−1/2QTQΛ−1/2𝑄𝑇 

∶= Σ−1/2Σ−1/2 

 

where  Σ−1/2 is also a symmetric matrix.  

After the simplification, one obtains 

 
𝑋𝑜 =𝐷  𝜇1 − 𝜇0 

𝑇Σ−1/2Σ−1/2 Σ1/2𝑍 −
1

2
 𝜇1 − 𝜇0 

𝑇Σ−1/2Σ−1/2(𝜇1

− 𝜇0) 

=  𝜇1 − 𝜇0 
𝑇Σ−1/2𝑍 −

1

2
 Σ−1/2 𝜇1 − 𝜇0  

𝑇
 Σ−1/2(𝜇1 − 𝜇0)  

=  Σ−1/2 𝜇1 − 𝜇0  
𝑇
𝑍 −

1

2
 Σ−1/2 𝜇1 − 𝜇0  

𝑇
 Σ−1/2(𝜇1 − 𝜇0)  
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Now, upon letting 𝜂 = Σ−1/2 (𝜇1 − 𝜇0), we have 

 
𝑋𝑜 =𝐷−

1

2
𝜂𝑇𝜂 + 𝜂𝑇𝑍 

(3.3)  

Clearly, it follows from (3.3) that 𝑋𝑜~𝑁(−
1

2
𝜂𝑇𝜂, 𝜂𝑇𝜂). 

For purposes of finding the distribution of 𝑋∗ = 𝑎(𝑌∗), we can follow similar 

derivation for the distribution of 𝑋𝑜 . 

First note that 𝑌∗ , the random variable after the change-point admits the 

representation  

 𝑌∗ =𝐷 𝜇1 + Σ1/2𝑍 (3.4)  

or  

 𝑌∗ − 𝜇1 =𝐷 Σ1/2𝑍 (3.5)  

where 𝑍 is the standard multivariate normal random variable.  Consequently, the 

random variable 𝑋∗ may be expressed as 

 
𝑋∗ = 𝑎 𝑌∗ = ln

𝑓 𝑌∗; 𝜇0, Σ 

𝑓 𝑌∗; 𝜇1, Σ 
 

= ln

1

 2𝜋 
𝑑
2  Σ 

1
2

exp  −
1
2

 𝑌∗ − 𝜇0 
𝑇Σ−1 𝑌∗ − 𝜇0  

1

 2𝜋 
𝑑
2  Σ 

1
2

exp  −
1
2

 𝑌∗ − 𝜇1 𝑇Σ−1 𝑌∗ − 𝜇1  
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= −
1

2
 𝑌∗ − 𝜇1 + 𝜇1 − 𝜇0 

𝑇Σ−1 𝑌∗ − 𝜇1 + 𝜇1 − 𝜇0 

+
1

2
 𝑌∗ − 𝜇1 

𝑇Σ−1 𝑌∗ − 𝜇1  

=𝐷−
1

2
 Σ1/2𝑍 + 𝜇1 − 𝜇0 

𝑇
Σ−1 𝛴1/2𝑍 + 𝜇1 − 𝜇0 

+
1

2
 Σ1/2𝑍 

𝑇
Σ−1 Σ1/2𝑍  

= −
1

2
 Σ1/2𝑍 

𝑇
Σ−1 Σ1/2𝑍  −

1

2
 Σ1/2𝑍 

𝑇
Σ−1  𝜇1 − 𝜇0 

−
1

2
 𝜇1 − 𝜇0 

𝑇Σ−1   Σ
1
2𝑍 

−
1

2
 𝜇1 − 𝜇0 

𝑇Σ−1 𝜇1 − 𝜇0 +
1

2
 Σ1/2𝑍 

𝑇
Σ−1 Σ1/2𝑍   

= − 𝜇1 − 𝜇0 𝑇Σ−1 (Σ1/2𝑍)  −
1

2
 𝜇1 − 𝜇0 

𝑇Σ−1(𝜇1 − 𝜇0) 

Note as we can decompose Σ = Σ−1/2Σ−1/2, then 

 
𝑋∗ =𝐷 − 𝜇1 − 𝜇0 

𝑇Σ−1/2Σ−1/2 Σ1/2𝑍  −
1

2
 𝜇1 − 𝜇0 

𝑇Σ−1/2Σ−1/2(𝜇1

− 𝜇0) 

= − 𝜇1 − 𝜇0 𝑇Σ−1/2𝑍 −
1

2
 Σ−1/2 𝜇1 − 𝜇0  

𝑇
 Σ−1/2(𝜇1 − 𝜇0)  

=− Σ−1/2 𝜇1 − 𝜇0  
𝑇
𝑍 −

1

2
 Σ−1/2 𝜇1 − 𝜇0  

𝑇
 Σ−1/2(𝜇1 − 𝜇0)  

 

As 𝜂 = Σ−1/2 (𝜇1 − 𝜇0), we have 
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𝑋∗ =𝐷−

1

2
𝜂𝑇𝜂 − 𝜂𝑇𝑍 

(3.6)  

Clearly, it follows from (3.6) that 𝑋∗~𝑁(−
1

2
𝜂𝑇𝜂, 𝜂𝑇𝜂), too. 

Thus, both 𝑋𝑜  and 𝑋∗ have identical univariate normal distributions. This result 

coincides with the distributions found by Jandhyala and Fotopoulos (1999) for the 

situation of finding the distribution of the change point MLE in the mean of univariate 

normal observations.  Note that the random walks 𝑆𝑜  and 𝑆∗ that are defined in 

(2.27) are independent of each other, and both have negative means.  Thus both 

walks eventually drift to −∞. 

One can apply the asymptotic distribution of the change point MLE for estimating 

change in the mean of univariate normal observations as derived and computed by 

Jandhyala and Fotopoulos (1999) to the multivariate change point MLE. It may be 

further noted that the vector valued definition of 𝜂 = Σ−1/2 (𝜇1 − 𝜇0)  when 

specialized to the univariate case agrees with the corresponding definition of 

Jandhyala and Fotopoulos (1999), after adjusting for the slight change in the definition 

of 𝜂. 

The asymptotic distribution of the change point MLE for the univariate case as 

presented by Jandhyala and Fotopoulos (1999, Table 1) was computed on the basis of 

𝛿 =
1

2
𝜂. We can use the same table for the multivariate case simply by defining 

𝛿 =
1

2
 𝜂𝑇𝜂. We can rewrite 𝜂𝑇𝜂 = 4𝛿2. 
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Let 𝑋1
𝑜  and 𝑋1

∗  represent the initial random variables associated with these two 

independent random walks 𝑆𝑜  and 𝑆∗  respectively.  All assumptions stated in 

Jandhyala and Fotopoulos (1999) are satisfied. 

 Assumption 1: −∞ ≤  𝐸 𝑋1
𝑂 = 𝐸 𝑋1

∗ = −
1

2
𝛿2 < 0 

 Assumption 2: the moment generating functions of 𝑋1
𝑂  are 

𝜙 𝑠 = exp  −
1

2
𝛿2𝑠 +

1

2
𝛿2𝑠2 , which is convergent for 0 ≤ 𝑅𝑒(𝑠) < 1 

 Assumption 3: For 𝑠 ∈ ℝ , 
𝑑

𝑑𝑠
𝜙 𝑠 = exp  −

1

2
𝛿2𝑠 +

1

2
𝛿2𝑠2  −

1

2
𝛿2 + 𝛿2𝑠 .  

Thus when 𝑠 =
1

2
, 

𝑑

𝑑𝑠
𝜙 𝑠 = 0  and 

𝑑2

𝑑𝑠2 𝜙  
1

2
 > 0 .  It can be verified that 

𝜙  
1

2
 < 𝜙 0 = 𝜙 1 = 1 .  So 𝜙 𝑠  attains a unique minimum on [0,1] .  

According to Fotopoulos, Jandhyala and Khapalova (2010), this assumption is true 

automatically, which coincides with the computation above.  In the future, this 

assumption will be assumed to be true without proving. 

The algorithmic procedure that was proposed in Jandhyala and Fotopoulos (1999) can 

be applied as follows: 

Let 𝜏0 = inf 𝑗 ≥ 1: 𝑆𝑗 ≤ 0  be the weak descending ladder epoch, and let 𝜍𝑥 =

inf 𝑗 ≥ 0: 𝑆𝑗 > 𝑥 , for 𝑥 ≥ 0, where 𝜍0 denotes the strict ascending ladder epoch.  

Let 𝑀𝑗 = max 𝑆𝑘 : 0 ≤ 𝑘 ≤ 𝑗   be the maximum of the first 𝑗 partial sums, and Let 

𝑀 = max 𝑆𝑗 : 𝑗 = 0, 1,2, . .   be the overall maximum.  For 𝑥 ≥ 0, the followings are 

defined: 

 (i) 𝐺𝑗  𝑥 = Pr Mj ≤ x = Pr 𝜍𝑥 > 0  , for 𝑗 ≥ 0. 
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(ii)  𝐺 𝑥 = Pr M ≤ x  

(iii) 𝑢𝑗  𝑥 = Pr 𝜏0 > 𝑗, 𝑆𝑗 ∈ (0, 𝑥]  for 𝑗 ≥ 0 and 𝑥 ≥ 0. 

Define 𝑉0 = 0 and let 𝑉𝑗 = 𝐺𝑗  0 = Pr 𝜍0 > 𝑗  , for 𝑗 ≥ 1.  Note that 𝑢0 𝑥 =

Pr 𝜏0 > 0, 𝑆𝑗 ∈ (0, 𝑥] .  Thus 𝑢0 𝑥 = 0  for 𝑥 > 0 , and 𝑢0 0 = 1 .  Then let 

𝑞𝑗 = 𝑢𝑗  ∞ = Pr 𝜏0 > 𝑗  for 𝑗 ≥ 1.   

It is well known from Spitzer‘s identity that 𝑉∞ = 𝑒−𝐵 1 , where 𝐵 𝑠 =   𝑠𝑗 𝑏𝑗  /𝑛 

and 𝑏𝑗 = Pr 𝑆𝑗 > 0 , for 𝑗 ≥ 1.  Therefore,  

 𝐺𝑜 0 = 𝑉∞
𝑜 = 𝑒−𝐵𝑜 (1), 𝐺∗ 0 = 𝑉∞

∗ = 𝑒−𝐵∗(1) (3.7) 

 

Jandhyala and Fotopoulos (1999) derived the following iterative procedure for the 

sequence of probabilities  𝑞𝑗 , 𝑗 ≥ 0  as 

 

𝑞0 = 1, 𝑗𝑞𝑗 =  𝑏𝑗−𝑘𝑞𝑘

𝑗−1

𝑘=0

     (𝑗 ≥ 1) 

(3.8) 

Under this setup, Jandhyala and Fotopoulos (1999) proved that the probability 

distribution function for the maximum likelihood estimator 𝜏 ∞  of the change-point 𝜏 

is  
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 Pr 𝜉 ∞ = 𝑖 

=

 
 
 

 
 𝑒−𝐵∗ 1  𝑞𝑖

∗ −   1 − 𝐺𝑜 𝑥  𝑑𝑢𝑖
∗ 𝑥 

∞

0+

 , 𝑖 > 0

𝑒−𝐵∗ 1 −𝐵𝑜  1 ,                                                         𝑖 = 0

𝑒−𝐵𝑜  1  𝑞−𝑖
𝑜 −   1 − 𝐺∗ 𝑥  𝑑𝑢−𝑖

0  𝑥 
∞

0+

 , 𝑖 < 0

     

(3.9) 

Jandhyala and Fotopoulos (1999) showed that the distribution function 𝐺(𝑥) of 𝑀 

satisfied exponential form, and derived computable inequalities for the probability 

distribution of 𝜉 ∞ .   

Let 𝑢 𝑖 𝜆 =  𝑒−𝜆𝑥 𝑑𝑢𝑖(𝑥) be the Laplace transformation of 𝑢𝑖 𝑥  for 𝑥 > 0, and 

let 𝑢 0 𝜆 = 1.  From Spitzer‘s identity, the iterative procedure for computing 𝑢 𝑖 𝜆  

was derived as follows: 

 

  𝑗𝑢 𝑗  𝜆 =  𝑏 𝑗−𝑘 𝜆 𝑢 𝑘 𝜆 

𝑗−1

𝑘=0

     (𝑗 ≥ 1) 

(3.10) 

where 𝑏 𝑗  𝜆 = 𝐸 𝑒−𝜆𝑆𝑗 𝐼 𝑆𝑗 > 0  . 

The distribution of 𝜉 ∞  can be evaluated by 

 

Pr 𝜉 ∞ = 𝑖 =  

𝑒−𝐵∗ 1  𝑞𝑖
∗ −  1 − 𝑒−𝐵𝑜 (1) 𝑢 𝑖

∗ 𝜗𝑜  , 𝑖 > 0

𝑒−𝐵∗ 1 −𝐵𝑜  1 ,                                                  𝑖 = 0

𝑒−𝐵𝑜  1  𝑞𝑖
𝑜 −  1 − 𝑒−𝐵∗(1) 𝑢 𝑖

𝑜 𝜗∗  , 𝑖 < 0

  

(3.11) 

The algorithmic procedure can be follows as 

Step S0:  Let 𝑌𝑜~𝑁 𝜇0, Σ , 𝑌∗~𝑁 𝜇1, Σ . 

Stop S1:  As derived above, 𝑋𝑜~𝑁 −2𝛿2, 4𝛿2  and 𝑋∗~𝑁 −2𝛿2, 4𝛿2 .  Since 

𝑋∗  and 𝑋𝑜  are identically distributed, so their partial sums 𝑆−𝑗
𝑜 , where 𝑗 ∈



37 

 

{−1, … , −𝜏𝑛 − 1} and 𝑆𝑗
∗ , where 𝑗 ∈ {1, … , 𝑛 − 𝜏𝑛 − 1} , are also identically 

distributed, whose distribution are both 𝑁 −2 𝑗 𝛿2, 4 𝑗 𝛿2 .  𝑗 ∈ {1,2, … }. 

Step S2:  Compute  𝑏𝑗
𝑜  and  𝑏𝑗

∗  for 𝑗 = 1, 2, …, where 𝑏𝑗
𝑜 = Pr Sj

o > 0  and 

𝑏𝑗
∗ = Pr Sj

∗ > 0 .  They can be both computed by the cumulative distribution 

function of normal distribution 𝑁 −2𝑗𝛿2, 4𝑗𝛿2 .  In statistical software R, 𝑏𝑗
𝑜  and 

𝑏𝑗
∗  can be computed by the function pnorm 0, mean = −2𝑗𝛿2, sd = 2𝛿 𝑗,

lower. tail = FALSE .  

Step S3:  Compute 𝐵𝑜 1  and 𝐵∗ 1  as 𝐵𝑜 1 =  𝑏𝑗
𝑜 /𝑗 and 𝐵∗ 1 =  𝑏𝑗

∗ /𝑗.   

Step S4:  Compute both  𝑏 𝑗
𝑜 𝜗∗   and  𝑏 𝑗

∗ 𝜗𝑜   as 𝐸  𝑒−𝜗∗𝑆𝑗
𝑜

I Sj
o > 0   and 

𝐸  𝑒−𝜗𝑜𝑆𝑗
∗

I Sj
∗ > 0   for 𝑗 = 1, 2, …, respectively.  Since both 𝜗𝑜  and 𝜗∗are 1, and 

both Sj
o  and Sj

∗ follow the univariate normal distribution with mean −2𝑗𝛿2  and 

variance 4𝑗𝛿2 , 𝐸  𝑒−𝜗∗𝑆𝑗
𝑜

I Sj
o > 0   can be computed as 

 𝑒−𝑆∞

0
𝑓𝑁 𝑠; −2𝑗𝛿2, 4𝑗𝛿2 𝑑𝑠, where 𝑓𝑁 𝑠; −2𝑗𝛿2, 4𝑗𝛿2  is the probability density 

function for the univariate normal distribution.  The integration can be computed 

using the integration function in R as integrate  𝑓, lower = 0, upper = 𝐼𝑛𝑓  where 

integrand 𝑓  can be defined as 𝑓 = function 𝑠 {𝑥 = exp −𝑠 dnorm  𝑠, mean =

−2𝑗𝛿2, sd = 2𝛿 𝑗 }. 

Step S5:  Implement the iterative procedures for  𝑞𝑗
𝑜 ,  𝑢 𝑗

𝑜 𝜗∗   and  𝑞𝑗
∗ , 

 𝑢 𝑗
∗ 𝜗𝑜   as follows: 
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 𝑞0
𝑜 = 1, 𝑗𝑞𝑗

𝑜 =  𝑏𝑗−𝑘
𝑜 𝑞𝑘

𝑜𝑗−1
𝑘=0    ; 𝑢 𝑗

𝑜 𝜗∗ = 1, 𝑗𝑢 𝑗
𝑜 𝜗∗ =  𝑏 𝑗−𝑘

𝑜 𝑢 𝑘
𝑜𝑗−1

𝑘=0   

 𝑞0
∗ = 1, 𝑗𝑞𝑗

∗ =  𝑏𝑗−𝑘
∗ 𝑞𝑘

∗𝑗−1
𝑘=0    ; 𝑢 𝑗

∗ 𝜗𝑜 = 1, 𝑗𝑢 𝑗
∗ 𝜗𝑜 =  𝑏 𝑗−𝑘

∗ 𝑢 𝑘
∗𝑗−1

𝑘=0   

Step S6:  Estimate Pr 𝜉 𝑛 = 𝑖  by (3.11) as follows 

 

Pr 𝜉 ∞ = 𝑖 =  

𝑒−𝐵∗ 1  𝑞𝑖
∗ −  1 − 𝑒−𝐵𝑜 (1) 𝑢 𝑖

∗ 𝜗𝑜  , 𝑖 > 0

𝑒−𝐵∗ 1 −𝐵𝑜  1 ,                                                  𝑖 = 0

𝑒−𝐵𝑜  1  𝑞𝑖
𝑜 −  1 − 𝑒−𝐵∗(1) 𝑢 𝑖

𝑜 𝜗∗  , 𝑖 < 0

  

 

 

Table 3.1 presents the computed distribution of 𝜉 𝑛  using the algorithmic procedure 

S0 – S6 for various values of 𝛿.  Under the assumption that the covariance matrix 

keeps constant before and after change, and that 𝜏𝑛  and 𝑛 − 𝜏𝑛  both approach ∞, 

the distribution of 𝜉 ∞  is symmetric.   
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Table 3.1. Asymptotic probabilities Pr 𝜉 ∞  = ±𝑘 , where 𝑘 = 0, 1, 2, …  for the 

maximum likelihood estimate of the change-point in the case of normal distribution. 

𝑘 
Pr 𝜉 ∞  = ±𝑘  

𝛿 = 0.5 𝛿 = 1 𝛿 = 1.5 𝛿 = 2 

0 0.2802 0.6409 0.8568 0.9531 
1 0.1181 0.1152 0.0599 0.0220 
2 0.0689 0.0385 0.0097 0.0014 
3 0.0454 0.0156 0.0020 0.0001 
4 0.0318 0.0069 0.0005 0.0000 
5 0.0231 0.0033 0.0001 

 6 0.0173 0.0016 0.0000 
 7 0.0132 0.0008 

  8 0.0102 0.0004 
  9 0.0080 0.0002 
  10 0.0064 0.0001 
  15 0.0022 0.0000 
  20 0.0008 

   25 0.0003 
   sum 1.0213 1.0063 1.0011 1.0001 

sd 5.1358 1.2436 0.5057 0.2399 
 

  



40 

 

3.2 Univariate Case 

The univariate change-point problem can be regarded as a special case of multivariate 

change-point problem where the dimensionality decreases to 1.  Therefore, the 

estimation for univariate change-point follows the method of that of the multivariate 

case in section 3.1.  Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time series valued independent 

random vectors such that Yi ∈ ℝ, i = 1, … , n.  The mean of the series changes from 

𝜇0  to 𝜇1  at some unknown point 𝜏𝑛  such that 𝜇0 ≠ 𝜇1 , and the variance σ2
 

remained constant.  Both the mean and variance are unknown.  The asymptotic 

distribution of the maximum likelihood estimator of the change-point 𝜏 𝑛  when 

assuming 𝜇0, 𝜇1 and σ2 are unknown is equivalent to 𝜏 𝑛  when assuming 𝜇0, 𝜇1 

and σ2 are known.   

Under the set-up for the multivariate change-point estimation in Section 2.1, it follows 

that 𝑌1, 𝑌2, … , 𝑌𝜏𝑛
 are i.i.d. with common Gaussian density function 𝑓 ∙; 𝜇0, σ2 , and 

𝑌𝜏𝑛 +1, … , 𝑌𝑛  are i.i.d. with common Gaussian density function 𝑓 ∙; 𝜇1, σ2 , wherein 

we assume that 𝜇0 , 𝜇1  and σ2  are known.  The two-sided random walk is 

construction as in (2.27) .   𝑌𝑜 , 𝑌𝑖
𝑜 : 𝑖 ∈ ℕ  is a sequence of i.i.d. random variables 

such that 𝑌𝑜  is distributed according to 𝑓 ∙; 𝜇0, σ2  and  𝑌∗, 𝑌𝑖
∗: 𝑖 ∈ ℕ  is another 

sequence of i.i.d. random variables such that 𝑌∗  is distributed according to 

𝑓 ∙; 𝜇1, σ2 .  Furthermore the two sequences are independent of each other.  It 

follows that the sequences  𝑋𝑜 , 𝑋𝑖
𝑜 : 𝑖 ∈ ℕ   (before the change) and  𝑋∗, 𝑋𝑖

∗: 𝑖 ∈ ℕ  



41 

 

(after the change) are also independent.  The functional relationship of 𝑋𝑜  with 𝑌𝑜  

and that of 𝑋∗ with 𝑌∗ can be identified similarly as in section section 3.1. 

It follows that 𝑌𝑜 , the random variable before the change-point, admits the 

representation  

 𝑌𝑜 =𝐷 𝜇0 + σZ (3.12)  

or  

 𝑌𝑜 − 𝜇0 =𝐷 σ𝑍 (3.13)  

where 𝑍  is the standard univariate normal random variable.  Consequently, the 

random variable 𝑋𝑜  may be expressed as 
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𝑋𝑜 = −𝑎 𝑌𝑜 = − ln

𝑓 𝑌𝑜 ; 𝜇0, σ2 

𝑓 𝑌𝑜 ; 𝜇1, σ2 
 

= − ln

1

 2𝜋𝜍
exp  −

 𝑌𝑜 − 𝜇0 
2

2𝜍2  

1

 2𝜋𝜍
exp  −

 𝑌𝑜 − 𝜇1 2

2𝜍2  
 

=
 𝑌𝑜 − 𝜇0 

2

2𝜍2
−

 𝑌𝑜 − 𝜇1 
2

2𝜍2
 

=
 𝑌𝑜 − 𝜇0 

2

2𝜍2
−

 𝑌𝑜 − 𝜇0 + 𝜇0 − 𝜇1 
2

2𝜍2
 

=𝐷
 σ𝑍 2

2𝜍2
−

 σ𝑍 + 𝜇0 − 𝜇1 
2

2𝜍2
  

= −
2σ𝑍 𝜇0 − 𝜇1 +  𝜇0 − 𝜇1 

2

2𝜍2
 

=
 𝜇1 − 𝜇0 

σ
𝑍 −

 𝜇1 − 𝜇0 
2

2𝜍2
 

 

Let 𝜂 =
 𝜇1−𝜇0 

σ
, we have 

 
𝑋𝑜 =𝐷−

1

2
𝜂2 + 𝜂𝑍 

(3.14)  

Clearly, it follows that 𝑋𝑜~𝑁(−
1

2
𝜂2 , 𝜂2). 

For the purposes of finding the distribution of 𝑋∗ = 𝑎(𝑌∗), we can follow the similar 

derivation. 

First note that 𝑌∗ , the random variable after the change-point admits the 

representation  

 𝑌∗ =𝐷 𝜇1 + σZ (3.15)  
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or  

 𝑌∗ − 𝜇1 =𝐷 σ𝑍 (3.16)  

where 𝑍 is the standard multivariate normal random variable.  Consequently, the 

random variable 𝑋∗ may be expressed as 

 
𝑋∗ = 𝑎 𝑌∗ = ln

𝑓 𝑌∗; 𝜇0, σ2 

𝑓 𝑌∗; 𝜇1, σ2 
 

= ln

1

 2𝜋𝜍
exp  −

 𝑌∗ − 𝜇0 
2

2𝜍2  

1

 2𝜋𝜍
exp  −

 𝑌∗ − 𝜇1 2

2𝜍2  
 

= −
 𝑌∗ − 𝜇0 

2

2𝜍2
+

 𝑌∗ − 𝜇1 
2

2𝜍2
 

= −
 𝑌∗ − 𝜇1 + 𝜇1 − 𝜇0 

2

2𝜍2
+

 𝑌∗ − 𝜇1 
2

2𝜍2
 

=𝐷−
 σ𝑍 + 𝜇1 − 𝜇0 

2

2𝜍2
+

 σ𝑍 2

2𝜍2
  

= −
2σ𝑍 𝜇1 − 𝜇0 +  𝜇1 − 𝜇0 

2

2𝜍2
 

= −
 𝜇1 − 𝜇0 

σ
𝑍 −

 𝜇1 − 𝜇0 
2

2𝜍2
 

 

As 𝜂 =
 𝜇1−𝜇0 

σ
, we have 

 
𝑋∗ =𝐷−

1

2
𝜂2 − 𝜂𝑍 

(3.17)  

Clearly, 𝑋∗ follows the normal distribution 𝑁(−
1

2
𝜂2, 𝜂2), too. 
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Let 𝛿 =
1

2
𝜂 as in section 3.1, then both 𝑋𝑜  and 𝑋∗ follow the normal distribution 

𝑁 −2𝛿2, 4𝛿2 , which is identical to the distribution of  𝑋𝑜  and 𝑋∗  under the 

multivariate case, and to the derivation of Jandhyala and Fotopoulos (1999).  

Therefore, the method for univariate change-point estimation can exactly follow the 

algorithmic procedure for multivariate change-point analysis when assuming only the 

mean changes at some unknown point of time.  Table 3.1 in Section 3.1 can also be 

applied to the univariate case. 
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4 INFERENCE FOR CHANGE-POINT IN MEAN AND COVARIANCE OF A GAUSSIAN 

SERIES 

Chapter 3 discussed the inference for the abrupt change model (2.1) when change 

occurred in mean only.  Under this case, the partial sums of the two-sided random 

walk follow normal distribution.  In this chapter, the inference for change-point in 

both mean and covariance is discussed.  The asymptotic distribution of the 

change-point is still formulated as a maximizer of a two-sided random walk defined in 

(2.27) .  Due to the complexity of the parameter change, the partial sums involves a 

linear combination of noncentral chi-squared distribution.   

4.1 MLE of a Change-point in Mean and Covariance of a Multivariate Gaussian 

Series 

In section 4.1.1, the asymptotic distribution of the change-point MLE is first derived 

for multivariate Gaussian series with change in both mean and covariance, which turns 

out to be a linear combination of independent noncentral chi-square distribution.  

Then the detailed method about how to compute a linear combination of chi-square 

distribution is discussed in section 4.1.2.  Finally the algorithmic procedure and some 

results are presented in section 4.1.3.  
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4.1.1 Asymptotic distribution of change-point MLE 

Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time series valued independent random vectors 

such that 𝑌𝑖 ∈ ℝd , 𝑖 = 1, … , 𝑛.  The mean vector of the series changes from 𝜇0 to 

𝜇1, and the covariance matrix changes from Σ0 to Σ1 at some unknown point 𝜏𝑛  

such that 𝜇0 ≠ 𝜇1 and Σ0 ≠ Σ1.  Both the mean vector and covariance matrices are 

unknown.  If a change-point is indeed detected, one would like to estimate confidence 

interval of the change-point and see how accurate the detected change-point is.  The 

change-point mle has been modeled as a two-sided random walk in (2.27) , where 

 𝑌𝑜 , 𝑌𝑖
𝑜 : 𝑖 ∈ ℕ  is a sequence of i.i.d. random vectors such that 𝑌𝑜  is distributed 

according to 𝑓 ∙; 𝜇0, Σ0  and  𝑌∗, 𝑌𝑖
∗: 𝑖 ∈ ℕ  is another sequence of i.i.d. random 

vectors such that 𝑌∗ is distributed according to 𝑓 ∙; 𝜇1, Σ1 .  Furthermore the two 

sequences are independent of each other.  It follows that the sequences  𝑋𝑜 , 𝑋𝑖
𝑜 : 𝑖 ∈

ℕ  and  𝑋∗, 𝑋𝑖
∗: 𝑖 ∈ ℕ  defined in (2.27) are independent.   

As Σ0 is a positive definite symmetric matrix, it can be decomposed to Σ0 = 𝑄Λ𝑄𝑇, 

where 𝑄 is an orthogonal matrix, and Λ is a real diagonal matrix with positive 

entries 𝜆1, … , 𝜆𝑑 .  As discussed in Chapter 3, the covariance matrix Σ0 and Σ1 can 

be decomposed as 

 Σ0 = Σ0
1/2

Σ0
1/2

, Σ0
−1 = Σ0

−1/2
Σ0

−1/2
 (4.1) 

 Σ1 = Σ1
1/2

Σ1
1/2

, Σ1
−1 = Σ1

−1/2
Σ1

−1/2
  

where Σ0
1/2

, Σ0
−1/2

, Σ1
1/2

, and Σ1
−1/2

 are all positive definite symmetric matrices. 

Before the change-point, the random variable 𝑌𝑜  admits the presentation 
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 𝑌𝑜 =𝐷 𝜇0 + Σ0
1/2

𝑍 (4.2) 

or  

 𝑌𝑜 − 𝜇0 =𝐷 Σ0
1/2

𝑍 (4.3) 

where 𝑍 is the standard multivariate normal random variable.  Consequently, the 

random variable 𝑋𝑜  may be expressed as 

 
𝑋𝑜 = − ln

𝑓 𝑌𝑜 ; 𝜇0, Σ0 

𝑓 𝑌𝑜 ; 𝜇1, Σ1 
 

= − ln

1
 2𝜋 𝑑/2 Σ0 1/2 exp  −

1
2

 𝑌𝑜 − 𝜇0 
𝑇Σ0

−1 𝑌𝑜 − 𝜇0  

1
 2𝜋 𝑑/2 Σ1 1/2 exp  −

1
2

 𝑌𝑜 − 𝜇1 𝑇Σ1
−1 𝑌𝑜 − 𝜇1  

 

= ln  Σ0 
1/2 Σ1 

−1/2 +
1

2
 𝑌𝑜 − 𝜇0 

𝑇Σ0
−1 𝑌𝑜 − 𝜇0 

−
1

2
 𝑌𝑜 − 𝜇0 + 𝜇0 − 𝜇1 𝑇Σ1

−1 𝑌𝑜 − 𝜇0 + 𝜇0 − 𝜇1  

=𝐷 ln Σ0
1/2

Σ1
−1/2

  +
1

2
 Σ0

1/2
𝑍 

𝑇
Σ0

−1 Σ0
1/2

𝑍 

−
1

2
 Σ0

1/2
𝑍 + 𝜇0 − 𝜇1 

𝑇
Σ1

−1 Σ0
1/2

𝑍 + 𝜇0 − 𝜇1  
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= ln Σ0
1/2

Σ1
−1/2

  +
1

2
ZTΣ0

1/2
Σ0

−1Σ0
1/2

𝑍 −
1

2
 Σ0

1/2
𝑍 

𝑇
Σ1

−1 Σ0
1/2

𝑍 

−
1

2
 𝜇0 − 𝜇1 

𝑇Σ1
−1 Σ0

1/2
𝑍 

−
1

2
 Σ0

1/2
𝑍 

𝑇
Σ1

−1 𝜇0 − 𝜇1 

−
1

2
 𝜇0 − 𝜇1 

𝑇Σ1
−1 𝜇0 − 𝜇1  

= ln Σ0
1/2

Σ1
−1/2

  +
1

2
𝑍𝑇𝑍 −

1

2
𝑍𝑇Σ0

1/2
Σ1

−1Σ0
1/2

𝑍

−
1

2
 𝜇0 − 𝜇1 

𝑇Σ1
−1Σ0

1/2
𝑍 −

1

2
𝑍𝑇Σ0

1/2
Σ1

−1 𝜇0 − 𝜇1 

−
1

2
 𝜇0 − 𝜇1 

𝑇Σ1
−1 𝜇0 − 𝜇1  

= ln Σ0
1/2

Σ1
−1/2

  −
1

2
 𝜇0 − 𝜇1 

𝑇Σ1
−1 𝜇0 − 𝜇1 +

1

2
𝑍𝑇𝑍

−
1

2
𝑍𝑇Σ0

1/2
Σ1

−1/2
Σ1

−1/2
Σ0

1/2
𝑍 −  𝜇0 − 𝜇1 

𝑇Σ1
−1Σ0

1/2
𝑍 

= ln Σ0
1/2

Σ1
−1/2

  −
1

2
 𝜇1 − 𝜇0 

𝑇Σ1
−1 𝜇1 − 𝜇0 

+
1

2
𝑍𝑇 𝐼 − Σ0

1/2
Σ1

−1/2
Σ1

−1/2
Σ0

1/2
 𝑍

+  𝜇1 − 𝜇0 
𝑇Σ1

−1Σ0
1/2

𝑍 

Let  

 𝐾 = Σ0
1/2

Σ1
−1/2

 (4.4) 

 𝜂 = Σ0
−1/2

(𝜇1 − 𝜇0) (4.5) 
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then 𝐾𝑇 =  Σ0
1/2

Σ1
−1/2

 
𝑇

= Σ1
−1/2

Σ0
1/2

, and 𝜂𝑇 =  Σ0
−1/2

(𝜇1 − 𝜇0) 
𝑇

=  𝜇1 −

𝜇0 
𝑇Σ0

−1/2
.  𝜂 can be regarded as the standardized amount of change in the mean 

vector, and 𝐾 can be regarded as the amount of change in the covariance matrix.   

Continuing the above derivation for 𝑋𝑜  as follows 

 
𝑋𝑜 =𝐷 ln Σ0

1/2
Σ1

−1/2
  −

1

2
 𝜇1 − 𝜇0 

𝑇Σ1
−1 𝜇1 − 𝜇0 

+
1

2
𝑍𝑇 𝐼 − Σ0

1/2
Σ1

−1/2
Σ1

−1/2
Σ0

1/2
 𝑍

+  𝜇1 − 𝜇0 
𝑇Σ1

−1Σ0
1/2

𝑍 

= ln 𝐾  −
1

2
 𝜇1 − 𝜇0 

𝑇Σ0
−1/2

Σ0
1/2

Σ1
−1/2

Σ1
−1/2

Σ0
1/2

Σ0
−1/2 𝜇1 − 𝜇0 

+
1

2
𝑍𝑇 𝐼 − Σ0

1/2
Σ1

−1/2
Σ1

−1/2
Σ0

1/2
 𝑍

+  𝜇1 − 𝜇0 
𝑇Σ0

−1/2
Σ0

1/2
Σ1

−1/2
Σ1

−1/2
Σ0

1/2
𝑍 

= ln 𝐾  −
1

2
𝜂𝑇𝐾𝐾𝑇𝜂 +

1

2
𝑍𝑇 𝐼 − 𝐾𝐾𝑇 𝑍 + 𝜂𝑇𝐾𝐾𝑇𝑍 

 

 

In order to investigate the distribution of the random variable 𝑋𝑜 , we can make use of 

the quadratic form of the multivariate normal random variable.  On the 

right-hand-side, we already have a quadratic term and a linear term in the standard 

multivariate normal variable 𝑍.  Notice if 𝑎 =  𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂, then  
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 1

2
 𝑍 + 𝑎 𝑇 𝐼 − 𝐾𝐾𝑇  𝑍 + 𝑎  

=
1

2
𝑍𝑇 𝐼 − 𝐾𝐾𝑇 𝑍 + 𝑎𝑇 𝐼 − 𝐾𝐾𝑇 𝑍 +

1

2
𝑎𝑇 𝐼 − 𝐾𝐾𝑇 𝑎 

=
1

2
𝑍𝑇 𝐼 − 𝐾𝐾𝑇 𝑍 + ( 𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂)𝑇 𝐼 − 𝐾𝐾𝑇 𝑍

+
1

2
  𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂 𝑇 𝐼

− 𝐾𝐾𝑇 ( 𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂) 

=
1

2
𝑍𝑇 𝐼 − 𝐾𝐾𝑇 𝑍 + (𝜂𝑇𝐾𝐾𝑇 𝐼 − 𝐾𝐾𝑇 −1) 𝐼 − 𝐾𝐾𝑇 𝑍

+
1

2
(𝜂𝑇𝐾𝐾𝑇 𝐼 − 𝐾𝐾𝑇 −1) 𝐼

− 𝐾𝐾𝑇 ( 𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂) 

=
1

2
𝑍𝑇 𝐼 − 𝐾𝐾𝑇 𝑍 + 𝜂𝑇𝐾𝐾𝑇𝑍 +

1

2
𝜂𝑇𝐾𝐾𝑇 𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂 

 

Thus 

 
𝑋o =𝐷 ln 𝐾  −

1

2
𝜂𝑇𝐾𝐾𝑇𝜂 +

1

2
𝑍𝑇 𝐼 − 𝐾𝐾𝑇 𝑍 + 𝜂𝑇𝐾𝐾𝑇𝑍 

= ln 𝐾  −
1

2
𝜂𝑇𝐾𝐾𝑇𝜂 +

1

2
 𝑍 + 𝑎 𝑇 𝐼 − 𝐾𝐾𝑇  𝑍 + 𝑎 

−
1

2
𝜂𝑇𝐾𝐾𝑇 𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂 
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= ln 𝐾  −
1

2
𝜂𝑇𝐾𝐾𝑇𝜂

+
1

2
 𝑍 +  𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂 𝑇 𝐼 − 𝐾𝐾𝑇  𝑍

+  𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂 

−
1

2
𝜂𝑇𝐾𝐾𝑇 𝐼 − 𝐾𝐾𝑇 −1𝐾𝐾𝑇𝜂 

Because 𝐾𝐾𝑇  is also a positive definite matrix, it can also be decomposed as  

 𝐾𝐾𝑇 = ΘΨΘ𝑇  (4.6) 

where Ψ = diag 𝜓1, 𝜓2 , … , 𝜓𝑑 , Θ−1 = ΘT   

Θ  is an orthogonal matrix, and 𝜓1, 𝜓2, … , 𝜓𝑑  are eigenvalues of 𝐾𝐾𝑇 .  Thus 

 𝐾 =   𝐾𝐾𝑇 1/2 =  𝜓1𝜓2 … 𝜓𝑑 1/2. 

Let 

 ΘTη ∶= 𝜔 =  𝜔1, 𝜔2, … , 𝜔𝑑 𝑇  (4.7) 

then the distribution of  𝑋𝑜  is  

 
𝑋𝑜 =𝐷 ln 𝜓1𝜓2 … 𝜓𝑑 

1
2 −

1

2
𝜂𝑇ΘΨΘ𝑇𝜂

+
1

2
 𝑍 +  𝐼 − ΘΨΘ𝑇 −1ΘΨΘ𝑇𝜂 𝑇 𝐼 − ΘΨΘ𝑇  𝑍

+  𝐼 − ΘΨΘ𝑇 −1ΘΨΘ𝑇𝜂 

−
1

2
𝜂𝑇ΘΨΘ𝑇 𝐼 − ΘΨΘ𝑇 −1ΘΨΘ𝑇𝜂 
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= ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −
1

2
𝜔𝑇Ψ𝜔

+
1

2
 𝑍 +  Θ I − Ψ Θ𝑇 −1ΘΨ𝜔 𝑇 Θ I − Ψ Θ𝑇 −1 𝑍

+  Θ I − Ψ Θ𝑇 −1ΘΨ𝜔 

−
1

2
𝜔𝑇ΨΘ𝑇 Θ I − Ψ Θ𝑇 −1ΘΨ𝜔 

= ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −
1

2
𝜔𝑇Ψ𝜔

+
1

2
 𝑍 + Θ I − Ψ −1Θ𝑇ΘΨ𝜔 𝑇Θ I − Ψ Θ𝑇 𝑍

+ Θ I − Ψ −1Θ𝑇ΘΨ𝜔 

−
1

2
𝜔𝑇ΨΘ𝑇Θ I − Ψ −1Θ𝑇ΘΨ𝜔 

= ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −
1

2
𝜔𝑇Ψ𝜔

+
1

2
 𝑍 + Θ I − Ψ −1Ψ𝜔 𝑇Θ I − Ψ Θ𝑇 𝑍

+ Θ I − Ψ −1Ψ𝜔 −
1

2
𝜔𝑇Ψ I − Ψ −1Ψ𝜔 

= ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −
1

2
𝜔𝑇Ψ𝜔

+
1

2
 Θ𝑇𝑍 + Θ𝑇Θ I − Ψ −1Ψ𝜔 𝑇 I − Ψ  Θ𝑇𝑍

+ Θ𝑇Θ I − Ψ −1Ψ𝜔 −
1

2
𝜔𝑇Ψ I − Ψ −1Ψ𝜔 
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= ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −
1

2
𝜔𝑇Ψ𝜔

+
1

2
 Θ𝑇𝑍 +  I − Ψ −1Ψ𝜔 𝑇 I − Ψ  Θ𝑇𝑍

+  I − Ψ −1Ψ𝜔 −
1

2
𝜔𝑇Ψ I − Ψ −1Ψ𝜔 

As Θ𝑇  is an orthogonal matrix, 𝑍 follows standard multivariate normal distribution, 

then Θ𝑇𝑍 also follows standard normal distribution.  Thus  

 
𝑋𝑜 =𝐷 ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −

1

2
 𝜓𝑠𝜔𝑠

2
𝑑

𝑠=1

+
1

2
  1 − 𝜓𝑠  𝑧𝑠 +

𝜓𝑠𝜔𝑠

1 − 𝜓𝑠
 

2𝑑

𝑠=1
 −

1

2
 

𝜓𝑠
2𝜔𝑠

2

1 − 𝜓𝑠

𝑑

𝑠=1
 

= ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −
1

2
  𝜓𝑠 +

𝜓𝑠
2

1 − 𝜓𝑠
 𝜔𝑠

2
𝑑

𝑠=1

+
1

2
  1 − 𝜓𝑠  𝑧𝑠 +

𝜓𝑠𝜔𝑠

1 − 𝜓𝑠
 

2𝑑

𝑠=1
  

= ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −
1

2
 

𝜓𝑠𝜔𝑠
2

1 − 𝜓𝑠

𝑑

𝑠=1

+  
1 − 𝜓𝑖

2
 𝑧𝑖 +

𝜓𝑖𝜔𝑖

1 − 𝜓𝑖
 

2𝑑

𝑖=1
  

(4.8) 

That is to say, the distribution of 𝑋𝑜  is the same as  

 
𝐶𝑜 +  𝑎𝑠

𝑜χ1,𝜍𝑠
𝑜2

2
𝑑

𝑠=1
 

(4.9) 

which is the sum of a constant term 𝐶𝑜  and a linear combination of noncentral 

chi-square random variables with the degree of freedom 1, the noncentral parameter 

𝜍𝑠
𝑜2 and the coefficient 𝑎𝑠

𝑜 , where 
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𝐶𝑜 =

1

2
ln(𝜓1𝜓2 … 𝜓𝑑) −

1

2
 

𝜓𝑠𝜔𝑠
2

1 − 𝜓𝑠

𝑑

𝑠=1
 

(4.10) 

 
𝜍𝑠

𝑜2 =  
𝜓𝑠𝜔𝑠

1 − 𝜓𝑠
 

2

 
(4.11) 

 
𝑎𝑠

𝑜 =
1

2
 1 − 𝜓𝑠  

(4.12) 

 

For the two-sided random walk for 𝜉𝑛 = 𝜏 𝑛 − 𝜏𝑛  as defined in (2.27) , in the partial 

sum 𝑆−𝑗
𝑜 =  𝑋𝑖

𝑜−𝑗
𝑖=1  where 𝑗 ∈ {−1, … , −𝜏𝑛 − 1}, all the 𝑋𝑖

𝑜  have independent and 

identical distribution as defined in (4.9), which can be rewritten as 

 
𝐶𝑜 +  𝑎𝑖;𝑠

𝑜 χ𝑖;1,𝜍𝑠
𝑜2

2
𝑑

𝑠=1
 

(4.13) 

wher

e 

𝑎𝑖;𝑠
𝑜 = 𝑎𝑠

𝑜  , χ𝑖;1,𝜍𝑠
𝑜2

2 = χ1,𝜍𝑠
𝑜2

2   

The – 𝑗𝑡    partial sum of 𝑋𝑖
𝑜 , 𝑆−𝑗

𝑜  where 𝑗 ∈ {−1, … , −𝜏𝑛 − 1} , has the same 

distribution as  

 
  𝐶𝑜 +  𝑎𝑖;𝑠

𝑜 χ𝑖;1,𝜍𝑠
𝑜2

2
𝑑

𝑠=1
 

−𝑗

𝑖=1

= −𝑗𝐶𝑜 +    𝑎𝑖;𝑠
𝑜 χ𝑖;1,𝜍𝑠

𝑜2
2

𝑑

𝑠=1
 

−𝑗

𝑖=1
 

(4.14) 

which is the sum of a constant term −𝑗𝐶𝑜  and 𝑗𝑑 terms of noncentral chi-square 

random variables with the degree of freedom being 1.  In the linear combination of 

chi-square random terms for 𝑆−𝑗
𝑜  where 𝑗 ∈ {−1, … , −𝜏𝑛 − 1}, −𝑗 terms have the 
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noncentral parameter being σs
o2, and the coefficient for chi-square random variables 

being 𝑎𝑠
𝑜  for 𝑠 = 1, 2, … , 𝑑.  
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After the change-point 𝜏𝑛  , the observations 𝑌∗  follow multivariate normal 

distribution 𝑁(𝜇1, Σ1).  We can write 

 𝑌∗ =𝐷 𝜇1 + Σ1
1/2

𝑍 (4.15) 

or  

 𝑌∗ − 𝜇1 =𝐷 Σ1
1/2

𝑍 (4.16) 

where 𝑍 is the standard multivariate normal random variable.  Consequently, the 

random variable 𝑋∗ may be expressed as 

 
𝑋∗ = ln

𝑓 𝑌∗; 𝜇0, Σ0 

𝑓 𝑌∗; 𝜇1, Σ1 
 

= ln

1
 2𝜋 𝑑/2 Σ0 1/2 exp  −

1
2

 𝑌∗ − 𝜇0 𝑇Σ0
−1 𝑌∗ − 𝜇0  

1
 2𝜋 𝑑/2 Σ1 1/2 exp  −

1
2

 𝑌∗ − 𝜇1 𝑇Σ1
−1 𝑌∗ − 𝜇1  

 

= − ln  Σ0 
1/2 Σ1 

−1/2 

−
1

2
 𝑌𝑖 − 𝜇1 + 𝜇1 − 𝜇0 

𝑇Σ0
−1 𝑌𝑖 − 𝜇1 + 𝜇1 − 𝜇0 

+
1

2
 𝑌𝑖 − 𝜇1 

𝑇Σ1
−1 𝑌𝑖 − 𝜇1  

=𝐷− ln Σ0
1/2

Σ1
−1/2

 −
1

2
 Σ1

1/2
𝑍 + 𝜇1 − 𝜇0 

𝑇
Σ0

−1 Σ1
1/2

𝑍 + 𝜇1 − 𝜇0 

+
1

2
 Σ1

1/2
𝑍 

𝑇
Σ1

−1 Σ1
1/2

𝑍  

 



57 

 

= − ln Σ0
1/2

Σ1
−1/2

 −
1

2
 Σ1

1/2
𝑍 

𝑇
Σ0

−1 Σ1
1/2

𝑍 

−
1

2
 Σ1

1/2
𝑍 

𝑇
Σ0

−1 𝜇1 − 𝜇0 −
1

2
 𝜇1 − 𝜇0 

𝑇Σ0
−1 Σ1

1/2
𝑍 

−
1

2
 𝜇1 − 𝜇0 

𝑇Σ0
−1 𝜇1 − 𝜇0 +

1

2
𝑍𝑇Σ1

1/2
Σ1

−1Σ1
1/2

𝑍 

= − ln Σ0
1/2

Σ1
−1/2

 −
1

2
𝑍𝑇Σ1

1/2
Σ0

−1/2
Σ0

−1/2
Σ1

1/2
𝑍

−  𝜇1 − 𝜇0 
𝑇Σ1

−1/2
Σ1

1/2
Σ0

−1/2
Σ0

−1/2
Σ1

1/2
𝑍

−
1

2
 𝜇1 − 𝜇0 

𝑇Σ1
−1/2

Σ1
1/2

Σ0
−1/2

Σ0
−1/2

Σ1
1/2

Σ1
−1/2 𝜇1

− 𝜇0 +
1

2
𝑍𝑇𝑍 

The same parameterization is used for 𝑋∗  as for 𝑋𝑜  as in (4.4).  As 𝐾 =

Σ0
1/2

Σ1
−1/2

, then 𝐾𝑇 =  Σ0
1/2

Σ1
−1/2

 
𝑇

= Σ1
−1/2

Σ0
1/2

, 𝐾−1 =  Σ0
1/2

Σ1
−1/2

 
−1

=

Σ1
1/2

Σ0
−1/2

,  𝐾−1 𝑇 = Σ0
−1/2

Σ1
1/2

.   

Let  

 𝜂∗ = Σ1
−1/2

(𝜇1 − 𝜇0) (4.17) 

then 𝜂∗𝑇 =  Σ1
−1/2

(𝜇1 − 𝜇0) 
𝑇

=  𝜇1 − 𝜇0 
𝑇Σ1

−1/2
.  The distribution of 𝑋∗ can be 

derived as follows 

 
𝑋∗ =𝐷 ln 𝐾−1  −

1

2
𝑍𝑇𝐾−1 𝐾−1 𝑇𝑍 − 𝜂∗𝑇𝐾−1 𝐾−1 𝑇𝑍

−
1

2
𝜂𝑇𝐾−1 𝐾−1 𝑇𝜂 +

1

2
𝑍𝑇𝑍 
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= ln 𝐾−1  −
1

2
𝜂𝑇𝐾−1 𝐾−1 𝑇𝜂 +

1

2
𝑍𝑇 𝐼 − 𝐾−1 𝐾−1 𝑇 𝑍

− 𝜂∗𝑇𝐾−1 𝐾−1 𝑇𝑍 

All the terms have exactly the same structure as 𝑋𝑜  if the terms 𝐾 and 𝜂 for 𝑋𝑜  

are substituted by the terms 𝐾−1 and 𝜂∗ for 𝑋∗.  So we can complete a quadratic 

term for the distribution of 𝑋∗ the same way as what has been done for 𝑋𝑜  as 

follows: 

 
𝑋∗ =𝐷 ln 𝐾−1  −

1

2
𝜂∗𝑇𝐾−1 𝐾−1 𝑇𝜂∗

+
1

2
 𝑍 −  𝐼 − 𝐾−1 𝐾−1 𝑇 −1𝐾−1 𝐾−1 𝑇𝜂∗ 𝑇 𝐼

− 𝐾−1 𝐾−1 𝑇  𝑍 −  𝐼 − 𝐾−1 𝐾−1 𝑇 −1𝐾−1 𝐾−1 𝑇𝜂∗ 

−
1

2
𝜂∗𝑇𝐾−1 𝐾−1 𝑇 𝐼 − 𝐾−1 𝐾−1 𝑇 −1𝐾−1 𝐾−1 𝑇𝜂∗ 

 

In deriving the distribution for 𝑋𝑜 , 𝐾𝐾𝑇  is decomposed as 𝐾𝐾𝑇 = ΘΨΘ𝑇  in (4.6), 

where Θ is an orthogonal matrix, Ψ = 𝑑𝑖𝑎𝑔{𝜓1, 𝜓2, … , 𝜓𝑑}, and 𝜓1, 𝜓2 , … , 𝜓𝑑  are 

eigenvalues of 𝐾𝐾𝑇 .  Thus 

 𝐾−1 𝐾−1 𝑇 =  𝐾𝐾𝑇 −1 =  ΘΨΘ𝑇 −1 = ΘΨ−1Θ𝑇 

where Ψ−1 = 𝑑𝑖𝑎𝑔{𝜓1
−1, 𝜓2

−1, … , 𝜓𝑑
−1}, and Θ−1 = ΘT  

(4.18) 

𝜓1
−1, 𝜓2

−1, … , 𝜓𝑑
−1 are eigenvalues of 𝐾−1 𝐾−1 𝑇. 

Let 

 ΘTη∗ ∶= 𝜔∗ =  𝜔1
∗ , 𝜔2

∗ , … , 𝜔𝑑
∗   𝑇  (4.19) 

then the distribution of  𝑋∗ is  
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𝑋∗ =𝐷 ln 𝜓1𝜓2 … 𝜓𝑑 −1/2 −

1

2
𝜔∗𝑇Ψ−1𝜔∗

+
1

2
 ΘT𝑍 −  𝐼 − Ψ−1 −1Ψ−1𝜔∗ 𝑇 𝐼 − Ψ−1  ΘT𝑍

−  𝐼 − Ψ−1 −1Ψ−1𝜔∗ 

−
1

2
𝜔∗𝑇Ψ−1 𝐼 − Ψ−1 −1Ψ−1𝜔∗ 

= ln 𝜓1𝜓2 … 𝜓𝑑 −1/2 −
1

2
 𝜓𝑠

−1𝜔𝑠
∗2

𝑑

𝑠=1

+
1

2
  1 − 𝜓𝑠

−1  𝑧𝑠 −
𝜓𝑠

−1𝜔𝑠
∗

1 − 𝜓𝑠
−1

 

2𝑑

𝑠=1

−
1

2
 

𝜓𝑠
−2𝜔𝑠

∗2

1 − 𝜓𝑠
−1

𝑑

𝑠=1
 

= ln 𝜓1𝜓2 … 𝜓𝑑 −1/2 −
1

2
 

𝜓𝑠
−1𝜔𝑠

∗2

1 − 𝜓𝑠
−1

𝑑

𝑠=1

+  
1 − 𝜓𝑠

−1

2
 𝑧𝑠 −

𝜓𝑠
−1𝜔𝑠

∗

1 − 𝜓𝑠
−1

 

2𝑑

𝑠=1
 

(4.20) 

That is to say, the distribution of 𝑋∗ is the same as 

 
𝐶∗ +  𝑎𝑠

∗χ1,𝜍𝑠
∗2

2
𝑑

𝑠=1
 

(4.21) 

which is the sum of the constant term 𝐶∗ and a linear combination of noncentral 

chi-square random variables with, the degree of freedom 1, the noncentral parameter 

𝜍𝑠
∗2 and the coefficient 𝑎𝑠

∗, where 

 
𝐶∗ = −

1

2
ln(𝜓1𝜓2 … 𝜓𝑑) −

1

2
 

𝜓𝑠
−1𝜔𝑠

∗2

1 − 𝜓𝑠
−1

𝑑

𝑠=1
 

(4.22) 
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𝜍𝑠

∗2 =  
𝜓𝑠

−1𝜔𝑖
∗

1 − 𝜓𝑠
−1

 

2

 
(4.23) 

 
𝑎𝑠

∗ =
1

2
 1 − 𝜓𝑠

−1  
(4.24) 

For the two-sided random walk for 𝜉𝑛 = 𝜏 𝑛 − 𝜏𝑛  as defined in (2.27) , in the partial 

sum 𝑆𝑗
∗ =  𝑋𝑖

𝑗
𝑖=1  where 𝑗 ∈ {1, … , 𝑛 − 𝜏𝑛 − 1}, all the 𝑋𝑖

∗ have independent and 

identical distribution as defined in (4.21).  The 𝑗𝑡   partial sum of 𝑋𝑖
∗, 𝑆𝑗

∗, has the 

same distribution as  

 
  𝐶∗ +  𝑎𝑖;𝑠

∗ χ𝑖;1,𝜍𝑠
𝑜2

2
𝑑

𝑠=1
 

𝑗

𝑖=1
= 𝑗𝐶∗ +    𝑎𝑖;𝑠

∗ χ𝑖;1,𝜍𝑠
∗2

2
𝑑

𝑠=1
 

𝑗

𝑖=1
 

(4.25) 

which is the sum of a constant term 𝑗𝐶∗  and 𝑗𝑑  terms of noncentral chi-square 

random variables with the degree of freedom being 1.  In the linear combination of 

chi-squared random terms for 𝑆𝑗
∗, 𝑗 terms have the noncentral parameter being σs

∗2, 

and the coefficient for chi-square random variable being 𝑎𝑠
∗ for 𝑠 = 1, 2, … , 𝑑. 

Both linear combinations of chi-square distribution have a constant term and  𝑗𝑑  

terms of independent non-central chi-squared random variables with 1 degree of 

freedom.  The distribution change-point can be derived by the maximizer of the 

two-sided random walk defined in (2.27) .  As the derivation involves computing a 

linear combination of noncentral chi-square distribution, it is not as straightforward as 

the case that was discussed in Chapter 3, where the parameter change is confined to 

mean only.  In the following sections, the computation for the linear combination of 

chi-square distribution will be discussed before presenting the algorithmic procedure 

for the distribution of change-point mle.  
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4.1.2 Distribution of linear combination of chi-square distribution 

From above derivation, the distribution theory of the change-point estimate can be 

established by the two-sided random walk defined by 𝑋𝑜  and 𝑋∗ .  Under the 

univariate setup, according to Fotopoulos and Jandhyala (2000), each step follows 

normal distribution if assuming change only in mean value, or chi-square distribution 

if change in variance is also assumed.  As the dimensionality of the observation 

increases, it seems necessary to find out a way to compute the distribution of a linear 

combination of non-central chi-square distribution.  As we would like to generalized 

our method and derive a fast algorithm for the estimation method without the loss of 

accuracy, the method about how to deal with the linear combination is critical.  In the 

literature, several methods were proposed to achieve a balance of speed and accuracy.   

Imhof(1961) gave exact and approximate method for computing the distribution of the 

form 

 
𝑄 =  𝑎𝑠χ𝑠 ,𝜍𝑠

2
2

𝑑

𝑠=1
 

(4.26) 

Gil-Pelaez‘s (1951) numerical inversion of the characteristic function was used to 

obtain the exact form of the cumulative distribution function as  

 
𝐹 𝑞 =

1

2
−

1

𝜋
 

sin 𝜃 𝑢 

𝑢𝜌(𝑢)
𝑑𝑢

∞

0

 
(4.27) 

where 

 

𝜃(𝑢) =
1

2
 [ 𝑠 tan−1(𝑎𝑠𝑢) + 𝜍𝑠

2𝑎𝑠𝑢(1 + 𝑎𝑠
2𝑢2)−1] −

1

2
𝑞𝑢

𝑑

𝑠=1

 

(4.28) 
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𝜌(𝑢) =  (1 + 𝑎𝑠
2𝑢2

𝑑

𝑠=1

)
1
4
𝑠 exp  

1

2
 

 𝜍𝑠𝑎𝑠𝑢 2

 1 + 𝑎𝑠
2𝑢2 

𝑑

𝑠=1

  

(4.29) 

As the integrand of the improper integral satisfies lim𝑢→∞
sin 𝜃 𝑢 

𝑢𝜌 (𝑢)
= 0, the numerical 

integration for approximation was carried on a finite range [0, 𝑈] in Imhof (1961), 

where 𝑈 is determined by the accuracy requirement of the approximation.  Imhof 

(1961) showed two sources of errors: the error of integration from using numerical 

integration and the error of truncation from using the finite-range integral.  Imhof 

(1961) also showed that if the upper integration limit is 𝑈, the upper bound of the 

truncation error 𝑇𝑈  can be determined by 

 

𝑇𝑈 =  𝜋𝑘𝑈𝑘   𝑎𝑠 
1
2
𝑠 exp  

1

2
 

 𝜍𝑠𝑎𝑠𝑈 2

 1 + 𝑎𝑠
2𝑈2 

𝑑

𝑠=1

 

𝑑

𝑠=1

 

−1

 

(4.30) 

where 

𝑘 =
1

2
 𝑠

𝑑

𝑠=1

 

 

Thus if 𝑇𝑈  is set as the accuracy, the corresponding 𝑈 guarantees that the truncation 

error will not exceed the accuracy requirement.  The trapezoidal rule and Simpson‘s 

rule were proposed by Imhof (1961) to compute the truncated integral.  The 

integration method is computing intensive, as the length of the integration interval was 

determined by trial-and-error method, until a desired accuracy was achieved.  Koerts 

and Abrahamse (1969) provided the FORTRAN program for Imhof‘s (1961) method.  

Farebrother (1990) gave the Pascal translation of Koerts and Abrahames‘s (1969) 

Fortran procedure with minor modification in implementation.  
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Davies (1973, 1980) also followed Gil-Pelaez‘s (1951) inversion formula of the 

characteristic function.  Fourier cosine series summation formula was used to find a 

bound on the integration error when the numerical integration by trapezoidal rule was 

applied.   

The distribution function Pr   𝑎𝑠χ𝑠 ,𝜍𝑠
2

2𝑑
𝑠=1 ≤ 𝑞  was computed by Davies (1980) as 

 1

2
−   exp  −2𝑏𝑙

2  𝑎𝑠
2𝜍𝑠

2/ 1 + 4𝑏𝑙
2𝑎𝑠

2 

𝑑

𝑠=1

   1

𝑑

𝑠=1

𝑈

𝑙=0

+ 4𝑏𝑙
2𝑎𝑠

2 −𝑠/4 sin    𝑠 arctan 2𝑏𝑙𝑎𝑠 /2

𝑑

𝑠=1

+ 𝑏𝑙𝑎𝑠𝜍𝑠
2/ 1 + 4𝑏𝑙

2𝑎𝑠
2  − 𝑏𝑙𝑞 /  𝜋  𝑙 +

1

2
    

 

where 𝑏𝑙 =  𝑙 +
1

2
 Δ, Δ is the length of subinterval for trapezoidal rule  

𝑈 is the truncation limit that keeps the truncation error  

 
 Im Φ 𝑏𝑙 exp −i𝑏𝑙𝑞  /

∞

𝑙=𝑈+1

 𝜋  𝑙 +
1

2
   

 

less that desired tolerance of error. 

In the summation for numerical integration, Davies‘ formula might contain terms with 

large magnitudes with different signs, which might cumulate significant round-off 

error, although the author claims that it is not a problem in practice.    

Lu (2006) proposed two truncation bounds to control the truncation error.  The 

bounds might be more efficient under certain situations, but cannot be solved 

analytically.  Iterative method such as Newton‘s method is required, which add the 
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complexity of the calculation.  Our concern is the accuracy of the results.  If the 

computation time is not unreasonably long, we would prefer simpler method.  What 

is more, the method is not applicable if the sum of the degrees of freedom of the 

chi-square random variables are no greater than 2; while we need to calculate the 

distribution function under this scenario.  For above reasons, we will not adopt their 

methods, even though the new bounds may be more efficient.   

Kuonen (1999) proposed saddlepoint approximation to the survival function, and 

claimed that the method was fast, accurate and easy to program.  The method started 

with the cumulant generating function for (4.26)  

 

κ 𝜁 = −
1

2
 𝑠 log 1 − 2ζas 

𝑑

𝑠=1

+  
𝜍𝑠

2𝑎𝑠

1 − 2𝜁𝑎𝑠

𝑑

𝑠=1

 

 

assuming 1 − 2𝜁𝑎𝑠  to be positive.  The saddlepoint 𝜁  of κ 𝜁  is computed by 

solving the equation 

 κ′ 𝜁 = 𝑞  

The corresponding approximation to the cumulative density function, 

Pr   𝑎𝑠χ𝑠 ,𝜍𝑠
2

2𝑑
𝑠=1  ≤ 𝑞, is  

 
Φ  𝑤 +

1

𝑤
log  

𝑣

𝑤
   

 

where 
𝑤 = 𝑠𝑖𝑔𝑛 𝜁   2  𝜁 𝑞 − κ 𝜁    

1/2

, 𝑣 = 𝜁  κ′′  𝜁   
1/2

 
 

By surveying the existing methods, the methods for computing the linear combination 

of chi-square distribution can be categorized into (a) Inversion of the characteristic 

function, and (b) saddlepoint approximation.  Method (a) is the most studied of the 
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two methods.  The exact form for the distribution function has been proposed by 

Imhof.  The studies following the inversion method focused on how to truncate the 

improper integral into a proper one and achieve the desired accuracy at the same time, 

and on which numerical integration method should be adopted for the proper one.  

The Simpson‘s method or trapezoidal rule can achieve desired accuracy, if the 

integration interval is divided into subintervals that are small enough.  As high 

accuracy is desired, it would be very time consuming to determine the length of the 

subintervals and then estimate the integral by summation.  In this aspect, method (b) 

seems to have a greater advantage on computation time.  However, method (b) 

assumes 1 − 2𝜁𝑎𝑠 > 0 , which means that we might not be able to find the 

saddlepoint for certain coefficient 𝑎𝑠 .   

Kuonen (2003) surveyed the numerical integration in the statistical software package R.  

He pointed out that the integrate function in R implements one-dimensional adaptive 

15-point Gauss-Kronrod quadrature, and a 128-point Gauss-Lagrange rule.  A set of 71 

well-designed test examples were tested using this function, and it delivered very 

accurate results most of the time.   

The following table is a comparison of results using Imhof‘s estimation, Davies‘ 

method, Imhof‘s exact formula using the numerical integration in R statistical package, 

and Kuonen‘s saddlepoint approximation.  All the methods were implemented by R 

program.  The test examples are taken from Imhof (1961).  As the estimation for 

change-point required high accuracy, the tolerance of error is chosen to be 10−6.   
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Table 4.1. Probability of linear combination of chi-squared distribution using (ii) 

Imhof‘s (1961) estimation; (iii) Davies‘ (1973) method; (iv) Imhof‘s (1961) exact 

formula using R integration; (v) Saddlepoint approximation by Kuonen (1999). (i) is 

the true values from Imhof (1961). 

  
(i) (ii) (iii) (iv) (v) 

 
𝑥 

     
𝑄1 = 0.6𝜒1

2 + 0.3𝜒1
2 + 0.1𝜒1

2 0.1 0.0542 0.0542 0.0542 0.0542 0.0551 

 

0.7 0.4936 0.4936 0.4936 0.4936 0.5004 

 

2 0.8760 0.8760 0.8760 0.8760 0.8783 

       𝑄2 = 0.6𝜒2
2 + 0.3𝜒2

2 + 0.1𝜒2
2 0.2 0.0064 0.0065 0.0065 0.0064 0.0065 

 

2 0.6001 0.6002 0.6002 0.6002 - 

 

6 0.9839 0.9839 0.9839 0.9839 0.9838 

       𝑄3 = 0.6𝜒6
2 + 0.3𝜒4

2 + 0.1𝜒2
2 1 0.0027 0.0027 0.0027 0.0027 0.0027 

 

5 0.5647 0.5647 0.5647 0.5647 - 

 

12 0.9912 0.9912 0.9912 0.9912 0.9912 

       𝑄4 = 0.6𝜒2
2 + 0.3𝜒4

2 + 0.1𝜒4
2 1 0.0334 0.0334 0.0334 0.0334 0.0336 

 

3 0.5802 0.5804 0.5804 0.5804 - 

 

8 0.9913 0.9913 0.9913 0.9913 0.9913 

       𝑄5 = 0.7𝜒6;6
2 + 0.3𝜒2;2

2  2 0.0061 0.0061 0.0061 0.0061 - 

 

10 0.5913 0.5913 0.5913 0.5913 - 

 

20 0.9779 0.9779 0.9779 0.9779 - 

       𝑄6 = 0.7𝜒1;6
2 + 0.3𝜒1;2

2  1 0.0451 0.0451 0.0451 0.0452 - 

 

6 0.5924 0.5924 0.5924 0.5924 - 

 

15 0.9777 0.9777 0.9777 0.9777 - 

       1/3𝑄3  + 2/3𝑄4 1.5 0.0109 0.0109 0.0109 0.0109 0.0110 

 

4 0.6547 0.6547 0.6547 0.6547 0.6571 

 

7 0.9846 0.9846 0.9846 0.9846 0.9850 
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From Table 4.1 we can see that Imhof‘s (1961) estimation, Davies‘ (1973) method and 

Imhof‘s (1961) exact formula using integration function in R are almost equivalent.  

Kuonen‘s (1999) saddlepoint estimation computes the fastest.  However, from the 

above table, it is not as accurate as other methods.  If the saddlepoint cannot be found, 

this method should not be used for the computation for change-point estimation.  

Computing the distribution of a linear combination of chi-squared distribution is an 

intermediate step toward the change-point inference, and high accuracy is required.  

The accuracy is more important than efficiency.  Therefore, the Imhof‘s (1961) exact 

formula for the distribution function using inversion of characteristic function method 

will be adopted.  The integration function in R will be chosen to evaluate the improper 

integral to achieve the accuracy and to avoid the complexity of determining the 

truncation bound. 
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4.1.3 Algorithmic procedure to compute the change-point mle 

As discussed in Section 4.1.1, for change in mean and covariance case, we still 

modeled the mle as a two-sided random walk defined in (2.29).  The algorithmic 

procedure derived in Jandhyala and Fotopoulos (1999) still applies to this case.  This 

section will state the detailed algorithmic steps that compute the change-point mle 

assuming change in both the mean vector and the covariance matrix.  The derivation 

for the distribution of the random walk in Section 4.1.1 and the distribution of the 

linear combination of chi-square distribution in Section 4.1.2 will be applied for the 

algorithm.  The following is the detailed steps. 

Step S0:  Assume 𝑌𝑜~𝑁 𝜇0, Σ0 , 𝑌∗~𝑁 𝜇1, Σ1 .  Compute the parameters 

derived in 4.1.1 for the distribution for the two-sided random walk.  The following 

parameters are set in Section 4.1.1.  Here they are listed for summary purpose only. 

 𝐾 = Σ0
1/2

Σ1
−1/2

.  𝐾𝐾𝑇 = ΘΨΘ𝑇  where Ψ = 𝑑𝑖𝑎𝑔 𝜓1, 𝜓2, … , 𝜓𝑑 , Θ−1 = ΘT  

 
𝜂 = Σ0

−
1
2 𝜇1 − 𝜇0 , 𝜔 =  𝜔1, 𝜔2, … , 𝜔𝑑 𝑇ΘTη 

 

𝐶𝑜 =
1

2
𝑙𝑛(𝜓1𝜓2 … 𝜓𝑑) −

1

2
 

𝜓𝑠𝜔𝑠
2

1 − 𝜓𝑠

𝑑

𝑠=1

, 𝜍𝑠
𝑜2 =  

𝜓𝑠𝜔𝑠

1 − 𝜓𝑠
 

2

, 𝑎𝑠
𝑜 =

1

2
 1 − 𝜓𝑠  

 
𝜂∗ = Σ1

−
1
2 𝜇1 − 𝜇0 , 𝜔∗ =  𝜔1

∗ , 𝜔2
∗ , … , 𝜔𝑑

∗   𝑇 = ΘTη∗ 

 
𝐶∗ = −

1

2
ln(𝜓1𝜓2 … 𝜓𝑑) −

1

2
 

𝜓𝑠
−1𝜔𝑠

∗2

1 − 𝜓𝑠
−1

𝑑

𝑠=1
, 𝜍𝑠

∗2 =  
𝜓𝑠

−1𝜔𝑠
∗

1 − 𝜓𝑠
−1

 

2

, 𝑎𝑠
∗

=
1

2
 1 − 𝜓𝑠

−1  
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Step S1:  As derived in (4.14) , the partial sum 𝑆−𝑗
𝑜 , where 𝑗 ∈ {−1, … , −𝜏𝑛 − 1}, 

has the same distribution as −𝑗𝐶𝑜 +    𝑎𝑖;𝑠
𝑜 χ𝑖;1,𝜍𝑠

𝑜2
2𝑑

𝑠=1  
−𝑗
𝑖=1  where 𝑎𝑖;𝑠

𝑜 = 𝑎𝑠
𝑜  and 

χ𝑖;1,𝜍𝑠
𝑜2

2 = χ1,𝜍𝑠
𝑜2

2 .  The random variable is comprised of a constant term and – 𝑗𝑑 

terms of weighted sum of noncentral chi-square random variables, where −𝑗 terms 

have the noncentral parameter being σs
o2, and the coefficient for chi-square random 

variables being 𝑎𝑠
𝑜  for 𝑠 = 1, 2, … , 𝑑.  Similarly, as derived in (4.25), 𝑆𝑗

∗, where 

𝑗 ∈ {1, … , 𝑛 − 𝜏𝑛 − 1} , has the same distribution as the random variable 𝑗𝐶∗ +

   𝑎𝑖;𝑠
∗ χ𝑖;1,𝜍𝑠

∗2
2𝑑

𝑠=1  
𝑗
𝑖=1 , where 𝑎𝑖;𝑠

∗ = 𝑎𝑠
∗ and χ𝑖;1,𝜍𝑠

∗2
2 = χ1,𝜍𝑠

∗2
2 .  The random variable 

is comprised of a constant term and 𝑗𝑑  terms of weighted sum of noncentral 

chi-square random variables, where 𝑗 terms have the noncentral parameter being σs
∗2, 

and the coefficient for chi-square random variables being 𝑎𝑠
∗ for 𝑠 = 1, 2, … , 𝑑. 

Step S2:  Compute  𝑏𝑗
𝑜  and  𝑏𝑗

∗  for 𝑗 = 1, 2, …, where 

𝑏𝑗
𝑜 = Pr Sj

o > 0 = Pr     𝑎𝑖;𝑠
𝑜 χ𝑖;1,𝜍𝑠

𝑜2
2

𝑑

𝑠=1
 

𝑗

𝑖=1
> −𝑗𝐶𝑜  

𝑏𝑗
∗ = Pr Sj

∗ > 0 = Pr     𝑎𝑖;𝑠
∗ χ𝑖;1,𝜍𝑠

∗2
2

𝑑

𝑠=1
 

𝑗

𝑖=1
> −𝑗𝐶∗  

The probability will be computed using Imhof (1961)‘s exact formula and the 

integration function in R which was discussed in section 4.1.2. 

Step S3:  Compute 𝐵𝑜 1  and 𝐵∗ 1  as 𝐵𝑜 1 =  𝑏𝑗
𝑜 /𝑗 and 𝐵∗ 1 =  𝑏𝑗

∗ /𝑗.   

Step S4:  Compute both  𝑏 𝑗
𝑜 𝜗∗ = 𝑏 𝑗

𝑜 1   and  𝑏 𝑗
∗ 𝜗𝑜 = 𝑏 𝑗

∗ 1   as 

𝐸  𝑒−𝑆𝑗
𝑜

I Sj
o > 0   and 𝐸  𝑒−𝑆𝑗

∗

I Sj
∗ > 0  , respectively.   
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𝐸  𝑒−𝑆𝑗

𝑜

I Sj
o > 0  =  𝑒−𝑆𝑜

𝑓𝑆𝑜  𝑠𝑜 𝑑𝑠𝑜
∞

0

= lim
𝑈→∞

 𝑒−𝑆𝑜
𝑓𝑆𝑜  𝑠𝑜 𝑑𝑠𝑜

𝑈

0

 

In Section 4.1.2, the probability density function of the linear combination of 

chi-squared distribution has not been discussed.  However, by integration by part, the 

computation can be converted to cumulative distribution function problem as follows  

 
𝐸  𝑒−𝑆𝑗

𝑜

I Sj
o > 0  =  𝑒−𝑆𝑜

𝑓𝑆𝑜  𝑠𝑜 𝑑𝑠𝑜
∞

0

= lim
𝑈→∞

 𝑒−𝑆𝑜
𝑓𝑆𝑜  𝑠𝑜 𝑑𝑠𝑜

𝑈

0

= lim
𝑈→∞

 𝑒−𝑆𝑜
𝑑𝐹𝑆𝑜  𝑠𝑜 

𝑈

0

= lim
𝑈→∞

  𝑒−𝑠𝑜
𝐹𝑆𝑜  𝑠𝑜  

0

𝑈
−  𝐹𝑆𝑜  𝑠𝑜 𝑑𝑒−𝑆𝑜

𝑈

0

 

= lim
𝑈→∞

 𝑒−𝑈𝐹𝑆𝑜  𝑈 − 𝑒0𝐹𝑆𝑜  0 −  𝐹𝑆𝑜  𝑠𝑜 𝑑𝑒−𝑆𝑜
𝑈

0

 

= 0 − 𝐹𝑆𝑜  0 −  −𝑒−𝑆𝑜
𝐹𝑆𝑜  𝑠𝑜 𝑑𝑠𝑜

∞

0

= −𝐹𝑆𝑜  0 +  𝑒−𝑆𝑜
𝐹𝑆𝑜  𝑠𝑜 𝑑𝑠𝑜

∞

0

 

𝐹𝑆𝑜  ∙  can be determined by Imhof‘s exact formula, and the integrate 

 𝑒−𝑆𝑜
𝐹𝑆𝑜  𝑠𝑜 𝑑𝑠𝑜∞

0
 will be computed by R‘s integration function.  𝐸  𝑒−𝑆𝑗

∗

I Sj
∗ >

0   will be computed using the same method. 

Step S5:  Implement the iterative procedures for  𝑞𝑗
𝑜 ,  𝑢 𝑗

𝑜 𝜗∗   and  𝑞𝑗
∗ , 

 𝑢 𝑗
∗ 𝜗𝑜   as follows: 

 𝑞0
𝑜 = 1, 𝑗𝑞𝑗

𝑜 =  𝑏𝑗−𝑘
𝑜 𝑞𝑘

𝑜𝑗−1
𝑘=0    ; 𝑢 𝑗

𝑜 𝜗∗ = 1, 𝑗𝑢 𝑗
𝑜 𝜗∗ =  𝑏 𝑗−𝑘

𝑜 𝑢 𝑘
𝑜𝑗−1

𝑘=0   
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 𝑞0
∗ = 1, 𝑗𝑞𝑗

∗ =  𝑏𝑗−𝑘
∗ 𝑞𝑘

∗𝑗−1
𝑘=0    ; 𝑢 𝑗

∗ 𝜗𝑜 = 1, 𝑗𝑢 𝑗
∗ 𝜗𝑜 =  𝑏 𝑗−𝑘

∗ 𝑢 𝑘
∗𝑗−1

𝑘=0   

Step S6:  Estimate Pr 𝜉 𝑛 = 𝑖  by (3.11) as follows 

 

Pr 𝜉 ∞ = 𝑖 =  

𝑒−𝐵∗ 1  𝑞𝑖
∗ −  1 − 𝑒−𝐵𝑜 (1) 𝑢 𝑖

∗ 𝜗𝑜  , 𝑖 > 0

𝑒−𝐵∗ 1 −𝐵𝑜  1 ,                                                  𝑖 = 0

𝑒−𝐵𝑜  1  𝑞𝑖
𝑜 −  1 − 𝑒−𝐵∗(1) 𝑢 𝑖

𝑜 𝜗∗  , 𝑖 < 0

  

 

  



72 

 

4.2 Special Cases 

After the change-point analysis for change in both mean and covariance in 

multivariate series solved, the univariate change-point analysis can be regarded as the 

multivariate series with dimension equals 1, and the change in covariance case can be 

derived from the case for both mean and covariance by setting the mean before and 

after change-point being the same.  In this section, the special cases are discussed and 

the change-point estimation is derived.   

4.2.1 Mean and Variance of a Univariate Gaussian Series 

The univariate change-point problem that assumes change occurs in both mean and 

variance can be regarded as a special case of the multivariate change-point problem.  

As the dimension decreases to 1, 𝑋𝑜  and 𝑋∗  contain only the single term of 

noncentral chi-square random variable.  Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time 

series valued independent random vectors such that Yi ∈ ℝ, i = 1, … , n.  The mean 

of the series changes from 𝜇0 to 𝜇1 at some unknown point 𝜏𝑛  such that 𝜇0 ≠ 𝜇1, 

and the variance changes from σ0
2 to σ1

2
 at 𝜏𝑛  such that σ0

2 ≠ σ1
2 .  Both the mean 

and variance are unknown.  The asymptotic distribution of the maximum likelihood 

estimator of the change-point 𝜏 𝑛  when assuming 𝜇0, 𝜇1, σ0
2 and σ1

2 are unknown 

is equivalent to 𝜏 𝑛  when assuming these parameters are known.  𝜉𝑛 = 𝜏 𝑛 − 𝜏𝑛 ∈

{−𝜏𝑛 + 1, … , 𝑛 − 𝜏𝑛 − 1} is the maximizer of the two-sided random walk specified in 

(2.27) .   
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In the case of change in both mean and variance,  𝑌𝑜 , 𝑌𝑖
𝑜 : 𝑖 ∈ ℕ  is a sequence of 

i.i.d. random variables such that 𝑌𝑜  is distributed according to 𝑓 ∙; 𝜇0, σ0
2  and 

 𝑌∗, 𝑌𝑖
∗: 𝑖 ∈ ℕ  is another sequence of i.i.d. random variables such that 𝑌∗  is 

distributed according to 𝑓 ∙; 𝜇1, σ1
2 . Furthermore the two sequences are independent 

of each other.  It follows that the sequences  𝑋𝑜 , 𝑋𝑖
𝑜 : 𝑖 ∈ ℕ  and  𝑋∗, 𝑋𝑖

∗: 𝑖 ∈ ℕ  are 

also independent.   

It follows that 𝑌𝑜 , the random variable before the change-point admits the 

representation  

 𝑌𝑜 =𝐷 𝜇0 + σ0Z  

or  

 𝑌𝑜 − 𝜇0 =𝐷 σ0𝑍  

where 𝑍  is the standard univariate normal vector.  Consequently, the random 

variable 𝑋𝑜  may be expressed as 
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𝑋𝑜 = −𝑎 𝑌𝑜 = − ln

𝑓 𝑌𝑜 ; 𝜇0, σ0
2 

𝑓 𝑌𝑜 ; 𝜇1, σ1
2 

 

= − ln

1

 2𝜋𝜍0

exp  −
 𝑌𝑜 − 𝜇0 

2

2𝜍0
2  

1

 2𝜋𝜍1

exp  −
 𝑌𝑜 − 𝜇1 2

2𝜍1
2  

 

= ln
𝜍0

𝜍1
+

 𝑌𝑜 − 𝜇0 
2

2𝜍0
2 −

 𝑌𝑜 − 𝜇1 
2

2𝜍1
2  

= ln
𝜍0

𝜍1
+

 𝑌𝑜 − 𝜇0 
2

2𝜍0
2 −

 𝑌𝑜 − 𝜇0 + 𝜇0 − 𝜇1 
2

2𝜍1
2  

=𝐷 ln
𝜍0

𝜍1
+

𝜍1
2𝑍2

2𝜍1
2 −

 σ0𝑍 + 𝜇0 − 𝜇1 
2

2𝜍1
2   

= ln
𝜍0

𝜍1
+

 𝜍1
2 − 𝜍0

2 𝑍2 − 2σ0𝑍 𝜇0 − 𝜇1 −  𝜇0 − 𝜇1 
2

2𝜍1
2  

= ln
𝜍0

𝜍1

+

 𝜍1
2 − 𝜍0

2  𝑍2 −
2σ0𝑍 𝜇0 − 𝜇1 

 𝜍1
2 − 𝜍0

2 
+  

σ0 𝜇0 − 𝜇1 
 𝜍1

2 − 𝜍0
2 

 
2

−  
σ0 𝜇0 − 𝜇1 
 𝜍1

2 − 𝜍0
2 

 
2

 

2𝜍1
2

−
 𝜇0 − 𝜇1 

2

2𝜍1
2  

= ln
𝜍0

𝜍1
+

 𝜍1
2 − 𝜍0

2   𝑍 −
σ0 𝜇0 − 𝜇1 
 𝜍1

2 − 𝜍0
2 

 
2

−  
σ0 𝜇0 − 𝜇1 
 𝜍1

2 − 𝜍0
2 

 
2

 

2𝜍1
2

−
 𝜇0 − 𝜇1 

2

2𝜍1
2  

= ln
𝜍0

𝜍1
−

 𝜇0 − 𝜇1 
2

2𝜍1
2 −

σ0
2 𝜇0 − 𝜇1 

2

2𝜍1
2 𝜍1

2 − 𝜍0
2 

+
 𝜍1

2 − 𝜍0
2 

2𝜍1
2  𝑍 −

σ0 𝜇0 − 𝜇1 

 𝜍1
2 − 𝜍0

2 
 

2
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= ln
𝜍0

𝜍1
−

 𝜇1 − 𝜇0 
2

2 𝜍1
2 − 𝜍0

2 
+

 𝜍1
2 − 𝜍0

2 

2𝜍1
2  𝑍 +

σ0 𝜇1 − 𝜇0 

 𝜍1
2 − 𝜍0

2 
 

2

 

= ln
𝜍0

𝜍1
−

 
𝜇1 − 𝜇0

𝜍0
 

2

2 𝜍1
2 − 𝜍0

2 

𝜍0
2

+
 𝜍1

2 − 𝜍0
2 

2𝜍1
2

 
 
 
 
 

𝑍 +
 
𝜇1 − 𝜇0

𝜍0
 

 𝜍1
2 − 𝜍0

2 

𝜍0
2  

 
 
 
 

2

 

 

   

Let  

 𝐾 =
𝜍0

𝜍1
, 𝜂 =

𝜇1 − 𝜇0

𝜍0
 

 

then  

 

𝑋𝑜 =𝐷 ln 𝐾 −
𝜂2

2  
1
𝐾2 − 1 

+
 1 − 𝐾2 

2
 𝑍 +

𝜂

 
1
𝐾2 − 1 

 

2

 

= ln 𝐾 −
𝐾2𝜂2

2 1 − 𝐾2 
+

 1 − 𝐾2 

2
 𝑍 +

𝐾2𝜂

 1 − 𝐾2 
 

2

 

 

The distribution of 𝑋𝑜  coincides with the result in (4.8) if the dimension is decreased 

to 1.  Therefore, we can directly derive the distribution for 𝑋∗  from (4.20) by 

reducing the dimension to 1 as follows  

 
𝑋∗ =𝐷− ln 𝐾 −

𝐾−2𝜂∗2

2 1 − 𝐾−2 
+

 1 − 𝐾−2 

2
 𝑍 −

𝐾−2𝜂∗

 1 − 𝐾−2 
 

2

 
 

where 𝜂∗ =
𝜇1 − 𝜇0

𝜍1
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It is obvious that the distribution of 𝑋𝑜  and 𝑋∗  are simpler in univariate case, 

because both involve only one term of noncentral chi-square random variable.  

However, the partial sums 𝑆𝑗
𝑜  and 𝑆𝑗

∗ for the random walk, which are defined as the 

sums of first j terms of 𝑋𝑜  or 𝑋∗ respectively, are still comprised of a constant term 

and 𝑗 terms of linear combination of noncentral chi-square random variables.  The 

computation for the distribution for the change-point mle will exactly follow Step S1 – 

S6 of the algorithmic procedure specified in Section 4.1.3 with the following 

parameterization.   

 𝐾 =
𝜍0

𝜍1
, 𝜂 =

𝜇1 − 𝜇0

𝜍0
 

 
𝐶𝑜 = ln 𝐾 −

𝐾2𝜂2

2 1 − 𝐾2 
, 𝜍𝑖

𝑜2 =  
𝐾2𝜂

1 − 𝐾2
 

2

, 𝑎𝑖
𝑜 =

1 − 𝐾2

2
 

 𝜂∗ =
𝜇1 − 𝜇0

𝜍1
 

 
𝐶∗ = − ln 𝐾 −

𝐾−2𝜂∗2

2 1 − 𝐾−2 
, 𝜍𝑖

∗2 =  
𝐾−2𝜂∗

1 − 𝐾−2
 

2

, 𝑎𝑖
∗ =

1 − 𝐾−2

2
 

4.2.2 Covariance Only of a Multivariate Gaussian Series 

Another special case is the case when the change occurs only to covariance matrix.  

Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time series valued independent random vectors 

such that Yi ∈ ℝd , i = 1, … , n.  The mean vector 𝜇 of the series keeps constant, and 

the covariance matrix changes from Σ0 to Σ1 at some unknown point 𝜏𝑛  such that 

Σ0 ≠ Σ1 .  Both the mean vector and covariance matrices are unknown.  The 

distribution of 𝑋𝑜  and 𝑋∗ for the two sided random walk can be adapted from Section 
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4.1.1 by letting both 𝜇0 and 𝜇1 equal 𝜇.  Under this setup, both 𝜂 and 𝜂∗ that were 

defined in (4.5) and (4.17) are zero.  As 𝜔  and 𝜔∗  depend on 𝜂  and 𝜂∗ , 

respectively, both of them are also zero under the case of change in covariance only.  

We follow the distribution of 𝑋𝑜  in (4.8) and set 𝜔 = 0, we have  

 
𝑋𝑜 =𝐷 ln 𝜓1𝜓2 … 𝜓𝑑 1/2 −

1

2
 

𝜓𝑠𝜔𝑠
2

1 − 𝜓𝑠

𝑑

𝑠=1

+  
1 − 𝜓𝑠

2
 𝑧𝑠 +

𝜓𝑠𝜔𝑠

1 − 𝜓𝑠
 

2𝑑

𝑠=1
  

= ln 𝜓1𝜓2 … 𝜓𝑑 1/2 +  
1 − 𝜓𝑠

2
𝑧𝑠

2
𝑑

𝑠=1
 

 

We follow the distribution of 𝑋∗ in (4.20) and set 𝜔∗ = 0, we have  

 
𝑋∗ =𝐷 ln 𝜓1𝜓2 … 𝜓𝑑 −1/2 −

1

2
 

𝜓𝑠
−1𝜔𝑠

∗2

1 − 𝜓𝑠
−1

𝑑

𝑠=1

+  
1 − 𝜓𝑠

−1

2
 𝑧𝑠 −

𝜓𝑠
−1𝜔𝑠

∗

1 − 𝜓𝑠
−1

 

2𝑑

𝑠=1
 

= ln 𝜓1𝜓2 …𝜓𝑑 −1/2 +  
1 − 𝜓𝑠

−1

2
𝑧𝑠

2
𝑑

𝑠=1
 

 

The distributions of 𝑋𝑜  and 𝑋∗ are comprised of the linear combination of d terms 

of central chi-square random variables and a constant term.  The partial sums 𝑆𝑗
𝑜  

and 𝑆𝑗
∗ for the random walk follow the same way.  The Imhof‘s (1961) formula also 

applies to the linear combination of central chi-square distribution.  Thus the 

algorithmic procedure in Section 4.1.3 can be followed using the following 

parameterization: 
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 𝐾 = Σ0
1/2

Σ1
−1/2

.  𝐾𝐾𝑇 = ΘΨΘ𝑇  where Ψ = 𝑑𝑖𝑎𝑔 𝜓1, 𝜓2, … , 𝜓𝑑 , Θ−1 = ΘT  

 
𝐶𝑜 =

1

2
𝑙𝑛(𝜓1𝜓2 … 𝜓𝑑) , 𝜍𝑠

𝑜2 = 0, 𝑎𝑠
𝑜 =

1

2
 1 − 𝜓𝑠  

 
𝐶∗ = −

1

2
ln(𝜓1𝜓2 … 𝜓𝑑) , 𝜍𝑠

∗2 = 0, 𝑎𝑠
∗ =

1

2
 1 − 𝜓𝑠

−1  
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4.3 Bayesian Method for Estimating Change-point in Mean and/or Covariance of 

a Multivariate Gaussian Series 

Ever since Markov Chain Monte Carlo (MCMC) methods were seen as a tool for 

overcoming the computational complexities in Bayesian analysis, there has been rapid 

progress in the overall development of this important methodological tool, and 

advances in Bayesian change-point analysis have not lagged behind.  The main 

advantage of the Bayesian approach to the change-problem is that both detection and 

estimation parts of the problem are solved simultaneously once posterior distribution 

of the unknown change-point is made available, mainly because all inferences about 

the unknown change-point are made from the posterior distribution.  Consequently, 

with recent advances in the methodology, the Bayesian approach to change-point 

analysis is able to provide inferential methods ranging from simple to complex 

situations, some of which include change in mean and/or variance of the univariate 

normal distribution (Perreault et al 1999, Perreault et al 2000a, 2000b), Change in the 

mean vector of a multivariate normal distribution (Perreault et al 2000), single change 

in the parameters of a multiple linear regression model (Seidou et al 2007), and also 

the more complex case of estimating multiple change-points (Fearnhead, 2005, 2006; 

Seidou and Ouarda 2007).  In this chapter, the Bayesian change-point analysis using 

two types of prior information will be studied.  One used the conjugate priors, 

multivariate normal distribution for mean vectors and Wishart distribution for 

covariance matrices as prior distributions.  The other one uses Jeffery‘s 



80 

 

non-informative prior.  The results from Bayesian change-point analysis will be 

implemented and compared with mle method. 

4.3.1 Conjugate Prior 

Perreault et al. (2000) performed Bayesian analysis for multivariate change-point 

problem where there assumed that there was change in mean vector only.  The prior 

distribution of the mean vector and covariance matrix followed Multivariate Normal 

and Wishart distribution respectively, and the prior distribution for the change-point 

was assumed to be uniform over all possible candidates.  For the multivariate 

observations with change in both mean and covariance, the same assumptions can be 

made.  The posterior distribution can be derived as follows. 

Let 𝑌1, 𝑌2, … , 𝑌𝑛  be a sequence of time series valued independent random vectors 

such that Yi ∈ ℝd , i = 1, … , n. Furthermore, for each i = 1, 2, … , n, let 𝑌𝑖  follow the 

multivariate Gaussian distribution with mean vector 𝜇  and variance-covariance 

matrix Σ.  Assume at time 𝜏𝑛 , the mean vector and covariance matrix of the 

observations change from 𝜇0 to 𝜇1 and Σ0 to Σ1, respectively.  Then we have  

 
𝑌𝑖~𝑓 𝑥 ~  

𝑁 𝜇0, Σ0 , 𝑖 = 1, 2, … , 𝜏𝑛

𝑁 𝜇1, Σ1 , 𝑖 = 𝜏𝑛 + 1, … , 𝑛
 ,     

(4.31)  

Assume P0 = Σ0
−1 and P1 = Σ1

−1, then the prior distributions of parameters are  

 𝜇0~𝑁 Φ0,  𝜆0𝑃0 
−1 , 𝜇1~𝑁 Φ1,  𝜆1𝑃1 

−1  

  𝑃0~Wishart 𝑎0, 𝐵0 , 𝑃1~Wishart(𝑎1, 𝐵1) 

𝜏𝑛~Unif(1, 𝑛 − 1) 

(4.32)  

The probability density function of Wishart distribution is  
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𝑓𝑤  𝑃|𝑎, 𝐵 =
 B 

a
2 P (𝑎−𝑑−1)/2 exp[−

1
2 𝑡𝑟(𝐵𝑃)]

2
ad
2 Γd (

a
2)

 

(4.33)  

where a is the degree of freedom of the Wishart distribution satisfying a > 𝑑 − 1, 

and Γd  is the multivariate gamma function defined as Γd  
a

2
 = π

d d−1 

4  Γ(
a

2
+d

j=1

1−j

2
).  The mean of the Wishart random variable is 𝑎𝐵−1. 

The prior distribution function of the change-point is 𝑃 𝜏𝑛 =
1

𝑛−1
. 

Assuming all the parameters, 𝜇0, 𝜇1, 𝑃0 , 𝑃1 and 𝜏𝑛  are independent from each other, 

the joint distribution of the parameters can be computed as 

 𝑃 𝜇0, 𝜇1, 𝑃0, 𝑃1 = 𝑃 𝜇0|𝑃0 𝑃 𝑃0 𝑃 𝜇1|𝑃1 𝑃 𝑃1  

=𝐷 𝑓𝑁 𝜇0|Φ0,  𝜆0𝑃0 
−1 𝑓𝑊 𝑃0|𝑎0, 𝐵0  

𝑓𝑁 𝜇1|Φ1,  𝜆1𝑃1 
−1 𝑓𝑊 𝑃1|𝑎1, 𝐵1  

~𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, Σ0, Σ1;  Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1  

 

As 𝜏𝑛  is independent of 𝜇0, 𝜇1, 𝑃0 , 𝑃1, 

 𝑃 𝜇0, 𝜇1, 𝑃0 , 𝑃1, 𝜏𝑛 ~  

𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, Σ0, Σ1;  Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1 𝑃(𝜏𝑛) 

 

So  

 𝑃 𝜇0, 𝜇1, 𝑃0 , 𝑃1|𝜏𝑛 ~  

𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, 𝑃0, 𝑃1|Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1  

 

Let 𝜏𝑛  be fixed, 

 𝑃 𝜇0, 𝜇1, 𝑃0, 𝑃1|𝜏𝑛 , 𝑌1, 𝑌2, … , 𝑌𝑛  (4.34)  
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=
𝑃 𝑌1, 𝑌2, … , 𝑌𝑛  𝜇0, 𝜇1, 𝑃0 , 𝑃1, 𝜏𝑛 𝑃 𝜇0, 𝜇1, 𝑃0, 𝑃1|𝜏𝑛 

𝑃 𝑌1, 𝑌2, … , 𝑌𝑛   𝜏𝑛 
 

∝ 𝑃 𝑌1, 𝑌2, … , 𝑌𝑛  𝜇0, 𝜇1, 𝑃0, 𝑃1, 𝜏𝑛 𝑃 𝜇0, 𝜇1, 𝑃0, 𝑃1|𝜏𝑛  

∝ 𝑃 𝑌1, 𝑌2, … , 𝑌𝑛  𝜇0, 𝜇1, 𝑃0, 𝑃1, 𝜏𝑛  

𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, 𝑃0, 𝑃1|Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1  

In the following steps, the two terms 𝑃 𝑌1 , 𝑌2 , … , 𝑌𝑛  𝜇0 , 𝜇1 , 𝑃0, 𝑃1, 𝜏𝑛  and 

𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, 𝑃0, 𝑃1|Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1  are evaluated respectively to 

derive the joint posterior distribution of  𝜇0 , 𝜇1 , 𝑃0, 𝑃1 . 

The likelihood function of the observations 𝑌1, 𝑌2, … , 𝑌𝑛  is 

 𝑃 𝑌1, 𝑌2, … , 𝑌𝑛  𝜇0, 𝜇1, 𝑃0, 𝑃1, 𝜏𝑛  

=   𝑁(𝑌𝑖|𝜇0, 𝑃0)
𝜏𝑛

𝑖=1
 𝑁(𝑌𝑖|𝜇1, 𝑃1)

𝑛

𝑖=𝜏𝑛 +1
 

=  2𝜋 −𝑛𝑑 /2 𝑃0 
𝜏𝑛 /2 exp  −

1

2
  𝑌𝑖 − 𝜇0 

𝑇𝑃0(𝑌𝑖

𝜏

𝑖=1

− 𝜇0)  𝑃1 
(𝑛−𝜏𝑛 )/2 exp  −

1

2
  𝑌𝑖

𝑛

𝑖=𝜏+1

− 𝜇1 
𝑇𝑃1(𝑌𝑖 − 𝜇1)  

=  2𝜋 −𝑛𝑑 /2 𝑃0 
𝜏𝑛 /2 𝑃1 

(𝑛−𝜏𝑛 )/2 exp  −
1

2
𝑡𝑟  𝑃0  (𝑌𝑖

𝜏

𝑖=1

− 𝜇0) 𝑌𝑖 − 𝜇0 
𝑇  exp  −

1

2
𝑡𝑟  𝑃1  (𝑌𝑖

𝜏

𝑖=1

− 𝜇1) 𝑌𝑖 − 𝜇1 
𝑇   

 

Let 
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𝑌 𝜏𝑛
=

1

𝜏𝑛
 𝑌𝑖

𝜏𝑛

𝑖=1

, 𝑌 𝑛−𝜏𝑛
=

1

𝑛 − 𝜏𝑛
 𝑌𝑖

𝑛

𝑖=𝜏𝑛 +1

 

(4.35)  

 
𝑆𝜏𝑛

=
1

𝜏𝑛
  𝑌𝑖 − 𝑌 𝜏𝑛

  𝑌𝑖 − 𝑌 𝜏𝑛
 
𝑇

𝜏𝑛

𝑖=1

, 

 𝑆𝑛−𝜏𝑛
=

1

𝑛 − 𝜏𝑛
  𝑌𝑖 − 𝑌 𝑛−𝜏𝑛

  𝑌𝑖 − 𝑌 𝑛−𝜏𝑛
 
𝑇

𝑛

𝑖=𝜏𝑛 +1

 

(4.36)  

The likelihood function can be written as 

 𝑃 𝑌1, 𝑌2, … , 𝑌𝑛  𝜇0, 𝜇1, 𝑃0, 𝑃1, 𝜏𝑛  

=  2𝜋 −𝑛𝑑 /2 𝑃0 𝜏𝑛 /2 𝑃1 
(𝑛−𝜏𝑛 )/2 exp  −

1

2
𝑡𝑟  𝑃0  𝜏𝑛𝑆𝜏𝑛

+ 𝜏𝑛 𝑌 𝜏𝑛
− 𝜇0  𝑌 𝜏𝑛

− 𝜇0 
𝑇
   exp  −

1

2
𝑡𝑟  𝑃1   𝑛

− 𝜏𝑛 𝑆𝑛−𝜏𝑛
+  𝑛 − 𝜏𝑛  𝑌 𝑛−𝜏𝑛

− 𝜇1  𝑌 𝑛−𝜏𝑛
− 𝜇1 

𝑇
    

=  2𝜋 −𝑛𝑑 /2 𝑃0 𝜏𝑛 /2 𝑃1 
(𝑛−𝜏𝑛 )/2 exp  −

1

2
𝑡𝑟  𝑃0  𝜏𝑛𝑆𝜏𝑛

+ 𝜏𝑛 𝑌 𝜏𝑛
− 𝜇0  𝑌 𝜏𝑛

− 𝜇0 
𝑇
   exp  −

1

2
𝑡𝑟  𝑃1   𝑛

− 𝜏𝑛 𝑆𝑛−𝜏𝑛
+  𝑛 − 𝜏𝑛  𝑌 𝑛−𝜏𝑛

− 𝜇1  𝑌 𝑛−𝜏𝑛
− 𝜇1 

𝑇
    

=  2𝜋 −𝑛𝑑 /2 𝑃0 𝜏𝑛 /2 𝑃1 
(𝑛−𝜏𝑛 )/2 exp  −

𝜏𝑛

2
𝑡𝑟  𝑃0  𝑆𝜏𝑛

+  𝑌 𝜏𝑛
− 𝜇0  𝑌 𝜏𝑛

− 𝜇0 
𝑇
   exp  −

𝑛 − 𝜏𝑛

2
𝑡𝑟  𝑃1  𝑆𝑛−𝜏𝑛

+  𝑌 𝑛−𝜏𝑛
− 𝜇1  𝑌 𝑛−𝜏𝑛

− 𝜇1 
𝑇
    

(4.37)  
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Now we begin to derive for 𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, 𝑃0 , 𝑃1|Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1 . 

 𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, 𝑃0, 𝑃1|Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1  

= 𝑓𝑁 𝜇0|Φ0,  𝜆0𝑃0 
−1 𝑓𝑊 𝑃0|𝑎0, 𝐵0  

𝑓𝑁 𝜇1|Φ1,  𝜆1𝑃1 
−1 𝑓𝑊 𝑃1|𝑎1, 𝐵1  

=  2𝜋 −𝑑/2 𝜆0𝑃0 
1/2 exp  −

1

2
 𝜇0 − Φ0 

𝑇𝜆0𝑃0 𝜇0 − Φ0   

∙  2𝜋 −𝑑/2 𝜆1𝑃1 
1/2 exp  −

1

2
 𝜇1 − Φ1 

𝑇𝜆1𝑃1(𝜇1 − Φ1)  

∙
 𝐵0 

𝑎0
2  𝑃0 

𝑎0−𝑑−1
2

2
𝑎0𝑑

2 𝛤𝑑(
𝑎0

2 )
exp  −

1

2
𝑡𝑟 𝐵0𝑃0  

∙
 𝐵1 

𝑎1
2  𝑃1 

𝑎1−𝑑−1
2

2
𝑎1𝑑

2 𝛤𝑑(
𝑎1

2 )
exp  −

1

2
𝑡𝑟 𝐵1𝑃1   

=  2𝜋 −𝑑  𝜆0𝜆1 
𝑑
2  𝑃0 

𝑎0−𝑑
2   𝑃1 

𝑎1−𝑑
2

 𝐵0 
𝑎0
2

2
𝑎0𝑑

2 𝛤𝑑  
𝑎0

2   
 

 𝐵1 
𝑎1
2

2
𝑎1𝑑

2 𝛤𝑑  
𝑎1

2  
  

∙ exp  −𝑡𝑟
1

2
 𝜆0𝑃0 𝜇0 − Φ0  𝜇0 − Φ0 

𝑇 + 𝑃0𝐵0 

− 𝑡𝑟
1

2
 𝜆1𝑃1 𝜇1 − Φ1  𝜇1 − Φ1 

𝑇 + 𝑃1𝐵1   

(4.38)  

Combine the results in (4.37) and (4.38) , the posterior distribution of  𝜇0, 𝜇1, 𝑃0, 𝑃1  

in (4.34) can be computed as 

 𝑃 𝜇0, 𝜇1, 𝑃0, 𝑃1|𝜏𝑛 , 𝑌1, 𝑌2, … , 𝑌𝑛 ∝ 

𝑃 𝑌1, 𝑌2, … , 𝑌𝑛  𝜇0, 𝜇1, 𝑃0, 𝑃1, 𝜏𝑛  

𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, 𝑃0, 𝑃1|Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1  

(4.39)  
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=  2𝜋 −
𝑛𝑑
2  𝑃0 

𝜏𝑛
2  𝑃1 

𝑛−𝜏𝑛
2 exp  −

1

2
𝑡𝑟  𝑃0  𝜏𝑛𝑆𝜏𝑛

+ 𝜏𝑛 𝑌 𝜏𝑛
− 𝜇0  𝑌 𝜏𝑛

− 𝜇0 
𝑇
   exp  −

1

2
𝑡𝑟  𝑃1   𝑛

− 𝜏𝑛 𝑆𝑛−𝜏𝑛

+  𝑛 − 𝜏𝑛  𝑌 𝑛−𝜏𝑛
− 𝜇1  𝑌 𝑛−𝜏𝑛

− 𝜇1 
𝑇
    

∙  2𝜋 −𝑑  𝜆0𝜆1 
𝑑
2  𝑃0 

𝑎0−𝑑
2   𝑃1 

𝑎1−𝑑
2

 𝐵0 
𝑎0
2

2
𝑎0𝑑

2 𝛤𝑑  
𝑎0

2   

 
 𝐵1 

𝑎1
2

2
𝑎1𝑑

2 𝛤𝑑  
𝑎1

2  
  

∙ exp  −𝑡𝑟
1

2
 𝜆0𝑃0 𝜇0 − Φ0  𝜇0 − Φ0 

𝑇 + 𝑃0𝐵0 

− 𝑡𝑟
1

2
 𝜆1𝑃1 𝜇1 − Φ1  𝜇1 − Φ1 

𝑇 + 𝑃1𝐵1   

The exponent term in (4.39) involving the parameters before the change-point is 

𝜏𝑛𝑃0  𝑆𝜏𝑛
+  𝑌 𝜏𝑛

− 𝜇0  𝑌 𝜏𝑛
− 𝜇0 

𝑇
 + 𝜆0𝑃0 𝜇0 − Φ0  𝜇0 − Φ0 

𝑇 + 𝑃0𝐵0 

= 𝑃0  𝜏𝑛  𝑆𝜏𝑛
+  𝜇0 − 𝑌 𝜏𝑛

  𝜇0 − 𝑌 𝜏𝑛
 
𝑇
 + 𝜆0 𝜇0 − Φ0  𝜇0 − Φ0 

𝑇 + 𝐵0  

= 𝑃0   𝜏𝑛 + 𝜆0 𝜇0𝜇0
𝑇 − 𝜇0 𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

 
𝑇

−  𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛
 𝜇0

𝑇 + 𝜆0Φ0Φ0
𝑇

+ 𝜏𝑛𝑌 𝜏𝑛
𝑌 𝜏𝑛

𝑇 + 𝜏𝑛𝑆𝜏𝑛
+ 𝐵0  
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=  𝜏𝑛 + 𝜆0 𝑃0  𝜇0𝜇0
𝑇 − 𝜇0

 𝜆0Φ0 + 𝜏𝑛𝑌 𝜏 
𝑇

𝜏𝑛 + 𝜆0
−

 𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛
 

𝜏𝑛 + 𝜆0
𝜇0

𝑇

+  
𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
  

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
 

𝑇

−  
𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
  

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
 

𝑇

+
𝜆0Φ0Φ0

𝑇 + 𝜏𝑛𝑌 𝜏𝑛
𝑌 𝜏𝑛

𝑇 + 𝜏𝑛𝑆𝜏𝑛
+ 𝐵0

𝜏𝑛 + 𝜆0

  

=  𝜏𝑛 + 𝜆0 𝑃0   𝜇0 −
𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
  𝜇0 −

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
 

𝑇

−  
𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
  

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
 

𝑇

+
𝜆0Φ0Φ0

𝑇 + 𝜏𝑛𝑌 𝜏𝑛
𝑌 𝜏𝑛

𝑇 + 𝜏𝑛𝑆𝜏𝑛
+ 𝐵0

𝜏𝑛 + 𝜆0

  

=  𝜏𝑛 + 𝜆0 𝑃0   𝜇0 −
𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
  𝜇0 −

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
 

𝑇

−
𝜆0

2Φ0Φ0
𝑇 + 𝜏𝑛𝜆0𝑌 𝜏𝑛

Φ0
𝑇 + 𝜏𝑛𝜆0Φ0𝑌 𝜏𝑛

𝑇 + 𝜏2𝑌 𝜏𝑛
𝑌 𝜏𝑛

𝑇

 𝜏𝑛 + 𝜆0 2

+
𝜆0 𝜏𝑛 + 𝜆0 Φ0Φ0

𝑇 + 𝜏𝑛 𝜏𝑛 + 𝜆0 𝑌 𝜏𝑌 𝜏
𝑇 +  𝜏𝑛 + 𝜆0 (𝜏𝑛𝑆𝜏 + 𝐵0)

 𝜏𝑛 + 𝜆0 2
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=  𝜏𝑛 + 𝜆0 𝑃0   𝜇0 −
𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
  𝜇0 −

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
 

𝑇

+
𝜏𝑛𝜆0Φ0Φ0

𝑇 − 𝜏𝑛𝜆0𝑌 𝜏𝑛
Φ0

𝑇 − 𝜏𝑛𝜆0Φ0𝑌 𝜏𝑛
𝑇 + 𝜏𝑛𝜆0𝑌 𝜏𝑛

𝑌 𝜏𝑛
𝑇 +  𝜏𝑛 + 𝜆0 (𝜏𝑛𝑆𝜏𝑛

+ 𝐵0)

 𝜏𝑛 + 𝜆0 2
  

=  𝜏𝑛 + 𝜆0 𝑃0   𝜇0 −
𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
  𝜇0 −

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
 

𝑇

+
𝜏𝑛𝜆0 𝑌 𝜏𝑛

− Φ0  𝑌 𝜏𝑛
− Φ0 

𝑇

 𝜏𝑛 + 𝜆0 2
+

𝜏𝑛𝑆𝜏𝑛
+ 𝐵0

𝜏𝑛 + 𝜆0

  

= 𝑃0   𝜏𝑛 + 𝜆0  𝜇0 −
𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
  𝜇0 −

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏𝑛

𝜏𝑛 + 𝜆0
 

𝑇

+
𝜏𝑛𝜆0 𝑌 𝜏𝑛

− Φ0  𝑌 𝜏𝑛
− Φ0 

𝑇

𝜏𝑛 + 𝜆0
+ 𝜏𝑛𝑆𝜏𝑛

+ 𝐵0  

Let 

 
𝜆0

′ = 𝜆0 + 𝜏n , Φ0
′ =

𝜆0Φ0 + 𝜏𝑛𝑌 𝜏
𝜆0 + 𝜏𝑛

,  

𝐵0
′ =

𝜏𝑛𝜆0 𝑌 𝜏𝑛
− Φ0  𝑌 𝜏𝑛

− Φ0 
𝑇

(𝜏𝑛 + 𝜆0)
+ 𝜏𝑛𝑆𝜏𝑛

+ 𝐵0 

(4.40)  

The above expression can be simplified as  

 𝑃0 𝜆0
′  𝜇0 − Φ0

′   𝜇0 − Φ0
′  𝑇 + 𝐵0

′   (4.41)  

 

Similarly for the exponent terms in (4.39) involving the parameters after the 

change-point, similar parameterization can be assumed as  
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𝜆1

′ = 𝜆1 + 𝑛 − 𝜏𝑛 , Φ1
′ =

𝜆1Φ1 +  𝑛 − 𝜏𝑛 𝑌 𝑛−𝜏𝑛

𝜆1 + 𝑛 − 𝜏𝑛
,  

𝐵1
′ =

 𝑛 − 𝜏𝑛 𝜆1 𝑌 𝑛−𝜏𝑛
− Φ1  𝑌 𝑛−𝜏𝑛

− Φ1 
𝑇

2(𝑛 − 𝜏𝑛 + 𝜆1)
+

 𝑛 − 𝜏𝑛 𝑆𝑛−𝜏𝑛

2

+ 𝐵1 

(4.42)  

Also let 𝑎0
′ = 𝑎0 + 𝜏𝑛  and 𝑎1

′ = 𝑎1 + 𝑛 − 𝜏𝑛  

Then the posterior distribution of  𝜇0, 𝜇1, 𝑃0 , 𝑃1  can be reduced to  

 𝑃 𝜇0, 𝜇1, 𝑃0, 𝑃1|𝜏, 𝑌1, 𝑌2, … , 𝑌𝑛  

∝  𝑃0 
𝑎0

′ −𝑑
2  𝑃1 

𝑎1
′ −𝑑
2 exp  −𝑡𝑟

1

2
 𝜆0

′ 𝑃0 𝜇0 − Φ0
′   𝜇0 − Φ0

′  𝑇 + 𝑃0𝐵0
′  

− 𝑡𝑟
1

2
 𝜆1

′ 𝑃1 𝜇1 − Φ1
′   𝜇1 − Φ1

′  𝑇 + 𝑃1𝐵1
′    

∝ 𝑁𝑊𝑁𝑊 𝜇0, 𝜇1, 𝑃0, 𝑃1|Φ0
′ , 𝜆0

′ , 𝑎0
′ , 𝐵0

′ , Φ1
′ , 𝜆1

′ , 𝑎1
′ , 𝐵1

′   

(4.43)  

That is to say, the prior and posterior distributions of the joint distribution of 

 𝜇0, 𝜇1, 𝑃0, 𝑃1  are both NWNW  distributions, thus the distribution for the 

normalizing constant can be calculated as 

𝑃 𝑌1, 𝑌2, … , 𝑌𝑛 |𝜏𝑛  

=
𝑃 𝑌1, 𝑌2, … , 𝑌𝑛 |𝜇0, 𝜇1, 𝑃0 , 𝑃1, 𝜏𝑛 𝑃 𝜇0, 𝜇1, 𝑃0, 𝑃1|𝜏𝑛 

𝑃 𝜇0, 𝜇1, 𝑃0 , 𝑃1|𝑌1, 𝑌2, … , 𝑌𝑛 , 𝜏𝑛 
 

=
𝑃 𝑌1, 𝑌2, … , 𝑌𝑛 |𝜇0, 𝜇1, 𝑃0, 𝑃1, 𝜏𝑛 NWNW 𝜇0, 𝜇1, 𝑃0 , 𝑃1|Φ0, 𝜆0, 𝑎0, 𝐵0, Φ1, 𝜆1, 𝑎1, 𝐵1 

NWNW 𝜇0, 𝜇1, 𝑃0, 𝑃1|Φ0
′ , 𝜆0

′ , 𝑎0
′ , 𝐵0

′ , Φ1
′ , 𝜆1

′ , 𝑎1
′ , 𝐵1

′  
 

The distribution function can be simplified by keeping the factors that do not contain 

 𝜇0, 𝜇1, 𝑃0, 𝑃1 .  



89 

 

 

𝑃 𝑌1, 𝑌2, … , 𝑌𝑛 |𝜏𝑛 ∝

 𝜆0𝜆1 
𝑑
2

 𝐵0 
𝑎0

2
𝑎0𝑑

2 𝛤𝑑  
𝑎0

2  
 

 𝐵1 
𝑎1

2
𝑎1𝑑

2 𝛤𝑑  
𝑎1
2  

 𝜆0
′ 𝜆1

′  
𝑑
2

 𝐵0
′  𝑎0

′

2
𝑎0

′ 𝑑
2 𝛤𝑑  

𝑎0
′

2  

 
 𝐵1

′  𝑎1
′

2
𝑎1

′ 𝑑
2 𝛤𝑑  

𝑎1
′

2  

 

∝  
𝜆0𝜆1

𝜆0
′ 𝜆1

′  

𝑑
2  𝐵0 

𝑎0  𝐵1 
𝑎1

 𝐵0
′  𝑎0

′
 𝐵1

′  𝑎1
′  

Γ 
𝑎0

′ + 1 − 𝑘
2  Γ  

𝑎1
′ + 1 − 𝑘

2  

Γ  
𝑎0 + 1 − 𝑘

2  Γ  
𝑎1 + 1 − 𝑘

2  

𝑑

𝑘=1
 

∝  𝜆0
′ 𝜆1

′  −
𝑑
2  𝐵0

′  −𝑎0
′
 𝐵1

′  −𝑎1
′
 Γ  

𝑎0
′ + 1 − 𝑘

2
 Γ  

𝑎1
′ + 1 − 𝑘

2
 

𝑑

𝑘=1
 

(4.44)  

By Bayes‘ Theorem, the posterior distribution of the change point 𝜏 is  

 
𝑃 𝜏𝑛 |𝑌1, 𝑌2, … , 𝑌𝑛 =

𝑃 𝑌1, 𝑌2, … , 𝑌𝑛 |𝜏𝑛 𝑃 𝜏𝑛 

𝑃 𝑌1, 𝑌2, … , 𝑌𝑛 
 

(4.45)  

As we assumed that 𝜏𝑛  is uniformly distributed, and the marginal distribution of 

𝑃 𝑌1, 𝑌2, … , 𝑌𝑛  is constant, so the posterior distribution for the change-point τn  can 

be computed following 

 𝑃 𝜏𝑛 |𝑌1, 𝑌2, … , 𝑌𝑛  

∝ 𝑃 𝑌1, 𝑌2, … , 𝑌𝑛 |𝜏𝑛  

∝  𝜆0
′ 𝜆1

′  −
𝑑
2  𝐵0

′  −𝑎0
′
 𝐵1

′  −𝑎1
′
 Γ 

𝑎0
′ + 1 − 𝑘

2
 Γ  

𝑎1
′ + 1 − 𝑘

2
 

𝑑

𝑘=1
 

(4.46)  

for 𝜏𝑛 = 1, 2, 3, … , 𝑛 − 1.  
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4.3.2 Non-informative Prior 

The Bayesian method discussed in section 4.3.1 used conjugate priors for the 

change-point models, that is to say, multivariate normal for mean vectors, and Wishart 

for covariance matrix.  Although Perrault et al (2000) compared the results using 

different parameters for the prior distributions; there is no rule about how to determine 

the numbers.  The selection of parameters depends heavily on experience and is 

subjective.  Son and Kim (2005) proposed to use non-informative priors for parameters 

for change-point analysis.  In the analysis, the Jeffreys prior, which assumes that the 

prior distribution is proportional to the square root of the determinant of the Fisher 

information matrix, is applied for the joint distribution of  𝜇0, 𝜇1, Σ0, Σ1 . 

 𝜋 𝜇0, 𝜇1, Σ0, Σ1 = 𝑐  Σ0  Σ1  − 𝑑+1 /2 (4.47)  

where 𝑐 is the normalizing constant whose value is unknown.  

The prior distribution for the change-point 𝜏𝑛  is still set as uniform on  1, 2, … , 𝑛 − 1 .  

Son and Kim (2005) derived the marginal density of the full sample assuming change 

occurs for both mean and covariance as 

 𝑓 𝜏𝑛, 𝑌1, 𝑌2, … , 𝑌𝑛 

= 𝑐 ∙  
 Γ  

𝜏𝑛 − 𝑖
2  Γ  

𝑛 − 𝜏𝑛 − 𝑖
2  𝑑

𝑖=1

𝜏𝑛
𝑑/2 𝑛 − 𝜏𝑛 𝑑/2𝜋𝑑 𝑛−𝑑−1 /2 𝑆𝜏𝑛

 
 𝜏𝑛−1 /2

 𝑆𝑛−𝜏𝑛
 
 𝑛−𝜏𝑛−1 /2

  

(4.48)  

where the definition for 𝑆𝜏𝑛
 and 𝑆𝑛−𝜏𝑛

 follows (4.36) .   

The posterior distribution of the change-point can be computed by Bayes theorem as 
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𝑓 𝜏𝑛| 𝑌1, 𝑌2, … , 𝑌𝑛 =

𝑓 𝜏𝑛, 𝑌1, 𝑌2, … , 𝑌𝑛 

 𝑓 𝑗, 𝑌1, 𝑌2, … , 𝑌𝑛 𝑛−1
𝑗=1

 
(4.49)  
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4.4 Conditional MLE Method for Estimating Change-point in Mean and/or 

Covariance of a Multivariate Gaussian Series 

MLE and Bayesian methods represent two major methods that derive the distribution 

for the change-point estimate.  Although the frequency‘s view and Bayesian view are 

quite different, they are not completely contrary to each other.  Cobb (1978) proposed 

the third approach from a conditional frequentist‘s view.  His motivation came from 

the fact that the mle is not a sufficient statistics, so he derived conditional distribution of 

the change-point mle by conditioning upon sufficient observations around the true 

change-point.  According to Cobb (1978), this is equivalent to the Bayesian posterior 

with uniform prior for the unknown change-point. 

Suppose 𝑌1, 𝑌2, … , 𝑌𝑛  are observations with detected change in their parameters at 𝜏 𝑛  

using maximum likelihood method.  Cobb‘s (1978) conditional solution only 

considered 𝐷  observations on either side of 𝜏 𝑛 .  Cobb‘s (1978) conditional 

probabilities for the change-point conditional on the observations  𝑌𝜏 𝑛 −𝐷 , … ,

𝑌𝜏 𝑛 +𝐷 was computed by  

 Pr 𝜏𝑛 − 𝜏 𝑛 = 𝑑| 𝑌𝜏 𝑛−𝐷, … , 𝑌𝜏 𝑛+𝐷, 

≅
Pr  𝑌1, 𝑌2, … , 𝑌𝑛; 𝜏 = 𝜏 𝑛 + 𝑑  

 Pr  𝑌1, 𝑌2, … , 𝑌𝑛; 𝜏 = 𝜏 𝑛 + 𝑗  𝐷
𝑗=−𝐷

 

(4.50)  

Cobb‘s (1978) solution conditioned on the event that  𝜏𝑛 − 𝜏 𝑛  ≤ 𝐷, thus the choice for 

𝐷 need guarantee that the event occurs with arbitrarily high probability.   

In maximum likelihood method, Cobb (1978) pointed out that the maximum likelihood 

estimate 𝜏 𝑛  does not provide the shape of the likelihood function in proximity of 𝜏 𝑛 , 
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thus the observations that close to 𝜏 𝑛 , 𝑌𝜏 𝑛 −𝐷 , … , 𝑌𝜏 𝑛 +𝐷 , are used as ancillary 

information.  To better determine the log likelihood functions around 𝜏 𝑛 , they were 

translated so that the log likelihood function at 𝜏 𝑛  becomes the origin of the log 

likelihood functions, which leads to the transformed likelihood function as 

 𝐿𝜏 𝑛

∗  0 = 0  (4.51)  

 

𝐿𝜏 𝑛

∗  𝑑 =

 
 
 

 
 

 log
𝑓0(𝜏 𝑛 + 𝑑)

𝑓1(𝜏 𝑛 + 𝑑)

𝑑

𝑗=1

, 𝑑 > 0

−  log
𝑓0(𝜏 𝑛 + 𝑑)

𝑓1(𝜏 𝑛 + 𝑑)

0

𝑗=𝑑+1

, 𝑑 ≤ 0

  

 

The fact that 𝜏 𝑛  is the estimate requires that the log likelihood function before 

transformation is larger than others, which means 𝐿𝜏 𝑛

∗  𝑑 < 0.  Denote 𝛼(𝑌, 𝜏 𝑛 , 𝐷) 

and 𝛽(𝑌, 𝜏 𝑛 , 𝐷) be the probabilities that 𝐿𝜏 𝑛

∗  𝑑  would increase to positive from right- 

and left-hand walk, then the probability that the change-point would fall into the range 

 𝑌𝜏 𝑛 −𝐷 , … , 𝑌𝜏 𝑛 +𝐷  is 1 − 𝜖 𝑌, 𝐷 =  1 − 𝛼(𝑌, 𝜏 𝑛 , 𝐷)  1 − 𝛽(𝑌, 𝜏 𝑛 , 𝐷) .  Cobb 

(1978) proved that 𝛼 𝑌, 𝜏 𝑛 , 𝐷 ≤   𝑓1(𝑌𝜏 𝑛 +𝑑)/𝑓2(𝑌𝜏 𝑛 +𝑑) 𝐷
𝑑=1 , and 𝛽 𝑌, 𝜏 𝑛 , 𝐷 ≤

  𝑓2(𝑌𝜏 𝑛 +𝑑)/𝑓1(𝑌𝜏 𝑛 +𝑑) 0
𝑑=−𝐷+1 .  Therefore, as the data given we were able to have 

arbitrarily small 𝜖 𝑌, 𝐷  by expanding the range of observations that would be 

considered in the conditional MLE. 

Therefore, in implementing the Cobb‘s method, 𝜖 𝑌, 𝐷 = 1 −  1 − 𝛼(𝑌, 𝜏 𝑛 , 𝐷)  1 −

𝛽(𝑌, 𝜏 𝑛 , 𝐷)  was computed with increasing 𝐷  such that 𝜖 𝑌, 𝐷  was less than a 

pre-specified threshold, which was 0.00009 throughout the study.  As the range of 
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observations were determined, the probabilities of the change-point occurred at each 

time point within the range were computed as in (4.50).   
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5 SIMULATION STUDIES TO ASSESS ROBUSTNESS 

In this chapter we carry out a simulation study for assessing the robustness of the 

asymptotic distribution developed in Chapter 4 for departures from normality and 

closeness to finite samples.  The simulation study for multivariate observations will 

be discussed in section 5.1, and the case for univariate observations will be discussed 

in section 5.2.  In both sections, the setup for simulations, numerical results and 

exploratory figures will be presented.   

5.1 Simulation Setup 

In our simulation, a sample of d-dimensional observations 𝑌1, 𝑌2, … , 𝑌𝑇  with a 

change-point 𝜏  would be generated.  Before the change, the mean vector and 

covariance matrix were 𝜇𝑜  and Σ0 (variance is 𝜍0
2 if 𝑑 = 1).  After the change, 

the mean vector and covariance matrix were 𝜇1 and Σ1 (variance is 𝜍1
2 if 𝑑 = 1).  

According to Chapter 4, the parameters that determined the asymptotic distribution of 

the change-point mle were 𝜂 = Σ0
−1/2 𝜇1 − 𝜇0  and 𝐾 = Σ0

1/2
Σ1

−1/2
 for multivariate 

case, and 𝜂 =  𝜇1 − 𝜇0 /𝜍0  and 𝐾 = 𝜍0/𝜍1  for univariate case.  In order to 

conform with the parameter setup of Jandhyala and Fotopoulos (1999), the parameter 

𝛿 =
1

2
𝜂 would be used in the simulation study.  In the algorithmic procedures for 

estimation of change-point mle, the linear combination of chi-square distribution was 

uniquely determined by 𝜂 and 𝐾𝐾𝑇 .  Therefore, in the simulation study, the values 

of 𝛿 =
1

2
𝜂 and det(𝐾𝐾𝑇) were fixed, and then the mean and covariance matrix 

before and after the change-point were set accordingly.  Without loss of generality, 
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the mean before the change was set to 𝜇𝑜 =  0, 0, … , 0 𝑇 , and the covariance 

(variance) before the change was set to Σ0 = diag{1,1, … 1} .  The mean and 

covariance (variance) after the change was computed so that they satisfied the 

pre-specified values of 𝛿  and det(𝐾𝐾𝑇) .  In the following study, the 𝛿  was 

chosen be to 1.5 or 2, and det(𝐾𝐾𝑇) was chosen to be 1, 1.1, 1.6, where 1 

corresponds to the case with change in mean only. 

As the observations were generated, the change-point estimation methods that were 

mentioned in Chapter 3 and 4, maximum likelihood, Cobb‘s method, and Bayesian 

method with non-informative priors and Normal-Wishart conjugate priors were 

applied.  The mean and square root of the mean squared error (MSE) for the 

change-point estimates were computed to compare the differences between methods.  

The above procedure was repeated 100,000 times to eliminate the random errors that 

were introduced during random sample generation.  For maximum likelihood 

method, the change-point was detected for each repetition so that the mean and mean 

squared error for the change-point mle was computed from the sample estimation.  

For the Cobb‘s and Bayesian methods, the mean and MSE were computed for each 

repetition, and the reported values were the average of the results. 

Hinkley (1972) had proved that the distribution of change-point mle when the 

parameters were unknown were equivalent to the case when the parameters were 

unknown.  Hence, in change-point estimation, if the change occurred at 𝜏 𝑛 , then the 

estimated mean and covariance before and after the change-point, 𝜇 0, 𝜇 1, Σ 0, Σ 1, were 

regarded as the true parameters for the observations.  In our simulation study, we 
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would investigate the differences of using the true parameters and the estimated ones.  

Therefore, when applying maximum likelihood estimation and Cobb‘s method, four 

cases were applied: (i) ―kk‖ – use the known mean and covariance/variance as the true 

parameters; (ii) ―ke‖ – use the know mean and the estimated covariance/variance as 

the true parameters; (iii) ―ek‖ – use the estimated mean and the known 

covariance/variance as the true parameters; (iv) ―ee‖ – use the estimated mean and 

covariance/variance as the the parameters.  

As we discussed the asymptotic distributions for change-point mle, all the 

observations were assumed to follow independent normal distributions.  In order to 

investigate how much the estimation would be affected by the deviation from 

normality, we also let the observations follow multivariate or univariate t-distribution 

with an increasing degree of freedom, 5, 10, 20, to see how close the estimations were 

to the normal case, which could be regarded as a t-distribution of infinity degree of 

freedom.   

In the j
th

 iteration of the simulation study, we generate the j
th

 sample of T observations, 

𝑌𝑗 ,1, 𝑌𝑗 ,2, … , 𝑌𝑗 ,𝑇  where 𝑌𝑗 ,𝑖 ∈ ℝ𝑑  with a change in parameters at time 𝜏.  Before the 

change-point, the mean and covariance are 𝜏0  and Σ0  respectively, after the 

change-point, the corresponding parameters are 𝜏1 and Σ1. 

The maximum likelihood change-point detection is performed on the j
th

 sample, 

𝑌𝑗 ,1, 𝑌𝑗 ,2, … , 𝑌𝑗 ,𝑇 .  In computing the log-likelihood function for the sample when change 

occurs at observation 𝑡, where  𝑡 = 𝑑 + 1, … , 𝑇 − 𝑑, the mean and covariance matrix 

are required.  These parameters are pre-specified in the simulation; however, in 
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real-world applications, it is impossible to know the true values of mean and covariance 

matrix.  The parameters used in the likelihood functions are the maximum likelihood 

estimates of the parameters.  We would like to know whether we can obtain similar 

results using simulation and theoretical distributions in Chapter 4.  We would also like 

to know if the closeness can be obtained for real life applications when the parameters 

are estimated, and how the parameter estimation affects the change-point estimation.  

Therefore when the mean and covariance matrix are used, we would use the following 4 

cases: 

1.  ‗kk‘ - known mean and covariance matrix:  

 𝜇𝑗 ,0
𝑘𝑘 = 𝜇0, Σ𝑗 ,𝑜

𝑘𝑘 = Σ0, 𝜇𝑗 ,1
𝑘𝑘 =  𝜇1, Σ𝑗 ,1

𝑘𝑘 = Σ1  

2.  ‗ke‘ - known mean and estimated covariance matrix:  

 

𝜇𝑗 ,0
𝑘𝑒 = 𝜇0, 𝛴𝑗 ,𝑜

𝑘𝑒 =
1

𝑡
  𝑌𝑗 ,𝑖 − 𝜇0  𝑌𝑗 ,𝑖 − 𝜇0 

𝑇
𝑡

𝑖=1

  

 𝜇𝑗 ,1
𝑘𝑒 =  𝜇1, 𝛴𝑗 ,1

𝑘𝑒 =
1

𝑇 − 𝑡
  𝑌𝑗 ,𝑖 − 𝜇1  𝑌𝑗 ,𝑖 − 𝜇1 

𝑇
𝑇−𝑡

𝑖=1

 

 

3.  ‗ek‘ - estimated mean and known covariance matrix:  

 

𝜇𝑗 ,0
𝑒𝑘 =

1

𝑡
 𝑌𝑗 ,𝑖

𝑡

𝑖=1

, 𝛴𝑗 ,0
𝑒𝑘 = 𝛴0 
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  𝜇𝑗 ,1
𝑒𝑘 =  

1

𝑇 − 𝑡
 𝑌𝑗 ,𝑖

𝑇−𝑡

𝑖=1

, 𝛴𝑗 ,1
𝑒𝑘 = 𝛴1 

4.  ‗ee‘ - estimated mean and covariance matrix:  

 

𝜇𝑗 ,0
𝑒𝑒 =

1

𝑡
 𝑌𝑗 ,𝑖

𝑡

𝑖=1

, 𝛴𝑗 ,0
𝑒𝑒 =

1

𝑡
  𝑌𝑗 ,𝑖 − 𝜇0

𝑒𝑒  𝑌𝑗 ,𝑖 − 𝜇0
𝑒𝑒  

𝑇
𝑡

𝑖=1

  

𝜇𝑗 ,1
𝑒𝑒 =  

1

𝑇 − 𝑡
 𝑌𝑗 ,𝑖

𝑇−𝑡

𝑖=1

, 𝛴𝑗 ,1
𝑒𝑒 =

1

𝑇 − 𝑡
  𝑌𝑗 ,𝑖 − 𝜇1

𝑒𝑒   𝑌𝑗 ,𝑖 − 𝜇1
𝑒𝑒 

𝑇
𝑇−𝑡

𝑖=1

 

 

Thus the likelihood functions for above 4 estimations are computed as 

 
𝐿𝑗

𝑒𝑠𝑡  𝑡 =  log 𝑓 𝑌𝑗 ,𝑖 ; 𝜇𝑗 ,0
𝑒𝑠𝑡 , Σ𝑗 ,0

𝑒𝑠𝑡  
𝑡

𝑖=1

+  log 𝑓(𝑌𝑗 ,𝑖 ; 𝜇𝑗 ,1
𝑒𝑠𝑡 , Σ𝑗 ,1

𝑒𝑠𝑡 )
𝑇

𝑖=𝑡+1
 

 

where 𝑒𝑠𝑡 ∈  kk, ke, ek, ee , 𝑡 ∈ {𝑑 + 1, … , 𝑇 − 𝑑}  

The detected change-point under the 4 cases is   

 𝜏 𝑗
𝑒𝑠𝑡 = arg max

d+1≤t≤T−d
{𝐿𝑗

𝑒𝑠𝑡  𝑡 }  

where 𝑒𝑠𝑡 ∈  kk, ke, ek, ee   

After a significant change-point is detected, estimation using Cobb‘s method is 

applied for the j
th

 sample.  In Cobb‘s method, we need to determine the range of 

samples that provides the ancillary information, which is determined as {𝜏 𝑗
𝑒𝑠𝑡 −

𝐷𝑗
𝑒𝑠𝑡 , … , 𝜏 𝑗

𝑒𝑠𝑡 + 𝐷𝑗
𝑒𝑠𝑡  } where 𝐷𝑗

𝑒𝑠𝑡  is the minimum 𝑑𝑗
𝑒𝑠𝑡  that satisfies   

 𝜖 𝑌𝑗 , 𝑑𝑗
𝑒𝑠𝑡  = 1 −  1 − 𝛼(𝑌𝑗 , 𝜏 𝑗

𝑒𝑠𝑡 , 𝑑𝑗
𝑒𝑠𝑡 )  1 − 𝛽(𝑌𝑗 , 𝜏 𝑗

𝑒𝑠𝑡 , 𝑑𝑗
𝑒𝑠𝑡 ) ≤ 𝜖  
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where 

𝛼 𝑌𝑗 , 𝜏 𝑗
𝑒𝑠𝑡 , 𝑑𝑗

𝑒𝑠𝑡  =   𝑓(𝑌𝜏 𝑗
𝑒𝑠𝑡 +𝑑 ; 𝜇𝑗 ,0

𝑒𝑠𝑡 , Σ𝑗 ,0
𝑒𝑠𝑡 )/𝑓(𝑌𝜏 𝑗

𝑒𝑠𝑡 +𝑑 ; 𝜇𝑗 ,1
𝑒𝑠𝑡 , Σ𝑗 ,1

𝑒𝑠𝑡 ) 

𝑑𝑗
𝑒𝑠𝑡

𝑑=1

 

 

 𝛽 𝑌𝑗 , 𝜏 𝑗
𝑒𝑠𝑡 , 𝑑𝑗

𝑒𝑠𝑡  

=   𝑓(𝑌𝜏 𝑗
𝑒𝑠𝑡 +𝑑 ; 𝜇𝑗 ,1

𝑒𝑠𝑡 , Σ𝑗 ,1
𝑒𝑠𝑡 )/𝑓(𝑌𝜏 𝑗

𝑒𝑠𝑡 +𝑑 ; 𝜇𝑗 ,0
𝑒𝑠𝑡 , Σ𝑗 ,0

𝑒𝑠𝑡 ) 

0

𝑑=−𝑑𝑗
𝑒𝑠𝑡 +1

 

 

 𝜖 is the pre-specified threshold, and 𝑒𝑠𝑡 ∈  kk, ke, ek, ee .  

Then the probabilities using Cobb‘s method is  

 
Pr(𝜏𝑗

𝑒𝑠𝑡 − 𝜏 𝑗
𝑒𝑠𝑡 = 𝑑) =

exp[𝐿𝑗
𝑒𝑠𝑡  𝜏 𝑗

𝑒𝑠𝑡 + 𝑑 ]

 exp[𝐿𝑗
𝑒𝑠𝑡  𝜏 𝑗

𝑒𝑠𝑡 + 𝑖 ]
𝐷𝑗

𝑒𝑠𝑡  

𝑖=−𝐷𝑗
𝑒𝑠𝑡  

 
 

where 𝑑 ∈ {−𝐷𝑗
𝑒𝑠𝑡 , … , 𝐷𝑗

𝑒𝑠𝑡 } and 𝑒𝑠𝑡 ∈  kk, ke, ek, ee   

Then the computation for the Bayesian probabilities directly follows (4.47) - (4.49) for 

non-informative prior, and follows (4.40), (4.42) and (4.46) for conjugate prior.    

The above procedures are repeated for 𝑁 = 100,000 times.  The bias and mean 

square error for the maximum likelihood method are computed using the sample mean 

and mean square error.  That is to say, 

 
Bias 𝜏 𝑚𝑙 .𝑒𝑠𝑡  =

1

𝑁
 𝜏 𝑗

𝑒𝑠𝑡
𝑁

𝑗=1
− 𝜏 

 

 
MSE 𝜏 𝑚𝑙 .𝑒𝑠𝑡  =

1

𝑁
  𝜏 𝑗

𝑒𝑠𝑡 − 𝜏 
2𝑁

𝑗 =1
 

 

Where 𝑒𝑠𝑡 ∈  kk, ke, ek, ee   
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For the other methods, Cobb‘s conditional probabilities and Bayesian method, the 

probability of a change-point at each observation is computed, thus we are able to 

compute the Bias and MSE as 

 
Bias 𝜏  =

1

𝑁
  𝑡𝑝𝑗 ,𝑡

𝑇−1

𝑡=1

𝑁

𝑗=1
− 𝜏 

 

 
MSE 𝜏  =

1

𝑁
   𝑡 − 𝜏 2𝑝𝑗 ,𝑡

𝑇−1

𝑡=1

𝑁

𝑗=1
 

 

where 𝑝𝑗 ,𝑡  is the probability that the change-point occurs at the observation 

t for the j
th

 sample.  In Cobb‘s method, 𝑝𝑗 ,𝑡 = 0 if 𝑡 ∉∈ {−𝐷𝑗
𝑒𝑠𝑡 +

𝜏 𝑗
𝑐𝑜𝑏𝑏 .𝑒𝑠𝑡 , … , 𝐷𝑗

𝑒𝑠𝑡 + 𝜏 𝑗
𝑐𝑜𝑏𝑏 .𝑒𝑠𝑡 }  

 

 

Lastly, we let 𝑑 = 1 𝑜𝑟 2  to investigate the effect of dimensionality to the 

change-point estimation.  We chose the combination of 𝑇/𝜏 = 100/50, 100/

30, 50/25 to investigate the effect of sample size and position of the change-point.  

That corresponded to the following cases: (i) 100 observations with change occurred 

at the 50
th

; (ii) 100 observations with change occurred at the 30
th

; (iii) 50 observations 

with change occurred at the 25
th

 . 

Section 5.2 would perform the simulation for bivariate observations, and 5.3 for 

univariate observations.  The tables of mean and square root of MSE were presented 

in tables figures.  The conclusions would be drawn in Section 5.4. 
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5.2 Multivariate Simulations 

As specified in Section 5.1, a sample of 𝑇 observations with change-point 𝜏 would 

be generated 100,000 times.  Before the change-point, the mean was 𝜇0 =  0 0 𝑇 .  

After the change-point, 𝛿 = 1.5 corresponded to 𝜇1 =  3/ 2 3/ 2 
𝑇

, and 𝛿 = 2 

corresponded to 𝜇1 =  2 2 2 2 𝑇 .  Before the change-point, the covariance 

matrix was Σ0 =  
1 0
0 1

 .  After the change-point, det 𝐾𝐾𝑇 = 1.1 corresponded 

to Σ1 =  
1 0.3

0.3 1
 , and det 𝐾𝐾𝑇 = 1.6 corresponded to Σ1 =  

1 0.6
0.6 1

 .  The 

square roots of the MSE were presented in Tables 5.1 – 5.6, and the biases of the 

change-point mle were presented in Tables 5.7 – 5.12.  

 



 

 

 

1
0
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Table 5.1 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 100/50 and 𝛿 = 1.5 for bivariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 
 

0.9388 0.9366 1.0240 0.9894 0.9988 1.1293 1.0511 1.1965 1.2640 1.2483 

1 10 
 

0.6711 0.6779 0.7030 0.7080 0.7555 0.8191 0.7928 0.8572 0.8857 0.8731 

1 20 
 

0.5780 0.5821 0.6021 0.6069 0.6749 0.7119 0.7063 0.7416 0.7632 0.7527 

1 Inf 0.5057 0.5061 0.5109 0.5255 0.5333 0.6146 0.6294 0.6420 0.6542 0.6710 0.6620 

 
 

          
 

1.1 5 
 

1.0912 1.2630 1.2672 1.7049 1.1524 1.4573 1.2628 1.6658 2.2159 1.3959 

1.1 10 
 

0.7617 0.8156 0.8045 0.8823 0.8616 0.9870 0.9120 1.0575 1.1134 0.9999 

1.1 20 
 

0.6627 0.6973 0.6968 0.7463 0.7759 0.8533 0.8187 0.9062 0.9421 0.8693 

1.1 Inf 0.5842 0.5815 0.6084 0.6080 0.6396 0.7086 0.7519 0.7444 0.7872 0.8167 0.7694 

 
 

          
 

1.6 5 
 

1.2085 1.3068 1.4383 1.7290 1.2595 1.5213 1.4306 1.7334 2.2245 1.4438 

1.6 10 
 

0.8012 0.8545 0.8499 0.9256 0.9089 1.0438 0.9636 1.1209 1.1743 1.0479 

1.6 20 
 

0.7033 0.7424 0.7419 0.7885 0.8249 0.9107 0.8717 0.9657 1.0027 0.9212 

1.6 Inf 0.6279 0.6277 0.6554 0.6567 0.6895 0.7636 0.8096 0.8058 0.8514 0.8797 0.8216 
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Table 5.2 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 100/50 and 𝛿 = 2 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 
 

0.5288 0.5278 0.5618 0.5442 0.5510 0.6173 0.5678 0.6365 0.6538 0.6453 

1 10 
 

0.3509 0.3544 0.3624 0.3656 0.3902 0.4238 0.4034 0.4358 0.4445 0.4389 

1 20 
 

0.2924 0.2968 0.2993 0.3041 0.3385 0.3601 0.3487 0.3693 0.3750 0.3702 

1 Inf 0.2398 0.2397 0.2444 0.2481 0.2517 0.2952 0.3052 0.3051 0.3130 0.3178 0.3136 

 
 

          
 

1.1 5 
 

0.6156 0.6886 0.6645 0.7994 0.6388 0.7941 0.6688 0.8511 0.9841 0.7956 

1.1 10 
 

0.4067 0.4337 0.4196 0.4506 0.4546 0.5225 0.4701 0.5410 0.5580 0.5322 

1.1 20 
 

0.3418 0.3641 0.3502 0.3753 0.3980 0.4442 0.4111 0.4577 0.4684 0.4517 

1.1 Inf 0.2873 0.2895 0.3052 0.2975 0.3162 0.3538 0.3813 0.3660 0.3936 0.4013 0.3889 

 
 

          
 

1.6 5 
 

0.6854 0.7272 0.7661 0.8289 0.7010 0.8514 0.7587 0.9180 1.0508 0.8484 

1.6 10 
 

0.4423 0.4693 0.4558 0.4863 0.4964 0.5699 0.5151 0.5927 0.6102 0.5803 

1.6 20 
 

0.3765 0.3972 0.3857 0.4089 0.4392 0.4887 0.4543 0.5047 0.5171 0.4968 

1.6 Inf 0.3216 0.3238 0.3401 0.3323 0.3526 0.3964 0.4258 0.4107 0.4396 0.4481 0.4332 
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Table 5.3 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 100/30 and 𝛿 = 1.5 for bivariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 
 

0.9492 0.9442 1.0796 1.0541 1.0065 1.1312 1.0843 1.2171 1.3207 1.3086 

1 10 
 

0.6667 0.6732 0.7034 0.7133 0.7504 0.8163 0.7934 0.8609 0.8956 0.8812 

1 20 
 

0.5782 0.5847 0.6067 0.6168 0.6739 0.7125 0.7089 0.7473 0.7737 0.7618 

1 Inf 0.5057 0.5057 0.5116 0.5313 0.5377 0.6138 0.6292 0.6448 0.6568 0.6770 0.6670 

 
 

          
 

1.1 5 
 

1.1048 1.4299 1.3423 2.7625 1.1544 1.5983 1.2983 1.8653 3.4017 4.0741 

1.1 10 
 

0.7616 0.8438 0.8140 0.9526 0.8594 1.0091 0.9165 1.0955 1.1854 2.1246 

1.1 20 
 

0.6628 0.7181 0.6995 0.7960 0.7744 0.8684 0.8197 0.9290 0.9807 1.6063 

1.1 Inf 0.5842 0.5839 0.6191 0.6162 0.6623 0.7097 0.7606 0.7485 0.8045 0.8455 1.2701 

 
 

          
 

1.6 5 
 

1.2205 1.4770 1.7063 2.7452 1.2543 1.6705 1.6252 1.9364 3.4062 3.9952 

1.6 10 
 

0.8066 0.8875 0.8571 1.0123 0.9112 1.0676 0.9703 1.1589 1.2509 2.1124 

1.6 20 
 

0.7067 0.7573 0.7458 0.8322 0.8270 0.9222 0.8755 0.9848 1.0374 1.6171 

1.6 Inf 0.6279 0.6280 0.6652 0.6596 0.7114 0.7639 0.8158 0.8057 0.8644 0.9034 1.2958 
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Table 5.4 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 100/30 and 𝛿 = 2 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 
 

0.5325 0.5312 0.5719 0.5498 0.5579 0.6201 0.5773 0.6429 0.6662 0.6570 

1 10 
 

0.3535 0.3571 0.3636 0.3682 0.3920 0.4259 0.4050 0.4388 0.4480 0.4420 

1 20 
 

0.2923 0.2969 0.3028 0.3061 0.3387 0.3605 0.3511 0.3709 0.3781 0.3730 

1 Inf 0.2398 0.2397 0.2442 0.2489 0.2540 0.2953 0.3052 0.3068 0.3148 0.3199 0.3154 

 
 

          
 

1.1 5 
 

0.6289 0.7853 0.7124 1.2784 0.6384 0.8822 0.6745 0.9857 1.5121 1.7881 

1.1 10 
 

0.4099 0.4405 0.4238 0.4671 0.4562 0.5279 0.4729 0.5546 0.5786 0.7616 

1.1 20 
 

0.3436 0.3673 0.3532 0.3828 0.3989 0.4482 0.4130 0.4649 0.4812 0.5821 

1.1 Inf 0.2873 0.2893 0.3066 0.2990 0.3203 0.3544 0.3843 0.3680 0.3980 0.4093 0.4711 

 
 

          
 

1.6 5 
 

0.6854 0.7272 0.7661 0.8289 0.7010 0.8514 0.7587 0.9180 1.0508 1.8565 

1.6 10 
 

0.4423 0.4693 0.4558 0.4863 0.4964 0.5699 0.5151 0.5927 0.6102 0.8121 

1.6 20 
 

0.3765 0.3972 0.3857 0.4089 0.4392 0.4887 0.4543 0.5047 0.5171 0.6253 

1.6 Inf 0.3216 0.3244 0.3409 0.3352 0.3577 0.3969 0.4268 0.4121 0.4422 0.4546 0.5132 
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Table 5.5 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 50/25 and 𝛿 = 1.5 for bivariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 
 

0.9382 0.9338 1.1072 1.0864 0.9979 1.1340 1.1307 1.2832 1.4983 1.4058 

1 10 
 

0.6622 0.6770 0.7264 0.7499 0.7475 0.8323 0.8238 0.9166 0.9883 0.9446 

1 20 
 

0.5741 0.5873 0.6246 0.6439 0.6710 0.7274 0.7364 0.7948 0.8447 0.8113 

1 Inf 0.5057 0.5014 0.5153 0.5436 0.5620 0.6108 0.6436 0.6686 0.6982 0.7351 0.7106 

 
 

          
 

1.1 5 
 

1.0760 1.3205 1.3277 2.7627 1.1420 1.5186 1.3353 1.8096 3.4087 1.3708 

1.1 10 
 

0.7516 0.8748 0.8408 1.6060 0.8526 1.0582 0.9572 1.2248 1.8857 1.0305 

1.1 20 
 

0.6594 0.7409 0.7233 1.2694 0.7718 0.9117 0.8586 1.0449 1.4520 0.9108 

1.1 Inf 0.5842 0.5805 0.6472 0.6336 0.9930 0.7064 0.8027 0.7831 0.9196 1.1392 0.8115 

 
 

          
 

1.6 5 
 

1.1577 1.3607 1.4447 2.7119 1.2203 1.5775 1.4471 1.8698 3.3626 1.4069 

1.6 10 
 

0.7977 0.9168 0.8879 1.6210 0.9036 1.1176 1.0136 1.2913 1.9197 1.0740 

1.6 20 
 

0.6971 0.7855 0.7693 1.2914 0.8205 0.9708 0.9177 1.1125 1.5082 0.9575 

1.6 Inf 0.6279 0.6213 0.6869 0.6798 1.0266 0.7585 0.8574 0.8466 0.9894 1.2032 0.8604 

 
 

          
 

 

 

  



 

 

 

1
0
8
 

 

Table 5.6 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 50/25 and 𝛿 = 2 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 
 

0.5252 0.5226 0.5610 0.5530 0.5510 0.6227 0.5813 0.6644 0.7188 0.6882 

1 10 
 

0.3470 0.3562 0.3658 0.3776 0.3873 0.4346 0.4104 0.4586 0.4775 0.4618 

1 20 
 

0.2897 0.2982 0.3064 0.3168 0.3355 0.3689 0.3566 0.3888 0.4021 0.3891 

1 Inf 0.2398 0.2390 0.2458 0.2507 0.2603 0.2932 0.3138 0.3116 0.3303 0.3408 0.3301 

 
 

          
 

1.1 5 
 

0.6056 0.7177 0.6837 1.1000 0.6366 0.8324 0.6982 0.9473 1.3275 0.8185 

1.1 10 
 

0.4038 0.4627 0.4280 0.5754 0.4514 0.5628 0.4824 0.6120 0.6939 0.5702 

1.1 20 
 

0.3405 0.3803 0.3602 0.4725 0.3954 0.4740 0.4224 0.5120 0.5610 0.4849 

1.1 Inf 0.2873 0.2867 0.3179 0.3042 0.3720 0.3517 0.4080 0.3767 0.4385 0.4648 0.4183 

 
 

          
 

1.6 5 
 

0.6650 0.7581 0.7799 1.1525 0.6971 0.8927 0.7871 1.0314 1.4060 0.8701 

1.6 10 
 

0.4390 0.4992 0.4666 0.6176 0.4935 0.6124 0.5288 0.6715 0.7585 0.6049 

1.6 20 
 

0.3758 0.4171 0.3964 0.5094 0.4374 0.5225 0.4691 0.5672 0.6187 0.5210 

1.6 Inf 0.3216 0.3211 0.3526 0.3414 0.4037 0.3945 0.4535 0.4241 0.4899 0.5199 0.4637 
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Table 5.7 Bias of the change-point mle when 𝑇/𝜏 = 100/50 and 𝛿 = 1.5 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 

 

-0.0037 -0.0024 -0.0026 -0.0027 -0.0315 -0.0177 -0.0329 -0.0209 -0.0035 -0.0034 

1 10 

 

-0.0006 -0.0012 -0.0001 -0.0005 -0.0068 -0.0088 -0.0076 -0.0104 -0.0104 -0.0009 

1 20 

 

-0.0011 -0.0016 -0.0011 -0.0012 -0.0054 -0.0066 -0.0066 -0.0078 -0.0011 -0.0011 

1 Inf 0.0000 0.0001 0.0001 0.0006 0.0006 -0.0036 -0.0043 -0.0042 -0.0049 -0.0005 -0.0005 

 
 

          

 

1.1 5 

 

0.0353 0.0237 0.0291 0.0143 -0.0113 -0.0400 -0.0215 -0.0908 -0.0490 -0.0283 

1.1 10 

 

0.0267 0.0224 0.0269 0.0209 0.0023 -0.0180 -0.0021 -0.0259 -0.0175 -0.0106 

1.1 20 

 

0.0229 0.0205 0.0209 0.0194 -0.0013 -0.0117 -0.0059 -0.0168 -0.0105 -0.0061 

1.1 Inf 0.0190 0.0211 0.0198 0.0200 0.0206 -0.0023 -0.0070 -0.0064 -0.0100 -0.0061 -0.0047 

 
 

          

 

1.6 5 

 

0.1088 0.0540 0.1096 0.0413 0.0515 -0.0538 0.0455 -0.1115 -0.0854 -0.0433 

1.6 10 

 

0.0619 0.0454 0.0606 0.0424 0.0226 -0.0238 0.0157 -0.0358 -0.0331 -0.0182 

1.6 20 

 

0.0485 0.0418 0.0450 0.0379 0.0084 -0.0153 -0.0004 -0.0247 -0.0221 -0.0121 

1.6 Inf 0.0351 0.0354 0.0348 0.0327 0.0320 -0.0037 -0.0114 -0.0119 -0.0183 -0.0166 -0.0095 
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Table 5.8 Bias of the change-point mle when 𝑇/𝜏 = 100/50 and 𝛿 = 2 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 

 

-0.0023 -0.0011 -0.0009 0.0000 -0.0230 -0.0048 -0.0216 -0.0047 -0.0009 -0.0009 

1 10 

 

-0.0004 -0.0006 -0.0002 -0.0004 -0.0013 -0.0019 -0.0014 -0.0021 -0.0005 -0.0005 

1 20 

 

0.0006 0.0004 0.0007 0.0009 -0.0004 -0.0008 -0.0003 -0.0008 0.0002 0.0002 

1 Inf 0.0000 0.0006 0.0005 0.0005 0.0004 0.0000 -0.0002 0.0001 -0.0001 0.0004 0.0004 

 
 

          

 

1.1 5 

 

0.0141 0.0109 0.0144 0.0094 -0.0128 -0.0131 -0.0125 -0.0219 -0.0152 -0.0098 

1.1 10 

 

0.0102 0.0082 0.0099 0.0081 0.0033 -0.0048 0.0022 -0.0064 -0.0050 -0.0032 

1.1 20 

 

0.0085 0.0073 0.0087 0.0079 0.0017 -0.0027 0.0005 -0.0037 -0.0029 -0.0018 

1.1 Inf 0.0055 0.0062 0.0057 0.0062 0.0055 -0.0001 -0.0022 -0.0009 -0.0030 -0.0024 -0.0016 

 
 

          

 

1.6 5 

 

0.0445 0.0288 0.0440 0.0254 0.0143 -0.0174 0.0127 -0.0286 -0.0258 -0.0143 

1.6 10 

 

0.0245 0.0189 0.0238 0.0182 0.0117 -0.0064 0.0095 -0.0097 -0.0098 -0.0055 

1.6 20 

 

0.0177 0.0157 0.0173 0.0152 0.0052 -0.0046 0.0030 -0.0069 -0.0069 -0.0041 

1.6 Inf 0.0114 0.0121 0.0114 0.0118 0.0115 -0.0001 -0.0043 -0.0023 -0.0057 -0.0060 -0.0098 
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Table 5.9 Bias of the change-point mle when 𝑇/𝜏 = 100/30 and 𝛿 = 1.5 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 

 

-0.0006 -0.0001 0.0216 0.0200 -0.0193 -0.0144 0.0009 0.0093 0.0197 0.0191 

1 10 

 

-0.0006 -0.0004 0.0089 0.0081 -0.0067 -0.0082 0.0039 0.0041 0.0082 0.0077 

1 20 

 

0.0009 0.0004 0.0068 0.0077 -0.0032 -0.0042 0.0053 0.0055 0.0077 0.0074 

1 Inf 0.0000 -0.0002 0.0004 0.0058 0.0061 -0.0026 -0.0031 0.0050 0.0047 0.0056 0.0053 

 
 

          

 

1.1 5 

 

0.0389 0.0727 0.0609 0.1847 -0.0001 0.0193 0.0189 -0.0193 0.1566 1.5087 

1.1 10 

 

0.0269 0.0284 0.0364 0.0351 0.0022 -0.0042 0.0108 0.0002 -0.0017 0.6533 

1.1 20 

 

0.0258 0.0240 0.0330 0.0289 0.0021 -0.0010 0.0084 0.0030 -0.0003 0.4640 

1.1 Inf 0.0190 0.0209 0.0198 0.0255 0.0233 -0.0027 0.0006 0.0032 0.0035 0.0000 0.3464 

 
 

          

 

1.6 5 

 

0.1112 0.1029 0.1542 0.2056 0.0602 0.0048 0.0955 -0.0440 0.1017 1.4537 

1.6 10 

 

0.0613 0.0498 0.0672 0.0554 0.0214 -0.0104 0.0259 -0.0106 -0.0232 0.6522 

1.6 20 

 

0.0495 0.0422 0.0540 0.0463 0.0097 -0.0048 0.0122 -0.0046 -0.0161 0.4727 

1.6 Inf 0.0351 0.0366 0.0365 0.0399 0.0389 -0.0028 -0.0023 -0.0014 -0.0021 -0.0117 0.3599 

 
 

          
 

 

 

  



 

 

 

1
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Table 5.10 Bias of the change-point mle when 𝑇/𝜏 = 100/30 and 𝛿 = 2 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 

 

-0.0007 -0.0007 0.0047 0.0049 -0.0136 -0.0039 -0.0070 0.0039 0.0053 0.0049 

1 10 

 

-0.0022 -0.0016 0.0014 0.0017 -0.0022 -0.0024 0.0015 0.0018 0.0021 0.0019 

1 20 

 

-0.0004 -0.0008 0.0013 0.0010 -0.0010 -0.0012 0.0017 0.0018 0.0017 0.0016 

1 Inf 0.0000 -0.0007 -0.0004 0.0009 0.0006 -0.0006 -0.0008 0.0017 0.0016 0.0013 0.0012 

 
 

          

 

1.1 5 

 

0.0141 0.0331 0.0205 0.0600 -0.0043 0.0158 0.0023 0.0100 0.0506 0.3844 

1.1 10 

 

0.0082 0.0106 0.0115 0.0119 0.0024 0.0024 0.0057 0.0037 0.0040 0.1409 

1.1 20 

 

0.0071 0.0077 0.0092 0.0091 0.0011 0.0023 0.0036 0.0034 0.0031 0.1003 

1.1 Inf 0.0055 0.0046 0.0052 0.0063 0.0059 -0.0008 0.0017 0.0013 0.0024 0.0020 0.0749 

 
 

          

 

1.6 5 

 

0.0445 0.0288 0.0440 0.0254 0.0143 -0.0174 0.0127 -0.0286 -0.0258 0.4111 

1.6 10 

 

0.0245 0.0189 0.0238 0.0182 0.0117 -0.0064 0.0095 -0.0097 -0.0098 0.1568 

1.6 20 

 

0.0177 0.0157 0.0173 0.0152 0.0052 -0.0046 0.0030 -0.0069 -0.0069 0.1131 

1.6 Inf 0.0114 0.0108 0.0103 0.0124 0.0117 -0.0008 -0.0001 0.0006 0.0002 -0.0021 0.0855 
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Table 5.11 Bias of the change-point mle when 𝑇/𝜏 = 50/25 and 𝛿 = 1.5 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1 5 

 

0.0001 -0.0007 0.0017 0.0002 -0.0101 -0.0250 -0.0158 -0.0338 0.0003 0.0004 

1 10 

 

0.0022 0.0019 0.0013 0.0023 -0.0046 -0.0071 -0.0074 0.8402 0.0004 0.0006 

1 20 

 

0.0004 -0.0008 0.0001 -0.0003 -0.0041 -0.0056 -0.0069 -0.0093 -0.0001 -0.0001 

1 Inf 0.0000 0.0002 0.0004 -0.0011 0.0002 -0.0027 -0.0039 -0.0056 -0.0069 -0.0005 -0.0006 

 
 

          

 

1.1 5 

 

0.0421 0.0272 0.0285 -0.0105 0.0138 -0.0410 -0.0135 -0.4484 -0.0948 -0.0258 

1.1 10 

 

0.0301 0.0268 0.0254 0.0154 0.0051 -0.0186 -0.0077 -0.1355 -0.0386 -0.0132 

1.1 20 

 

0.0237 0.0223 0.0210 0.0173 0.0005 -0.0146 -0.0107 -0.0796 -0.0293 -0.0105 

1.1 Inf 0.0190 0.0198 0.0190 0.0160 0.0113 -0.0029 -0.0112 -0.0136 -0.0431 -0.0219 -0.0094 

 
 

          

 

1.6 5 

 

0.1108 0.0505 0.1066 -0.0001 0.0688 -0.0603 0.0416 -0.4640 -0.1808 -0.0448 

1.6 10 

 

0.0636 0.0485 0.0562 0.0317 0.0238 -0.0280 0.0032 -0.1531 -0.0805 -0.0257 

1.6 20 

 

0.0477 0.0405 0.0391 0.0293 0.0091 -0.0222 -0.0118 -0.0944 -0.0605 -0.0215 

1.6 Inf 0.0351 0.0352 0.0343 0.0278 0.0219 -0.0029 -0.0179 -0.0230 -0.0567 -0.0461 -0.0189 
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Table 5.12 Bias of mean squared error of the change-point mle when 𝑇/𝜏 = 50/25 and 𝛿 = 2 for bivariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. Conj. 

 
 

          
 

 
 

          
 

1.00 5 

 

-0.0002 0.0001 0.0006 -0.0002 -0.0029 -0.0047 -0.0034 -0.0051 0.0001 0.0003 

1.00 10 

 

0.0005 0.0000 -0.0002 0.0000 -0.0007 -0.0013 -0.0017 -0.0021 0.0002 0.0001 

1.00 20 

 

-0.0006 0.0005 -0.0009 -0.0002 -0.0007 -0.0007 -0.0015 -0.0016 -0.0002 -0.0002 

1.00 Inf 0.0000 -0.0002 0.0002 -0.0004 0.0000 -0.0002 -0.0002 -0.0006 -0.0008 -0.0001 -0.0001 

 
 

          

 

1.10 5 

 

0.0170 0.0106 0.0128 0.0061 0.0079 -0.0141 0.0020 -0.0658 -0.0276 -0.0109 

1.10 10 

 

0.0105 0.0092 0.0090 0.0079 0.0038 -0.0064 0.0006 -0.0160 -0.0108 -0.0053 

1.10 20 

 

0.0070 0.0067 0.0059 0.0043 0.0012 -0.0054 -0.0017 -0.0117 -0.0090 -0.0048 

1.10 Inf 0.0055 0.0058 0.0051 0.0046 0.0040 -0.0003 -0.0046 -0.0028 -0.0080 -0.0070 -0.0045 

 
 

          

 

1.56 5 

 

0.0463 0.0291 0.0425 0.0156 0.0324 -0.0206 0.0233 -0.0849 -0.0564 -0.0193 

1.56 10 

 

0.0233 0.0179 0.0211 0.0159 0.0119 -0.0112 0.0059 -0.0249 -0.0246 -0.0091 

1.56 20 

 

0.0169 0.0136 0.0144 0.0109 0.0048 -0.0096 -0.0011 -0.0189 -0.0199 -0.0088 

1.56 Inf 0.0114 0.0120 0.0102 0.0091 0.0074 -0.0006 -0.0087 -0.0059 -0.0145 -0.0164 0.0012 
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The mse varied with the methods that were applied, size of the change, sample size, 

position of the change-point, dimensionality and deviation from Normality. The mean 

from different methods did not vary very much.  Therefore, the value of the mean 

squared error determined how accurately we can detect the change-point.  However, 

the tables listed above did not provide an obvious relationship between the mse and 

various factors that could potentially affect it.  In the rest of the section, the figures of 

square root of mse were plotted with certain factors fixed.   

Figures 5.1-5.3 were the figures of square root of mse versus det 𝐾𝐾𝑇  under the 

parameter estimations using ‗kk‘, ‗ke‘, ‗ek‘, ‗ee‘ for MLE and Cobb‘s method.  The 

figures for 𝛿 = 1.5  and 𝛿 = 2  were plotted side by side.  Figures 5.1 - 5.3 

represented the combination of sample size and change-point position, 𝑇/𝜏 =

100/50, 100/30, 50/25, respectively.  It could be seen that the mse under MLE 

method were close to each other most of the time, except that when the sample size 

was too small (50/25), the change in mean was small, and there was change in 

covariance.  The mse under Cobb‘s method were close to each using the parameter 

estimation method ‗kk‘, ‗ke‘, ‗ek‘, ‗ee‘.  They were systematically larger than the 

mse using MLE method.  They were more affected by the size of the mean change, 

and were less vulnerable to the sample size and position of the change-point. 

Figures 5.4-5.6 could be used to investigate the effect of sample size.  The mse under 

different combinations of 𝑇/𝜏 was plotted in the same figures.  Figure 5.4 presented 

the mse using MLE method, including the 4 parameter estimation options.  Under the 

case where both mean and covariance changed, if the mean and covariance were 
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estimated, the amount of change was small, and the sample size was small, the MLE 

method tended to be bigger than the theoretical values.  Otherwise, whether the 

parameters were estimated or not did not affect the mse of change-point mle very 

much.  Figure 5.5 presented the mse using Cobb‘s method with the 4 parameter 

estimation options.  This method behaved similar to the MLE method, except that the 

combined effect of small sample size, small change in mean and change in covariance 

was smaller than the MLE method.  Figure 5.6 presented the mse using Bayesian 

methods with a non-informative prior and conjugate prior.  When the change in mean 

was small, the Bayesian method with non-informative prior was more affected by the 

small sample size, while the Bayesian method with conjugate prior was more affected 

by the skewness of the position of the change-point. 

Figures 5.7-5.10 compared the mse under MLE, Cobb‘s and Bayesian method.  

Separate figures were generated for ‗kk‘, ‗ke‘, ‗ek‘ and ‗ee‘ for MLE and Cobb.  It 

could be observed that when the change in mean was big enough, all the methods 

obtained similar results.  When the amount of change was small, MLE and Cobb‘s 

methods gave smaller mse than Bayesian method using non-informative or conjugate 

prior. 

Figures 5.11-5.13 investigated the effect of departure from normality under each 

method.  Figure 5.11 was for MLE method.  When the degree of freedom was 

greater than 5, even if the series followed t-distribution, the mse were still close to 

each other.  MLE method was quite resistant to the departure from the normality 

assumption.  Figure 5.12 was for Cobb‘s method, and Figure 5.13 was for Bayesian 
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method.  Although the mse also decreased as df increased, the lines for mse under 

different degrees of freedom were not as close to each other as the MLE method.  

Thus, Cobb‘s method and Bayesian method were also resistant to departure from 

Normality, but they did not perform as good as the MLE method. 

Figures 5.14-5.16 compared the behavior of each method under departure from 

Normality with degree of freedom equaled 5, 10, and 20 respectively.  When df=5, 

the Bayesian method with non-informative prior overestimated the mse the most.  It 

became closer to the theoretical values when the amount of change in mean increased.  

The MLE and Cobb‘s method produced very close mse, which were smaller than the 

mse of Bayesian method; however, when the parameters before and after change were 

estimated and the change in mean was small, the Bayesian method with conjugate 

prior produced smaller mse. 

From the observations of the figures, it was concluded that the MLE method were 

more resistant to departure from assumptions than Cobb‘s and Bayesian method.  

Although Cobb‘s method produced very close results to MLE method, the mse was 

still slightly bigger than the mse produced by MLE.  Bayesian method produced 

similar mse only when the amount of change was large.  Otherwise, it was more 

sensitive to the sample size, position of change-point, and the departure from 

normality. 
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Figure 5.1 Comparison of the kk, ke, ek, and ee estimation methods for MLE and Cobb‘s method when 𝑇/𝜏 = 100/50 for 

bivariate series. 
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Figure 5.2 Comparison of the kk, ke, ek, and ee estimation method for MLE and Cobb‘s method when 𝑇/𝜏 = 100/30 for 

bivariate series. 
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Figure 5.3 Comparison of the kk, ke, ek, and ee estimation method for MLE and Cobb‘s method when 𝑇/𝜏 = 50/25 for 

bivariate series. 
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Figure 5.4 The effect of sample size and change-point position to the MLE estimation method for bivariate series. 
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Figure 5.5 The effect of sample size and change-point position to the Cobb‘s estimation method for bivariate series. 
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Figure 5.6 The effect of sample size and change-point position to the Bayesian‘s estimation method for bivariate series. 
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Figure 5.7 Comparison of estimation methods when the MLE and Cobb used ‗kk‘ for parameter estimates for bivariate 

series. 
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Figure 5.8 Comparison of estimation methods when the MLE and Cobb used ‗ke‘ for parameter estimates for bivariate 

series. 
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Figure 5.9 Comparison of estimation methods when the MLE and Cobb used ‗ek‘ for parameter estimates for bivariate 

series. 
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Figure 5.10 Comparison of estimation methods when the MLE and Cobb used ‗ee‘ for parameter estimates for bivariate 

series. 
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Figure 5.11 Effect of the degrees of freedom when the series follow multivariate t-distribution using MLE method for 

bivariate series. 
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Figure 5.12 Effect of the degrees of freedom when the series follow multivariate t-distribution using Cobb‘s method for 

bivariate series. 
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Figure 5.13 Effect of the degrees of freedom when the series follow multivariate t-distribution using Bayesian method for 

bivariate series. 
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Figure 5.14 Comparison of estimation methods when the series follow multivariate t-distribution with df=5 for bivariate 

series.  
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Figure 5.15 Comparison of estimation methods when the series follow multivariate t-distribution with df=10 for bivariate 

series.  
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Figure 5.16 Comparison of estimation methods when the series follow multivariate t-distribution with df=20 for bivariate 

series.  
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5.3 Univariate Simulations 

Under the univariate simulation, the setup followed the multivariate simulations.  The 

same number of repetition, values for 𝑇/𝜏, 𝛿, det(𝐾𝐾𝑇), and the departure from 

normality were used as in the multivariate case.  As specified in Section 5.1, a 

sample of 𝑇 observations with change-point 𝜏 would be generated 100,000 times.  

Before the change-point, the mean was 𝜇0 = 0.  After the change-point, 𝛿 = 1.5 

corresponded to 𝜇1 = 3 , and 𝛿 = 2  corresponded to 𝜇1 = 4 .  Before the 

change-point, the variance was Σ0 = 1.  After the change-point, det 𝐾𝐾𝑇 = 1.1 

corresponded to σ1
2 = 0.91, and det 𝐾𝐾𝑇 = 1.6 corresponded to σ1

2 = 0.64.  The 

square roots of the MSE were presented in Tables 5.13 – 5.18, and the biases of the 

change-point mle were presented in Tables 5.19 – 5.24.  The same set of figures was 

produced as in Section 5.2. 
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Table 5.13 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 100/50 and 𝛿 = 1.5 for univariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 
0.9495 0.9495 0.9910 0.9910 1.0138 1.1571 1.0612 1.2250 1.2648 

1 10 
 

0.6583 0.6583 0.6855 0.6855 0.7519 0.8184 0.7850 0.8542 0.8663 

1 20 
 

0.5767 0.5767 0.5974 0.5974 0.6783 0.7134 0.7086 0.7426 0.7517 

1 Inf 0.5057 0.5025 0.5025 0.5233 0.5233 0.6176 0.6292 0.6454 0.6538 0.6608 

 
 

          
1.1 5 

 
0.9019 1.0165 0.9469 1.1452 0.9615 1.2073 1.0127 1.3281 1.3787 

1.1 10 
 

0.6257 0.6637 0.6527 0.6936 0.7149 0.8173 0.7453 0.8562 0.8725 

1.1 20 
 

0.5473 0.5607 0.5681 0.5887 0.6433 0.7000 0.6707 0.7349 0.7469 

1.1 Inf 0.4803 0.4758 0.4885 0.4922 0.5103 0.5844 0.6151 0.6101 0.6406 0.6505 

 
 

          
1.6 5 

 
0.8041 0.8616 0.9387 0.9554 0.8478 1.0205 0.9614 1.1181 1.1538 

1.6 10 
 

0.5243 0.5535 0.5429 0.5749 0.5934 0.6769 0.6175 0.7039 0.7177 

1.6 20 
 

0.4551 0.4644 0.4655 0.4769 0.5318 0.5766 0.5500 0.5967 0.6077 

1.6 Inf 0.3874 0.3858 0.3983 0.3968 0.4118 0.4771 0.5039 0.4954 0.5222 0.5285 
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Table 5.14 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 100/50 and 𝛿 = 2 for univariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          
1 5 

 
0.5241 0.5241 0.5402 0.5402 0.5501 0.6200 0.5708 0.6434 0.6576 

1 10 

 

0.3468 0.3468 0.3534 0.3534 0.3876 0.4198 0.3972 0.4296 0.4348 
1 20 

 
0.2941 0.2941 0.3006 0.3006 0.3401 0.3587 0.3489 0.3662 0.3700 

1 Inf 0.2398 0.2408 0.2408 0.2459 0.2459 0.2959 0.3027 0.3047 0.3095 0.3124 

 
 

          1.1 5 

 

0.5024 0.5725 0.5213 0.6089 0.5274 0.6623 0.5484 0.7040 0.7212 

1.1 10 

 

0.3299 0.3433 0.3341 0.3538 0.3668 0.4170 0.3750 0.4289 0.4363 

1.1 20 

 

0.2781 0.2868 0.2836 0.2925 0.3200 0.3517 0.3283 0.3597 0.3641 

1.1 Inf 0.2222 0.2238 0.2324 0.2294 0.2376 0.2766 0.2956 0.2848 0.3027 0.3063 

 
 

          1.6 5 

 

0.4389 0.4872 0.4739 0.5272 0.4584 0.5582 0.4862 0.5987 0.6055 

1.6 10 

 

0.2706 0.2828 0.2744 0.2895 0.2998 0.3393 0.3057 0.3472 0.3538 

1.6 20 

 

0.2204 0.2281 0.2249 0.2331 0.2545 0.2815 0.2609 0.2872 0.2905 

1.6 Inf 0.1694 0.1746 0.1823 0.1798 0.1872 0.2150 0.2316 0.2214 0.2369 0.2395 
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Table 5.15 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 100/30 and 𝛿 = 1.5 for univariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

0.9594 0.9594 1.0564 1.0564 1.0227 1.1568 1.0825 1.2500 1.3331 

1 10 

 

0.6638 0.6638 0.7028 0.7028 0.7549 0.8213 0.8019 0.8707 0.8843 

1 20 

 

0.5775 0.5775 0.6061 0.6061 0.6788 0.7155 0.7191 0.7548 0.7644 

1 Inf 0.5057 0.5031 0.5031 0.5219 0.5219 0.6170 0.6284 0.6494 0.6569 0.6641 

 
 

          1.1 5 

 

0.9112 1.1456 1.0415 1.4881 0.9709 1.3273 1.0612 1.6307 1.8291 

1.1 10 

 

0.6355 0.6739 0.6699 0.7424 0.7187 0.8288 0.7630 0.9035 0.9318 

1.1 20 

 

0.5500 0.5749 0.5745 0.5965 0.6441 0.7127 0.6817 0.7489 0.7695 

1.1 Inf 0.4803 0.4740 0.4892 0.4928 0.5111 0.5837 0.6205 0.6141 0.6508 0.6627 

 
 

          1.6 5 

 

0.8480 1.0073 1.2564 1.3167 0.8917 1.1533 1.1696 1.4506 1.5377 

1.6 10 

 

0.5311 0.5571 0.5621 0.6098 0.5982 0.6862 0.6360 0.7449 0.7684 

1.6 20 

 

0.4533 0.4681 0.4702 0.4909 0.5308 0.5863 0.5588 0.6164 0.6299 

1.6 Inf 0.3874 0.3861 0.3982 0.3968 0.4138 0.4759 0.5085 0.4989 0.5303 0.5392 
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Table 5.16 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 100/30 and 𝛿 = 2 for univariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

0.5326 0.5326 0.5452 0.5452 0.5583 0.6235 0.5748 0.6492 0.6655 

1 10 

 

0.3530 0.3530 0.3633 0.3633 0.3927 0.4244 0.4052 0.4371 0.4428 

1 20 

 

0.2895 0.2895 0.2985 0.2985 0.3378 0.3568 0.3500 0.3680 0.3719 

1 Inf 0.2398 0.2402 0.2402 0.2451 0.2451 0.2942 0.3010 0.3048 0.3098 0.3127 

 
 

          1.1 5 

 

0.5084 0.6633 0.5287 0.7997 0.5320 0.7480 0.5560 0.8856 0.9292 

1.1 10 

 

0.3343 0.3540 0.3420 0.3703 0.3710 0.4282 0.3828 0.4459 0.4584 

1.1 20 

 

0.2735 0.2877 0.2807 0.2940 0.3179 0.3560 0.3291 0.3687 0.3755 

1.1 Inf 0.2222 0.2249 0.2343 0.2286 0.2416 0.2751 0.2986 0.2850 0.3086 0.3133 

 
 

          1.6 5 

 

0.4642 0.5886 0.5973 0.7294 0.4819 0.6546 0.6156 0.7956 0.8164 

1.6 10 

 

0.2750 0.2900 0.2822 0.3018 0.3023 0.3502 0.3124 0.3639 0.3738 

1.6 20 

 

0.2191 0.2310 0.2258 0.2395 0.2534 0.2853 0.2626 0.2945 0.3006 

1.6 Inf 0.1694 0.1737 0.1810 0.1782 0.1867 0.2142 0.2351 0.2220 0.2420 0.2461 
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Table 5.17 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 50/25 and 𝛿 = 1.5 for univariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

0.9553 0.9553 1.0679 1.0679 1.0160 1.1635 1.1197 1.3119 1.4652 

1 10 

 

0.6654 0.6654 0.7165 0.7165 0.7556 0.8385 0.8280 0.9205 0.9604 

1 20 

 

0.5809 0.5809 0.6208 0.6208 0.6821 0.7328 0.7422 0.7917 0.8180 

1 Inf 0.5057 0.5030 0.5030 0.5360 0.5360 0.6171 0.6411 0.6702 0.6885 0.7092 

 
 

          1.1 5 

 

0.9064 1.0459 1.0222 1.3418 0.9640 1.2592 1.0646 1.4846 1.6589 

1.1 10 

 

0.6330 0.6876 0.6822 0.7826 0.7177 0.8607 0.7847 0.9654 1.0296 

1.1 20 

 

0.5510 0.5852 0.5884 0.6588 0.6470 0.7418 0.7017 0.8126 0.8538 

1.1 Inf 0.4803 0.4749 0.4998 0.5057 0.5446 0.5842 0.6434 0.6326 0.7018 0.7324 

 
 

          1.6 5 

 

0.8246 0.8812 0.9862 1.0931 0.8545 1.0574 0.9719 1.2221 1.3357 

1.6 10 

 

0.5261 0.5692 0.5639 0.6287 0.5962 0.7134 0.6464 0.7839 0.8276 

1.6 20 

 

0.4508 0.4764 0.4779 0.5256 0.5307 0.6099 0.5719 0.6589 0.6870 

1.6 Inf 0.3874 0.3865 0.4064 0.4087 0.4333 0.4765 0.5277 0.5113 0.5658 0.5882 

 
 

           

 

  



 

 

 

1
4
0 

Table 5.18 Square root of mean squared error of the change-point mle when 𝑇/𝜏 = 50/25 and 𝛿 = 2 for univariate 

series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

0.5263 0.5263 0.5478 0.5478 0.5532 0.6352 0.5765 0.6788 0.7264 

1 10 

 

0.3528 0.3528 0.3690 0.3690 0.3929 0.4345 0.4144 0.4555 0.4682 

1 20 

 

0.2931 0.2931 0.3070 0.3070 0.3407 0.3672 0.3589 0.3838 0.3926 

1 Inf 0.2398 0.2401 0.2401 0.2505 0.2505 0.2954 0.3097 0.3132 0.3238 0.3310 

 
 

          1.1 5 

 

0.5053 0.5777 0.5303 0.6731 0.5291 0.6897 0.5550 0.7772 0.8297 

1.1 10 

 

0.3344 0.3680 0.3450 0.3927 0.3705 0.4536 0.3890 0.4819 0.5008 

1.1 20 

 

0.2766 0.2985 0.2885 0.3118 0.3203 0.3759 0.3376 0.3950 0.4085 

1.1 Inf 0.2222 0.2247 0.2385 0.2340 0.2552 0.2764 0.3141 0.2926 0.3301 0.3406 

 
 

          1.6 5 

 

0.4451 0.4834 0.4950 0.5539 0.4574 0.5724 0.4961 0.6397 0.6771 

1.6 10 

 

0.2752 0.2984 0.2822 0.3167 0.3038 0.3668 0.3153 0.3884 0.4027 

1.6 20 

 

0.2217 0.2389 0.2292 0.2526 0.2556 0.3029 0.2682 0.3164 0.3264 

1.6 Inf 0.1694 0.1758 0.1867 0.1821 0.1963 0.2154 0.2477 0.2273 0.2598 0.2674 
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Table 5.19 Bias of the change-point mle when 𝑇/𝜏 = 100/50 and 𝛿 = 1.5 for univariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

-0.0034 -0.0034 -0.0038 -0.0038 -0.0038 -0.0033 -0.0059 -0.0060 -0.0043 

1 10 

 

-0.0012 -0.0012 -0.0001 -0.0001 -0.0001 0.0001 0.0005 0.0008 0.0008 

1 20 

 

0.0001 0.0001 0.0017 0.0017 0.0015 0.0016 0.0019 0.0019 0.0019 

1 Inf 0.0000 0.0028 0.0028 0.0037 0.0037 0.0002 0.0002 0.0004 0.0006 0.0006 

 
 

          1.1 5 

 

0.0058 -0.0001 0.0087 0.0027 0.0089 0.0093 0.0113 0.0104 0.0139 

1.1 10 

 

-0.0048 -0.0051 -0.0021 -0.0052 0.0016 0.0022 0.0034 0.0034 0.0041 

1.1 20 

 

-0.0035 -0.0048 -0.0022 -0.0041 0.0020 0.0021 0.0029 0.0031 0.0032 

1.1 Inf -0.0049 -0.0025 -0.0028 -0.0024 -0.0022 0.0003 0.0007 0.0009 0.0016 0.0017 

 
 

          1.6 5 

 

0.0232 -0.0008 0.0370 0.0059 0.0373 0.0368 0.0504 0.0468 0.0504 

1.6 10 

 

-0.0109 -0.0184 -0.0096 -0.0152 0.0057 0.0082 0.0090 0.0128 0.0134 

1.6 20 

 

-0.0139 -0.0174 -0.0135 -0.0172 0.0024 0.0036 0.0045 0.0058 0.0064 

1.6 Inf -0.0161 -0.0145 -0.0156 -0.0153 -0.0155 0.0005 0.0012 0.0020 0.0027 0.0032 

 
 

          
 

 

  



 

 

 

1
4
2 

Table 5.20 Bias of the change-point mle when 𝑇/𝜏 = 100/50 and 𝛿 = 2 for univariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

-0.0001 -0.0001 -0.0003 -0.0003 -0.0009 -0.0005 -0.0009 -0.0006 -0.0009 

1 10 

 

0.0013 0.0013 0.0013 0.0013 0.0002 0.0002 0.0003 0.0003 0.0003 

1 20 

 

-0.0002 -0.0002 0.0000 0.0000 0.0000 0.0001 -0.0001 0.0000 0.0000 

1 Inf 0.0000 -0.0005 -0.0005 -0.0001 -0.0001 0.0004 0.0004 0.0003 0.0003 0.0003 

 
 

          1.1 5 

 

0.0017 0.0004 0.0027 0.0006 0.0025 0.0039 0.0032 0.0053 0.0060 

1.1 10 

 

0.0005 -0.0014 0.0004 -0.0002 0.0007 0.0006 0.0009 0.0017 0.0016 

1.1 20 

 

-0.0015 -0.0019 -0.0013 -0.0013 0.0000 0.0004 0.0000 0.0005 0.0006 

1.1 Inf -0.0013 -0.0017 -0.0010 -0.0013 -0.0010 0.0003 0.0008 0.0004 0.0007 0.0008 

 
 

          1.6 5 

 

0.0069 0.0017 0.0103 0.0037 0.0101 0.0148 0.0134 0.0185 0.0194 

1.6 10 

 

-0.0020 -0.0044 -0.0020 -0.0039 0.0011 0.0025 0.0018 0.0034 0.0041 

1.6 20 

 

-0.0042 -0.0050 -0.0040 -0.0046 -0.0003 0.0008 0.0002 0.0013 0.0015 

1.6 Inf -0.0036 -0.0038 -0.0038 -0.0034 -0.0033 0.0001 0.0008 0.0005 0.0011 0.0013 
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Table 5.21 Bias of the change-point mle when 𝑇/𝜏 = 100/30 and 𝛿 = 1.5 for univariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

0.0020 0.0020 0.0162 0.0162 0.0017 -0.0016 0.0182 0.0267 0.0282 

1 10 

 

-0.0010 -0.0010 0.0086 0.0086 -0.0020 -0.0023 0.0102 0.0124 0.0098 

1 20 

 

-0.0044 -0.0044 0.0029 0.0029 -0.0034 -0.0035 0.0075 0.0085 0.0060 

1 Inf 0.0000 0.0001 0.0001 0.0070 0.0070 -0.0003 -0.0003 0.0096 0.0097 0.0078 

 
 

          1.1 5 

 

0.0102 0.0301 0.0294 0.0697 0.0143 0.0504 0.0355 0.0990 0.1179 

1.1 10 

 

-0.0034 -0.0064 0.0057 0.0038 0.0002 0.0089 0.0124 0.0224 0.0258 

1.1 20 

 

-0.0080 -0.0068 -0.0010 -0.0026 -0.0028 0.0048 0.0079 0.0130 0.0150 

1.1 Inf -0.0049 -0.0051 -0.0042 0.0020 -0.0007 -0.0001 0.0062 0.0094 0.0130 0.0141 

 
 

          1.6 5 

 

0.0294 0.0246 0.0690 0.0632 0.0436 0.0719 0.0813 0.1218 0.1328 

1.6 10 

 

-0.0108 -0.0173 -0.0033 -0.0104 0.0049 0.0141 0.0161 0.0262 0.0301 

1.6 20 

 

-0.0171 -0.0201 -0.0126 -0.0175 -0.0014 0.0063 0.0076 0.0135 0.0157 

1.6 Inf -0.0161 -0.0154 -0.0158 -0.0111 -0.0120 0.0004 0.0062 0.0083 0.0119 0.0133 
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Table 5.22 Bias of the change-point mle when 𝑇/𝜏 = 100/30 and 𝛿 = 2 for univariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

0.0022 0.0022 0.0081 0.0081 0.0017 0.0012 0.0084 0.0104 0.0099 

1 10 

 

-0.0005 -0.0005 0.0022 0.0022 -0.0005 -0.0007 0.0029 0.0036 0.0029 

1 20 

 

-0.0026 -0.0026 -0.0007 -0.0007 -0.0021 -0.0020 0.0007 0.0011 0.0006 

1 Inf 0.0000 0.0005 0.0005 0.0011 0.0011 0.0003 0.0003 0.0027 0.0028 0.0024 

 
 

          1.1 5 

 

0.0046 0.0182 0.0109 0.0301 0.0054 0.0280 0.0125 0.0429 0.0499 

1.1 10 

 

-0.0021 -0.0011 0.0009 0.0012 -0.0002 0.0049 0.0032 0.0078 0.0099 

1.1 20 

 

-0.0034 -0.0028 -0.0015 -0.0018 -0.0020 0.0024 0.0008 0.0041 0.0055 

1.1 Inf -0.0013 -0.0008 -0.0008 0.0000 0.0000 0.0003 0.0037 0.0026 0.0051 0.0061 

 
 

          1.6 5 

 

0.0109 0.0185 0.0207 0.0315 0.0140 0.0358 0.0252 0.0510 0.0563 

1.6 10 

 

-0.0039 -0.0040 -0.0017 -0.0026 -0.0001 0.0058 0.0030 0.0083 0.0104 

1.6 20 

 

-0.0053 -0.0056 -0.0040 -0.0047 -0.0015 0.0026 0.0007 0.0042 0.0056 

1.6 Inf -0.0036 -0.0033 -0.0029 -0.0026 -0.0024 0.0002 0.0035 0.0020 0.0046 0.0056 
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Table 5.23 Bias of the change-point mle when 𝑇/𝜏 = 50/25 and 𝛿 = 1.5 for univariate series. 

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

-0.0055 -0.0055 -0.0031 -0.0031 -0.0065 -0.0309 -0.0072 -0.0318 -0.0042 

1 10 

 

-0.0008 -0.0008 -0.0008 -0.0008 -0.0006 -0.0006 -0.0012 -0.0013 -0.0010 

1 20 

 

-0.0030 -0.0030 -0.0015 -0.0015 -0.0017 -0.0015 -0.0007 -0.0005 -0.0006 

1 Inf 0.0000 0.0023 0.0023 0.0018 0.0018 0.0020 0.0020 0.0016 0.0018 0.0018 

 
 

          1.1 5 

 

0.0031 -0.0069 0.0114 -0.0028 0.0064 0.0010 0.0114 -0.0094 0.0076 

1.1 10 

 

-0.0041 -0.0066 -0.0040 -0.0062 0.0010 0.0010 0.0023 0.0018 0.0032 

1.1 20 

 

-0.0078 -0.0079 -0.0048 -0.0066 -0.0014 -0.0010 0.0009 0.0001 0.0014 

1.1 Inf -0.0049 -0.0029 -0.0039 -0.0038 -0.0037 0.0019 0.0015 0.0025 0.0030 0.0030 

 
 

          1.6 5 

 

0.0247 -0.0131 0.0469 0.0051 0.0370 0.0244 0.0507 0.0373 0.0477 

1.6 10 

 

-0.0122 -0.0208 -0.0102 -0.0186 0.0043 0.0062 0.0102 0.0125 0.0150 

1.6 20 

 

-0.0161 -0.0210 -0.0149 -0.0173 -0.0004 0.0014 0.0046 0.0062 0.0078 

1.6 Inf -0.0161 -0.0159 -0.0171 -0.0160 -0.0165 0.0014 0.0019 0.0044 0.0052 0.0063 

 
 

           

 

  



 

 

 

1
4
6 

Table 5.24 Bias of the change-point mle when 𝑇/𝜏 = 50/25 and 𝛿 = 2 for univariate series.  

K2 df Theory 
MLE Cobb Bayesian 

kk ke ek ee kk ke ek ee Non-Info. 

 
 

          

 
 

          
1 5 

 

-0.0012 -0.0012 -0.0002 -0.0002 -0.0011 -0.0035 -0.0007 -0.0047 -0.0017 

1 10 

 

0.0005 0.0005 -0.0008 -0.0008 -0.0002 -0.0002 -0.0011 -0.0011 -0.0011 

1 20 

 

-0.0010 -0.0010 -0.0007 -0.0007 -0.0009 -0.0010 -0.0006 -0.0007 -0.0008 

1 Inf 0.0000 -0.0001 -0.0001 0.0006 0.0006 0.0005 0.0006 0.0006 0.0005 0.0005 

 
 

          1.1 5 

 

0.0017 -0.0024 0.0033 -0.0006 0.0029 0.0006 0.0042 0.0019 0.0042 

1.1 10 

 

-0.0005 -0.0019 -0.0014 -0.0022 0.0003 0.0005 -0.0001 0.0004 0.0009 

1.1 20 

 

-0.0023 -0.0029 -0.0020 -0.0024 -0.0009 -0.0008 -0.0004 0.0000 0.0002 

1.1 Inf -0.0013 -0.0015 -0.0010 -0.0009 -0.0002 0.0005 0.0009 0.0007 0.0012 0.0012 

 
 

          1.6 5 

 

0.0079 -0.0020 0.0123 0.0027 0.0106 0.0112 0.0142 0.0176 0.0196 

1.6 10 

 

-0.0031 -0.0057 -0.0027 -0.0043 0.0006 0.0028 0.0015 0.0046 0.0053 

1.6 20 

 

-0.0043 -0.0057 -0.0046 -0.0057 -0.0009 0.0006 -0.0001 0.0017 0.0023 

1.6 Inf -0.0036 -0.0036 -0.0040 -0.0038 -0.0040 0.0002 0.0015 0.0010 0.0022 0.0026 
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Figure 5.17 Comparison of the kk, ke, ek, and ee estimation method for MLE and Cobb‘s method when 𝑇/𝜏 = 100/50 for 

univariate series. 
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Figure 5.18 Comparison of the kk, ke, ek, and ee estimation method for MLE and Cobb‘s method when 𝑇/𝜏 = 100/30 for 

univariate series. 
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Figure 5.19 Comparison of the kk, ke, ek, and ee estimation method for MLE and Cobb‘s method when 𝑇/𝜏 = 50/25 for 

univariate series. 
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Figure 5.20 The effect of sample size and change-point position to the MLE estimation method for univariate series. 

 

S
q

u
a

re
 r

o
o

t 
o

f 
M

S
E

0
.2

0
.4

0
.6

0
.8

1
.0 100/50

100/30
50/25

(a) delta=1.5, MLE.kk

1 1.1 1.6

S
q

u
a

re
 r

o
o

t 
o

f 
M

S
E

0
.2

0
.4

0
.6

0
.8

1
.0 100/50

100/30
50/25

(b) delta=1.5, MLE.ke

1 1.1 1.6

S
q

u
a

re
 r

o
o

t 
o

f 
M

S
E

0
.2

0
.4

0
.6

0
.8

1
.0 100/50

100/30
50/25

(c) delta=1.5, MLE.ek

1 1.1 1.6

S
q

u
a

re
 r

o
o

t 
o

f 
M

S
E

0
.2

0
.4

0
.6

0
.8

1
.0 100/50

100/30
50/25

(d) delta=1.5, MLE.ee

1 1.1 1.6

S
q

u
a

re
 r

o
o

t 
o

f 
M

S
E

0
.2

0
.4

0
.6

0
.8

1
.0 100/50

100/30
50/25

(e) delta=2, MLE.kk

1 1.1 1.6

S
q

u
a

re
 r

o
o

t 
o

f 
M

S
E

0
.2

0
.4

0
.6

0
.8

1
.0 100/50

100/30
50/25

(f) delta=2, MLE.ke

1 1.1 1.6

S
q

u
a

re
 r

o
o

t 
o

f 
M

S
E

0
.2

0
.4

0
.6

0
.8

1
.0 100/50

100/30
50/25

(g) delta=2, MLE.ek

1 1.1 1.6

S
q

u
a

re
 r

o
o

t 
o

f 
M

S
E

0
.2

0
.4

0
.6

0
.8

1
.0 100/50

100/30
50/25

(h) delta=2, MLE.ee

1 1.1 1.6



 

 

 

1
5
1 

 

Figure 5.21 The effect of sample size and change-point position to the Cobb‘s estimation method for univariate series. 
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Figure 5.22 The effect of sample size and change-point position to the Bayesian‘s estimation method for univariate series. 
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Figure 5.23 Comparison of estimation methods when the MLE and Cobb used ‗kk‘ for parameter estimates for univariate 

series. 
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Figure 5.24 Comparison of estimation methods when the MLE and Cobb used ‗ke‘ for parameter estimates for univariate 

series. 
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Figure 5.25 Comparison of estimation methods when the MLE and Cobb used ‗ek‘ for parameter estimates for univariate 

series. 
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Figure 5.26 Comparison of estimation methods when the MLE and Cobb used ‗ee‘ for parameter estimates for univariate 

series. 
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Figure 5.27 Effect of the degrees of freedom when the series follow univariate t-distribution using MLE method for 

univariate series. 
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Figure 5.28 Effect of the degrees of freedom when the series follow univariate t-distribution using Cobb‘s method for 

univariate series. 
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Figure 5.29 Effect of the degrees of freedom when the series follow univariate t-distribution using Bayesian method for 

univariate series. 
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Figure 5.30 Comparison of estimation methods when the series follow univariate t-distribution with df=5 for univariate 

series.  
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Figure 5.31 Comparison of estimation methods when the series follow univariate t-distribution with df=10 for univariate 

series.  
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Figure 5.32 Comparison of estimation methods when the series follow univariate t-distribution with df=20 for univariate 

series.  
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Under the univariate case, the behavior of the mse was very similar to the multivariate 

case.  But in general, all the methods produced closer results to the theoretical values.  

Both MLE and Cobb‘s method were not greatly affected by how the parameters before 

and after the change-point were estimated.  The effect of the sample size and the 

location of the change-point could be negligible except using the Bayesian method.  

The MLE method produced the smallest mse, and the Bayesian method produced the 

largest, and the results using Cobb‘s method were in between.  The mse produced by 

the MLE method was very close to the theoretical mse.   

If the series followed t-distribution, all the methods produced larger mse when the 

degrees of freedom decreased.  It could be seen from Figures 5.27 – 5.32 that unless 

the degree of freedom was 5, all the methods provided fairly close mse to the results 

when the normality assumption was satisfied.  Among all the methods, the MLE 

consistently produced the smallest mse. 
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6 APPLICATION TO ENVIRONMENTAL MONITORING 

6.1 River Stream Flows in the Northern Québec Labrador Region 

The Québec-Labrador peninsula is located in the eastern part of Canada.  It is 

surrounded by the United States in the south, James Bay and Hudson Bay in the west, 

the Strait of Hudson and Ungava Bay in the north, and the Atlantic Ocean in the east.  

Over half of the region is covered by forest. There are a large number of lakes in this 

region and several rivers run through it.  This is one reason why the 

Québec-Labrador peninsula is of great importance from a hydrological point of view.   

The climate in the region varies from being moderate to arctic as one travels from 

south to north.  The eastern part of the peninsula has a marine climate because of the 

Atlantic Ocean.  The southern part has a continental climate where the winters are 

long and chilly and the summers are warm and humid.  The northern part has an 

arctic climate not only due to its high altitude but also due to the surrounding waters of 

James Bay and Hudson Bay.  Consequently, the winters in this region are extremely 

cold and long, and the summers are short and cool.  

The waters of James Bay and Hudson Bay make the area very moist.  During fall and 

winter, the prevailing westerly winds pick up moisture from the James Bay and the 

Hudson Bay and dump it on the eastern part of the peninsula.  The western part of the 

peninsula has many great glaciers of the world.  Melted water from these glaciers 

drains north into the Ungava Bay, south to the gulf of Saint Lawrence River, east to 

the Atlantic Ocean, and west into the James and Hudson Bays.  This region has more 
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running water per unit area than any other place in the world, not only because of the 

abundance of melted snow and precipitation, but because it is so cold here most of the 

time that there is less water evaporated from the land (MacCutcheon, 1991).   

All of this running water forms into a number of streams and rivers, and stream flow 

in them enters a natural recession when the air temperature drops below zero during 

the winter-period (December through April).  It is in this winter-period that snowfall 

accumulates and forms a spectacular snow-cover in the region.  When the winter 

snow-cover melts in the spring, spring floods occur and these spring floods account 

for most of the discharge into the rivers of the region.   

Québec has one of the most extensive hydroelectric developments in North America.  

Nearly 96% of all of Québec‘s power is hydroelectric, and over 45% of all 

hydroelectric power in Canada is produced in the Province of Québec alone.  Seen 

from this perspective, it is extremely important to monitor stream flows of various 

rivers of the region and look for signs of any appreciable changes; lest the economic 

consequences can be staggering.   

Recently, Perreault et al (2000) considered data on average stream flows in spring 

(January to June runoff) for six rivers, namely, Romaine, Churchill Falls, Manicougan, 

Outardes, Sainte-Marguerite, and À la Baleine, that flow in the Northern Québec 

Labrador region.  The collected data on the average stream flow from these rivers 

was expressed in 1/ 𝑘𝑚2 × 𝑠  and spanned through the years 1957-1995 except for 
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the À la Baleine river, for which data was available only between 1963-1995.  We 

present below in Figure 6.1 and also Appendix 1 the stream flow data on the six rivers. 
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Figure 6.1.  Average Spring flows of six rivers: (a) Romaine, (b) Churchill Falls, (c) 

Manicougan, (d) Outardes, (e) Sainte-Marguerite, (f) À la Baleine during 1957-1995 

from the Northern Québec Labrador region. 
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The geographic locations of these six rivers are diverse in that they represent the 

region‘s varied climatic conditions quite well.  Rivers Romaine, Manicouagan, 

Outardes, and Sainte-Marguerite are located south of Quebec.  Their waters flow into 

the Saint Lawrence river, where it has a continental climate.  The Churchill Falls is a 

group of waterfalls located in the Labrador region to the east side of the peninsula, 

where it has a marine climate.  At a staggering 5948 MW of hydroelectric power, this 

series of rapids constitutes the second largest hydroelectric power generating capacity 

in North America.  The river À la Baleine, otherwise known as the Great Wale River 

is located north of Québec and has an arctic climate.  Thus, the six rivers could be 

viewed to represent the region‘s river system reasonably well.  Hydroelectric power 

generation in the region critically depends on steady flows in the region‘s river 

system, year after year.  Hence it is vital that stream flows in the river system are 

monitored from various aspects in order to understand the steadiness of flows or any 

departures thereof.   

Our main goal is one of advancing the mle method for the estimation of an unknown 

change-point in the mean vector of a sequence of multivariate normal observations.  

The need for multivariate change-point methods is quite compelling.  While 

analyzing data on six rivers from the Québec Labrador region, Perreault et al (2000) 

correctly argued that univariate formulation of each river independently would fail to 

take into account significant spatial correlations one can expect among the rivers that 

flow in the same region.  Moreover, when modeled in a multivariate framework, any 

change-point identified in the river flows could be viewed as a global change-point for 
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the whole region.  Such region-wide conclusions would be inappropriate on the basis 

of individual univariate analyses only.   

In our effort to extend the mle method for estimation of change in the mean of a 

multivariate normal distribution, we have shown in Chapter 3 that the multivariate 

problem can be directly translated into an equivalent univariate problem.  Such a 

simplistic solution is not enjoyed by the Bayesian approach (see Perreault et al 2000).  

Thus while there are complexities that are difficult to overcome under the mle 

approach, it seems there is potential for it to yield delightful solutions as well.  Of 

course, the greater aim of this chapter is to ensure that this simplistic solution under 

the mle is accessible to hydrologists, and to this extent we carry out a detailed 

application of the methodology to river flows from the Northern Québec Labrador 

region. 

Due to the problem of missing data for the À la Baleine river between the years 

1957-1962, Perreault et al (2000) utilized data only for the common period 1963-1965 

in their main analysis, and used data from the five rivers for the period 1957-1962 as a 

prior sample to estimate hyperparameters of their priors.  In our analysis, we pursue 

the application of the mle method for the data on river flows presented in Appendix 1 

under three different cases:  (i) full data for the first five rivers between the years 

1957-1995; (ii) data for all six rivers between the years 1963-1995; and (iii) data for 

all six rivers between the years 1957-1995, in which we treat the years 1957-1962 for 

À la Baleine river as missing.  Where appropriate we pursue the application under 
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case (i) with greater emphasis.  It will be evident in the subsequent sections that the 

three analyses yield quite similar results. 

Before we go ahead with the technical formulation of the model, we need to address 

issues about the distribution to be considered, serial correlations in the data, and the 

behavior of spatial covariances over time.  The same issues were also relevant for 

Perreault et al (2000).  Adopting their assumptions, we initially formulate the river 

flows by the multivariate Gaussian family in which spatial covariance is stationary, 

and the observations are serially uncorrelated and hence independent over time.  We 

shall revisit the assumptions of Gaussianity and independence and check for their 

validity through residual analysis of the fitted model.  The assumption of stationarity 

of spatial covariance seems less of a concern for this data and hence we shall not 

pursue validation of this aspect in our residual analysis.   

The rest of the section is organized as follows: first, we formulate the multivariate 

change-point model and then carry out the likelihood ratio test for change-point 

detection under the three cases of data choices, second, residual analysis will be 

performed for the fitted model under case (i), and lastly, asymptotic distribution of the 

change-point mle will be developed. 
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6.1.1 Multivariate change-point model setup 

We begin by first formulating the change-point model for the river stream flow data in 

Appendix 1.  The problem formulation will follow the problem setup in Chapter 2.  

Accordingly, let 𝑌1, 𝑌2, … , 𝑌39  be a sequence of time-series valued independent 

random vectors such that 𝑌𝑖 ∈ ℝ, 𝑖 = 1, … ,39.  Furthermore, for each 𝑖 = 1, … ,39 

let 𝑌𝑖  follow the multivariate Gaussian distribution with mean vector 𝜇  and 

variance-covariance matrix Σ.  Then, under the classical change-point model in 

which the covariance matrix Σ remains stationary throughout the sampling period, 

the mean vector 𝜇 changes from an initial value 𝜇0 to a subsequent value 𝜇1 at 

some unknown change-point 𝜏39 ∈  1,2, … , 38 .  Following the assumption of our 

study, it will be still assumed that parameters 𝜇0, 𝜇1 and Σ are all unknown. Thus, 

under the change point model, one has 

 
𝑌𝑖  ~  

𝑓 ∙; 𝜇0, 𝛴 , 𝑖 = 1, … , 𝜏39

𝑓 ∙; 𝜇1, Σ , 𝑖 = 𝜏39 + 1, … , 39
  

(6.1) 

where 𝜏39 ∈  1,2, … , 38 . 

On the other hand, when there is no change point in the model, a single parameter set 

is applicable throughout the sampling period such that under the no change model one 

has 

 𝑌𝑖  ~𝑓 ∙; 𝜇0, 𝛴 , 𝑖 = 1, … , 39  (6.2) 
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One is confronted with having to decide whether the given river flow data set can be 

modeled by the no change model (6.2) , or by the change point model (6.1) with a 

change occurring in the mean vector at an unknown change point 𝜏39.  Thus, the 

statistical problem is one of carrying out a test of the following hypotheses: 

H0: The data conforms to no change model (6.2) 

Against  H1: The data conforms to change point model (6.1). 
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6.1.2 Detection of an unknown Change-Point in River Stream Flows 

We shall now apply the above detection methodology to cases (i) – (iii) as elaborated 

in Chapter 1.  While applying the methodology to case (i), we have computed the 

likelihood ratio 𝑈𝑛 ,𝑡  for 𝑡 = 3, … , 37.  This allowed us to have minimum number of 

observations at either end to compute mles 𝜇 0,𝑡 , 𝜇 1,𝑡  and Σ 𝑡  for each value of 𝑡.  

Similar approach was used for cases (ii) and (iii) also.  Also, while analyzing the data 

under case (iii) we first replaced each of the six missing data values for À la Baleine 

river by the average of the data for the years 1963-1995 for the same river.   

Figure 6.2 is a plot of 𝑈39,𝑡  for 𝑡 = 3, … , 37 under case (i).  The computed values 

of the statistic W and the corresponding P-values for the three cases were: (i) 

𝑤1 = 5.99, 𝑃 − 𝑣𝑎𝑙𝑢𝑒1 = 0.0050 ; (ii) 𝑤2 = 6.39, 𝑃 − 𝑣𝑎𝑙𝑢𝑒2 = 0.0033 ; (iii) 

𝑤3 = 6.31, 𝑃 − 𝑣𝑎𝑙𝑢𝑒3 = 0.0036.  Clearly all three cases provide strong evidence to 

conclude that there is an unknown point of time in the river flow data subsequent to 

which the mean vector has changed significantly. 

The mle 𝜏 39 of the unknown change-point 𝜏39 is obtained as the value of t at which 

𝑈39,𝑡  is maximized.  The mle under case (iii) is 𝜏 39 = 28, which implies that mean 

vector for the six rivers considered in the data has changed significantly subsequent to 

the year 1984.  Cases (i) and (ii) also provide 1984 as the year of change.  It is 

important to note that the mle coincides with the Bayesian posterior mode obtained by 

Perreault et al (2000).  However, it is not sufficient to merely obtain the above point 
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estimate for estimating the time of change.  It is much more preferable to have 

confidence interval estimates at any desired level.  
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Figure 6.2:  Twice log-likelihood ratio for a given change-point for the six rivers 

from the Northern Québec Labrador region..  
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Before moving on, we shall first perform residual analysis on the basis of residuals 

from the fitted model under case (iii), mainly to investigate the appropriateness of the 

assumptions of multivariate Gaussianity and independence over time.  The results of 

appropriateness analysis for cases (i) and (ii) are similar and will not be further 

discussed here. 

First, we need mles of all model parameters in order to fit the model and get the 

residuals.  On the basis of the mle being 𝜏 39 = 28, the computed mles 𝜇 0,28, 𝜇 1,28 

and Σ 28 , of the model parameters were 

 𝜇 0,28 =  30.11, 25.77, 28.84, 26.87, 29.40, 22.05  

𝜇 1,28 =  22.82, 19.68, 24.80, 23.07, 27.48, 18.62  

 

and 

 

Σ 28 =

 

 
 
 

15.48 7.93 8.19 8.68 12.26 5.45
7.93 12.70 10.21 9.84 11.32 7.06
8.19 10.21 20.14 19.10 15.96 3.28
9.68 9.84 19.10 23.03 16.86 4.07

12.26 11.32 15.96 16.86 27.47 5.55
5.45 7.06 3.28 4.07 5.55 11.60 

 
 
 

 

 

Apart from the above point estimates, standard errors for 𝜇 0,28 and 𝜇 1,28 would also 

be of interest.  Based upon variance estimates represented by the diagonal elements 

in Σ 28  above, and corresponding sample size of 28, standard errors for components in 

𝜇 0,28  were 𝑠𝑒0 =  0.743 0.673 0.848 0.907 0.990 0.644 .  Similarly, 

with sample size 11, the standard errors for 𝜇 1,28  were 

𝑠𝑒0 =  1.186 1.074 1.353 1.447 1.580 1.027    



 

177 

 

The above parameter estimates yield the fitted model, which in itself yields the 

corresponding residuals for the fitted multivariate model.  As part of residual 

analysis, we first applied the standard Shapiro-Wilk test for univariate normality of 

residuals from each river and we found the corresponding P-values to be 0.5144, 

0.9616, 0.3780, 0.4241, 0.7063, and 0.8980, respectively.  Thus, residuals from all 

six rivers confirm the assumption of Gaussianity in a univariate way.  However, it is 

well known that univariate Gaussianity of each series may not necessarily imply that 

the residual data in vector form would be multivariate Gaussian.  Thus, in order to 

test for multivariate Gaussianity of the residuals, we applied Mardia‘s skewness and 

kurtosis tests (Mardia, 1970), as well as the test proposed by Henze and Zirkler 

(1990).  The P-values for the three tests were 0.0294, 0.7505 and 0.9463, 

respectively.  Thus, except for the marginal evidence based on skewness test, there is 

no evidence otherwise in the multivariate tests that multivariate Gaussianity 

assumption is in violation. 

Next, we utilize the residuals for investigating the assumption of independence over 

time.  If the model under independence is truly a good fit, then both autocorrelations 

and partial autocorrelations of different lags for residuals from each of the six rivers 

should show no appreciable significances.  Moreover, independence at the 

multivariate level should mean that forward as well as backward cross-correlations of 

different lags for residuals from any pair of rivers should also show no significances.  

First, we present in Figures 6.3a-e, autocorrelation plots up to the first ten lags 
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together with the corresponding 5% significance curves, for residuals of each of the 

six rivers.   
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Figure 6.3:  Plot of auto correlations for residuals from six rivers, (a) Romaine, (b) 

Churchill Falls, (c) Manicougan, (d) Outardes, (e) Sainte-Marguerite, (f) À la Baleine. 
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Except for the autocorrelation plot for the Manicouagan river (Figure 6.3c) in which 

the auto correlation at lag 2 is significant, the remaining autocorrelation plots obey 

independence quite well. While Figure 6.3(a), 6.3(d) and 6.3(f) show no significance 

at all, the significances at lag 1 in Figure 6.3(b) and 6.3(e) seem too marginal to be of 

any real concern. While we do not display the partial autocorrelation plots, we found 

that their behavior was uniformly better than the autocorrelation plots for all the five 

rivers and hence they show even less of a concern. Next, we plotted the 

cross-correlation plots for all pairs of rivers (both forward and backward) and noted 

that they were all essentially similar to Figure 6.3(a)-(f). Thus, the auto correlation, 

partial auto correlation, and cross-correlation plots put together do not show any 

strong evidence that would be indicative of violation in the assumption of time 

independence among the vector valued observations. Overall, the residual analysis 

firmly validates multivariate Gaussianity and does not indicate violation of 

independence over time in a manner that it would pose real concerns. 
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6.1.3 Asymptotic Distribution of the Change Point MLE for River Stream Flows 

In section 6.1.3, we found the MLEs of the model parameters under case (iii) to be  

𝜏 39 = 28.  We shall now obtain confidence interval estimate of 𝜏39 through the 

asymptotic distribution of 𝜏 39 for which, we can assume that  𝜇 0,28, 𝜇 1,28 and Σ 28  

given above are true values rather than estimates.  As discussed in Chapter 3, this is 

possible because the asymptotic distributions of 𝜏 39  and 𝜏 39  are identical. This 

allowed us to compute 𝜂 = Σ 28
−1/2

 𝜇 1,28 − 𝜇 0,28  and hence 𝛿 =
1

2
 𝜂𝑇𝜂 .  The 

value of δ under case (i) was 𝛿1 = 1.22. The corresponding values under cases (ii) 

and (iii) were 𝛿2 = 1.34  and 𝛿3 = 1.23 , respectively. Adapting the algorithmic 

procedure in section 3.1, we computed the asymptotic distribution of 𝜏 39 − 𝜏39 for 

𝛿1, 𝛿2 and 𝛿3. Since the asymptotic distribution of 𝜏 39 − 𝜏39 is symmetric around 

zero, we present probabilities only for nonnegative integers of 𝜏 39 − 𝜏39. We also find 

it convenient to present in the same table cumulative probabilities of the form 

Pr  𝜏 39 − 𝜏39 ≤ 𝑖 .  

On the basis of the distributions for 𝜏 39 − 𝜏39 , the standard deviation of the 

asymptotic distribution of the change point MLE under case (i) was found to be 0.80 

years, it was 0.65 years under case (ii), and 0.79 years under case (iii). Moreover, 

Table 6.1 has allowed us to compute confidence interval estimates for 𝜏39 of any 

desired level.  For example, a 93% confidence interval estimate for the true change 

point 𝜏39 under cases (i) and (iii) is {27, 28, 29}, and a 97% confidence interval is 

{26, 27, 28, 29, 30}.  The same interval estimates expressed in years are {1983, 
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1984, 1985}, and {1982, 1983, 1984, 1985, 1986}, respectively. Under case (ii), these 

intervals can be seen to have confidence levels of 95% and 98%, respectively.  For 

comparison purposes, we note that the standard deviation for the change point estimate 

under the MLE approach is smaller than the reported value of 2.33 years under the 

Bayesian approach (Perreaul et al. 2000a). Further, the 90% posterior credibility 

interval under the Bayesian approach reported by (Perreaul et al. 2000a) was {1982, 

1983, 1984, 1985}.  While the MLE approach seems to do better than the Bayesian 

approach in this case, one should not conclude that this would be the case with other 

data sets. There is scope for uncertainty in the asymptotic distribution of the MLE due 

to the fact that the mean vectors before and after the change point were assumed to be 

known, whereas, in reality they are estimated from data. Even though the equivalence 

result of (Hinkley 1972) justifies this consideration for large samples, one should be 

prepared for some uncertainty because of the limited nature of the sample size in the 

river flow data. 
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Table 6.1. Asymptotic distribution of 𝜉 ∞  under case (i), (ii) and (iii) for the 

change-point mle of the six rivers from the Northern Québec Labrador region.. 

𝑖 
Pr 𝜉 ∞ = ±𝑖  Pr  𝜉 ∞ ≤ 𝑖  

𝛿1 = 1.22 𝛿2 = 1.34 𝛿3 = 1.23 𝛿1 = 1.22 𝛿2 = 1.34 𝛿3 = 1.23 

0 0.7543 0.8036 0.7588 0.7543 0.8036 0.7588 

1 0.0892 0.0760 0.0881 0.9328 0.9555 0.9350 

2 0.0223 0.0159 0.0217 0.9773 0.9872 0.9784 

3 0.0068 0.0041 0.0066 0.9910 0.9954 0.9915 

4 0.0023 0.0012 0.0022 0.9957 0.9978 0.9960 

5 0.0008 0.0004 0.0008 0.9974 0.9986 0.9975 

6 0.0003 0.0001 0.0003 0.9981 0.9988 0.9981 

7 0.0001 0.0000 0.0001 0.9983 0.9989 0.9984 
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6.2 Change-point Analysis of Zonal Temperature Deviations 

6.2.1 Dataset description 

In our example, the dataset is from Angell‘s (2009) study on global temperature 

deviation derived from radiosonde records.  The dataset contains mean annual and 

seasonal air temperature for surface and upper layers (850 – 300, 300 – 100 and 100 – 

50 mb) from 1958 to 2008, where the 850 – 300 mb layer represented the troposphere, 

300 – 100 represented the tropopause, and 100 – 50 mb layer represented the lower 

stratosphere.  The data was obtained from 63 globally distributed radiosonde stations.  

Angell‘s (2009) illustration for the atmosphere layers are as in Figure 6.4. 

The upper-air temperature was obtained from the difference in height between 

constant-pressure layers at each individual station.  Angell (2009) obtained the 

pressure-height data before 1980 from published values in Monthly Climatic Data for 

the World. Between 1980 and 1990, Angell (2009) obtained the data from the Climatic 

Data for the World and the Global Telecommunications System (GTS) Network which 

was available at the National Meteorological Center. Between 1990 and 1995, Angell 

(2009) obtained the data from GTS only. Since 1995, Angell (2009) has obtained the 

data from National Center for Atmospheric Research files. The data are evaluated as 

deviations from the mean based on the interval 1958-1977. 
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Figure 6.4.  Layers of atmosphere for Angell‘s (2009) radiosonde temperature data. 
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All the data have been presented as the deviations from 1958-1977 mean temperatures.  

Then the deviations from all the stations were averaged with equal weights to obtain 

annual and seasonal mean temperature deviations.  Currently the data are available for 

South Polar  60∘ 𝑆 −  90∘ 𝑆 , and North Polar  60∘ 𝑁 −  90∘ 𝑁 .  The dataset for 

South Polar temperature deviation is in Appendix II, and the dataset for North Polar is 

available in Appendix III.  Figures 6.5 and 6.6 are the time series plot for the annual 

mean temperature deviations for South and North Polar respectively.   
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Figure 6.5.  South Polar annual mean temperature deviations during 1958 – 2008. 
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Figure 6.6.  North Polar annual mean temperature deviations during 1958 – 2008.  
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From the time series plots in Figures 6.5 and 6.6, it was obvious that some parameter 

change had occurred in most of the series; however, in the past, there had been little 

formal statistical analysis for the change-point, and we were not able to tell exactly 

when the change had occurred.  In the following sections, the change-point analysis 

using mle methods were applied to the data.  The change-point was detected using 

maximum likelihood method, and the mean and confidence interval about the detection 

were computed using the method specified in Chapter 4.   
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6.2.2 Change-point Analysis at South Polar 

We begin by first formulating the change-point model for the South Polar temperature 

deviation data in Appendix II.  The problem formulation will follow the problem 

setup in Chapter 2.  Accordingly, let 𝑌1, 𝑌2, … , 𝑌51  be a sequence of time-series 

valued independent random vectors.  Furthermore, for each 𝑖 = 1, … ,51  let 𝑌𝑖  

follow the Gaussian distribution with mean vector 𝜇 and variance-covariance matrix 

Σ (variance 𝜍2 for univariate case).  Assuming the parameters for the observations, 

𝜇 and Σ (or 𝜍2), keep constant, the no-change model can is 

 𝑀0:  𝑌𝑖  ~𝑁 𝜇, 𝛴 , 𝑖 = 1, … , 51  (6.3) 

If a change in the parameters occurs at some unknown point of time, we have 3 

possible models: (i) change in mean only, that is to say, the mean changed from 𝜇0 to 

𝜇1; (ii) change in covariance (or variance) only, that is to say, the covariance matrix 

(or variance) changed from Σ0  𝑜𝑟 𝜍0
2  to Σ1  𝑜𝑟 𝜍1

2 ; (iii) change in both mean and 

covariance (or variance), that is to say, the mean changed from 𝜇0 to 𝜇1, and the 

covariance matrix (or variance) changed from Σ0  𝑜𝑟 𝜍0
2  to Σ1  𝑜𝑟 𝜍1

2 .  The 

models with change-point under the three cases can be written as 

 
𝑀1:  𝑌𝑖  ~  

𝑁 𝜇0, 𝛴 , 𝑖 = 1, … , 𝜏𝑛

𝑁 𝜇1, Σ , 𝑖 = 𝜏𝑛 + 1, … , 51
  

(6.4) 

 
𝑀2:  𝑌𝑖  ~  

𝑁 𝜇, 𝛴0 , 𝑖 = 1, … , 𝜏𝑛

𝑁 𝜇, Σ1 , 𝑖 = 𝜏𝑛 + 1, … , 51
  

 

 
𝑀3:  𝑌𝑖  ~  

𝑁 𝜇0, 𝛴0 , 𝑖 = 1, … , 𝜏𝑛

𝑁 𝜇1, Σ1 , 𝑖 = 𝜏𝑛 + 1, … , 51
  

 

The change-point detection was to test the following hypothesis: 
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 𝐻0: The data conforms to no change model 𝑀0 (6.5) 

Against 𝐻1: The data conforms to change point model 𝑀𝑖  

where 𝑖 = 1, 2, 3. 
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6.2.2.1 Change-point Detection 

Before the change-point analysis, the position and the nature of the change-point 

remain unknown for us, that is to say, we do not know whether the change happens at 

only one layer or multiple layers, and whether the change of parameters involves mean 

only, covariance (variance) only or both.  Therefore, an exhaustive detection method 

will be applied on the dataset.  We will use the maximum likelihood change-point 

detection method for univariate and multivariate on all the possible combinations of 

layers that were specified in Chapter 2 to test the 3 hypotheses in (6.5).  The detected 

change-points and p-values of all cases are listed in Table 6.2.  We will start from the 

4-dimensional multivariate change-point detection for all layers.  If no change is 

detected, it means that no change of parameters occurred in the dataset.  If a 

statistically significant change-point is detected, then we will perform the 

change-point detection on all the combinations of 3-dimensional data.  If the 

detection is not significant for a combination for 3 layers, then no change occurred in 

any of the layers, and they will be excluded in the detection procedure in the next step, 

which makes the detection more focused on the data with possible occurrences of 

change-point.  The same detection will be applied to all possible combinations of the 

temperature deviations of 2 layers, excluding the ones that do not show significant 

change in 3-dimensional data.  This procedure will continue until all the univariate 

data are detected.  Then a conclusion can be made about which layer or combination 

of layers has a change of parameters at an unknown point of time.  The combination 
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of layers will be used together for inference on the change-point to gain the maximum 

power. 

In determining the nature of the change-point, similar exhaustive steps will be applied.  

First, whether there is a change in both mean and/or covariance (variance) will be 

detected.  When a significant change is detected, it means that a change in mean, 

covariance (variance) or both has occurred in the dataset.  Then the change-point 

detection in mean only will be performed.  If the change in mean is significant, then 

the residual of the data will be obtained by adjusting for the mean before and after the 

change-point, and the detection on change in covariance (variance) only will be 

applied on the residuals.  If the change in mean is not significant, then no adjustment 

is required, and the detection on change in covariance (variance) only will be 

performed directly on the data.  Table 6.2 shows the detection results following the 

above procedure.  For convenience, the different layers of the atmosphere are 

numbered as follows: 1 represents the surface layer, 2 represents the 850 – 300 mb 

layer, 3 represents the 300 – 100 mb layer, and 4 represents the 100 – 50 mb layer. 
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Table 6.2. Change-point detection of South Polar annual mean temperature deviations 

during 1958 – 2008 for mean and/or covariance (variance), mean only and covariance 

(variance) only.  

 

Mean and 

Covariance/Variance 
Mean Only 

Covariance/Variance 

Only  

𝑀3 𝑀1 𝑀2 

 
𝜏 𝑛  p-value 𝜏 𝑛  p-value 𝜏 𝑛  p-value 

1, 2, 3, 4 25 < 0.0001 27 0.0002 26 0.0001 

 

  
    

1, 2, 3 25 < 0.0001 25 0.0002 4 0.0019 

1, 2, 4 27 < 0.0001 27 0.0003 28 0.0034 

1, 3, 4 24 < 0.0001 26 0.0009 24 0.0013 

2, 3, 4 25 < 0.0001 25 0.0002 24 0.0015 

 

  
    

1, 2 14 0.0049 19 0.0156 16 0.3983 

1, 3 26 0.0001 26 0.0007 29 0.0108 

1, 4 24 0.0001 27 0.0030 28 0.0114 

2, 3 25 < 0.0001 25 0.0002 18 0.0159 

2, 4 27 < 0.0001 27 0.0004 27 0.0166 

3, 4 24 < 0.0001 26 0.0012 24 0.0033 

 

  
    

1 8 0.0424 8 0.0291 16 0.5386 

2 19 0.0116 19 0.0076 32 0.8357 

3 26 0.0001 26 0.0006 29 0.0041 

4 27 0.0003 27 0.0019 28 0.0097 

 

  



 

195 

 

From the table for detection, we found that all the 4-dimensional and 3-dimensional 

observations showed significant changes in mean and covariance.  In 2-dimensional 

change-point detection, layers 1 and 2 only showed significant change in mean only, 

and all the other combinations showed significant change in both mean and 

covariance.  That is to say, the layers 1 and 2 possibly have changes in mean only, 

but not in both mean and variance.  The layers 3 and 4 possibly have changes in 

mean and/or variance.  As the detection for univariate data was obtained, it verified 

the conclusion drawn from the detection on 2-4 dimensional data:  the data for layers 

3 and 4 had significant change in mean and variance, the data for layers 1 and 2 had 

significant change in mean only.  The detected change-points were close for layers 3 

and 4, and were far apart for layers 1 and 2.  In the inference, in order the get the 

maximum power, we will perform bivariate change in mean and covariance for layers 

3 and 4.  Univariate change-point analysis will performed on layers 1 and 2 

respectively.  
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6.2.2.2 Bivariate change-point analysis for layer 3 and 4 

As in Table 6.2, the bivariate temperature deviations for layer 3 (300 – 100 mb) and 

layer 4 (100 – 50 mb) were detected to have a change in mean both mean and 

covariance.  Twice the likelihood ratio statistics was plotted in Figure 6.8. 

The statistics is maximized at the 24
th

 observation with the p-value < 0.0001.  The 

corresponding year of change is 1981.  The change-point model followed 𝑀3: 

 
𝑌𝑖  ~  

𝑁 𝜇0,24 , Σ0,24 , 𝑖 = 1, … , 24

𝑁 𝜇1,24 , Σ1,24 , 𝑖 = 25, … , 51
  

(6.6) 

Where the maximum likelihood estimate of the parameters is 

 𝜇 0,24 =  0.0525 −0.0913 𝑇 , 𝜇 1,24 =  −1.3556 −2.5626 𝑇  (6.7) 

 Σ 0,24 =  
0.1069 −0.0147

−0.01475 0.4329
 , Σ 1,24 =  

0.8351 1.4090
1.4090 3.4279
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Figure 6.8.  Twice the log likelihood ratio statistics for South Polar annual mean 

temperature deviations during 1958 – 2008 at layer 3 (850 – 300 mb) and layer 4 (100 

– 50 mb).  
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In the last section, the significant change-points were detected in both bivariate 

observations.  In order to determine the accuracy of the detection, the confidence 

interval for the change-point detection will be calculated using the multivariate 

maximum likelihood estimation method in Sections 3.1 and 4.1.  In this section, the 

assumptions of maximum likelihood estimation will be tested: the bivariate 

observations follow multivariate normal distribution and all the observations are 

independent over time.  If the assumptions are not satisfied, the maximum likelihood 

change-point analysis should not be applied on the data. 

As the parameters for both sets of observations changed, each observation was 

adjusted by its own mean and covariance so that the residual is obtained.  After the 

adjustment, the residuals all satisfied 𝜇 = 0 and Σ =  
1 0
0 1

 .  The task then is to 

test whether the residuals follow independent standard bivariate normal distribution.   

In test the multivariate normality, the standard Shapiro-Wilk test for univariate 

normality of residuals for each component was applied first.  The p-values are 0.4155 

for layer 3 and 0.1555 for layer 4.  The residuals from both layers confirm the 

assumption of Normality in a univariate way.  However, it is well known that 

univariate Normality of each series may not necessarily imply that the residual data in 

vector form would be multivariate Normal.  Thus, in order to test for multivariate 

Normality of the residuals, we applied Mardia‘s skewness and kurtosis tests (Mardia, 

1970), as well as the test proposed by Henze and Zirkler (1990).  The P-values for 

the three tests were 0.8053, 0.0778, and 0.1140, respectively.  There is no evidence 
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otherwise in the multivariate tests that multivariate Normality assumption is in 

violation for the bivariate series for layers 3 and 4.   

Next, we utilize the residuals for investigating the assumption of independence over 

time.  If the model under independence is truly a good fit, then both autocorrelations 

and partial autocorrelations of different lags for residuals from each of the bivariate 

series should show no appreciable significances.  Moreover, independence at the 

multivariate level should mean that forward as well as backward cross-correlations of 

different lags for residuals from any pair of rivers should also show no significances.  

First, we present in Figures 6.9, the autocorrelation and partial correlation plots up to 

the first ten lags together with the corresponding 95% significance curves, for 

residuals of the bivariate data for layers 3 and 4.  The cross correlations of are in 

Table 6.3.  None of the correlations are significant.  Therefore, the bivariate series 

comprised of layers 3 and 4 temperature deviations satisfied the normality and 

independence assumptions.   
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Figure 6.9.  Autocorrelation and partial autocorrelation plots of residuals with 95% 

significant limits for South Polar annual mean temperature deviations during 1958 – 

2008 at layer 3 (300 – 100 mb) and layer 4 (100 – 50 mb).  (a) and (b) are 

correlations, and (c) and (d) are partial correlations. 
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Table 6.3 Cross correlations of the residuals at layers 3 and 4 for South Polar annual 

mean temperature deviations during 1958 – 2008. 

Lag Cross correlation 

-5 0.053 

-4 -0.084 

-3 0.121 

-2 -0.056 

-1 0.105 

0 -0.006 

1 -0.063 

2 -0.031 

3 0.305 

4 0.117 

5 -0.046 
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We shall now obtain confidence interval estimate of 𝜏51  through the asymptotic 

distribution of 𝜏 51  for which, we can assume that 𝜇 0,24 , 𝜇 1,24 , Σ 0,24  and Σ 1,24 

given above are true values rather than estimates.  As discussed in Chapter 4, this is 

possible because the asymptotic distributions of 𝜏 51  and 𝜏 51  are identical. This 

allowed us to compute all the parameters that are necessary for the algorithmic 

procedure specified in Section 4.1.3.   

 𝐾 = Σ 0,24
1/2

Σ 1,24
−1/2

=  
0.6235 −0.2098

−0.4276 0.5114
   

 𝐾𝐾𝑇 = ΘΨΘ𝑇  where Ψ = 𝑑𝑖𝑎𝑔 0.8124, 0.0646 , Θ =  
−0.7016 −0.7126
0.7126 −0.7016

  

 
𝜂 = Σ 0,24

−
1
2  𝜇 1,24 − 𝜇 0,24 =  −4.4881 −3.8593 𝑇    

 𝜔 = ΘTη =  0.3987 5.9058 𝑇  

 

𝐶𝑜 =
1

2
𝑙𝑛(𝜓1𝜓2 … 𝜓𝑑) −

1

2
 

𝜓𝑖𝜔𝑖
2

1 − 𝜓𝑖

𝑑

𝑖=1

= −3.0225 

 
𝜍𝑖

𝑜2 =  
𝜓𝑖𝜔𝑖

1 − 𝜓𝑖
 

2

=  2.9816 0.1664  

 
𝑎𝑖

𝑜 =
1

2
 1 − 𝜓𝑖 =  0.0938 0.4677  

 
𝜂∗ = Σ1

−
1
2 𝜇1 − 𝜇0 =  −1.1479 −1.0321 𝑇   

 𝜔∗ = ΘTη∗ =  0.0699 1.5421 𝑇 

 
𝐶∗ = −

1

2
ln(𝜓1𝜓2 … 𝜓𝑑) −

1

2
 

𝜓𝑖
−1𝜔𝑖

∗2

1 − 𝜓𝑖
−1

𝑑

𝑖=1
= 2.7577  
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𝜍𝑖

∗2 =  
𝜓𝑖

−1𝜔𝑖
∗

1 − 𝜓𝑖
−1 

2

=  0.1390 2.7179  

 
𝑎𝑖

∗ =
1

2
 1 − 𝜓𝑖

−1 =  −0.1155 −7.2380  

Among these parameters, the parameter 𝛿 =
 𝜂𝑇𝜂

2
= 2.9597 and  𝐾𝐾𝑇 =

 Σ 0,24  

 Σ 1,24  
=

0.0523 uniquely determined the size of the change in mean and covariance matrix.   

As all the parameters in Step S0 of the algorithm in Section 4.1.3, the asymptotic 

distribution of 𝜉 ∞was computed in Table 6.4, and the cumulative probabilities were 

computed in Table 6.5.  For comparison purpose, the distribution computed by 

Cobb‘s conditional mle, Bayesian method using conjugate priors and non-informative 

priors were also presented in Tables 6.4 and 6.5. 
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Table 6.4 Computed probabilities for 𝜉 ∞  using Maximum Likelihood, Cobb‘s 

conditional mle, and Bayesian methods using conjugate and non-informative priors for 

South Polar annual mean temperature deviations during 1958 – 2008. 

N Year 𝑖 

𝑃 𝜉 ∞  = 𝑖  

ML Cobb* 

Bayesian 

(Conjugate 

Prior) 

Bayesian 

(Non-informative 

Prior) 

17 1974 -7 0.0000 
 

0.0000 0.0000 

18 1975 -6 0.0000 
 

0.0000 0.0000 

19 1976 -5 0.0000 
 

0.0000 0.0001 

20 1977 -4 0.0002 0.0000 0.0001 0.0004 

21 1978 -3 0.0008 0.0005 0.0005 0.0011 

22 1979 -2 0.0041 0.0030 0.0033 0.0049 

23 1980 -1 0.0266 0.0394 0.0261 0.0289 

24 1981 0 0.8276 0.7442 0.4859 0.4344 

25 1982 1 0.1150 0.0785 0.1055 0.1064 

26 1983 2 0.0210 0.1283 0.3267 0.3505 

27 1984 3 0.0044 0.0060 0.0519 0.0733 

28 1985 4 0.0010 0.0000 0.0000 0.0000 

29 1986 5 0.0002 
 

0.0000 0.0000 

30 1987 6 0.0001 
 

0.0000 0.0000 

31 1988 7 0.0000 
 

0.0000 0.0000 

Mean 
 

24.1377 24.3061 24.8797 24.9834 

Variance 
 

0.3235 0.6084 1.9258 1.2706 

SD 
 

0.5688 0.7800 1.3877 1.1272 

*Note: With the tolerance of error 0.0001, the number of observations for Cobb‘s conditional method is 4 

before and after the detected change-point mle. 
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Table 6.5 Computed cumulative probabilities for 𝜉 ∞  using Maximum Likelihood, 

Cobb‘s conditional mle, and Bayesian methods using conjugate and non-informative 

priors for South Polar annual mean temperature deviations during 1958 – 2008. 

N Year 𝑖 

𝑃  𝜉 ∞   ≤ 𝑖  

ML Cobb 

Bayesian 

(Conjugate 

Prior) 

Bayesian 

(Non-informative 

Prior) 

24 1981 0 0.8276 0.7442 0.4859 0.4344 

23 – 25  1980 – 1982  1 0.9692 0.8621 0.6175 0.5697 

22 – 26 1979 – 1983 2 0.9943 0.9934 0.9475 0.9251 

21 – 27 1978 – 1984 3 0.9995 0.9999 0.9999 0.9995 

20 – 28 1977 – 1985 4 1.0007 0.9999 1.0000 0.9999 

19 – 29 1976 – 1986 5 1.0009 0.9999 1.0000 1.0000 

18 – 30 1975 – 1987 6 1.0010 0.9999 1.0000 1.0000 

17 – 31 1974 – 1988 7 1.0010 0.9999 1.0000 1.0000 
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The 95% confidence interval is {1980, 1981, 1982} when using ML method, {1979, 

1980, 1981, 1982, 1983} when using Cobb‘s conditional mle method, and {1978, 

1979, 1980, 1981, 1982, 1983, 1984} when using Bayesian methods.  For 

comparison purposes, we note that the standard deviation for the change point estimate 

under the MLE approach is smaller under the other methods.  While the MLE 

approach seems to do better than the Bayesian approach in this case, one should not 

conclude that this would be the case with other data sets. There is scope for 

uncertainty in the asymptotic distribution of the MLE due to the fact that the mean 

vectors before and after the change point were assumed to be known, whereas, in 

reality they are estimated from data. Even though the equivalence result of (Hinkley 

1972) justifies this consideration for large samples, one should be prepared for some 

uncertainty because of the limited nature of the sample size in the temperature 

deviation data.  
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6.2.2.3 Univariate change-point analysis for layer 1 

As in Table 6.2, the univariate temperature deviations for layer 1 (surface) was 

detected to have a change in mean only.  Twice the likelihood ratio statistics was 

plotted in Figure 6.10.  The statistics is maximized at the 8
th

 observation with the 

p-value 0.0291.  The corresponding year of change is 1965.  The change-point 

model for this dataset is 

 
𝑌𝑖  ~  

𝑁 𝜇0,8, 𝜍8
2 , 𝑖 = 1, … , 8

𝑁 𝜇1,8, σ8
2 , 𝑖 = 9, … , 51

  
 

Where the maximum likelihood estimator of the parameters are 

 𝜇 0,8 = −0.375, 𝜇 1,8 = 0.4347  

 σ 8
2 = 0.2419, 𝜍 = 0.4919  

The tests for normality and independence assumptions were applied on the residuals.  

The p-value for the standard Shapiro-Wilk test is 0.2329.  The normality assumption 

was not violated.  The autocorrelation and partial autocorrelations functions of the 

residuals for the first 10 lags were plotted in Figure 6.11.  The lag 2 autocorrelation 

and partial autocorrelation were marginally significant.  We regarded that the 

assumption of independence was not in violation. 
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Figure 6.10.  Twice the log likelihood ratio statistics for South Polar annual mean 

temperature deviations during 1958 – 2008 at layer 1 (surface). 
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Figure 6.11.  Autocorrelation and partial autocorrelation plots of residuals with 95% 

significant limits for South Polar annual mean temperature deviations during 1958 – 

2008 at layer 1 (surface). 
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We shall now obtain confidence interval estimate of 𝜏51  through the asymptotic 

distribution of 𝜏 51  for which, we can assume that 𝜇 0,8, 𝜇 1,8, and 𝜍 8
2 given above 

are true values rather than estimates.  As discussed in Chapter 3, this is possible 

because the asymptotic distributions of 𝜏 51  and 𝜏 51  are identical. This allowed us to 

compute all the parameters that are necessary for the algorithmic procedure specified 

in Section 3.1.3.  The parameter for the estimation is 𝜂 =  𝜇 1,8 − 𝜇 0,8 /𝜍 8 =

1.6461.  The probabilities are shown in Table 6.6.  When changed occurred in 

mean only, the asymptotic distribution for the change-point mle, 𝜏 51  is symmetric 

about 𝜏51 .  The change-point mle 𝜉 ∞  had mean equal to 0, and standard deviation 

equal to 1.8674.  The 97% confidence interval for 𝜉 ∞  is 

 −4, −3, −2, −1, 0, 1, 2, 3, 4 .  As 𝜏 51 = 8 , the 97% confidence interval for 𝜏 51  

included the list the years {1961, 1962, 1963, 1964, 1965, 1966, 1967, 1968, 1969}. 
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Table 6.6 Computed probabilities and cumulative probabilities for 𝜉 ∞  at South Polar 

during 1958 – 2008 at layer 1 (surface). 

 

𝑖 𝑃  𝜉 ∞  = 𝑖  𝑃  𝜉 ∞  ≤ 𝑖  

0 0.5272 0.5272 

1 0.1288 0.7848 

2 0.0533 0.8913 

3 0.0261 0.9434 

4 0.0139 0.9713 

5 0.0078 0.9869 

6 0.0046 0.9960 

7 0.0027 1.0014 

8 0.0017 1.0047 

9 0.0010 1.0068 

10 0.0006 1.0081 

11 0.0004 1.0089 

12 0.0003 1.0094 

13 0.0002 1.0098 

14 0.0001 1.0100 

15 0.0001 1.0101 

16 0.0000 1.0102 

Mean 0 
 

Variance 3.4872 
 

SD 1.8674 
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6.2.2.4 Univariate change-point analysis for layer 2 

As in Table 6.2, the univariate temperature deviations for layer 2 (850 – 300 mb) was 

detected to have a change in mean only.  Twice the likelihood ratio statistics was 

plotted in Figure 6.12.  The statistics is maximized at the 19
th

 observation with the 

p-value 0.0076.  The corresponding year of change is 1965.  The change-point 

model for this dataset is 

 
𝑌𝑖  ~  

𝑁 𝜇0,19, 𝜍19
2  , 𝑖 = 1, … , 19

𝑁 𝜇1,19, σ19
2  , 𝑖 = 20, … , 51

  
 

Where the maximum likelihood estimator of the parameters are 

 𝜇 0,19 = −0.021, 𝜇 1,19 = 0.4769  

 σ 19
2 = 0.1035, 𝜍 19 = 0.3217  

The tests for normality and independence assumptions were applied on the residuals.  

The p-value for the standard Shapiro-Wilk test is 0.5611.  The normality assumption 

was not violated.  The autocorrelation and partial autocorrelations functions of the 

residuals for the first 10 lags were plotted in Figure 6.13.  None of the correlations 

were significant.  Therefore, the independence assumption was not violated, either. 
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Figure 6.12.  Twice the log likelihood ratio statistics for South Polar annual mean 

temperature deviations during 1958 – 2008 at layer 2 (850 – 300 mb). 
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Figure 6.13.  Autocorrelation and partial autocorrelation plots of residuals with 95% 

significant limits for South Polar annual mean temperature deviations during 1958 – 

2008 at layer 2 (850 – 100 mb). 
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We shall now obtain confidence interval estimate of 𝜏51  through the asymptotic 

distribution of 𝜉 ∞  for which, we can assume that 𝜇 0,19, 𝜇 1,19, and 𝜍 19
2  given above 

are true values rather than estimates.  As discussed in Chapter 3, this is possible 

because the asymptotic distributions of 𝜏 51  and 𝜏 51  are identical. This allowed us to 

compute all the parameters that are necessary for the algorithmic procedure specified 

in Section 3.1.3.  The parameter for the estimation is 𝜂 =  𝜇 1,19 − 𝜇 0,19 /𝜍 19 =

1.5496.  The probabilities are shown in Table 6.7.  When the change occurred in 

mean only, the asymptotic distribution for the change-point mle, 𝜏 51  is symmetric 

about 𝜏51 .  The change-point mle 𝜉 ∞  had mean equal to 0, and standard deviation 

equal to 2.1144.  The 96% confidence interval for 𝜉 ∞  is 

 −4, −3, −2, −1, 0, 1, 2, 3, 4 .  As 𝜏 51 = 19, the 96% confidence interval for 𝜏 51  

included the list the years {1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980}. 
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Table 6.7 Computed probabilities and cumulative probabilities for 𝜉 ∞  at South Polar 

during 1958 – 2008 at layer 2 (850 – 100 mb). 

 

𝑖 𝑃  𝜉 ∞  = 𝑖  𝑃  𝜉 ∞  ≤ 𝑖  

0 0.4930 0.4930 

1 0.1307 0.7545 

2 0.0571 0.8686 

3 0.0293 0.9273 

4 0.0164 0.9601 

5 0.0096 0.9793 

6 0.0058 0.9910 

7 0.0036 0.9983 

8 0.0023 1.0029 

9 0.0015 1.0059 

10 0.0010 1.0078 

11 0.0006 1.0091 

12 0.0004 1.0100 

13 0.0003 1.0105 

14 0.0002 1.0109 

15 0.0001 1.0112 

16 0.0001 1.0114 

17 0.0001 1.0115 

18 0.0000 1.0116 

Mean 0 
 

Variance 4.4708 
 

SD 2.1144 
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6.2.3 Change-point Analysis at North Polar 

For the data of temperature deviation at the North Polar, the same analysis procedures 

applied as in Section 6.2.2.  The no-change model M0 and the change-point models 

M1 −  M3 were set up the same way as in Section 6.2.2.   

 
𝑀1:  𝑌𝑖  ~  

𝑁 𝜇0, 𝛴 , 𝑖 = 1, … , 𝜏𝑛

𝑁 𝜇1, Σ , 𝑖 = 𝜏𝑛 + 1, … , 51
  

 

 
𝑀2:  𝑌𝑖  ~  

𝑁 𝜇, 𝛴0 , 𝑖 = 1, … , 𝜏𝑛

𝑁 𝜇, Σ1 , 𝑖 = 𝜏𝑛 + 1, … , 51
  

 

 
𝑀3:  𝑌𝑖  ~  

𝑁 𝜇0, 𝛴0 , 𝑖 = 1, … , 𝜏𝑛

𝑁 𝜇1, Σ1 , 𝑖 = 𝜏𝑛 + 1, … , 51
  

 

The hypothesis test for the change-point was 

 𝐻0: The data conforms to no change model 𝑀0  

Against 𝐻1: The data conforms to change point model 𝑀𝑖  

where 𝑖 = 1, 2, 3. 

 

 

First, the exhaustive change-point detection was applied to all single and combinations 

of series for the 4 layers of atmosphere: layer 1 for surface, layer 2 for 850 – 300 mb, 

layer 3 for 300 – 100 mb and layer 4 for 100 – 50 mb.  All the detection results are 

available in Table 6.8.  As the change-point detection was applied from the 

high-dimensional data down to the univariate data, we found that significant change in 

both mean and covariance matrix was detected for the 4-dimensional data.  As we 

detected the 3-dimensional data, the series comprised of the temperature deviation from 

layers 1, 2 and 3 had change in mean only, but not in covariance matrix.  Therefore, the 
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temperature deviations from these 3 layers possibly had change in mean, but no change 

occurred in the variances.  In the change-point detection in 2-dimensional data, 

significant change in mean only were detected in all series except the combination of 

layers 3 and 4, which showed significant change in both mean and covariance matrix, 

although the change in covariance was marginal.  As we proceeded to the univariate 

cases, the temperature deviations for layer 3 did not have parameter change, and those 

of layers 1, 3 and 4 had change in mean only.  The p-value of layer 3 for the change in 

mean only showed marginal change.  Therefore we only considered that layers 1 and 4 

had real significant change in mean only.  The change-point analysis would be applied 

on the bivariate series comprised of the temperature deviation of layers 1 and 4. 
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Table 6.8. Change-point detection of North Polar annual mean temperature deviations 

during 1958 – 2008 for mean and/or covariance (variance), mean only and covariance 

(variance) only. 1 = Surface, 2 = 850 – 300 mb, 3= 300 – 100 mb, 4=100 – 50 mb.  

 

Mean and 

Covariance/Variance 
Mean Only 

Covariance/Variance 

Only  

𝜏 𝑛  p-value 𝜏 𝑛  p-value 𝜏 𝑛  p-value 

1, 2, 3, 4 44 <0.0001 37 0.0015 5 0.0008 

 

  
    

1, 2, 3 31 0.0001 31 0.0016 47 0.1199 

1, 2, 4 31 0.0001 31 0.0015 43 0.0634 

1, 3, 4 44 <0.0001 37 0.0015 44 0.0131 

2, 3, 4 44 0.0001 38 0.0078 10 0.0229 

 

  
    

1, 2 31 0.0007 31 0.0013 47 0.2807 

1, 3 47 0.0010 31 0.0018 47 0.3055 

1, 4 47 0.0007 31 0.0016 43 0.1937 

2, 3 32 0.0297 30 0.0397 33 0.9792 

2, 4 37 0.0034 37 0.0075 5 0.2457 

3, 4 38 0.0056 38 0.0419 12 0.0425 

 
  

    
1 31 0.0015 31 0.0011 47 0.1468 

2 44 0.0421 44 0.0406 4 0.3762 

3 30 0.1215 30 0.0637 32 0.7495 

4 32 0.0390 32 0.0222 10 0.1043 
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As in Table 6.8, the bivariate temperature deviations for layer 1 (surface) and layer 4 

(100 – 50 mb) was detected to have a change in mean only.  The detected 

change-point under univariate analysis was close to each other.  Therefore, the 

temperature deviations for layer 1 and 4 were analyzed using bivariate change-point 

analysis for mean only.  Twice of the log likelihood function was shown in Figure 

6.14.  The statistics is maximized at the 31
th

 observation with the p-value 0.0016.  

The corresponding year of change is 1988.  The change-point model for this dataset 

is 

 
𝑌𝑖  ~  

𝑓 ∙; 𝜇0,31 , Σ31 , 𝑖 = 1, … , 31

𝑓 ∙; 𝜇1,31 , Σ31 , 𝑖 = 32, … , 51
  

(6.8) 

Where the maximum likelihood estimator of the parameters are 

 𝜇 0,31 =  0.0013 −0.1152 𝑇 , 𝜇 1,31 =  1.0655 −1.4585 𝑇  (6.9) 

 Σ 31 =  
0.2739 −0.1535

−0.1535 1.2028
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Figure 6.14.  Twice log likelihood ratio statistics for North Polar annual mean 

temperature deviations during 1958 – 2008 at layer 1 (surface) and layer 4 (100 – 50 

mb).  
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In change-point mle the estimated parameters were regarded as the true parameters of 

the observations.  The assumptions for change-point mle shall be verified before the 

change-point estimation.  The residuals are obtained by adjusting each observation 

by their mean and covariance matrix depending whether it was before or after the 

change-point estimate 𝜏 𝑛 = 31.   

The p-values of Shapiro-Wilk test were 0.1871 and 0.9399 for layer 1 and 4 

respectively.  The p-values of the multivariate normality test, Mardia‘s skewness and 

kurtosis tests, and Henze- Zirkler test, are 0.9767, 0.8181, and 0.6089, respectively.  

The normality assumption was not violated.  The autocorrelation and partial 

autocorrelation were plotted in Figure 6.15.  The cross correlation for lags -5 to 5 were 

shown in Table 6.9.  The autocorrelations and partial autocorrelations for the 

temperature deviations at layer 1 and 4 were not significant.  Even though the cross 

correlations showed marginal significant at lags 1, 4 and 5, the layers 1 and 4 are quite 

separated.  Therefore, we still assume that the assumption of independence was not 

violated. 
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Figure 6.15.  Autocorrelation and partial autocorrelation plots of residuals with 95% 

significant limits for North Polar annual mean temperature deviations during 1958 – 

2008 at layer 1 (surface) and layer 4 (100 – 50 mb).  (a) and (b) are autocorrelations, 

and (c) and (d) are partial autocorrelations. 
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Table 6.9 Cross correlations for the residuals at layers 1 and 4 for North Polar annul 

mean temperature deviations during 1958 – 2008.  

 

Lag Cross Correlation 

-5 -0.333 
-4 0.363 
-3 0.061 
-2 0.076 
-1 0.334 
0 0 
1 0.228 
2 -0.152 
3 -0.036 
4 -0.009 
5 -0.068 
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When only change in mean was detected in the bivariate data, the algorithmic 

procedure in Section 3.1 should be followed.  The parameters for the procedure were 

calculated as follows 

 
𝜂 = Σ 31

−
1
2  𝜇 1,31 − 𝜇 0,31 =  1.8704 −1.0660 𝑇  

 

 
𝛿 =

1

2
 𝜂𝑇𝜂 = 1.0764 

 

The asymptotic distribution of 𝜉 ∞  can be computed as in Tables 6.10 and 6.11.  

When the change occurred in mean only, the asymptotic distribution for τ 51  is 

symmetric about τ51 , hence the mean for 𝜉 ∞  is 0.  The standard deviation for 𝜉 ∞  

was 1.1304.  The 96% confidence interval for τ 51  included 2 years before and after 

the 31
st
 observation, which was {1986, 1987, 1988, 1989, 1990}.  The 98% confidence 

interval included 3 years before and after the 31
st
 observation, which was {1985, 1986, 

1987, 1988, 1989, 1990, 1991}.   
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Table 6.10 Computed probabilities of 𝜉 ∞  using Maximum Likelihood, Cobb‘s 

conditional mle, and Bayesian methods using conjugate and non-informative priors for 

North Polar annual mean temperature deviations at layers 1 and 4 . 

N Year 𝑖 

𝑃 𝜉 ∞ = 𝑖  

ML Cobb* 

Bayesian 

(Conjugate 

Prior) 

Bayesian 

(Non-informative 

Prior) 

21 1978 -10 0.0000 
 

0.0000 0.0000 

22 1979 -9 0.0001 
 

0.0000 0.0000 

23 1980 -8 0.0002 0.0000 0.0000 0.0001 

24 1981 -7 0.0004 0.0000 0.0000 0.0000 

25 1982 -6 0.0009 0.0000 0.0001 0.0002 

26 1983 -5 0.0021 0.0000 0.0001 0.0002 

27 1984 -4 0.0049 0.0000 0.0001 0.0002 

28 1985 -3 0.0120 0.0006 0.0017 0.0023 

29 1986 -2 0.0325 0.0027 0.0043 0.0054 

30 1987 -1 0.1073 0.3177 0.2748 0.2414 

31 1988 0 0.6838 0.4705 0.3959 0.3382 

32 1989 1 0.1073 0.1245 0.1203 0.1138 

33 1990 2 0.0325 0.0048 0.0064 0.0077 

34 1991 3 0.0120 0.0045 0.0072 0.0087 

35 1992 4 0.0049 0.0612 0.1156 0.1174 

36 1993 5 0.0021 0.0026 0.0105 0.0133 

37 1994 6 0.0009 0.0106 0.0528 0.0625 

38 1995 7 0.0004 0.0003 0.0031 0.0047 

39 1996 8 0.0002 0.0000 0.0011 0.0020 

40 1997 9 0.0001 
 

0.0003 0.0006 

41 1998 10 0.0000 
 

0.0002 0.0005 

Mean 
 

31 31.1467 31.8041 33.1043 

Variance 
 

1.1304 1.9415 5.8473 20.3538 

SD 
 

1.0632 1.3934 2.4181 4.5115 

*Note: With the tolerance of error 0.0001, the number of observations for Cobb‘s conditional method is 8 

before and after the detected change-point mle. 
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Table 6.11 Computed cumulative probabilities for 𝜉 ∞  using Maximum Likelihood, 

Cobb‘s conditional mle, and Bayesian methods using conjugate and non-informative 

priors for North Polar annual mean temperature deviations at layers 1 (surface) and layer 4 

(100 – 50 mb) during 1958 – 2008. 

N Year 𝑖 

𝑃  𝜉 ∞  ≤ 𝑖  

ML Cobb 

Bayesian 

(Conjugate 

Prior) 

Bayesian 

(Non-informative 

Prior) 

31 1988 0 0.6838 0.4705 0.3959 0.3382 

30 – 32 1987 – 1989 1 0.8984 0.9127 0.7910 0.6934 

29 – 33 1986 – 1990 2 0.9634 0.9202 0.8017 0.7065 

28 – 34 1985 – 1991 3 0.9874 0.9253 0.8106 0.7175 

27 – 35 1984 – 1992 4 0.9972 0.9865 0.9263 0.8351 

26 – 36 1983 – 1993 5 1.0014 0.9891 0.9369 0.8486 

25 – 37 1982 – 1994 6 1.0032 0.9997 0.9898 0.9113 

24 – 38 1981 – 1995 7 1.0040 1.0000 0.9929 0.9160 

23 – 39 1980 – 1996 8 1.0044 1.0000 0.9940 0.9181 

22 – 40 1979 – 1997 9 1.0046 1.0000 0.9943 0.9187 

21 – 41 1978 – 1998 10 1.0046 1.0000 0.9945 0.9192 
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6.2.4 Discussion about Polar Temperature Deviations 

From the change-point detection and estimation for North and South polar temperature 

deviations at the 4 layers of the atmosphere, we found that at the south polar, a cooling 

effect and increased variations occurred around 1981 at the lower stratosphere.  At the 

surface and lower troposphere layer, there was a slight temperature increment.  At the 

north polar, there was a cooling effect at the lower stratosphere, and an increased 

temperature at the surface that happened at around 1988.   

The cooling of the lower stratosphere temperature had been discovered since 1980 

according to Angell (1986), Randel and Wu (1999), Compagnucci et al (2000), 

Ramaswamy et al. (2001), Schleip et al (2009).  Angell (1986) analyzed the same 

dataset as in our study.  In Angell‘s (1986) study, the data was divided into subintervals 

as 1960 –85, 1965 – 85, 1970 – 85, 75 – 85, and linear regression was applied to each 

subintervals.  He found significant cooling effect in both South and North Hemisphere 

at the tropopause (300 – 100 mb) layer and the lower stratosphere layer (100 – 50 mb), 

and he concluded that the cooling effect was more pronounced in South Hemisphere 

than North.  However, the piecewise linear regression methods could not tell when the 

change had occurred.  Randel and Wu (1999) noticed strong cooling of lower 

stratosphere since approximately 1985, which was maximized in spring (October – 

December), and the cooling of the Arctic lower stratosphere occurred in 1990s.  The 

conclusion was drawn by observing the fitted curve to the monthly time series data.  

No formal test was applied to the change-point.  They studied on Radiosonde, NCEP 

reanalysis and satellite data, and found good overall agreement under comparison.  
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Compagnucci et al (2000) studied the lower stratosphere temperature derived from 

soundings that were made the Microwave Sounding Unit (MSU), which was regarded 

as satellite data.  But the data was only available since 1979.  The principle component 

method was applied on the monthly time series data.  They also discovered the cooling 

of the lower stratosphere, which was largest over Antarctica.  Ramaswamy (2001) 

found consistent cooling of lower stratosphere over 1979 – 1994 using different data 

source, including radiosonde, satellite and rocketsonde.  He observed substantial 

cooling in the lower stratosphere during winter/spring time at Antarctica since about 

early 1980s, and at Arctic since the 1990s.  The radiosonde records prior to 1980 

showed little cooling effect.  The findings were also obtained by observing various 

time series plots.  Schleip et al (2009) applied Bayesian analysis on radiosonde data for 

global annual mean lower stratosphere temperature anomalies using linear model.  The 

rate of cooling during 1979 – 2004 was detected to be much greater than the period 

during 1958 – 1978.  In this sense, there was a general agreement that there the cooling 

effect occurred to south polar around early 1980s, and to the north polar around 1990s.  

The cooling was more prominent at the south polar than at the north polar.  Although 

the both the radiosonde and satellite data contained uncertainty, they produced similar 

results.  As the record of radiosonde data was longer that the satellite data, thus it was 

adopted in our study for a more powerful analysis of the data. 

The surface of both south and north polar, and the troposphere (850 – 300 mb) layer of 

the south polar, showed a warming effect over the years.  This had been recognized by 

several studies, too.  Angell‘s (1986) study on 1960 – 1985 radiosonde data showed 
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that the surface and the troposphere had warmed.  Randel and Wu (1999) observed the 

warming of upper troposphere (500 – 300 mb) during midwinter at most individual 

stations at south polar, which matched our detection of change in mean at layer 2 (850 – 

300 mb) at south polar only.  Angell‘s (1999) study on the radiosonde data during 1958 

– 1998 detected the warming of surface on both northern and southern hemisphere.  

The surface of the northern hemisphere had warmed more than southern hemisphere, 

but in the troposphere layer (850 – 300 mb) the warming was greater in southern 

hemisphere than northern one.  Comiso (2003) studied the satellite thermal infrared 

data on surface temperature at arctic, and discovered sustained warmings from 1988.  

Both the monthly data and annual mean was studied, and they produced very similar 

results.  Karcher et al (2003) studied the water temperature of the Atlantic Ocean in the 

central Arctic during 1979 – 1999, and found warming since 1991.  Schleip et al (2009) 

detected high change point probability around 1985 and 1995 for the warming from the 

surface up to the tropopause layer using the Bayesian approach.  

Many studies regarded ozone depletion since 1980s as the major factor for the cooling 

of the lower stratosphere (Angell 1986, Randel and Wu 1999, Ramaswamy et al 2001, 

Steinbrecht et al 2003, Cagnazzo et al 2006).  Forster et al. (2007) explained that the 

cooling was due to the decrease absorption of longwave radiation from the reduced 

ozone level.  Ramaswamy‘s (2001) survey also pointed out that some studies had 

shown that the cooling of the lower stratosphere at Southern Hemisphere showed more 

obvious cooling effect than the Northern Hemisphere.  Solomon et al (2007) pointed 

out that the depth and frequency of the ozone depletion in the Arctic was far less than 
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that in the Antarctic.  That explained why the cooling at the South polar was more 

prominent than at the North polar.   

Besideds ozone depletion, Ramaswamy (2001) also stated that the green house gases, 

carbon dioxide 𝐶𝑂2 , not only warmed the surface, but also affected the temperature of 

the lower stratosphere.  The 𝐶𝑂2 enhanced the thermal emission from above layers, 

and retained the heat close to the surface, which caused the warming of the lower layer, 

and cooling at the upper layers. 

From the review above, our detection well matches the findings.  In the past, people 

generally compare time series plots over time, or applied linear regression on short-term 

data.  The findings were about the change in the mean temperatures over the years.  

Our change-point analysis provided strict change-point estimation and confidence 

intervals.  The insight to the position of the change-point can help climatologist to 

investigate exactly what have caused the change in the temperature, and what people 

can do to stop the trend of global warming.  Our change-point analysis of the layer 3 

(300 – 100 mb) and 4 (100 – 50 mb) also detected significant change in the variance and 

covariance, which was not mentioned in the literatures.  The reasons why the 

temperature fluctuated more than before, and why the covariance also changed, could 

be a question to climatologists for further investigations. 
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A.  Average Spring stream flows during 1957-1995 in the Northern Québec Labrador 

region 

Year 
Romain

e 

Churchil

l Falls 

Manicou-aga

n 

Outarde

s 

Sainte-Marguerit

e 

À la 

Balein

e 

195

7 

 

28.4 25.5 30.7 26.3 29.3  
195

8 

33.4 29.5 35.9 36.9 28.1  
195

9 

26.6 26.2 27.2 25.9 25.0  
196

0 

24.9 20.7 26.6 25.4 23.1  
196

1 

25.6 19.6 21.1 18.5 20.6  
196

2 

23.7 18.4 23.9 20.9 18.6  
196

3 

31.0 19.9 23.3 22.8 28.2 21.8 
196

4 

27.7 21.8 29.8 27.7 29.6 21.4 
196

5 

32.9 26.9 25.4 23.6 25.3 21.2 
196

6 

32.9 28.7 27.3 25.8 28.1 26.0 
196

7 

22.2 19.4 23.4 20.1 23.2 14.4 
196

8 

27.4 25.2 22.0 19.5 30.6 23.8 
196

9 

32.6 28.9 25.1 21.9 26.9 23.3 
197

0 

32.9 27.4 27.7 29.3 29.8 23.6 
197

1 

29.9 27.5 20.4 20.9 27.4 23.6 
197

2 

31.1 21.9 26.7 21.6 24.9 18.7 
197

3 

30.8 24.0 33.0 32.6 32.0 19.9 
197

4 

25.6 22.9 30.0 30.2 34.7 20.7 
197

5 

26.7 26.6 27.2 23.5 26.0 24.1 
197

6 

28.8 28.4 33.0 31.1 32.9 21.1 
197

7 

31.8 26.4 31.1 26.9 31.7 24.3 
197

8 

31.7 28.1 35.1 29.2 32.9 19.7 
197

9 

30.2 34.5 39.5 33.8 37.3 17.4 
198

0 

31.8 29.0 26.8 24.9 34.9 25.2 
198

1 

40.7 31.5 38.3 35.7 37.5 28.8 
198

2 

29.8 25.7 29.4 30.8 25.6 22.0 
198

3 

37.9 30.4 37.8 37.6 41.3 22.7 
198

4 

34.0 26.6 29.7 28.9 37.8 21.3 
198

5 

21.3 19.0 25.6 23.0 24.5 19.3 
198

6 

21.9 24.0 29.0 24.5 30.6 27.0 
198

7 

19.8 20.3 26.1 19.8 25.6 18.3 
198

8 

29.1 21.2 23.3 19.9 29.1 21.1 
198

9 

23.9 17.4 21.7 19.4 19.3 13.9 
199

0 

19.1 19.3 22.7 19.7 25.5 18.4 
199

1 

23.4 16.6 22.1 20.6 21.3 16.4 
199

2 

18.8 23.4 25.7 29.7 26.6 23.4 
199

3 

19.5 16.1 24.4 25.7 29.9 14.1 
199

4 

30.3 20.6 28.0 27.0 37.5 18.4 
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199

5 

23.9 18.6 24.2 24.5 32.4 14.5 
 

 

  



 

244 

 

B.  Annual mean temperature deviation for South Polar 

Year Surface 850 – 300 mb 300 – 100 mb 100 – 50 mb 

1958 0.06 0.16 0.07 0.87 
1959 -0.61 -0.35 0.01 -1.17 
1960 -0.85 -0.28 0.07 0.8 
1961 0.24 0.35 0.09 -0.68 
1962 -0.66 -0.5 -0.33 1.12 
1963 -0.23 -0.42 0.27 0.72 
1964 -0.52 -0.17 0.13 0.42 
1965 -0.43 -0.25 -0.19 0.63 
1966 0.6 0.06 -0.02 -0.6 
1967 0.39 0.21 0.32 -0.2 
1968 -0.28 -0.07 0.54 -0.17 
1969 0.12 -0.19 -0.08 -0.98 
1970 0.06 0.16 -0.15 -0.89 
1971 0.1 0.04 0.2 0.09 
1972 0.2 0.3 -0.3 -0.27 
1973 0.53 0.4 -0.28 -0.23 
1974 1.01 0.28 0.51 -0.2 
1975 1.09 0.03 -0.19 -1.08 
1976 -0.27 -0.17 -0.59 0.2 
1977 0.7 0.73 -0.4 0.77 
1978 -0.14 0 0.65 -0.15 
1979 0.43 0.09 -0.04 -0.87 
1980 0.97 0.72 0.64 -0.04 
1981 0.96 0.38 0.33 -0.28 
1982 -0.07 -0.11 -0.42 -1.76 
1983 0.97 0.72 -0.25 -1.14 
1984 0.93 0.22 -1.1 -0.22 
1985 0.53 0.27 -1.18 -3.69 
1986 0.45 0.43 -1.15 -0.35 
1987 0.42 0.38 -2.26 -4.74 
1988 1.37 0.9 0 0.82 
1989 -0.29 0.54 -0.84 -2.54 
1990 0.57 1.15 -1.41 -2.87 
1991 1.25 1.24 -0.93 -0.91 
1992 0.76 0.67 -1.16 -1.07 
1993 -0.09 0.36 -2.1 -2.89 
1994 -0.42 0.19 -1.47 -2.16 
1995 0.17 0.18 -1.52 -2.98 
1996 1.54 0.92 -3.07 -4.76 
1997 0.79 0.18 -0.82 -3.56 
1998 -0.07 0.94 -1.86 -4.58 
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1999 0.09 0.44 -2.9 -5.34 
2000 -0.16 0.3 -2.3 -3.67 
2001 1.05 0.24 -1.97 -4.23 
2002 1.34 1.04 1.12 1.32 
2003 0.1 0.6 -0.6 -1.96 
2004 -0.31 0.14 -0.96 -1.21 
2005 0.04 0.55 -0.82 -1.34 
2006 0.38 0.29 -2.46 -4.61 
2007 0.56 0.68 -2.01 -2.73 
2008 0.32 -0.12 -2.16 -6.02 
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C.  Annual mean temperature deviation for North Polar 

Year Surface 850 – 300 mb 300 – 100 mb 100 – 50 mb 

1958 -0.27 -0.16 0.52 1 
1959 0.59 0.97 0.21 0.75 
1960 -0.19 0.41 0.81 3.15 
1961 0.67 0.33 1.4 1.09 
1962 0.6 -0.08 -1.33 -2.68 
1963 -0.09 -0.06 0.04 -0.85 
1964 -0.3 -0.47 -0.13 -0.38 
1965 0.02 -0.16 -0.76 -1.7 
1966 -1.45 -0.39 1.05 0.72 
1967 0.3 -0.09 -1.74 -2.4 
1968 -0.15 -0.23 -0.97 -1.05 
1969 -0.15 0.25 0.83 -0.41 
1970 0.17 0.19 0.81 1.21 
1971 -0.05 -0.54 -0.02 0.31 
1972 -0.34 -0.08 -0.95 -0.43 
1973 0.5 0.29 0.47 0 
1974 0.15 0.16 -0.26 0.46 
1975 0.01 -0.19 0.05 0.28 
1976 -0.2 -0.14 -2.11 -0.95 
1977 -0.24 0.38 0.76 1.54 
1978 0.15 0.14 -0.37 -1.08 
1979 -0.45 0.01 0.04 0.62 
1980 0.15 0.13 -0.34 0.32 
1981 0.75 0.21 -0.82 -0.57 
1982 -0.29 -0.17 -0.5 0.24 
1983 0.12 0.14 -1.53 -1.54 
1984 0.44 0.29 -0.69 -0.48 
1985 -0.31 -0.31 1.37 0.59 
1986 0.13 -0.14 -0.79 -0.68 
1987 -0.63 -0.14 0.59 0.25 
1988 0.4 0.21 -0.76 -0.9 
1989 1.02 0.02 -0.93 -0.22 
1990 1.04 0.02 -2.94 -3.01 
1991 0.64 0.53 -0.26 -0.32 
1992 -0.23 -0.74 -1.18 -0.88 
1993 1.1 -0.5 -2.76 -2.51 
1994 0.36 -0.38 -0.8 0.38 
1995 1.45 0.3 -2.09 -1.35 
1996 0.84 0.23 -1.31 -2.21 
1997 1.04 -0.1 -2.18 -2.5 
1998 0.86 0.38 -0.14 -0.47 
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1999 0.76 0.25 0.36 -0.78 
2000 0.5 -0.43 -2.25 -3.23 
2001 0.54 0.08 -0.71 -1.73 
2002 1.38 0.69 -0.48 -1.37 
2003 0.96 0.47 -1.04 -1.59 
2004 0.6 0.53 0.66 -0.56 
2005 2.06 0.67 -1.79 -2.08 
2006 1.94 0.58 0.29 -0.71 
2007 2.31 0.52 -1.89 -2.33 
2008 2.14 0.12 -1.41 -1.7 

 

 


