FUNDAMENTAL STUDIES ON A DECOMPOSITIONAL AND
HYBRID APPROACH TO AUTOMATIC VERIFICATION OF
COMPONENT-BASED SYSTEMS

By
GAOYAN XIE
D.0.B.: 03/03/1975

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY
COMPUTER SCIENCE

Washington State University

School of Electrical Engineering and Computer Science

August 2005

To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation/thesis
of GAOYAN XIE find it satisfactory and recommend that it be accepted.

Chair

i

Publications

Refereed Journal Publications

1]

2]

3]

[4]

Gaoyan Xie, Cheng Li, and Zhe Dang.

Linear Reachability Problems and Minimal Solutions to Linear Dio-
phantine Equation Systems.

In Theoretical Computer Science, Vol. 328(1-2): 203-219, 2004. This is the
journal version of our CIAA’08 paper, which was invited to submit to T'CS.

Fredrick T. Sheldon, Gaoyan Xie, Orest Pilskalns, and Zhihe Zhou.
A Review of Some Rigorous Software Design and Analysis Tools.
In Software Focus, Vol. 2(4): 140-150, 2001.

Gaoyan Xie, Zhe Dang, Oscar H. Ibarra, and Pierluigi S. Pietro.
Reachability Problems for Dense Counter Machines.

Submitted to Information and Computation. A short version of this paper ap-
peared in CAV’03

Gaoyan Xie, Zhe Dang, and Oscar H. Ibarra.
Quadratic Diophantine Equations and Verification of Infinite State
Systems with Parameterized Constants.
Submitted to Information and Computation and is currently under revision. A

short version of this paper appeared in I[CALP’03

il

Refereed Symposium Publications

[5]

[6]

[7]

8]

[9]

Gaoyan Xie and Zhe Dang.

Testing Systems of Concurrent Black-boxes—an Automata-Theoretic
and Decompositional Approach.

To appear in Proceedings of the 5th International Workshop on Formal Ap-
proaches To Testing Of Software (FATES’05), Edinburg, UK, July 11, 2005,

Lecture Notes in Computer Science, Springer.

Zhe Dang, Oscar Ibarra, Cheng Li and Gaoyan Xie.

Model checking of P systems.

To appear in Proceedings of the 4th International Conference on Unconven-
tional Computing (UC’05), Sevilla, Spain, October 3-7, 2005, Lecture Notes in

Computer Science, Springer.

Gaoyan Xie and Zhe Dang.

CTL Model checking for Systems with Unspecified Components.

In Proceedings of the 3rd Workshop on Specification and Verification of Com-
ponent-based Systems (SAVCBS’04), Newport Beach, California, October 31-
November 1, 2004.

Zhe Dang, Oscar H. Ibarra, Pierluigi S. Pietro, and Gaoyan Xie.
Real-Counter Automata and Applications to Verification.

In Proceedings of the 24th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’04), Chennai (Madras), India, De-
cember 16-18, 2004, Lecture Notes in Computer Science, Volume 3328, Springer.

Gaoyan Xie and Zhe Dang.

An Automata-theoretic Approach for Model checking Systems with
Unspecified Components.

In Proceedings of the 4th International Workshop on Formal Approaches To
Testing Of Software (FATES’04), Linz Austria, September 21, 2004, Lecture

Notes in Computer Science, Volume 3395, Springer.

v

[10]

[11]

[12]

[13]

[14]

Gaoyan Xie.

Decompositional Verification of Component-based Systems—A Hy-
brid Approach.

In Proceedings of the 19th IEEE International Conference on Automated Soft-
ware Engineering (ASE’04 Doctoral Symposium), Linz, Austria, September 20,
2004, pp. 414-417, IEEE Press.

Gaoyan Xie, Cheng Li, and Zhe Dang.

Testability of Oracle Automata.

In Proceedings of the 9th International Conference on Implementation and Ap-
plication of Automata (CIAA’04), Kingston, Ontario, Canada, July 22-24, 2004,

Lecture Notes in Computer Science, Volume 3317, Springer.

Gaoyan Xie, Cheng Li, and Zhe Dang.

New Complexity Results for Some Linear Counting Problems Using
Minimal Solutions to Linear Diophantine Equations.

In Proceedings of the 8th International Conference on Implementation and Ap-
plication of Automata (CIAA’08), Santa Barbara, California, July 16-18, 2003,

Lecture Notes in Computer Science, Volume 2759, Springer.

Gaoyan Xie, Zhe Dang, Oscar H. Ibarra, and Pierluigi S. Pietro.

Dense Counter Machines and Verification Problems.

In Proceedings of the 15th International Conference on Computer-Aided Ver-
ification (CAV’03), Boulder, Colorado, July 8 - 12, 2003, Lecture Notes in

Computer Science, Volume 2725, Springer.

Gaoyan Xie, Zhe Dang, and Oscar H. Ibarra.

A Solvable Class of Quadratic Diophantine Equations with Applica-
tions to Verification of Infinite State Systems.

In Proceedings of the 30th International Colloquium on Automata, Languages
and Programming Eindhoven (ICALP’03), The Netherlands, June 30 - July 4,
2003, Lecture Notes in Computer Science, Volume 2719, Springer.

Acknowledgments

I feel it really a luck to have Prof. Zhe Dang as my Ph.D advisor. Prof. Dang has
done far more than being an exceptional advisor, he has also been a great friend. His
strong support, constant encouragement, friendly criticism and generosity with his
time for discussions have been the key factors in every progress I've made toward my
degree. I especially thank Prof. Dang for showing me the right way and the right
attitude to do research. Without all of these helps from him, I would never have
reached this point in my life.

I am grateful to Prof. Dyreson and Prof. Andrews for participating in my doctoral
committee and for the helpful discussions. I am also grateful to many colleagues who
provided various feedbacks on various parts of this work. They are Prof. Oscar
Ibarra, Prof. Pierluigi Pietro, and Mr. Cheng Li. Of course, I must thank all the
good people who make the School of EECS at Washington State University and its
facilities work. The school of EECS provides great support for graduate students and
I consider myself privileged to have been part of it. I also acknowledge that this work
has also been partially supported by the NSF Grant CCF-0430531.

I am greatly indebted to my parents for enduring the hardship in the past five
years while I am far away from them and unable to help. I want to thank my daughter
Cynthia who has brought me the unspeakable happiness and joy in the past two years.
Last and above all, I want to thank my wife Yun for her confidence, support, patience

and unconditional love, which in the end, is all that matters.

vi

FUNDAMENTAL STUDIES ON A DECOMPOSITIONAL AND
HYBRID APPROACH TO AUTOMATIC VERIFICATION OF
COMPONENT-BASED SYSTEMS

Abstract

by GAOYAN XIE, Ph.D
Washington State University
August 2005

Chair: Zhe Dang

This work introduces a decompositional and hybrid approach for the automatic
verification of component-based systems and studies some fundamental issues on the
approach. By using a formal verification technique like model checking or automata
operations, the approach first derives from the system specification and some sys-
tem property a verification condition for each individual component in the system,
such that the system satisfies the property if and only if all the components satisfy
their verification conditions. Then the approach checks the validity of an individual
component’s verification condition either by model checking or automata operations
when the component’s specification is available, or by traditional black-box testing
when the component’s specification is not available. We first study the possibility
of verifying a system with black-box components through testing by introducing a
theoretic tool called Oracle Automata. Then we study specific model checking (both
LTL and CTL) algorithms for systems with only one finite-state black-box. Next, we
show a decompositional technique on testing a system with multiple black-boxes. We
also consider the problem of verifying a system with only one component but against
non-temporal properties, as well as verifying a system with only one infinite-state

component.

vii

Contents

Publications

Acknowledgments

Abstract

1 Introduction

2

1.1
1.2
1.3

Problem Statement and Analysis
A Decompositional and Hybrid Approach
Scope of This Work
1.3.1 Testability of Oracle Automata
1.3.2 Model Checking Systems with One Black-box Component

1.3.3 Decompositional Testing
1.3.4 The Linear Reachability Problem
1.3.5 A Solvable Class of Quadratic Diophantine Equations

Preparations

2.1
2.2
2.3

24

The Component Model
The System Model
Model Checking L
2.3.1 CTL Model Checking
2.3.2 LTL Model Checking

Semi-linear Languages and Presburger Formulas

viil

iii

vi

vii

© 00 J O Ot Ot =N -

3 Testability of Oracle Automata 25

3.1 Definitions 26
3.2 Oracle Finite Automata 27
3.3 Testing Emptiness for Oracle Finite Automata 30
3.3.1 The Testability of OFA With Regular Oracles 32
3.3.2 The Testability of OFA With Context-free Oracles. 33
3.3.3 The Testability of OFA With Semi-linear Oracles 33

3.4 Testing Emptiness for Oracle Buchi Automata 34
3.4.1 Testability of w-OFAWith Regular Oracles 36
3.4.2 Testability of w-OFAWith Context-free Oracles 36
3.4.3 Testability of w-OFA With Semi-linear Oracles 36

3.5 A Dynamic Testing Algorithm 37
3.6 Some Verification Problems 40
3.6.1 The Reachability Problem 40
3.6.2 The Safety Problem 41
3.6.3 The LTL Model Checking problem 42

3.7 Summaryo 44
4 Model Checking Systems With One Black-box 45
4.1 Definitionso 46
4.2 LTL Model Checking oo 47
4.2.1 Liveness Analysis L. 47
4.2.2 Liveness Testing 48
4.2.3 LTL Model Checking Driven Testing ol

4.3 CTL Model Checking 52
43.1 Theldeas L 52
4.3.2 Processing a CTL formula 95
4.3.3 Checking an EX Sub-Formula o7
4.3.4 Checking an EU Sub-Formula 99
4.3.5 Checking an EG Sub-Formula 60
4.3.6 Testing a Witness Graph 62

1X

4.3.7 Testingan EX Graph00

4.3.8 Testingan EU Graph,
4.3.9 Testingan EG Graph.
4.4 Examples
4.5 Discussions e
4.5.1 Practical Efficiencyo 0oL
4.5.2 Coverage Metrics Lo
4.5.3 More Complex System Models

Decompositional Testing

5.1 Introduction
5.2 The Push-in Technique
5.2.1 Theory Foundation of the Push-in Technique
5.2.2 Automata Generationin Step ¢
5.2.3 Surviving Set Generationin Step ¢
5.2.4 Correctness and Bad Behavior Generation
5.3 Experiments oL
DA Summary Lo e e e

The Linear Reachability Problem

6.1 Introduction
6.2 Definitions
6.3 A Bounding Box for the Linear Reachability Problem
6.4 The Linear Liveness Problem
6.5 Summary e
Quadratic Diophantine Equation Systems
7.1 Introduction
7.2 Preliminaries
7.3 Semi-linear Languages with Weights
7.4 Applications
7.4.1 Finite-State Systems and Their Extensions

79
30
82
83
85
86
87
89
92

95
96
98
100
106
107

7.5 SUmMmary e e e e

8 Conclusions
8.1 Related Work

A Proofs Omitted In The Dissertation
A.1 Proofs Omitted From Chapter 3
A.1.1 Proof of Theorem 3.1
A.1.2 Proof of Theorem 3.2
A.1.3 Proof of Theorem 3.3
A.1.4 Proof of Theorem 3.4
A.1.5 Proof of Theorem 3.6
A.1.6 Proof of Theorem 3.7
A.1.7 Proof of Theorem 3.8
A.2 Proofs Omitted From Chapter 7
A.2.1 Proofof Theorem 7.8

Bibliography

xi

135
136

140
140
140
141
141
144
150
151
153
153
153

158

List of Tables

5.1 Experiment Results: Counts of Test Sequences

5.2 Experiment Results: Time Efficiency

xii

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

A Data Acquisition System 15
The Environment of the Data Acquisition System 15
The Gluer o 18
Internal Implementation of Timer 18
Internal Implementation of Sensor 19
Internal Implementation of Comm 19
A Simple Communication System 41
An Oracle Finite Automaton 42
Example 4.3 69
Communication Graph of Example 4.3 69
Example 4.4o 70
Communication Graph of Example 4.4 70
Witness Graph for Example 4.5 L. 71
Example 4.6 L 71
Witness Graph for Example 4.6 72
Witness Graph 2 for Example 4.7.1 73
Witness Graph 3 for Example 4.7.1 74
Witness Graph 2 for Example 4.7.2 75
Witness Graph 3 for Example 4.7.2 00 75
Witness Graph 4 for Example 4.7.200 L. 75
Witness Graph 5 for Example 4.7.2 76

xiii

6.1
6.2

7.1
7.2

An Example of A Scheduler 97

A Layered Structure 103
A Simplified Packet-Based Network Switch 129
A Design of The Scheduling Unit 130

xiv

Chapter 1
Introduction

Component-based software development [62, 17] (sometimes also called component-
based software engineering—CBSE) is an engineering practice to build large software
systems by assembling software components, which are either developed specifically
for the system, reused from a previous project in the same organization, contracted
from third party software vendors, or even purchased as commercial-off-the-shelf
(COTS) products. This development method promises the great benefits of reusing
valuable software assets, reducing development and maintenance costs, improving pro-
ductivity, etc. In the past decade, it has been increasingly adopted by the software
industry, and at least in late 1990s, the software components market was already at
the billion dollar scale and was also projected to increase substantially in the following
years [9)].

However, this development method has also posed serious challenges to the quality
assurance issue of component-based systems—system developers may lose the quality
control of externally obtained software components, which could therefore lead to
serious system failures. This issue is of vital importance to safety-critical and mission-
critical systems. For instance, in June 1996, during the maiden voyage of the Ariane
5 launch vehicle, the launcher veered off course and exploded less than one minute
after taking off. The report [69] of the Inquiry Board indicates that the disaster
resulted from insufficiently tested software reused from the Ariane 4. The developers

had reused certain Ariane 4 software component in the Ariane 5 without substantially

CHAPTER 1. INTRODUCTION 2

testing it in the new system, having assumed that there were no significant differences
in these portions of the two systems.

As agreed by many researchers in this area, the long-term success of component-
based development really depends to a great extent on an established science and
technology foundation for achieving predictable quality in component-based systems.
In recent years, there have been lots of research efforts on building that foundation
and as part of these efforts, this dissertation deals with some fundamental issues

related to the automatic verification of component-based systems.

1.1 Problem Statement and Analysis

Most of the current work addresses the quality assurance issue of component-based
systems from the viewpoint of component developers; i.e., they are mainly concerned
with how to ensure the quality of a component before it is released. However, this view
is fundamentally insufficient since a component may be deployed in a wide variety
of environments, which theoretically can not be tried out by its developers or third
party laboratories. Therefore, a component may still not perform as well as expected
in a particular deployment system, even after extensive testing/verification by its
developers or third party laboratories.

We, however, look at the issue from a system developer’s point of view; i.e., we
are concerned with how to ensure that components function correctly in a particular

deployment environment. More precisely, we are interested in the following problem:

(*) Given: a component-based system Sys that consists of a set of com-
ponents Cp, ---, Cy for some 1 < k and a desired property P about the
observable behaviors of Sys

Question: will the observable behaviors of the system Sys satisfy P?

Notice that, essentially this is a verification problem since we are seeking a definite
answer to the problem.

In practice, testing is the most widely used technique for answering such questions

CHAPTER 1. INTRODUCTION 3

about the observable behaviors of software. Actually, the extreme end of testing (ex-
haustive testing) is akin to verification, but this extreme end is generally unachievable.
To answer the above question, the straightforward approach for most system develop-
ers is to hook up all the components together and conduct integration/system testing,
trying to expose all possible observable behaviors of the system. Unfortunately, there
are serious challenges to this straightforward approach. First, when some component’s
source code or specification is not available (which is very common for externally ob-
tained components), it is hard to choose test cases for the system and it is hard to
know when the system has been adequately tested. Second, integration/system test-
ing over a component-based system could be extremely difficult since components in
the system may run concurrently and concurrency is notoriously hard to test. Third,
integration/system testing is not always applicable for a component-based system.
This is because, in many applications, software components could be applied for up-
grading or extending a running system [87] that is costly or not supposed to shut
down for testing at all.

Besides the above challenges, the impossibility of being exhaustive also makes
purely testing-based approaches insufficient to establish a solid confidence in the
quality of a component-based system that requires high reliability, for which for-
mal verification techniques like model checking are highly desirable. However, one
fundamental obstacle of using model checking to address the problem in (*) is that,
existing model checking techniques require a complete and formal specification of the
system to be verified, while the design detail or source code of an externally obtained
software component is generally not available to system developers (in this work, we
call such a component a black-box component or just black-boz in short). Additionally,
even if we have all the specifications of the components in a system, to model check
the system against some property, we will have to first compose all the components’
specification together to obtain a global specification, which causes the “state explo-
sion” problem. Last, existing model checking techniques only work for finite-state
systems, which is not always the case for software components.

In summary, neither purely testing-based approaches nor purely formal verifica-

tion techniques are sufficient to address the difficulties of the quality assurance of

CHAPTER 1. INTRODUCTION 4

component-based systems brought by their unique characteristics, especially the dif-
ficulties caused by the concurrency among multiple components and the existence
of black-box components. Nevertheless, combining testing with formal verification
techniques is considered to be a viable approach that may avoid the pitfalls of ei-
ther purely software testing techniques or purely formal verification techniques while
taking advantages of both.

In this work, we propose a decompositional and hybrid approach to address the
problem in (*) (i.e., how to check that a component-based system Sys with £ number

of components C, - - -, Cy satisfies a given property P).

1.2 A Decompositional and Hybrid Approach

Specifically, we model each component as a labeled transition system (LTS), which
is not necessarily of finite state space, and model a component-based system as a
collection of LTSs that synchronously communicate with each other through output
and input actions. This abstract LTS model seems to be simple but is actually
flexible enough to model a wide variety of systems. We use temporal logic or regular
expressions to specify the desired properties about the observable behaviors of a
component-based system.

The idea of our approach can be outlined as follows. From the system Sys and
the system property P, we first automatically derive some verification condition P;
for each component C;, for all 1 <7 < k such that the system satisfies the property
P if and only if component C; satisfies its verification condition P;, for all 1 <7 <
k. Thus, a verification problem for a component-based system can be reduced to
verification problems for individual components in the system. This is why we call
our approach a decompositional approach. Deriving the verification conditions can be
done through some formal verification techniques like model checking or automata
operations. Then we check the validity of an individual component’s verification
condition either by model checking or automata operations when the component’s
specification is available, or by traditional black-box testing when the component is

a black-box. This is why we call our approach a hybrid approach.

CHAPTER 1. INTRODUCTION)

Compared to the straightforward testing-based approach, the advantages of our

approach are

e a stronger confidence in the reliability of a component-based system can be

established through both formal verification and adequate black-box testing;

e the challenges to integration/system testing of a component-based system can
be avoided, and especially testing an individual component can be customized

with respect to a specific system property; and

e the whole process can be carried out in an automatic way.

1.3 Scope of This Work

Certainly, our decompositional and hybrid approach is not aimed at completely solv-
ing the problem in (*). This is because the LTS model used in the approach is essen-
tially universal; i.e., it has the computation power of Turing Machines such that no
algorithm exists to completely solve any non-trivial problem over the model. Hence,
we approach the problem by studying some fundamental issues of the problem over
some restricted forms of the system model. To be exact, we first address the pos-
sibility of verifying a system with black-boxes through testing by introducing Oracle
Automata. Then we study model checking (both LTL and CTL) systems with only
one finite-state black-box. Next, we show a new technique on testing a system with
multiple black-boxes. We also consider the problem of verifying a system with only
one component but against non-temporal properties, as well as verifying a system
with only one infinite-state component. These studies are outlined in the subsequent

subsections in the above order respectively.

1.3.1 Testability of Oracle Automata

As we mentioned in Section 1.2, eventually the verification problem in (*) will be
reduced to verification problems (checking the validity of a verification condition

P;) for each component C;. When C; is a black-box component (i.e., no available

CHAPTER 1. INTRODUCTION 6

specification), we use traditional black-box testing techniques to check whether the
verification condition P; is valid over C;. But this is not always doable, since the
black-box component C; may have an infinite state space and have very complex
behaviors such that the validity of P; over C; may not be answered through testing.

So, the first question we are interested in is:

Question: under what conditions can we solve a verification problem for

a black-box component through testing?

To answer this question, we introduce oracle (finite) automata that are finite /
Buchi automata augmented with oracles in some classes of formal languages, and
study the testability of some important verification problems (such as reachability,
safety, LTL model checking, etc.) for oracle (finite) automata. In this study, oracles
are intended to capture the observable behaviors of a system’s black-box components,
so an oracle is defined as a language. On each transition of an oracle (finite) automa-
ton, the automaton may query some oracle and the query result decides whether the
transition can be fired. Here, queries to an oracle are used to characterize communi-
cations between a system and its black-box components.

We show that the verification problems for an oracle (finite) automaton can be
reduced to the emptiness problem of oracle (finite) automata, which can be solved
by testing (querying) the oracles with bounded-length test cases. Then we give some
results on the testability of the emptiness problem of oracle (finite) automata with
various classes of oracles. We also give a symbolic algorithm to perform bounded-
testing for the emptiness problem.

With these testability results, we next study specific (CTL/LTL) model checking

algorithms for systems with only one, finite-state, black-box component.

1.3.2 Model Checking Systems with One Black-box Compo-
nent
Specifically, we study the following model checking problem:

e Given: a component-based system Sys that consists of two components M

and X where M is well specified, X is a black-box component with finite state

CHAPTER 1. INTRODUCTION 7

space, and a temporal formula f that specifies some desired property about the

system
e Check: whether the system Sys satisfies f

We present a set of new algorithms for both LTL and CTL formulas, called model
checking driven black-box testing, which combine model checking techniques and
black-box testing techniques to solve the problem.

As mentioned in Section 1.2. the idea of our algorithms is to use a model checking
based technique that automatically derives from the rest of the system (i.e., M) a
verification condition over the black-box component X. This verification condition
guarantees that the system Sys satisfies the requirement f iff the condition is sat-
isfied by the black-box component X. In the algorithms, the verification condition
is represented as communication graphs (for LTL) or witness graphs (for CTL) and
the validity of the condition is checked through testing the black-box component X.
Test-cases are generated by a bounded and nested depth-first search procedure over
the communication graphs (for LTL) or witness graphs (for CTL). Since the black-box
is assumed to have a finite state space, our algorithms are both sound and complete,
provided there is an upper bound for the number of states in the black-box.

However, for systems with multiple finite-state black-boxes, the model checking
algorithms (especially the CTL algorithms) are very difficult to apply. Also, the
assumption of a black-box component having only finite state space might be too
restrictive for some applications. So, we also consider verifying a system with multiple
(and not necessarily finite-state) black-boxes against a simple form of properties,

namely, a set of bounded-length behaviors.

1.3.3 Decompositional Testing

The global testing problem we study in this work is to seek a definite answer (i.e.,
essentially this is a verification problem) to whether a system of multiple black-boxes
has an observable behavior in a given finite (but could be huge) set Bad. We intro-

duce a novel approach to solve the problem that does not require integration testing.

CHAPTER 1. INTRODUCTION 8

Instead, by exploiting the synchronous nature of the communications among the com-
ponents, our approach reduces the global testing problem to testing individual black-
boxes in the system one by one in some given order. Using an automata-theoretic
approach, test sequences for each individual black-box are generated from the sys-
tem’s description as well as the test results of black-boxes prior to this black-box in
the given order. Since the number of test sequences for a component is finite, we do
not require the component to be of finite state space to achieve the completeness of
the approach; i.e., the components could be of infinite state space In contrast to the
conventional compositional/modular verification/testing approaches, our approach is
essentially decompositional. Also, our technique is complete, sound, and can be car-
ried out automatically. Our experiments results show that the total number of tests
needed to solve the global testing problem is very small even for an extremely large
Bad.

As mentioned earlier, most difficulties of verifying component-based systems are
caused by the existence of black-boxes. However, even when a system that has only
one specified component, verification could still be very hard, especially for properties
that are out of the expressiveness scope of temporal logic. For instance, event count-
ing is a fundamental concept to specify some important fairness properties about a
system, yet it can not be expressed in either CTL or LTL. In the next subsections,
we study the linear reachability problem for systems with only one, finite-state, and
specified component (i.e., a FLTS). The solution to this problem is a novel application

of a known result in linear Diophantine equation systems.

1.3.4 The Linear Reachability Problem

The linear reachability problem for finite-state transition systems is to decide whether
there is an execution path in a given finite-state transition system such that the
counts of labels on the path satisfy a given linear constraint. Using some known
results on minimal solutions (in nonnegative integers) for linear Diophantine equation
systems, we obtained new time complexity bounds for the problem. In contrast to

the previously known results, the bounds obtained in this paper are polynomial in

CHAPTER 1. INTRODUCTION 9

the size of the transition system in consideration, when the linear constraint is fixed.
The bounds are also used to establish a worst-case time complexity result for the
linear reachability problem for timed automata. With this (small) bound, solving the
linear reachability problem could be efficiently done by exhaustively checking all the
bounded-length paths in the system.

Traditional model checking techniques work only on finite-state systems. How-
ever, in real world, a software component is often of infinite state space. The successes
of finite-state model checking have greatly inspired researchers to develop automatic
techniques for analyzing infinite-state systems (such as systems that contain inte-
ger variables and parameters). However, in general, this is an undecidable problem.
Therefore, one focus of the research in this area is to identify what kinds of practi-
cally useful infinite-state models are decidable with respect to a particular form of

properties (e.g., reachability)

1.3.5 A Solvable Class of Quadratic Diophantine Equations

In this work, we study a class of infinite-state systems that contain parameterized or
unspecified constants. Significantly different from existing techniques for analyzing
infinite-state systems (e.g., automata-theoretic techniques in [64, 15, 32], computing
transitive closures for Presburger transition systems [30, 19], etc.), we use a technique
closely related to nonlinear Diophantine equation systems. We show that various
verification problems over this class of infinite-state systems can be reduced to the
satisfiability problem of a special class of quadratic Diophantine equation systems.
Then we show that the satisfiability problem is actually solvable.

Specifically, a k-system consists of £ quadratic Diophantine equations over non-

negative integer variables sy, ..., i, t1, ..., t, of the form:
Z Blj(th ceey tn)Alj(817 ceey Sm) = 01(81, ceey Sm)

1<G<

Z Bkj(tla ceey tn)Akj(sla ceey Sm) = Ck(sl, ceey Sm)

1<5<1
where [, n, m are positive integers, the B’s are nonnegative linear polynomials over

t1, ..., tn (i-e., they are of the form by + bit1 + ... + b, t,, where each b; is a nonnegative

CHAPTER 1. INTRODUCTION 10

integer), and the A’s and C’s are nonnegative linear polynomials over sy, ..., $,,. We
show that it is decidable to determine, given any 2-system, whether it has a solution
in $1, ..., Sm, t1, ..., tn, and give applications of this result to some interesting problems
in verification of infinite-state systems. The general problem is undecidable; in fact,
there is a fixed £ > 2 for which the k-system problem is undecidable. However, certain
special cases are decidable and these, too, have applications to verification.

In the next chapter, we present the system model used in this work, introduce
the basics of model checking, and define some concepts used in this work. Then, we
address in detail the above issues in the subsequent chapters in the same order. The

last chapter is a brief conclusion and a comparison with related work.

Chapter 2

Preparations

2.1 The Component Model

In this work, we model a component as a labeled transition system (LTS) that moves

from one state to another state by performing an action.

Definition 2.1 A labeled transition system is a quadruple T = (S, Init, V, R), where
e S is a (potentially infinite but countable) set of states',
e Init C S is a set of initial states,
e V = is a finite set of labels, and

e RC S xV xS defines the transition relation.

In the above definition, the set V can be further partitioned into three pair-wise

disjoint subsets:
e A, where each label denotes an internal action,

e II, where each label denotes an input action, and

'When S is a finite set, T is called a finite-state labeled transition system (FLTS).

11

CHAPTER 2. PREPARATIONS 12

e I'. where each label denotes an output action.?

Especially, the set > = [T UT, i.e., the set of observable actions of T, is called the
interface of T. When the interface is the only known part in its definition, T is

considered to be a black-boz.

Example 2.2 Consider the LTS in Figure 2.4, which has two states, two input ac-

tions (pause and resume) and one output action (fire).?]

For each transition t = (s, a,s’) € R, if a € A (resp. a € I, a € ') then ¢ is called
an internal (resp. input, output) transition of 7. At a state s, T can always move
to another state s’ by performing an action a when ¢ is an internal transition of 7.
However, only by synchronizing (which will be elaborated in the next subsection)
over an action a with another component, can 7" move from a state s to another state
s' when ¢ is either an input or an output transition of 7.

An ezecution of T is an alternating sequence of states in S and actions in V:
8101+ + Sp—10h—15, (for some h) such that s; € Init and (s;,a;,S;+1) € R for each
1 < j < h-—1. A behavior of T is a sequence 7 of actions in V such that there
is an execution € of 7" and 7 is the result of dropping all the states from e. An
observable behavior of T is the result of dropping all the internal actions from a
behavior. Trivially, the empty string is an observable behavior for any unit 7.

An action a is enabled at state s € S if there exists a transition (s, a,s’) € R for
some s’ € S. We say T is deterministic if at any state, T has only one choice about
where to go after performing an action; i.e., Vs € S;a € V, 51,80 € S, if (s,0a,81) € R
and (s,a,s2) € R then s; = so. We further say T is strongly deterministic if T is
deterministic and at any state, if more than one action is enabled then all of these
actions are input actions; i.e., Vs € S,a1,a0 € V, s1,59 € S, if (s,a1,$1) € R and

(s,az,82) € R then a; € IT and ay € TI.

Example 2.3 Still consider the LTS in Figure 2.4. Obviously, it is deterministic but

not strongly deterministic. |

2In the rest of this work, labels and actions will be used interchangeably without further expla-
nation.

3Throughout the figures in this work, suffixes ? and ! will be used to distinguish input and output
actions respectively.

CHAPTER 2. PREPARATIONS 13

A test sequence « for T is just a sequence of observable actions of 7. When T is

a black-box, we say T is testable if

e There is a special action reset that makes T return to an initial state from any

state; i.e., reset € Il and Vs € S, (s, reset, s') € R for some s’ € Init.

e There is a black-box testing procedure BBtest(T,-) * such that, for any test

sequence « for T,

— BBtest (7, «) returns “yes” (i.e., a is successful) if « is an observable
behavior of T', and

— BBtest(7, «) returns “no” (i.e., « is unsuccessful) otherwise.

Example 2.4 Consider the black-box component Comm in Figure 2.1, which has seven
observable actions. If we assume that the black-box was implemented as shown in
Figure 2.6. Clearly, send msg ack would be a successful test sequence for Comm while

send msg fail would not. [|

It’s easy to see that if one further assumes that the black-box is strongly determin-
istic, then an input action sequence decides an unique output sequence. Thus, a test
sequence for the black-box can be simply represented as a sequence of input actions.
However, there are testable components that are not necessarily output deterministic
(e.g., [74, 89, 80]). Therefore, to make this work more general, in the definition, a
test sequence is always a sequence of both input actions and output actions.
Remark. Certainly, it should be pointed out that the LTS model is not sufficient
to cover all aspects of a complex software component, which may include unbounded
data values, dynamic data structures, and recursive procedure calls, etc. For these
computations, this work was not intended. However, this LTS model is indeed flex-
ible enough to model some very import logic of a real software component, like the
procedure call graphs, synchronizations in concurrent programs, and the stimulus-

response relations in reactive systems, etc. For instance, output actions can be used

4The black-box testing procedure can be implemented in practice for a variety of transition
systems [16].

CHAPTER 2. PREPARATIONS 14

to model calling a procedure, sending a message, and returning to its caller upon
the termination of a procedure, etc. Input actions can be used to model entering a
procedure, receiving a message, and the end of calling a procedure, etc. At present,

automatic verification of software is only practical over such abstract models.

2.2 The System Model

Intuitively, a component-based system can be understood as a collection of concur-
rently running components. The components communication with each other either
synchronously or asynchronously. Without loss of generality,® this work considers
only systems of synchronously communicating components.

Since in this work a component is modeled as a LTS, a component-based system
Sys consisting of 1 < k£ number of communicating components can thus be written
as

Sys = (Cy,---,Ck), (2.1)

where each C; = (S;, Init;, V;, R;), 1 < i < k is a LTS model for one of the compo-
nents. The LTSs’ state sets Si,---, Sk are pair-wise disjoint. Their internal action
sets Aq,--- Ay are also pair-wise disjoint. Let A= A;---UAgand ¥ =X, U--- U,
then AN Y = {; i.e., in the system Sys, no action can be both an internal action of
some component and an observable action of another component. However, the inter-
faces ¥y, - - -, ¥ may not be pair-wise disjoint; i.e., some components may share some
common observable actions and especially, an action can be both an input action of
some component and an output action of another component.

In practice, a system always resides in some particular environment and con-
stantly interacts with the environment. When designing a system, we usually do
not care about the dynamics of its environment (assume that the environment can
act according to any logics), but we do often assume a set of possible actions that

the environment may perform. These actions may model human operations over the

5 Asynchronous communications with lossless and bounded channels can always be emulated by
synchronous communications with an added environment.

CHAPTER 2. PREPARATIONS 15

system or the system’s request for the environment’s attention, etc. Formally,

Definition 2.5 the environment of a component-based system Sys = (Cy,---,C)
is also LTS, ENV = (S, Inity, Vo, Ry), where

e |Sp| = [Inity| = 1; i.e., the environment has only one state, say so.
e V= 2%; i.e., the environment has no internal actions, and

e Ry = 59%xVyxSy;i.e., the environment can perform any action at any moment.
|

Obviously, to specify the environment of a system, it is sufficient to just specify the

environment’s interface. Sometimes in this work, even the interface is omitted when

fil’i'
dat

R,

it is clear from the context.

pause?

? resume?

pause! resume!

?
data? <K

Gluer ~— fail?

|-
cerr?

Figure 2.1: A Data Acquisition System

msg?
nack! C& ack!

Figure 2.2: The Environment of the Data Acquisition System

Example 2.6 Consider a data acquisition system shown in Figure 2.1, which consists
of four components: Gluer Timer, Sensor and Comm (note that Timer, Sensor and
Comm are black-boxes). In this system, action fire is both an output action of Timer
and an input action of Gluer; action msg is both an output action of Comm and an
input action of the environment while action ack is both an input action of Comm and

an output action of the environment. Also look at Figure 2.2 for its environment. §

CHAPTER 2. PREPARATIONS 16

Let I = {0,1,---k}. A synchronization in the system Sys is a triple syn =
(0,a,IN), where 0o € I, a € X, and IN C I\ {o}. At any moment in the system
(suppose that each component C; is in state s; for all 1 < ¢ < k), the synchronization

syn is enabled if the following two conditions are satisfied:

e there is an output transition (s,,a, s,) € R, in component C, (or the environ-

ment when o = 0),
e there is an input transition (s;, a,s;) € R; for all j € IN.

Essentially, a synchronization of an output action and multiple input actions rep-
resents a communication among the components or between the environment and
the components in the system. Obviously, this synchronization model allows both

one-to-one communications and multi-cast communications.

Example 2.7 Consider the data acquisition system shown in Figure 2.1, an im-
plementation of the Timer component in Figure 2.4, and an implementation of the
Sensor component in Figure 2.5, a synchronization over fire is enabled whenever the

Timer is at state sy and the Sensor is at state sg or si. |

Remark. We assume that the behavior of the environment of a system is uncon-
strained. Actually, the design of a system can always enforce an assumption about
the environment’s behaviors using synchronous communications. For instance, the
design of an object-oriented software component may assume that the calls to its
methods occur in a specific order and it can enforce this assumption by blocking the

out-of -order calls.

As mentioned earlier, in a component-based system Sys, all its components run
concurrently but in an interleaving fashion. That is, at any moment, either only one
internal action is performed in some component or only one synchronization occurs;
i.e., if two internal actions or two synchronizations are enabled at the same moment,
the system nondeterministically picks only one of them to carry out, and no internal
actions and synchronizations can be carried out at the same time. So, a component-
based system can also be considered as an LTS by interleaving its components’ internal

actions as well as all possible synchronizations.

CHAPTER 2. PREPARATIONS 17

Definition 2.8 A component-based system Sys = (Cy, - --,C%) is also a LTS Sys =
(S, Init,V, R), where

e S=5; x -+ x S is the (global) state set,

e Init = Init; x --- x Inity is the (global) initial state set; i.e., the system Sys
is in an (global) initial state if all of its components are in their (local) initial

states,
e V=V;U---UV, is the action set , and
e RC S xV xS is the (global) transition relation.
|

For each a € 3, let In(a) denote the set of all the components that share the same
input action g; i.e., In(a) = {i|l <1i <k Aa €Il;}. Similarly, let Out(a) denote the
set of all the components that share the same output action a; i.e., Out(a) = {i|1 <
i < kAa€T;}. Then, a global transition that makes the system move from a global
state (s1,- - -, sg) to another global state (s}, - - -, 5,) while performing an action a € V

is in R iff one of the following conditions is satisfied:

e ¢ is an internal action of some component and by this transition, only that
component performs this action while the other components do not move; i.e.,
A1 <i<k(a€ A A(si,a,5;) € RiAVL < j#1 < k(s; = s7)),

e ¢ is an observable action and by this transition, only one synchronization over
this action occurs; i.e., 30 < 0 < k(o € Out(a) A (S4,a,5,) € Ry AV0 < i# 0 <
k(i € In(a) A (s;,a,5:) € Ri Vi ¢ In(a) A s; =s!)).

Remark. It shall also be pointed out that in the system Sys: if a global transition
is through an internal action of some component, this action is still internal to the
system; if a global transition is through a synchronization of an output action and
multiple input actions among some components (or the environment), these actions
are considered to be one single action, and we do not discriminate whether it is output

or input but just treat it as an observable action to the environment.

CHAPTER 2. PREPARATIONS 18

As defined earlier, a sequence 7 € V* is a behavior of the system Sys if the system
has an execution from an initial global state to some global state and « is the result
of dropping all the states along the execution. And an observable behavior of T is

the result of dropping all the internal actions from a behavior.

Figure 2.4: Internal Implementation of Timer

Example 2.9 Still consider the data acquisition system shown in Figure 2.1. The
system works as follows. Once started, the Timer keeps sending (an output action)
a fire message when the time interval set runs out; the Timer can also be paused
(resp. resumed) by receiving (an input action) a pause (resp. resume) command.
The Sensor is supposed to respond to the fire message by sending a data message
when the sensor’s reading is ready; it also sends a serr message when something is
wrong inside the Sensor. The Comm component responds to a send command to send
some data by sending a msg message to the environment (the underlying physical
network); it responds to an ack (resp. nack) message by sending an ok (resp. fail)
message to indicate that the data associated with a previous send command has been
transmitted successfully (resp. unsuccessfully) by the underlying network; it sends
an cerr message when something is wrong inside Comm. The Gluer (whose transition

graph is depicted in Figure 2.3) simply relays data from Sensor to Comm; it pauses the

CHAPTER 2. PREPARATIONS 19

Timer when something is wrong with the Sensor or Comm, and after that, it resumes
the Timer when either an ok or fail is received from Comm. Together, they constitute a
data acquisition system, which periodically transmits a reading of the Sensor through
Comm via some underlying communication network. In this system, the Gluer and
the three components run concurrently and interact with each other through synchro-
nizations of output and input actions (here, all synchronizations are between a pair of
components (or the environment)). Assume that the internal implementations of the
three components are shown in Figure 2.4, Figure 2.5, and Figure 2.6, respectively.
It can be seen (though not obviously) that the following sequence is an observable
behavior of the system: fire fire serr pause data send msg ack ok resume fire, while

sequence fire fire serr data pause send is not. |

e fire? e fire? 9
st L

Figure 2.6: Internal Implementation of Comm

Remark. When none of the components in a system is a black-box, our system
model is roughly equivalent to the IOTS studied in [80]. Our model is also closely
related to I/O automata [70] (but ours is not input-enabled) and to interface-automata
[35] (but ours, similar to the IOTS, makes synchronizations among components (or
the environment) observable at the system level). These observable synchronizations
are the key to testing the behavior of a system of black-boxes components, where
an abstract model (such as design or source code) of each black-box component is

unavailable.

CHAPTER 2. PREPARATIONS 20

2.3 Model Checking

Model checking is an automatic technique for verifying a finite-state system against
some temporal specification. The system is usually represented by a Kripke structure

K = (S, R, L) over a set of atomic propositions AP, where
e S is a finite set of states;
e R C S x Sis the (total) transition relation;

o L:S — 247 ig a function that labels each state with the set of atomic propo-

sitions that are true in the state.

The temporal specification can be expressed in, among others, a computation-tree
logic (CTL), in which there can be many possible futures at one time, or a linear-
time logic (LTL), in which there is only one future at one time. Both CTL and LTL
formulas are composed of path quantifiers A and E, which denote “for all paths” and
“there exists a path”, respectively, and temporal operators X, F', U and G, which

means “next state”, “eventually”, “until”, and “always”, respectively.

2.3.1 CTL Model Checking
More specifically, CTL formulas are defined as follows:

e Constants true and false, and every atomic proposition in AP are CTL for-

mulas.

e If f; and f5 are CTL formulas, then so are = f;, fi A fo, 1V fo, EX f1, AX f,
EF fla AF fla E[fl U f2]7 A[fl U fQ]’ EG f17 AG fl'

A CTL model checking problem, formulated as K, sy = f, is to check whether the
CTL formula f is true at state s. For example, AF f is true at state s if f will be
eventually true on all paths from s; E[f U g| is true at state s if there exists a path
from s on which f is true at each step until ¢ becomes true.

The explicit algorithm [28] for solving this problem operates by searching the

structure and, during the search, labeling each state s with the set of sub-formulas

CHAPTER 2. PREPARATIONS 21

of f that are true at s. Initially, labels of s are just L(s). Then, the algorithm goes
through a series of stages—during the i-th stage, sub-formulas with the (i — 1)-nested
CTL operators are processed. When a sub-formula is processed, it is added to the
labels for each state where the sub-formula is true. When all the stages are completed,
the algorithm returns ¢true when sq is labeled with f, or false otherwise.

Due to duality, any CTL formula can be expressed in terms of =, vV, EX, EU, and
EG. Thus, each intermediate state of the algorithm only handles six cases, depending
on whether the sub-formula is atomic or has one of the following forms: = f, fi V fo,
EX fi, E[fiUfs], or EG. The details of algorithms that handle these six cases can
be found in the textbook [28].

A symbolic model checking algorithm based on BDDs [18] was proposed by McMil-
lan [59] and has been implemented into a model checker SMV [2], which has been

successfully used for verifying many industrial-level applications [27, 22, 23, 49].

2.3.2 LTL Model Checking

LTL formulas, on the other hand, are all in the form of A f where f is a path formula

defined as follows:

e Constants true and false, and every atomic proposition in AP are path formu-

las.

o If f; and f, are path formulas, then so are —f, fi A fo, fi V fo, X f1, F fi,
f1U fo], G fi-

An LTL model checking problem, formulated as K, so = A f, is to check whether the
path formula f is true on all paths from s. For example, AF'G f is true at state s if
on all paths from s, after a future point f will be always true; AGF f is true at state
s if on all paths from s, f will be true infinitely often.

A classic LTL model checking technique is an automata-theoretic approach by
Vardi and Wolper [90] that first translate the negation of an LTL formula into a Buchi
automaton and then check the emptiness of the production of the Buchi automaton

and the system.

CHAPTER 2. PREPARATIONS 22

Simply, a Buchi automaton is a finite automaton over infinite words. More pre-
cisely, a Buchi automaton A is a five tuple

A = (S, Init, Final, X, R,)

where

e S is the finite set of states,

Init C S is the set of initial states,

Final C S is the set of accepting states,
e Sigma is a finite set of alphabeta, and
e RC S x ¥ xS is the transition relation.

A run p of a Buchi automaton is an infinite sequence syagsiaq ... such that sy €
Init and (s;,a;,8;41) € R for every natural number 0 < i. Let inf(p) be the set
of states that appear infinitely often in the run p. Then p is accepting if and only
if FUinf(p) # 0. Let pg be the results of dropping all states from p. Then the
language accepted by an Buchi automaton A is the set of words L(A) = {pg|p is an
accepting run of A}.

Given any LTL formula f, it can be translated into an Buchi automaton A; such
that f is true along an infinite path p if and only if p € L(Af). Also, a Kripke
structure M can be simply extended into a Buchi automaton where every state is
an accepting state. Then the original LTL model checking problem can be solved as

follows
e obtain —f by complementing the LTL formula f,
e translate —f into a Buchi automaton Ay,
e extend the Kripke structure M into a Buchi automaton A,

e compute the product A = Ay, x A ¢, and

CHAPTER 2. PREPARATIONS 23

e check the emptiness of A: L(A) =0 =M,s = A f.

The successful LTL model checker SPIN [52] was built upon the above automata-
theoretic approach.

More detailed background in model checking and temporal logic can be found in
the textbook [28].

2.4 Semi-linear Languages and Presburger Formu-

las

Let N be the set of nonnegative integers and let ¥ be an alphabeta with ¥ =
{a1,a9,...,a;} for some positive k. A subset S of N¥ is a linear set if there ex-
ist vectors vg,v1, ..., v; in N¥ such that S = {v | v =wvy + bivy + - -- + byv;, b; € N}.
The set S C N is semi-linear if it is a finite union of linear sets. For each word w
in ¥*, define the Parikh map of w to be #(w) = (|w|ay, [Wla,, - - -, [W]a,), Where |w],,
denotes the number of symbol a;’s in word w, 1 < ¢ < k. For a language L C >*,
the Parikh map of L is #(L) = {#(w) | w € L}. The language L is semi-linear
if #(L) is a semi-linear set [76]. L is a semi-linear commutative language if L is
semi-linear and, for all wy, wy with #(w;) = #(ws), wy € L iff wy € L. That is, only
the counts information (|w|,,, |wla,,- - ., |wls,) is sufficient to decide whether w € L.
For instance, {w : |w|, — |w|y > 2|w|. A |w,| < b|w|.} is a commutative semi-linear
language over alphabet {a, b, c}.

Let z{,---,x, be k variables over N. An atomic linear constraint is defined as
a121+ - - -+ agxp ~ b, where ~€ {=,>}, a1, -, a; and b are integers. The constraint
is called an equation (resp. inequality), if ~ is = (resp. >). The constraint is made
homogeneous if one makes b = 0 in the constraint. A linear constraint is a Boolean
combination of atomic linear constraints (using A,V,—,—). A congruence is in the
form of x; =, ¢, where 1 < i < k, and b # 0,0 < ¢ < b. A Presburger formula is a
Boolean combination of atomic linear constraints and congruences using V and A. It
is well known that Presburger formulas are closed under negation and quantification
(=, V and 3). A subset S of N¥ is semi-linear iff S is Presburger definable (i.e., there

CHAPTER 2. PREPARATIONS

is a Presburger formula P such that P(v) iff v € S) [46].

24

Chapter 3

Testability of Oracle Automata!l

As we mentioned in Section 1.3.1, eventually the verification problem in (*) will be
reduced to a verification problem (checking the validity of a verification condition
P;) for each component C;, particularly a testing problem when C; is a black-box.
Thus the first issue we would like to study is “under what conditions we can solve a
verification problem for a black-box component through testing”.

In this chapter, we introduce oracle (finite) automata (OFA) as a theoretic tool
to study this issue. We show that various verification problems for an oracle (finite)
automaton can be reduced to its emptiness problem, which can be solved by testing
(querying) the oracles with bounded-length test cases. Then we give some results
on the testability of the emptiness problem of oracle (finite) automata with various
classes of oracles.

The rest of the chapter is organized as follows. Section 3.1 introduces some defi-
nitions used in this chapter. Section 3.2 starts with a formal definition of oracle finite
automata and a naive algorithm for testing its emptiness. Then in section 3.3, we
present some results on the testability of the emptiness problem for various classes of
oracle finite automata. These results are further extended to oracle Buchi automata
in Subsection 3.4. We provide a symbolic algorithm for testing the emptiness of ora-
cle finite/Buchi automata in section 3.5. In section 3.6, we establish the connections

between the testability results and some important verification problems for oracle

1The content of this chapter is based upon the joint work with C. Li and Z. Dang in [101].

25

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 26

finite/Buchi automata. Then we summarize this chapter in Section 3.7.

3.1 Definitions

Throughout this chapter, 3 is any fixed alphabet. An oracle O, is a language in a
class O of languages. The name of “oracle” comes from the fact that we only know
that the oracle is an element in the class but we do not know which one it is. However,
one may obtain a truth value from a query “w € O?” to the oracle O for a word w,
where w is called a query string.

A finite automaton (FA) A consists of finitely many transitions, each of which
makes the automaton move from one state to another while reading an input symbol
(in X). In the description of A, we also designate an initial state and a number of
accepting states. A sequence of input symbols or an input word w € ¥* is accepted
by A if, from the initial state of A, A reaches an accepting state after reading the
entire word w. As usual, L(A) stands for the language accepted by A. In general, a
FA is nondeterministic; so we use DFA to denote a deterministic FA. A pushdown
automaton (PDA) can be obtained by augmenting an FA with a pushdown stack
(without loss of generality, we assume that the stack alphabet is the same as the input
alphabet X and each time, the PDA pushes/pops at most one symbol). Similarly,
DPDA is used to denote a deterministic PDA. We further use FA(n) (resp. DFA(n),
PDA(n), DPDA(n)) to denote an FA (resp. DFA, PDA, DPDA) with at most n > 1
states. In this chapter, these notations of automata are also abused to represent
languages accepted by the automata. For instance, FA(n) is the class of regular
languages (on alphabet ¥) accepted by finite automata with at most n states.

Next, we recall the definitions of (semi-)linear sets and their connection to counter
machines. Let ¢ be a nonnegative integer. A c-counter machine is an FA augmented
with ¢ counters, each of which can be incremented by 1, decremented by 1, and tested
for zero. We assume, w.l.o.g., that each counter can only store a nonnegative integer
(since the sign can be stored in the states). Let r be a nonnegative integer and let
NCM(c,r) denote the class of c-counter machines where each counter is r reversal-

bounded [54]; i.e., each counter makes at most r alternations between nondecreasing

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 27

and non-increasing modes in any computation. For instance, a counter whose values
change according to the pattern 0 1123443210110 is 3-reversal, where the
reversals are underlined. We use DCM(c,r) to denote the deterministic machines
in NCM(¢,r). From a result in [54], a semi-linear commutative language L can be
recognized by a DCM(e,r) M for some ¢ and r if M’s input is equipped with an end
marker. In particular, it can be shown from [56] that there is a constant d such that,
L # () iff there is a word |w| < d“™ in L, where m is the number of states in M.
This result remains even when M is nondeterministic. From now on, we use M to
characterize L and LIN(n) to denote those semi-linear commutative languages that
can be accepted by a DCM(c,r) with m states, where n = d™. With this definition,
when L € LIN(n) with n > 1, we say that L, as well as the M, has characteristic n.

We use LIN to denote the class of all semi-linear commutative languages.

3.2 Oracle Finite Automata

Recall that O is a class of languages over alphabet ¥ and O, called an oracle, is a
language in Q. Formally, M, an oracle finite automaton (OFA) with ¢ oracles is a
tuple

(t,%, S, R, Sinit, F'), (3.1)

where X is the given (input/query tape) alphabet, S is a finite set of states with sp;
being the initial state and F C S being a set of accepting states. R is a (finite) set of

transitions, each of which is in one of the following five forms:

1) (a read-input transition) s — s', which makes M move from state s to state s’

after reading an input symbol a;

2) (a write transition) s () o , which makes M move from state s to state s’

after appending a symbol a to the end of the i-th query tape;

3) (a positive query transition) s weryi) , which makes M move from state s to
state s’ when querying the i-th oracle (with the i-th query tape content as the

query string) returns a “yes” answer;

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 28

4) (a negative query transition) s ey , which makes M move from state s to

state s’ when query(i) returns a “no” answer;

5) (a reset transition) s reset® , which makes M move from state s to state s’

and resets the i-th query tape content to be empty;

where 5,5’ € S, a € ¥, and 1 <i<t. When t =1, M is called a single OFA. Notice
that the syntactical definition of M involves neither any description of @ nor O. When
M is associated with an array Oy, ---, O, of t oracles in Q, we use M (O1,---,0;) to
denote the association. The semantics of M is defined as follows. Let M (O, - - -, O;)
be an association. A configuration is a tuple (s, wy,- -, w;) of a state s and ¢ query
tape contents wy,---,w; € X*. The configuration is initial if the state is the initial
state and the query tape contents are all empty. The configuration is accepting if s
is an accepting state. A one-step transition between two configurations is written as

(s,wy,---,w) = (s',w},- -, w)) when one of the following conditions is satisfied:

. a . . o, . .
e o is a, s — §' is a read-input transition in R, and each w;- = wj;

write(i,a)

« is write(i,a), s s’ is a write transition in R, and for each j # i,

I I oy
w; = w; and w; = w;a;

« is query(i), s quﬂ(z) s' is a positive query transition in R, query string w; is

. P
in O;, and each wj; = wy;
. . —query(i) , . . L. . .
e ais ~query(i), s ~— s is a negative query transition in R, query string w;
is not in O;, or each wj = wy;

. . reset(i) , . .- . . .
e avisreset(i), s — s isareset transition in R and, for each j # i wj = wy,

and w; = A (the empty string).

A run of M(Oy,---,0) is a sequence
CoBCy---Cpy B Cy, (3.2)

such that

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 29

e for each j <n, C;_1 X C; is a one-step transition, and
e (y is the initial configuration.

The run is an accepting run if C,, is an accepting configuration. Let w be the result
of deleting elements not in 3 from the sequence a; ---a,. Then we say that the
run in (3.2) is a run on input word w. A word w is accepted by M(Oq,---,0y) if
there is an accepting run on w. The language accepted by M(Oy,---,0;), written
L(M(Oy,---,0y)), is the set of all words accepted by M (Oy, - - -, O;). Obviously, when
associated with a different array of oracles, a query may return a different result and
hence M may behave differently. Therefore, M can be thought of a template with ¢
places to be filled in with oracles. To emphasize the fact that oracles are drawn from
O, we sometimes use M to denote the oracle finite automaton M and further use
M®(Oy,---,0,) to denote the specific association of the oracles Oy,---,0; € O with
M.

Various restrictions can be placed on query behaviors of an oracle finite automaton
M. In this chapter, we will focus on the following four forms of restrictions. M is a
prefiz-closed OFA if M is only associated with prefix-closed oracles?. M is a k-query
OFA if, during any run, the oracles are queried for at most k£ times. M is a positive
OFA if, in M, each query must return a “yes” answer (i.e., M does not have negative
query transitions). M is a memoryless OFA if for each i, the i-th query tape content
is erased (by a reset(7) transition) immediately after each query query(i). Therefore,
during any run of a memoryless OFA, each query string sent to an oracle was “freshly
written” since the previous query to the same oracle.

A B-bounded testing script T (with ¢ oracles) is a deterministic Turing machine

equipped with two tapes:

e the first tape, called the query tape, is a two-way readable and writable Turing
tape whose length is B, and

e the second tape, called the working tape, is an ordinary unbounded Turing tape,

2A language on the alphabet is prefiz-closed if the following condition is satisfied: for any word
w, if w is in the language, then so is every prefix of w.

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 30

and is further augmented with query instructions. Each query instruction allows the
script to query an oracle with a query string that is the content of the portion of
the query tape between the first cell and the current cell under the query tape head.
A state transition is made upon the query result. We assume that T starts with
both tapes blank and always halts, when associated with any array of ¢ oracles. T is
successful (resp. unsuccessful) on Oy, ---, Oy, if, when associated with Oy,---, 0y, T
halts with an accepting (resp. rejecting) state. The name of a “testing script” comes
from the fact that, when T runs, the oracles are tested (queried) with query strings
not longer than B. When T halts, the testing is finished and an answer of either
“successful” or “unsuccessful” is given. Of course, the answer may be different when
T is associated with another array of oracles.

A testing script is used to solve problems concerning an OFA. Let X be one of the
language classes FA, DFA, PDA, DPDA, and LIN defined earlier. We use OFA* to
denote the class of OFAs whose oracles are drawn only from X. Let M*(be one such
automaton in OFAX with n > 1. Then a problem of M is a predicate over some oracles
O1,--+,0¢in X(n). For instance, the emptiness problem of MX™ is to decide whether
MX™(0y,---,0,) accepts an empty language. This problem can be characterized
by the predicate Pyx) (O, - -, 0;), which is true iff L(MXM™(Oy,---,0;)) = 0. A
problem P of MX(® is testable if there is an algorithm such that from the description
of M and n, one can compute a number B(M,n) and a B(M,n)-bounded testing
script T satisfying the following condition: for each Oy, ---,0; € X(n), P(O1,- -+, 0)
is true (resp. false) iff T is successful (resp. unsuccessful) on Oq,---,0;. In this
case, we also say that the P problem of the oracle finite automaton M*™ is B(M, n)-
testable. That is, the P problem of M*(™ can be decided by running the test script

which queries the oracle with query strings not longer than B(M,n).

3.3 Testing Emptiness for Oracle Finite Automata

In automata theory, the emptiness problem is to decide whether an automaton ac-
cepts the empty language. Algorithmic solutions to the emptiness problem for various

classes of automata have become a cornerstone in many areas of computer science,

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 31

especially in automata-theoretic based model checking technique. In traditional au-
tomata theory, the automaton studied in the emptiness problem must be fully spec-
ified. However, the oracle finite automata studied in this chapter are only partially
specified (due to the existence of the oracles). So, testing the oracles seems an in-
evitable way to answer the problem. But we first need to know whether the problem
is testable.

Notice that an oracle finite automaton MX(™ when associated with oracles Oy,-
-+, Oy, runs on some input, during which the oracles are queried. On a specific run,
one may record the maximal length of all query strings sent to the oracles. Assume
that the maximal length is uniformly bounded by a number B, called a query bound,
among all the possible input words, runs, and associations of oracles from X(n). Under
this assumption, checking whether L(MX(™ (O, ---,0,) = () becomes easier. This is
because, for the purpose of emptiness, one can make each oracle to be finite (the
number of elements is bounded by |X|?) by dropping any word longer than B from
the oracle. In this way, the finite oracle can be “recovered” through a finite number
of queries. Even though the assumption in general does not hold, one can effectively
build an approximated version Mg(") from MX(™ that satisfies the assumption for
any number B, by forcing M*™ to crash whenever it tries to query the oracle with
a query string longer than B. Then we refine the definition of query bound: B is a
query bound of MX™ if, for any Oy, ---, 0, € X(n),

L(MX™(0,,---,0,) = 0 iff LMX™(0y,---,0,) = 0.

Once the query bound is identified, a B-bounded testing script T can be easily con-

structed to answer the emptiness of MX(™).

1) For each oracle, T enumerates each string not longer than B, queries the oracle

with the string, and stores the result on the working tape.

2) On the working tape, T also constructs a finite automaton (without any oracles)
that simulates Mg(") where each query is answered by retrieving the stored

results.

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 32

3) T returns “successful” or “unsuccessful” depending on whether the finite au-
tomaton accepts an empty language (this can be decided by running a standard

algorithm on the finite automaton).

Later in the chapter, we will show a more efficient construction. Hence, in proving
that the class OFAX is testable, we only need to demonstrate that a computable query
bound exists for every MX in OFAX. This is the fundamental approach we will use
to study some testable classes of oracle finite automata.

Studies on black-box testing [67] have shown that the structure of a finite au-
tomaton with n states can be completed recovered by test sequences with length not
longer that a bound BT'(n). This result can be immediately used to establish the
testability of OFAs with regular oracles in FA(n). However, there are reasons that new
techniques are needed. First, for emptiness testing, one does not need to recover the
complete information of the oracle, and a smaller query bound than BT(n) may exist.
Second, as shown below, complete information is not recoverable for some practically
useful but irregular oracles, e.g., PDA(n). That is, BT(n) is not computable (from
n) for oracles in PDA(n). In other words, context-free languages are not black-box
testable.

Theorem 3.1 Context-free languages are not black-box testable.

See Appendix A.1.1 for the proof of this theorem.
In the rest of this section, we will present some results concerning the testability

of the emptiness problem for various classes of OFAs.

3.3.1 The Testability of OFA With Regular Oracles

Recall that an oracle finite automaton M is associated with an array of ¢ oracles. Let
|M| denote the number of states in M. We start with the case when M’s oracles are

regular.

Theorem 3.2 (a) The emptiness problem for oracle finite automata MPFAM) s O(n?-
|M|)-testable. (b) The emptiness problem for oracle finite automata M*™ ™ is O(2m.
|M|)-testable.

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 33

See Appendix A.1.2 for the proof of this theorem.

3.3.2 The Testability of OFA With Context-free Oracles

We now study the case when an OFA’s oracles are drawn from context-free languages.
As shown in Theorem 3.1, context-free languages are not testable. But there do exist
some special conditions under which the emptiness problem for M is testable. The
proof of the following Theorem 3.3(a) uses a reduction to the halting problem of two-

counter machines. For the testable cases, Theorem 3.3(b) involves PDA constructions.

Theorem 3.3 (a) The emptiness problem for oracle finite automata in OFAPP* s

not testable. The result remains in each of the following restricted cases:
(a.1) the automata are 1-query and single,

(a.2) the automata are 2-query, positive, and single,

(a.3) the automata are 2-query, positive, and in OFAPFPA,

(b) The emptiness problem for oracle finite automata MFPPA®) 45 20(MP>n*XD) _teogtghle,

under each of the following conditions:

(b.1) MFPPAM s positive, single, and prefiz-closed,
(b.2) MFPAM js positive, single, and 1-query,
(b.3) MFPAM s positive, single, and memoryless,
(b.4) MFPAM) s MPPPAM) gnd single.

See Appendix A.1.3 for the proof of this theorem.

3.3.3 The Testability of OFA With Semi-linear Oracles

Finally, we consider the case when an OFA’s oracles are drawn from semi-linear
commutative languages. As we are going to show, even though, in general, OFAs with

such oracles are in general not testable for emptiness, under some restrictions, the

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 34

problem becomes testable. The proof of the following Theorem 3.4(a) is a complex
reduction to the halting problem of two-counter machines. In showing Theorem

3.4(b), properties over reversal-bounded NCMs are used.

Theorem 3.4 (a) The emptiness problem for oracle finite automata in OFA™Y is

not testable. The result remains in each of the following restricted cases:
(a.1) the automata are single and positive,
(a.2) the automata are memoryless, positive, and have two oracles (i.e., t = 2).

(b) The emptiness problem for oracle finite automata MYIN(M) s testable, under each

of the following conditions:

(b.1) MYNM) s k-query. In this case, it is O(n*F"M*)-testable,

(b.2) MY s prefir-closed,

(b.8) M"™(®) s memoryless and single. In this case, it is O(n!™)-testable.

See Appendix A.1.4 for the proof of this theorem.

3.4 Testing Emptiness for Oracle Buchi Automata

Syntactically, an oracle Buchi automaton (w-OFA) M, is an oracle finite automaton
M in (3.1). The difference is that, M,, accepts only w-runs (i.e., infinite runs). We
write M2 for M,, when its oracles are drawn from Q. Let M2(Oi,---,0;) be an
association of MQ with oracles Oy,---,0; in Q. An w-run of M2(Oy,---,0;) is an

infinite sequence

CoBCCp1 2 Cpen-, (3.3)

such that each prefix Cy 5 Cy ---Ch_y =3 C,, is a run of M®(Oy,---,0;), and for all
m there is an n > m with «,, € ¥. This latter requirement ensures that an w-run reads
an infinite number of input symbols. The w-run is accepting if some accepting state
in F' appears infinitely often on the run. An w-word 7 is accepted by M2(Oy, - -, Oy)

if there is an accepting run in the form of (3.3) such that the word w, (the result of

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 35

deleting elements not in ¥ from the sequence «; -« -«y,) is a prefix of 7, for each n.
We use L¥(M2(Oy,---,0;)) to denote the w-language accepted by M2(Oy, -+, 0;).

Completely analogous to oracle finite automata, we use w-OFA* to denote the set
of all w-OFA MX™, for X € {FA, DFA, PDA, DPDA, LIN}. We also follow a similar
definition for prefix-closed, k-query, memoryless, and positive w-OFAs.

The emptiness problem (for oracle Buchi automata) is to decide whether M () (Oy
,---,0;) accepts an empty w-language. For each class C' of oracle finite automata
considered in Theorems 3.3(a) and 3.4(a) whose emptiness is not testable, one can
easily conclude that the emptiness problem for its corresponding class of oracle Buchi

automata is not testable either.

Theorem 3.5 (a) The emptiness problem for oracle Buchi automata in w-OFAFPPA
is ot testable. (b) The emptiness problem for oracle Buchi automata in w-OFA™™
is not testable. The two results remain even when each of the restrictions stated in
Theorem 3.3(a) is applied.

Proof. This is because from an oracle finite automaton M, one can build an oracle
Buchi automaton M’ as follows. M’ behaves in the exactly same way as M, except
that when M enters an accepting state, M’ nondeterministically enters a special
state (that is the only accepting state of M') and keeps staying in the state forever.
Clearly, on associating with any oracles, M accepts an empty language iff M’ accepts
an empty w-language. Notice that if M belongs to the class C of oracle finite automata
mentioned earlier, M’ belongs to the same class of oracle Buchi automata too.

) is testable; i.e., one

However, the emptiness problem for some restricted MY (n
can compute a B(M,n)-bounded testing script and, after running the script, the
emptiness can be decided. The basic technique in showing testability is to reduce the
emptiness problem of an oracle Buchi automaton in a class to the emptiness problem
of an oracle finite automaton in the same class through loop analysis. Although loop
analysis is a general technique, such a reduction does not always exist. For instance,
currently, we do not know whether a positive, single and prefix-closed MfDA(n) is
testable or not for emptiness. However, according to Theorem 3.3 (b.1), a positive,

single and prefix-closed MTPAM) is testable for emptiness. Next, let’s look at some

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 36

“testable” results for regular, context-free, and semi-linear oracle Buchi automata

respectively.

3.4.1 Testability of w-OFAWith Regular Oracles

Theorem 3.6 The emptiness problem for oracle Buchi automata MPFA™ O(n* .
|M|)-testable. The emptiness problem for oracle Buchi automata MEA® g o(2% .

|M|)-testable.

See Appendix A.1.5 for the proof of this theorem.

3.4.2 Testability of w-OFAWith Context-free Oracles

Theorem 3.7 The emptiness problem for oracle Buchi automata ME,)DA(") 1S

20(MP*n*12) testable, under each of the following conditions:

(1) MEPAM positive, single and 1-query.
(2) MEPAM positive, single and memoryless.

(3) MEPAM™ s MPTPAM™ gnd single.

See Appendix A.1.6 for the proof of this theorem.

3.4.3 Testability of w-OFA With Semi-linear Oracles

IN(n)

Theorem 3.8 The emptiness problem for oracle Buchi automata My 1s testable,

under each of the following conditions:
LIN(n) . _ . ., - k‘M|k _
(1) M, is k-query. In this case, it is O(n)-testable.
(2) ME™™ s prefiz-closed.

(3) MER®) memoryless and single. In this case, it is O(n™')-testable.

See Appendix A.1.4 for the proof of this theorem.

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 37

3.5 A Dynamic Testing Algorithm

The solution to the emptiness problem for OFAPTA(™) and OFABFA(’”) in Section 3.3
involves pre-querying the oracles indiscriminately with all possible strings with length
shorter than 2m — 1. This would be extremely inefficient in practice, considering the

|2m=1) of such strings.

fact that there are an exponential number (|X

In this subsection, we introduce a more efficient algorithm to solve the emptiness
problem for QFAPFA(™) and OFABFA(’”). The new algorithm only queries the oracles
with query strings that could be “generated” by the OFAs. Since each query to an
oracle can also be viewed as a test over the oracle where the query string is a test-case,
this algorithm can also be viewed as a dynamic testing process where test-cases are
generated on-the-fly.

Suppose that MPFAMM) is an OFA as defined in (3.1). Without loss of generality,
we assume that M is associated with only one oracle (i.e., k = 1); generalization to
multiple oracles is straightforward. Consequently, there will be only one query tape
in M. Then we write instructions reset(:), write(i,a), query(¢), and —query(7)
as reset, write(a), query, and —query, respectively. A transition relation r is
a subset of S x S, where S is the state set of M. We use r o o to denote the
relation obtained from composing relation r; with relation r , Intersect to denote
the intersection operator, and TransClosure(r) to denote the transitive closure of a
relation r, respectively. We also use Empty(r) to test whether a relation r is empty.
Then, from the definition of M, we define the following transition relations:

Tinpus = {(5,8') : Ja, s > s' € R},

Treset = 1(8,8') : 8 TSt s € R},

Farsve(a) = 1(5,8) s T35 o' € R},

Tquery = 1(5,8") 1 8 "= ' € R},

Toquery = 1(5,8") 15 = s' € R}.

We first present the algorithm, TestEmptiness(B), for testing the emptiness of
MPFA(M) where the query strings are not longer than B. Later, we will describe an

algorithm for testing the emptiness of MZ™™,

Algorithm TestEmptiness(B)

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA

OO N NN NN N R o e e e e R e

28:

l:=0;
©:={({(s,s):s€ S}H,A)};
E = {<Sinit: Sinit>}§
O = 0;
for each (r,w) in © with |w| =1
' :=r o TransClosure(rinput);
if NotEmpty (r' o 7query) OF NotEmpty(r' o rguery)
query the oracle with query string w;
if the query returns yes
r’ :=r o TransClosure (7 inpus U Tquery);
if the query returns no
' :=r o TransClosure(Iinput U Iquery);
replace the entry (r,w) in © with (', w);
7" 1= 1" 0 T'reset;
if NotEmpty(r"”)
E := TransClosure(E U " U ripput);
for each a € X
"= 1" 0 Purite(a);
if NotEmpty (r")
add (r",wa) to ©;
l:=1+1;
for each (r,w) in ©
r' ;= Intersect(E o7, {Sinic} X F);
if NotEmpty(r')
return “unsuccessful”;
if © and © are equal or [> B
return “successful”;

goto 4;

38

The TestEmptiness algorithm works as follows. We maintain a finite set © of

pairs of a relation 7 and a word w. For two states s and s, (s, s) is in r iff, starting

from state s and with empty query tape, there is some input word such that state

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 39

s’ is reached (after running M on the input) with the query tape content w, during
which no reset occurs. The algorithm also maintains a relation E: for two states s
and ¢, (s, s') is in F iff, starting from state s and with empty query tape, there is a
run of M that brings to state s’ and also with empty query tape. After initializing
© and F, the entire algorithm works as a loop from statement 4 to statement 28
and back. In the I-th round (I starts with 0), the algorithm updates an element
(r,w) in © with |w| = [, realized by changing w into wa (i.e., write(a) on the query
tape). However, transitions like reading input symbols and querying the oracle can
happen before this write, and obviously, the query result matters. This is shown
in statements 6-13 where an updated version (r',w) of (r,w) is replaced in O (i.e.,
statement 13). Notice that, a query is performed when necessary shown in statement
8. Then, write(a) is implemented in statements 17-20 to add longer query strings
wa into ©. Clearly, w can also be changed into an empty string through a reset,
which causes an update on E (recalling the meaning of £ mentioned earlier) shown in
statements 14-16. Finally in the round, statements 22—27 are used to check whether
M accepts an empty language. Clearly, according to the semantics of ©, if it has
a (r,w) where r contains the pair of the initial state and an accepting state, then
obviously M accepts a nonempty language — an “unsuccessful” is returned as the
result of statements 23-25. If the set © does not change in the round (so further
rounds are not necessary) or the level [is higher than the given bound B, then M
must accept an empty language (i.e., returns “successful” as in statement 27).

It’s not hard to show that the above algorithm is both sound and complete, if
one chooses a bound B > m - |[M|. It shall also be noted that the algorithm can be
implemented symbolically. This is because a relation can be represented symbolically
as a Boolean formula whose satisfying assignments can be further encoded with a
BDD [18]. Operations like TransClosure, Intersect, o, Empty are all standard
operations in existing BDD libraries [85].

We can construct another algorithm w-Test Emptiness for testing the emptiness
problem of MY FA(m), using TestEmptiness. This algorithm works as follows. It first
constructs an OFA M’ from the w-OFA M that works as follows. M’ first guesses
an accepting state in F' (the set of accepting states in the w-OFA M) and faithfully

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 40

simulates M. M' accepts an input word if M enters the guessed accepting state for
m times. Clearly, M’ is an OFA (instead of an w-OFA), and it is not hard to show
that M' accepts an empty language iff the w-OFA M does. Then w-TestEmptiness
calls algorithm Test Emptiness(B) running on M’ with B > |F|-|M|-m?. One can

also show that the algorithm w-TestEmptiness is both sound and complete.

3.6 Some Verification Problems

As mentioned at the beginning of this chapter, the oracle automata proposed in this
work are intended as a theoretic tool for studying how far we can go on verifying
systems with black-box components. In this section, we show that the testability
result of oracle automata can be immediately used to solve the reachability, safety,
and LTL model checking problems for systems with black-box components.

Suppose that Sys = (M, X1, ..., X) is defined in (2.1) where each X; for 1 <i < k
is a testable, black-box component. Let m = max;<;<; m; where each m; is an

upper bound for the number of states in X; for all 1 <7 < k.

3.6.1 The Reachability Problem

The reachability problem is to decide: starting from its initial state, whether Sys can

reach some state in a given set Bad of states; i.e., whether Bad is reachable in Sys (in

practice, Bad may specify some “bad” states that are not supposed to be reached).
To solve this problem, we first construct an OFA, Mggﬁ(m) (O1,-+-,0%) in (3.1)

from the definition of Sys as follows.

1. For each 1 < i < k, let oracle O; denote the set of behaviors of the unspec-
ified component X; (remember that an oracle is a language without detailed
definition).

2. Let Mora have the same set of states and same initial state as M.
3. Let Mopa’s 2 be the union of all V,’s in Sys.

4. Let Bad be Mgoga’s accepting states.

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 41

5. For each transition (s, a,s’) in M with a € Ay UZgny (i.e., a is either an internal
action of M or it’s in the interface of the environment), add a transition (s = s')
to MOFA-

6. For each output transition (s, a,s’) in M with a € T'; for some 1 < i < k (i.e;

a is an input action of X;), add a transition (s R SO) to Mopa.-

7. For each input transition (s, a,s') in M with a € II; for some 1 < i < k (i.e.,
a is an output action of X;), add a new state s”, as well as two transitions
(s writeed s") and (s” wery) ') to Mogpa.

Figure 3.1: A Simple Communication System

For instance, from the system depicted in Figure 3.6.1, we can construct an OFA
as shown in Figure 3.6.1 (since this OFA has only one query tape, in Figure 3.6.1, we
write instructions write(i, a) and query(i) as write(a) and query respectively).

Now it is easy to see that Bad is not reachable in the system Sys iff the constructed

Mora accepts a nonempty language. Then we have,

Theorem 3.9 The reachability problem for the system Sys s testable.

3.6.2 The Safety Problem

The safety problem is to decide whether every behavior of the system Sys is contained
in a given regular language R. Assume that the complement of R can be accepted
by a finite automaton My and let M be the Cartesian product of My and M. Notice
that each state in M is a pair of states in My and M respectively and M totally

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 42

write(yes)

write(no)

Figure 3.2: An Oracle Finite Automaton

has |[Mg| - |[M| number of states; i.e. |M| = |Mg|-|M|. Let F denote the set of
states in M, each of which contains a final state of Mg. Similar to the construction
in the reachability problem (except that F' would be the OFA’s accepting states), we
can construct an OFA, Mngﬁ(m)(Ol, -+, 0%) from this M as well as the unspecified
components X;, 1 < ¢ < k. Then it shall be noticed that the safety problem is true

iff the constructed Mora accepts an empty language. Hence we have,

Theorem 3.10 The safety problem for the system Sys is testable.

3.6.3 The LTL Model Checking problem

Next, we consider a verification problem concerning w-behaviors of the system Sys;
i.e., the LTL model checking problem.

The LTL model checking problem is to decide whether every w-behavior of the
system Sys satisfies a given LTL formula f. Similar to the standard LTL model
checking approach [90], we define M to be the Cartesian product of M and the
Buchi automaton that accepts [-f]. Similar as before, we construct an w-OFA,
MEFA (O1,--+,0y) from this M as well as the unspecified components X; s. Ob-
serve that the LTL model checking problem is equivalent to checking the emptiness

of MBFA(m)(Ol, -+-,0;). Hence, we have the following result:

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 43

Theorem 3.11 The LTL model checking problem for the system Sys is testable.

Note that in the above constructions, the oracles actually characterize the behav-
iors of the unspecified components. Therefore, when we apply the TestEmptiness
algorithm to the constructed OFAs (OFA,s), line 8 of TestEmptiness, i.e., “query
the oracle with string w” should be replaced with BBTest(X, w). That is, the model
checking problem for the systems Sys are finally reduced to testing the black-box

components in Sys.

Remark. As we have seen from the above reductions from the model checking
problems on Sys to the emptiness problems for the constructed Mogas, there are no
reset and negative query transitions in Moga. This implies that the reduction and
the algorithms still work when we understand each m;, instead of being the number
of states in component X;, to be the number of states in a nondeterministic finite
automaton that accepts the behaviors of X;. This will greatly bring down the bound
B for query strings for the algorithms Test Emptiness and w-Test Emptiness. Also,
the above argument still applies, if we further allow “reset” to be an ordinary input
symbol of Xj;, i.e., “reset” can appear on a transition in Sys. Clearly, the transition
containing a “reset” in sys corresponds to a reset transition in the OFA to which

Sys is reduced.

Example 3.12 For instance, still consider the data acquisition system depicted in
Figure 2.1, which periodically transmits the reading of a photo sensor via some un-
derlying communication network. We want to verify that the following property is

satisfied by the system Sys:

e Along all observable behaviors of Sys, no two data actions can occur without a

send action occurring in between; i.e., =E F data X (—send U data).

It is easy to see that our models in (2.1) and (2.1) are very suitable to specify the
design of such TinyOS applications. Thus, this model checking problems can be
readily reduced to the emptiness problem of an w-OFA constructed from the LTS
model. And the emptiness problem of the w-OFA can be solved by querying (testing)

the oracles (unspecified components) with strings of bounded length. |

CHAPTER 3. TESTABILITY OF ORACLE AUTOMATA 44

3.7 Summary

In this chapter, we mainly addressed the general problem of verifying systems inter-
acting with an unknown environment or some black-box components. We introduced
oracle automata (which are finite/Buchi automata augmented with oracles in some
classes of formal languages) as a formalism to model such systems and showed that
some important verification problems (such as reachability, safety, and LTL model
checking problems etc.) can be reduced to testing the emptiness of oracle automata.
Then, we devoted the main part of this chapter to establishing the testability results
of the verification problems for various classes of oracle automata. We also gave a
symbolic algorithm to perform bounded-testing for the emptiness problem.

Oracle (Turing) machines are a classic concept in the theory of computation, and
have been quite useful in studying, e.g., relativized complexity classes [8]. However,
as far as we know, studying oracle finite automata in the context of model checking is
new. In the future, there are several possible directions for extending this study. For
instance, one may investigate oracle infinite-state automata instead of oracle finite
automata. That is to study testability of designs with unbounded variables that
interact with partially specified environments. One other possible work is to find ways
to obtain a smaller query bound using, e.g., structural information of the transition
graph of an oracle finite automaton. We will also look at the possibility of hooking
up a real-world tester with a component-based design and performing model checking
through testing, using some of the algorithms in this chapter. The (worst-case) query
bounds obtained in the chapter are large. However, the worst-cases may not show up
in a specific application. In particular, even an internally complex environment may
only have a very simple pattern of observable (by the design or the OFA) behavior,
which will significantly bring down the query bounds.

Chapter 4

Model Checking Systems With
One Black-box!

As mentioned earlier in Chapter 1, one of the most difficult challenges to the the qual-
ity assurance of component-based systems is the existence of black-box components.
Having shown under what conditions we can solve a verification problem for a black-
box component through testing in the previous chapter. In this chapter, we study the

specific model checking problems for systems with only one black-box component:

e given a component-based system Sys = (M, X) where X is a black-box com-

ponent, a state s € Inity;, and a temporal formula f;
e check whether (M, X), s = f; i.e., whether f is true when M is in the state s.

We present a set of new algorithms, called model checking driven black-box testing,
which combine model checking techniques and black-box testing techniques to solve
the problem.

The idea of our algorithms is to use a model checking based technique that auto-
matically derives from the rest of the system (i.e., M) a verification condition over the
black-box component X. This verification condition guarantees that the system Sys

satisfies the requirement f iff the condition is satisfied by the black-box component X.

!The content of this chapter is based upon the work in [97] and the joint work with Z. Dang in
[99).

45

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 46

In the algorithms, the verification condition is represented as communication graphs
(for LTL) or witness graphs (for CTL) and the validity of the condition is checked
through testing the black-box component. Test-cases are generated by a bounded
and nested depth-first search procedure over the communication graphs (for LTL) or
witness graphs (for CTL). Our algorithms are both sound and complete.

This chapter is organized as follows. Section 4.1 contains some definitions. In
Section 4.2 and Section 4.3, we present algorithms for LTL and CTL model checking
driven black-box testing, respectively. Section 4.4 illustrates the algorithms through
some examples and Section 4.5 ends this chapter with discussions on issues to be

addressed in the future.

4.1 Definitions

The system studied in this chapter is defined as in (2.1), but contains only one black-
box component; i.e., Sys = (M, X) where M = (Sys, Inity, Vi, Ry) with |S| =n
and X is a black-box component with Vx as its interface and m being an upper
bound for its state space. We further partition the transition relation R,, of M into

two parts:

o Ry ={(5,0,5)|(s,a,5") € Ry AN(a € Ay Va€Xgny)};ie., set of transitions

involving internal actions or communications with the environment;
L4 Rcomm = RM \ Renv-
We also define some convenience relations:

o ¢

env

= {(S,S’)‘H a€V: (S,CL, SI) S Renv}a
o R :={(5,5)FaeV:(sa5s)e Ry},

T
® Ren’u

:= TranstiveClosure(RS,,),

e RI :=TranstiveClosure(R5;),

where TranstiveClosure is used to compute the transitive closure of a given relation.

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 47

4.2 LTL Model Checking Driven Black-box Test-
ing

In this section, we introduce algorithms for LTL model checking driven black-box
testing for systems with one black-box component: Sys = (M, X). We first show
how to solve a liveness analysis problem. Then, we discuss the general LTL model

checking problem.

4.2.1 Liveness Analysis

The liveness analysis problem (also called the infinite-often problem) is to check:
starting from some initial state so € Inity;, whether M can reach a given state sy for
infinitely many times.

When M has no communications with the black-box component X, solving the
problem is equivalent to finding a path p that runs from sy to sy and a loop C that
passes sy. However, as far as communications are involved, the problem gets more
complicated. The existence of the path p does not ensure that M can indeed reach
sy from sy (e.g., communications with X may never allow the system to take the
necessary transitions to reach sy). Moreover, the existence of the loop C' does not
guarantee that the system can run along C forever either (e.g., after running along C
for three rounds, the system may be forced to leave C' by the communications with
X).

We solve this infinite-often problem in three steps. First, we look at whether a
definite answer to the problem is possible. If we can find a path from sy to sy and
a loop from sy to sy that involve only environment transitions, then the original
problem (i.e., the infinite-often problem) is definitely true. If such a path and a loop,
no matter what transitions they may involve, do not exist at all, then the original
problem is definitely false. If no definite answer is possible, we construct a directed
graph G and use it to generate test-cases for the black-box component X. The graph
G, called a communication graph, is a subgraph of M, represents all paths and loops

in M that could witness the truth of the problem (i.e., paths that run from s, to s;

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 48

and loops that pass s;). The graph G is defined as a pair (N, E), where N is a set
of nodes and E C N x V3, U {e} x N is a set of edges. Each edge of G is annotated
either by an action a € X x that denotes a communication of M with X, or has no

annotation (i.e., annotated by €). We construct G as follows.

e Add one node to G for each state in M that is involved in some path between

so and sy or in a loop that passes sy;

e Add one edge between two nodes in N if M has a transition between two
states corresponding to the two nodes respectively. If the transition involves a

communication with X, then annotate the edge with the action.

It is easy to see that the liveness analysis problem is true if and only if the truth is
witnessed by a path in G.

Therefore, the last step is to check whether GG has a path along which the system
can reach sy from sy first and then reach sy for infinitely many times. More details
of this step are addressed in the next subsection.

procedure CheckIO({(M, X), so, Sf)

N :=0; E :=0{;

if (so,s) € RL, A (sg,s7) € RL,, then
return “Yes”;

else if (so, s7) & Ri; A (sf,s7) & RY, then
return “No”;

end if

N := {s|(s0,5) € Ri; A (s,57) € Rip)}

E :={(s,¢,8)s,s8 € NATa € Vi : (s,a,8") € Reny}
U{(s,a,s)s,s" € NA(s,a,5) € Reomm};

return TestIO(X, reset, so, Sy, level = 0, count = 0);

end procedure

4.2.2 Liveness Testing

To check whether the constructed communication graph G has a path that witnesses

the truth of the original problem, the straightforward way is to try out all paths in

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 49

G and then check, whether along some path, the system can reach s; from s, first
and then reach s; for infinitely many times. The check is done by testing X with
the communication trace of the path to see whether it is an observable behavior of
X. However, one difficulty is that G may contain loops, and certainly we can only
test X with a finite communication trace. Fortunately, the following observations are

straightforward

e To check whether the system can reach s; from sy, we only need to consider
paths with length less than mn; where n; is the maximal number of communi-
cations on all simple paths (i.e., no loops on the path) between sy and sy in G,
and m is the upper bound for the number of states in the black-box component
X.

e To check whether the system can reach from s; to s; for infinitely many times,
we only need to make sure that the system can reach s; for m — 1 times, and
between sy and sy, the system goes through a path no longer than n, that is the
maximal number of communications on all simple loops (i.e., no nested loops

along the loop) in G that pass s;.

Let n = max(ny, n2). The following procedure TestIO uses a bounded and nested
depth-first search to traverse the graph G' while testing X. The algorithm maintains
a sequence 7 of action symbols that has been successfully accepted by X, an integer
variable level that records how many communications have been gone through with-
out reaching sy, and an integer variable count that indicates how many times s; has
been reached.

It first tests whether the system can reach sy from sy along a path with length
less than mn, then it tests whether the system can further reach sy to sy for m — 1
more times. At each step, it first tests whether the original (infinite-often) property
is true at any state s’ such that the system can reach s’ from sy through an envi-
ronment/internal transition. It returns true if that’s the case. Otherwise, it chooses
one candidate from the set of all possible action symbols at a node, and feeds resetw
concatenated with that symbol to X (reset is used to brings X to its initial state).

If X accepts the sequence, the procedure moves forward to try the destination node

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 50

of the edge with level increased by 1. If X does not accept, then the procedure keeps
trying the next candidate. The procedure returns false when all candidates are
tried without an acceptance, or when more than mn communications have been gone
through without reaching s;. After s; is reached, the procedure increases count by
1 and resets level to 0. The procedure returns ¢rue when it has already encountered

sy for m times.

procedure TestIO(X,, so, ¢, level, count)
if level > mn then
return false;
else If s) = sy then
if count >= m then
return t{rue;
else
count := count + 1; level := 0;
end if
end if
for each (sg,¢,s') € E do
BBTest(X,resetr);
if TestIO(X, 7, s, sg, level, count) Then
return {rue;
end if
end for
for each (sg,a,s') € E? do
if BBTest(X,resetm a) == “yes”then
if TestIO(X, 7 a, s, sy, level + 1, count)
then return true;
end if
end if

end for each:;

2This excludes those (s,¢,s') € E

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX ol

return false.

end procedure

In summary, our liveness testing algorithm to solve the liveness analysis problem has

two steps: (1) build the communication graph G; (2) return the truth of

TestIO(X, reset, so, s, level = 0, count = 0).

4.2.3 LTL Model Checking Driven Testing

Recall that the LTL model checking problem is, for a Kripke structure K = (S, R, L)
with a state s € S and a path formula f, to determine if K,s = A f. Notice that
K,s = A f if and only if K,s = —F —f. Therefore it is sufficient to only consider
formulas in the form E f. The standard LTL model checking algorithm [28] first
constructs a tableau T for the path formula f. T is also a Kripke structure and
includes every path that satisfies f. Then the algorithm composes 7" with K and
obtains another Kripke structure P which includes exactly the set of paths that are
in both 7" and K. Thus, a state in K satisfies £ f if and only if it is the start of a
path (in the composition P) that satisfies f.

Define sat(f) to be the set of states in 7" that satisfy f and use the convention
that (s, s’) € sat(f) if and only if s € sat(f). The LTL model checking problem can

be summarized by the following theorem [28].

Theorem 4.1 K,s = E f if and only if there is a state s' in T such that (s,s') €
sat(f) and P, (s,s') = EG true under fairness constraints {sat(—~(g U h)Vh) | gU h

occurs in f}.

Note that the standard LTL model checking algorithm still applies to the system
Sys = (M, X), although it contains an black-box component X. To see this, the
construction of the tableau 7 from f and the definition of sat are not affected by
the black-box component X. The composition of Sys and T is a new system Sys' =

(P, X) where P is the composition of M and 7. Then one can show

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 02

Corollary 4.2 (M, X),s = E fif and only if there is a state s’ in T such that (s, s') €
sat(f) and (P, X),(s,s") E EG true under fairness constraints {sat(—=(g U h) V
h) | g U h occurs in f}.

Checking whether there is a state s’ in 7" such that (s, s') € sat(f) is trivial. To
check whether (P, X), (s, s") = EG true under the fairness constraints is equivalent
to checking whether there is computation in (P, X) that starts from (s,s’) and on
which the fairness constraints are true infinitely often. One can show that this is
equivalent to the liveness analysis problem we studied in the previous subsection, and
thus, the LTL model checking problem can be solved by extending our algorithms
for the liveness analysis problem. Moreover, the algorithms are both complete and

sound.

4.3 CTL Model Checking Driven Black-box Test-
ing

In this section, we introduce algorithms for CTL model checking driven black-box

testing for the system Sys = (M, X).

4.3.1 The Ideas

Recall that the CTL model checking problem is, for a Kripke structure K = (S, R, L),
a state sp € S, and a CTL formula f, to check whether K, sq = f holds. The standard
algorithm [28] for this problem operates by searching the structure and, during the
search, labeling each state s with the set of sub-formulas of f that are true at s.
Initially, labels of s are just L(s). Then, the algorithm goes through a series of
stages—during the i-th stage, sub-formulas with the (i — 1)-nested CTL operators
are processed. When a sub-formula is processed, it is added to the labels for each
state where the sub-formula is true. When all the stages are completed, the algorithm
returns true when sg is labeled with f, or false otherwise.

However, if a system is not completely specified, the standard algorithm does not

work. This is because, in the system Sys = (M, X), transitions of M may depend

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 33

on communications with the black-box component X. In this section, we adapt the
standard CTL model checking algorithm [28] to handle the system Sys (i.e., to check
whether

<M’X>’80): f

holds where sq is an initial state in M and f is a CTL formula).

The new algorithm follows a structure similar to the standard one. It also goes
through a series of stages to search M’s state space and label each state during the
search. However,during a stage, processing the sub-formulas is rather involved, since
the truth of a sub-formula A at a state s can not be simply decided (it may depend on
communications). Similar to the algorithm for the liveness analysis problem, our idea
here is to construct a graph representing all the paths that witness the truth of h at
s. But, the new algorithm is far more complicated than the liveness testing algorithm
for LTL, since the truth of a CTL formula is usually witnessed by a tree instead of
a single path. In the new algorithm, processing each sub-formula A is sketched as
follows.

When h takes the form of EX g, E[g; U ¢s], or EG g, we construct a graph that
represents exactly all the paths that witness the truth of h at some state. We call
such a graph the sub-formula’s witness graph (WG), written as [A]. We also call [[A]
an EX graph, an EU graph, or an EG graph if h takes the form of EX g, E[g; U g¢o],
or EG g, respectively.

Let £ be the total number of CTL operators in f. In the algorithm, we construct
k WGs, and for each WG, we assign it with a unique ID number that ranges between
2 and k + 1. (The ID number 1 is reserved for constant true.) Let I be the mapping
from the WGs to their IDs; i.e., I([A]) denotes the ID number of h’s witness graph,
and T71(7) denotes the witness graph with 4 as its ID number, 1 < 7 < k + 1. We
label a state s with ID number 1 if A is true at s and the truth does not depend on
communications between M and X. Otherwise, we label s with 2 < ¢ < k—+1if h
could be true at s and the truth would be witnessed only by some paths which start
from s in I7'(7) and, on which, communications are involved.

When h takes the form of a Boolean combination of sub-formulas using = and V,

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX o4

the truth of h at state s is also a logic combination of the truths of the component
sub-formulas at the same state. To this end, we label the state with an ID expression
1) defined as follows:

e ID:=1|2]| ... |k+1;

e Yi=1ID |~ | V.

Let W denote the set of all ID expressions. For each sub-formula A, we construct
a labeling (partial) function Ly, : S — W to record the ID expression labeled to each
state during the processing of the sub-formula A, and the labeling function is returned
when the sub-formula is processed.

The detailed procedure, called ProcessCT L, will be presented in subsection 4.3.2.
After all sub-formulas are processed, a labeling function L for the outer-most sub-
formula (i.e., f itself) is returned. The algorithm returns ¢rue when s is labeled
with 1 by L. It returns false when s is not labeled at all. In other cases, a testing
procedure over X is applied to check whether the ID expression labeled in L¢(s) could
be evaluated true. The procedure, called TestW G, will be given in Section 4.3.6. In
summary, the algorithm (to solve the CTL model checking problem (M, X), sq = f)

is sketched as follows:

Global id := 2;
procedure CheckCTL(M, X, sq, f)
L := ProcessCTL(M, f)
if s is labeled by L; then
if L¢(so) =1 then
return {rue;
else
return TestWG(X, reset, so, Ls(s0));
end if
else (i.e., sq is not labeled at all)
return false.
end if

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 35

end procedure

Note that the id is a global variable to be used to give each witness graph con-
structed in the process an ID number. The next subsections introduce the main
algorithm for checking a CTL formula as well as algorithms for handling each CTL

operator.

4.3.2 Processing a CTL formula

Processing a CTL formula A is implemented through a recursive procedure

ProcessCTL. Recall that any CTL formula can be expressed in terms of V, —,
EX, EU, and EG. Thus, at each intermediate step of the procedure, depending on
whether the formula A is atomic or takes one of the following forms: ¢; V g9, —g,
EX g, E[g1 U g¢s], or EG g, the procedure has only six cases to consider and when it

finishes, a labeling function L is returned for formula h.

procedure ProcessCTL(M,h)
Case
h is atomic: Let L; label every state with 1
whenever h is true on the state;
h=g1V go:
Ly, := ProcessCTL(M, g1);
Ly, := ProcessCTL(M, gs);
Ly, := HandleUnion(Lg,, L,);
h = —g:
L, := ProcessCTL(M, g);
Ly, := HandleNegation(M, L,);
h=FEXg:
L, := ProcessCTL(M, g);
Ly, := HandleEX (M, L,);
h=EFE [g1 U gol:
Ly, := ProcessCTL(M, g1);
Ly, := ProcessCTL(M, go);

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 56

Ly, := HandleEU (M, L,,, L,);
h = EG g:
L, := ProcessCTL(M, g);
Ly, := HandleEG(M, Ly);
end case
return L.

end procedure

In the above procedure, when h = gV g, we first process g; and g, respectively by call-
ing ProcessCT L, then construct a labeling function L, for h by calling HandleUnion,

which merges g; and go’s labeling functions Ly, and Ly, as follows:

e For each state s that is in both Ly ’s domain and L,,’s domain, let L; label
s with 1 if either Ly or L,, labels s with 1 and label s with ID expression
Ly (s) V Ly,(s) otherwise;

e For each state s that is in Ly,’s domain (resp. L,,’s domain) but not in Lg,’s

domain (resp. L,,’s domain), let L label s with L, (s) (resp. Lg,(s)).

The above handling can be summarized as the following procedure:

procedure HandleUnion(Ly, Ly)
L :={;
for each s € dom(L;) Udom(L;) do
if s € dom(L;) N dom(Ly) Then
if Li(s) =1V Ly(s) =1 then

L:=LuU{(s,1)};
else

L:=LU{(s,Li(s) V Ly(s))};
end if

else if s € dom(L;) then
L:=LU{(s,Li(s))};
else
L:=LU{(s, La(9))};

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX o7

end if
end for
return L;
end procedure
When h = —g, we first process g by calling ProcessCT L, then construct a labeling
function Ly, for h by “negating” (HandleNegation) ¢’s labeling function L, as follows:

e For every state s that is not in the domain of L,, let L, label s with 1;

e For each state s that is in the domain of L, but not labeled with 1 by L, let
Ly, label s with ID expression —L,(s).

The above handling can be summarized as the following procedure:

procedure HandleNegation(M, L)
L :=(;
for each s € S do
if s ¢ dom(L;) then
L:=LU{(s,1)};
else if f(s) # 1 then
L:=LU{(s,—L1(s))};
end if
return L;
end procedure
The remaining three cases (i.e., for EX, EU, and EG) in the above procedure are

more complicated and are handled in the following three subsections respectively.

4.3.3 Checking an EX Sub-Formula

When h = FXg, g is processed first by ProcessCTL, then HandleEX is called with
g’s labeling function L, to construct a labeling function L, and create a witness graph
for h (we assume that, whenever a witness graph is created, the current value of a
global variable id, which initially is 2, is assigned as the ID number of the graph, and
id is incremented by 1 after it is assigned to the graph).

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 58

The labeling function L;, is constructed as follows. For each state s that has a
successor s’ in the domain of Ly, if s can reach s’ through an environment transition
and s’ is labeled with 1 by L, then let Lj also label s with 1, otherwise let L label
s with the current value of the global variable id.

The witness graph for h = EXg, called an EX graph, is created as a triple:
[[h']] = <N’E’L9>a

where NNV is a set of nodes and F is a set of annotated edges. It is created as follows.
e Add one node to N for each state that is in the domain of L.
e Add one node to N for each state that has a successor in the domain of L.

e Add one edge between two nodes in N to E when M has a transition between
two states corresponding to the two nodes respectively; if the transition involves

a communication with X then annotate the edge with the communication sym-
bols.

When HandleEX finishes, it increases the global variable id by 1 (since one new

witness graph has been created).

procedure HandleEX (M, L,)
N :=dom(L,); L :={;
for each ¢t € dom(L,) do
for each s: R%(s,t) do
N :=NU{s}
if Li(t) =1ARS,,(s,t) Then
if s ¢ dom(L) then
L:=LU{(s1)}
else if L(s) # 1 then
L= L‘s(—l;
end if
else if s ¢ dom(L) then

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 59

L:=LU{(s,id)};
end for

end for
end if
E :={(s,¢,8)|s" € dom(f) ATa: (s,a,5") € Reny}

U{(s,a,s)|s" € dom(f) A (s,a,s) € Reomm};
Associate id with G = (N, E, L); id := id + 1;
return L;

end procedure

4.3.4 Checking an EU Sub-Formula

The case when h = E [g; U go] is more complicated. We first process ¢g; and g,
respectively by calling ProcessCT L, then call procedure Handle EU with g; and g¢o’s
labeling functions L4, and L4, to construct a labeling function Lj, and create a witness
graph for h.

We construct the labeling function Lj, recursively. First, let L, label each state
s in the domain of Ly, with Lg,(s). Then, for state s that has a successor s’ in the
domain of Ly, if both s and s’ is labeled with 1 by L, and Lj, respectively and s can
reach s’ through an environment transition then let L, also label s with 1, otherwise
let L; label s with the current value of the global variable id. Notice that, in the
second step, if a state s can be labeled with both 1 and the current value of id, let
Ly label s with 1. Thus, we can ensure that the constructed L, is indeed a function.

The witness graph for h, called an EU graph, is created as a 4-tuple:
[h] := (N, E, Ly, Lg,),

where N is a set of nodes and E is a set of edges. N is constructed by adding one
node for each state that is in the domain of L;, while F is constructed in the same
way as that of HandleEX. When HandleEU finishes, it increases the global variable
1d by 1.

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 60

procedure HandleEU (M, Ly, L)
L := Lo;
Ty := dom(Ly); T» := dom(L);
while T, # () do
Choose t € Ty; Ty := T\ {t};
for each s € T1 A R*(s,t) do
if Li(s) =1AL(t)=1AR;,,(s,t) then
if s ¢ dom(L) then
Ty :=ToU{s}; L:=LU{(s,1)};
else if L(s) # 1 then
Ty :=ToU{s}; L := Ll ;
end if
else if s ¢ dom(L) then
Ty :=ToU{s}; L:=LU{(s,id)};
end if
end for
end while
N :=dom(L);
E ={(s,¢,8)]s,s € NATa:(s,a,5) € Reny}
U{(s,a,s)|s,s" € NA(s,a,5) € Reomm};
Associate id with G = (N, E, Ly, Ly); id := id + 1;
return L;

end procedure

4.3.5 Checking an EG Sub-Formula

To handle formula h = EGg, we first process g by calling ProcessCTL, then call
procedure Handle EG with g’s labeling function L, to construct a labeling function
L;, and create a witness graph for h.

The labeling function Ly is constructed as follows. For each state s that can reach

a loop C through a path p such that every state (including s) on p and C' is in the

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 61

domain of Ly, if every state (including s) on p and C is labeled with 1 by L, and no
communications are involved on the path and the loop, then let L, also label s with
1, otherwise let Lj label s with the current value of the global variable d.

The witness graph for h, called an EG graph, is created as a triple:
[h] := (N, E, L),

where N is a set of nodes and F is a set of annotated edges. The graph is constructed
in a same way as that of Handle EU. When HandleEG finishes, it also increases the
global variable id by 1.

procedure HandleEG(X, 7, s9,G = (N, E, L))
SCClepy := {C|C is a nontrivial SCC of M and C contains no transitions that
involve a communication with X};
SCCeomm = {C|C is a nontrivial SCC of M and every transition in C involves
a communication with X};
L:={(s,1)|3C € SCCyp,y: s € C}
U{(s,1d)|3C € SCCrpmm : s € C}
T := dom(L);
while T # () do
Choose t € T; T :=T \ {t};
for each s € dom(L;) A R*(s,t) do
if L(t) =1ALi(s) =1A RS, (s,t) then
if s ¢ dom(L) then
T:=TU{s}h L:=LU{(s,1)};
else if L(s) # 1 then
T:=TU{s}; L:=Ll|s;
end if
else if s ¢ dom(L) then
T:=TU{s}; L:=LU{(s,id)};
end if

end for

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 62

end while

N :=dom(L);

E ={(s,¢,8)]s,s € NANTa:(s,a,5) € Reny}
U{(s,a,5)|s,s" € NA(s,a,5") € Reomm};

Associate id with G = (N, E, Ly); id := id + 1;

return L;

end procedure

4.3.6 Testing a Witness Graph

As mentioned in subsection 4.3.1, the procedure for CTL model checking driven black-
box testing, CheckCT L, consists of two parts. The first part, which was discussed in
Section 4.3.2, includes ProcessCT L that processes CTL formulas and creates witness
graphs. The second part is to evaluate the created witness graphs through testing X.
We will elaborate on this second part in this section.

In processing the CTL formula f, a witness graph is constructed for each CTL
operator in f and a labeling function is constructed for each sub-formula of f. As
seen from the algorithm CheckCTL (at the end of Section 4.3.1), the algorithm
either gives a definite “yes” or “no” answer to the CTL model checking problem, i.e.,
(M, X),s0 = f, or it reduces the problem to checking whether the ID expression
labeled to sy can be evaluated true at the state. The evaluation procedure is carried
out by the following recursive procedure T'estW G, after an input sequence 7 has been

accepted by the black-box component X.

procedure TestWG (X, m, sg,)
Case
=11 Vo
if TestWG(X,m, s, 1) then
return t{rue;

else
return TestWG (X, 7, sg, ¥5)

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 63

end if
Y=
return ~TestWG (X, 7, so, Y1)
Y =1:
return t{rue;
=i with 2 <i < k+ 1:
if T°'(:) is an EX graph Then
return TestEX (X, m, so,171(2));
end if
if I"'(s) is an EU graph Then
return TestEU(X, 7, 59, 17(2), level = 0);
end if
if I7'(:) is an EG graph Then
return TestEG(X, T, s, 17(7)).
end if
end case

end procedure

In T'estW @G, the first three cases are straightforward, which are consistent with the
intended meaning of ID expressions. The cases TestE X, TestEU, Test EG for evalu-
ating £ X, FU, EG graphs are discussed in the following three subsections.

4.3.7 Testing an EX Graph

The case for checking whether an EX graph G = (N, E, L,) can be evaluated true at
a state sq is simple. We just test whether the system M can reach from sy to another
state s’ € dom(L,) through a transition in G such that the ID expression L,(s’) can
be evaluated true at s'.

The algorithm for testing an E X graph is simple. It first checks whether L, (s') can
be evaluated true at any state s’ such that the system can reach s’ from sy through
an environment/internal transition. It returns true if it is the case. Otherwise, it

chooses one candidate from the set of all possible action symbols from sy, and feeds

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 64

the sequence resetm concatenated with that symbol to X (reset is used to brings X
to its initial state). If X accepts this action sequence, it moves forward to try the
destination node of the edge. If X does not accept, then it keeps trying the next
candidate. The algorithm returns false when all candidates are tried without an

acceptance.

procedure TestEX (X, 7, sy, G = (N, E, L))
for each (sg,¢,5') € E: s € dom(L;) do
BBTest(X,resetr);
if TestWG(X,m,s',Li(s")) Then
return i{rue;
end if
end for
for each (sg,a,s') € E? do
if BBTest(X,resetm a)=="yes” then
if TestWG(X,ma, s, Li(s")) then
return {rue;
end if
end if
end for each;
return false;

end procedure

4.3.8 Testing an EU Graph

To check whether an EU graph G = (N, E, L,,, L,,) can be evaluated true at a state
So, we need to traverse all paths p in G with length less than mn and test the black-
box component X to see whether the system can reach some state s’ € dom(L,,)
through one of those paths. In here, m is an upper bound for the number of states
in the black-box component X and n is the maximal number of communications on
all simple paths between sy and s’. In the meantime, we should also check whether

Ly, (s") can be evaluated true at s’ and whether Ly, (s;) can be evaluated true at s;

g2

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 65

for each s; on p (excluding s') by calling TestW@.

The procedure T'est EU keeps a sequence of action symbols 7 that has been suc-
cessfully accepted by X and an integer [evel that records how many communications
have been gone through without reaching a destination state. And the algorithm
works as follows. At first, it checks whether it has gone through more than mn com-
munications without success, it returns false if it is the case. Then, it checks whether
it has reached a destination state (i.e., so € dom(Ly)). If it is the case, it returns
true when Lo(sg) can be evaluated true so. Next, it checks whether L;(sy) can be
evaluated true at s, it returns false if it is not the case. After that, it checks whether
L,(s") can be evaluated true at any state s’ such that the system can reach s’ from
So through an environment/internal transition. It returns true if it is the case. Oth-
erwise, it chooses one candidate from the set of all possible action symbols from s,
and feeds the sequence resetm concatenated with that symbol to X (reset is used to
brings X to its initial state). If X accepts this action sequence, it moves forward to
try the destination node of the edge. If X does not accept, then it keeps trying the
next candidate. The algorithm returns false when all candidates are tried without

an acceptance.

procedure TestEU(X,m, sy, G = (N, E, Ly, L), level)

if level > mn then?
return false;

else if sy € dom(L;) then
if TestWG(X,m, sg, La(s9)) then

return {rue;

end if

else if not TestWG (X, m, so, L1(so)) then
return false;

end if

for 35’ : (sg,¢,5') € FE do
BBTest(X,resetr);
if TestEU(X,m, s, G, level) then

3Here, n always denotes the maximal number of communications on any simple paths in G.

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 66

return t{rue;
end if
end for
for each (s,a,s’) € E-1° do
if BBTest(X,resetm a) == “yes” then
if TestEU(X,7a, ', G, level + 1) Then
return true;
end if
end if
end for each;
return false;

end procedure

4.3.9 Testing an EG Graph

For the case to check whether an EG graph G = (N, E, L,) can be evaluated true
at a state sgp, we need to find an infinite path in G' along which the system can run
forever.

The following procedure Test EG first decomposes G into a set of SCCs. Then, for
each state sy in the SCCs, it calls another procedure SubTestEG to test whether the
system can reach sy from s, along a path not longer than mn, as well as whether the
system can further reach sy from sy for m — 1 times. The basic idea of SubTestEG
is similar to that of the TestIO algorithm in Section 4.2.2, except that we need also
check whether L,(s;) can be evaluated true at s; for each state s; that has been
reached so far by calling TestWG. Here, m is the same as before while n is the

maximal number of communications on all simple paths between s, and s;.

procedure TestEG(X, 7, so,G = (N, E, L,))
SCC :={C|C is a nontrivial SCC of G};
T:=Ugesoclisls € O
for each s € T do

BBTest(X,resetr);

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 67

if SubTestEG(X,m, sg, s, G, level = 0, count = 0);
return {rue;
end if
end for
return false.

end procedure

The procedure SubT'estEG keeps a sequence of action symbols that has been
successfully accepted by X, an integer level that records how many communications
have been gone through without reaching s, and an integer count that indicates how
many times s; has been reached. It first checks whether it has gone through more
than mn communications without reaching sy, it returns false if it is the case. Then,
it checks whether it has reached the given state s;. If it is the case, it returns true
when it has already reached s; for m times, it increases count by 1 and resets level
to 0 when otherwise. The next, it tests whether L;(s¢) can be evaluated true at sy,
and it returns false if it is not the case. After that it checks whether L;(s’) can be
evaluated true at any state s’ such that the system can reach s’ from sy through
an environment/internal transition. It returns true if it is the case. Otherwise, it
chooses one candidate from the set of all possible action symbols from sy, and feeds
the sequence resetm concatenated with that symbol to X (reset is used to brings X
to its initial state). If X accepts this action sequence, it moves forward to try the
destination node of the edge. If X does not accept, then it keeps trying the next
candidate. The algorithm returns false when all candidates are tried without an

acceptance.

procedure SubTestEG(X,w, so,sp, G = (N, E, L), level, count)
if level > mn then 3
return false;
else if sy = s; then
if count >= m then
return i{rue;

else

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 68

count := count + 1; level := 0;
end if
else if not TestWG(X, 7, so, L1(s9)) then
return false;
end if
for each (sg,¢,s') € E do
BBTest(X,resetr);
if SubTestEG(X, 7, s, s, G, level, count) Then
return {rue;
end if
end for
for each (sg,a,s') € E do
if BBTest(X,resetm a) == “yes” then
if SubTestEG(X,ma, s',sp, G, level + 1, count) then
return true;
end if
end if
end for;
return false;
end procedure

Remark. In summary, to solve the CTL model checking problem

(M’X),SO):f:

our algorithm CheckCTL in Section 4.3.1 either gives a definite yes/no answer or
gives a sufficient and necessary condition in the form of ID expressions and witness
graphs. The condition is evaluated through black-box testing over the black-box
component X. The evaluation process will terminate with a yes/no answer to the
model checking problem. One can show that our algorithm is both complete and

sound.

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 69

4.4 Examples

In this section, to better understand our algorithms, we look at some examples®.

Figure 4.1: Example 4.3

Consider a system Sys = (M, X) where M keeps receiving messages from the
outside environment and then transmits the message through the black-box compo-
nent X. The environment has one output action msg, and X has one input actions
send, and three output actions yes and no, while M share all these actions with the
environment and X (i.e., msg, ack, yes, and no are M’s input action while send is

M’s output action). The transition graph of M is depicted in Figure 4.1.

BN yes?

send!

@(T

a

Figure 4.2: Communication Graph of Example 4.3

Example 4.3 Assume that we want to solve the following LTL model checking prob-
lem

(M, X), s = EGF's,

i.e., starting from the initial state sy, the system can reach state s; infinitely often.
Applying our liveness analysis algorithms, we can obtain the (minimized) communi-
cation graph in Figure 4.2. From this graph and our liveness testing algorithms, the

system satisfies the liveness property iff the communication trace

send yes(send yes ack)™

4The transition graphs in the figures in this section are not made total for the sake of readability.

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 70

is an observable behavior of X, where m is an upper bound for number of states in
X. 1

Figure 4.3: Example 4.4

Example 4.4 Now, we slightly modify the transition graph of M into Figure 4.3
such that when a send fails, the system shall return to the initial state. For this
modified system, its (minimized) communication graph with respect to the liveness
property would be as shown in Figure 4.4. From Figure 4.4 and the liveness testing
algorithms, we know that the system satisfies the liveness property iff there exist
0 < k1, ky < 2m such that the communication trace

(send no)* send yes((send yes ack)(send no)*)™*

is an observable behavior of X.]

ack/yes

Figure 4.4: Communication Graph of Example 4.4

Example 4.5 Still consider the system in Figure 4.3, but we want to solve a CTL
model checking problem (M, X), so = AF'sy; i.e., along all paths from sg, the system

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 71

ORI ConC

Figure 4.5: Witness Graph for Example 4.5
can reach state s; eventually. The problem is equivalent to
(M, X),so = "EG—s,.

Applying our CTL algorithms to formula A = EG—sy, we construct an EG witness
graph G = (N, E, L) whose ID number is 2 and a labeling function Ly, where L.
labels all three states sg,s1, and s3 with ID expression 1 (as defined in Section 4.3.1,
which stands for true), and Ly labels all three states sq, s1, and s3 with 2. The graph
G is depicted in Figure 4.5. From this graph as well as L;, the algorithms conclude
that the model checking problem is true iff the communication trace (send no)™ ! is

not an observable behavior of X. |

Figure 4.6: Example 4.6

Example 4.6 Now we modify the system in Figure 4.1 into a more complicated one

shown in Figure 4.6. For this system, we want to check
(M, X), So): _|E[_|82U83]

i.e., starting from the initial state sy, the system should never reach state s3 earlier

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 72

than it reaches so. Applying our CTL algorithms to formula
h= E[—|82U83],

we obtain an EU witness graph G = (N, E, L1, Ly) whose ID number is 2 and a
labeling function L;, where L, labels all four states sg, s1, s3 and s, with 1, Ly just
labels s3 with 1, and L; labels states sg, s1, and s, with 2, and labels s3 with 1. The
graph G is depicted in Figure 4.7. From this graph as well as L, the algorithms
conclude that the model checking problem is true iff none of communication traces in
the form of send no(ack yes send no)* and with length less than 3m is an observable
behavior of X. 1

Figure 4.7: Witness Graph for Example 4.6

Example 4.7 For the same system, we could consider more complicated temporal

properties as follows:

1. (M, X) = AG(sy — AF's3); i.e., starting from the initial state so, whenever the

system reaches ss, it would eventually reach ss.

2. (M, X),so = AG(sy = AX A[-s2Uss]); i.e., starting from the initial state sy,
whenever it reaches state so, the system should never reach s, again until it

reaches ss.

To check whether (M, X) = AG(s; — AF's3), is equivalent to checking whether

(M, X) | —Eltrue U(sy A EG—s3)].

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 73

We describe how the formula
[= E[true U(se N EG—s3)]
is processed by HandleCTL from bottom to up as follows.

1. The atomic sub-formula s, is processed by HandleCT'L, and a labeling function
Ly = {(s2,1)} is returned.

2. The atomic sub-formula s3 is processed, and a labeling function Ly = {(s3,1)}

is returned.

3. To process —s3, HandleNegation is called with Ly to return a labeling function
Ly = {(507 1)7 (817 1), (527 1)7 (34: 1)}

4. To process EG—s3, HandleEG is called with L3 to construct an EG graph
G1 = (N, E, L3) with id 2 (see Figure 4.8) and return a labeling function L, =

{(805 2)’ (81’ 2)? (SQ, 2)}

Figure 4.8: Witness Graph 2 for Example 4.7.1

5. To process sy A EG—s3, HandleNegation and HandleUnion are called with L,
and L, to return a labeling function Ls = {(s9,2)}.

6. To process E[true U(ss A EG—s3)], HandleEU is called with Ls to construct
an EUgraph G5 = (N, E, Ls) with id 3 (see Figure 4.9) and return a labeling

function

Lf = {(80’ 3)5 (81’ 3)’ (321 3)’ (53’ 3)’ (84’ 3)}

Since s is labeled by Ly with an ID expression 3 instead of 1 (i.e., true), we need

to test whether the ID expression 3 can be evaluated true at sy by calling TestW G

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 74

Figure 4.9: Witness Graph 3 for Example 4.7.1

with sg and Go. It’s easy to see that, essentially T'estW G would be testing whether
some communication trace (with bounded length) with two consecutive symbol pairs
(send yes) is an observable behavior of X. It returns false if such trace exists, or
vice versa.

To check whether (M, X), sp = AG(s2 = AX A[-s,Us3)), is equivalent to check-
ing whether

(M, X) E —FEtrue U(ss AN EX(E[-s3U(s2 A —s3)] V EG—s3))].
We describe how the formula
f = E[true U(se N EX(E[-s3U(s2 A —s3)] V EGs3))]

is processed by HandleCT L from bottom to up in the following six step process.

1. The atomic sub-formula s, is processed by HandleC'T'L, and a labeling function
Ly = {(s2,1)} is returned.

2. The atomic sub-formula s3 is processed, and a labeling function Ly = {(s3,1)}

is returned.

3. To process —s3, HandleNegation is called with Ly to return a labeling function
L3 = {(80’ 1)5 (Sla 1): (825 1)’ (841 1)}

4. To process so A —s3, HandleNegation and HandleUnion are called with L; and

L3 to return a labeling function Ly = {(s2,1)}.

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 75

5. To process E[-s3U(s2 A—s3)], HandleEU is called with Ly and L, to construct
an EU graph Gy = (N, E, L3, L;) with id 2 (see Figure 4.10) and return a
labeling function Ls = {(so, 2), (s1,2), (s2, 1)}

Figure 4.10: Witness Graph 2 for Example 4.7.2

6. To process EG—s3, HandleEG is called with L3 to construct an EG graph
Gs = (N, E, L;) with id 3 (see Figure 4.11) and return a labeling function
L6 = {(SOa 3)5 (Sla 3): (525 3)}

Figure 4.11: Witness Graph 3 for Example 4.7.2

7. To process E[—s3U(s2 A —s3)]V EG—ss, HandleUnion is called with Ls and Lg
to return a labeling function L; = {(s0,2 V 3), (s1,2V 3), (s2,1) }.

8. To process EX (E[—s3U(sg A —83)] V EG—s3), HandleEX is called with L; to
construct an EX graph G3 = (N, E, L7) with id 4 (see Figure 4.12) and return
a labeling function Lg = {(s0,4), (s1,1), (s2,4), (s3,4)}.

Figure 4.12: Witness Graph 4 for Example 4.7.2

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 76

9. To process sy A EX (E[-s3U(s2 A —s3)] V EG—s3), HandleNegation and

HandleUnion are called with L; and Lg to return a labeling function Ly =

{(s2,4)}.

10. To process Eltrue U(sy A EX(E[—s3U(sa A —83)] V EG—s3))], HandleEU is
called with Lg to construct an EUgraph G4 = (N, E, Ls) with id 5 (see Figure

4.13) and return a labeling function

Ly = {(s0,5), (51,5), (52,5), (53,5), (54,5)}.

Figure 4.13: Witness Graph 5 for Example 4.7.2

Since s is labeled by L, with an ID expression 5 instead of 1 (i.e., true), we need
to test whether the ID expression 5 can be evaluated true at sy by calling TestW G
with sq and G4. It’s easy to see that, essentially TestW G would be testing whether
some communication trace (with bounded lengtg) with two consecutive symbol pairs
(send yes) is an observable behavior of X. It returns false if such trace exists and

returns true otherwise.

4.5 Discussions

In this chapter, we present algorithms for LTL and CTL model checking driven black-
box testing. The algorithms create communication graphs and witness graphs, on
which a bounded and nested depth-first search procedure is employed to run black-box
testing over the black-box component. Our algorithms are both sound and complete.

Though we do not have an exact complexity analysis result, our preliminary studies

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 7

show that, in the liveness testing algorithm for LTL, the maximal length of test-cases
fed into the black-box component X is bounded by O(n-m?). For CTL, the length is
bounded by O(k - n - m?). In here, k is the number of CTL operators in the formula
to be verified, n is the state number in the host system, and m is the state number
in the component.

The next natural step is to implement the algorithms and see how well they work

in practice. In the implementation, there are further issues to be addressed.

4.5.1 Practical Efficiency

Similar to the traditional black-box testing algorithms to check conformance between
Mealy machines, the theoretical (worst-case) complexities are high in order to achieve
complete coverage. However, worst-cases do not always occur in a practical system.
In particular, we need to identify scenarios that our algorithms can be made more effi-
cient. For instance, using existing ideas of abstraction [31], we might obtain a smaller
but equivalent model of the host system before running the algorithms. We might
also, using additional partial information about the component, to derive a smaller
state number for the component and to find ways to expedite the model checking
process. Notice that the number is actually the state number for a minimal automa-
ton that has the same set input/output sequences as the component. Additionally,
in the implementation, we also need a database to record the test results that have
been performed so far (so repeated testing can be avoided). Algorithms are needed to
make use of the test results to aggressively trim the communication/witness graphs
such that less test-cases are performed but the complete coverage is still achieved.
Also, we will study algorithms to minimize communication/witness graphs such that
duplicate test-cases are avoided. Lastly, it is also desirable to modify our algorithms
such that the communication/witness graphs are generated with the process of gen-
erating test-cases and performing black-box testing over the black-box component X.

In this way, a dynamic algorithm could be designed to trim the graphs on-the-fly.

CHAPTER 4. MODEL CHECKING SYSTEMS WITH ONE BLACK-BOX 78

4.5.2 Coverage Metrics

Sometimes, a complete coverage will not be achieved when running the algorithms
on a specific application system. In this case, a coverage metric is needed to tell
how much the test-cases that have run so far cover. The metric will give a user
some confidence on the partial model checking results. Furthermore, such a metric
would be useful in designing conservative algorithms to debug/verify the temporal
specifications that sacrifice the complete coverage but still bring the user reasonable

confidence.

4.5.3 More Complex System Models

The algorithms can be generalized to systems containing multiple black-box com-
ponents. Additionally, we will also consider cases when these components interacts
between each other, as well as cases when the host system communicates with the
components asynchronously. Obviously, when the black-box component (as well as
the host system) has an infinite state space, both the traditional model checking
techniques and black-box techniques are not applicable. One issue with infinite-state
systems is that, the internal structure of a general infinite-state system can not be
learned through the testing method. Another issue is that model checking a general
infinite-state system is an undecidable problem. It is desirable to consider some re-
stricted classes of infinite-state systems (such as real-time systems modeled as timed
automata [4]) where our algorithms generalize. This is interesting, since through the
study we may provide an algorithm for model checking driven black-box testing for
a real-time system that contains an (untimed) black-box component. Since the al-
gorithm will generate test-cases for the component, real-time integration testing over

the composed system is avoided.

Chapter 5

Decompositional Testing of
Systems With Black-box

Components!

In the previous chapter, we studied new model checking algorithms for systems with
only one black-box component. But the algorithms assume that all the components
in a system has a finite state space. Also the CTL algorithms are very difficult to
be extended to systems with multiple black-boxes. So, in this chapter, we consider
a testing problem for system with multiple black-boxes. We present an automata-
theoretic approach that decomposes the global testing problem for a system with
multiple black-box components into a series testing activities over each individual
black-box.

This chapter is organized as follows. Section 5.1 is an overview of our approach.
In Section 5.2, we present the detail of our push-in technique for the decompositional
testing. In Section 5.3, we examine a set of experiments and analyze the results.

Finally, Section 5.4 summarizes this chapter.

1The content of this chapter is based upon the joint work with Z. Dang in [100]

79

CHAPTER 5. DECOMPOSITIONAL TESTING 80

5.1 Introduction

In our setup, a component-based system Sys = (Gluer, By, -- -, By) is defined as in
(2.1), but it consists of a fully specified, and finite-state component (called the Gluer)
and a number of black-box components By, - - -, By, which are not necessarily of finite
state space. A global behavior is just an observable behavior of the system. The global
testing problem studied in this chapter is to verify (with a definite answer) that, for
the given set Bad, none of the the system’s global behaviors is in Bad.

A straightforward approach to solve the global testing problem is to perform in-
tegration testing over the system as a whole and see if the system exhibits a bad
behavior. However, there are fundamental difficulties with this approach. For in-
stance, in some applications [87], integration testing may not be applicable at all.
Even when integration testing is possible in some situations, the system itself is of-
ten nondeterministic. The combinatorial blow-up on the number of the executions
caused by nondeterministic interleavings among the concurrent components in the
system generally makes it infeasible to do thorough integration testing, while we are
looking for a definite answer to the global testing problem. Due to the same reason,
even when one has a way to handle the nondeterminism [88], the size of the given
set Bad (which could be very large, e.g., more than 10?* in some of our experiments
shown later) may also make exhaustive integration testing infeasible.

A less straightforward approach is to combine testing with some formal method.
For instance, one can extensively test each black-box alone and try to build [79]
a partial model of the black-box from the test results. Then, one can run a formal
method like model checking on the partial system model built from the partial models
of the black-boxes to solve the global testing problem. However, this approach is also
difficult to implement. For instance, it is hard to choose effective test sequences to
build a partial model of a black-box, and it is also hard to know when the tests over
a black-box are adequate. Moreover, the partial (and hence approximated) system
model might not help us obtain a definite answer to the global testing problem. To
avoid the above difficulties, one may also try, using some formal method, to derive an

expectation condition over a black-box’s behaviors such that when every black-box

CHAPTER 5. DECOMPOSITIONAL TESTING 81

behaves as expected, the system guarantees to not have a global bad behavior. Then
the expectation conditions can be used to generate test sequences for the black-boxes.
However, the interactions among the concurrent black-boxes make it difficult to derive
such conditions automatically.

In this chapter, we introduce a novel approach (called the “push-in” technique) to
solve the problem, which does not entail any integration testing. Instead, in our ap-
proach, the global testing problem is reduced to testing individual black-boxes in the
system one by one in some given order. Using an automata-theoretic approach, test
sequences for each individual black-box are generated from the system’s description
as well as the test results of black-boxes prior to the black-box in the given order.

The first step of our approach is to compute an auxiliary set A; of sequences
of observable actions for black-boxes Bi,---, B, and a set U; of test sequences for
black-box B;. Then we test the black-box B; with test sequences in U; and collect
all successful test sequences into a surviving set SUV;. In the second step, from
the surviving set SUV; and the auxiliary set A;, we compute the auxiliary set Ay
(for black-boxes By, - -, By) and the test sequence set U, for black-box Bs. Again,
after testing black-box B, with test sequences in Us, we collect all successful testing
sequences into a surviving set SU V5. Subsequent steps follow similarly, and eventually,
in the last step (i.e., step k), the global testing problem will be decided from the
surviving sets. That is, the system has no global bad behavior iff, for some 1 <17 < k,
the surviving set SUV; is empty. We also provide a procedure to recover a global bad
behavior when the answer to the original problem is “no”.

Since the sets (i.e., U; and A;) are provably finite and, in many cases, huge, we use
(finite) automata that accept the sets as their symbolic representations, and standard
automata operations are used to manipulate these sets. Also, the global testing
problem is decomposed into a series of testing problems over each individual black-
box in the system. Hence, our approach is an automata-theoretic and decompositional
approach. Moreover, the “push-in” technique is both complete and sound, and can be
carried out automatically. In particular, we show that the technique is “optimal” in
the sense that each test we run over a black-box has the potential to discover a global

bad behavior (i.e., we never run useless tests). In general, exhaustive integration

CHAPTER 5. DECOMPOSITIONAL TESTING 82

testing over a concurrent system is infeasible. However, our experiments show that,
using the push-in technique, we can completely solve the global testing problem with
a substantially smaller number of tests over the individual black-boxes, even for an
extremely large set of Bad (some of our experiments performed only about 10° unit

tests for a Bad of size more than 10%*).

5.2 The Push-in Technique

In this section, we present the “push-in” technique to completely solve the global
testing problem, by performing unit testing over each individual black-box in the
system. A test sequence is a string or a word. A finite set of test sequences is
therefore a regular language and, in this chapter, we use a (finite) automaton that
accepts the finite set as the symbolic representation of the set. Our push-in technique
is automata-theoretic. For each 1 < i < k, the technique generates two automata:
U; and A;. Automaton Uj;, called a unit test sequence automaton, accepts words in
alphabet ¥;; i.e., it represents a set of test sequences for black-box B;. Automaton
A;, called an auziliary automaton, accepts words in alphabet 3;U- - -UY, (observable
actions for the black-boxes B;, - - -, Bg). Our push-in technique works in the following

k steps, where 7 is from 1 to k:

Step i. The step consists of two tasks:

(Automaton Generation) This task generates the unit test sequence automaton U; and
the auxiliary automaton A;. We first generate the auxiliary automaton A;. Initially
when i = 1, the generation is based on the Sys’s description (i.e., the gluer G and
the interfaces for By,---, By) and the given set Bad. When i > 1, the generation
is based on the auxiliary automaton A; ; and the surviving set SUV; 1 (see below)
obtained from the previous Step ¢—1. If the empty string is accepted by the auxiliary
automaton A;, then the global testing problem (none of observable behaviors of the
system Sys is in Bad) returns “no” (i.e., a bad behavior of the system exists) — no
further steps need to run. We then generate the unit test sequence automaton U;
directly from the auxiliary automaton A; constructed earlier. This task is purely

automata-theoretic and does not involve any testing.

CHAPTER 5. DECOMPOSITIONAL TESTING 83

(Surviving Set Generation) In this second task, using BBtest, we perform unit testing
over the black-box B; for all test sequences accepted by the test sequence automaton
U; (U; always accepts a finite set). We use SUV;, called the surviving set, to denote
all the successful test sequences. If the surviving set is empty, then the global testing
problem returns “yes” (i.e., none of observable behaviors of the system Sys is in Bad).
Otherwise, if i < k (i.e., it is not the last step), we goto the following Step 7 + 1.
If i = k (i.e., it is the last step and the surviving set is not empty), then the global
testing problem returns “no” (i.e., some observable behaviors of the system Sys is
indeed in Bad).

In the rest of this section, we will clarify how Automata Generation and Surviving
Set Generation in the k£ steps can be done. Since our technique heavily depends on
automata theory, we would like to first build the theory foundation of our technique

before we proceed further.

5.2.1 Theory Foundation of the Push-in Technique

Let us first make a pessimistic (the name is borrowed from the discussions in [35])
modification of the original system Sys by assuming that each black-box B;, 1 <17 <
k, can demonstrate any observable behavior in X! (recalling that ¥; is the interface
of the black-box). The resulting system is denoted by S:?/s. Clearly, every observable
behavior of Sys is also an observable behavior of S 7}8 (but the reverse is not necessarily
true).

Notice that S}/s does not have any black-boxes since the original black-box B;,
after the pessimistic modification, can be considered as a finite-state component B;
with only one state, where each action in ¥; U {€} is a label on a transition from the
state back to the state. According to the semantics definition presented in Chapter
2, Sys itself, after the composition of the gluer G with all the one-state components
By, -, By, is a finite-state transition system with |G| (the number of states in the
gluer) states and with actions in ¥ U {e}. (Recall that ¥ = Xy U --- U X is the
union of all observable actions in the gluer and the black-boxes.) The pessimistic

system can also be treated as a pessimistic (finite) automaton by making each state

CHAPTER 5. DECOMPOSITIONAL TESTING 84

be an accepting state and each e-transition be an e-move. In this way, the language
(a subset of 3*) accepted by the automaton is exactly all of the observable behaviors
of the pessimistic system.

As we have mentioned earlier, the set Bad C ¥* is a finite and hence regular
set. Suppose that the symbolic representation of the set is given as an automaton
Mpaq (Whose state number is written |Mp,q|); i-€., the language accepted by Mg, is
exactly the set Bad.

Using a standard Cartesian product construction, one can build an automaton
Mgiopal, called the global test sequence automaton, to accept the intersection of the
language accepted by the pessimistic automaton S g}s and the language accepted by the
automaton Mp,q. That is, My accepts exactly the bad and observable behaviors
of the pessimistic system. Clearly, the state number in Mg, is at most |G| - |Mpgql.

For a word a € ¥*, we use a |y,;, 1 < ¢ < k, to denote the result of dropping all
symbols not in ¥; from «. That is, if « is an observable behavior of the system Sys,
then o |y, is the corresponding observable behavior of black-box B;. The theory
foundation of our push-in technique can be summarized in the following theorem,

which can be shown using the semantics defined in Chapter 2.

Theorem 5.1 For any global test sequence o in X*, the following two items are

equivalent :

(1) « is a bad (i.e., in Bad) observable behavior of the system Sys of black-boxes
Bla U aBlw and

a 18 accepie [ooa €Sl Sequence auromaton lobal, ANAG €acn o e
2) ai ted by the global test tomaton M, d each of th

following k conditions holds:

(2.1) als, is an observable behavior of By,

(2.k) o s, is an observable behavior of By.

We use “class C” to denote all the a’s that satisfy Theorem 5.1 (2). Obviously,
the global testing problem (i.e., there is no bad behavior in Sys) is equivalent to the

emptiness of class C.

CHAPTER 5. DECOMPOSITIONAL TESTING 85

In the push-in technique, the jobs of Step 1, ---, Step k are to establish the
emptiness of class C using both automata theory and black-box testing. One naive
approach for the emptiness is to use Theorem 5.1 (2) directly: repeatedly pick a global
test sequence a accepted by Myepe (note that Mgype accepts a finite language) and,
using black-box testing, make sure that one of the conditions (2.7), 1 < i < k, is false.
This naive approach works but inefficiently. This is because, when Mg, accepts a
huge set (such as more than 10%* in our experiments shown later), trying every such
element is not only infeasible but also unnecessary. Our approach of doing the job
aims at eliminating the inefficiency. First, we do not pick a global test sequence a.
Instead, we compute the test sequences run on black-box B; from the testing results
on black-box B;_; in the previous Step 7—1. As we have mentioned at the beginning
of this section, each Step i has two tasks to perform: Automata Generation and

Surviving Set Generation, which are presented in detail as follows.

5.2.2 Automata Generation in Step i

This task in Step ¢ is to generate two automata: the unit test sequence automaton
U; and the auxiliary automaton A,.

Initially when ¢ = 1, A; is constructed as A; = Mypar d3,0--Us,, 1-€., the result
of dropping every transition in Mg, that is labeled with an observable action not
in ¥y U---UXy. U is constructed as the automaton U; = A; |y, (i.e., the result of
dropping every transition in A; that is labeled with an observable action not in).
Observe that A; accepts the language A; = {a |5, u..us,: @ accepted by My} and
U accepts the language U; = {« |g,: ais in A; }. The state number in either of the
two automata, in worst cases, is | Mgiopar|-

When ¢ > 1, the two automata A; and U; are constructed from the auxiliary
automaton A; ; and the surviving set SUV; ; obtained in the previous step. To
construct A;, we first build an automaton suw;_; to accept the finite set SUV;_;.
Then, we build an intermediate automaton M;_; that works as follows: on an input
word in (3;_q U---Xg)*, M;_ ; starts simulating A; ; and suv;_; on the word, in

parallel. During the simulation, whenever suv;_; reads an input symbol that is not in

CHAPTER 5. DECOMPOSITIONAL TESTING 86

Y;—1 (note that suv;_; only accepts words in ¥} ,), it skips the input symbol. M;_;
accepts the input word when both A;_; and suwv;_; accept. Finally, the auxiliary
automaton A, is constructed as A; = M; |s,u..x,. The unit test sequence automaton
U; is constructed as U; = A; |y,.

One can show that each of the two automata A; and U; has, in worst cases, a state
number of |A;_| - |suv;_1|. Also, A; accepts the language A; = {a |s,u.un,: @ €
(g U---UXg)*isin A;_; and a |y, , isin SUV;_;} and U; accepts the language
U ={alg:a€ (Z;U---Z)* is in A}

As we have mentioned earlier, when the empty string is accepted by the auxiliary
automaton A; (a standard membership algorithm can be used to validate the accep-
tance), our push-in technique will return a “no” answer on the global testing problem
(i.e., the system does have a bad observable behavior) and no further steps need to

run.

5.2.3 Surviving Set Generation in Step ¢

The surviving set SUV; is the set of all successful unit test sequences a € U;; i.e.,
SUV; ={a € ¥f:a €T and «a is an observable behavior of black-box B;}.

A straightforward way to obtain the set is to run the black-box testing procedure
BBtest over the black-box B; with every test sequence in U;. This is, however, not
efficient, in particular when the set U; is huge. Observable behaviors of a component
are prefix-closed: if « is not an observable behavior of B;, then, for any 3, af can not
be (i.e., test sequence a8 need not be run). With prefix-closeness and BBtest, we
use the following automata-theoretic procedure to generate the surviving set SUV;.

Recall that U; is a finite set of unit test sequences and, as a regular language,
accepted by the unit test sequence automaton U;. Let m be the maximal length of
all test sequences in U; (the length can be obtained using a standard longest path
algorithm over the transition graph of automaton U;). Our procedure consists of the
following m jobs. Each Job;, where j is from 1 to m, is to identify (using black-box
testing) all the successful test sequences (with length j) which are prefixes (which are

not necessarily proper) of some test sequences in U;. In order to do this efficiently,

CHAPTER 5. DECOMPOSITIONAL TESTING 87

the job makes use of the previous testing results in ©;_;. More precisely, each Job;

has two parts (by assumption, let ©y contain only the empty word.).

1) Define P; to be the set of all the prefixes with length j of all the unit test
sequences in U;. Calculate the set P; C P; such that each element in P; has
a prefix (with length j — 1) in ©,_;. To implement this part, one can first
construct an automaton (from automaton U;) to accept the language P;. Then,
construct another automaton to accept the set ©;_;. Finally, an automaton M
can be constructed from these two automata to accept the language 15] All the

constructions are not difficult and do not involve testing.

2) Using BBtest, generate the set ©; that consists of all the successful test se-
quences over black-box B; in]5] Hence, one only runs test sequences in]53

instead of the entire P;, thanks to the previous testing results in ©;_;.

It is left to the reader to verify that, after the jobs are completed, the surviving
set SUV; can be obtained as U; N (Up<;<m©;). Again, this set can be accepted
by an automaton, treated as a symbolic representation of the set, constructed from
automaton U; and the automata built in the above jobs to accept ©;, 1 < j < m. One
can choose the procedure to output the explicit set SUV; or its symbolic representation

SUV;.

5.2.4 Correctness and Bad Behavior Generation

Since the global testing problem is equivalent to the emptiness of class C, we only
need to show that the emptiness is answered correctly with the push-in technique.
Clearly, the technique always terminates with a yes/no answer. It returns “yes” only
at some Step 7, 1 <4 < k, whose surviving set SUV; = (). It returns “no” only
CASEL. at some Step 7, 1 < i < k, when the auxiliary automaton A; accepts the
empty word, or
CASE2. at the last Step k when SUV}, # 0.
In these two cases, in order to demonstrate a global bad behavior of the system,

we first define an operation called select;(-), 1 < j < k. Given a sequence «;, the

CHAPTER 5. DECOMPOSITIONAL TESTING 88

operation returns a sequence o,_; (when j = 1, it simply returns «;) satisfying the
following conditions: oj_1 € Aj_;1, o4 igj_le SUV;_; and o4 igju...gkz a;. The
returned sequence «;_; may not be unique. In this case, any sequence (such as a
shortest one) satisfying the conditions will be fine. Now, we define another operation
called BadGen;(-), 1 < j < k, as follows. Given a sequence ¢, we first calculate
aj_1 = select;(«;). Then, we calculate aj_o = select;_1(a;_1), and so on. Finally,
we obtain a;. At this time, the operation BadGen;(c;) returns any sequence o
satisfying the following conditions: « is accepted by Mg and o |5, u..x,= oq. All
these operations can be easily implemented through automata constructions.
Coming back to bad behavior generation, in CASE1, we return BadGen;()\)
(where A is the empty sequence) as a global bad behavior. In CASE2, we simply pick
any sequence oy from SUV} and return BadGeny(ay) as a global bad behavior.

One can show that our technique is indeed correct.

Theorem 5.2 If the class C is empty then the push-in technique returns “yes”, oth-
erwise it returns “no”. When the technique returns yes, it shows that the system
doesn’t have any of the global bad behaviors in Bad, otherwise it indicates that the

system does exhibit bad behaviors in Bad.

In each step of our algorithm, one can use standard algorithms in automata theory
to make the obtained automata like U;’s and A;’s smaller. The algorithms include
eliminating unreachable states and/or minimization. Additionally, the algorithms as
well as all the automata constructions mentioned in the push-in technique can be
implemented using existing automata manipulation tools like Grail [1].

From the correctness theorem, we know that the push-in technique is sound and
complete. However, one question still remains unsolved: Are test sequences (for black-
box B;) in each U; more than necessary (in solving the global testing problem)? We
can show that each U; derived from our push-in technique is “optimal” in the following
sense. Suppose that we have completed the first i — 1 Steps (i.e., the black-boxes
By, ---, B; 1 have been tested) and have obtained U; to start the subsequent steps
(i.e., the remaining black-boxes B, ---, By are not tested yet). Each test sequence

«; in U; has to be run, since one can show the following two statements: there are

CHAPTER 5. DECOMPOSITIONAL TESTING 89

black-boxes By, - - -, By, such that «; is a successful (resp. unsuccessful) test sequence
for B} and the system G(By,- -, B;_1, B}, - -, B;) has (resp. does not have) a global
bad behavior.

maxlength=10 maxlength=20 maxlength=30
step; #A; #U; #SUV; TC; #A; #U; #SUV; TC; #A; #U; #SUV; TC;
stepy [1.06X107 148 47 68[7.16X10™° 8.06X10% 3533 4572[2.16X10%% 4.14X107 2.23X10° 2.87X10°
case 1|stepy |3.05X10° 548 12 41[6.92X10'* 4.62X10° 177 393(1.13X10%% 2.43X108 1331 2940
stepg |4.78X10% 4.78X10% 7 39|1.15X10%2 1.15X1012 58 297|1.81x10%° 1.81X10%° 274 1577
stepy 1.38X107 386 73 121[5.90X1015 2.61X10° 6697 9384[1.59X1027 1.42X10° 4.74X10° 6.30X10°
case 2|stepgy |3.12X10° 142 13 25|4.94X10% 5.91X10% 93 203(6.99X10%2 2.53X107 645 1356
stepg | 7.25X105 7.25X10° 0 47|1.11xX10'3 1.11X10'3 0 277(1.48X102° 1.48X10%0 0 1259
step; | 1.38X107 386 73 121[5.90X10T° 2.61X10° 6697 9384[1.59X10%% 1.42X10° 4.74X10° 6.30X10°
case 3 |stepg |3.12X10° 142 13 25|4.94X10% 5.91X10% 93 203(6.99X10%2 2.53X107 645 1356
stepg | 7.25X105 7.25X10° 0 47[1.11X10%3 1.11X10!3 13 359[1.48X10%° 1.48X102° 129 2577
stepq [1.30X10° 178 32 76[3.51X10'° 2.20X10° 5507 8197[1.65X10°% 1.36X10° 4.44X10° 6.00X10°
case 4|steps |1.02X10° 97 0 14|9.54X10'3 1.70X10° 0 128]2.39X1022 1.22X108 0 906
stepg 0 0 0 o0 0 0 0 o0 0 0 0 0

Table 5.1: Experiment Results: Counts of Test Sequences

5.3 Experiments

All the experiments were performed on a PC with a 800MHz Pentium III CPU and
128MB memory. The Grail [1] tool was used to perform almost all the automata
operations?. The entire experiment process was driven by a Perl script and carried
out automatically. Our experiments were run on the system of black-boxes shown in
Figure 2.1. In the experiments, we designated black-boxes Timer, Sensor and Comm
as Bi, By, and Bs, respectively. The internal implementations of the black-boxes are
shown in Figures 2.4, 2.5 and 2.6, on which the unit testing in the experiments was
performed. We have totally run twelve experiments (each experiment is a complete
execution of the push-in technique), which are divided into four cases. Each of the
four cases consists of three experiments, which are illustrated in detail as follows.
Case 1 Firstly, we wish that whenever a pause event takes place, there should be
no more send until a resume occurs. The corresponding bad behaviors are specified
as a regular expression, X*p(X — {r})*s¥*, where ¥ is the set of all the twelve events

in the system; p, r, and s stand for the pause, send, and resume, respectively (such

2We implemented (in C) three additional operations to manipulate automata with e-moves and
to count the number of words in a finite language accepted by an automaton, which are not provided
in Grail.

CHAPTER 5. DECOMPOSITIONAL TESTING 90

abbreviation will be used throughout this section). For the first experiment run in this
case, we chose the Bad to be all words in the regular expression that are not longer
than 10 (denoted by “maxlength=10"). The remaining two experiments were run
with “maxlength=20" and “maxlength=30", respectively. To understand the results
shown in Table 5.2.4, we go through the third experiment (i.e., “maxlength=30").
The results of the experiment are shown in the box at the right upper corner in
the table (i.e., under the four columns associated with “maxlength=30" and in the
three rows (“step,”, “step,”, “step;”) associated with “case 1”). The three steps in
the experiment correspond to the three Steps (since there are three black-boxes) in
the push-in technique. The auxiliary automaton A; calculated in Step 1 accepts
totally #A4; = 2.16 x 10%* test sequences. The unit test sequence automaton U;
accepts #U; = 4.14 x 107 test sequences. Using the black-box testing procedure in
Section 5.2.3, we actually only performed TC; = 2.87 x 10° unit tests over B; (the
Timer), among which #SUV; = 2.23 x 10° tests survived. In Step 2 and Step 3,
we obtained #As, #Us, # A3, #U; similarly as shown in the table. In particular, we
actually performed T'Cy = 2940 unit tests over the Sensor in Step 2 and T'C3 = 1577
unit tests over the Comm in Step 3. Since the last surviving set SUV3 is not empty
(#SUV3 = 274), the experiment detects a global bad behavior specified in this case.

Notice that the total number of unit tests run in this experiment is 7'C' + 1T'Cy +
TC5, which is not more than 2.92 x 10°. This number essentially indicates the actual
“cost” of the experiment in deciding whether there is a global bad behavior specified
in the case and whose length is bounded by 30. This number is quite good considering
the astronomical number #A4; = 2.16x10?* which would be the number of integration
test sequences if one run integration testing, since Mgopr = A1 in the system. The
other two experiments (“maxlength=10" and “maxlength=20") also detected a global
bad behavior and results are shown in the first three rows under “maxlength=10" and
“maxlength=20" in Table 5.2.4 (the costs of these two experiments, which are 148
and 5262 respectively, become much smaller).

Case 2 The detected bad behaviors are due to the concurrency nature of these
black-boxes: a fire was issued before the pause is sent to Timer, which eventually

leads to another send. For instance, a global bad behavior could be like the following:

CHAPTER 5. DECOMPOSITIONAL TESTING 91

fire data send msg fire data send cerr fire data pause send. From this observation,
we believed that the system might also have other bad behaviors: after a cerr takes
place, there could be another cerr coming before a resume occurs. Such bad behaviors
are encoded by ¥*¢(X — {r})*c¢X*. The three experiments in this case, however, did
not detect such bad behaviors (i.e., #SUV3 = 0 for all lengths, shown in the third
row “steps” associated with “case 2”7 in Table 5.2.4).

Case 3 Based upon the experiments in the previous case, we carefully studied
the system and realized that the implementation of Comm might be wrong: after an
error occurs (i.e., a cerr outputs), Comm is supposed to retain its state prior to the
output of the cerr, while it does not. After correcting this bug (by making the
internal implementation of Comm, shown in Figure 2.6, move to state s2 instead of
s0 after a cerr is output), in this case, we run the three experiments again. The
experiments detected bad behaviors only with length more than 10 (i.e., #SUV3; =0
when maxlength is 10 and #SUV3 > 0 when maxlength is 20 and 30, shown in Table
5.2.4).

Case 4 Now we want to test that: after an error occurs in Sensor (i.e., a serr
is issued), there will be at most one more fire issued before a resume occurs. The
corresponding bad behaviors are encoded by Y*serr(X — {r})*f(X — {r})*f(E —
{r})*r¥*, where f stands for fire. Our experiments did not detect any such behaviors
for all the three choices of maxlength: 10, 20, 30. In fact, in the experiments, no
testing over Comm was needed. This is because, as shown in the last three rows of
Table 5.2.4, #SUV5 is 0 for all the three choices.

We measured the total time that our script used for automata manipulations
in each of the twelve experiments, shown in Table 5.2. In the table, the “result”
(resp.
“V") indicates “detected” (resp. “not detected”). As shown in the table, the to-

b

shows whether a global bad behavior was detected in an experiment; i.e., “Xx

tal time is within a minute for all the four experiments with “maxlength=10". For
“maxlength=20", the time is still acceptable (within an hour). When the maxlength
is increased to 30, the time is still within our patience (which was set to be 24 hours).
Yet, our script could not finish within the time limit for any experiment when we tried

to push maxlength to 40. Even though determinization and minimization are optional

CHAPTER 5. DECOMPOSITIONAL TESTING 92

in our push-in technique, we made them mandatory in our experiments. In this way,
we can cross-compare the sizes of the automata obtained in each step of the exper-
iments. The largest size of all the automata constructed in the twelve experiments,
after determinization and minimization, is with 726 states and 2138 transitions. In
an experiment with maxlength=40, the script tried to make an automaton (with 1182
states) deterministic and failed to do so within our patience.

Exhaustive integration testing over a concurrent system is in general infeasible.
However, the experiments show that, using the push-in technique, we can completely
solve the global testing problem with a substantially smaller number of tests over
each individual black-box only, even for an extremely large set of Bad. For instance,
the total number of unit tests (7°C;’s) performed in each of the four experiments with
“maxlength=30" is in the order of 10°, while each Bad is in the order of 10?* (notice

that each Bad is always larger than each #A;, shown in Table 5.2.4).

maxlength=10 | maxlength=20 | maxlength=30
Cases | time result | time result | time result
Case 1 | ~25s X | ~40m X | ~19h X
Case 2 | ~34s V| ~58m v/ | ~18h vV
Case 3 | ~36s V| ~b6m X | ~18h X
Case 4 | ~17s V| ~22m v/ | ~bh Vv

Table 5.2: Experiment Results: Time Efficiency

5.4 Summary

In this chapter, we presented an automata-theoretic and decompositional technique
(the ”push-in” technique) to address a global testing problem; i.e., testing a system
of concurrent black-boxes against a finite set of bad behaviors. Our technique is
automatic, sound, and complete.

Essentially, the global testing problem is a verification problem since we are look-

ing for a definite answer. In the area of formal verification, there has been a long

CHAPTER 5. DECOMPOSITIONAL TESTING 93

history of research on exploiting compositionality in system verification, and a com-
mon technique is to follow the “assume-guarantee” reasoning paradigm [65, 81, 58,
26, 3, 35, 29, 5]. However, a successful application of the paradigm depends on the
correct assumptions for the components in a system, which are, in general, formu-
lated manually. Several researchers suggest solutions to the problem of automated
assumption generation [50, 57, 41, 43]. But the solutions require that the source code
and/or the finite-state design for a component is available, which, unfortunately, is
not the case in our setup. Although our push-in technique relies on black-box testing
instead of an “assume-guarantee” mechanism, it can be extended to a system where
a black-box is associated with environmental assumptions.

The heart of our ”push-in” technique is based on an observation that global be-
haviors of a concurrent system can be projected onto behaviors for each constituent
component. Moreover, the behaviors of each individual component are also con-
strained by the behaviors of other components (because of synchronizations). The
similar observations have also been made in [24, 25] as Context Constraints for com-
positional reachability analysis and used in [61, 60] for structural testing of concurrent
programs.

Our technique can be generalized to many other forms of bad behavior specifica-
tions (i.e., the finite set Bad). For instance, we may that specify that Bad consist of
all observable sequences not longer than 40, each of which can make the gluer enter a
given (undesired) state. But the exact formalisms for bad behavior specifications need
further investigation. Our model of the system is based on synchronized communica-
tions. Therefore, it would be interesting to see whether the approach can be gener-
alized to some forms of asynchronous (e.g., shared-variable) systems. Black-boxes in
our model are event-driven; it is also worthwhile to study other decompositional test-
ing approaches for data-driven black-boxes. Sometimes, our push-in technique fails
to complete, due to an extremely large bad behavior set Bad (e.g., our experiments
with “maxlength=40" shown earlier, whose global test sequences deduced from Bad
are roughly as many as 10%*). In this case, we need study methods to (symbolically)
partition the set into smaller subsets such that the push-in technique can be run over

each smaller subset. In this way, a global bad behavior could instead be found. In

CHAPTER 5. DECOMPOSITIONAL TESTING 94

our definition of the push-in technique, there is not a pre-defined ordering in testing
the black-boxes. For instance, in our experiments, the ordering was Timer, Sensor,
Comm, based on the size of a black-box’s interface. Clearly, more studies are needed
to clarify the relationship between the efficiency of our technique and the choices of

the ordering.

Chapter 6

The Linear Reachability Problem

of Finite-state Labeled Transition

Systems!

Although both CTL and LTL are expressive, many temporal properties are out of
their scope. For instance, event counting is a fundamental concept to specify some
important fairness properties. So, to study the automatic verification of a component-
based system, it is worthwhile to study how to verify a single, finite-state, and specified
component against some non-temporal property.

The rest of this chapter is organized as follows. Section 6.1 gives an overview of
this study. Section 6.2 introduces some known results on minimal solutions to linear
Diophantine equation systems, which are needed later in the chapter. In Section
6.3, we obtain a bounding box for the linear reachability problem for finite-state
labeled transition systems. Based on the bounding box, Section 6.4 establishes a time
complexity bound for the linear liveness problem for finite-state labeled transition

systems. Section 6.5 is a brief summary.

1The content of this chapter is based upon the joint work with C. Li and Z. Dang in [96]

95

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 96

6.1 Introduction

As a motivating example, we consider the design of a process scheduler, depicted as a
finite-state labeled transition system A in Figure 6.1 2. The scheduler schedules two
kinds of processes: P, and P, according to some scheduling strategy. A transition
with label P, (resp. P,) is taken when the scheduler chooses a P, (resp. P,) process
to run. It is required that the design shall satisfy some fairness properties; e.g.,
starting from state sy, whenever s is reached, the number of P, processes scheduled
is greater than or equal to the number of P, processes scheduled and less than or
equal to twice the number of P, processes scheduled. To ensure that the design meets
the requirement, we need to check whether for any path p that starts from and ends
with sg, the linear constraint, #p,(p) < #p,(p) < 2#p,(p), is satisfied, where #p, (p)
(resp. #p,(p)) stands for the count of labels P, (resp. P,) on path p. Notice that this
property is non-regular [14] and, since the counts could go unbounded, the property
is not expressible in CTL or LTL.

In general, by considering its negation, the property can be formulated as the linear

reachability problem for finite-state labeled transition systems (FLTSs) as follows.

e Given: A finite-state labeled transition system A with labels ay, ..., ax, two

designated states Sini; and Sgna, and a linear constraint U(xq, ..., o).

e Question: Is there a path p of A from siui; t0 Sgna such that p satisfies U (i.e.,

U(#4, (D), - - -5 #a,(p)) holds)?

The reachability problem is decidable. To see this, one can treat A as a finite
automaton with initial state sj,;; and final state sgn.. Then a naive decision procedure
can be constructed in the following three steps: (7). Compute a regular expression
for the regular language (over alphabet {a1,...,ax}) accepted by A, (ii). Calculate
the semi-linear set of the regular expression defined by a Presburger formula R [76],
and (743). Check the satisfiability of the Presburger formula R A U. Unfortunately,

the time complexity of this procedure is at least O(2/°), where |S| is the number of

2In this chapter, we do not distinguish labels for internal actions, input actions, and output
actions

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 97

states in A, even when £ is fixed. This is because the size of the regular expression,

in worst cases, is exponential in |S| [53].

Figure 6.1: An Example of A Scheduler

In this chapter, we present a new algorithm solving the linear reachability problem.
This algorithm is completely different from the naive one. In our algorithm, we
estimate a bound B (called a bounding box) from A and U such that, the Question-
part is true iff the truth is witnessed by some p on which the count #,,(p) for each
label a; is bounded by B. Interestingly, after a complex loop analysis, estimating a
bounding box B is reduced to a number theory problem: finding nonnegative minimal
solutions to linear Diophantine equation systems. There has been much research
on this latter problem for homogeneous/inhomogeneous systems with (nonnegative)
integer solutions [12, 13, 37, 82]. Suppose that U is in a disjunctive normal form over
linear equations/inequalities. Using the Borosh-Flahive-Treybig bound in [12], we are
able to show that, in worst cases, when [S| is > the size (which will be made clear
later in the chapter) of U, the bounding box B is bounded by O(|S|*TL"3), where L
is the maximal number of conjunctions in a single disjunctive term of U. (We assume
that U is written in the disjunctive normal form over atomic linear constraints such
as 2z, — 3xg +4x3 > 5.) The Borosh-Flahive-Treybig bound has been used in solving
the boundedness problem for vector addition systems [83]. However, the path re-
arrangement technique used in [83] is not applicable (at least not in an easy way) to
obtaining the bounding box B. With the bounding box, one can easily show that the
linear reachability problem is solvable in time O(|S|?#*+L+3)+2) when |S| > k and
the size of U. In particular, when k£ and U are fixed, the complexity is polynomial in
|S|. This is in contrast to the complexity of the naive algorithm that is exponential in

the state number |S|. This new complexity result will be further used in this chapter

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 98

to obtain complexity bounds (which were unknown) for some other linear counting

problems that involve linear constraints over counts, e.g., the linear liveness problem
[34] for A.

6.2 Definitions

First, we slightly modify Definition 2.1 such that a finite-state labeled transition system
A is defined as
A = (S, Init,V,R), (6.1)

where S is a finite set of states, Init C S is a set of initial states, V = {a1,...,a,} is a
set of labels, R C S x (VU{e}) x S is the transition relation. Notice that, here we do
not distinguish labels for internal actions, input actions and output actions, we also
allow the label of a transition to be empty (i.e., labeled with €). When R C Sx{e} xS,
A is called a finite-state machine. A path p of A is a finite sequence of alternating
states and labels sq7gs1... 8, 17h_15, for some n such that for each 0 < 7 < n,
(si, Tiy Siv1) € R. Path p is a simple cycle if sy, ..., s,—; are distinct and sy = s,,.
Path p is a simple path if sq, ..., s,_1, s, are all distinct. For any path p of A, recall
that #(p) denotes the Parikh map of p (i.e., the k-ary vector (#4,(p), ..., #a, (D)),
where each #,,(p) stands for the number of label a;’s occurrences on p, 1 < i < k).

Let U be a linear constraint defined in Section 2.4. Without loss of generality,
throughout this chapter, we assume that U is written as a disjunction U; V ...V
U, for some m, of conjunctions of atomic linear constraints. When m = 1, U
is called a conjunctive linear constraint. U is made homogeneous if each atomic
linear constraint in U is made homogeneous; we use U"™ to denote the result. In
particular, a conjunctive linear constraint U is a linear Diophantine equation system
if each atomic linear constraint in U is an equation.

Suppose that U is a conjunctive linear constraint, which contains e equations and
| — e inequalities. One may write U into Bx ~ b, where ~ € {=,>}/, B (I by k)
and b (I by 1) are matrices of integers, and x is the column of variables z1, ..., xy.

As usual, (B, b) is called the augmented matrix of U, and B is called the coefficient

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 99

matrix of U. We use ||B||1,c to denote max;{)_; [bi;|} (bi; is the element at row and
column j in B) and use ||b||, to denote the maximum of the absolute values of all
the elements in b. Assume r is the rank of (B, b), and I'; (resp. I'y) is the maximum
of the absolute values of all the 7 x r minors of B (resp. (B, b)).

When U is a linear Diophantine equation system (i.e., e = [), for any given tuples
(v1,...,v) and (v},...,v}) in N¥ we say (vi,...,vx) < (v],...,v}) if v; < o} for all
1<i<k. Wesay (vy,...,v) < (v1,...,05) if (vy,...,08) < (v],...,v;) and v; < v}
)
)

is not. Clearly, there are only finitely many minimal solutions to U. It has been

for some 1 < 4 < k. A tuple (v],...,v) is a minimal solution to U if (v],..., v}

is a solution to U but any (vy,...,vg) with (0,...,0) < (v1,...,v,) < (v],..., 0}

an active research area to estimate a bound for minimal solutions, and the following
Borosh-Flahive-Treybig bound [12] is needed in this chapter.

Theorem 6.1 (Borosh-Flahive-Treybig bound) A linear Diophantine equation system
U has solutions in nonnegative integers iff it has a solution (x1, ..., xy) in nonnegative

integers, such that r unknowns are bounded by 'y and k — r unknowns are bounded
by (max(k,l) —r + 1)Ts.

The Borosh-Flahive-Treybig bound gives a bound for one of the minimal solutions in
nonnegative integers to the inhomogeneous system U.

An inequality can be translated into an equation by introducing a slack variable
(e.g., T1 — 2x9 > 3 into 21 — 2x9 — u = 3, where u, a new variable on N, is the slack
variable). So if U is a conjunctive linear constraint (in which there are e equations
and [— e inequalities) over z1,...,T,, we may write U into an equation system

U(zi,-. Tk, Y1, - - -, Yi—e) With [equations, where vy, ..., y,_. are the slack variables.

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 100

6.3 A Bounding Box for the Linear Reachability

Problem

Let A be a finite-state labeled transition system specified in (6.1). A set Q C N¥ is

a small linear set (with respect to the given A) if @ is in the form of

{eo + Z X]-ej : each X]‘ Z 0}, (62)

1<j<r

where nonnegative integer r satisfies r < |S|*, k-ary nonnegative integer vectors
€, ..., e satisfy |leg|[oc < |S|%, and for each j =1,...,7, ||&j|le < |S]. Q is a small
semi-linear set if it is a union of finitely many small linear sets.

Recall that the linear reachability problem for A is to decide whether there ex-
ists a path p in A from s;n;; to Sgna Such that p satisfies a given linear constraint
U(zi,-..,z). Let P be all paths of A from sini; t0 Sgna- We use #(PP) to denote
the set of k-ary nonnegative integer vectors {#(p) : p € P}. Using a complex loop
analysis technique to reorganize simple loops on a path, one can show that #(P) is a

small semi-linear set.

Lemma 6.2 #(P) is a small semi-linear set. That is, it can be represented as, for

some t, ®

#P) = | @ (6.3)

1<i<t

where each Q; is a small linear set in the form of (6.2).

Proof. Let p be a path sg7981...5, 17n_15,) of A. We use |p| = n to denote the
length of p, S, to denote the set of states appearing on p, and p* to denote the prefix
of p whose length is i. Obviously, |p| < |S| when p is a simple cycle, and [p| < |S]
when p is a simple path. Path p passes a state s whenever s € S,. Given two paths
p1 and po, we use S, np, to denote S, NSy, which is the set of all the states that
appear on both p; and py. If Sy, # 0, we say that p; touches po with touch states

Spinp,- Otherwise, we say that p; does not touch ps.

3Note that though ¢ may be large, it is irrelevant here.

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 101

Then we can extract (as shown in Algorithm 1), from p, a simple path py (called
the basic path of p) and a set C, of simple cycles. It can be observed that the stack
content (when reading from bottom to top) does not contain any simple cycles at
any moment and hence the basic path py obtained in the last step is indeed a simple
path. Define Ag = S, U {s0, s, }. In particular, if py is empty, then s, must be s,
(i.e., p itself forms a cycle), else so € Sy, and s, € Sy, (i-e., Ag = Sp)- Ag is called

the basic states.

Algorithm 1 Algorithm 1
Initialize a stack ST and a set C), to be empty;
Scan p from left to right;
for each transition e = (s;, 7, $;+1) on p do
if s; = s;41 (i-e., e itself is a simple cycle) then
Cp :=Cp U {e};
else
Check whether ST, from top to bottom, has an element ¢’ = (s, 7, s') with s = s;11;
if yes then
Pop all the elements above e’ and €' itself from the stack;
The popped elements together with e form a simple cycle ¢;
Cp :=CpU{ch
else
Push e into ST
end if
po is obtained by concatenating the remaining elements in S7 from bottom to top.
end if
end for

Next, we partition C, into subsets (called layers) L1, ..., Ly, for some m as follows.
The first layer L; is the set of all the simple cycles ¢ in C, such that c passes a
state in Ag; ie., Ly = {c: c € C, and S. N Ag # 0}. Define A; = U, S, and
Ti = Ueer, (Se N Ag) = A1 N Ag. Ay is the set of all the states that are passed by
simple cycles in L;. T} contains exactly all the touch states between py and a simple
cycle in Ly. In general, for ¢ > 2, L; is the set of all the simple cycles ¢ € C), such
that ¢ has not been grouped into layers Ly, ..., L;_; and ¢ touches some simple cycle
in L y; ie, Lj = {c:c € Cp —Ugjci1Lj and S, N A,y # 0}. A; is the set of
all the states that are passed by simple cycles in L;; i.e., A; = Ueer,;Se. T is the

set of all the touch states between a simple cycle in L;_; and a simple cycle in L;;

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 102

ie, T; = Ueer, (Se N A;—1) = A;NA;_;. It is easy to observe that, according to the
above definitions, L; N L; = () whenever i # j, A; N A; = () whenever i — j| > 2,
and T; N T; = () whenever 7 # j. In particular, since T; = 0 iff L; = 0, T, = 0
implies T; ;1 = (). Obviously, since each T; C S, there exists some value m < |S| such
that Li,..., L, # 0 but L,,.; = (. That is, the number of layers is bounded and the
bound is independent of the choice of p. We call the tuple (po, L1, - .., L, T1,- .., Tpn)
the layered structure L, of path p.

For instance, consider a path p of the transition system in Figure 6.1 that passes
through the states (in this order): s¢s45553515553515253505155535054. After running
Algorithm 1, we can obtain a basic path py : sgs4 and four simple cycles (the
labels are omitted for simplicity), ¢; : $5535185, Co : S3515283, C3 © SoSaS5S3S0, and
€y : S0S1S58350- From the above definitions, they are arranged into two layers as
shown in Figure 6.2. In particular, T} = {so,ss} and Ty = {s1, s3, 55} are indeed
disjoint. Now, suppose that we are given a layered structure L, then how can we
obtain the path p? Hereafter in this chapter, we will use formulas in the form of

po+ > Xcc, X >0, to stand for those paths obtained from L, by traversing the
ceCyp

basic path py once, and each simple cycle ¢ € C, for X, times* during the traversal
of py. Obviously, constraints must be put over these X.’s to ensure that we can
always obtain a path of the corresponding transition system. For instance, consider
the layered structure in Figure 6.2. In order to obtain p, each of ¢; (i = 1,2,3,4)
must be traversed at least once (though, for now, we are not interested in the exact
numbers of traversals) during the traversal of the basic path py. Failing to do so will
not allow us to obtain a path; e.g., po + 2¢; + 3c2 + Ocs + Ocy corresponds to no path
of the transition system in Figure 6.1 at all. For a layered structure L, of a path
p of any finite-state labeled transition system A, we define Span(L,) as the set of
paths obtained by traversing py for once, and traversing each simple cycle in every

layer for at least once. That is, Span(L,) is the set {go + >_ X.c : each X, > 0},
ceCp

where go = po + Y, c¢. Clearly, each path in Span(L,) is indeed a path of A, and
ceCy

4As we are only interested in the counts information of a path, the order in which these cycles
should be traversed is irrelevant here.

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 103

Algorithm 2 Algorithm 2
Initialize C to be empty;
for each i =m,...,2 do
for each s € T; do
Choose an arbitrary simple cycle ¢ € L;_; that passes s;
Add ¢ to C.
end for
end for

p € Span(L,). Recall that the main objective here is to obtain a small bounding box.
However, (), the set of simple cycles extracted from p, may be exponentially large
(in |S|); go may therefore be too long to result in a useful bound. We need to improve

the representation of Span(L,) by making gy shorter.

basic path po so & %54

first layer L1 ca c3

second layer Lo c1 ()

Figure 6.2: A Layered Structure

For each simple cycle ¢ in L; (i = 1,...,m), it can be observed that S, N7T; # 0.
Also, for each s € T; (i = 2,...,m), there exists a simple cycle ¢ € L; ; that passes s.
From these two observations, we can construct a smaller set C of simple cycles using
Algorithm 2. Obviously C contains exactly |T'| — |T1| < |S| — |po| simple cycles,

where T'= |J T;, and g = po + > c constitutes a path of A. Additionally, ¢} has
1<i<m ceC

two good properties. One is that the length |g{| is bounded by |po| + |C| - max ec |¢|-
Hence, |g5| < |po| + (|S| — [po])|S| < |S]?. Another is that g} passes each of the touch
states in T', i.e., T C Sy . Since each simple cycle ¢ € C), passes at least one state

in T, we can immediately conclude that ¢y + > X.c constitutes a path of A for all
ceCp

X, > 0. Then, we define Span’(LL,) as {g) + > X.c: each X, > 0}. Since C C C,,
ceCy

it is easy to see that Span(IL,)C Span’(L,) and p €Span’(L,).

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 104

For every p, #(Span’(L,)) ={#(q¢;) + > X #(c) : each X, > 0} is a small linear

ceCyp
set. This is because ||#(g)||co < |S|?, [|#(¢)||oo < |S], and there are at most r < |S|*

distinct vectors #(c) for all simple cycles ¢ € C,.
Observe that there are only finitely many distinct sets Span’(L,) for all p € P.

Since, for each p € P, Span’(L,,) C P, we immediately obtain P = |J Span'(L,,) for
1<i<t
some t and py,...,p; € P. Define Q; = #(Span'(L,,)), for 1 < i < ¢. The lemma

follows since #(P) = |J @; and, as we have shown, each @); is a small linear set.
1<i<t
|

Now let us turn to the property formula U. Recall that U is written as a disjunction

of m conjunctive linear constraints

v="\ U. (6.4)

Fix any 1 < ¢ < m. Suppose that U; contains [atomic linear constraints. After adding

(at most) slack variables yi,...,y;, U; can be written into the following form:

bz + ...+ bz + 11 = by
: (6.5)

bnzi + ...+ bz + gy = by,

where the b’s and g¢’s are integers (each g is -1 or 0). Let B be the coefficient matrix

for variables 1, ...,z and b be the column of by, ..., in (6.5). Define w; = ||B||1 00
and wy = ||b||. We may assume w; > 0 (otherwise let w; = 1). In the sequel, we
use the following notions: W; (the maximum of all the values w; among all U;’s), W,
(the maximum of all the values wy among all U;’s), and L (the maximum of all the
values | among all U;’s).

Due to the disjunctive representations of (6.4) and (6.3), we can consider only
one conjunction of U in the form of (6.5) and only one linear set in the form of
(6.2). That is, by substituting the expression in (6.2) for x = (z4,...,zx) in (6.5):

x = ey + >, X,e;, the equation system (6.5) is transformed into the following
1<5<r

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 105

equation system with unknowns Xi,..., X, and y1,...,y;:

huXi+...+h, Xe + upn = d)
: (6.6)
hlle 4+ ...+ hl,«XT +qy = d;

Hence, the linear reachability problem is reduced to finding a nonnegative integer so-
lution to (6.6). With the bounds on ey and each e; given in (6.2), a simple calculation
reveals that, in (6.6), all of the A’s are bounded by |S|W; and all of the d}, ..., d] are
bounded by [S|?W; + Ws.

We use T'; to denote the maximum of the absolute values of all the ¢ x £, 1 <
t < I, minors of the coefficient matrix for system (6.6) and I's to denote that of
the augmented matrix. With the above mentioned bounds for the coefficients and

constants in (6.6), one can conclude that
Ty < (|S|Wy)1! and Ty < (|SPWy + Wa)(|S|W1) M. (6.7)

A direct application of the Borosh-Flahive-Treybig bound in Theorem 6.1 shows
that system (6.6) has solutions in nonnegative integers iff the system has a solu-
tion (Xi,...,X;,91,.-.,¥) in nonnegative integers, among which r unknowns are
bounded by 'y and [unknowns are bounded by (r + 1)I'y (here, without loss of gen-
erality, we assumed the worst case where the rank of coefficient matrix of (6.6) is /).
Applying the bounds I'y and (r + 1)I'; to X in (6.2), the linear reachability problem
is further reduced to the problem of finding a path p € P satisfying:

1#®)loo < (IS]* + (r = DISITL +1US|(r + 1)T2) (6.8)

and U(#a,(p), - - -, #4,(p))- Noticing that [< L, and r < |S|* according to (6.2), we
apply the bounds of I'; and I'; in (6.7) to (6.8) and define a bounding box

B = (|S|**Wy + LIS|(|S|* + 1) (ISPWr + Wa))(|S|W1) 7 L + |8, (6.9)

Hence,

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 106

Theorem 6.3 Given a finite-state labeled transition system A, two states Siit, Sginal €

S, and a linear constraint U(xq,. .., x), the following items are equivalent:
e there is a path p of A from Sinit t0 Sena Satisfying U,

e the above item is true for some p further satisfying ||#(p)||cc < B, where B is
defined in (6.9).

Notice that B in (6.9) is independent of m in (6.4). Now we measure the “size” of
U with max(W;, W, L). When the number of states |S| in A is > k and the size of
U, the bounding box is in the order of B = O(|S|¥*£+3). In this case, one can easily

show the following.

Theorem 6.4 The linear reachability problem for finite-state labeled transition sys-

tems 18 solvable in time
O(|§[k+E49)+2), (6.10)

when |S| >k, Wy, W, L.

6.4 The Linear Liveness Problem

An w-path 7 of A is an infinite sequence such that each prefix is a path of A. Let s
and s’ be any two designated states of A. We say that 7 is U-i.o. (infinitely often)
at s’ if there are infinitely many prefixes p from s to s’ of 7w such that p satisfies U
(i.e., U(#a,(P)s - - -, #4,(p)) holds). The linear liveness problem for finite-state labeled

transition systems can be formulated as follows.

e Given: A finite-state labeled transition system A, two designated states s and

', and a linear constraint U(xy, ..., z).

e Question: Is there an w-path 7 that starts from s and is U-i.o. at s'?

In [34], this problem is shown decidable. However, the time complexity was unknown.
In this section, we reduce the liveness problem to a linear reachability problem.
Recall that U is in the form of (6.4), U = Vi<j<mUi, and U™ is the result of

making U; homogeneous. One key observation is as follows. The Question-part in

CHAPTER 6. THE LINEAR REACHABILITY PROBLEM 107

the linear liveness problem is true iff, for some 1 < i < m, (a). there is a path of A
from s to s’ satisfying U;, and, (b). there is a path of A from s’ to s’ satisfying UP™.
A proof of this observation can be followed from [34] using the pigeon-hole principle.
Both items are equivalent to the linear reachability problem for A concerning U; and
Ubom respectively. By trying out all of the m number of U;’s and U®™’s, and using
Theorem 6.3 and (6.10), we conclude that:

Theorem 6.5 The linear liveness problem for finite-state labeled transition systems
is solvable in time shown in (6.10), when |S| > m, k, Wi, W,, L.

6.5 Summary

In this chapter, we obtained a number of new complexity results for various linear
counting problems (reachability and liveness) for finite-state labeled transition sys-
tems. At the heart of the proofs, we used some known results in estimating the
upper bound for minimal solutions (in nonnegative integers) for linear Diophantine
systems. In particular, when all the parameters (such as the number of labels/, the
size of the linear constraint to be verified, etc.) except the number of states, |S]|,
of the underlying transition system are considered constants, the complexity bounds
obtained in this chapter is polynomial in |S|. This is, as we mentioned in Section
6.1, in contrast to the exponential bounds that were previously known. In practice,
a requirement specification (e.g., the U in a linear counting problem) is usually small
and simple [38]. In this sense, our results are useful, since the large |S| is usually
the dominant factor in efficiently solving these verification problems. However, in
real-world applications, how to use the structural information (such as modularity)
of a transition system to obtain a smaller bounding box remains a practical problem

to solve.

Chapter 7

A Solvable Class of Quadratic
Diophantine Equation Systems!

As mentioned in Chapter 2, a software component in real world is often of infinite
instead of finite state space. In this chapter, we study a class of infinite-state sys-
tems that contain parameterized or unspecified constants. We show that various
verification problems over this class of infinite-state systems can be reduced to the
satisfiability problem of a special class quadratic Diophantine equation systems. Then
we devote the majority of this chapter to show that that the satisfiability problem is
actually solvable.

This chapter is organized as follows. Section 7.1 provides an overview of this study.
Section 7.2 introduces some definitions as well as present the decidability results for
the satisfiability problem of two special classes of quadratic Diophantine systems
(Lemma 7.2 and Theorem 7.3). Then in Section 7.3, we generalize the verification
problem in (*) in terms of weighted semi-linear languages, and reduce the problem
and its restricted versions to the classes of quadratic Diophantine systems studied in
Section 7.2. In Section 7.4, we discuss the application aspects and extensions of the

decidability results to other machine models. Section 7.5 is a brief summary.

!The content of this chapter is based upon the joint work with Z. Dang and O. Ibarra in [95]

108

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 109

7.1 Introduction

The successful application of model checking to the verification of finite-state sys-
tems have greatly inspired researchers to develop automatic techniques for analyzing
infinite-state systems (such as systems that contain integer variables and parameters).
However, in general, it is not possible to develop such techniques, e.g., it is not possible
to (automatically) verify whether an arithmetic program with two integer variables
is going to halt [73]. Therefore, an important aspect of the research on infinite-state
system verification is to identify what kinds of practically useful infinite-state models
are decidable with respect to a particular form of properties (e.g., reachability).

For instance, consider a nondeterministic finite-state system M. Each transition
in M is assigned a label. On firing the transition s —% s’ from state s to state s’
with label a, an activity a is performed. There are finitely many labels aq,---,a; in
M. M can be used to model, among others, a finite-state process where an execution
of the process corresponds to an execution path (e.g., so —a® g ot L Srils
for some r) in M. On the path, a sequence of activities a®---a" are performed. Let
Y1, -, Xk be any k sets (not necessarily disjoint) of labels. An activity a is of type i
if a € X;. An activity could have multiple types. Additionally, activities a1, - - -, a; are
associated with weights wy, - - -, w; that are unspecified (or parameterized) constants
in N, respectively. Depending on the various application domains, the weight of an
activity can be interpreted as, e.g., the time in seconds, the bytes of memory, or the
budget in dollars, etc., needed to complete the activity. A type of activities is useful
to model a “cluster” of activities. When executing M, we use nonnegative integer
variables W; to denote the accumulated weight of all the activities of type ¢ performed

so far, 1 <7 < k. One verification question concerns reachability:

(*) whether, for some values of the parameterized constants wy, - - -, wy,
there is an execution path from a given state to another state and on
which

wy, -+, wy, Wy, -« -, Wy satisfy a given Presburger formula P (a Boolean

combination of linear constraints and congruences).

One can easily find applications for the verification problem; e.g., examples studied

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 110

later in the chapter.

In this chapter, we study the verification problem in (*) and its variants. First, we
show that the problem is undecidable, in general. Then, we consider various restricted
as well as modified cases in which the problem becomes decidable. For instance, if
P in (*) has only one linear constraint that contains some of W7y, ---, Wy, then the
problem is decidable. Also, rather surprisingly, if in the problem in (*) we assume
that the weight of each activity a; can be nondeterministically chosen as any value
between a concrete constant (such as 5) and a parameterized constant w;, then it
becomes decidable. We also consider cases when the transition system is augmented
with other unbounded data structures, such as a pushdown stack, dense clocks, and
other restricted counters.

In the heart of our decidability proofs, we first show that some special classes
of systems of quadratic Diophantine equations/inequalities are decidable (though in
general, these systems are undecidable [71]). This nonlinear Diophantine approach
toward verification problems is significantly different from many existing techniques
for analyzing infinite-state systems (e.g., automata-theoretic techniques in [64, 15, 32],
computing closures for Presburger transition systems [30, 19], etc.). Then, we study
a more general version of the verification problem by considering weighted semi-linear
languages in which a symbol is associated with a weight. Using the decidability results
on the restricted classes of quadratic Diophantine systems, we show that various ver-
ification problems concerning weighted semi-linear languages are decidable. Finally,
as applications, we “re-interpret” the decidability results for weighted semi-linear
languages into the results for some classes of machine models, whose behaviors (e.g.,
languages accepted, reachability sets, etc) are known to be semi-linear, augmented
with weighted activities.

Adding weighted activities to a transition system can be found, for instance, in
[66]. In that paper, a “price” is associated with a control state in a timed automaton
[4]. The price may be very complex; e.g., linear in other clock values etc. In general,
the reachability problem for priced timed automata is undecidable [66]. Here, we
are mainly interested in the decidable cases of the problem: what kind of “prices”

(i.e., weights) can be placed such that some verification queries are still decidable,

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 111

for transition systems like pushdown automata, restricted counter machines, etc., in

addition to timed automata.

7.2 Preliminaries

Let P(x1,22) be a Presburger formula over two nonnegative integer variables. P is
unitary if each linear constraint in P is of the form aix1 + asxs > b with a; = 0, —1,
or 1. P is I-congruence-free (resp. 2-congruence-free) if P does not contain any
congruences of the form z; = ¢ (resp. zo2 =p ¢) where b # 0,0 < ¢ < b. P is a point
if Pis ©1 = a1 A 9 = ao for some aq,as € N. P is a line if P is x9 = ax; + b with
a,b € N, or P is ;1 = b (called a vertical line) with b € N. P is a sector if P is
o > ax1 + b with a,b € N, or Pisazx; +b < 29 < d'zy + ¥ with a < ¢’ € N and
b < b € N. Observe that if P is congruence-free (i.e., both 1-congruence-free and
2-congruence-free) and unitary, then there is a large number d such that P(d+z1, z5)
can be written into a (finite) disjunction of points, lines, and sectors.

A linear polynomial is a polynomial of the form ag 4+ a121 + ... + a,x, where each
coefficient a;, 0 < 7 < n, is an integer. The polynomial is constant if each a; = 0,
1 < i < n. The polynomial is nonnegative if each a;, 0 < i < n, is in N. The
polynomial is positive if it is nonnegative and ag > 0. A variable appears in a linear
polynomial iff its coefficient in that polynomial is nonzero. The following result is

needed in the chapter.

Lemma 7.1 It is decidable whether an equation of the following form has a solution

1n nonnegative integer variables s, -, Sy, t1, -+, ty:
where Ly, L1, -, L, are linear polynomials over si,---, $,,. The decidability remains

even when the solution is restricted to satisfy a given Presburger formula P over

5157, Sm-

Proof. The first part of the lemma has already been proved in [33], while the second

part is shown below using a “semi-linear transform”. As we mentioned earlier, the set

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 112

of all (sq1,--,s,) € N™ satisfying P is a semi-linear set (i.e., a finite union of linear
sets). For each linear set of P, one can find nonnegative integer variables uy, - - -, uy
for some & and a nonnegative linear polynomial p;(uy, - - -, ug) for each 1 <7 < m such
that (s1,---,Sp,) is in the linear set iff each s; = p;(uq,- -+, ux), for some uq, - -, ug.
The second part follows from the first part by substituting p;(uq,---,ux) for s; in
Lo, Ly,---, Ly. 1

Let I, J and K be three pairwise disjoint subsets of {1,---,n}. An n-inequality
is an inequality over n nonnegative integer variables t;,---,t, and m (for some m)

nonnegative integer variables sy, -- -, s, of the following form:

D, + a(z Lyit; + Z Ly t;) < Dy + Z Lot; + Z Loty

el jed el kEK

<Dj+ “I(Z Lyt + Z Lyjty), (7.2)
il jeJ
where a < o' € N, the D’s (resp. the L’s) are nonnegative (resp. positive) linear

polynomials over $1,- -+, Sy, and Dy < D] is always true (i.e., true for all sy, - -, s, €
N).

Lemma 7.2 For any n, it is decidable whether an n-inequality in (7.2) has a solution
in nonnegative integer variables si,---, Sy, t1,---,tn. The decidability remains even

when the solution is restricted to satisfy a given Presburger formula P over s1,- -+, Sp,.

Proof. Here we only show the first part of the lemma. The proof for the second part
will use a ”semi-linear transform” similar to that in the proof of Lemma 7.1.

The proof is an induction on n. Clearly, the lemma holds when n = 0, since
(7.2) will be Presburger. Then assuming that the lemma holds when the number of
t-variables is 0,---,n — 1, we are going to show the lemma when the number is n.
We only consider the case when a > 0, I # (), J =) and K = (). The other cases
for =0,J #0,K # () or for a = 0 can be handled either easily or analogously. For

notational convenience, we simply let ¢« = 1 and o’ = 2; readers can generalize the

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 113

proof for any 0 < a < a’. Under all these assumptions, (7.2) can be written as

Di+) Lyti < Do+ Y Lot <Dy +2) Lyt (7.3)
i€l iel i€l

Case 1. Ly, < Lo, < 2Ly, is satisfiable for some iy € I. In this case, (7.3) has
solutions by making t;, large but all the other t;’s zero; recall that the L’s in (7.3)
are positive linear polynomials.
Case 2. For each i € I, Ly; > 2Ly; V Ly; < Ly; is always true (i.e., true for all
S1,- -+, Sm € N). This case can be split into the following two subcases:
Case 2.1. There are i1 # iy € I such that Lo;, > 2Lq;, A Loy, < Ly;, is satisfiable,

witnessed by some (s9,---,s%). Then (7.3) has a solution in which (s, -, s,,) takes
the value of (s9,---,s%), and all the ¢,---,t, are zero except that ¢; and t;, are

chosen as below. Pick a positive rational number § that satisfies

Ly, (5(1)’ T S?n) — Ly, (5(1)’ T S?n) <6< 2Ly, (8(1)’ T S?n) — Lo, (8(1)’ T S?n)
Lo, (8(1)1 Tt S'(r)n) — Ly, (3(1)1 Tt S?n) Lo, (5(1)’ Tt S?n) — 2Ly;, (8(1)’ T 8911)
§ exists according to the definition of (%, - - -, s) and the fact that the L’s are positive

linear polynomials. The desired values for ¢;, and ¢;, can be obtained by making both

of them large enough while satisfying b=

iy
Case 2.2. For each (s1,---,sy), either Ly, > 2L, for all i € I, or, Ly; > Ly, for all
i € I. We only consider the situations (values for (sq,-- -, $,,)) when Lg; > 2L4; holds

for all ¢+ € I; the other situations can be handled similarly. Under those situations,
(7.3) has no solution whenever Dy > D. On the other hand, if D; < Dy < Dj,
then (7.3) has a trivial zero solution. Another simple case is when Ly; = 2L;; for
each 7 € I; it is not hard to solve (7.3) under this case using Lemma 7.1, after a

semi-linear transform upon constraint Dy < D! A A\..; La; = 2L1;. So, we shall only

il
look at those (si,---,sy) satisfying A+ Loi > 2L1; and A, Ly = 2Ly; for any
fixed I™ # () and I= = I — I'". Therefore, after removing all the simple cases for

(81, +,8m), it suffices for us to solve (7.3) under the following Presburger constraint

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 114

P for (s1,-*+,8m):

eIt 1S3 b

Of course, if P is not satisfiable, then we are done, since (7.3) will have no solution
under P. The case when P is satisfiable is nontrivial. To handle this nontrivial case,

we rewrite (7.3) into the following:

iel+ i€l (7.5)
> (Loi — 2Lyi)t; < Dy — Ds.
ielt

At this point, a semi-linear transform can be applied upon Presburger constraint P
in (7.4) in a similar way to that in the proof of Lemma 7.1.
After the transform, solving (7.5) under the constraint P is reduced to solving the

following:
Y. Futi + > Foiti + Go > G4

el t i€l (76)
> Pt <Gy

ielt
where (G1, G5 are nonnegative linear polynomials, and all the F’s are positive linear
polynomials. All these linear polynomials in (7.6) are over a new set of nonnegative
integer variables us, - - -, uy (for some k) as a result of the semi-linear transform upon
P. To find a solution (ui,---,ug;t1,---,t,) for (7.6), we firstly try to find a free
variable in (7.6). We say that u; (1 < j < k) is a free variable in (7.6) if u; appears

in G but not in any Fy;, ¢ € IT. Assume

Gi=go+ Z gjj,

1<j<k

for some gg, g1, - -, gx € N. If there are no free variables in (7.6), then by looking at
the second inequality of (7.6), one can observe that any solution (uy, -« -, ug;t1, -+, tp)
of (7.6) must satisfy the following condition: t;, for some ¢ € It is bounded by

1 + max(go, g1, - -, gr)- Hence, the induction hypothesis can be applied to solve the

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 115

original inequality (7.3) but with a smaller n. However, if (7.6) has at least one free
variable (say u1), then we argue that (7.6) has a solution as follows. We firstly rewrite

(7.6) by separating the free variable from G:

> Futi—go— Y. giuj+ Y Foti + G2 > gius

i€l + 1<5<k i€l (77)
> Futi—g0— Y gu; < g1us
ier+ 1<5<k

Notice that g; > 0. Then pick any element i (say ¢ = 1) in I". Let all the ug, - - -, uy
and ¢y, - - -, t, be zero in (7.7). Clearly, a solution (u1,0,---,0;¢;,0,---,0) to (7.7) can
always be obtained by making ¢ sufficiently large and picking u; properly, noticing

that all the F’s in (7.7) are positive linear polynomials.

This completes the proof of Lemma 7.2. |
An E(n) system E(s1,+-+, 8m;t1,- -+, tn), for some m, is a predicate over nonneg-
ative integer variables si,-- -, sy, t1,- - -, t, in the following form:
P(D; + Z Lyiti, Dy + Z Ly;t;) (7.8)
1<i<n 1<i<n

where P is a Presburger formula over two nonnegative integer variables and the D’s
and the L’s are nonnegative linear polynomials over sq,---,s,,. E is a 1-congruence-
free (resp. 2-congruence-free, unitary, point, line, sector) E(n) system if P is 1-
congruence-free (resp. 2-congruence-free, unitary, a point, a line, a sector). We use
Jhtn B to denote the set of all (sq,-- -, $,,) € N™ satisfying

Jty, -ty € NLE(s1, -+, Smiyta, - -y tn)-

The rest of this section is to show that,

Claim. For any n, the emptiness problem of F (i.e., whether J'nF ig

an empty set) is decidable for any E(n) system E.

The Claim will be used later in the chapter. We first point out that the Claim can
be simplified.

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 116

o [t suffices for us to show the Claim for those E’s that are 2-congruence-free.
Suppose that E in (7.8) is not 2-congruence-free. Let B be the multiplica-
tion of all the 0’s appearing in congruences X, =; c in Presburger formula
P(X1,X5). Fix any tuple 7 = (c1,++, 5 ¢ty -+,) in {0, -+, B— 1}, De-
fine B, (s}, -+, sl,;th,) =4y E(Bs\+cy,- -, Bsl, +cm; Bt)+ct,-- -, Bt! +
c"). E, is 2-congruence-free since, under the transform, a congruence like
Xy =p ¢ has a true/false value (i.e., the congruence can be eliminated). The
argument of this item follows from the fact that 3%» E' equals to the set of

all the (sq,---, s,,) satisfying

\/ 3811, T S;n € N.s; = lel FaAN- NSy = BS;n +Cm A\ E*t’“m’t;lET' (7.9)
e

(Clearly, from above, 34t E is empty iff each 3% E, is and we have finitely

many 7’s.)

e [t suffices for us to show the Claim for those E’s that are 2-congruence-free and
unitary. Suppose that E is 2-congruence-free but not unitary. Let B be the
absolute value of the multiplication of all the non-zero coefficients as of x5 in
linear constraints a; X +asXs > b appearing in Presburger formula P(X;, X5).
Again, fix any tuple 7 = (c1,+ -+, ¢p;cty -+,) in {0,---, B — 1}, We use
X;(s1,+,Smst1, -+, tn), j = 1,2, to denote D; + >, ... Lj;t; in (7.8). Define
X (sh ooy shi b oo th) Zgop X;(BS, +c1, -+, Bs! + s B, + ¢+, Bt +
c"). Let d; = X;,(0,---,0;0,---,0). It is noticed that d, is a number in N
and Xi ,(sq,---,s0,;t,,---,t,) —d, is divisible by B for all s{,---,s],, ¢, --,t.

Define a Presburger formula P, (X, X3) =4 P(BX;+d;, X5). It can be shown
that P; is unitary. Now, we construct an E,(s},---, s/ ;t},---,t) that is of the

form P.(Y7,Y2) where V) =45 (X1, —d;)/B and Yy =4 Xo,. E; is a 2-
congruence-free and unitary E(m) system. The argument of this item follows
from the fact (which is left to the reader to check) that 3" F equals to the
set of all the (sq,-- -, s,,) satisfying (7.9).

e [t suffices for us to show the Claim for those E’s that are congruence-free and

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 117

unitary. Suppose that E' is 2-congruence-free and unitary but not 1-congruence-
free. The argument of this item can be established similarly as the first item

above.

e So, now we assume that P(X;, Xs) in defining E is congruence-free and unitary.
It suffices for us to show the Claim by further assuming that P is a finite union
of points, lines, and sectors. To see this, recall that P(d+ X;, X32), as a unitary
and congruence-free Presburger formula over two nonnegative integer variables,

is a finite union of points, lines, and sectors for some large d € N. So we

need only to show that E(sy,---,sm;t1,---,%,) in (7.8) can be rewritten into
E(s),---,s ;th, -~ 1) in the following form:
P(d+Di+ Y Lith, Dy+ > Lyt (7.10)
1<i<n 1<i<n
where the D’s and the L’s are nonnegative linear polynomials over s, ---, s/ ..

The Claim for E is now reduced to the Claim but for E. Notice that both E
and E has the same number n of t-variables, but the number of s-variables may
be different.

In order to obtain (7.10) from (7.8), we try to write Dy + > Ly;t; in (7.8)
1<i<n

into the form d + Dy + > i<i<n Ly;t; in (7.10). We have the following cases to

consider. We first consider a constraint
D >d (7.11)

over si,---,Sy,. Under (7.11), after a semi-linear transform on the s-variables,

one can easily write (7.8) into (7.10). We now consider another constraint

A V

1<i<n 1<i<n

Under (7.12), after a semi-linear transform on the s-variables (upon the second

conjunction of (7.12)) and after a transform ¢, = ¢; +d, for each 1 <1 < n), one

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 118

can write (7.8) into (7.10). What comes out of constraints (7.11) and (7.12) is

either
\V ti<d (7.13)
1<i<n
or
/\ Li=0AD; <d. (7.14)

1<i<n
In the case of (7.13), an induction can be used to show the Claim on a smaller
number of n (since one of the ¢;’s has a bounded value less than d; in particular,
when n = 0, the Claim trivially holds). In the case of (7.14), the Claim is already

decidable (using a semi-linear transform upon (7.14) and applying Lemma 7.1).

So, now we assume that P(X;,X3) in defining E is a finite union of points, lines, and
sectors. Therefore, it suffices for us to show the Claim for those E’s that are point
(resp. line, sector) E(n) systems.

When P in (7.8) is a point (i.e., X; = a A Xy = b for some a,b € N), (7.8) is

equivalent to the following system:

D1+ Z letz =a

t=isn (7.15)
Do+ > Lot;i=b
1<i<n
The Claim obviously holds for this case since all solutions to (s1,- -, Sm;t1,- -, 1) is

definable by a Presburger formula (noticing that each term Ly;t;, Lo;t;, D1, Dy must
be bounded by numbers a and b).

Now, we consider the case when P is a line (i.e., Xy = aX; + b with a,b € N,
or X; = b with b € N). The case for X; = b is trivial. For Xy = aX; + b, (7.8) is
equivalent to Dy + > Loit; = a(D1+ >, Lyt;) + b, which can be reduced to the

1<i<n 1<i<n
equation in Lemma 7.1. Hence, the Claim holds for lines.

The last case is when P is a sector (i.e., Xy > aX;+bor aX;+b < Xy < a'X;+¥,
for some a < @’ € N and b < b € N). For X, > aX; + b, (7.8) is equivalent to
Dy+ > Loti=u+a(D;+ Y. Lyt;)+ b, which can be reduced to the equation

1<i<n 1<i<n

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 119

in Lemma 7.1. For aX; +b < X, < d'X; + ¥V, (7.8), i.e.,

a(Di+ Y Lit) +b<Dy+ Y Lyt;<d'(Di+ Y Lyt;)+b (7.16)

1<i<n 1<i<n 1<i<n

is equivalent to a finite disjunctions of n-equalities in the form of (7.2), as follows.
Let I, J, K, H is any fixed partition of {1,---,n}. I makes all the Ly; and Lo,
positive, each ¢ € I. J makes all the L,; positive and all the Ly; zero, each 7 € J. K
makes all the Lo; positive and all the Ly; zero, each ¢ € K. And finally, H makes all
the Lo; and all the Ly; zero, each ¢ € H. That is, the partition derives a Presburger

constraint over Sy, -, Sp,:

/\(L1i>0/\L2i>0)/\/\(L11‘>0/\L2i:0)/\/\(L1i:0/\L2i>0)

el e 1€eK

/\(Lii=0A Ly =0). (7.17)
ieH
By applying a semi-linear transform upon the Presburger constraint, (7.16) can be
transformed into a finite disjunction of m-equalities in the form of (7.2). More n-
equalities are obtained when one enumerates all the possible partitions for {1,---,n}.
From Lemma 7.2, the Claim holds for sectors.

To sum up,

Theorem 7.3 It is decidable whether a system in the following form has a solution
in nonnegative integer variables si,-- -, Sm, t1, -+, tn: P(D1 + Zlgign Lqt;, Dy +
> i<icn Loiti), where P is a Presburger formula over two nonnegative integer variables

and the D’s and the L’s are nonnegative linear polynomials over s, - -+, Sp.

7.3 Semi-linear Languages with Weights

Recall the definition of semi-linear languages and Parikh maps in Section 2.4. Now,
we add “weights” to a language L. A weight measure is a mapping that maps a

symbol in ¥ to a weight in N. We shall use wy,---,w; to denote the weights for

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 120

ai,---,a, respectively, under the measure. Let X¢,---, ¥, be any k fixed subsets of
Y. For each 1 <1 < k, we use W;(«) to denote the total weight of all the occurrences

for symbols a € ¥; in word «; i.e.,

Wila) = > w; - #a, (). (7.18)

a;€Y;

W;(«) is called the accumulated weight of o wrt ;. We are interested in the following

k-accumulated weight problem:

e Given: An effectively semi-linear language L, k subsets ¥¢,---,%; of X, and a

Presburger formula P over [+ k variables.

e Question: Is there a word « in L such that, for some wy, -, w; € N,
P(wy, - - wy, Wi(a), -+ -, Wi(a)) (7.19)

holds?

In a later section, we shall look at the application side of the problem. The rest of
this section investigates the decidability issues of the problem by transforming the
problem and its restricted versions to a class of Diophantine equations.

A k-system is a quadratic Diophantine equation system that consists of k equations
over nonnegative integer variables si, ..., Sy, t1, ..., t, (for some m, n) in the following

form:

Z Blj(tla ---,tn)Alj(Sla ceey Sm) = 01(81, ceey Sm)

1<G<1

: (7.20)
Z Bkj(tla ceey tn)Akj(Sla ceey Sm) = Ck(sl, ceey Sm)

1<j<1
where the A’s, B’s and C’s are nonnegative linear polynomials, and [, n, m are positive

integers.

Theorem 7.4 For each k, the k-accumulated weight problem 1is decidable iff it is

decidable whether a k-system has a solution.

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 121

Proof. <=. Consider an instance of the k-accumulated weight problem given in (7.19).
Since L is semi-linear, the Parikh map #(L)

{(#al (a/)a Ty #al (a)) L€ L} (721)

is a semi-linear set. For simplicity, we first assume that #(L) is a linear set. Hence,
H#a, (@), -+, #4,(a) in (7.21) can be written into nonnegative linear polynomials By,
-+ -, By, respectively, over (t1,...,t,), for some n. Presburger formula P in (7.19) also

defines a semi-linear set in N'**. Again, for simplicity, we assume that the set is linear.

Hence, wy, - - -, w;, Wi (), - -, Wi() in (7.19) can be written into nonnegative linear
polynomials Ay,---,A4;, Cy,---,Cy, respectively, over nonnegative integer variables
S1,+ -+, Sm, for some m. From (7.18), we may obtain a k-system in the form of

(7.20) by letting B;; = Bj, Ai; = Aj if a; € T, A;; = 0 if a; ¢ I, for each

1 <1<k, 1<j<I. Itisnot hard to prove that the instance of the accumulated

weight problem is equivalent to the existence of solutions to the system. When #(L)

and P define semi-linear sets instead of linear sets, the instance is equivalent to a

disjunction of finitely many k-systems.

= . Direct. |
It is known [55] that there is a fixed k such that there is no algorithm to solve

Diophantine systems in the following form:

W =Gy,
tLWH, =1,
tx Py = Gk,
tpHy, = I,

where the F’s, G’s, H’s, I’s are nonnegative linear polynomials over nonnegative
integer variables si,---,s,,, for some m. Observe that the above systems are 2k-

systems. Therefore, from Theorem 7.4,

Theorem 7.5 There is a fived k such that the k-accumulated weight problem is un-
decidable.

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 122

Currently, it is an open problem to find the maximal k£ such that the k-accumulated
weight problem is decidable. Clearly, when £ = 1, the problem is decidable. This is
because 1-systems are decidable (Lemma 7.1). Below, using Theorem 7.3, we show
that the problem is decidable when k£ = 2. Interestingly, it is still open whether the
decidability remains for & = 3.

Consider a 2-system in (7.20) with £k = 2. The procedure to solve the system
uses an induction on the number n of the t-variables. Clearly, if n = 0, the system
is immediately decidable since (7.20) now is Presburger. For a general n, (7.20) with

k = 2 can be written into

S (X Aybiti=Ci— ¥ Agybl;

1<i<n 1<5<I 1<5<t (7.22)
D02 Agbhy)ti =Co— 30 Agiby,
1<i<n 1< 1<G<1

where the A’s and C’s are nonnegative linear polynomials, and the b’s are nonnegative
integers for the coefficients of the B’s in (7.20). Notice that in (7.22), as the left hand
sides of both the equations are always nonnegative, so are the right hand sides. Similar
to the proof of Lemma 7.1, a semi-linear transform can be applied upon a Presburger

constraint Cy — Z Aljb(l)j >0ACy — Z Agjbgj > 0 on (81, ,8n). The result
1<5<1 1<5<1
is that (7.22) will be transformed into a finite disjunction of equation systems in the

following form ((7.22) has a solution iff one of the systems in the disjunction has a

solution):
> Lyti=Dy
1sisn (7.23)
> Loty =Dy
1<i<n

where the L’s and the D’s are nonnegative linear polynomials over a set of new
nonnegative integer variables that are resulted from the semi-linear transform. For
notational convenience, we still assume that the L’s and the D’s in (7.23) are non-
negative linear polynomials over sy, - -+, sp,. Also, w.l.o.g., we assume (7.23) has the

following property?: for any s;, 1 < j < m, it appears in Ly; iff it appears in Ly;,

2Tf (7.23) does not have the property, then an equivalent system can be constructed in the
following way. We use @ (resp. @2) to denote the first (resp. second) equation of (7.23). The new

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 123

1 <4 <n, and it appears in D iff it appears in Dy. We say s; (1 < j < m) is a free
variable in (7.23) if it appears in D; (hence in Dy) but not in any L; (hence, neither
Ly), 1 <i<n.

Assume that in (7.23), D; =d?+ Y. dis; and

1<i<m

D, =dy+ Y dis;. If there are no free variables in (7.23), then by looking at one of
1<i<m

the equations in (7.23), one can observe that (7.23) has a solution iff it has a solution

(1, 8m;t1,- -+, t,) satisfying the following condition: ¢;, for some 1 < i < n, is
bounded by 2 max(d®, d;, - --,d", d3,dj, - - -,dT). Hence, the induction hypothesis can
be applied to solve the original system (7.22) but with a smaller n. Otherwise, let I,
be the set of indices for all the free variables in (7.23), then (7.23) can be written into

S Liti— Y dis;=d) + Y dls;

1<i<n Jen J€L (7.24)
Yo Loiti— Y. dhs; =dy+ > dis;
1<i<n JeL JEIr

where I, = {1,...,m} — I,.

Let d = max(d!,d} : j € I). If (7.24) has a solution with some t; (1 < i < n)
bounded by d, then an induction step can be made on (7.22) with a smaller number
of t-variables (by plugging-in a nonnegative number not larger than d for the ¢;).
Otherwise, a transform t; := ¢} + d for all 1 < ¢ < n can be applied to (7.24). The

result is right in the following form:

D+ > Lyti=d"+ Y d{Sj

1<i<n J€lr . (725)
Dy+ 32 Loiti=dy+ 3 dis;

where the d’s are nonnegative integers, the D’s and the L’s are nonnegative linear

polynomials over si,---, s, and each s;, j € I, does not appear in any one of them.
Clearly, {(X1,X5) : X; = d% + 3 dis;, Xy = dy+ 3. d}s;, each s; € N} is a
JjEl, JElr

linear set. Let P(X;,X5) be a Presburger formula defining the set. Observe that

system consists of two equations Q) := Q1 + 2Q» (multiply both sides of @2 by 2 and add to Q1)
and Q) := 2Q1 + Q2. The new system has the property.

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 124

(7.25) has a solution iff

P(Di+) Lty Dy+) Lait;)

1<i<n 1<i<n

has a solution.
From Theorem 7.3, we know that it is decidable whether a 2-system has a solution.

Therefore, from Theorem 7.4,
Theorem 7.6 The 2-accumulated weight problem is decidable.

In some restricted cases, the accumulated weight problem is decidable for a general
k. We are now going to elaborate these cases. Consider a k-accumulated weight

problem such that (7.19) is a disjunction of formulas in the following special form:
Q(’U)l, . ,’U)l) A CL1W1(06) —+ -4 aka(a) + b1w1 4+ -4 blwl ~ Qg (726)

where () is a Presburger formula over [variables, the a’s and b’s are integers, and
~€ {=,#,>,<,>,<}. Under this restriction, the k-accumulated weight problem is
decidable.

Theorem 7.7 For each k, the k-accumulated weight problem, in which (7.19) is a
disjunction of formulas in the form of (7.26), is decidable.

Proof. After a semi-linear transform on Presburger formula Q(w, - - -, w;), similar to
the proof of Theorem 7.4, (7.26) can be written into a disjunction of Diophantine
equations in the form of (7.1). The decidability follows from Lemma 7.1. |
Currently we do not know whether Theorem 7.7 still holds if (7.26) is conjuncted
with one additional inequality: a{\Wi(a) + - -- + a,Wi(a) + bjwy + - - - + bjw;, ~ aj,.
As in the statement of the problem at the beginning of this section, a weight
measure assigns weights wy, -, w; to symbols ay,- -, a; respectively. Instead of a
fixed one, suppose that the weight of a symbol a; can take any value between a given

number ¢; and w;. That is, the weight measure defines a possible weight range that

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 125

a symbol can have, with the given number g; being the lowest possible weight. Thus,
in contrast to (7.18), W;(«), 1 <i <, will be a set:

(Wit D g5 #a, (@) Wi <> wy - #a, (@)} (7.27)

aj€X; aj€Y;

For instance, suppose X1 = {a1}, ¢1 = 2, w; = 7, and a word a = a1a,0a;. Clearly, 12
is a weight in Wj(a) according to (7.27).
With the new definition of W;(«), the following loose k-accumulated weight prob-

lem can be formulated:

e Given: An effectively semi-linear language L, numbers ¢, -- -, ¢ € N, k subsets
1, ++, 2, of 3, and a Presburger formula P over [+ k variables.
e Question: Is there a word « in L such that, for some wy,---,w; € N, and for

some Wy, .- Wy,

Wy e Wi(a) A--- AWy, € Wi(a) A P(wy, - -+, wy, Wa, - -+, Wi) (7.28)

holds?
Notice that the lower weight bounds ¢y, - - -, ¢, are in the Given-part, hence they are
constants; while the upper bounds wy, -+, w; in the Question-part, are essentially
unspecified parameters. (Otherwise, if the lower bounds ¢i,---, ¢ are moved into

the Question-part; i.e., both the lower and the upper bounds are parameterized
constants, then the k-accumulated weight problem is a special case of the loose k-
accumulated weight problem under this definition, by letting the lower bound and
the upper bound be the same parameterized constant for each activity.)

The following result shows that the loose k-accumulated weight problem is de-
cidable for each k. It is in contrast to Theorem 7.5 that the k-accumulated weight

problem is undecidable for some large k.
Theorem 7.8 For each k, the loose k-accumulated weight problem s decidable.

See Appendix A.2.1 for the proof of this theorem.

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 126

7.4 Applications

In this section, we will apply the results presented in the previous section to some
verification problems concerning infinite systems containing parameterized constants.
We start with a general definition.

A transition system M can be described as a relation 77C § x [x ¥ x § x ',
where S is a finite set of states, [' is the configuration alphabet, and ¥ is the activity
alphabet. Obviously, we always assume that M can be effectively described; i.e., T
is recursive. A configuration (s, 3) of M is a pair of a state s in S and a word § in
['*. In the description of M, an initial configuration is also designated. According
to the definition of 7', an activity in ¥ transforms one configuration to another.
More precisely, we write (s, 3)-=(s', 8’} if T(s, 8,a,s',8'). Let o € ©* with o =

1

at---a™ for some m. We say that (s, 5, «) is reachable if, for some configurations

(50, 80)s "+ {Sm, Bm), the following is satisfied

1 m

(50, Bo)™> - (5> Bm), (7.29)

where (sg, o) is the initial configuration, s,, = s and §,, = . We use Ly to denote
the set {(8, @) : (s, B,) is reachable}. M is a semi-linear system if L is an effectively
semi-linear language for each s € S (i.e., the semi-linear set of L is computable from
the description of M). As before, we use wy,---,w; to denote a weight measure of
Y ={a,---,a}, and use ¥q,---, ¥, to denote k subsets of 3. We may introduce
weight counters Wy, ---, Wy into M to indicate that the accumulated weight on each
Y; is incremented by w; whenever an activity a; € ¥; is performed. That is, on a
transition (s, 8)—>(s', 8"} in M, the counters are updated as follows, for each 1 < i < k,
if a; € 3; then W; := W, 4+ w; else W; := W;. Similarly, for a loose weight measure
(g1,w1),- -+, (g, w;), the counters are updated on the transition as follows: for each
1 <i<k,ifa; €3, then W; := W;+p, else W, := W, for some ¢; < p; < w; (i.e., pjis
nondeterministically chosen between ¢; and w,). Starting with 0, the weight counters
are updated along an execution path in (7.29). We say that (s, 8, a, Wy, ---, Wy) is
reachable (under the weight measure wy,---,w;) if the weight counters have values
Wi,---, Wy at the end of an execution path in (7.29) witnessing that (s, 3, «) is

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 127

reachable.

Let y1, -+, 9, and 21, - -, 2, be distinct variables. A (u,v)-formula, denoted by

P([yla o ';yu]; [zla o "ZU])a

is a Presburger formula that is a Boolean combination (using A and —) of Presburger
formulas over yy, - - -, ¥, and Presburger formulas over z;, - - -, z,. For the M specified

in above, we let u = |I'|+1 and v = [+ k. Now, we consider the k-reachability problem

for M: given a state s and a (u,v)-formula P, are there wy,---,w; € N such that
P([#(a),#(ﬁ)];[wl,"',’lUl,Wl,"‘,Wk]) (730)
holds for some reachable (s, 5, ., Wy, - - -, W) (under the weight measure wy, - - -, w;)?

The loose k-reachability problem for M can be defined similarly where the lower
weights ¢1,---,q are given. From Theorems 7.6, 7.7 and 7.8, one can show the

following results.
Theorem 7.9 The 2-reachability problem is decidable for semi-linear systems.

Proof. 1t suffices to show the result by assuming that P in (7.30) is in the form of
P (#(a),#(B)) N Py(wyq, - -, w;, Wy, ---, W), where P; and P, are two Presburger
formulas. Let L = {a : there is 8 such that (5, «) € Ly and P\ (#(a),#(5))}. Since
L, is semi-linear, it is not hard to show that L is also a semi-linear language. The

result follows using Theorem 7.6 on L and Pp(wy, - - -, wy, Wy, - -, Wg). |

Theorem 7.10 For each k, the k-reachability problem is decidable for semi-linear

systems, when P in (7.80) is a disjunction of formulas in the following form:
Q#(a), #(B)]; [wy, - - -, wi]) Ne Wi + -+ + Wy + dywy + -+ - + dywy ~ ¢,

where @Q is a (u,l)-formula, the ¢’s and d’s are integers, and ~€ {=,#,>,<,>,<}.

Proof. Similar to the proof of Theorem 7.10, but using Theorem 7.7 instead of
Theorem 7.6. i

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 128

Theorem 7.11 For each k, the loose k-reachability problem for semi-linear systems

18 decidable.

Proof. Similar to the proof of Theorem 7.10, but using Theorem 7.8 instead of
Theorem 7.6. |

Many machine models are essentially semi-linear systems. In the following sub-
sections, we will study two of them: finite-state systems (and their extensions), and

timed automata.

7.4.1 Finite-State Systems and Their Extensions

We start with a simple model. Consider a nondeterministic finite state system M,
which is specified in Section 1 with a designated initial state. Notice that, in this
case, the configuration alphabet I' = (). Let s be a state. Clearly, L,, the set of all
the activity sequences when M moves from the initial state to s is a regular (and
hence semi-linear) language. Therefore, Theorems 7.9, 7.10 and 7.11 hold for the M.
In this case of M, the formula P in (7.30) is a Boolean combination of Presburger
formulas on wy, -, w;, Wy,---, Wy and, since I' = () (so there is no 3 in (7.30)),
Presburger formulas on the counts for activities aq, - - -, a; respectively (these counts
are represented by #(«) in (7.30), by definition, the Parikh map of activity sequence
of).

Conversely, for any semi-linear language L, one can construct, from the semi-linear
set of L, a regular language whose semi-linear set is the same as the semi-linear set of
L [76]. From the regular language, one can easily construct a M and a state s such
that the regular language is exactly L,. It is routine to establish the fact that the
k-reachability problem is decidable (for the M) iff the k-accumulated weight problem

is decidable (for the L). From Theorem 7.5, one can show

Theorem 7.12 There is a fired k such that the k-reachability problem is undecidable
for finite-state systems M.

In the definition of the k-reachability problem, the Presburger formula P in (7.30)

is to specify the undesired values for the w’s and the W’s. When M is understood as a

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 129

design of some system, a positive answer to the instance of the k-reachability problem
indicates a design bug. In software engineering, it is highly desirable that a design
bug is found as early as possible, since it is very costly to fix a bug once a system
has already been implemented. It is noticed that in a specific implementation of the
design, the parameterized constants are concrete, though the values differ from one
implementation to another. Of course, one may test the specification by plugging in
a particular choice for the concrete values. However, it is important to guarantee that

for any concrete values for the parameterized constants, the design M is bug-free.

scheduling unit w1
C1
mmat AL RRARR AR RN AR AR = -)
I A TTA o
C2 EEREREE
e RLRLR RN R RN RN A SRR =
C3
e ALRLR RN R RN RN A SRR =
SWwa
Cq
mma AL RRARR AR RN AR AR = -
...... %HHHD y | 92 -
Cs R
= [T e >

Figure 7.1: A Simplified Packet-Based Network Switch

Example 7.13 Let’s look at a simplified packet-based network switch depicted in
Figure 7.1. This switch has five input links ¢y, ..., ¢5 and two output links 01, 09; there
are also two switching units sw; and swo that decide which incoming packet should
go to which output link. Each input link and each switching unit is associated with a
buffer which can be considered as a queue; there is also a scheduling unit that decides
from which queue of the input links to transfer a packet to which queue of the two
switching units®. Suppose that each queue of the input link ¢; is assigned a weight w;

for 1 <4 <5, and each time when the scheduling unit visits the queue of input link

3The real-world switches may not has such a structure as the separated switching units in Figure
7.1, but here we can view them in this simplified way.

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 130

¢;, an amount of packets (assume that all packets have the same length) that is in
proportion to its weight w; will be sent to a specific switching unit*. Suppose that the
scheduling unit decides which packet goes to which switching unit in a simple way:
packets from input links ¢; and ¢y go to swq; packets from input links ¢; and ¢5 go to
swy; packets from input link c3 go to either sw; or swy which is nondeterministically
chosen (but we further require that the difference between the counts of activities ¢}
and c2 should always be in the range of [5,10], and this can be done by adding a
bounded counter = to the scheduling unit). Then the design for the scheduling unit
can be depicted as a labeled finite-state transition system in Figure 7.2 where labels
a1, ay, and a3 (resp. ay,as, and a3) represent the scheduling unit’s visiting queues of

input links ¢, co, and c3 (resp. c4,cs, and c3) and forwarding their packets to sw;

(resp. swy).
a
51 2 52
ai
(o0 .
z<10/z =z + b<zfr:=z-1
as
a4

54
Figure 7.2: A Design of The Scheduling Unit

Suppose that the scheduling unit is required to achieve a fairness property that
no matter how the weights are assigned, the total packets sent to sw; must be greater
than that of swy and less than double that of sws if only the summation of weights
w1, wo, and ws is greater than that of ws,w,, and ws and less than double that of

w3, wy, and ws (we assume that each connection ¢; has more than w; packets available

4The basic idea here comes from the weighted fairness queue scheduling algorithm which is a
common feature of modern network switches and whose concrete implementation may be quite
complex.

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 131

at any time); i.e.,
((w3+w4+w5) <wyF+we+wsy < 2(w3+w4+w5))/\(W1 < WoVW; > 2W2)

is unsatisfiable, where W; (resp. W) denotes the accumulated weights of activities
ay,ay, and aj (tesp. a4, as, and a3). From Theorem 7.9, we know this fairness property
can be automatically verified. When there are k£ > 2 switching units involved in the
example switch, a fairness property can be similarly formulated as a conjunction of
the fairness between any two servers. In this case, the fairness property is hard to be

automatically verified, because of Theorem 7.12. |

Remark. Note that if we do not assume that each connection ¢; has more than w;
packets available at any time, then the weight of each activity a; is actually a range
[0,w;]. Thus from Theorem 7.11, we know the fairness property formulated in the
above example can still be automatically verified, even when the switch has & > 2

switching units.

M can be further generalized as a pushdown system after being augmented with
a pushdown stack. Each transition in M now is in the following form: s —®®7 s
indicating that M moves from state s to state s’ while performing an activity a and
also updating the stack (replacing the top symbol b in the stack by a stack word 7).
There are only finitely many transitions in the description of M. Initially, the stack
contains a designated initial symbol (i.e., an initialized stack) and the machines stays
at the initial state. Now, the configuration alphabet I' is exactly the stack alpha-
bet. Notice that, for this model of M, L, is a permutation of a context-free (hence
semi-linear) language. Therefore, M is still a semi-linear system. M can be further
augmented with a finite number of reversal-bounded counters. A nonnegative integer
counter is reversal-bounded [54] if it alternates between a nondecreasing mode and a
non-increasing mode (and vice versa) for a given finite number of times, independent
of the computations. Hence, a transition in M, in addition to the stack operation,
can increment/decrement a counter by one and test a counter against zero. When
the counter values are encoded as unary strings (using new symbols in addition to

the stack alphabet), it is not hard to show that the language of L is a semi-linear

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 132

language [54]. Hence, Theorems 7.9, 7.10 and 7.11 apply to all these M. In this case
of M, the formula P in (7.30) is a Boolean combination of Presburger formulas on

wy, -+, wy, Wi, -« -, Wy, and Presburger formulas on the following counts (standing for

#(a) and #(p) in (7.30)):
e the counts for activities aq, - - -, a; respectively,
e the counts for individual stack symbols appearing in a stack,

e the values for reversal-bounded counters.

Example 7.14 Still consider the design for the scheduling unit of the network switch
in Figure 7.1, but this time we take the switching units into consideration. We assume
that switching unit sw; has a unbounded buffer while sws has a buffer with bounded
length L, the a simple design for the scheduling unit can be described by the following
three concurrent processes in C-like psudo code:
Integer w|5];
Integer z,y,%;
IntegerL = 1000;
process SchedulingUnit
for i=1;1<=5;i++) do
switch (7)
case 1,2:
y=y+wli;
break;
case 3:
nondeterministic
if (r <=10) then
T+ +;
y =y + wlil;
end if
if (x >=5) then

T ——;

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 133

if (z+w[i] <=L) then

z =z +wli];
end if

end if
end nondeterministic
break;

case 4,5:

if (z < L) then

z =z +wli];
end if
break;

end switch
end for
end process
process SwitchingUnitl
while (y > 0) do
Yy— -3
end while
end process
process SwitchingUnit2
while (z > 0)
Z— 3
end while

end process

This design can be viewed as a finite-state system with an unbounded free counter(y).
We know the fairness property formulated in Example 7.13 can also be automatically

verified for this design.

CHAPTER 7. QUADRATIC DIOPHANTINE EQUATION SYSTEMS 134

7.5 Summary

In this chapter, we showed that some special classes of quadratic Diophantine equa-
tion/inequality systems are decidable. Using the decidability results, we then looked
at some applications to verification problems. In particular, we studied an applica-
tion concerning weighted semi-linear languages by assigning a weight to each symbol
in the language alphabet. The verification problems are related to some interest-
ing problems in verification of infinite-state systems, in particular those containing

parameterized constants.

Chapter 8
Conclusions

Establishing a science and technology foundation for achieving predictable quality in
component-based systems is considered to be an key factor to the long-term success
of component-based software development and it has attracted lots of research efforts
in the area of software engineering. As part of the efforts, this work deals with some
fundamental issues on a decompositional and hybrid approach for the automatic verifi-
cation of component-based systems. Our approach works on an abstract model that is
essentially a labeled transition system with synchronous communications. One strik-
ing point of our approach is that verifying a component-based system can be reduced
to verifying an individual component. This decompositional nature of our approach
enables us to avoid the major pitfalls of existing verification/testing approaches that
work directly on an entire system (e.g., the “state-explosion” problem of model check-
ing, the difficulty of integration testing on a system of concurrent black-boxes, etc.).
On the other hand, our approach combines the model checking techniques with tra-
ditional black-box testing techniques to handle systems with black-box components.
In the approach, model checking is used to derive verification conditions for an indi-
vidual black-box component, which are in turn used to derive test cases for testing
the black-box component. We first studied the possibility of verifying a system with
black-box components through testing by introducing a theoretic tool called Oracle
Automata. Then we studied specific model checking (both LTL and CTL) algorithms

135

CHAPTER 8. CONCLUSIONS 136

for systems with only one and finite-state black-box. Next, we showed a decomposi-
tional technique on testing a system with multiple black-boxes. We also considered
the problem of verifying a system with only one component but against non-temporal
properties, as well as verifying a system with only one but infinite-state component.
These studies made us believe the advantages of our approach, but also inspired us to
further study the practical issues that are crucial to the application of our approach

to real-world systems.

8.1 Related Work

Most of current work on the quality assurance problem for component-based systems
is based on the traditional software testing techniques and considers the problem from
component developers’ point of view; i.e., how to ensure the quality of components
before they are released.

Voas [91, 92| proposed a component certification strategy with the establishment
of independent certification laboratories performing extensive testing of components
and then publishing the results. Technically, this approach would not provide much
improvement for solving the problem, since independent certification laboratories can
not ensure the sufficiency of their testing either, and a testing-based technique alone
is not sufficient to establish a solid confidence in the quality of a reliable software
component. Some researchers [86, 75] suggested an approach to augment a component
with additional information to increase the customer’s understanding and analyzing
capability of the component behavior. A related approach [93] is to automatically
extract a finite-state machine model from the interface of a software component, which
is delivered along with the component. This approach can provide some convenience
for customers to test the component, but again, how much a customer should test
is still a big problem. To address the issue of testing adequacy, Rosenblum defined
in [84] a conceptual basis for testing component-based software, by introducing two
notions of C-adequate-for-P and C-adequate-for-M (with respect to certain adequacy
criteria) for adequate unit testing of a component and adequate integration testing

for a component-based system, respectively. But this is still a purely testing-based

CHAPTER 8. CONCLUSIONS 137

strategy. In practice, how to establish the adequacy criteria is an unclear issue.

Recently, Bertolino et. al. [10] recognized the importance of testing a software
component in its deployment environment. They developed a framework that sup-
ports functional testing of a software component with respect to customer’s specifi-
cation, which also provides a simple way to enclose a component with the developer’s
test suites which can be re-executed by the customer. Yet their approach requires the
customer to have a complete specification about the component to be incorporated
into a system, which is not always possible. McCamant and Ernst [72] considered
the issue of predicting the safety of dynamic component upgrade, which is part of
the problem we consider. But their approach is completely different since they try to
generate some abstract operational expectation about the new component through
observing a system’s run-time behavior with the old component.

In the formal verification area, there has been a long history of research on veri-
fication of systems with modular structure. A key idea [65, 63, 51] in modular ver-
ification is the assume-guarantee paradigm: A module should guarantee to have the
desired behavior once the environment with which the module is interacting has the
assumed behavior. There have been a variety of implementations for this idea (see,
e.g., [48, 5, 77, 36, 21, 94]). The assume-guarantee ideas can be applied to our prob-
lem setup if we consider the unspecified component as the host system’s environment
(though this is counter-intuitive). But the key issue with the assume-guarantee style
reasoning is how to obtain assumptions about the environment. Giannakopoulou et.
al. [45, 44] introduced a novel approach to generate assumptions that characterize
exactly the environment in which a component satisfies its property. Their idea is
the closest to ours, still there are non-trivial differences: (1) theirs is a purely formal
verification technique (model checking) while we combine both model checking and
black-box testing to handle systems with unspecified components; and (2) theirs uses
a labeled transition system to specify the reachability property of a system while we
use CTL formulas, which are more expressive and harder to manipulate. Although not
within the assume-guarantee paradigm, Fisler et. al. [40, 68] introduced a similar idea
of deducing a model checking condition for extension features from the base feature

for model checking feature-oriented software designs. Unfortunately, their algorithms

CHAPTER 8. CONCLUSIONS 138

are not sound (have false negatives). Furthermore, their approach is not applicable
to component-based systems where unspecified components exist. This paper is also
different from our previous work [98] where an automata-theoretic approach is used
to solve a similar LTL model checking problem.

In the past decade, there has also been increasing interest in combining model
checking and testing techniques for system verification. But most of the work only
utilizes model-checkers’ ability of generating counter-examples from a system’s spec-
ification to produce test cases against an implementation [20, 52, 39, 42, 7, 11, 6].
Callahan et. al. [20] used the model-checker SPIN [52] to check a program’s execu-
tion traces generated during white-box testing and to generate new test-cases from
the counter-example found by SPIN; in [39], SPIN was also used to generate test-cases
from counter-examples found during model checking system specifications. Gargan-
tini and Heitmeyer [42] used SMV to both generate test-cases from the operational
SCR specifications and as test oracles. In [7, 11], Ammann et. al. also exploited the
ability of producing counter-examples with the model-checker SMV [59]; but their
approach is by mutating both specifications and properties such that a large set of
test cases can be generated. (A detailed introduction on using model-checkers in
testing can be found in [6]).

Peled et. al. [79, 47, 78] studied the issue of checking a black-box against a tem-
poral property (called black-box checking). But their focus is on how to efficiently
establish an abstract model of the black-box through black-box testing , and their ap-
proach requires a clearly-defined property (LTL formula) about the black-box, which
is not always possible in component-based systems. Kupferman and Vardi [63] inves-
tigated module checking by considering the problem of checking an open finite-state
system under all possible environments. Module checking is different from the prob-
lem in (*) mentioned in this chapter in the sense that a component understood as an
environment in [63] is a specific one.

Our idea of deriving from the system specification a verification condition for an
individual component is related with the work by Fisler et. al. [40, 68] who proposed
an approach to deducing a model checking condition for extension features from the

base feature in feature-oriented software designs. Their approach relies totally on

CHAPTER 8. CONCLUSIONS 139

model checking techniques; and most of all, their algorithms have false negatives
and do not handle LTL formulas. Our idea of decompositional testing is based on
the observation that global behaviors of a concurrent system can be projected onto
behaviors for each constituent component. Moreover, the behaviors of each individual
component are also constrained by the behaviors of other components (because of
synchronizations). The similar observations have also been made in [24, 25] as Context
Constraints for compositional reachability analysis and used in [61, 60] for structural

testing of concurrent programs.

Appendix A

Proofs Omitted In The

Dissertation

Disclaimer. The following proofs are put in this appendix because the main ideas
in the proofs are from the co-authors of the relevant papers. Thus they shall not be

considered to be an integral part of this dissertation.

A.1 Proofs Omitted From Chapter 3

A.1.1 Proof of Theorem 3.1

Proof. Assume that BT(n) is computable. Let M, be a fixed PDA that accepts
language ¥*. Suppose that M, has ng states. Now, we are going to solve the following
totalness problem:

Given: a PDA M,

Question: L(M) = X*?
Assume that M has n states and without loss of generality, n > ngy (otherwise one
can add dummy states into M). From this n, one computes BT'(n) and makes sure
that w € L(M) for each w € ¥* that is not longer than BT'(n) (there are finitely
many such w’s). If this is true, then Question returns yes. Otherwise, Question

returns no. According to the definition of BT, this indeed gives an algorithm to solve

140

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 141

the totalness problem. This is a contradiction, since the totalness problem is known

undecidable. The theorem follows. |

A.1.2 Proof of Theorem 3.2

Proof. (a). Let Oq,---,0; be any t oracles in DFA(n). For each 1 < i < ¢, we use
A; to denote a DFA(n) that recognizes O;. Now, we construct a finite automaton A
that simulates MP™A™ (0, .-, 0,) as follows. A does not have an input. Whenever
M reads an input symbol a, A guess an input symbol and makes sure that it is a.
Whenever M writes a symbol a to the i-th query tape, A runs A; on this symbol.
Whenever M queries the current content of the i-th query tape, A answers the query
by checking whether A; is in an accepting state (notice that since A; is a DFA, a
negative query can be faithfully answered). Whenever M executes a transition that
resets the i-th query tape, A brings A; directly to A;’s initial state. In each case,
A performs the same state transition as in M. Initially, A stays at the initial state
of M and each A; also stays at its own initial state. Clearly, MPFAM (O, .-, 0))
accepts a nonempty language iff A has a run that ends with an accepting state of M.
Moreover, the run can be further restricted to be not longer than the number |A| of
states in A. Notice that within this length of the run, M can not query an oracle
with query strings longer than the length. Hence, the query bound is at most |A|,
which can be easily calculated as O(n' - |M|). Notice that this query bound does not
depend on the particular choices of O;’s and hence A;’s. Therefore, the MPFAM) ig
O(n' - |M|)-testable.

(b). The result follows from the fact that a language in FA(n) is contained in
DFA(2"). 1

A.1.3 Proof of Theorem 3.3

Proof. (a.1). Let M be an OFA that is single (i.e., t = 1) and is associated with an
oracle O € PDA. M first guesses a query string and writes it on the query tape. On
a negative query result, M enters the accepting state. Clearly, M is 1-query, and, M

accepts a nonempty language iff O # ¥*. Now M is not testable since, otherwise, the

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 142

totalness problem for context-free languages would become decidable.

(a.2). Let A be a deterministic two-counter machine where z and y are the counters
and S is the set of states in A. Recall that a transition in A leads from s to s’ while
updating the counters (i.e., incrementing/decrementing the counters by 1 or testing

for 0). We may use a string C
HsH# LI H#1Y4

to denote a configuration of A where s is the state and z,y are the counter values.
Notice that in the string, 1% is the unary representation of value z (x number of 1’s).

For the same configuration, we use C' to denote the reverse configuration
s1v$1"8.
A string is even-valid if it is in one of the following two forms for some m:
CoC1 -+ CriCrsn (A1)

or

CoCi -+ CraCrns1, (A.2)

such that each C; is a configuration with Cy being the initial configuration (with the
state being the initial state and the counters being 0). Additionally, for each even
1 < m, C; = C;,q; i.e., there is a transition in A that leads from C; to C;,1. The
string is odd-valid if the additional condition is changed to be: for each odd ¢ < m,
C; — Ciy1. Now, we use Leyen (resp. Loqq) to denote the set of even-valid (resp.
odd-valid) strings. It is left to the reader to verify that both Leywen, and Legq are in
DPDA. Now, we define O to be the union of the following two languages: Leye, and
{w+# : w € Loaa}. Notice that, because of the additional suffix # appended after each
odd-valid string, these two languages are disjoint. Obviously, O is in PDA. We now
construct a single OFA M that works as follows. M keeps guessing a configuration
and writes it to the query tape. We use C; to denote the result of the i-th guess (i
starts from 0). In fact, when 7 is odd, M writes the reverse configuration C; instead of

C; to the tape. Nondeterministically, M decides to enter the accepting state. Before

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 143

it does this, M first makes sure that the most recently written configuration is an
accepting configuration of A (i.e., the configuration contains the accepting state of
A). Then, M makes a positive query to O. On a yes answer, M writes an additional
symbol # to the query tape, and performs one more positive query to O. A yes
answer on this latter query leads M to accept. Notice that, on M’s accepting, the
content of the query tape forms a halting execution sequence of configurations of
A. Therefore, M accepts a nonempty language iff A enters the accepting state (i.e.,
halts). From here, the result follows, since it is undecidable to decide whether a two
counter machine halts [73], and, clearly, M is positive, 2-query, and single.

(a.3). Still, we let A be the two-counter machine in (a.2). We use O; (resp. Os)
to denote Leven (resp. Loaq). Notice that both O; and O, are in DPDA. Now, we
construct an OFA M that has two query tapes and works similarly as in (a.2): M
keeps guessing a configuration and writes it to both tapes (for the i-th guess with
i being odd, a reverse configuration is written). Nondeterministically, M decides to
enter the accepting state. To do this, M performs two positive queries: querying the
first tape to oracle O; and querying the second tape to oracle O,. At this time, M also
makes sure that the most recently written configuration is an accepting configuration
of A. Similar to (a.2), M accepts a nonempty language iff A halts. The result follows,
noticing that M is 2-query, positive, and the oracles are from DPDA.

(b.1). Let O be any prefix-closed oracle in PDA(n). We use A’ to denote a
PDA(n) that accepts O. Now we construct a pushdown automaton A to simulate
MPFPAM (O) as follows. Whenever M reads an input symbol a, A guess a symbol and
makes sure that it is a. Whenever M writes a symbol a to the query tape, A runs
A’ on this symbol. Whenever M performs a query, A guesses and checks later one of

the following two cases:

CASE 1. the current query is the last query before the next reset transition
or before M accepts. In this case, A makes sure that A’ is in an accepting

state (i.e., the query is positive),

CASE 2. the current query is not the last query before the next reset

transition or before M accepts. In this case, A assume that the query

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 144

returns yes. This is valid, recalling that the oracle is prefix-closed.

Whenever M executes a reset transition, A brings A’ back to its initial state (and also
cleans up the stack). On each transition of M, A performs the same state transition,
and additionally, A reads an input symbol a from A’s input tape. Initially, A stays
at the initial state of M and each A’ also stays at its own initial state (with an empty
stack). Notice that A is indeed a pushdown automaton that only accepts unary
words in the form of a®? for some B > 0. Clearly, MPTA(™(0) accepts a nonempty
language iff A does. If A accepts a nonempty language, then what is the length of
the shortest word in the language? The length can be calculated as follows. The
number of states in A is O(|M|-n). One may use a textbook technique to translate A
into a context-free grammar G in Chomsky-Normal Form and to calculate the desired
length, which is bounded by 20(IMPn*(2) 1 Notice that A accepts a unary word a®
iff M has an accepting run on some input word where the length of the run is exactly
B. Obviously, during the run, M does not query the oracle with query strings longer
than B. From here, we may conclude that 20UM*n*/2) is the query bound for M.
Since the bound is independent of the choice of O, the result follows.

(b.2). The proof of (b.1) still works here since M, being 1-query, need not worry
about CASE 2 in the proof of (b.1).

(b.3). Similar to (b.2), one need not CASE 2 in the proof of (b.1).

(b.4). Let O be any oracle in DPDA(n). We use A’ to denote a DPDA(n) that
accepts O. Now we construct a pushdown automaton A to simulate MPPPAM (). A
works exactly as in (b.1) except when M performs a query. In this case, A obtains
the query result by inspecting whether the deterministic A’ is in an accepting state.

The result follows after the exact query bound analysis that was done in (b.1). |

A.1.4 Proof of Theorem 3.4

Proof. (a.1). Let A be a deterministic two-counter machine specified in the proof
of Theorem 3.3 (a.2). That is, A has two counters x and y, and, we let sg,-- -, Sy,

for some m, are the states in A. Without loss of generality, we assume that sq is

!Recall that a PDA each time pushes/pops at most one symbol.

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 145

the initial state and it is not an accepting state. In particular, we define, for each
state s;, [s;] to be the index i. For the purpose of describing the OFA to be built, we

introduce an alphabet X that contains the following symbols:

0F, 0,
0+, 6,
at,a bt b,
at,a bt b

A word w in ¥* corresponds to a pair of configurations, called the pre-configuration

Cy and the post-configuration Cj,, as follows. In the pre-configuration C,,

e the state is s;, where the index i is |w|p+ — |w|g- (recalling that |w|yg+ is the

number of symbols #* appearing in w);
e the value for counter z is |w|,+ — |w/,-;
e the value for counter y is |w|y+ — |w/,-.
In the post-configuration C},
e the state is sy, where the index ' is |w|z+ — |w]4-;
e the value for counter z is |w|s+ — |wl4-;
e the value for counter y is |w|;+ — |w/;-.

Not every w will make two legal configurations; one has to further restrict that indexes
i and i’ are in the range of 0..m, counter values in both of the configurations are
nonnegative. We call this restriction as Regps-

Each instruction in A is to increment/decrement a counter by 1 or test for 0. For
example, with respect to counter x, an instruction can be in one of the following three
forms:

(1) s:x:=x + 1, goto s';

(2) s:z:=xz—1, goto §;

(3) s:if = 0 then goto s else goto s”.

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 146

Instructions for counter y can be defined similarly. For each instruction I, one can
formulate a restriction, called Ry, on w such that the pre-configuration C,, reaches
the post-configuration C) after firing I. For instance, when I is in Form (1), we

require that
e both C,, and C!, are legal configurations; i.e., Reopns is satisfied;

e the state in C, is s; i.e., |w|g+ — |w|g- = [s]. The state in C}, is §'; i.e.,

[l — |wl|g- = [5];

e the value for counter z in C} is equal to the value for counter z in C,, plus 1;

Le., |w|e+ — [w]e- +1 = |w|s+ — |wls-;
e the value for counter y does not change; i.e., [wlp+ — |w|p- = |w|j+ — |w;-.

When [in the other forms, similar R; can be defined.

Clearly, each R; defines a semi-linear commutative language over . Let R be
UrerRy, where I is the set of all instructions in A. R is also a semi-linear commutative
language.

Now, we are ready to build the single OFA M. M is associated with the semi-
linear commutative oracle R and works in rounds. We first sketch the ideas behind the
following construction. At the beginning of each round, the content w of M’s current
query tape already encodes the pre-configuration C, and the post-configuration C,
such that C,, — C,,. That is, C, reaches C,, by firing some instruction in A; i.e.
w € R. The job of the round is to change the tape content from w to w’. The new

content w' also encodes C,, and C;, such that
e Cp — C!, and,
e Cy is exactly C} .

The first item can be ensured by performing a positive query to the oracle R. The
difficulty is how to ensure the second item, which essentially creates an execution
chain of configurations in A. Fortunately, the difference between C,, and C), can be

remembered by M and hence can be used to update C,, to C.,. Below is the formal

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 147

construction of M. There are four phases in each round. In the first phase of the
r-th round (r starts from 1), M guesses a state s”. Keep in mind that the states in
Cy and C!, are s" ! and s" 2, respectively, where w is the current tape content. The
job of the second phase is to change the current tape content such that the states
in the pre-configuration and the post-configuration encoded by the new content are

r—1

s" and s"7*, respectively. Formally, in the second phase, the following activities are

performed, assuming that s° and s~! are defined to be sq:

e if [s"] > [s" '], then M writes ¢ number of symbols 0 to the query tape, where
q=[s"]—[s"""];

e if [s"] < [s"7!], then M writes ¢ number of symbols 0~ to the query tape, where
0= 5]~ 57

o if [s"7!] > [s"7?], then M writes ¢ number of symbols #" to the query tape,

where g = [s"71] — [s"72];

o if [s"!] < [s"7?], then M writes ¢ number of symbols #~ to the query tape,

where ¢ = [s" %] — [s"'].

An update A is a pair (A, A,) where A,, A, € {1,0,—1}. It indicates that, after
the update, the amount of the change to counter z (resp. y) is A, (resp. A,).
The job of the third phase is to change the current tape content such that the new
counter values in the post-configuration encoded by the new content are the result
of a guessed update on the old counter values in the post-configuration encoded by
the old content. Formally, in the third phase, M guesses an update A" and does the

following:
e if A” =1, then M writes a symbol @™ to the query tape;
o if A7 = —1, then M writes a symbol @~ to the query tape;
e if A7 =0, then M writes nothing.

The job of the fourth phase is to change the current tape content such that the new

counter values in the pre-configuration encoded by the new content are the result

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 148

of the update performed in the last round on the old counter values in the pre-

configuration encoded by the old content. Formally, in the fourth phase, (we define
A® = (0,0))

o if A”"! =1, then M writes a symbol at to the query tape;

Z

o if A”"! = —1, then M writes a symbol a~ to the query tape;

x

o if AT"1 =0, then M writes nothing.

At the end of the fourth phase, M makes a positive query to the oracle with the
current tape content and then starts a new round. Nondeterministically at the end
of some round, M guesses that A halts. M accepts after making sure that the state
s" guessed in the round is the accepting state of A.

Since A is deterministic, for any word w, w € R implies that there is a unique
I € I satisfying w € R;. From this property, it is not hard to show that M accepts a
nonempty language iff A has a halting execution; i.e., A halts. The result follows.

(a.2). Still, let A be a deterministic two-counter machine specified in the proof
of (a.1). Similar to what we have mentioned in the proof of Theorem 3.3 (a.2), a

configuration C' of A can be specified as a string, denoted by [C],
$6'$a"bY.

In above, & is to encode the state s;, 1 < i < m, and, a® and b are for the counter

values. Additionally, we may use the following string, denoted by (C),
HOFaHOH

to represent the same configuration C. Similar to what we have in (a.1), one can con-
struct from A a semi-linear commutative language R (over alphabet {$, #, 6, 0,a,a,
b,b}) such that, for any two configurations C' and C', the string [C](C') € R iff
C—C.

We now construct an OFA M associated with two oracles (both are R) to simulate

A. Initially, M writes the initial configuration of A to the first query tape, in the form

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 149

of [Cy]. Then, M works in rounds. The r-th round (r starts from 1) is to perform the

following two items:

e M guesses a configuration C,. Then M writes (C,) to the first query tape. In
parallel to this, M also writes [C,] to the second query tape.

e M performs a positive query with the content of the first query tape and right

after this, M erases the first tape (so M is memoryless).

The above description only works when r is odd. In the case when r is even, one
needs to replace “first” with “second” (and vice versa) in the description of the two
items. Nondeterministically at the end of some r-th round, M guesses that it is the
time to accept. Then M makes sure that the state encoded in C) is the accepting
state of A. Clearly, M accepts a nonempty language iff A has a halting execution;
i.e., A halts. The result follows.

(b.1). Let M be a k-query OFAY~(®™ _ Without loss of generality, we assume that
M makes exactly k queries in an accepting run. Also, we assume that the queries are
made to oracles Oy, - - -, Oy, respectively. Let Ay, ---, A be reversal-bounded DCMs
(whose input has an end marker) with characteristic n and recognizing Oy, - - -, Oy,
respectively. We now build another reversal-bounded NCM A to simulate M. A
starts with the initial state of M and simulates M’s moves. When M reads the input
tape, A does nothing to its own input. When M write a symbol to a blank query

tape, A makes a guess on one of the following two cases:

e there is a query to oracle O; that will be performed on the tape before the next
reset (if any) happens. In this case, A starts running A; on every symbol that is
written on the tape subsequently until M indeed queries. For each such write,
A reads a symbol a from its own input tape. At the time of querying, checking

whether A; enters an accepting state gives the query answer.

e there will not be a query to oracle O; that will be performed on the tape before
the next reset (if any) happens. In this case, A does nothing on every write to

this tape until the tape is reset.

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 150

Notice that, on every move of M, A faithfully simulates M’s state transitions. A
accepts when M enters an accepting state. Clearly, A accepts a nonempty language
iff M does. In particular, A only accepts a unary language. A word a? is accepted
by A iff M has a successful run on some input word where query strings are not
longer than B. Since A is an NCM, to estimate B, it is sufficient for us to calculate
a characteristic for A, which is a product of Ay, ---, Ax, along with the finite state
transition graph of M. One can show that a characteristic of A, and hence a query
bound for M, is O (nk1M*).

(b.2). Suppose ¥ = {ay,---,ax}. Let O be a prefix closed language in LIN(n) and
accepted by a reversal-bounded DCM A with characteristic n. Observe that, from

the description of A, one can effectively compute a finite number of “corner points”

(xla"'axk)

such that each z; isin {0, - - -, 00}, and O is the union of all {w : |w|,, < z;,1 <14 < k}.
This gives the fact that O is regular. Hence, the result follows from Theorem 3.2.
However, since we currently are unable to give a good estimation of the sizes for the
corner points, the exact query bound for (b.2) is unknown.

(b.3). Since M is memoryless and single, M resets the query tape after each
query. Now, we define another M’ that is exactly as M but starts from a state s
(in M) with blank query tape and ended with a reset right after a query (this is the
only query that M’ performs). Clearly, the maximal query bound for this M’ (among
all s) governs the desired query bound for M. Notice that M’ is 1-query, the result
follows from (b.1). |

A.1.5 Proof of Theorem 3.6

Proof.

We need only to prove the first statement. Let Oq,---,0; be any t oracles in
DFA(n). For each 1 < ¢ <t, we use A; to denote a DFA(n) that recognizes O;. Now
we construct an FA A that simulates MPFA(M™ (O, .-+ O;). Let s be any fixed state of
M. A works almost the same as the A in the proof of Theorem 3.2 (a). The difference

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 151

is that, during A’s simulation on M, A nondeterministically remembers point when
M is at state s. Then, A continues the simulation and makes sure that, after the
point, M has read at least one input symbol and has passed the accepting state for at
least once. At this time, A still continues the simulation and, nondeterministically, it
guesses that it is time to accept. At this moment, it makes sure that the current states
of M and all A;’s are exactly the same as those at the remembered point. It is not
hard to show that A accepts a nonempty language for some s iff My FA(n) (O1,---,0y)

does. The result follows immediately, since A has O(n* - |M|) states.

A.1.6 Proof of Theorem 3.7

Proof. (1) Since MEPAM g positive, single and 1-query, on an accepting w-run, M,
does not perform any queries after certain point when an accepting state is reached.
Before the point, M, behaves like the 1-query OFA MPPAM) After the point, M,
behaves like a Buchi automaton (without accessing to the oracle). Hence, it suffices
to consider the query bound for testing the emptiness of the 1-query OFA, shown in
Theorem 3.3 (b.2).

(2) Without loss of generality, we assume that an accepting w-run of M, queries
the oracle for infinitely many times. One can also show that, on the run, there are
two points such that at both points M, is at the same state and is right after a reset
(resulting from a query since M, is memoryless). Furthermore, in between these two
points, the run passes an accepting state and consumes at least one input symbol.
In fact, the existence of the two points is the iff-condition on whether the w-run is
an accepting run. Checking the existence can be reduced to the case of Theorem 3.3
(b.3). The result follows.

(3) Let O be an oracle in DPDA(n) and M,, be associated with O. On an accepting
w-run of the M, there are two cases to consider:

Case 1. There are infinite number of reset transitions on the w-run. Recall that
each reset makes the query tape blank. The existence of such an w-run can be fully

decided by answering the following question for each pair of states s and s’ in M:

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 152

Can M start from state s with blank query tape and end with state s’ also with blank
query tape during which at least one input symbol is read and an accepting state is

passed? The questions can be answered with a query bound
9O(IM|?-n?-[33]) (A.3)

using Theorem 3.3 (b.4).

Case 2. There are a finite number of reset transitions on the w-run. The w-run
can be split into two parts. The first part is from the initial state sy to a state, say s,
right after the last reset transition. The second part, starting from s and with a blank
query tape, is the suffix of the w-run right after the last reset transition. The existence
of the first part is testable shown in (A.3) using Theorem 3.3 (b.4). Notice that M,
does not reset on the second part, denoted by 7. We further assume that on 7, M,
writes and queries infinitely many times on the query tape. Otherwise, it is easy to
show that the existence of 7 is testable in (A.3). Without loss of generality, we let s
be so. With these assumptions, 7 is essentially an accepting w-run of M, (with oracle
O) on which the query tape grows to infinity and an accepting state, say sy, repeats
infinitely often. As the result of 7, we use a to denote the w-word that occupies the
query tape. Let A be a DPDA(n) that accepts O. Since A is deterministic, we may
run A along with the infinitely many write transitions performed during 7: a query
can be faithfully answered by looking at whether A is at its accepting state. One can
also observe the stack behavior during this infinite run of A and pick infinitely many
points on the run where the stack stays lowest (i.e., the stack height beyond the point

is not lower). In particular, we have the following Property:

There must be two points p; and py on 7 such that all of the following

conditions are satisfied:

e At the two points, the states of M are the same;

e From point p; to point p, on 7, M has passed s; at least once, has
read at least one input symbol, has queried the oracle for at least

once, and has written at least one symbol on the query tape;

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 153

e The state (resp. top symbol of the stack) of A at point p; is the
same as the state (resp. top symbol of the stack) of A at point po;
(recalling that A runs along M)

e From point p; to point po, A does not pop the stack content under-

neath the top symbol at point p;.

In fact, one can also show that the Property implies the existence of 7 since the
segment from p; to p, forms a loop. Therefore, testing the existence of 7 is equivalent
to testing the Property. In the Property, the query tape content up to point p, can be
accepted by a PDA with O(|M| - n) states by composing A with M properly. Using
the technique presenting in the proof of Theorem 3.3 (b.1), one can show that the
Property as well as the existence of 7 is testable shown in (A.3).

The result follows by combining Case 1 and Case 2.

A.1.7 Proof of Theorem 3.8

Proof.

(1) Since M, is k-query, after certain point on an w-run, M does not perform
queries anymore. The result follows easily from Theorem 3.4 (b.1).

(2) The result follows from a similar argument made in the proof of Theorem 3.4
(b.2) and then from Theorem 3.6.

(3) Similar to the proof of Theorem 3.7 (2), except that we use Theorem 3.4 (b.3)
instead of Theorem 3.3 (b.3).

A.2 Proofs Omitted From Chapter 7

A.2.1 Proof of Theorem 7.8

Proof. Consider an instance of the loose k-accumulated weight problem given above.

Firstly we introduce a definition. For any word «, we use X;(c), 1 < j <, to denote

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 154

all the possible total weights of symbol a;’s in .. That is, X(«) defines the following
set (similar to (7.27)):

{xj - g #aj (a) < €Lj < wj - #aj (a)} (A4)

Clearly, for any m, 1 <1<k, W, e Wi(«) iff for each a; € I';, there exists some
z; € X;(a) such that W; = 3 ;. Replacing each W; in the Presburger formula

aj€ely
P(wy, - -, w, Wy, -+, W) in (7.28) with the summation, another Presburger formula
Q(wy, - -, wy,xy,---,x;) can be obtained. Then it is easy to see that the Question-

part involving (7.28) is equivalent to the following: Is there a word « in L such that,

for some wy, ---,w; € N, and for some z1,---, z,
z1 € Xi(@) A+ ANxyp € Xy(a) AN Q(wr, -+, wyy Ty, -+, xy) (A.5)

holds? Next, a semi-linear transform is applied upon the Presburger formula Q(w;,
s+, Wy, X1, -, ;). The result is to represent each of wy,- -+, wy, z1,--+,2; by a non-
negative linear polynomial over some nonnegative integer variables si,-- -, s,,. Addi-
tionally, since L is a semi-linear language, each #,, () in (A.4) can also be represented
(similar to the proof of Theorem 7.4) by a nonnegative linear polynomial over some
nonnegative integer variables ¢, - - -, t,.

Finally, after the substitutions and reorganizing the result, (A.5) can be shown
to be equivalent to a finite disjunction of quadratic Diophantine inequality systems,

each of which is in the following form:

q1 - Al(tla tC atn) S Bl(sla “eey Sm) S 01(517 “eey Sm) . Al(tla 0T 7tn)
: (A.6)
q - Al(tl, . ,tn) S Bl(Sl, N Sm) S Cl(Sl, ceey Sm) . Al(tl, . ,tn)

where the ¢’s are the given constants in N, the A;’s (for #,,(«)) are nonnegative linear
polynomials over ti,-- -, %,, the B;’s (for z;’s) and the C;’s (for w;’s) are nonnegative
linear polynomials over sy, - - -, s,,. To show the theorem, it suffices to show that it is

decidable whether (A.6) has a solution in s, ..., S, t1, -« -, t,. We use Case (m,n,)

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 155

to denote (A.6). The procedure to solve (A.6) is a complex induction process on the

numbers m,n and [in which Case (m,n,() is reduced to one of the followings:
e Case (m',n',l — 1) where m’ and n' could be larger than the original m and n;
e Case (m',n,l) where m’ is smaller than m;
e Case (m,n',l) where n' is smaller than n; or,
e a special case where it is directly solvable.

The induction base is: either one of m and n is 0, or [= 1. The former case
is solvable since Case (m,n,l) will be Presburger. The latter case is also solvable.
That’s because, by introducing new variables to make the inequalities into equations,
(A.6) with [= 1 will be reduced to a system in the form of (7.20) with k& = 2.

Now, we start with Case (m,n,l) shown in (A.6) where m > 0,n > 0,1 > 1. We
firstly assume that each A; in (A.6) is not a constant polynomial. Otherwise, say
A; is a constant polynomial a € N, then the first inequality in (A.6) will be the
following Presburger formula: ¢ia < Bi(s1, ..., 8m) < C1(81, ..., Sm) - a. By applying
a semi-linear transform upon this formula, (A.6) will be reduced to a similar system
but with a smaller number /. This step of induction corresponds to Case (m,n,l) —
Case (m/,n',l — 1) in the induction path.

We then assume that each B; in (A.6) is not a constant polynomial. Otherwise,
say Bj is a constant polynomial b € N, then the first inequality in (A.6) will be:
G AL (L, t,) < b < Ci(81y ey Sm) - A1(t1, - - -, t,). It is not hard to show that this
formula is equivalent to a finite disjunction of Presburger formulas in the follow-
ing form: C1(S1,..., Sm) ~ ¢ A Ay(ty,---,t,) ~ a, where ~€ {=,>} and c¢,a € N.
For each formula in the disjunction, a semi-linear transform can be applied upon
Ci(s1, ...y Sm) ~ ¢, and another semi-linear transform upon A, (t1,---,%,) ~ a. In this
way, solving (A.6) will be reduced to solving finitely many systems, each of which is
still in the form of (A.6) but with a smaller number [. This step of induction also
corresponds to Case (m,n,l) — Case (m/,n',l — 1) in the induction path.

At the last, we group all the C;’s that are constant linear polynomials ¢; € N

respectively. For notational convenience, we assume that they are C,---,C%, for

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 156

some 0 < k < [(k = 0 means that every C; is not a constant). Without loss
of generality, we assume k& < [(since when k£ = [, (A.6) is Presburger, and hence
solvable).

Now let’s look at a system defined as follows:
(- Ax(ty, 1) < Bi(S1) -0 8m) <1 Ar(ty, -+, 1)

Q- Akt tn) < Bi(s1y oy Sm) < g - Aty -+, tn)

(A7)
Qrt1 - Apr1(ts, -+ tn) < Brga (1,05 5m)

L@ Aty tn) < Bi(s1, -0 8m)-

(A.7) is the result of chopping off the inequalities on quadratic terms, Cyy1(s1, ..., Sm)-
A1ty tn), -+, Ci(S1y eery Sm)-As(t, - - -, Ty), from (A.6). Clearly, every solution of
(A.6) is also a solution of (A.7); but the inverse may not be true. (A.7) is Presburger,
which defines a semi-linear set of tuples (s1,- -, Sm,t1,---,t,). If the set is empty,
then (A.6) has no solutions (in the induction path, this means Case (m, n,) is directly
solvable). So assume that the semi-linear set is not empty. First, we assume that the

set is a linear set

S={veN"":v=vy+vi21+ -+ V2,21, *, 2 € N}, (A.8)
for some vectors vy, vi,---,v, € N™ Vector v € N™" denotes a tuple of
(1,7 Smyt1,---,t,); we shall use notations like v(s;) to denote the component

value for s; in v.

If S is a finite set (i.e., r = 0 in (A.8)), then it suffice to check whether vy, the
only element in S, constitutes a solution to (A.6). Namely, when S is finite, Case
(m,n,l) is directly solvable in the induction path.

In the following, we consider two situations for S when it is infinite. The first
situation is that, there exists some s; (resp. t;) such that v(s;) = vo(s;)(resp. v(t;) =
vo(t;)) for any v € S. This essentially means that, any (s1,---, Sm,t1,--,t,) is a

solution to (A.7) only if s;(resp. t;) is a constant vo(s;)(resp. wvo(t;)). Then, by

APPENDIX A. PROOFS OMITTED IN THE DISSERTATION 157

plugging-in the constant for s;(resp. ¢;), (A.6) can be reduced to a similar one with a
smaller m(resp. n). In the induction path, this corresponds to a reduction from Case
(m,n,l) — Case (m/,n,l)(resp. Case (m,n’,1)) with m' <m (resp. n' < n).

The other situation is that, for each s; (resp. t;), there is a € € S (resp. ¢’ €
S) such that €(s;) > wvo(s;) (resp. 67(t;) > wo(t;)). Take p € N™" such that
p= (€ = wo) + 32,(67 —). Clearly, u satisfies all of the followings: for each
si, u(s;) > 0; for each tj, pu(t;) > 0; and for each z € N, vg+ p- 2z € S. Now we
claim that under this situation, (A.6) has a solution. Clearly, vy + 4 - z constitutes
a solution to (A.7) for each z € N. Next we only need to argue that for some z,
vo + p - z also satisfies the quadratic inequalities that were “truncated off” from (A.6)

when formulating (A.7). Recall that the truncated part is as follows:

Bk+1(81, ceey Sm) S C,H_l(sl, ceey Sm) . Alc+1(t1, e ,tn)
: (A.9)
Bl(Sl, ceey Sm) S Cl(Sl, ceey Sm) - Al(tl, R ,tn)

It is easy to verify (left to the reader) that vy + 4 - 2z is a solution to (A.9) when z is
sufficiently large (notice that each of the B’s, the A’s, and the C’s is not a constant
polynomial as we assumed). In the induction path, this induction step reduces Case
(m,n,l) to a directly solvable case.

When (A.7) defines a semi-linear set that is a union of more than one linear set

S, we work on the S’s one by one. |

Bibliography

1]
2]
3]

[4]

[5]

[6]

7]

8]

9]

Grail homepage. http://www.csd.uwo.ca/research/grail/.
The smv system, 1998. http://www-2.cs.cmu.edu/ modelcheck/smv.html.

Martn Abadi and Leslie Lamport. Composing specifications. ACM Transactions
on Programming Languages and Systems (TOPLAS), 15(1):73-132, 1993.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, April 1994.

Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sri-
ram K. Rajamani, and Serdar Tasiran. MOCHA: Modularity in model checking.
In CAV’98, volume 1427 of Lecture Notes in Computer Science, pages 521-525.
Springer, 1998.

Paul Ammann, Paul E. Black, and Wei Ding. Model checkers in software testing.
NIST-IR 6777, National Institute of Standards and Technology, 2002.

Paul Ammann, Paul E. Black, and William Majurski. Using model checking
to generate tests from specifications. In Second IEEE International Conference
on Formal Engineering Methods, ICFEM’98, page 46, 1998.

J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity II. Springer-
Verlag, 1990.

Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred Long, John Robert,

Robert Seacord, and Kurt Wallnau. Volume i: Market assessment of

158

BIBLIOGRAPHY 159

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

component-based software engineering. Technical Note CMU/SEI-2001-TN-
007, May 2000.

A. Bertolino and A. Polini. A framework for component deployment testing. In
Proceedings of the 24th international conference on Software engineering, pages
221-231. IEEE Computer Society Press, 2003.

Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation operators for speci-
fications. In The Fifteenth IEEFE International Conference on Automated Soft-
ware Engineering, ASE’00, page 81, 2000.

I. Borosh, M. Flahive, and B. Treybig. Small solutions of linear diophantine
equations. Discrete Mathematics, 58:215-220, 1986.

I. Borosh and B. Treybig. Bounds on positive integral solutions of linear dio-
phantine equations. Proceedings of the American Mathematical Society, 55:299—
304, 1976.

A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of
nonregular properties for nonregular processes. In Proc. of 10th LICS, pages
123-133. IEEE, 1995.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: application to model-checking. In Concurrency (CONCUR 1997),
volume 1243 of Lecture Notes in Computer Science, pages 135-150. Springer-
Verlag, 1997.

Ed Brinksma and Jan Tretmans. Testing transition systems: An annotated
bibliography. In Proc. 4th Summer School on Modeling and Verification of
Parallel Processes, pages 187-195. Springer-Verlag, 2001.

AW. Brown and K.C. Wallnau. The current state of CBSE. IEEE Software,
15(5):37-46, Sep/Oct 1998.

Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

BIBLIOGRAPHY 160

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: symbolic representations, approximations, and
experimental results. ACM Transactions on Programming Languages and Sys-
tems, 21(4):747-789, July 1999.

J. Callahan, F. Schneider, and S. Easterbrook. Automated software testing
using modelchecking. In Proceedings 1996 SPIN Workshop, August 1996. Also
WVU Technical Report #NASA-IVV-96-022.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in c. In Proceedings of the 24th international conference

on Software engineering, pages 385-395. IEEE Computer Society Press, 2003.

W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and
J. D. Reese. Model Checking Large Software Specifications. IEEE Transactions
on Software Engineering, 24(7):498-520, 1998.

W. Chan, R. J. Anderson, P. Beame, D. Notkin, D. H. Jones, and W. Warner.
Decoupling synchronization from logic for efficient symbolic model checking of
statecharts. In Proceedings of the 21st International Conference on Software
Engineering, pages 142-151. ACM Press, May 1999.

S. C. Cheung and J. Kramer. Enhancing compositional reachability analysis
with context constraints. In SIGSOFT ’93: Proceedings of the 1st ACM SIG-
SOFT symposium on Foundations of software engineering, pages 115-125, New
York, NY, USA, 1993. ACM Press.

Shing Chi Cheung and Jeff Kramer. Checking safety properties using compo-
sitional reachability analysis. ACM Trans. Softw. Eng. Methodol., 8(1):49-78,
1999.

E. Clarke, D. Long, and K. McMillan. Compositional model checking. In
LICS’89, pages 353-362. IEEE Press, 1989.

BIBLIOGRAPHY 161

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan,
and L. A. Ness. Verification of the Futurebus+ cache coherence protocol. Formal
Methods in System Design: An International Journal, 6(2):217-232, March
1995.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

A. Coen-Porisini, C. Ghezzi, and R. A. Kemmerer. Specification of realtime sys-
tems using ASTRAL. IEEE Transactions on Software Engineering, 23(9):572—
598, September 1997.

H. Comon and Y. Jurski. Multiple counters automata, safety analysis and
Presburger arithmetic. In Proc. 10th Int. Conf. Computer Aided Verification
(CAV’98), volume 1427 of Lecture Notes in Computer Science, pages 268-279.
Springer, 1998.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM Symposium on Principles of Programming Lan-
guages, pages 238-250, 1977.

Z. Dang. PhD. Dissertation. Department of Computer Science, University of
California at Santa Barbara, 2000.

Z. Dang, O. Ibarra, and Z. Sun. On the emptiness problems for two-way nonde-
terministic finite automata with one reversal-bounded counter. In ISAAC’02,
volume 2518 of Lecture Notes in Computer Science, pages 103-114. Springer,
2002.

Z. Dang, O. H. Ibarra, and P. San Pietro. Liveness Verification of Reversal-
bounded Multicounter Machines with a Free Counter. In Proceedings of the
20th International Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS 2001), volume 2245 of Lecture Notes in
Computer Science, pages 132-143. Springer, 2001.

BIBLIOGRAPHY 162

[35]

[36]

[37]

[38]

39]

[40]

[41]

[42]

Luca de Alfaro and Thomas A. Henzinger. Interface automata. In FSE’01,
pages 109-120. ACM Press, 2001.

J. Dingel. Computer-assisted assume/guarantee reasoning with verisoft. In
ICSE’03, pages 138-148. IEEE Computer Society Press, 2003.

E. Domenjoud. Solving systems of linear diophantine equations: an algebraic
approach. In MFCS’91, volume 520 of Lecture Notes in Computer Science,
pages 141-150. Springer-Verlag, 1991.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in
property specifications for finite-state verification. In Proceedings of the 21st
International Conference on Software Engineering (ICSE-99), pages 411-421.
ACM Press, 1999.

A. Engels, L.M.G. Feijs, and S. Mauw. Test generation for intelligent networks
using model checking. In Proceedings of the Third International Workshop on
Tools and Algorithms for the Construction and Analysis of Systems, number

1217 in Lecture Notes in Computer Science, pages 384-398. Springer, 1997.

Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-
based software designs. In Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 152-163. ACM Press, 2001.

C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN’03,
volume 2648 of Lecture Notes in Computer Science, pages 213-225. Springer,
2003.

Angelo Gargantini and Constance Heitmeyer. Using model checking to
generate tests from requirements specifications. In Software Engineering -
ESEC/FSE’99: Tth European Software Engineering Conference, volume 1687 of
Lecture Notes in Computer Science, pages 146—-163. Springer-Verlag Heidelberg,
January 1999.

BIBLIOGRAPHY 163

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Dimitra Giannakopoulou, Corina S. Pasareanu, and Jamieson M. Cobleigh.
Assume-guarantee verification of source code with design-level assumptions. In
ICSE’04, pages 211-220. IEEE Press, 2004.

Dimitra Giannakopoulou, Corina S. Pasareanu, and Jamieson M. Cobleigh.

Assume-guarantee verification of source code with design-level assumptions. In
ICSE’04, pages 211-220. IEEE Press, 2004.

Dimitra Giannakopoulou, Corina S. Psreanu, and Howard Barringer. Assump-
tion generation for software component verification. In ASE’02, pages 3-13.
IEEE Computer Society, 2002.

S. Ginsburg and E. Spanier. Semigroups, presburger formulas, and languages.
Pacific J. of Mathematics, 16:285-296, 1966.

Alex Groce, Doron Peled, and Mihalis Yannakakis. Amc: An adaptive model
checker. In Computer-Aided Verification, pages 521-525, July 2002.

O. Grumberg and D. E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16:843—-872, 1994.

C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstrac-
tion and model checking to detect safety violations in requirements specifica-
tions. IEEE Transactions on Software Engineering, 24(11):927-948, November
1998.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, , and Shaz Qadeer.
Thread-modular abstraction refinement. In CAV’03, volume 2725 of Lecture
Notes in Computer Science, pages 262-274. Springer, 2003.

Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we
guarantee: Methodology and case studies. In CAV’98, volume 1427 of Lecture
Notes in Computer Science, pages 440-451. Springer, 1998.

BIBLIOGRAPHY 164

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software En-
gineering, 23(5):279-295, May 1997. Special Issue: Formal Methods in Software

Practice.

J. Hopcroft and J. Ullman. Introduction to Automata theory, Languages, and

Computation. Addison-Wesley Publishing Company, 1979.

O. H. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM, 25(1):116-133, January 1978.

O. H. Ibarra and Z. Dang. On two-way fa with monotonic counters and
quadratic diophantine equations. Theoretical Computer Science, 312(2-3):359—
378, 2004.

O. H. Ibarra and J. Su. On the containment and equivalence of database
queries with linear constraints. In Proceedings of the Sixzteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 12-14,
1997, Tucson, Arizona, pages 32-43.

Ralph D. Jeffords and Constance L. Heitmeyer. A strategy for efficiently veri-
fying requirements. In FSE’03, pages 28-37. ACM Press, 2003.

C.B. Jones. Tentative steps towards a development method for interfering pro-
grams. TOPLAS, 5(4):596-619, 1983.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-
well Massachusetts, 1993.

Pramod V. Koppol, Richard H. Carver, and Kuo-Chung Tai. Incremental in-
tegration testing of concurrent programs. IEEE Trans. Softw. Eng., 28(6):607—
623, 2002.

Pramod V. Koppol and Kuo-Chung Tai. An incremental approach to structural
testing of concurrent software. In ISSTA ’96: Proceedings of the 1996 ACM
SIGSOFT international symposium on Software testing and analysis, pages 14—
23, New York, NY, USA, 1996. ACM Press.

BIBLIOGRAPHY 165

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

W. Kozaczynski and G. Booch. Component-based software engineering. IEEE
Software, 15(5):34-36, Sep/Oct 1998.

O. Kupferman and M.Y. Vardi. Module checking revisited. In CAV’97, volume
1254 of Lecture Notes in Computer Science, pages 36-47. Springer, 1997.

O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reason-
ing about infinite-state systems. In CAV’00, volume 1855 of Lecture Notes in
Computer Science, pages 36-52. Springer, 2000.

Leslie Lamport. Specifying concurrent program modules. ACM Transactions
on Programming Languages and Systems (TOPLAS), 5(2):190-222, 1983.

K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson,
and J. Romijn. As cheap as possible: Efficient cost-optimal reachability for
priced timed automata. In CAV’01, volume 2102 of Lecture Notes in Computer
Science, pages 493-505. Springer, 2001.

D. Lee and M. Yannakakis. Principles and methods of testing finite state ma-
chines - A survey. In Proceedings of the IEEFE, volume 84, pages 1090-1126,
1996.

Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Verifying cross-cutting fea-
tures as open systems. ACM SIGSOFT Software Engineering Notes, 27(6):89-
98, 2002.

J. L. LIONS. Ariane 5 flight 501 failure report by the inquiry board, July 1996.
http://java.sun.com/people/jag/Ariane5.html.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. Proc. 6th ACM Symp. on Principles of Distributed Computing, pp.
137-151, 1987.

Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.

BIBLIOGRAPHY 166

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

Stephen McCamant and Michael D. Ernst. Predicting problems caused by
component upgrades. In Proceedings of the 9th European software engineering
conference held jointly with 10th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 287-296. ACM Press, 2003.

M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics
in the theory of Turing machines. Ann. of Math., 74:437-455, 1961.

Lev Nachmanson, Margus Veanes, Wolfram Schulte, Nikolai Tillmann, and
Wolfgang Grieskamp. Optimal strategies for testing nondeterministic systems.
In ISSTA 04, pages 55—64. ACM Press, 2004.

A. Orso, M. J. Harrold, and D. Rosenblum. Component metadata for software

engineering tasks. Lecture Notes in Computer Science, 1999:129-144, 2001.
R. Parikh. On context-free languages. Journal of the ACM, 13:570-581, 1966.

C. S. Pasareanu, M. B. Dwyer, and M. Huth. Assume-guarantee model checking
of software: A comparative case study. In SPIN, pages 168-183, 1999.

Doron Peled. Algorithmic testing methods. In Proc. of the 15th International
Conference on Computer Aided Verification (CAV’03), Lecture Notes in Com-
puter Science. Springer-Velag, july 2003.

Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking.
In Jianping Wu, Samuel T. Chanson, and Qiang Gao, editors, Formal Methods
for Protocol Engineering and Distributed Systems, FORTE/PSTV, 1999, pages
225-240. Kluwer, 1999.

Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo. Testing transition
systems with input and output testers. In TestCom 03, volume 2644 of Lecture

Notes in Computer Science, pages 129 — 145. Springer, 2003.

A. Pnueli. In transition from global to modular temporal reasoning about
programs, 1985. In K.R. Apt, editor, Logics and Models of Concurrent Systems,

sub-series F: Computer and System Science.

BIBLIOGRAPHY 167

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

L. Pottier. Minimal solutions of linear diophantine equations: Bounds and
algorithms. In Proceedings of the 4th International Conference on Rewriting
Techniques and Applications, volume 488 of Lecture Notes in Computer Science,
pages 162-173. Springer-Verlag, 1991.

C. Rackoft. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6:223-231, 1978.

D. Rosenblum. Adequate testing of componentbased software, 1997. Depart-
ment of Information and Computer Science, University of California, Irvine,
Irvine, CA, Technical Report 97-34, August 1997.

F. Somenzi. Cudd: Cu decision diagram package release, 1998.

J. Stafford and A. Wolf. Annotating components to support component-based
static analyses of software systems, September 2000. In Grace Hopper Celebra-

tion of Women in Computing, Hyannis, Massachusetts.

C. Szyperski. Component technology: what, where, and how? In Proceedings
of the 24th international conference on Software engineering, pages 684-693.
IEEE Computer Society Press, 2003.

C. Tai and R. H. Carver. Testing of distributed programs. In Parallel and
Distributed Computing Handbook, pages 955-978. McGraw-Hill, 1996.

Jan Tretmans and Ed Brinksma. Torx: Automated model-based tesing. In
First European Conference on Model-Driven Software Engineering, pages 31—
43, 2003.

M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification (preliminary report). In Proceedings 1st Annual IEEE
Symp. on Logic in Computer Science, LICS’86, pages 332-344. IEEE Computer
Society Press, 1986.

J. Voas. Certifying off-the-shelf software components. IEEE Computer,
31(6):53-59, June 1998.

BIBLIOGRAPHY 168

[92]

[93]

[94]

[95]

[96]

[97]

[98]

J. Voas. Developing a usage-based software certification process. IEEE Com-
puter, 33(8):32-37, August 2000.

J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-
oriented component interfaces. In Proceedings of the International Symposium

on Software Testing and Analysis, July 2002.

Fei Xie and James C. Browne. Verified systems by composition from verified
components. In Proceedings of the 9th European software engineering conference
held jointly with 10th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 277-286. ACM Press, 2003.

G. Xie, Z. Dang, and O. H. Ibarra. A solvable class of quadratic Diophantine
equations with applications to verification of infinite state systems. In Proceed-
ings of the 30th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2003), volume 2719 of Lecture Notes in Computer Science,
pages 668-680. Springer, 2003.

G. Xie, C. Li, and Z. Dang. New Complexity Results for Some Linear Count-
ing Problems Using Minimal Solutions to Linear Diophantine Equations. In
Proceedings of the 8th International Conference on Implementation and Appli-
cation of Automata (CIAA 2003), volume 2759 of Lecture Notes in Computer
Science, pages 163-175. Springer, 2003.

Gaoyan Xie. Decompositional verification of component-based systems—a hy-
brid approach. In Proceedings of the 19th IEEE International Conference on
Automated Software Engineering (ASE’04 Doctoral Symposium), pages 414
417. IEEE Press, 2004.

Gaoyan Xie and Zhe Dang. An automata-theoretic approach for model-checking
systems with unspecified components. In Proceedings of the 4th International
Workshop on Formal Approaches To Testing Of Software (FATES’04), volume
3395 of Lecture Notes in Computer Science. Springer, 2004.

BIBLIOGRAPHY 169

[99]

[100]

[101]

Gaoyan Xie and Zhe Dang. Model-checking driven black-box testing algorithms
for systems with unspecified components. In Proceedings of the 3rd Workshop on
Specification and Verification of Component-based Systems at ACM SIGSOFT
2004/FSE-12 (SAVCBS’04), 2004.

Gaoyan Xie and Zhe Dang. Testing systems of concurrent black-boxes—
an automata-theoretic and decompositional approach. In Proceedings of the
oth International Workshop on Formal Approaches To Testing Of Software
(FATES’05), to appear in Lecture Notes in Computer Science. Springer, 2005.

Gaoyan Xie, Cheng Li, and Zhe Dang. Testability of oracle automata. In Pro-
ceedings of the 9th International Conference on Implementation and Application
of Automata (CIAA’04), volume 3317 of Lecture Notes in Computer Science.
Springer, 2004.

