
A FRAMEWORK FOR CAPTURING, QUERYING, AND RESTRUCTURING

METADATA IN XML DATA

By

HAO JIN

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY

School of Electrical Engineering and Computer Science

AUGUST 2005

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the dissertation

of HAO JIN find it satisfactory and recommend that it be accepted.

 Chair

- ii -

 ACKNOWLEDGEMENT

First of all, I would like to express my deepest thanks to my advisor Dr. Curtis Dyreson,

for his inspiring guidance and uncounted help throughout my Ph.D. program. He has led me into

our exciting research field, helped me gaining deeper understanding of the subjects, and given

me invaluable comments during the whole process of my research work including the writing of

this dissertation. He has set a perfect role model for me not only as a professional researcher but

also as a great human being as well.

I would also like to give a special thanks to my graduate committee members, Dr. Dave

Bakken and Dr. Murali Medidi too, for their insightful advice and kind assistance.

I am very grateful to all the professors that have taught me and worked with me in

Washington State University. What I have learned from them has built a solid foundation for my

Ph. D. studies and research, and will definitely contribute greatly to my future career as well.

The four years I spent in Washington State University is a life-changing experience for

me. I would like to thank the School of EECS and Washington State Univerisity for giving me

this wonderful opportunity.

Last but not least, I want to thank my parents and my wife, Yanru Qu, for their

unconditional love and support in all these years.

- iii -

A FRAMEWORK FOR CAPTURING, QUERYING, AND RESTRUCTURING

METADATA IN XML DATA

ABSTRACT

by Hao Jin, Ph.D.

Washington State University

August 2005

Chair: Curtis E. Dyreson

Metadata plays an important role in describing and proscribing data in both traditional

and XML applications. This dessertation presents a framework to represent the metadata and

maintain its consistency with the data in querying and restructuring XML data. The data model

extension is called MetaDOM. MetaDOM separates data and metadata into different scopes and

supports multiple levels of metadata (i.e. meta-metadata). The query language extension is called

MetaXQuery. MetaXQuery is an extensible framework in which the special semantics of

different kinds of metadata are specified as “plug-in” components. Each component is a set of

simple, low-level operations. We first present the theoretical foundations of the framework. The

framework shows how to utilize each metadata-specific component to retrieve, certify, sanitize,

filter, group, and restructure data with metadata. We then show how to convert MetaXQuery

expressions into low-level algebraic operators in MetaTAX and how to extend a native XML

DBMS, namely eXist, to support the framework. The implementation judiciously reuses eXist’s

indexes and query evaluation engine to attain high efficiency. Finally, we setup a benchmark

platform as well as a data/metadata generator to test the performance of our system for further

optimization and development.

- iv -

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENT .. iii

ABSTRACT...iv

LIST OF TABLES..vii

LIST OF FIGURES .. viii

CHAPTER

1. INTRODUCTION ...1

2. MOTIVATING EXAMPLE ..11

3. METADOM AND METAXQUERY ..15

3.1 Document Object Model (DOM) and XQuery ...15

3.2 MetaDOM...17

3.3 MetaXQuery ...19

4. METADATA TREE ALGEBRA ..38

4.1 TAX ..38

4.2 MetaTAX ..39

4.3 MetaTAX in Physical Level ...43

5. IN-MEMORY AND PERSISTENT IMPLEMENTATIONS...............................45

5.1 In-Memory Model System Architecture...45

5.2 Persistent Model System Architeture..46

5.3 Implementation Challenges ..47

5.4 Execution Plans...47

5.5 Implementation in eXist..50

6. BENCHMARKING XML QUERY PROCESSORS ..52

6.1 History of Benchmarks ...53

- v -

6.2 Benchmark Data Set - XML Document Generator.....................................55

6.3 Benchmark Tests...59

6.4 Benchmark Results and Analysis..69

7. PERFORMANCE TESTS ...74

7.1 In-Memory Performance Tests ...74

7.2 Persistent Performance Tests ..78

8. RELATED WORK ..84

9. CONCLUSIONS AND FUTURE WORK ..88

BIBLIOGRAPHY...92

- vi -

LIST OF TABLES

Table 1 Types of metadata property value.. 20

Table 2 The operation matrix for metadata properties.. 21

Table 3 Original XML path index .. 48

Table 4 New XML path index .. 49

Table 5 Level 1 index on transaction time.. 49

Table 6 Level 1 index on security... 50

Table 7 XML document generator control factors ... 56

Table 8 Benchmark tests and descriptions.. 61

Table 9 Benchmark tests parameters .. 62

Table 10 In-memory performance tests parameters.. 75

Table 11 Persistent experiments parameters... 79

Table 12 Optimized worst case queries .. 83

- vii -

LIST OF FIGURES

Figure 1 Tree-like XML data model and query traversal ... 6

Figure 2 Data with metadata annotation ... 7

Figure 3 Restructuring XML data with metadata annotations.. 8

Figure 4 Matching metadata perspective while traversing data.. 9

Figure 5 A part of the MetaDOM for the online publisher... 12

Figure 6 Sample queries not supported by XQuery.. 14

Figure 7 Certifying an author node... 22

Figure 8 Filtering from Joe's perspective while navigating a path ... 25

Figure 9 An example of meta-group... 28

Figure 10 Example of MergedNode's parent list .. 30

Figure 11 Example of grouping, merging, and coalescing ... 31

Figure 12 MetaXQuery solution to Q3 ... 32

Figure 13 Example of grouping from the metadata's perspective... 33

Figure 14 Example of constructing metadata ... 35

Figure 15 A pattern tree for /books/book.. 39

Figure 16 A MetaTAX pattern tree that explores the meta axis ... 39

Figure 17 Sample pattern tree for the getMetadataValues function ... 40

Figure 18 Sample pattern tree for the filterByPerspective function ... 41

Figure 19 Implementation of filterByPerspective using getMetadataValues and

filterByMetadataValues .. 41

Figure 20 Metadata association join algorithm... 42

Figure 21 Different strategies of physical representation ... 44

Figure 22 Sample pattern tree for the execution of meta axis .. 44

Figure 23 MetaDOM and MetaXQuery in-memory implementation architecture....................... 46

- viii -

Figure 24 MetaDOM and MetaXQuery persistent implementation architecture 46

Figure 25 An example MetaDOM for indexing ... 48

Figure 26 Use of indexes to solve the example query .. 50

Figure 27 XML document generator model ... 57

Figure 28 Sample XML fragment... 61

Figure 29 Fat, flat tree tests... 63

Figure 30 Tree depth test .. 64

Figure 31 Tree width test .. 64

Figure 32 Magic level test... 65

Figure 33 Random name test .. 67

Figure 34 Results of in-memory experiment 1, varying the data document size 76

Figure 35 Results of in-memory experiment 2, varying the number of metadata properties 76

Figure 36 Results of in-memory experiment 3, varying the number of metadata values............. 77

Figure 37 Results of in-memory experiment 4, varying the number of metadata levels.............. 77

Figure 38 Results of persistent experiment 1, varying the data document size and optimization

technique ... 79

Figure 39 Results of persistent experiment 2, varying the number of metadata types 80

Figure 40 Results of persistent experiment 3, varying the implementation strategy.................... 82

- ix -

CHAPTER ONE

INTRODUCTION

The Extensible Markup Language (XML) [79] was developed by the World Wide Web

Consortium (W3C) in 1996, and it’s quickly becoming the de facto standard for formatting and

exchanging data on the Web. XML is a subset of the Standard Generalized Markup Language

(SGML). It makes use of tags (words bracketed by '<' and '>') and attributes (of the form

name=“value”) to encapsulate data. XML uses the tags to delimit pieces of data, and leaves the

interpretation of the data to the application that reads it. In that way, it is able to support the

electronic exchange of machine-readable data. An XML document can contain an optional

description of its grammar in the form of Document Type Definition (DTD) or XML Schema for

use by applications that need to perform structural validation.

XML is actually a family of technologies [80]. XML 1.0 [79] is the specification that

defines what “tags” and “attributes” are and how an XML document is used to carry information

items. Beyond XML 1.0, “the XML family” is a growing set of modules that offer useful

services to accomplish important and frequently demanded tasks. XLink [82] describes a

standard way to add hyperlinks to an XML file. XPointer [83] is a syntax for pointing to parts of

an XML document. An XPointer is a bit like a URL, but instead of pointing to documents on the

web, it points to pieces of data inside an XML file. CSS [75], the style sheet language, can be

used to render XML for presentation. XSL [91] is an advanced language for expressing style

sheets. It is based on XSLT [92], a transformation language used for rearranging, adding and

deleting tags and attributes. The Document Object Model (DOM) [76] is a standard set of

function calls for manipulating XML files from a programming language. XML Schema [88]

[89] [90] helps developers to precisely define the structures of their own XML-based formats.

The most important and common usage of XML is to format, carry and exchange data

between data sources over a network. There are many heterogeneous data sources (databases

mostly) on the web. Most of them contain data in incompatible formats. Instead of using a

1

proprietary format for each peer to communicate data, XML can be used as the universal format

because it’s standard, self-descriptive, text-based, and easy to process.

XML has made it easier to exchange and describe data, but data only makes sense in the

context of metadata. The following definition of metadata comes from the glossary of Dublin

Core Metadata Initiative [15].

In general, metadata is the ‘data about data’ or functionally, ‘structured data

about data’. Metadata includes data associated with either an information system

or an information object for purposes of description, administration, legal

requirements, technical functionality, use and usage, and preservation.

Another definition of metadata comes from the online Hyper Dictionary [99].

Data about data. In data processing, metadata is definitional data that provides

information about or documentation of other data managed within an application

or environment. For example, metadata would document data about data

elements or attributes, (name, size, data type, etc) and data about records or data

structures (length, fields, columns, etc) and data about data (where it is located,

how it is associated, ownership, etc.). Metadata may include descriptive

information about the context, quality and condition, or characteristics of the

data.

We will see an example of metadata in the motivating example later.

There are a lot of applications in which metadata plays a critical role. One of the earliest

and still one of the most important applications is the card catalog in a library. The cards record

the essential information about books, journals, and magazines. They are used to classify, store

and quickly find the publications. The Dublin Core Metadata Initiative named fifteen standard

metadata elements [16] for cross-domain information resource description of document-like

networked objects, in a manner similar to the library card catalog. These elements include title,

creator, subject and keyword, description, publisher, contributor, date, resource type, format,

resource identifier, source, language, relation, coverage, and rights management. Another

2

important application of metadata is search engines. A search engine analyzes the data in web

pages. The analysis leads to a set of metadata that describes and summarizes each page. The

metadata can include the page size, last modification time, number of hyperlinks, frequency of

some particular keyword, and content descriptors. The metadata is used primarily to improve the

accuracy of search results.

Metadata has always been a vital part of a database management system as well. A

database schema has traditionally been considered to be metadata. For example, a relational

database contains tables with columns. Metadata names these columns, describes their data types

(int, char, etc.) and sizes. Column constraints such as “checks” are also part of the metadata.

Without the metadata, a database file would just be a long string of uninterpreted bits. There

could also be security metadata that tells the database manager who can access what information.

All of the metadata in a relational database is stored in tables, just like the data.

Two of the most extensively studied kinds of metadata in both the database and XML

world are time and security. Temporal metadata is important because many data management

applications involve evolution over time. Data changes as it is created, modified, and deleted.

For auditing purposes, many systems have to record these changes. The changes involve two

temporal dimensions: valid time and transaction time [34]. The valid time of a fact is the time

when the fact is true in the modeled reality, and it’s usually supplied by the user. The transaction

time, on the other hand, is when a database fact is current in the database and may be retrieved.

Transaction times are consistent with the serialization order of transactions, and they are system

generated and supplied. Security metadata is also very important especially on the web. It can

impose restrictions on data access and use; only authorized users are allowed to view and edit

data.

From the sample metadata discussed above, we can find some general rules to categorize

metadata. One of the categorizations is derivative vs. assertive. Derivative metadata is

summarized, calculated, or derived from the data. It is sensitive to the content of the data. For

example, search engine metadata is derived from an analysis of a web page, which means it is

3

derivative. If the content of the web page is changed, the metadata will also change and should

be derived again. Assertive metadata, on the hand, is assigned to data and is insensitive to the

content of the data. It includes things such as author, publisher, rights.

Another way of categorizing metadata is descriptive, interpretive and proscriptive.

Descriptive metadata solely describes the property of the data, such as author, last modification

time, or size. Interpretive metadata is metadata that is essential to understanding a piece of data.

Interpretive metadata is common in scientific data, for instance an integer value that represents a

temperature is only meaningful in the context of a particular metric or scale, e.g., Celsius.

Proscriptive metadata adds some functional meaning to the data and may change how the data

looks to the user. For example, the access rights metadata adds restrictions as to who can

manipulate the data. So if there are different access rights to the same piece of data, two different

users may have different views of the data. In our framework, these categories are important

because they help explain the semantics of the metadata.

One thing that we need to point out is that the distinction between “data” and “metadata”

is relative. Data stands in relation to metadata as does metadata to meta-metadata. The distinction

between data and metadata is created primarily by a particular use and many times the same

resource will be interpreted in both ways simultaneously.

Database management systems have long been an important branch of information

technology. A database is a collection of data stored on persistent media (e.g., tapes, disks). The

software application to manage, update, and query the database is known as a database

management system (DBMS). People have created many types of DBMSs. The most widely

used one is the relational database, which uses relations as its logical data model and stores data

as records. Popular products in this category include the biggest players in the industry such as

Microsoft SQL Server, Oracle, IBM DB2, and also open source products like MySQL and

Postgres. Another type of commonly used database is the object-oriented database (OODB),

which stores data as objects and can only be interpreted by the methods of its class. The concepts

are completely derived from the object-oriented programming languages, and most of the time its

4

usage is also associated with an object-oriented programming environment so that the same

model is used across different application levels. Famous products in this category include

Jasmine from Computer Associates, Jade, ObjectDB, Objectivity, etc. There are other types of

database too, such as deductive database which can make deductions based on rules and facts, or

flat-file database which is just made up of strings in one or more files.

As XML is quickly becoming the lingua franca of the Web, there’s an increasing need to

convert existing data in legacy formats to XML and vice versa. For data already formatted in

XML, it is often more efficient and easier to just store the data directly, which has led to the

development of a special type of database that can store, query, and manipulate XML data.

 Since relational and object-oriented databases have existed for a long time, their

technology is well tested and well developed. So the first step is to extend these mature database

products to support storing and querying of XML data. These relational or object-oriented

database enriched with XML functionalities are called XML-enabled databases. Currently all the

major database vendors such as Microsoft, Oracle, and IBM have made such moves into the

XML market. In an XML-enabled database, the storage model is not XML, but rather relational

or object-oriented. So the XML data has to be shredded, that is, converted to the underlying

storage model. Some products can automatically shred data, but others require the schema to be

created first. Queries languages in an XML-enabled databases are often a mix of SQL and an

XML query language. Overall, the benefit of an XML-enabled database is that it reuses existing

technologies so the data and applications can still be used without any changes. But since the

XML document is shredded and then reassembled, some important information may be lost, such

as the document order, processing instructions, and comments. This loss is inconsequential for

most XML data.

On the other hand, native XML databases are designed specifically to store XML

documents. The fundamental unit of storage in such a database is an XML document rather than

a table as in a relational database. By storing documents, all the information in an XML

document can be faithfully preserved. Native XML databases can be queried using an XML

5

query language. Since the XML doucment doesn’t have to be shredded into the internal data

model, usually the storing and querying process is faster than the XML-enabled database,

especially when an entire document is retrieved. In general, native XML database are better for

XML documents whose natural format is important, such as documents used for messaging in an

e-commerce system.

One of the advantages of native XML database is that they use an XML query language

instead of mixing with SQL. There are many query languages for XML, among which XQuery is

the most popular and will likely continue to be prominent in the future. XML query languages

are evaluated on the logical data model of XML, and so far the most widely accepted data model

of XML is a tree (e.g., the Document Object Model). The tree has a single document root and

elements as the intermediate nodes, as illustrated in Figure 1(a). The query language of XML

usually specifies both the name or value of the nodes and the path to reach them in the

expression. The query processor traverses the data model tree to get to the desired nodes. An

example of such traversal shown in Figure 1(b). To reach node Q in the lower left corner, the

query processor has to start from the root node and traverse the entire path as depicted by the

dashed line in the figure.

 …

… …

 …

Root

 …

… …

 …

Root

 Q

(a) Tree-lik e XM L data m odel (b) XM L query traversal

Figure 1 Tree-like XML data model and query traversal

6

As we have seen in the previous paragraphs, metadata plays a critical role in a lot of

applications and has to be carefully maintained in association with the data. But current XML

systems and query languages lack the ability to specify and query metadata. We need to add

support in an XML application to separate the role of data from metadata and understand the

semantics of metadata. Our contribution is to model metadata as another level of data that

annotates data. The anntations play an important role in all data model operations, such as

querying and restructuring. Figure 2 shows metadata annotating data in an XML data model. The

metadata is affixed to individual data nodes.

 …

… …

 …

Root

Metadata
Fragment

Annotation

Metadata
Fragment

Annotation

Figure 2 Data with metadata annotation

The DBMS must be extended to add support for metadata. The first change to a DBMS is

that query execution has to be aware of the metadata annotations since they are now an integral

part of the data model. Metadata adds constraints to the reachability of edges in the data model.

A child node should have compatible metadata to its parent so that we can traverse the edge from

parent to child, otherwise this edge should be considered invalid and nodes beneath it

unreachable. For example, if a node is annotated with security metadata “Joe”, which means only

user Joe is allowed to access it, then all of its descendant nodes should be annotated with security

metadata “Joe” as well. If a node beneath it is accessible to someone else, he or she can never get

to that node in the first place.

7

Second, in a query result, the data should retain its metadata. In operations that

restructure XML data or generate new XML data, their original metadata should be properly

combined or calculated and attached to the new data. As the example shown in Figure 3, the two

node A in the source tree are merged into a new node A’. Both nodes have metadata annotation

originally, so the new node A’ should have the combined metadata fragment of these two. The

combination rule would depend on the semantics of each particular type of metadata.

Annotation

…

Root

 AA

Metadata
Fragment 2

AnnotationMetadata
Fragment 1

Annotation

A’

Root
Combined
Metadata

Fragment 1&2

Merge

Figure 3 Restructuring XML data with metadata annotations

Finally the query could now have implicit metadata conditions, such as the user that logs

on to the system. So instead of evaluating the query on data only, it could match metadata with

the implicit conditions, which we call the perspective, as the query is evaluated. As depicted in

Figure 4, originally the query processor only traverses the data tree to reach the desired node Q.

But now, for every node on the path, it needs to match its metadata values with the perspective to

see if they match. If they don’t, the nodes further along the path are unreachable. This operation

is particularly useful for dynamically generating user views, which is a much cheaper operation

than materializing views for each condition.

8

MatchRoot

Q

Metadata
Perspective

Metadata
Fragment 1

Metadata
Fragment 2

Metadata
Fragment 3

Match

Match

Figure 4 Matching metadata perspective while traversing data

There are other issues related with this framework. First, the XML schema is used to

validate the structure of XML data. With metadata annotation, further validation has to be done

on the semantics of metadata as well. For example, the snapshot of a bank account should have

only one balance element as the child of account. If we record the changes of the balance over

time and annotate it with transaction time metadata, there could be more than one balance

element under each account, which violates the schema constraint. We need to extend the

schema to be sensitive to embedded metadata. Another issue is the physical representation of

metadata. There are several options for storing data together with metadata. The choice is

important because it affects the implementation, so careful consideration is needed.

The major work and main contribution of this dissertation is an XML framework that can

capture the relationship between data and metadata, as well as preserve their consistency in

querying and restructuring. In order to do that, we first create an extended XML data model

called MetaDOM based on the Document Object Model (DOM). The data model treats metadata

as a different level of data that annotates data. Both the representation of metadata and data

model are the same as data, so we reuse the same standards in our framework without

introducing anything different or incompatible.

9

The query language for our framework is also an extension on the existing standard,

XQuery, which we call MetaXQuery. We try to make as few changes as possible in MetaXQuery

and mostly to encapsulate the tasks into functions so as to make the user’s job easier. We also

design MetaDOM and MetaXQuery to be upwards compatible to DOM and XQuery so people

can still use their original data and application in our framework without noticing any differences.

We choose eXist, which is an open-source native XML database written completely in

Java, to build our metadata framework. To implement the metadata functions, we first convert

the primitive ones into low-level algebraic operators. W use an existing XML tree algebra, TAX,

and expand it into MetaTAX. The algebraic operators can capture the key operations in the

framework and also play an important role in optimizing query execution plans. A naïve

implementation of MetaXQuery could cause huge overhead, so we also explore optimization

algorithms by using indexes. Finally, to evaluate the performance of our framework as well as to

compare the nature of different implementation strategies, we build a benchmark platform to test

the performance of XML query processing systems. We use this benchmark platform and also

another existing XML benchmark to validate the performance and scalability of our framework.

The rest of this dissertation is organized as follows. First we present an example that

motivates this research. We then summarize MetaDOM, which is the extension of DOM and

present MetaXQuery, the XQuery extensions to incorporate the metadata semantics. To

implement these functions, we defined a metadata-aware XML tree algebra to translate

MetaXQuery expressions into low-level operators. We implemented our prototype system in

both an in-memory model as well as a persistent model. In Chapter 6, we describe the general

methodology of benchmarking systems and especially benchmarking XML processing systems,

and we also show an XML benchmarking platform we developed. In Chapter 7, we use both our

own benchmark and another popular XML query benchmark in the literature to test our

prototype system. Finally, we present related work to our research as well as the conclusion and

future work.

10

CHAPTER TWO

MOTIVATING EXAMPLE

Our motivating example is adapted from the W3C’s XQuery Use Cases document [87].

Suppose that a publisher makes information about new books available only to online

subscribers that pay for the service. The publisher annotates the book data with security metadata.

The security is intended to limit access to only the users that have paid for their service. The

publisher also wants to archive the book information and so decides to record the transaction

time of the book data. The transaction time is the system time when the data is available.

Suppose that user Joe has only paid for the service from times 3 to 9. The publisher adds meta-

metadata to record the lifetime of Joe’s changing access rights, which is important to supporting

versioned security. Versioned security can accurately record and support access rights which

change over time. For instance, assume Joe subscribed to the book data from time 3 to time 9,

but does not have a current subscription. With versioned security, Joe’s previous access rights

can be supported (via a rollback of the database to time 5), so that Joe can have access to

archived data (whatever Joe could access from time 3 to 9). The data and metadata are parsed to

create an instance of a metadata-aware data model, which is shown in Figure 5. Due to space

limitations only a small amount of the data and metadata is shown. The metadata and data in the

instance are separated into different, yet related scopes. The key difference between this instance

and an instance of a normal XML data model is the directed edge from the book element to

metadata and from the user element in the metadata to meta-metadata. These directed edges

represent the relationship between data and its metadata. By following such an edge, a user

jumps to a metadata scope. The scope limits the search performed by a “wild card”. For instance

a query that follows the descendant axis from the book node will not descend into the metadata.

Existing XML data models do not support separating the scope. A more critical problem with

existing data models is that a metadata-aware data model must have some mechanism to enforce

the semantics of metadata during path navigation. In current XML data models, metadata can be

11

embedded in the data as a child of each data element. The problem is that query evaluation could

then (incorrectly) ignore the existence of metadata, i.e., a wildcard query might traverse edges in

a data model instance for which the user is not authorized. Or query evaluation could

inadvertently include the metadata when not disired, e.g., an aggregate query counting the

number of children of an element node could accidently include the metadata sub-element in its

result.

book

authors content

Montana

Marigold

metadata

security

metadata user

Joe

author author

Millicent

Marigold

transaction_time

timestamp

begin end

2 5

transaction_time

timestamp

begin end

3 9

Metadata
scope

Meta-metadata
scope

Data scope

Figure 5 A part of the MetaDOM for the online publisher

Now let’s take a look at the challenges that we have with this metadata-aware data model.

The first challenge is that the query language has to be aware of the metadata and distinguish

data from metadata in query evaluation. We can ask queries about data only, data with metadata

conditions, metadata with data conditions, or metadata only. The scopes must be kept separate.

The second challenge is determining the “reachability” of nodes annotated with metadata.

In a instance of a data model for a traditional, well-formed XML document every node is

reachable from the root. But proscriptive metadata can impose constraints on the data that affect

the validity of the path descending from the root to a node. For example, if a parent node exists

12

in the document from times 2 to 5, then its children should only exist within that time period as

well since ostensibly, a child cannot exist independent of its parent in any XML data model

instance. If one of the children is timestamped with a completely different period, there is

something wrong with the metadata in the document. The challenge is to identify problematic

metadata and clean it up, if possible.

The third challenge is enforcing the semantics of metadata in path navigation. For

instance, if a particular user, say Joe, queries the data model instance, then Joe should only see

the part of the document to which he has access. Or if the user wants to query the current version

of the data, he should only see the data that has a transaction time including now. A metadata-

aware system must enforce the semantics of proscriptive metadata, or it will generate incorrect

answers. The process of sanitization imposes a specific metadata perspective throughout a data

model instance. Eager sanitization will construct a new instance limited to the selected metadata

perspective, which is similar to generating a (materialized) view of the data based on a set of

metadata conditions. A user can subsequently query the view without explicitly giving the

metadata conditions. In contrast, lazy sanitization will sanitize during path expression evaluation.

The fourth challenge is grouping, which is an important operation in restructuring XML

documents. There is no grouping construct in XQuery like the GROUP BY clause in SQL. But

the distinct-values function can be used to group by determining which nodes have the same

“value”. The sample data in Figure 5 is organized from the book’s perspective, where the authors

are listed for each book. So while each book in the document is distinct, an author can be

duplicated at several locations if they write more than one book. The data can be restructured to

suit an author’s perspective by listing the books each author writes. There are several limitations

to grouping in this way. First, the distinct-values function of XQuery only returns the first node

(in document order) from the set of nodes that have the same value, discarding the others.

Sometimes the discarded members of the group are needed, for instance if we want to know the

size of each group. The second limitation arises when metadata is considered. The metadata

13

could change the grouping. For instance we may not want to group data that appears in different

versions of a document, i.e., that has different transaction time metadata.

We propose several extensions to XQuery to meet these challenges. We call the

extensions, collectively, MetaXQuery. Figure 6 lists four sample queries that are not supported in

XQuery using the new data model, but are by MetaXQuery. Q1 is a query on metadata with data

conditions. Q2 is a query on data with metadata condition. Q3 is a restructuring query that needs

to group on the data values. Q4 is a restructuring query that groups metadata by data conditions.

We will give the solutions to these queries in the following chapters.

 Q1: When was book 1 in the document?
Q2: Which books are available to the user Joe online?
Q3: List authors and the books that they’ve written, retaining all metadata.
Q4: List the books in the document grouped by when they were in the document.

Figure 6 Sample queries not supported by XQuery

14

CHAPTER THREE

METADOM AND METAXQUERY

This chapter presents the theoretical foundations of our research. We first briefly

introduce the Document Object Model (DOM) and XQuery. Next we extend DOM to support

metadata, an extension we call MetaDOM. We then describe a series of query language

extensions that we call collectively MetaXQuery. The first extension is MetaXPath, which adds a

new meta axis to XPath. The rest of the extensions are in the form of functions, which include

certifying the reachability of data nodes, sanitizing a data model, grouping data with metadata,

constructing metadata, and matching an implicit metadata perspective during path evaluation.

3.1 Document Object Model (DOM) and XQuery

Whenever we want to query, process, or manipulate the textual XML documents, we

need to build a logical data model of the document first and then operate on that logical model.

While XML itself doesn’t define any data model, the most popular data model for XML so far is

the W3C’s Document Object Model (DOM). According to the W3C, DOM is a “platform- and

language-neutral interface that will allow programs and scripts to dynamically access and update

the content, structure and style of documents. The document can be further processed and the

results of that processing can be incorporated back into the presented page” [76]. Usually it is an

application programming interface (API) for valid HTML and well-formed XML documents.

Another commonly referred XML data model is the XPath data model [86], which is also

defined by the W3C. The XPath data model is based on the XML information set [81]. It is very

similar to the DOM data model except that the XPath data model only specifies how to access

the information items in an XML document, but not how to update and manipulate it, and the

definitions relate to the names and values of nodes are also slightly different in DOM and XPath

data model. Most XML processing tools support DOM as their API, so later on we will just use

DOM to refer to the data model and programming interface to access and process the contents of

an XML document or data collection.

15

Just like SQL as the query language for database, XQuery [85] is a programming

language defined jointly by the W3C XML Query Working Group and the XSL Working Group,

to query collections of XML data. It provides a mechanism to extract and manipulate data from

XML documents or any data source that can be viewed as XML such as relational databases or

office documents. XQuery is designed to be a language in which queries are concise and easily

understood. It is also flexible enough to query a broad spectrum of XML information sources,

including structured and semi-structured documents, relational databases and object repositories.

It is first derived from an XML query language called Quilt [12], which in turn borrowed

features from several other languages, including XPath 1.0 [84], XQL [51], XML-QL [19], SQL

[74], and OQL [11].

XQuery uses XPath syntax to address specific parts of an XML document. It also has a

feature called a FLWOR expression that supports iteration and binding of variables to

intermediate results. This kind of expression is often useful for computing joins between two or

more documents and for restructuring data. The name FLWOR, pronounced "flower", is

suggested by the keywords for, let, where, order by, and return.

The for and let clauses in a FLWOR expression generate an ordered sequence of tuples

of bound variables, called the tuple stream. The optional where clause serves to filter the tuple

stream, retaining some tuples and discarding others. The optional order by clause can be used

to reorder the tuple stream. The return clause constructs the result of the FLWOR expression.

The return clause is evaluated once for every tuple in the tuple stream, after filtering by the

where clause, using the variable bindings in the respective tuples. The result of the FLWOR

expression is an ordered sequence containing the results of these evaluations

The following example of a FLWOR expression includes all of the possible clauses. The

for clause iterates over all the departments in an input document, binding the variable $d to each

department number in turn. For each binding of $d, the let clause binds variable $e to all the

employees in the given department, selected from another input document. The result of the for

and let clauses is a tuple stream in which each tuple contains a pair of bindings for $d and $e

16

($d is bound to a department number and $e is bound to a set of employees in that department).

The where clause filters the tuple stream by keeping only those binding-pairs that represent

departments having at least ten employees. The order by clause orders the surviving tuples in

descending order by the average salary of the employees in the department. The return clause

constructs a new big-dept element for each surviving tuple, containing the department number,

headcount, and average salary.

for $d in fn:doc("depts.xml")/depts/deptno
let $e := fn:doc("emps.xml")/emps/emp[deptno = $d]
where fn:count($e) >= 10
order by fn:avg($e/salary) descending
return
 <big-dept>
 {
 $d,
 <headcount>{fn:count($e)}</headcount>,
 <avgsal>{fn:avg($e/salary)}</avgsal>
 }
 </big-dept>

3.2 MetaDOM

Now let’s talk about our extensions to the DOM and XQuery standards to support

metadata. MetaDOM extends DOM by adding an optional meta property to a node’s information

set. But in all other respects, the data model is the same as the existing model. The value of the

meta property is a reference to the root node of a nested MetaDOM, which contains the metadata

for this node. The metadata can be recursively nested, that is, a node in a MetaDOM may itself

have a meta property. Each level of nesting adds another level of metadata.

Below is a formal definition of the MetaDOM node constructor. We adopt the notation

used by the W3C (e.g., in [86]) to express all XQuery and DOM extensions used in this

dissertation.

Definition [node constructor] Each node in MetaDOM is an extension of a DOM node. It has all
of the properties in the node’s information set, and adds a meta property. A MetaDOM node is
cloned from a DOM node using the following constructor. The parameters are the node name,
the sequence of its children, the metadata to add, and the data node to clone.
meta-dm:node($name as xs:string, $children as node()*, $metadata as node(),
 $data as node()) as meta-dm:node()

█

17

The meta-dm namespace is MetaDOM’s counterpart of the dm namespace used in

XQuery’s data model [86]. Unqualified parameters can be either in the dm or meta-dm

namespace. We will use the meta-dm namespace to encapsulate every definition related to

MetaDOM. The other new namespaces that are introduced in this dissertation are: meta-dt,

which is used for new data types defined for our framework; meta-fn, which is used for our

metadata-related functions; and ext-fn, which is used for our new, data-related functions.

Since the meta property in a MetaDOM node is a reference to a piece of metadata, it is

straightforward to share metadata across multiple data nodes. In other words, more than one data

node can point to the same metadata. In this way, MetaDOM can achieve good space efficiency

by representing shared metadata only once.

To access the metadata, we define an accessor function for the meta property.

Definition [meta accessor] The meta accessor returns either a meta element node, which is the
root of the metadata fragment that’s associated with the input node if it exists, or an empty
sequence if there’s no metadata describing the input node.
meta-dm:meta($node as meta-dm:node()) as meta-dm:node()?

█

Another extension is a special type of node as the result of our merging function, which

we will call MergedNode. The MergedNode is inherited from the MetaDOM node and adds a list

of parents to its information set. The list of parents are the original parents of the nodes that are

merged into this one. We will see how it is used later on in the merging function. Right now we

will just give its formal definition.

Definition [MergedNode constructor] The MergedNode is an extension of a MetaDOM node. It
has all properties in the node’s information set, and adds a parentList property. The type of
parentList is a list of nodes. The constructor for a MergedNode takes one more parameter than
the MetaDOM node constructor, which is a list of parent nodes.
meta-dm:MegedNode($name as xs:string, $children as node()*, $parentList as
node()*, $metadata as node(), $data as node()) as meta-dm:node()

█

18

3.3 MetaXQuery

This section presents extensions to XQuery to support querying of data and metadata.

The extensions include adding a meta axis in XPath expressions and a set of functions for

certifying, sanitizing, filtering, and explicit grouping of both data and metadata. The additional

functions can be implemented by extending an XQuery evaluation engine, or in a programming

language like Java and loaded into XQuery as external functions. Parts can also be written

directly in XQuery as user functions. We will leave it to the implementation to decide how best

to achieve these functions in an XQuery implementation. This section also introduces the

metadata operation matrix. The matrix records the special semantics of each kind of metadata.

3.3.1 MetaXPath

In order to make the meta accessor available to users of MetaXQuery we adopt the same

approach used in MetaXPath [23] and add a new axis: the meta axis. The meta axis follows the

meta property of the context node to its metadata. We will use the notation “meta::” to denote

the meta axis. For example, “meta::node()” will locate the metadata’s root node from the

context node. The meta axis will sometimes be abbreviated as “^”. In the data model instance of

Figure 5, the MetaXPath expression “/book^/transaction_time” will locate the transaction

time element(s) in the metadata of the book element.

The meta axis is orthogonal to other XPath axes. In other words, the metadata can only be

located through the meta axis. This ensures the separation of scope between data and metadata.

So the first sample query in Figure 6 (Q1: “When was book 1 in the document?”) can be

constructed in MetaXPath as follows.

Q1: //book[@number=“1”]^/transaction_time

Note that traditional XPath expressions can still be evaluated in MetaXPath. The query

will just ignore the metadata. So it is fully upwards compatible with XPath.

3.3.2 Metadata Operation Matrix

Since different metadata properties can have different semantics and constraints on the

data, and introducing new metadata properties can add new semantics to the application, our

19

framework uses an operation matrix that allows a metadata management system to tailor the

semantics of each kind of metadata. Below, several common kinds of metadata are listed. Since

our framework is extensible, database administrators can define new kinds of metadata as needed.

Time. Temporal metadata involves two time dimensions: valid time, which is the real

world time of a datum, and transaction time, which is the time it is stored in the system. For our

purposes, their semantics are similar so we will treat them as a generic time dimension. The time

will be a set of intervals (a temporal element [34]).

Security. The security metadata that we will use in this dissertation is a list of the users

that are allowed to access the corresponding data and its descendants. Users who are not listed

cannot access the data. We would like to emphasize that this is only one possible security model;

other kinds of security can be supported as well. There is no limit to the number or kinds of

metadata.

Reliability. Reliability is a measurement of the quality of the data. It could be a ranking

of its quality by experts or users, or trustworthiness of the information source. We will use it as a

numeric scale that ranges from 0 to 1.

Language. Language is the natural language in which the data is written, e.g., English.

Table 1 lists the data type for each kind of metadata. The meta-fn:meta-value function

retrieves a value of the specified return type for the indicated kind of metadata.

Property meta-fn:meta-value(node()*) return type

Time A list of time intervals, e.g., [0, 6], [2, 4]
Security A set of strings, each string is a user name, e.g., “Joe”, “Susan”

Reliability A floating point value between 0 and 1
Language A string

Table 1 Types of metadata property value

Table 2 is one possible operation matrix for the metadata properties used in this

dissertation. The matrix is specific to a metadata application, so other semantics can be defined

as needed. New metadata properties can also be added. We will assume that the operations in the

20

matrix are implemented as (external) functions. In MetaXQuery functions the matrix will be

represented as a hash table, denoted meta-dt:MetaFNHash. The hash table maps the name of the

metadata property (e.g., time, security) and the desired operation to the metadata-specific

operation. For instance, an application would use temporal-coalescing when coalescing time

metadata in the evaluation of a MetaXQuery query. Rather than defining each operation now, we

will describe and define each operation when it is used in this dissertation.

Operation Time Security Reliability Language
Certifying certify-subset certify-subset true true
Sanitizing sanitize-intersection sanitize-intersection no-op no-op

Meta-Grouping group-equality true true group-equality

Coalescing temporal-coalescing coalesce-union coalesce-
max/min no-op

Filtering filter-intersection filter-intersection no-op filter-equality

Table 2 The operation matrix for metadata properties

3.3.3 Certifying Data Reachability

The certify function checks the consistency of the metadata between parent and child

nodes in a data model, or in other words, whether a child can be reached from a parent. Given a

parent node and its metadata, the metadata of each child must be consistent with the metadata of

the parent in order for it to be reachable. The consistency check for each kind of metadata is

defined in the operation matrix. If the check is satisfied, then the metadata is consistent.

Definition [certify] The certify function takes a node of a MetaDOM tree and checks if every
node under it is reachable. It returns a Boolean value indicating whether the test is successful.
meta-fn:certify($fn as meta-dt:MetaFNHash,
 $node as meta-dm:node()) as xs:Boolean

⎪

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⇒∧
∧→∈∀

⇒∈∀

= ∗∗
∗∗∗

Otherwise.
))) ,() (())),(:(

)))) ,}({(,| (
)| ((,((If

False
rtifymeta-fn:cefn:existsvcertifymeta-fn

vmvm
vfn:existsvTrue

mm
$node^$fn$node^$fn

/^/$node^$fn/^/$node^
/^/$node^$node/

⎭
 █

The certifying process starts from the input node and first checks the metadata

relationships between this node and its children. After all the children have been checked, it

21

recursively calls itself on each child to check the next level down the tree. If anywhere in the tree,

an incompatible metadata value is found, the function will immediately return false, which

means that some descendent of the input node is unreachable. The descendent can be found and

removed by sanitizing the data model instance as described in the next section. Since there may

be several levels of metadata (e.g., meta-metadata), certify also recursively checks each level of

metadata for consistency.

Definition [metadata-specific certifying functions] These functions are used to certify specific
kinds of metadata. The certify-subset function makes sure the metadata value of the child is a
subset of its parent’s.
meta-fn:certify-subset($pNode as meta-dm:node(),
 $cNode as meta-dm:node()) as xs:Boolean

⎭
 █

⎬
⎫

⎩
⎨
⎧ ⊆

=
∗∗

Otherwise.
)()(If

False
ta-valuemeta-fn:meta-valuemeta-fn:meTrue $pNode/$cNode/

author

book

meta

security

DBA Joe

meta

security

Susan

(a) Certify author node: false

author

book meta

time

3 - 6

meta

time

2 - 9

(b) Certify author node: true

Figure 7 Certifying an author node

An example of the certify function is shown in Figure 7. The example shows certifying

with security metadata, and separately, with time metadata (typically all kinds of metadata are

certified together). In Figure 7(a), the security value of child node book (Susan) is not a subset of

the security value of its parent (DBA, Joe), so the certify function will fail and report that the

metadata is incorrectly embedded. In Figure 7 (b), the time value of the child node ([3,6]) is a

subset of its parent’s valid time value ([2,9]), so the certify function will return true in this case.

22

Though the “subset” operation is used for each of these kinds of metadata, in general, each kind

of metadata might have a different certification operation as specified by the operation matrix.

3.3.4 Sanitizing a Data Model Instance

When certification fails due to inconsistent metadata, then the instance of a data model

must be pruned to make it consistent. We introduce a sanitize function to automatically construct

a instance that passes certification. The sanitize function could also be used to generate a view of

the data based on certain metadata conditions by sanitizing with respect to a selected metadata

perspective. So for queries like Q2: “What books can Joe access?” one possibility is to set the

metadata for the root to be user Joe and then sanitize the entire data collection (a better, related

method is described in the next section). After doing so a simple XPath query like “//book” on

the sanitized data model instance will locate books that are available to Joe.

Definition [sanitize] The sanitize function takes an input node, which is the root of the
document/fragment and returns the root of the new valid document/fragment.
meta-fn:sanitize($fn as meta-dt:MetaFNHash,
 $node as meta-dm:node()) as meta-dm:node()

NULL))!((,
)), , ,(
)),(),((

,1 ,|) ,(,1 ,
)), ,(), , ,(),((

][]^[

][][

21

21

=∈∀∧

=
≤≤∀∧<<<=≤≤∀

∧=

∗

∗∗

∗∗

ta-valuemeta-fn:mevm
iieta-sanitizmeta-fn:me
indm:childreimedm:node-nademeta-dm:nov

njjiiivnitizemeta-fn:savnjj
nitizemeta-fn:savvvmedm:node-nademeta-dm:no

j

j

jj

n

i

jj

jji

nii

iii

/^

$node/$node/$node^$fn

$node/$node/

$fn

$node$node^fnnode

K

K

mv ji /^
 █

Definition [meta-sanitize] The meta-sanitize function takes an operation matrix and a pair of
meta element nodes from a parent and a child node, and creates a new meta element node for the
child. The new node represents a metadata fragment in which all its values are compatible with
the parent node’s metadata.
meta-fn:meta-sanitize($fn as meta-dt:MetaFNHash, $pmNode as meta-dm:node(),
 $cmNode as meta-dm:node()) as meta-dm:node()

) ,)), ,}({),((
),((

| fcmNode/$pmNode/

$cmNode

mm
medm:node-nademeta-dm:no

→∈∀
=

∗∗ $cmNode$cmNode^$cmNode/$pmNode/n mm
 █

The sanitize function starts by checking the metadata of the input and its children. If the

processing of a child’s metadata evaluates to NULL, then the child is unreachable from its parent

23

and is removed from the data model instance. Sanitize then recursively calls itself on each

remaining child. Internally, the sanitize function calls the meta-sanitize function, which modifies

the metadata of a child node to be compatible with its parent’s.

Definition [metadata-specific sanitize functions] These functions are used to sanitize specific
kinds of metadata. The sanitize-intersection function calculates the intersection of two metadata
values of the same type and creates a new fragment representing that value.
meta-fn:sanitize-intersection($pNode as meta-dm:node(),
 $cNode as meta-dm:node()) as meta-dm:node()

) () (where
) ,),,,(),((

i

21

∗∗ ∈∧∈
=

$cNode/

$cNode$cNode^$cNode

ta-valuemeta-fn:mevta-valuemeta-fn:mev
vvvmedm:node-nademeta-dm:no nK

i $pNode/
 █

3.3.5 Filtering by Metadata Perspective

Each query is allowed access to only the data that matches the query’s metadata

perspective. The perspective is often implicit in a user’s session, but can also be made explicit

for a particular query. The perspective is established as a user acquires access rights, sets the

current time, chooses a natural language, or performs some action that sets a query context or

session parameter. To restrict data to a particular metadata perspective, the data can be sanitized

using that perspective as discussed in the previous section. However, sanitizing is somewhat

expensive since it constructs a new data model instance. Typically, an instance should be

sanitized only after a metadata update. The filterByPerspective function offers a lightweight,

inexpensive alternative. The function dynamically matches a perspective to the metadata along a

path during query evaluation. It is applied to every path expression in a MetaXQuery program.

Though semantically, the filterByPerspective is equivalent to sanitizing a subtree of a

MetaDOM, it can be implemented more efficiently.

For each of the metadata types in the perspective fragment, the filterByPerspective

function calls the corresponding metadata-specific filter function to check if its value matches

that of the data node’s. If it does, the data node will be retained. If not, the data node is thrown

away. It also checks recursively if there’s meta-metadata.

24

Definition [filterByPerspective] The filterByPerspective function takes a sequence of data nodes
and the root node of a perspective MetaDOM. It filters the data sequence, keeping only those
nodes that match the perspective.
meta-fn:filterByPerspective($fn as meta-dt:MetaFNHash,
 $seq as meta-dm:node()*,
 $pNode as meta-dm:node()) as meta-dm:node()*

)),()((
) ,}({(

 ,|),,,(21

∅≠⇒∈∀
∧→∈∀

∧∈∀=

)^//^/*^(//*,$pNode^

/$pNode^/^$$fn /*,$pNode^

$seq

pvpvvpectivelterByPersmeta-fn:fipvfn:existpv
mmvmm

vivvv

i

i

inK

 █

Definition [metadata-specific filter functions] These functions are used to match specific kinds of
metadata in the filterByPerspective function. Filter-intersection function tests if the two input
metadata values intersect with each other. Filter-equality tests for equality of two metadata
values.
meta-fn:filter-intersection($node1 as meta-dm:node(),
 $node2 as meta-dm:node()) as xs:Boolean

⎭
⎬
⎫

⎩
⎨
⎧ ∅≠∩

=
Otherwise.

)()(If
False

ta-valuemeta-fn:meta-valuemeta-fn:meTrue $node2$node1

meta-fn:filter-equality($node1 as meta-dm:node(),
 $node2 as meta-dm:node()) as xs:Boolean

⎭
⎬
⎫

⎩
⎨
⎧ =

=
Otherwise.

)()(If
False

ta-valuemeta-fn:meta-valuemeta-fn:meTrue $node2$node1

█

author

book

meta

security

DBA Joe

meta

security

DBA

(a) A fragment of the MetaDOM

author

meta

security

Joe

(b) Joe’s perspective

meta

security

DBA Joe

(c) The book does not match

Figure 8 Filtering from Joe's perspective while navigating a path

Figure 8 shows an example of the filterByPerspective function. A query, such as

‘//book’, will navigate through an author element to reach a book node. The navigation will

match the perspective shown in Figure 8 (b), which consists of Joe’s security certificate, against

25

the metadata on each node in a path to a book element. The author node will qualify, but the

book node will fail the match as illustrated in Figure 8 (c).

3.3.6 Grouping in MetaXQuery

The grouping function is divided into several sub-functions. We make these sub-

functions available to users in MetaXQuery in order to provide fine-grained control in grouping.

The sub-functions are data-group, meta-group, merge, and coalesce. The data-group function

groups nodes based on their data values. The meta-group function groups nodes based on their

metadata values. In grouping, the output of data-group is typically input to meta-group. The

merge function merges all of the nodes in a group into a single node. It also merges their

metadata. The coalesce function then coalesces the merged metadata, removing redundant

metadata. Finally, the categorize function effects grouping by performing the sub-functions in

sequence.

3.3.6.1 Data Grouping

The data-group function groups nodes that have the same value. The value is computed

by XQuery’s distinct-values function, but unlike distinct-values, all of the nodes with the

same value are retained in a group (in document order).

Definition [data-group] The data-group function takes a Sequence of nodes and returns a list of
groups, where each group is a Sequence.
ext-fn:data-group($seq as meta-dm:node()*) as (meta-dm:node()*)*

))()((,,,1,,
)()(where),,,(|),,,(12121

kj

iiiiiin

st-valuesfn:distincst-valuesfn:distinckjnkjkj
vt-valuesfn:distincst-valuesfn:distincvvvssss m

≠≠≤≤∀
== KK = ∧

█

The return value is an extension of XQuery’s Sequence type. In the standard data model a

Sequence is an ordered collection of zero or more nodes or atomic values [86]. Extending this to

a list of groups or Sequences is straightforward. In this grouping section, we will use (meta-

dm:node()*)* to denote a list of groups. At a query language level this means that two nested

FOR statements will be needed to iterate through the list. Finally, we should note that each group

in the list is internally in document order, but the order of the groups is implementation defined.

26

3.3.6.2 Metadata Grouping

The result of data grouping is passed to the meta-group function for further partitioning

based on the metadata. Sometimes the metadata prevents grouping. For example, suppose two

temperature values are the same, but one has metadata that shows it was measured in the Celsius

scale, while the other is in degrees Fahrenheit. The temperatures should be placed into different

groups. The meta-group function partitions a group into subgroups based on the metadata. The

semantics of meta-grouping is parameterized by the kind of metadata. For example, while nodes

with different temperature metadata should be placed in different groups, perhaps nodes with

different reliabilities could be placed in the same group.

Definition [meta-group] The meta-group function takes a sequence of nodes and returns a list of
sequences. All nodes in a sequence have the “same” data and metadata.
meta-fn:meta-group($fn as meta-dt:MetaFNHash,
 $seq as meta-dm:node()*) as (meta-dm:node()*)*

)))) ,((, kji $fn,((, |),,(21 kjjn ,vvta-matchmeta-fn:mesvvsisss $seq ∀∧⊆∀= K ∈
 █

Internally, meta-group calls meta-match. The meta-match function, which is defined

below, compares the metadata to determine if a pair of nodes can be in the same group. The

comparison operation is chosen from the operation matrix (the MetaFNHash).

Definition [meta-match] The meta-match function takes an operation matrix and a pair of nodes,
and evaluates whether the metadata in the nodes “matches”.
meta-fn:meta-match($fn as meta-dt:MetaFNHash, $node1 as meta-dm:node(),
 $node2 as meta-dm:node()) as xs:Boolean

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧
∧→∈∀

⇒

=
∗∗

∗∗

Otherwise.
))) , ,(

)) ,}({(,(
)((If

False
ta-matchmeta-fn:me

m m
fn:existsTrue

mm

mm

/$node2^/$node1^$fn

/$node2^/$node1^$fn/$node2^|/$node1^

/$node2^|/$node1^

█

If there are multiple levels of metadata, meta-match recursively explores each level.

Every level of metadata should match. The following definitions are for metadata-specific

matching functions that appear in the operation matrix of Table 2.

27

Definition [metadata-specific matching functions] These functions are used to match specific
kinds of metadata. The true function always reports a successful match. Group-equality tests for
equality of two metadata values.
meta-fn:true($node1 as meta-dm:node(),
 $node2 as meta-dm:node()) as xs:Boolean
= True.
meta-fn:group-equality($node1 as meta-dm:node(),
 $node2 as meta-dm:node()) as xs:Boolean

⎭
⎬
⎫

⎩
⎨
⎧ =

=
Otherwise.

)()(If
False

ta-valuemeta-fn:meta-valuemeta-fn:meTrue $node2$node1

█

These are only two of the many possible metadata-specific matching functions; which

function to use depends on the semantics of the kind of metadata. However, to form groups such

functions should be symmetric, transitive, and reflexive.

Let’s use time as an example to show how the meta-group function works. The

semantics of time for the meta-group function in the operation matrix is equality, so nodes in a

group after the meta-group function will have the same time. In Figure 9, three book nodes with

the same data value (grouped by data-group) are subdivided into two groups by meta-group.

b o o k

B o o k1

m e t a

t i m e

3 - 5

b o o k

B o o k1

m e t a

t i m e

7 - 9

b o o k

B o o k1

m e t a

t i m e

3 - 5

(a) A si n gl e d a ta - gr o up of no d es in p ut to me t a- g ro u p

b o o k

B o o k1

m e t a

t i m e

3 - 5

G r o up 1

b o o k

B o o k1

m e t a

t i m e

3 - 5

b o o k

B o o k1

m e t a

t i m e

7 - 9

G r o up 2

(b) A f te r m e ta - gr o up i ng , t w o g ro u ps em e rg e

Figure 9 An example of meta-group

28

3.3.6.3 Merging

Merging is the process of merging a group of nodes into a single, new node. It is invoked

after the nodes with the same data value have been divided into groups according to their

metadata. It is straightforward to merge the data since every node has exactly the same data. But

with metadata, when nodes are merged, their metadata must also be combined to create the

metadata for the merged node. Merge also retains the parents of the nodes being merged. The

MergedNode class has an extra information item, the parentList, which keeps the list of the

parents of the merged nodes. An example is shown in Figure 10. After merging the author Joe,

the result looks like Figure 10(b). The new author node is now a MergedNode type. Its parentList

points to the two book elements that are the parents of the two original author Joe. Note that

parentList pointers are orthogonal to all other node accessors and consist of one-way pointers.

If there is more than one level of metadata, the merge function will recursively merge the

metadata at each level. At each level it invokes the meta-merge function. The meta-merge

function calls the merge function on each group of nodes representing one type of metadata.

Definition [merge] The merge function takes a list of groups and returns a MergedNode
sequence, which is a list of constructed, merged nodes.
meta-fn:merge($seq as (meta-dm:node()*)*) as meta-dm:MergedNode()*

][1]))[),]^[(
), ,][2])[(,][1])[((

][1]),[(((,1 ,(|),,(21

iita-mergemeta-fn:me
,indm:childreindm:childre

imedm:node-nargedNodemeta-dm:Mexniixxx

in

seqseq

 $seq/..$seq$seq

$seq

K

K =≤≤∀=

 █

Definition [meta-merge] The meta-merge function takes a sequence of meta element nodes,
which are roots of the metadata fragments, and concatenates the values of each metadata type.
meta-fn:meta-merge($seq as meta-dm:node()*) as meta-dm:node()

[1])),^(,))(,(
 [1]),((()(|

seqseq$seq/*$seq/

seqseq

ta-mergemeta-fn:memrgemeta-fn:mem
medm:node-nademeta-dm:noxfn:existsx

U∈∀

=⇒=

 █

An example of merging is depicted in Figure 11. Initially, two author nodes end up in the

same group Figure 11(a). Both authors have transaction time metadata. When the authors are

merged, a new node is constructed as shown in Figure 11(b). The new node has all the children

29

of the original author nodes (in document order), and its metadata is computed by meta-merge.

Meta-merge merges two transaction times into a single transaction time. The two transaction

times overlap, so some redundant metadata is present, but can be removed through coalescing, as

described next.

book

author author

Mary Joe

author

Joe

parentList

(a) Original data

book

author author

Joe Susan

(b) Result of Merging

author Joe

Joe

Figure 10 Example of MergedNode's parent list

3.3.6.4 Coalescing

The merge function simply concatenates metadata values, regardless of the different

semantics for kinds of metadata. Coalescing refines the metadata, invoking metadata-specific

semantics.

Definition [coalesce] The coalesce function takes the operation matrix and a sequence of
MetaDOM nodes and coalesces their metadata.
meta-fn:coalesce($fn as meta-dt:MetaFNHash,
 $seq as meta-dm:node()*) as meta-dm:node()*

))),^ ,(),}({ ,(
),^((

),(),((|) , , ,(

][

][

][][n21

i

i

ii

alescemeta-fn:commm
medm:node-nademeta-dm:no

ndm:childremedm:node-nademeta-dm:novvvv i

$fn/^$seq

$seq

seqseq

→∈∀

==

∗

K

][][][iii seqseq$fn/^$seq
 █

The nested levels of metadata are recursively coalesced by the coalesce function. But

how to coalesce a particular kind of metadata depends on the semantics of that kind of metadata.

30

Internally, the coalesce function calls the metadata-specific coalescing operation as defined by

the operation matrix. Two example functions are defined below.

Definition [Metadata-specific coalesce functions] These functions are used to coalesce specific
kinds of metadata. The coalesce-union function computes the union of the metadata values and
the coalesce-max function computes the maximum of the metadata values.
meta-fn:coalesce-union($node as meta-dm:node()) as meta-dm:node()

UK

K

)() , , ,(where
) ,^), , , ,(),((

n21

n21

∗=

=

$node/

$node$node$node

ta-valuemeta-fn:mevvvta-valuemeta-fn:me
vvvmedm:node-nademeta-dm:no

meta-fn:coalesce-max($node as meta-dm:node()) as meta-dm:node()

))((max)(where
) , ,),((

∗=
=

$node/

$node$node^$node

ta-valuemeta-fn:mevta-valuemeta-fn:me
vmedm:node-nademeta-dm:no

█

author meta

transaction_time

2 - 5

(a) Two author nodes with the same value grouped together (b) After merging (c) After coalescing

author

3 - 9

transaction_time

2 - 5

meta author

transaction_time

2 - 9

metaauthor meta

transaction_time

3 - 9

Figure 11 Example of grouping, merging, and coalescing

Figure 11(c) shows an example of coalescing. After merging the transaction time,

coalesce is called. For a time dimension, coalescing is done by temporal-coalescing which

computes disjoint, maximal intervals [21].

3.3.6.5 Categorizing

With the data-group, meta-group, merge, and coalesce functions defined, we are now

able to define a categorize function that does all these four operations in sequence. The

categorize function is useful because it gives users a simple, query-level grouping of both data

and metadata. The first step of our categorize function is the data grouping function. The data

groups are then input to meta-group which further divides the groups based on metadata

conditions. Each of these groups is then merged into a single node and, finally, their metadata is

coalesced.

31

Definition [categorize] The categorize function takes an operation matrix and a sequence of
MetaDOM nodes, and returns a list of singletons, each of which contains a merged, coalesced
node.
meta-fn:categorize($fn as meta-dt:MetaFNHash,
 $seq as meta-dm:node()*) as meta-dm:node()*

)(),,,(e wher
)))(((|),,,(

21

21 , ,,

$seq

fnfn$fn

a-groupext-fn:datccc
gta-groupinmeta-fn:mergemeta-fn:mealescemeta-fn:cossss

n

iin c

=
==

K

K

█

Categorize is useful in answering sample query Q3 in Figure 6, “List authors and the

books that they’ve written retaining all metadata”. The MetaXQuery is given in Figure 12. The

query first categorizes every author. It then goes back to all the book elements that are ancestors

of the author nodes with the same value. Here we see the benefit of keeping the parent list. The

query will produce a list of all the books written by an author.

 FOR $a IN meta-fn:categorize(document("books.xml")//author)
 RETURN
 <author>{$a/text()}
 <books>
 { RETURN meta-fn:getParentList($a)/../book/title }
 </books>
 </author>

Figure 12 MetaXQuery solution to Q3

3.3.6.6 Grouping metadata, coalescing data

Categorize partitions the data into groups with distinct data values, and then processes the

metadata of each group to reflect the reorganization of the data. The key benefit of grouping is

that it provides a view from the perspective of the grouped data. Consider the MetaXQuery

solution to Q3. After the authors are categorized, there’s only one group for the author

“Millicent Marigold”.

Users might also want to group from other perspectives such as grouping the metadata

while coalescing the data. Consider the data and metadata fragments in Figure 13(a). The figure

shows two groups with distinct data values, i.e., the result of normally grouped books. Consider a

query to compute which books coexist in each version the document. The data is such a way that

32

a concise query can be used to determine the coexistence. Figure 13(b) shows a better

organization, which is the result of grouping using the metadata and then coalescing the data.

book

book1

meta

valid_time

0 - 6

book

book1

book

book2book1

book

(a) Two book nodes before grouping from metadata’s perspective

(b) After grouping from metadata’s perspective

book

book2

book

book2

meta

valid_time

2 - 9

meta

valid_time

0 - 1

meta

valid_time

2 - 6

meta

valid_time

7 - 9

Figure 13 Example of grouping from the metadata's perspective

This section describes the categorize-meta function that is similar to the categorize

function, but groups using the metadata.

Definition [categorize-meta] The categorize-meta function takes a sequence of MetaDOM nodes
and the name of a metadata property. It reorganizes the nodes from the perspective of the named
metadata property, returning a list of groups. Each node in the group has the same metadata.
meta-fn:categorize-meta($seq as meta-dm:node()*,
 $prop as xs:string) as (meta-dm:node()*)*

)(),,,(here w
 [1])())^^(, ,)((,|),,,(

21

21

/prop$seq^

$seq

t-valuesta-distincmeta-fn:mexxx
xsta-valuemeta-fn:mevvsvvsisss

n

iikjikjin

=
=∀∧⊆∀=

K

K ∈ = ∧

█

Categorize-meta preserves the original document order of nodes within each group, but

the document order among groups is not important because the same data node can be shuffled

into several groups. Categorize-meta is also a projection of the original document on a single

metadata property because the other kinds of metadata will not appear in the result.

33

The meta-fn:meta-distinct-values function takes a sequence of metadata values

(possibly duplicated or overlapping) and returns a set of distinct values. The implementation

depends on whether the value of metadata is an interval type (such as time) or a point type (such

as security, language, etc.). For point types, it is a union function that returns all the unique

values from the list. For range types, it is more complicated. Basically the function has to

determine the intersections of all of the intervals. For example, if the intervals are [0, 6], [2, 4],

[1, 8], then the result will be [0, 1], [2, 4], [5, 6], [7, 8].

We are now able to provide the last sample query, Q4, in Figure 6: “List the books

grouped by when they were in the document”.

Q4: meta-fn:categorize-meta(

 document(“books.xml”)//book, “transaction_time”)

The query reorganizes the books into a list of groups of book elements, each of which has a

distinct transaction-time period.

3.3.6.7 Constructing Metadata

An important part of XQuery is the RETURN clause, which is used to format query

results, usually as XML. Similarly MetaXQuery also has to format results, but formatting results

is more complicated because data and metadata are in different scopes. Though metadata can be

formatted as data without extending the RETURN clause, to maintain the scopes in a query result

we add a new function, associateMetadata, to annotate data with formatted metadata.

Definition [associateMetadata] The associateMetadata function takes a sequence of data nodes
and the root node of a metadata tree, and assigns the metadata to each data node in the
sequence. If the data node has metadata, associateMetadata will overwrite the original metadata.
meta-fn:associateMetadata($dNodes as meta-dm:node()*,
 $mNode as meta-dm:node())
 as meta-dm:node()*

])[$,$]),[($
]),[($(|),,,(21

idNodesmNodeidNodesndm:childre
idNodesmedm:node-nademeta-dm:novvvv in == K

█

Once the associateMetadata function has established a relationship in the result

MetaDOM, a serializer can transform the data model instance into an appropriate XML

34

representation. An example of metadata construction is given in Figure 14. The query presumes

that the metadata is initially contained within a <metadata> element in each <book> (i.e., the

data and metadata are in the same scope; the example comes from the first use case in the

XQuery and XPath Full-text Use Cases document). The query locates book contents. It also

locates book metadata. The return clause then builds a MetaDOM by moving the book metadata

into the metadata scope and associating it to the each book content node (the book content stays

in the data scope).

 <books>
 FOR $book IN fn:distinct-value(document("books.xml")//book)
 LET $content := {<book>{$book/content}</book>},
 $metadata := {<meta>$book/metadata/*</meta>}
 RETURN meta-fn:associateMetadata($content, $metadata)
</books>

Figure 14 Example of constructing metadata

3.3.7 Directly Implementing MetaXQuery in XQuery

MetaXQuery adds constructs and functions to XQuery to help programmers query

metadata together with data, but MetaXQuery does not fundamentally enhance the

expressiveness of XQuery (XQuery is Turing-complete [43]). This section shows how to reuse

XQuery to support separating the metadata scope from the data scope and the filterByPerspective

function.

A separate metadata scope can be implemented by the judicious use of namespaces. The

idea is to put the metadata into a “meta” namespace, meta-metadata into a “meta-meta”

namespace, and so on (this strategy assumes that the metadata does not already have a

namespace). The scope is enforced in a query by rewriting every path expression in the query to

circumscribe its scope. Consider a simple query to locate book data, e.g., “FOR $b IN //book”.

The expression must be rewritten to the following to filter out the metadata (and meta-metadata).

FOR $b IN //book
WHERE $b.namespace != ‘meta’ AND $b.namespace != ‘meta-meta’ AND …

35

Since users do not know a priori how many levels of metadata are present such a strategy

is only possible to implement with a query pre-processor that transforms every path expression.

In MetaXQuery we accomplished the same end by changing the DOM. The namespace strategy

outlined above is less efficient at query time than supporting a meta axis in the data model, but

has the advantage of not requiring any data model changes (however modest).

The filterByPerspective function can also be implemented directly in XQuery. Let’s

assume that there is only one kind of metadata. Consider once again a simple query to locate

book data. When the query is evaluated each kind of metadata must be checked to ensure that the

perspective matches each ancestor in the path to a node. Let’s assume that there is only one kind

of metadata, time, and that there is no meta-metadata. Further assume that the perspective is

bound to the variable “$p”, and that the “contains” function checks temporal containment.

FOR $b IN //book
LET $a := $b/ancestor::*
LET $t := $a//time
WHERE $b.namespace != ‘meta’ AND $t.namespace == ‘meta’
 AND contains($t, $p//time) …

Every path expression in a query must be treated similarly. When other kinds of metadata

are present the template outlined above must be expanded to consider each kind. Further, meta-

metadata must also be checked. While this would be beyond the programming capabilities of

most users, it could be implemented in a query pre-processor. Such a query pre-processor would

complicate a query tremendously by adding many LET clauses and padding the WHERE clause

with lots of conjuncts possibly impacting query optimization. Furthermore, the use of the

ancestor axis would adversely impact query evaluation efficiency. We believe that it is better to

package the functionality into sanitize and filterByPerspective function calls so these operations

can be efficiently implemented in the back-end in a query evaluation engine. Efficient

implementation is critical since every path expression must be filtered.

It is possible to model the other parts of MetaXQuery directly in XQuery (using a pre-

processor, and a post-processor for constructing metadata), but for brevity the details are omitted.

36

3.3.8 MetaXQuery Completeness

We made the above extensions to XQuery and call them collectively MetaXQuery. The

extensions are captured by the sample queries in Figure 6 that are not well supported by XQuery

if using our new data model. The criteria of choosing these queries is by no means to be

comprehensive. For example, we can query both data and metadata in current MetaXQuery, but

we can’t order data with metadata conditions, or vice versa. It is both hard and not our primary

goal to come up with a complete set of extensions that can capture every possible change that

needs to be addressed when we add metadata support to the system. Our purpose is rather to

show that if an extension were needed, what the best way was as well as how to do that. We

chose a subset of the problems, which we thought are the most obvious, representative or

meaningful and showed how to extend the existing standards to solve these problems. Readers

can follow exactly the same approach to tackle other related problems as well. We will leave it to

the future work to find out and prove what a complete set of extensions is for MetaXQuery to

capture every possible scenario.

37

CHAPTER FOUR

METADATA TREE ALGEBRA

In relational databases, the relational algebra is a set of low-level operations that

manipulate the relations, such as selection and projection. High-level queries (i.e., SQL) are

usually converted into a series of such operations by a query compiler for evaluation by the

DBMS. The algebra is also heavily used in the query optimization phase of the compiler to

obtain a more efficient version of the query by reorganizing these operations.

In the XML world, an algebra is also essential for applying database-style optimizations

to XML queries. There have been several XML algebras proposed in the literature, but none has

yet become a standard. We chose one of them, TAX (Tree Algebra for XML) [32], as the

cornerstone of our work to compile MetaXQuery expressions into a low-level algebra, and to

optimize them.

In this Chapter we first give a brief review of TAX and then describe how to extend it

into MetaTAX. We also show how to use MetaTAX to optimize MetaXQuery.

4.1 TAX

TAX provides low-level operations for the evaluation of XQuery queries. XQuery

queries can be translated to TAX expressions for fast evaluation. Typical operators in TAX

(selection, projection, etc.) take a collection of data trees as input, a pattern tree and an

adornment as parameters, and produce a collection of data trees as output. A pattern tree is a

simple, intuitive specification of how to locate nodes of interest. Each node in a pattern tree

represents a variable that is bound to some nodes in the data model (e.g., a DOM node). Each

edge represents a relationship between a pair of bound variables. A TAX pattern tree has two

types of edges, parent-child (pc) and ancestor-descendant (ad). A pc edge is used for a parent or

child axis in a path expression while an ad edge represents an ancestor or descendent axis.

Additionally, a pattern tree has an adornment which is a Boolean formula of predicates. Figure

15 shows a simple pattern tree for the path expression “/books/book”. Variables $1 and $2 are

38

related by a parent-child edge meaning that $1 must be a parent of $2 in the data model. When

both variables are bound to a node, the associated adornment can be evaluated. The adornment

tests to ensure that the name attribute of $1 is “books” and the name attribute of $2 is “book”.

$1.name = books &

$2.name = book

$1

$2

pc

Figure 15 A pattern tree for /books/book

4.2 METATAX

MetaTAX is an extension of TAX that support metadata. MetaTAX introduces a meta

edge to the pattern tree. The meta edge is inserted into the pattern tree whenever a meta axis is

used in a MetaXQuery path expression. Figure 16 gives an example of a pattern tree for the path

expression “/books/book/meta::security”.

 $1.name = books &

$2.name = book &

$3.name = security $1

$2 meta

$3

pc

pc

meta

Figure 16 A MetaTAX pattern tree that explores the meta axis

In addition to the meta axis MetaXQuery has a filterByPerspective function that is

invoked in most queries. The filterByPerspective function is a combination of the

getMetadataValues and filterByMetadataValues function. In the rest of this section we show

how to translate each of these functions into MetaTAX operators or plans.

39

The getMetadataValues function retrieves a specified type of metadata value for the

input data nodes. In MetaTAX the function call translates to a simple pattern tree with a meta

edge and a selection list (SL) on the metadata type node. For example, the function

getMetadataValues(“security”, /books/book) would translate into a pattern tree shown in

Figure 17. The pattern tree specifies which nodes are of interest in this query (books, book, meta,

and security), and the Selection List (SL) acts as the adornment parameter. It lists the nodes

(and their descendants) that are output from the evaluation of the pattern tree.

$1

$1.name = books &

$2.name = book &

$3.name = security

SL = {$3}

$2 meta

$3

pc

pc

meta

Figure 17 Sample pattern tree for the getMetadataValues function

The filterByMetadataValues operation selects data nodes that satisfy a given metadata

condition. In MetaTAX, the operation is modeled as a projection of the data nodes with certain

metadata conditions. Projection in TAX is different from projection in the relational algebra. In

relational algebra, selection and projection are orthogonal operations: selection chooses rows and

projection chooses columns. But in a tree data model, there are no such obvious orthogonal

dimensions like rows and columns, so the role of projection is quite similar to selection.

Projection selects only certain nodes, eliminating others. A sample pattern tree for the function

filterByMetadataValues(“security”, /books/book, “Joe”) is shown in Figure 18. The

pattern tree specifies which part of the input data is of interest. The projection list (PL) tells the

query processor which nodes to preserve in the output. In projection, no matter whether the

nodes are in the projection list or not, all of their contents are preserved from the input. That’s

40

obviously contrary to the selection operator where only these in the selection list (SL) are

preserved.

$1

$1.name = books &

$2.name = book &

$3.name = security

$3.content = Joe

PL = {$2}

$2 meta

$3

pc

pc

meta

Figure 18 Sample pattern tree for the filterByPerspective function

The filterByPerspective function is a combination of the getMetadataValues and

filterByMetadataValues functions. Theoretically it iterates through each metadata type element

in the perspective fragment, getting the value of that metadata type. It then calls the

filterByMetadataValues function on each data node to determine whether the data node

matches the perspective. Only those that match the perspective are kept in the node list.

Such a naïve implementation using MetaXQuery is shown in Figure 19. The method first

iterates through each data node (line 2). For each of them, it goes through every metadata type

element in the perspective fragment (line 3) and gets its value using the getMetadataValues

function (line 4). Then it calls the filterByMetadataValues function to check if that data node

satisfies the perspective value. If not (the filterByMetadataValues function returns an empty

sequence), that data node is discarded from the result (line 5 and 6).
 1 LET $books := /books/book
2 FOR $book IN $books
3 FOR $type IN doc("perspective.xml")/perspective/*
4 LET $value := meta-fn:getMetadataValues(name($type), $book)
5 IF (empty(meta-fn:filterByMetadataValues(name($type), $book, $value))) THEN
6 $books := $books except $book
7 RETURN $books

Figure 19 Implementation of filterByPerspective using getMetadataValues and filterByMetadataValues

41

 Algorithm MetadataAssociationJoin(DataList, MetaList[])
/* DataList is the list of data nodes that satisfy the query condition */
/* Each item in the MetaList[] array is a list of metadata fragments that
satisfy one metadata perspective condition in the query context. */

shortest = find the index of the shortest list in the MetaList[] array
for (m = MetaList[shortest].firstNode; m!=NULL; m = m.nextNode)
 Btree.add(m);

/* Join metadata fragments first */
for (i = 0; i < length(MetaList); i++) {
 if (i == shortest) continue;
 for (m = MetaList[i].firstNode; m!=NULL; m = m.nextNode) {
 if (Btree.find(m) != NULL)
 Btree1.add(m);
 }
 Btree = Btree1;
}

/* After joining the metadata, now join the result metadata fragments with
the data */
result = new sequence;
for (d = DataList.firstNode; d!=NULL; d = d.nextNode()) {
 if (Btree.find(d.getMetadata) != NULL)

result.add(d);
}
return result;

Figure 20 Metadata association join algorithm

The implementation in Figure 19 is obviously inefficient because for each data node it

has to grab the perspective fragment and compare every metadata type to see if they match. For

persistent data collections a better strategy is to use indexes on the metadata to quickly find

which metadata matches a given perspective. For each kind of metadata, the index lookup will

return a list of metadata trees that match the perspective. The lists for each kind of metadata are

then joined together to produce a final list of metadata that matches the perspective, and that list

is in turn joined with the data to produce a result. Assuming there are N kinds of metadata, this

strategy will require N index lookups and N joins (N-1 joins of the different kinds of metadata

and one join with the data). The join order can be rearranged to improve efficiency. Most of the

time there will be far more data than metadata, so the join with the data should be delayed as

long as possible. The metadata candidate lists should be joined first to find out which

combinations of metadata match the perspective. The resulting combinations are then joined with

42

the data. We call this join algorithm a Metadata Association Join. Pseudo code for this algorithm

is shown in Figure 20. The input of the function is the list of data nodes and the array of

metadata fragments. The output of the function is the remaining data nodes that match the

perspective.

The essential extension we made to TAX is the meta edge in the pattern tree. We showed

how to use it to capture the key functions we need in our framework (get the metadata values,

and filter the data with metadata conditions). This may not be a complete set of functions that we

need, so MetaTAX also may not be a complete extension either. As mentioned in Section 3.3.8,

we still don’t have a comprehensive set of MetaXQuery extensions yet and it’s also not our

purpose to do so. So it would be premature to claim that MetaTAX is a comprehensive extension

of TAX. We have to have the complete set of MetaXQuery functions in order to give a complete

set of MetaTAX extensions. But we have shown here the approach to convert these key functions

into MetaTAX operators, and readers should be able to use the same approach for other possible

functions as well.

4.3 METATAX IN PHYSICAL LEVEL

The meta edge in MetaTAX works at the logical data model level and needs to be

converted to operators at the physical level to run on the database. There could be several

different conversion strategies depending on the physical representation of data and metadata.

One strategy is to store metadata by adding a special metadata child to each data element. The

metadata child is the root of the metadata tree for that element. Implementing the meta axis is

then straightforward: the meta edge would be converted to a pc edge in the pattern tree along

with a constraint to ensure that the metadata child is chosen. The special metadata elements must

be specially distinguished to avoid conflicts with pre-existing data elements, e.g., as <&meta>

elements (“&meta” is not a legal element name in XML). While the strategy of using special

children is straightforward and easy to understand it precludes the same piece of metadata from

being shared by two or more data nodes.

43

 <book>
 <meta>
 <security>
 <user>Joe</user>
 </security>
 </meta>
 <content>……</content>
</book>

(a) Metadata embedded as the
child of the element

<book metaRef=”1”>
<content>……</content>
</book>

<meta metaID=”1”>
 <security>
 <user>Joe</user>
 </security>
</meta>

(b) Metadata in a separate document and match by
MetaID/MetaRef

Data Document Metadata Document

Figure 21 Different strategies of physical representation

An alternative strategy is to store the metadata in a separate document and use ID and

IDREF attributes to join data to metadata. The advantage of this strategy is that the same piece of

metadata can be shared by multiple data elements. Another benefit is that data and metadata are

naturally separated into different scopes. The disadvantage is that the join process could

potentially be very expensive. If this strategy is used, it requires a very different implementation

from the first one. An example is depicted in Figure 22. To evaluate the

filterByMetadataValues function using this strategy, we first take the product of the book

nodes and the metadata fragments (suppose the book nodes on the left) and then apply a left

semi-join using the pattern tree above. The result is the list of the book nodes that satisfies the

metadata condition specified in the pattern tree.

$1

$2.name = books &

$3.name = book &

$4.name = meta &

$3.metaRef = $4.metaID

$5.name = security &

$5.content = Joe
$2

$3

$4

ad

pc

ad

$5

pc

Figure 22 Sample pattern tree for the execution of meta axis

44

CHAPTER FIVE

 IN-MEMORY AND PERSISTENT IMPLEMENTATIONS

This section describes our prototype implementation of MetaDOM and MetaXQuery. We

first implemented an in-memory version by extending the Apache Xerces2 Java Parser platform

[60]. Since Xerces is only an XML parser without an XQuery processor, we applied the certify,

sanitize, and group functions on the in-memory DOM model directly. We then shifted into a full-

fledged, persistent XML data store with XQuery support, namely eXist. Since it’s both a

persistent native XML database and has a built-in XQuery processor, it’s much better to build

our system on top of eXist. So in this chapter, we first briefly describe our in-memory

implementation using Xerces and then concentrate on the details of the persistent version.

5.1 IN-MEMORY MODEL SYSTEM ARCHITECTURE

The architecture of the in-memory prototype is shown in Figure 23. Creating a

MetaDOM begins with parsing the data and metadata document. The metadata is assumed to be

formatted in XML and associated with a data element by adding a “metaRef” attribute in the

data element that points to the metadata with the specified “metaId”. The data and metadata

documents are separately parsed with a traditional DOM parser. Afterwards, the two DOMs are

combined to create a MetaDOM. MetaDOM is implemented by extending DOM’s Node class

with a meta property and meta accessor methods. When the MetaDOM has been set up, calling

the meta accessor of a node would directly return its metadata fragment. If there is no metadata,

this extension is completely transparent, so this architecture is upwards-compatible with DOM.

45

parse, optimize

serialize

output

input

Metadata
XML

document

MetaDOM
MetaDOM
Builder

MetaXQuery
Processor

MetaXQuery
Statements

New
MetaDOM

Data XML
document

Document
Object
Model

Document
Object
Model input

XML
Parser

XML
Parser

MetaXQuery
Compiler

Compiled
Expression

Figure 23 MetaDOM and MetaXQuery in-memory implementation architecture

After the MetaDOM instance is created, MetaXQuery queries or other operations can be

evaluated on the instance. The result of a query is a new MetaDOM, which can be serialized into

XML documents if desired.

5.2 PERSISTENT MODEL SYSTEM ARCHITECTURE

The architecture of the persistent prototype is shown in Figure 24.

Serialize

Shred

Metadata XML

document

Data XML

document

MetaDOM

database

MetaDOM & Metadata

Indexes

MetaXQuery

Compiler

MetaXQuery

Processor

Compiled

Expressions

New

MetaDOM

MetaXQuery

Statements

Figure 24 MetaDOM and MetaXQuery persistent implementation architecture

46

The key difference from the in-memory model is that the data and metadata documents

are first shredded into the database and additional data structures like the indexes are built at the

same time to facilitate queries. The queries are executed against the data model and the index

data structures at the same time instead of the data model alone in the in-memory version. From

now on, we will mostly talk about the persistent version of our implementation.

5.3 IMPLEMENTATION CHALLENGES

The overarching goal of implementing MetaXQuery is reusing existing standards and

technology. For instance, MetaXQuery is upwards-compatible with XQuery, as is MetaDOM

with DOM. Ideally, few changes will have to be made to a native XML DBMS (XDBMS) to

implement MetaXQuery. But there are two key implementation challenges. First, MetaXQuery

introduces data scopes into the data model. In the data model, metadata must be (logically)

separate from the data so that wildcard queries (e.g., a descendent axis) explore only within the

intended scope. Only the meta axis can bridge scopes. Unfortunately, XDBMSs do not support

separate scopes for data. The second important challenge is supporting the filterByPerspective

function. The function applies additional constraints to nodes identified by every path expression

in a query. There is one check that must be performed for each kind of metadata. Additional

levels of metadata add even more constraints. So efficient implementation of

filterByPerspective is critically important to building support for (proscriptive) metadata into an

XDBMS.

5.4 EXECUTION PLANS

The algebra outlined in Section 4.2 to support metadata is relatively straightforward to

implement in a native XML DBMS (XDBMS). XDBMSs store XML documents in a back-end

database or flat file. Usually, one or more indexes are created to improve query evaluation

efficiency. Storing metadata is straightforward since the metadata is also an XML document.

Each chunk of metadata is identified by a “metaID” attribute in the metadata document. An

element in the data document subsequently references a chunk of metadata with a “metaRef”

47

attribute. Typically, many elements will share the same metadata or have no metadata, so the

metadata will be much smaller in size than the data.

Many XDBMS query evaluation engines use a path index to efficiently evaluate a query.

A path index locates nodes for a given path expression, which saves on the (prohibitive) cost of

traversing the data model to find the nodes. The result of the path index lookup is then combined

with other index lookups (e.g., a text or word index) to process additional search conditions in a

query, but in this section we will focus on a path index to illustrate how we plan to incorporate

metadata in query evaluation.

Let’s use the data model in Figure 25 as an example. In the data part of Figure 25, the

path index would map “/books/book” to the list of nodes with ID 2 and 4, as shown in Table 3.

Data Path Node List

/books/book (2, 4)

Table 3 Original XML path index

20142

security

user

Joe

transaction_time

timestamp

begin end

2 5

Metadata Data

1

2 4

3 5

Meta ID: 1

1

books

user

Fred

meta book

book1

book

book2

3

8

9 11

security

user

Joe

transaction_time

timestamp

begin end

6 9

Meta ID: 2

13meta

15 21

Figure 25 An example MetaDOM for indexing

48

We extend the path index with an additional column to record the MetaRef value for a list

of nodes, as shown in Table 4. Figure 25 shows that the metadata chunk with a Meta ID of 1 is

associated with the data node with ID 2.

Data Path Node List Meta Ref

/books/book (2) 1
/books/book (4) 2

Table 4 New XML path index

A perspective includes constraints on the metadata. For instance, a user might query

from a transaction time perspective of 3 (i.e., rollback the database to time 3) and a security of

Joe. Additional indexes are constructed to efficiently search for chunks of metadata that satisfy a

specific constraint. Table 5 shows an index for transaction time metadata, while Table 6

illustrates one for security metadata. The Node ID column identifies the source of the metadata

in the metadata document. Since meta-metadata could be present, each row in the index includes

a Meta-meta Ref column. The data model in Figure 25 has no meta-metadata so that column

contains NULLs.

Time Meta ID Node ID Meta-meta Ref
[2,5] 1 3 NULL
[6,9] 2 15 NULL

Table 5 Level 1 index on transaction time

Now let’s demonstrate the use of the indexes with an example. Suppose we have the

following query: “Find book data that is available to the user Joe and exists in the database at

time 3.” The steps in the query execution plan for this query are shown in Figure 26. The

transaction time index is used to find intervals that include time 3. Similarly the security index is

used to find metadata chunks for the user Joe (Figure 26(a)). The path index is then used to

locate nodes that match the path expression “//book” (Figure 26(b)). The results of the index

lookups are joined on the Meta ID column (the join order is determined during query

optimization) generating a result (Figure 26(c)).

49

Security Meta ID Node ID Meta-meta Ref
Joe 1 9 NULL
Fred 1 11 NULL
Joe 2 21 NULL

Table 6 Level 1 index on security

 Meta ID Meta ID

Transaction Time 3 User Joe

Meta ID Node ID

1 3

Meta ID Node ID

1 9

2 21

Meta ID Node ID

1 2

2 4

Path index of data

(a) Joining metadata conditions (b) Joining with data index (c) Result

Node ID

2

Figure 26 Use of indexes to solve the example query

5.5 IMPLEMENTATION IN EXIST

eXist [44] is an open-source, native XML DBMS. We chose to modify eXist both

because the source is available, and also eXist outperformed other systems in our benchmark

system [36].

5.5.1 Storage

eXist stores an XML document by adding it to a collection, which can hold a set of XML

documents. A document is serialized and stored in a paged, data file when it is added to the

collection. We use a “MetaDocRef” processing instruction in the data document to identify its

metadata. When the data document is parsed, the metadata document is also parsed and added to

a separate metadata collection. Information about the data and metadata is also placed into the

following indexes [44].

 collections.dbx – This index maps a collection name (several XML documents can

be stored in a single collection) to the Collection object.

 dom.dbx – This index maps the unique node identifiers to a page location in the

serialized, stored set of documents in the collection where the raw data about the node is

50

located.

 elements.dbx – An index that maps a element and attribute names to a list of unique

node identifiers that correspond to all of the elements or attributes of that name.

 words.dbx – Maps a word or phrase to the unique node identifiers of the elements or

attributes that contain the string in a value or as part of the text content.

 Several metadata indexes – As discussed in the previous section there is an index for

each kind of metadata, e.g., a security index. The index is built when a metadata

document is parsed and stored. We used eXist’s B+-tree index classes for each metadata

index rather than using a specialized index, e.g., a temporal index.

5.5.2 Meta Axis

The implementation of meta axis is straightforward. We had to modify the XQuery parser

to recognize the meta:: axis. The XQuery parser in eXist is created by ANTLR (ANother Tool

for Language Recognition), so it is easy to modify. The parsing rules in eXist closely follow the

EBNF defined in the W3C XQuery standard. We extended the axisStep rule to accept a meta::

axis step. We also added a class to evaluate the step, and added to the abstract syntax tree so that

the new class would be invoked when the meta axis was used.

5.5.3 Perspective

In order to help the users access and query the metadata, we extended eXist with the

filterByPerspective function. Essentially the function implements the query evaluation plan

discussed in Section 4.2.

51

CHAPTER SIX

 BENCHMARKING XML QUERY PROCESSORS

Throughout the history of data management, benchmarks have played a critical role in

helping to assess new techniques, compare existing systems, and gain a better understanding of

query evaluation efficiency and tradeoffs. Benchmarking XML-based systems will help to assess

and compare the abilities of XML query processing tools.

A benchmark is a quantitative comparison of system performance. The system being

measured could be a hardware component, a software package, or a combination of both. The

performance can be measured in a variety of metrics, from CPU cycles to memory usage.

Various benchmarks have been proposed to compare different systems, and components within

systems. Benchmarks help users to evaluate systems, allow customers to choose the most

desirable product, and enable vendors to claim advantages for their systems. The range of

benchmarks includes hardware benchmarks (e.g., SPEC CPU [69] and WinBench [73]) operating

system benchmarks (e.g., HBench-OS [66]), programming language benchmarks, web server

benchmarks, and database management system benchmarks (e.g., TPC [71]).

Benchmarks can be classified as either generic or application-specific. A generic

benchmark measures general system performance, independent of an application. An

application-specific benchmark on the other hand is tailored to synthesize a workload for a

particular application domain. Generic benchmarks are useful because of the prohibitive cost of

implementing and measuring a specific application on many different systems. A limitation of

generic benchmarks though, is that no single metric can measure the performance of systems on

all applications. Depending on the application domain, the performance of a system could vary

enormously and systems designed for a specialized domain may have weaker performance in

other domains.

At this early stage of XML development, there’s still no commonly agreed standard of

XML application scenarios. So we have built a generic benchmark platform. The benchmark

52

focuses on measuring the cost of query processing. XPath and XQueries are evaluated against a

tree-like data model. Queries typically traverse part of the tree-like data model. The efficiency of

the tree-traversal has a major impact on the cost of query processing. The tree can vary in depth,

density, size, and the kind of information in each node. We designed an XML document

generator which generates XML documents that conform to several factors which control the

shape and size of the tree. By varying only one of the control factors (e.g., tree depth) and

keeping the other factors constant the benchmark is able to isolate the impact of that factor on

query performance. The benchmark also includes a suite of query templates that can be

instantiated to produce a set of benchmark queries. Overall, the benchmark is designed to assess

the impact of trees of different sizes and shapes on query performance. This will help query

engine developers understand and evaluate implementation alternatives, and also help users to

decide which query engine best fits their needs.

6.1 HISTORY OF BENCHMARKS

In the area of database benchmarks, the TPC family of benchmarks is the most well-

known and widely used. The Transaction Processing Performance Council (TPC) created a series

of benchmarks beginning in 1988. The earliest were TPC-A and TPC-B. The TPC-A benchmark

primarily focuses on the online transaction processing (OLTP) environments emphasizing

update-intensive database services [71]. The metrics used in TPC-A are throughput measured as

transactions per second (tps), and the associated price-per-tps. The TPC-B benchmark uses the

same metrics as TCP-A, but for a different environment, one that does not require online

processing.

The Internet, and in particular the web, is an integral part of many businesses.

Consequently, benchmarks of Internet and web servers are becoming more important and widely

discussed. Several benchmarks have been proposed to measure the performance of servers, such

as SPECWeb99 [70], httpperf [47], WebBench [72], InetMonitor [67], and WebStone [68].

There have been several benchmarks proposed for evaluating the performance of XML

data management systems. XMark [53] is a benchmark for XML data stores. The benchmark

53

consists of an Internet auction application scenario and twenty XQuery challenges designed to

cover the essentials of XML query processing. XOO7 [49] is an XML version of the OO7

benchmark [10], which is a benchmark for OODBMSs. The OO7 schema and instances are

mapped into a Document Type Definition (DTD) and the corresponding XML data sets. Then

the eight OO7 queries are translated into three respective languages for query processing engines:

Lore, Kweelt, and an ORDBMS. XMach-1 [6] developed at the University of Leipzig, Germany,

is based on a web application that consists of text documents, schema-less data, and structured

data. XMach-1 differs from other benchmarks in this area insofar as it is a multi-user benchmark,

and it is based on a web-oriented usage scenario of XML data, not just the data store. The

performance metrics that XMach-1 evaluates are throughput and cost effectiveness, so it’s closer

to the metrics that TPC-A and TPC-B use. The Michigan benchmark [52] is a micro-benchmark

for XML data management systems. A micro-benchmark targets the performance of basic query

operations such as selections, joins, and aggregations. The data set of the Michigan benchmark is

generated by a synthetic XML generator, rather than from a particular application scenario.

The primary difference between our benchmark and all the above benchmarks is that we

are most interested in how the basic properties of an XML document and XPath query affect the

performance of XPath query execution. So we not only evaluate the performance of XPath

queries in persistent XML data management systems, but also of in-memory XPath query

processors. This difference also makes our definition of “basic query operations” different

because all the previous benchmarks start from a database perspective. While they refer to the

basic operations in database queries such as selection, projection, join, and aggregation, we focus

on the basic properties of an XML document and the path traversal model of XPath.

 In most benchmarks, each test case consists of a set of fixed parameters that are chosen

to test the performance of the system under a particular (usually typical) configuration. We took

a different approach to design the test cases. In each of our test case, we allow one parameter to

vary. The purpose is to enable us to study how this single factor affects the query performance.

So our test cases are tendency tests rather than fixed value tests.

54

Another important difference is that our benchmark is not domain-specific. XMark,

XOO7, and XMach-1 are domain-specific benchmarks. Our benchmark is similar to Michigan’s

micro-benchmark in the sense that we are studying the atomic properties that affect general cases

of XPath query execution. We use a synthetic XML document generator rather than generating

documents that conform to an application specific XML schema.

6.2 Benchmark Data Set - XML Document Generator

This section describes the XML document generator. The generator is used to create each

of the data sets in this benchmark. Since the focus of this dissertation is on benchmarking the

performance of XPath evaluation engines, we will describe the document generator in terms of

the kinds of “trees” that are induced by the generated documents. An XML document is parsed

into a tree-like data model prior to evaluation of an XPath query. Changing one or more factors

that control the document generator has the effect of creating different kinds of trees. For

example, when the number of nested levels in the XML document is increased, the effect that is

achieved is an increase in the depth of the tree created when that document is parsed. From this

point onwards in this dissertation, we will tend to use the terms “document” and “tree”

interchangeably.

Some benchmarks focus on including as much natural language as possible when

generating documents for testing, e.g., the Michigan benchmark [52] and XMach-1 [6]. Our

approach is different. We generate documents with randomly generated text values and selected

element names. The reason is that XML query evaluation is based on data syntax rather than

semantics. The XML document generator has a number of control factors that manipulate the

shape and content of the tree data model. For example our benchmark provides a control factor

for the length of text values. The document generator randomly generates text values of the

specified length. The choice of these control factors is critical to the benchmark because each

benchmark test depends on the control factors as described further in Section 6.2.1. We have

carefully chosen a set of factors that we think are important properties of an XML document and

hence, may have a significant impact on the performance of XPath queries. These factors

55

represent the most common and influential properties of an XML document in the context of

XPath query evaluation. We also chose control factors that are basic and do not depend on other

factors, or combinations of factors. With these control factors, we are able to precisely control

the document generation and isolate the impact of an individual factor on query evaluation.

6.2.1 Control Factors

There are eleven control factors in all. They are listed in Table 7. The factors are divided

into two groups. The first group, the tree shape group, controls the general shape of the XML

tree model. The second group, the tree data group, consists of factors that are more relevant to

the content of the tree, such as the number of attributes, and length of text values. Though the

number of attributes also affects the shape of the tree, since attribute nodes are on a special axis,

we decided to place that control factor in the tree data group. The factors are described in more

detail below.
Group Control factors

Tree shape Number of root children, Depth, Bushiness, Density.

Tree data Number of attributes, Magic level, Selectivity, Magic position, Magic
length, Text length, Random name.

Table 7 XML document generator control factors

The generated document has a single root element named “Root”. The number of

elements in the level below the root is controlled by the root children factor. Specifying a large

number of root children will force the tree to broaden quickly. Since this is the first level

containing real data, we call it level one. Names of elements in level one begin with the letter ‘A’.

Below level one, the number of children for a node is specified by the bushiness control. Note

that the bushiness does not apply to the first level since the root children are a special case. In

general, element names at level n begin with the nth letter in alphabetical order. The reason for

using this naming scheme is that it allows us to construct XPath queries that descend to a desired

level. For instance to descend to level five we might use the query ‘//E’. Each level also has

some embedded magic elements. A magic element has a fixed suffix of ‘Magic’ in order to

distinguish it from the non-magic elements at that level. The selectivity factor controls the

56

percentage of magic elements. By setting a low selectivity, only a small percentage of the

elements in a level will be magic. A query that locates these elements, e.g., ‘//Emagic’, will

generate a small query result. Figure 27 depicts how some of the factors impact the shape and

content of the generated tree. The number of root children factor controls the level below the root.

The bushiness controls the number of children of other interior nodes. The depth is the total

number of levels. In the figure, some nodes at the leaf level are magic.

Number of
root

children

Bushiness

Depth

Magic

A A A …

… …

C …

Root

B B B

C CMagicC

Figure 27 XML document generator model

The following list gives a detailed description of the eleven control factors in the XML

document generator.

1) Number of root children — The number of root children controls the number of sub-

trees under the root element node. A tree with only a few root children will have only a few

nodes in level one, and by extension only a few nodes in the top few levels. By increasing the

number of root children, the tree will acquire immediate breadth at the top.

2) Depth — The depth is the maximum number of levels in the tree, or the maximum

depth of sub-element nesting in the generated document. The count starts from the level beneath

the root, so the root is at level 0, the level with elements named ‘A’ is at level 1, etc.

57

3) Bushiness — The bushiness is the number of children of each element node, that is,

the number of sub-elements in each element in the generated document. The parameter is used to

control the width of the generated tree.

4) Number of attributes — Each element can have attributes, this parameter controls how

many.

5) Density — Using the first three control factors (number of root children, depth, and

bushiness), the total number of elements in the tree can be pre-determined for a complete tree.

But we would like some trees to be sparse. The density is the percentage of nodes generated

relative to the number of nodes in a complete tree. For instance a density of 50% will generate a

tree only half as full as a complete tree of the same depth, bushiness, and root children.

6) Magic level — The magic level is the level in the tree at which magic nodes appear.

Distinguishing between magic and normal nodes controls the size of a query result. For instance,

setting the magic level to 5 will generate some ‘EMagic’ nodes (how many depends on the

selectivity). By setting the level to 0 magic nodes are inserted at all levels.

7) Selectivity — The selectivity is the percentage of magic nodes at a level, specified by

the magic level control factor. A selectivity of 20 means that 20% of the nodes (randomly

selected) at the magic level will be magic nodes.

8) Magic Positions — XPath queries can locate not only the element nodes, but also

attribute and text nodes. This control factor specifies where magic nodes are positioned. There

are four options: 1) element name, 2) attribute name, 3) attribute value, and 4) the text.

9) Magic length — By default, element and attribute names are a single character in

length. Magic nodes have the string “Magic” appended. The magic length control factor adds a

suffix of the specified length to the magic nodes. Since the magic nodes are the ones queries

often select, this parameter can help to evaluate the impact of matching long vs. short strings in a

query.

10) Text length — This parameter controls the length of the text nodes in the document.

The length can range from 0, which means no text nodes to any selected length.

58

11) Random name — By default, all of the non-magic elements in a level have the same

name. The random name control factor increases the diversity of element names. When this

control factor is selected, a random number is appended to the end of its regular name, so nodes

will have different names (which impacts element indexes).

6.3 Benchmark Tests

There are many control factors in the XML document generator, each with a wide range

of possible settings. Exhaustively testing all combinations is infeasible, so in this section we

elaborate a small, but representative suite of test cases. Each test case in the suite is intended to

gauge the impact of a control factor or factors on the performance of XPath queries. The test is

based on a hypothesis about the impact of that control factor. The experimental methodology is

to vary the single, control factor while keeping the others constant so that we can isolate the

impact of this single factor and determine how it affects the performance of XPath queries in

various implementations. Our tests are tendency tests unlike some other XML benchmarks [6]

[49] [53]. The advantage of tendency tests is that it becomes possible to compare how well a

system can handle a particular property of the XML document or the XPath query. For example,

in an application scenario where the depth of the XML tree model is an important varying factor,

not only can we tell the performance of a query engine in dealing with trees of a particular depth,

but also which query engine scales well as the tree depth increases. In many cases, this

information is much more important than just a single data point.

6.3.1 Overview of Test Cases

The benchmark has fifteen test cases divided into three groups. Each of these test cases

isolates a single property of an XML document or XPath query and evaluates the impact of this

property on the performance of XPath query processing. The first two groups deal with the how

different XML documents impact the performance of XPath queries. Among them, the tree

shape group focuses on the aspects that change the shape of a tree structure, such as tree depth

and width, while the tree data group focuses on the aspects that relates to the content of an XML

document, such as the magic level, selectivity, and text length. These two groups are similar to

59

the groups of control factors for the benchmark’s XML document generator. The third group, the

XPath property group, focuses on the different location paths and functions that XPath provides.

The name and description of each test is listed in Table 8, and the values of the control factors in

the test case are listed in Table 9. In Table 8 the Test Case column lists a short, descriptive name

for each test. The Description column provides a short description of the test. The remainder of

this section describes each test case in more detail. In Table 9 the explicit settings for the control

factors are given. The “Vary” value stands for the control factor that varies.

There is one test case for each control factor, except for the density. The reason is that

navigating an incomplete tree is similar to navigating a fraction of a complete tree. By using

magic nodes, we are able to control how large a fraction of the tree is traversed in a query so the

density in all of the test cases is 100%. Although there are no tests currently in the benchmark

that vary the density, we include density as a control factor for future extensions. In particular

being able to set the density to a very low percentage is useful for creating very deep trees

because deep, complete trees can exceed memory capacity.

6.3.2 Descriptions of the Test Cases

The following sections describe each test case in more detail.

6.3.2.1 Fat, flat tree (text value) test

The first test case evaluates the impact of the number of root children on the performance

of XPath queries. This test constructs trees with a varying number of root children and queries

the root children. This kind of XML document and query are fairly common in real-world

applications, for instance in a phone book there will likely be many people listed, but each listing

has a very shallow tree. A typical document may be a long list of elements similar to the one

depicted in Figure 28.

60

 <Person>
 <Name>Joe Smith</Name>
 <Address>P.O. Box 111</Address>
 <Phone>888-8888</Phone>
</Person>

Figure 28 Sample XML fragment

Test Case Description

Tree Shape Group
Fat, flat tree (text
value)

Varies the number of root children to create trees with “broad
shoulders”, queries access the text values in the leaves of the tree.

Fat, flat tree
(attribute value)

Varies the number of root children to create trees with “broad
shoulders”, queries access the attribute values in the leaf
elements.

Tree depth Varies the depth of the XML document tree.
Tree width Varies the width of the tree.
Tree Data Group

Magic level Varies the level at which magic nodes are placed, with queries
descending through the magic nodes.

Selectivity Varies the percentage of magic nodes, controlling how many
nodes are selected by a query.

Text length Varies the length of text values in the document.

Random name Runs the same XPath query on documents with random element
names vs. fixed element names.

Number of attributes
Varies the number of attributes in each element, with queries
selecting the attributes.

Magic length Varies the length of the magic suffix, creating elements with long
names.

Magic position
Varies the position of magic nodes (element name, attribute name,
attribute value, and text/element value), queries are tailored to
locate the magic.

XPath Property Group
XPath query type Tests XPath queries on different axes.
Short-circuit
evaluation

Tests whether the query engines have the capability of short-
circuit evaluation in predicates.

Steps vs. predicates Trades predicates for steps (evaluating efficiency of steps vs.
predicates).

String function Tests efficiency of various XPath string functions.

Table 8 Benchmark tests and descriptions

61

Root Depth Bush-
iness Attrs. Magic

Level
Select-
ivity

Magic
Position

Magic
Len.

Text
Len.

Random
Name XPath

Tree Shape Group
Fat, flat tree (text value)
Vary 2 5 0 1 1% T 3 10 No Desc.
Fat, flat tree (attribute value) test
Vary 1 1 5 1 1% AV 10 0 No Desc.
Tree depth test
100 Vary 4 0 Vary 10% E 0 0 No Child
Tree width test
100 4 Vary 0 4 10% E 0 0 No Child
Tree Data Group
Magic level test
100 7 4 0 Vary 10% E 0 0 No Desc.
Selectivity test
100 7 4 0 7 Vary E 0 0 No Desc.
Text length test
100 5 4 0 5 10% T 1 Vary No Child
Random name test
100 7 4 0 All 30% E 0 0 Vary Child
Number of attributes test
100 5 4 0 5 10% AN 0 0 No Desc.
Magic length test
100 5 4 0 5 10% E Vary 0 No Child
Magic position test
100 5 4 5 5 10% Vary 0 20 No Child
XPath Property Group
XPath query type test
100 5 4 0 4 30% E 0 0 No Vary
Short-circuit evaluation test
100 5 4 0 5 30% E 0 0 No Vary
Steps vs. Predicates test
100 5 4 0 All 30% E 0 0 No Vary
String function test
100 5 4 0 5 30% T 5 100 No Pred.

Abbreviations:
Magic position: E (element name), AN (attribute name), AV (attribute value), T (text).
XPath query: Desc. (descendant axis), Child (child axis), Pred. (predicate).

Table 9 Benchmark tests parameters

62

Queries on these kinds of documents often search for a very small amount of data (one

person typically) so the selectivity is very low. To model the anticipated query behaviour this

benchmark test has a selectivity of just 1%. The depth and bushiness parameters are also very

small. Since the query type is usually searching directly for a person’s name, in XPath, we’ll use

the descendant axis. The number of root children is the varying factor. The test increases it from

a small to a large value as depicted in Figure 29, the number of A elements varies. The number of

root children are 1000, 5000, 10000, 50000, and 100000.

 Root

A A A A A … … A

B B …… …… B B ……

Root

Figure 29 Fat, flat tree tests

6.3.2.2 Fat, flat tree (attribute value) test

Another common way to store long lists of elements is to use attributes, rather than

subelements. An example is given below.

<Person Name=“Joe Smith” Address=“P.O. Box 1111” Phone=“888-8888” />

The experiment settings are otherwise similar to the previous test. In particular, the

varying factor is the number of root children.

6.3.2.3 Tree depth test

This test tests the ability of an XPath query engine to scale as tree depth increases. Some

XML documents may have a very flat structure, like in the previous two tests, while some may

be deeply nested, resulting in a very deep tree. This test increases the depth of the tree from 1 to

a maximum of 7, as depicted in Figure 30. It keeps constant all of the other factors, except the

63

magic level. The magic level is kept at the leaf level. The depth values included in this test case

are 1, 3, 5, and 7.

… …

A A

B … …B B B

C C

D D

… …

A

Root

A

Root

A A

Figure 30 Tree depth test

6.3.2.4 Tree width test

This test tests the ability of an XPath query engine to scale as tree width increases. The

bushiness varies while the other control factors are kept constant in this test. Figure 31 shows

that a tree with two children is made bushier by increasing the number of children for each node

while keeping the depth the same. Since the number of root children is also kept constant the

total size of the tree increases exponentially as the bushiness increases linearly. The bushiness

values included in this test case are 1, 5, 10, 15, and 20.

… …

… … … … B

A A

… …

A A

B

C C … … … …

Root

B B

C C C

Root

A A

B

Figure 31 Tree width test

64

6.3.2.5 Magic level test

In this test, we increase the level at which magic nodes appear in a tree so that the queries

have to descend further. The goal of the test is to determine how increasing the search space

impacts query performance. Figure 32 sketches the general idea of placing the magic nodes at

different levels. The magic nodes appear high in the tree initially and gradually are pushed to

deeper levels in the tree. Queries in this test will descend through the magic nodes to the leaves.

Only 10% of the nodes in the magic level are magic nodes. For example, when the magic level is

1, the first step of the query “//Amagic//G” searches all the nodes in the first level and the

second step searches only 10% of the subtrees beneath the magic nodes (when the selectivity is

10%). When the magic level is 3, the first step of the query “//Cmagic//G” would have to search

all the nodes in the top three levels and the second step still only searches 10% of the subtrees

under level 3; and finally when the magic level is at the leaf, the query “//Gmagic” would have

to search the entire tree. In general, the search space of queries will increase in size as the magic

level is pushed deeper in the tree, while keeping the size of the tree constant and the size of the

query result, thereby ensuring that the performance of the XPath queries can be compared fairly

(they won’t be skewed by the varying tree or result sizes). The depth of all the trees in this test

case is 7, and we use 1, 3, 5, and 7 as the magic level parameters.

… …

B

C

D

A … … A

B

CMagic

D

… … A

BMagic

C

D

… …

… …

… …

… …

… …

… …

… …

… …

… …

Root

AMagic

Root

A

Root

A

Figure 32 Magic level test

65

6.3.2.6 Selectivity test

The selectivity test increases the selectivity (the percentage of magic nodes). Queries in

the test fetch the magic nodes, so as the selectivity increases, queries will have to fetch larger and

larger result sets. The test generates a large tree with the magic level set to be the leaf level. The

varying factor is the selectivity. The selectivity test measures how well a query evaluation engine

scales as the result size gets larger (and all else remains the same). The values of selectivity we

choose in this test case are 10%, 20%, 30%, and 40%.

6.3.2.7 Text length test

Whether an XML document has text, the length of the text fragments may be an

important factor in query performance. In this test, we increase the length of the text values to

gauge the effect that text length has on performance. Queries retrieve the text content of the

document. The text length is increased in all levels, including the magic level. The text length

values in this test case are 0, 10, 100, 500, and 1000.

6.3.2.8 Random name test

Some XPath query engines might build a path index or Dataguide [25]. One way to

uncover this optimization technique is to randomize the element names within a level. Figure 33

shows the effect of turning on the random name control factor in the document generation.

Dataguides will be more costly to construct with random element names, since there are far more

“different” paths in the document. We set the magic level to all levels in the tree and use queries

that traverse the “magic” paths as follows: “/Amagic/Bmagic/Cmagic”.

66

… … B BMagic

A A

… …

A20 A38

BMagic

C C … … C26 … …

Fixed element names Random element names

Root

A

Root

A10

B01

C15

Figure 33 Random name test

6.3.2.9 XPath query type test

Different XPath queries will sometimes retrieve the same result. In this test we create

documents that will return the same result on a select set of different queries. This enables us to

determine differences in query construction. The different XPath queries are listed below.

 Using the child axis - /A/B/C/Dmagic

 Using the descendant axis - //Dmagic

 Using the ancestor axis - //D/ancestor::A/B/C/Dmagic, it’s possible that the result set

is smaller than the magic set, but generally not much

 Using predicates - //Dmagic[./E]

 Using the union operator - //Dmagic | //Dmagic[./E]

 Using the preceding axis - //Dmagic[./preceding::D], it’s also possible that the

result set is smaller than the magic set

6.3.2.10 Short-circuit evaluation test

This test determines if an XPath package uses short-circuit evaluation of predicates.

When a query has multiple predicates, there is an implicit logical AND between each predicate.

In short-circuit evaluation, if a predicate fails then there is no need to evaluate the remaining

predicates. Predicates are side-effect free, so short-circuit evaluation should be used by every

package. The test consists of three “atomic” queries to determine the cost of one or two

67

predicates, and two combined queries that might benefit from short-circuit evaluation. The three

atomic queries are listed below (following page). Note that all of the queries are the “same” in

the sense that they return exactly the same result set.

• /A/B/C/D[./Emagic]

• /A/B/C/D[./following::*/B/C/D/Emagic]

• /A/B/C/D[./ancestor::A][../..//Emagic]

The two combined queries are as follows.

• /A/B/C/D[./Emagic][./following::*/B/C/D/Emagic]

• /A/B/C/D[./Emagic][./following::*/B/C/D/Emagic][./ancestor::A]

 [../..//Emagic]

6.3.2.11 Steps vs. Predicates test

This test explores the cost of querying by steps vs. the cost of querying by predicates. All

queries essentially explore the same portion of the tree, which consists of all the paths from the

root to a leaf that use only magic nodes. In order to do this, the magic nodes should appear in all

levels, and the XPath queries include the following.

• /Root/Amagic/Bmagic/Cmagic/Dmagic/Emagic

• /Root/Amagic/Bmagic/Cmagic/Dmagic[./Emagic]

• /Root/Amagic/Bmagic/Cmagic[./Dmagic[./Emagic]]

• /Root/Amagic/Bmagic[./Cmagic[./Dmagic[./Emagic]]]

• /Root/Amagic[./Bmagic[./Cmagic[./Dmagic[./Emagic]]]]

Although the size of each result set could be different, the portion of the tree explored by

each query is similar.

6.3.2.12 Number of attributes test

This test examines the impact of adding more attributes in each magic element on the

performance of the XPath query engines. The numbers of attributes in each magic element are 1,

3, 6, or 10. Each element will have the same number of attributes, and benchmark queries in this

test will access all of the attributes among the magic elements.

68

6.3.2.13 Magic length test

A node test matches the name of the node against a string in the query. Several such tests

are performed in many queries, so the length of the name may have an impact on the cost of

queries. This test measures that impact by choosing the length of the name to be 0, 10, 50, 100,

or 500. Magic nodes are added to every level and queries decscend through each level along the

magic nodes.

6.3.2.14 Magic position test

This test compares how different query engines behave when the same information is

placed into different positions in the document. This can yield insights into where data should be

placed to improve performance. The possible positions of magic nodes include element name,

attribute name, attribute value, and text/element value. Benchmark queries for this test will

locate the magic information in each position.

6.3.2.15 String functions test

String processing and matching functions play an important role in many queries. In this

test, the performance of queries with different string functions is measured to see how well each

XPath query engine does string processing. The document remains the same for every case in

this test, but the queries differ. The following queries test XPath’s string functions.

 Using full string match: //D[text()=‘Dmagic’]

 Using the “starts-with” function: //D[starts-with(text(), ‘Dmagic’)]

 Using the “substring” function: //D[substring(text(), 2, 5)=‘magic’]

 Using the “contains” function: //D[contains(text(), ‘magic’)]

 Using the “substring-after” function:

//D[substring-after(text(),‘D’)= ‘magic’]

 Using the “string-length” function: //D[string-length(text())=6]

6.4 BENCHMARK RESULTS AND ANALYSIS

In this Section, we present a general overview and analysis of the benchmark tests we did

and what they tell us about the factors that impact the performance of XML query processors.

69

6.4.1 Benchmark Packages

Many XPath query packages are available in the market and as research prototypes. We

chose several popular query packages to evaluate against the benchmark. The packages fall into

two broad categories: 1) the in-memory packages and 2) the XML database packages. In-

memory packages can use either SAX or DOM parsing to construct a tree-like data model (a

DOM) in memory. After parsing completes, XPath queries are evaluated on the constructed data

model. The XML database packages parse and save an XML document in a persistent data store.

XPath queries are then run on the persistent data store, i.e., as database queries. XML database

packages are much more likely to create secondary data structures like indexes or dataguides to

improve query performance. The in-memory packages can be further divided by language into

packages that use Java vs. C++. Based on the above categorizations, we set out to find the

products that are commonly used and representative of the technology for each category. The

XPath packages that we chose are summarized in the following list.

• Java packages

o Saxon – Saxon [41] is an open-source XSLT and XQuery processor written by

Michael H. Kay. The XML document parser of Saxon is a slightly improved version of

the Ælfred from Microstar, so it’s based on the SAX API.

o Xalan-Java – Xalan-Java [58] is an open-source XSLT processor for transforming

XML documents into HTML, text, or other XML document types developed by the

Apache XML project. It fully implements XSLT version 1.0 and XPath version 1.0.

o DOM4j – DOM4j [62] is another open-source framework for processing XML. It is

integrated with XPath and fully supports DOM, SAX, JAXP and the Java platform such

as Java 2 Collections. DOM4j works with any existing SAX parser via JAXP, and/or

DOM implementation. So in our benchmark, we’ll use both the default SAX parser of

DOM4j and a DOM parser, just like what we do for Jaxen.

o Jaxen – Jaxen [63] is an open-source Java XPath Engine from the Werken Company.

It’s a universal object model walker, capable of evaluating XPath expressions across

70

multiple models. Jaxen is based on SAXPath, which is an event-based model for parsing

XPath expressions. Currently, it has implemented the XPath engine for DOM4j and

JDOM, two popular and convenient object models for representing XML documents. Of

course, W3C DOM is also supported.

• C++ packages

o MSXML – Microsoft® XML Core Services (MSXML) [65] is a collection of tools

that helps customers to build high-performance XML-based applications. It fully supports

XPath version 1.0 in its XSLT processor.

o Xalan-C++ – Xalan-C++ [59] is just the C++ version of Xalan-Java.

• XML database packages

o eXist – eXist [44] is an open-source XML native database featuring efficient, index-

based XPath query processing. The database is lightweight, completely written in Java,

and can be run as either a stand-alone server process, inside a servlet, or directly

embedded into an application. Its Java API completely comforms to the XML:DB API,

which provides a common interface to access XML database services.

o Xindice – Xindice [61] is another open-source XML product developed by the

Apache XML project. It is also a native XML database using XPath as its query language.

Xindice also implements the XML:DB API.

o COR – COR is the name of a leading commercial database with extensions to support

XML by shredding a document into a back-end object-relational database. Due to a

licensing agreement for the commercial package, we cannot disclose the actual names of

the package, so we will just refer to it as COR.

6.4.2 Results and Analysis

This section provides an analysis of trends that are present across the many individual

tests in the benchmark. Where possible, we also draw infererences about the behavior of the

various packages.

71

Saxon is generally the fastest Java package that we tested. Saxon uses an innovative tree

structure [42], a subset of the DOM data model to represent an XML document, which

contributes to its good performance. The nodes in this tree structure are represented as integer

arrays rather than as objects. Saxon does not provide a complete DOM interface. For instance,

DOM update is not supported. Though we focused exclusively on query performance, and Saxon

supports all of the benchmark queries, the lack of full DOM support indirectly enhances Saxon’s

performance because it reduces memory consumption. So for read only applications in Java,

Saxon is a very good choice.

In the C++ group, MSXML performs much better in all cases than Xalan-C++, and also

much better than all the Java packages. MSXML however is only supported on a Windows

platform (currently). But for Windows-based applications that need fast performance, MSXML

is the best choice among the packages we tested.

In the XML database group, eXist is a good choice because of its excellent performance.

However, eXist does not even support all of the queries in XPath. Some simplifications were

made in the design of eXist leading to improved performance at the cost of full functionality, just

like Saxon. eXist fails to handle some uncommon axes and string functions. Xindice, on the

other hand, provides very stable and uniform performance in all test cases, although it’s slower

than eXist.

Increasing the depth or the nesting level of the XML document comes at a very high cost,

not surprisingly. To reduce depth, use attributes rather than subelements with text values.

Alternatively, if possible, expand the tree horizontally rather than vertically. Both alternatives

can generally yield better performance. Of course, whether these alternatives are possible largely

depends on the schema of the XML document and the application scenario. Another factor to

keep in mind is that querying an attribute value is slightly more expensive than querying a text

value (assuming both are at the same depth in the tree). So if attributes can shrink a tree, they

improve performance, but otherwise, use text nodes.

72

If possible, use the child or descendant axis in your location paths, rather than one of the

other axes. Try to avoid the preceding and following axes, and to a lessor extent the ancestor axis,

because evaluating one of these axes can be a “gotcha”, resulting in a much greater cost than a

more common axis.

The structure of the XML document always plays a more important role than the data

itself in query performance. In other words, if you want to manipulate the XML document to get

better query performance, try to reduce the depth, bushiness or other shape properties of the

document. Shortening element names, for instance, generally won’t help to improve query

performance.

73

CHAPTER SEVEN

PERFORMANCE TESTS

We designed a series of experiments to evaluate the performance of our prototype. The

overarching goal of the experiments is to ascertain the scalability of modeling metadata in

MetaDOM and querying it with MetaXQuery. Support for metadata will add some overhead

since it is new functionality; but our chief concern is that such support might significantly

degrade performance, especially as the size and amount of metadata increases. So we developed

several experiments, each of which increases a typical aspect of the problem space, to elicit

insights on the scalability of our approach.

We performed each experiment on a single-processor 1.7 GHz Pentium IV machine with

1GB of main memory. The machine was running Windows XP and Sun JDK version 1.4.1.

7.1 IN-MEMORY PERFORMANCE TESTS

First, we implemented MetaDOM and the MetaXQuery certifying, sanitizing and

grouping functions by extending Apache’s Xerces2 Java Parser platform [60]. We let it parse the

XML document and build the MetaDOM data model in memory. We then apply these functions

to the data model nodes.

We designed four experiments to evaluate the in-memory processing model. The first

experiment tests the metadata functions on documents of increasing size by increasing the level

of nesting in the document (i.e., increasing the depth of the MetaDOM). Each element in the

document is annotated with five kinds of metadata. The experiment increases the amount of data,

but the amount of metadata per data element is kept constant. The second experiment fixes the

size of the data, but increases the number of metadata properties per data element, from no

metadata to five different kinds of metadata. The third experiment keeps the size of the data

constant, but increases the amount of metadata per element by varying the number of values for a

single metadata property. The fourth experiment also keeps the size of the data document

constant, but increases the level of metadata (meta-metadata, …). If all four experiments exhibit

74

linear cost as the problem size increases, then our approach, while adding some overhead, should

scale.

For all of the experiments we used our own XML document generator described in

Section 6.2 to generate the data documents. The configuration of relevant parameters for each of

the experiments is shown in Table 3 (the bushiness or number of children is set to 4). For each

test case, we decided to evaluate the worst-case scenario. In the worst-case every element in the

data document points to an identical piece of metadata. It is the worst case because every

metadata function has to process all of the metadata. For instance, meta-match would have to test

every piece of metadata. We used up to five kinds of metadata: transaction time, valid time,

security, language, and reliability. The number of metadata values specifies how many values

there are in each of the properties.

Test Cases, What Varies DOM Depth Metadata
Properties

Metadata
Values

Metadata
Levels

1) data document size 2 to 7 5 1 1
2) # of metadata properties 4 0 to 5 1 1
3) # of metadata values 4 1 5 to 30 1
4) # of metadata levels 4 1 1 1 to 5

Table 10 In-memory performance tests parameters

7.1.1 Varying data document size

In this experiment, we increased the amount of data to determine how the performance

changes. The results are depicted in Figure 34. The x-axis plots the depth of the generated data

document. Since the number of nodes in the document increases exponentially as the depth

increases, the y-axis plots the log, base 4, of the time taken to perform the experiment. The graph

shows linear, or sub-linear, growth in the time as the document size increases, essentially, adding

a constant factor to the cost of traversing the DOM. Merge costs slightly more since it is

constructs nodes during the merge.

75

0

1

2

3

4

5

6

7

1 4 17 68 273 1092

Document Size (KB)

Ti
m

e
(L

og
(m

s)
)

Log(Certifying) Log(Sanitizing) Log(Categorize-meta)

0
1
2
3
4
5
6
7
8
9

10

1 4 17 68

Document Size (KB)

Ti
m

e
(L

og
(m

s)
)

Log(Meta-Group) Log(Merge) Log(Coalesce)

Figure 34 Results of in-memory experiment 1, varying the data document size

7.1.2 Varying the number of metadata properties

In this experiment, the size of the data is kept constant while the number of metadata

properties increases from no metadata (0 properties) to 5 kinds of metadata. Figure 35 shows the

results. The performance is linear in the number of metadata properties. There are small

fluctuations in performance because different metadata properties have different representations

and semantics, so the time to process each kind varies. Merge is once again more expensive

because it constructs nodes.

0.00
0.02

0.04
0.06

0.08
0.10

0.12
0.14

0.16

0 1 2 3 4 5

Number of metadata properties

Ti
m

e
(s

)

Certifying Sanitizing Meta-Group Coalesce

0
2
4
6
8

10
12
14
16
18

0 1 2 3 4 5

Number of metadata properties

Ti
m

e(
s)

Merge

Figure 35 Results of in-memory experiment 2, varying the number of metadata properties

7.1.3 Varying the number of metadata values

This experiment fixes both the size of the data document and the number of metadata

properties (we use only one metadata type, security, in this experiment). We start with 5 users,

76

and increase it to 30 users in increments of 5. The result of this test is shown in Figure 36. Again,

the time grows linearly in the amount of metadata. Merge is much more expensive once again

(because of the node construction), so it is plotted separately.

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20 25 30

Number of metadata values

Ti
m

e
(s

)

Certifying Sanitizing Meta-Group Categorize-meta

0

10

20

30

40

50

60

5 10 15 20 25 30

Number of metadata values

Ti
m

e
(s

)
Merge

Figure 36 Results of in-memory experiment 3, varying the number of metadata values

7.1.4 Varying the number of metadata levels

This experiments fixes the size of the data document and the number of metadata

properties and values. We increase the nested level of metadata from 1 to 5.

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

Number of metadata levels

Ti
m

e(
Lo

g(
m

s)
)

Log(Certifying) Log(Sanitizing)

0
2
4
6
8

10
12
14
16

1 2 3 4 5

Number of metadata levels

Ti
m

e(
Lo

g(
m

s)
)

Log(Meta-Group) Log(Merge) Log(Coalesce)

Figure 37 Results of in-memory experiment 4, varying the number of metadata levels

The result of this test is shown in Figure 37. When we increase the nested level of

metadata, the performance would actually increase more than linearly because for every node,

we have to do the evaluation recursively to the last level. That’s why we use the logarithmic

77

scale in this figure. As we see, the log lines increase linearly or even close to constantly, so the

performance still scales elegantly within the reasonable upper bound.

In summary, the in-memory experiments indicate that as the amount of data or metadata

increases, the cost also increases. But the growth is largely linear. Hence, we anticipate that the

prototype will scale to large, real-world applications.

7.2 PERSISTENT PERFORMANCE TESTS

For our persistent version of implementation, we also designed a series of experiments to

evaluate its scability, compare the performance of the new metadata-enabled queries with the

original data queries running on eXist, as well as to compare the performance of different query

strategies mentioned above. We chose to use a different data and query set from the in-memory

version, namely these from XMark [53], so that we’ll have a more comprehensive and better

understanding of its performance.

7.2.1 Varying the data document size and optimization technique

The first experiment tests the scalability of the MetaXQuery implementation with

increasing data document sizes as well as the effect of using applying the filterByPerspective

functions in the query. We generated the data documents with XMark benchmark factor that

increases from 0.01 to 0.05 (document size increases from 1.1 MB to 5.8 MB). We first ran the

benchmark queries in eXist (with no metadata extensions). We then added the same metadata

value to all the elements in the data document. We chose to use the same metadata value

everywhere because that gives the filter the most work to do. Every time the filter processes the

data nodes, it can’t throw any of them away. That way, we also guarantee that the query result

after applying the filters is exactly the same as the data query with no metadata extension. Table

5 shows the parameters for the data and metadata for experiment one. Finally, we performed two

variations of the experiment. In the worst-case variant, we applied a filterByPerpective function

to every path expression in the benchmark query. That is obviously a very expensive strategy. A

smart query optimizer can remove some of the redundant filters so that we don’t have to do it for

every path expression in the query. So we created an optimized worst-case scenario. We

78

manually optimized the queries to so that they have about the same work and result size as the

worst-case queries and also have minimum number of filterByPerspective necessary. These

optimized queries in the experiment are shown in Table 12. We have eliminated the name space

and the second parameter of the filterByPerspective function, the perspective node for less space.

But both of them are all the same for all the queries. For the original XMark queries, please refer

to [53].

Experiment Factor Document Size (MB) # Metadata
Properties # Metadata Trees

1 0.01, 0.02, 0.03, 0.04 0.05 1.1, 2.3, 3.5, 4.8, 5.8 2 1
2 0.01 1.1 0 to 3 # of elements
3 0.01, 0.02, 0.03, 0.04 0.05 1.1, 2.3, 3.5, 4.8, 5.8 2 1

Table 11 Persistent experiments parameters

 (a) Worst Case Queries (a) Optimized Worst Case Queries

1.1
3.5

5.8
Q1 Q2 Q5 Q6 Q7 Q13 Q14 Q15 Q16 Q20

0

5

10

15

20

25

30

35

40

45 Ratio

Size
(MB)

Test Case

Q1

Q2

Q5

Q6

Q7

Q13

Q14

Q15

Q16

Q20

1.1
3.5

5.8
Q1 Q2 Q5 Q6 Q7 Q13 Q14 Q15 Q16 Q20

0

1

2

3

4 Ratio

Size
(MB)

Test Case

Q1

Q2

Q5

Q6

Q7

Q13

Q14

Q15

Q16

Q20

Figure 38 Results of persistent experiment 1, varying the data document size and optimization technique

Figure 38 shows the result of the first experiment. The data is plotted as a performance

ratio showing the overhead of MetaXQuery. A value of 1 indicates that eXist and eXist-

MetaXQuery give the same performance. A value greater than 1 means that eXist-MetaXQuery

performed worse than eXist. For instance, MetaXQuery was at most 1.5 times slower on Q1

(worst-case), but often had no slowdown (the height of each bar is near 1). As we see from the

optimized queries chart in Figure 38 (b), adding the smart support for perspective in

79

MetaXQuery doesn’t add a great amount of overhead on XQuery evaluation in exist, and it

scales pretty well as the data document gets larger. But that depends heavily on the rewriting

strategy. In the worst case queries shown in Figure 38 (a), the performance is much worse

because there’s a filter for every path expression and even more importantly, it is called in every

iteration of the FOR loop. That’s why the ratios are much higher than the optimized case. So

obviously the optimization of the filters in the MetaXQuery system is crucial to the performance.

7.2.2 Varying the number of metadata types

Experiment 2 tests the scaling factor of the MetaXQuery processor with increasing types

of metadata. The experiment fixes the size of the data and metadata documents, and increases the

types of metadata from 0 to 3. The queries used in this experiment are the optimized ones and we

use the same number of metadata fragment as the total number of element in the data document.

All of these fragments have different values so that the effect of index is maximized. Figure 39

shows the performance of selected queries in experiment 2. We only choose some of the queries

here to make the graph clearer. All of the queries show a sub-linear increase in time with the

increasing number of metadata types, which indicates that the system will scale as the number of

metadata types increases.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3
Number of metadata types

Ti
m

e
(s

)

Q2 Q5 Q16 Q17 Q20

Figure 39 Results of persistent experiment 2, varying the number of metadata types

80

7.2.3 Varying the implementation strategy

Experiment 3 compares the different query execution strategies of the filterByPerspective

function. As mentioned in Section 4.2, there could be a naïve implementation of the

filterByPerspective function that iterates through every data node and checks if its metadata

matches the perspective (as shown in Figure 19). We suggested that a much better strategy would

be to use the index to find all the metadata fragments that match the perspective first and then

join them with the data nodes (as shown in Figure 20). In this experiment we compare these two

query evaluation strategies. We call the first strategy the traversal method and the second the

index join method. Like the first experiment, we will use a series of data documents from factor

0.01 to 0.05 and we also use the same metadata value for all the elements in the data document.

For the traversal method, it is pretty much the same as using different metadata fragment or

value because it checks the metadata value of every data node. For the index join algorithm on

the other hand, the index doesn’t help much so it’s mostly the cost of joins. This is actually

reasonable because with the help of data structures like B+-trees, index lookup is always a very

fast operation. So the dominant part of the query execution is still going to be the joins. We use

the same experimental setup as the previous experiments so that the results are the same as the

original data query. The queries used in this experiment are the optimized queries.

Figure 40 shows the performance of the experiment. As we expected, the index join

method outperforms the traversal method in most of the test cases. And furthermore, it shows

much better scalability. The cost of the traversal method increases linearly with the data size, but

the indexes and joins (a merge-join) show sub-linear increase. The results justify our work in

developing the more efficient metadata association join algorithm in filtering data with metadata

conditions.

81

 Traversal Index Join

1.1
5.8

Q1 Q2 Q5 Q6 Q7 Q13 Q14 Q15 Q16 Q20

0

5

10

15

20

25

Tim e(s)

Size (MB)

Test Case

Figure 40 Results of persistent experiment 3, varying the implementation strategy

82

Query Optimized Queries

1 filterByPerspective(FOR $b IN /site/people/person[@id="person0"]
 RETURN $b/name)/text()

2 <increase> {filterByPerspective(FOR $b IN /site/open_auctions/open_auction
 RETURN $b/bidder[1])/text()} </increase>

5
count(filterByPerspective(FOR $i IN /site/closed_auctions/closed_auction
 WHERE $i/price/text() >= 40
 RETURN $i/price))

6 count(filterByPerspective(FOR $b IN /site/regions RETURN $b//item))

7

FOR $p IN /site
RETURN count(filterByPerspective($p//description)) +
 count(filterByPerspective($p//annotation)) +
 count(filterByPerspective($p//email))

13 FOR $i IN filterByPerspective(/site/regions/australia/item)
RETURN <item name="{$i/name/text()}"> {$i/description} </item>

14 filterByPerspective(FOR $i IN /site//item WHERE contains($i/description,"gold")
 RETURN $i/name)/text()

15

<text>
{filterByPerspective(FOR $a IN
/site/closed_auctions/closed_auction/annotation/description/parlist/listitem/text/emph/keyword
RETURN $a)/text()}
</text>

16

FOR $s IN
 FOR $a IN /site/closed_auctions/closed_auction
 WHERE not (empty ($a/annotation/description/parlist/listitem/text/emph/keyword/text()))
 RETURN $a/seller
RETURN <person id="{filterByPerspective($s)/@person}" />

20

<result>
 <preferred>
 {count (filterByPerspective(/site/people/person/profile[@income > 100000]))}
 </preferred>
 <standard>
 {count (filterByPerspective(/site/people/person/profile[@income < 100000 and
 @income >= 30000]))}
 </standard>
 <challenge>
 {count (filterByPerspective(/site/people/person/profile[@income < 30000]))}
 </challenge>
 <na> {
 count (filterByPerspective(
 for $p in /site/people/person
 where empty($p/@income)
 return $p))
 }
 </na>
</result>

Table 12 Optimized worst case queries

83

CHAPTER EIGHT

RELATED WORK

There are few papers on systems to manage metadata in native XML databases, but lots

of research in related areas. In this chapter we consider related work in representing and querying

metadata on the web, systems that support metadata, research on special kinds of metadata, and

papers relating to query evaluation in native XML databases.

Generally there are two methods to represent metadata: the embedded method and the

annotated (or superimposed) method. In the embedded method, the metadata is stored together

with the data or referenced directly from the data. We have already seen this method in the

examples in Figure 21. The advantage of this method is that it’s easy and quick to access

metadata and ascertain its relationship with the data. The disadvantage though, is that the schema

of the data is different from its original version, so the application needs to be adapted for that

change. On the other hand, the annotated method keeps the original version of the data intact and

annotates the data with external metadata. The most widely used language on the web for

annotating a document with metadata is the Resource Description Framework (RDF) [78], which

has also become an important language for supporting the Semantic Web [4]. RDF consists of

three object types: the resources, the properties, and the statements. A statement is a specific

resource together with a named property plus the value of that property for that resource, and

these three individual parts of a statement are called, respectively, the subject, the predicate, and

the object. So generally, an RDF statement can be formatted in XML as "<subject> HAS

<predicate> <object>". Discussions are ongoing about accessing and querying RDF data [77]

but in general RDF query languages use a very different data model than the family of XML

query languages. An RDF document can be used to describe any resource that can be located by

a URI. An instance of the RDF data model is created when an RDF document is parsed. One

drawback of using RDF to represent the metadata is that the data and metadata have different

data models. The RDF data model is a directed, labeled graph, unlike an XML data model such

84

as DOM. This forces users to switch data models and query languages as they move from

metadata to data (or vice-versa). Query language implementers also face a challenge in

optimizing queries that jump between the data models. A third drawback is that the RDF data

model supports only descriptive metadata; it has no support for enforcing the semantics of

proscriptive metadata like security. Several strategies for unifying the representation of XML

and RDF have been proposed [31] [54] , but query languages have largely targeted either RDF or

XML. There have been several RDF query languages proposed in the literature including RQL

[40], SeRQL [7], and TRIPLE [55]. For a comparison of these RDF query languages, please

refer to [30].

We have chosen to use a uniform XML data model for both data and metadata instead of

using RDF to capture metadata. There could be difficulties in such approach when we want to

convert an existing RDF model into our MetaDOM because of the mismatch of data models.

RDF uses directed edge graph, but our MetaDOM consists of multiple trees. Without special

constructs in the tree nodes (e.g., ID and IDRef), it can’t capture cycles in a graph. But in general

cases, an RDF data model doesn’t contain cycles either so it’s relatively a minor issue for our

framework.

There are several systems that support metadata similar to MetaXQuery. Mihaila et al.

suggest annotating data with quality and reliability metadata and discuss how to query the data

and metadata in combination [46]. The SPARCE system wraps or superimposes a data model

with a layer of metadata [48]. The metadata is active during queries to direct and constrain the

search for desired information. Systems that provide mappings between metadata (schema)

models are also becoming popular [45]. MetaXQuery differs from these systems by focusing on

XQuery extensions to support metadata, and by building a framework whereby the semantics of

individual kinds of metadata can be specified as “plug-in” components.

Support for particular kinds of metadata has been researched. Our approach is to build an

infrastructure that supports a wide range of different kinds of metadata in the same vein as our

previous efforts with the semistructured data model [22] and XPath data model [23]. Two of the

85

most important and most widely discussed types of (proscriptive) metadata are temporal

metadata and security metadata. Temporal extensions of almost every W3C recommendation

exist, for instance, TTXPath [20], τXQuery [26], and τXSchema [17]. Another important area of

time-related research is techniques for storing and retrieving past versions of data [9] [13].

Grandi has an excellent bibliography of time-related web papers [28]. There has also been

research on security in XML management systems, e.g., [5] and [18]. MetaXQuery differs from

all of the above papers because it builds a single, extensible framework to support the many

kinds of metadata rather than just one kind of metadata.

One of the particular area of problems we tackled is grouping and restructuring XML

data with metadata. Though grouping is important it has not received much attention in the

research community. Paparizos et al. showed that the lack of an explicit grouping construct in

XQuery forces users to employ inefficient strategies when grouping [50]. They proposed

improving the efficiency of grouping by adding an explicit grouping operator to the TAX algebra

in the context of the TIMBER [33] native XML database system. We focus instead on grouping

with metadata.

In relational databases, the relational algebra is a set of operations that manipulate

relations as they are defined in the relational model. Because of their algebraic properties, they

are often used in database query optimization as an intermediate representation of a query to

which certain rewrite rules can be applied to obtain a more efficient version of the query. In the

XML world, people have also designed algebras to represent queries on the tree data model as

well as optimization rules to transform the queries into efficient low-level operators. The XML

algebras include the Tree Algebra for XML (TAX) [32], the XML Query Algebra [27], and an

algebra on a graph structure [3]. Research on query execution plans and especially join

algorithms include containment queries [56], structural joins [1] [2] [14], and twig joins [8] [35].

We extended the TAX algebra to support our metadata functionalities and also borrowed ideas

from some of the join algorithms for our metadata association join.

86

There are also several native XML database system in the literature, such as eXist [44],

Xindice [61] and Galax [24]. We have chosen eXist because it’s completely implemented in Java

(so easier to extend) and also performs the best in our own benchmark [36].

87

CHAPTER NINE

CONCLUSIONS AND FURTURE WORK

In this dissertation, we first outline an XML data model, called MetaDOM, that supports

data annotated with metadata. Different semantics can be given to different kinds of metadata in

MetaDOM. It reuses the DOM data model for metadata so each level is an XML data model

itself. It also supports recursively nested metadata, i.e., meta-metadata. We show how to extend

DOM to implement MetaDOM.

We then present a query language, called MetaXQuery, for the extended data model.

MetaXQuery extends XQuery with an additional “meta” axis, and functions to certify and

sanitize data with regard to metadata, group data and metadata, to merge nodes with metadata, to

match an implicit metadata perspective during path evaluation, to restructure metadata by

coalescing metadata values, and to output metadata. To execute MetaXQuery expressions, we

show how to translate these user-level queries into low-level algebraic operators. The low-level

operators are expressed in MetaTAX, which is an extension of TAX. A naïve implementation of

MetaXQuery would result in very inefficient query execution plans, so next we discuss how to

optimize the processing of metadata-related queries by using index and join algorithms.

We implemented a prototype system of MetaDOM and MetaXQuery, in both an in-

memory model and a persistent model. The in-memory model is based on the Apache Xerces2

Java Parser platform, and the persistent model is based on a native XML database, eXist. To

evaluate the performance of the prototype system and to compare different implementation

strategies, we developed an XML query processing benchmark. We introduce the data set, our

XML document generator, and benchmark test cases. We use this benchmark platform to test our

in-memory model implementation and another public benchmark, XMark to test our persistent

model implementation. Experiments with the prototype show that the cost of supporting

metadata is linearly related to the amount of metadata present and scales elegantly with the

increase of both data and metadata.

88

Our metadata extension of DOM and XQuery is clean and minimal. These standards are

extended by this research, but not modified. The extensions are upwards compatible because all

XPath and XQuery evaluated in a MetaXQuery implementation on a data model without

metadata would have the same behavior as an XQuery implementation. We define most of our

extensions of XQuery as functions not only because it is easy to access and use metadata, but

also because each functional unit can be encapsulated and modularized. So the extensions can be

implemented in an XML query processing system as user-defined functions or external functions,

and they can also be optimized individually. That way, we achieve high cohesion and low

coupling.

We give MetaTAX translations to primitive functions like getMetadataValues,

filterByMetadataValues, and filterByPerspective but not the certify, sanitize, and grouping

functions because their definitions are much more complex. Their implementation depends

largely on the low-level system, so we decide to use just a declarative definition to specify what

exactly should happen at the conceptual level, but let the implementation to decide what’s the

best to do. In the in-memory model, the certify, sanitize, and grouping functions manipulate

directly on the DOM data model trees, but they could have a very different implementation in the

persistent model by using indexes. We didn’t have time to cover that part in our research yet, but

it could be an interesting supplement to our current system. Though we reuse the general-

purpose index of eXist for all metadata types in the persistent implementation, we have yet to

incorporate special-purpose metadata indexes (e.g, temporal indexes) to achieve better

performance for some metadata types.

In future we plan to extend XML Schema to specify the layout and validation semantics

for both data and metadata. XML Schema currently only specifies the structure of data in the

document and (some) constraints on the data (e.g., keys), but with metadata support, there could

be additional rules that capture the relationship between data and metadata, and additional

constraints on the metadata (e.g., the lifetime of a parent should encompass those of its children).

89

We need to either extend the rules of the XML Schema or add an additional layer of metadata-

specific schema rules to enforce the semantics of the metadata.

Another theoretical issue is the completeness of our extensions to XQuery and TAX. We

proposed several extensions that we think are the most obvious and representative, but by no

means comprehensive. Though it’s not our primary purpose to do so, it would be nice from the

theoretical point of view to come up with a set of extensions that are complete in the sense of all

possible scenarios. We need to find out the minimal of such set is and prove that it is actually

complete. With such theoretical background, we can approach other issues much more easily.

In the three major types of metadata mentioned in the introduction, we have studied

descriptive and proscriptive metadata in our research, but not interpretive metadata. Interpretive

metadata tells the user or the application how to understand a piece of data. It is very common in

scientific data, for instance an integer value that represents a temperature is only meaningful in

the context of a particular metric or scale, e.g., Celsius. Different people and countries use very

different metrics and scales, so for them to communicate, it is best if an application can

automatically and intelligently translate between interpretations. With the help of interpretive

metadata, this task should be a lot easier to accomplish. We plan to incorporate interpretive

metadata into our framework.

Another avenue of future research is to explore the possibility of using Aspect Oriented

Programming (AOP) techniques to model the extended metadata functionalities. AOP is a new

programming paradigm that allows programmers to modularize code that exhibits similar

behavior but doesn’t fit naturally into a single program module. Instead, they are modularized by

crosscut concerns and aspects. Each kind of metadata, e.g., time, roughly corresponds to an

aspect. The idea is to weave support for a kind of metadata into the data using AOP techniques.

Research is needed however because data weaving will likely be quite different from code

weaving. But the paradigm of AOP could potentially help us reduce a lot of redundant work in

deploying metadata support into the existing XQuery systems.

90

Finally, existing XML tools can to be extended to make the use of metadata easier. One

such example is XML, DTD or XML Schema editors. Traditionally they are only for editting

XML data, but they can be expanded to create an integrated display and editing of data together

with metadata, such as hyperlinks between data and metadata, automatic formatting of metadata,

and intelligent help to create and modify metadata. Each type of metadata could be treated

specially depending on their semantics to help users. For instance transaction time changes could

be shaded to indicate age or colors could be used to show differing levels of security. Moreover,

an XML query processing tool can be augmented to remember the session of the current user and

apply his settings as perspective in all his queries. All these extensions help users to easily

handle metadata in such applications.

91

 BIOBILIOGRAPHY

[1] Shurug Al-Khalifa, H. V. Jagadish. “Multi-level operator combination in XML query
processing”. In Proceedings of the 2002 ACM CIKM International Conference on Information
and Knowledge Management, pp. 134-141, McLean, Virginia, November 2002.

[2] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas, Divesh
Srivastava. “Structural Joins: A Primitive for Efficient XML Query Pattern Matching”. In
Proceedings of the 18th International Conference on Data Engineering (ICDE), pp. 141-152,
San Jose, California, February-March 2002.

[3] David Beech, Ashok Malhotra, Michael Rys. “A Formal Data Model and Algebra for
XML”. W3C XML Query working group note, September 1999.

[4] T. Berners-Lee. “Why RDF Model is Different from the XML Model”, September 1998.
http://www.w3.org/DesignIssues/RDF-XML.html, current as of July, 2005.

[5] Elisa Bertino, Silvana Castano, Elena Ferrari, Marco Mesiti. “Specifying and Enforcing
Access Control Policies for XML Document Sources”. In WWW Journal, Volume 3, Number 3,
pp. 139-151, 2000.

[6] Timo Böhme, Erhard Rahm. “XMach-1: A Benchmark for XML Data Management.” In
Proceedings of the 9th Datenbanksysteme in Büro, Technik und Wissenschaft (BTW), pp. 264-
273, GI-Fachtagung, Oldenburg, März 2001.

[7] Jeen Broekstra, Arjohn Kampman. “SeRQL: An RDF Query and Transformation
Language”. Submitted to the International Semantic Web Conference (ISWC), 2004.

[8] Nicolas Bruno, Nick Koudas, Divesh Srivastava. “Holistic twig joins: optimal XML pattern
matching”. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, pp. 310-321, Madison, Wisconsin, June 2002.

[9] Peter Buneman, Sanjeev Khanna, Keishi Tajima, Wang Chiew Tan. “Archiving scientific
data”. In ACM Transactions on Database Systems (TODS), Volume 29, Number 1, pp. 2-42,
2004.

[10] Michael J. Carey, David J. DeWitt, Jeffrey F. Naughton. “The OO7 benchmark.” In
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp.
12-21, Washington, D.C., May 1993.

[11] Rick Cattell et al. The Object Database Standard: ODMG-93, Release 1.2. Morgan
Kaufmann Publishers, San Francisco, 1996.

92

http://www.w3.org/DesignIssues/RDF-XML.html

[12] Donald D. Chamberlin, Jonathan Robie, Daniela Florescu. “Quilt: an XML Query
Language for Heterogeneous Data Sources”. In the World Wide Web and Databases, Third
International Workshop WebDB, pp. 1-25, Dallas, Texas, May 2000.

[13] Sudarshan S. Chawathe, Serge Abiteboul, Jennifer Widom. “Representing and Querying
Changes in Semistructured Data”. In Proceedings of the 14th International Conference on Data
Engineering (ICDE), pp. 4-13. Orlando, Florida, February 1998.

[14] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, Carlo Zaniolo.
“Efficient Structural Joins on Indexed XML Documents”. In Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB), pp. 263-274, Hong Kong, China,
2002.

[15] Dublin Core Metadata Initiative (DCMI) Glossary.
http://dublincore.org/documents/usageguide/glossary.shtml, current as of July 2005.

[16] Dublin Core Metadata Initiative. “Dublin Core Metadata Element Set, Version 1.1:
Reference Description”, DCMI Recommendation, June 2003.
http://dublincore.org/documents/2003/06/02/dces, current as of July 2005.

[17] Faiz Currim, Sabah Currim, Curtis E. Dyreson, Richard T. Snodgrass. “A Tale of Two
Schemas: Creating a Temporal XML Schema from a Snapshot Schema with τXSchema”. In
Proceedings of the 9th International Conference on Extending Database Technology (EDBT), pp.
348-365. Crete, Greece, March 2004.

[18] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, Pierangela
Samarati. “Securing XML Documents”. In Proceedings of the 7th International Conference on
Extending Database Technology (EDBT), pp. 121-135. Konstanz, Germany, March 2000.

[19] Alin Deutsch, Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, Dan Suciu. “A Query
Language for XML”. In Computer Networks, Volume 31, Numbers 11-16, pp. 1155-1169, May
1999.

[20] Curtis E. Dyreson. “Observing Transaction-time Semantics with TTXPath”. In Proceedings
of the 2nd International Conference on Web Information Systems Engineering (WISE), pp. 193-
202, Kyoto, Japan, December 2001.

[21] Curtis E. Dyreson. “Temporal Coalescing with Now, Incomplete Information, and
Granularity”. In Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 169-180. San Diego, California, June 2003.

[22] Curtis E. Dyreson, Michael H. Böhlen, Christian S. Jensen. “Capturing and Querying
Multiple Aspects of Semistructured Data”. In Proceedings of 25th International Conference on
Very Large Data Bases (VLDB), pp. 290-301, Edinburgh, Scotland, September 1999.

93

http://dublincore.org/documents/usageguide/glossary.shtml

[23] Curtis E. Dyreson, Michael H. Böhlen, Christian S. Jensen. “METAXPath”. In
Proceedings of the International Conference on Dublin Core and Metadata Applications, pp. 17-
23, Tokyo, Japan, 2001.

[24] Mary F. Fernández. “Implementing XQuery 1.0: The Story of Galax”. In the 11th
Datenbanksysteme in Business, Technologie und Web (BTW), pp. 30-47, Karlsruhe, März 2005.
http://www.galaxquery.org

[25] Roy Goldman, Jennifer Widom. “DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases.” In Proceedings of the 23rd International Conference
on Very Large Data Bases (VLDB), pp. 436-445, Athens, Greece, 1997.

[26] Dengfeng Gao, Richard T. Snodgrass. “Temporal Slicing in the Evaluation of XML
Queries”. In Proceedings of 29th International Conference on Very Large Data Bases (VLDB),
pp. 632-643, Berlin, Germany, September 2003.

[27] Peter Fankhauser, Mary F. Fernández, Ashok Malhotra, Michael Rys, Jérôme Siméon,
Philip Wadler. “The XML Query Algebra”.
http://www.w3.org/TR/2000/WD-query-algebra-20001204/2001

[28] Fabio Grandi. “Introducing an Annotated Bibliography on Temporal and Evolution Aspects
in the World Wide Web”. In SIGMOD Record, Volume 33, Number 2, June 2004.

[29] Jim Gray. Database and Transaction Processing Performance Handbook.
http://www.benchmarkresources.com/handbook, 1993.

[30] Peter Haase, Jeen Broekstra, Andreas Eberhart, Raphael Volz. “A Comparison of RDF
Query Languages”. http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query

[31] Jane Hunter, Carl Lagoze. “Combining RDF and XML Schemas to Enhance
Interoperability Between Metadata Application Profiles”. In Proceedings of the 10th
International World Wide Web Conference (WWW), pp. 457-466, Hong Kong, China, May 2001.

[32] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, and Keith Thompson. “TAX:
A Tree Algebra for XML”. In Proceedings of the 8th International Workshop on Database
Programming Languages (DBPL), pp. 149-164, Frascati, Italy, September 2001.

[33] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Lakshmanan, Andrew
Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee Wiwatwattana, Yuqing
Wu, Cong Yu. “TIMBER: A native XML database”. In VLDB Journal, Volume 11, Number 4,
pp. 274-291, December 2002. http://www.eecs.umich.edu/db/timber

[34] Christian S. Jensen and Curtis E. Dyreson (eds), Michael H. Böhlen, J. Clifford, R. Elmasri,
S. K. Gadia, F. Grandi, P. Hayes, S. Jajodia, W. K¨afer, N. Kline, N. Lorentzos, Y. Mitsopoulos,
A. Montanari, D. Nonen, E. Peressi, B. Pernici, J.F. Roddick, N. L. Sarda, M. R. Scalas, A.
Segev, R. T. Snodgrass, M. D. Soo, A. Tansel, R. Tiberio and G. Wiederhold, “A Consensus
Glossary of Temporal Database Concepts—February 1998 Version,” in Temporal Databases:

94

Research and Practice, O. Etzion, S. Jajodia, andS. Sripada (eds.), Springer-Verlag, pp. 367–405,
1998.

[35] Haifeng Jiang, Wei Wang, Hongjun Lu, Jeffrey Xu Yu. “Holistic Twig Joins on Indexed
XML Documents”. In Proceedings of 29th International Conference on Very Large Data Bases
(VLDB), pp. 273-284, Berlin, Germany, September 2003.

[36] Hao Jin and Curtis E. Dyreson. “A Benchmark for XPath Evaluation”. Submitted to WWW
Journal.

[37] Hao Jin and Curtis E. Dyreson. “Grouping in MetaXQuery”. In Proceedings of 5th
International Conference on Web Information Systems Engineering (WISE), pp. 688-693,
Brisbane, Australia, November 2004.

[38] Hao Jin and Curtis E. Dyreson. “Sanitizing using Metadata in MetaXQuery”. In
Proceedings of the 2005 ACM Symposium on Applied Computing (SAC), pp. 1372-1376, Santa
Fe, New Mexico, March 2005.

[39] Hao Jin and Curtis E. Dyreson. “Capturing, Querying and Grouping Metadata Properties in
XML”. Submitted to IEEE TKDE.

[40] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plexousakis,
Michel Scholl. “RQL: a declarative query language for RDF”. In Proceedings of the 11th
International World Wide Web Conference (WWW), pp. 592-603, Honolulu, Hawaii, May 2002.

[41] Michael H. Kay. Saxon: The XSLT and XQuery Processor.
http://saxon.sourceforge.net

[42] Michael H. Kay. “Saxon: Anatomy of an XSLT processor.” In IBM DeveloperWorks,
February 2001. http://www-106.ibm.com/developerworks/library/x-xslt2

[43] Stephan Kepser. “A Proof of the Turing-completeness of XSLT and XQuery”. Technical
Report SFB 441, Eberhard Karls Universitat Tubingen, May 2002.

[44] Wolfgang Meier. “eXist: An Open Source Native XML Database.”
http://exist.sourceforge.net

[45] Sergey Melnik, Erhard Rahm, Philip A. Bernstein. “Rondo: A Programming Platform for
Generic Model Management”. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 193-204, San Diego, California, June 2003.

[46] George A. Mihaila, Louiqa Raschid, Maria-Esther Vidal. “Using Quality of Data Metadata
for Source Selection and Ranking”. In Informal Proceedings of the Third International
Workshop on the Web and Databases (WebDB), pp. 93-98, Dallas, Texas, May 2000.

95

http://saxon.sourceforge.net/

[47] David Mosberger and Tai Jin. “httpperf - A Tool for Measuring Web Server Performance”.
In SIGMETRICS Performance Evaluation Review, Volume 26, Number 3, pp. 31-37, December
1998.

[48] Sudarshan Murthy, David Maier, Lois M. L. Delcambre, Shawn Bowers. “Superimposed
Applications using SPARCE”. In Proceedings of the 20th International Conference on Data
Engineering (ICDE), pp. 861, Boston, Massachusetts, March 2004.

[49] Ullas Nambiar, Zoé Lacroix, Stéphane Bressan, Mong-Li Lee, Ying Guang Li.
“Benchmarking XML Management Systems: The XOO7 Way.” Technical Report TR-01-005,
Department of Computer Science, Arizona State University, 2001.

[50] Stelios Paparizos, Shurug Al-Khalifa, H. V. Jagadish, Laks V. S. Lakshmanan, Andrew
Nierman, Divesh Srivastava, Yuqing Wu. “Grouping in XML”. In XML-Based Data
Management and Multimedia Engineering - EDBT Workshops, pp. 128-147. Prague, Czech
Republic, March 2002.

[51] Jonathan Robie, Joe Lapp, David Schach. “XML Query Language (XQL)”. In the W3C
Query Language Workshop, Boston, Massachussets, December 1998.

[52] Kanda Runapongsa, Jignesh M. Patel, H. V. Jagadish, Shurug Al-Khalifa. “The Michigan
Benchmark: A Microbenchmark for XML Query Processing Systems”. In the Workshop of
Efficiency and Effectiveness of XML Tools and Techniques and Data Integration over the Web
(EEXTT), pp. 160-161, 2002.

[53] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana Manolescu,
Ralph Busse. “XMark: A Benchmark for XML Data Management”. In Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB), pp. 974-985, Hong Kong, China,
2002.

[54] Peter F. Patel-Schneider, Jérôme Siméon. ““The Yin/Yang Web: A Unified Model for
XML Syntax and RDF Semantics”. In IEEE Transaction of Knowledge and Data Engineering
(TKDE), Volume 15, Number 4, pp. 797-812. July/August 2003.

[55] Michael Sintek, Stefan Decker. “TRIPLE - A Query, Inference, and Transformation
Language for the Semantic Web”. In Proceedings of the Semantic Web Conference, pp. 364-378,
Sardinia, Italy, June 2002.

[56] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, Guy M. Lohman. “On
Supporting Containment Queries in Relational Database Management Systems”. In Proceedings
of the 2001 ACM SIGMOD International Conference on Management of Data, Santa Barbara,
California, 2001.

[57] Shuohao Zhang, and Curtis E. Dyreson. “Adding Valid Time to XPath”. In Proceedings of
the International Workshop on Database and Network Information Systems (DNIS), pp. 29-42,
Aizu, Japan, December 2002.

96

[58] Apache XML Project. Xalan-Java. http://xml.apache.org/xalan-j

[59] Apache XML Project. Xalan-C++. http://xml.apache.org/xalan-c

[60] Apache XML Project. Xerces Java Parser. http://xml.apache.org/xerces-j

[61] Apache XML Project. Xindice. http://xml.apache.org/xindice

[62] DOM4j: The Flexible XML Framework for Java. http://www.dom4j.org

[63] Jaxen: Universal Java XPath Engine. http://jaxen.sourceforge.net

[64] Simple API for XML (SAX). http://www.saxproject.org

[65] Microsoft® XML Core Services (MSXML). http://msdn.microsoft.com/xml

[66] HBench-OS Operating System Benchmarks.
http://www.eecs. harvard.edu/~vino/perf/hbench

[67] Microsoft® Site Server. InetMonitor.
http://www.microsoft.com/siteserver/site/DeployAdmin/InetMonitor.htm

[68] MindCraft® WebStone. http://www.mindcraft.com/webstone

[69] Standard Performance Evaluation Corporation. SPEC CPU2000 v1.2.
http://www.spec.org/cpu2000

[70] Standard Performance Evaluation Corporation. SPECWeb99.
http://www.specbench.org/osg/web99

[71] Transaction Processing Performance Council. TPC Benchmarks. http://www.tpc.org

[72] VeriTest®. WebBench. http://www.veritest.com/benchmarks/webbench

[73] VeriTest®. WinBench 99 version 2.0.
http://www.veritest.com/ benchmarks/winbench

[74] International Organization for Standardization (ISO). Information Technology-Database
Language SQL. Standard No. ISO/IEC 9075:2003. (Available from American National
Standards Institute, New York, NY 10036, (212) 642-4900.)

[75] World Wide Web Consortium. “Cascading Style Sheets, level 1”, W3C Recommendation,
Dec 1996, revised Jan 1999.
http://www.w3.org/TR/1999/REC-CSS1-19990111

97

http://xml.apache.org/xalan-j
http://xml.apache.org/xalan-c
http://xml.apache.org/xindice
http://www.dom4j.org/
http://jaxen.sourceforge.net/

[76] World Wide Web Consortium. “Document Object Model (DOM) Level 3 Core
Specification, Version 1.0”, W3C Recommendation, April 2004.
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407

[77] World Wide Web Consortium. RDF Data Access Working Group.
http://www.w3.org/sw/DataAccess

[78] World Wide Web Consortium. “RDF Primer”, W3C Recommendation, February 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210

[79] World Wide Web Consortium. “Extensible Markup Language (XML) 1.0 (Third Edition)”,
W3C Recommendation, February 2004. http://www.w3.org/TR/2004/REC-xml-20040204

[80] World Wide Web Consortium. “XML in 10 Points”.
http://www.w3.org/TR/2000/REC-xml-20001006

[81] World Wide Web Consortium. “XML Information Set”, W3C Recommendation, February
2004. http://www.w3.org/TR/2004/REC-xml-infoset-20040204

[82] World Wide Web Consortium. “XML Linking Language (XLink) 1.0”, W3C
Recommendation, June 2001. http://www.w3.org/TR/2001/REC-xlink- 20010627

[83] World Wide Web Consortium. “XML Pointer Language (XPointer)”, W3C Working Draft,
August 2002. http://www.w3.org/TR/2002/WD-xptr-20020816

[84] World Wide Web Consortium. “XML Path Language (XPath) Version 1.0”, W3C
Recommendation, November 1999. http://www.w3.org/TR/1999/REC-xpath-19991116

[85] World Wide Web Consortium. “XQuery 1.0: An XML Query Language”, W3C Working
Draft, April 2005. http://www.w3.org/TR/2005/WD-xquery-20050404

[86] World Wide Web Consortium. “XQuery 1.0 and XPath 2.0 Data Model”, W3C Working
Draft, April 2005. http://www.w3.org/TR/2005/WD-xpath-datamodel-20050404

[87] World Wide Web Consortium. “XQuery 1.0 and XPath 2.0 Full-Text Use Cases”, W3C
Working Draft, April 2005.
http://www.w3.org/TR/2005/WD-xmlquery-full-text-use-cases-20050404

[88] World Wide Web Consortium. “XML Schema Part 0: Primer Second Edition”, W3C
Recommendation, October 2004. http://www.w3.org/TR/2004/REC-xmlschema-0-20041028

[89] World Wide Web Consortium. “XML Schema Part 1: Structures Second Edition”, W3C
Recommendation, October 2004. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028

[90] World Wide Web Consortium. “XML Schema Part 2: Datatypes Second Edition”, W3C
Recommendation, October 2004. http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

98

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/2002/WD-xptr-20020816
http://www.w3.org/TR/2005/WD-xquery-20050404
http://www.w3.org/TR/2005/WD-xpath-datamodel-20050404
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028

[91] World Wide Web Consortium. “Extensible Stylesheet Language (XSL) 1.0”, W3C
Recommendation, October 2001. http://www.w3.org/TR/2001/REC-xsl-20011015

[92] World Wide Web Consortium. “XSL Transformations (XSLT) 1.0”, W3C
Recommendation, November 1999. http://www.w3.org/TR/1999/REC-xslt-19991116

[93] World Wide Web Consortium. “XML Encryption Syntax and Processing”, W3C
Recommendation, December 2002.
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210

[94] http://www.xml-benchmark.org

[95] http://www.comp.nus.edu.sg/~ebh/XOO7.html

[96] http://db.uwaterloo.ca/~ddbms/projects/xbench

[97] http://www.eecs.umich.edu/db/mbench

[98] http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html

[99] http://www.hyperdictionary.com

99

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	MOTIVATING EXAMPLE
	METADOM AND METAXQUERY
	3.1 Document Object Model (DOM) and XQuery
	3.2 MetaDOM
	3.3 MetaXQuery
	3.3.1 MetaXPath
	3.3.2 Metadata Operation Matrix
	3.3.3 Certifying Data Reachability
	3.3.4 Sanitizing a Data Model Instance
	3.3.5 Filtering by Metadata Perspective
	3.3.6 Grouping in MetaXQuery
	3.3.6.1 Data Grouping
	3.3.6.2 Metadata Grouping
	3.3.6.3 Merging
	3.3.6.4 Coalescing
	3.3.6.5 Categorizing
	3.3.6.6 Grouping metadata, coalescing data
	3.3.6.7 Constructing Metadata

	3.3.7 Directly Implementing MetaXQuery in XQuery
	3.3.8 MetaXQuery Completeness

	METADATA TREE ALGEBRA
	4.1 TAX
	4.2 METATAX
	4.3 METATAX IN PHYSICAL LEVEL

	IN-MEMORY AND PERSISTENT IMPLEMENTATIONS
	5.1 IN-MEMORY MODEL SYSTEM ARCHITECTURE
	5.2 PERSISTENT MODEL SYSTEM ARCHITECTURE
	5.3 IMPLEMENTATION CHALLENGES
	5.4 EXECUTION PLANS
	5.5 IMPLEMENTATION IN EXIST
	5.5.1 Storage
	5.5.2 Meta Axis
	5.5.3 Perspective

	BENCHMARKING XML QUERY PROCESSORS
	6.1 HISTORY OF BENCHMARKS
	6.2 Benchmark Data Set - XML Document Generator
	6.2.1 Control Factors

	6.3 Benchmark Tests
	6.3.1 Overview of Test Cases
	6.3.2 Descriptions of the Test Cases
	6.3.2.1 Fat, flat tree (text value) test
	6.3.2.2 Fat, flat tree (attribute value) test
	6.3.2.3 Tree depth test
	6.3.2.4 Tree width test
	6.3.2.5 Magic level test
	6.3.2.6 Selectivity test
	6.3.2.7 Text length test
	6.3.2.8 Random name test
	6.3.2.9 XPath query type test
	6.3.2.10 Short-circuit evaluation test
	6.3.2.11 Steps vs. Predicates test
	6.3.2.12 Number of attributes test
	6.3.2.13 Magic length test
	6.3.2.14 Magic position test
	6.3.2.15 String functions test

	6.4 BENCHMARK RESULTS AND ANALYSIS
	6.4.1 Benchmark Packages
	6.4.2 Results and Analysis

	PERFORMANCE TESTS
	7.1 IN-MEMORY PERFORMANCE TESTS
	7.1.1 Varying data document size
	7.1.2 Varying the number of metadata properties
	7.1.3 Varying the number of metadata values
	7.1.4 Varying the number of metadata levels

	7.2 PERSISTENT PERFORMANCE TESTS
	7.2.1 Varying the data document size and optimization technique
	7.2.2 Varying the number of metadata types
	7.2.3 Varying the implementation strategy

	RELATED WORK
	CONCLUSIONS AND FURTURE WORK
	 BIOBILIOGRAPHY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

