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 The present study presents the numerical model of the free surface deformation 

and oscillation, heat and mass transfer, and Marangoni flow in the electrostatically 

levitated droplets under microgravity conditions. The free surface deformation, heat and 

mass transfer, and Marangoni flow are also investigated in the electrostatically levitated 

droplets comprised of the immiscible liquid metals. The present study not only 

investigates the steady-state fluid flow and heat transfer, but also the transient fluid flow 

and heat transfer, which is important for the fundamental study of nucleation and crystal 

growth phenomena. The 3-D vertical and horizontal movement of the magnetically 

levitated droplet is also investigated in the present study. 

 The coupled boundary method is developed to predict the electric potential 

distribution in the electrostatically levitated droplets. The surface deformation is 

determined using the weighted residuals method to solve the normal stress balance 

equations. The complex 3-D fluid flow and heat transfer fields are solved by using the 

Galerkin finite element method. The computational methodology for the oscillation of the 



 V

electrostatically levitated droplets entails solving the Laplace equation by the boundary 

element method, solving the Navier-Stokes equations by the Galerkin finite element 

method, and the use of deforming elements to track the oscillating free surface shapes. 

The coupled boundary and finite element methods with edge element algorithm are 

applied to the solution of the movement of the conducting droplet in the magnetic 

levitation mechanism. The numerical model should be a useful toolkit for developing 

electrostatic and magnetic levitation systems for space applications as well as for 

planning relevant experiments in space shuttle flights or in the International Space Station 

under construction. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

Both electrostatic and magnetic levitation mechanisms have received more attention 

because of the broad theoretical and engineering application, such as the fundamental 

study of nucleation and crystal growth phenomena, the measurement of thermophysical 

properties of molten materials under microgravity conditions, melting metal without 

contamination, and high-speed magnetic levitated rails. The electrostatic levitation 

facilities have been designed in the United States and Japan, where the terrestrial 

experiments have been undergone in preparation for space shuttle flight experiments 

[Rhim, 1997a, b]. The magnetic levitation method has been proposed in German 

[Muhlbauer et al. 1991; Zgraja et al. 1991] in order to melt the metal without 

contamination. Later on, the TEMPUS unit for the thermophysical measurement in 

microgravity condition is designed by the German scientist and engineers [Flemings et al. 

1996]. The melting metal droplets are used as the experimental and computational 

samples in most of the previous studies. Although the investigators have conducted the 

experimental and numerical studies of the droplets levitated in the electrostatic and 

magnetic fields, there is still much scope for further investigation in the numerical 

simulation of the levitated droplets.   

 The present research focuses on the numerical study of steady state and transient 

3-D Marangoni convection, heat and mass transfer in electrostatically levitated droplets, 
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the 3-D moving study of the droplets in the magnetic levitation, the 2-D numerical study 

of the surface oscillation of the electrostatically levitated droplets, and the 2-D numerical 

study of the internal convection in the electrostatically levitated droplets comprised of 

immiscible liquid metals, which have not been investigated by other researchers. In the 

study of the physical phenomena in the electrostatic levitation mechanism, the boundary 

element and the weighted residuals methods are applied to iteratively solve for the 

electric field distribution and for the unknown free surface shapes. The Galerkin finite 

element method is employed to solve the thermal and fluid flow field in both the transient 

and steady states. The boundary and finite element method with the edge element are 

used to solve the electromagnetic fields in order to calculate the 3-D movement of the 

magnetically levitated droplets. 

 

1.2 Literature Review 

 

The investigation of the physical phenomena in the electrostatically and magnetically 

levitated mechanism has been widely studied experimentally and numerically over the 

past century. In an electrostatic levitator, droplets are suspended by the Coulomb forces 

that are generated by the interaction of charges impressed on the droplets and a static 

electric field surrounding them. As early as 1882, Lord Rayleigh, through asymptotic 

analysis, showed that there exists a threshold value of charges applied to the droplets 

before they become disintegrated. This threshold limits the size of a droplet that can be 

levitated in normal gravity condition. In microgravity environment, however, the 

Coulomb forces are mainly derived from induced charges and the applied electric field 
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and are to confine a liquid droplet at a desired location. This allows a liquid sample of 

large size to be positioned, which is important for measuring certain physical properties 

such as interdiffusion coefficients in undercooled binary alloys.  

 One major advantage of electrostatic levitation is that in principle it can be 

applied to a very wide range of materials including metals, insulators and 

semiconductors.  At present, the author only studied the electrically conducting samples 

levitated in vacuum. From the Gauss Law, the electrical potential in the electrically 

conducting droplet will be kept the same value and thus the Maxwell stress tensor inside 

the droplet is uniform, as shown by the initial researchers [Taylor, 1966; Torza, 1971; 

Ajayi, 1978]. From Torza, et al., an electric field induces a non-uniform distribution of 

electric pressure along the surface of a droplet. This may have a great effect on the 

planned experiment for the measurement of certain thermophysical properties such as 

melt viscosity and surface tension by induced droplet oscillation in microgravity.  

 Study of the behavior of an electrically charged droplet has been a subject of long 

history and new and emerging applications with the droplet have provided continuous 

thrusts for the research community. Analyses have been carried out on either an inviscid 

oscillation of charged droplets for simple electric field configuration and shape stability 

[Brown, 1980; Adornato, 1983; Tsamopoulos, 1984; Natarajan,  Feng, 1990] or 

Marangoni convection in the limit of Stokes flow for a sample of a perfect sphericity 

[Sadhal, 1996]. Brown, et al. (1980) studied the equilibrium shapes and stability of 

rotating drops held together by surface tension through using the computer-aided analysis 

that used expansions in finite element basis functions. Adornato and Brown (1983) 

described asymptotic and Galerkin finite element calculations of the shape and stability 
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of a charged drop levitated in a uniform electric field. In their research, the finite element 

results confirmed the prediction of the asymptotic analysis and gave the limits of 

existence of stable drop shapes. Tsamopoulos and Brown (1984) investigated the 

moderate-amplitude axisymmetric oscillations of charged inviscid drops using a multiple-

timescale expansion. Both frequency and amplitude modulation of the oscillation are 

predicted for drop motions starting from general initial deformations. In 1987, a nonlinear 

analysis of the non-axisymmetric shapes and oscillations of charged, conducting drops 

was carried out near the Rayleigh limit by Natarajan and Brown. They concluded that the 

drop shapes in the bifurcating family for values of charge just below the Rayleigh limit 

were prolate spheroids which were unstable to perturbations that have the same axis of 

symmetry, and the bifurcating shapes for values of charges just above the Rayleigh limit 

were oblate spheroids that were unstable to non-axisymmetric perturbations. Later on, 

Feng and Beard (1990) used the analytical method of multiple-parameter perturbations to 

study the nature of axisymmetric oscillations of electrostatically levitated drops. The 

oscillatory response at each frequency was studied, which consisted of several Legendre 

polynomials rather than one. The characteristic frequency for each axisymmetric mode 

decreased as the electric field strength increased.  

 Based on the analytic and simple numerical results, the experimental 

measurement of thermophysical properties has been developed using the high-

temperature electrostatic levitator at the Jet Propulsion Laboratory [Rhim, 1993, 1997a; 

Paradis, 1999]. Rhim, et al. presented that six theromphysical properties of both solid and 

liquid conductive samples can be measured. The properties include density, thermal 

expansion coefficient, constant pressure heat capacity, total hemispherical emissivity, 
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surface tension, and viscosity. The system design and feedback control mechanism are 

mainly concerned on the experimental study of the electrostatic levitation.  

 Song and Li (2000a, 2000b, 2001) have recently used the coupled finite element 

and boundary element methods to predict the scalar potential distributions in the droplets 

levitated in the electrostatic fields. The coupled finite element and boundary element 

scheme was further integrated with a WRM-based algorithm to predict the free surface 

deformation of electrostatically levitated droplets. Results showed that an applied 

electrostatic field only generated a normal stress distribution along the droplet surface, 

which, combined with surface tension, caused the droplet to deform into an ellipsoidal 

shape in microgravity. Therefore, the internal flows must arise from other sources. Laser 

heating induced a non-uniform temperature distribution in the droplet, which in turn 

produced recirculating convection in the droplet. They have already carried out the 2-D 

numerical simulation for different materials and various operating conditions.  

 Although Song and Li’s 2-D model (2000a, 2000b, 2001) is able to be 

implemented to simulate the single and double laser beam heating arrangements when 

two laser beams are placed at the poles or one beam is placed at both poles, it is 

impossible to calculate the complex 3-D flow structures, which result from the tetrahedral 

or octahedral heating arrangements. Therefore, the 3-D model should be introduced to 

deal the numerical study of steady-state and transient complex Marangoni convection and 

heat transfer in electrostatically levitated droplets. Nobody has used this kind of 3-D 

numerical model to calculate the complex internal convection levitated in the electric 

fields. In the present study, the 3-D model is created, and then the complicated physical 

phenomena is analyzed in order to provide useful data for developing electrostatic 
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levitation systems for space applications as well as for planning relevant experiments in 

space shuttle flights or in the International Space Station under construction. 

Corresponding to Feng’s analytic method, the 2-D coupled finite element and boundary 

element methods are also renewed for the comprehensive explanation of the nature of 

axisymmetric oscillations of electrostatically levitated droplets. The effect of the viscous 

force is considered in the computation of the oscillation of the droplets levitated in the 

electric fields and the front tracking technique is used to update the velocity in the 

computation. 

 The first metallurgical process in magnetic levitation mechanism was patented in 

Germany [Muck, 1923]. About 30 years later, Okress et al. (1952) pioneered research on 

the topic of magnetic levitation, which analyzed the range from electrodynamics to 

transport phenomena in the magnetic levitation mechanism through using analytic and 

numerical methods. The subsequent years have seen considerable research efforts 

devoted to a better understanding of the magnetically levitated process. Rony (1969) 

studied magnetic levitation melting processes for metals. Mestel (1982) used an 

analytical approach to investigate the magnetically induced deformation and fluid flow in 

an isothermal droplet. Bayazitouglu and his students completely studied the physical 

phenomena associated with the magnetically-levitated droplets. Suryanarayana and 

Bayazitoglu (1991) considered the oscillations of an aspherical droplet subjected to 

different external forces such as the acoustic, electromagnetic, and combined acoustic-

electromagnetic forces. Bayazitoglu and Sathuvalli (1994) calculated the Joule heating in 

the magnetically levitated conductive sphere. Bayazitoglu and Sathuvalli (1996) 

developed a method to calculate the Lorentz force on an electrically conducting sphere 
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placed in an arbitrary sinusoidally alternating magnetic field. In their research, they used 

multipole expansion to express the vector potential of the external magnetic field in terms 

of the source. The external magnetic field was calculated by using a gradient formula. 

Lohofer (1989) solved the underlying quasistatic Maxwell equations using analytic 

expansion in spherical harmonics and Bessel functions. The power absorption and lifting 

force in the conducting sphere exposed to the external, time-varying magnetic fields were 

analytically calculated. In his previous publication (1993), he studied the force and torque 

of an electromagnetically levitated metal sphere. Lohofer (1994) also analyzed the 

magnetization and impedance of an electrically conducting sphere, which was inductively 

coupled with an arbitrary, sinusoidally alternating current density distribution. Li (1993) 

presented an analytical study of the electromagnetic and thermal phenomena in magnetic 

levitation. Analysis showed that the power input, the lifting forces and the temperature 

distributions, both global and local, were proportional to the square of input current. At 

high frequency limit, the total power input and the temperature were proportional to the 

square root of applied frequency and inversely proportional to the square root of 

electrical conductivity. Li (1994a) reported an analytic study of magnetohydrodynamic 

phenomena in electromagnetic levitation processes. In his study, the flow was treated as a 

Stokes flow, and the turbulence in the system was accounted for by using a constant eddy 

viscosity model. Calculated results illustrated that the flow field was characterized by two 

toroidal recirculating loops, and was strongly correlated to the distribution of the curl of 

the force field, which in turn depended on the coil placement. Li (1994b) further analyzed 

the transient electrodynamics and fluid flow phenomena in a magnetically-levitated liquid 

sphere.  
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 The numerical models were originally developed by Zong, et al. (1992, 1993). In 

their formulation the electromagnetic force field was calculated using a modification of 

the volume integral method and these results were then combined with the FIDAP code 

to calculate the steady state melt velocities and the transient evolution of the velocity and 

the temperature fields when the heating current is switched off. All these numerical 

studies focused on the isothermal melt flow and the detailed temperature effects were not 

considered. Later on, Song and Li (1998a, 1998b, 1999a) further developed the numerical 

models to couple the boundary and finite element methods. They addressed the research 

on how the free surface deformation would affect the Joule heating distribution and hence 

the temperature field in a droplet in magnetic levitation systems. Their study indicated 

that a more accurate assessment must include free surface deformation and sample 

position in the levitation potential well. Ai and Li (2004) addressed fluid flow instabilities 

and flow transition to turbulence chaotic motions through numerical analysis and 

turbulence in magnetic levitated droplets through numerical simulations. Their results 

indicated that both turbulence kinetic energy and dissipations attained finite values along 

the free surface of the droplets. 

 Although a lot of study has been implemented using the various methods such as 

the analytic, experimental, and numerical methods, many important issues remain still 

unknown, for example, the movement of droplets in the magnetic levitation mechanism. 

Only, Enokizono, et al., (1995) investigated the simulation of the movement of metal in 

the levitation-melting apparatus. However, nodal-based elements are used in their 

boundary and finite element methods so that the spurious solution occurred. While 

various approaches may be applied to alleviate the problem, the approach in the present 
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study uses the edge elements to satisfy the divergence-free condition so as to eliminate 

the spurious solution. Consequently, both the finite element and boundary element 

interpolations are edge-based to ensure the finite and boundary element method 

compatibility. While possible in theory, the numerical implementation of an edge-based 

FEM/BEM method does not appear to have been attempted for the solution of 

electromagnetic-heating-moving problems in general 3-D geometries. 

 

1.3 Objectives of Present Research 

 

The major objectives of this research are to develop 2-D and 3-D numerical models for 

solving the electromagnetic, fluid flow, heat transfer, mass transfer and surface 

deformation phenomena in electrostatic and magnetic levitation mechanism under the 

microgravity conditions in order to provide information for the measurement of 

thermophysical properties and the fundamental study of nucleation and crystal growth 

phenomena. The numerical method can test the experimental results and predict the 

multi-physical phenomena that can not be implemented by using the analytical and 

experimental methods. 

 Various numerical studies are implemented in the electrostatically or magnetically 

levitated droplets. The 2-D coupled boundary and finite elements with a WRM-based 

algorithm are used to predict the free surface deformation with hydraulic effect and 

without hydraulic effect. The 3-D Galerkin finite element method is used to solve the 

Navier-Stokes and energy equations. The complex 3-D steady-state and transient 

Marangoni convection and heat transfer in electrostatically levitated droplets are 
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investigated using the 3-D finite element model. The 3-D coupled boundary and finite 

elements with edge elements are used to predict the droplet movement in the magnetic 

levitation mechanism.  

 

1.4 Scope of Present Research 

 

In the present study, eight major sections are discussed. Chapter 2 lists the complete 

mathematical statement of physical phenomena in the electrostatically and magnetically 

levitated droplets. Chapter 3 presents the detail of the computational methodology, which 

is used to solve governing equations and boundary conditions, as described in chapter 2. 

Chapter 4 discusses the numerical results of free surface deformation, and the steady state 

and transient 3-D Marangoni convection and heat transfer in electrostatically levitated 

droplets. Chapter 5 analyzes the solute transport phenomena in electrostatically levitated 

droplets under microgravity, based on the computational results of the free surface 

deformation, full 3-D Marangoni convection in chapter 4. Chapter 6 presents the free 

surface deformation and Marangoni convection in immiscible droplets positioned by an 

electrostatic field and heated by laser beams under microgravity. Chapter 7 shows the 

computed results of the oscillation of the electrostatically levitated droplet under 

microgravity. Chapter 8 depicts the 3-D movement of the conducting droplet in the 

magnetic levitation mechanism. 
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CHAPTER 2 

PROBLEM STATEMENT 

 

2.1 Electrostatically Levitated Droplets under Microgravity 

 

Let us consider the problem as illustrated in Figure 2.1. An electrically conducting liquid 

droplet is immersed in a uniform electrostatic field, which is generated by placing two 

electrodes far apart (Figure 2.1a). By the principle of electrostatics, a constant potential is 

established on the surface of the droplet, and surface electric charges are induced so that 

the electric field inside the droplet is zero.  The charge distribution is non-uniform along 

the surface and, when combined with a self-induced electric field local to the charges, 

results in a non-uniform electric surface force acting in the outnormal direction [Reitz, 

1979]. This normal force combines with other surface forces to define the equilibrium 

shape of the droplet. The internal and tangential surface Maxwell stresses are both zero 

because the electric potential is constant everywhere inside the droplet by the Gauss law 

and thus there will be no convection resulting from the electric origin. Laser beams are 

applied to melt the sample and/or heat it up to a designated temperature.  Figure 2.1b 

shows a heating arrangement with two laser beams directed at two poles. Various other 

laser beam arrangements are also considered in this study, including single beam, dual 

beam, tetrahedral and hexahedral beams. The heating will result in a non-uniform 

temperature distribution inside the droplet and cause convection if the surface tension of 

the liquid varies with the surface temperature, as for most metallic and semiconductor 

melts.  Since the laser heating applied here is not necessarily axisymmetric, the surface 
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tension driven flows are bound to be three-dimensional.  As shown later, very complex 3-

D flow structures and temperature distributions are developed in a droplet for some 

heating conditions. One important objective of this present study is to develop an 

understanding of these complex transport phenomena under both steady and transient 

conditions, which each have specific applications for space materials processing and 

thermophysical property measurements. 
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(a) 

Q0 

 

Q0 

(b) 

Figure 2.1 Schematic representation of a positively charged melt droplet levitated in an 

electrostatic field: (a) levitation mechanism and (b) two-laser-beam heating arrangement. 
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2.1.1 Governing equations and boundary conditions for the thermal convection in the 

electrostatically levitated droplet under microgravity 

 

A complete description of the electrically induced surface deformation and thermally 

induced fluid flow phenomena in a droplet requires the solution of the coupled Maxwell 

and Navier-Stokes equations, along with the energy balance equation. However, for metal 

and semiconductor melts, the electric Reynolds number, (ε0/σ)Vmax/a, is on an order of 

10-16, which suggests that the convective transport of surface charges (or electric field) 

may be neglected and the electric field distribution can be calculated as if the liquid 

droplet were solid [James, 1981]. With this, the Maxwell equation is simplified to a 

partial differential equation governing the distribution of the electric field outside the 

droplet. The buoyancy effects being neglected for microgravity applications, the 

equations for the electric, fluid flow and thermal fields may be written as follows, 

 

 02 =Φ∇        2Ω∈   (2.1) 

 0u =⋅∇        1Ω∈   (2.2) 

 ( )Tp
t

)u(uuuu
∇+∇⋅∇+−∇=∇⋅+

∂
∂ ηρρ    1Ω∈   (2.3) 

 TkTC
t
TC pp ∇⋅∇=∇⋅+

∂
∂ uρρ     1Ω∈   (2.4) 

 

where 1Ω  and 2Ω  refer to the regions inside the droplet and outside the droplet 

respectively. Φ  is the electric potential, u the velocity, p the pressure, and T the 

temperature. Also, η  is the molecular viscosity, ρ  the density, pC  heat capacity, and k  



 15

thermal conductivity. The solution of above electric field, fluid flow and heat transfer 

equations may be obtained by applying the appropriate boundary conditions, which are 

stated below, 

 

 0Φ=Φ        21 Ω∩Ω∈  (2.5) 

 eσε −=Φ∇⋅n0       21 Ω∩Ω∈  (2.6) 

 Qdsdse =Φ∇⋅−= ∫∫∫∫
ΩΩ

n
11

0
∂∂

εσ      21 Ω∩Ω∈  (2.7) 

 θcos0RE−=Φ       ∞→R  (2.8) 

 ( ) 22 /44 ˆ ll ar
ols eQTTTk −

∞ ⋅+−=∇⋅− rnn εσ    21 Ω∩Ω∈  (2.9) 

 0=⋅ nu        21 Ω∩Ω∈  (2.10) 

 γσ HK E 2=⋅⋅−+⋅⋅ nTnnn     21 Ω∩Ω∈  (2.11) 

 T
dT
d

∇⋅=⋅⋅ tnt γσ       21 Ω∩Ω∈  (2.12) 

 0
1

VdV =∫Ω
       21 Ω∩Ω∈  (2.13) 

 czdVz =∫Ω1
       21 Ω∩Ω∈  (2.14) 

 

In the above, Eq. (2.6) is the jump condition for the electric field along the droplet 

surface, a manifestation of a well known fact that charges are distributed only on the 

surface of a conducting body. Eq. (2.8) describes the electric potential condition at 

infinity. The law of charge conservation is described by Eq. (2.7), where Q is the total 

free charge applied on the droplet, which is zero for the problem under consideration for 
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microgravity applications. In Eq. (2.9), the absorption coefficient is factored into Qo and 

lr̂  the unit vector of laser beam pointing outward from the origin of the laser, i.e., 

0ˆ ≤⋅ lrn .  Eq. (2.11) describes the balance of the hydrodynamic, Maxwell and surface 

tension stresses along the normal direction, which determines the shape of the droplet.  

The last equation represents the fact that the flow along the surface of the droplet is 

induced by surface tension force if it is a function of temperature.  The constraints of the 

volume conservation (Eq. (2.13)) and the center of the mass (Eq. (2.14)) of the 

electrostatically levitated droplet are needed to determine the shape and position of the 

droplet. 

 

2.1.2 Governing equations and boundary conditions for the mass transfer in the 

electrostatically levitated droplet under microgravity 

 

For some applications such as impurity doping and diffusivity measurements [Johnson, 

2002], foreign material may be continuously introduced on the surface once flow is 

established. A strong recirculation in the droplet will likely play an important role in 

transporting the impurity from the surface to the inside, as sketched in Figure 2.2. A 

quantitative assessment of the convection effect on the impurity transport in the droplet 

will be made in this study for the conditions of relevance to diffusion coefficient 

measurements [Johnson, 2002]. 

 The deformation, fluid flow and heat transfer is calculated from eq. (2.1) to eq. 

(2.14). Combined with the above equations, the governing equation for mass transfer may 

be written as follows,  
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 CDC
t
C

AB∇⋅∇=∇⋅+
∂
∂ u      1Ω∈   (2.15) 

 

The solution of the above mass transfer equation is obtained by applying the appropriate 

boundary conditions, which are stated below 

 

 C = 1         for  t > t0     31 Ω∩Ω∈  (2.16) 

 C = 0   at t = 0      1Ω∈   (2.17) 

 

where 3Ω  refer to the metal solute layer on the surface of the droplet, DAB the mass 

diffusivity coefficient. Eqs. (2.16-2.17) are the boundary and initial conditions for the 

concentration distribution. The concentration is non-dimensionalized such that the value 

on the surface of the droplet is unity. Here it is tacitly assumed that the surface 

concentration is uniform, which may be approximately achieved by rotating the flux 

deposition source. Of course, other conditions may also be used if they are known.  Note 

that the boundary and initial conditions for the concentration, as set in Eqs. (2.16) and 

(2.17), represent the situation in which impurities are applied after the heating and flow 

have already established.    

 

 

 

 



 18

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Schematic representation of solute transport in the outer layer into the heated 

droplet. Note that the solute concentration at the surface is dilute but kept at a constant. 

 

2.1.3 Governing equations and boundary conditions for the thermal convection in the 

electrostatically levitated droplet comprised of immiscible liquid metals under 

microgravity 

 

A positively charged droplet comprised of immiscible liquid metals levitated in an 

electrostatic field is also investigated in the present study. The numerical model is 

capable of providing the significant information about the internal convection in the 

droplet, which is useful for the thermophysical measurement for the immiscible liquid 

metals. Like the equations described in section 2.1.1, a complete description of the 

Trace of 
velocity 

Metal solute 
layer 

solvent (droplet) 

Trace of mass 
diffusion 
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electrically induced surface deformation and thermally induced fluid flow phenomena in 

a droplet comprised of immiscible liquid metals requires the solution of the coupled 

Maxwell and Navier-Stokes equations, along with the energy balance equation in 

different regions. The buoyancy effects being neglected for microgravity applications, the 

equations for the electric, fluid flow and thermal fields may be written as follows, 

 

 02 =Φ∇        2Ω∈   (2.18) 

 0=⋅∇ ju        31 Ω∪Ω∈  (2.19) 

 ( )T
jjjjjj

j p
t

)( uuuu
u

∇+∇⋅∇+−∇=∇⋅+
∂

∂
ηρρ   31 Ω∪Ω∈  (2.20) 

 jjjjpj
j

jpj TkTC
t

T
C

j
∇⋅∇=∇⋅+

∂

∂
uρρ    31 Ω∪Ω∈  (2.21) 

 

where j (= 1, 3) with the subscript 1 refers to the outer layer of the droplet and 3 to the 

inner layer. The solution of above electric field, fluid flow and heat transfer equations 

may be obtained by applying the appropriate boundary conditions, which are stated 

below, 

 

 0Φ=Φ        21 Ω∩Ω∈  (2.22) 

 eσε −=Φ∇⋅10n       21 Ω∩Ω∈  (2.23) 

 Qdsdse =Φ∇⋅−= ∫∫∫∫
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n
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0
∂∂

εσ     21 Ω∩Ω∈  (2.24) 

 θcos0RE−=Φ       ∞→R  (2.25) 
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313333 tntnt γσσ     31 Ω∩Ω∈  (2.33) 

 0
31

VdV =∫ Ω+Ω
       31 Ω∪Ω∈  (2.34) 

 czdVz =∫ Ω+Ω 31

       31 Ω∪Ω∈  (2.35) 

 

In the above, eqs. (2.22-2.29, 2.34-2.35) have the same formulation like that in section 

2.1.1 except that they are calculated in the droplet comprised of the immiscible metals. 

Eqs. (2.30-2.31) respectively present that the velocity and temperature are the same on 

the surface between the immiscible liquid metals. The normal and tangential stress 

balance is represented by Eqs. (2.32-2.33) 

 It is noted that in the above formulations, the effect of surrounding gas is omitted.  

The liquid droplet is generally processed under a vacuum condition, although recently 

attempts have been made to process in an inert gas environment. For the latter case, it is 
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estimated that the surrounding inert gas contributes about 3% or less to the Marangoni 

convection.   

 

2.1.4 Governing equations and boundary conditions for the computation of the oscillation 

of the electrostatically levitated droplet under microgravity 

 

In the study of the oscillation of electrostatically levitated droplets under microgravity, 

Eqs. (2.1-2.3) are the governing equations. Parts of the boundary conditions may be 

expressed in Eqs. (2.5-2.8), Eq. (2.11), and Eqs. (2.13-2.14). Also one additional 

boundary condition is needed, as shown below. 

 

 0)( =⋅− nuu s       21 Ω∩Ω∈  (2.36) 

 

where us is surface velocity. Along the free surface of the droplet, eq. (2.36) results in the 

following boundary condition: 

 

 0Xu
dt
dX

=∇⋅+       21 Ω∩Ω∈  (2.37) 

 

with X being the free surface coordinates. 
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2.2 Magnetically Levitated Droplets under Microgravity 

 

Figure 2.3 shows the TEMPUS device in use [Song, 1998a, 1998b, 1999a]. The system 

consists of two types of coils: (1) the inner four current loops (or heating coils) for 

sample heating and melting, and (2) the outer eight loops (or positioning coils) for sample 

positioning in space. During the operation, AC currents flow through these coils to 

generate an appropriate magnetic field. In magnetic levitation, eddy currents are induced 

in the sample and the dot product of eddy currents generates the Joule heating for the 

melting of the sample. These eddy currents also interact with the applied and induced 

magnetic fields to produce the Lorentz force in the sample. At present, we investigate the 

effect of the Lorentz force on the metal’s movement in the magnetic levitation 

mechanism.  
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Figure 2.3 Schematic representation of magnetic levitation System 
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2.2.1 Governing equations and boundary conditions for the computation of the 

electromagnetic field 

 

In order to calculate the distribution of electromagnetic fields in the specimen surrounded 

by the exciting coils, the Maxwell’s equations have to be solved. The Maxwell’s 

equations is written as follows, 

 

 
t
BE

∂
∂

−=×∇          (2.38) 

 
t
DJJH ci ∂

∂
++=×∇        (2.39) 

 0=⋅∇ B          (2.40) 

 eD ρ=⋅∇          (2.41) 

 

When the electromagnetic field is time-harmonic, the Maxwell’s equations may be 

rewritten, 

 

 BE ϖj−=×∇          (2.42) 

 DJJH ci ϖj++=×∇        (2.43) 

 0=⋅∇ B          (2.44) 

 eρD =⋅∇          (2.45) 

 

with the constitutive equations as described below 
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 ED ε=    ED ε=      (2.46) 

 HB µ=    HB µ=      (2.47) 

 EJc σ=    EJc σ=      (2.48) 

 

and the general boundary conditions described as follow, 

 

 0)( 12 =−× EEn   0)( 12 =−× EEn     (2.49) 

 eqDDn =−⋅ )( 12   eqn =−⋅ )( 12 DD     (2.50) 

  

where E (E) is the electric field intensity, H (H) the magnetic field intensity, D (D) the 

electric flux density, B (B) the magnetic flux density, Ji (Ji) impressed electric current 

density, Jc (Jc) conduction electric current density, ρe (ρe) electric charge density, ε 

permittivity, µ permeability, and σ conductivity. 

 However, Maxwell’s equations are coupled partial differential equations, which 

have more than one unknown variables. Therefore, the vector wave equation derived 

from the Maxwell’s equations combined with the energy equation is taken as the 

governing equations to simulate the microwave heating problems. With the analysis 

above, the equations for the electric and thermal fields may be written as follows 

 

 ic
r

j JEE ωµµεω
µ

−=−×∇×∇ 21       (2.51) 
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In the above, Ji is an impressed or source current, and εc (=ε-jσ/ω) results from the 

combination of the induced current (σE) and displacement current (jωD). The appropriate 

boundary conditions are stated below. 

 

 222111
1

ˆˆ1 EnUUEn ×∇×==−=×∇×−
rµ

   21 Ω∩Ω∈  (2.52) 

 

where Ω1 and Ω2 are the FEM domain, BEM domain respectively. 1n̂  is outnormal from 

the FE region, and 2n̂  is outnormal from the BE region. 

 

2.2.2 Governing equations and boundary conditions for the computation of the movement 

of the droplet in the magnetic levitation mechanism 

 

After the computation of the electromagnetic field, the time-averaged electromagnetic 

force induced in the sphere which is responsible for levitation as well as for fluid motion, 

is the cross product of induced current and the complex conjugate of the magnetic field, 

 

 )B(J
2
1F ∗×= Re         (2.53) 

 dV
V

⋅= ∫ FFtotal         (2.54) 

 

where i is the element number. As the levitating motion, we considered the translation. 

Therefore, the translation equations are introduced into this analysis. The Leap Frog 
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Algorithm is used. This algorithm evaluates the velocities at half-integer time steps and 

uses these velocities to compute new positions.  
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So we can derive the new position, based on the old position and velocity: 
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From the Verlet algorithm, we have the following expression for velocity: 

 

 n2
1n

2
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avv t∆+=
++

        (2.58) 

 m/Fa total
n n=          (2.59) 

 

where a is the acceleration, m is the weight of the metal, ∆t the width of time step, v the 

velocity at center of the metal and s the position vector. The fluid flow and temperature 

distribution may also be calculated at every time step. 

After the time-averaged electromagnetic force is calculated, the torque with 

respect to the axis may be written as follows, 
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 tiitiN FR ×=          (2.60) 
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The rotating moving equations at every time step are given by, 

 

 nn ωωω ∆+=+ n1         (2.62) 

 nn θθθ ∆+=+ n1         (2.63) 

 

with  

 

 m
n I∆t /Ntotal=∆ω         (2.64) 

 )2/(N 2
total m

nn I∆tt +∆=∆ ωθ       (2.65) 

 

where Ri is the radius vector drawn from center to surface of a sphere metal, ω  the 

angular velocity, θ  the rotational angle, and mI  the moment of inertia. In the present 

study, the droplet is assumed to be spherical without considering the deformation of the 

droplet. Therefore, the moment of inertia mI  may be written as, 

 

 2mR)5/2(=mI  

 

where m is the weight of the droplet, R the radius of the spherical droplet. 
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CHAPTER 3 

NUMERICAL SOLUTIONS 

 

In the present study of the droplet in electric levitation mechanism, the electric field is 

calculated by the boundary element method (BEM) and the shape deformation by the 

Weighted Residuals method. The numerical model for the transport phenomena is 

developed based on the Galerkin finite element solution (FEM) of the Navier-Stoke 

equations, the energy balance equation and the mass transport equation. The 

computational models developed here enable the prediction of the electric field 

distribution, electric pressure distribution along the surface of a droplet, droplet shapes, 

the internal fluid flow, thermal and solute distributions in electrostatically positioned 

droplets. For the movement of the droplet in the magnetic levitation mechanism, the 

numerical models are implemented using the boundary and finite element method with 

edge elements to calculate the electromagnetic fields in the conducting droplets. And then 

the force is calculated by the integral volume of the droplet, which is used in the dynamic 

equations to solve the movement of the droplet. From now on, unless otherwise indicated, 

the FEM and BEM respectively represent the finite element method and boundary 

element method. 

 

3.1 An Introduction to the FEM and BEM 

 

Let’s begin with an introductory definition of the finite element method (FEM): The 

FEM is a computer-aided mathematical technique for obtaining approximate numerical 
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solution of the physical phenomena subject to the external influence. The FEM originally 

arises from the area of solid mechanics (elasticity, plasticity, statics, and dynamics). 

Applications to date have been expanded to the broad field of engineering science such as 

heat transfer (conduction, convection and radiation), fluid mechanics (inviscid or viscous, 

compressible or incompressible), acoustics, and electromagnetics.  

 The basic idea of the FEM is summarized as follows: (a). the domain of the 

problem is partitioned into smaller regions, called elements, (b). in each element the 

governing equations are transformed into algebraic equations, called the element 

equations, (c). the terms in the element equations are numerically evaluated for each 

element in the mesh, (d). the resulting numbers are assembled into a much larger set of 

algebraic equations, called the system equations, (e). the system equations are solved by 

using the numerical technique on computer, (f). the final operation displays the solutions 

to tabular, graphical, or pictorial form.  

 There are two types of optimizing route leading to the FEM formulation: (a). 

methods of weighted residuals (MWR), which are applicable when the governing 

equations are differential equations, (b). variational method (VM), which is applicable 

when the governing equations are variational (integral) equations. The MWR seek to 

minimize the residue in the differential equations. There are four basic types in the MWR 

route: (a). the collocation method, (b). the subdomain method, (c). the least-squares 

method, (d). the Galerkin method. The variational principles try to minimize some 

physical quantity, such as energy.  

 Over recent decades, the boundary element method (BEM) has received much 

attention from researchers and has become an important technique in the computational 
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solution of a number of physical problems. It is based on the boundary integral equation 

and the methods of weighted residuals, where the Green’s function of the corresponding 

governing equation is chosen as the trial function. The advantages in the boundary 

element method arise from the fact that only the boundary of the domain requires sub-

division. The method is particularly suited to solve problems with boundaries at infinity. 

The method includes the following steps: (a). the surface of the domain of the problem is 

partitioned into smaller regions, called boundary element, (b). the Green’s function is 

selected as the trial function and the governing equations are transformed into algebraic 

equations on the boundary elements, (c). the final element matrix is assembled over 

element by element, (d). the system equations are solved by using the numerical 

technique on computer.  

 

3.2 Computation of the Deformation of the Droplet in the Electric Levitation 

Mechanism 

 

As stated in chapter 2, for practical applications, droplet deformation is essentially 

axisymmetric and viscous forces make a negligible contribution. Thus, the electric and 

droplet deformation calculations may be decoupled from the thermal and fluid 

calculations. The procedures for the computation of electrically induced droplet 

deformation are detailed in our previous publications [Huo, 2004a, 2004b, 2005a].  Since 

the electric field inside the droplet is zero, only the potential distribution outside needs to 

be solved for.   
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3.2.1 Computation of the distribution of the electric potential 

 

We now apply the BEM to determine the scalar electric potential in the exterior region of 

the droplet levitated in the electric field. We are seeking an approximate solution to the 

problem governed by  

 

 02 =Φ∇        2Ω∈   (3.1) 

 

which is the same as Eq. (2.1). The error introduced by replacing Φ  by an approximate 

solution can be minimized by writing the following weighted residual statement: 
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where G is interpreted as a weighting function and  
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The integration of Eq. (3.3) by parts with respect to xi gives 
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where i= 1, 2, 3 and Einstein’s summation convection for repeated indices is implied. 

Integrating by parts once more, 

 

 ∫∫ ∫
ΓΩ Γ
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Assuming G to be fundamental solution to Laplace’s equations means that 

 

 ),(2),(2 rrrrG ii απδ−=∇        (3.6) 

 

where δ  is the Dirac Delta function. Here G is the Green’s function. Substituting Eq. 

(3.6) into Eq. (3.5) gives 

 

 ∫∫
ΓΓ

Γ=ΓΦ+Φ )(),()()(),()()(2 * rdrrGrqrdrrqrr iiiαπ    (3.7) 

 

So, taking the point ri to the boundary and accounting for the jump of the left-hand side 

integral in Eq. (3.7) yields the boundary integral equation 
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After some transformation, we can get the final form used for the BEM simulation. 
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and Φ’ = Φ + Ercosθ, ∂Ω2 designates the surface of the droplet and 2Ω∂  denotes the 

boundary at infinity.  The Green function, G, and its normal derivative are calculated by 

the following expressions written for a cylindrical coordinate system [Jackson, 1975]. 
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where κ  is the geometric parameter calculated by  

 

when ri lies inside domain 

when ri lies on a smooth domain 

when ri lies on a nonsmooth domain 
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The function G and Φ’ have the following asymptotic properties, 
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Also dΓ = R(θ) dθ. Thus, the two integrals each approach zero as R → ∞ , 
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Thus, Eq. (3.9) simplifies to a boundary integral that involves only the surface of the 

droplet, ∂Ω2.  Following the standard boundary element discretization, noticing that the 

potential on the surface is a constant and substituting Φ = Φ’ - Ercosθ  into the resultant 

equation, one obtains the final matrix form for the unknowns on the surface of the 

droplet, 
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where H and G are the coefficient matrices involving the integration of ∂G/∂n and G over 

a boundary element. To complete the solution, Eq. (2.8) is discretized and solved along 

with the above equation to obtain the surface distribution of ∂Φ/∂n and the constant Φ0. 

 

3.2.2 Computation of the deformation of the droplet 

 

The study of the free surface deformation of the electrostatically levitated droplet plays 

an important role in the future computation of the fluid flow and temperature distribution. 

In particular, it can affect the ratio of the radiation when the laser beams are switch off. 

For the electrostatically levitated droplet, its shape is determined by the hydrostatic 

pressure, the electrostatic pressure and the surface tension of the liquid, as shown in Eq. 

(2.11). The normal stress balance equation (Eq. (2.11)) along the droplet surface is solved 

using the Weighted Residuals method. Written in a spherical coordinate system, which is 

more convenient for the calculations. 

 

 mPaBrK
rr

rr
d
d

rr
rr

r γ
θθ

θ
θ

θ
θ

θ

θ

θ −−−=
+

−
+

+ cos)]sin(sin)2([
sin
1

2222

22

2   (3.17) 

 

where a is the radius of the undeformed sphere, r the non-dimensionalized radial 

coordinate, γ/0aPK = , γρ /2gaB = , and 2/)( 2
0 Φ∇⋅−= nPm ε . The weighted residual 

method may be applied to solve Eq. (3.17) once the potential field distributions are 

known. The solution of Eq. (3.17) by the weighted residual method is constructed by 

integrating Eq. (3.17) with a weighting function ψ  along the droplet surface, 
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Where θθ ddrr /= . Integrating by parts, the weighted residuals approach leads to the 

following integral representation of the force equilibrium along the surface. 
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The variables r and rθ are calculated by 
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The constraints of the volume conservation and the center of the mass of the levitated 

sphere are needed to determine the shape and position of the droplet. In dimensionless 

form, the two constraints are expressed as 
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where zc is the center of mass. The free surface may be discretized into N elements and 

Eqs. (3.20-3.22) are integrated numerically. The results may be arranged in the following 

matrix form: 
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where jia , , jb , jc  and jF  are calculated by 
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3.3 Computation of Thermal and Fluid Flow Fields 

 

With the droplet shape known, the momentum and energy equations for the thermal and 

fluid flow fields along with the boundary conditions may be solved using the Galerkin 

finite element method. Both the transient and steady-state temperature and fluid flow 

fields are calculated in the present study. 

 

3.3.1 Computation of thermal and fluid flow fields in a single-phrase droplet 

 

In essence, the computational domain is first divided into small elements. With each 

element, the dependent variable u, P and T are interpolated by shape functions φ , ψ and 

θ, 
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where the iU , )(tP  and T are column vectors of element nodal point unknowns. 

 Substituting Eq. (3.29) into the governing Eqs. (2.2-2.4), we get the residuals R1, 

R2 and R3 which represent the momentum, mass convection and energy equations 

respectively. The Galerkin form of the Method of Weighted Residuals seeks to reduce 

these errors to zero, and the shape functions are chosen the same as the weighting 

function. The governing equations for the fluid flow and heat transfer may be rewritten as 
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Once the form of shape functions is specified, the integral defined in the above equations 

can be expressed by the matrix equation. The momentum and energy equations may be 

combined into a single global matrix equation, 
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The coefficient matrices above are defined by 
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where j=1, 2, 3.  Note also that matrix B represents the surface tension effects on the fluid 

motion. The assembled global matrix equations are stored in the skyline form and solved 

using the Gaussian elimination method.  The transient term is set to zero for steady-state 

calculations, however. 

 

3.3.2 Computation of thermal and fluid flow fields in a droplet of immiscible liquid 

metals 
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The computation of thermal and fluid flow fields in the droplet of immiscible liquid 

metals is very similar to that in the single-phrase droplet in section 3.3.1 except that the 

calculation is carried out in two kinds of immiscible liquid metals. It is also necessary to 

take account the effect of the surface tension on the surface between the immiscible 

liquid metals, as presented by Eqs. (2.30-2.33). With each dependent variable u, P and T  

in elements interpolated by the shape functions, φ , ψ and θ, The matrix form of the finite 

element discretized equations for the thermal and fluid flow model may be written as 

follows, 
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The coefficient matrices above are defined by 
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where m=1, 3. The assembled global matrix equations are stored in the skyline form and 

solved using the Gaussian elimination method [Huo, 2004a]. The transient term is set to 

zero for steady-state calculations, however. 

 

3.3.3 Computation of mass transfer into a single-phrase droplet 

 

With the thermal and fluid flow fields known, the equation governing the mass transfer 

(Eq. (2.15)) is solved for the transient concentration distribution in the droplet [Huo, 

2005a].  By the Galerkin finite element method, the variable C is interpolated by shape 

function ξ , 
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where the C(t) is column vectors of element nodal point unknowns. The matrix form of 

the finite element discretized equation for the concentration field may be written as 

follows, 

 

 0)( =++ CC CCC L(U)DN &        (3.36)               

 

The coefficient matrices above are defined by 
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Like the thermal and fluid flow calculations, the assembled global matrix equations are 

stored in the skyline form and solved using the Gaussian elimination method [Huo, 

2005a]. For this study, the implicit scheme is used to carry out the time matching 

calculations. 

 

3.3.4 Computational aspects in the thermal and fluid flow calculations 

 

Modeling of 3-D surface tension driven flows on a curvilinear surface within the 

framework of finite elements requires some tedious geometric treatment that involves 

differential geometry operations and rotation of matrix in local coordinates at the surface 

for the purpose of appropriately imposing velocity and surface stress boundary conditions 

(Eqs.(2.10) and (2.12)). While treatment may vary depending on specific problems, our 

approach to model the surface driven flow makes use of local surface coordinates and of 

sharp edges with specified local coordinate system as well as consistent surface normals. 

With reference to Fig. 3.1, a local coordinate system (η,ζ,n) is defined at a point on the 

surface.  Note that during calculations this local system may be (although not required) 

chosen conveniently such that they are coincident with the normalized coordinate 

systems for isoparemetric calculations at the element level. The xyz and ηζn coordinate 

systems are related by the following coordinate transformation, 
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In constructing the Jacobian matrix, use has been made of the following differential 

geometry relations, 
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The Jacobian matrix may be inverted analytically with the follow result,  
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  (3.38) 

 

Furthermore, a shape (or any) function f(η,ζ) defined over the surface is a function of 

(η,ζ) only and hence 0),( =∂∂ nf ζη . With these relations, one may then relate the 

volume differential operator to the surface operator, 
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which may be written in the terminology of differential geometry [Weatherburn, 1930], 
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with 2
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and 22 FEGH −= .  It is stressed that in Eq. (3.40), ( ηζ , ) is not necessarily orthogonal 

so long as they are not collinear.  This is important in that irregular quadrilateral surface 

elements can be readily handled in 3-D finite element calculations presented here. 

 To perform the calculations, the consistent normal of the surface at node i is 

required, which must satisfy the continuity equation [Engelman, 1982], 
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where  
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Note that the integration is carried over all the elements sharing node i. Once the normal 

is known, the two tangential directions t1=( 111 ,, zyx ttt ) and t2=( 222 ,, zyx ttt ) can be easily 

calculated using the cross product relations, t1= b x n, which b is an arbitrary space 

vector such that b x n ≠ 0, and t2 = n x b.  This ensures that the local coordinate system 

defined by t1 x t2 x n forms an orthogonal triplet at any node (e.g. node i), a strict 

condition different from that imposed on (η,ζ,n). The velocities defined in the t1 x t2 x n 

system is now related to those in the xyz system through the following transformation, 
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Note that the above transformation also applies to force vectors. 

 To calculate the surface tension contributions, the integration of ∇  term is first 

calculated using the relation (Eq. (3.40)), followed by the above relation to transform the 

velocities defined in the xyz coordinates to those in the t1 x t2 x n system.  For the flows 

under consideration, the normal component of the velocity is zero and the condition can 

be imposed after the transformation. On the sharp edges formed by the intersection of 

two surfaces, however, the t1 x t2 x n system is not uniquely defined by the above 

computational procedure. This causes difficulty when appropriate velocity and stress 

boundary conditions are specified along the edge. To overcome the problem, the normal 

of the edge is taken to be that associated with one of the two joining surfaces and an 

additional constraint is imposed such that the t1 is along the edge.  
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 The above treatment in general will give rise to the submatrix B, which, when 

assembled following standard procedure [Huo, 2004a], results in a significant number of 

unfills in the final global finite element matrix. These unfills may be occupied during LU 

decomposition and therefore drastically slow down the computations [Duff, 1996]. To 

reduce these unfills associated with 3-D Marangoni flow computations, the finite element 

matrix is desectioned such that the terms associated with B matrix is moved to the right-

hand side. As such the matrix DT+AL(U) may be solved independent of the matrix 

describing the flow and velocity.  Further, making use of the penalty formulation to treat 

the pressure term eliminates the pressure field. This re-shuffling of the final global matrix 

elements and unknowns results in savings in both storage space and CPU time required 

for simulations.  Numerical tests show that approximately a factor of 2 to 4 savings in 

computational time is achieved in the present study, depending on the number of finite 

elements used.  

 

 

 

 

 

 

 

Figure 3.1 Transformation between local curvilinear and global Cartesian coordinate 

systems 

n̂
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3.4 Computation of the Stability of the Droplet in the Magnetic Fields 

 

The 3-D electromagnetic field may be solved using the edge finite element method [Huo, 

2004c, 2005b].  The edge-based elements are necessary to satisfy the divergence-free 

constraint, ∇⋅E=0 [Johns, 1971].  However, the huge sparse matrix produced by the FEM 

appears to be a major setback to finding an efficient numerical solution to a large scale 

problem. Our experience shows that this remains true even with various efficient solvers 

designed specifically for the solution of a large sparse system of linear algebraic 

equations to improve the computational efficiency. To alleviate the disadvantage of the 

finite element method, a hybrid finite element-boundary method is employed instead. 

Using this approach, finite elements are used in the conducting droplet where power 

density is needed and material properties may be a function of temperature, while 

boundary elements are used elsewhere. The FEM and the BEM are coupled through the 

interface boundary conditions. This idea is shown in Figure 3.2 

    

Figure 3.2 Schematic representation of the coupling of the finite element and boundary 

element  

Ω1 

Ω2 

Interface of FEM 
and BEM 

Ω1: FEM 
Ω2: BEM 
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3.4.1 Finite element formulation 

 

To develop a finite element formulation in the conducting droplet, the wave equation 

(2.51) is integrated with respect to a vector testing function δE [Akarapu, accepted]. 
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Integration by parts gives rise to the surface integral term, 
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Making use of the vector identity  

 

 ( ) ( ) EEnnEE δδ ⋅×∇×−=⋅×∇× ˆˆ       (3.45) 

 

and also the boundary conditions, the final integral formulation is obtained, 

 



 50

 
[ ] dVjdS

dV

i
VS

V
c

r

JEUE

EEEE

∫∫∫∫∫

∫∫∫
⋅−⋅−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−×∇⋅×∇

ωµδδ

δµεωδ
µ

21

    (3.46) 

 

With appropriate finite element discretization and necessary elemental calculations 

followed by assembly, one has the matrix representation of equation (3.46), 

 

 {F}[B]{U}[K]{E} =+        (3.47) 

 

where the matrix elements are calculated using the following expressions, 
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Note that here Ni and Si are edge-based vector shape functions and their derivatives. 

 

3.4.2 Boundary element formulation using the dyadic Green function 

 

The basic idea of the hybrid FE/BE method was first introduced for the study of 

electromagnetics by Silvester and Hsieh (1971) and McDonald and Wexler (1972) for 

solving exterior or unbounded field problems. Later, the method was applied to solve 
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two- and three-dimensional antenna and scattering problems. Here, it is applied to solve 

the electromagnetic field in a microwave system, and the formulation is based on Green’s 

theorem involving the dyadic Green function, 
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Now, substituting into the above equation the following wave equations and the 

equations for the dyadic Green function, 
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and carrying out the necessary integration, we can get, 
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The surface’s unit normal direction points outward from the region Ω2.  In equation 

(3.51) the first term on the right-hand side is the field radiated by J in the free-space 

environment, thus denoted as Einc.  With the following relation, 

 

 IGG ×′∇′=×∇ )r(r,0
'        (3.52) 

 

and the surface divergence theorem, equation(3.51) can be further simplified as 
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Taking the cross product of equation (3.53) with surface normal n̂  yields 
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After the BE discretization using edge boundary elements, followed by calculations at the 

element level, equation (3.54) may be represented in the following matrix form, 
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where the matrix elements are calculated by 
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With some matrix algebra, equation (3.55) is written more conveniently in the following 

form, 

 

 { } { } { }22222 E]K[FU]B[ +=        (3.56) 

 

where B2 is the boundary element matrix associated with the unknowns. 

 

3.4.3 Coupling of boundary and finite elements 
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The boundary and finite element formulations for the solution of electric field distribution 

are coupled through the interface conditions along the boundary of Ω1 and the boundary 

of Ω 2, 
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rr µµ

      (3.57) 

 21 ˆˆ EnEn ×=×         (3.58) 

 

There are two ways to obtain a coupled solution of equations (3.47) and (3.56) with the 

use of the above interface conditions. One way is to use direct coupling, by which the 

entire boundary element region is treated as a macro element, and the boundary element 

global matrix is then incorporated into equation (3.47). This approach works efficiently 

for 2-D and moderately sized 3-D problems [Li, in print]. However, it becomes 

inefficient for large 3-D problems such as the one under consideration because it 

substantially increases the resultant edge finite element matrix bandwidth and hence the 

CPU times. Another approach is iterative [Huo, 2004c, 2005b]. By this approach, 

equation (3.56) is solved for {U2} with an assumed {E2} on the interface. The standard 

LU-decomposition for complex matrix can be used for the solution. Then {E1} is solved 

using equation (3.47) with known {U2}. The convergence on |{E2}-{E1}|<ε, where ε is 

the convergence criterion, is checked. If convergence is not achieved, {E2}={E1} along 

the interface is used to predict an updated {U2} using equation (19) and then {E1} is 

updated using equation (3.47).  The process is repeated until the convergence is achieved. 
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 It is worth noting here that for either of the two approaches, the matrix B2 requires 

an LU-decomposition only once and the decomposed matrices are stored in the memory 

for subsequent back substitutions when needed. In the case of the iterative procedure, this 

means that subsequent iteration between FE and BE requires only a back substitution 

procedure, thereby leading to a significant increase in computational speed. 

 

3.5 Computation of the Oscillation of the Droplets in the Electrostatic Levitation 

Mechanism 

 

For the oscillation calculations, the electric and droplet deformation calculations must be 

coupled with the fluid calculations. To incorporate the free surface boundary condition, 

the front track technique is applied. Thus applying the weighted residuals method to Eq. 

(2.37) results in the following matrix equations for the free surface boundary coordinates, 

 

 0KXXM =+&         (3.59) 

 

Because the nodes are allowed to move, these movements must be superimposed on the 

velocity at the nodal points and therefore the convection term in Eq. (2.3) must be 

modified accordingly, that is, uu ∇⋅ρ  is replaced by uuv ∇⋅+ )(ρ  where v is the nodal 

velocity due to the free surface movement.  

 The oscillation calculations are solved iteratively with the time differentials 

approximated by the implicit time differencing scheme. The iteration for the problem 

starts the computation of the electric potential with an initial guess for the free surface, 
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then calculates fluid flow field, and then calculates the updated free surface boundary. 

The updated boundary is used to start another set of calculation for the updated vector 

potential and iteration continues till all the variables converge within a preset tolerance.  
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CHAPTER 4 

3-D SIMULATION OF THE FREE SURFACE DEFORMATION AND 

THERMAL CONVECTION IN THE ELECTROSTATICALLY LEVITATED, 

SINGLE-PHRASE DROPLET 

 

4.1 Introduction 

 

In this chapter, a numerical study of steady state and transient 3-D Marangoni convection 

and heat transfer in electrostatically levitated droplets. The analysis is based on the 

Galerkin finite element solution of the Navier-Stokes and energy equations. Numerical 

aspects for the computation of surface driven flows in general curvilinear coordinate 

system are discussed within the framework of finite elements and differential geometry. 

Results show that for practical microgravity conditions under which the deformation is 

small, the single and double beam heating arrangements, when placed at the poles or 

equator plane, produce an approximately axisymmetric flow profile and temperature 

distribution with the axis of symmetry defined by the line passing through the centers of 

the laser beam and the droplet.  Thus, an axisymmetric model could provide a reasonably 

good description, and an exact one when the laser beam is placed at a pole or one beam is 

placed at both poles.  When a tetrahedral or octahedral heating arrangement is applied, 

complex 3-D flow structures occur, which result from interaction of flow motions 

associated with each laser beam. For the case studied, the tetrahedral heating arrangement 

does not seem to produce a significant reduction in internal velocity, in contrast to 

perception, but the temperature is more uniform. This phenomenon is explained by the 
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fact that the 2-beam and 4-beam arrangements result in a surface temperature gradient of 

approximately the same magnitude. The six-beam heating placement produces, however, 

a much more significant reduction in both velocity and temperature non-uniformity. The 

transient decaying during cooling is characterized by the evolution of both temperature 

and velocity fields evolve in a rather complex fashion, with the initial stage dominated by 

the pronounced thermal and flow mixing on the surface layer of a droplet. The strong 

surface mixing quickly brings out a surface temperature distribution of axisymmetry, 

while a 3-D structure still prevails inside until much later. The flow reversal is also 

observed in the droplets that have been heated by 4- or 6-beam lasers during the decay, 

and there is a spike in velocity and temperature at the time when the flow reversal occurs.  

 

4.2 Result and discussion 

 

The computational models described in chapter 3 may be employed to predict the electric 

field distribution, electric pressure distribution along the surface of a droplet, droplet 

shapes, transient full-3D temperature distribution and internal convection in the droplets 

driven by surface tension force. Extensive numerical simulations have been carried out 

for various heating conditions. A selection of computed results is given below. The 

thermophysical properties used for calculations are tabulated in Table 4.1. The criterion 

for the convergence of nonlinear iteration is set to 4101 −× (norm-2 relative error).   
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Parameters  Values 
Tmelt (K) 1940 

Q0 (W/m2) 1.3×106 
ad (mm) 2.5 

ρ (kg/m3) 4110 
µ (kg/m-s) 5.2 x10-3 

γ (N/m) 0.864 
dγ/dT(N/m-K) -2.6 x10-4 
Κ (W/m-K) 21.6 
CP (J/kg-K) 700 

E (V/m) 3.3 x106 
Emisivity ε0 0.3 

β (K-1) 6.5 x10-6 
Pr 1.685 x10-1 

al (mm) 2.05 
 

Table 4.1 Parameters used in calculations of the thermal and fluid flow 

 

4.2.1 Mesh selection and mesh independency test 

 

Numerical tests show a total of 48 linear boundary elements were adequate for the 

electric field calculations and 24 quadratic boundary elements for the computation of free 

surface deformations. The thermal and fluid flow calculations used 8-node hexahedral 

elements. Special treatment is made to generate the hexahedral elements neat the pole. 

Mesh independence tests for flow and thermal simulations were conducted such that the 

numerical error in two consecutive mesh refinements is smaller than 0.1% in maximum 

velocities calculated.  From these tests, a mesh of 2900 8-node elements was used for an 

octant model for the results presented below, which is used to simulate 2 laser beams and 

four laser beams, while that of 3680 8-node elements for a one-third model, to take 
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advantage of symmetry associated with the heating arrangement. Other meshes were also 

used and tested for mesh independence for other laser heating conditions. Some typical 

meshes used for 3-D thermal and fluid flow calculations are shown in Figure 4.2.  Mesh 

for 2-D droplet deformation is given in Figure 4.1. 

 

Figure 4.1 Boundary element mesh of calculating deformation 

 

             

Figure 4.2 Finite element meshes for 3-D computations 
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4.2.2 Droplet deformation 

 

For a majority of microgravity experiments, the droplet deformation is determined 

primarily by the balance of the surface tension and electric stresses along the surface, and 

the contribution of the hydrodynamic and viscous stresses is negligible, typically on the 

order of 1% [Song, 2000b, 2001]. Thus, for these cases, the computation of the droplet 

deformation can be decoupled from the fluid flow calculations. Also, experiments show 

that under normal conditions considered for space applications, the droplet deformation is 

axisymmetric.    

 In microgravity, the electric forces are designed to position the droplet in a 

designated location.  As a net lifting force is not needed, the total net charge is equal to 

zero.  However, as the droplet is placed in the electric field, the perturbed field induces 

surface charges on the droplet.  These induced surface charges interact with the imposed 

electric field to ensure that the electric field inside the droplet is zero and that the entire 

droplet is kept at a constant potential.  While the net force is zero, the local electric force 

along the surface is not, which must be balanced by the surface tension force, thereby 

defining the free surface profile for the droplet. Figure 4.3 shows the result of surface 

deformation obtained from the hybrid finite/boundary model. Because the surface 

charges are negative on the lower half surface and positive on the upper half surface, they 

combine with an upward electric field to produce a force that pulls the surface outward 

from the center.  Moreover, the surface charges are symmetrically distributed due to the 

symmetry of the applied electric field, which causes the droplet to deform symmetrically. 
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To satisfy the mass conservation, the droplet is squeezed at the equator, resulting in the 

shape as shown.   

 It is noteworthy that an electrostatic field in general produces a potential apex that 

is intrinsically unstable for the purpose of levitation. As a result, delicate dynamic control 

system is required to make the levitation operation feasible. This is in contrast with 

induction principle, which produces a potential wall for intrinsically stable 

electromagnetic levitation.  
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Figure 4.3 Comparison of free surface profiles of an electrically conducting droplet in 

normal and microgravity: (1) E0=3.3 x 106 V/m and Q=0 C, and (2) un-deformed liquid 

sphere.  
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4.2.3 Steady state fluid flow and temperature distribution  

 

As stated before, the only non-zero Maxwell stress component on an electrically 

conducting droplet is normal to the droplet surface in the natural coordinate, which 

contributes to droplet deformation only.  Therefore, the fluid flow in the droplet is caused 

by the surface tension variation along the surface only, which in turn stems from a non-

uniform temperature distribution created by laser heating. While any types of heating 

arrangements can be simulated with the numerical model described above, we consider 

below four different types that are either used in practice or being considered for use in 

the near future. These heating arrangements give rise to a complex 3-D flow structure, 

except an axisymmetric placement of heating lasers. 

 

(a) One laser beam on a pole or equator 

 

Early practice of heating the sample in an electrostatic levitator is to apply one laser beam 

at either the equator or one of the poles.  When the laser beam is directed at the pole, the 

flow field and temperature distribution are axisymmetric and thus a 2-D model is 

sufficient to describe the transport phenomena. This 2-D model was reported in early 

studies [Song, 2000b, 2001] and here it serves as a check on the 3-D model. The 3-D 

model uses a quarter model consisting of a slice cut by two planes intersecting long the z-

axis. The comparison of the previous 2-D model and the present 3-D model results 

indicates that the two produce the same flow pattern and agree within 0.1% (relative 

error) in maximum velocities calculated, verifying that the 3-D model indeed reproduces 
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the asymmetric model results (see Fig. 4.4 (a,b)).  Other meshes, such as whole sphere 

and half sphere were also used for additional testing and the same conclusions were held.  

 When the laser is directed at the equator, however, the flow and temperature 

distributions are no longer strictly axisymmetric. This is because the sample, after 

deformation, does not possess a rotational symmetry with respect to either the x or y axis.  

However, the fields are of four-fold symmetry with respect to the y-x plane and x-z 

planes.  This symmetry condition permits the use of another quarter model, which is a 

quadrant formed by the y-x plane and x-z planes, when the laser beam is applied along 

the x-axis. The calculated results of the steady state thermal and fluid flow fields are 

shown in Fig. 4.4 (c, d). Inspection of the results suggests that the flow and temperature 

distributions head at the pole and equator are very similar. And even the temperature 

difference and velocity are nearly the same (with <0.1%). Thus, for one-beam heating 

configuration, the thermal and flow fields are not strongly affected by the placement of 

the laser heating source, and flow is characterized by a single recirculating loop in a plane 

cutting through the x-axis.  Further simulations show that unless the deformation is large, 

this conclusion remains true.  

 These simple flows are also illustrative of the underlying physical principles 

governing the Marangoni flow in the droplet. As the droplet is heated up, the temperature 

is higher within the laser beam coverage and decreases away from the heating center.  

The steady state thermal field is established eventually when the radiation and heating are 

balanced. This non-uniform temperature distribution causes a change in surface tension 

so as to establish a surface force gradient on the droplet. For the case under study, the 

surface tension force increases with decreasing temperature. Consequently, the higher 
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force pulls the fluid particles away from the low force region and moves them along the 

surface from high to low temperature region, where flow moves inward to form a 

recirculating loop in compliance with the mass continuity requirement. 

 

 
                          (a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 4.4  Temperature distribution and internal fluid flow in an electrostatically 

deformed droplet under mcirogravity with a single beam heating laser: (a)-(b) for single 

beam placed at the north pole -- Umax=14.64 (cm/s) and (c)-(d) for single beam placed at 

the equator – Umax=14.43 (cm/s).  Heat flux Q0=2.6×106 (W/m2). 

 

(b) Two laser beams on the poles or equator 

 

The use of two laser beams to heat the sample is also practiced. The two possible laser 

beam arrangements are such that the beams are either applied at the two poles, which 

give rise to a symmetric field distribution, or at the two opposite side of the equator.  For 

the former, a 2-D model is adequate [Song, 2000b], and thus provides once again a 

checkpoint against which the 3-D model is tested. Computed results confirm that the 2-D 

and 3-D model predictions are indeed in perfect agreement when the laser beams are 

applied at the two poles. A 3-D view of the thermal and flow fields is presented in Fig. 

4.5 (a, b).  The two dimensional, axisymmetric flow structure is well predicted by the 3-D 

model, as is expected.  The temperature is higher at the poles and decreases towards the 

equator. This establishes a surface force gradient by which the fluid particles are pulled 

towards the equator at low temperature from the two poles that are at higher 

temperatures. This, combined with the requirement of mass conservation, generates the 

double toroidal recirculating flow loops.  

 To compare, two laser beams are applied symmetrically on the equator.  The 

radius of the laser beams is the same in the two cases. Strictly speaking, surface 
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deformation precludes the use of the rotational symmetry condition; but the 8-fold 

symmetry is still applicable. As a result, only an octant is required for the calculations.  

The computed results, showing the temperature and fluid flow distributions both on the 

surface of and inside the droplet, are presented in Fig. 4.5 (c-f).   

 Comparison of the results in Fig. 4.5 reveals that the flow structures and 

temperature distributions are similar for both cases. Detailed analyses, however, uncovers 

that the rotational flow loop is only approximately symmetric around the axis formed by 

connecting two heating sources applied at the equator, which is consistent with the 

geometric constraint. Further numerical simulations show that a rotational symmetric 

flow field is obtained if a droplet of perfect sphericity is heated with the two heating 

sources placed at the two opposite sides of the equator. From Fig. 4.5, it is seen also that 

the internal convection has a strong effect on the temperature distribution, which is 

suggested by the distorted isothermal contour lines.  For these two cases, the temperature 

difference is 28.8 and the maximum velocity is 10.978 in the case of pole heating, which 

compares 37.4 and 11.592, respectively, for the equator heating. Further simulations 

show that with the same Qo and same radius of laser beams applied at the equator, the 

average temperature is about 20K higher than heating at the poles, but the temperature 

difference and hence the maximum velocity is roughly the same as those in Figs. 4.5 (a, 

b).  

 



 68

 (a)   (b) 

  (c)  (d) 

  (e)  (f) 
 

Figure 4.5 Temperature distribution and internal fluid flow in an electrostatically 

deformed droplet under mcirogravity with heating by dual lasers: (a) and (b) for beams 
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placed at north pole -- Umax=10.98 (cm/s) and (c)-(f) for beams placed at the equator – 

Umax= 11.59 (cm./s).  Heat flux Q= 1.3×106 (W/m2). 

 

(c) Tetrahedral heating by four laser beams  

 

Recently, there have been strong advocates in the droplet levitation community for the 

use of a tetrahedral laser beam heating arrangement as a potential means to reduce the 

temperature gradient in the droplet, thereby reducing the internal convection. In this 

arrangement, four parts of the droplet surface are heated by lasers beams that are emitted 

from the four corners of a tetrahedron whose geometric center is coincident with that of 

the droplet. This design concept may be explored using the 3-D model before expensive 

instrumentation is put in place, which in essence is the usefulness of a numerical model. 

Because of the tetrahedral arrangement, symmetry conditions can be applied on the plane 

that cuts through the two poles and the center of a laser beam placed around the droplet. 

Thus a 1/3 model is sufficient to represent the complex flow and temperature field in the 

droplet.  The model used 3600 8-node finite element elements.   

 The calculated results are depicted in Figure 4.6. Clearly, tetrahedral heating 

creates a rather complex flow structure, with fluid moving from four high temperature 

regions to the low temperature regions (see Fig. 4.6 (a, c)). The complexity of fluid 

motion is further revealed by the internal flows shown in Fig. 4.6(b, d).  The four hot 

spots are apparently associated with the laser heating and flows emerge from these hot 

spots to find their ways to the regions where temperatures are low, as a result of surface 

forces increasing with a decrease in temperature.  Again, the internal flow recirculation 
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produce a strong effect on the temperature distribution, as is evident in the isothermal 

contour plots viewed in slice cuts (Figs. 4.6 (a) and (c)).     

 Comparison of Figs. 4.5 and 4.6 exhibits that a tetrahedral heating arrangement, 

though produces a more complex internal flow field, indeed gives much more uniform 

temperature distribution inside the droplet: a temperature difference of 22.9 for 

tetrahedral heating vs. that of 28.8 for dual laser heating. In sharp contrast with the 

common perception, the maximum velocity generated by the tetrahedral heating is not 

reduced significantly in accordance with the temperature reduction.  In fact, only a small 

reduction of velocity (11 %) is observed. This result, which is contradictory to what is 

anticipated by four-beam advocates, may be explained as follows. While the temperature 

difference indeed is much smaller with four laser beams than with two beams, the 

temperature gradient along the surface is not as much different between the two cases, 

thereby resulting in a reduction of velocity only by 11%. For example, detailed analyses 

show that for the two beam cases, the temperature gradient between the hottest and 

coldest spots on the surface is 7.334×103, which compares with 7.143×103 for four beam 

lasers.  

 For surface tension driven flows, Marangoni number is often used as an indicator 

of flow intensity. For electrostatically levitated droplets under consideration, however, 

one can not use the Marangoni number based on a single characteristic length (say, 

radius) to interpret the flows resulting from different heating arrangements for levitated 

droplets, though it is legitimate for the same heating configuration. This is because the 

length scales are different for different heating configurations, as discussed in the 
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paragraph above. A correct use of Marangoni numbers to characterize the flows must 

take into the consideration the length scale changes for different heating arrangements. 

(a) (b) 
 
 
 

(c) 

 
 
 

(d) 
 

Figure 4.6 Steady state thermal and velocity fields in an electrostatically deformed 

droplet under microgravity with tetrahedral heating arrangement: Umax=9.728 (cm/s).  

Q= 0.65×106 (W/m2). 
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(d). Heating by six laser beams 

 

Besides the dual and tetrahedral laser beam arrangements, other heating placements can 

also be investigated using the numerical model described above. One of the viable 

arrangements would be to use a 6-beam laser heating arrangement, symmetrically placed 

with respect to the center of the droplet, for the purpose of further reducing the 

temperature non-uniformity and a hope for a smaller flow velocity. One possible 

arrangement is to slip the laser heating source into six laser beams, which will allow 

heating to be applied equally on octahedrons of a droplet.  

 One such calculation is given in Fig. 4.7, where the 6 laser beams are arranged 

such that two are at the poles and 4 beams are placed around the equator plane with equal 

spacing, which are distributed at the 8 corners on the octahedron.  Compared with the two 

laser beams’ case, the calculated results indicate that the temperature gradient is reduced 

about 50% and so is the internal velocity with this arrangement. A detailed inspection of 

these flow structures, although very complex, seems to suggest that these complex flow 

structures are a result of interaction of the Marangoni flow cells associated with each 

laser beams.    

 A summary of major results calculated for different heating arrangements is given 

in Table 4.2. 
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(a) (b) 
 
 
 
 

(c) 

 
 
 
 

(d) 
 

Figure 4.7 Steady state thermal and velocity fields in an electrostatically deformed 

droplet under microgravity with octahedral heating arrangement: Umax=5.321 (cm/s).  

Q= 1.3×106/3 (W/m2). 
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        Case  (K) Thigh  (K) Tlow   (K) Taverage (K)  T∆ (cm/s) Umax      Re 

Two laser 

heating at two 

poles 

 

2017.0 

 

1988.2 

 

   2002.6 

 

28.8 

 

10.978 

 

  216.92 

Two laser 

heating on the 

equator 

 

2039.8 

 

2002.4 

 

2021.1 

 

37.4 

 

11.592 

 

  229.05 

One laser 

heating on 

northern pole 

 

2035.3 

 

1979.8 

 

2007.55 

 

55.5 

 

14.64 

 

  289.28 

One laser 

heating around 

the equator 

 

2054.1 

 

1999.2 

 

2026.65 

 

54.9 

 

14.43 

 

 285.13 

Four laser 

heating on the 

tetrahedron 

 

2015.9 

 

1993.0 

 

2004.45 

 

22.9 

 

9.728 

 

 192.22 

Six laser 

heating on the 

octahedron 

 

2005.3 

 

1997.8 

 

2001.55 

 

7.5 

 

5.321 

 

 105.14 

 

Table 4.2 Effects of heat source arrangement on temperature difference and maximum 

velocity in an electrostatically levitated Titanium droplet 

 

4.2.4 Transient development of flow and thermal fields 

 

For undercooling studies using the levitated droplets, knowledge of transient flow and 

thermal fields when heating is turned off is also important. The present 3-D model, like 
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its 2-D counterpart [Song, 2001b], is also capable of describing the transient development 

of both 3-D fluid flow and temperature distribution in an electrostatically levitated 

droplet. Figs. 4.8 and 4.9 show the time development of 3-D fluid flow and thermal fields 

in droplets heated by 4-beam and 6-beam arrangements, respectively. Apparently, the 

transient fluid flow structure evolves in time differently for the two cases.  The transient 

simulations of axisymmetric thermal and fluid flow fields induced by single and double 

beams were discussed in a previous paper on 2-D models.   

 Inspection of Figs. 4.6 and 4.8 shows that in the case of the 4-laser beam 

arrangement, the temperature field changes very rapidly when the heating is turned off, 

which causes a flow reversal near the north pole region and a change in flow structure in 

the droplet.  At time t=0.28 seconds after the laser beams are switched off, the surface 

temperature is largely smeared out due to both convection and radiation such that the 

temperatures at the north pole is reduced below everywhere, a manifestation of high heat 

lose there. In three other heating regions, however, the temperature remains relatively 

higher. This is explained by the fact that for the same laser beam diameter, the surface 

areas form which heat loss occurs are much smaller because of a much larger surface 

curvature radius in these regions.  Note also that there exists considerable thermal mixing 

along the azimuthal direction, which brings the temperature into an axisymmetric field.  

The consequence of this change in thermal fields is that one smaller toroidal loop near the 

north pool is engulfed by the loop associated with the side heating source. This 

phenomenon is consistent with the underlying physics governing the surface tension 

driven flows discussed in the above section (c). 
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 Turning to the time evolution of the thermal and fluid flow fields induced by the 

6-beam heating arrangement, one can see that the similar phenomena are observed in that 

a lower temperature occurs in the pole regions and the temperature is smeared 

considerably along the azimuthal direction. This is accompanied by the flow change such 

that the complex flow structure characterized by several recirculating regions is now 

replaced by basically two large toroidal flow loops recirculating above and below the 

equatorial plane, as shown in Fig. 4.9.   

 To further assess the dynamics of the transient thermal and flow fields, 

information on the history of velocity and temperature at some specific locations is 

obtained. Fig. 4.10 shows the decay of maximum velocities and the maximum and 

minimum temperature differences in the droplet heated by 4- and 6-beams after heating 

sources are turned off.  It is seen that during the first 0.5 seconds after lasers are shut off, 

both velocities and temperature differences experience dramatic change and then decay 

gradually afterwards. After an elapse of 3 seconds, the maximum velocities reach 

essentially the same level in the droplet heated initially by either 4- or 6-beams. The 

maximum velocity changes in accordance with the temperature differences, in 

compliance with the basic principle of surface tension driven flows. Examination of these 

transient results along with 3-D views of flow visualization illustrates that the time at 

which the velocity and temperature spikes up (t~0.3 sec) corresponds to the time when 

the internal flow starts to reverse its flow pattern in certain regions, as shown in Figs. 4.8 

and 4.9.   

 Although the temperature differences undergo drastic changes, the temperatures at 

specific locations do not necessarily do so.  Typical time change in temperature and 
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velocity at specific locations are compared in Fig. 4.11 for the droplets heated by 4- and 

6-beams.  Compared with Fig. 4.10, these results show that the temperature at the specific 

point decays more smoothly, although the maximum and minimum temperature 

differences vary more drastically during the initial transient period. The temperature at 

this point decreases by about 260K below the steady temperature or 200 K below the 

melting temperature.  The velocity at the point where the highest steady-state temperature 

is attained decays very quickly initially and remains approximately constant afterwards. 

 The evolution of temperature distributions along a line emitting from the center to 

a point on the droplet surface is plotted in Figs. 4.12 (a) and (b) for 4-beam and 6-beam 

heating arrangements, respectively.  These results show that the steady state temperature 

distribution is rather uniform and as temperature drops, the temperature distribution 

changes more rapidly. The largest change occurs at around t~0.25 seconds.  Note that for 

clarity of the plots, different scales are used for the temperature distribution at t=3 

seconds, at which time a temperature difference between the center and the surface is 

~7K is obtained for the 4-beam case and ~5K for the 6-beam case. 
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(a) (b) 
Temperature and flow at 0.07 second 

 
 
 

(c) (d) 
Temperature and flow at 0.28 second 

 
 
Figure 4.8 Snapshots of thermal and melt flow fields during their decay as heating lasers 

are turned off: (a) temperature distribution and (b) velocity field (Umax=4.376 (cm/s)) at 

t=0.07 sec., and (c) thermal field and (d) velocity profile (Umax=6.941 (cm/s)) at t=0.28 

sec.  The initial conditions for the calculations are given in Fig. 4.6. 
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(a) (b) 
Temperature and flow at 0.04 second 

 
 

(c) (d) 
Temperature and flow at 0.22 second 

 
  
Figure 4.9 Snapshots of thermal and melt flow fields during their decay as heating lasers 

are turned off: (a) temperature distribution and (b) velocity field (Umax=3.812 (cm/s)) at 

t=0.04 sec., and (c) thermal field and (d) velocity profile (Umax =6.561 (cm/s)) at t=0.22 

sec. The initial conditions for the calculations are given in Fig. 4.7. 
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Figure 4.10 Decaying history of maximum velocities and the maximum and minimum 

temperature differences in the droplets heated by 4-beam and 6-beam heating lasers, after 

heating is switched off. 

 

 

1. ∆T (6 beams)
2. ∆T (4 beams)

3. Vmax (6 beams) 
4. Vmax (4 beams) 
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Figure 4.11 Transient development of velocities and temperatures at specific points in the 

droplets heated by 4-beam and 6-beam heating lasers, after heating is switched off.  The 

velocities are monitored at (x= 4103106.9 −× ,y= 4103755.5 −× ,z= 3105955.2 −×−  all in 

meters) for 4-beam and at ( 4109974.2 −×− , 3108925.1 −× , 3106365.1 −× ) for 6-beam 

where the maximum steady state velocities are attained. The temperatures are monitored 

at ( 3108425.1 −× , 3100638.1 −× , 3101372.1 −×−  for 4-beam and at ( 0,103075.2,0 3−× ) for 

6-beam where the maximum steady state temperatures occur in the droplets. 

 
 

1. Th (4 beams)

2. Th (6 beams)

3. V (4 beams)
4. V (6 beams)
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Figure 4.12 Evolution of temperature distributions along the line emitted from the center 

of the droplet to (0,1,1) on the surface for (a) tetrahedral and (b) octahedral heating 

arrangements.  The curve at t=3 seconds refers to the vertical axis at right.    
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4.3 Concluding Remarks 

 

This chapter has presented a numerical model for steady-state and transient 3-D 

Marangoni convection and heat transfer in electrostatically levitated droplets. The 

numerical model development is based on the Galerkin finite element solution of the 

Navier-Stokes and energy equations.  Numerical aspects for the computation of surface 

driven flows in general curvilinear coordinate system have been discussed within the 

framework of finite elements and differential geometry. Results of droplet deformation 

by electrostatic forces and both steady-state and transient 3-D Marangoni flows in 

droplets heated by a variety of heating source arrangements have been presented. For 

practical microgravity conditions under which the deformation is small, the single and 

double beam heating arrangements, when placed at the poles (or equator plane), produce 

exactly (or approximately) axisymmetric flow profile and temperature distribution with 

the axis of symmetry defined by the line passing through the centers of the laser beam 

and the droplet.  As such a 2-D axisymmetric model could provide a reasonably good 

description, and an exact one when placed at the poles.  Complex 3-D flow structure 

emerges when a tetrahedral or octahedral heating arrangement is applied.  These complex 

flow structures result from the interaction of melt flows associated with each laser beam. 

For the case studied, the tetrahedral heating arrangement does not seem to produce a 

significant reduction in internal velocity, in contrast to perception, while the temperature 

is more uniform. This is attributed to the fact that the 2-beam and 4-beam arrangements 

result in a surface temperature gradient of approximately the same magnitude.  While the 

Marangoni numbers are able to characterize the flow for a same heating arrangement, a 
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correct use of them needs to factor in the different length scales associated with different 

heating placements. The six-beam heating placement produces, however, a much more 

significant reduction in both velocity and temperature non-uniformity. During the 

transient decaying, both temperature and velocity fields evolve in a complex fashion with 

the initial stage dominated by the thermal and flow mixing on the surface of a droplet that 

has been heated by 4- or 6-beam lasers.  The flow reversal is also observed in the droplets 

during the decay, and a spike in velocity and temperature is found at the time when the 

flow reversal is taken place. The strong surface mixing quickly brings out a surface 

temperature distribution of axisymmetry, while inside the droplet the 3-D structure still 

persists until much later.     
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CHAPTER 5 

3-D SIMULATION OF MASS TRANSFER IN THE ELECTROSTATICALLY 

LEVITATED, SINGLE-PHRASE DROPLET 

 

5.1 Introduction 

 

In this chapter, a mathematical model is developed for the solute transport phenomena in 

electrostatically levitated droplets under microgravity, based on the computational results 

of the free surface deformation, full 3-D Marangoni convection in chapter 4. The thermal 

transport in the droplet is conduction-dominant for the cases studied. In general, the 

convection is stronger with higher melting point melts. The internal convection has a 

strong effect on the concentration distribution in the droplet. For melts with high 

viscosities, a significant reduction in velocity can be achieved with an appropriate laser 

beam arrangement, thereby permitting a diffusion-controlled condition to be developed.     

 

5.2 Results and Discussion 

 

Solute distribution in electrostatically positioned droplets is calculated using the 

numerical procedure as described in chapter 3. Numerical simulations were carried out 

and a selection of computed results is presented below. The physical properties used for 

calculations are listed in Table 5.1. The mesh independence testing procedure for droplet 

deformation and internal convection computations has been discussed in the chapter 4. 

Because of the small magnitude of mass diffusion coefficient (D) (See Table 5.3), a 
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denser mesh is needed to obtain mesh independent results.  Therefore, the simulation of 

mass transfer used 8,036 8-node elements for the two- and six-beam cases and 9,184 8-

node elements for the four-beam case, respectively. The velocity fields are interpolated 

from the coarse mesh to the dense mesh. Numerical simulations were also made for 

selected cases using the dense meshes to ensure no loss in accuracy due to interpolation. 

The meshes used for shape deformation calculations and for the mass diffusion are 

illustrated in Fig. 5.1. The mesh distribution for the thermal and flow calculations is 

similar to chapter 4 and thus not shown. The convergent criterion of 1×10-4 (relative 

error) is set for the nonlinear iteration of the droplet shape coordinates and the 

temperature, velocity and concentration fields.   

 Let us turn our attention to the solute transport in the droplets. While the 

mathematical model described here has no limitations of where and when to add the 

solutal elements into the droplet, a special situation is considered here where a mass flux 

method is used to deposit a solutal element on the molten droplet when the flow reaches a 

quasi-steady state. The deposition rate is assumed such that the concentration on the 

droplet surface is maintained as a constant. As a first approximation, the surface tension 

is assumed to be the same as the pure material into which solutal elements are added. 

This assumption is thought to be reasonable so long as the concentration is dilute, say 5 

to 10% [Johnson, 2002].  This allows the calculation of solute transport to be decoupled 

from the thermal and flow calculations. The effects of the mixture need to be considered 

if the concentration is high, however; and when this happens, the concentration 

distribution must be calculated together with the thermal and flow fields.  
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 Figure 5.2 depicts a set of snap shots of concentration distributions in levitated 

droplets heated by two-beam, four-beam and six-beam arrangements. As a comparison, 

the concentration distribution under pure diffusion is also given in Figure 5.2 (g-h). 

Comparison of these results illustrates the significant effect of the internal convection on 

the concentration distribution in the liquid Al droplet. Clearly, for the droplet under 

consideration, the mass transport is convection dominant. This is also supported by the 

ratios of the diffusion velocity and the convection velocity is given in Table 5.3. It is 

noted that in the case of the six-beam heating arrangement the flow is less intensive and 

thus a longer time duration is selected to show the convection effects. 

 To further understand the mass transport phenomena in the droplet, the 

concentration distribution along several different radial directions originating from the 

center of the droplet to its surface is plotted at t = 0.5 second.  The results are shown in 

Figure 5.3. The effects of convection on the concentration distribution are evident, 

confirming the conclusions drawn from the above 3-D contour distributions.  

 As discussed before, a more vigorous internal flow occurs in the droplets of 

higher melting point and thus should have a stronger effect on solute distribution. From 

Table 5.1, it is seen that there exists a much larger velocity in the molten Fe droplet, 

which results in a more pronounced effects on solute transport. This is further confirmed 

by the results given in Figure 5.4, where the Si and Ti concentrations at the center of the 

droplet reaches a quasi-steady state in the Fe droplet much more quickly than the Cu and 

Fe concentrations in the Al droplet. The 3-D view of the Si and Ti concentration 

contours, however, is similar to those given above.    
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 One of the important applications of electrostatically levitated droplets is to 

develop a diffusion-dominating condition in a larger sample for both fundamental 

materials science studies and for physical property measurements, which would 

otherwise be difficult to obtain on Earth. To achieve this, the Magangoni convection in 

the droplet must be controlled below the diffusion velocity so that the concentration 

profile is predominant by diffusion mechanism. The present mathematical model should 

be useful to test the novel concepts developed along these lines. Many numerical 

simulations were conducted with the model.  It is found that a logical approach would 

have to rely on an appropriate choice of materials and the heating source configurations. 

 One case study is given here, which is concerned with measuring diffusion 

coefficients of Cu in a glass forming metal using an electrostatically-positioned droplet 

under microgravity, which is described in [Johnson, 2002]. The parameters used for 

calculations are given in the third column of Table 5.1. Computations follow the same 

procedures as described above, that is, the droplet deformation calculation is followed by 

the thermal and fluid flow and mass transfer calculations. While the flow patterns are 

very similar to those described above, the flow intensity is drastically reduced because of 

a much higher viscosity of this material (see Table 5.2). Figure 5.5 displays the 

concentration distributions in this droplet being heated by three different heating 

arrangements. The pure-diffusion-controlled concentration contour is also plotted as a 

comparison. Examination of these results indicates that both two-beam and tetrahedral 

beam arrangements provide a distorted concentration profile, suggesting that for these 

two heating arrangements the Marangoni convection is still significant and the mass 

transfer is not diffusion-dominant. However, the six-beam arrangement gives a 
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concentration profile similar to that produced by pure diffusion. To further access the 

effect of convection on the solute transport in the droplet, concentration distributions 

along two directions are plotted in Figure 5.6 at t = 200 (secs).  It transpires that the two-

beam and tetrahedral heating arrangements produce concentration profiles significantly 

deviating from the diffusion controlled profiles, as suggested by the 3-D concentration 

contours and line plots. On the other hand, the six-beam heating configuration yields a 

concentration profile that matches with the diffusion profile very closely. Along the 

radial direction from the center to the south pole, where the largest velocity is detected, 

the largest error in concentration is about 5% (Figure 5.6a). However, the concentration 

profile obtained along the line connecting the centers of the droplet and a laser spot at the 

equator matches almost exactly with that produced by diffusion controlled process, the 

largest error being on the order of 0.1% (Figure 5.6b).  This suggests that a diffusion-

dominant condition is possible for this system. 

 

5.3 Concluding Remarks 

 

Complex 3-D internal flow structure results from the interaction of melt flows associated 

with each of the laser beams, when a tetrahedral or octahedral heating arrangement is 

applied. Convection is more intensified in high melt point melts. The thermal transport in 

the droplet is conduction-dominant for the cases studied. However, convection has a 

significant effect on the solute transport in the droplet of molten metals. Control of the 

Marangoni convection in the droplet can be achieved with different heating arrangements 

for different materials. A case study was also presented for the diffusion of Cu in a glass 



 90

forming metal alloy, which has a high viscosity. For this metal alloy, a significant 

reduction in velocity can be achieved and the concentration distribution along some 

directions matches well with the diffusion controlled profile, when a six laser-beam 

arrangement is used.     

Table 5.1 Parameters used for calculations 
 

Parameters Al Fe Metallic glass forming liquid [4,21]  
Tmelt (K) 934 1809  

Q0 (W/m2) 0.97×105 1.1×106 6.0×104 
ad (mm) 2.5 2.5 5.0 
al (mm) 2.0 2.0 7.0 

ρ (kg/m3) 2385 7015 6000 (Est.) 
µ (kg/m-s) 1.3×10-3 5.5×10-3 5 (Est.) 

γ (N/m) 0.914 1.872 1.2 (Est.) 
Dγ/dT(N/m-K) -3.5×10-4 -4.9×10-4 -3.0×10-4 (Est.) 

Κ (W/m-K) 95.37 78.2 20 (Est.) 
CP (J/kg-K) 1080 795 50 (Est.) 

E (V/m) 2.5×106 3.3×106 2.5×106 

Emisivity ε0 0.3 0.3 0.3 
Pr 1.472×10-2 5.591×10-2 12.5 

Taver (K) 996 1918 1080 
 
 

Table 5.2 Maximum velocity and temperature difference in droplets 
 

 Al Fe Metallic glass forming liquid 
Cases 2 4 6 2 4 6 2 4 6 

Vmax (cm/s) 3.50 1.92 0.94 9.04 6.02 2.90 5.8×10-3 1.1×10-3 1.5×10-4 

∆T (K) 1.28 0.57 0.21 12.19 6.90 2.23 8.7 1.6 0.2 

Vmax, ∆T,  
and Re at 
different 
laser 
heatings Re 160 88 43 288 192 92.5 4.9×10-4 9.2×10-5 1.26×10-5 

Table 5.3 Diffusion coefficients and Vmax/Vdiff for cases studied 
 

Materials Al-Cu Al-Fe Fe-Si Fe-Ti Metallic glass forming 
liquids-liquid metal 

Diffusion coefficient Do×105 
(cm2/sec) 7.2 1.4 11 32 1 (Est.) 

Diffusion velocity ×105 (m/s) 1.22 1.22 1.22 1.22 1.22 

Vmax/Vdiff (for 2 laser beams) 2.87×103 2.87×103 7.40×103 7.40×103 4.75 

Vmax/Vdiff (for 4 laser beams) 1.57×103 1.57×103 4.93×103 4.93×103 0.90 

Vmax/Vdiff (for 6 laser beams) 0.77×103 0.77×103 2.37×103 2.37×103 0.12 
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(a) 2-D axisymmetric 

model 

(b) octant model (c) one-sixth model 

Figure 5.1 Meshes used for shape deformation calculations and the mass diffusion. Note 

that for the electric and droplet shape calculations, only the boundary elements marked by 

heavy dots are needed. The internal mesh is used for the axisymmetric Marangonic 

onvection calculations that used to check the 3-D model predictions for the two-beam 

arrangement 
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(a) t=0.1 sec 

 
(b) t=0.3 sec 

 
(c) t=0.2 sec 

 
(d) t=0.4 sec 

 
(e) t=0.6 sec  

(f) t=0.8 sec 
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(g) t=25 sec 

 

(h) t=50 sec 

 

Figure 5.2 Snap shots of 3-D views of the Fe-concentration distributions in the Al droplet 

heated by different heating arrangements: (a-b) 2-laser beams, (c-d) 4-laser beams, (e-f) 

6-laser beams, and (g-h) no convection 
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Figure 5.3 Concentration distribution along the line originating from the center (0, 0, 0) 

to the surface of the Al droplet at t = 0.5 second. The line has an angle of 450 above the 

equator plane (the unit vector of the line: 321
3

1
3

1
3

1 îîîr̂ ++= ). The distance is non-

dimensionalized by the radius of the droplet. The convection-dominant concentration 

profiles deviate drastically from the pure-diffusion profiles. 
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Figure 5.4 Time evolution of the Si and Ti concentrations at the center of the Fe droplet 

and the Cu and Fe concentrations at the center of the Al droplet.  Strong flows in the Fe 

droplet quickly brings the solute from the surface to the center.  The concentration is non-

dimensionalized 
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(a) no convection 

 
(b) 2 laser beams  

 
(c) 4 laser beams  

 
(d) 6 laser beams  

 
 

Figure 5.5 A 3-D view of concentration contours in the metallic glass forming droplet 

heated by different heating arrangements (t = 200 seconds): (a) no convection, (b) 2-laser 

beams, (c) 4-laser beams, and (d) 6 laser beams  
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(b) 
 

Figure 5.6 Concentration distributions along radial directions in the metallic glass 

forming liquid droplet. (a) along the line from center (0, 0, 0) to the equator surface and 

(b) along the line from center (0, 0, 0) the south pole (unit vector 3îr̂ −= ). The distance is 

non-dimensionalized by the radius of the undeformed droplet ad 

r/ad

r/ad
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CHAPTER 6 

2-D SIMULATION OF THE THERMAL CONVECTION IN THE 

ELECTROSTATICALLY LEVITATED DROPLET OF IMMISCIBLE LIQUID 

METALS 

 

6.1 Introduction 

 

In this chapter, a numerical study is presented of the free surface deformation and 

Marangoni convection in immiscible droplets positioned by an electrostatic field and 

heated by laser beams under microgravity. The boundary element and the weighted 

residuals methods are applied to iteratively solving the electric field distribution and the 

unknown free surface shapes. The Galerkin finite element method is employed to solve 

the thermal and fluid flow field in both the transient and steady states. Results show that 

the inner interface demarking the two immiscible fluids in an electrically conducting 

droplet is immune to the applied electrostatic field and maintains its sphericity in 

microgravity under steady state conditions. The free surface or, however, deforms into an 

oval shape in an electric field and its equilibrium shape is determined by the balance of 

the Maxwell stress and the surface tension. The deformation is attributed to the pulling 

action of the normal component of the Maxwell stress. The thermal and fluid flow 

distributions are rather complex in an immiscible droplet. The dominant mechanism for 

the thermal transport in the droplet is by conduction and convection plays only a minor 

role. The flow near the free surface is driven by the Marangoni forces, which cause the 

fluid particles to move from high to low temperature regions. The flow in the inner core 
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and near the immiscible interface, however, is driven by a competing mechanism 

between the thermally induced interfacial surface tension gradient and the inertia force in 

the outer fluid layer. During cooling into an undercooled state after the laser heating is 

switched off, surface radiation results in a reversal of the surface temperature gradients 

both along the free surface and along the immiscible interface. This change in the thermal 

gradients reverses the surface tension driven flow in the outer layer. The flow near the 

interfacial region is complex and is driven by a complimentary mechanism between the 

interfacial and the inertia forces during the time when the thermal gradient on the free 

surface is reversed and that on the interface is not. Before and after the completion of the 

interfacial thermal gradient reversal, however, the interfacial flows are determined by the 

competing mechanism between the interfacial and inertia forces. 

 

6.2 Results and Discussion 

 

The computational model developed above enables the prediction of the electric field 

distribution, the Maxwell stress distribution along the surface of a droplet, droplet shapes, 

temperature distribution and internal convection within the droplets driven by surface 

tension and buoyancy forces in normal gravity. A selection of computed results is 

presented for some immiscible droplets being considered for microgravity applications.  

Unless otherwise indicated, the computations used the physical properties and parameters 

in Table 6.1.  It is noted that Qc is the critical charge as predicted by Rayleigh’s theory 

[Rayleigh, 1882], above which a charged drop becomes unstable and starts to break into 

smaller droplets. A total of 48 linear boundary elements were used for the electric 
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potential calculations and 24 quadratic boundary elements for free surface deformation 

calculations. For the problem under consideration, the use of the boundary integral 

formulation requires a discretization of the droplet boundary only and thus results in 

considerable computational savings, in comparison with the finite element method, which 

would have to discretize the entire free space outside the droplet. The thermal and fluid 

flow calculations used 264 9-node elements, with the penalty formulation for pressure, 

and the density of the mesh was increased near the free surface to ensure accuracy.  A 

convergence criterion of 1 × 10-4 was set for relative error associated with unknowns for 

free surface shapes, temperature and velocity. Different meshes and different mesh 

distributions were also used to check the mesh dependency. The final mesh used for the 

computations is shown in Figure 6.1.  It is determined such that any further refinement of 

the mesh produces an error smaller than 0.1% (relative to the final mesh). 

 

 

Parameters Al ln Fe Pb Co Si 
Tmelt (K) 934 429.6 1809 600 1766 1685 
ρ (kg/m3) 2385 7023 7015 10678 7760 2510 

µ ×103 (kg/m-s) 1.3 1.89 5.5 2.65 4.2 0.94 
γ (N/m) 0.914 0.556 1.872 0.468 1.873 0.865 

dγ/dT×104  (N/m-K) -3.5 -0.9 -4.9 -1.3 -4.9 -1.3 
Κ (W/m-K) 95.37 42 78.2 19.9 96.0 138.5 
CP (J/kg-K) 1080 259 795 135 590.0 1040 

Pr×102 1.47 1.17 5.59 1.80 2.57 0.71 
α×106 37.03 23.09 14.02 13.80 20.97 53.06 

 
 

Table 6.1 Thermophysical properties used for computations 
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Figure 6.1 Boundary element and finite element mesh for numerical computation 

 

6.2.1 Droplet deformation 

 

There are two interfaces associated with an immiscible droplet. The outer surface is a free 

surface that separates the droplet from free space. The inner surface is an interface that 

demarks the two immiscible fluids.  Analyses are made to understand the reaction of 

these interfaces to an imposed electric field, which is used to position the droplet under 

microgravity.  

 We first consider the behavior of the inner interface. It is known that when an 

electric conductor is placed in an electric field, electric charges are induced on its surface. 

These charges induce an electric field inside the droplet just opposite to the applied field 

so that the total inside field is identically zero. This is the renowned Gaussian law of 

electrostatics, which requires that the whole droplet be at the equal potential and the 

surface charges appear only on the free (or outer) surface of the droplet.  This means that 
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the Maxwell stress along the immiscible interface is zero and the inner interface shape is 

completely determined by the balance of the hydrodynamic forces along the interface 

face, or the balance of the surface effect (surface tension times the curvature) by the 

pressure difference between the two liquids. Thus under microgravity and with the 

viscous forces neglected under practical conditions, the interface remains spherical and is 

immune to the electric field outside the droplet. This is illustrated by Curve a in Fig. 6.2. 

It is worthy noting that, form the above discussion, the electric effect will not enter even 

when the droplet is levitated electrostatically under normal gravity. Of course, when 

gravity is present, the interface shape should be determined by the balance of the 

interfacial surface tension and the buoyancy force on the inner fluid, which results from 

the density difference between the two fluids. 

 The behavior of the outer surface, on the other hand, is much different. Because 

of the induced surface charges, the normal component of the Maxwell stress, or the 

electric force, experiences a jump across the free surface. The force is non-uniformly 

distributed along the surface, which combines with the surface tension to determine the 

equilibrium shape of the free surface of the droplet. Two sets of shape deformation 

calculations are shown as Curves c and d in Fig. 6.2 for two different applied electric 

fields, along with the non-deformed free surface shape denoted by Curve b.  Inspection of 

Curve c indicates that the droplet deforms into an oval shape under the combined action 

of an applied electric field and surface tension in microgravity. The surface charge 

density increases from the equator region to the two pole regions, with the positive 

charges on the upper half surface and the negative charges on the lower half. The charges 

interact with the applied, upward-point electric field to produce the electric forces that 
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tend to pull the droplet apart, thereby resulting in the oval shape. A stronger electric field 

induce stronger electric forces and hence a larger free surface deformation (see Curve d). 

It is marked here that the symmetric deformation is a consequence of microgravity. 

Though not shown, under normal gravity, the deformation is asymmetric and the gravity 

force will cause the droplet free surface to deform into a blob with the pointy portion 

aligned along the gravity direction. The electric field effect, however, remains the same 

as discussed above.  
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Figure 6.2 Computation of free and interfacial surface of an Al-Pb droplet in 

microgravity: (a) interfacial surface shape (ri/r0 = 0.6); (b) un-deformed free surface of 

liquid sphere; (c) E0 = 1.5×106 (V/m) and Q = 0 (C); (d) E0 = 2.5×106 (V/m) and Q = 0 

(C) 

a 

b 

c 
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6.2.2 Steady-state temperature and flow fields 

 

As stated earlier, the Maxwell stress only has a component normal to the surface of the 

droplet and is zero inside. Because it is non-vortical in nature, the stress does not induce 

internal flow in the droplet. However, the laser heating of the droplet generates a non-

uniform temperature distribution both inside and along the surface of the droplet. This 

temperature variation along the free surface and the interface of the two immiscible fluids 

gives rise to a non-uniform thermocapillary forces that drive the recirculating fluid flows 

in both liquids.  

 Fig. 6.3 summarizes the possible different thermal and flow patterns inside the 

immiscible droplets electrostatically positioned in microgravity. Here A-B (e.g. Si-Co) 

means that the outer layer of the droplet is A (i.e. Si) and the inside core is A (i.e. Co); 

this convention will be used hereafter unless otherwise indicated. The droplet shapes are 

calculated based on the condition given in Table 6.2. The deformation of the droplet is a 

result of balance between the electric and surface tension forces along the droplet surface, 

which differs from droplet to droplet, as shown in Fig. 6.3. The temperature and the 

velocity distributions along the free surface and along the immiscible interface are shown 

in Figs. 6.4 and 6.5 respectively.  

 Analyses are made to understand the underlying physics that governs these 

complex thermal and fluid field distributions in these droplets. Let us start with the 

thermal fields. A feature common to these cases is that the temperature field is symmetric 

with respect to the equator plane, a mere consequence of the laser beams being applied at 
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the north and south pole regions of the droplets. Detailed examination of the temperature 

contour distributions in these droplets illustrates that the thermal energy transport inside 

these droplets are dominant by conduction mechanism and convection plays a minor role. 

A higher temperature exists near the laser heating spot and decreases along the fee 

surface and inside towards the equator plane.  This is a manifestation of the small Prandtl 

number associated with these liquid metal droplets (see Table 6.1). It is further noticed 

that in the case of Pb-Fe, the temperature contours are distorted somewhat more severely 

than those in other cases, which is attributed to a relatively larger Pr number of Pb and 

Fe. 

 We now turn our attention to the thermally induced fluid flow phenomena inside 

the droplets. First the flow motion in the outer liquid layer is considered. As the 

temperature decreases from the pole region to the equator plane, the surface tension force 

increases accordingly. A fluid particle on the free surface experiences a surface force 

gradient and is dragged from the low to the high force region, thereby causing the melt 

flow from the pole to the equator regions along the free surface. This surface tension 

effect is common to in all the six cases shown in Fig. 6.3. At the equator plane, the fluid 

particle is forced inward into the droplets and finds a way back to the low force region to 

satisfy the mass conservation, thereby forming a visible recirculating flow insider the 

outer fluid layer.  

 The flow distributions near the interface region and insider the inner fluid core, 

however, display very complex patterns and differ from case to case. While a detailed 

flow distribution depends on both thermal and physical properties and applied conditions, 

the complex fluid flow patterns are considered to be attributed to a combined effect of the 
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interfacial thermocapillary forces and the inertia in the outer fluid layer.  Similar to the 

Marangoni force on the free surface, the interfacial thermocapillary force increases also 

with a decrease in temperature along the interface and pulls the fluid steam from the high 

to the low temperature region (see Figs. 6.4b and 6.5b). The interfacial force acts as a 

momentum source that drives the flow in both fluids. Other the other hand, the flow 

resulting from the free surface Marangoni force produces an inertia that superimposes the 

interface and counterbalances the effect from the thermocapillary force. It is this 

competing mechanism that drives the flow near the interface and the flow inside the core 

of the droplet. 

 In the case of Al-In, a strong flow driven by the free surface Marangoni force 

provides a strong inertia near the immiscible interface and almost completely overpowers 

the interfacial thermocapillary force, thereby resulting in a very weak flow in the inner 

fluid core (see Fig. 6.3a). Exchanging the inside and outside fluids gives rise to a weaker 

flow is generated in the outer layer. Thus a visible recirculating flow appears in the inner 

fluid (see Fig. 6.3b and Fig. 6.5). Perhaps, this competing mechanism for the internal 

flows is most revealing in the results shown in Fig. 6.3c. There are four strong 

recirculating eddies that comprise the entire flow field, with two in the outer and two in 

the inner fluids. The largest and yet strongest eddy occurs in the outer layer near the 

equation, which is driven by the free surface Marangoni forces. The eddy in the inner 

fluid near equator is clearly the consequence of the inertia force dominating the 

interfacial surface tension effect. In the region near the immiscible interface from the pole 

(θ= ±π/2) to (θ= ± π/4), the interfacial surface gradient shows its strongest effect and 

overpowers the inertia force from the outer fluid layer.  It provides the major momentum 
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force that drives the two recirculating loops in the region. When the two fluids switched 

in positions in the droplet, the interfacial surface force gradient becomes even more 

effective in driving the fluid motion near the immiscible interface.  This is evident in Fig. 

6.5 (d) in that the inner fluid is now completely covered by one eddy, which is apparently 

a consequence of the interfacial force induced eddy engulfing the weak inner flow eddy 

from near the equator plane. The same can be said for the thermal and fluid flow fields in 

Figs. 6.3f and 6.3e, respectively. As expected, this competing mechanism between the 

interfacial surface force gradient and outer flow inertia can cause a variety of different 

flow conditions.  

 The flow pattern, velocity intensity and thermal field distribution inside the 

droplets depend upon various parameters, as discussed above. These fluid dynamics and 

thermal characteristics are also affected by the ratio of the outer and inner fluid volumes. 

Two of these cases are shown in Fig. 6.6 for the Si-Co immiscible melt droplets with two 

different volumes of fluids. Comparison of Fig. 6.6 with Fig. 6.3(e) shows that the 

interfacial thermocapillary force becomes much stronger when the inner radius over ratio 

is reduced.  Indeed, Fig. 6.6(a) suggests that the flow insider the inner fluid shows an 

overwhelmingly strong effect from the interfacial surface tension gradient.  This contrasts 

with the case of Fig. 6.6(b), which shows that the effect of the interfacial thermocapillary 

force is essentially suppressed by the momentum from the outer layer fluid, when the 

inner-outer radius ratio is reduced to 0.4. This effect is obviously attributed to the fact 

that a much higher surface temperature gradient exists along the immiscible interface, 

because of the improved heat conduction due to the increased ratio of the inner over outer 

radius.     
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Parameters Al-ln ln-Al Fe-Pb Pb-Fe Co-Si Si-Co Si-Co Si-Co 
E×10-6 (V/m) 2.5 1.0 2.5 1.5 2.5 2.0 2.0 2.0 

Q0×10-5
 (W/m2) 1.0 1.0 11 11 10 10 10 10 

ad (mm) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 
al (mm) 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85 
adi / ado 0.6 0.6 0.6 0.6 0.6 0.6 0.9 0.4 

Vmaxo  (outer surface) 
(cm/s) 2.44 0.89 7.72 9.17 7.01 5.69 3.90 6.15 

Vmaxi  (inner surface) 
(cm/s) 0.32 0.22 2.48 3.74 2.68 2.36 3.00 1.09 

∆T K (outer surface) 1.40 2.60 16.20 59.90 11.8 8.90 10.3 8.80 
∆T K (inner surface) 0.47 0.58 7.32 8.89 3.24 3.06 7.64 1.33 

Mai 3.82 3.82 69.73 69.73 18.39 18.39 72.28 12.58 
Mao 25.45 13.41 264.9 529.8 164.8 58.45 67.12 57.34 
Reo 111.9 82.68 246.2 923.7 323.8 379.8 260.3 410.5 

 

Table 6.2 Parameters and some calculated results 

 

    
 

                           (a) Al-ln                                                        (b) ln-Al 
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                           (c) Fe-Pb                                                          (d) Pb-Fe 
 
 
 

 
(e) Si-Co 

 
(f) Co-Si 

 
 
Figure 6.3 Steady-state fluid flow and temperature distribution in the droplet (ri / ro = 0.6) 

for some immiscible materials.  
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Figure 6.4 Steady state temperature distribution (∆T = T-Tsmin, where Tsmin is the 

minimum surface temperature) along the free surface (a) and the interface between the 
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two immiscible liquid metals (b). The surface is measured from south (θ = -π/2) to north 

(θ = π/2) pole. 
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Figure 6.5 Steady state fluid flow distribution along the free surface boundary (a) and the 

interface between the two immiscible liquid metals (b).  The angle θ is measured from (θ 

= -π/2) to (θ = π/2). The velocity is positive in the clockwise direction and negative in the 

anti-clockwise direction 

 
 

 
(a) ri / ro = 0.9 

 
(b) ri / ro = 0.4 

 
 
Figure 6.6 Steady-state fluid flow and temperature distribution in the Si-Co droplet with 

different radius ratios 

 

6.2.3 Evolution of fluid flow and temperature fields 

 

Knowledge of the decay of both temperature and velocity fields in a levitated droplet of 

the immiscible metals, as it cools into an undercooling region, is crucial for the design of 

microgravity experiments with the droplet. In practice, when the levitation is stabilized 
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and the sample is heated to a desired temperature, the laser beams are turned off and the 

sample is allowed to cool below the melting point of one of the two fluids by radiation. 

The computational methodology discussed above may be applied to predict the dynamic 

development of transient thermal and fluid flow fields in electrostatically positioned 

droplets as they undergo undercooling. The Pb-Fe droplets are selected for discussion in 

this study, and the analysis should be applicable to other cases well.  

 Fig. 6.7 illustrates a set of snap shots of the time evolving velocity and 

temperature fields in the Pb-Fe droplet when the laser power is switched off and the 

droplet is allowed to cool for about 3 seconds. At this point, the temperature drops below 

the melting point of iron. The calculations began with the initial (t=0) velocity and 

temperature fields shown in Fig. 6.3 (d). The time development of the detailed 

temperature and velocity distributions both along the free surface and the immiscible 

interface are shown in Figs. 6.8 and 6.9. The two-fold symmetry with respect to the 

equator plane is apparently a consequence of the initial fields and thus does not need an 

elaboration.  

 Cross-examination of Figs. 6.7 to 6.9 reveals some of most interesting features 

associated with this complex evolving thermal and fluid flow phenomena as the droplet 

cools into the undercooling region.  First, the temperature drops very rapidly over t=0 to 

t=0.1 (sec) after the laser power is turned off and the decrease continues afterwards but at 

a slower pace. At t = 0.1 (sec), the outer surface temperature difference at the pole 

(θ=±π/2) has decreased by about 30 times, which compares with a factor of 5 for a drop 

in the inner temperature difference at θ=±π/2 (also see Fig. 6.4). On the free surface, the 

temperature gradient is completely reversed at about 0.2 (sec) in that the temperature at 
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the pole becomes smaller than that at the equator. In comparison, the reversal takes about 

0.3 (sec) along the immiscible interface.  After the reversal completes, the temperature 

gradient direction remains the same along both the free surface and the interface. Again, 

this dynamic evolution of the thermal field is by conduction and surface radiation, and 

the convection effect is relatively weak or minimal, as evident by the small Prandlt 

number of the melts. As thermal radiation is stronger near the pole where temperature is 

high, the temperature reversal starts there. This change in the thermal field is responsible 

for the complex evolving fluid flow field in the droplet, as shown in Fig. 6.7. 

 Fig. 6.7a shows that at t=0.1 (sec), the four-loop structure remains unchanged 

despite a significant drop in temperature. This is because the surface tension force 

gradient is unchanged. The large drop in the temperature, however, is reflected in the 

velocity magnitude, as is evident by comparing Fig. 6.6 and Fig. 6.9, where the velocity 

distribution along the free and inter surfaces are plotted. At some time close to t=0.2 

(sec), the temperature gradient along the free surface is reversed such that the temperature 

at the equator plane becomes higher than that at the pole. This change in temperature 

gradient causes a corresponding reversal of the surface tension force gradient, with a 

higher pulling force now at the pole. Consequently, the fluid stream along the free surface 

flows from the equator plane to the poles (see Fig. 6.7b), which causes the outer fluid 

eddy near the equator to reverse its rotation. At this point, however, the interfacial surface 

force gradient still is the same as before, and intends to drive the flow from the pole to 

the equator region. Thus, in the near interfacial region, the outer flow inertia force 

complements the interfacial surface force gradient, thereby giving rise to the fluid pattern 

as shown in Fig. 6.7b. As the evolution continues, the interface gradually completes its 



 115

temperature reversal. Then the inertia force starts competing with the interface surface 

force in driving the fluid flow near the interfacial region. Figs. 6.7c and 6.7d reveal that 

the outer flow inertia force becomes more powerful from t = 0.3 (sec) onwards and drives 

the flow near the immiscible interface region. This means that the flow in both the 

immiscible fluids of the droplet comes primarily from the free surface Marangoni effect 

and the interfacial surface force has a negligible role. 

 

6.3 Concluding remarks 

 

This chapter has presented a numerical study of the free surface deformation and 

Marangoni convection in immiscible droplets electrostatically positioned under 

microgravity.  The computational methodology employs the boundary element method 

for the solution of the electrostatic field outside the conducting droplet and couples with 

the weighted residuals method for solving the unknown free surface shapes along the free 

surfaces. With the droplet fee surface shapes determined, the temperature and fluid flow 

fields are solved using the Galerkin finite element method. Both the transient and steady 

state thermal and fluid flow fields are solved, with the implicit backward Euler scheme 

used for the time matching. Analyses show that the inner interface demarking the two 

immiscible fluids in an electrically conducting droplet is immune to the applied 

electrostatic field and maintains its sphericity in microgravity. The free surface or the 

outer surface, however, deforms into an oval shape and its equilibrium shape is 

determined by the balance of the Maxwell stress and the surface tension. The deformation 

is caused by the pulling action of the electric forces resulting from the interaction of the 



 116

induced charges and the applied electric field. The thermal and fluid flow distributions 

are rather complex in an immiscible droplet. The dominant mechanism for thermal 

transport in the droplet is heat conduction and convection plays only a minor role. The 

flow near the free surface is driven by the well-known Marangoni convection 

mechanism, which causes the fluid particle to move from the high to low temperature 

regions. The flow inside the inner fluid and near the immiscible interface, however, is 

driven by a competing mechanism between the thermally induced interfacial surface 

tension gradient and the inertia force in the outer fluid layer induced by the free surface 

Marangoni convection. During cooling into an undercooled state after the laser hearting 

is switched, the surface temperature gradients, both along the free surface and the 

immiscible interface, experience a reversal, which is caused by surface radiation.  This 

reversal in the temperature gradients results in a reversal of the surface flow. During the 

time between the surface thermal gradient reversals along the free and the interfacial 

surfaces, the flow near the interfacial region may be driven by a complimentary 

mechanism between the interfacial and the inertia forces during the thermal and fluid 

flow transitional period. Before and after the completion of the interfacial thermal 

gradient reversal, however, the interfacial flows are driven by the competing mechanism 

between the interfacial and inertia forces, with the latter overwhelmingly dominating 

after the thermal reversal is completed along both the free and interfacial surfaces.         
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(a) t = 0.1 second 

 
(b) t = 0.2 second 

 

 
(c) t = 0.3 second 

 
(d) t = 3 second 

 
Figure 6.7 Transient fluid flow and temperature distributions in a Pb-Fe droplet after the 

heating lasers are turned off.  
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Figure 6.8 Transient temperature distribution (∆T = T-Tmin) along the surface from (θ = -

π/2) to (θ = π/2): (a) free surface and (b) the immiscible interface (Pb-Fe). 
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Figure 6.9 Transient fluid flow distribution along the surface from (θ = -π/2) to (θ = π/2): 

(a) free surface and (b) the immiscible interface (Pb-Fe). The velocity is positive in the 

clockwise direction and negative in the anti-clockwise direction 

θ

θ

v (cm/s)

v (cm/s)



 120

CHAPTER 7 

2-D FEM/BEM SIMULATION OF THE OSCILLATION OF THE 

ELECTROSTATICALLY LEVITATED DROPLET 

 

7.1 Introduction 

 

In this chapter, a mathematical model is developed for the oscillation of the 

electrostatically levitated droplet under microgravity. The computational methodology 

entails solving the Laplace equation by the boundary element method, solving the 

Navier-Stokes equations by the Galerkin finite element method, and the use of deforming 

elements to track the oscillating free surface shapes. The pressure-velocity formulation is 

used in the finite element model for the internal fluid flow. To incorporate the free 

surface kinematical boundary condition, the front tracking technique is applied. The 

electric fields, surface driven flow fields and deformed surface shapes are calculated 

iteratively for each time step during drop oscillation. Computed results are presented for 

both free surface oscillations and internal fluid flows in electrostatically positioned 

droplets in microgravity environment. The effect of both the electric field and the surface 

tension on the frequency of the oscillation is studied. The effect of the viscosity on the 

damping constant is also analyzed.  

 

7.2 Problem Statement 
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Figure 7.1 Schematic representation of an initial (dash line) and steady-state for the 

computation of the electrostatically levitated droplet 

 

Figure 7.1 shows the initial and steady state positions in the oscillation of the 

electrostatically levitated droplets. A complete description of the electrically induced 

surface oscillation and pressure fluid flow phenomena in a droplet requires the solution of 

the coupled Maxwell and Navier-Stokes equations. At present, the Maxwell equation is 

simplified to a partial differential equation governing the distribution of the electric field 

outside the droplet. The buoyancy effects being neglected for microgravity applications, 

the equations for the electric and fluid flow may be written as follows, 

 

 02 =Φ∇        2Ω∈   (7.1) 

 0u =⋅∇        1Ω∈   (7.2) 

2Ω1Ω
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 ( ) surface
T Fp

t
+∇+∇⋅∇+−∇=∇⋅+

∂
∂ )u(uuuu ηρρ   1Ω∈   (7.3) 

 

The solution of above electric field and fluid flow equations may be obtained by applying 

the appropriate boundary conditions, which are stated below 

 

0Φ=Φ        21 Ω∩Ω∈  (7.4) 

eσε −=Φ∇⋅n0       21 Ω∩Ω∈  (7.5) 

Qdsdse =Φ∇⋅−= ∫∫∫∫
ΩΩ

n
11

0
∂∂

εσ      21 Ω∩Ω∈  (7.6) 

θcos0RE−=Φ       ∞→R  (7.7) 

nTnnn ⋅⋅−⋅⋅= EsurfaceF σ      21 Ω∩Ω∈  (7.8) 

 γσ H2=⋅⋅ nn       21 Ω∩Ω∈  (7.9) 

 Φ∇= 2

2
1 εET        21 Ω∩Ω∈  (7.10) 

 0Xu
dt
dX

=∇⋅+       21 Ω∩Ω∈  (7.11) 

 0
1

VdV =∫Ω
       21 Ω∩Ω∈  (7.12) 

 czdVz =∫Ω1

       21 Ω∩Ω∈  (7.13) 

 

In the above, Eq. (7.5) is the jump condition for the electric field along the droplet 

surface, a manifestation of a well known fact that charges are distributed only on the 

surface of a conducting body. Eq. (7.7) describes the electric potential condition at 
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infinity. The law of charge conservation is described by Eq. (7.6), where Q is the total 

free charge applied on the droplet, which is zero for the problem under consideration for 

microgravity applications. Eq. (7.8) describes the force induced by the Maxwell and 

surface tension stresses along the normal direction. In Eq. (7.9), σ  is the stress tensor, γ 

is the surface tension and H is the Gaussian mean curvature. Eq. (7.10) describes the 

Maxwell stress associated with the electric potential. Eq. (7.11) is the kinematic 

condition, which describes the interface, represented by the X(xi,t)=0 always remains an 

interface. The constraints of the volume conservation (Eq. (7.12)) and the center of the 

mass (Eq. (7.13)) of the electrostatically levitated droplet are needed to determine the 

shape and position of the droplet. 

 

7.3 Method of Solution 

 

7.3.1 BEM solution of the electric potential 

 

The numerical solution of the electric potential equation (Laplace equation) along the free 

surface boundary conditions is obtained by applying the BEM. We are seeking an 

approximate solution to the problem governed by Eq. (7.1). The error introduced by 

replacing Φ  by an approximate solution can be minimized by writing the following 

weighted residual statement: 

 

 ∫∫ ∫
ΓΩ Γ

ΓΦ−Γ=ΩΦ∇ )(),()()(),()()(),()( *2

2

rdrrqrrdrrGrqrdrrGr iii   (7.14) 
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where G is interpreted as a weighting function and  
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After some transformation, we can get the final form used for the BEM simulation. 

 

 
ΓΦ∇⋅+ΓΦ∇⋅

=Γ∇⋅Φ+Γ∇⋅Φ+Φ

∫∫

∫∫

ΩΩ

ΩΩ

drGdrG

rdGrdGrrC ii

22

22

)'()'(

)(')(')(')(

∂∂

∂∂

nn

nn

    (7.16) 

 

where 
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and Φ’ = Φ + Ercosθ, ∂Ω2 designates the surface of the droplet and 2Ω∂  denotes the 

boundary at infinity.  The Green function, G, and its normal derivative are calculated by 

the following expressions written for a cylindrical coordinate system [Jackson, 1975]. 
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22
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ii
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−++

=       (7.17) 

when ri lies inside domain 

when ri lies on a smooth domain 

when ri lies on a nonsmooth domain 
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where κ  is the geometric parameter calculated by  

 

 22
2

)()(
4
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rr
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i

−++
=κ        (7.19) 

 

The function G and Φ’ have the following asymptotic properties, 

 

 )(),(' 2−≈Φ RORri ,  )(),(' 3−≈
Φ RORr
n i∂

∂  as ∞→R     (7.20) 

 )(),( 2−≈ RORrG i ,   )(),( 3−≈ RORr
n
G

i∂
∂  as ∞→R     (7.21) 

 

Also dΓ = R(θ) dθ. Thus, the two integrals each approach zero as R → ∞ , 

 

 0)('
2

→Γ∇⋅Φ∫
Ω∂

rdGn  and 0)'(
2

→ΓΦ∇⋅∫
Ω∂

rdG n as ∞→R    (7.22) 

 

Thus, Eq. (7.16) simplifies to a boundary integral that involves only the surface of the 

droplet, ∂Ω2.  Following the standard boundary element discretization, noticing that the 

potential on the surface is a constant and substituting Φ = Φ’ - Ercosθ  into the resultant 



 126

equation, one obtains the final matrix form for the unknowns on the surface of the 

droplet, 

  

 { } { }zE
n
zE

n
HGGH −

⎭
⎬
⎫

⎩
⎨
⎧+

⎭
⎬
⎫

⎩
⎨
⎧ Φ

−=Φ
∂
∂

∂
∂

0      (7.23) 

 

where H and G are the coefficient matrices involving the integration of ∂G/∂n and G over 

a boundary element. To complete the solution, Eq. (7.6) is discretized and solved along 

with the above equation to obtain the surface distribution of ∂Φ/∂n and the constant Φ0. 

 

7.3.2 FEM solution of the fluid flow and free surface movement 

 

The transport equations for the internal fluid flow along with the boundary conditions are 

solved using the Galerkin finite element method. The continuity and N-S equations with 

the pressure-velocity formulation can be discretized as follows, 
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where U is a global vector containing all nodes values of u and v, and P the global vector 

containing the nodal values of pressure. Once the form of the shape functions is specified, 

the integrals defined in the above equations can be calculated numerically. It is noted that 

the selection of the shape functions must satisfy Babuska-Brezzi condition. The 

discretized momentum and energy equations may be combined into a single global matrix 

equation, 
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where the coefficient matrices in the above equation are defined by, 
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where j = 1, 2 and ijδ  is a delta function. The assembled global matrix equations are 

stored in the skyline form and solved using the Gaussian elimination method. For free 

surface problem, F has a contribution from the normal stress balance, which my be 

further simplified by the theorem of differential geometry. 
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fffff
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where S∇  is the surface gradient operator, fΓ  is the free surface or boundary, fΓ∂  is the 

bounding curve for the free surface and m is the normal to fΓ∂  but tangential to fΓ . 

 

 To incorporate the free surface kinematric boundary condition, the front tracking 

technique is applied, By this techniques, the nodes along the free surface are allowed to 

move such that they remain on the oscillating surface all the time. Thus, Eq. (7.12) can be 

solved using the Weighted Residuals Methods (WRM) with the result, 

 

 0X)u
dt
dX( =Γ∇⋅+∫

Γ f

dχ        (7.28) 

 

where χ  is the shape function for the free surface coordinates. Discretization, followed 

by numerical integration and assembly, gives rise to the following matrix equation, 

 

 0XK̂XM̂ =+&          (7.29) 

 

where M̂  and K̂  are global matrices for free surface coordinates. Because the nodes of 

the free surface are allowed to move to satisfy Eq. (7.29), these movement must be 

superimposed on the velocity at the nodal points and therefore the convection term in Eq. 
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(7.3) must be modified accordingly, that is, uu ∇⋅ρ  is replaced by u)uu( s ∇⋅+ρ  where 

us is the nodal velocity due to the free surface movement. 

 

7.3.3 Numerical procedures 

 

The solution of the above equations defining the droplet oscillation in the electrostatic 

levitation mechanism requires an iterative procedure. The required nonlinear iterations 

are preformed using the successive substitution scheme method. The time derivatives are 

approximated by the implicit finite difference scheme, with automatic time step control. 

The iterative procedure starts with an initial condition for the free surface shape. With the 

initial condition, the electric potential on the free surface is calculated by using BEM. 

The fluid flow is then calculated with the updated Maxwell stress and the free surface 

coordinates. The updated free surface is used to start another set of calculations for the 

updated electric potential. The iterative procedure continues until all of the variables 

converge within a preset tolerance. The convergence criterion for the calculations is set 

such that the relative error between the two consecutive iterations is within 1×10-4.  

 

7.4 Analytical Solutions from Other Researchers 

 

 Lord Rayleigh (1882) first derived the formula 2
1

32
0 )/2( ρπγ af =  for the 

fundamental vibrational frequency, where a is the radius of the droplet, ρ  the density of 

the droplet, and γ  the surface tension. Experimental studies showed that the fundamental 

vibrational frequency agreed well with the formula derived by Lord Rayleigh. Taylor 
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(1964) demonstrated that the equilibrium drop shape was aspherical and might be 

approximated by a prolate spheroid. In his study, the equilibrium equations were satisfied 

at the poles and the equator. For the droplet in a uniform electric field E0, Taylor derived 

the following formulation, 

 

 IMaE )()8( 2
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2
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0 απγ =
−

       (7.30) 

 

where 
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 2)/( sl aa=α  

 

where la  is the semi-major axis and sa  is the semi-minor axis for prolate spheroid as 

1// 2222 =+ sl ayax . He concluded that the onset of instability occurs when 

625.1)/( 2/1
0 =γRE  and the deformation, expressed as the ratio sl aa /  of the semi-major 

and semi-minor axis of the drop is equal to 1.86.  

 

 Based on the assumption of spheroidal oscillatory shapes, the characteristic 

frequency of the two-lobed mode for an uncharged conducting drop in a uniform electric 

field was shown to decrease as the applied electric field strength increases [Rosenkilde 

1969; Brazier-Smith et al. 1917]. In Smith’s study, the fundamental frequency of an 

uncharged drop in a uniform electric field may be written as follows, 
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Therefore, we can find the relation between frequency f and surface tension γ . Since the 

relation between α  and E0 is known, as shown in Eq. (7.30), the variation of f with E0 

can be found.  

 

 Later on, the equilibrium shapes and the stability of a charged conducting drop 

levitated by a uniform electric field were analyzed by Adornato and Brown (1983) whose 

asymptotic and numerical analysis for the equilibrium drop shape in small electric fields 

showed the appearance of second and third Legendre functions. Feng and Beard (1990) 

further studied the nature of the axisymmetric oscillation of electrostatically levitated 

droplets by using an analytic multiple parameter perturbation method. In Feng and Bear’s 

study, the oscillatory response at each frequency consists of several Legendre 
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Polynomials rather than just one, and the characteristic frequency for each axisymmetric 

mode decreases from that calculated by Rayleigh for stronger applied electric field. Feng 

and Beard’s frequency correction term for axisymmetric n=2 may be written as, 
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sQ  is the electric charge induced into the droplet, E0 is the uniform electric field, and 0ε  

is the electric permittivity in the free space. 

 

7.5 Numerical Results and Discussion 

 

The computational methodology described above can be applied to predict the 

distribution of electric potential, free surface oscillation and viscous flow in the 

electrostatically positioned droplets. Because of limited space, a few computed results are 

presented here from extensive numerical simulations. The calculation used 20 quadratic 
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boundary elements in half-circle model to calculate the electric potential fields, while 175 

9-node finite elements in the quarter-circle model were employed for the computation of 

fluid flow and free surface oscillations, as shown in Fig. 7.2. The criterion for the 

convergence of non-linear iteration is set to 4101 −× (norm-2 relative error). 

 

                  

         (a)      (b) 

Figure 7.2 Boundary element and finite element meshes: (a) boundary element mesh for 

the computation of the electric potential, (b) finite element mesh for the computation of 

the fluid flow and free surface oscillations 

 

 Since Lord Rayleigh (1882) first calculated the characteristic frequencies for 

small-amplitude oscillations of a charged drop in the absence of external fields about the 

spherical shape, the study of the droplet in the electric field has received a wide 

interesting. Most of the studies focus on the analytical method except that Adornato and 
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Brown (1983) used FEM compared with the analytical method to study the shape and 

stability of the droplet elevated in the uniform electric field. At present, we analyzed the 

oscillation of the droplet levitated in the uniform electric field by using the FE/BE 

method. Fig. 7.3 depicts three computed positions (initial, steady-state and the minimum) 

of the oscillation of a liquid Aluminum droplet in the uniform electric field (E0=2.0×106 

v/m), whose properties is shown Table 7.1. It is assumed that the droplet is kept the 

elongated prolate spheroid with 3105.2 −×=a  m, 310553.3 −×=la  m, 31007.2 −×=sa  m, 

and 716.1/ =sl aa  at the initial time. Therefore, the computed oscillation of the droplet 

levitated in the electric field is below the critical values derived by Taylor and satisfied 

with the stability condition. In the electrostatic levitation mechanism, the elongated 

spherical droplet is first dragged back to the steady state position along the axis direction 

by the surface tension with the velocity of the poles increasing and enlarged at the 

equator surface in order to satisfy the mass conservation. Then the droplet reaches the 

steady-state prolate spheroid form, as described in chapter 4. Because of the effect of the 

inertial force, the droplet will pass by the steady-state position. After passing by the 

steady-state position, the electric force is larger than the surface tension and the moving 

velocity of both poles is reduced, but it still keeps moving towards the center of the 

droplet. Finally, the poles of the droplet reach the closest position to the center of the 

droplet (the minimum position as shown in Fig. 7.3), in which position the surface 

tension has the minimum value and the Maxwell stress has the maximum value so that 

the deformation of the droplet will be reversed. In order to depict the effect of the 

hydrodynamic force, the velocity distribution of the large amplitude of the droplet in one 

period is shown in Fig. 7.4 
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Figure 7.3 Three position of the droplet in half period of the oscillation of the droplet in 

the electric field (E0=1.0×106 V/m) 

 

        (a) t=1.9×10-3 s  Vmax=23.47 cm/s (b) t=5.8×10-3 s  Vmax=31.72 cm/s 
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            (c) t=9.6×10-3 s  Vmax=31.00 cm/s    (d) t=13.6×10-3 s  Vmax=24.96 cm/s 

Figure 7.4 Oscillation of an electrostatically levitated, aluminum droplet under 

microgravity conditions in one period, (a) 1/8 period, (b) 3/8 period, (c) 5/8 period, and 

(d) 7/8 period. The initial diameter of the droplet is 5 mm, E0=1.0×106 (V/m), the initial 

deformation of the droplet is like that in Fig. 7.3.  

 

Parameters Al 

ρ (kg/m3) 2385 

µ ×103 (kg/m-s) 1.3 

γ (N/m) 0.914

a (mm) 2.5 

Table 7.1 Parameter used for the computation 
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Rosenkilde (1969) and Brazier-Smith et al. (1971b) found that the characteristic 

frequency of the two-lobed mode for an uncharged conducting droplet in a uniform 

electric field decreased as the applied electric field intensity increased. Feng and Beard 

(1990) also investigated the oscillation characteristics of electrostatically levitated 

droplets. In the present study, the effect of the frequency associated with variation of the 

electric field and surface tension is investigated. The computed results are first compared 

with Feng and Beard’s analytical solution. Fig. 7.5 depicts the change of the normalized 

characteristic frequency of a conducting droplet with electrical field intensity. From Fig. 

7.5, we can find that the frequency decreased with the electric field intensity becoming 

stronger. As shown in Fig. 7.5, the numerical results agree very well with the analytical 

prediction derived by Feng and Beard. The Maximum relative error is equal to 2.7%, 

which occurs when the electric field intensity reaches 2.1×106 (v/m). Fig. 7.6 shows the 

frequency of the oscillation of the droplet changes with the surface tension. The 

frequency of the droplet is increasing with the surface tension becoming larger. 

Compared with the Feng and Beard’s results, the numerical results are good. However, 

the numerical curve is a little lower than the analytical curve in Fig. 7.6. The main reason 

is that the analytical solution only includes the major 2nd mode and neglects the higher 

order modes. If the higher order Legendre polynomials are included, the formulation of 

the analytical method will become very complicated. Therefore, our numerical method 

may provide more accurate and fast results than the analytical method.  
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Figure 7.5 Normalized characteristic frequency of a conducting droplet changed with 

electrical field intensity E0 with 3105.2 −×=a  m and 914.0=γ (N/m). The initial 

deformation of the droplet is like that in Fig. 7.3 

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3

our numerical results
Feng's analytical results

 

 

Figure 7.6 Characteristic frequency of a conducting drop changed with surface tension 

N
or

m
al

iz
ed

 fr
eq

ue
nc

y 

Electric field intensity E0 (×106 v/m) 

Surface tension γ  (N/m) 

Fr
eq

ue
nc

y 



 139

 

In the other researchers’ studies, the effect of the viscosity on the oscillation of 

the droplet is neglected, such as Feng and Beard used the Bernoulli’s equation to describe 

the pressure field p. In present study, the Navier-Stokes equation is solved every time 

step and the effect of the viscosity is carried out. Fig. 7.7 shows the viscous decay of the 

oscillation amplitude of droplet. Fig. 7.7 (a) and (b) respectively depict the viscous decay 

of the oscillation amplitude without electric field and with electric field E0=1.0×106 

(V/m). Fig. 7.7 (c) compares the result of (a) with that of (b), which shows that the 

frequency with the electric field is smaller than that without the electric field. As shown 

in Fig. 7.7, the frequency of the oscillation will keep unchanged with the decreasing of 

the amplitude of the oscillation caused by the viscous effect. The numerical experiments 

also describe that, unlike the electric fiend intensity and surface tension, the viscosity has 

no effect on the frequency of the oscillation of the electrostatically levitated droplet. In 

the present model, the damping constant τ  is computed using the following equations, 

 

)exp()2cos()()(
τ

π tftaaata ll
−

−+=       (7.33) 

 

where )(tal  is the semi-major axis with time evolving, a is the radius of the spherical 

droplet, and  la  is the semi-major axis at initial time. The damping constant τ  is not 

constant by using the current numerical model, which decreases with the time increasing. 

This result indicates that the high order mode plays a significant role in the damping of 

the oscillation. 
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Figure 7.7 Viscous decay of oscillation amplitude ratio (divided by radius a) of the polar 

point of the droplet, where a = 2.5 mm and the center presents the steady state position, 

(a) oscillation without electric field, (b) oscillation with E0 = 1.0×106 (V/m), (c) 

Comparison with (a) and (b).  

 

7.6 Concluding Remarks 

 

In this chapter, a numerical study of melt droplet oscillation in electrostatic levitation 

mechanism has been described. Numerical analysis is based on the solution of the electric 

field by the boundary element method and the solution of the Navier-Stokes equations by 

the finite element, together with the use of deforming elements to track the oscillating 

free surface shapes. The computed result suggests that the frequency of the oscillation of 

the electrostatically levitated droplet decrease with the electric field increasing and 

increase with the surface tension increasing, which agrees with the prediction of the 

□: with electric field 
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analytic solution. The amplitude of the oscillation has no effect on the characteristic 

frequency. The damping constant is affected significantly by the high order mode.  
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CHAPTER 8 

STABILITY OF THE DROPLET IN THE MAGNETIC LEVITATION 

MECHANISM 

 

8.1 Introduction 

 

This chapter presents a numerical study of the 3-D movement of the conducting spherical 

droplet in the magnetic levitation mechanism. The present chapter not only investigates 

the complex vertical and horizontal movement of the droplet, but also the self rotation of 

the droplet. The hybrid 3-D boundary element method (BEM) and finite element method 

(FEM) with edges elements are used to calculate electromagnetic fields, Lorentz force, 

and torques with respect to the axis. By this method, finite elements are used to discretize 

the spherical droplet region, while boundary elements are applied in the free space 

outside the droplet region with the surface of the droplet. The finite element and 

boundary element regions are then coupled through the interface boundary conditions. 

The iterative coupling of the BEM and FEM is applied to calculate the electromagnetic 

fields. The developed codes agree excellently with the available analytical and numerical 

solutions. Further, the complex 3-D movement of the magnetically levitated droplet is 

solved and analyzed by using the current FEM/BEM model.  

 

8.2 Problem statement 
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Figure 8.1 Schematic representation of magnetic levitation System 

 

Figure 8.1 shows the TEMPUS device in use [Song, 1998a, 1998b, 1999a]. The system 

consists of two types of coils: (1) the inner four current loops (or heating coils) for 

sample heating and melting, and (2) the outer eight loops (or positioning coils) for sample 

positioning in space. During the operation, AC currents flow through these coils to 

generate an appropriate magnetic field. In magnetic levitation, eddy currents are induced 

in the sample and the dot product of eddy currents generates the Joule heating for the 

melting of the sample. These eddy currents also interact with the applied and induced 

magnetic fields to produce the Lorentz force in the sample. At present, we investigate the 

effect of the Lorentz force on the sample’s 3-D movement in the magnetic levitation 

mechanism.  

 

8.2.1 Governing equations and boundary conditions for the computation of the 

electromagnetic field 

 

x 

z 
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 In order to calculate the distribution of electromagnetic fields in the specimen 

surrounded by the exciting coils, the Maxwell’s equations have to be solved. However, 

Maxwell’s equations are coupled partial differential equations, which have more than one 

unknown variables. Therefore, the vector wave equation derived from the Maxwell’s 

equations combined with the energy equation is taken as the governing equations to 

simulate the microwave heating problems. With the analysis above, the equations for the 

electric and thermal fields may be written as follows 

 

 ic
r

j JEE ωµµεω
µ

−=−×∇×∇ 21       (8.1) 

 

In the above, Ji is an impressed or source current, and εc (=ε-jσ/ω) results from the 

combination of the induced current (σE) and displacement current (jωD). The appropriate 

boundary conditions are stated below. 

 

 222111
1

ˆˆ1 EnUUEn ×∇×==−=×∇×−
rµ

   21 Ω∩Ω∈  (8.2) 

 

where Ω1 and Ω2 are the FEM domain, BEM domain respectively. 1n̂  is outnormal from 

the FE region, and 2n̂  is outnormal from the BE region. 

 

8.2.2 Governing equations and boundary conditions for the computation of the 3-D 

movement of the droplet in the magnetic levitation mechanism 
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After the computation of the electromagnetic fields, the time-averaged 

electromagnetic force induced in the sphere which is responsible for levitation as well as 

for fluid motion, is the cross product of induced current and the complex conjugate of the 

magnetic field, 

 

 )B(JRe
2
1F ∗×=i         (8.3) 

 it dV⋅×= ∗ )B(JRe
2
1Fi         (8.4) 

 i
V

dV⋅= ∫ itotal FF         (8.5) 

 

where i is the element number. As the levitating motion, we considered the translation. 

Therefore, the translation equations are introduced into this analysis. The Leap Frog 

Algorithm is used. This algorithm evaluates the velocities at half-integer time steps and 

uses these velocities to compute new positions.  

  

 
t

ss nn

∆
−

≡
++ 1

2
1n

v         (8.6) 

 
t
ss nn

∆
−

≡
−− 1

2
1n

v         (8.7) 

 

So we can derive the new position, based on the old position and velocity: 

  

 2
1

n1n tvss
++ ∆+=

n
        (8.8) 
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From the Verlet algorithm, we have the following expression for velocity: 

 

 n2
1n

2
1n

avv t∆+=
++

        (8.9) 

 m/Fa total
n n=          (8.10) 

 

where a is the acceleration, m is the weight of the metal, ∆t the width of time step, v the 

velocity at center of the metal and s the position vector. The fluid flow and temperature 

distribution may also be calculated at every time step. 

 

 After the time-averaged electromagnetic force is calculated, the torque with 

respect to the axis may be written as follows, 

 

 tiitiN FR ×=          (8.11) 

 ∑
=

=
1

totalN
i

tiN          (8.12) 

 

The rotating moving equations at every time step are given by, 

 

 nn ωωω ∆+=+ n1         (8.13) 

 nn θθθ ∆+=+ n1         (8.14) 

 

with  
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 m
n I∆t /Ntotal=∆ω         (8.15) 

 )2/(N 2
total m

nn I∆tt +∆=∆ ωθ       (8.16) 

 

where Ri is the radius vector drawn from center to surface of a sphere metal, ω  the 

angular velocity, θ  the rotational angle, and mI  the moment of inertia. In the present 

study, the droplet is assumed to be spherical without considering the deformation of the 

droplet. Therefore, the moment of inertia mI  may be written as, 

 

 2mR)5/2(=mI  

 

where m is the weight of the droplet, R the radius of the spherical droplet. 

 

8.3 Method of Solution 

 

The 3-D electromagnetic field may be solved using the edge finite element method [Huo, 

2004c, 2005b].  The edge-based elements are necessary to satisfy the divergence-free 

constraint, ∇⋅E=0 [Johns, 1971].  However, the huge sparse matrix produced by the FEM 

appears to be a major setback to finding an efficient numerical solution to a large scale 

problem. Our experience shows that this remains true even with various efficient solvers 

designed specifically for the solution of a large sparse system of linear algebraic 

equations to improve the computational efficiency. To alleviate the disadvantage of the 

finite element method, a hybrid finite element-boundary method is employed instead. 
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Using this approach, finite elements are used in the conducting droplet where power 

density is needed and material properties may be a function of temperature, while 

boundary elements are used elsewhere. The FEM and the BEM are coupled through the 

interface boundary conditions. This idea is shown in Figure 8.2 

    

Figure 8.2 Schematic representation of the coupling of the finite element and boundary 

element  

 

8.3.1 Finite element formulation 

 

To develop a finite element formulation in the conducting droplet, the wave equation 

(8.1) is integrated with respect to a vector testing function δE [Akarapu, accepted]. 

 

 dVjdV i
V

c
rV

E1E 2 δωµµεω
µ

δ ⋅−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×∇×∇⋅ ∫∫∫∫∫∫ JEE    (8.17) 

 

Integration by parts gives rise to the surface integral term, 

Ω1 

Ω2 

Interface of FEM 
and BEM 

Ω1: FEM 
Ω2: BEM 
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JnE
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    (8.18) 

 

Making use of the vector identity  

 

 ( ) ( ) EˆˆE δδ ⋅×∇×−=⋅×∇× EnnE       (8.19) 

 

and also the boundary conditions, the final integral formulation is obtained, 

 

 
[ ] dVjdS

dV

i
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r

JU

EE
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∫∫∫
⋅−⋅−

=⎟⎟
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⎞
⎜⎜
⎝

⎛
⋅−×∇⋅×∇

EE

EE1 2

ωµδδ

δµεωδ
µ     (8.20) 

 

With appropriate finite element discretization and necessary elemental calculations 

followed by assembly, one has the matrix representation of equation (3.46), 

 

 {F}[B]{U}[K]{E} =+        (8.21) 

 

where the matrix elements are calculated using the following expressions, 
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V
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⎝
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⋅−×∇⋅×∇= NNNN µεω
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 dSB
S

jiij ∫∫ ⋅= SN  

 dVjF
V

i ii JN ⋅−= ∫∫∫ ϖµ  

Note that here Ni and Si are edge-based vector shape functions and their derivatives. 

 

8.3.2 Boundary element formulation using the dyadic Green function 

 

The basic idea of the hybrid FE/BE method was first introduced for the study of 

electromagnetics by Silvester and Hsieh (1971) and McDonald and Wexler (1972) for 

solving exterior or unbounded field problems. Later, the method was applied to solve 

two- and three-dimensional antenna and scattering problems. Here, it is applied to solve 

the electromagnetic field in a microwave system, and the formulation is based on Green’s 

theorem involving the dyadic Green function, 

 

 

( )
( )
( ) ( )( )dSGG

dSGG

dVGG

S

S

V

∫∫

∫∫

∫∫∫

⋅×∇×+×∇⋅×=

⋅×∇×−×∇×=

×∇×∇⋅−×∇×∇⋅

EnEn

nEE

EE

ˆˆ

ˆ    (8.22) 

 

Now, substituting into the above equation the following wave equations and the 

equations for the dyadic Green function, 
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 ijk JEE ωµ−=−×∇×∇ 2
0        (8.23) 

 ( )'2
0 rr −=−×∇×∇ δIGkG        (8.24) 

 

and carrying out the necessary integration, we can get, 
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     (8.25) 

 

The surface’s unit normal direction points outward from the region Ω2.  In equation 

(8.25) the first term on the right-hand side is the field radiated by J in the free-space 

environment, thus denoted as Einc.  With the following relation, 

 

 IGG ×′∇′=×∇ )r(r,0
'        (8.26) 

 

and the surface divergence theorem, equation(8.25) can be further simplified as 
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Taking the cross product of equation (8.27) with surface normal n̂  yields 
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   (8.28) 

 

After the BE discretization using edge boundary elements, followed by calculations at the 

element level, equation (8.28) may be represented in the following matrix form, 

 

 { } { } { } { }t
M

t

stt
M

t

stssss U[][QE][PbE][B
tt

∑∑ −−=      (8.29) 

 

where the matrix elements are calculated by 

 

 [ ] { } { } ( )∫∫ ⋅−=
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s tS S

Tts∫∫ ∫∫ ∇×⋅= '','Pst  

 [ ] { } { } ( ) ( ){ } ( )rrrrSS dSdSG
s tS S

Tts∫∫ ∫∫⋅= '',Qst  

  { } { } ( ) ( ){ } ( )rrrrSS dSdSGk
s tS S

Tts∫∫ ∫∫ ⋅∇⋅∇− − '','2  

 

With some matrix algebra, equation (8.29) is written more conveniently in the following 

form, 
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 { } { } { }22222 ][][ EKFUB +=        (8.30) 

 

where B2 is the boundary element matrix associated with the unknowns. 

 

8.3.3 Coupling of boundary and finite elements 

 

The boundary and finite element formulations for the solution of electric field distribution 

are coupled through the interface conditions along the boundary of Ω1 and the boundary 

of Ω 2, 

  

 2
2

1
1

ˆ1ˆ1 EnEn ×∇×=×∇×
rr µµ

      (8.31) 

 21 ˆˆ EnEn ×=×         (8.32) 

 

There are two ways to obtain a coupled solution of equations (8.21) and (8.30) with the 

use of the above interface conditions. One way is to use direct coupling, by which the 

entire boundary element region is treated as a macro element, and the boundary element 

global matrix is then incorporated into equation (8.21). This approach works efficiently 

for 2-D and moderately sized 3-D problems [Li, in print]. However, it becomes 

inefficient for large 3-D problems such as the one under consideration because it 

substantially increases the resultant edge finite element matrix bandwidth and hence the 

CPU times. Another approach is iterative [Huo, 2004c, 2005b]. By this approach, 
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equation (8.30) is solved for {U2} with an assumed {E2} on the interface. The standard 

LU-decomposition for complex matrix can be used for the solution. Then {E1} is solved 

using equation (8.21) with known {U2}. The convergence on |{E2}-{E1}|<ε, where ε is 

the convergence criterion, is checked. If convergence is not achieved, {E2}={E1} along 

the interface is used to predict an updated {U2} using equation (19) and then {E1} is 

updated using equation (8.21).  The process is repeated until the convergence is achieved. 

 It is worth noting here that for either of the two approaches, the matrix B2 requires 

an LU-decomposition only once and the decomposed matrices are stored in the memory 

for subsequent back substitutions when needed. In the case of the iterative procedure, this 

means that subsequent iteration between FE and BE requires only a back substitution 

procedure, thereby leading to a significant increase in computational speed. 

 

8.4 Results and Discussion 

 

The computational algorithm developed in section 8.3 is capable of predicting the electric 

field distribution, the magnetic field distribution, the energy distribution, the 

displacement distribution, and the temperature and fluid flow distribution. The criterion 

for the convergence of nonlinear iteration is set to 5101 −× . The computer code for the 

simulation of the electromagnetic fields needs to be checked against the available analytic 

solution before applied for the droplet calculation. The testing is done in section 8.4.1 for 

two cases: 1) benchmark testing in a standard waveguide and 2) electromagnetic field 

distribution in the semi-infinite metallic slab. In the computation of the magnetically 

levitated droplet, there are also two cases compared with the available results: 1) 3-D 
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Joule heating distribution in a single current loop surrounding a conducting sphere and 2) 

Joule heating distribution of the steady state droplet in the poisoning coils 

 

8.4.1 Validation of the computer model 

 

First, the electric field distribution in the standard MW-975 waveguide is considered. The 

waveguide is filled with air, and the length of the waveguide in the propagation direction 

is 1.25λz.  The TE10 model from a device is launched at the entrance of the waveguide, 

and then the waves undergo reflection at the bottom surface. The reflected waves 

interfere with the incident waves to distribute the electrical field within the internal space.  

The analytic expression for the electric field is written as follows, 

 

 ZjkZjk
y

zz ee +−−+ += 00 EEE        (8.33) 

 

Fig. 8.3 shows the 3-D view of the distribution of the electric field (Ey-component) and 

the module of the electric field |E| distribution. Fig. 8.4 compares the numerically 

calculated electric field distribution along the central axis in the propagation direction 

with the analytic solution given by equation (8.33). The computed result from the FE/BE 

model is only plotted for the FE region because the surface integral is used in the BE 

region. Excellent agreement exists between the numerical and analytic solutions, thereby 

validating the present FE/BE formulation. Though not shown, the same results were 

obtained using the FEM only.  
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(a) Re(Ey)                                              (b) |E| 

 

                              
(c) Re(Ey)                                               (d) |E| 

Figure 8.3 3-D view of the distribution of the dominant electric field (Ey-component) and 

the module of the electric field (E) in the standard WR-975 waveguide with cz=1.25λz. 

The field value is normalized by the respective maximum values.  
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Figure 8.4 Dominant electric field (Ey-component) distribution along the center line of 

the standard WR-975 waveguide in the propagation direction (negative z direction) 

obtained from the analytic, FEM and FE/BE solutions. The result by using FE/BE has 

only bottom half part which is the FEM part 

 

 As another comparison, a semi-infinite metallic slab shown as the insert in Fig. 

8.5 is considered.  The analytic equation for the electric and magnetic fields can be easily 

obtained, 

 

 y
sy

me γ−= EE ,  y
sy

me γ−= HH       (8.34) 

 

The coefficients are calculated by 

 

Propagation direction 

Bottom surface 
of waveguide 
(PEC) 

Top surface 
of waveguide 
(open) 
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)( jm += 1αγ ,   and   
ωµσα

δ
m

21
==  

 

where δ is the skin depth over which the electric and magnetic fields drop to 1/e of their 

value at the surface.  Fig. 8.5 depicts that the numerical results from the FE/BE or FEM 

agree with the analytic results very well, thereby validating once again the FE/BE and/or 

FE implementations. 
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Figure 8.5 Electric field distribution (Ey-component) for the semi-infinite metallic slab 

and part of induction heating coil.  

 

8.4.2 Validation of the computer model in the magnetically levitated droplets 
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In the computation of the droplet, the unstructured meshes are shown in Fig. 8.6. First, 

the boundary and finite element program is tested against available solutions of the 

electromagnetic field and Joule heating for a simple geometry. We consider a single 

current loop surrounding a conducting sphere, as shown in Fig. 8.8a. The loop is located 

at the equator plane. Fig. 8.7 shows the Joule heating and temperature distribution within 

the sphere, which is compared with Song and Li’s results (1998a), as shown in Fig. 8.6b. 

Clearly, near the current loop the Joule heating attains a maximum value and decays 

rapidly both in the θ- and r- directions away from the current loop, which is consistent 

with the predictions from the electromagnetic theory. 

 

 

Figure 8.6 Finite element and boundary element meshes for the computation of the 

magnetically levitated droplet 
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                  (a) 3-D Isometric View                 (b) 3-D Parallel View 

Joule Heating 

 

                

  (c) 3-D Isometric View        (d) 3-D  Parallel Veiw 

Temperature 

 

Figure 8.7 Joule heating and temperature distribution for the droplet surrounded by the 

single current coil, the conditions are used: coil current I (peak) =212 Amp, frequency = 

1.45×105 Hz, radius of sphere a=6mm, radius of coil loop=9mm, electrical 

conductivity=3.85×106 1/(Ohm-m).  

4.0×106 J/m3s 

0 J/m3s 
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        (a)       (b) 

Figure 8.8 Scanned figure from Song and Li (1998a). (a) Schematic representation of the 

conducting droplet surrounded by a single current coil, (b) Joule heating distribution for 

the conducting droplet in (a), where b=4.0×106 J/m3s 

 

 Second, let us see the distribution of the Joule heating and temperature inside the 

droplet when the positioning coils (see Fig. 8.1) are only turned on. In contrast with the 

strong droplet deformation and heating effect of the heating coils, the positioning coils 

are designed mainly to keep the droplet from drifting in space. It is of interest to know 

what effect the positioning coils would have on a liquid droplet. Song and Li (1999b) had 

investigated the temperature distribution under the action of positioning coils only. Figure 

8.9 shows the Joule heating of the silver sample (see Table 8.1) under the action of 

positioning coils only. It demonstrates the quadrupole effect produced by the positioning 

coils. The maximum Joule heating occurs at two locations symmetric about the equator 

plane and the minimum Joule heating at the equator plane. The temperature based on this 

Joule heating distribution agrees with the result of Song and Li (1999b) very well. This 
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Joule heating distribution should not come as a surprise given the positioning coils are 

1800 out of phase and thus produce a canceling effect at the equatorial plane and a lower 

Joule heating. As shown in Fig. 8.10, the temperature distribution of the magnetically 

levitated droplet for different positions is also investigated. Fig. 8.11 shows the 

temperature distribution of magnetically levitated droplet at different initial position 

along the horizontal X axis.  

 

Parameters Value Units 

Density of liquid silver 9346 Kg/m3 

Electric conductivity of liquid silver 6.0×106 (Ω-m)-1 

Frequency (positioning) 1.44×105 Hz 

Applied current (peak, positioning) 140 A 

Radius of sphere 5.0 mm 

 

Table 8.1 Parameters for computation of the droplet in the magnetically levitation 

mechanism under the microgravity environment 
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      (a) 3-D Isometric View                 (b) 3-D Parallel View 

Joule Heating 

 

    

     (c) 3-D Isometric View                 (d) 3-D Parallel View 

Temperature 

 

Figure 8.9 Joule heating and temperature distribution in a silver droplet induced by 

positioning coils only with 1800 out of phase in the TEMPUS system and microgravity 

conditions. 

high  

low  
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Figure 8.10 Schematic representative of the magnetically levitated droplet with different 

initial position along the horizontal X axis. 
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(b) X0 = -4 mm 

 

(c) X0 = -2 mm 

 

(d) Steady-state position 
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(e) X0 = 2 mm 

 

(f) X0 = 4 mm 

 

(g) X0 = 6 mm 

Figure 8.11 Temperature distribution in a silver droplet induced by positioning coils only 

with 1800 out of phase in the TEMPUS system and microgravity conditions with different 

initial position along the horizontal X axis. 

 

8.4.3 3-D translation of the magnetically levitated droplet 
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The purpose of this chapter is to study how the magnetically levitated droplet moves. In 

this section, we focus on the 3-D translation of the magnetically levitated droplet. The 

levitating conducting droplet is assumed to be liquid silver sphere, whose properties are 

shown in Table 8.1. In the study of the movement of the magnetically levitated droplet, 

the steady-state position of the levitating droplet is assumed to stay at the original point 

(0, 0, 0) in the rectangular coordinate. The centers of the coils are fixed above or below 

the steady-state position along the z axis. There are no movement and rotation if the 

initial position of the magnetically levitated droplet is at the steady-state position. 

However, it is difficult to pose the initial position of the magnetically levitated droplet to 

the steady-state position. Therefore, it is necessary to investigate the 3-D movement of 

the magnetically levitated droplet. Fig. 8.12 (a) presents the 3-D movement of the 

magnetically levitated droplet when the initial position vertically deviates from the 

steady-state position. Various magnitudes of initial positions (Z0=2 mm, 3 mm) away 

from the equilibrium position in the Z-axis are investigated. The computed results (as 

seen in Fig. 8.12 (a)) show that the frequency changes a little and it may be assumed to be 

kept the same no matter how large deviation from the equilibrium position at the starting 

time. Also in Fig. 8.12(a), it is shown that the amplitude of the oscillation along the z-axis 

does not change with the time evolving. Like the initial positions away from the 

equilibrium position in the vertical direction, the computed results with the initial 

positions (X0=2 mm, 3mm) away from the equilibrium position in the horizontal 

direction present that the frequencies have small difference for different amplitude of the 

oscillation with the evolvement of the time, as shown in Fig. 8.12 (b). Comparing Fig. 
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8.12 (a) with Fig. 8.12 (b) illustrates that the frequency in the vertical movement is 

clearly faster than that in the horizontal movement. The computed results show, when the 

initial position of the droplet is above 14 mm or below -14 mm along z axis, the 

oscillation of the droplet does not occur and the droplet will move away from the 

levitated mechanism.   

  

 The complex initial deviation from the steady-state position is also investigated. 

When the initial position deviate horizontally and vertically from the steady-state position 

(0, 0, 0), there is a complex 3-D movement of the magnetically levitated droplet. 

Although the 3-D movement is complex, it presents the same rules of variation as the 3-D 

movement with only horizontal or vertical deviation when it is projected in the horizontal 

X-axis and vertical Z-axis. Fig. 8.13 (a) shows the 3-D movement of the magnetically 

levitated droplet with initial position (X0=2 mm, Z0=2 mm), which is projected in the 

horizontal X-axis and vertical Z-axis. Fig. 8.13 (b) shows the 3-D movement of the 

magnetically levitated droplet with different initial position (X0=3 mm, Z0=3 mm). 

Comparison between Fig. 8.12 and Fig. 8.13 depicts that the oscillation of the 

magnetically levitated droplet follows the same rules of variation in only horizontal or 

vertical directions.  
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Figure 8.12 Vertical and Horizontal movements of the magnetically levitated droplets (a) 

Vertical movements for different initial position Z0, (b) Horizontal movements for 

different initial position X0 

 

(a) 

(b) 
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Figure 8.13 3-D movements of the magnetically levitated droplets, which is projected to 

the  horizontal X-axis and vertical Z-axis, (a) initial position is X0=2 mm and Z0=2 mm, 

(b) initial position is X0=3 mm and Z0=3 mm. 

 

8.4.4 3-D rotation of the magnetically levitated droplet 

(a) 

(b) 
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The rotation is another important 3-D movement of the magnetically levitated droplet, 

which is emphasized in this section. It has been observed since the early fifties when the 

first experiments on the electromagnetic levitation were done that under certain 

circumstances the levitated droplet can start to rotate or oscillate which often leads to the 

breakdown of the levitation melting. The rotation is undesirable because it can affect the 

deformation of the liquid droplet so that the measurement of the thermophysical 

properties of the liquid metal becomes not accurate. When the droplet is deformed, it will 

further reverse to change the rotation of the liquid droplet. However, in present study, the 

droplet is assumed to be solid sphere because the rotation has a little effect on the 

spherical solid droplet. Since the droplet is assumed to be spherical and the rotating 

movement of the droplet is self-spin-up rotation, the rotation has no effect on the 

translation movement of the droplet. Fig. 8.14 (a) shows the variation of the angle 

velocity ω with time evolving. Fig. 8.14 (b) shows the rotational angle θ and the vertical 

position Z with time evolving. The angle velocities ω with respect to the X and Y axis 

presents the oscillation which is similar to sinusoid wave, as shown in Fig. 8.14 (a). In 

Fig. 8.14 (b), the rotation angles θ with respect to X and Y axis present the similar 

oscillating characteristics to the vertical oscillating movement along the Z axis. However, 

the frequency of the oscillation of the rotation angles θ is lower than that for the vertical 

oscillating movement. Also the center of the oscillation of the rotation angles θ is not at 

the angle zero, which is lager than zero with respect to X axis and smaller than zero with 

respect to Y axis. 
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Figure 8.14 Rotating movement of the magnetically levitated droplet with the initial 

position (X0=0, Z0=1 mm), (a) variation of Angular velocity ω with time evolving (b) 

variation of rotation angle θ and vertical position Z with time evolving.  
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8.5 Concluding Remarks 

 

This chapter presents the numerical study of the 3-D movement of the magnetically 

levitated spherical droplet using the coupled boundary and finite element methods. The 

hybrid boundary and finite element methods are compared with the various analytical 

solutions. The Whitney edge elements are used in both boundary and finite elements, 

which avoids the spurious solutions using the node elements. The numerical model is 

further tested against with the available results by calculating the Joule heating in the 

magnetically levitated droplet surrounded by different coils. The computed results agree 

with the results from the other researchers very well. When the 3-D horizontal and 

vertical movement of the droplet is computed in the magnetic levitation mechanism, it is 

found that the change of the magnitude of the initial position away from the equilibrium 

has no effect on the frequency and the amplitude of the oscillation of the droplet 

increases with the time evolving. The rotation of the droplet is also investigated. The 

variation of the angular velocity and rotational angle with time evolving is depicted.  

 

 



 175

 

BIBLIOGRAPHY 

 

Adornato, P. M., Brown, R. A., 1983, Shape and stability of electrostatically levitated 
drops. Proc. R. Soc. London A, 389, pp. 101-117. 
 
Ai, X., and Li, B.Q., 2004 Melt flow instability and turbulence in electro-magnetically 
levitated droplets, Materials and Manufacturing Process, Vol. 19(4), pp.737-759 
 
Ajayi, O.O., 1978, A note on Taylor’s electrohydrodynamic theory, Proc. R. Soc. London 
A, 364, pp. 499-508 
 
Akarapu, R., Huo, Y., Li, B.Q., Tang, J. and Liu, F., Integrated modeling of microwave 
food processing and comparison with experimental measurements, Journal of 
Electromagnetic Power and Microwave Technology, Accepted 
 
Bayazitoglu, Y. and Sathuvalli, U.B., 1994, Eddy current heating in an electrically 
conducting sphere, J. Materials Processing and Manuf. Sci., Vol. 3, pp. 117-141 
 
Bayazitoglu, Y. and Sathuvalli, U.B., 1996a, The Lorentz forces on an electrically 
conducting sphere in an alternating magnetic field, IEEE Trans. on Magn., Vol. 32(2), 
pp. 386-400 
 
Bayazitoglu, Y., Sathuvalli, U.B., Suryanarayana, P.V.R. and Mitchell, G.F., 1996b, The 
Lorentz forces on an electrically conducting sphere in an alternating magnetic field, 
Physics of Fluids, Vol. 8(2), pp. 370-383 
 
Brazier-Smith, P.R., 1971a, Stability and shape of isolated and pairs of water drops in an 
electric field, Physics Fluids, 14, pp. 1-6 
  
Brazier-Smith, P.R., Brook, M., Latham, J., Saunders, C.P.R. and Smith, M.H., 1971b, 
The vibration of electrified water drops. Proc. R. Soc. Lond., A322, pp. 523-534 
 
Brown, R.A. and Scriven, L.E., 1980, The shape and stability of rotating liquid drops, 
Proc. R. Soc. London A, 371, pp. 331-357 
 
Duff, I.S. and Reid, J.K., 1996, The design of MA48, a code for the direct solution of 
sparse unsymmetric linear systems of equations, ACM Trans. Math. Softw., 22(2), pp. 
187-226 
 
Engelman, M.S., Sani, R.L., Gresho, P.M., 1982 The implementation of normal and 
tangential velocity boundary conditions in finite element codes for incompressible fluid 
flow, Int. J. Num. Meth. Fluid, 2, pp. 225-238. 



 176

 
Enokizono, M., Todaka, T., Yokoji, K., Wada, Y., Matsumoto, I., 1995, Three-
dimensional moving simulation of levitation-melting method, IEEE TRANSACTIONS ON 
MAGNETICS, Vol. 31 (3), pp. 1869-1872 
 
Feng, J. Q. and Beard, K. V., 1990, Small-Amplitude Oscillations of Electrostatically 
Levitated Drops. Proc. R. Soc. London A, 430, No. 1878, pp. 133. 
 
Flemings, M. C., Trapaga, G. and Hyers, R., 1996, The measurement of the viscosity and 
surface tension of undercooled melts under microgravity conditions and supporting MHD 
calculations, NASA Microgravity Materials Science Conference, Huntsville, AL, 76. 
 
Huo, Y., Li, B.Q., 2004a, Three-dimensional marangoni convection in electrostatically 
positioned droplets under microgravity, Int. J. Heat Mass Trans. 47, pp. 3533-3547 
 
Huo, Y., Song, S.P. and Li, B.Q., 2004b, Droplet deformation and 2-D/3-D Marangoni 
flow phenomena in droplets levitated by electric fields, Materials and Manufacturing 
Process 19(4), pp. 761-775 
 
Huo, Y., Li, B.Q., and Akarapu, R., 2004c A finite element-boundary integral method for 
3-D electromagnetic heating analysis, ASME Heat Transfer/Fluids Engineering Summer 
Conference, Charlotte, North Carolina 
 
Huo, Y. and Li, B.Q., 2005a, A mathematical model for marangoni flow and mass 
transfer in electrostatically positioned droplets, Metallurgical and Materials Transactions 
B, Volume 36B, pp. 271-281 
 
Huo, Y. and Li, B.Q., 2005b, Boundary/finite element modeling of 3-d electromagnetic 
heating during microwave food processing, ASME Journal of Heat Transfer, in print 
 
Jackson, J.D., 1975, Classical Electrodynamics (2nd edition), New York: Wiley 
 
James R. Melcher, Continuum electromechanics. 1981 Cambridge, Mass.: MIT Press 
 
Johns, P.B. and Beurle, R.L., 1971, Numerical solution of two-dimensional scattering 
problems using a transmission line matrix, Proc. Inst. Eng., Vol. 118, 1203-1208. 
 
Johnson, W.L., Schroers, J. and Rhim, W.K., 2002, Studies of properties of undercooled 
glass forming metallic alloys, Materials Science Conference, Huntsville AL, pp. 307 
 
Li, B.Q., 1993, The magnetothermal phenomena in electromagnetic levitation processes, 
Int. J. Eng. Sci., Vol. 31, No. 2, pp. 201-220 
 
Li, B.Q., 1994a, The fluid flow aspects of electromagnetic levitation processes, Int. J. 
Eng. Sci., Vol. 32(1), pp. 45-67 
 



 177

Li, B.Q., 1994b, The transient magnetohydrodynamics in electromagnetic levitation 
processes, Int. J. Eng. Sci., Vol. 32(8), pp. 1315-1336 
 
Li, B.Q., Cui, X. and Song, S.P., A Galerkin boundary element formulation of surface 
radiation problems, Int. J. Boundary Element Analysis, in print 
 
Li, B.Q., Song, S.P., 1999, Thermal and fluid flow aspects of magnetic and electrostatic 
levitation of liquid droplets, J. Microgravity Sci. Tech., Vol. XI No. 4, pp. 134-143 
 
Lohofer, G., 1989, Theory of an electromagnetically levitated metal sphere I: absorbed 
power, SIAM J. Appl. Math., Vol. 49 (2), pp. 567-581 
 
Lohofer, G., 1993, Force and torque of an electromagnetically levitated metal sphere, J. 
Quarterly Appl. Math., LI(3), pp. 495 
 
Lohofer, G., 1994, Magnetization and impedance of an inductively coupled metal sphere, 
Int. J. Eng. Sci., 32(1), pp. 107 
 
Mestel, A.J., 1982, Magnetic levitation of liquid metals, J. Fluid.  Mech., Vol. 117, pp. 
17-43 
 
McDonald, B.H., Wexler, A., 1972, Finite element solution of unbounded field problems, 
IEEE Trans. Microwave Theory Tech., MTT-20, pp. 841-847 
 
Muhlbauer, A., Muiznieks, A. and Jakowitsch, A., 1991, Modeling of the electromagnetic 
field in induction furnaces with a cold crucible, industrielle Electrowarme, Vol. B3, pp. 
130-141 
 
Muck, O., Germ. Pat. No. 422004 (1923) 
 
Natarajan, R. and Brown, R.A., 1987, The role of three-dimensional shapes in the break-
up of charged drops, Proc. R. Soc. London A, 410, pp. 209-227 
 
Okress, E.C., Wroughton, D.M., Comenetz, G., Brace, P.H., and Kelly, J.C.R., 1952, 
Electromagnetic levitation of Solid and Molten Metals, J. Appl. Phy., Vol. 23, No. 5, pp. 
545-552 
 
Paradis, P.F. and Rhim, W.K., 1999, Thermophysical properties of zirconium at high 
temperature, J. Mater. Res., Vol. 14 (9), pp.3713 
 
Rayleigh, J.W.S., 1882, On the equilibrium of liquid conducting mass charged with 
electricity.  Phil. Mag., 14, 184.  
 
Reitz, J. R., Milford, F. J. and Christy, R. W. 1979, Foundations of electromagnetic 
theory.   Addison-Wesley, Reading, MA. 
 



 178

Rhim, W.K., Chung, S.K., Barber, D., Man, K.F., Gutt, G., and Rulison, A., 1993, An 
electrostatic levitator for high-temperature containerless materials processing in lg, Rev. 
Sci. Instrum, 64 (10), pp. 2961-2970 
 
Rhim, W.K., 1997a, Private Communication, Jet Propulsion Laboratory, California 
Institute of Technology, Pasadena, CA.  
 
Rhim, W.K., 1997b, Thermophysical property measurements of molten semiconductors, 
NASA Microgravity Materials Science Conference, Ed. F. Szofran, D. McCauley and C. 
Walker, 427 
 
Rony, P.B., 1969, The electromagnetic levitation melting of metals, Trans. Vac. Met. 
Conf., American Vacuum Society, Boston, 55-135 
 
Rosenkilde, C.E., 1969, A dielectric fluid drop in an electric field, Proc. R. Soc. Lond., 
A312, pp.473-494 
 
Sadhal, S.S., Trinh, E.H. Wagner, P., 1996, Thermocapillary Flows in a Drop With 
Unsteady Spot Heating in a Microgravity Environment. Journal of Microgravity Sci. 
Tech., Vol. 9, No. 2, pp. 80 
 
Sathuvalli, U.B. and Bayazitoglu, Y., 1993, Electromagnetic force calculations for a 
concial coil, Met. Trans., Vol. 24B, pp. 737-748 
 
Sathuvalli, U.B. and Bayazitoglu, Y., 1994, The Lorentz force on a sphere due to an 
axisymmetric non-homogeneous alternating magnetic field, ASME Winter Meeting, AMD 
Vol. 194, 293-305 
 
Silvester, P.P., Hsieh, M.S., 1971, Finite element solution of 2-dimensional exterior field 
problems. IEE Proc., 118, pp. 1743-1747 
 
Song, S.P., Li, B.Q., and Khodadadi, J.M., 1998a, Coupled boundary/finite element 
solution of magnetothermal problems, Int. J. Num. Meth. Heat and Fluid Flow, 8(3), pp. 
321-349 
 
Song, S.P. and Li, B.Q., 1998b, A boundary/finite element analysis of magnetic levitation 
systems in normal and micro gravity: surface deformation and thermal phenomena, 
ASME Journal of Heat Transfer, 120, pp. 491-503 
 
Song, S.P., Li, B.Q., 1999a, A coupled boundary/finite element method for the 
computation of magnetically and electrostatically levitated droplet shapes, Int. J. Numer. 
Meth. Engng., VOL. 44, pp. 1055-1077 
 
Song, S.P. 1999b, Finite element analysis of surface oscillation, fluid flow, and heat 
transfer in magnetically and electrostatically levitated droplets, Ph.D thesis, Washington 
State University, Pullman, WA 



 179

 
Song, S.P., Dailey, P., Li, B.Q., 2000a, Effects of heating source arrangements on 
internal convection in electrostatically levitated droplets. AIAA J. Thermophy. Heat 
Trans., 14 (3), pp. 335-362. 
 
Song, S.P. and Li, B.Q., 2000b, Free surface shapes and thermal convection in 
electrostatically levitated droplets, Int. J. Heat Mass Trans., 43, pp. 3589-3606. 
 
Song, S.P., Li, B.Q., 2001, A hybrid boundary/finite element method for simulating 
viscous flows and shapes of droplets in electric fields, Int. J. Comp. Fluid Dynamics, 15, 
pp. 293-308. 
 
Suryanarayana, P.V.R. and Bayazitoglu, Y., 1991, Effect of static deformation and 
external forces on the oscillations of levitated droplets, Physics of Fluids A., Vol. 3, pp. 
967-977 
 
Taylor, G.I., 1964, Disintegration of water drops in an electric field, Proc. R. Soc. Lond. 
A, 280, pp. 383-397 
 
Taylor, G.I., 1966, The force exerted by an electric field on a long cylindrical conductor, 
Proc. R. Soc. Lond. A, 291, pp. 145-159 
 
Torza, S., Cox, R.G., and Mason, S.G., 1971, Electrohydrodynamics deformation and 
burst of liquid drops. Phil. Trans. R. Soc. Lond. A. 269, pp. 295 
 
Tsamopoulos, J.A. and Brown, R.A., 1984, Resonant oscillations of inviscid charged 
drops, J. Fluid Mech., vol. 147, pp. 373-395 
 
Weatherburn, C.E., 1930, Differential geometry of three dimensions. Cambridge 
University Press Fetter Lane, London 
 
Zgraja, J., 1991, The current concentrations for induction heating, industrielle 
Electrowarme, Vol. B3, pp. 142-148 
 
Zong, J.H., Li, B.Q., and Szekely, J., 1992, The electrodynamic and hydrodynamic 
phenomena in magnetically-levitated droplets, Part I. steady state behavior, Acta 
Astronautica, 26(6), pp. 435-449 
 
Zong, J.H., Li, B.Q., and Szekely, J., 1993, The electrodynamic and hydrodynamic 
phenomena in magnetically-levitated droplets, Part II. transient behavior and heat transfer 
considerations, Acta Astronautica, 29(4), pp. 305-311 

 

 

 


