
SOLVING THE PRINCIPAL MINOR ASSIGNMENT

PROBLEM AND RELATED COMPUTATIONS

By

KENT E GRIFFIN

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
Department of Mathematics

AUGUST 2006

c© Copyright by KENT E GRIFFIN, 2006
All Rights Reserved



c© Copyright by KENT E GRIFFIN, 2006
All Rights Reserved



To the Faculty of Washington State University:

The members of the Committee appointed to examine the dissertation of KENT E
GRIFFIN find it satisfactory and recommend that it be accepted.

Chair

ii



ACKNOWLEDGMENTS

I would like to express my deep gratitude to my advisor Dr. Michael J. Tsatsomeros

for his consistent guidance, unwavering encouragement and especially for his gift for asking

the right questions. I have recognized him as a truly great teacher from my first semester

at Washington State. I would also like to thank the other members of my committee, Dr.

David Watkins and Dr. Haijun Li, for their help and support. I will always be grateful

to the staff and the professors at WSU for making my experience here so educational and

valuable.

I express appreciation to an anonymous referee for a careful examination of the first

draft of [13] leading to the introduction of condition (c) of Definition 3.2.3 and for several

other improvements that have been incorporated into this dissertation.

Finally, I would like to acknowledge the faithful support of a loving family that has

given me the power to accomplish all that I have in life. Special credit goes to my parents

Don and Marilyn, my wife Liz, and my children Joshua, Maeve and Jacob.

iii



SOLVING THE PRINCIPAL MINOR ASSIGNMENT

PROBLEM AND RELATED COMPUTATIONS

Abstract

by Kent E Griffin, Ph.D.
Washington State University

August 2006

Chair: Michael J. Tsatsomeros

An order O(2n) algorithm for computing all the principal minors of an arbitrary

n × n complex matrix is motivated and presented, offering an improvement by a factor

of n3 over direct computation. The algorithm uses recursive Schur complementation and

submatrix extraction, storing the answer in a binary order. An implementation of the

algorithm is also given and practical considerations are discussed and treated accordingly.

The inverse problem of finding a matrix with prescribed principal minors is also

considered. A condition that implies a constructive algorithm for solving this problem

will always succeed is presented. The algorithm is based on reconstructing matrices from

their principal submatrices and Schur complements in a recursive manner. Consequences

regarding the overdeterminancy of this inverse problem are examined, leading to a faster

(polynomial time) version of the algorithmic construction. A slower algorithm that solves

this inverse problem under a weaker condition is also developed.

Care is given in the MATLABr implementations of all the algorithms regarding

numerical stability and accuracy.
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Chapter 1

Introduction

1.1 Historical background

From the beginning of the history of matrix theory, matrices and determinants have been

closely connected. Indeed, when J. J. Sylvester first used the word “Matrix”, it was to

define an “oblong arrangement of terms” out of which determinants could be formed by

“selecting at will p lines and p columns” [28, p. 150].

From the sheer volume of papers collected by Sir Thomas Muir in The Theory of De-

terminants in the Historical Order of Development [23] (with three volumes covering the

period from 1841 to 1900), we conclude that problems relating to determinants were one of

the primary fields of research in matrix theory in the 19th century. It is interesting to note

that, during this period, the basic ideas of matrix algebra were discovered and rediscovered

by many mathematicians. Hawkins [15, p. 108] lists five of these as Cayley, Sylvester,

Eisenstein, Laguerre and Frobenius. The most prominent of these is Cayley, whose Memoir

on the Theory of Matrices [2, pp. 475–496] gives the first formal definition of a matrix and
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firmly establishes matrix algebra. However, Cayley’s work on matrices seems to have been

widely ignored until the 1880’s (see Hawkins [14]).

Although Meyer has observed that theoretical interest in determinants now seems to

have waned [22, pp. 459–460], the fundamental importance of determinants in matrix theory

continues to be evident. For example, in [7], Demmel, Dumitriu and Holtz have shown that

being able to compute the determinant of a matrix accurately is a necessary condition to

be able to compute the LU decomposition, eigenvalues and SVD of a matrix accurately.

Further, it is shown that being able to compute all minors of a matrix accurately is sufficient

to be able to compute the LU decomposition of a matrix, its inverse and SVD accurately.

In this paper, algorithms for two fundamental computations relating to matrices and

their principal minors are described.

1.2 Outline of manuscript

In Section 1.3 immediately following this outline, notation that is used throughout the

paper is introduced.

In Chapter 2, an algorithm for computing all the principal minors of an n × n real or

complex valued matrix is motivated and presented [12]. The algorithm that is developed

is O(n3) faster than näıvely computing all the principal minors directly. Of greater conse-

quence, this algorithm provides the structure for solving the inverse problem of Chapter 3

for which there were previously no practical algorithms.

In Chapter 3, several related algorithms for finding a matrix with a given set as its
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principal minors will be developed. This work is primarily based on the paper [13].

In the Appendices A-I, source code for the MATLABr implementations of the algorithms

of this manuscript is listed.

1.3 Notation

The following technical notation is used:

• (A)ij or Aij is the (i, j)-th entry of the matrix A. Similarly, vi = v(i) is the i-th entry

of the vector v.

• 〈n〉 = {1, 2, . . . , n} for every positive integer n.

• The lower case Greek letters α, β, γ are used as index sets. Thus, α, β, γ ⊆ 〈n〉, and

the elements of α, β, γ are assumed to be in ascending order. The number of elements in α

is denoted |α|.

• Let γ ⊆ 〈n〉 and β = {β1, β2, . . . , βk} ⊆ 〈|γ|〉. Define the indexing operation [γ]β as

[γ]β := {γβ1
, γβ2

, . . . , γβk
} ⊆ γ.

• A[α, β] is the submatrix of A whose rows and columns are indexed by α, β ⊆ 〈n〉,

respectively. When a row or column index set is empty, the corresponding submatrix is

considered vacuous and by convention has determinant equal to 1.

• A[α] := A[α, α], A(α, β] := A[αc, β]; A[α, β), A(α, β) and A(α) are defined analogously

where αc is the complement of α with respect to the set 〈n〉. If α = {α1, α2, . . . , αk} is

known explicitly (as in the examples), we let A[α1, α2, . . . , αk] := A[{α1, α2, . . . , αk}].
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• The Schur complement of an invertible principal submatrix A[α] in A is

A/A[α] = A(α) − A(α, α] (A[α] )−1 A[α, α) .

• A ∈ Mn(C) and B ∈ Mn(C) are said to be diagonally similar if there exists a

non-singular diagonal matrix D ∈ Mn(C) such that A = D−1 B D.

• A ∈ Mn(C) and B ∈ Mn(C) are said to be diagonally similar with transpose if

either A = D−1 B D or A = D−1 BT D. Note that this is simple transposition (without

conjugation of the entries) in the case of complex matrices.

• A ∈ Mn(C) with n ≥ 2 is said to be reducible if there exists a permutation matrix

P ∈ Mn(R) such that P T A P =

[
B C
0 D

]
where B ∈ Mn1

(C), D ∈ Mn2
(C) with

n = n1 + n2 and n1, n2 ≥ 1. If n = 1, A is reducible if A = [0]. Otherwise, A is said to be

irreducible.
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Chapter 2

Computing all the principal minors of
a matrix

2.1 Introduction

There are several instances and applications in the mathematical sciences where the prin-

cipal minors of a matrix need be examined. Sometimes their exact value is needed and

other times qualitative information, such as their signs, is required. Most notably, these

instances include the detection of P-matrices (matrices with positive principal minors) as

they appear in the study of the complementarity problem [1, Chapter 10], Cartan matrices

of finite and affine type in Lie algebras [20], univalent differentiable mappings [24], as well

as self-validating algorithms and interval matrix analysis [3, 19, 25, 26]. Other applications

in which the values of the principal minors are of interest include the counting of span-

ning trees of a graph using the Laplacian, D-nilpotent automorphisms [11], as well as the

solvability of the inverse multiplicative eigenvalue problem [10]. A related notoriously hard

problem is the so-called principal minor assignment problem (see the discussion of open
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problems by Holtz and Schneider in [18]) where a matrix with specified principal minors is

sought (or its existence excluded). Solving this problem is the topic of Chapter 3.

The direct approach of evaluating all the principal minors of A via LU-factorizations

entails a time complexity of O(2n n3) [30]. As a result, the problems mentioned above

share the tantalizing aspect of having no known polynomial-time solutions. For instance,

the detection of a P-matrix (known as the P-problem) is NP-hard [4, 5]. The approach

proposed by Tsatsomeros in [30] regarding the P-problem offered an improvement to the

tune of a factor of n3 while at the same time being simple to implement and adaptable to

computation in parallel. A similar “economization” in computing all the principal minors

of a general matrix is presented in this chapter, resulting in the ability to study matrices

of larger sizes even though the computation is inherently exponentially hard.

Specifically, in this chapter we develop, implement and test an algorithm (MAT2PM)

to compute all the principal minors of a given n × n complex matrix. MAT2PM is based

on extending the reach and exploiting the computations of the algorithm in [30] (hereafter

referred to as PTEST) which was designed to detect whether a given matrix is a P-matrix

or not.

PTEST uses Schur complementation and submatrix extraction in a recursive manner

to compute (up to) 2n quantities. If in the course of PTEST any of these quantities is not

positive, the algorithm terminates declaring that the matrix at hand is not a P-matrix;

otherwise it is a P-matrix. No further use of these 2n quantities is made in PTEST, even
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when they all have to be computed; they are in fact overwritten. Moreover, in certain

instances (e.g., in the presence at some stage of a P0-matrix with zero trace), the original

version of PTEST in [30] would not be able to proceed for no Schur complement of a

diagonal entry can be found.

In MAT2PM, several challenges of PTEST are resolved. First, employing the multi-

linearity of the determinant, the absence of a “pivot” (i.e., when all diagonal entries are

zero) is overcome, giving us the ability to compute all the 2n quantities that would be in-

volved in a successful completion of PTEST. Second, these quantities are used to compute

rationally all the principal minors of the initial matrix. Third, MAT2PM is applicable to

arbitrary complex matrices, including P-matrices and P0-matrices. MAT2PM’s output is

a one-dimensional array or vector of all principal minors of the input matrix in a binary

order. Fourth, care is taken for the robustness of MAT2PM as it relates to tolerance of

zero pivots and zero principal minors, the minimization of round-off errors and ease of use.

An important aspect of the process underlying MAT2PM is its ability to be reversed

and thus deal with the principal minor assignment problem mentioned above.

Section 2.2 presents the foundational work that led to the MAT2PM algorithm devel-

oped in Section 2.3. This is followed by two examples in Section 2.4 and some concluding

remarks in Section 2.5.
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2.2 Detecting P-matrices and PTEST

For the purpose of developing and describing MAT2PM, we shall first discuss PTEST.

Recall that an n-by-n complex matrix A ∈ Mn(C) is called a P-matrix (respectively, a

P0 -matrix) if every principal minor of A is positive (respectively, nonnegative). We denote

the class of P-matrices by P and the class of P0 -matrices by P0. For the general properties

of these two matrix classes see e.g., [8, Chapter 5, pp. 131–134] or [17, Chapter 2, pp. 120–

123]. We note that the P-matrices encompass such notable classes as the Hermitian positive

definite matrices, the M-matrices, the totally positive matrices and the real diagonally

dominant matrices with positive diagonal entries. The first systematic study of P-matrices

appeared in the work of Fiedler and Ptak [9].

In [30] the following result is shown for real matrices; here the proof is included for

completeness and in order to note that it is also valid for complex matrices.

Theorem 2.2.1. Let A ∈ Mn(C) and α ⊆ 〈n〉 with |α| = 1. Then A ∈ P if and only if

A[α], A(α), A/A[α] ∈ P.

Proof. Without loss of generality, assume that α = {1}. Otherwise we can consider

a permutation similarity of A. If A = [aij ] is a P-matrix, then A[α] and A(α) are also

P-matrices. That A/A[α] is a P-matrix is a well known fact (see e.g., [1, Exercise 10.6.1]

or [29, Lemma 5.1]).

For the converse, assume that A[α] = [a11], A(α) and A/A[α] are P-matrices. Using a11 > 0

as the pivot, we can row reduce A to obtain a matrix B with all of its off-diagonal entries
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in the first column equal to zero. As is well known, B(α) = A/A[α]. That is, B is a

block triangular matrix whose diagonal blocks are P-matrices. It follows readily that B is

a P-matrix. The determinant of any principal submatrix of A that includes entries from

the first row of A coincides with the determinant of the corresponding submatrix of B and

is thus positive. The determinant of any principal submatrix of A with no entries from

the first row coincides with a principal minor of A(α) and is also positive. Hence A is a

P-matrix. 2

The above theorem gives rise to the algorithm of Figure 2.1 for testing whether A ∈

Mn(C) is a P -matrix or not.

Algorithm 2.2.2. (PTEST)
Function P(A)

1. Input A = [aij ] ∈ Mn(C)
2. If a11 ≤ 0 output ‘A is not a P-matrix’, stop

3. Evaluate A/A[1]
4. Call P(A(1))

Call P(A/A[1])
5. Output ‘A is a P-matrix’

Figure 2.1: PTEST algorithm

An essential part of MAT2PM consists of exploiting the values of the pivots a11 com-

puted during the application of PTEST to an arbitrary matrix in order to compute its

principal minors.
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2.3 Finding all principal minors via MAT2PM

2.3.1 Preliminaries

It is well known that det(A) = det(A[α]) det(A/A[α]) [16].

The computations that MAT2PM performs require the following generalization of this

result.

Lemma 2.3.1. Let A ∈ Mn(C), α ⊂ 〈n〉, where A[α] is nonsingular, and denote γ = αc.

If β ⊆ 〈|αc|〉, then

det(A[α ∪ β ′]) = det(A[α]) det((A/A[α])[β]),

where

β ′ = [γ]β = {γβ1
, γβ2

, . . . , γβk
}.

Proof. Without loss of generality, assume α = {1, 2, . . . , m}, β = {m+1, m+2, . . . , m+

k}; otherwise our considerations apply to a permutation similarity of A. Partition A into

A =

[
B C
D E

]
=




B11 B12 C1

B21 B22 C2

D1 D2 E




with B11 ∈ Mm(C) and B22 ∈ Mk(C) (m + k ≤ n). Then the lemma amounts to noting

that B = A[α ∪ β ′] satisfies

det(B) = det(B11) det((B/B11))

which, in turn, implies

det(B) = det(B11) det((A/B11)[1, 2, . . . , k]). 2
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To illustrate Lemma 2.3.1, suppose A ∈ M6(C) has nonsingular principal submatrix

A[1, 3, 4]. Then,

det(A[1, 2, 3, 4]) = det(A[1, 3, 4]) (A/A[1, 3, 4])11,

det(A[1, 3, 4, 5]) = det(A[1, 3, 4]) (A/A[1, 3, 4])22,

det(A[1, 2, 3, 4, 5]) = det(A[1, 3, 4]) det((A/A[1, 3, 4])[1, 2]).

In the MAT2PM algorithm to be described below, the set β is the singleton β = {j}

and so det((A/A[α])[β]) = (A/A[α])[j] = (A/A[α])jj.

We also need a result about nested Schur complementation known as the quotient prop-

erty of the Schur complement which was first proved by Crabtree and Haynsworth [6].

Lemma 2.3.2. Let A ∈ Mn(C), α ⊂ 〈n〉. As in the previous lemma, let β ⊆ 〈|αc|〉 and

β ′ = [αc]β. If both A[α] and A[α ∪ β ′] are nonsingular, then

(A/A[α ∪ β ′]) = (A/A[α])/((A/A[α])[β]).

To illustrate Lemma 2.3.2, let A ∈ M6(R) have all of its principal minors be nonzero.

Then,

A/A[1, 2, 3, 4] = (A/A[1, 3, 4])/((A/A[1, 3, 4])[1]),

A/A[1, 3, 4, 5] = (A/A[1, 3, 4])/((A/A[1, 3, 4])[2]),

A/A[1, 2, 3, 4, 5] = (A/A[1, 3, 4])/((A/A[1, 3, 4])[1, 2]).
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If A ∈ Mn(C), then A has 2n − 1 principal minors. For computational simplicity

and efficiency, these are stored in a vector pm whose entries are ordered according to the

following binary order.

Definition 2.3.3. Let pm ∈ C2n−1 be a vector of the principal minors of A ∈ Mn(C).

Further let i be an index of pm regarded as an n-bit binary number with

i = bn bn−1 . . . b3 b2 b1, bj ∈ {0, 1}, j = 1, 2, . . . , n.

We say that the entries of pm are in binary order if

pmi = det(A[j1, j2, . . . , jm]),

where jk ∈ 〈n〉 are precisely those integers for which bjk
= 1 for all k = 1, 2, . . . , m.

Remark 2.3.4. As a consequence of the definition of binary order, the entries of pm are

as follows:

pm = [det(A[1]), det(A[2]), det(A[1, 2]), det(A[3]), det(A[1, 3]), det(A[2, 3]),

det(A[1, 2, 3]), det(A[4]), . . . , det(A)].

2.3.2 Description and analysis of MAT2PM

The algorithm implemented in MAT2PM is based on the recursive principle in PTEST and

Proposition 2.3.6 below. We proceed to find all the principal minors of an input matrix

A ∈ Mn(C) in the binary order defined above by processing an input queue (called q in

MAT2PM) of nq matrices of dimension n1 × n1 and producing an output queue (called
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qq) of 2nq matrices of size (n1 − 1) × (n1 − 1). At each step in the algorithm, the (1, 1)

entry of each matrix in the input queue will either be a principal minor or will be a ratio

of principal minors. Initially, the queue just contains the single n × n input matrix. We

can schematically express the first 3 levels of the operation of the algorithm as follows:

A ∈ Mn(C)
pivot = A[1] = pm(1) (level 0)

B = A(1) ∈ Mn−1(C)
pivot = B[1] = pm(2)

C = A/A[1] ∈ Mn−1(C)
pivot = C[1] = pm(3)/pm(1) (level 1)

D = B(1)
D[1] = pm(4)

E = C(1)

E[1] = pm(5)
pm(1)

F = B/B[1]

F [1] = pm(6)
pm(2)

G = C/C[1]

G[1] = pm(7)
pm(3)

(level 2)

Figure 2.2: Three levels of MAT2PM operation

The algorithm proceeds in levels. At level = k we process 2k matrices of size (n− k)×

(n − k) to produce 2k principal minors beginning with the 2k-th entry of pm.

Notice that in level 0, the (1, 1) entry of the input queue matrix gives us all the principal

minors of A involving rows and columns from {1}. In level 1, the (1, 1) entries of the input

queue matrices provide enough information to easily compute all the principal minors of

A involving rows and columns from the index set {1, 2}, using the principal minor from

level 0. In level 2, the (1, 1) entries of the matrices of the current queue allow us to find
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all principal minors of A with indices from the set {1, 2, 3}, which involve the new index 3

using the principal minors produced in levels 0 and 1.

In general, if level = k, we can find all the principal minors of A, det(A[α]), with index

sets of the form

α = {α1, α2, . . . , αm−1, k + 1},

where the index set of each principal minor we find contains the new index k + 1 with all

combinations of smaller indices, αi < k +1 for all 1 ≤ i ≤ m−1. This is done by using the

(1, 1) entries of the matrices in the input queue combined with the principal minors found

in all previous levels.

Pivots

Each (1, 1) entry of a matrix in a processing queue is referred to as a pivot in the code and

in the description to follow. A pivot is a principal minor if it comes from the first matrix

in a queue on a given level. Otherwise, a pivot is the ratio of two principal minors as

explained in the next subsection. All Schur complements of the algorithm are taken with

respect to the pivots.

Theoretical basis for MAT2PM

Producing the output queue from the input queue of matrices requires repeated appli-

cation of Lemmas 2.3.1 and 2.3.2. For example, let us consider producing the matrices

{D, E, F, G} from the matrices {B, C} in Figure 2.2 when computing level 2 from level

1. The first matrix is just a submatrix of a submatrix; thus, D11 = A33 is just the 1 × 1

14



principal minor corresponding to the next diagonal entry of A. For all the other matrices,

we need to apply Lemma 2.3.1. For example, E = (A/A[1])(1) so

E[1] = E11 = (A/A[1])22 = det(A[1, 3])/ det(A[1]) = pm(5)/pm(1).

Similarly, F = A(1)/A[2] and applying Lemma 2.3.1,

F11 = (A/A[2])22 = det(A[2, 3])/ det(A[2]) = pm(6)/pm(2).

To produce matrix G from matrix C, however, we first need to apply Lemma 2.3.2,

obtaining G = (A/A[1])/((A/A[1])[1]) = A/A[1, 2]. Then, applying Lemma 2.3.1, G11 =

(A/A[1, 2])11 = det([A[1, 2, 3])/ det(A[1, 2]). Each time we take Schur complements of Schur

complements in the algorithm, we must first apply Lemma 2.3.2 before using Lemma 2.3.1

to obtain a ratio of principal minors.

Remark 2.3.5. Note that the left half of the output queue is obtained by deleting the

first row and column of each matrix in the input queue and putting the resulting matrix

in the output queue in the same order. The right half of the output queue is computed by

taking the Schur complement of each matrix in the input queue with respect to its (1, 1)

entry and then placing the result in the output queue in the same order.

The following result provides the theoretical basis for the functionality of MAT2PM.

Proposition 2.3.6. Let A ∈ Mn(C). Consider the pivots produced by the algorithm de-

scribed above ordered from level 0 to level n-1, then from left to right. The numerators of
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the pivots are the principal minors of A in binary order. The denominators of the pivots

at each level equal 1 (for the first pivot of each level) followed by the principal minors of all

previous levels in binary order; see (2.3.1) below.

Proof. We argue by induction on the level. When level = 0, the single principal minor

pm1 = A[1] is in binary order. Since this is the first (and only) pivot, its numerator is 1.

Assume the pivots in level = k have the described form. As observed previously, note

that the principal minors in the numerators of the pivots all involve the index k +1. Thus,

in order, level k has 2k pivots,

{
det(A[k + 1]),

det(A[1, k + 1])

det(A[1])
,
det(A[2, k + 1])

det(A[2])
, . . . ,

det(A[1, 2, . . . , k, k + 1])

det(A[1, 2, . . . , k])

}
. (2.3.1)

We now form level = k + 1 with 2k+1 pivots. The first 2k of these are formed by taking

the submatrices formed by removing the first row and column of each matrix at level = k.

Thus, by Lemma 2.3.1, the first (left most) 2k pivots are:

{
det(A[k + 2]),

det(A[1, k + 2])

det(A[1])
,
det(A[2, k + 2])

det(A[2])
, . . . ,

det(A[1, 2, . . . , k, k + 2])

det(A[1, 2, . . . , k])

}
. (2.3.2)

This follows since Lemma 2.3.1 gives

(A/A[j1, j2, . . . , jm])[i] =
det(A[j1, j2, . . . , jm, jm + 1])

det(A[j1, j2, . . . , jm])
,

where i corresponds with jm + 1. Thus,

(A/A[j1, j2, . . . , jm])[i + 1] =
det(A[j1, j2, . . . , jm, jm + 2])

det(A[j1, j2, . . . , jm])
.
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Therefore, the first 2k pivots of level = k + 1 have the prescribed binary order for their

numerators and the denominators remain in the order they were in at level = k.

To produce the right most 2k matrices of level = k + 1, we take Schur complements of

each of the matrices from level = k. By Lemma 2.3.2, this has the effect of adding k + 1

to the index set α, then computing A/A[α] for each matrix in the input queue. Then, if we

take the pivots of these new matrices, we see by Lemma 2.3.1 that the numerators of the

pivots are the principal minors we get by appending k + 2 to the index set of the principal

minors. Also, by taking the Schur complement, the principal minors of the denominators

have k + 1 appended to them. Thus, as before, if the pivots of level k are

{
det(A[k + 1]),

det(A[1, k + 1])

det(A[1])
,
det(A[2, k + 1])

det(A[2])
, . . . ,

det(A[1, 2, . . . , k, k + 1])

det(A[1, 2, . . . , k])

}
,

after taking Schur complements the pivots formed by taking the (1, 1) entries of the new

matrices have the form

{
det(A[k + 1, k + 2])

det(A[k + 1])
,
det(A[1, k + 1, k + 2])

det(A[1, k + 1])
,
det(A[2, k + 1, k + 2])

det(A[2, k + 1])
, . . .

. . . ,
det(A[1, 2, . . . , k + 1, k + 2])

det(A[1, 2, . . . , k, k + 1])

}
. (2.3.3)

Concatenating equation (2.3.2) with (2.3.3), we see that level k +1 also has the desired

order for both the numerators and denominators of the pivots. 2

2.3.3 MAT2PM algorithm summary

The previous theorem justifies the basic MAT2PM algorithm of Figure 2.3 (when there are

no zero pivots) to find all the principal minors of a matrix A ∈ Mn(C).

17



Algorithm 2.3.7. (MAT2PM)
Function MAT2PM(A)

1. Input A = [aij ] ∈ Mn(C)
2. nq = 1, n1 = n, ipm = 1
3. Let q be a vector of (n1 × n1) matrices of length nq, q(1) = A
4. for level = 0 to n − 1
5. Let qq be a vector of ((n1 − 1) × (n1 − 1)) matrixes of length 2nq
6. ipm1 = 1

7. for i = 1 to nq
8. A = q(i)
9. pm(ipm) = A[1]
10. if n1 > 1
11. qq(i) = A(1), qq(i + nq) = A/A[1]
12. endif

13. if i > 1
14. pm(ipm) = pm(ipm) · pm(ipm1), ipm1 = ipm1 + 1
15. endif

16. ipm = ipm + 1
17. endfor

18. q = qq, n1 = n1 − 1, nq = 2nq
19. endfor

20. Output pm (the principal minors of A in binary order)

Figure 2.3: MAT2PM algorithm summary

2.3.4 Operation count

It has been shown that the time complexity of the PTEST algorithm executed on A ∈

Mn(C) is O(2n) [30, Theorem 3.3]. For the generic case in which there are no zero pivots,

MAT2PM only adds (slightly less than) one multiply per principal minor produced to the

complexity of the PTEST algorithm. This multiply converts the pivots (those that are

not diagonal entries of the input matrix A) into principal minors. Therefore, MAT2PM

18



has time complexity O(2n) also. This is a considerable improvement over the O(2n n3)

complexity that results from näıvely computing each of the 2n − 1 determinants of A ∈

Mn(C) independently [30, p. 411].

Still assuming that all the principal minors are nonzero, the approximate number of

floating point operations needed to execute the MAT2PM algorithm for a matrix A ∈

Mn(C) is equal to the number of operations needed to take the Schur complements with

respect to the pivot entries. There are 2k Schur complements of size (n − (k + 1)) that

need to be computed for each level k, and there are 2 operations (a multiply and an add

where the given operation is either real or complex as needed) for each element of a Schur

complement that is computed. Additionally, there are (n− (k + 1)) elements that must be

scaled by the inverse pivot. Therefore, there are approximately

n−2∑

k=0

2k
(
2
(
n − (k + 1)

)2
+

(
n − (k + 1)

))
= 7 · 2n − (2n2 + 5n + 7) (2.3.4)

floating point operations in MAT2PM.

MAT2PM also has an O(2n) memory requirement just in order to store the output.

The practical results of this are that on a fairly typical computer (in 2005: MATLABr

R14 on Windows XP, 2.6 GHz Pentium 4 Processor, 512 MB memory) one may find the

approximately 1 million principal minors of a random 20 × 20 real matrix in about 15

seconds using MAT2PM. If one computes the same million principal minors by calling the

det function (in MATLABr) independently for each minor, the same computation will take

about 1380 seconds.
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The individual Schur complements of MAT2PM are quite small computations but there

are many of them, and the current straightforward implementation of MAT2PM has con-

siderable overhead due to data movement. Therefore, it is believed that the performance

of MAT2PM would benefit greatly from careful implementation in a lower level language

calling an optimized basic linear algebra library.

The MAT2PM algorithm is able to speed up the computation of all principal minors of a

matrix by reusing a given Schur complement to obtain all the principal minors that Lemma

2.3.1 implies while using Lemma 2.3.2 to speed the computation of Schur complements with

larger index sets. The price for doing this is that MAT2PM cannot do traditional partial

pivoting. However, MAT2PM can avoid using extremely small pivots by setting a threshold

(thresh) below which MAT2PM resorts to the slower but more accurate pseudo-pivot code.

Pseudo-pivoting is described in the Handling zero pivots subsection of Example 2.4.1

which follows.

By default this threshold is set to 10−5 times the average magnitude of the values in

the matrix. This is fairly conservative and has been found to provide usable accuracy in

many situations. For example, the maximum relative error for all the principal minors of

a random, real 14 × 14 with entries chosen from (0, 1) is typically less than 2.0E − 10 and

pseudo pivoting does not occur with default settings. Note that setting thresh to extremely

large values will negatively impact performance, while setting it to extremely small values

could result in numerical inaccuracies.
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For the convenience of the user, MAT2PM outputs the number of times pseudo-pivoting

was employed and the magnitude of the smallest Schur complement pivot used. Also note

that principal minors near zero are subject to larger relative error and can be verified using

an explicit call to det.

Since the complexity of MAT2PM is of O(2n), we find, using the same computer on

which we can compute the principal minors of a 20× 20 real matrix in 15 seconds, that we

can compute all the principal minors of a 21 × 21 real matrix in 30 seconds. Similarly, we

can compute all the principal minors of a 22× 22 real matrix in about 1 minute. However,

for larger matrices the memory available to MAT2PM is exhausted, paging to disk occurs

and performance suffers dramatically. Thus, finding all the principal minors of a 24 × 24

matrix takes 443 seconds which is much longer than 15 · 24 = 240 seconds which we would

expect if the time complexity only grew at O(2n).

2.4 Examples

Example 2.4.1. Suppose by way of example that we wish to use MAT2PM to find the

principal minors of

A =




1 2 6
2 4 5

−1 2 3


 .

Since A ∈ M3(R), we expect the output of MAT2PM to be a vector in R with 23−1 = 7

entries, having the form

pm = [det(A[1]), det(A[2]), det(A[1, 2]), det(A[3]), det(A[1, 3]), det(A[2, 3]), det(A)].
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For simplicity, set the matrix pseudo-pivot variable ppivot to 1. The value of this

variable will be used instead of a pivot value if the pivot is zero or near zero since one

cannot take Schur complements with respect to a matrix whose determinant is zero. Then,

initially when level = 0 the input queue of matrices q just has 1 matrix:

q1 =




1 2 6
2 4 5

−1 2 3


 .

Level 0

MAT2PM processes this matrix q1. First, pm1 = (q1)11, and we have found the first

principal minor det(A[1]). Then, following the outline above, create a new queue of smaller

matrices qq by taking a submatrix qq1 = q1(1) and the Schur complement qq2 = q1/q1[1].

Next, let q = qq, and at the end of the first main level loop we have:

q1 =

[
4 5
2 3

]
, q2 =

[
0 −7
4 9

]
,

pm = [1].

Level 1

Next, pm2 = (q1)11 which equals det(A[2]). Then, compute qq1 = q1(1) and qq3 =

q1/q1[1], where, in practice, we produce both matrices in the output queue that derive from

a given input queue matrix at the same time for efficiency. Recall that q1/q1[1] is stored in

qq3 and not qq2 to preserve the binary ordering of the principal minors we compute from

the (1, 1) entries of the output queue matrices.
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Next, we process q2. Now, pm3 = ((q2)11 + ppivot)pm1, where ppivot = 1 for this

example. In this computation, two new factors come into play.

Handling zero pivots (pseudo-pivoting)

Since (q2)11 = 0, we add ppivot to (q2)11, which makes it possible to take the next Schur

complement. Therefore,

q2 =

[
1 −7
4 9

]

for purposes of taking the Schur complement of q2. We append 3, the index of the principal

minor entry that was changed from zero to ppivot, to a vector called zeropivs (which is

initially empty) so that we can perform the additional operations necessary to produce the

actual principal minors of the matrix A.

Computing principal minors from pivots

Since the pivots produced by taking Schur complements are not the principal minors

directly but are ratios of principal minors, we need to multiply the new pivot of q2 by pm1,

applying Lemma 2.3.1. Note that due to the structure of the algorithm, each previously

produced principal minor will be used as a factor in producing the next level of principal

minors exactly once, in the order they occur in pm.

After taking the submatrix qq2 = q2(1) and Schur complement qq4 = q2/q2[1], we let

q = qq. Thus, at the end of the second outer loop we have:

q1 = [3], q2 = [9], q3 = [1/2], q4 = [37],

pm = [1, 4, 1].
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Level 2

In the final iteration of the main level loop we do not compute any further Schur

complements or submatrices since the input matrices are already 1×1. Then, we set pm4 =

(q1)11. All the remaining principal minors are computed by multiplying the remaining pivots

by the previously computed principal minors in the order they were computed. Thus,

pm5 = (q2)11 · pm1, pm6 = (q3)11 · pm2 and pm7 = (q4)11 · pm3.

We exit the main loop with

pm = [1, 4, 1, 3, 9, 2, 37].

Zero pivot loop

Finally, we enter the zero pivot loop with one entry in zeropivs, a 3. The details of this

loop are complex, but the concept is simple. Due to the multilinearity of determinants with

respect to a given row, we can correct any places we added ppivot to a pivot by subtracting

a principal minor we have computed from any descendants of the zero pivot. In this case,

we compute pm3 = 0 by undoing the effects of adding ppivot to this principal minor. The

algebra for doing this in MAT2PM provides additional accuracy in cases where the pivot

is not exactly zero. Then, we subtract pm5 = det(A[1, 3]) from pm7 = det(A[1, 2, 3]),

which undoes the effects of using a false pivot for pm3 = det(A[1, 2]). This follows since if

B = A/A[1],

det

[
0 b12

b21 b22

]
= det

[
1 b12

b21 b22

]
− det

[
1 0

b21 b22

]
⇒

pm7 = p̂m7 − pm5,
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where we use p̂m7 to represent the false intermediate value of pm7 resulting from using a

false value of 1 instead of 0 for pm3.

Only principal minors involving both entries of the set α = {1, 2} that descend from

the Schur complement of q2 of the second level need this type of correction. So,

pm = [1, 4, 1 − 1, 3, 9, 2, 37− 9]

= [1, 4, 0, 3, 9, 2, 28]

is the final vector of correct principal minors of A.

Example 2.4.2. To demonstrate the handling of zero pivots in more detail, we now con-

sider using MAT2PM to find all the principal minors of

A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

Again, for simplicity the pseudo-pivot variable ppivot is assumed to be 1. We use the

notation 0 → 1 to indicate when we add ppivot to make a pivot nonzero.

Level 0

Given input queue

q1 =




0 → 1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




we produce the principal minor array of

pm = [1],
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where zeropivs = [1] contains the index of the entry in pm that we have changed from 0

to ppivot = 1.

Then we can compute the submatrix A(1) and the Schur complement A/A[1] to produce

output queue

qq1 =




0 1 0
0 0 1
0 0 0


 , qq2 =




0 1 0
0 0 1
−1 0 0


 .

Level 1

After letting q = qq, we begin the next level loop with the pivots of both input matrices

equal to 0. Adding 1 to these, we produce:

q1 =




0 → 1 1 0
0 0 1
0 0 0


 , q2 =




0 → 1 1 0
0 0 1
−1 0 0


 ,

pm = [1, 1, 1],

zeropivs = [1, 2, 3],

qq1 =

[
0 1
0 0

]
, qq2 =

[
0 1
0 0

]
, qq3 =

[
0 1
0 0

]
, qq4 =

[
0 1
1 0

]
.

Level 2

At the beginning of the level loop again each pivot is 0, so we compute:

q1 =

[
0 → 1 1

0 0

]
, q2 =

[
0 → 1 1

0 0

]
, q3 =

[
0 → 1 1

0 0

]
, q4 =

[
0 → 1 1

1 0

]
,

pm = [1, 1, 1, 1, 1, 1, 1],

zeropivs = [1, 2, 3, 4, 5, 6, 7],

qq1 = [0], qq2 = [0], qq3 = [0], qq4 = [0], qq5 = [0], qq6 = [0], qq7 = [0], qq8 = [−1].
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Level 3

Since the input queue consists entirely of 1×1 matrices, all that remains is to append the

entries of the output queue matrices (multiplied by the appropriate previously computed

principal minors, which all have value 1) to the principal minor vector to obtain

pm = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,−1].

Zero Pivot Loop

With the principal minor vector pm computed above, along with ppivot = 1 and

zeropivs = [1, 2, 3, 4, 5, 6, 7], we have the necessary information to perform the compu-

tations that will make pm correct for the given matrix. To prevent division by 0 we “undo”

the effects of adding ppivot to our zero pivots in the opposite order that we applied them.

Reading the zeropivs vector of indices in reverse order, the first time through the loop we

set mask = zeropivs(7) = 7. When we computed pm(7) in level 2, pivot = pm(7)/pm(3)

was zero, so we added ppivot = 1 to pivot. Using p̂m(7) to indicate modified or false

principal minor values, then

p̂m(7) = (pm(7)/pm(3) + ppivot) pm(3)

since we add the ppivot to the pivot when we take the Schur complement which occurs

before converting pivots to principal minors by multiplying by previous principal minors.

Therefore, it follows that

pm(7) = (p̂m(7)/pm(3) − ppivot) pm(3).
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In our example, pm(3) = 1 from previously adding ppivot to pm(3)/pm(1) and ppivot = 1

so we effectively set pm(7) = 0.

Similarly we set pm(6) = 0 when mask = zeropivs(6) = 6 and continuing this process

we obtain the final vector of principal minors

pm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1].

Any time we change a pivot of a matrix we change the principal minors that are com-

puted from any Schur complement of that matrix. However, the multilinearity of the

determinant always allows us to correct for this by taking the appropriate difference of

principal minors. Thus, in our example, where A = [aij ] and a11 = 0, we have

det




0 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a24

a41 a42 a43 a44


 = det




ppivot a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




− det




ppivot 0 0 0
a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 .

Therefore, we must correct for using ppivot instead of 0 for a11 by letting pm(15) = p̂m(15)−

ppivot pm(14) recalling that pm(15) = det(A[1, 2, 3, 4]) and pm(14) = det(A[2, 3, 4]). This

is done in an embedded loop at the bottom of the zero pivot loop. In this example, all

the principal minors being subtracted are zero so no change results to the principal minor

array.
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2.5 Practical issues and conclusions

2.5.1 Interpreting and viewing principal minors

As matrices become larger, it becomes more tedious and difficult to interpret and view

the principal minors produced by MAT2PM. As an example, consider the following matrix

A ∈ M4(R) with its 15 principal minors in binary order:

A =




−3 8 −5 −4
1 4 −6 2
2 7 −9 4
4 −2 −3 6


 ,

pm = [−3, 4,−20,−9, 37, 6,−37, 6,−2, 28, 4,−42,−14, 54, 8].

The following three utilities provide assistance in accessing and displaying the elements

of pm.

IDX2V of Appendix B

Suppose we wish to know which principal minor pm13 = −14 corresponds to. Given an

index into an array of principal minors in binary order, the utility IDX2V returns a vector

which is the index set of the principal minor it corresponds to. Thus, IDX2V of 13 returns

the vector [1, 3, 4], and the determinant of A[1, 3, 4] is indeed −14.

V2IDX of Appendix C

Conversely, suppose we wish to find the element in pm which corresponds to the princi-

pal minor det(A[2, 4]). Given input of an index set expressed as a vector of distinct integers,

V2IDX returns the integer index of this principal minor in pm. In this example, V2IDX of

[2, 4] returns 10, and pm10 = 28 = det(A[2, 4]).
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PMSHOW of Appendix D

Finally, given an input vector of principal minors pm, PMSHOW displays three columns:

the index number, the index set vector and the principal minor value for each principal

minor. Therefore, with pm in the example above, PMSHOW displays:

idx v pm
1 [1] −3
2 [2] 4
3 [1, 2] −20
4 [3] −9
5 [1, 3] 37
6 [2, 3] 6
7 [1, 2, 3] −37
8 [4] 6
9 [1, 4] −2

10 [2, 4] 28
11 [1, 2, 4] 4
12 [3, 4] −42
13 [1, 3, 4] −14
14 [2, 3, 4] 54
15 [1, 2, 3, 4] 8

2.5.2 Conclusions

In this chapter a method to compute all the principal minors of a real or complex matrix is

presented, which reuses much of the work done to compute “smaller” principal minors (those

that require shorter index sets to describe them) to produce “larger” ones, the determinant

of the matrix being the last principal minor that the algorithm computes. This reduces the

time complexity to compute these minors from O(2n n3) to O(2n). For large matrices, this

represents a considerable time savings over computing the minors independently. Zero or

nearly zero principal minors are handled at a performance penalty.
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Chapter 3

The principal minor assignment
problem

3.1 Introduction

In this chapter we study the following inverse problem:

[PMAP] Find, if possible, an n × n matrix A having prescribed principal minors.

Recall that a principal minor of A is the determinant of a submatrix of A formed by

removing k (0 ≤ k ≤ n − 1) rows and the corresponding columns of A. We refer to the

above inverse problem as the Principal Minor Assignment Problem (PMAP).

Some immediate observations and remarks about PMAP are in order. First, PMAP is

equivalent to the inverse eigenvalue problem of finding a matrix with given spectra (and

thus characteristic polynomials) for all of its principal submatrices. Second, PMAP is a

natural algebraic problem with many potential applications akin to inverse eigenvalue and

pole assignment problems that arise in engineering and other mathematical sciences. Third,

as an n×n matrix has 2n −1 principal minors and n2 entries, PMAP is an overdetermined
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problem for n ≥ 5. As a consequence, the existence of a solution to PMAP depends on rela-

tions among the (principal) minors of the matrix being satisfied. Generally, such relations

(e.g., Newton identities for each principal submatrix) are theoretically and computationally

hard to verify and fulfill.

Motivation comes from an open problem in [18] where PMAP is associated with the

existence of GKK matrices with specified principal minors (see Section 3.4). The main

goal in this chapter is to develop and present a constructive algorithm for PMAP called

PM2MAT. This is achieved under a certain condition which guarantees that the algorithm

will succeed. The output of PM2MAT is a matrix with the stipulated principal minors if

one exists. Failure to produce an output under this condition signifies the non-existence of

a solution (see Section 3.2.5). The algorithm is based on the method presented in Chapter

2 that computes all the principal minors of a matrix recursively.

Although the implementations in MATLABr of PM2MAT and related functions in the

appendices are subject to roundoff errors and loss of precision due to cancellation, the

PM2MAT algorithm is capable of solving PMAP, under the condition referred to above,

exactly. This could be accomplished using any rational arithmetic system that is capable

of exactly performing the four arithmetic operations in addition to taking square roots.

The organization of this chapter is as follows:

• Section 3.2: The algorithm PM2MAT for PMAP is introduced and the theoretical

basis for its functionality developed; a detailed description and analysis of PM2MAT
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follows (initial and main level loops, handling of zero principal minors, deskewing,

field considerations, as well as an operation count and strategy for general use).

• Section 3.3: Several comprehensive examples are presented.

• Section 3.4: Theoretical consequences and applications of PMAP and PM2MAT are

discussed. Also some statements in an old related paper by Stouffer are corrected

[27].

• Section 3.5: It is shown that generically1 not all principal minors are needed in the

reverse engineering of a matrix (Lemma 3.5.1 and Theorem 3.5.3). As a result, a

faster version of PM2MAT is developed: FPM2MAT.

• Section 3.6: An algorithm that solves PMAP more generally is developed, although

at a significant performance penalty compared to PM2MAT. This slower version is

called SPM2MAT.

• Section 3.7: Conclusions are given for the chapter.

3.2 Solving the PMAP via PM2MAT

3.2.1 Preliminaries

We begin by stating two definitions that lead up to the definition of the condition referred

to above under which the PM2MAT algorithm is guaranteed to succeed.

1We refer to a property as generic if it holds true for all choices of variables (matrix entries) except
those on a strict algebraic subvariety.
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First, we define the following similarity:

Definition 3.2.1. A, B ∈ Mm(C) with A = [aij], B = [bij ] are dot similar (written A∼̇B)

if for all i, j ∈ 〈m〉 there exists T = [tij] ∈ Mn(C) such that aij = tijbij and tij tji = 1.

Note that if A and B are diagonally similar, then they are dot similar, but the converse

is generally false. If the off-diagonal entries of A are nonzero (which implies that the

off-diagonal entries of B are nonzero), then it is easy to see that A∼̇B implies AT ∼̇B.

The set of matrices SA defined below is also needed for Definition 3.2.3. It is implicitly

assumed that all Schur complements contained in SA are well-defined.

Definition 3.2.2. Given A ∈ Mn(C), n ≥ 2, the set of matrices SA is defined as the

minimal set of matrices such that:

(1) SA contains A(1) and A/A[1] and

(2) if B ∈ SA is an m × m matrix with m ≥ 2, then B(1) and B/B[1] are also in SA.

Now, we introduce a matrix class for which PM2MAT is guaranteed to succeed (PM2MAT

will, however, succeed for a broader class as we shall see).

Definition 3.2.3. The matrix A ∈ Mn(C), n ≥ 2 is said to be ODF (off-diagonal full) if

the following three conditions hold:

(a) the off-diagonal entries of all the elements of SA are nonzero,

(b) all B ∈ SA, where B ∈ Mm(C) with m ≥ 4, satisfy the property that for all

partitions of 〈m〉 into subsets α, β with |α| ≥ 2, |β| ≥ 2, either rank(B[α, β]) ≥ 2 or
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rank(B[β, α]) ≥ 2 and

(c) for all C ∈ SA ∪ {A}, where C ∈ Mm(C) with m ≥ 4, the pair L = C(1) and

R = C/C[1] satisfy the property that if rank(L − R̂) = 1 and R̂∼̇R, then R = R̂.

A few remarks concerning this definition are in order:

1. The set SA is the set of all intermediate matrices computed by the MAT2PM algo-

rithm of Chapter 2 in finding all the principal minors of a matrix A ∈ Mn(C) when

no zero pivot is encountered. Thus, the role of SA in the inverse process of PM2MAT

to be developed here is natural.

2. Generically, (a) and (b) are true, and (c) is a technical condition for a case that

generically is not encountered in PM2MAT. Assuming (c) enables the PMAP to be

solved by PM2MAT in an amount of time comparable to finding all the principal

minors of a matrix using MAT2PM.

3. Condition (b) appears in Theorem 3.2.4 of R. Loewy. This theorem will be invoked

to guarantee the uniqueness of the intermediate matrices PM2MAT computes up to

diagonal similarity with transpose.

4. The conditions imposed by the definition of an ODF matrix are systematically and

automatically checked in the implementation of PM2MAT and warnings are issued if

the conditions are violated.
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Under the condition that a given set of principal minors come from a matrix which is

ODF, the algorithm MAT2PM developed in Chapter 2 to compute principal minors can

be deliberately reversed to produce a matrix having a given set of principal minors. This

process is implemented in the MATLABr function PM2MAT of Appendix E.

By way of review, MAT2PM computes all the principal minors of a matrix A ∈ Mn(C)

in levels by repeatedly taking Schur complements and submatrices of Schur complements.

Schematically, the operation of MAT2PM (and also PM2MAT in reverse) is summarized

in Figure 3.1 where pm represents the array of principal minors in the binary order of

Definition 2.3.3. MAT2PM operates from level 0 to level n − 1 to produce the 2n − 1

principal minors of A.

A ∈ Mn(C)
pivot = A[1] = pm(1) (level 0)

B = A(1) ∈ Mn−1(C)
pivot = B[1] = pm(2)

C = A/A[1] ∈ Mn−1(C)
pivot = C[1] = pm(3)/pm(1) (level 1)

D = B(1)
D[1] = pm(4)

E = C(1)

E[1] = pm(5)
pm(1)

F = B/B[1]

F [1] = pm(6)
pm(2)

G = C/C[1]

G[1] = pm(7)
pm(3)

(level 2)

Figure 3.1: Three levels of MAT2PM and PM2MAT operation

PM2MAT reverses the process by first taking the 2n − 1 principal minors in pm and

producing the 2n−1 matrices in M1(C) of level n − 1. It then proceeds to produce 2n−2
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matrices in M2(C) of level n − 2, and so forth, until a matrix in Mn(C) having the given

set of principal minors is obtained.

To describe the essential step of PM2MAT, it is sufficient to focus on its last step from

level 1 to level 0 in Figure 3.1. At level 1 we have already computed C = A/A[1] and

B = A(1). As shown using Lemma 2.3.1 and Lemma 2.3.2 from Chapter 2, we can also

compute C[1] = pm(3)
pm(1)

and B[1] = pm(2) from the input array pm. Thus to find A, we only

need to find suitable A(1, 1] and A[1, 1). This can be done (non-uniquely) via the relation

A(1, 1] A[1, 1) =
A(1) − A/A[1]

A[1]

provided that the quantity A(1)−A/A[1] at hand has the desired rank of 1. However, this

is typically not the case. To remedy this situation, A/A[1] is altered by an appropriate

diagonal similarity with transpose to achieve the rank condition while leaving the principal

minors unchanged. See Section 3.2.2 for the details of this operation.

One of the first questions that naturally arises in this process is as follows. If we compute

the principal minors of A ∈ Mn(C) with MAT2PM and then find a matrix B ∈ Mn(C)

having equal corresponding principal minors to A with PM2MAT, what is the relationship

between A and B? We immediately observe that A need not be equal to B since both

diagonal similarity and transposition clearly preserve all principal minors. The following

theorem by R. Loewy [21] states necessary and sufficient conditions under which diagonal

similarity with transpose is precisely the relationship that must exist between A and B.

Theorem 3.2.4. Let A, B ∈ Mn(C). Suppose n ≥ 4, A is irreducible, and for every
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partition of 〈n〉 into subsets α, β with |α| ≥ 2, |β| ≥ 2 either rank(A[α, β]) ≥ 2 or

rank(A[β, α]) ≥ 2. Then A and B have equal corresponding principal minors if and only if

A and B are diagonally similar with transpose.

Thus, under generic conditions, transposition and diagonal similarity are the only free-

doms we have in finding a B such that A and B have the same set of principal minors.

As discussed further in Section 3.2.5, PM2MAT operates under the more stringent

requirements that the input principal minors correspond to a matrix A ∈ Mn(C) which

is ODF. This restriction arises since PM2MAT solves the inverse problem by examining

2 × 2 principal submatrices independently. Under this condition, Theorem 3.2.4 has the

following two corollaries, which are directly relevant to the functionality of PM2MAT.

Corollary 3.2.5. Let A ∈ Mn(C), B, C ∈ Mm(C) with n > m ≥ 2. If A is ODF and

B ∈ SA, then B and C have equal corresponding principal minors if and only if B and C

are diagonally similar with transpose.

Proof. One direction is straightforward. For the forward direction, assume B = [bij ]

and C have the same corresponding principal minors. We proceed in three cases:

Case m = 2

If B, C ∈ M2(C), b12 6= 0, b21 6= 0 and B and C have equal corresponding principal

minors, then for some t ∈ C, C has the form

C =

[
b11 b12/t
b21 t b22

]
.
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Then, C = D B D−1, where

D =

[
1 0
0 t

]
.

Note that in this case, transposition is never necessary.

Case m = 3

Let B, C ∈ M3(C). The 1 × 1 minors and 2 × 2 minors of B and C being the same

means that if

B =




b11 b12 b13

b21 b22 b23

b31 b32 b33


 ,

then C has the form

C =




b11 b12/s b13/t
b21 s b22 b23/r
b31 t b32 r b33




for some r, s, t ∈ C. Since det(B) = det(C),

det(C) − det(B) = b12b23b31
t

sr
− b12b23b31 + b13b21b32

sr

t
− b13b21b32 = 0

since the other 4 terms of the determinants cancel. Let c = b12b23b31, d = b13b21b32 and

x = t/(sr). Because B ∈ SA and A is ODF, all off-diagonal entries of B are nonzero which

implies that c 6= 0 and d 6= 0. Solving:

c x + d/x − c − d = 0 ⇔

c x2 + (−c − d)x + d = 0 ⇔

(x − 1)(c x − d) = 0 ⇒

x = 1 or x = d/c. (3.2.1)
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The first case corresponds to B being diagonally similar to C, and the second case

corresponds to B being diagonally similar to CT .

Case m ≥ 4

Because A is ODF, part (a) of Definition 3.2.3 implies that B ∈ SA is irreducible, and

part (b) of the same definition implies that the rank condition of Theorem 3.2.4 is satisfied.

Thus, the result follows from Theorem 3.2.4. 2

Corollary 3.2.6. Let A ∈ Mn(C), B, C ∈ Mm(C) with n > m ≥ 2 with A ODF and

B ∈ SA. If B and C have equal corresponding principal minors, then each principal sub-

matrix of C is diagonally similar with transpose to the corresponding submatrix of B; every

Schur complement of C is diagonally similar with transpose to the corresponding Schur

complement of B. Consequently, each principal submatrix of every Schur complement of C

is diagonally similar with transpose to the corresponding submatrix of the Schur complement

of B.

Proof. Without loss of generality we may confine our discussion to the principal sub-

matrix indexed by α = 〈k〉, where 0 ≤ k ≤ n−1. Letting D ∈ Mn(C) denote a nonsingular

diagonal matrix, the corollary can be verified by considering the partition

B = D−1 C D =

[
D−1[α] 0

0 D−1(α)

] [
C[α] C[α, α)

C(α, α] C(α)

] [
D[α] 0

0 D(α)

]

and the ensuing fact that

B/B[α] = D−1(α) (C/C[α]) D(α). 2
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The practical consequence of Corollary 3.2.6 is that if a set of principal minors comes

from a matrix A that is ODF, any matrix C that has the same corresponding principal

minors as B ∈ SA must be diagonally similar with transpose to B. Thus, each 2 × 2 or

larger matrix encountered in the process of running MAT2PM will necessarily be diagonally

similar with transpose to the corresponding submatrix, Schur complement or submatrix of

a Schur complement of any matrix C that has equal corresponding principal minors to B.

Therefore, the problem of finding a matrix with a given set of principal minors can be solved

by finding many smaller matrices up to diagonal similarity with transpose, proceeding from

level n − 1 up to level 0 in the notation of the MAT2PM algorithm.

3.2.2 Description of PM2MAT

First of all, the input array pm of PM2MAT, consisting of the principal minors of a potential

matrix A ∈ Mn(C), will have its entries arranged according to the binary order of Definition

2.3.3. This is, of course, the same as the order of the output of MAT2PM.

Initial processing loop

Given input of 2n − 1 principal minors pm in binary order, we first produce the level

n − 1 row of 1 × 1 matrices. The first matrix is [pm2n−1 ] which is the (n, n) entry of the

desired matrix. The other matrices are found by performing the division pm2n−1+i/pmi,

i = 1, 2, . . . , 2n−1 − 1. As a consequence of Proposition 2.3.6, these 1 × 1 matrices are

identical to the ones produced on the final iteration of the main level loop of MAT2PM

of a matrix that had the values pm for its principal minors. For simplicity of description
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we assume that division by zero never occurs, but zero principal minors can be handled by

the algorithm as is described in Section 3.2.2 below. This division converts the principal

minors into the 1 × 1 submatrices and the corresponding 1 × 1 Schur complements of a

matrix that has pm as its principal minors.

Main level loop

With this initial input queue of 2n−1 matrices of dimension 1 × 1, we then enter the main

level loop of PM2MAT. In general, given nq matrices of size n1×n1 (in the input queue, q),

this loop produces an output queue (called qq) of nq/2 matrices of size (n1+1)× (n1+1).

This is done in such a way that the matrices in q are either the submatrices of the matrices

in qq formed by deleting their first row and column or they are the Schur complements of

the matrices in qq with respect to their (1, 1) entries.

By dividing the appropriate pair of principal minors we first compute the pivot or (1, 1)

entry of a given (n1+1)×(n1+1) matrix A we would like to create. Then, given three pieces

of information: the pivot pivot = A[1], the submatrix L = A(1) and the Schur complement

R = A/A[1], we call invschurc to compute A. L and R are so named since submatrices

are always to the left or have a smaller index in the queue q of their corresponding Schur

complement in each level of the algorithm.

Invschurc (the main process in producing the output matrix)

Once again, recall from the description of MAT2PM in Chapter 2 (see Figure 3.1) that in

inverting the process in MAT2PM, one needs to reconstruct a matrix A at a given level
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from its Schur complement R = A/A[1], as well as from L = A(1) and A[1] (pivot). This

is achieved by invschurc as follows.

Let A ∈ Mm+1(C) in level n − m − 1, so L, R ∈ Mm(C) in level n − m. First, notice

that

A/A[1] = A(1) − A(1, 1] A[1, 1)/A[1] ⇔

L − R = A(1) − A/A[1] = A(1, 1] A[1, 1)/A[1]. (3.2.2)

If rank(L − R) = 1, we can find vectors A(1, 1] and A[1, 1) such that A(1, 1] A[1, 1) =

(L − R) A[1] by setting

A[1, 1) = (L − R)[i, 〈m〉]. (3.2.3)

This, in turn, implies that

A(1, 1] =
(L − R)[〈m〉, i] A[1]

(L − R)[i, i]
(3.2.4)

where i is chosen such that

|(L − R)ii| = max
j∈〈m〉

|(L − R)jj| (3.2.5)

to avoid division by a small quantity. Similar to partial pivoting in Gaussian elimination,

this will reduce cancellation errors when the output matrix A is used in a difference with

another matrix computed using the same convention.

The difficult part of this computation is that, in general, the difference of L and R as

input to invschurc has rank higher than 1. For input matrices L and R that are larger than
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2 × 2, this problem is solved by invoking part (c) of Definition 3.2.3 to enable a diagonal

similarity with transpose of R to be found that makes rank(L − R) = 1 by finding the

unique dot similarity with R that satisfies the rank condition.

We consider 4 cases:

Case m = 1

In this case rank(L − R) = 1 trivially, so the computation of equations (3.2.3) and

(3.2.4) above suffices to produce A.

Case m = 2

If invschurc is called with L, R ∈ M2(C), L − R will usually not be rank 1. This is

because when L = [lij ] and R = [rij ] were produced by prior calls to invschurc, the exact

values of l12, l21, r12 and r21 were not known. Only the products l12l21 and r12r21 were fixed

by knowing the given Schur complement. We can remedy this by choosing t ∈ C, t 6= 0

such that

rank

([
l11 l12
l21 l22

]
−

[
r11 r12/t
r21t r22

])
= 1. (3.2.6)

Note that modifying R in this way is a diagonal similarity with the nonsingular diagonal

matrix

D =

[
1 0
0 t

]
.

Thus, all the principal minors of R remain unchanged. Also note that in this case, diagonal

similarity and dot similarity are equivalent.
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Solving

l11 − r11

l21 − r21t
=

l12 − r12/t

l22 − r22

for t we obtain a quadratic equation in t with the two solutions:

t1, t2 = (−x1x2 + l12l21 + r12r21 ±
√

d)/(2l12r21), (3.2.7)

where

x1 = l11 − r11, x2 = l22 − r22

and

d = x2
1x

2
2 + l212l

2
21 + r2

12r
2
21 − 2x1x2l12l21 − 2x1x2r12r21 − 2l12l21r21r12.

This algebra has been placed in the subroutine solveright of PM2MAT in Appendix E.

The choice of t1 versus t2 is arbitrary, so we always choose t1. Choosing t2 instead for all

m = 2 matrices merely results in the final output matrix of PM2MAT being the transpose

of a diagonal similarity to what it would have been otherwise.

Remark 3.2.7. If L, R ∈ M2(R) and R is diagonally similar to a matrix R̂ ∈ M2(R) such

that rank(L − R̂) = 1, then d above will be non-negative by virtue of the construction of

the quadratic system (3.2.7). Although d factors somewhat as

d = l212l
2
21 − 2l12l21(r12r21 + x1x2) + (r12r21 − x1x2)

2,

d is not a sum of perfect squares and d can be negative with real parameters if the rank

condition does not hold. Also note that if the principal minors come from a matrix which

is ODF, division by zero in (3.2.7) never occurs.
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Remark 3.2.8. Parenthetically to the ongoing analysis, note that in general if L and R

have the same principal minors as L̂ and R̂ respectively, then, under the conditions that

PM2MAT operates, Corollary 3.2.6 implies that (L̂ = DL L D−1
L or L̂ = DL LT D−1

L ) and

(R̂ = DR R D−1
R or R̂ = DR RT D−1

R ) for diagonal matrices DL and DR. Therefore, either

rank(DL L D−1
L − DR R D−1

R ) = 1 or rank(DL L D−1
L − DR RT D−1

R ) = 1. Without loss of

generality, if

rank(DL L D−1
L − DR R D−1

R ) = 1,

then

rank(L − D−1
L DR R D−1

R DL) = rank(L − D R D−1) = 1

where D = D−1
L DR. Thus, finding a diagonal similarity with transpose of the right matrix

suffices to make L − R rank 1 even if both L and R are diagonally similar with transpose

to matrices whose difference is rank 1.

Case m = 3

If invschurc is called with L, R ∈ M3(C), we attempt to find r, s, t ∈ C such that

rank







l11 l12 l13
l21 l22 l23
l31 l32 l33


 −




r11 r12/s r13/t
r21 s r22 r23/r
r31 t r32 r r33





 = 1. (3.2.8)

This is done by finding the two quadratic solutions for each 2 × 2 submatrix of L − R

for r, s and t independently. Since r = {r1, r2}, s = {s1, s2} and t = {t1, t2}, there

are 8 possible combinations of parameters to examine which correspond to 8 possible dot

similarities with R. Part (c) of Definition 3.2.3 guarantees that only one of the combinations
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will make rank(L − R) = 1. Since

l11 − r11

l21 − r21 s
=

l13 − r13/t

l23 − r23/r
⇒

(l23 − r23/r)(l11 − r11) − (l21 − r21 s)(l13 − r13/t) = 0,

we compare

| (l23 − r23/r)(l11 − r11) − (l21 − r21 s)(l13 − r13/t) | (3.2.9)

for each combination of r, s, t and select the combination which makes (3.2.9) most nearly

zero. If the principal minors come from a matrix which is ODF, the expression above

will be zero up to numerical limitations for exactly one dot similarity. Moreover, this dot

similarity will correspond to the unique diagonal similarity with transpose of R necessary

to make rank(L − R) = 1.

If multiple combinations of solutions result in expressions of the form of (3.2.9) that are

(nearly) zero, then a warning is printed to indicate that the output of PM2MAT is suspect.

An example of a matrix A that satisfies parts (a) and (b) of Definition 3.2.3 but fails to

satisfy part (c) is presented in Case (c) of Section 3.2.5.

Case m > 3

If invschurc is called with L, R ∈ Mm(C), m > 3, we make L−R of rank 1 by modifying

R starting at the lower right hand corner and working to the upper left. This is better
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explained by appealing to the m = 5 case: Consider L − R ∈ M5(C) in the form

L −




r11 r12/s
(4) r13/t

(4) r14/t
(5) r15/t

(6)

r21 s(4) r22 r23/s
(2) r24/t

(2) r25/t
(3)

r31 t(4) r32 s(2) r33 r34/s
(1) r35/t

(1)

r41 t(5) r42 t(2) r43 s(1) r44 r45/r
(1)

r51 t(6) r52 t(3) r53 t(1) r54 r(1) r55




. (3.2.10)

We first find values for r(1), s(1) and t(1) for the lower right 3 × 3 submatrix of L−R as in

the m = 3 section above. Then, by examining four combinations of parameters with two

potentially different solutions for s and t, we find s(2) and t(2) by seeing which combination

of solutions causes the lower right 4 × 4 submatrix to be of rank 1. Again, Part (c) of

Definition 3.2.3 is invoked to know that only one combination of solutions will satisfy the

rank condition. We choose t(3) by again requiring that the lower right 4 × 4 submatrix be

rank 1, choosing one out of two possibly different solutions.

It is tempting to use

l22 − r22

l32 − r32 s(2)
=

l25 − r25/t
(3)

l35 − r35/t(1)

to find t(3). Accumulating inaccuracies, however, prevent this from working well when

inverting vectors of principal minors into larger (than 10 × 10) matrices. The remaining

parameters are found in the order their superscripts imply.

Handling zero principal minors

The basic algorithm of MAT2PM applied to a given A ∈ Mn(C) can only proceed as

long as the (1, 1) or pivot entry of each matrix in SA is nonzero. However, it was found

(see Example 2.4.1, Zero pivot loop) that the algorithm of MAT2PM can be extended to
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proceed in this case by using a different pivot value (called a pseudo-pivot or ppivot in

the code). Then, the multilinearity of the determinant implies that the desired principal

minors are differences of the principal minors which are computed using ppivot for all zero

pivot values. These corrections to make the principal minors correspond to the principal

minors of the input matrix A are done in the zero pivot loop at the end of MAT2PM.

At the beginning of PM2MAT, there is a loop analogous to the zero pivot loop at the

end of MAT2PM. A principal minor in the vector pm being zero corresponds to the (1, 1) or

pivot entry of an intermediate matrix computed by PM2MAT being zero. We can modify

a zero principal minor so that, instead, the given matrix will have a (1, 1) entry equal to

ppivot. This makes the principal minor nonzero also. Since only the first 2n−1−1 principal

minors in the array of 2n − 1 principal minors appear in the denominator when computing

pivots of intermediate matrices, this operation is only done for these initial principal minors.

Thus, division by zero never occurs when taking ratios of principal minors in PM2MAT.

A random constant value was chosen for ppivot in PM2MAT to reduce the chance that

an off-diagonal zero will result when submatrices and Schur complements are constructed

in invschurc using ppivot as the pivot value. Thus, it is more likely that the resulting

principal minors come from a matrix which is effectively ODF. By effectively ODF we

mean a matrix A ∈ Mn(C) that satisfies all three conditions of Definition 3.2.3 with the

set SA computed as follows: If a given Schur complement exists, it is computed as usual.

Otherwise, the Schur complement is computed with the (1, 1) entry of the matrix set equal
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to ppivot. The submatrices in SA are also found as usual.

Applying the multilinearity of the determinant, all later principal minors in the pm

vector that are affected by changing a given zero principal minor to a nonzero value are

modified, and the index of the principal minor that was changed is stored in the vector

of indices zeropivs. Later, when we use this principal minor as the numerator of a pivot,

we subtract ppivot from the (1, 1) entry of the resulting matrix to produce a final matrix

having the desired zero principal minors.

For the simple case that the zero principal minors of A correspond to zero diagonal

entries of A, this process amounts to adding a constant to the given zero principal minor,

then subtracting the same constant from the corresponding diagonal entry of A.

An illustration to show how a zero diagonal entry of a Schur complement can be correctly

handled is given in Example 3.3.2.

Deskewing

The numerical output of PM2MAT is a matrix which has (nearly) the same principal minors

as the input vector of principal minors pm. However, since principal minors are not changed

by diagonal similarity, the output of PM2MAT may not be very presentable in terms of

the dynamic range of its off-diagonal entries. In particular, if a random matrix was used

to generate the principal minors, the output of PM2MAT with those principal minors will

generally have a significantly higher condition number than the original input matrix. To

address this issue, at the end of PM2MAT we perform a diagonal similarity DAD−1, referred
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to as deskewing. Let D be an n × n diagonal matrix with positive diagonal entries where

for convenience the (1, 1) entry of D is 1. Then, dii is chosen such that |ai1 dii| = |a1i/dii|

for all i = 2, 3, . . . , n; that is

dii =

√∣∣∣∣
a1i

ai1

∣∣∣∣, i = 2, 3, . . . , n.

If ai1 is zero or the magnitude of dii is deemed to be too large or too close to zero, dii = 1

is used instead.

Balancing, a process used to precondition a matrix prior to finding its eigenvalues,

also tends to reduce the dynamic range of the entries of a matrix and is an alternative

to deskewing. In general, balancing uses both diagonal similarity (which preserves all

principal minors) and permutation similarity (which changes the order of the principal

minors) to perform this conditioning. However, the MATLABr, “balance” command has

a “noperm” option that attempts to make the row norm (the ∞−Norm) and the column

norm (the 1−Norm) of the matrix be the same using only diagonal similarity. Thus,

balance(A,′ noperm′) is a viable alternative to deskew(A), and a balanced matrix will tend

to have a smaller condition number than a deskewed matrix. For detecting the patterns

in the structured matrices of Section 3.6.1, however, balancing will destroy some of the

patterns that deskewing preserves.

PM2MAT in the field of real numbers

The natural field of operation of MAT2PM and PM2MAT is C, the field of complex num-

bers. If PM2MAT is run on principal minors that come from a real ODF matrix, then the
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resulting matrix will also be real (see Remark 3.2.7). It is possible, however, that a real

set of principal minors does not correspond to a real matrix and so PM2MAT produces a

non-real matrix.

To be more specific, although for every set of 3 real numbers there exists a real matrix in

M2(R) that has them as principal minors, this result does not generalize for n×n matrices

when n > 2. For instance, if

A =




1 ı 5
−ı 2 1
5 1 3




where ı =
√
−1, then A is ODF and the principal minors of A in binary order are

pm = [1, 2, 1, 3,−22, 5,−48]

which are certainly real. From the argument of Case n = 3 of Corollary 3.2.5, any matrix

which has the same principal minors as A must be diagonally similar (with transpose) to

A. Transposition does not affect the field that A resides in. Without loss of generality,

consider a diagonal similarity of A by a diagonal matrix D with d11 = 1. Then

D A D−1 =




1 0 0
0 d22 0
0 0 d33







1 ı 5
−ı 2 1
5 1 3







1 0 0
0 1

d22

0

0 0 1
d33


 =




1 ı
d22

5
d33

−ı d22 2 d22

d33

5 d33
d33

d22
3




is non-real for all d22, d33 ∈ C. That is, pm ∈ R7 above can only correspond to a non-real

matrix and such will be the output of PM2MAT.

3.2.3 PM2MAT algorithm summary

The PM2MAT algorithm (without pseudo-pivoting) is outlined in Figure 3.2.
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Algorithm 3.2.9. (PM2MAT)
Function PM2MAT(pm)

1. Input vector of 2n − 1 principal minors in pm
2. nq = 2n−1, n1 = 1
3. Initialize q, a vector of 1 × 1 matrices of length nq to

q = [[pm(nq)], [pm(nq+1)
pm(1)

], [pm(nq+2)
pm(2)

], . . . , [pm(2nq−1)
pm(nq−1)

]]
4. for level = n − 2 to 0 step −1
5. nq = nq/2, n1 = n1 + 1
6. Let qq be a vector of n1 × n1 matrixes of length nq
7. ipm1 = nq, ipm2 = 1
8. for i = 1 to nq
9. if i == 1
10. pivot = pm(ipm1)
11. else

12. pivot = pm(ipm1)/pm(ipm2), ipm2 = ipm2 + 1
13. endif

14. qq(i) = invschurc(pivot, q(i), q(i + nq))
15. ipm1 = ipm1 + 1
16. endfor

17. q = qq
18. endfor

19. Output A = q(1)

Figure 3.2: PM2MAT algorithm summary

3.2.4 Operation count

The approximate number of floating point operations required by PM2MAT can be found

by counting the operations required to perform the following two primary inner loop tasks:

(a) solving the quadratics (3.2.7) in solveright and

(b) evaluating equations of the form (3.2.9) to select the appropriate quadratic solution.
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Task (a)

Solving (3.2.7) is done once for every entry in the upper triangular part of every matrix

in level n−2 through level 0. So, for an m×m matrix, there will be m(m−1)/2 quadratics

solved. Letting q be the number of floating point operations to solve the quadratic (which

is approximately 40), the total number of floating point operations in PM2MAT solving

quadratics is

n−3∑

k=0

2k
(
n − (k + 1)

)(
n − (k + 2)

)
q/2 = q · 2n − (q/2)(n2 + n + 2), (3.2.11)

which is of O(2n).

Task (b)

Let p be the number of floating point operations to evaluate equation (3.2.9) (which is

approximately 11). For a given m×m matrix, m ≥ 3, there are 8 evaluations of (3.2.9) for

the lower right 3 × 3 submatrix (to choose the correct r(1), s(1), t(1) of (3.2.10)), 4(m − 3)

evaluations (to find s(2), t(2), s(4), t(4) of (3.2.10)) and 2(m− 2)(m− 3)/2 = (m− 2)(m− 3)

evaluations to find the remaining parameters below the second subdiagonal of each matrix

(parameters t(3), t(5), t(6) of (3.2.10)). Thus, the total number of operations needed for these

computations is

p
n−4∑

k=0

2k
(
8+4

(
n− (k +4)

)
+

(
n− (k +3)

)(
n− (k +4)

))
= p

(
2 ·2n− (n2 +n+4)

)
. (3.2.12)

Since this is also of O(2n), the total operation count is O(2n). Other incidental compu-

tations (various mins, building the (m + 1)× (m + 1) matrix at the end of invschurc, etc.)
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have no effect on the order of the computation and do not significantly add to the total

number of operations.

3.2.5 Strategy for solving PMAP via PM2MAT and MAT2PM

First, we illustrate that if A ∈ Mn(C) is not ODF, then the principal minors of A may not

be invertible by PM2MAT into a matrix. We consider examples that violate each part of

Definition 3.2.3.

Case (a): An off-diagonal entry of a matrix in SA is zero

Suppose we use PM2MAT to find a matrix with the principal minors of

A =




−4 −3 −8
2 3 5
8 6 7


 .

Since the (2, 1) entry of A/A[1] is zero, we could run into difficulties. Running the

MAT2PM algorithm on this matrix we obtain:

A =




−4 −3 −8
2 3 5
8 6 7


 , (Level 0)

LA =

[
3 5
6 7

]
, RA =

[
3
2

1
0 −9

]
. (Level 1)

Running PM2MAT on the principal minors of A, we see that PM2MAT is able to

produce matrices diagonally similar to LA and RA at its level 1.

LB =

[
3 10
3 7

]
, RB =

[
3
2

1
0 −9

]
. (Level 1)

Unfortunately, the zero in the (2, 1) entry of RB causes a divide by zero in equation

(3.2.7). Therefore, PM2MAT is unable to find the diagonal similarity that makes rank(LB−
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RB) = 1, and PM2MAT will not produce an output matrix with the desired principal

minors. Although it is possible to add heuristics to PM2MAT to deal with this particular

example, more generally the algebraic methods employed in invschurc (see particularly

(3.2.7) and (3.2.9) in Section 3.2.2) break down when off-diagonal zeros occur in any of the

matrices generated by PM2MAT.

Case (b): Rank condition for partitions of 〈m〉 not satisfied for matrices in

SA

Consider the first two levels of the MAT2PM algorithm with the following input matrix

A:

A =




2 −3 7 1 1
4 5 −3 1 1
4 −4 13 1 1
1 1 1 8 2
1 1 1 7 5




, (Level 0)

LA =




5 −3 1 1
−4 13 1 1
1 1 8 2
1 1 7 5


 , RA =




11 −17 −1 −1
2 −1 −1 −1
5
2

−5
2

15
2

3
2

5
2

−5
2

13
2

9
2


 . (Level 1)

Note that

rank(LA[{1, 2}, {3, 4}]) = rank(LA[{3, 4}, {1, 2}]) = 1,

rank(RA[{1, 2}, {3, 4}]) = rank(RA[{3, 4}, {1, 2}]) = 1,

where α = {1, 2} and β = {3, 4} form a partition of 〈4〉.

When PM2MAT is run with the principal minors of A as input, we produce the following
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matrices for level 1:

LB =




5 12
5

− 4
65

− 1
65

5 13 1
13

1
52

−65
4

13 8 7
4

−65 52 8 5


 , RB =




11 −34
11

− 5
11

−13
33

11 −1 −5
2

−13
6

11
2

−1 15
2

13
10

165
26

−15
13

15
2

9
2


 . (Level 1)

One may verify that LA and LB have the same principal minors. Likewise, RA and

RB have the same principal minors. However, since the conditions of Theorem 3.2.4 are

not satisfied for LA, LB need not be diagonally similar with transpose to LA, and indeed

this is the case. When solving the 3 sets of quadratics to make the lower right 3 × 3

submatrix of LB − RB rank 1, there are two combinations of solutions that both make

rank(LB(1) − RB(1)) = 1. By chance, the wrong solution is chosen so the computation

fails for the matrices LB, RB as a whole. Solving the quadratics of equation (3.2.7) for the

rest of the entries of the matrices does not yield a combination of solutions that makes

rank(LB − RB) = 1.

By coincidence, RA and RB are diagonally similar with transpose, but the L matrices not

being diagonally similar with transpose is sufficient to cause the computations of invschurc

to fail.

Although this example suggests that (c) may imply (b) under the condition of (a) of

Definition 3.2.3, the converse is certainly not true as the following example shows.

Case (c): There exist multiple solutions which make rank(L− R)= 1

Similar to the last case, the operation of MAT2PM on A ∈ M4(R) is summarized below
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down to level 2.

A =




3 −6 −9 12
1 3 −7 −4

3

2 2 −1 −16
9

3 1 1 4


 , (Level 0)

LA =




3 −7 −4
3

2 −1 −16
9

1 1 4


 , RA =




5 −4 −16
3

6 5 −88
9

7 10 −8


 , (Level 1)

[
−1 −16

9

1 4

]
,

[
5 −88

9

10 −8

]
,

[
11
3

−8
9

10
3

40
9

]
,

[
49
5

−152
45

78
5

− 8
15

]
. (Level 2)

Running PM2MAT on the principal minors of A above yields:

[
−1 16

9

−1 4

]
,

[
5 −176

9

5 −8

]
,

[
11
3

−80
99

11
3

40
9

]
,

[
49
5

−3952
735

49
5

− 8
15

]
, (Level 2)

LB =




3 −14
3

8
9

3 −1 16
9

−3
2

−1 4


 , RB =




5 −14
5

−112
15

60
7

5 −176
9

5 5 −8


 , (Level 1)

B =




3 9
2

9
2

12
−4

3
3 −14

3
8
9

−4 3 −1 16
9

3 −3
2

−1 4


 . (Level 0)

Although LA is diagonally similar to LB and RA is diagonally similar to RB, there are

two solutions that make rank(LB − RB) = 1. Instead of choosing the dot similarity with

RB

R1 =




5 −8
3

32
9

9 5 88
9

−21
2

−10 −8




which has determinant 712/3 like RA and RB, the dot similarity

R2 =




5 −8
3

56
9

9 5 160
9

−6 −11
2

−8



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with determinant 260 is chosen which also satisfies rank(LB − R2) = 1. Therefore, the

resulting B which is computed with R2 above is not diagonally similar to A. In fact, B is

diagonally similar to

C =




3 -3 -9/2 12

2 3 −7 −4/3

4 2 −1 −16/9
3 1 1 4




where only the boxed entries differ from A. The principal minors of C (and B) are the

same as the principal minors of A with the exception of the determinant. Note that the

output of PM2MAT in this example is dependent on small round-off errors which may vary

from platform to platform.

Although it would be easy to add code to PM2MAT to resolve this ambiguity for the

case that L, R ∈ M3(C), the algorithm of invschurc which finds solutions for making

rank(L−R) = 1 by working from the trailing 3× 3 submatrix of L and R and progressing

towards the upper right (see equation (3.2.10)) is not well suited to also preserving diagonal

similarity with transpose in cases where (c) of Definition 3.2.3 is not satisfied.

If the input principal minors do come from a matrix which is ODF, then PM2MAT will

succeed in building a matrix that has them as principal minors up to numerical limitations.

The following proposition states this formally:

Proposition 3.2.10. Let pm ∈ C2n−1, n ∈ N be given. Suppose A ∈ Mn(C) is ODF. If

MAT2PM(A) = pm and B = PM2MAT(pm), then MAT2PM(B) = pm.

Proof. Let C ∈ Mm(C), m ≥ 2 be any submatrix or Schur complement produced by
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running MAT2PM on A (C ∈ SA). Since A is ODF, C has no off-diagonal zero entries and

thus

L − R = C(1) − C/C[1] = C(1, 1] C[1, 1)/C[1]

has no zero entries. Hence, rank(L − R) 6= 0 for all such C.

Level n−1 can always be created which matches the output of level n−1 of MAT2PM(A)

exactly since this level of 1 × 1 matrices just consists of ratios of principal minors. Zero

principal minors can be handled using the multilinearity of the determinant (see Section

3.2.2).

For each L, R pair of level n − 1 (with L = C(1), R = C/C[1] for some C ∈ M2(C)

of level n − 2), rank(L − R) 6= 0 so we are able to compute matrices which have the same

principal minors as each of the corresponding 2 × 2 matrices of level n − 2 we would get

from running MAT2PM on A. By Corollary 3.2.6, these matrices produced by PM2MAT

are diagonally similar with transpose to the ones produced by MAT2PM at the same level.

Therefore, by solving equations of the form of (3.2.7) (which always have solutions since if

A is ODF, division by zero never occurs) we can modify R so rank(L − R) = 1 for each

matrix of this level.

For subsequent levels, conditions (a) and (b) of Definition 3.2.3 guarantee that a diag-

onal similarity with transpose for all the R matrices exists so that rank(L − R) = 1 for

each L, R pair. Furthermore, condition (c) of the same definition guarantees that the dot

similarity found by invschurc is sufficient to find this (unique, if L is regarded as fixed)
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similarity.

Proceeding inductively, we see that the final matrix B output by PM2MAT has the

same principal minors as A since B has the same (1, 1) entry as A, L = B(1) is diagonally

similar with transpose to A(1) and R = B/B[1] is diagonally similar with transpose to

A/A[1]. The MAT2PM algorithm can then be used to verify that B and A have identical

corresponding principal minors. 2

Note that identical reasoning extends the result above to effectively ODF matrices.

If the input principal minors do not come from an effectively ODF matrix, PM2MAT

may fail to produce a matrix with the desired principal minors. If the input principal

minors are inconsistent, that is, a matrix which has them as principal minors does not

exist, PM2MAT will always fail to produce a matrix with the input principal minors.

When PM2MAT fails due to either inconsistent principal minors or due to principal

minors from a non-ODF matrix, it produces a matrix which does not have all the desired

principal minors; no warning that this has occurred is guaranteed since the warnings in

PM2MAT depend upon numerical thresholds.

This suggests the following strategy for attempting to solve PMAP with principal minors

from an unknown source with PM2MAT.

1. PM2MAT is run on the input principal minors and an output matrix A is produced.

2. Then, MAT2PM is run on the matrix A, producing a second set of principal minors.

3. These principal minors are compared to the original input principal minors. If they
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agree to an acceptable tolerance, PM2MAT succeeded. Otherwise, the principal minors are

either inconsistent or they are not realizable by a matrix which is effectively ODF.

A sample implementation of this strategy is provided in PMFRONT in Appendix F.

3.3 Examples

Example 3.3.1. We obtain a moderately scaled set of integer principal minors that cor-

respond to a real matrix. To do this, we use MAT2PM to find the principal minors of

A =




−6 3 −9 4
−6 −5 3 6

3 −3 6 −7
1 1 −1 −3




yielding

pm =




1 2 3 4 5 6 7
[1] [2] [1, 2] [3] [1, 3] [2, 3] [1, 2, 3]
−6 −5 48 6 −9 −21 −36

8 9 10 11 12 13 14 15
[4] [1, 4] [2, 4] [1, 2, 4] [3, 4] [1, 3, 4] [2, 3, 4] [1, 2, 3, 4]
−3 14 9 −94 −25 96 59 6


 .

For ease of reference, the first row of the above displayed pm contains the index of a given

principal minor, the second row is the index set used to obtain the submatrix corresponding

to that minor and the third row contains the value of the principal minor itself. As discussed

in Section 2.5, the utility PMSHOW in Appendix D produces output similar to this (in

three columns) for any input set of principal minors. To actually call PM2MAT, the

input pm is just the vector of values in the third row. Thus, we can easily see that

pm13 = det(A[1, 3, 4]) = 96, for example.

62



Since there are 24 − 1 entries in pm, we desire to find a matrix B ∈ M4(R) which has

the values in pm as its principal minors. We begin with level = 3 and produce matrices

equivalent in all principal minors at each level to the ones that would have been produced

by running MAT2PM on A.

Level 3

At level 3 we desire to find eight 1 × 1 matrices whose entries are just the pivots in

binary order. Since the principal minors are stored in binary order (see Definition 2.3.3 and

Proposition 2.3.6 of Chapter 2) we compute the following quotients of consecutive principal

minors:

pm8 = det(A[4]) = −3,
pm9

pm1
=

det(A[1, 4])

det(A[1])
= −7

3
, . . . ,

pm15

pm7
=

det(A[1, 2, 3, 4])

det(A[1, 2, 3])
= −1

6
.

Therefore, the desired level 3 matrices are

[−3], [−7
3
], [−9

5
], [−47

24
], [−25

6
], [−32

3
], [−59

21
], [−1

6
].

Level 2

Analogously to the previous level, we can now compute the four pivots of the four 2×2

matrices from the eight matrices of the previous level:

pm4 = 6,
pm5

pm1
=

3

2
,

pm6

pm2
=

21

5
,

pm7

pm3
= −3

4
.

Since the first four 1× 1 matrices of the previous level are submatrices of the four matrices

we desire to compute, we know that these matrices have the form

B =

[
6 ∗
∗ −3

]
,

[
3
2

∗
∗ −7

3

]
,

[
21
5

∗
∗ −9

5

]
,

[
−3

4
∗

∗ −47
24

]
,
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where the ∗’s indicate entries not yet known. Consider producing the first of these matrices,

labeled B and partitioned as follows:

B =

[
B[1] B[1, 1)

B(1, 1] B(1)

]
.

From level 3 we know L = B[1] = −3 and R = B/B[1] = −25/6. Following equation

(3.2.2),

L − R = −3 + 25/6 = 7/6 = B(1, 1] B[1, 1)/B[1].

Taking B[1, 1) = 7/6, we satisfy the equation above with B(1, 1] = B[1]. Thus we have

computed

B =

[
6 7

6

6 −3

]
.

Repeating this procedure for the other three matrices, we finish level 2 with the following

four matrices:

[
6 7

6

6 −3

]
,

[
3
2

25
3

3
2

−7
3

]
,

[
21
5

106
105

21
5

−9
5

]
,

[
−3

4
−43

24

−3
4

−47
24

]
.

Level 1

Computing the two pivots for the matrices of this level, we get pm2 = −5 and pm3/pm1 =

48/ − 6 = −8. Thus, we seek to complete the matrices

C =




−5 ∗ ∗
∗ 6 7

6

∗ 6 −3


 ,




−8 ∗ ∗
∗ 3

2
25
3

∗ 3
2

−7
3


 .

We label the first of these two matrices C, and we call invschurc with

L = C(1) =

[
6 7

6

6 −3

]
, R = C/C[1] =

[
21
5

106
105

21
5

−9
5

]
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from the previous level. Since

L − R ≈
[

1.8 .1571
1.8 −1.2

]

is not rank one, we seek a t ∈ R such that equation (3.2.6) is satisfied. Solving equation

(3.2.7), we find solutions t1 = 4/7, t2 = 106/49. Using t1,

L − R =

[
6 7

6

6 −3

]
−

[
21
5

53
30

12
5

−9
5

]
=

[
9
5

−3
5

18
5

−6
5

]
.

Letting C[1, 1) = (L − R)[{1}, {1, 2}] = [−9/5,−3/5], we solve equation (3.2.4) to find

C(1, 1] =

[
−5
−10

]
,

so

C =




−5 9
5

−3
5

−5 6 7
6

−10 6 −3


 .

Performing similar operations for the second matrix of level 1, we leave level 1 with the

two 3 × 3 matrices 


−5 9
5

−3
5

−5 6 7
6

−10 6 −3


 ,




−8 9
4

−5
8

−8 3
2

25
3

−24
5

3
2

−7
3


 .

Level 0

Given pivot = B[1] = pm1 = −6 and

L = B(1) =




−5 9
5

−3
5

−5 6 7
6

−10 6 −3


 , R = B/B[1] =




−8 9
4

−5
8

−8 3
2

25
3

−24
5

3
2

−7
3


 ,

we desire to find the 4 × 4 matrix B of the form

B =




−6 ∗ ∗ ∗
∗ −5 9

5
−3

5

∗ −5 6 7
6

∗ −10 6 −3


 .
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As in the previous level, rank(L−R) 6= 1, so we find r, s, t, such that equation (3.2.8)

is satisfied. Solving equation (3.2.7) for each 2 × 2 submatrix of L − R, we obtain two

quadratic solutions for r, s and t:

r1 = 20/7, r2 = 10, s1 = 5/2, s2 = 5/16, t1 = 25/36, t2 = 25/8.

Then, comparing equation (3.2.9) for each of the 8 possible combinations, we find that

only r = r2, s = s2, t = t2 makes rank(L − R̂) = 1. Applying this r, s, and t to R we

obtain a R̂ which is dot similar to R:

R̂ =




−8 9
4s

− 5
8t

−8s 3
2

25
3r

−24t
5

3r
2

−7
3


 =




−8 36
5

−1
5

−5
2

3
2

5
6

−15 15 −7
3


 .

In this case, R̂ = D R D−1 with

D =




1 0 0
0 5

16
0

0 0 25
8


 ,

and no transpose is necessary.

Now,

L − R̂ =




−5 9
5

−3
5

−5 6 7
6

−10 6 −3


 −




−8 36
5

−1
5

−5
2

3
2

5
6

−15 15 −7
3


 =




3 −27
5

−2
5

−5
2

9
2

1
3

5 −9 −2
3


 .

Since 9/2 of row 2 is the maximum absolute diagonal entry of L − R̂, we let B[1, 1) =

(L − R̂)[2, {1, 2, 3}] = [−5/2, 9/2, 1/3] and by equation (3.2.4) we find

B(1, 1] =




36
5

−6
12



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so

B =




−6 −5
2

9
2

1
3

36
5

−5 9
5

−3
5

−6 −5 6 7
6

12 −10 6 −3


 .

Of course, B is not equal to the original matrix A, but A = DBD−1 where

D =




1 0 0 0
0 −5

6
0 0

0 0 −1
2

0
0 0 0 1

12


 .

For simplicity of illustration, the deskewing of Section 3.2.2 has not been applied to the

output matrix B.

Example 3.3.2. To show how zero principal minors are handled as discussed in Section

3.2.2, we consider running PM2MAT on the principal minors of the effectively ODF matrix

A =




2 2 5
2 2 −3
7 3 −1


 .

Using the convention of Example 3.3.1, A has principal minors:

pm =




1 2 3 4 5 6 7
[1] [2] [1, 2] [3] [1, 3] [2, 3] [1, 2, 3]
2 2 0 −1 −37 7 −64


 .

The 1 × 1 matrices of level 2 consist of the ratios

[pm4], [pm5/pm1], [pm6/pm2], [pm7/pm3]. (Level 2)

Since pm3 = 0, building these matrices would fail if the zero principal minor code were not

invoked.

The goal of zero principal minor loop at the beginning of PM2MAT is to create a

consistent (taking into account the modified pivot entries) set of principal minors where
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the initial 2n−1 − 1 principal minors are nonzero. It does this by making all the pivot or

(1, 1) entries of the matrices that correspond to zero principal minors have pivots equal to

ppivot instead of zero.

In the example at hand, we will take ppivot = 1 for simplicity. Since pm3 is computed

by knowing that the pivot entry of the right matrix of level 1 is pm3/pm1, we assign

pm3 = ppivot · pm1 = 1 · 2 = 2. Of course, in general, changing a single principal minor

does not even result in a set of principal minors that is consistent, so the next part of the

zero principal minor loop is devoted to computing the sums of principal minors that follow

from applying the multilinearity of the determinant (also see the discussion of zero pivots

in Example 2.4.1) to the change just made. Since pm3 is found from the (1, 1) entry of

A/A[1], only principal minors from descendants (in the top to bottom sense of the tree of

Figure 3.1) of the Schur complement of A/A[1] need to change. The only principal minor

that satisfies this condition is pm7. Thus, the remaining required change to the vector of

principal minors is to let pm7 = pm7 + ppivot · pm5 = −64 + (−37) = −101. The final set

of principal minors that we enter the main loop of PM2MAT with is then

nzpm =




1 2 3 4 5 6 7
[1] [2] [1, 2] [3] [1, 3] [2, 3] [1, 2, 3]
2 2 2 −1 −37 7 −101


 ,

where nzpm signifies “nonzero principal minors”. The first two levels of PM2MAT then

yield

[−1], [−37/2], [7/2], [−101/2], (Level 2)

L =

[
2 −9

2

2 −1

]
, nzR =

[
ppivot = 1 32

1 −37
2

]
. (Level 1)
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At this point we recall that nzpm was designed to create ppivot = 1 in the (1, 1) entry

of the matrix nzR, but the original principal minors corresponded to the (1, 1) entry of

nzR being zero. Subtracting ppivot = 1 from nzR[1] and continuing we obtain:

L =

[
2 −9

2

2 −1

]
, R =

[
0 32
1 −37

2

]
, (Level 1)

B =




2 −10
3

35
2

−6
5

2 −9
2

2 2 −1


 . (Level 0)

Note that B is diagonally similar to A with transpose, and thus has the principal minors

pm. If we had continued to run PM2MAT with the level 1 matrix nzR, we would have

obtained a matrix that had the principal minors nzpm instead.

Example 3.3.3. To show that PM2MAT may succeed in producing an output matrix

which is not diagonally similar with transpose to another matrix having the same principal

minors, consider running PM2MAT on the principal minors of

A =




2 4 1 1
3 5 1 1
1 1 7 13
1 1 6 −3




which are

pm = [2, 5,−2, 7, 13, 34,−14,−3,−7,−16, 6,−99,−183,−480, 198].

This matrix is not ODF by (c) of Definition 3.2.3, but it is structured so that regardless

of which dot similarity is chosen to make the final 3 × 3 difference of L and R rank 1, a
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matrix with the same principal minors results. By chance, PM2MAT returns the matrix

B =




2 6 2
5

12
35

2 5 1
5

6
35

5
2

5 7 78
7

35
12

35
6

7 −3




(before deskewing) which is not diagonally similar with transpose to A. Note that in

this example, the output of PM2MAT is dependent on small round-off errors which may

vary from platform to platform although the principal minors of the output matrix will be

virtually the same regardless.

3.4 PM2MAT remarks and consequences

In this section some subjects and problems related to PMAP and PM2MAT will be given

in the form of remarks.

Remark 3.4.1. With PM2MAT we can at least partially answer a question posed by Holtz

and Schneider in [18, problem (4), p. 265-266]. PMAP is proposed as one step toward the

inverse problem of finding a GKK matrix with prescribed principal minors.

Given a set of principal minors, we can indeed determine via PM2MAT whether or not

there is an effectively ODF matrix A that has them as its principal minors. To accomplish

this, we simply run PM2MAT on the given set of principal minors, producing a matrix A.

Then, we run MAT2PM on this matrix to see if the matrix A has the desired principal

minors. If the principal minors are consistent and belong to an effectively ODF matrix, the

principal minors will match, up to numerical limitations. If the principal minors cannot be
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realized by a matrix or if the principal minors do not belong to an effectively ODF matrix,

then the principal minors of A will not match the input principal minors. In the former

case, the generalized Hadamard-Fischer inequalities and the Gantmacher-Krein-Carlson

theorem (see [18]) can be used to decide whether there is a GKK and effectively ODF

matrix with the given principal minors.

Remark 3.4.2. In Stouffer [27], it is claimed that for A ∈ Mn(C) there are only n2−n+1

“independent” principal minors that all the other principal minors depend on, and as the

first example of such a “complete” set, the following set is offered:

S = {A[i] : i ∈ 〈n〉} ∪ {A[i, j] : i < j; i, j ∈ 〈n〉} ∪ {A[1, i, j] : i < j; i, j ∈ {2, 3, . . . , n}}.

Indeed, S contains
(

n
1

)
+

(
n
2

)
+

(
n − 1

2

)
= n2 − n + 1

principal minors. However, these principal minors are not independent since equations [27,

(5) and (6), p. 358] may not even have solutions if the principal minors are not consistent or

come from a matrix which is not ODF. Moreover, even generically, S does not determine A

up to diagonal similarity with transpose for n ≥ 4 since, in general, the last two equations

of [27, (6), p. 358] have two solutions for each aij, aji pair. The set S in [27], however, does

generically determine the other principal minors of A up to a finite set of possibilities.

Remark 3.4.3. The conditions of Definition 3.2.3 are difficult to verify from an input

set of principal minors from an unknown source without actually running the PM2MAT
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algorithm on them. In particular, part (c) is difficult to verify even if a matrix that has the

same principal minors as the input principal minors happens to be known. However, usually

PM2MAT will print a warning if the conditions of the definition are not satisfied, and the

strategy of Section 3.2.5 can be employed to quickly verify if PM2MAT has performed the

desired task.

Remark 3.4.4. If a random vector of principal minors is passed to PM2MAT, the resulting

matrix will have all the desired 1 × 1 and 2 × 2 principal minors, and some of the 3 × 3

principal minors will be realized as well. However, none of the larger principal minors will

be the same as those that were in the input random vector of principal minors.

3.5 A polynomial time algorithm

As the size n of the matrix A ∈ Mn(C) increases, A has many more principal minors than

entries. We thus know that these principal minors are dependent on each other. To study

some of these dependencies, we prove the following preliminary result.

Lemma 3.5.1. Let A ∈ Mn(C), n ≥ 4, have 2n−1 principal minors {pm1, pm2, . . . , pm2n−1}.

If A is ODF, then pm2n−1 is determined by {pm1, pm2, . . . , pm2n−2}.

Proof. Let {pm1, pm2, . . . , pm2n−2, p̂m2n−1} be passed to PM2MAT where p̂m2n−1 6=

pm2n−1 and for convenience p̂m2n−1 6= 0. The proof proceeds by showing that the 4 × 4

matrices of level n − 4 using this set of principal minors with the last principal minor

modified will be identical to those 4 × 4 matrices of level n − 4 we would have obtained
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using the original principal minors {pm1, pm2, . . . , pm2n−2, pm2n−1}.

The queue of 1×1 matrices of level n−1 will be identical to the queue of 1×1 matrices

of level n − 1 using the original principal minors {pm1, pm2, . . . , pm2n−2, pm2n−1} except

for the last value. Therefore, the queue of 2 × 2 matrices of level n − 2 will be identical to

the same queue using the original principal minors except for the final matrix, whose (1, 2)

entry will be different. Let

R =

[
r11 r̂12

r21 r22

]

be the last matrix of level n − 2. Let B be the last matrix of level n − 3 we desire to

produce from level n− 2 and as usual we have R = B/B[1] and L = B(1). When we solve

the quadratic equation (3.2.7) and modify R so that rank(L − R) = 1, we have

C = L − R =

[
c11 ĉ12

ĉ21 c22

]
,

where only ĉ12 and ĉ21 are different from entries we would have obtained using the original

principal minors. Note, however, that rank(L−R) = rank(C) = 1 implies that det(C) = 0,

so, in fact, ĉ12 ĉ21 = c12 c21. Hence, C is diagonally similar to the matrix we would have

obtained using the original principal minors. Although B will be different from the B we

would have obtained with the original principal minors, it will only be different in its (1, 3)

and (3, 1) entries (or (1, 2) and (2, 1) entries, depending on the relative magnitudes of c11

and c22 by Equations (3.2.3), (3.2.4) and (3.2.5)), while the product of these entries will

be the same. Since A is ODF and B is dot similar to the corresponding Schur complement

of A, there will only be one dot similarity with B that will make the difference of B with
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its corresponding left matrix rank 1 (see (c) of Definition 3.2.3). Therefore, all the 4 × 4

matrices of level n − 4 will be identical to those that were obtained using the original

principal minors. 2

Example 3.5.2. To illustrate the above lemma, let us revisit Example 3.3.1 from Section

3.3. The operation of PM2MAT is summarized as follows:

pm = [−6,−5, 48, 6,−9,−21,−36,−3, 14, 9,−94,−25, 96, 59, 6],

[−3], [−7
3
], [−9

5
], [−47

24
], [−25

6
], [−32

3
], [−59

21
], [−1

6
], (Level 3)

[
6 7

6

6 −3

]
,

[
3
2

25
3

3
2

−7
3

]
,

[
21
5

106
105

21
5

−9
5

]
,

[
−3

4
−43

24

−3
4

−47
24

]
, (Level 2)




−5 9
5

−3
5

−5 6 7
6

−10 6 −3


 ,




−8 9
4

15
2

−8 3
2

25
3

2
5

3
2

−7
3


 , (Level 1)




−6 −5
2

9
2

1
3

36
5

−5 9
5

−3
5

−6 −5 6 7
6

12 −10 6 −3


 . (Level 0)

If instead we use the input (entries that are different are in bold)

pm = [−6,−5, 48, 6,−9,−21,−36,−3, 14, 9,−94,−25, 96, 59, 1],

we obtain

[−3], [−7
3
], [−9

5
], [−47

24
], [−25

6
], [−32

3
], [−59

21
], [− 1

36
], (Level 3)

[
6 7

6

6 −3

]
,

[
3
2

25
3

3
2

−7
3

]
,

[
21
5

106
105

21
5

−9
5

]
,

[
−3

4
−139

72

−3
4

−47
24

]
, (Level 2)
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


−5 9
5

−3
5

−5 6 7
6

−10 6 −3


 ,




−8 9
4

−0.6304 . . .
−8 3

2
25
3

−4.7590 . . . 3
2

−7
3


 , (Level 1)




−6 −5
2

9
2

1
3

36
5

−5 9
5

−3
5

−6 −5 6 7
6

12 −10 6 −3


 . (Level 0)

Rational expressions for the (1, 3) and (3, 1) entries of the last matrix of level 1 do not

exist, but note that (15/2) · (2/5) = 3 ≈ (−0.6304) · (−4.7590).

As a consequence to Lemma 3.5.1, we observe that generically all the “large” principal

minors of a matrix can be expressed in terms of the “small” principal minors.

Theorem 3.5.3. Let A ∈ Mn(C), n ≥ 4. If A is ODF, each principal minor which is

indexed by a set with 4 or more elements can be expressed in terms of the principal minors

which are indexed by 3 or fewer elements.

Proof. Consider all the submatrices of A indexed by exactly 4 elements. Applying

Lemma 3.5.1 to each of them, we see that all of the principal minors indexed by exactly

4 elements are functions of all the smaller principal minors (the determinants of all 1 × 1,

2 × 2 and 3 × 3 principal submatrices of A). Applying Lemma 3.5.1 to each principal

minor of A indexed by exactly 5 elements, these are functions of all of the principal minors

indexed by 4 or fewer elements. However, all the principal minors with exactly 4 elements

are functions of the principal minors indexed by 3 or fewer elements, so all the principal

minors indexed by 5 elements are functions of the principal minors indexed by 3 or fewer

elements. The result follows by induction. 2
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As a result of Theorem 3.5.3 (and the prior Theorem 3.2.4), we see that if A ∈ Mn(C)

is ODF and if A itself satisfies condition (b) of Definition 3.2.3, then there does not exist a

B ∈ Mn(C) not diagonally similar with transpose to A such that A and B have the same

1 × 1, 2 × 2 and 3 × 3 principal minors.

Theorem 3.5.3 motivates a “fast” version of PM2MAT that only takes as inputs the

1× 1, 2× 2 and 3× 3 principal minors but produces the same output matrix as PM2MAT

if the input principal minors come from an ODF matrix. To this end, a matching, fast

(polynomial time) version of MAT2PM was written to produce only these small principal

minors and is described first.

FMAT2PM

For an ODF matrix of size n, there are only

(
n
1

)
+

(
n
2

)
+

(
n
3

)
= n +

n(n − 1)

2
+

n(n − 1)(n − 2)

6
=

n(n2 + 5)

6

principal minors with index sets of size ≤ 3 on which all the other principal minors depend.

A fast and limited version of MAT2PM was implemented that produces only these principal

minors in the function FMAT2PM in Appendix G. Instead of having 2k matrices at each

level which yield 2k principal minors at level = k, there are only

(
k
2

)
+

(
k
1

)
+

(
k
0

)
=

k(k + 1)

2
+ 1 (3.5.1)

matrices that need be computed resulting in the corresponding number of principal minors

being produced. This is because at level = k we only need to compute those principal
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minors involving the index k + 1 and 2 smaller indices to produce the principal minors

which come from 3 × 3 submatrices. The other two terms of (3.5.1) are similarly derived:

the k + 1 index and 1 smaller index is used to compute the principal minors which come

from 2× 2 submatrices, and each level has one new minor from the 1× 1 submatrix which

is referenced by the index k + 1.

From (3.5.1), it is easily verified that at each level = k, precisely k more matrices are

produced than were computed at level = k − 1.

Simple logic can be used to determine which matrices in the input queue need to be

processed to produce matrices in the output queue. If the (1, 1) entry of a matrix cor-

responds to a principal minor with an index set of 2 or less (a 2 × 2 or 1 × 1 principal

minor), then we take the submatrix and Schur complement of the matrix just as we do in

MAT2PM because this matrix will have descendants whose pivots correspond to principal

minors from 3 × 3 submatrices. However, if the (1, 1) entry of a matrix corresponds to a

principal minor with an index set of 3, then we only take the submatrix of this matrix; no

Schur complement is computed or stored. This scheme prevents matrices that would be

used to find principal minors with an index set of 4 or more from ever being computed. To

keep track of the index sets of the principal minors, the index of the principal minor as it

would have been computed in MAT2PM is stored in the vector of indices pmidx. In the

code the MAT2PM indices in pmidx are referred to as the long indices of a principal minor,

while the indices in the pm vector produced by FMAT2PM are called the short indices of
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a given principal minor. The vector of long indices pmidx is output along with the vector

of principal minors in pm by FMAT2PM.

At each level the indices pertaining to the principal minors which are computed at that

level are put in pmidx. The following shows how pmidx is incrementally computed at each

level:
level pmidx
0 [1, 0, 0, . . . , 0]
1 [1, 2, 3, 0, 0, . . . , 0]
2 [1, 2, 3, 4, 5, 6, 7, 0, . . . , 0]
3 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, . . . , 0]
4 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,

18, 19, 20, 21, 22, 24, 25, 26, 28, 0, . . . , 0]
...

...

The utilities IDX2V and V2IDX discussed in Section 2.5 can be used to convert between

long indices and their respective index sets.

Note that FMAT2PM could be adapted analogously to compute all principal minors

up to any fixed size of index set.

FPM2MAT

Given pm and pmidx in the format produced by FMAT2PM, FPM2MAT can invert

only these 1×1, 2×2 and 3×3 principal minors into a matrix that is unique up to diagonal

similarity with transpose if the principal minors come from a matrix which is ODF as a

consequence of Theorem 3.5.3.

It is not strictly necessary that pmidx be an input to FPM2MAT since it is fixed for

any given matrix of size n. However, since pmidx is produced naturally by FMAT2PM and
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since pmidx can be thought of with pm as implementing a very sparse vector format, pm

and pmidx are input together to FPM2MAT.

Because FPM2MAT processes levels from the largest (bottom) to smallest (top), it was

useful to create the vector ipmlevels at the beginning of FPM2MAT which contains the

short index of the beginning of each level. Then, at each level, FPM2MAT computes those

matrices which have a submatrix (or left matrix L). If a Schur complement (an R matrix)

exists for the matrix to be produced, this is input to invschurc just as in PM2MAT.

Otherwise, a matrix of ones is passed in for the Schur complement to invschurc since the

particular values will prove to be of no consequence (see Example 3.5.2). Although this

is slightly slower than just embedding L in a larger matrix, it has been found to produce

more accurate results for large n.

The bulk of the operations of FPM2MAT including the subroutines invschurc, solveright

and deskew are unchanged from PM2MAT.

3.5.1 Notes on the operation of the fast versions

• FMAT2PM processes a 53 × 53 matrix in about the same time that MAT2PM can

process a 20 × 20 matrix.

• FPM2MAT can invert the 24857 “small” principal minors of a 53×53 real or complex

matrix into a matrix in M53 in a few minutes.

• Zero principal minors are not presently handled by either FMAT2PM or FPM2MAT
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for clarity of presentation, but the multilinearity of the determinant could be exploited

in these programs to handle zero principal minors as is implemented in MAT2PM and

PM2MAT.

• For FMAT2PM, only k + 1 matrices need to have Schur complements taken at each

level = k. Thus, FMAT2PM is of order O(n4) since

n−2∑

k=0

(k + 1)
(
2
(
n − (k + 1)

)2
+

(
n − (k + 1)

))
=

1

6
(n4 + n3 − n2 − n),

where the operation count for each Schur complement is computed as in Equation

(2.3.4).

• It has been found that for numerical reasons it is desirable to call invschurc with a

dummy matrix of ones whenever the R Schur complement matrix is missing.

• To find the approximate operation count for FPM2MAT, we note that the quadratics

(3.2.7) need to be solved for each upper triangular entry of each of the k(k +1)/2+1

matrices (see (3.5.1)) at each level = k. As in (3.2.11) we let q be the number of

operations to solve the quadratic equation to find

n−3∑

k=0

(
k(k+1)/2+1

)(
n−(k+1)

)(
n−(k+2)

)
q/2 =

q

120
(n5−5n4 +25n3−55n2 +34n).

Similarly, letting p be the number of operations to evaluate equations of the form

(3.2.9),
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p
n−4∑

k=0

(
k(k + 1)/2 + 1

)(
8 + 4

(
n − (k + 4)

)
+

(
n − (k + 3)

)(
n − (k + 4)

))
=

p

60
(n5 − 5n4 + 45n3 − 295n2 + 974n − 1320)

as in the sum of (3.2.12). Thus, FPM2MAT is O(n5).

• Note that Theorem 3.5.3 does not imply that the principal minors indexed by 3

or fewer elements are completely free. There are additional constraints among the

smaller principal minors. If one chooses a set of principal minors indexed by 3 or

fewer elements at random and uses FPM2MAT to invert these into a matrix A, the

matrix A will not, in general, have the same principal minors indexed by 3 or fewer

elements as the input principal minors.

3.6 A more general algorithm for solving PMAP

In this section, an algorithm is presented to solve PMAP for a larger class of input principal

minors which makes use of the following definition:

Definition 3.6.1. The matrix A ∈ Mn(C), n ≥ 2 is said to be weakly ODF if the following

two conditions hold:

(a) the off-diagonal entries of A are nonzero and,

(b) for all C ∈ SA ∪ {A}, where C ∈ Mm(C) with m ≥ 4, the pair L = C(1) and

R = C/C[1] satisfy the property that if rank(L − R̂) = 1, det(R) = R̂ and R̂∼̇R, then

R = R̂.
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Note that (b) of Definition 3.6.1 has an additional determinantal condition that makes

it weaker than (c) of Definition 3.2.3.

The algorithm that is here developed is guaranteed to succeed if the input principal

minors come from a matrix which is only weakly ODF.

First, we observe that off-diagonal zeros in Schur complements can be avoided by

pseudo-pivoting if the off-diagonal entries of A are nonzero. Consider the first two lev-

els of MAT2PM run on Case (a) of Section 3.2.5.

A =




−4 −3 −8
2 3 5
8 6 7


 , (Level 0)

LA =

[
3 5
6 7

]
, RA =

[
3
2

1
0 −9

]
. (Level 1)

If we instead regarded the (1, 1) entry of A as an invalid pivot and used a pseudo-pivot

value of 1, we would have obtained:

A =




1 −3 −8
2 3 5
8 6 7


 , (Level 0)

LA =

[
3 5
6 7

]
, RA =

[
9 21
30 71

]
, (Level 1)

Notice that RA has no off diagonal zeros in this case. Since the (1, 1) entry of A corresponds

to the value of the first principal minor of A in binary order, changing the first principal

minor from −4 to 1 (as if −4 were a zero principal minor) will permit PM2MAT to find

a matrix with all the desired principal minors. Of course, the other principal minors will

have to be modified accordingly as described in Section 3.2.2, and the (1, 1) entry of the

final matrix will be restored to −4 before the matrix is output.
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Now, all the off-diagonal entries of a given A ∈ Mn(C) are nonzero (by (a) of Definition

3.6.1), and all the Schur complements of A can be made nonzero through appropriate

pseudo-pivoting. Therefore, each 2 × 2 principal submatrix of any L, R pair in SA (where

as previously, L = B(1) and R = B/B[1] for some B ∈ SA ∪ {A}) has at most 2 solutions

to equation (3.2.7) that make this particular 2×2 submatrix rank 1. Thus, by only solving

equations of the form (3.2.7), we can reduce the number of possible matrices R̂ ∈ Mm(C)

such that R∼̇R̂ to at most 2m(m−1)/2 distinct possibilities where m ≥ 2. This follows since

there are two independent possible solutions to (3.2.7) for each entry of R above the main

diagonal.

Each of these 2m(m−1)/2 matrices R̂ are examined to see which simultaneously makes

rank(L − R̂) = 1 and det(R) = det(R̂) where we no longer require that the rank reducing

dot similarity be unique. However, we do require that any rank reducing dot similarity

which preserves the determinant of R be unique as stated in (b) of Definition 3.6.1.

An algorithm called SPM2MAT (Slow PM2MAT) incorporates these ideas, although

at a considerable performance penalty. An implementation of this algorithm is given in

Appendix I. As with the other PM2MAT algorithms, if the required conditions are not

satisfied, warnings are issued.

SPM2MAT correctly finds a matrix with the principal minors of all three cases of Section

3.2.5 where the algorithm PM2MAT breaks down.
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The matrix output by SPM2MAT need not be diagonally similar to another matrix hav-

ing the same principal minors, and this may often be the case with input principal minors

from matrices which are not ODF. This occurs since the rank condition for submatrices

formed by a partition of 〈n〉 of Theorem 3.2.4 is not satisfied. For example, the principal

minors of

A =




1 2 1 1
1 1 1 1
1 1 1 1
1 1 3 1




are

pm = [1, 1,−1, 1, 0, 0, 0, 1, 0, 0, 0,−2, 0, 0, 0].

When this set of principal minors is used as input to SPM2MAT, the matrix

B =




1
√

2 1 1√
2 1

√
2

√
2

1 1/
√

2 1 3

1 1/
√

2 1 1




is found (after deskewing). This is diagonally similar to




1 2 1 1
1 1 1 1
1 1 1 3
1 1 1 1




but is not diagonally similar with transpose to A.

SPM2MAT can invert the 127 principal minors of a 7 × 7 matrix in a few seconds

although performance deteriorates rapidly for larger matrices.

To illustrate an example of principal minors from a full matrix which SPM2MAT does
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not invert into a matrix with the same principal minors, we consider

A =




2 1 1 1 2
2 1 1 2 2
1 1 1 2 2
2 1 2 1 2
2 1 2 1 1




.

When SPM2MAT is run on the principal minors of this matrix, the following matrices are

encountered when building the left most 4 × 4 matrix of level 1:

L =




1 4
3

4
9

3 1 2
3

9 3 1


 , R1 =




2
3

10
9

10
27

2 1
3

4
9

6 1 1
3


 ,

letting ppivot = 2 so the entries are rational. In this case, rank(L−R1) = 1 and det(R1) = 2,

where the determinant of the R matrix passed to invschurc is also 2. However, there exists

R2 =




2
3

8
9

8
27

5
2

1
3

4
9

15
2

1 1
3




with rank(L − R2) = 1 and det(R2) = 2 also (and, in fact, all the corresponding principal

minors of R1 and R2 are equal). Using either R1 or R2 produces a 4× 4 matrix which has

all the desired principal minors. Unfortunately, these two 4×4 matrices are not diagonally

similar with transpose (although they are dot similar). If this 4 × 4 matrix were a right

matrix, the SPM2MAT algorithm could compensate for the difference and return a 5 × 5

matrix with all the desired principal minors. However, the 4 × 4 matrix under discussion

is the left of the two 4× 4 matrices of level 1. Only one of the possible 4× 4 matrices (the

one built using R2 as it turns out) has a dot similarity with the right most 4× 4 matrix of

level 1 which satisfies the rank condition. Since by numerical chance R1 is actually used,

SPM2MAT fails.
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3.6.1 Special matrices that can be found with SPM2MAT

SPM2MAT allows us to quickly determine whether a weakly ODF matrix exists that satis-

fies certain particular properties, and in some cases identify a general class of matrix that

has the desired properties.

All principal minors = x

To begin, suppose we desired to know if there exists a full matrix which has all principal

minors equal to a given value x ∈ C. We might start by running SPM2MAT with an input

vector of 15 identical values of 2. In this case, SPM2MAT returns the matrix

A =




2
√

2
√

2
√

2√
2 2 2 2√
2 1 2 2√
2 1 1 2


 ,

and all the principal minors of A are actually 2. As with the other matrices of this section,

part (b) of Definition 3.6.1 is not satisfied and warnings may be printed. However, the

multiple dot similarities that satisfy the rank and determinant condition are all equivalent,

so SPM2MAT succeeds.

Trying the same experiment with a value of 3, SPM2MAT gives:

B =




3
√

6
√

6
√

6√
6 3 3 3√
6 2 3 3√
6 2 2 3


 .

Therefore, focusing on the trailing submatrices A(1) and B(1), we hypothesize that matrices
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of the form

C =




x x . . . x
x − 1 x . . . x

...
. . .

. . .
...

x − 1 . . . x − 1 x




might have the desired property. One may easily verify the hypothesis by noting that if

x = 0, all principal minors of C are trivially zero, and for all other values of x

C/C[1] =




1 1 . . . 1
0 1 . . . 1
...

. . .
. . .

...
0 . . . 0 1


 .

A Fibonacci matrix

We begin by seeking a 3 × 3 matrix, all of whose 1 × 1 principal minors are 1, all of

whose 2 × 2 principal minors are 2 and with determinant 3. Running SPM2MAT with

input

pm = [1, 1, 2, 1, 2, 2, 3]

gives

A =




1 −1 −1
1 1 b
1 a 1


 ,

where a = (1 +
√

5)/2 and b = (1 −
√

5)/2 throughout this section. Thus encouraged, we

attempt to find a 4×4 matrix which has 1×1 and 2×2 principal minors as above with all

3× 3 principal minors equal to 3 and with determinant 4. In this case, SPM2MAT returns

A =




1 −1 −1 −1
1 1 b b
1 a 1 b
1 a a 1



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which has all the desired principal minors, except that the determinant is 5 = 2 + 3, the

sum of the determinants of the two preceding sized principal minors.

Therefore, we theorize that matrices of the form

A =




1 b . . . b

a 1
. . .

...
...

. . .
. . . b

a . . . a 1




have principal minors which are the same for a given size of principal minor with the values

of the principal minors increasing in a Fibonacci sequence. This conjecture may be verified

by noting that each principal submatrix of a given size has the same form as the general

matrix A above, and that the U matrix of an LU decomposition of A has diagonal entries

{1, 2/1, 3/2, 5/3, 8/5, 13/8, . . .}.

Exponentially increasing (or decreasing) principal minors

Similarly employing SPM2MAT, we find that there exists a family of matrices with

principal minors

pm = [x0, x1, x2, . . . , x2n−2]

for all x ∈ C. Once such general form is:

A =




x0 (1 − x)x
1

2 (1 − x)x
3

2 (1 − x)x
7

2 . . . (1 − x)x
2
n−1

−1

2

x
1

2 x1 (1 − x)x2 (1 − x)x4 . . . (1 − x)x
2
n−1

−1

2
+ 1

2

x
3

2 x2 x3 (1 − x)x5 . . . (1 − x)x
2
n−1

−1

2
+ 3

2

...
. . .

...

x
2
n−2

−1

2 x2n−3

x2n−3+21−1 . . . x2n−3+2n−3−1 (1 − x)x2n−3+2n−2−1

x
2
n−1

−1

2 x2n−2

x2n−2+21−1 . . . x2n−2+2n−3−1 x2n−1−1




.
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As in the examples above, the proof follows by considering the Schur complements of the

matrix above. In particular, when x 6= 0 the Schur complement A/A[1] is lower triangular

with diagonal {x2, x4, . . . , x2n−1}.

By way of example, consider a 4 × 4 matrix with x = 3:

A =




30 −2 · 3 1

2 −2 · 3 3

2 −2 · 3 7

2

3
1

2 31 −2 · 32 −2 · 34

3
3

2 32 33 −2 · 35

3
7

2 34 35 37




=




1 −2
√

3 −6
√

3 −54
√

3√
3 3 −18 −162

3
√

3 9 27 −486

27
√

3 81 243 2187


 .

This matrix has principal minors

pm = [30, 31, 32, . . . , 314]

= [1, 3, 9, . . . , 4782969].

Note that it is possible to achieve the same principal minors with a matrix without radicals

if one is willing to sacrifice the regularity of the matrix form for the first row or column.

Thus, B below also realizes the principal minors above:

B =




30 −2 · 31 −2 · 32 −2 · 34

30 31 −2 · 32 −2 · 34

31 32 33 −2 · 35

33 34 35 37




=




1 −6 −18 −162
1 3 −18 −162
3 9 27 −486
27 81 243 2187


 .
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3.7 Conclusions

In this chapter a sufficient condition which guarantees that the algorithm of MAT2PM can

be directly reversed for a given A ∈ Mn(C) was presented as Definition 3.2.3. In this case,

we say that A is ODF, and it was noted that, generically, matrices in Mn(C) are ODF.

Under this condition, the principal minors of A can be used as input to the algorithm

PM2MAT which will produce a matrix with all the desired principal minors. Analogously

to handling zero pivots in MAT2PM, it was shown that PM2MAT can, in fact, perform this

operation if A is only effectively ODF and this condition was described in Section 3.2.2.

Next, in Section 3.5 it was found that under the condition of being effectively ODF,

only the 1 × 1, 2 × 2 and 3 × 3 principal submatrices suffice to find a matrix which has

all the desired principal minors leading to the FPM2MAT algorithm which functions in

polynomial time. As a natural companion algorithm, FMAT2PM was also presented which

can compute these principal minors, also in polynomial time.

Finally, in Section 3.6 a much slower algorithm was developed that solves PMAP under

the condition that the principal minors come from a matrix A ∈ Mn(C) which is only

weakly ODF. Examples of matrices with special sets of principal minors that can be found

using this algorithm were demonstrated.
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Appendix A

MAT2PM

% MAT2PM Finds principal minors of an n x n real or complex matrix.

% PM = MAT2PM(A)

% where "A" is an n x n matrix in which zero can arise as a pivot at any

% point. MAT2PM returns a 2^n - 1 vector of all the principal minors

% of the matrix "A".

%

% PM = MAT2PM(A, THRESH)

% Explicitly sets the pseudo-pivot threshold to THRESH. Pseudo-pivoting

% will occur when a pivot smaller in magnitude than THRESH arises. Set

% THRESH = 0 to never pseudo-pivot except for a pivot of exactly zero.

%

% The structure of PM, where |A[v]| is the principal minor of "A" indexed

% by the vector v:

% PM: |A[1]|, |A[2]|, |A[1 2]|, |A[3]|, |A[1 3]|, |A[2 3]|, |A[1 2 3]|,...

function [pm] = mat2pm(a, thresh)

% Only works on up to 48x48 matrices due to restrictions

% on bitcmp and indices.

n = length(a);

scale = sum(sum(abs(a)))/(n*n); % average magnitude of matrix

if scale == 0

scale = 1; % prevent divide by 0 if matrix is zero

end

ppivot = scale; % value to use as a pivot if near 0 pivot arises

if nargin == 1

thresh = (1.0e-5)*scale; % when to pseudo-pivot

end
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zeropivs = [];

pm = zeros(1, 2^n - 1); % where the principal minors are stored

ipm = 1; % index for storing principal minors

q = zeros(n,n,1); % q is the input queue of unprocessed matrices

q(:,:,1) = a; % initial queue just has 1 matrix to process

pivmin = inf; % keep track of smallest pivot actually used

%

% Main ’level’ loop

%

for level = 0:n-1

[n1, n1, nq] = size(q);

% The output queue has twice the number of matrices, each one smaller

% in row and col dimension

qq = zeros(n1-1, n1-1, nq*2);

ipm1 = 1; % for indexing previous pm elements

for i = 1:nq

a = q(:,:,i);

pm(ipm) = a(1,1);

if n1 > 1

abspiv = abs(pm(ipm));

if abspiv <= thresh

zeropivs = union(zeropivs, ipm);

% Pivot nearly zero, use "pseudo-pivot"

pm(ipm) = pm(ipm) + ppivot;

abspiv = abs(pm(ipm));

end

if abspiv < pivmin

pivmin = abspiv;

end

b = a(2:n1,2:n1);

d = a(2:n1,1)/pm(ipm);

c = b - d*a(1,2:n1);

% Order the output queue to make the elements of pm come out in

% the correct order.

qq(:,:,i) = b;

qq(:,:,i+nq) = c;

end

if i > 1

% if i > 1, to convert from a general pivot to a principal

% minor, we need to multiply by every element of the pm matrix

% we have already generated, in the order that we generated it.
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pm(ipm) = pm(ipm)*pm(ipm1);

ipm1 = ipm1 + 1;

end

ipm = ipm + 1;

end

q = qq;

end

%

% Zero Pivot Loop

%

% Now correct principal minors for all places we used ppivot as a pivot

% in place of a (near) 0.

for i = length(zeropivs):-1:1

mask = zeropivs(i);

delta = msb(mask);

delta2 = 2*delta;

ipm1 = bitand(mask, bitcmp(delta,48));

if ipm1 == 0

pm(mask) = pm(mask) - ppivot;

else

pm(mask) = (pm(mask)/pm(ipm1) - ppivot)*pm(ipm1);

end

for j = mask+delta2:delta2:2^n - 1

pm(j) = pm(j) - ppivot*pm(j - delta);

end

end

% uncomment to see optional warning

% fprintf(2, ’MAT2PM: pseudo-pivoted %d times, smallest pivot used: %e\n’, ...

% length(zeropivs), pivmin);

% Returns the numerical value of the most significant bit of x.

% For example, msb(7) = 4, msb(6) = 4, msb(13) = 8.

function [m] = msb(x)

persistent MSBTABLE % MSBTABLE persists between calls to mat2pm

if isempty(MSBTABLE)

% If table is empty, initialize it

MSBTABLE = zeros(255,1);

for i=1:255

MSBTABLE(i) = msbslow(i);

end

end
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m = 0;

% process 8 bits at a time for speed

if x ~= 0

while x ~= 0

x1 = x;

x = bitshift(x, -8); % 8 bit left shift

m = m + 8;

end

m = bitshift(MSBTABLE(x1), m-8); % right shift

end

% Returns the numerical value of the most significant bit of x.

% For example, msb(7) = 4, msb(6) = 4, msb(13) = 8. Slow version

% used to build a table.

function [m] = msbslow(x)

m = 0;

if x ~= 0

m = 1;

while x ~= 0

x = bitshift(x, -1);

m = 2*m;

end

m = m/2;

end
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Appendix B

IDX2V

% IDX2V Converts a MAT2PM index into a set of principal minors PM to

% an index set that corresponds to the given principal minor.

%

% For example, if

%

% A = rand(4)

% pm = mat2pm(A)

% v = idx2v(13)

%

% then v = [1 3 4] and

%

% det(A(v,v))

%

% will equal

%

% pm(13)

%

function v = idx2v(idx)

v = [];

i = 1;

while idx ~= 0

if bitand(idx, 1) ~= 0

v = [v i];

end

idx = bitshift(idx, -1); % shift by 1 to the right

i = i+1;

end
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Appendix C

V2IDX

% V2IDX Converts a MAT2PM index set (vector) to the index in pm that

% corresponds to a given principal minor.

%

% For example, if

%

% A = rand(4)

% pm = mat2pm(A)

% idx = v2idx([1 3 4])

%

% then idx = 13 and

%

% det(A([1 3 4],[1 3 4]))

%

% will equal

%

% pm(idx)

%

function idx = v2idx(v)

% The index into pm is simply the binary number with the v(i)’th bit set

% for each i.

n = length(v); % length of vector containing indices of minor

idx = 0;

for i = 1:n

idx = idx + bitshift(1,v(i)-1);

end
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Appendix D

PMSHOW

% PMSHOW Displays the given set of principal minors with its index number

% and index sets.

function pmshow(pm)

for i = 1:length(pm)

v = idx2v(i);

if imag(pm(i)) == 0

fprintf(1,’%d\t[%14s]\t%g\n’, i, int2str(v), pm(i));

else % display complex principal minor

if imag(pm(i)) > 0

fprintf(1,’%d\t[%14s]\t%g + %gi\n’, i, int2str(v),...

real(pm(i)), imag(pm(i)));

else

fprintf(1,’%d\t[%14s]\t%g - %gi\n’, i, int2str(v),...

real(pm(i)), -imag(pm(i)));

end

end

end

% IDX2V Converts a MAT2PM index into a set of principal minors pm to

% an index set that corresponds to the given principal minor.

function v = idx2v(idx)

v = []; i = 1;

while idx ~= 0

if bitand(idx, 1) ~= 0

v = [v i];

end

idx = bitshift(idx, -1); % shift by 1 to the right

i = i+1;

end
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Appendix E

PM2MAT

% PM2MAT Finds a real or complex matrix that has PM as its principal

% minors.

%

% PM2MAT produces a matrix with some, but perhaps not all, of its

% principal minors in common with PM. If the principal minors are

% not consistent or the matrix that has them is not ODF, PM2MAT will

% produce a matrix with different principal minors without warning.

% Run MAT2PM on the output matrix A as needed.

%

% A = PM2MAT(PM)

% where PM is a 2^n - 1 vector of principal minors and A will be an n x n

% matrix.

%

% The structure of PM, where |A[v]| is the principal minor of "A" indexed

% by the vector v:

% PM: |A[1]| |A[2]| |A[1 2]| |A[3]| |A[1 3]| |A[2 3]| |A[1 2 3]| ...

function A = pm2mat(pm)

myeps = 1e-10;

n = log2(length(pm)+1);

% Make first (smallest) entry of zeropivs an impossible index

zeropivs = 0;

% Pick a random pseudo-pivot value that minimizes the chances that

% pseudo-pivoting will create a non-ODF matrix.

ppivot = 1.9501292851471754e+000;

% initialize globals to allow warnings to be printed only once

global WARN_A WARN_C WARN_I
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WARN_A = false; WARN_C = false; WARN_I = false;

% To avoid division by zero, do an operation analogous to the zeropivot

% loop in mat2pm.

for i = 1:((length(pm)+1)/2 - 1)

if (abs(pm(i)) < myeps)

mask = i;

zeropivs = union(zeropivs, i);

ipm1 = bitand(mask, bitcmp(msb(mask),48));

if ipm1 == 0

pm(mask) = pm(mask) + ppivot;

else

pm(mask) = (pm(mask)/pm(ipm1) + ppivot)*pm(ipm1);

end

delta = msb(mask);

delta2 = 2*delta;

for j = mask+delta2:delta2:2^n - 1

pm(j) = pm(j) + ppivot*pm(j - delta);

end

end

end

zeropivsidx = length(zeropivs) - 1;

zeropivsmax = zeropivs(zeropivsidx+1);

% initial processing is special, no call to invschurc is necessary

nq = 2^(n-1);

q = zeros(1,1,nq);

ipm1 = nq;

ipm2 = 1;

for i = 1:nq

if i == 1

q(1,1,i) = pm(ipm1);

else

q(1,1,i) = pm(ipm1)/pm(ipm2);

ipm2 = ipm2+1;

end

ipm1 = ipm1+1;

end

%

% Main ’level’ loop

%

for level = n-2:-1:0 % for consistency with mat2pm levels
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[n1, n1, nq] = size(q);

nq = nq/2;

n1 = n1+1;

% The output queue has half the number of matrices, each one larger in

% row and col dimension

qq = zeros(n1, n1, nq);

ipm1 = 2*nq-1;

ipm2 = nq-1;

for i = nq:-1:1 % process matrices in reverse order for zeropivs

if (i == 1)

pivot = pm(ipm1);

else

pivot = pm(ipm1)/pm(ipm2);

ipm2 = ipm2-1;

end

qq(:,:,i) = invschurc(pivot, q(:,:,i), q(:,:,i+nq));

if zeropivsmax == ipm1

qq(1,1,i) = qq(1,1,i) - ppivot;

zeropivsmax = zeropivs(zeropivsidx);

zeropivsidx = zeropivsidx - 1;

end

ipm1 = ipm1-1;

end

q = qq;

end

A = q(:,:,1);

A = deskew(A);

if WARN_A

% ODF (a) not satisfied

fprintf(2,...

’PM2MAT: off diagonal zeros found, solution suspect.\n’);

end

if WARN_C

fprintf(2,...

’PM2MAT: multiple solutions to make rank(L-R)=1, solution suspect.\n’);

end

if WARN_I

fprintf(2, ...

’PM2MAT: input principal minors may be inconsistent, solution suspect.\n’);

end
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%

% Suppose A is an (m+1) x (m+1) matrix such that

%

% pivot = A(1,1)

% L = A(2:m+1, 2:m+1)

% R = L - A(2:m+1,1)*A(1,2:m+1)/pivot = (the Schur’s complement with

% respect to the pivot or A/A[1]).

%

% Then invschurc finds such an (m+1) x (m+1) matrix A (not necessarily

% unique) given the pivot (a scalar), and the m x m matrices L and R.

%

% If rank(L-R) is not 1, modifies R so that L-R is rank 1.

%

function A = invschurc(pivot, L, R)

global WARN_C WARN_I

myeps_i = 1e-3*norm(R,inf); % make these relative to magnitude of R

myeps_c = 1e-9*norm(R,inf);

m = length(R);

% Try to make (L-R) rank 1

if m == 2

[t1,t2] = solveright(L(1,1), L(1,2), L(2,1), L(2,2),...

R(1,1), R(1,2), R(2,1), R(2,2));

% This is arbitrary, take the first.

t = t1;

R(2,1) = R(2,1)*t;

R(1,2) = R(1,2)/t;

elseif m >= 3

% We start with the lower right hand 3x3 submatrix. We have 3

% parameters, each with two possible solutions. Only 1 of the 8

% possible solutions need give us a L-R which is rank 1. We find the

% right solution by brute force.

i1 = m-2;

i2 = m-1;

i3 = m;

[r1,r2] = solveright(L(i2,i2), L(i2,i3), L(i3,i2), L(i3,i3),...

R(i2,i2), R(i2,i3), R(i3,i2), R(i3,i3));

[s1,s2] = solveright(L(i1,i1), L(i1,i2), L(i2,i1), L(i2,i2),...

R(i1,i1), R(i1,i2), R(i2,i1), R(i2,i2));

[t1,t2] = solveright(L(i1,i1), L(i1,i3), L(i3,i1), L(i3,i3),...

R(i1,i1), R(i1,i3), R(i3,i1), R(i3,i3));
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% Perform a parameterized "row reduction" on the first two rows of this

% matrix and compute the absolute value of the (2,3) entry. One of

% them will be nearly zero.

r111 = abs((L(i2,i3) - R(i2,i3)/r1)*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s1)*(L(i1,i3) - R(i1,i3)/t1));

r112 = abs((L(i2,i3) - R(i2,i3)/r1)*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s1)*(L(i1,i3) - R(i1,i3)/t2));

r121 = abs((L(i2,i3) - R(i2,i3)/r1)*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s2)*(L(i1,i3) - R(i1,i3)/t1));

r122 = abs((L(i2,i3) - R(i2,i3)/r1)*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s2)*(L(i1,i3) - R(i1,i3)/t2));

r211 = abs((L(i2,i3) - R(i2,i3)/r2)*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s1)*(L(i1,i3) - R(i1,i3)/t1));

r212 = abs((L(i2,i3) - R(i2,i3)/r2)*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s1)*(L(i1,i3) - R(i1,i3)/t2));

r221 = abs((L(i2,i3) - R(i2,i3)/r2)*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s2)*(L(i1,i3) - R(i1,i3)/t1));

r222 = abs((L(i2,i3) - R(i2,i3)/r2)*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s2)*(L(i1,i3) - R(i1,i3)/t2));

rv = [r111, r112, r121, r122, r211, r212, r221, r222];

mn = min(rv);

if (r111 == mn)

r = r1; s = s1; t = t1;

elseif (r112 == mn)

r = r1; s = s1; t = t2;

elseif (r121 == mn)

r = r1; s = s2; t = t1;

elseif (r122 == mn)

r = r1; s = s2; t = t2;

elseif (r211 == mn)

r = r2; s = s1; t = t1;

elseif (r212 == mn)

r = r2; s = s1; t = t2;

elseif (r221 == mn)

r = r2; s = s2; t = t1;

else % (r222 == mn)

r = r2; s = s2; t = t2;

end

if mn > myeps_i

WARN_I = true;

end

if sum(rv < myeps_c) > 1

WARN_C = true;
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end

R(i3,i2) = R(i3,i2)*r;

R(i2,i3) = R(i2,i3)/r;

R(i2,i1) = R(i2,i1)*s;

R(i1,i2) = R(i1,i2)/s;

R(i3,i1) = R(i3,i1)*t;

R(i1,i3) = R(i1,i3)/t;

% Now the lower right hand 3x3 submatrix of L-R has rank 1. Then we

% fix up the rest of L-R.

for i1 = m-3:-1:1

i2 = i1+1;

i3 = i1+2;

% Now the inside lower right submatrix is done, so we

% only have 2 free parameters and 4 combinations to examine.

[s1,s2] = solveright(L(i1,i1), L(i1,i2), L(i2,i1), L(i2,i2),...

R(i1,i1), R(i1,i2), R(i2,i1), R(i2,i2));

[t1,t2] = solveright(L(i1,i1), L(i1,i3), L(i3,i1), L(i3,i3),...

R(i1,i1), R(i1,i3), R(i3,i1), R(i3,i3));

r11 = abs((L(i2,i3) - R(i2,i3))*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s1)*(L(i1,i3) - R(i1,i3)/t1));

r12 = abs((L(i2,i3) - R(i2,i3))*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s1)*(L(i1,i3) - R(i1,i3)/t2));

r21 = abs((L(i2,i3) - R(i2,i3))*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s2)*(L(i1,i3) - R(i1,i3)/t1));

r22 = abs((L(i2,i3) - R(i2,i3))*(L(i1,i1) - R(i1,i1)) - ...

(L(i2,i1) - R(i2,i1)*s2)*(L(i1,i3) - R(i1,i3)/t2));

rv = [r11, r12, r21, r22];

mn = min(rv);

if (r11 == mn)

s = s1; t = t1;

elseif (r12 == mn)

s = s1; t = t2;

elseif (r21 == mn)

s = s2; t = t1;

else % (r22 == mn)

s = s2; t = t2;

end

if mn > myeps_i

WARN_I = true;

end
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if sum(rv < myeps_c) > 1

WARN_C = true;

end

R(i2,i1) = R(i2,i1)*s;

R(i1,i2) = R(i1,i2)/s;

R(i3,i1) = R(i3,i1)*t;

R(i1,i3) = R(i1,i3)/t;

for j = i1+3:m

% Finally, once the second row of the submatrix we are working

% on is uniquely solved, we just pick the solution to the

% quadratic such that the the first row is a multiple of the

% second row. Note that one of r1, r2 will be almost zero.

% Solving the quadratics leads to much better performance

% numerically than just taking multiples of the second or

% any other row.

%

j1 = i1+1;

[t1,t2] = solveright(L(i1,i1), L(i1,j), L(j,i1), L(j,j),...

R(i1,i1), R(i1,j), R(j,i1), R(j,j));

r1 = abs((L(j1,j) - R(j1,j))*(L(i1,i1) - R(i1,i1)) - ...

(L(j1,i1) - R(j1,i1))*(L(i1,j) - R(i1,j)/t1));

r2 = abs((L(j1,j) - R(j1,j))*(L(i1,i1) - R(i1,i1)) - ...

(L(j1,i1) - R(j1,i1))*(L(i1,j) - R(i1,j)/t2));

if (r1 <= r2)

t = t1;

else

t = t2;

end

rv = [r1, r2];

if mn > myeps_i

WARN_I = true;

end

if sum(rv < myeps_c) > 1

WARN_C = true;

end

R(j,i1) = R(j,i1)*t;

R(i1,j) = R(i1,j)/t;

end

end

end
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B = (L-R); % a rank 1 matrix

[mn, idxmax] = max(abs(diag(B)));

% For numerical reasons use the largest diagonal element as a base to find

% the two vectors whose outer product is B*pivot

yT = B(idxmax,:);

if yT(idxmax) == 0

% This shouldn’t happen normally, but to prevent

% divide by zero when we set all "dependent" principal

% minors (with index sets greater than or equal to a constant)

% to the same value, let yT be something.

yT = ones(1,m);

end

x = B(:,idxmax)*pivot / yT(idxmax);

A = zeros(m+1);

A(1,1) = pivot;

A(1,2:m+1) = yT;

A(2:m+1,1) = x;

A(2:m+1,2:m+1) = L;

%

% Returns the two possible real solutions that will make L-R rank one if we

% let

% r21 = r21*t? (where ? = 1 or 2) and

% r12 = r12/t?

%

function [t1,t2] = solveright(l11,l12,l21,l22,r11,r12,r21,r22)

global WARN_A

x1 = l11-r11;

x2 = l22-r22;

d = sqrt(x1^2*x2^2 + l12^2*l21^2 + r12^2*r21^2 - 2*x1*x2*l12*l21 - ...

2*x1*x2*r12*r21-2*l12*l21*r21*r12);

if (l12 == 0)||(r21 == 0)

% This shouldn’t happen normally, but to prevent

% divide by zero when we set all "dependent" principal

% minors (with index sets greater than or equal to a constant)

% to the same value, let [t1,t2] be something.

t1 = 1;

t2 = 1;

WARN_A = true;

else

t1 = (-x1*x2 + l12*l21 + r12*r21 - d)/(2*l12*r21);

t2 = (-x1*x2 + l12*l21 + r12*r21 + d)/(2*l12*r21);
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% This also shouldn’t happen. Comment above applies.

if (t1 == 0)||(t2 == 0)

WARN_A = true;

if (t1 == 0)&&(t2 == 0)

t1 = 1;

t2 = 1;

elseif (t1 == 0)

% return better solution in t1 for m=2 case in invschurc

t1 = t2;

t2 = 1;

else % (t2 == 0)

t2 = 1;

end

end

end

%

% Makes abs(A(1,i)) = abs(A(i,1)) through diagonal similarity for all i.

%

function A = deskew(A)

n = length(A);

d = ones(n,1);

for i = 2:n

if A(i,1) ~= 0 % don’t divide by 0

d(i) = sqrt(abs(A(1,i)/A(i,1)));

if (d(i) > 1e6)||(d(i) < 1e-6)

% something is likely wrong, use 1 instead

d(i) = 1;

end

end % else leave d(i) = 1

end

% If D = diag(d), this effectively computes A = D*A*inv(D)

for i = 2:n

A(i,:) = A(i,:)*d(i);

end

for i = 2:n

A(:,i) = A(:,i)/d(i);

end

% Returns the numerical value of the most significant bit of x.

% For example, msb(7) = 4, msb(6) = 4, msb(13) = 8.

function m = msb(x)
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persistent MSBTABLE % MSBTABLE persists between calls to mat2pm

if isempty(MSBTABLE)

% If table is empty, initialize it

MSBTABLE = zeros(255,1);

for i=1:255

MSBTABLE(i) = msbslow(i);

end

end

m = 0;

% process 8 bits at a time for speed

if x ~= 0

while x ~= 0

x1 = x;

x = bitshift(x, -8); % 8 bit left shift

m = m + 8;

end

m = bitshift(MSBTABLE(x1), m-8); % right shift

end

% Returns the numerical value of the most significant bit of x.

% For example, msb(7) = 4, msb(6) = 4, msb(13) = 8. Slow version

% used to build a table.

function m = msbslow(x)

m = 0;

if x ~= 0

m = 1;

while x ~= 0

x = bitshift(x, -1);

m = 2*m;

end

m = m/2;

end
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Appendix F

PMFRONT

% PMFRONT Finds a real or complex matrix that has PM as its principal

% minors if possible, prints out a warning if no such matrix can

% be found by PM2MAT.

%

% A = PMFRONT(PM)

% where PM is a 2^n - 1 vector of principal minors and A will be an n x n

% matrix.

%

% The structure of PM, where |A[v]| is the principal minor of "A" indexed

% by the vector v:

% PM: |A[1]| |A[2]| |A[1 2]| |A[3]| |A[1 3]| |A[2 3]| |A[1 2 3]| ...

function A = pmfront(pm)

myeps = 1e-5; % tolerance for relative errors in the principal minors

% First run pm2mat

A = pm2mat(pm);

% Next, run mat2pm on the result

pm1 = mat2pm(A);

smallestpm = min(abs(pm));

if smallestpm < 1e-10

fprintf(2, ...

’There are principal minors very close to zero, relative errors in\n’);

fprintf(2, ...

’principal minors may not be meaningful. Consider the absolute error\n’)

fprintf(2, ...

’to decide if PM2MAT succeeded.\n’);

err = norm((pm-pm1),inf);
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fprintf(2, ...

’The maximum absolute error in the principal minors is %e\n’, err);

else

% Compare the results in terms of the relative error in the pm’s

err = norm((pm-pm1)./abs(pm),inf);

if err > myeps

fprintf(2, ’PM2MAT failed\n’);

fprintf(2, ...

’No matrix could be found that has all the requested principal minors.\n’);

fprintf(2, ...

’The PM’’s are inconsistent or they come from a non-ODF matrix.\n’);

else

fprintf(2, ’PM2MAT succeeded\n’);

end

fprintf(2, ...

’The maximum relative error in the principal minors is %e\n’, err);

end
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Appendix G

FMAT2PM

% FMAT2PM Finds all 1x1, 2x2 and 3x3 principal minors of an n x n matrix.

% [PM, PMIDX] = FMAT2PM(A)

% where "A" is an n x n matrix (zero pivots not handled).

% MAT2PM returns a vector of all the 1x1, 2x2, and 3x3 principal minors

% of the matrix "A" in PM. Also returns PMIDX, a vector of indices

% that gives the index of the given principal minor in the full

% binary ordered PM vector that MAT2PM produces. Thus, for example,

% if

%

% A = rand(30);

% [pm, pmidx] = fmat2pm(A);

%

% then

%

% det(A([25 29 30],[25 29 30]))

%

% is the same as

%

% pm(find(pmidx == v2idx([25 29 30])))

function [pm, pmidx] = fmat2pm(a)

% Only works on up to 53x53 matrices due to restrictions on indices.

n = length(a);

% nchoosek(n,1) + nchoosek(n,2) + nchoosek(n,3);

pm = zeros(1, (n^2 + 5)*n/6); % where the principal minors are stored

pmidx = zeros(1, (n^2 + 5)*n/6); % place to store full (mat2pm) indices

pmidx(1) = 1;

ipm = 1; % short (new) index for storing principal minors

q = zeros(n,n,1); % q is the input queue of unprocessed matrices
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q(:,:,1) = a; % initial queue just has 1 matrix to process

%

% Main ’level’ loop

%

for level = 0:n-1

[n1, n1, nq] = size(q);

nq2 = nq + level + 1;

qq = zeros(n1-1, n1-1, nq2);

ipmlevel = ipm + nq - 1; % short index of beginning of the level

ipm2 = 1;

level2 = 2^level;

for i = 1:nq

a = q(:,:,i);

pm(ipm) = a(1,1);

ipm1 = pmidx(ipm); % long index of current pm

if n1 > 1

if bitcount(ipm1) < 3

b = a(2:n1,2:n1);

% assume all pivots are non-zero

d = a(2:n1,1)/pm(ipm);

c = b - d*a(1,2:n1);

qq(:,:,i) = b;

pmidx(ipmlevel+i) = ipm1 + level2;

qq(:,:,nq+ipm2) = c;

pmidx(ipmlevel+nq+ipm2) = ipm1 + 2*level2;

ipm2 = ipm2+1;

else

b = a(2:n1,2:n1);

qq(:,:,i) = b;

pmidx(ipmlevel+i) = ipm1 + level2;

end

end

if i > 1

pm(ipm) = pm(ipm)*pm(pmfind(pmidx, ipm1 - level2, ipmlevel));

end

ipm = ipm + 1;

end

q = qq;

end
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% Returns the number of bits set in x, or 4 if more than

% 4 are set.

% For example, msb(7) = 3, msb(6) = 2, msb(10) = 2.

function c = bitcount(x)

c = 0;

while x ~= 0

if bitand(x,1) == 1

c = c + 1;

if c >= 4

return; % no reason to keep counting

end

end

x = bitshift(x, -1); % shift right

end

%

% Find i0 in pmidx, returning its index, using a binary search,

% since pmidx is in ascending order.

%

% Same functionality as

%

% find(pmidx == i0)

%

% only faster.

%

function i = pmfind(pmidx, i0, n)

% 1:n is the part of pmidx that has values so far

iLo = 1;

iHi = n;

if pmidx(iHi) <= i0

if pmidx(iHi) == i0

i = n;

else

i = [];

end

return;

end

iOld = -1;

i = iLo;

while i ~= iOld

iOld = i;

i = floor((iHi + iLo)/2);

if pmidx(i) < i0
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iLo = i;

elseif pmidx(i) > i0

iHi = i;

else

return;

end

end

i = [];

return;
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Appendix H

FPM2MAT

% FPM2MAT Finds a real or complex matrix that has PM as its 1x1, 2x2,

% and 3x3 principal minors if possible.

%

% FPM2MAT produces a matrix with some, but perhaps not all, of its

% principal minors in common with PM. If the principal minors are

% not consistent or the matrix that has them is not ODF, FPM2MAT will

% produce a matrix with different principal minors without warning.

% Run FMAT2PM on the output matrix A as needed.

%

% A = FPM2MAT(PM, PMIDX)

% where PM and PMIDX are in the format produced by FMAT2PM.

%

function [A] = fpm2mat(pm, pmidx)

% Only works on up to 53x53 matrices due to restrictions on indices.

% Since length(pm) = (n^3 + 5*n)/6, the computation below suffices to

% find n given length(pm).

n = floor((6*length(pm))^(1/3));

% initialize globals to allow warnings to be printed only once

global WARN_A WARN_C WARN_I

WARN_A = false; WARN_C = false; WARN_I = false;

% ipmlevels is a vector of the short indices of the start of each level

% (minus one for convenience of indexing)

ipmlevels = zeros(1,n);

ipmlevels(1) = 0;

for level = 1:n-1;

ipmlevels(level+1) = ipmlevels(level) + level*(level-1)/2 + 1;
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end

% no call to invschurc is necessary for level n-1

nq = n*(n-1)/2 + 1;

q = zeros(1,1,nq);

ipm = ipmlevels(n) + 1; % short index of current pm

level2 = 2^(n-1);

for i = 1:nq

if i == 1

q(1,1,i) = pm(ipm);

else

q(1,1,i) = pm(ipm)/pm(pmfind(pmidx, pmidx(ipm) - level2));

end

ipm = ipm+1;

end

%

% Main ’level’ loop

%

for level = n-2:-1:0 % for consistency with mat2pm levels

[n1, n1, nq] = size(q);

nq = nq - level - 1;

n1 = n1+1;

qq = zeros(n1, n1, nq);

ipm = ipmlevels(level+1) + 1;

level2 = 2^level;

for i = 1:nq

if (i == 1)

pivot = pm(ipm);

else

ipm2 = pmfind(pmidx, pmidx(ipm) - level2);

pivot = pm(ipm)/pm(ipm2);

end

iRight = pmfind(pmidx, pmidx(i + ipmlevels(level+2)) + level2);

if length(iRight) == 1

iRight = iRight - ipmlevels(level+2);

qq(:,:,i) = invschurc(pivot, q(:,:,i), q(:,:,iRight));

else

qq(:,:,i) = invschurc(pivot, q(:,:,i), ones(n-level-1));

end

ipm = ipm+1;

end
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q = qq;

end

A = q(:,:,1);

A = deskew(A);

if WARN_A

% ODF (a) not satisfied

fprintf(2,...

’FPM2MAT: off diagonal zeros found, solution suspect.\n’);

end

if WARN_C

fprintf(2,...

’FPM2MAT: multiple solutions to make rank(L-R)=1, solution suspect.\n’);

end

% disable WARN_I for fast version, since it is routinely triggered

%

% Find i0 in pmidx, returning its index, using a binary search,

% since pmidx is in ascending order.

%

% Same functionality as

%

% find(pmidx == i0)

%

% only faster.

%

function i = pmfind(pmidx, i0)

n = length(pmidx);

iLo = 1;

iHi = n;

if pmidx(iHi) <= i0

if pmidx(iHi) == i0

i = n;

else

i = [];

end

return;

end

iOld = -1;

i = iLo;

while i ~= iOld

iOld = i;

i = floor((iHi + iLo)/2);
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if pmidx(i) < i0

iLo = i;

elseif pmidx(i) > i0

iHi = i;

else

return;

end

end

i = [];

return;

% invschurc, solveright and deskew are the same as in pm2mat.m
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Appendix I

SPM2MAT

% SPM2MAT Finds a real or complex matrix that has PM as its principal

% minors.

%

% SPM2MAT produces a matrix with some, but perhaps not all, of its

% principal minors in common with PM. Succeeds if a full matrix

% A has the principal minors PM. If the principal minors do not come

% from a full matrix, or if the principal minors are not consistent,

% SPM2MAT may produce a matrix with different principal minors without

% warning. Run MAT2PM on the output matrix A as needed.

%

% A = SPM2MAT(PM)

% where PM is a 2^n - 1 vector of principal minors and A will be an n x n

% matrix.

%

% The structure of PM, where |A[v]| is the principal minor of "A" indexed

% by the vector v:

% PM: |A[1]| |A[2]| |A[1 2]| |A[3]| |A[1 3]| |A[2 3]| |A[1 2 3]| ...

%

function A = spm2mat(pm)

myeps = 1e-10;

n = log2(length(pm)+1);

% Make first (smallest) entry of zeropivs an impossible index

zeropivs = 0;

% Pick a random pseudo-pivot value that minimizes the chances that

% pseudo-pivoting will create a non-ODF matrix.

ppivot = 1.9501292851471754e+000;
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% initialize globals to allow warnings to be printed only once

global WARN_A WARN_B WARN_I

WARN_A = false; WARN_B = false; WARN_I = false;

% To avoid division by zero, do an operation analogous to the zeropivot

% loop in mat2pm.

for i = 1:((length(pm)+1)/2 - 1)

% Pseudo-pivot every entry using ppivot above to reduce the chance

% that there will be off diagonal zeros in Schur complements

mask = i;

zeropivs = union(zeropivs, i);

ipm1 = bitand(mask, bitcmp(msb(mask),48));

if ipm1 == 0

pm(mask) = pm(mask) + ppivot;

else

pm(mask) = (pm(mask)/pm(ipm1) + ppivot)*pm(ipm1);

end

delta = msb(mask);

delta2 = 2*delta;

for j = mask+delta2:delta2:2^n - 1

pm(j) = pm(j) + ppivot*pm(j - delta);

end

end

zeropivsidx = length(zeropivs) - 1;

zeropivsmax = zeropivs(zeropivsidx+1);

% initial processing is special, no call to invschurc is necessary

nq = 2^(n-1);

q = zeros(1,1,nq);

ipm1 = nq;

ipm2 = 1;

for i = 1:nq

if i == 1

q(1,1,i) = pm(ipm1);

else

q(1,1,i) = pm(ipm1)/pm(ipm2);

ipm2 = ipm2+1;

end

ipm1 = ipm1+1;

end

%

% Main ’level’ loop
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%

for level = n-2:-1:0 % for consistency with mat2pm levels

[n1, n1, nq] = size(q);

nq = nq/2;

n1 = n1+1;

% The output queue has half the number of matrices, each one larger in

% row and col dimension

qq = zeros(n1, n1, nq);

ipm1 = 2*nq-1;

ipm2 = nq-1;

for i = nq:-1:1 % process matrices in reverse order for zeropivs

if (i == 1)

pivot = pm(ipm1);

else

pivot = pm(ipm1)/pm(ipm2);

ipm2 = ipm2-1;

end

qq(:,:,i) = invschurc(pivot, q(:,:,i), q(:,:,i+nq));

if zeropivsmax == ipm1

qq(1,1,i) = qq(1,1,i) - ppivot;

zeropivsmax = zeropivs(zeropivsidx);

zeropivsidx = zeropivsidx - 1;

end

ipm1 = ipm1-1;

end

q = qq;

end

A = q(:,:,1);

A = deskew(A);

if WARN_A

% ODF (a) not satisfied

fprintf(2,...

’SPM2MAT: off diagonal zeros found, solution suspect.\n’);

end

if WARN_B

fprintf(2,’%s %s\n’,...

’SPM2MAT: multiple solutions to make rank(L-R)=1 and det(L-R)=0,’,...

’solution suspect.’);

end

if WARN_I

fprintf(2, ...
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’SPM2MAT: input principal minors may be inconsistent, solution suspect.\n’);

end

%

% Suppose A is an (m+1) x (m+1) matrix such that

%

% pivot = A(1,1)

% L = A(2:m+1, 2:m+1)

% R = L - A(2:m+1,1)*A(1,2:m+1)/pivot = (the Schur’s complement with

% respect to the pivot or A/A[1]).

%

% Then invschurc finds such an (m+1) x (m+1) matrix A (not necessarily

% unique) given the pivot (a scalar), and the m x m matrices L and R.

%

% If rank(L-R) is not 1, modifies R so that L-R is rank 1.

%

function A = invschurc(pivot, L, R)

global WARN_B WARN_I

myeps_b = 1e-8;

myeps_i = 1e-3*norm(R,inf); % make this relative to magnitude of R

m = length(R);

% Try to make (L-R) rank 1

if m == 2

[t1,t2] = solveright(L(1,1), L(1,2), L(2,1), L(2,2),...

R(1,1), R(1,2), R(2,1), R(2,2));

% This is arbitrary, take the first.

t = t1;

R(2,1) = R(2,1)*t;

R(1,2) = R(1,2)/t;

elseif m >= 3

t = ones(m, m, 2);

for i = 1:m

for j = i+1:m

[t1, t2] = solveright(L(i,i), L(i,j), L(j,i), L(j,j), ...

R(i,i), R(i,j), R(j,i), R(j,j));

t(j, i, 1) = t1; t(i, j, 1) = 1/t1;

t(j, i, 2) = t2; t(i, j, 2) = 1/t2;

end

end

nidx = m*(m-1)/2;
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idx = ones(1, nidx);

minrapm = inf;

mincount = 0;

Rt = ones(m);

for k=1:2^nidx

cidx = 1;

for i = 1:m

for j = i+1:m

Rt(i,j) = t(i,j,idx(cidx));

Rt(j,i) = t(j,i,idx(cidx));

cidx = cidx + 1;

end

end

R1 = Rt.*R;

mydet = abs(det(R) - det(R1));

% faster to only compute svd if det is small enough

if (mydet < minrapm)

s = svd(L - R1);

rapm = max(s(2),mydet);

if rapm < myeps_b

% warning printed more consistently if this is

% moved above the "if", but slows code considerably

mincount = mincount + 1;

end

if rapm < minrapm

minrapm = rapm;

Rbest = R1; % save the best R

end

end

% count in binary by hand in idx

cidx = 1;

while(cidx <= nidx)

if idx(cidx) == 1

idx(cidx) = 2;

break;

else

idx(cidx) = 1;

end

cidx = cidx + 1;

end
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end

if minrapm > myeps_i

WARN_I = true;

end

if mincount > 1

WARN_B = true;

end

R = Rbest;

end

B = L - R;

[mn, idxmax] = max(abs(diag(B)));

% For numerical reasons use the largest diagonal element as a base to find

% the two vectors whose outer product is B*pivot

yT = B(idxmax,:);

if yT(idxmax) == 0

% This shouldn’t happen normally, but to prevent

% divide by zero when we set all "dependent" principal

% minors (with index sets greater than or equal to a constant)

% to the same value, let yT be something.

yT = ones(1,m);

end

x = B(:,idxmax)*pivot / yT(idxmax);

A = zeros(m+1);

A(1,1) = pivot;

A(1,2:m+1) = yT;

A(2:m+1,1) = x;

A(2:m+1,2:m+1) = L;

%

% Returns the two possible real solutions that will make L-R rank one if we

% let

% r21 = r21*t? (where ? = 1 or 2) and

% r12 = r12/t?

%

function [t1,t2] = solveright(l11,l12,l21,l22,r11,r12,r21,r22)

global WARN_A

x1 = l11-r11;

x2 = l22-r22;

d = sqrt(x1^2*x2^2 + l12^2*l21^2 + r12^2*r21^2 - 2*x1*x2*l12*l21 - ...

2*x1*x2*r12*r21-2*l12*l21*r21*r12);

if (l12 == 0)

t1 = -r12*l21/(x1*x2-r12*r21); % avoid divide by zero if possible
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t2 = 1;

elseif (r21 == 0)

% This shouldn’t happen normally, but to prevent

% divide by zero when we set all "dependent" principal

% minors (with index sets greater than or equal to a constant)

% to the same value, let [t1,t2] be something.

t1 = 1;

t2 = 1;

WARN_A = true;

else

t1 = (-x1*x2 + l12*l21 + r12*r21 - d)/(2*l12*r21);

t2 = (-x1*x2 + l12*l21 + r12*r21 + d)/(2*l12*r21);

% This also shouldn’t happen. Comment above applies.

if (t1 == 0)||(t2 == 0)

WARN_A = true;

if (t1 == 0)&&(t2 == 0)

t1 = 1;

t2 = 1;

elseif (t1 == 0)

% return better solution in t1 for m=2 case in invschurc

t1 = t2;

t2 = 1;

else % (t2 == 0)

t2 = 1;

end

end

end

%

% Makes abs(A(1,i)) = abs(A(i,1)) through diagonal similarity for all i.

%

function A = deskew(A)

n = length(A);

d = ones(n,1);

for i = 2:n

if A(i,1) ~= 0 % don’t divide by 0

d(i) = sqrt(abs(A(1,i)/A(i,1)));

if (d(i) > 1e6)||(d(i) < 1e-6)

% something is likely wrong, use 1 instead

d(i) = 1;

end

end % else leave d(i) = 1
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end

% If D = diag(d), this effectively computes A = D*A*inv(D)

for i = 2:n

A(i,:) = A(i,:)*d(i);

end

for i = 2:n

A(:,i) = A(:,i)/d(i);

end

% Returns the numerical value of the most significant bit of x.

% For example, msb(7) = 4, msb(6) = 4, msb(13) = 8.

function m = msb(x)

persistent MSBTABLE % MSBTABLE persists between calls

if isempty(MSBTABLE)

% If table is empty, initialize it

MSBTABLE = zeros(255,1);

for i=1:255

MSBTABLE(i) = msbslow(i);

end

end

m = 0;

% process 8 bits at a time for speed

if x ~= 0

while x ~= 0

x1 = x;

x = bitshift(x, -8); % 8 bit left shift

m = m + 8;

end

m = bitshift(MSBTABLE(x1), m-8); % right shift

end

% Returns the numerical value of the most significant bit of x.

% For example, msb(7) = 4, msb(6) = 4, msb(13) = 8. Slow version

% used to build a table.

function m = msbslow(x)

m = 0;

if x ~= 0

m = 1;

while x ~= 0

x = bitshift(x, -1);

m = 2*m;
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end

m = m/2;

end
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