
HIGH PERFORMANCE CACHE ARCHITECTURES FOR IP ROUTING:

REPLACEMENT, COMPACTION AND SAMPLING SCHEMES

By

RUIRUI GUO

A dissertation submitted in partial fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2007

 ii

To the Faculty of Washington State University:

 The members of the Committee appointed to examine the dissertation
of RUIRUI GUO find it satisfactory and recommend that it be accepted.

 Chair

 iii

ACKNOWLEDGMENT

 First of all, I would like to thank my advisor, Dr. José G. Delgado-Frias for his

precious suggestions, grateful kindness and incredible patience. His continued support

and guidance were crucial for the successful completion of my PhD study.

 I gratefully acknowledge my committee member, Dr. Jabulani Nyathi and Dr.

Krishnamoorthy Sivakumar, for all their help, advice and time. I thank all students in

High Performance Computer Systems Research Group (HiPerCops) for their hard work. I

truly appreciate the School of Electrical Engineering and Computer Science, for giving

me a chance to study here and supporting me through my graduate study.

 Last but not least, I would like to give special thanks to my family, for their

endless love, encouragement and constant support.

 iv

HIGH PERFORMANCE CACHE ARCHITECTURES FOR IP ROUTING:

REPLACEMENT, COMPACTION AND SAMPLING SCHEMES

Abstract

by Ruirui Guo, Ph.D.

Washington State University
August 2007

Chair: José G. Delgado-Frias

IP routing is an important operation in the forwarding of packets through the

Internet. It decides how and where to deliver incoming packets to the appropriate output

interface of a router. The process is performed by looking up IP addresses in a routing

table stored in memory. The speed of this operation has a great influence on the overall

performance of network processors. With the growth of Internet, the routing table

lookups are required to be faster to match the increasing link bandwidth.

This dissertation presents novel cache-based schemes to obtain high routing table

lookup performance. This study involves the following aspects. In regard to the cache

architectures, a victim cache is implemented to store the entries discarded by the main

cache. A randomly selected index (RSI) method is designed to redirect indexes away

from those entries that have a large possibility to cause conflict misses. As for the cache

replacement policy, two new policies that tend to remove an inactive entry by considering

its previous access references are introduced and evaluated. In order to reduce memory

size, novel route entry compaction schemes are designed based on the special features of

 v

Ternary Content Addressable Memory. In addition, two improved sampling techniques

are introduced to alleviate the port error which is a side-effect of caching. A set

associative caching scheme specially implemented for the compaction schemes is also

described.

These schemes are evaluated through extensive simulation based on IPv4 and

IPv6 routing information. The results show our schemes can significantly enhance cache

hit rate up to more than 20%. The higher hit rate makes average memory access time

shorter, this in turn speed up the route lookups. Moreover, a small port error ratio is

beneficial to reduce the possibility of incorrect routing.

 vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGMENT... iii

ABSTRACT...iv

LIST OF TABLES...xi

LISTOF FIGURES ... xiii

CHAPTER

1 Introduction 1

 1.1 Computer network ...1

 1.2 IP addresses..3

 1.2.1 IPv4 (Internet Protocol Version 4) ...3

 1.2.2 IPv6 (Internet Protocol Version 6) ...5

 1.3 Internet routing and address lookups ...6

 1.3.1 Router architecture..7

 1.3.2 Basic routing process ..7

 1.3.3 Route lookup schemes ..9

 1.4 Challenges..10

 1.5 Outline..10

2 Cache Architectures for IPv6 Routing and Address lookups 12

 2.1 Introduction..12

 2.2 Route lookup fundamentals ...13

 2.2.1 Route lookup approaches..13

 vii

 2.2.2 Cache architecture for IP routing..14

 2.3 Proposed cache architectures ...16

 2.3.1 Victim cache architecture ...16

 2.3.2 Randomly selected index architecture ..18

 2.3.3 Combination of the above two methods ...19

 2.4 Pipelining implementation in IP routing..19

 2.5 Performance analysis and evaluation...22

 2.5.1 Routing information..22

 2.5.2 DM and set associative cache performance ..23

 2.5.3 Victim cache (VC) architecture performance ...25

 2.5.4 Randomly selected index (RSI) performance ...26

 2.5.5 Combination of VC and RSI performance..27

 2.5.6 Pipelining technique..27

 2.6 Summary of this chapter ..31

3 Cache Replacement Policies for IP Address Lookups 33

 3.1 Introduction..33

 3.2 Existing replacement policies ..34

 3.3 Proposed replacement policies...35

 3.3.1 Least Access and Recently used (LAR) policy ..35

 3.3.2 Relatively Least Average Interval (RLAI) policy38

 3.4 Performance evaluation ...39

 3.4.1 IPv4 performance evaluation ..40

 3.4.2 IPv6 performance evaluation ..43

 viii

 3.4.3 AMAT speedups ...45

 3.5 Conclusions..46

4 Routing Table Entry Compaction Schemes in Ternary CAM 48

 4.1 Introduction..48

 4.2 Backgrounds of routing table entry compaction..49

 4.2.1 Ternary Content Addressable Memory (TCAM)49

 4.2.2 Previous approaches on routing table compaction51

 4.3 Proposed compaction schemes ..52

 4.3.1 IP routing table features ...52

 4.3.2 Compaction of same-port entries ..53

 4.3.3 Compaction of non-existing entries ..54

 4.3.4 Compaction using a threshold with continuous don’t care………55

 4.3.5 Compression using a threshold with the number of difference bits............58

 4.4 Performance Evaluation...59

 4.4.1 IPv4 routing performance ...59

 4.4.1.1 Compaction ratio..60

 4.4.1.2. Cache hit rate ..61

 4.4.1.3 AMAT speedups ..63

 4.4.2 IPv6 performance evaluation ..64

 4.4.2.1 Compaction ratio..64

 4.4.2.2 Cache hit rate ...65

 4.4.2.3 AMAT Speedups ..67

 4.5 Conclusions and summary ...67

 ix

5 Port Errors and Sampling Techniques 70

 5.1 Introduction..70

 5.2 Interval sampling ...71

 5.3 Proposed sampling techniques...72

 5.3.1 Port error distribution..72

 5.3.2 Selective sampling ..74

 5.3.3 Adaptive sampling ..75

 5.4 Performance analysis and evaluation...77

 5.4.1 Port error ratio...77

 5.4.2 Number of searches in routing tables..80

 5.4.3 Cache hit rate ..82

 5.5 Summary ..83

6 Set Associative Caching Implementation 85

 6.1 Introduction..85

 6.2 Features of address space in routing table entries..86

 6.2.1 IPv4 routing table..87

 6.2.2 IPv6 routing table..88

 6.3 Set associative caching implementation ...89

 6.4 Performance analysis and evaluation...91

 6.4.1 Cache hit rate of IPv4 routing...91

 6.4.2 Port error ratio and sampling schemes for IPv4 routing92

 6.4.3 Cache hit rate of IPv6 routing...93

 6.4.4 Port error ratio and sampling schemes for IPv6 routing95

 x

 6.5 Summary ..96

7 Concluding Remarks 98

 7.1 Contributions..99

 7.2 Future work..100

BIBLIOGRAPHY 103

 xi

LIST OF TABLES

2.1 IPv6 address traces (2M packets/trace) ..23

2.2 Hit rate of direct-mapped cache with different sizes ..23

2.3 Hit rate of cache with different associativity ..24

2.4 Hit rate of VC architecture..25

2.5 The performance of RSI..27

2.6 Performance of three schemes ..27

2.7 Hit rate of cache with pipeline and penalties (trace 031215)..28

2.8 Clock cycles of fully associative cache with pipeline and penalties29

2.9 Hit rates of pipelining architectures..30

2.10 Clock cycles of pipelining architectures ...31

2.11 Ratio of pseudo miss to real Miss ..31

3.1 The number of re-accessed evicted entries for trace (A)03121436

3.2 Hit rate increment of LAR over LRU with different size N (128-entry cache)37

3.3 IPv4 and IPv6 traces ...39

3.4 Difference in hit rate between LFU and LRU of trace (B) 03121540

3.5 Cache hit rate with different replacement policies (IPv4) ..41

3.6 Increment ratio of cache performance ..42

3.7 Cache hit rate with different replacement policies (IPv6) ...43

4.1 IP routing table feature..53

4.2 The four compaction schemes (CS) and their impact on compaction ratio (CR)60

4.3 Hit rate (%) of cache with different compaction schemes (IPv4)61

4.4 Scheme C3 speedup with a 1K cache (IPv4) ..64

4.5 The four compaction schemes (CS) and their impact on compaction ratio (CR)65

 xii

4.6 Hit rate with different compaction schemes (IPv6) ...66

4.7 Scheme C3 speedup with a 128-entry cache (IPv6) ...67

5.1 Port error distribution..73

5.2 IPv4 port error ratio using interval sampling with 1K-entry cache77

5.3 IPv6 port error ratio using interval sampling with 128-entry cache78

5.4 The port error ratio of improved sampling schemes...79

5.5 The number of routing table searches of sampling schemes ..81

5.6 Cache hit rate of 128-entry cache with sampling techniques82

6.1 Hit rate of 1K-entry cache...92

6.2 The port error ratio without (w/o) and with (w/) sampling (SA) (IPv4).......................93

6.3 Set divisions (Consider the total cache as one) ..94

6.4 Hit rate (%) of 128-entry cache with different set divisions...94

6.5 The port error ratio (%) without (w/o) and with (w/) sampling (SA) (IPv6)95

 xiii

LISTOF FIGURES

1.1 IPv4 address formats...3

1.2 General router architecture ...7

1.3 IP routing process ...8

1.4 An example of exact matching ..9

2.1 A cache organization for IP address lookup ..15

2.2 Victim cache architecture ..17

2.3 Index selection scheme ..19

2.4 Pipeline for index selection cache architecture ..20

2.5 Routing table and cache Architecture ..21

2.6 An example of route lookup operations in pipelining ...21

2.7 Plot of hit rate of DM cache with different size ...24

2.8 Plot of cache hit rate with different associativity ...25

2.9 Compare between VC and cache ...26

2.10 Plot of hit rate of cache with pipeline and penalties ..28

2.11 Plot of clock cycles of fully associative cache in pipeline..29

3.1 LAR replacement policy ...37

3.2 Plot of the hit rate increments of LAR over LRU with different N..............................38

3.3 RLAI replacement policy..39

3.4 Average cache hit rate performance ...41

3.5The performance of cache with the size of 128 entries ...44

3.6 Average cache hit rate with increasing cache entries ...44

3.7 AMAT speedups of LAR and RLAI ..45

4.1 A TCAM address lookup organization ..51

 xiv

4.2 An example of compaction scheme C1 ..54

4.3 An example of compaction scheme C2 ..55

4.4 An example of compaction scheme C3 ..56

4.5 Scheme C3’s threshold impact on entries and effective hit rate58

4.6 Compaction performance of IPv4 routing tables ...60

4.7 Cache hit rate performance ..62

4.8 Compaction performance of IPv6 routing tables ...65

4.9 Compaction schemes’ hit rates using a 128-entry cache ...67

5.1 The port error distribution with compacted tables by Scheme C3................................74

5.2 Flow chart of selective sampling ...75

5.3 Flow chart of adaptive sampling ..76

5.4 The average port error ratios of sampling techniques...80

5.5 The average amount of searches ..81

6.1 Distribution of overlapping entries (IPv4) ...87

6.2 Distribution of overlapping entries (IPv6) ...89

6.3 Set associative TCAM caching for IPv4...90

6.4 4-set associative TCAM caching for IPv6 ..91

6.5 The performance of port error ratio ...93

6.6 Different set divisions’ hit rate using 128-entry cache ..94

6.7 The set associative caching improvement on Trace A ...96

 1

Chapter 1

Introduction

1.1 Computer network

 A computer network is formed by a number of computer systems, which are

interconnected and can communicate and exchange information. Computer networks

emerged in the late 1960s as a result of computing and communication technologies’

development. Computer networks have grown at an increasing rate with the rapid growth

of the Internet [1]. One use of computer networks is the sharing resources to make all

programs, equipment, and especially data available to anyone that is connected to the

network overcoming geographic barriers.

Communication networks usually have one of two approaches to achieve

communication: circuit switched and packet switched network. Circuit switching is the

method used by the telephone network, which operate by forming a dedicated connection

between two points. It usually has three phases: establish circuit, communicate and close

circuit. The important advantage of circuit switching is its guaranteed capacity. On the

other hand packet switching is a method where data are contained in packets and

transferred across a network. Packet header contains control information, such as source

and destination addresses. At each connection node, the entire packet is received,

 2

processed, stored briefly and then forwarded to a specified destination. Consequently,

different packets might follow different paths. Packets might be recorder, delayed or even

dropped sometimes. The significant advantages of packet switching are the simply

implementation and efficient bandwidth usage. That is, multiple data communications

can be proceed concurrently. Packet switching is used in the Internet. In this dissertation,

all our research concentrates on packet switched networks.

In order to communicate, different computers must agree on both standards and

protocols. A protocol is a set of rules that governs how two parties are to interact with

each other. As for the Internet, there is a suite of communication protocols. TCP/IP

(Transmission Control Protocol/Internet Protocol) is the most commonly used protocol,

which contains the details and standard for transmitting data over the lower layer of the

Internet [2]. In addition, there are some protocols involving upper-layer applications,

such as SMTP [3] for electronic mail, FTP [4] for file transfer etc. More specifically for

TCP/IP:

• IP contains addressing information and some control information, which is

responsible for transfer packet of data from node to node. IP provides

connectionless, best-effort delivery service. It forwards each packet based on a

destination address.

• TCP provides reliable transmission of data. It is responsible for verifying the

correct delivery of data from sender to receiver. TCP adds support to detect errors

or lost data and to trigger retransmission until the data is correctly and completely

received. Moreover, TCP offers efficient flow control, full-duplex operation

service.

 3

1.2 IP addresses

An IP address (Internet protocol address) is a unique address to identify electronic

devices on a computer network when utilizing the Internet Protocol. It is important for

hosts to communicated with each other. In the packet switched Internet, the data is

forwarded based on the destination address in the packet. The followings are two kinds

of IP address currently used.

1.2.1 IPv4 (Internet Protocol Version 4)

Our current Internet architecture is based on the version 4 of the Internet protocol

[5]. IPv4 uses 32-bit IP network addresses, and it assigns at most 322 or almost 4 billion

unique addresses for those hosts connected on the Internet. Each address encodes its

network number and host number.

For several decades, the IP address space were divided into five categories listed

in Figure 1.1. This allocation is called classful addressing [6]. Obviously, the several bits

can distinguish the different classes.

10 Network Host

0 Net-
work Host

110 Network Host

1110 Multicast address

1111 Reserved

A

B

C

D

E

32 Bits

Figure 1.1: IPv4 address formats.

 4

The IPv4 address is usually written in dotted decimal notation, which includes

four decimal integers separated by decimal points to present 32-bit numbers. The lowest

IP address is 0.0.0.0, and the highest is 255.255.255.255. For example,

11000000 01100101 00110010 00010100

This address is written as

192.101.50.20

However, this traditional classful addressing has its limitation. It does not allow

the address space to be used to its maximum potential because of assigning blocks of

addresses with strict boundaries. The lack of access to IP address’ full penitential is

becoming a serious problem as the Internet grows in number of unique devices in the

network. It is predicted that the available addresses will be run out someday. In that

situation, no more network device or user can be added to the Internet. This is the

problem of IPv4 address exhaustion.

The CIDR (Classless InterDomain Routing) [7] is one solution to temporarily

alleviate the shortage of address. The basic idea of CIDR is allocate IP addresses in

variable-sized blocks by using a mask to delineate network and host part. For example,

192.168.0.0/21. Hence, instead of classful addressing, which restricts the bits of network

address to 8, 16 or 24 bits, CIDR allows the range from 1 to 29 bits.

Another method to solve address shortage is Network address translation (NAT)

[8]. This process enable a large number hosts on a private network share a small number

of public IP address. When a packet transmits between the local networks to the Internet,

the address on the packet is translated to a public address. Thus, Internet can contain far

 5

more hosts than its normal capacity, while it makes the end-to-end application difficult to

be implemented.

1.2.2 IPv6 (Internet Protocol Version 6)

Although CIDR and NAT schemes are helpful to alleviate the IPv4 address

exhaustion, they are considered as short-term solutions. They do not solve the problem

completely. A new protocol with a larger address space has been proposed and started to

use, IPv6.

 IPv6, Internet Protocol version 6, is the next generation protocol designed to

replace current IPv4 [9]. It is also a data-oriented network layer protocol to transmit data

across a packet-switched network, similar to its predecessor. The major change from IPv4

to IPv6 is the length of network addresses. IPv6 enlarged address format form 32 to 128-

bit, which has the potential to have up to 1282 addresses. At present time, only a small

portion of these addresses have been assigned to devices, and many addresses are

available for future use. There is no need to have NAT any more due to the large address

capacity of IPv6.

There are three types of IPv6 addresses: Unicast, Anycast, and Multicast address

[10]. Unicast address is used to identify one single interface, while other two are used for

a set of interfaces. There are two notations for 128-bit IPv6 addresses. One is writing as

eight 16-bit integers separated by colons. Each integer is represented by four hexadecimal

digits. For example,

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

 6

Another notation is used to represent address prefixes. It is similar to the CIDR notation

for IPv4 addresses. For example,

12AB:0000:0000:CD30:0000:0000:0000:0000/60

And this address is also compacted as 12AB:0:0:CD30:: / 60. The first part is a valid

IPv6 address, and the decimal value tells us its prefix length.

IPv6 has additional features. The header format of IPv6 packet is simpler than that

of IPv4. It is only composed of six fields, followed by two 128-bit IPv6 source and

destination addresses. The total length of header is 40 bytes, while IPv4 has 10 fixed

header fields, two addresses and some options. The length of its header is variable. IPv6

is relatively easy to manage because of its hierarchical addresses. IPv6 also provides

fundamental support for security and quality-of-service (QoS).

1.3 Internet routing and address lookups

IP routing plays an important role in the forwarding of packets through the

Internet. It decides how and where to deliver incoming packets to the appropriate output

interface of a router using the packet’s destination address. Usually, this process involves

two basic activities: determining optimal routing paths and transporting packets through

the Internet. The first part is more relative to our research topics, that is, determining

which output ports that the received packets should be forwarded to. This process is

completed inside a router [11].

 7

1.3.1 Router architecture

Router is a network device that physically connects similar or different networks.

It makes decision about where and how to deliver an incoming packet to the appropriate

output interface by using its destination address. In this dissertation, the network router

architecture has the form shown in Figure 1.2 where there is a set of input ports that

receive packets from other nodes in the network, a switching fabric that forward these

packets to the proper out port, and a set of output ports that deliver the packet to the

following hop.

input port

input port

input port

switching
fabric

routing
processor

output port

output port

output port

Figure 1.2: General router architecture.

1.3.2 Basic routing process

The process is performed by looking up entries in a routing table, which contains

information relating to other networks and hosts in the Internet. Routing table is

initialized and updated to determine path by variable routing protocols, such as RIP[12],

OSPF[13] etc. Each entry in the routing table comprises an address prefix, a forwarding

address, and the interface to which the packets should be delivered when their address

 8

prefix matches [14, 15]. The router makes decision based on route entries in the routing

table, which is maintained in memory storage.

The routing process works as follows:

 The router receives a packet from one of router’s interface

 It extract the destination address in the packet, and then check it in routing table to

see if there is a match to forward this packet.

o If there is a match that informs us the output port to the subnet directly

attached, then send this packet to the destination host by lookup ARP for a

MAC address.

o If the router determines the destination network is not local, then deliver

the packet to next hop router.

o If there is no directly match in the routing table, deliver the packet to a

default port. If there is no such port, it sends an error back to source.

Figure 1.3: IP routing process.

 9

1.3.3 Route lookup schemes

Typically, there are two lookup mechanisms: exact match searching and longest

prefix matching searching (LPM).

Exact match is very direct. Each entry in the routing table is of fixed length. By

comparing the whole destination address of the arriving packet to the entries in routing

table, we can get the port simply. This method can be realized by direct lookup, or

hashing techniques. For example, 4-bit address 1011 is found an exact match in the

following routing table and it will be delivered to port B directly in Figure1.4.

Figure 1.4: An example of exact matching.

LPM is a method to make a delivering decision by the address and its prefix.

When a packet arrives, IP router finds entries matching with the incoming packet’s

destination address and selects the entry with the longest prefix. Then forward the packet

to the output port that the selected entry provides. Since the destination address of an

arriving packet does not carry the prefix length information, routers need to search among

the space of all prefix lengths as well as the space of all prefixes of a given length. Hence

the longest prefix matching is more complicated to implement than the exact matching.

LPM can be realized by PATRICIA trie, or TCAM [15].

 10

1.4 Challenges

With the continuous growth of the Internet, higher demands are placed on the IP

routing in terms of speed; in particular, the growth of link bandwidth requires

increasingly fast IP routing table lookups. A router needs to handle roughly 1,000 packets

per second for every 610 bits per second of line rate [17]. Therefore, 10M routing lookups

per second are needed for a current route with the line rate of 10 Gb/s (OC-192).

Moreover, in the near future, the line speed will grow towards 40 Gb/s (OC-768) with the

continued technological advances in optical and electronic devices [16]. Such a high line

speed requires fast lookups to match.

In addition, routing tables are becoming larger with the development of Internet;

the implementation of IPv6 needs more memory storage because of its long address

format. Thus a large memory is usually required to store such tables in a local router.

This in turn may restrict the lookup speed since the complete routing table is stored in

main memory with slow access time. Memory access time becomes a long-term

bottleneck. It slows down the address lookup operation.

With regards to the above challenges both in speed and space for IP routing, the

purpose of our research is to provide high-performance routing schemes and technologies

without cost overhead.

1.5 Outline

The remainder of this dissertation is organized as follows. Chapter 2 presents

three improved cache schemes and their implementation of pipeline. We estimate their

performance both from cache hit rate and throughput speedup. Chapter 3 discusses the

 11

impact of cache replacement policies; provides two optimized policies which make

replacement decision based on route’s history activities. Chapter 4 proposes four

compaction schemes for routing table entries by taking advantage of the special

characters of Ternary CAM. We analyze their cache performance and memory

consumption. Chapter 5 deals with port error occurrence caused by caching. This

chapter describes two novel sampling techniques to alleviate this problem. Chapter 6

describes new set associative caching with regard to the compaction schemes. We

develop this scheme based on the practical routing table address space and historical

cache hit distribution. Chapter 7 provides some concluding remarks which include a

summary of the contribution of this research work.

 12

Chapter 2

Cache Architectures for IPv6 Routing and Address

Lookups

2.1 Introduction

With the large Internet growth, the speed of IP route lookups is becoming an

important issue that has a great influence on the overall performance of network

processors. One of the significant factors is the slow access time of main memory, where

the routing tables are usually saved. Since small storage has the advantage of high

memory access speed and low power consumption, caching technique can be used in

network processor to solve this problem. The method is storing the most frequently used

destination addresses and their forwarding information in cache to reduce the average

memory access time. Using a cache scheme one has to take into account the impact of

cache size, replacement policies, and associativity on cache hit rate.

In this Chapter, we present several novel cache schemes and implement their

pipelining architectures to enhance the performance of route lookups. These schemes are

all improvements based on common cache architecture. One scheme uses a victim cache

(VC) to save the entries discarded by the main cache. Another uses randomly selected

index (RSI) to redirect indexes away from those entries that have a large potential of

 13

having conflict misses. The last scheme uses a combination of these two above schemes

to obtain more enhancements. Moreover, using pipelining, the system throughput is also

greatly increased. Our studies here focus on the next generation IP address, IPv6, on

which the memory access time is crucial because of its long address format (128 bits). All

these schemes are realized and evaluated through extensive IPv6 traces. The simulations

later validate that these schemes help to reduce conflict misses effectively.

This chapter is organized as follows. In Section 2.2, an introduction about route

lookups and related works are provided. Section 2.3 describes that victim cache

architecture, randomly selected index method; the combinational scheme of both to

improve routing performance. The implementation of pipelining is presented in Section

2.4 to enhance the system throughput. In Section 2.5, we present the simulation results

using IPv6 routing information. Some conclusion remarks are provided in Section 2.6.

2.2 Route lookup fundamentals

In this section, we begin with a brief description of route lookup approaches by

other researches, and then provide the conventional caching technique for routing

operations, which is particular important for our improved caching schemes.

2.2.1 Route lookup approaches

There have been a number of techniques proposed to increase the performance of

lookups in Internet processor, roughly, which can be divided two major approaches.

One approach is based on hardware solutions [17, 18, and 19]; this is the

emphasis of our proposed schemes. DIR-24-8-Basic scheme was proposed by Gupta [17].

 14

It is implemented for IPv4 routing. It includes two tables, TBL24 and TBLlong, to store

all possible route prefixes that are less than 24 bits and greater than 24 bits, respectively.

The lookup method is simple and efficient for IPv4, because more than 99% of prefix in

routing table have 24 bits or less. Huang proposed another lookup mechanism later but

based on SRAM, which simplified hardware design [18]. However, both schemes

depend on the prefix distribution and are difficult to scale to IPv6, because of its long

address of 128 bits. This requires a lot of memory to store all possible prefixes for IPv6.

Ternary content addressable memory (TCAM) is able to match in parallel stored

data with incoming data [22, 23, 15]. The major advantage of this memory is the o(1)

search time; i.e. only one memory access. However, it requires an extra priority encoder

to deal with the problem that several matches occur at the same time. This increases the

complexity in hardware. And for IPv6 with long length of 128 bits, there will be a

challenge to store long length entries in TCAM because of its high price and power

consumption.

Another kind of approaches is software method in which efficient lookup

algorithms are used to find the longest prefix matching of a destination address, which is

stored in a table data structure [20, 21]. These algorithms are designed to produce short

searching path or reduce the memory storage requirements.

2.2.2 Cache architecture for IP routing

Cache memories are widely used in computer systems. In a program (with many

memory accesses) it is very likely that the same data in memory is accessed multiple

times in a short time period; this is called temporal locality. Thus, a small and fast

 15

memory can be used to reduce lengthy memory access times. Studies have shown that the

network packet streams indeed have temporal routing locality. That is, a routing entry

accessed before it is possibly referenced again in a short period of time. This feature

allows caches to be used in IP address lookups. Consequently, more active forwarding

entries are saved in cache; this in turn has the potential of making lookup faster.

The process of lookups is associated with a destination address. When a router

receives a packet from one of its interfaces, the destination address in this packet is

extracted, and compared with current entries in the cache using a Longest Prefix

Matching (LPM) mechanism. The basic organization of the cache is depicted in Figure

2.1. If there is a matching entry in cache, this packet will be delivered to the interface

specified by this entry. If a miss occurs, an address search is made in the large routing

table stored in memory. Subsequently, the matching entry is written back into cache.

Here, we use Least Recently Used (LRU) replacement policy, in which the route entry

that has not been accessed for the longest time will be evicted from the cache.

Figure 2.1: A cache organization for IP address lookup.

 16

The average memory access time (AMAT) of the cache organization is

determined as follows [24].

))1(()(memorycachecachecache ATHATHAMAT ×−+×= (Equation 2.1)

where Hcache is the cache hit rate, ATcache is the cache access time, and ATmemory

is the routing table access time.

Current technology and memory implementations indicate that cache (using

SRAM) has an access time that is 8 to 16 times faster than main memory (using DRAM)

[24]. It is clear that a cache technique is needed to obtain small average access time. A

small size cache usually yields low access time (ATcache) while temporal locality helps to

increase hit rate (Hcache). This chapter deals with different cache architectures to increase

hit rate without hardware implementation overhead.

2.3 Proposed cache architectures

Similar to a generic CPU cache memory, the data searched in routing operations

are associated with incoming destination addresses. Although cache misses due to

conflict can be reduced by using higher associative cache [24], such cache also tends to

increase hardware complexity and affects performance [25]. Therefore, direct-mapped

(DM) cache is usually used in order to keep design simple. In this section we present

three schemes that are based on DM cache and need no special memory devices, but can

achieve effective cache performance.

2.3.1 Victim cache architecture

 17

Victim cache (VC) was first proposed by Jouppi [26] to reduce misses without

affecting the hit time or the miss penalty. It is a small, fully associative cache that stores

those entries discarded by the active (or primary) cache. If those entries are needed later,

they will be retrieved from VC. Thus, there will be no need to access the routing table.

Figure 2.2: Victim cache architecture.

Victim cache architecture for our application is shown in Figure 2.2. Destination

address is first sent to both caches. The cache is indexed by some bits of the address,

while the whole address is compared in the VC. There are three possible outcomes, when

both caches perform a lookup. These are:

Cache Hit. There is a hit on main cache; thus, the forwarding port can be retrieved

from this cache.

Victim Cache Hit. There is hit on victim cache and not hit on cache. The forwarding

port can be retrieved from this victim cache. A swap between this matching entry in the

victim cache and its corresponding entry in the main cache is performed.

 18

Cache System Miss. Both main cache and VC have a miss. Using a replacement

policy, the new entry from the routing table is placed into the main cache. The discarded

entry is placed into VC. We use least-recently used algorithm (LRU) as replacement

policy for VC, i.e. replaced entry is the one that has been unused for the longest time.

2.3.2 Randomly selected index architecture

If we use direct-mapped cache, conflict problems affect hit rate negatively. In our

simulations, we observed that there are some entries that are prone to conflict problems.

Hence, we propose the randomly selected index scheme to reduce conflict misses for DM

cache.

Based on statistics of the behavior of the cache conflict misses over a period of

time, we can adjust the mapping of the cache. Conflict misses occurrence is due to

mapping of entries to the same location in cache. We label the index of the entry that

prone to conflict misses as a predictor and use it to predict misses in the next period. In

next period, if one index from a destination address is accessed to the set that is the same

as predictor, then we use randomly selected mechanism to choose another set indexed

uniformly. This method avoid many conflict misses that might occur in the set have most

misses before, and disturbed them to some other sets with less accessed or less misses.

This technique has a simple implementation and can enhance the performance of cache

by reducing cache misses due to conflict.

In Figure 2.3, the Index Selections (IS) of the scheme is shown. For a direct-

mapped cache with the size of 512 entries, each index needs to be 9 bits. In the case that

the original index of a destination address matches with the predictor, another index bits

 19

are chosen randomly from a range in the address with the priority from top 1 (when there

is no match with the entry address) down to 4. Once these bits are selected they are kept

fixed for this period of the simulation. In this figure, input 1 is the original index of 9 bits,

and input 2, 3 and 4 are new indexes of 9 bits that randomly selected from the following

bit positions of the IPv6 address 89-118, 30-88, and 0-29, respectively.

Figure 2.3: Index selection scheme.

2.3.3 Combination of the above two methods

Obviously, there are still some conflict misses even with the implementation of

the above two methods. Due to the independence of these methods, we can use a

combination of them to achieve further improvements. Using both victim cache and

randomly selected index, cache hit rate can be increased.

2.4 Pipelining implementation in IP routing

In order to keep a high throughput for the above mechanisms, we propose pipeline

structures. Pipelining is an implementation technique whereby multiple instructions are

 20

overlapped in execution [24]. The proposed pipeline is divided in three stages. Since

these stages are independent, the pipeline has no data hazards. Figure 2.4 shows the

pipeline with index selection, which has the following stages.

Stage 1. Index Selections (IS). Select different index to reduce conflict miss, if

needed.

Stage 2. Cache Access (CA). Access cache (this includes VC access)

Stage 3. Get Port (PT). If a hit occurs in cache, the forwarding information is

retrieved directly; otherwise, the address is sent to routing table to find the

port.

Figure 2.4: Pipeline for index selection cache architecture.

The length of the machine cycle is determined by the time required for the slowest

pipe stage. Hence, the balance of the length of each stage should be considered in

pipeline. If the stages are perfectly balanced, then the speedup from pipelining equals the

number of pipe stages [27], however, the stages usually do not be perfectly balanced. For

each lookup in cache architecture, if a hit occurs in cache, the forwarding information is

retrieved at once. If there is a miss in cache, we need more time to get results. Usually,

the time to get data from memory is called penalty [24]. The number of cycles in the

penalty depends on the memory type.

 21

Figure 2.5: Routing table and cache Architecture.

Figure 2.6: An example of route lookup operations in pipelining.

Figure 2.5 shows an implementation of the proposed scheme that shows the

routing table. A buffer is used to store the entries that are being searched at the routing

table when a miss occurs. There are three possible results when compare one destination

address with the entries in cache, routing table or buffer. If a match in cache, it is a hit. If

 22

no match in cache and buffer, it is a miss. If no match in cache and a match in buffer, this

is considered a pseudo-miss. The miss penalty is less than those of a real miss since the

entry is being searched in the routing table. Figure 2.6 shows an example of route lookup

operations in pipelining.

2.5 Performance analysis and evaluation

Cache hit rate is one of major measurements of performance for a cache memory

architecture. It also provides a good indication of the potential gain in performance.

Because main memory access time is much longer than cache access time, many searches

in memory will slow down the lookup process. However, with a higher hit rate, fewer

routing table memory accesses are needed. In this section we evaluate the performance of

the proposed schemes and their pipelined implementation.

2.5.1 Routing information

Evaluations of our proposed caching schemes are based on six IPv6 trace files

which are downloaded from the Measurement and Analysis on the WIDE Internet

(MAWI) Working Group http://tracer.csl.sony.co.jp/mawi/ [28]. Each trace file has 2

million destination addresses. The length of each IPv6 address is 128 bits, which is four

times longer than the current network address IPv4. Analyzing these destination

addresses in each trace file, we found that there are only several thousands unique

addresses. This in turn indicates there exists temporal locality in these trace files and it

supply the possibility of using a cache architecture. The ratio of number of packets to

 23

number of unique address is shown in Table 2.1. The higher ratio indicates higher

locality.

Table 2.1: IPv6 address traces (2M packets/trace).

Trace
ID Number of unique IP address Ratio
030715 1022 1957
031015 1539 1299
031213 3164 632
031214 3949 506
031215 3681 543

2.5.2 DM and set associative cache performance

Table 2.2 shows hit rate of DM cache with different cache size. Figure 2.7 shows

this information in a graphical form. From this graph it can be observed that as cache size

is increased the hit rate improves. The improvement rate diminishes as memory size

grows. The curves are almost flat after the point of 1024 entries.

Table 2.2: Hit rate of direct-mapped cache with different sizes.

Cache size (number of entries) Trace
ID 64 128 256 512 1024 2048

030715 95.08% 95.94% 96.69% 96.98% 97.16% 97.19%
031015 88.21% 90.11% 93.74% 94.45% 94.64% 94.84%
031213 76.92% 80.96% 84.73% 86.68% 88.69% 89.40%
031214 52.65% 61.55% 69.48% 73.26% 76.57% 78.05%
031215 60.33% 67.18% 73.72% 77.07% 79.59% 80.82%

 24

50.00%
55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

64 128 256 512 1024 2048
cache size

hi
t r

at
e

030715 031015 031213
031214 031215

Figure 2.7: Plot of hit rate of DM cache with different size.

By increasing cache associativity, a better hit rate is obtained. Table 2.3 shows the

512-entry cache hit rate for each our traces under different cache associativities including

direct-mapped, 2-, 4-, 8-way and fully associative. The data in Table 2.3 has been plotted

and shown in Figure 2.8. It should be pointed out that, in general, higher associativity

increases the complexity of hardware and hit time [24].

Table 2.3: Hit rate of cache with different associativity.

Trace
ID DM 2-way 4-way 8-way Associative

030715 96.98% 98.28% 99.27% 99.64% 99.91%
031015 94.45% 96.94% 98.20% 99.28% 99.81%
031213 86.68% 91.35% 94.54% 96.71% 97.68%
031214 73.26% 83.57% 90.35% 93.98% 96.52%
031215 77.07% 85.31% 91.43% 94.74% 96.81%

 25

70

75

80

85

90

95

100

DM 2-way 4-way 8-way Associative

Associativity

Hi
t

ra
t
e

(%
)

20030715
20031015
20031213
20031214
20031215

Figure 2.8: Plot of cache hit rate with different associativity.

2.5.3 Victim cache (VC) architecture performance

For the victim cache, we have chosen the number of entries to be 4, 8 and 16 and

compare the performance with the cache without VC. Table 2.4 shows the hit rate of

victim cache associated with a 512-entry primary cache.

Table 2.4: Hit rate of VC architecture.

Hit rate increments of victim cache (VC)
Trace ID 4-entry 8-entry 16-entry
030715 98.66% 99.06% 99.28%

031015 97.38% 98.07% 98.47%

031213 90.10% 91.81% 93.25%
031214 80.84% 84.31% 87.25%

031215 83.92% 87.01% 89.41%

Comparing VC and DM (Table 2.3) we observe the following:

 26

• The range of improvement goes from 1.68% to 13.99% when comparing with a

simple DM cache.

• DM cache cooperating with a 16-entry victim cache can achieve a hit rate better

than 2-way or 4-way set associative cache of the same size.

• For all of these traces, the hit rate of cache 256 with 16-entry victim cache is

better than direct-mapped cache and close to 2-way associative cache with the

size of 512 entries. This seems to reduce 48.43% the memory (storage)

requirements. Similarly, 512-entry cache with 16-entry victim cache has a better

hit rate than direct-mapped cache with the size of 1024 entries, or even better than

2048 entries; and close to 2-way associative cache with the size of 1024

entries(see Figure 2.9).

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

030715 031015 031213 031214 031215

trace file

hi
t r

at
e

4-vc 8-vc 16-vc
2048-cache 1024-cache 512-cache

Figure 2.9: Compare between VC and cache.

2.5.4 Randomly selected index (RSI) performance

We have chosen two traces (031214 and 031215) to evaluate our prediction

scheme. The prediction is based on an earlier trace 031213. It should be pointed out that

 27

these traces were obtained in three consecutive times. Every time the prediction is

changed the cache has to be flushed. Table 2.5 shows there are hit rate increments of

these two traces with RSI ranging from 9.98% to 11.29% over direct-mapped cache with

cache size. The RSI performance is between 2-way and 4-way set associative with the

same cache size. Although there is requires a stage to process index selection in this

scheme, it also decreases miss rate without any damage on processing time if implement

it in pipelining.

Table 2.5: The performance of RSI.

Cache size
Trace ID

Schemes 256 512 1024

DM 69.48% 73.26% 76.57%
031214 RSI 79.91% 84.55% 86.55%

DM 73.72% 77.07% 79.59%
031215 RSI 84.05% 87.52% 89.69%

2.5.5 Combination of VC and RSI performance

 Table 2.6 shows an example of 512-entry main cache with different

implementations. Obviously, the VC and RSI have the similar performance for the

following two trace files. Moreover, if we combine the VC and RSI schemes together, the

increments in hit rate are on the order of 2~3%.

Table 2.6: Performance of three schemes.

Trace ID DM w/ 8-entry VC RSI Combination
031214 73.26% 84.31% 84.55% 87.24%
031215 77.07% 87.01% 87.52% 89.92%

2.5.6 Pipelining technique

 28

As we mentioned before, the pipelining technique is used to overlap the execution

stages of one operation. It does not decrease the time for each lookup, but it increases the

throughput. Hence, we choose the number of clock cycles needed to process 2M

destination address traces as one measure of the performance of the pipeline besides a

measure of hit rate.

Table 2.7: Hit rate of cache with pipeline and penalties (trace 031215).

Cache size
Penalty 256 512 1024 2048 Maximum

0 91.09% 96.81% 99.44% 99.77% 99.82%
1 88.72% 95.84% 99.36% 99.74% 99.79%
2 88.22% 95.67% 99.32% 99.72% 99.77%
3 87.79% 95.54% 99.29% 99.71% 99.76%
4 87.48% 95.45% 99.27% 99.69% 99.75%

86

88

90

92

94

96

98

100

256 512 1024 2048 Maximum

Cache size

H
it

ra

te

(%

)

0-penalty

1-penalty

2-penalty

3-penalty

4-penalty

Figure 2.10: Plot of hit rate of cache with pipeline and penalties.

 29

Table 2.7 shows the change of hit rate in pipeline. We choose trace 031215 as a

sample. We use a buffer to store the entries in waiting states in pipelining. It is assumed

that the cache could continue receiving requests while the routing table is accessed (in a

miss case). This in turn has an effect on cache hit rate due to locality (such as two

consecutive requests to the same address). Figure 2.10 shows that as the cache size

increases the penalty has less impact on cache hit rate.

Table 2.8: Clock cycles of fully associative cache with pipeline and penalties

Cache size
Penalty 256 512 1024 2048 Maximum

0 2000001 2000001 2000001 2000001 2000001
1 2113174 2041026 2009254 2003670 2002982
2 2140794 2055980 2010129 2004050 2003299
3 2143183 2056746 2010270 2004114 2003350
4 2147131 2058001 2010524 2004213 2003426

1950000

1990000

2030000

2070000

2110000

2150000

0 1 2 3 4

Penalties

C
y
c
l
e
s

256-entry
512-entry
1024-entry
2048-entry
Maximum

Figure 2.11: Plot of clock cycles of fully associative cache in pipeline.

 30

Table 2.8 and Figure 2.11 include the clock cycles information to finish the

lookup of trace 031215. Increasing the cache size leads to an increase on hit rate and

decreases on conflict misses and the stalls used to solve structure hazards. Hence, the

number of total cycles decreases and the average cycle per address also goes down. As

penalty increases the number of cycles increase. Compared with those of scheme without

pipeline, the speedup ranges from 1.89 to 1.99 depending on the cache size and the miss

penalties.

The following tables have information about the performance of direct-mapped

cache, fully associative cache, victim cache architecture, and randomly selected index

architecture with pipeline. Taking trace 031215 with 512-entry cache as an example, the

VC and RSI still have about 10% increment over DM cache. All cache architecture’s hit

rate is decreasing because of the increasing penalty; see Table 2.9. The number of clock

cycles needed is shown in Tables 2.10. The throughput speedup is ranging form 1.75 to

2.99 depending on pipeline stage and time penalty as compared with those without

pipeline.

Table 2.9: Hit rates of pipelining architectures.

Cache organizations
Penalty Fully VC RSI DM

0 96.81% 89.41% 87.18% 77.07%
1 95.84% 87.11% 84.51% 73.60%
2 95.67% 86.50% 83.68% 72.36%
3 95.54% 85.96% 82.93% 71.04%
4 95.45% 85.51% 82.22% 69.73%

 31

Table 2.10: Clock cycles of pipelining architectures.

Architectures
Penalty Fully VC RSI DM

0 2000001 2000001 2000002 2000001
1 2041026 2143138 2168880 2260315
2 2055980 2166798 2192301 2273450
3 2056746 2168328 2192876 2262312
4 2058001 2170727 2193457 2243828

In pipeline, another factor we consider is the ratio of the number of pseudo misses

to the number of real misses. This is shown in Table 2.11. If the ratio is high, like the

penalty 3 and 4 of DM cache, clock cycles do not increase as fast as for lower penalties.

The reason is that there are relative more pseudo-misses.

Table 2.11: Ratio of pseudo miss to real Miss.

Architectures
Penalty Fully VC RSI DM

0 0 0 0 0
1 0.305 0.2191 0.2161 0.2011
2 0.3566 0.2788 0.2882 0.3138
3 0.4 0.3334 0.3581 0.4549
4 0.4278 0.3799 0.4283 0.6471

The buffer size of all simulation does not change a lot with these different architectures.

Buffer size ranges from 1 to 57 depending on the penalty size.

2.6 Summary of this chapter

In order to speed up the route lookup process, a cache architecture is generally

used in network processors. A cache is a small memory with a short memory access time.

 32

Based on the conventional caching technique, we proposed three improved schemes that

need no special memory devices. They are investigated to reduce conflict misses of

general direct-mapped cache architecture. Their implementations in pipeline are also

analyzed. The simulations on IPv6 routing show our proposed schemes achieve better

performance[29,30]. The summary of our features is as follows.

• Victim caching: The VC hit rate increments range from 1.68% to 13.99%

depending on the cache size,when comparing with a simple direct-mapped cache.

DM cache cooperating with a 16-entry victim cache can achieve a hit rate better

than 2-way or 4-way set associative cache of the same size.

• Randomly selected Index: the cache hit rate increments of two traces (20031214

and 20031215) with RSI range from 9.98% to 11.29% over DM cache. The RSI

performance is between 2-way and 4-way set associative with the same cache

size.

• Combination of the two methods: There is about 1%~3% over that of using one

schemes, if we put the VC and RSI together.

• Pipelining: The route lookup throughput is increased significantly using

pipelining. Compared with fully associative caching without pipelining, the

speedup of throughput ranges from 1.89 to 1.99 depending on the miss penalty

and cache size. Given a 512-entry main cache, the throughput speedup is ranging

form 1.75 to 2.99 depending on pipeline stage and time penalty as compared with

different schemes without pipelineling.

 33

Chapter 3

Cache Replacement Policies for IP Address Lookups

3.1 Introduction

In this chapter, the replacement policies of cache management are studied and two

new replacement policies are presented aimed at IP routing and address lookups. In the

previous chapter, we already know the cache architectures are generally used in network

processors to satisfy the high demands on IP routing in terms of speed [31, 32, 33]. This

is achieved by simple storing the most frequently accessed routing table entries within a

small cache memory that has much shorter access latency than the main memory where

the routing table is usually stored. By caching, if a destination address does not match

any entry in cache, the whole routing table is searched, and then the cache is updated. In

order to decide which entry in the cache should be replaced with a new one from routing

table, a replacement policy needs to be considered.

In current cache organizations, two replacement policies are commonly used:

Least Recently Used (LRU) and Least Frequency Used (LFU). Both of them take into

account one parameter in replacement estimation. In this chapter, we propose two new

policies, namely Least Access and Recently Used (LAR) and Relatively Least Average

Interval (RLAI) policy, which help to achieve higher cache hit rates and in turn to make

 34

routing table lookups fast. These two policies are utilized in a simple fully associative

cache while running both IPv4 and IPv6 traces respectively, and enhance both IP routing

performance without cost overhead.

This chapter is organized as follows. In Section 3.2, two conventional

replacement policies are described. Section 3.3 introduces our two novel replacement

policies. The simulation results using IPv4 and IPv6 traces are provided in Section 3.4

Some conclusions are presented in Section 3.5.

3.2 Existing replacement policies

In cache architectures, a well-known factor that is affecting the performance of

caches in general is the replacement policy. As for IP routing, when a fully associative

cache saved a part of route entries is full and another entry found a match in the routing

table needs to be included; a decision must be made to decide which entry in the cache to

be replaced with a new one. Least Recently Used [43] and Least Frequently Used [44] are

two of the most commonly used replacement policies in cache systems. These policies

are briefly described below.

Least Recently Used (LRU) policy: this policy keeps a list of entries that are

currently in the cache. When an entry is accessed, this entry is moved to the front of the

list. When a miss occurs and the cache is full, a replacement is needed; the entry at the

bottom of the list is removed. The new entry found in memory is placed into the cache

and the list is updated. Simply said, the LRU policy evicts the entry that has not been

accessed for the longest time.

 35

Least Frequently Used (LFU) policy: this policy evicts the entry that has been the

least frequently used. The motivation behind this policy is that some entries are accessed

more frequently than others in a given time. This policy sets an access counter as an

estimate of the frequency. The entry with the lowest access count is removed from the

cache.

3.3 Proposed replacement policies

 Replacement policies are important when storage conflicts occur. Some 'faulty'

replacements can lead to the removal of still useful cache entries. An effective

replacement policy should help to enhance a cache hit rate with inexpensive

implementation. In this section, we propose two novel replacement policies, which

involve more than one parameter to make an eviction decision. These policies can yield a

higher cache hit rate than the traditional LRU and LFU policies. In order to make the

following description concise, we use IPv6 routing information to illustrate these two

policies.

3.3.1 Least Access and Recently used (LAR) policy

The goal of this policy is to evict the relatively inactive entry. An inactive entry

is the entry that has not been accessed for a relatively long time and, potentially, it will

not be accessed in the near future. The potential future access is determined by a

parameter introduced in the new replacement policies which is based on the history of the

particular entry.

 36

By analyzing IPv6 traces, we found an interesting case that an entry just evicted

from cache by either LRU or LFU policies tends to be re-accessed in a short time later.

Table 3.1 shows an example of the number of entries that are re-accessed within M

number of lookups after being evicted by the LRU policy. This table shows different

number of cache entries.

Table 3.1: The number of re-accessed evicted entries for trace (A)031214.

Num.of lookups after eviction(M)

Num.of cache entries

Num. of evicted entries 0- 50 51-100 101-200 201-300 301-400

64 587968 69174 52114 64108 40614 30475
128 369922 18147 14972 24714 19681 17223
256 205667 4782 4297 7673 6612 6142

As for a given 64-entry cache, more than 69,000 entries among all the 587,968

entries are evicted but are re-accessed within the next 50 lookups. Over 50,000 evicted

entries are re-accessed between 51 and 100 lookups. Evicting entries that are accessed

within a small number of lookups decreases the cache efficiency. LRU or LFU have no

means to address this issue since they are implemented solely based on one aspect of the

past activity of entries in the cache. One is based on the unaccessed time, and the other is

on the access count. If we take into account both aspects, and choose the inactive entry in

cache, this will increase the hit rate. This in turn decreases the average memory access

time.

 In Figure 3.1, list A is a group of cache entries sorted by unaccessed time; this is

the same as that of the LRU policy. The recently accessed entry B is put in the top of list.

The LAR replacement policy removes the entry with the lowest access count among the

bottom N recently unaccessed entries in the list. In the example, entry C is the candidate

to be evicted by the LAR policy due to its lowest access count. However, if N is close to

 37

the number of the cache entries, and the candidate happens to be accessed recently, and

then we evict the least recently used entry instead of this candidate. That is, the evicted

entry by LAR is the result of considering both access time and access count.

Figure 3.1: LAR replacement policy.

The value of N could be optimized by analyzing the cache performance under

different N. Table 3.2 shows the hit rate increments of LAR over LRU policy for

different N with a 128-entry cache organization. Figure 3.2 shows that for N equal to 32

(1/4), the LAR policy achieves the best performance on the sample IPv6 traces. For the

traces we have studied the value of N that yields the highest hit rate is 1/4.

Table 3.2: Hit rate increment of LAR over LRU with different size N (128-entry cache).

N Trace
1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

A 1.22 1.82 1.79 1.29 0.98 0.54 0 0
B 1.05 1.61 1.53 0.98 0.76 0.46 0 0
C 0.92 1.27 1.08 0.87 0.81 0.58 0 0
D 0.53 0.68 0 0 0 0 0 0
E 0.51 0.83 0.55 0 0 0 0 0
F 0.55 0.96 0.99 0.83 0.37 0.11 0.02 0.02

 38

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
N

H
it

ra
te

 in
cr

em
en

t

A

B

C

D

E

F

Figure 3.2: Plot of the hit rate increments of LAR over LRU with different N.

3.3.2 Relatively Least Average Interval (RLAI) policy

The prime motivation for this policy is similar to LAR, but a different parameter

is considered when making replacement decisions. An array is used to save the average

interval between two accesses of the same entry. This interval is determined by counting

the number of lookups between such two accesses. Each time the entry is accessed a new

average interval is computed. If an entry is not accessed for a time larger than its average

interval, then it is considered as an inactive entry and it has the potential to be evicted.

This algorithm chooses an entry with the longest average unaccessed time among these

entries potential evicted. The implementation is depicted in Figure 3.3.

These replacement policies can be implemented using a simple linked list in

hardware. This list needs few entries with the size of the optimum N of the total cache.

These entries are arranged in the order of access count or average access interval.

 39

Figure 3.3: RLAI replacement policy.

3.4 Performance evaluation

In this section, we implement our proposed replacement policies on cache

architecture, and compare their performance to the LRU policy; we first use IPv4

destination address traces to evaluate the cache performance, and then extended to apply

these replacement policies on IPv6 traces to indicate that the policies proposed also

contribute to this new protocol. The routing information is shown in Table 3.3. We have

labeled these files from X to Z for IPv4 and from A to F for IPv6 to ease file references.

Table 3.3: IPv4 and IPv6 traces.

IP Trace files Number of unique
addresses

Ratio

(X) 060524 70627 28
(Y) 060609 76533 26

IPv4

(Z) 060615 63485 32
(A) 031214 3949 506
(B) 031215 3681 543
(C) 031216 3422 584
(D) 040128 3764 531
(E) 040129 3874 516

IPv6

(F) 040130 3772 530

 40

We also obtain IPv4 routing tables from the website of University of Oregon

Route Views Archive Project http://archive.routeviews.org/ [35]. In order to keep these

tables neat, we delete those redundant entries in tables. And obtain IPv6 routing tables

both from the machine “n6tap.es.net” on the website of 6TAP router information

http://www.6tap.net/ [36] and from the machine “route-server.he.net” on Hurricane

Electric Internet Services http://lg.he.net/cgi-bin/index.cgi [37] via telnet. Actually, since

currently there are few users on IPv6, the sample IPv6 routing table size is not large. We

have extended or combined tables to satisfy the unique destination addresses in the trace

files.

In our evaluation, we still choose hit rate as the measurement of performance for

cache architecture with different replacement policies. We do not include the LFU policy

to make comparisons, because its performance is usually worse than that of LRU. Table

3.4 is an example of trace (B) 031215 to show the difference between these two policies.

Obviously, the hit rate of LFU is less than that of the LRU by up to 19 % depending on

different cache sizes. The other test traces share the same trend as trace (B).

Table 3.4: Difference in hit rate between LFU and LRU of trace (B) 031215.

Num.of cache entries
Policy 64 128 256
LFU 56.05 67.75 81.60
LRU 75.70 84.53 91.18

Difference 19.65 16.78 9.58

 3.4.1 IPv4 performance evaluation

The following Table 3.5 shows the cache hit rate of the three replacement

policies, including the two novel policies we introduces with different number of cache

 41

entries. Figure 3.4 indicates that the average hit rate changes with the increasing cache

entries.

Table 3.5: Cache hit rate with different replacement policies (IPv4).

Traces Num.of cache
entries Policy X Y Z Average

LRU 73.94 69.12 74.76 72.61
LAR 78.11 74.60 79.51 77.41

512 RLAI 78.26 74.85 79.70 77.60
LRU 83.98 81.45 85.43 83.62
LAR 85.58 82.52 87.10 85.07

1K RLAI 85.54 82.32 87.10 84.99
LRU 89.53 88.04 91.29 89.62
LAR 90.1 88.85 91.72 90.22

2K RLAI 90.04 88.81 91.70 90.18
LRU 92.71 91.88 94.12 92.90
LAR 92.89 92.41 94.35 93.22

4K RLAI 92.84 92.40 94.32 93.19

65

70

75

80

85

90

95

512 1K 2K 4K
Number of cache entries

H
it

ra
te

(%
)

LAR
RLAI
LRU

Figure 3.4: Average cache hit rate performance.

 42

From the above information, it can be observed that both LAR and RLAI policy

have a better performance than the common LRU. If LRU is applied, only one parameter

is considered in replacing an entry. This entry, however, may be needed shortly after it

has been removed. When using our proposed policies, this problem is alleviated. Our

simulation results show that the hit rate is increased from 0.18% to 5.48% for LAR and

from 0.13% to 5.73% for RLAI, depending on the trace files and the number of cache

entries.

Table 3.6 shows another aspect of cache performance, i.e. increment ratio, which

is the ratio of the hit rate increment by novel replacement policy to the hit rate increment

by doubling the number of cache entries. Obviously, without any change in cache size,

our proposed policies can achieve up to 46% increment performance by comparing with

doubling the cache. Although the hit rate improves as the cache size doubles, the expense

on caches also increases, especially for expensive fully associative cache. Thus our

replacement policies are of advantage to enhance cache performance without the

overhead cost.

Table 3.6: Increment ratio of cache performance.

Traces
Num. of cache entries Policy X Y Z Average

LAR 41.51 44.5 44.51 43.51
512 RLAI 43.01 46.49 46.31 45.27

LAR 28.72 16.37 28.50 24.53
1K RLAI 28.07 13.26 28.53 23.29

LAR 17.82 21.19 15.10 18.04
2K RLAI 16.01 20.02 14.36 16.80

 43

Obviously, the LAR and RLAI policy are actually good at achieving higher hit

rate with regard to IPv4 routing information. We will show below both of them keep

effective when extending to IPv6 routing lookups, which is important for Internet

development in future.

3.4.2 IPv6 performance evaluation

By applying these two replacement policies LAR and RLAI, the cache hit rate

with different number of cache entries when processing six IPv6 traces is explained in

Table 3.7. Figure 3.5 depicts the different hit rates for a 128-entry cache.

Similar to IPv4 routing, our simulation results of IPv6 show that the hit rate is

increased from 0.17% to 2.35% for LAR and from 0.83% to 2.58% for RLAI, depending

on the trace files and the number of cache entries. Actually, LAR and RLAI yield over

thirty thousand additional matches (or hits) as compared to LRU.

Table 3.7: Cache hit rate with different replacement policies (IPv6).

Traces Num.of
cache
entries

Policy
A B C D E F Average

LRU 70.60 75.70 76.63 80.34 81.64 84.01 78.15
LAR 72.27 76.95 77.89 81.36 82.34 84.18 79.17 64
RLAI 73.01 77.64 78.59 81.90 82.93 84.84 79.82
LRU 81.50 84.53 85.26 88.49 88.96 89.85 86.43
LAR 83.31 86.14 86.53 89.17 89.79 90.84 87.63 128
RLAI 83.85 86.57 87.12 89.90 90.30 91.27 88.17
LRU 89.70 91.18 92.13 93.88 94.14 94.83 92.64
LAR 92.05 93.07 93.56 95.04 95.16 95.61 94.08 256
RLAI 92.28 93.48 94.02 95.27 95.29 95.77 94.35

 44

80%

82%

84%

86%

88%

90%

92%

A B C D E F
trace f i le

H
it

ra
te

LRU
LAR
RLAI

Figure 3.5: The performance of cache with the size of 128 entries.

Figure 3.6 depicts the average hit rate with the increasing cache size (number of

entries). As we mentioned before, since the cache cost must be increasing with the

increasing cache size, our replacement policies help to enhance cache performance. The

RLAI is a little better than the LAR, and both of them have higher hit rate than the LRU

policy for different cache sizes. The improvement rate diminishes as the cache size

grows. The higher hit rate in turn is translated into higher speedup of the routing table

lookup.

70

75

80

85

90

95

100

64 128 256
Number of cache entries

H
it

ra
te

(%
)

RLAI

LAR

LRU

Figure 3.6: Average cache hit rate with increasing cache entries.

 45

3.4.3 AMAT speedups

To compare the impact of the proposed policies on the average memory access

time (Equation 2.1), we use speedup as the main metric [24]. The speedup here is the

ratio of the AMAT by LRU and the proposed policies. For example, the speedup of RLAI

is shown in Equation 3.2. Assume routing table access time is L times larger than cache

access time.

RLAI

LRU

AMAT
AMATSpeedup =

 (Equation 3.2)

1

1.02

1.04

1.06

1.08

1.1

LAR RLAI

Sp
ee

du
p

of
 IP

v4
 tr

ac
es

X 1.03 1.06 1.08 1.03 1.05 1.07

Y 1.02 1.03 1.04 1.02 1.03 1.04

Z 1.04 1.06 1.09 1.04 1.06 1.09

4 8 16 4 8 16

1

1.02

1.04

1.06

1.08

1.1

1.12

LAR RLAI

Sp
ee

du
p

of
 IP

v6
 tr

ac
es

A 1.04 1.03 1.03 1.02 1.02 1.02

B 1.06 1.06 1.05 1.03 1.03 1.04

C 1.08 1.08 1.06 1.04 1.05 1.06

D 1.05 1.04 1.04 1.03 1.03 1.03

E 1.08 1.07 1.07 1.06 1.06 1.06

F 1.1 1.1 1.1 1.08 1.08 1.09

4 8 16 4 8 16

Figure 3.7: AMAT speedups of LAR and RLAI.

 46

Figure 3.7 depicts the speedups gained by the LAR and RLAI policies over LRU

for all traces. The AMAT speedup is improved up to 9% by the LAR and RLAI policy

for IPv4 traces. With regard to IPv6, this speedup by the LAR policy is increased by up

to 10%, while the RLAI policy improves the AMAT ranging from 2% to 9%. It can be

observed that the AMAT speedups are increasing with the increasing time penalties.

3.5 Conclusions

In a cache scheme, a replacement policy is used to make a decision about which

entry in cache should be removed to allow a new one to enter. This policy affects the

cache performance. In order to increase the cache hit rate for IP address lookup, we have

proposed two novel replacement policies and evaluated their impact. As compared to the

commonly used Least Recently Used (LRU) policy, the simulations show our proposed

policies achieve better performance on both IPv4 and IPv6 routing[34]. The features of

our replacement policies are as follows.

• Least Access and Recently used (LAR) improves hit rate from 0.18% to

5.48% for IPv4 and from 0.17% to 2.35% for IPv6 over LRU, respectively.

This policy makes a removing decision based on two major parameters:

unaccessed time and access count. It evicts the entry with the smallest access

count among N entries that have not been accessed for a long while.

• Relatively Least Average Interval (RLAI) policy improves hit rate from

0.13% to 5.73% for IPv4 and from 0.83% to 2.58% for IPv6 over LRU,

respectively. It uses the average interval between two accesses of one entry as a

 47

factor to make a decision. If an entry has not been referred longer than its

previous access interval, it can be potentially evicted.

• Our newly introduced policies tend to evict more inactive entries. Both

policies tend to remove an inactive entry by evaluating its previous access

references, which include unaccessed time and access count or unaccessed time

and average access interval.

• Alleviating required access of recently evicted entries. LRU performs evictions

depending only on unaccessed time. An entry evicted from cache may be referred

in a short period of time after its eviction; this is a larger problem for small

caches. Our policies can alleviate such situation because they evaluate one entry

based on multi-conditions, and they tend to keep more active entries in the cache

to reduce the number of the replacements.

• LAR and RLAI polices have speedups from 2% to 10% when considering

average memory access time for both IP. Due to the higher cache hit rate

yielded by the LAR and RLAI policies, fewer accesses to routing table memory

are needed for address lookups. Consequently, this helps to reduce the average

memory access time, which is often used as measurement for cache-memory

performance.

A replacement policy is a way to improve caching effectiveness. A good policy is

able to increase the hit rate and should be inexpensive to implement. A high hit rate

makes average memory access time fast and in turn speeds up the address lookup

operations.

 48

Chapter 4

Routing Table Entry Compaction Schemes in Ternary

CAM

4.1 Introduction

In this chapter four novel routing table entry compaction schemes based on

different rules to perform fast routing lookups in Ternary CAM are presented. As we well

know, IP routing lookup operation is time consuming, because it requires the storage in

memory of predetermined routing paths for all possible network destinations. With the

continuous growth of the users in the Internet, the size of routing table is increasing

steadily. Thus, a much larger memory is required to store table contents in local routers.

On the other hand, the lookup speed may be adversely affected since the complete

routing table is stored in main memory with slow access time. Thus, the reduction of the

number of routing table entries is a potential solution to improve lookup speed, contain

the routing table size explosion and save memory storages required.

The proposed compaction schemes are implemented and used in a cache

organization (Chapter 2), which is simple storing the most frequently accessed routing

table entries within a small cache memory that has much shorter access latency than the

 49

main memory where the routing table is usually stored. The objective of these schemes in

this chapter is to achieve high caching effectiveness without wasting memory usage.

The contents of this chapter are organized as follows. In section 2, an overview of

previous work and data structure on routing table compaction is described. Section 3

presents our proposed compaction schemes. Section 4 provides the performance

evaluation of IPv4 and IPv6 routing respectively. Section 5 concludes with a summary of

the contributions of this chapter.

4.2 Backgrounds of routing table entry compaction

In this section, we begin with a description of the Ternary CAM feature, which is

particular important in the presentation of our compaction schemes, and then discuss

some compaction approaches by other researchers.

4.2.1 Ternary Content Addressable Memory (TCAM)

When we implement Longest Prefix Matching (LPM) lookup mechanism in a

conventional memory, we need to store both a network address and its address mask in

each route entry. Given a destination address, perform bit-wise AND operation between

this destination address and its address mask in each entry, and then check if the result is

equivalent to the network address in the same entry. Since the destination address of an

arriving packet does not carry any prefix length information, the destination address is

required to be compared with all the route entries in the routing table. It makes the IP

address lookup operation a time-consuming task.

 50

 In order to expedite the packet processing, a content addressable memory (CAM)

is used as a hardware-based solution. There are two types of CAM, namely binary CAM

and ternary CAM. Binary CAM cell only stores 0 or 1, and performs fixed-length

comparisons and exact match search operation within one memory access. However, it is

not suitable for LPM effectively. As for an IPv4 32-bit address lookup, it is required an

exact match search in 32 separate CAMs. Obviously, this complexity is increasing when

we implement IPv6 routing with 128-bit address format.

A ternary CAM (TCAM) makes this LPM process more direct by its special

features. Different from the usual memories, each cell of TCAM stores one of three

states: 0, 1 and don’t care (*)[14, 38]. The TCAM makes the implementation of LPM

much easier. All bits with the low order in an address below the prefix boundary are

replaced with don’t care. These bits are ignored when there is a comparison with the

TCAM entry. TCAMs take the input address as a search key, and perform a parallel

search of all entries in hardware in a single clock cycle [39]. The port associated with the

longest prefix length that matches the search is chosen as output using a priority encoder

[40]. An organization for the proposed associative cache is shown in Figure 4.1.

In Figure 4.1 an example of an address matching in this TCAM is included.

Given a packet with a destination address 10110010, three matching entries 1011001*,

10110*** and 101***** are found in the routing table. This packet will be delivered to

the port associated with the first entry by the LPM mechanism which is implemented by

means of a priority decoder.

 51

TC
A

M
 R

ow
 D

ec
od

er

RAM
Array

Ternary

CAM
Array

match

match

Pr
io

rit
y

En
co

de
r

R
A

M
 R

ow
 D

ec
od

er

… …
Input Latch Output Latch

Next Hop Destination Address

.

.

.

.

.

.

.

.

.

.

.

.
1011001*

10110***

101*****

match selected
match

RAM
Array

10110010

Figure 4.1: A TCAM address lookup organization.

4.2.2 Previous approaches on routing table compaction

Liu[39] proposed two techniques to reducing the size of routing tables stored in

TCAM based on IPv4 routing information. The first technique is called pruning. It

eliminates those redundant routing prefixes without affecting routing functionality. The

second technique is mask extension, which exploits TCAM hardware’s flexibility. It

combines the routing prefixes that point to the same port number by using an arbitrary

mask. That is, the bits of ones or zeros in mask needn’t be continuous. The mask

extension technique can be reduced to a logic minimization problem and Liu used

Espresso-II algorithm to compute the minimal cover. The experimental result shows that

applying pruning alone reduces the routing table size by roughly 25%, and mask

extension without pruning can reduce table size between 27.3% and 30.4%. By applying

both of them, the overall size can be reduced up to 48%.

 Rooney [15] presented a similar approach to minimize the routing tables based on

the TCAM bit pattern associative array. First, IP routing table is separated by prefix into

 52

sets, starting at the top by the longest network address; each set is separated into groups

by output port number, and then each group is minimized with the Espresso program.

That is, the minimization is performed only on the entries within the same set and having

the same output port. After minimization, each group is returned to the original set. The

test result shows the average reduction of routing table entries is 24.4%, and this

reduction leads to improvements in cache hit rate in cache architecture.

4.3 Proposed compaction schemes

As we mentioned before, TCAMs have the main advantage of simplicity and can

perform parallel searches to reduce the lookup time. Consequently, it can achieve high

lookup throughput. However, a TCAM is usually more expensive as compared to a

conventional memory and it dissipates more power. Therefore, a large TCAM may be too

costly to be a feasible solution. On the other hand, a large conventional memory usually

slows down the lookup process. This in turn creates a need for investigating compaction

schemes cooperated with fast cache memory solutions. If the number of entries in the

routing table can be compacted, the table can be contained into fewer TCAM chips. Thus,

the process of address lookup could be improved effectively and economically with a

cache organization. In this section, the features of IP routing tables are analyzed and

followed by four compaction schemes based on different compression rules.

4.3.1 IP routing table features

Table 4.1 shows some features of several routing tables we used in our

experimental simulation. Obviously, in a routing table, the number of port is much

 53

smaller as compared with the number of routing entries, because of the limited number of

interfaces in a router. That is, there exists more than one entry with different prefix or

content associatived with the same output port number. This in turn indicates the

possibility of compaction to combine more relative entries into one without mis-routing

function.

Table 4.1: IP routing table feature.

IP Routing table No. of ports No. of entries
RT1 43 90,000 IPv4

 RT2 50 90,000
RT1 90 3,685 IPv6

 RT2 105 3,674

4.3.2 Compaction of same-port entries (Scheme C1)

This scheme is similar to those in [15,39].We scale and implement it to satisfy the

long address format requirement in IPv6 routing. The basic steps are as follows.

• The entry addresses with the same destination port are considered for compaction.

• Two addresses that differ by only one bit including don’t care (*) are candidates

for compaction.

• If these conditions are satisfied, the entries with these two addresses can be

combined into one by using don’t care (*) to replace the bit.

• The two entries that have been combined are removed from further consideration

• The new entry is included in the potential entries for further compaction.

Assume that there are four destination addresses that share the same port number as

shown in Figure 4.2. The addresses in entry a and b are the same except for the last bit.

 54

These two entries can be combined into a new entry 00100110*. The same compaction

can be performed on the entries c and d. The updated routing table has two entries after

the first compaction. In this example, these two entries can be compacted since they have

only one bit that is different. The compaction process continues until there are no

potential entries to be compacted. In our example, those four entries are compacted into

one with 2-bit ‘*’ using this scheme.

Figure 4.2: An example of compaction scheme C1.

4.3.3 Compaction of non-existing entries (Scheme C2)

We have developed another compaction scheme, which combines many more

entries than scheme C1. This scheme uses the compacted entries produced by C1. The

improvement is due to the way don’t care (*) are handled. Below are the additional steps

that are needed to implement scheme C2.

• Two addresses with the same destination port that have only one different bit

excluding don’t care (*) are candidates for additional compaction.

• If there is no other address with a different destination port that can be compacted

with one of the two addresses in the previous step, then the compaction can be

performed.

 55

• If the previous step is not possible the current compaction is abandoned.

Figure 4.3 shows an example where entry d is the compaction result of entry a

and b (Figure 4.2) by replacing the last bit with a don’t care (*). It shares the same port

number A with entry c. When comparing the addresses in entry d and c, we take into

account the don’t care ‘*’ in the address of entry d that could have a match with the 0 in

the same bit position in entry c. If the addresses in these two entries have exactly one

different bit with the exception of the don’t care (*), they could potentially be compacted

into a new entry. Then other entries with different port assignments are checked to make

sure that there is no entry that falls within the new entry (in the example is labeled as

entry e) address range. If an entry exists (in the example entry f) this compaction is not

performed. Otherwise, entry c and d are replaced by e.

Figure 4.3: An example of compaction scheme C2.

4.3.4 Compaction using a threshold with continuous don’t care (Scheme C3)

The goal of this scheme is try to further compact the routing table, even though

this may cause a routing conflict. A routing conflict is defined as having two entries with

different port assignments to have a match with an incoming address. We add restrictions

 56

to this compaction to reduce the side - effect of the routing conflicts. The following steps

are incorporated to implement scheme C3.

• Two addresses with the same destination port that have only one different bit

excluding don’t care bits (*) are candidates for a compaction.

• If there is no routing conflict in the routing table, the compaction is performed.

• If there exists only one entry address with a different destination port, which is

equivalent to the current compressed address, and the number of the continuous

don’t care bits in this compacted entry is less than a given threshold, then the

compaction can be performed. In addition, the entry with the different port

assignment is marked with higher searching priority, that is, it is searched before

any search for the compacted entry.

• If the previous steps are not possible, the current compaction is abandoned.

Figure 4.4: An example of compression C3.

Figure 4.4 provides a graphical representation of this scheme, where entry i and j

can potentially be compacted into entry k. Since we take into account don’t care that can

be either 0 or 1 in comparison, it is possible that the compacted address in entry k has

 57

continuous don’t care. A long sequence of don’t care increases the probability of a

routing conflict.

The purpose of setting a threshold of the number of continuous don’t care is to

diminish such a problem. If an address in entry m with a different port assignment is

equivalent to the address in entry k; and the continuous don’t care number is larger than

the given threshold, this compaction is not performed. Otherwise, we replace entry i and j

by k, and make entry m to have higher priority over entry k in the routing table to avoid

incorrect routing in memory.

The value of the threshold is determined by the contents of the routing tables and

the destination addresses in statistic studying. Obviously, this value affects the

compaction performance, which in turn impacts the hit rate in cache organization. A large

threshold value is usually helpful in compacting more routing entries, as well as increases

the possibility of routing conflicts, thus causes more port errors (explained later in

Chapter 5). Therefore, we should take into account both the number of routing entries and

the effective hit rate, which is the difference between actual cache hit rate and port error

ratio, and choose a threshold value to achieve a better performance.

Figure 4.5(a) shows the effect of choosing different thresholds on two IPv6

routing tables: RT1 and RT2 as examples; Figure 4.5(b) depicted the effective hit rate of

all six IPv6 traces, namely A to F. We should point out that extensive simulations show

the value of 5 generates a smaller port error ratio with fewer routing entries, and also

need far less searches in routing table when implementing our improved sampling

techniques to alleviate the port error problems (in Chapter 5). By the same procedure of

analyzing, we can obtain suitable threshold value for IPv4 routing information.

 58

1000

1100

1200

1300

1400

1500

1600

1 2 3 4 5 6 7 >7

threshold

N
o.

 o
f r

ou
tin

g
en

tri
es

RT2
RT1

(a) Number of compacted routing entries by different threshold values.

85
86
87
88
89
90
91
92
93
94
95

1 2 3 4 5 6 7 >7

threshold

E
ffe

ct
iv

e
hi

t r
at

e
(%

)

A B C
D E F

(b) Effective hit rate by different threshold values.

Figure 4.5: Scheme C3’s threshold impact on entries and effective hit rate.

4.3.5 Compression using a threshold with the number of difference bits (Scheme C4)

Compaction scheme C4 is similar to scheme C3; the only difference is the

threshold criteria. Instead of the continuous don’t care as in scheme C3, the number of

different bits between the addresses before and after a compaction are considered to

compute a number to be compared to the threshold.

 59

The C4 scheme steps are similarly to scheme C3. We explain scheme C4 by

means of an example. Assume there are addresses such as *0100110* in entry x

0****1111 in entry y, these addresses can potentially be compacted to an address

*****11** in entry z. Assume that an address 10100*111 in entry w with a different port

assignment exists; entry z would cover this entry and has a port assignment conflict.

The number of different bits between the address in the potential new entry z and

entries x or y are computed, these are 5 and 3, respectively. If these numbers are larger

than a given threshold, then this compaction is abandoned. Otherwise, entries x and y are

replaced by z and entry w is marked with a higher search priority than entry z. As scheme

C3, an effective threshold should be determined by achieving a good balance between the

number of routing entries and the effective hit rate. In this study the threshold for scheme

C4 is set to 3.

4.4 Performance Evaluation

In this section, we implement our proposed compaction schemes on TCAM cache

architecture, and analyze their effects on IPv4 and IPv6 routing tables, respectively, and

we use their corresponding IP packet traces (in Chapter 3) to evaluate the address lookup

performance.

4.4.1 IPv4 routing performance

We estimate the compaction performance from three aspects as follows:

compaction ratio, cache hit rate and average memory access time speedups.

 60

4.4.1.1 Compaction ratio

In our evaluation, we first analyze the compaction performance of our schemes.

We use compaction ratio (CR) as a measurement. CR is defined as the ratio of the

number of the routing entries in the compacted and original tables. Obviously, the smaller

the CR is, the better the compaction performance is.

Table 4.2: The four compaction schemes (CS) and their impact on compaction ratio (CR).

RT1 RT2 CS
No. of Entries CR (%) No. of Entries CR (%)

O 90,000 100.00 90,000 100.00
C1 59,019 65.58 60,185 66.87
C2 26,505 29.45 30,279 33.64
C3 26,842 29.82 30,916 34.35
C4 26,738 29.71 30,346 33.72

0%

20%

40%

60%

80%

100%

120%

RT1 RT2
IPv4 routing tables

C
om

pa
ct

io
n

ra
tio

O
C1
C2
C3
C4

Figure 4.6: Compaction performance of IPv4 routing tables.

Table 4.2 shows the impact of these schemes on two different IPv4 routing tables

RT1 and RT2. Figure 4.6 depicts that the routing table entries are reduced rapidly with

these compaction schemes. Compared with the original tables (labeled by “O”) without

 61

any compaction, Scheme C1’s CR is around 65%, which is a good match with Liu’s and

Rooney’s. Scheme C2, C3 and C4 achieve much lower CR than C1, although there is

only minor difference among their CRs. Their compaction ratio ranges from 29.45% to

34.35%, which are impressive compaction results.

4.4.1.2. Cache hit rate

The different compacted routing tables result in the variety of hit rate in the cache

architecture. The overall hit rate of cache with different compaction schemes is shown on

Table 4.3. During the simulation, we use four IPv4 traces namely W to Z as incoming

destination addresses, and perform routing lookups in a cache organization based on

original and compacted routing tables.

Table 4.3: Hit rate (%) of cache with different compaction schemes (CS).

IPv4 trace CS 512 1K 2K 4K
O 73.94% 83.98% 89.54% 92.71%
C1 74.16% 84.22% 89.82% 93.08%
C2 91.79% 96.99% 98.73% 99.20%
C3 91.40% 96.90% 98.74% 99.21%

W

 C4 91.73% 97.00% 98.74% 99.21%

O 69.12% 81.44% 88.04% 91.89%
C1 69.36% 81.73% 88.40% 92.34%
C2 90.48% 96.68% 98.61% 99.13%
C3 90.31% 96.55% 98.60% 99.14%

X

 C4 90.40% 96.69% 98.59% 99.13%

O 74.76% 85.43% 91.30% 94.12%
C1 75.02% 85.70% 91.57% 94.44%
C2 92.62% 97.53% 98.94% 99.31%
C3 92.49% 97.48% 98.94% 99.30%

Y

 C4 92.64% 97.57% 98.93% 99.30%

O 94.04% 94.89% 95.59% 95.82%
C1 94.07% 94.97% 95.68% 96.00%
C2 97.47% 98.67% 99.14% 99.31%
C3 97.43% 98.65% 99.12% 99.31%

Z

 C4 97.48% 98.68% 99.14% 99.32%

 62

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

512 1K 2K 4K
Cache size

H
it

ra
te

 -
 C

2
Z
Y
W
X

 (a) Hit rate with scheme C2.

65%

70%

75%

80%

85%

90%

95%

100%

105%

512 1K 2K 4K

Cache size

Hi
t r

at
e

- t
ra

ce
 W

O
C1
C2
C3
C4

 (b) Hit rate of trace W

65%

70%

75%

80%

85%

90%

95%

100%

105%

W X Y Z
IPv4 traces

H
it

ra
te

 -
1K

 e
nt

rie
s O

C1
C2
C3
C4

 (c) Hit rate on 1K cache

Figure 4.7: Cache hit rate performance.

 63

A minor improvement of the hit rate is obtained when scheme C1 is used, on the

other hand, using the proposed scheme C2, C3, and C4, the hit rate improvement ranges

from 3.43% to 21.36%. All of the improvements depend on the trace files and cache size.

Figure 4.7 gives us other clear plots on the improvements from different aspects.

We observed the hit rates increase with the increasing cache size in Figure 4.7(a); by

scheme C2, the increment grows from 90.48% for a 512 cache to 99.13% for a 4K cache

on trace X; the amount of the increment is minished with the increasing cache size; and

the amount is also depending on the different trace files. We observed the curve of trace

Z is a little flat, while others are bending. Figure 4.7(b) shows that the significant effect

of different compaction schemes on hit rate; for trace W, the hit rate improves rapidly by

up to 17.85%, especially by scheme C2, C3 and C4. Figure 4.7(c) depicts the effect of

compaction schemes on different IPv4 traces with a given 1K cache. All the traces share

the similar increasing trend of hit rate, although the amounts of increment are different.

4.4.1.3 AMAT speedups

To compare the impact of the proposed compaction schemes on the average

memory access time (in Chapter 2), we still use the speedup as a measurement. The

speed up here is the ratio of the AMAT by original tables and the tables after compacted,

which is shown in equation 4.1. Assume routing table access time is L times larger than

cache access time.

Compacted

original

AMAT
AMAT

Speedup = (Equation 4.1)

 64

For example, Table 4.4 depicts AMAT speedup gained by scheme C3 over the

original tables with a 1K cache for all traces. We observed scheme C3 expedites the

average memory access time ranging from 1.11 to 2.49, depending on the value of L and

the traces used.

Table 4.4: Scheme C3 speedup with a 1K cache.

Trace file

L W X Y Z

4 1.35 1.41 1.34 1.11
8 1.74 1.85 1.72 1.24
16 2.32 2.49 2.31 1.47

4.4.2 IPv6 performance evaluation

We extend all of compaction schemes and implement them on the next generation

protocol IPv6, which has 128-bit address length format. Because of the long address

length, IPv6 routing table required more memory to store routing entries than IPv4 under

the same condition. That in turn indicates the reduction of table entries is significative to

save memory and speed up the lookup time.

4.4.2.1 Compaction ratio

We use two IPv6 routing tables to complete the compaction process. Table 4.5

shows the impact of the four schemes on these tables. By compared with the original

tables, the compaction ratio of scheme C1 is almost as low as 55%. The other three

schemes have much lower CR, which ranges from 30.77% to 36.34%. The test results

are nearly consistent to the compaction performance of IPv4 routing tables above. Figure

4.8 depicts the change of routing table entries by these compaction schemes.

 65

Table 4.5: The four compaction schemes (CS) and their impact on compaction ratio (CR).

RT1 RT2
CS No. of Entries CR (%) No. of Entries CR (%)

O 3685 100.00 3974 100.00
C 1 2052 55.69 2325 58.51
C 2 1155 31.34 1444 36.34
C 3 1172 31.80 1444 36.34
C 4 1134 30.77 1400 35.23

0%

20%

40%

60%

80%

100%

120%

RT1 RT2
IPv6 routing tables

C
om

pa
ct

io
n

ra
tio

O
C1
C2
C3
C4

Figure 4.8: Compaction performance of IPv6 routing tables.

4.4.2.2 Cache hit rate

There are IPv6 six traces from A to F involved to perform routing lookup

operations. The hit rate of different cache size with different compaction schemes is

shown on Table 4.6, and Figure 4.9 depicts the compaction performance of 128-entry

cache as an example.

Obviously, the cache hit rate is improved rapidly by reducing the number of

routing entries. The hit rate increment ranges from 0.41% to 1.40% by applying scheme

C1, while it is dramatically increased by scheme C2 from 3.51% to 8.14%. Scheme C3‘s

 66

hit rate is increased up to 9.13 %, and the increment of C4 is improved by up to 12.10%.

All of the improvements depend on the trace files and the number of cache entries.

Table 4.6: Hit rate with different compaction schemes (CS).

IPv6 trace CS 64 128 256
O 70.60% 81.50% 89.70%
C1 71.51% 82.72% 91.10%
C2 77.91% 89.49% 96.88%
C3 79.73% 90.59% 97.77%

A

 C4 80.63% 91.92% 98.46%

O 75.70% 84.53% 91.18%
C1 76.42% 85.49% 92.46%
C2 83.84% 92.14% 97.76%
C3 84.69% 93.28% 98.62%

B

 C4 87.80% 94.68% 99.12%

O 76.63% 85.26% 92.13%
C1 77.25% 86.20% 93.41%
C2 83.40% 92.56% 98.18%
C3 84.68% 93.84% 98.84%

C

 C4 87.24% 95.86% 99.38%

O 80.34% 88.49% 93.88%
C1 81.13% 89.37% 94.67%
C2 85.19% 93.19% 97.90%
C3 85.39% 93.57% 98.34%

D

 C4 86.93% 94.77% 98.72%

O 81.64% 88.96% 94.14%
C1 82.05% 89.58% 94.76%
C2 86.59% 93.77% 97.99%
C3 87.18% 94.28% 98.43%

E

 C4 88.93% 95.34% 98.86%

O 84.01% 89.85% 94.83%
C1 84.52% 90.49% 95.50%
C2 87.93% 94.39% 98.34%
C3 88.76% 95.23% 98.77%

F

 C4 90.59% 96.70% 99.25%

 67

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

Original C1 C 2 C 3 C4

compaction schemes

Hi
t

ra
t
e

F

E

D

C

B

A

Figure 4.9: Compaction schemes’ hit rates using a 128-entry cache.

4.4.2.3 AMAT Speedups

Table 4.7 shows the AMAT speedup gained by scheme C3 over the original tables

with a 128-entry cache for all traces. With regard to IPv6, scheme C3 expedites the

average memory access time ranging from 1.13 to 1.67.

Table 4.7: Scheme C3 speedup with a 128-entry cache.

Trace file

L A B C D E F

4 1.21 1.22 1.22 1.13 1.14 1.14

8 1.38 1.42 1.42 1.25 1.27 1.28

16 1.57 1.65 1.67 1.39 1.43 1.47

4.5 Conclusions and summary

Routing table lookup is an important operation in packet forwarding, especially

with the increasing table size caused by Internet traffic. In order to speed up this process,

we have proposed four novel compaction schemes for routing table entries and evaluated

 68

their impact on a TCAM cache architecture. The extensive simulations using IPv4 and

IPv6 routing information have shown that our proposed schemes improve cache hit rate

and save the memory usage [41, 42]. The features of our compaction schemes are

presented as follows.

• Four compaction schemes based on TCAM. The scheme C1 is similar to the

compaction technique via Espresso minimization algorithm, but it can be scaled to

IPv6 easily. Scheme C2 is an improvement over C1 to obtain higher compaction

performance. Scheme C3 and C4 try to provide further compaction with

considering the routing conflicts.

• High compaction performance. The number of routing entries after compacted

by scheme C1 is only almost 65% of the original ones for IPv4, and even low to

55% for IPv6. The other three compaction schemes reduce the number of the

entries ranging from 63.66% to 70.55%.

• High cache hit rate. The cache hit rate is improved dramatically by performing

searches in compacted routing tables, especially those tables compacted by

scheme C2, C3 and C4. The hit rate improvements go up to 21.36% for IPv4

traces and to 12.10% for IPv6 traces.

• High AMAT speedups. The compaction scheme C3 has speeded up AMAT from

1.11 to 2.49 for IPv4 and 1.13 to 1.67 for IPv6. The average memory access time

is decreased because of the higher cache hit rate obtained by reducing routing

entries.

The routing table compaction has been shown to improve the caching

effectiveness. A good compaction scheme is beneficial to increases cache hit rate, while

 69

reducing the memory usage. The high cache hit rate makes average memory access time

shorter; this in turn speeds up the address lookup process.

 70

Chapter 5

Port Errors and Sampling Techniques

5.1 Introduction

In the proposed cache organization, a port error occurs when the port selected by

the cache doesn’t match the port that would be selected by the routing table. There are

two of the major causes for port errors are mentioned in [14].

1) Longest prefix matching mechanism. The longest prefix matching entry of a

destination address in routing table is not being in cache. Because of the limited size of

cache, only small numbers of routing entries are stored in cache. Hence, it is possible that

a matching entry found in the cache has a different port assignment with the one found in

routing table.

2) Cache coherence problem. Some changes made in routing table are not updated

immediately in cache. Consequently, the entries in cache do not keep consistence with

the entries in the routing table any more. This kind of port error can be reduced by

updating the cache and the routing table at the same time, or flushing the cache

periodically.

In our research, we take into account the port errors generated by the first source

of port errors. Our compaction schemes (Chapter 4) combines many routing entries into

 71

one using the don’t care element in Ternary CAM. This could in turn extend the time that

the entry with a short prefix length or with many don’t care stays in cache longer. Thus,

it increases the probability that the matching entry in the cache could not be the longest

prefix matching entry in the routing table. If both of these entries do not share the same

port assignment, a port error is caused.

In order to lessen the side-effect of port errors, two novel sampling techniques

namely, selective and adaptive sampling, are proposed in this chapter. These techniques

are implemented with our compaction schemes to reduce port errors effectively without

the damage of the high cache hit rate already obtained.

This chapter is organized as follows. In Section 5.2, a common interval sampling

technique to reduce port errors is described. Section 5.3 presents two proposed

samplings. Section 5.4 provides comparison, analysis and simulations on the port error

control performance with IPv4 and IPv6 routing information. Section 5.5 gives a

summary of this chapter.

5.2 Interval sampling

A sampling technique present in [14] is one way to alleviate this port error

problem. It is independent of the reasons causing the port errors. The main feature of this

sampling is its simplicity. It requires performing one search in routing table every M

lookups, where M is the sampling rate. If the port number is found different between the

cache and the routing table, the matching entry in the routing table will be written into the

cache. This will help to reduce the port error ratio since future references to this entry

will be found in cache.

 72

Interval sampling obtains an improvement, as it will be shown in the simulation

results in this chapter. However, it required a large number of searches in the routing

table and port comparisons. The exact number of these searches depends on the sampling

rate M. Below is the equation that helps to determine the number searches.

M
MmisscacheNumber

M
reqsrouteNumbernumSearch 1_____ −

×+≈

Where the total number of route request and cache misses are considered.

This sampling is not appropriate for the control of port errors in our novel

compaction schemes. Since the numbers of the port errors occurred in the compaction

schemes are probably large, the port error ratios are probably still high using this interval

sampling, which are shown in later simulations. Thus, it is necessary to find better

solutions.

5.3 Proposed sampling techniques

In order to further reduce the number of port errors, especially for our compaction

schemes, the contents of the routing entries and port error distributions are analyzed in

this section and followed by our two sampling techniques to control port error and

decrease the search amount in routing tables at the same time.

5.3.1 Port error distribution

Each routing entry has different probability in leading to port errors, which

depends on both the incoming trace patterns and the features of this particular entry, such

as the temporal locality of traces, the prefix length and the don’t care elements of routing

entries.

 73

For instance, Table 5.1 shows the port error distribution for IPv6 traces in the

compacted routing tables by scheme C3. The value of N means how many entries in this

routing table causing routing conflicts for a particular entry in the same table. The value

in the table depicts the sum of the port errors caused by the group of the entries with the

same N. Figure 5.1 illustrates the trend of this distribution, which actually reflects the

typical port error distribution for scheme C3 and C4. We observed those entries with the

value of N less than 10 cause most of port errors. However, the interval sampling doesn’t

consider this issue and executes routing table search uniformly. Consequently, there are

many unnecessary searches for those entries rarely causing port errors.

Table 5.1: Port error distribution.

IPv6 Trace
N A B C D E F
0 47 1 32 7 1 1
1 7685 29950 13597 29993 4843 15912
2 11402 4067 1574 3415 1348 4454
3 774 425 701 34071 3151 588
4 1268 1 0 23 4 132
5 92 0 0 296 29 461
6 0 0 0 0 0 0
7 2 0 0 1 5 0
8 39 0 0 4 0 3
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 1 0 35 55 0

15~33 0 0 0 0 0 0
34 0 0 0 30 0 0

 74

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
N

po
rt

er
ro

rs

A
B
C
D
E
F

Figure 5.1: The port error distribution with compacted tables by Scheme C3.

Based on this distribution that is common for IPv6 and IPv4 traces, we developed

two new sampling schemes, namely selective and adaptive sampling. These schemes help

to not only reduce the number of searches in routing tables but also effectively control

port error ratio in the C3 and C4 schemes. We should point out that both of these

sampling techniques are suitable for C1 and C2 schemes, even though they already have

a small port error ratio, and it is not necessary to implement these two advanced

sampling. Their port error distributions can be considered as special cases that the values

of N is always 0.

5.3.2 Selective sampling

This scheme focuses on only executing sampling on those entries with high

probability of causing port errors. The purpose is to decrease the number of searches in

routing table without increasing port error ratio. The selective sampling scheme works as

follows (this is also shown in Figure 5.2 in a flow chart form):

 75

• Label those entries with high probability of causing port errors according to the

port error distribution;

• Do not search the routing table in the case of matching entry unlabeled;

• Otherwise, search routing table at the sampling rate and update cache if a port

error occurs.

a matching entry in cache

labeled?

Y

N

search routing table

port error?
N

Y

 update cache

next lookup in cache

Figure 5.2: Flow chart of selective sampling.

5.3.3 Adaptive sampling

The main motivation for adaptive sampling is to adjust the sampling rate based on

the previous activities of a particular entry. The same as the selective sampling, we take

into account those routing entries with some probability of causing port errors. If it

 76

causes port errors frequently before, then set a low sampling rate; vice versa. The basic

steps (also shown in Figure 5.3) are as follows.

• At the beginning, the sampling rate of each entry is set as a small value, such as 0.

• If no port error occurs when searching the entry in the routing table, and

potentially there is small possibility that port error occurs in a short while due to

packet stream’s temporal locality. Consequently, its sampling rate is increased by

1 and the interval between two searches of the same entry in routing table is

extended to a longer period.

• If an entry found in cache is not searched in the routing table, its sampling rate is

decreased by 1, which means the possibility of future port error is increased.

Figure 5.3: Flow chart of adaptive sampling.

 77

Figure 5.3 shows the flow chart to explain this scheme. Those entries with some

probability in causing port error are labeled firstly. Due to the temporal locality of traces

and the corrections made by adaptive sampling in time; this technique not only reduces

the number of searches in routing table, but also decreases the port error effectively.

5.4 Performance analysis and evaluation

In this section, we compare the port error reduction for both IPv4 and IPv6

routing. We analyze the samplings’ effectivity on the amount of searches in routing table

and the value of cache hit rate.

5.4.1 Port error ratio

We first choose port error ratio as one of the measurements to analyze the port

error problems. Port error ratio is the ratio of the number of port errors to the number of

cache hits.

Table 5.2: IPv4 port error ratio using interval sampling with 1K-entry cache.

IPv4 Traces
CS Sampling W X Y Z

Average

w/o 0.000% 0.002% 0.002% 0.001% 0.001%
O w/ 0.000% 0.002% 0.001% 0.001% 0.001%

w/o 0.001% 0.003% 0.003% 0.002% 0.002%
C1 w/ 0.001% 0.002% 0.002% 0.001% 0.002%

w/o 0.783% 1.215% 1.882% 0.914% 1.199%
C2 w/ 0.239% 0.321% 0.255% 0.097% 0.228%

w/o 0.763% 1.235% 1.314% 0.894% 1.052%
C3 w/ 0.248% 0.337% 0.266% 0.098% 0.237%

w/o 0.894% 1.177% 1.730% 0.905% 1.177%
C4 w/ 0.244% 0.320% 0.264% 0.094% 0.231%

 78

Table 5.3: IPv6 port error ratio using interval sampling with 128-entry cache.

IPv6 Traces
CS Sampling A B C D E F

Average

w/o 0.052% 0.006% 0.045% 0.032% 0.033% 0.000% 0.028%
O w/ 0.024% 0.003% 0.008% 0.014% 0.017% 0.000% 0.011%

w/o 0.479% 0.034% 0.076% 0.037% 0.102% 0.005% 0.122%
C1 w/ 0.047% 0.025% 0.028% 0.018% 0.038% 0.001% 0.026%

w/o 0.392% 0.131% 0.107% 0.067% 0.212% 0.187% 0.183%
C2 w/ 0.096% 0.059% 0.032% 0.031% 0.044% 0.059% 0.054%

w/o 3.115% 2.450% 1.714% 6.552% 1.050% 1.847% 2.788%
C3 w/ 0.604% 1.026% 0.338% 0.423% 0.354% 0.539% 0.547%

w/o 2.394% 3.640% 2.888% 4.869% 1.723% 3.418% 3.155%
C4 w/ 1.142% 1.051% 0.917% 0.593% 0.515% 0.839% 0.843%

Tables 5.2 and 5.3 depict the performance of the interval sampling (for instance,

M=3) implemented on original tables and compacted tables with different compaction

schemes. The simulations are executed using IPv4 and IPv6 routing information,

respectively.

We observe the port error problem is decreased using the interval sampling for

IPv4 routing; actually, this sampling decreases port errors down to almost 20%. Since the

port error ratios here are very small after interval sampling, we do not need to consider

other improvements. With regard to IPv6, it works well for those compacted tables

without routing conflicts, such as the tables compacted by the C1 and C2 schemes.

However, this is not appropriate for schemes C3 and C4. Obviously, for some traces, the

port error ratios are still over than 1%. Some routing conflicts are permitted to exist in

the routing tables by using these two schemes to achieve high hit rate and good

compaction performance. However, if the entry causing routing conflicts stays in the

cache longer, the possibility of the port errors is larger.

 79

In order to control the port error problem further, we also develop selective

sampling (Sl) and adaptive sampling (Ad) techniques on cache organization, and compare

them with an every hit sampling (Eh) that always search the routing table when there is a

cache hit. Obviously, this every hit sampling is an ideal situation, which provides the best

performance could be achieved.

Table 5.4 shows the improvement of port error ratio by our error-control

samplings. Comparing with Table 5.3, it can be observed that the selective sampling gets

similar or less port error ratio, while adaptive sampling dramatically decreases the port

error ratio. The performance of adaptive sampling is almost as good as the ideal every hit

sampling. Figure 5.4 demonstrates a clean trend of the port error ratio’s variety.

Table 5.4: The port error ratio of improved sampling schemes.

Traces
CS Sampling A B C D E F

Average

Sl 0.023% 0.003% 0.008% 0.014% 0.016% 0.000% 0.011%
Ad 0.015% 0.002% 0.006% 0.008% 0.015% 0.000% 0.008%

O
 Eh 0.014% 0.001% 0.005% 0.008% 0.012% 0.000% 0.007%

Sl 0.048% 0.025% 0.028% 0.017% 0.038% 0.001% 0.026%
Ad 0.028% 0.015% 0.015% 0.011% 0.024% 0.001% 0.016%

C1

 Eh 0.027% 0.015% 0.015% 0.010% 0.021% 0.001% 0.015%
Sl 0.098% 0.059% 0.033% 0.029% 0.045% 0.060% 0.054%
Ad 0.063% 0.033% 0.017% 0.018% 0.030% 0.032% 0.032%

C2

 Eh 0.059% 0.031% 0.016% 0.017% 0.029% 0.029% 0.030%
Sl 0.597% 1.020% 0.343% 0.416% 0.345% 0.539% 0.543%
Ad 0.347% 0.541% 0.186% 0.278% 0.232% 0.356% 0.323%

C3

 Eh 0.332% 0.537% 0.178% 0.267% 0.215% 0.351% 0.313%
Sl 1.131% 1.046% 0.925% 0.588% 0.509% 0.842% 0.840%
Ad 0.736% 0.607% 0.906% 0.477% 0.340% 0.806% 0.645% C4

 Eh 0.693% 0.570% 0.605% 0.453% 0.310% 0.521% 0.525%

 80

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

O C1 C2 C3 C4
Compaction schemes

Po
rt

 e
rr

or
 ra

tio

W/O
W/
Sl
Ad
Eh

Figure 5.4: The average port error ratios of sampling techniques.

5.4.2 Number of searches in routing tables

Given an incoming trace, the number of searches in routing tables is another

measurement of sampling technique. As we know, searching routing table is a time-

consuming process due to the slow memory access time. The frequent searches in

memory increase the complexity and decrease the efficiency of the solution.

Table 5.5 shows the number of searches with improved sampling techniques on a

128-entry cache. Although the selective sampling obtains the similar port error ratio to

the interval sampling as mentioned earlier, it only requires smaller amount of searches in

routing tables for scheme C3 and C4. The adaptive sampling decreases this searching

amount greatly for all of these four compaction schemes, with an effective reduction of

port errors at the same time. Figure 5.5 illustrates the average amount of searches with

these sampling techniques.

 81

Table 5.5: The number of routing table searches of sampling schemes.

IPv6 Traces
CS SA A B C D E F Average

interval 913,445 872,981 863,270 820,180 813,926 801,972 847,629

Sl 913,452 872,982 863,263 820,178 813,906 801,972 847,626

Ad 829,543 696,596 668,762 563,112 550,531 509,484 636,338

O

 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

interval 897,242 860,179 850,762 808,469 805,837 793,469 835,993

Sl 897,252 860,184 850,771 808,467 805,818 793,470 835,994

Ad 802,379 673,546 647,914 536,504 526,086 491,105 612,922

C1

 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

interval 806,933 771,879 765,958 757,212 750,482 741,965 765,738

Sl 807,170 771,656 765,960 757,935 750,350 741,807 765,813

Ad 613,943 462,762 462,384 422,892 402,716 409,431 462,355

C2

 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

interval 795,943 763,131 750,559 754,817 745,509 734,501 757,410

Sl 501,873 396,689 394,088 391,593 467,866 430,141 430,375

Ad 529,784 561,398 468,073 434,444 513,238 518,079 504,169

C3

 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

interval 781,781 746,542 729,673 740,083 733,439 720,645 742,027

Sl 453,377 454,024 379,182 402,487 405,725 409,210 417,334

Ad 463,855 641,810 574,359 479,562 457,646 420,849 506,347

C4

 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

0
100,000

200,000
300,000
400,000

500,000
600,000
700,000

800,000
900,000

O C1 C2 C3 C4

Compaction schemes

Nu
m

be
r o

f s
ea

rc
he

s

Interval
Sl
Ad

Figure 5.5: The average amount of searches.

 82

5.4.3 Cache hit rate

Table 5.6: Cache hit rate of 128-entry cache with sampling techniques

Trace file
CS Sampling A B C D E F

w/o 81.50% 84.53% 85.26% 88.49% 88.96% 89.85%
w/ 81.49% 84.53% 85.25% 88.49% 88.96% 89.85%

Sl 81.49% 84.53% 85.26% 88.49% 88.96% 89.85%
Ad 81.49% 84.53% 85.25% 88.49% 88.96% 89.85%

O

 Eh 81.49% 84.53% 85.25% 88.49% 88.95% 89.85%

w/o 82.72% 85.49% 86.20% 89.37% 89.58% 90.49%
w/ 82.71% 85.49% 86.19% 89.36% 89.56% 90.49%
Sl 82.71% 85.49% 86.19% 89.37% 89.56% 90.49%
Ad 82.70% 85.48% 86.19% 89.36% 89.56% 90.49%

C1

 Eh 82.70% 85.48% 86.19% 89.36% 89.56% 90.49%
w/o 89.49% 92.14% 92.56% 93.19% 93.77% 94.39%
w/ 89.48% 92.11% 92.55% 93.21% 93.71% 94.35%
Sl 89.46% 92.13% 92.55% 93.15% 93.72% 94.36%
Ad 89.44% 92.11% 92.55% 93.19% 93.70% 94.35%

C2

 Eh 89.44% 92.09% 92.54% 93.15% 93.71% 94.34%

w/o 90.59% 93.28% 93.84% 93.57% 94.28% 95.23%
w/ 90.30% 92.77% 93.71% 93.39% 94.09% 94.91%
Sl 90.36% 92.76% 93.71% 93.38% 94.09% 94.91%
Ad 90.16% 92.54% 93.65% 93.29% 94.00% 94.67%

 C3

 Eh 90.26% 92.53% 93.65% 93.27% 93.99% 94.66%

w/o 91.92% 94.68% 95.86% 94.77% 95.34% 96.70%
w/ 91.37% 94.01% 95.27% 94.49% 94.99% 95.95%
Sl 91.34% 94.01% 95.27% 94.49% 94.99% 95.94%
Ad 91.09% 93.74% 95.01% 94.17% 94.88% 95.77%

C4

 Eh 90.96% 93.73% 94.81% 94.15% 94.83% 95.58%

Cache hit rate is an important performance metric for cache organizations. It

affects the address lookup speed significantly during routing process. From Table 5.6,

there are minor changes of hit rate with the implementation of our sampling techniques.

 83

This validates our samplings are help to control port error problem with no significantly

degrading the original caching performance.

5.5 Summary

Port errors are side-effects of using a cache memory in the manner proposed in

this dissertation. These errors occur when the port selected by the cache is different from

the port that would have been selected using the routing table directly. Due to the

implementation of compacting routing table, this problem could be aggravated. In order

to reduce port errors, we have proposed two new sampling techniques that better match

the requirements of the new compaction schemes. The simulation results using IPv4 and

IPv6 routing information have shown that our sampling can alleviate the port error

problem effectively without negatively impacting caching performance [42]. The

summary of our sampling schemes is as follows.

• Two new sampling techniques to reduce port errors. The selective sampling

only executes routing table searches for those entries with high probability of

causing port errors with a given sampling rate. The adaptive sampling adjusts the

sampling rate automatically based on the particular entry’s pervious performance.

If it has caused port errors frequently, then set a low rate to permit searching

routing table and updating cache in time.

• Smaller port error ratio. The samplings we proposed are effective ways to

alleviate the port error problems. Given a sample trace A, the port error ratio is

decreased from 3.115 % to 0.347 % of C3 by the adaptive sampling and its

 84

performance is very close to the ideal every hit sampling. The small port error

ratio is extremely beneficial to reduce the possibility of incorrect routing.

• Few routing table searches. Both of these advanced sampling schemes decrease

the number of searches in routing tables as compared with the common interval

sampling. This in turn saves search time and decreases the route lookup

complexity.

 85

Chapter 6

Set Associative Caching Implementation

6.1 Introduction

As we presented in Chapter 4, routing table compaction schemes have

demonstrated the potential in improving cache performance for IP routing and forwarding

operations. The tables are reduced in size by combining many route entries using the

don’t care element in Ternary CAM. Thus, an entry in the compacted routing table may

contain more than one entry of the original table internally. Consequently, such small

compacted routing tables can be contained into fewer TCAM chips, which in turn save

memory cost and improve route lookup speed by parallel searching.

Each compaction scheme becomes practicability only when it can be implemented

effectively based on current conditions. For example, one IPv4 routing and compaction

scheme by ternary CAM based on bit – pattern associative array is achieved in [15]. The

cache is divided into sets. Each set is associated with a network address prefix value.

Since the address length of IPv4 is 32 bit, there are 32 possible prefix values.

We also proposed several novel compaction schemes in Chapter 4. All of them

can be implemented based on TCAM in theory as well. However, considering the IP

address format, which needs 32(for IPv4) or 128(for IPv6) sets in conventional TCAM

 86

caching, we take advantage of the features in routing tables after compacted, and propose

new hardware implementations for these compaction schemes in this chapter. These

implementations are based on simple set associative caching. Using the simple

associative TCAM caching architecture associated with our compaction schemes, the

system achieves similar or even higher hit rate without overhead cost in hardware, as

compared with complex hardware needed for fully associative caches. This high hit rate

in turn keeps fast address lookups.

This chapter is organized as follows. In Section 6.2, the features of IP address

space in routing table contents and cache hit distribution are analyzed and described for

both IPv4 and IPv6 protocols. Section 6.3 presents proposed set associative caching

techniques based on the above features. Section 6.4 evaluates cache performance and port

error control on these new implementations. Section 6.5 includes a conclusion of this

chapter.

6.2 Features of address space in routing table entries

According to the procedure of compaction schemes, we notice that there exists

such an entry that has a destination address space overlapping other entries’ space with

different port assignments in the compacted routing table. For example, entry a with the

address of 10**11 and entry b with the address of 101*11 overlap their address space by

don’t care elements in TCAM, if the port numbers associated with them are different. In

this section, we extract the features of this kind of address overlapping, which provides

the motivation for the hardware implementation later. In order to describe concisely, we

choose the compaction scheme C2 as an example to make analysis and explanation.

 87

6.2.1 IPv4 routing table

In order to assess the address overlapping in compacted tables, we count the

number of overlapping entries (N) that are covered by a particular entry. For the above

example, entry b is one entry covered by entry a. The number of such entries covered by

entry a might be more than 1.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

N

 E
nt

rie
s

(a) Number of routing entries with overlapping entries.

0%

10%

20%

30%

40%

50%

60%

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

N

H
its

W
X
Y
Z

(b) Hit distribution with compacted tables.

Figure 6.1: Distribution of overlapping entries (IPv4).

Figure 6.1(a) shows the percentage of the entry number in a IPv4 routing table

with the same value of N. Obviously there are few entries with overlapping destination

 88

address space for N larger than 20. The 1K-entry cache hit distribution of this compacted

routing table with scheme C2 is plotted in Figure 6.1 (b). The y-axis depicts the

percentage of hits, which is the ratio of the hits among the group entries with the same

number of N to the total hits. Almost 60% or even more hits are contributed by the entries

with N less than 20. Thus, it provides the possibility that we can treat the routing entries

differently by their values of overlapping entries N, when fetching them in cache. For

those entries have no much contribution to cache hits, we can assign few cache space

with less priority to them, while assigning more cache space with high priority to those

significant entries. This flexible assignment will not degrade the whole system

performance.

6.2.2 IPv6 routing table

Because of IPv6’s long address format, it requires more memory to store the large

routing table, which makes the compaction schemes much more important in saving

memory usage and improving the lookup performance. It also brings a challenge in

hardware implementation of compaction schemes. Similarly to the above procedure of

IPv4, we analyze IPv6 address overlapping status to simplify the implementation in

hardware.

Figure 6.2 depicts the feature of overlapping address and cache hit distribution of

a 128-entry cache. There are few entries with overlapping destination address space for N

larger than 3. A great number of the cache hits concentrate onto the entries with small

number of N, which consists with the trend of IPv4.

 89

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

N

N
o.

 o
f e

nt
rie

s

RT1
RT2

(a) Number of routing entries with overlapping entries.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
N

H
its

 (%
)

A
B
C
D
E
F

(b) Hit distribution with compacted tables.

Figure 6.2: Distribution of overlapping entries (IPv6).

6.3 Set associative caching implementation

In this section, we develop new implementations for our compaction schemes on

set associative caching, which are applied to IPv4 and IPv6, respectively. A set-

associative cache is considered as a reasonable compromise between a complex fully

associative cache and simplistic direct mapped cache. These implementations are

 90

motivated by the features of overlapping addresses and cache hit distribution in

compacted routing tables.

For IPv4 routing, we have observed those entries with the value of N less than 20

have most of cache hits from Figure 6.1. Thus, the cache is divided into 21 sets. The

entries in routing tables with the different value of N (i.e. N=0, 1, 2, …19, >19) are filled

in the corresponding set. The size of each set in the associative cache array is initially

made proportional to the distribution of hits in each group. The priority of each set is

opposite to the value of N. Figure 6.3 illustrates our scheme. When the destination

address searched is found a match or multi matches in cache, the entry with higher

priority is chosen and the corresponding port number is selected to deliver the packet. If

there is a miss in cache, an entry found in the routing table memory is needed to write

into cache. First which set the entry should be written is decided according to its number

of overlapping entries N, then fill the entry into free space in cache or replace some other

entry in the same set by Least Recently Used replacement policy.

Destination address Next hop

Set 0

RAM Array

Set 1

...
Set 20

Figure 6.3: Set associative TCAM caching for IPv4.

 91

With regard to IPv6 routing, those entries with the value of N less than 3

contribute a large number of hits from Figure 6.2. Thus, we only need 4-set associative

caching. The entries in routing tables with the different value of N (i.e. N=0, 1, 2, >2) are

filled in the corresponding set. Figure 6.4 is the diagram of this implementation.

Figure 6.4: 4-set associative TCAM caching for IPv6.

6.4 Performance analysis and evaluation

In this section, our proposed set associative caching techniques are implemented

and tested based on TCAM. We use IPv4 and IPv6 destination traces to analyze the

address lookup performance. Both cache hit rate and port error ratio are still used as the

measurement criterions in our evaluation.

6.4.1 Cache hit rate of IPv4 routing

The cache is initially divided into 21 sets with the size proportional to the

distribution of cache hits in each group N. The implementation of set associative cache

results in a little bit of change of the hit rate, as compared with fully associative cache.

 92

The hit rate of a 1K-entry cache with these two kinds of caching is shown on Table 6.1.

Obviously, the hit rate of our set associative caching is very close to that of the fully

associative cache. The difference between them is trivial and less than 0.1%. However,

set associative caching is beneficial to build simpler and less expensive architecture. All

of the performances depend on the trace files and the number of cache entries.

Table 6.1: Hit rate of 1K-entry cache.

Traces
Cache W X Y Z
Fully 96.99% 96.68% 97.53% 98.67%
Set 96.98% 96.63% 97.47% 98.70%

6.4.2 Port error ratio and sampling schemes for IPv4 routing

As we mentioned before, a port error caused by caching is a disadvantage to route

lookups. It occurs when the port selected using the cache does not match the port that

would be selected using the routing table. Interval sampling technique is usually used to

alleviate this problem. Table 6.2 and Figure 6.5 depict the difference of port error ratio

between without and with sampling. The port error ratio of set associative caching is a

little higher than that of full associative caching without sampling technique. However,

the average difference is small and less than 0.03%. Moreover, the port error ratio is

greatly alleviated down to less than 0.3% with sampling. The difference is cut down to a

trivial value as well. Since the port error ratios here are already small after interval

sampling, we do not need to analyze other two advanced sampling schemes, namely

selective, adaptive sampling, which we have been proposed and compared with every hit

sampling in Chapter 5.

 93

Table 6.2: The port error ratio without (w/o) and with (w/) sampling (SA).

Trace file
Cache SA W X Y Z

Average

w/o 0.783% 1.215% 1.882% 0.914% 1.199%
FU w/ 0.239% 0.321% 0.255% 0.097% 0.228%

w/o 0.823% 1.228% 1.929% 0.925% 1.226%
Set w/ 0.241% 0.308% 0.264% 0.095% 0.227%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

W X Y ZTraces

Po
rt

 e
rr

or
 ra

tio

FU_w/o
FU_w/
Set_w/o
Set_w/

Figure 6.5: The performance of port error ratio.

6.4.3 Cache hit rate of IPv6 routing

According to the features of IPv6 routing table, we implement 4-set associative

caching based on TCAM. Since the size of each set is required to be proportional to the

distribution of hits in each group, three different divisions of four sets based on Figure

6.2 (b) are analyzed and compared. The following Table 6.3 shows the information about

these set divisions.

The different divided sets might result in the varying hit rate in the cache

architecture. The hit rate of a 128-entry cache with different set divisions and fully

 94

associative caching is shown on Table 6.4 and plotted in Figure 6.6. We use the six

groups of traces to evaluate the address lookup performance. There is minor change of

cache hit rate between the set associative caching and fully associative caching,

especially for division D2 and D3. The difference between them is less than 0.5%.

Table 6.3: Set divisions (Consider the total cache as one).

Set divisions
N D1 D2 D3

0(Set 0) 0~0.50 0~0.55 0~0.55
1(Set 1) 0.51~0.80 0.56~0.90 0.56~0.88
2(Set 2) 0.81~0.85 0.91~0.95 0.89~0.95

>2(Set 3) 0.86~1 0.96~1 0.96~1

Table 6.4: Hit rate (%) of 128-entry cache with different set divisions.

Traces
Divisions A B C D E F

FU 90.59 93.28 93.84 93.57 94.28 95.23
D1 90.35 91.93 92.01 93.1 93.93 94.45
D2 90.6 93 93.31 93.31 94.12 95.17
D3 90.73 93.15 93.53 93.43 94.28 95.2

90
91
92
93
94
95
96

A B C D E F
traces

hi
t r

at
e

%

FU

D1

D2

D3

Figure 6.6: Different set divisions’ hit rate using 128-entry cache.

 95

6.4.4 Port error ratio and sampling schemes for IPv6 routing

Table 6.5 provides the port error ratio without and with sampling techniques. By

interval sampling, the port error ratio is alleviated down to less than 1%, almost 0.5% for

most cases. With advanced samplings, the port error ratio is decreased greatly and even

close to every hit sampling, which is the ideal sampling in theory.

Table 6.5: The port error ratio (%) without (w/o) and with (w/) sampling (SA).

Trace file
Divisions SA A B C D E F

Average

w/o 3.12 2.45 1.71 6.55 1.05 1.85 2.79
w/ 0.6 1.03 0.34 0.42 0.35 0.54 0.55
Sl 0.6 1.02 0.34 0.42 0.34 0.54 0.54
Ad 0.35 0.54 0.19 0.28 0.23 0.36 0.33

FU

 Eh 0.33 0.54 0.18 0.27 0.22 0.35 0.32

w/o 2.57 2.47 1.89 6.92 1.67 1.32 2.81
w/ 0.46 0.53 0.23 0.34 0.23 0.26 0.34
Sl 0.47 0.52 0.24 0.34 0.23 0.26 0.34
Ad 0.27 0.26 0.14 0.21 0.16 0.15 0.20

D1

 Eh 0.25 0.25 0.13 0.2 0.14 0.14 0.19

w/o 2.35 2.58 1.86 7.39 0.99 1.5 2.78
w/ 0.44 0.54 0.25 0.33 0.31 0.34 0.37
Sl 0.44 0.52 0.25 0.33 0.31 0.34 0.37
Ad 0.26 0.27 0.15 0.2 0.2 0.18 0.21

D2

 Eh 0.24 0.26 0.14 0.18 0.19 0.17 0.20

w/o 2.93 2.6 1.81 7.2 0.96 1.79 2.88
w/ 0.42 0.55 0.26 0.35 0.31 0.35 0.37
Sl 0.43 0.54 0.26 0.34 0.3 0.34 0.37
Ad 0.25 0.27 0.15 0.21 0.2 0.18 0.21

D3

 Eh 0.24 0.27 0.14 0.2 0.18 0.18 0.20

Given an example of Trace A, the port error ratio of set division D2 and D3 is

almost the same and both of them less than fully associative cache (See Figure 6.7). The

 96

other traces share the similar trend. Furthermore, division D3 obtains the best

performance among these three different divisions by considering both cache hit rate and

port error ratio.

0
0.5

1
1.5

2
2.5

3
3.5

w/o w/ Sl Ad Eh
sampling schemes

po
rt

 e
rr

or
 ra

tio
 % FU

D1
D2
D3

Figure 6.7: The set associative caching improvement on Trace A.

6.5 Summary

This chapter presented new set associative caching to implement the compaction

schemes proposed in Chapter 4. This set associative caching is achieved based on the

practical routing table address space and cache hit distribution. As compared with fully

associative cache, it has advantages of simple and inexpensive implementation. We have

evaluated different set associative caching architectures with sampling techniques, which

are used to alleviate port error problems caused by the cache technique. The simulations

on IP routing information have shown that our set associative caching achieves the

similar cache hit rate as the fully associative caching and can control port error

effectively without impacting the system performance. The summary of our conclusion is

as follows.

 97

• Address space overlapping. One feature of the compacted routing entries is the

address space overlapping. Different overlapped addresses have different

contribution to the cache hits. A great number of hits are obtained by those entries

with the count of overlapped address less than a value, which depends on the IP

routing tables. This value also determines the number of set needed in set

associative caching.

• Set associative caching. In order to implement the compaction schemes under

practical and economical conditions, a cache is divided into sets according to the

count of overlapped addresses, instead of fully associative caching. The size of

each set is initially made proportional to the cache hit distribution.

• Keep high cache hit rate. The cache hit rate achieved by set associative caching

is close to that of fully associative cache, either for IPv4 or IPv6. The difference

between these two kinds of caching is trivial for most of cases. This set

associative caching does not have much damage on the cache performance.

• Smaller port error ratio. The interval sampling and the advanced samplings are

work effectively to alleviate the port error problems in the set associative caching.

The port error ratio is decreased less than 0.5%. There is no much difference on

port error ratio between set associative caching and fully associative caching.

Small number of port errors help to keep the routing process correct.

 98

Chapter 7

Concluding Remarks

IP routing is an important task in the transmission of packets through the Internet. It

determines which output port the incoming packet should be delivered to by searching

routing tables. The speed of this process is extremely important, especially, with the

increasing growth of link speed in Internet router. A high speed line requires fast route

lookup to match in order to enhance the overall performance of network processors.

However, the routing table lookup is becoming a time-consuming process because the

growing size of the routing table that is stored in main memory with a slow access time.

A cache memory is generally used to accelerate this operation. That is, caching recently

used route entries and achieving a large cache hit rate yield a short average access time.

 This dissertation has proposed high performance cache architectures for IP

routing, which involves the following areas:

• Improved cache techniques

• Optimized cache replacement policies

• Route entry compaction based on caching

• Advanced sampling techniques for port errors

• Set associative caching implementation

 99

The remainder of this chapter will address the contributions in each of these arrears

and discuss the research directions for future work.

7.1 Contributions

The research includes several schemes and techniques to enhance IP routing process.

They are implemented and estimated though extensive simulation using IPv4/IPv6

routing information. The features of our work are presented as follows.

• Two new replacement policies: LAR and RLAI. Both of the policies tend to

remove an inactive entry by evaluating its previous access references. The LAR

evicts the entry with the smallest access count among N entries that have not been

accessed for a long while. As for RLAI, if an entry has not been referred longer

than its previous access interval, it can be potentially evicted. Due to the higher

cache hit rate yielded by the LAR and RLAI policies, fewer accesses to routing

table memory are needed for address lookups. Consequently, this helps to reduce

the average memory access time, which is often used as measurement for cache-

memory performance.

• Four compaction schemes based on TCAM. They obtain high compaction

performance. The number of routing entries after compacted is between 30% to

65% of the original ones. The cache hit rate is improved dramatically by

performing searches in compacted routing tables.

• Two new sampling techniques to reduce port errors. The selective sampling

only executes routing table searches for those entries with high probability of

causing port errors with a given sampling rate. The adaptive sampling adjusts the

 100

sampling rate automatically based on the particular entry’s pervious performance.

They lower the port error, which is beneficial to reduce the possibility of incorrect

routing.

• Set associative caching. In order to implement the compaction schemes under

practical and economical conditions, a cache is divided into sets according to the

count of overlapped addresses. The size of each set is initially made proportional

to the cache hit distribution. This scheme keeps the high cache hit rate close to

that of fully associative cache.

• Victim caching and randomly selected indexing: The VC increments cache hit

rate by reducing miss penalty. A simple direct-mapped cache cooperating with a

16-entry victim cache can achieve a hit rate better than 2-way or 4-way set

associative cache of the same size. Randomly selected indexing scheme reduces

conflict misses by searching the entries prone to conflict in direct-mapped cache

more than one place.

• Pipelining: A high route lookup throughput is achieved by proposed pipeline

structure. The route lookup process is divided into three independent stages: index

selection, cache access and getting port. The pipeline has no data hazards.

All the proposed scheme and technologies have been shown to improve the caching

effectiveness. The high cache hit rate makes average memory access time shorter; this in

turn speeds up the address lookup process.

7.2 Future work

 101

The following topics are potential works that could be done in future. They would be

beneficial for speedup route entry lookup.

• Clustering: Clustering is the process that organizing objects into groups whose

members are similar in some way. If we can use clustering to analyze route

entries according to the incoming packets, and generate the pattern of route

entries with “closer access relationship”, then it could be possible to reduce cache

misses by pre-fetching route entries, at the same time when fetch the real missed

entries from routing table to cache. The entry pre-fetched should be the same

group as the missed one.

• IPv6 efficient routing: one of the advantages of IPv6 is its hierarchical provider-

based global unicast address architecture, which has potential to allow efficient

routing. If we can decompose the large size tables into independent small ones

based on the multi-level of IPv6 addressing and make each route lookup in

hierarch method, then it is not necessary to search the whole IP address, which in

turn saves searching time. Furthermore, small tables are benefit to speedup lookup

process too.

• Warm Start Cache: The above cache architectures begin from a “cold start”. This

is, the cache is initialized empty. This method does not maintain any previous

forwarding information. By contrary, warm start means saving some relative

entries into cache before lookups. If we know a database of those route entries

with high access frequency in a long-time, and then storing such entries in cache

as “warm start” might be helpful to reduce the number of misses.

 102

• More routing information resource: Try to find large tables and more traces to

optimize our proposed schemes. This might be difficult since these traces are not

made public in most cases.

 103

BIBLIOGRAPHY

[1]A.S. Tanenbaum, Computer Networks, 4th Ed, New Jersey: Prentice Hall publishers

inc. 2003.

[2]RFC 1180, “A TCP/IP Tutorial,” http://www.ietf.org/rfc/rfc1180.txt, January 1991.

[3]RFC 2821, “Simple Mail Transfer Protocol,” http://www.ietf.org/rfc/rfc2821.txt, April
2001.

[4]RFC 959, “File Transfer Protocol,” http://www.ietf.org/rfc/rfc0959.txt, October 1985.

[5]RFC 791, “Internet Protocol,” http://www.ietf.org/rfc/rfc0791.txt, September 1981.

[6]M. A. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy of IP
address lookup algorithms,” IEEE Network, vol. 15, pp. 8–23, Mar-Apr. 2001.

[7]RFC 1519, “Classless Inter-Domain Routing (CIDR): an Address Assignment and
Aggregation Strategy,” http://www.ietf.org/rfc/rfc1519.txt, September 1993.

[8]RFC 1631, “The IP Network Address Translator (NAT)”,
http://www.ietf.org/rfc/rfc1631.txt, May 1994.

[9]C. Huitema, IPv6: the New Internet Protocol, 2nd edition, Prentice Hall, 1998.

[10]RFC 2373, “IP Version 6 Addressing Architecture”,
http://www.ietf.org/rfc/rfc2373.txt, July 1998.

[11]P. Gupta, Algorithms for Routing Lookups and Packet Classification, doctoral
dissertation, Dept. Computer Science, Stanford University, 2000.

[12]RFC 2453, “RIP Version 2”, http://www.ietf.org/rfc/rfc2453.txt, November 1998.

[13]RFC 2328, “OSPF Version 2”, http://www.ietf.org/rfc/rfc2328.txt, April 1998.

[14] J. J. Rooney, An Associative Ternary Cache for IP Routing, doctoral dissertation,
State University of New York at Binghamton, NY 2002.

[15]J. J. Ronney, J. G. Delgado-Frias, and D. H. Summerville, “An associative ternary
cache for IP routing,” IEE Proceedings Computers and Digital Techniques, vol.151,
Issue 6, pp.409-416,November 2004.

[16]H. Chao, “Next generation routers,” Proceedings of The IEEE, Vol. 90, No. 9,
pp.1518-1558, September 2002.

 104

[17]P. Gupta, S. Lin, and N. Mckeown, “Routing lookups in hardware at memory access
speeds”, IEEE infoCom, April 1998.

[18]N.Huang, S.Zhao,J.Pan, and C.Su , “A fast IP routing lookup scheme for gigabit
switching routers, Proc. IEEE INFOCOM’99, 1999.

[19]M. Kobayashi, T. Murase, and A. Kuriyama, “A longest prefix match search engine
for multigigabit IP processing,” Proc. IEEE Int’l Conf. Comm. (ICC 00), IEEE Press,
pp.1360-1364, 2000.

[20]V. Srinivasan and G. Varghese, “Fast IP lookups using controlled prefix expansion”,
Proc. ACM Sigmetrics, ACM Press, pp.1-10, 1998.

[21]S.Nilsson and G.Karlsson, “IP - address lookup using LC-tries,” IEEE Journal on
Selected Areas in Communications, 1999.

[22]V. Ravikumar and R. Mahapatra, “TCAM architecture for IP lookup using prefix
properties,” IEEE Micro, vol. 24, no. 2, pp. 60-69, Mar-Apr. 2004.

[23]H. Liu, “Routing prefix caching in network processor design”, Proc. International
Conference on Computer Communications and Networks (ICCCN), Phoenix, AZ,
2001.

[24]J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 3rd Ed, San Francisco: Morgan Kaufmann publishers inc. 2003.

[25]H.C.Chen and J.S.Chiang, “Design of an adjustable-way set-assoicative cache,”
Proc.2001 IEEE Pacific Rim Conference on Communication, Computers and Signal
Processing, Vol.1,pp.315-318,Aug. 2001.

[26]N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a
small fully associative cache and prefetch buffers,” Proc. of the 17th annual intl.
Symposium on Computer Architecture, May 1990.

[27]M.R.Zargham, Computer architecture: single and parallel system, Englewood Cliffs,
NJ: Prentice-Hall.Inc., 1996.

[28]The Measurement and Analysis on the WIDE Internet (MAWI) Working Group, the
web site is: http://tracer.csl.sony.co.jp/mawi/

[29]J. G. Delgado-Frias, and R. Guo, “A cache architecture for IPv6 lookups,” The 8th
World Multiconference on Systemics, Cybernetics and Informatics (SCI 2004), July
2004.

[30]R. Guo and J. G. Delgado-Frias, “A pipelined cache architecture for IPv6 lookups,”
International Conference on Communication and Computer Networks (CCN 2004),
Cambridge, Mass., November, 2004.

 105

[31]D. Feldmeier, “Improving gateway performance with a routing-table cache,”
Proceedings of InfoCom’88, pp.298-307, March 1988.

[32]B. Talbot, T. Sherwood, and B. Lin, “IP caching for terabit speed routers,”
Proceedings of Globecom, pp.1565-1569, 1999.

[33]T. C. Chiueh and P. Pradhan, “Cache memory design for network processors,”
Proceedings of High-Performance Computer Architecture, pp.409-418,January 2000.

[34]R. Guo, J. G. Delgado-Frias, and S.Wong, “Cache replacement policies for IP
address lookups,” International Conference on Circuits, Signals and Systems (CSS
2007), July 2007.

[35]University of Oregon Route Views Archive Project. http://archive.routeviews.org/

[36]6TAP router information. http://www.6tap.net/

[37]Hurricane Electric Internet Services. http://lg.he.net/cgi-bin/index.cgi.

[38]J. G. Delgado-Frias, J. Nyathi and S. Tatapudi, “Decoupled dynamic ternary content
addressable memories,” IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, pp.2139-2147,vol. 52, no. 10, October 2005.

[39]H. Liu, “Routing table compaction in ternary CAM,” IEEE Micro,
vol. 22, no. 1, January-February, pp.58-64, 2002.

[40]J. G. Delgado-Frias and J. Nyathi, “A high-performance encoder with priority
lookahead,” IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, vol. 47, no. 9, pp. 1390-1393,September 2000.

[41]R. Guo, J. G. Delgado-Frias, “A novel compaction scheme for routing tables in
ternary CAM to enhance cache hit rate,” International Conference on
Communication, Internet and Information Technology (CIIT 2007), July 2007.

[42]R. Guo, J. G. Delgado-Frias, “Table compaction and sampling schemes to enhance
TCAM cache performance in IP routing,” 2007.

[43]T. Jamil, R. Stacpoole, “Cache memories”, IEEE Potentials, vol. 19, no.2, pp. 24 –
29, 2000.

[44]W. Shyu, C. Wu, T. Hou, “Efficiency analyses on routing cache replacement
algorithms,” Proceedings of the IEEE ICC '02, pp. 2232-2236, April 2002.

