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IP routing is an important operation in the forwarding of packets through the 

Internet. It decides how and where to deliver incoming packets to the appropriate output 

interface of a router. The process is performed by looking up IP addresses in a routing 

table stored in memory. The speed of this operation has a great influence on the overall 

performance of network processors. With the growth of Internet, the routing table 

lookups are required to be faster to match the increasing link bandwidth.  

This dissertation presents novel cache-based schemes to obtain high routing table 

lookup performance. This study involves the following aspects. In regard to the cache 

architectures, a victim cache is implemented to store the entries discarded by the main 

cache. A randomly selected index (RSI) method is designed to redirect indexes away 

from those entries that have a large possibility to cause conflict misses.  As for the cache 

replacement policy, two new policies that tend to remove an inactive entry by considering 

its previous access references are introduced and evaluated. In order to reduce memory 

size, novel route entry compaction schemes are designed based on the special features of 



 v

Ternary Content Addressable Memory. In addition, two improved sampling techniques 

are introduced to alleviate the port error which is a side-effect of caching. A set 

associative caching scheme specially implemented for the compaction schemes is also 

described. 

These schemes are evaluated through extensive simulation based on IPv4 and 

IPv6 routing information. The results show our schemes can significantly enhance cache 

hit rate up to more than 20%. The higher hit rate makes average memory access time 

shorter, this in turn speed up the route lookups. Moreover, a small port error ratio is 

beneficial to reduce the possibility of incorrect routing. 
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Chapter 1 

 

Introduction 

 

1.1 Computer network 

 A computer network is formed by a number of computer systems, which are 

interconnected and can communicate and exchange information. Computer networks 

emerged in the late 1960s as a result of computing and communication technologies’ 

development. Computer networks have grown at an increasing rate with the rapid growth 

of the Internet [1]. One use of computer networks is the sharing resources to make all 

programs, equipment, and especially data available to anyone that is connected to the 

network overcoming geographic barriers.  

Communication networks usually have one of two approaches to achieve 

communication: circuit switched and packet switched network. Circuit switching is the 

method used by the telephone network, which operate by forming a dedicated connection 

between two points. It usually has three phases: establish circuit, communicate and close 

circuit. The important advantage of circuit switching is its guaranteed capacity. On the 

other hand packet switching is a method where data are contained in packets and 

transferred across a network. Packet header contains control information, such as source 

and destination addresses. At each connection node, the entire packet is received, 
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processed, stored briefly and then forwarded to a specified destination. Consequently, 

different packets might follow different paths. Packets might be recorder, delayed or even 

dropped sometimes. The significant advantages of packet switching are the simply 

implementation and efficient bandwidth usage. That is, multiple data communications 

can be proceed concurrently. Packet switching is used in the Internet.  In this dissertation, 

all our research concentrates on packet switched networks. 

In order to communicate, different computers must agree on both standards and 

protocols.  A protocol is a set of rules that governs how two parties are to interact with 

each other. As for the Internet, there is a suite of communication protocols. TCP/IP 

(Transmission Control Protocol/Internet Protocol) is the most commonly used protocol, 

which contains the details and standard for transmitting data over the lower layer of the 

Internet [2]. In addition, there are some protocols involving upper-layer applications, 

such as SMTP [3] for electronic mail, FTP [4] for file transfer etc.  More specifically for 

TCP/IP: 

• IP contains addressing information and some control information, which is 

responsible for transfer packet of data from node to node. IP provides 

connectionless, best-effort delivery service. It forwards each packet based on a 

destination address.  

• TCP provides reliable transmission of data. It is responsible for verifying the 

correct delivery of data from sender to receiver. TCP adds support to detect errors 

or lost data and to trigger retransmission until the data is correctly and completely 

received. Moreover, TCP offers efficient flow control, full-duplex operation 

service.  
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1.2 IP addresses 

An IP address (Internet protocol address) is a unique address to identify electronic 

devices on a computer network when utilizing the Internet Protocol. It is important for 

hosts to communicated with each other. In the packet switched Internet, the data is 

forwarded based on the destination address in the packet.  The followings are two kinds 

of IP address currently used. 

 

1.2.1 IPv4 (Internet Protocol Version 4) 

Our current Internet architecture is based on the version 4 of the Internet protocol 

[5]. IPv4 uses 32-bit IP network addresses, and it assigns at most 322  or almost 4 billion 

unique addresses for those hosts connected on the Internet.  Each address encodes its 

network number and host number.  

For several decades, the IP address space were divided into five categories listed 

in Figure 1.1. This allocation is called classful addressing [6]. Obviously, the several bits 

can distinguish the different classes.  

10 Network Host

0 Net-
work Host

110 Network Host

1110 Multicast address

1111 Reserved

A

B

C

D

E

32 Bits

 

Figure 1.1: IPv4 address formats. 
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The IPv4 address is usually written in dotted decimal notation, which includes 

four decimal integers separated by decimal points to present 32-bit numbers. The lowest 

IP address is 0.0.0.0, and the highest is 255.255.255.255. For example,  

11000000 01100101 00110010 00010100 

This address is written as   

192.101.50.20 

However, this traditional classful addressing has its limitation. It does not allow 

the address space to be used to its maximum potential because of assigning blocks of 

addresses with strict boundaries. The lack of access to IP address’ full penitential is 

becoming a serious problem as the Internet grows in number of unique devices in the 

network. It is predicted that the available addresses will be run out someday. In that 

situation, no more network device or user can be added to the Internet. This is the 

problem of IPv4 address exhaustion.   

The CIDR (Classless InterDomain Routing) [7] is one solution to temporarily 

alleviate the shortage of address. The basic idea of CIDR is allocate IP addresses in 

variable-sized blocks by using a mask to delineate network and host part. For example, 

192.168.0.0/21. Hence, instead of classful addressing, which restricts the bits of network 

address to 8, 16 or 24 bits, CIDR allows the range from 1 to 29 bits. 

Another method to solve address shortage is Network address translation (NAT) 

[8]. This process enable a large number hosts on a private network share a small number 

of public IP address. When a packet transmits between the local networks to the Internet, 

the address on the packet is translated to a public address. Thus, Internet can contain far 
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more hosts than its normal capacity, while it makes the end-to-end application difficult to 

be implemented. 

 

1.2.2 IPv6 (Internet Protocol Version 6) 

Although CIDR and NAT schemes are helpful to alleviate the IPv4 address 

exhaustion, they are considered as short-term solutions. They do not solve the problem 

completely.  A new protocol with a larger address space has been proposed and started to 

use, IPv6.  

  IPv6, Internet Protocol version 6, is the next generation protocol designed to 

replace current IPv4 [9]. It is also a data-oriented network layer protocol to transmit data 

across a packet-switched network, similar to its predecessor. The major change from IPv4 

to IPv6 is the length of network addresses. IPv6 enlarged address format form 32 to 128-

bit, which has the potential to have up to 1282  addresses. At present time, only a small 

portion of these addresses have been assigned to devices, and many addresses are 

available for future use. There is no need to have NAT any more due to the large address 

capacity of IPv6.  

There are three types of IPv6 addresses: Unicast, Anycast, and Multicast address 

[10]. Unicast address is used to identify one single interface, while other two are used for 

a set of interfaces. There are two notations for 128-bit IPv6 addresses. One is writing as 

eight 16-bit integers separated by colons. Each integer is represented by four hexadecimal 

digits. For example,  

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 
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Another notation is used to represent address prefixes. It is similar to the CIDR notation 

for IPv4 addresses. For example,  

12AB:0000:0000:CD30:0000:0000:0000:0000/60 

And this address is also compacted as 12AB:0:0:CD30:: / 60. The first part is a valid 

IPv6 address, and the decimal value tells us its prefix length. 

IPv6 has additional features. The header format of IPv6 packet is simpler than that 

of IPv4. It is only composed of six fields, followed by two 128-bit IPv6 source and 

destination addresses. The total length of header is 40 bytes, while IPv4 has 10 fixed 

header fields, two addresses and some options. The length of its header is variable. IPv6 

is relatively easy to manage because of its hierarchical addresses. IPv6 also provides 

fundamental support for security and quality-of-service (QoS).  

 

1.3 Internet routing and address lookups 

IP routing plays an important role in the forwarding of packets through the 

Internet. It decides how and where to deliver incoming packets to the appropriate output 

interface of a router using the packet’s destination address. Usually, this process involves 

two basic activities: determining optimal routing paths and transporting packets through 

the Internet. The first part is more relative to our research topics, that is, determining 

which output ports that the received packets should be forwarded to. This process is 

completed inside a router [11]. 
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1.3.1 Router architecture 

Router is a network device that physically connects similar or different networks. 

It makes decision about where and how to deliver an incoming packet to the appropriate 

output interface by using its destination address. In this dissertation, the network router 

architecture has the form shown in Figure 1.2 where there is a set of input ports that 

receive packets from other nodes in the network, a switching fabric that forward these 

packets to the proper out port, and a set of output ports that deliver the packet to the 

following hop. 

 

input port

input port

input port

switching
fabric

routing 
processor

output port

output port

output port

 

Figure 1.2: General router architecture. 

 

1.3.2 Basic routing process 

The process is performed by looking up entries in a routing table, which contains 

information relating to other networks and hosts in the Internet. Routing table is 

initialized and updated to determine path by variable routing protocols, such as RIP[12], 

OSPF[13] etc. Each entry in the routing table comprises an address prefix, a forwarding 

address, and the interface to which the packets should be delivered when their address 
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prefix matches [14, 15]. The router makes decision based on route entries in the routing 

table, which is maintained in memory storage.  

The routing process works as follows: 

 The router receives a packet from one of router’s interface 

 It extract the destination address in the packet, and then check it in routing table to 

see if there is a match to forward this packet. 

o If there is a match that informs us the output port to the subnet directly 

attached, then send this packet to the destination host by lookup ARP for a 

MAC address. 

o If the router determines the destination network is not local, then deliver 

the packet to next hop router. 

o If there is no directly match in the routing table, deliver the packet to a 

default port. If there is no such port, it sends an error back to source. 

 

Figure 1.3: IP routing process. 
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1.3.3 Route lookup schemes  

Typically, there are two lookup mechanisms: exact match searching and longest 

prefix matching searching (LPM).  

Exact match is very direct. Each entry in the routing table is of fixed length. By 

comparing the whole destination address of the arriving packet to the entries in routing 

table, we can get the port simply. This method can be realized by direct lookup, or 

hashing techniques. For example, 4-bit address 1011 is found an exact match in the 

following routing table and it will be delivered to port B directly in Figure1.4. 

 

Figure 1.4: An example of exact matching. 

LPM is a method to make a delivering decision by the address and its prefix. 

When a packet arrives, IP router finds entries matching with the incoming packet’s 

destination address and selects the entry with the longest prefix. Then forward the packet 

to the output port that the selected entry provides. Since the destination address of an 

arriving packet does not carry the prefix length information, routers need to search among 

the space of all prefix lengths as well as the space of all prefixes of a given length. Hence 

the longest prefix matching is more complicated to implement than the exact matching. 

LPM can be realized by PATRICIA trie, or TCAM [15].  
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1.4 Challenges 

With the continuous growth of the Internet, higher demands are placed on the IP 

routing in terms of speed; in particular, the growth of link bandwidth requires 

increasingly fast IP routing table lookups. A router needs to handle roughly 1,000 packets 

per second for every 610 bits per second of line rate [17]. Therefore, 10M routing lookups 

per second are needed for a current route with the line rate of 10 Gb/s (OC-192). 

Moreover, in the near future, the line speed will grow towards 40 Gb/s (OC-768) with the 

continued technological advances in optical and electronic devices [16]. Such a high line 

speed requires fast lookups to match. 

In addition, routing tables are becoming larger with the development of Internet; 

the implementation of IPv6 needs more memory storage because of its long address 

format. Thus a large memory is usually required to store such tables in a local router. 

This in turn may restrict the lookup speed since the complete routing table is stored in 

main memory with slow access time. Memory access time becomes a long-term 

bottleneck. It slows down the address lookup operation.  

With regards to the above challenges both in speed and space for IP routing, the 

purpose of our research is to provide high-performance routing schemes and technologies 

without cost overhead. 

 

1.5 Outline 

The remainder of this dissertation is organized as follows. Chapter 2 presents 

three improved cache schemes and their implementation of pipeline. We estimate their 

performance both from cache hit rate and throughput speedup. Chapter 3 discusses the 
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impact of cache replacement policies; provides two optimized policies which make 

replacement decision based on route’s history activities. Chapter 4 proposes four 

compaction schemes for routing table entries by taking advantage of the special 

characters of Ternary CAM. We analyze their cache performance and memory 

consumption.   Chapter 5 deals with port error occurrence caused by caching. This 

chapter describes two novel sampling techniques to alleviate this problem. Chapter 6 

describes new set associative caching with regard to the compaction schemes. We 

develop this scheme based on the practical routing table address space and historical 

cache hit distribution. Chapter 7 provides some concluding remarks which include a 

summary of the contribution of this research work. 
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Chapter 2 

 

Cache Architectures for IPv6 Routing and Address 

Lookups 

 

2.1 Introduction 

With the large Internet growth, the speed of IP route lookups is becoming an 

important issue that has a great influence on the overall performance of network 

processors. One of the significant factors is the slow access time of main memory, where 

the routing tables are usually saved. Since small storage has the advantage of high 

memory access speed and low power consumption, caching technique can be used in 

network processor to solve this problem. The method is storing the most frequently used 

destination addresses and their forwarding information in cache to reduce the average 

memory access time.  Using a cache scheme one has to take into account the impact of 

cache size, replacement policies, and associativity on cache hit rate. 

In this Chapter, we present several novel cache schemes and implement their 

pipelining architectures to enhance the performance of route lookups. These schemes are 

all improvements based on common cache architecture. One scheme uses a victim cache 

(VC) to save the entries discarded by the main cache. Another uses randomly selected 

index (RSI) to redirect indexes away from those entries that have a large potential of 
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having conflict misses. The last scheme uses a combination of these two above schemes 

to obtain more enhancements. Moreover, using pipelining, the system throughput is also 

greatly increased. Our studies here focus on the next generation IP address, IPv6, on 

which the memory access time is crucial because of its long address format (128 bits). All 

these schemes are realized and evaluated through extensive IPv6 traces. The simulations 

later validate that these schemes help to reduce conflict misses effectively.   

This chapter is organized as follows. In Section 2.2, an introduction about route 

lookups and related works are provided. Section 2.3 describes that victim cache 

architecture, randomly selected index method; the combinational scheme of both to 

improve routing performance. The implementation of pipelining is presented in Section 

2.4 to enhance the system throughput. In Section 2.5, we present the simulation results 

using IPv6 routing information. Some conclusion remarks are provided in Section 2.6.  

 

2.2 Route lookup fundamentals 

In this section, we begin with a brief description of route lookup approaches by 

other researches, and then provide the conventional caching technique for routing 

operations, which is particular important for our improved caching schemes. 

 

2.2.1 Route lookup approaches 

There have been a number of techniques proposed to increase the performance of 

lookups in Internet processor, roughly, which can be divided two major approaches.  

One approach is based on hardware solutions [17, 18, and 19]; this is the 

emphasis of our proposed schemes. DIR-24-8-Basic scheme was proposed by Gupta [17]. 
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It is implemented for IPv4 routing. It includes two tables, TBL24 and TBLlong, to store 

all possible route prefixes that are less than 24 bits and greater than 24 bits, respectively. 

The lookup method is simple and efficient for IPv4, because more than 99% of prefix in 

routing table have 24 bits or less. Huang proposed another lookup mechanism later but 

based on SRAM, which simplified hardware design [18].  However, both schemes 

depend on the prefix distribution and are difficult to scale to IPv6, because of its long 

address of 128 bits. This requires a lot of memory to store all possible prefixes for IPv6. 

Ternary content addressable memory (TCAM) is able to match in parallel stored 

data with incoming data [22, 23, 15]. The major advantage of this memory is the o(1) 

search time; i.e. only one memory access. However, it requires an extra priority encoder 

to deal with the problem that several matches occur at the same time. This increases the 

complexity in hardware.  And for IPv6 with long length of 128 bits, there will be a 

challenge to store long length entries in TCAM because of its high price and power 

consumption.  

Another kind of approaches is software method in which efficient lookup 

algorithms are used to find the longest prefix matching of a destination address, which is 

stored in a table data structure [20, 21]. These algorithms are designed to produce short 

searching path or reduce the memory storage requirements.  

 

2.2.2 Cache architecture for IP routing 

Cache memories are widely used in computer systems. In a program (with many 

memory accesses) it is very likely that the same data in memory is accessed multiple 

times in a short time period; this is called temporal locality. Thus, a small and fast 
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memory can be used to reduce lengthy memory access times. Studies have shown that the 

network packet streams indeed have temporal routing locality. That is, a routing entry 

accessed before it is possibly referenced again in a short period of time. This feature 

allows caches to be used in IP address lookups. Consequently, more active forwarding 

entries are saved in cache; this in turn has the potential of making lookup faster. 

The process of lookups is associated with a destination address. When a router 

receives a packet from one of its interfaces, the destination address in this packet is 

extracted, and compared with current entries in the cache using a Longest Prefix 

Matching (LPM) mechanism. The basic organization of the cache is depicted in Figure 

2.1. If there is a matching entry in cache, this packet will be delivered to the interface 

specified by this entry. If a miss occurs, an address search is made in the large routing 

table stored in memory. Subsequently, the matching entry is written back into cache. 

Here, we use Least Recently Used (LRU) replacement policy, in which the route entry 

that has not been accessed for the longest time will be evicted from the cache.   

 

 

Figure 2.1: A cache organization for IP address lookup. 
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The average memory access time (AMAT) of the cache organization is 

determined as follows [24].   

))1(()( memorycachecachecache ATHATHAMAT ×−+×=       (Equation 2.1) 

where Hcache is the cache hit rate, ATcache is the cache access time, and ATmemory 

is the routing table access time.  

Current technology and memory implementations indicate that cache (using 

SRAM) has an access time that is 8 to 16 times faster than main memory (using DRAM) 

[24]. It is clear that a cache technique is needed to obtain small average access time. A 

small size cache usually yields low access time (ATcache) while temporal locality helps to 

increase hit rate (Hcache). This chapter deals with different cache architectures to increase 

hit rate without hardware implementation overhead.   

 

2.3 Proposed cache architectures 

Similar to a generic CPU cache memory, the data searched in routing operations 

are associated with incoming destination addresses. Although cache misses due to 

conflict can be reduced by using higher associative cache [24], such cache also tends to 

increase hardware complexity and affects performance [25]. Therefore, direct-mapped 

(DM) cache is usually used in order to keep design simple. In this section we present 

three schemes that are based on DM cache and need no special memory devices, but can 

achieve effective cache performance.  

 

2.3.1 Victim cache architecture 
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Victim cache (VC) was first proposed by Jouppi [26] to reduce misses without 

affecting the hit time or the miss penalty. It is a small, fully associative cache that stores 

those entries discarded by the active (or primary) cache. If those entries are needed later, 

they will be retrieved from VC. Thus, there will be no need to access the routing table.  

 

 

Figure 2.2:  Victim cache architecture. 

Victim cache architecture for our application is shown in Figure 2.2. Destination 

address is first sent to both caches. The cache is indexed by some bits of the address, 

while the whole address is compared in the VC. There are three possible outcomes, when 

both caches perform a lookup. These are: 

Cache Hit. There is a hit on main cache; thus, the forwarding port can be retrieved 

from this cache. 

Victim Cache Hit. There is hit on victim cache and not hit on cache. The forwarding 

port can be retrieved from this victim cache. A swap between this matching entry in the 

victim cache and its corresponding entry in the main cache is performed.  
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Cache System Miss. Both main cache and VC have a miss. Using a replacement 

policy, the new entry from the routing table is placed into the main cache. The discarded 

entry is placed into VC. We use least-recently used algorithm (LRU) as replacement 

policy for VC, i.e. replaced entry is the one that has been unused for the longest time.  

 

2.3.2 Randomly selected index architecture 

If we use direct-mapped cache, conflict problems affect hit rate negatively. In our 

simulations, we observed that there are some entries that are prone to conflict problems. 

Hence, we propose the randomly selected index scheme to reduce conflict misses for DM 

cache. 

Based on statistics of the behavior of the cache conflict misses over a period of 

time, we can adjust the mapping of the cache. Conflict misses occurrence is due to 

mapping of entries to the same location in cache. We label the index of the entry that 

prone to conflict misses as a predictor and use it to predict misses in the next period. In 

next period, if one index from a destination address is accessed to the set that is the same 

as predictor, then we use randomly selected mechanism to choose another set indexed 

uniformly. This method avoid many conflict misses that might occur in the set have most 

misses before, and disturbed them to some other sets with less accessed or less misses. 

This technique has a simple implementation and can enhance the performance of cache 

by reducing cache misses due to conflict. 

In Figure 2.3, the Index Selections (IS) of the scheme is shown.  For a direct-

mapped cache with the size of 512 entries, each index needs to be 9 bits. In the case that 

the original index of a destination address matches with the predictor, another index bits 
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are chosen randomly from a range in the address with the priority from top 1 (when there 

is no match with the entry address) down to 4.  Once these bits are selected they are kept 

fixed for this period of the simulation. In this figure, input 1 is the original index of 9 bits, 

and input 2, 3 and 4 are new indexes of 9 bits that randomly selected from the following 

bit positions of the IPv6 address 89-118, 30-88, and 0-29, respectively. 

 

 

Figure 2.3: Index selection scheme. 

 

2.3.3 Combination of the above two methods 

Obviously, there are still some conflict misses even with the implementation of 

the above two methods. Due to the independence of these methods, we can use a 

combination of them to achieve further improvements. Using both victim cache and 

randomly selected index, cache hit rate can be increased.  

 

2.4 Pipelining implementation in IP routing 

In order to keep a high throughput for the above mechanisms, we propose pipeline 

structures. Pipelining is an implementation technique whereby multiple instructions are 
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overlapped in execution [24]. The proposed pipeline is divided in three stages. Since 

these stages are independent, the pipeline has no data hazards. Figure 2.4 shows the 

pipeline with index selection, which has the following stages. 

Stage 1. Index Selections (IS). Select different index to reduce conflict miss, if 

needed.  

Stage 2.  Cache Access (CA). Access cache (this includes VC access) 

Stage 3. Get Port (PT). If a hit occurs in cache, the forwarding information is 

retrieved directly; otherwise, the address is sent to routing table to find the 

port. 

 

 

Figure 2.4: Pipeline for index selection cache architecture. 

The length of the machine cycle is determined by the time required for the slowest 

pipe stage. Hence, the balance of the length of each stage should be considered in 

pipeline. If the stages are perfectly balanced, then the speedup from pipelining equals the 

number of pipe stages [27], however, the stages usually do not be perfectly balanced. For 

each lookup in cache architecture, if a hit occurs in cache, the forwarding information is 

retrieved at once. If there is a miss in cache, we need more time to get results. Usually, 

the time to get data from memory is called penalty [24]. The number of cycles in the 

penalty depends on the memory type.  
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Figure 2.5: Routing table and cache Architecture. 

 

 

Figure 2.6: An example of route lookup operations in pipelining. 

Figure 2.5 shows an implementation of the proposed scheme that shows the 

routing table. A buffer is used to store the entries that are being searched at the routing 

table when a miss occurs. There are three possible results when compare one destination 

address with the entries in cache, routing table or buffer. If a match in cache, it is a hit. If 
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no match in cache and buffer, it is a miss. If no match in cache and a match in buffer, this 

is considered a pseudo-miss. The miss penalty is less than those of a real miss since the 

entry is being searched in the routing table. Figure 2.6 shows an example of route lookup 

operations in pipelining. 

 

2.5 Performance analysis and evaluation 

Cache hit rate is one of major measurements of performance for a cache memory 

architecture. It also provides a good indication of the potential gain in performance. 

Because main memory access time is much longer than cache access time, many searches 

in memory will slow down the lookup process. However, with a higher hit rate, fewer 

routing table memory accesses are needed. In this section we evaluate the performance of 

the proposed schemes and their pipelined implementation.  

 

2.5.1 Routing information 

Evaluations of our proposed caching schemes are based on six IPv6 trace files 

which are downloaded from the Measurement and Analysis on the WIDE Internet 

(MAWI) Working Group http://tracer.csl.sony.co.jp/mawi/ [28]. Each trace file has 2 

million destination addresses. The length of each IPv6 address is 128 bits, which is four 

times longer than the current network address IPv4. Analyzing these destination 

addresses in each trace file, we found that there are only several thousands unique 

addresses. This in turn indicates there exists temporal locality in these trace files and it 

supply the possibility of using a cache architecture. The ratio of number of packets to 
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number of unique address is shown in Table 2.1. The higher ratio indicates higher 

locality.  

 

Table 2.1: IPv6 address traces (2M packets/trace). 

Trace 
ID Number of unique IP address Ratio 
030715 1022 1957 
031015 1539 1299 
031213 3164 632 
031214 3949 506 
031215 3681 543 

 

2.5.2 DM and set associative cache performance 

Table 2.2 shows hit rate of DM cache with different cache size. Figure 2.7 shows 

this information in a graphical form. From this graph it can be observed that as cache size 

is increased the hit rate improves. The improvement rate diminishes as memory size 

grows.  The curves are almost flat after the point of 1024 entries.  

 

Table 2.2: Hit rate of direct-mapped cache with different sizes. 

Cache size (number of entries) Trace 
ID 64 128 256 512 1024 2048 

030715 95.08% 95.94% 96.69% 96.98% 97.16% 97.19% 
031015 88.21% 90.11% 93.74% 94.45% 94.64% 94.84% 
031213 76.92% 80.96% 84.73% 86.68% 88.69% 89.40% 
031214 52.65% 61.55% 69.48% 73.26% 76.57% 78.05% 
031215 60.33% 67.18% 73.72% 77.07% 79.59% 80.82% 
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Figure 2.7: Plot of hit rate of DM cache with different size. 

By increasing cache associativity, a better hit rate is obtained. Table 2.3 shows the 

512-entry cache hit rate for each our traces under different cache associativities including 

direct-mapped, 2-, 4-, 8-way and fully associative. The data in Table 2.3 has been plotted 

and shown in Figure 2.8. It should be pointed out that, in general, higher associativity 

increases the complexity of hardware and hit time [24].  

 

Table 2.3: Hit rate of cache with different associativity. 

Trace 
ID DM 2-way 4-way 8-way Associative 

030715 96.98% 98.28% 99.27% 99.64% 99.91% 
031015 94.45% 96.94% 98.20% 99.28% 99.81% 
031213 86.68% 91.35% 94.54% 96.71% 97.68% 
031214 73.26% 83.57% 90.35% 93.98% 96.52% 
031215 77.07% 85.31% 91.43% 94.74% 96.81% 
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Figure 2.8:  Plot of cache hit rate with different associativity. 

 

2.5.3 Victim cache (VC) architecture performance 

For the victim cache, we have chosen the number of entries to be 4, 8 and 16 and 

compare the performance with the cache without VC. Table 2.4 shows the hit rate of 

victim cache associated with a 512-entry primary cache. 

Table 2.4: Hit rate of VC architecture. 

Hit rate increments of victim cache (VC) 
Trace ID 4-entry 8-entry 16-entry 
030715 98.66% 99.06% 99.28% 

031015 97.38% 98.07% 98.47% 

031213 90.10% 91.81% 93.25% 
031214 80.84% 84.31% 87.25% 

031215 83.92% 87.01% 89.41% 
 

Comparing VC and DM (Table 2.3) we observe the following:  
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• The range of improvement goes from 1.68% to 13.99% when comparing with a 

simple DM cache. 

• DM cache cooperating with a 16-entry victim cache can achieve a hit rate better 

than 2-way or 4-way set associative cache of the same size. 

• For all of these traces, the hit rate of cache 256 with 16-entry victim cache is 

better than direct-mapped cache and close to 2-way associative cache with the 

size of 512 entries. This seems to reduce 48.43% the memory (storage) 

requirements. Similarly, 512-entry cache with 16-entry victim cache has a better 

hit rate than direct-mapped cache with the size of 1024 entries, or even better than 

2048 entries; and close to 2-way associative cache with the size of 1024 

entries(see Figure 2.9). 
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Figure 2.9: Compare between VC and cache. 

 

2.5.4 Randomly selected index (RSI) performance 

We have chosen two traces (031214 and 031215) to evaluate our prediction 

scheme. The prediction is based on an earlier trace 031213. It should be pointed out that 
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these traces were obtained in three consecutive times. Every time the prediction is 

changed the cache has to be flushed. Table 2.5 shows there are hit rate increments of 

these two traces with RSI ranging from 9.98% to 11.29% over direct-mapped cache with 

cache size. The RSI performance is between 2-way and 4-way set associative with the 

same cache size. Although there is requires a stage to process index selection in this 

scheme, it also decreases miss rate without any damage on processing time if implement 

it in pipelining. 

Table 2.5: The performance of RSI. 

Cache size   
Trace ID 

  
Schemes 256 512 1024 

DM 69.48% 73.26% 76.57%   
031214 RSI 79.91% 84.55% 86.55% 

DM 73.72% 77.07% 79.59%   
031215 RSI 84.05% 87.52% 89.69% 

 

2.5.5 Combination of VC and RSI performance 

 Table 2.6 shows an example of 512-entry main cache with different 

implementations. Obviously, the VC and RSI have the similar performance for the 

following two trace files. Moreover, if we combine the VC and RSI schemes together, the 

increments in hit rate are on the order of 2~3%. 

Table 2.6: Performance of three schemes. 

Trace ID DM w/ 8-entry VC RSI Combination 
031214 73.26% 84.31% 84.55% 87.24% 
031215 77.07% 87.01% 87.52% 89.92% 

 

2.5.6 Pipelining technique 
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As we mentioned before, the pipelining technique is used to overlap the execution 

stages of one operation. It does not decrease the time for each lookup, but it increases the 

throughput. Hence, we choose the number of clock cycles needed to process 2M 

destination address traces as one measure of the performance of the pipeline besides a 

measure of hit rate. 

 

Table 2.7: Hit rate of cache with pipeline and penalties (trace 031215). 

Cache size   
Penalty 256 512 1024 2048 Maximum 

0 91.09% 96.81% 99.44% 99.77% 99.82% 
1 88.72% 95.84% 99.36% 99.74% 99.79% 
2 88.22% 95.67% 99.32% 99.72% 99.77% 
3 87.79% 95.54% 99.29% 99.71% 99.76% 
4 87.48% 95.45% 99.27% 99.69% 99.75% 
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Figure 2.10: Plot of hit rate of cache with pipeline and penalties. 
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Table 2.7 shows the change of hit rate in pipeline. We choose trace 031215 as a 

sample. We use a buffer to store the entries in waiting states in pipelining. It is assumed 

that the cache could continue receiving requests while the routing table is accessed (in a 

miss case). This in turn has an effect on cache hit rate due to locality (such as two 

consecutive requests to the same address). Figure 2.10 shows that as the cache size 

increases the penalty has less impact on cache hit rate. 

 

Table 2.8: Clock cycles of fully associative cache with pipeline and penalties 

Cache size   
Penalty 256 512 1024 2048 Maximum 

0 2000001 2000001 2000001 2000001 2000001 
1 2113174 2041026 2009254 2003670 2002982 
2 2140794 2055980 2010129 2004050 2003299 
3 2143183 2056746 2010270 2004114 2003350 
4 2147131 2058001 2010524 2004213 2003426 
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Figure 2.11: Plot of clock cycles of fully associative cache in pipeline. 
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Table 2.8 and Figure 2.11 include the clock cycles information to finish the 

lookup of trace 031215. Increasing the cache size leads to an increase on hit rate and 

decreases on conflict misses and the stalls used to solve structure hazards. Hence, the 

number of total cycles decreases and the average cycle per address also goes down. As 

penalty increases the number of cycles increase. Compared with those of scheme without 

pipeline, the speedup ranges from 1.89 to 1.99 depending on the cache size and the miss 

penalties. 

The following tables have information about the performance of direct-mapped 

cache, fully associative cache, victim cache architecture, and randomly selected index 

architecture with pipeline. Taking trace 031215 with 512-entry cache as an example, the 

VC and RSI still have about 10% increment over DM cache.  All cache architecture’s hit 

rate is decreasing because of the increasing penalty; see Table 2.9. The number of clock 

cycles needed is shown in Tables 2.10. The throughput speedup is ranging form 1.75 to 

2.99 depending on pipeline stage and time penalty as compared with those without 

pipeline. 

 

Table 2.9: Hit rates of pipelining architectures. 

Cache organizations   
Penalty Fully VC RSI DM 

0 96.81% 89.41% 87.18% 77.07% 
1 95.84% 87.11% 84.51% 73.60% 
2 95.67% 86.50% 83.68% 72.36% 
3 95.54% 85.96% 82.93% 71.04% 
4 95.45% 85.51% 82.22% 69.73% 
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Table 2.10: Clock cycles of pipelining architectures. 

Architectures   
Penalty Fully VC RSI DM 

0 2000001 2000001 2000002 2000001 
1 2041026 2143138 2168880 2260315 
2 2055980 2166798 2192301 2273450 
3 2056746 2168328 2192876 2262312 
4 2058001 2170727 2193457 2243828 

 

In pipeline, another factor we consider is the ratio of the number of pseudo misses 

to the number of real misses. This is shown in Table 2.11. If the ratio is high, like the 

penalty 3 and 4 of DM cache, clock cycles do not increase as fast as for lower penalties. 

The reason is that there are relative more pseudo-misses.  

 

Table 2.11: Ratio of pseudo miss to real Miss. 

Architectures   
Penalty Fully VC RSI DM 

0 0 0 0 0 
1 0.305 0.2191 0.2161 0.2011 
2 0.3566 0.2788 0.2882 0.3138 
3 0.4 0.3334 0.3581 0.4549 
4 0.4278 0.3799 0.4283 0.6471 

 

The buffer size of all simulation does not change a lot with these different architectures. 

Buffer size ranges from 1 to 57 depending on the penalty size.  

 

2.6 Summary of this chapter 

In order to speed up the route lookup process, a cache architecture is generally 

used in network processors. A cache is a small memory with a short memory access time. 
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Based on the conventional caching technique, we proposed three improved schemes that 

need no special memory devices. They are investigated to reduce conflict misses of 

general direct-mapped cache architecture. Their implementations in pipeline are also 

analyzed. The simulations on IPv6 routing show our proposed schemes achieve better 

performance[29,30]. The summary of our features is as follows.  

• Victim caching: The VC hit rate increments range from 1.68% to 13.99% 

depending on the cache size,when comparing with a simple direct-mapped cache. 

DM cache cooperating with a 16-entry victim cache can achieve a hit rate better 

than 2-way or 4-way set associative cache of the same size. 

• Randomly selected Index: the cache hit rate increments of two traces (20031214 

and 20031215) with RSI range from 9.98% to 11.29% over DM cache. The RSI 

performance is between 2-way and 4-way set associative with the same cache 

size. 

• Combination of the two methods: There is about 1%~3% over that of using one 

schemes, if we put the VC and RSI together. 

• Pipelining: The route lookup throughput is increased significantly using 

pipelining.  Compared with fully associative caching without pipelining, the 

speedup of throughput ranges from 1.89 to 1.99 depending on the miss penalty 

and cache size. Given a 512-entry main cache, the throughput speedup is ranging 

form 1.75 to 2.99 depending on pipeline stage and time penalty as compared with 

different schemes without pipelineling. 
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Chapter 3 

 

Cache Replacement Policies for IP Address Lookups 

 

3.1 Introduction 

In this chapter, the replacement policies of cache management are studied and two 

new replacement policies are presented aimed at IP routing and address lookups. In the 

previous chapter, we already know the cache architectures are generally used in network 

processors to satisfy the high demands on IP routing in terms of speed [31, 32, 33]. This 

is achieved by simple storing the most frequently accessed routing table entries within a 

small cache memory that has much shorter access latency than the main memory where 

the routing table is usually stored. By caching, if a destination address does not match 

any entry in cache, the whole routing table is searched, and then the cache is updated. In 

order to decide which entry in the cache should be replaced with a new one from routing 

table, a replacement policy needs to be considered.  

In current cache organizations, two replacement policies are commonly used: 

Least Recently Used (LRU) and Least Frequency Used (LFU). Both of them take into 

account one parameter in replacement estimation.  In this chapter, we propose two new 

policies, namely Least Access and Recently Used (LAR) and Relatively Least Average 

Interval (RLAI) policy, which help to achieve higher cache hit rates and in turn to make 
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routing table lookups fast. These two policies are utilized in a simple fully associative 

cache while running both IPv4 and IPv6 traces respectively, and enhance both IP routing 

performance without cost overhead. 

This chapter is organized as follows. In Section 3.2, two conventional 

replacement policies are described. Section 3.3 introduces our two novel replacement 

policies. The simulation results using IPv4 and IPv6 traces are provided in Section 3.4 

Some conclusions are presented in Section 3.5.  

 

3.2 Existing replacement policies 

In cache architectures, a well-known factor that is affecting the performance of 

caches in general is the replacement policy. As for IP routing, when a fully associative 

cache saved a part of route entries is full and another entry found a match in the routing 

table needs to be included; a decision must be made to decide which entry in the cache to 

be replaced with a new one. Least Recently Used [43] and Least Frequently Used [44] are 

two of the most commonly used replacement policies in cache systems. These policies 

are briefly described below.   

Least Recently Used (LRU) policy:  this policy keeps a list of entries that are 

currently in the cache. When an entry is accessed, this entry is moved to the front of the 

list. When a miss occurs and the cache is full, a replacement is needed; the entry at the 

bottom of the list is removed. The new entry found in memory is placed into the cache 

and the list is updated. Simply said, the LRU policy evicts the entry that has not been 

accessed for the longest time.  



 35

Least Frequently Used (LFU) policy: this policy evicts the entry that has been the 

least frequently used. The motivation behind this policy is that some entries are accessed 

more frequently than others in a given time. This policy sets an access counter as an 

estimate of the frequency. The entry with the lowest access count is removed from the 

cache.  

 

3.3 Proposed replacement policies 

 Replacement policies are important when storage conflicts occur. Some 'faulty' 

replacements can lead to the removal of still useful cache entries. An effective 

replacement policy should help to enhance a cache hit rate with inexpensive 

implementation. In this section, we propose two novel replacement policies, which 

involve more than one parameter to make an eviction decision. These policies can yield a 

higher cache hit rate than the traditional LRU and LFU policies.  In order to make the 

following description concise, we use IPv6 routing information to illustrate these two 

policies.  

 

3.3.1 Least Access and Recently used (LAR) policy  

The goal of this policy is to evict the relatively inactive entry.  An inactive entry 

is the entry that has not been accessed for a relatively long time and, potentially, it will 

not be accessed in the near future. The potential future access is determined by a 

parameter introduced in the new replacement policies which is based on the history of the 

particular entry. 
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By analyzing IPv6 traces, we found an interesting case that an entry just evicted 

from cache by either LRU or LFU policies tends to be re-accessed in a short time later. 

Table 3.1 shows an example of the number of entries that are re-accessed within M 

number of lookups after being evicted by the LRU policy. This table shows different 

number of cache entries. 

Table 3.1: The number of re-accessed evicted entries for trace (A)031214. 

  
Num.of lookups after eviction(M)   

Num.of cache entries 
  
Num. of evicted entries 0- 50 51-100 101-200 201-300 301-400 

64 587968 69174 52114 64108 40614 30475 
128 369922 18147 14972 24714 19681 17223 
256 205667 4782 4297 7673 6612 6142 

 

As for a given 64-entry cache, more than 69,000 entries among all the 587,968 

entries are evicted but are re-accessed within the next 50 lookups. Over 50,000 evicted 

entries are re-accessed between 51 and 100 lookups. Evicting entries that are accessed 

within a small number of lookups decreases the cache efficiency. LRU or LFU have no 

means to address this issue since they are implemented solely based on one aspect of the 

past activity of entries in the cache. One is based on the unaccessed time, and the other is 

on the access count. If we take into account both aspects, and choose the inactive entry in 

cache, this will increase the hit rate. This in turn decreases the average memory access 

time. 

 In Figure 3.1, list A is a group of cache entries sorted by unaccessed time; this is 

the same as that of the LRU policy. The recently accessed entry B is put in the top of list. 

The LAR replacement policy removes the entry with the lowest access count among the 

bottom N recently unaccessed entries in the list. In the example, entry C is the candidate 

to be evicted by the LAR policy due to its lowest access count.  However, if N is close to 
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the number of the cache entries, and the candidate happens to be accessed recently, and 

then we evict the least recently used entry instead of this candidate. That is, the evicted 

entry by LAR is the result of considering both access time and access count.   

 

Figure 3.1: LAR replacement policy. 

The value of N could be optimized by analyzing the cache performance under 

different N. Table 3.2 shows the hit rate increments of LAR over LRU policy for 

different N with a 128-entry cache organization. Figure 3.2 shows that for N equal to 32 

(1/4), the LAR policy achieves the best performance on the sample IPv6 traces. For the 

traces we have studied the value of N that yields the highest hit rate is 1/4. 

Table 3.2: Hit rate increment of LAR over LRU with different size N (128-entry cache). 

N Trace 
1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 

A 1.22 1.82 1.79 1.29 0.98 0.54 0 0 
B 1.05 1.61 1.53 0.98 0.76 0.46 0 0 
C 0.92 1.27 1.08 0.87 0.81 0.58 0 0 
D 0.53 0.68 0 0 0 0 0 0 
E 0.51 0.83 0.55 0 0 0 0 0 
F 0.55 0.96 0.99 0.83 0.37 0.11 0.02 0.02 
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Figure 3.2: Plot of the hit rate increments of LAR over LRU with different N. 

 

3.3.2 Relatively Least Average Interval (RLAI) policy 

The prime motivation for this policy is similar to LAR, but a different parameter 

is considered when making replacement decisions. An array is used to save the average 

interval between two accesses of the same entry. This interval is determined by counting 

the number of lookups between such two accesses. Each time the entry is accessed a new 

average interval is computed.  If an entry is not accessed for a time larger than its average 

interval, then it is considered as an inactive entry and it has the potential to be evicted. 

This algorithm chooses an entry with the longest average unaccessed time among these 

entries potential evicted. The implementation is depicted in Figure 3.3.  

These replacement policies can be implemented using a simple linked list in 

hardware. This list needs few entries with the size of the optimum N of the total cache. 

These entries are arranged in the order of access count or average access interval.  
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Figure 3.3:  RLAI replacement policy. 

 

3.4 Performance evaluation 

In this section, we implement our proposed replacement policies on cache 

architecture, and compare their performance to the LRU policy; we first use IPv4 

destination address traces to evaluate the cache performance, and then extended to apply 

these replacement policies on IPv6 traces to indicate that the policies proposed also 

contribute to this new protocol. The routing information is shown in Table 3.3. We have 

labeled these files from X to Z for IPv4 and from A to F for IPv6 to ease file references. 

 

Table 3.3: IPv4 and IPv6 traces. 

IP Trace files Number of unique 
addresses 

Ratio 

(X)  060524 70627 28 
(Y)  060609 76533 26 

 
IPv4

(Z)  060615 63485 32 
(A) 031214 3949 506 
(B) 031215 3681 543 
(C) 031216 3422 584 
(D) 040128 3764 531 
(E) 040129 3874 516 

 
 

IPv6

(F) 040130 3772 530 
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We also obtain IPv4 routing tables from the website of University of Oregon 

Route Views Archive Project http://archive.routeviews.org/ [35]. In order to keep these 

tables neat, we delete those redundant entries in tables. And obtain IPv6 routing tables 

both from the machine “n6tap.es.net” on the website of 6TAP router information 

http://www.6tap.net/ [36] and from the machine “route-server.he.net” on Hurricane 

Electric Internet Services http://lg.he.net/cgi-bin/index.cgi [37] via telnet. Actually, since 

currently there are few users on IPv6, the sample IPv6 routing table size is not large. We 

have extended or combined tables to satisfy the unique destination addresses in the trace 

files.  

In our evaluation, we still choose hit rate as the measurement of performance for 

cache architecture with different replacement policies. We do not include the LFU policy 

to make comparisons, because its performance is usually worse than that of LRU. Table 

3.4 is an example of trace (B) 031215 to show the difference between these two policies. 

Obviously, the hit rate of LFU is less than that of the LRU by up to 19 % depending on 

different cache sizes. The other test traces share the same trend as trace (B). 

Table 3.4: Difference in hit rate between LFU and LRU of trace (B) 031215. 

Num.of cache entries 
Policy 64 128 256 
LFU 56.05 67.75 81.60 
LRU 75.70 84.53 91.18 

Difference 19.65 16.78 9.58 
 

 3.4.1 IPv4 performance evaluation 

The following Table 3.5 shows the cache hit rate of the three replacement 

policies, including the two novel policies we introduces with different number of cache 
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entries. Figure 3.4 indicates that the average hit rate changes with the increasing cache 

entries. 

Table 3.5: Cache hit rate with different replacement policies (IPv4). 

Traces Num.of cache 
entries Policy X Y Z Average 

LRU 73.94 69.12 74.76 72.61 
LAR 78.11 74.60 79.51 77.41 

512 RLAI 78.26 74.85 79.70 77.60 
LRU 83.98 81.45 85.43 83.62 
LAR 85.58 82.52 87.10 85.07 

1K RLAI 85.54 82.32 87.10 84.99 
LRU 89.53 88.04 91.29 89.62 
LAR 90.1 88.85 91.72 90.22 

2K RLAI 90.04 88.81 91.70 90.18 
LRU 92.71 91.88 94.12 92.90 
LAR 92.89 92.41 94.35 93.22 

4K RLAI 92.84 92.40 94.32 93.19 
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Figure 3.4:  Average cache hit rate performance. 



 42

From the above information, it can be observed that both LAR and RLAI policy 

have a better performance than the common LRU.  If LRU is applied, only one parameter 

is considered in replacing an entry. This entry, however, may be needed shortly after it 

has been removed. When using our proposed policies, this problem is alleviated. Our 

simulation results show that the hit rate is increased from 0.18% to 5.48% for LAR and 

from 0.13% to 5.73% for RLAI, depending on the trace files and the number of cache 

entries.  

Table 3.6 shows another aspect of cache performance, i.e. increment ratio, which 

is the ratio of the hit rate increment by novel replacement policy to the hit rate increment 

by doubling the number of cache entries. Obviously, without any change in cache size, 

our proposed policies can achieve up to 46% increment performance by comparing with 

doubling the cache. Although the hit rate improves as the cache size doubles, the expense 

on caches also increases, especially for expensive fully associative cache. Thus our 

replacement policies are of advantage to enhance cache performance without the 

overhead cost. 

Table 3.6: Increment ratio of cache performance. 

Traces 
Num. of cache entries Policy X Y Z Average 

LAR 41.51 44.5 44.51 43.51 
512 RLAI 43.01 46.49 46.31 45.27 

LAR 28.72 16.37 28.50 24.53 
1K RLAI 28.07 13.26 28.53 23.29 

LAR 17.82 21.19 15.10 18.04 
2K RLAI 16.01 20.02 14.36 16.80 
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Obviously, the LAR and RLAI policy are actually good at achieving higher hit 

rate with regard to IPv4 routing information. We will show below both of them keep 

effective when extending to IPv6 routing lookups, which is important for Internet 

development in future. 

 

3.4.2 IPv6 performance evaluation 

By applying these two replacement policies LAR and RLAI, the cache hit rate 

with different number of cache entries when processing six IPv6 traces is explained in 

Table 3.7. Figure 3.5 depicts the different hit rates for a 128-entry cache. 

Similar to IPv4 routing, our simulation results of IPv6 show that the hit rate is 

increased from 0.17% to 2.35% for LAR and from 0.83% to 2.58% for RLAI, depending 

on the trace files and the number of cache entries. Actually, LAR and RLAI yield over 

thirty thousand additional matches (or hits) as compared to LRU.  

 

Table 3.7: Cache hit rate with different replacement policies (IPv6). 

Traces  Num.of 
cache 
entries 

Policy 
A B C D E F Average

LRU 70.60 75.70 76.63 80.34 81.64 84.01 78.15 
LAR 72.27 76.95 77.89 81.36 82.34 84.18 79.17 64 
RLAI 73.01 77.64 78.59 81.90 82.93 84.84 79.82 
LRU 81.50 84.53 85.26 88.49 88.96 89.85 86.43 
LAR 83.31 86.14 86.53 89.17 89.79 90.84 87.63 128 
RLAI 83.85 86.57 87.12 89.90 90.30 91.27 88.17 
LRU 89.70 91.18 92.13 93.88 94.14 94.83 92.64 
LAR 92.05 93.07 93.56 95.04 95.16 95.61 94.08 256 
RLAI 92.28 93.48 94.02 95.27 95.29 95.77 94.35 
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Figure 3.5:  The performance of cache with the size of 128 entries. 

Figure 3.6 depicts the average hit rate with the increasing cache size (number of 

entries). As we mentioned before, since the cache cost must be increasing with the 

increasing cache size, our replacement policies help to enhance cache performance. The 

RLAI is a little better than the LAR, and both of them have higher hit rate than the LRU 

policy for different cache sizes. The improvement rate diminishes as the cache size 

grows. The higher hit rate in turn is translated into higher speedup of the routing table 

lookup. 

70

75

80

85

90

95

100

64 128 256
Number of cache entries

H
it 

ra
te

(%
)

RLAI

LAR

LRU

 

Figure 3.6: Average cache hit rate with increasing cache entries. 
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3.4.3 AMAT speedups 

To compare the impact of the proposed policies on the average memory access 

time (Equation 2.1), we use speedup as the main metric [24]. The speedup here is the 

ratio of the AMAT by LRU and the proposed policies. For example, the speedup of RLAI 

is shown in Equation 3.2.  Assume routing table access time is L times larger than cache 

access time.  

RLAI

LRU

AMAT
AMATSpeedup =

          (Equation 3.2) 

1
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Figure 3.7: AMAT speedups of LAR and RLAI. 
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Figure 3.7 depicts the speedups gained by the LAR and RLAI policies over LRU 

for all traces. The AMAT speedup is improved up to 9% by the LAR and RLAI policy 

for IPv4 traces. With regard to IPv6, this speedup by the LAR policy is increased by up 

to 10%, while the RLAI policy improves the AMAT ranging from 2% to 9%. It can be 

observed that the AMAT speedups are increasing with the increasing time penalties. 

 

3.5 Conclusions 

In a cache scheme, a replacement policy is used to make a decision about which 

entry in cache should be removed to allow a new one to enter. This policy affects the 

cache performance. In order to increase the cache hit rate for IP address lookup, we have 

proposed two novel replacement policies and evaluated their impact. As compared to the 

commonly used Least Recently Used (LRU) policy, the simulations show our proposed 

policies achieve better performance on both IPv4 and IPv6 routing[34]. The features of 

our replacement policies are as follows.  

• Least Access and Recently used (LAR) improves hit rate from 0.18% to 

5.48% for IPv4 and from 0.17% to 2.35% for IPv6 over LRU, respectively. 

This policy makes a removing decision based on two major parameters: 

unaccessed time and access count. It evicts the entry with the smallest access 

count among N entries that have not been accessed for a long while.  

• Relatively Least Average Interval (RLAI) policy improves hit rate from 

0.13% to 5.73% for IPv4 and from 0.83% to 2.58% for IPv6 over LRU, 

respectively. It uses the average interval between two accesses of one entry as a 
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factor to make a decision. If an entry has not been referred longer than its 

previous access interval, it can be potentially evicted. 

• Our newly introduced policies tend to evict more inactive entries. Both 

policies tend to remove an inactive entry by evaluating its previous access 

references, which include unaccessed time and access count or unaccessed time 

and average access interval. 

• Alleviating required access of recently evicted entries. LRU performs evictions 

depending only on unaccessed time. An entry evicted from cache may be referred 

in a short period of time after its eviction; this is a larger problem for small 

caches. Our policies can alleviate such situation because they evaluate one entry 

based on multi-conditions, and they tend to keep more active entries in the cache 

to reduce the number of the replacements.  

• LAR and RLAI polices have speedups from 2% to 10% when considering 

average memory access time for both IP. Due to the higher cache hit rate 

yielded by the LAR and RLAI policies, fewer accesses to routing table memory 

are needed for address lookups. Consequently, this helps to reduce the average 

memory access time, which is often used as measurement for cache-memory 

performance. 

A replacement policy is a way to improve caching effectiveness. A good policy is 

able to increase the hit rate and should be inexpensive to implement. A high hit rate 

makes average memory access time fast and in turn speeds up the address lookup 

operations. 
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Chapter 4 

 

Routing Table Entry Compaction Schemes in Ternary 

CAM 

 

4.1 Introduction 

In this chapter four novel routing table entry compaction schemes based on 

different rules to perform fast routing lookups in Ternary CAM are presented. As we well 

know, IP routing lookup operation is time consuming, because it requires the storage in 

memory of predetermined routing paths for all possible network destinations. With the 

continuous growth of the users in the Internet, the size of routing table is increasing 

steadily. Thus, a much larger memory is required to store table contents in local routers. 

On the other hand, the lookup speed may be adversely affected since the complete 

routing table is stored in main memory with slow access time. Thus, the reduction of the 

number of routing table entries is a potential solution to improve lookup speed, contain 

the routing table size explosion and save memory storages required.  

The proposed compaction schemes are implemented and used in a cache 

organization (Chapter 2), which is simple storing the most frequently accessed routing 

table entries within a small cache memory that has much shorter access latency than the 
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main memory where the routing table is usually stored. The objective of these schemes in 

this chapter is to achieve high caching effectiveness without wasting memory usage.  

The contents of this chapter are organized as follows. In section 2, an overview of 

previous work and data structure on routing table compaction is described. Section 3 

presents our proposed compaction schemes. Section 4 provides the performance 

evaluation of IPv4 and IPv6 routing respectively. Section 5 concludes with a summary of 

the contributions of this chapter. 

 

4.2 Backgrounds of routing table entry compaction 

In this section, we begin with a description of the Ternary CAM feature, which is 

particular important in the presentation of our compaction schemes, and then discuss 

some compaction approaches by other researchers. 

 

4.2.1 Ternary Content Addressable Memory (TCAM) 

When we implement Longest Prefix Matching (LPM) lookup mechanism in a 

conventional memory, we need to store both a network address and its address mask in 

each route entry. Given a destination address, perform bit-wise AND operation between 

this destination address and its address mask in each entry, and then check if the result is 

equivalent to the network address in the same entry. Since the destination address of an 

arriving packet does not carry any prefix length information, the destination address is 

required to be compared with all the route entries in the routing table. It makes the IP 

address lookup operation a time-consuming task. 
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  In order to expedite the packet processing, a content addressable memory (CAM) 

is used as a hardware-based solution. There are two types of CAM, namely binary CAM 

and ternary CAM.  Binary CAM cell only stores 0 or 1, and performs fixed-length 

comparisons and exact match search operation within one memory access. However, it is 

not suitable for LPM effectively. As for an IPv4 32-bit address lookup, it is required an 

exact match search in 32 separate CAMs. Obviously, this complexity is increasing when 

we implement IPv6 routing with 128-bit address format.  

A ternary CAM (TCAM) makes this LPM process more direct by its special 

features. Different from the usual memories, each cell of TCAM stores one of three 

states: 0, 1 and don’t care (*)[14, 38]. The TCAM makes the implementation of LPM 

much easier. All bits with the low order in an address below the prefix boundary are 

replaced with don’t care. These bits are ignored when there is a comparison with the 

TCAM entry. TCAMs take the input address as a search key, and perform a parallel 

search of all entries in hardware in a single clock cycle [39]. The port associated with the 

longest prefix length that matches the search is chosen as output using a priority encoder 

[40]. An organization for the proposed associative cache is shown in Figure 4.1.   

In Figure 4.1 an example of an address matching in this TCAM is included.  

Given a packet with a destination address 10110010, three matching entries 1011001*, 

10110*** and 101***** are found in the routing table. This packet will be delivered to 

the port associated with the first entry by the LPM mechanism which is implemented by 

means of a priority decoder. 
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Figure 4.1: A TCAM address lookup organization. 

 

4.2.2 Previous approaches on routing table compaction  

Liu[39] proposed two techniques to reducing the size of routing tables stored in 

TCAM based on IPv4 routing information. The first technique is called pruning. It 

eliminates those redundant routing prefixes without affecting routing functionality. The 

second technique is mask extension, which exploits TCAM hardware’s flexibility. It 

combines the routing prefixes that point to the same port number by using an arbitrary 

mask. That is, the bits of ones or zeros in mask needn’t be continuous. The mask 

extension technique can be reduced to a logic minimization problem and Liu used 

Espresso-II algorithm to compute the minimal cover. The experimental result shows that 

applying pruning alone reduces the routing table size by roughly 25%, and mask 

extension without pruning can reduce table size between 27.3% and 30.4%. By applying 

both of them, the overall size can be reduced up to 48%. 

 Rooney [15] presented a similar approach to minimize the routing tables based on 

the TCAM bit pattern associative array. First, IP routing table is separated by prefix into 
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sets, starting at the top by the longest network address; each set is separated into groups 

by output port number, and then each group is minimized with the Espresso program. 

That is, the minimization is performed only on the entries within the same set and having 

the same output port. After minimization, each group is returned to the original set. The 

test result shows the average reduction of routing table entries is 24.4%, and this 

reduction leads to improvements in cache hit rate in cache architecture. 

 

4.3 Proposed compaction schemes 

As we mentioned before, TCAMs have the main advantage of simplicity and can 

perform parallel searches to reduce the lookup time. Consequently, it can achieve high 

lookup throughput. However, a TCAM is usually more expensive as compared to a 

conventional memory and it dissipates more power. Therefore, a large TCAM may be too 

costly to be a feasible solution. On the other hand, a large conventional memory usually 

slows down the lookup process. This in turn creates a need for investigating compaction 

schemes cooperated with fast cache memory solutions. If the number of entries in the 

routing table can be compacted, the table can be contained into fewer TCAM chips. Thus, 

the process of address lookup could be improved effectively and economically with a 

cache organization. In this section, the features of IP routing tables are analyzed and 

followed by four compaction schemes based on different compression rules. 

 

4.3.1 IP routing table features  

Table 4.1 shows some features of several routing tables we used in our 

experimental simulation. Obviously, in a routing table, the number of port is much 
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smaller as compared with the number of routing entries, because of the limited number of 

interfaces in a router. That is, there exists more than one entry with different prefix or 

content associatived with the same output port number. This in turn indicates the 

possibility of compaction to combine more relative entries into one without mis-routing 

function.   

 

Table 4.1: IP routing table feature. 

IP Routing table No. of ports No. of entries 
RT1 43 90,000 IPv4 

 RT2 50 90,000 
RT1 90 3,685 IPv6 

 RT2 105 3,674 
 

4.3.2 Compaction of same-port entries (Scheme C1)  

This scheme is similar to those in [15,39].We scale and implement it to satisfy the 

long address format requirement in IPv6 routing. The basic steps are as follows.  

• The entry addresses with the same destination port are considered for compaction. 

• Two addresses that differ by only one bit including don’t care (*) are candidates 

for compaction. 

• If these conditions are satisfied, the entries with these two addresses can be 

combined into one by using don’t care (*) to replace the bit. 

• The two entries that have been combined are removed from further consideration 

• The new entry is included in the potential entries for further compaction.  

Assume that there are four destination addresses that share the same port number as 

shown in Figure 4.2. The addresses in entry a and b are the same except for the last bit. 
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These two entries can be combined into a new entry 00100110*. The same compaction 

can be performed on the entries c and d. The updated routing table has two entries after 

the first compaction. In this example, these two entries can be compacted since they have 

only one bit that is different. The compaction process continues until there are no 

potential entries to be compacted. In our example, those four entries are compacted into 

one with 2-bit ‘*’ using this scheme.   

 

Figure 4.2: An example of compaction scheme C1. 

 

4.3.3 Compaction of non-existing entries (Scheme C2) 

We have developed another compaction scheme, which combines many more 

entries than scheme C1. This scheme uses the compacted entries produced by C1. The 

improvement is due to the way don’t care (*) are handled. Below are the additional steps 

that are needed to implement scheme C2.  

• Two addresses with the same destination port that have only one different bit 

excluding don’t care (*) are candidates for additional compaction. 

• If there is no other address with a different destination port that can be compacted 

with one of the two addresses in the previous step, then the compaction can be 

performed. 
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• If the previous step is not possible the current compaction is abandoned. 

Figure 4.3 shows an example where entry d is the compaction result of entry a 

and b (Figure 4.2) by replacing the last bit with a don’t care (*). It shares the same port 

number A with entry c. When comparing the addresses in entry d and c, we take into 

account the don’t care ‘*’ in the address of entry d that could have a match with the 0 in 

the same bit position in entry c. If the addresses in these two entries have exactly one 

different bit with the exception of the don’t care (*), they could potentially be compacted 

into a new entry. Then other entries with different port assignments are checked to make 

sure that there is no entry that falls within the new entry (in the example is labeled as 

entry e) address range. If an entry exists (in the example entry f) this compaction is not 

performed. Otherwise, entry c and d are replaced by e.  

 

Figure 4.3: An example of compaction scheme C2. 

 

4.3.4 Compaction using a threshold with continuous don’t care (Scheme C3) 

The goal of this scheme is try to further compact the routing table, even though 

this may cause a routing conflict. A routing conflict is defined as having two entries with 

different port assignments to have a match with an incoming address. We add restrictions 
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to this compaction to reduce the side - effect of the routing conflicts. The following steps 

are incorporated to implement scheme C3.  

• Two addresses with the same destination port that have only one different bit 

excluding don’t care bits (*) are candidates for a compaction.  

• If there is no routing conflict in the routing table, the compaction is performed. 

• If there exists only one entry address with a different destination port, which is 

equivalent to the current compressed address, and the number of the continuous 

don’t care bits in this compacted entry is less than a given threshold, then the 

compaction can be performed. In addition, the entry with the different port 

assignment is marked with higher searching priority, that is, it is searched before 

any search for the compacted entry. 

• If the previous steps are not possible, the current compaction is abandoned. 

 

Figure 4.4: An example of compression C3. 

Figure 4.4 provides a graphical representation of this scheme, where entry i and j 

can potentially be compacted into entry k. Since we take into account don’t care that can 

be either 0 or 1 in comparison, it is possible that the compacted address in entry k has 
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continuous don’t care. A long sequence of don’t care increases the probability of a 

routing conflict.  

The purpose of setting a threshold of the number of continuous don’t care is to 

diminish such a problem. If an address in entry m with a different port assignment is 

equivalent to the address in entry k; and the continuous don’t care number is larger than 

the given threshold, this compaction is not performed. Otherwise, we replace entry i and j 

by k, and make entry m to have higher priority over entry k in the routing table to avoid 

incorrect routing in memory.   

The value of the threshold is determined by the contents of the routing tables and 

the destination addresses in statistic studying. Obviously, this value affects the 

compaction performance, which in turn impacts the hit rate in cache organization. A large 

threshold value is usually helpful in compacting more routing entries, as well as increases 

the possibility of routing conflicts, thus causes more port errors (explained later in 

Chapter 5). Therefore, we should take into account both the number of routing entries and 

the effective hit rate, which is the difference between actual cache hit rate and port error 

ratio, and choose a threshold value to achieve a better performance.  

Figure 4.5(a) shows the effect of choosing different thresholds on two IPv6 

routing tables: RT1 and RT2 as examples; Figure 4.5(b) depicted the effective hit rate of 

all six IPv6 traces, namely A to F. We should point out that extensive simulations show 

the value of 5 generates a smaller port error ratio with fewer routing entries, and also 

need far less searches in routing table when implementing our improved sampling 

techniques to alleviate the port error problems (in Chapter 5 ). By the same procedure of 

analyzing, we can obtain suitable threshold value for IPv4 routing information. 
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(a) Number of compacted routing entries by different threshold values. 
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(b) Effective hit rate by different threshold values. 

Figure 4.5: Scheme C3’s threshold impact on entries and effective hit rate. 

 

4.3.5 Compression using a threshold with the number of difference bits (Scheme C4) 

Compaction scheme C4 is similar to scheme C3; the only difference is the 

threshold criteria. Instead of the continuous don’t care as in scheme C3, the number of 

different bits between the addresses before and after a compaction are considered to 

compute a number to be compared to the threshold.  
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The C4 scheme steps are similarly to scheme C3. We explain scheme C4 by 

means of an example. Assume there are addresses such as *0100110* in entry x 

0****1111 in entry y, these addresses can potentially be compacted to an address 

*****11** in entry z. Assume that an address 10100*111 in entry w with a different port 

assignment exists; entry z would cover this entry and has a port assignment conflict.  

The number of different bits between the address in the potential new entry z and 

entries x or y are computed, these are 5 and 3, respectively. If these numbers are larger 

than a given threshold, then this compaction is abandoned. Otherwise, entries x and y are 

replaced by z and entry w is marked with a higher search priority than entry z. As scheme 

C3, an effective threshold should be determined by achieving a good balance between the 

number of routing entries and the effective hit rate. In this study the threshold for scheme 

C4 is set to 3. 

 

4.4 Performance Evaluation  

In this section, we implement our proposed compaction schemes on TCAM cache 

architecture, and analyze their effects on IPv4 and IPv6 routing tables, respectively, and 

we use their corresponding IP packet traces (in Chapter 3) to evaluate the address lookup 

performance.  

 

4.4.1 IPv4 routing performance 

We estimate the compaction performance from three aspects as follows: 

compaction ratio, cache hit rate and average memory access time speedups. 
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4.4.1.1 Compaction ratio 

In our evaluation, we first analyze the compaction performance of our schemes. 

We use compaction ratio (CR) as a measurement. CR is defined as the ratio of the 

number of the routing entries in the compacted and original tables. Obviously, the smaller 

the CR is, the better the compaction performance is.  

Table 4.2: The four compaction schemes (CS) and their impact on compaction ratio (CR). 

RT1 RT2 CS 
No. of Entries CR (%) No. of Entries CR (%) 

O 90,000 100.00 90,000 100.00 
C1 59,019 65.58 60,185 66.87 
C2 26,505 29.45 30,279 33.64 
C3 26,842 29.82 30,916 34.35 
C4 26,738 29.71 30,346 33.72 
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Figure 4.6: Compaction performance of IPv4 routing tables. 

Table 4.2 shows the impact of these schemes on two different IPv4 routing tables 

RT1 and RT2. Figure 4.6 depicts that the routing table entries are reduced rapidly with 

these compaction schemes. Compared with the original tables (labeled by “O”) without 
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any compaction, Scheme C1’s CR is around 65%, which is a good match with Liu’s and 

Rooney’s. Scheme C2, C3 and C4 achieve much lower CR than C1, although there is 

only minor difference among their CRs. Their compaction ratio ranges from 29.45% to 

34.35%, which are impressive compaction results. 

 

4.4.1.2. Cache hit rate 

The different compacted routing tables result in the variety of hit rate in the cache 

architecture. The overall hit rate of cache with different compaction schemes is shown on 

Table 4.3. During the simulation, we use four IPv4 traces namely W to Z as incoming 

destination addresses, and perform routing lookups in a cache organization based on 

original and compacted routing tables.  

Table 4.3: Hit rate (%) of cache with different compaction schemes (CS). 

IPv4 trace  CS 512 1K 2K 4K 
O 73.94% 83.98% 89.54% 92.71% 
C1 74.16% 84.22% 89.82% 93.08% 
C2 91.79% 96.99% 98.73% 99.20% 
C3 91.40% 96.90% 98.74% 99.21% 

 
W 
 
 
 C4 91.73% 97.00% 98.74% 99.21% 

O 69.12% 81.44% 88.04% 91.89% 
C1 69.36% 81.73% 88.40% 92.34% 
C2 90.48% 96.68% 98.61% 99.13% 
C3 90.31% 96.55% 98.60% 99.14% 

 
X 
 
 
 C4 90.40% 96.69% 98.59% 99.13% 

O 74.76% 85.43% 91.30% 94.12% 
C1 75.02% 85.70% 91.57% 94.44% 
C2 92.62% 97.53% 98.94% 99.31% 
C3 92.49% 97.48% 98.94% 99.30% 

 
Y 
 
 C4 92.64% 97.57% 98.93% 99.30% 

O 94.04% 94.89% 95.59% 95.82% 
C1 94.07% 94.97% 95.68% 96.00% 
C2 97.47% 98.67% 99.14% 99.31% 
C3 97.43% 98.65% 99.12% 99.31% 

 
Z 
 
 C4 97.48% 98.68% 99.14% 99.32% 
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 (a) Hit rate with scheme C2. 
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 (c) Hit rate on 1K cache 

Figure 4.7: Cache hit rate performance. 
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A minor improvement of the hit rate is obtained when scheme C1 is used, on the 

other hand, using the proposed scheme C2, C3, and C4, the hit rate improvement ranges 

from 3.43% to 21.36%. All of the improvements depend on the trace files and cache size.  

Figure 4.7 gives us other clear plots on the improvements from different aspects. 

We observed the hit rates increase with the increasing cache size in Figure 4.7(a); by 

scheme C2, the increment grows from 90.48% for a 512 cache to 99.13% for a 4K cache 

on trace X; the amount of the increment is minished with the increasing cache size; and 

the amount is also depending on the different trace files. We observed the curve of trace 

Z is a little flat, while others are bending. Figure 4.7(b) shows that the significant effect 

of different compaction schemes on hit rate; for trace W, the hit rate improves rapidly by 

up to 17.85%, especially by scheme C2, C3 and C4. Figure 4.7(c) depicts the effect of 

compaction schemes on different IPv4 traces with a given 1K cache. All the traces share 

the similar increasing trend of hit rate, although the amounts of increment are different. 

 

4.4.1.3 AMAT speedups 

To compare the impact of the proposed compaction schemes on the average 

memory access time ( in Chapter 2), we still use the speedup as a measurement. The 

speed up here is the ratio of the AMAT by original tables and the tables after compacted, 

which is shown in equation 4.1. Assume routing table access time is L times larger than 

cache access time.  

Compacted

original

AMAT
AMAT

Speedup =                   (Equation 4.1) 
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For example, Table 4.4 depicts AMAT speedup gained by scheme C3 over the 

original tables with a 1K cache for all traces. We observed scheme C3 expedites the 

average memory access time ranging from 1.11 to 2.49, depending on the value of L and 

the traces used.                                  

Table 4.4: Scheme C3 speedup with a 1K cache. 

Trace file 

L W X Y Z 

4 1.35 1.41 1.34 1.11 
8 1.74 1.85 1.72 1.24 
16 2.32 2.49 2.31 1.47 

 

4.4.2 IPv6 performance evaluation 

We extend all of compaction schemes and implement them on the next generation 

protocol IPv6, which has 128-bit address length format. Because of the long address 

length, IPv6 routing table required more memory to store routing entries than IPv4 under 

the same condition. That in turn indicates the reduction of table entries is significative to 

save memory and speed up the lookup time. 

 

4.4.2.1 Compaction ratio 

We use two IPv6 routing tables to complete the compaction process. Table 4.5 

shows the impact of the four schemes on these tables. By compared with the original 

tables, the compaction ratio of scheme C1 is almost as low as 55%. The other three 

schemes have much lower CR, which ranges from 30.77% to 36.34%.  The test results 

are nearly consistent to the compaction performance of IPv4 routing tables above. Figure 

4.8 depicts the change of routing table entries by these compaction schemes. 
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Table 4.5: The four compaction schemes (CS) and their impact on compaction ratio (CR). 

RT1 RT2  
CS No. of Entries CR (%) No. of Entries CR (%) 

O 3685 100.00 3974 100.00 
C 1 2052 55.69 2325 58.51 
C 2 1155 31.34 1444 36.34 
C 3 1172 31.80 1444 36.34 
C 4 1134 30.77 1400 35.23 
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Figure 4.8: Compaction performance of IPv6 routing tables. 

 

4.4.2.2 Cache hit rate 

There are IPv6 six traces from A to F involved to perform routing lookup 

operations. The hit rate of different cache size with different compaction schemes is 

shown on Table 4.6, and Figure 4.9 depicts the compaction performance of 128-entry 

cache as an example.  

Obviously, the cache hit rate is improved rapidly by reducing the number of 

routing entries. The hit rate increment ranges from 0.41% to 1.40% by applying scheme 

C1, while it is dramatically increased by scheme C2 from 3.51% to 8.14%. Scheme C3‘s 
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hit rate is increased up to 9.13 %, and the increment of C4 is improved by up to 12.10%. 

All of the improvements depend on the trace files and the number of cache entries. 

 

Table 4.6: Hit rate with different compaction schemes (CS). 

IPv6 trace  CS 64 128 256 
O 70.60% 81.50% 89.70% 
C1 71.51% 82.72% 91.10% 
C2 77.91% 89.49% 96.88% 
C3 79.73% 90.59% 97.77% 

 
A 
 
 
 C4 80.63% 91.92% 98.46% 

O 75.70% 84.53% 91.18% 
C1 76.42% 85.49% 92.46% 
C2 83.84% 92.14% 97.76% 
C3 84.69% 93.28% 98.62% 

 
B 
 
 
 C4 87.80% 94.68% 99.12% 

O 76.63% 85.26% 92.13% 
C1 77.25% 86.20% 93.41% 
C2 83.40% 92.56% 98.18% 
C3 84.68% 93.84% 98.84% 

 
C 
 
 C4 87.24% 95.86% 99.38% 

O 80.34% 88.49% 93.88% 
C1 81.13% 89.37% 94.67% 
C2 85.19% 93.19% 97.90% 
C3 85.39% 93.57% 98.34% 

 
D 
 
 C4 86.93% 94.77% 98.72% 

O 81.64% 88.96% 94.14% 
C1 82.05% 89.58% 94.76% 
C2 86.59% 93.77% 97.99% 
C3 87.18% 94.28% 98.43% 

 
E 
 
 C4 88.93% 95.34% 98.86% 

O 84.01% 89.85% 94.83% 
C1 84.52% 90.49% 95.50% 
C2 87.93% 94.39% 98.34% 
C3 88.76% 95.23% 98.77% 

 
F 
 
 C4 90.59% 96.70% 99.25% 
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Figure 4.9: Compaction schemes’ hit rates using a 128-entry cache. 

 

4.4.2.3 AMAT Speedups  

Table 4.7 shows the AMAT speedup gained by scheme C3 over the original tables 

with a 128-entry cache for all traces. With regard to IPv6, scheme C3 expedites the 

average memory access time ranging from 1.13 to 1.67.                          

Table 4.7: Scheme C3 speedup with a 128-entry cache. 

Trace file 

L A B C D E F 

4 1.21 1.22 1.22 1.13 1.14 1.14 

8 1.38 1.42 1.42 1.25 1.27 1.28 

16 1.57 1.65 1.67 1.39 1.43 1.47 

 

4.5 Conclusions and summary 

Routing table lookup is an important operation in packet forwarding, especially 

with the increasing table size caused by Internet traffic. In order to speed up this process, 

we have proposed four novel compaction schemes for routing table entries and evaluated 
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their impact on a TCAM cache architecture. The extensive simulations using IPv4 and 

IPv6 routing information have shown that our proposed schemes improve cache hit rate 

and save the memory usage [41, 42]. The features of our compaction schemes are 

presented as follows.  

• Four compaction schemes based on TCAM. The scheme C1 is similar to the 

compaction technique via Espresso minimization algorithm, but it can be scaled to 

IPv6 easily. Scheme C2 is an improvement over C1 to obtain higher compaction 

performance. Scheme C3 and C4 try to provide further compaction with 

considering the routing conflicts.  

• High compaction performance. The number of routing entries after compacted 

by scheme C1 is only almost 65% of the original ones for IPv4, and even low to 

55% for IPv6. The other three compaction schemes reduce the number of the 

entries ranging from 63.66% to 70.55%. 

• High cache hit rate. The cache hit rate is improved dramatically by performing 

searches in compacted routing tables, especially those tables compacted by 

scheme C2, C3 and C4. The hit rate improvements go up to 21.36% for IPv4 

traces and to 12.10% for IPv6 traces. 

• High AMAT speedups. The compaction scheme C3 has speeded up AMAT from 

1.11 to 2.49 for IPv4 and 1.13 to 1.67 for IPv6. The average memory access time 

is decreased because of the higher cache hit rate obtained by reducing routing 

entries. 

The routing table compaction has been shown to improve the caching 

effectiveness. A good compaction scheme is beneficial to increases cache hit rate, while 
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reducing the memory usage. The high cache hit rate makes average memory access time 

shorter; this in turn speeds up the address lookup process.  



 70

 

Chapter 5 

 

Port Errors and Sampling Techniques 

 

5.1 Introduction 

In the proposed cache organization, a port error occurs when the port selected by 

the cache doesn’t match the port that would be selected by the routing table. There are 

two of the major causes for port errors are mentioned in [14].  

1) Longest prefix matching mechanism. The longest prefix matching entry of a 

destination address in routing table is not being in cache. Because of the limited size of 

cache, only small numbers of routing entries are stored in cache. Hence, it is possible that 

a matching entry found in the cache has a different port assignment with the one found in 

routing table.  

2) Cache coherence problem. Some changes made in routing table are not updated 

immediately in cache. Consequently, the entries in cache do not keep consistence with 

the entries in the routing table any more. This kind of port error can be reduced by 

updating the cache and the routing table at the same time, or flushing the cache 

periodically. 

In our research, we take into account the port errors generated by the first source 

of port errors. Our compaction schemes (Chapter 4) combines many routing entries into 
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one using the don’t care element in Ternary CAM. This could in turn extend the time that 

the entry with a short prefix length or with many don’t care stays in cache longer. Thus, 

it increases the probability that the matching entry in the cache could not be the longest 

prefix matching entry in the routing table. If both of these entries do not share the same 

port assignment, a port error is caused. 

In order to lessen the side-effect of port errors, two novel sampling techniques 

namely, selective and adaptive sampling, are proposed in this chapter. These techniques 

are implemented with our compaction schemes to reduce port errors effectively without 

the damage of the high cache hit rate already obtained. 

This chapter is organized as follows. In Section 5.2, a common interval sampling 

technique to reduce port errors is described. Section 5.3 presents two proposed 

samplings. Section 5.4 provides comparison, analysis and simulations on the port error 

control performance with IPv4 and IPv6 routing information. Section 5.5 gives a 

summary of this chapter. 

 

5.2 Interval sampling 

A sampling technique present in [14] is one way to alleviate this port error 

problem. It is independent of the reasons causing the port errors. The main feature of this 

sampling is its simplicity. It requires performing one search in routing table every M 

lookups, where M is the sampling rate. If the port number is found different between the 

cache and the routing table, the matching entry in the routing table will be written into the 

cache. This will help to reduce the port error ratio since future references to this entry 

will be found in cache.  
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Interval sampling obtains an improvement, as it will be shown in the simulation 

results in this chapter. However, it required a large number of searches in the routing 

table and port comparisons. The exact number of these searches depends on the sampling 

rate M. Below is the equation that helps to determine the number searches. 

M
MmisscacheNumber

M
reqsrouteNumbernumSearch 1_____ −

×+≈  

Where the total number of route request and cache misses are considered.  

This sampling is not appropriate for the control of port errors in our novel 

compaction schemes. Since the numbers of the port errors occurred in the compaction 

schemes are probably large, the port error ratios are probably still high using this interval 

sampling, which are shown in later simulations. Thus, it is necessary to find better 

solutions. 

 

5.3 Proposed sampling techniques 

In order to further reduce the number of port errors, especially for our compaction 

schemes, the contents of the routing entries and port error distributions are analyzed in 

this section and followed by our two sampling techniques to control port error and 

decrease the search amount in routing tables at the same time. 

 

5.3.1 Port error distribution 

Each routing entry has different probability in leading to port errors, which 

depends on both the incoming trace patterns and the features of this particular entry, such 

as the temporal locality of traces, the prefix length and the don’t care elements of routing 

entries.  
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For instance, Table 5.1 shows the port error distribution for IPv6 traces in the 

compacted routing tables by scheme C3. The value of N means how many entries in this 

routing table causing routing conflicts for a particular entry in the same table. The value 

in the table depicts the sum of the port errors caused by the group of the entries with the 

same N.  Figure 5.1 illustrates the trend of this distribution, which actually reflects the 

typical port error distribution for scheme C3 and C4.  We observed those entries with the 

value of N less than 10 cause most of port errors. However, the interval sampling doesn’t 

consider this issue and executes routing table search uniformly. Consequently, there are 

many unnecessary searches for those entries rarely causing port errors. 

 

Table 5.1: Port error distribution. 

IPv6 Trace 
N A B C D E F 
0 47 1 32 7 1 1 
1 7685 29950 13597 29993 4843 15912 
2 11402 4067 1574 3415 1348 4454 
3 774 425 701 34071 3151 588 
4 1268 1 0 23 4 132 
5 92 0 0 296 29 461 
6 0 0 0 0 0 0 
7 2 0 0 1 5 0 
8 39 0 0 4 0 3 
9 0 0 0 0 0 0 
10 0 0 0 0 0 0 
11 0 0 0 0 0 0 
12 0 0 0 0 0 0 
13 0 0 0 0 0 0 
14 0 1 0 35 55 0 

15~33 0 0 0 0 0 0 
34 0 0 0 30 0 0 
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Figure 5.1: The port error distribution with compacted tables by Scheme C3. 

 

Based on this distribution that is common for IPv6 and IPv4 traces, we developed 

two new sampling schemes, namely selective and adaptive sampling. These schemes help 

to not only reduce the number of searches in routing tables but also effectively control 

port error ratio in the C3 and C4 schemes. We should point out that both of these 

sampling techniques are suitable for C1 and C2 schemes, even though they already have 

a small port error ratio, and it is not necessary to implement these two advanced 

sampling. Their port error distributions can be considered as special cases that the values 

of N is always 0. 

 

5.3.2 Selective sampling 

This scheme focuses on only executing sampling on those entries with high 

probability of causing port errors. The purpose is to decrease the number of searches in 

routing table without increasing port error ratio. The selective sampling scheme works as 

follows (this is also shown in Figure 5.2 in a flow chart form):  
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• Label those entries with high probability of causing port errors according to the 

port error distribution; 

• Do not search the routing table in the case of matching entry unlabeled; 

• Otherwise, search routing table at the sampling rate and update cache if a port 

error occurs. 

a matching entry in cache

labeled?

Y

N

search routing table

port error?
N

Y

 update cache

next lookup in cache

 

Figure 5.2:  Flow chart of selective sampling. 

 

5.3.3 Adaptive sampling 

The main motivation for adaptive sampling is to adjust the sampling rate based on 

the previous activities of a particular entry. The same as the selective sampling, we take 

into account those routing entries with some probability of causing port errors.  If it 
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causes port errors frequently before, then set a low sampling rate; vice versa. The basic 

steps (also shown in Figure 5.3) are as follows.  

• At the beginning, the sampling rate of each entry is set as a small value, such as 0. 

• If no port error occurs when searching the entry in the routing table, and 

potentially there is small possibility that port error occurs in a short while due to 

packet stream’s temporal locality. Consequently, its sampling rate is increased by 

1 and the interval between two searches of the same entry in routing table is 

extended to a longer period. 

• If an entry found in cache is not searched in the routing table, its sampling rate is 

decreased by 1, which means the possibility of future port error is increased.  

 

Figure 5.3:  Flow chart of adaptive sampling. 
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Figure 5.3 shows the flow chart to explain this scheme. Those entries with some 

probability in causing port error are labeled firstly. Due to the temporal locality of traces 

and the corrections made by adaptive sampling in time; this technique not only reduces 

the number of searches in routing table, but also decreases the port error effectively.  

 

5.4 Performance analysis and evaluation 

In this section, we compare the port error reduction for both IPv4 and IPv6 

routing. We analyze the samplings’ effectivity on the amount of searches in routing table 

and the value of cache hit rate. 

 

5.4.1 Port error ratio 

We first choose port error ratio as one of the measurements to analyze the port 

error problems.  Port error ratio is the ratio of the number of port errors to the number of 

cache hits.  

Table 5.2: IPv4 port error ratio using interval sampling with 1K-entry cache. 

IPv4 Traces 
CS Sampling W X Y Z 

  
Average 

w/o 0.000% 0.002% 0.002% 0.001% 0.001% 
O w/ 0.000% 0.002% 0.001% 0.001% 0.001% 

w/o 0.001% 0.003% 0.003% 0.002% 0.002% 
C1 w/ 0.001% 0.002% 0.002% 0.001% 0.002% 

w/o 0.783% 1.215% 1.882% 0.914% 1.199% 
C2 w/ 0.239% 0.321% 0.255% 0.097% 0.228% 

w/o 0.763% 1.235% 1.314% 0.894% 1.052% 
C3 w/ 0.248% 0.337% 0.266% 0.098% 0.237% 

w/o 0.894% 1.177% 1.730% 0.905% 1.177% 
C4 w/ 0.244% 0.320% 0.264% 0.094% 0.231% 

 



 78

Table 5.3: IPv6 port error ratio using interval sampling with 128-entry cache. 

IPv6 Traces 
CS Sampling A B C D E F 

  
Average

w/o 0.052% 0.006% 0.045% 0.032% 0.033% 0.000% 0.028%
O w/ 0.024% 0.003% 0.008% 0.014% 0.017% 0.000% 0.011%

w/o 0.479% 0.034% 0.076% 0.037% 0.102% 0.005% 0.122%
C1 w/ 0.047% 0.025% 0.028% 0.018% 0.038% 0.001% 0.026%

w/o 0.392% 0.131% 0.107% 0.067% 0.212% 0.187% 0.183%
C2 w/ 0.096% 0.059% 0.032% 0.031% 0.044% 0.059% 0.054%

w/o 3.115% 2.450% 1.714% 6.552% 1.050% 1.847% 2.788%
C3 w/ 0.604% 1.026% 0.338% 0.423% 0.354% 0.539% 0.547%

w/o 2.394% 3.640% 2.888% 4.869% 1.723% 3.418% 3.155%
C4 w/ 1.142% 1.051% 0.917% 0.593% 0.515% 0.839% 0.843%
 

Tables 5.2 and 5.3 depict the performance of the interval sampling (for instance, 

M=3) implemented on original tables and compacted tables with different compaction 

schemes. The simulations are executed using IPv4 and IPv6 routing information, 

respectively.  

We observe the port error problem is decreased using the interval sampling for 

IPv4 routing; actually, this sampling decreases port errors down to almost 20%. Since the 

port error ratios here are very small after interval sampling, we do not need to consider 

other improvements. With regard to IPv6, it works well for those compacted tables 

without routing conflicts, such as the tables compacted by the C1 and C2 schemes. 

However, this is not appropriate for schemes C3 and C4. Obviously, for some traces, the 

port error ratios are still over than 1%.  Some routing conflicts are permitted to exist in 

the routing tables by using these two schemes to achieve high hit rate and good 

compaction performance. However, if the entry causing routing conflicts stays in the 

cache longer, the possibility of the port errors is larger. 
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In order to control the port error problem further, we also develop selective 

sampling (Sl) and adaptive sampling (Ad) techniques on cache organization, and compare 

them with an every hit sampling (Eh) that always search the routing table when there is a 

cache hit. Obviously, this every hit sampling is an ideal situation, which provides the best 

performance could be achieved.  

Table 5.4 shows the improvement of port error ratio by our error-control 

samplings. Comparing with Table 5.3, it can be observed that the selective sampling gets 

similar or less port error ratio, while adaptive sampling dramatically decreases the port 

error ratio. The performance of adaptive sampling is almost as good as the ideal every hit 

sampling. Figure 5.4 demonstrates a clean trend of the port error ratio’s variety. 

Table 5.4:  The port error ratio of improved sampling schemes.  

Traces 
CS Sampling A B C D E F 

  
Average

Sl 0.023% 0.003% 0.008% 0.014% 0.016% 0.000% 0.011%
Ad 0.015% 0.002% 0.006% 0.008% 0.015% 0.000% 0.008%

  
O  
  Eh 0.014% 0.001% 0.005% 0.008% 0.012% 0.000% 0.007%

Sl 0.048% 0.025% 0.028% 0.017% 0.038% 0.001% 0.026%
Ad 0.028% 0.015% 0.015% 0.011% 0.024% 0.001% 0.016%

  
C1  

  Eh 0.027% 0.015% 0.015% 0.010% 0.021% 0.001% 0.015%
Sl 0.098% 0.059% 0.033% 0.029% 0.045% 0.060% 0.054%
Ad 0.063% 0.033% 0.017% 0.018% 0.030% 0.032% 0.032%

  
C2  

  Eh 0.059% 0.031% 0.016% 0.017% 0.029% 0.029% 0.030%
Sl 0.597% 1.020% 0.343% 0.416% 0.345% 0.539% 0.543%
Ad 0.347% 0.541% 0.186% 0.278% 0.232% 0.356% 0.323%

  
C3  

  Eh 0.332% 0.537% 0.178% 0.267% 0.215% 0.351% 0.313%
Sl 1.131% 1.046% 0.925% 0.588% 0.509% 0.842% 0.840%
Ad 0.736% 0.607% 0.906% 0.477% 0.340% 0.806% 0.645%  C4 

 Eh 0.693% 0.570% 0.605% 0.453% 0.310% 0.521% 0.525%
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Figure 5.4: The average port error ratios of sampling techniques. 

 

5.4.2 Number of searches in routing tables 

Given an incoming trace, the number of searches in routing tables is another 

measurement of sampling technique. As we know, searching routing table is a time-

consuming process due to the slow memory access time. The frequent searches in 

memory increase the complexity and decrease the efficiency of the solution.   

Table 5.5 shows the number of searches with improved sampling techniques on a 

128-entry cache. Although the selective sampling obtains the similar port error ratio to 

the interval sampling as mentioned earlier, it only requires smaller amount of searches in 

routing tables for scheme C3 and C4. The adaptive sampling decreases this searching 

amount greatly for all of these four compaction schemes, with an effective reduction of 

port errors at the same time. Figure 5.5 illustrates the average amount of searches with 

these sampling techniques. 

 



 81

Table 5.5:  The number of routing table searches of sampling schemes. 

IPv6 Traces  
CS SA A B C D E F Average

interval 913,445 872,981 863,270 820,180 813,926 801,972 847,629

Sl 913,452 872,982 863,263 820,178 813,906 801,972 847,626

Ad 829,543 696,596 668,762 563,112 550,531 509,484 636,338

  
O 

 
 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

interval 897,242 860,179 850,762 808,469 805,837 793,469 835,993

Sl 897,252 860,184 850,771 808,467 805,818 793,470 835,994

Ad 802,379 673,546 647,914 536,504 526,086 491,105 612,922

  
C1 

 
 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

interval 806,933 771,879 765,958 757,212 750,482 741,965 765,738

Sl 807,170 771,656 765,960 757,935 750,350 741,807 765,813

Ad 613,943 462,762 462,384 422,892 402,716 409,431 462,355

  
C2 

 
 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

interval 795,943 763,131 750,559 754,817 745,509 734,501 757,410

Sl 501,873 396,689 394,088 391,593 467,866 430,141 430,375

Ad 529,784 561,398 468,073 434,444 513,238 518,079 504,169

  
C3 

 
 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000

interval 781,781 746,542 729,673 740,083 733,439 720,645 742,027

Sl 453,377 454,024 379,182 402,487 405,725 409,210 417,334

Ad 463,855 641,810 574,359 479,562 457,646 420,849 506,347

  
C4 

 
 Eh 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000 2,000,000
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Figure 5.5:  The average amount of searches.  
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5.4.3 Cache hit rate 

Table 5.6:  Cache hit rate of 128-entry cache with sampling techniques 

Trace file 
CS Sampling A B C D E F 

w/o 81.50% 84.53% 85.26% 88.49% 88.96% 89.85%
w/ 81.49% 84.53% 85.25% 88.49% 88.96% 89.85%

Sl 81.49% 84.53% 85.26% 88.49% 88.96% 89.85%
Ad 81.49% 84.53% 85.25% 88.49% 88.96% 89.85%

O  
  
  Eh 81.49% 84.53% 85.25% 88.49% 88.95% 89.85%

w/o 82.72% 85.49% 86.20% 89.37% 89.58% 90.49%
w/ 82.71% 85.49% 86.19% 89.36% 89.56% 90.49%
Sl 82.71% 85.49% 86.19% 89.37% 89.56% 90.49%
Ad 82.70% 85.48% 86.19% 89.36% 89.56% 90.49%

  
C1  

  Eh 82.70% 85.48% 86.19% 89.36% 89.56% 90.49%
w/o 89.49% 92.14% 92.56% 93.19% 93.77% 94.39%
w/ 89.48% 92.11% 92.55% 93.21% 93.71% 94.35%
Sl 89.46% 92.13% 92.55% 93.15% 93.72% 94.36%
Ad 89.44% 92.11% 92.55% 93.19% 93.70% 94.35%

C2  
  
  Eh 89.44% 92.09% 92.54% 93.15% 93.71% 94.34%

w/o 90.59% 93.28% 93.84% 93.57% 94.28% 95.23%
w/ 90.30% 92.77% 93.71% 93.39% 94.09% 94.91%
Sl 90.36% 92.76% 93.71% 93.38% 94.09% 94.91%
Ad 90.16% 92.54% 93.65% 93.29% 94.00% 94.67%

 C3 
  
  Eh 90.26% 92.53% 93.65% 93.27% 93.99% 94.66%

w/o 91.92% 94.68% 95.86% 94.77% 95.34% 96.70%
w/ 91.37% 94.01% 95.27% 94.49% 94.99% 95.95%
Sl 91.34% 94.01% 95.27% 94.49% 94.99% 95.94%
Ad 91.09% 93.74% 95.01% 94.17% 94.88% 95.77%

C4 
  
  
  Eh 90.96% 93.73% 94.81% 94.15% 94.83% 95.58%

 

Cache hit rate is an important performance metric for cache organizations. It 

affects the address lookup speed significantly during routing process. From Table 5.6, 

there are minor changes of hit rate with the implementation of our sampling techniques. 
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This validates our samplings are help to control port error problem with no significantly 

degrading the original caching performance. 

 

5.5 Summary 

Port errors are side-effects of using a cache memory in the manner proposed in 

this dissertation. These errors occur when the port selected by the cache is different from 

the port that would have been selected using the routing table directly. Due to the 

implementation of compacting routing table, this problem could be aggravated. In order 

to reduce port errors, we have proposed two new sampling techniques that better match 

the requirements of the new compaction schemes. The simulation results using IPv4 and 

IPv6 routing information have shown that our sampling can alleviate the port error 

problem effectively without negatively impacting caching performance [42]. The 

summary of our sampling schemes is as follows. 

• Two new sampling techniques to reduce port errors. The selective sampling 

only executes routing table searches for those entries with high probability of 

causing port errors with a given sampling rate. The adaptive sampling adjusts the 

sampling rate automatically based on the particular entry’s pervious performance. 

If it has caused port errors frequently, then set a low rate to permit searching 

routing table and updating cache in time.  

• Smaller port error ratio. The samplings we proposed are effective ways to 

alleviate the port error problems. Given a sample trace A, the port error ratio is 

decreased from 3.115 % to 0.347 % of C3 by the adaptive sampling and its 
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performance is very close to the ideal every hit sampling. The small port error 

ratio is extremely beneficial to reduce the possibility of incorrect routing. 

• Few routing table searches. Both of these advanced sampling schemes decrease 

the number of searches in routing tables as compared with the common interval 

sampling. This in turn saves search time and decreases the route lookup 

complexity.  
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Chapter 6 

 

Set Associative Caching Implementation 

 

6.1 Introduction 

As we presented in Chapter 4, routing table compaction schemes have 

demonstrated the potential in improving cache performance for IP routing and forwarding 

operations. The tables are reduced in size by combining many route entries using the 

don’t care element in Ternary CAM. Thus, an entry in the compacted routing table may 

contain more than one entry of the original table internally. Consequently, such small 

compacted routing tables can be contained into fewer TCAM chips, which in turn save 

memory cost and improve route lookup speed by parallel searching.  

Each compaction scheme becomes practicability only when it can be implemented 

effectively based on current conditions. For example, one IPv4 routing and compaction 

scheme by ternary CAM based on bit – pattern associative array is achieved in [15]. The 

cache is divided into sets. Each set is associated with a network address prefix value. 

Since the address length of IPv4 is 32 bit, there are 32 possible prefix values.  

We also proposed several novel compaction schemes in Chapter 4. All of them 

can be implemented based on TCAM in theory as well. However, considering the IP 

address format, which needs 32(for IPv4) or 128(for IPv6) sets in conventional TCAM 
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caching, we take advantage of the features in routing tables after compacted, and propose 

new hardware implementations for these compaction schemes in this chapter. These 

implementations are based on simple set associative caching. Using the simple 

associative TCAM caching architecture associated with our compaction schemes, the 

system achieves similar or even higher hit rate without overhead cost in hardware, as 

compared with complex hardware needed for fully associative caches. This high hit rate 

in turn keeps fast address lookups. 

This chapter is organized as follows. In Section 6.2, the features of IP address 

space in routing table contents and cache hit distribution are analyzed and described for 

both IPv4 and IPv6 protocols. Section 6.3 presents proposed set associative caching 

techniques based on the above features. Section 6.4 evaluates cache performance and port 

error control on these new implementations. Section 6.5 includes a conclusion of this 

chapter. 

 

6.2 Features of address space in routing table entries 

According to the procedure of compaction schemes, we notice that there exists 

such an entry that has a destination address space overlapping other entries’ space with 

different port assignments in the compacted routing table. For example, entry a with the 

address of 10**11 and entry b with the address of 101*11 overlap their address space by 

don’t care elements in TCAM, if the port numbers associated with them are different. In 

this section, we extract the features of this kind of address overlapping, which provides 

the motivation for the hardware implementation later. In order to describe concisely, we 

choose the compaction scheme C2 as an example to make analysis and explanation. 
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6.2.1 IPv4 routing table 

In order to assess the address overlapping in compacted tables, we count the 

number of overlapping entries (N) that are covered by a particular entry. For the above 

example, entry b is one entry covered by entry a. The number of such entries covered by 

entry a might be more than 1.  
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(a)  Number of routing entries with overlapping entries. 
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(b) Hit distribution with compacted tables. 

Figure 6.1: Distribution of overlapping entries (IPv4). 

Figure 6.1(a) shows the percentage of the entry number in a IPv4 routing table 

with the same value of N. Obviously there are few entries with overlapping destination 
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address space for N larger than 20. The 1K-entry cache hit distribution of this compacted 

routing table with scheme C2 is plotted in Figure 6.1 (b). The y-axis depicts the 

percentage of hits, which is the ratio of the hits among the group entries with the same 

number of N to the total hits. Almost 60% or even more hits are contributed by the entries 

with N less than 20. Thus, it provides the possibility that we can treat the routing entries 

differently by their values of overlapping entries N, when fetching them in cache. For 

those entries have no much contribution to cache hits, we can assign few cache space 

with less priority to them, while assigning more cache space with high priority to those 

significant entries. This flexible assignment will not degrade the whole system 

performance. 

 

6.2.2 IPv6 routing table 

Because of IPv6’s long address format, it requires more memory to store the large 

routing table, which makes the compaction schemes much more important in saving 

memory usage and improving the lookup performance. It also brings a challenge in 

hardware implementation of compaction schemes. Similarly to the above procedure of 

IPv4, we analyze IPv6 address overlapping status to simplify the implementation in 

hardware. 

Figure 6.2 depicts the feature of overlapping address and cache hit distribution of 

a 128-entry cache. There are few entries with overlapping destination address space for N 

larger than 3. A great number of the cache hits concentrate onto the entries with small 

number of N, which consists with the trend of IPv4. 
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(a) Number of routing entries with overlapping entries. 
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(b) Hit distribution with compacted tables. 

Figure 6.2: Distribution of overlapping entries (IPv6). 

 

6.3 Set associative caching implementation  

In this section, we develop new implementations for our compaction schemes on 

set associative caching, which are applied to IPv4 and IPv6, respectively. A set-

associative cache is considered as a reasonable compromise between a complex fully 

associative cache and simplistic direct mapped cache. These implementations are 
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motivated by the features of overlapping addresses and cache hit distribution in 

compacted routing tables.  

For IPv4 routing, we have observed those entries with the value of N less than 20 

have most of cache hits from Figure 6.1. Thus, the cache is divided into 21 sets. The 

entries in routing tables with the different value of N (i.e. N=0, 1, 2, …19, >19) are filled 

in the corresponding set. The size of each set in the associative cache array is initially 

made proportional to the distribution of hits in each group. The priority of each set is 

opposite to the value of N. Figure 6.3 illustrates our scheme. When the destination 

address searched is found a match or multi matches in cache, the entry with higher 

priority is chosen and the corresponding port number is selected to deliver the packet. If 

there is a miss in cache, an entry found in the routing table memory is needed to write 

into cache. First which set the entry should be written is decided according to its number 

of overlapping entries N, then fill the entry into free space in cache or replace some other 

entry in the same set by Least Recently Used replacement policy.  

Destination address Next hop

Set 0

RAM Array

Set 1

...
Set 20  

Figure 6.3: Set associative TCAM caching for IPv4. 
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With regard to IPv6 routing, those entries with the value of N less than 3 

contribute a large number of hits from Figure 6.2. Thus, we only need 4-set associative 

caching. The entries in routing tables with the different value of N (i.e. N=0, 1, 2, >2) are 

filled in the corresponding set. Figure 6.4 is the diagram of this implementation.  

 

Figure 6.4: 4-set associative TCAM caching for IPv6. 

 

6.4 Performance analysis and evaluation 

In this section, our proposed set associative caching techniques are implemented 

and tested based on TCAM. We use IPv4 and IPv6 destination traces to analyze the 

address lookup performance. Both cache hit rate and port error ratio are still used as the 

measurement criterions in our evaluation.  

 

6.4.1 Cache hit rate of IPv4 routing 

The cache is initially divided into 21 sets with the size proportional to the 

distribution of cache hits in each group N. The implementation of set associative cache 

results in a little bit of change of the hit rate, as compared with fully associative cache. 
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The hit rate of a 1K-entry cache with these two kinds of caching is shown on Table 6.1. 

Obviously, the hit rate of our set associative caching is very close to that of the fully 

associative cache. The difference between them is trivial and less than 0.1%. However, 

set associative caching is beneficial to build simpler and less expensive architecture. All 

of the performances depend on the trace files and the number of cache entries.  

Table 6.1: Hit rate of 1K-entry cache. 

Traces 
Cache W X Y Z 
Fully 96.99% 96.68% 97.53% 98.67%
Set 96.98% 96.63% 97.47% 98.70%

 

6.4.2 Port error ratio and sampling schemes for IPv4 routing 

As we mentioned before, a port error caused by caching is a disadvantage to route 

lookups. It occurs when the port selected using the cache does not match the port that 

would be selected using the routing table. Interval sampling technique is usually used to 

alleviate this problem. Table 6.2 and Figure 6.5 depict the difference of port error ratio 

between without and with sampling. The port error ratio of set associative caching is a 

little higher than that of full associative caching without sampling technique. However, 

the average difference is small and less than 0.03%.  Moreover, the port error ratio is 

greatly alleviated down to less than 0.3% with sampling. The difference is cut down to a 

trivial value as well. Since the port error ratios here are already small after interval 

sampling, we do not need to analyze other two advanced sampling schemes, namely 

selective, adaptive sampling, which we have been proposed and compared with every hit 

sampling in Chapter 5. 
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Table 6.2: The port error ratio without (w/o) and with (w/) sampling (SA). 

Trace file 
Cache SA W X Y Z 

  
Average 

w/o 0.783% 1.215% 1.882% 0.914% 1.199%   
FU w/ 0.239% 0.321% 0.255% 0.097% 0.228% 

w/o 0.823% 1.228% 1.929% 0.925% 1.226%   
Set w/ 0.241% 0.308% 0.264% 0.095% 0.227% 
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Figure 6.5:  The performance of port error ratio. 

 

6.4.3 Cache hit rate of IPv6 routing 

According to the features of IPv6 routing table, we implement 4-set associative 

caching based on TCAM. Since the size of each set is required to be proportional to the 

distribution of hits in each group, three different divisions of four sets based on Figure 

6.2 (b) are analyzed and compared. The following Table 6.3 shows the information about 

these set divisions.  

The different divided sets might result in the varying hit rate in the cache 

architecture. The hit rate of a 128-entry cache with different set divisions and fully 
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associative caching is shown on Table 6.4 and plotted in Figure 6.6. We use the six 

groups of traces to evaluate the address lookup performance. There is minor change of 

cache hit rate between the set associative caching and fully associative caching, 

especially for division D2 and D3. The difference between them is less than 0.5%.  

Table 6.3: Set divisions (Consider the total cache as one). 

Set divisions 
N D1 D2 D3 

0(Set 0) 0~0.50 0~0.55 0~0.55 
1(Set 1) 0.51~0.80 0.56~0.90 0.56~0.88
2(Set 2) 0.81~0.85 0.91~0.95 0.89~0.95

>2(Set 3) 0.86~1 0.96~1 0.96~1 
 

Table 6.4: Hit rate (%) of 128-entry cache with different set divisions. 

Traces 
Divisions A B C D E F 

FU 90.59 93.28 93.84 93.57 94.28 95.23 
D1 90.35 91.93 92.01 93.1 93.93 94.45 
D2 90.6 93 93.31 93.31 94.12 95.17 
D3 90.73 93.15 93.53 93.43 94.28 95.2 
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Figure 6.6: Different set divisions’ hit rate using 128-entry cache. 
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6.4.4 Port error ratio and sampling schemes for IPv6 routing 

Table 6.5 provides the port error ratio without and with sampling techniques. By 

interval sampling, the port error ratio is alleviated down to less than 1%, almost 0.5% for 

most cases. With advanced samplings, the port error ratio is decreased greatly and even 

close to every hit sampling, which is the ideal sampling in theory. 

Table 6.5: The port error ratio (%) without (w/o) and with (w/) sampling (SA). 

Trace file 
Divisions SA A B C D E F 

  
Average 

w/o 3.12 2.45 1.71 6.55 1.05 1.85 2.79
w/ 0.6 1.03 0.34 0.42 0.35 0.54 0.55
Sl 0.6 1.02 0.34 0.42 0.34 0.54 0.54
Ad 0.35 0.54 0.19 0.28 0.23 0.36 0.33

  
FU 

  
  
  Eh 0.33 0.54 0.18 0.27 0.22 0.35 0.32

w/o 2.57 2.47 1.89 6.92 1.67 1.32 2.81
w/ 0.46 0.53 0.23 0.34 0.23 0.26 0.34
Sl 0.47 0.52 0.24 0.34 0.23 0.26 0.34
Ad 0.27 0.26 0.14 0.21 0.16 0.15 0.20

  
D1 
  
  
  Eh 0.25 0.25 0.13 0.2 0.14 0.14 0.19

w/o 2.35 2.58 1.86 7.39 0.99 1.5 2.78
w/ 0.44 0.54 0.25 0.33 0.31 0.34 0.37
Sl 0.44 0.52 0.25 0.33 0.31 0.34 0.37
Ad 0.26 0.27 0.15 0.2 0.2 0.18 0.21

  
D2 
  
  
  Eh 0.24 0.26 0.14 0.18 0.19 0.17 0.20

w/o 2.93 2.6 1.81 7.2 0.96 1.79 2.88
w/ 0.42 0.55 0.26 0.35 0.31 0.35 0.37
Sl 0.43 0.54 0.26 0.34 0.3 0.34 0.37
Ad 0.25 0.27 0.15 0.21 0.2 0.18 0.21

  
  

D3 
  
  Eh 0.24 0.27 0.14 0.2 0.18 0.18 0.20

 

Given an example of Trace A, the port error ratio of set division D2 and D3 is 

almost the same and both of them less than fully associative cache (See Figure 6.7). The 
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other traces share the similar trend. Furthermore, division D3 obtains the best 

performance among these three different divisions by considering both cache hit rate and 

port error ratio.  
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Figure 6.7: The set associative caching improvement on Trace A. 

 

6.5 Summary 

This chapter presented new set associative caching to implement the compaction 

schemes proposed in Chapter 4. This set associative caching is achieved based on the 

practical routing table address space and cache hit distribution. As compared with fully 

associative cache, it has advantages of simple and inexpensive implementation. We have 

evaluated different set associative caching architectures with sampling techniques, which 

are used to alleviate port error problems caused by the cache technique. The simulations 

on IP routing information have shown that our set associative caching achieves the 

similar cache hit rate as the fully associative caching and can control port error 

effectively without impacting the system performance. The summary of our conclusion is 

as follows. 
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• Address space overlapping. One feature of the compacted routing entries is the 

address space overlapping. Different overlapped addresses have different 

contribution to the cache hits. A great number of hits are obtained by those entries 

with the count of overlapped address less than a value, which depends on the IP 

routing tables. This value also determines the number of set needed in set 

associative caching.  

• Set associative caching. In order to implement the compaction schemes under 

practical and economical conditions, a cache is divided into sets according to the 

count of overlapped addresses, instead of fully associative caching. The size of 

each set is initially made proportional to the cache hit distribution.  

• Keep high cache hit rate. The cache hit rate achieved by set associative caching 

is close to that of fully associative cache, either for IPv4 or IPv6. The difference 

between these two kinds of caching is trivial for most of cases. This set 

associative caching does not have much damage on the cache performance. 

• Smaller port error ratio. The interval sampling and the advanced samplings are 

work effectively to alleviate the port error problems in the set associative caching. 

The port error ratio is decreased less than 0.5%. There is no much difference on 

port error ratio between set associative caching and fully associative caching.  

Small number of port errors help to keep the routing process correct. 
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Chapter 7 

 

Concluding Remarks 

 

IP routing is an important task in the transmission of packets through the Internet. It 

determines which output port the incoming packet should be delivered to by searching 

routing tables. The speed of this process is extremely important, especially, with the 

increasing growth of link speed in Internet router.  A high speed line requires fast route 

lookup to match in order to enhance the overall performance of network processors. 

However, the routing table lookup is becoming a time-consuming process because the 

growing size of the routing table that is stored in main memory with a slow access time. 

A cache memory is generally used to accelerate this operation.  That is, caching recently 

used route entries and achieving a large cache hit rate yield a short average access time.  

 This dissertation has proposed high performance cache architectures for IP 

routing, which involves the following areas: 

• Improved cache techniques 

• Optimized cache replacement policies 

•  Route entry compaction based on caching 

• Advanced sampling techniques for port errors 

• Set associative caching implementation 
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The remainder of this chapter will address the contributions in each of these arrears 

and discuss the research directions for future work. 

 

7.1 Contributions 

The research includes several schemes and techniques to enhance IP routing process. 

They are implemented and estimated though extensive simulation using IPv4/IPv6 

routing information. The features of our work are presented as follows.  

• Two new replacement policies: LAR and RLAI.  Both of the policies tend to 

remove an inactive entry by evaluating its previous access references. The LAR 

evicts the entry with the smallest access count among N entries that have not been 

accessed for a long while. As for RLAI, if an entry has not been referred longer 

than its previous access interval, it can be potentially evicted. Due to the higher 

cache hit rate yielded by the LAR and RLAI policies, fewer accesses to routing 

table memory are needed for address lookups. Consequently, this helps to reduce 

the average memory access time, which is often used as measurement for cache-

memory performance. 

• Four compaction schemes based on TCAM. They obtain high compaction 

performance. The number of routing entries after compacted is between 30% to 

65% of the original ones. The cache hit rate is improved dramatically by 

performing searches in compacted routing tables. 

• Two new sampling techniques to reduce port errors. The selective sampling 

only executes routing table searches for those entries with high probability of 

causing port errors with a given sampling rate. The adaptive sampling adjusts the 
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sampling rate automatically based on the particular entry’s pervious performance. 

They lower the port error, which is beneficial to reduce the possibility of incorrect 

routing. 

• Set associative caching. In order to implement the compaction schemes under 

practical and economical conditions, a cache is divided into sets according to the 

count of overlapped addresses. The size of each set is initially made proportional 

to the cache hit distribution. This scheme keeps the high cache hit rate close to 

that of fully associative cache. 

• Victim caching and randomly selected indexing: The VC increments cache hit 

rate by reducing miss penalty. A simple direct-mapped cache cooperating with a 

16-entry victim cache can achieve a hit rate better than 2-way or 4-way set 

associative cache of the same size. Randomly selected indexing scheme reduces 

conflict misses by searching the entries prone to conflict in direct-mapped cache 

more than one place. 

• Pipelining: A high route lookup throughput is achieved by proposed pipeline 

structure. The route lookup process is divided into three independent stages: index 

selection, cache access and getting port. The pipeline has no data hazards. 

All the proposed scheme and technologies have been shown to improve the caching 

effectiveness. The high cache hit rate makes average memory access time shorter; this in 

turn speeds up the address lookup process. 

 

7.2 Future work 
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The following topics are potential works that could be done in future. They would be 

beneficial for speedup route entry lookup. 

• Clustering: Clustering is the process that organizing objects into groups whose 

members are similar in some way. If we can use clustering to analyze route 

entries according to the incoming packets, and generate the pattern of route 

entries with “closer access relationship”, then it could be possible to reduce cache 

misses by pre-fetching route entries, at the same time when fetch the real missed 

entries from routing table to cache. The entry pre-fetched should be the same 

group as the missed one.  

• IPv6 efficient routing: one of the advantages of IPv6 is its hierarchical provider-

based global unicast address architecture, which has potential to allow efficient 

routing. If we can decompose the large size tables into independent small ones 

based on the multi-level of IPv6 addressing and make each route lookup in 

hierarch method, then it is not necessary to search the whole IP address, which in 

turn saves searching time. Furthermore, small tables are benefit to speedup lookup 

process too.  

• Warm Start Cache: The above cache architectures begin from a “cold start”. This 

is, the cache is initialized empty. This method does not maintain any previous 

forwarding information. By contrary, warm start means saving some relative 

entries into cache before lookups. If we know a database of those route entries 

with high access frequency in a long-time, and then storing such entries in cache 

as “warm start” might be helpful to reduce the number of misses. 
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• More routing information resource: Try to find large tables and more traces to 

optimize our proposed schemes. This might be difficult since these traces are not 

made public in most cases. 
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