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DISEASE MANAGEMENT AND LATENT CHOICES 
 

Abstract 
 
 

By Sean Michael Murphy, Ph.D. 
Washington State University 

August, 2008 
 

Chair: Robert Rosenman 
 
 
This dissertation consists of three independent essays in the field of health economics.  

The first essay analyzes factors influencing the initial treatment choice of inpatients with 

severe hypertension.  A thorough analysis of treatment choice has been largely 

overlooked in the hypertension literature, and few studies of any disease have conducted 

comprehensive multivariate analyses on treatment choices using such a diverse array of 

socioeconomic variables and hospital locations.  According to the results, characteristics 

other than morbidity affect the type of treatment received; indicating public policy could 

improve care. 

 The second essay analyzes the effect that a patient’s reference point has on her 

perceived effectiveness of subsequent treatment.  One commonly used measure of 

treatment effectiveness for conditions where treatments are palliative, and clear objective 

symptoms do not exist, is self-reported changes in disease status.  Factors such as 

treatment history provide a reference point that may influence patients’ expectations of 

how effective further treatment might be.  Therefore, decisions about whether to proceed 

with additional treatment, as well as perceptions of how effective that treatment is, may 
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be influenced by this point.  Although there is an extensive literature on how patient 

expectations influence treatment outcomes, work testing how expectations depend on 

these reference point factors appears to be missing.  The results indicate that these factors 

influence perceived treatment effectiveness. 

 The final essay focuses on missing and ambiguous observations in a dataset with 

binary dependent variables.  The ability to reallocate these responses could aid in the 

correction of potentially biased estimates.  Using the “latent-choice multinomial logit 

model” (LCMNL), it is possible to determine whether these incomplete responses are 

more likely to belong to another outcome.  Simulations of this model are performed to 

determine whether the estimated conditional probabilities are accurate enough to evaluate 

the likelihood that any given observation belongs to a particular outcome, and whether 

doing so improves parametric estimation.  Tests imply that the reclassifications indicated 

by the LCMNL’s conditional probabilities are accurate.  The best method for dealing 

with ambiguous observations in empirical analysis is also assessed.  Results indicate that 

the best method depends on the source of the ambiguity. 
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CHAPTER ONE 
 

INTRODUCTION 
 

The following are three independent essays in the field of health economics.  All address issues 

concerning disease management, in that they either help develop a better understanding of how 

treatment decisions are made, along with the effects of those treatments, or focus on methods 

that help increase the accuracy of our analysis.  Addressing these issues should help increase 

efficiency in the production of health. 

 The first essay analyzes the effects that patient’s socioeconomic characteristics, along 

with hospital size and location, have on the initial treatment choice for inpatients in the Clinical 

Classification Software’s (CCS) category 99, “Hypertension with Complications and Secondary 

Hypertension” (HCUP, 2000-2003).  According to Singh (2006), hypertension is quite prevalent 

in that it affects approximately 25% of those 18 and over.  However, many are unaware of the 

condition, and as a result do not seek treatment until complications have arisen.  After being 

hospitalized, physicians and patients must choose from an array of initial therapeutic procedures, 

all of which can be categorized as either invasive or non-invasive.  Invasive procedures are 

significantly more expensive than non-invasive, which implies that factors other than a patient’s 

clinical condition may come into play when determining a treatment path. 

 This study makes several contributions to the treatment choice literature.  Until now, a 

thorough analysis of treatment choice has been largely overlooked in the hypertension literature; 

although, many of these socioeconomic factors have been considered in the treatment choice of 

other conditions.  However, few studies of any disease have been able to control for such a 

diverse array of socioeconomic variables and hospital locations. 
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 The second essay investigates the effect that a patient’s reference point has on her 

perceived effectiveness of a given treatment.  For some illnesses or health disorders, treatments 

are palliative rather than curative, and clear objective symptoms do not exist.  One commonly 

used measure of treatment effectiveness in these instances is self-reported changes in disease 

status.   We argue that factors such as treatment history provide patients with a reference point 

which influences their expectations of treatment success; this in turn affects not only their 

decision of whether additional treatment is pursued, but also their perceptions of how effective 

the treatment is should they decide to proceed.  There is a fair amount of literature regarding the 

relationship between expectations, primarily optimism, and recovery speed (Frey et al., 1985; 

Kalauokalani et al., 2001; Scheier and Carver, 1987; Scheier et al., 1989), as well as subjective 

health (Carver et al., 1994; Koller et al., 2000; Llewellyn-Thomas, Thiel, and McGreal, 1992); 

however, these papers fail to address the determinants of these expectations. 

 Through the use of an adapted prospect theory application we model the effect a patient’s 

reference point has on her expectations of treatment success, thus determining the path of 

treatment, and on the perceived success of treatments after they have been pursued.  We expect 

that patients with unsuccessful prior treatments have a frame of reference leaving them less 

likely to expect improvement from subsequent treatments.  Using a data set on Idiopathic 

Intracranial Hypertension we test the hypothesis implied by our model. 

The final essay of this dissertation focuses on missing and ambiguous observations in a 

dataset that includes binary response dependent variables.  This is a major concern for applied 

researchers of many fields, as estimation problems may arise due to this deficiency of 

information, leading to inaccurate results, and possibly limiting the types of analyses available to 

the researcher.  The question of how best to treat the don’t know (DK) response in contingent 
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valuation data has received quite a bit of attention (Alberini, Boyle, and Welsh, 2003; Carson et 

al., 1998; Groothuis and Whitehead, 2002; Haener and Adamowicz, 1998; Wang, 1997).  

Previous methods of dealing with these responses include: grouping the responses with the no 

category (Carson et al., 1998), excluding the responses (Johannesson et al., 1993; Wang, 1997), 

and treating them as a middle response between yes and no in ordered categorical models 

(Groothuis and Whitehead, 2002; Wang, 1997).  Based on the assumption that some ambiguous 

responses are misclassified, Caudill (2006) extends Dempster, Laird, and Rubin’s (1977) work, 

developing a multinomial logit model with missing information, titled the “latent-choice 

multinomial logit model” (LCMNL).  Caudill and Groothuis (2005) use the model to statistically 

determine whether DK responses in the contingent valuation literature are actually more like a 

yes, a no, or truly a DK. 

  The purpose of this paper is to perform some simulations of the LCMNL to determine: 1) 

if the conditional probabilities generated by the model are in fact accurate enough to assess the 

likelihood that individual observations belong to a particular outcome as Caudill, Ayuso, and 

Guillen (2005) and Caudill and Groothuis (2005) did, and 2) the best course of action for dealing 

with incomplete responses in empirical analysis.  Through the use of a specified data generating 

process, a random data matrix is created, intervariable correlations from a real world dataset 

imposed on it, and a dependent variable generated using known parameter values.  As a result, 

the true values of the incomplete responses are known beforehand, which allows us to 

accomplish our first goal.  Knowledge of the true parameter values allows us to accomplish the 

second objective by being able to test the coefficient estimates against their true values. 
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CHAPTER TWO 

DETERMINING FACTORS IN THE TREATMENT CHOICE OF PATIENTS WITH 

HYPERTENSION WITH COMPLICATIONS AND SECONDARY HYPERTENSION 

 

Abstract 

We analyzed the effect patients’ socioeconomic characteristics, along with hospital size and 

location, had on the initial treatment choice for inpatients with severe hypertension.  A thorough 

analysis of treatment choice has been largely overlooked in the hypertension literature, and few 

studies of any disease have conducted comprehensive multivariate analyses on treatment choices 

using such a diverse array of socioeconomic variables and hospital locations.  Even after 

accounting for the U.S. public health insurance programs it appears there are still uninsured 

individuals seeking inpatient care, and receiving potentially less effective treatments.  Patients 

covered by Medicare are much more likely to receive the relatively expensive treatments, even 

after controlling for age and comorbidity, implying that Medicare patients are for some reason 

treated differently.  Also the study shows that racial disparity and geographical treatment 

variation remain issues when it comes to treatment decisions.  Finding that characteristics, other 

than morbidity, affect the type of treatment received indicates public policy could improve care. 

Keywords: Hypertension, Treatment choice, Invasive, Geography, Logistic regression, Health 

insurance.
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Introduction 

Hypertension refers to the sustained condition of abnormally high blood pressure. Left untreated, 

hypertension can lead to serious complications such as heart or kidney failure. Approximately 

25% of people 18 and over have high blood pressure; however, many are unaware of the 

condition (Singh, 2006). As a result, treatment is often not sought until complications arise. Once 

a patient is hospitalized, physicians and patients must choose from an array of initial therapeutic 

procedures, all of which can be categorized as either invasive or non-invasive. Considering that 

the costs of the invasive procedures are significantly higher, decisions about what treatment path 

to follow may depend on more than just the patient’s clinical condition, (average total charges 

for patients prescribed invasive procedures exceeded those for patients with non-invasive 

procedures by about $9000). Whether ability to pay, insurance coverage or geographic location 

influence care path is our primary interest. It is also possible that demographic variables such as 

age, sex and race influence the initial prescribed treatments, although differences correlated with 

these variables may be from different effectiveness of non-invasive and invasive procedures 

according to these characteristics. To explore this topic, we used a binary logistic regression on 

treatment choice to test whether a patient’s socioeconomic characteristics, along with hospital 

size and location, influenced the initial treatment choice for individuals in the Clinical 

Classification Software’s (HCUP, 2000-2003) category 99 “Hypertension with Complications 

and Secondary Hypertension”. 

Our study makes several contributions to the treatment choice literature. First, as opposed 

to previous studies focusing on geographical regions generally no larger than the state level, we 

use inpatient data from hospitals in 25 states. We are able to control for a relatively large number 

of socioeconomic variables. This is something that seems to have been largely overlooked in 



 

9 

 

hypertension treatment, although socioeconomic factors have been considered in the treatment 

choice for different types of cancer and heart disease (Bergman et al., 1991; Desch et al., 1996; 

Greenberg et al., 1988; Bradley, Given, and Roberts, 2002; Roetzheim et al., 2000; Samet et al., 

1986; Satariano, Swanson, and Moll, 1992; Wenneker and Epstein, 1989; Whittle et al., 1993), 

as well as depression (Sturm, Meredith, and Wells, 1996). In the next section, we explore the 

theory behind non-clinical treatment variation and provide a brief literature review. Then, we 

describe the data before explaining the model we used in our study. Next, we present the results 

of our estimation while the last section discusses the implications of our analysis and suggests 

future research. 

 

Factors influencing treatment choice 

Although many studies have used retrospective data analysis to examine the effects of 

socioeconomic variables on treatment choice, little has been done on the effect of such variables 

on hypertension, and few treatment choice studies of any disease have been able to control for 

such a wide range of explanatory variables. Many of these studies have looked at various types 

of cancers. Among the most common socioeconomic predictors is age. Greenberg et al. (1988) 

found that older patients were less likely to receive surgery versus no surgery, and other forms of 

treatment versus no treatment for patients diagnosed with lung cancer. Desch et al. (1996) also 

found that increasing age reduced the likelihood of treatment versus no treatment, and surgery 

versus radiation in patients with prostate cancer. Age was also documented by Bergman and 

others (1991); while studying patients 55 years and older with breast cancer, the authors found 

that patients 75 years and older were less likely to receive radiation and more likely to be given 

hormonal therapy. Common reasons given for the age effect are frailty and co-morbidity (Samet 
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et al., 1986). Both Greenberg et al. (1988) and Desch et al. (1996) found this effect to persist 

even after controlling co-morbidity, which was statistically significant only in the latter study. 

One study found that older women were significantly more likely to receive the relatively 

invasive procedure for treatment of breast cancer (Satariano, Swanson, and Moll, 1992). 

The effect of a patient’s sex on treatment choice is not well documented. Studies that 

took gender into account primarily deal with treatment choices for different cancers. Many 

studies review treatments for diseases that are gender specific (Bergman et al., 1991; Desch et 

al., 1996; Roetzheim et al., 2000; Satariano, Swanson, and Moll, 1992). Others found it 

insignificant (Desch et al., 1996; Greenberg et al., 1988). The literature pertaining to race’s 

effect on treatment choice is vast. Most findings point to racial disparity between white and black 

patients. Desch et al. (1996) indicated that the odds of white patients with prostate cancer 

receiving surgery were approximately three times greater than the odds of black patients after 

controlling age, sex, income, co-morbidity, residence (rural versus urban) and education. 

Wenneker and Epstein (1989) and Whittle et al. (1993) found white patients remained 

significantly more likely to undergo invasive cardiac procedures even after accounting age, sex, 

income, co-morbidity, and payer type (Wenneker and Epstein, 1989; Whittle et al., 1993) or 

physician financial incentives (Whittle et al., 1993). Sturm, Meredith, and Wells (1996) reported 

white patients were more likely to seek specialty psychiatric care, i.e., “psychiatrist” versus 

“general medical sector,” and “non-physician mental-health specialist” versus the “general 

medical sector,” relative to non-white patients. The authors also controlled for health status, age, 

sex, education, income and payment method. 

However, the evidence is mixed on the effect race has on women’s breast cancer 

treatment choice. Bradley, Given, and Roberts (2002) analyzed women who received either no 
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surgery, breast conserving surgery, breast conserving surgery with radiation or mastectomy. The 

authors found that African-American women were less likely than white women to undergo 

surgery and out of those having surgery, African-American women were more likely to have 

breast conserving surgery than white women. Other covariates in the model included age, disease 

severity, income and whether the patient was covered by Medicaid. The only racial difference 

discovered by Roetzheim et al. (2000) was that Hispanic patients were more likely to receive 

breast conserving surgery than non-Hispanic whites. Like many of the other studies mentioned 

above, the authors controlled age, education, residence, income, co-morbidity and payer type. 

Satariano, Swanson, and Moll (1992) found race to be insignificant after accounting for variables 

such as age, sex and hospital size. Income, health status and payment method were not included 

in their stepwise logistic regression. Income and payment method are often found to be important 

treatment choice predictors. This is usually attributed to certain treatments being more expensive 

than others. In several studies, income and the probability of receiving the relatively expensive 

treatment were positively correlated (Bradley, Given, and Roberts, 2002; Desch et al., 1996; 

Sturm, Meredith, and Wells, 1996) although at least one paper found that income did not play a 

significant role in the type of therapy chosen (Roetzheim et al., 2000). Greenberg et al. (1988) 

found that lung cancer patients with private insurance were more likely to be surgically treated, 

or if surgery was not used then these individuals were more likely to receive another form of 

treatment than individuals with other forms of insurance, or none at all. 

Sturm, Meredith, and Wells (1996) observed that being in a prepaid plan, relative to a 

fee-for-service plan, significantly reduced the likelihood that depressed patients would see a 

psychiatrist and increased the likelihood that these patients would see a non-physician mental-

health specialist. This was anticipated since specialists are usually expensive relative to general 
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medical practitioners and cost containment would be expected to play a larger role in prepaid 

plans. Medicare HMO patients were more likely to receive breast conservation surgery than 

patients with fee-for-service Medicare (Roetzheim et al., 2000). And among non-Medicare 

patients, those with no insurance were less likely to receive the same surgery than those with 

commercial fee-for-service insurance plans. Bradley, Given, and Roberts (2002) found 

individuals covered by a fee-for-service Medicaid plan were less likely to receive breast 

conserving surgery and more likely to receive no surgery than patients were not covered by 

Medicaid. 

 Little work has explored the influence of hospital size on treatment choice. Satariano, 

Swanson, and Moll (1992) found that women with early-stage breast cancer, treated in larger 

hospitals, were more likely to receive relatively less-invasive procedures than those treated in 

smaller hospitals. The authors attribute this finding to the possibility that large hospitals may be 

able to implement new forms of therapy more quickly. Desch et al. (1996) also found that 

patients residing in an urban area were more likely to receive some form of treatment. The 

patient’s residence may serve as a proxy for hospital size since urban areas generally have larger 

hospitals. Urban residents also appear to be more likely to have breast conserving surgery 

(Roetzheim et al., 2000). 

The existence of medical practice variations across various geographic areas is a topic 

that has received a great deal of attention (Phelps, 1992). Studies compared US regions to other 

countries (McPherson et al., 1981; McPherson et al., 1982), differences within a specific state 

(Lewis, 1969; Wennberg and Gittelsohn, 1973; Wennberg and Gittelsohn, 1975; Phelps and 

Parente, 1990), among states (Ahronheim et al., 2001; Krumholz et al., 1998), US census regions 

(Pilote et al., 1995) and among regional health care markets (O'Connor et al., 1999). Specific to 
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hypertension, Reynolds et al. (2003) analyzed geographic treatment variations in China. 

However, the analysis of geographic treatment variation in the US appears to be nonexistent. 

Most treatment variation studies have significant limitations. It is common for a study to 

focus on a relatively small geographic region, usually no larger than the state level (Bradley, 

Given, and Roberts, 2002; Desch et al., 1996; Greenberg et al., 1988; Roetzheim et al., 2000; 

Samet et al., 1986; Satariano, Swanson, and Moll, 1992; Sturm, Meredith, and Wells, 1996; 

Wenneker and Epstein, 1989). Several control for sex by analyzing gender specific diseases such 

as prostate and breast cancer (Bergman et al., 1991; Bradley, Given, and Roberts, 2002; Desch et 

al., 1996). And some are not able to control a wide range of socioeconomic characteristics 

(Bergman et al., 1991; Satariano, Swanson, and Moll, 1992). By contrast, we analyzes patients 

with a gender-neutral disease from a sample including data from hospitals in 25 states. In 

addition to the patient gender, we include a wide array of socioeconomic characteristics, such as: 

age; race; income; payment type; co-morbidity; admittance status and we are able to control for 

hospital size and location, allowing us to test whether a variety of socioeconomic characteristics 

affect treatment choice. 

 

Data 

Data for this study came from the Healthcare Cost and Utilization Project (HCUP) Nationwide 

Inpatient Sample (NIS) for 2003, a stratified probability sample of hospital inpatients. Strata 

were defined based on: (i) geographic region; (ii) management (public, voluntary or proprietary); 

(iii) location; (iv) teaching status and (v) bed size. In order for a hospital to be included in the 

sample, it must be a community, non-rehabilitation hospital, contained in the State Inpatient 

Database (SID) and match the corresponding American Hospital Association (AHA) Annual 
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Survey data (HCUP, 2006). In 2003, 3763 hospitals from 37 geographically dispersed states 

were included in the sample. The NIS attempts to represent the population of all acute care 

discharges from US hospitals of the type just described. Up to 20% of the hospitals in each 

stratum were randomly selected, producing a sample of 994 hospitals - 21% of 4,836 hospitals in 

the target population. 

Our study focuses on patients with an initial diagnosis of hypertension with 

complications and secondary hypertension.  Individuals were grouped into this category by the 

Clinical Classification Software (HCUP, 2000-2003). The CCS is a classification system 

developed at the Agency for Healthcare Research and Quality (AHRQ). It groups International 

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnoses and 

procedures into meaningful categories. After eliminating observations with missing values, we 

were left with 17,437 observations from 25 geographically dispersed states. Since the base 

sample is designed to represent the population, as mentioned in the paragraph above, our final 

sample should still reflect that after controlling for factors that may bias us away from the 

representative sample. To check this, we randomly selected 500 observations from the dataset 

composed of all individuals in CCS 99. A dummy variable was created indicating whether or not 

an observation contained missing information and would therefore be dropped. We then tested 

for significant differences across this variable using ANOVA and chi-square tests. This process 

was repeated a handful of times, and there were only two variables with clear differences. The 

average age appears to be significantly higher among the dropped observations and it seems that 

there are a significantly larger number of individuals among the dropped observations who were 

admitted electively. Table 1 defines our variables. We divided the primary diagnostic and 

therapeutic procedures performed into two categories, “invasive”, e.g. angioplasty, and “non-
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invasive”, e.g. injection of an anticoagulant, according to definitions describing ICD-9-CM 

codes. All procedures can be classified as one or the other. We note that invasive procedures are 

generally more expensive than those that are non-invasive. As a result of the cost difference, the 

initial treatment decision made by the physician and patient may vary based on socio-economic 

characteristics in addition to those that are health related. 

The dependent variable, “invasive,” takes the value of one if the initial procedure 

performed on the patient was invasive and zero if it was non-invasive. The “age” variable 

measures the age of the patient at the time of admission, while “age2” represents the age variable 

squared. The age2 variable allows us to test whether the marginal effect that age has on the 

probability of individuals receiving invasive procedures differs between younger and older 

patients. “Female” is a dummy variable indicating patient’ sex. “Middle,” “uppermid,” and 

“upper” are binary income variables representing three of the income quartiles classified by the 

NIS. The income quartiles are defined by the median income of the zip code where the patient 

resides. Therefore, these variables are not a true measure of the household’s income, but really 

measure the affluence of the patient’s locality, which will depend, among other things, on 

whether the patient resides in an urban or rural area and the country area. “Lower” is the 

excluded category. Race variables indicate whether the patient is “Black,” “Hispanic,” “Asian” 

(which includes Pacific Islander), or “otherace”. Other race does not include whites, which is the 

excluded category. “Selfpay,” “Medicare,” “Medicaid,” “nocharge,” and “otherpay” are all 

dummy variables indicating the expected primary payer of the patient’s medical bill. If the 

expected primary payer was something or someone other than private insurance, self pay, 

Medicare or Medicaid then the patient was assigned to the “otherpay” category. Thus, private 

insurance is the excluded category for the primary payer. “Elective” is a dummy variable that 
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equals one if the patient was admitted to the hospital on his or her own accord. We accounted for 

co-morbidity with the “ndx” variable - simply the total number of diagnoses on the patient’s 

discharge record. “Bedsize,” categorizes the hospital based on the number of beds and serves as 

a proxy for hospital size. Larger hospitals are often associated with medical centers, research 

programs and physician training (Satariano, Swanson, and Moll, 1992), and as a result may be 

more likely to have access to the most up-to-date treatment methods. Finally, 24 dummy 

variables were included to test for state-specific variations in treatment, with Florida serving as 

the base case. 

Summary statistics for the entire sample and separated for those who did and did not 

receive invasive procedures are given in Table 2. Approximately 79% of the entire sample 

received some type of invasive procedure as the initial treatment for their hypertension. To 

explore the differences between patients in these categories, chi-square tests based on cross-

tabulations were performed on the categorical variables. The Kruskal-Wallis rank test was run on 

the continuous variables. These results are presented in Table 3. For simplicity, all Kruskal-

Wallis test results are placed in brackets and listed at the top of the table. Chi-square tests are 

presented below the Kruskal-Wallis tests. When conducting these tests, we did not correct for 

type I error, despite the fact that the sample is relatively large and is drawn from a finite 

population. Our rationale for this decision was based on two facts 1) that we do not know the 

true value of the population, thus any correction would be subject to error based on our 

approximation of the population size, and 2) that the sample size, while large, is nonetheless very 

small (less than ten percent and arguably close to five percent) compared to the size of the 

population. As such, while it is possible to implement an approximate finite population 

correction factor to ensure an appropriate level of significance and adjust for Type I error, doing 
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so adds little to the results of the tests. After any reasonable approximation correction our 

inferences remain the same. Also, degrees of freedom are not listed due to the large number, 

which implies that the t-statistics and z-statistics converge. 

We found significant differences in the socio-economic characteristics of the two 

subsamples. Overall, our sample appears to be consistent with the hypertension prevalence rates 

for US adults (Glover et al., 2005). Given that the NIS is designed to be representative of the 

underlying population, these results are not surprising. 

 The patients’ ages ranged from 1 to 103 years, with a mean of approximately 61 years. 

Although the range is large, the standard deviation is relatively small, giving a coefficient of 

variation (a normalized measure of variation, calculated by the ratio of the standard deviation to 

the mean) of only 0.28, hence most of our sample is concentrated around the mean. The 

prevalence rate for US adults 60 years of age or older, is approximately 65.2% (Glover et al., 

2005). The sub-sample patients’ average were 60 years (invasive) and 66 (non-invasive). The t-

statistic testing for differences in the average age of these subpopulations is 18.63 (p<.0001), 

indicating a clear and significant variation. This finding is corroborated in Table 3; where the 

Kruskal-Wallis test indicates average age differed between those who had invasive procedures as 

their primary treatment and those who had non-invasive procedures. The sub-samples also 

differed by gender and race. Approximately half the patients in the entire sample and the 

invasive sample were female. This would also appear to coincide with the US male and female 

prevalence rates in that both populations are very near 30% (Glover et al., 2005). Of those 

receiving non-invasive procedures, 58% were female, which, as demonstrated in Table 3, is a 

significantly higher percentage than the sample as a whole. Taken in tandem, these statistics 

imply that the entire sample may slightly (by approximately 1-2%) over-represent the prevalence 
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of hypertension in females. As such, we must account for this possibility by controlling for 

gender in our empirical analysis. Overall approximately 43% of patients were white, 40% were 

Black, 12% were Hispanic, 2% were Asian or Pacific Islander and 3% were other races, 

indicating the disease is disproportionately prevalent among Blacks. The prevalence rates for US 

adults are approximately 27% White, non-Hispanics; 40.5% for Black, non-Hispanics; and 

25.1% for Mexican Americans (Glover et al., 2005). As indicated in Table 3, the sample of 

patients receiving invasive procedures had a statistically significant greater share of Blacks and 

Hispanics compared to the sample receiving non-invasive treatments. There was no statistically 

significant difference in the percentages of Asians and other races, indicating that the invasive 

group must have a smaller share of whites. 

 Roughly 25% of the patients in the three samples were listed as residing in a zip code 

where the median income was in the range of $36,000 - $44,999. Twenty-percent were from a 

zip code with a median income in the $45,000 - $59,999 and 15% were listed as having come 

from a zip code with a median income in excess of $60,000. These also differed significantly 

between sub-samples, with a greater share of those receiving invasive treatments coming from 

the middle income group, while a greater portion of those receiving non-invasive treatments 

were from upper middle or upper economic zip codes. Interpolation tells us that a lower share of 

those receiving non-invasive treatments come from lower income zip codes. 

Insurance coverage also differed across sub-samples. Approximately 63% of the entire 

sampled individuals were covered by Medicare, 18% by private insurance, 13% by Medicaid, 

and 2% were paying the bill by some other means. However, as indicated in Table 3, there was a 

statistically significant difference in the share of those receiving invasive treatments that were 

covered by Medicare (larger) and the share that were self-pay (smaller) when compared to those 
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receiving non-invasive treatments. There was no statistically significant difference in Medicaid 

and other pay between the two groups, with chi-square test statistics of .08 (p=.7733) and  1.32 

(p=.2499), respectively. 

Eighteen percent of the individuals in the study were admitted electively, with a much 

greater share of those receiving invasive procedures being elective admissions. The typical 

patient had approximately 7.5 diagnoses on his or her discharge record. The mean number of 

confounding diagnoses for those receiving invasive treatments was 7.4 compared to 7.7 for those 

receiving non-invasive treatment. This difference was statistically significant with a t-statistic of 

6.25 (p<.0001). Those receiving invasive procedures were more likely to be in larger hospitals 

and to incur greater total charges when compared to those receiving non-invasive procedures. 

With the exception of Texas, Florida, and New York, which accounted for approximately 

16%, 14% and 13% of the patients in the entire sample respectively, individuals were distributed 

fairly evenly among the included states. Either the hypertension incidence is greater in Texas, 

Florida and New York or these states are over-represented in the sample (proportions were 

similar in the two sub-samples). In every state except Connecticut, Hawaii, Kansas, Maryland, 

North Carolina and Virginia, a significantly higher percentage of patients received invasive 

procedures as the initial form of treatment according to Table 3 (the results of this test for 

Vermont are questionable as a result of having too few observations in the two treatment 

groups). These findings imply that it is necessary to control for geography in our empirical 

analysis in order to ensure that our results can be generalized to make inferences about the 

population as a whole. 
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Method 

We followed the retrospective data analysis approach similar to the studies mentioned above. 

However, we were able to control a wider range of socioeconomic characteristics than most of 

the previous articles. For example, we examined a relatively gender neutral disease and was able 

to control patient sex, allowing us to study its influence on treatment choice. We were also able 

to control the location of the hospital by state. When dealing with a dependent variable that is 

qualitative, researchers often use either a logistic or a probit model. In practice, the choice 

between logit and probit models is generally one of convenience (Gujarati, 1995). We chose a 

logistic model as it allows odds ratios for independent variables to be calculated. In a logistic 

regression, the dependent variable is transformed into a logit, which is the natural log of the 

odds. After this transformation, maximum likelihood estimation is applied to the model. The 

independent variable coefficients can be interpreted as the effect that a one unit change in the 

independent variable will have on the log odds. The odds ratios are useful when interpreting the 

parameter estimates of binary independent variables. They allow one to compare the odds that 

the dummy variable equaling one will lead to the dependent variable achieving a larger value 

relative to the odds for the base case. We performed a binary logistic regression in our study. 

Consistent with our previous discussion, the following model was used: 
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The model’s significance was tested using a Likelihood Ratio test. This test can be used 

much like the F-test in the classical linear regression model where the null hypothesis that all 
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coefficients in the model are equal to zero is tested. The model’s likelihood ratio is used to 

generate a test statistic with a chi-square distribution. A sufficiently large test statistic implies a 

rejection of the null hypothesis. A likelihood ratio test was also run on the state (i.e., 

geographical) variables to establish whether they should be grouped into regions, or included 

separately. States were categorized into regions as defined by the US Census Bureau. The test 

was highly significant, indicating that state level control is appropriate. 

Owing to the high age variable mean, a test was run to determine if its effect on the 

dependent variable would be better explained with a quadratic function. A Wald test was used to 

assess whether or not age and age2 were jointly significant. The Wald test can be used much like 

the F-test in the classical linear regression model where the null hypothesis that a group of 

parameter estimates are simultaneously equal to zero can be tested. The test statistic is 

distributed as chi-square with degrees of freedom equal to the number of restrictions under the 

null, and a sufficiently large statistic implies a rejection of the null hypothesis. The test was 

highly significant implying that age2 should be added to the model. Age was expected to have a 

positive effect initially on the likelihood of a patient receiving an invasive procedure. At some 

point, elderly patients were anticipated to be less likely to receive invasive procedures implying 

that the coefficient on age2 would be negative. 

Because invasive procedures are relatively more expensive than non-invasive procedures, 

we might expect that those with higher incomes would be more likely to have invasive 

procedures. However, this impact will likely be greatly diminished or eliminated for people with 

adequate insurance coverage. Again, because of the cost, individuals paying the bills should be 

far less likely to receive an invasive procedure than those with insurance. Since private 

insurance, Medicare and Medicaid all appear to provide fairly comprehensive coverage, we do 
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not expect there to be a statistically significant difference between treatment types in these 

categories. Similarly, elective admissions may be more or less likely to have invasive procedures 

as their initial treatments. These patients may have been in a better state of health than those that 

were not admitted electively. Since invasive treatments are usually for more severe cases, 

patients choosing to enter the hospital may be less likely to have such treatments. But they also 

may be more motivated to find a cure or more able to afford treatments, thus more likely to have 

the more expensive invasive treatments. Bedsize was expected to have a slightly positive 

coefficient as larger hospitals may be better equipped to perform complicated procedures. The 

number of diagnoses an individual had on his or her discharge record was expected to have a 

fairly large and positive effect on the probability that an invasive procedure would be carried out. 

As far back as 1986, Chassin et al. (1986) found significant geographic differences in the use of 

medical and surgical procedures for a wide variety of ailments. Thus, our priors were that we 

would find geographic differences in hypertension treatments as well. In addition to the 

independent variables listed above, we attempted to estimate the effect that physicians had on 

treatment choice. However, after sorting data by attending physician’s identifying number, it 

became apparent that there were a vast number of physicians and very few observations per 

physician. Owing to the lack of variation in the treatments associated with any given physician, 

we would not be able to accurately predict the effect that a he or she had on a chosen treatment. 

We tried testing for interactions among age, race, income, insurance coverage and gender. 

However, this introduced significant multi-collinearity and also introduced a greater likelihood 

of empty cells, diminishing the accuracy of the results. Thus, we used the simpler model reported 

here. Details of these results are available from the lead author upon request 
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Results 

Logistic regression results are contained in Table 4. The Likelihood Ratio test for the model was 

highly significant (p<0.0001). There was a non-linear relationship between the likelihood of a 

patient receiving surgery and the patient’s age. The probability of having an invasive procedure 

increases up to age 30 (p<0.0001), then declines marginally for each subsequent year of age 

(p<0.0001). Females were less likely to receive an invasive procedure (p<0.0001). 

 Most minorities were statistically more likely to have invasive procedures when 

compared to whites. The increase was strongest for Hispanics (β=0.4444, p<0.0001), then Asians 

(β=0.04163, p=0.0323), and then Blacks (β=0.1114, p=0.0221). A Wald test shows that these 

effects are also statistically different from each other (p=0.0001). 

Every state in the regression, except Utah and Colorado, had a statistically significant 

influence on treatment choice. The effects associated with most of the states were also quite 

strong. With the exception of Arizona, patients in these states were less likely to receive an 

invasive procedure than patients in Florida. The effects were strongest for New Hampshire and 

Vermont. Using the Wald test again, we determined that these estimates were also significantly 

different from each other (p<0.0001). 

When we look at economic variables we see that patients from middle and upper income 

zip codes had an increased likelihood of receiving invasive procedures. As predicted, “self-pay” 

(p=0.0002) and “otherpay” (p=0.0061) patients were less likely to have invasive procedures as 

initial treatments and these effects were strong (β= -0.3817 and -0.3823, respectively). Medicare 

coverage was the only type of insurance positively related with a higher probability of invasive 

treatments (p<0.0001) with another strong effect (β=0.6518). The estimated coefficients for 
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elective admission and bed-size were both significantly positive (p<0.0001 for both) and the 

effect of elective was one of the strongest of all qualitative variables. 

 

Discussion and conclusions  

When analyzing the initial procedures received by patients with “Hypertension with 

Complications and Secondary Hypertension” it was clear that treatment alternatives could be 

classified into two types: (i) invasive and (ii) non-invasive nature. Our results indicate that there 

are a number of non-clinical factors that play a significant role determining which of these two 

treatment types an individual is likely to receive. The likelihood of a patient having an invasive 

procedure performed as his or her primary procedure significantly declined after an early age, 

which is consistent with previous findings of age being an important predictor of treatment type. 

The effect of age on treatment choice may be the result of frailty, that is, older patients may face 

greater risks from invasive treatments. In fact, when this finding is looked at in light of the mean 

value, the relatively small coefficient of variation and the large range of data indicates that most 

patients are of an age where the marginal effect of an additional year is negative. 

 We also confirmed, like the many other studies of other diseases cited above, that race is 

a significant treatment predictor. All larger minority groups are significantly more likely to have 

invasive procedures as an initial treatment. It could be that non-whites respond less successfully 

to non-invasive procedures, so this difference, while interesting to note, does not say anything 

about the appropriateness of treatments given minority groups. 

 Compared to patients with private insurance, patients with Medicare had an invasive 

procedure performed approximately twice as often; “self-pay” and “otherpay” patients were 

significantly less likely to receive an invasive procedure than individuals with private insurance, 
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and Medicaid was an insignificant treatment choice determinant. We controlled for age and other 

socioeconomic characteristics but these results may need further study. More ominously, total 

charges were significantly higher among patients whose primary procedure was invasive. The 

average price difference was $9,015.57. Private insurers, Medicaid, self-pay patients and those 

using a form of payment other than the ones listed above, may have been less willing to pay the 

costs of using invasive procedures initially. These results could be disheartening if invasive 

procedures are found to be more effective in treating these types of hypertension, or if they imply 

that physicians are treating patients differently based on the type of insurance coverage they 

possess. 

 Patients living in the middle and upper income zip codes were more likely to have an 

invasive procedure performed than patients from the lower income zip codes. These results are 

consistent with previous studies (again, of other diseases) that found higher income increases the 

likelihood of patients receiving relatively more expensive treatments (Bradley, Given, and 

Roberts, 2002; Desch et al., 1996; Sturm, Meredith, and Wells, 1996). Although the effect is 

slight, our results are inconsistent with those found by Roetzheim, and others (2000) who found 

income to be insignificant in determining treatment choice (since our income proxy is a measure 

of the median income in the patient’s home area, the accuracy of these results depends on how 

close the patient’s actual income is to this median value). 

 As with many of the studies mentioned above, we also found geographical variations in 

treatment choice. After conducting a thorough review of the regional treatment variation 

literature and ruling out alternative explanations, Phelps (1992) suggests that the main reason for 

these observed differences is an incomplete diffusion of information. Unlike many of the 

aforementioned studies, we found that geography matters at the state level, not at the regional 
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level. One potential reason for these findings is that policies differ from state to state (Ahronheim 

et al., 2001). In our study, only Utah and Colorado were equivalent to Florida - our excluded 

state. Arizona patients were approximately twice as likely to receive an invasive procedure as 

those in Florida. Individuals in Florida were anywhere from approximately 1.5 to 9 times more 

likely to receive invasive treatments than patients seeking treatment in the remaining states. If 

Florida had an older population relative to the rest of the sample, a couple possible reasons for 

this finding could be that physicians there are more experienced with invasive procedures, and 

are therefore more likely to perform them. Or it could be that there is a higher demand for these 

types of procedures among the older population. However, a Kruskal-Wallis rank test revealed 

that patient’s in Florida were not significantly older than those in the rest of the sample 

(p=.2782). Clearly these results are something that state-level policymakers need to be aware. 

 The outcomes associated with sex, how the patient was admitted to the hospital and 

hospital size are difficult to interpret. The results indicate that females were 1.2 times less likely 

to receive an invasive procedure as their primary treatment than males of the same age. This 

could be due to differences in severity or effectiveness of non-invasive procedures across gender. 

The significance of gender was not observed in the previous studies. Patients admitted electively 

were almost three times as likely to have an invasive procedure performed than those admitted 

by other means. It could be that individuals who are willing to admit themselves into a hospital 

play a more active and aggressive role in choosing their health care or it may be that they put it 

off until the condition is severe enough that more aggressive treatments are required. Our finding 

on hospital size contradicts Satariano, Swanson, and Moll (1992) who found that patients treated 

in large hospitals were more likely to receive the relatively less-invasive procedure. They 

attributed this finding to large hospitals having better access to cutting edge treatments. It could 
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be that this holds true for our study as well, with the newer forms of invasive therapies. All these 

findings deserve further attention. 

 Our results coincide with those in the previous literature, finding that variables not 

directly related to a patient’s clinical status play an important role in treatment choice. Some of 

the individual outcomes, however, contradict literature findings. Politicians and hospital 

managers may be especially interested in our results, particularly those concerning race, 

geography and payer information. It is particularly telling that self-pay patients are less likely to 

receive the more expensive treatment and that patients covered by Medicare are more likely to 

receive the more expensive treatments. This holds even after controlling age and co-morbidity, 

strengthening the implication that Medicare patients are for some reason treated differently. 

Racial disparity and geographical treatment variations are topics already receiving a great deal of 

attention in the treatment literature. According to our study, they remain issues. 

One way of improving our study would be to consider the role of the physician in 

treatment choice. We used only patient variables. Given sufficient data to look at variability 

within the patients treated by a single physician possibly would allow us to determine whether 

physicians are basing their treatment decisions on these non-clinical variables, or if the patient is 

the primary decision maker. Future research could tie this information into a simultaneous 

system of equations in order to determine whether patients who received one treatment type 

versus another were better off in terms of either length of hospital stay, or their disposition status.  
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Table 2.1: Data Descriptions 

 
Variables Descriptions 

Invasive Binary variable, equals 1 if the initial procedure performed on the patient was 
invasive, as defined by the ICD-9-CM codes. 

Age Age of patient, in years, at the time of admission. 

Age2 The square of the "Age" variable 

Female Binary variable, equals 1 if patient is female. 

Black Binary variable, equals 1 if patient's race is Black 

Hispanic Binary variable, equals 1 if patient's race is Hispanic 

Asian Binary variable, equals 1 if patient's race is Asian or Pacific Islander 

Otherace Binary variable, equals 1 if patient's race is something other than White non-
Hispanic, Black, Hispanic, Asian, or Pacific Islander 

Middle Binary variable, equals 1 if the median household income for the patient’s zip 
code was in the $36,000 - $44,999 range. 

Uppermid Binary variable, equals 1 if the median household income for the patient’s zip 
code was in the $45,000 - $59,999 range. 

Upper Binary variable, equals 1 if the median household income for the patient’s zip 
code was $60,000 or more 

Selfpay Binary variable, equals 1 if the patient was the expected primary payer of the 
bill 

Medcare Binary variable, equals 1 if Medicare was the expected primary payer of the bill 
Medcaid Binary variable, equals 1 if Medicaid was the expected primary payer of the bill 

Otherpay Binary variable, equals 1 if the expected primary payer of the bill was someone 
other than private insurance, the patient, Medicare, or Medicaid 

Elective Binary variable, equals 1 if the patient was admitted electively 

Ndx Total number of diagnoses coded on the patient's discharge record 

Bedsize Categorical variable based on the number of beds a hospital has. 1 = Small, 2 
= Medium, and 3 = Large.  

Totchg The total charges incurred by the patient during his or her stay in the hospital 

AZ – WI Binary variables indicating whether the patient was treated in the respective 
state 
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Table 2.2: Summary Statistics
 

Variable All Patients Invasive Procedure 
Received 

Non-Invasive Procedure 
Received 

  (17,437 patients) (13,804 patients) (3,633 patients) 
Invasive 0.79 [51.30] (0.41) 1.00 [0] ( 0) 0 [.] (0) 
Age 60.94 [28.58] (17.41) 59.70 [28.87] (17.24) 65.67 [26.31] (17.28) 
Age2 4017.10 [50.64] (2034.18) 3860.89 [51.25] (1978.53) 4610.64 [46.23] (2131.34) 
Female 0.52 [95.42] (0.50) 0.51 [98.51] (0.50) 0.58 [84.44] (0.49) 
Black 0.41 [120.69] (0.49) 0.41 [118.80] (0.49) 0.38 [128.32] (0.48) 
Hispanic 0.12 [275.27] (0.32) 0.12 [266.75] (0.33) 0.09 [315.37] (0.29) 
Asian 0.02 [801.94] (0.12) 0.02 [784.00] (0.13) 0.01 [883.17] ( 0.11) 
Otherace 0.03 [601.51] (0.16) 0.03 [606.81] (0.16) 0.03 [582.60] (0.17) 
Middle 0.24 [176.62] (0.43) 0.25 [174.63] (0.43) 0.23 [184.66] (0.42) 
Uppermid 0.20 [202.01] (0.40) 0.19 [204.17] (0.40) 0.21 [194.29] (0.41) 
Upper 0.14 [247.51] (0.35) 0.13 [253.18] (0.34) 0.16 [228.52] (0.37) 
Selfpay 0.04 [506.19] (0.19) 0.03 [532.66] (0.18) 0.05 [431.78] (0.22) 
Medcare 0.63 [75.82] (0.48) 0.64 [75.13] (0.48) 0.62 [78.50] (0.49) 
Medcaid 0.13 [ 258.10] (0.34) 0.13 [257.68] ( 0.34) 0.13 [259.77] (0.34) 
Otherpay 0.02 [687.78] (0.14) 0.02 [698.84] (0.14) 0.02 [650.09] (0.15) 
Elective 0.18 [210.57] (0.39) 0.21 [192.40] ( 0.41) 0.08 [350.87] (0.26) 
Ndx 7.43 [42.10] (3.13) 7.36 [42.96] (3.16) 7.71 [38.75] (2.99) 
Bedsize 2.58 [25.02] (0.65) 2.60 [24.39] (0.64) 2.50 [27.23] (0.68) 

Totchg 35183.87 [141.72] 
(49863.69) 

37062.28 [142.57] 
(52839.21) 

28046.71 [126.63] 
(35515.48) 

AZ 0.01 [864.97] (0.11) 0.02 [795.04] (0.12) 4.13E-03 [1553.28] (0.06) 
CO 0.01 [984.71] (0.10) 0.01 [929.37] (0.11) 0.01 [1344.25] (0.07) 
CT 0.02 [757.11] (0.13) 0.02 [768.26] (0.13) 0.02 [718.79] (0.14) 
FL 0.14 [247.04] (0.35) 0.16 [232.25] (0.36) 0.08 [335.81] (0.27) 
HI 0.01 [1191.36] (0.08) 0.01 [1159.06] (0.09) 0.01 [1344.25] (0.070) 
IA 2.87E-03 [1864.83] (0.05) 2.46E-03 [2012.53] (0.05) 4.40E-03 [1503.74] (0.07) 
IN 0.03 [525.68] (0.18) 0.04 [514.25] (0.19) 0.03 [576.91] (0.17) 
KS 0.01 [950.25] (0.10) 0.01 [950.91] (0.10) 0.01 [947.89] (0.10) 
MA 0.02 [733.73] (0.13) 0.02 [759.90] (0.13) 0.02 [654.09] (0.15) 
MD 0.04 [469.75] (0.20) 0.04 [472.43] (0.20) 0.05 [459.98] (0.21) 
MI 0.02 [697.72] (0.14) 0.02 [720.37] (0.14) 0.02 [627.52] (0.16) 
MO 0.04 [461.51] (0.21) 0.05 [444.16] (0.21) 0.03 [550.70] (0.18) 
NC 0.05 [421.55] (0.22) 0.05 [420.48] (0.23) 0.05 [425.75] (0.22) 
NH 1.38E-03 [2693.67] (0.04) 6.52E-04 [3915.21] (0.03) 4.13E-03 [1553.28] (0.06) 
NJ 0.06 [386.14] (0.24) 0.05 [420.78] (0.23) 0.10 [302.50] (0.30) 
NY 0.13 [254.26] (0.34) 0.12 [275.90] (0.32) 0.20 [198.93] (0.40) 
PA 0.07 [368.51] (0.25) 0.07 [376.21] (0.25) 0.08 [342.79] (0.27) 
RI 0.01 [1045.79] (0.09) 0.01 [1100.76] (0.09) 0.01 [893.06] (0.11) 
SC 0.02 [654.32] (0.15) 0.02 [632.17] (0.15) 0.02 [765.33] (0.13) 
TN 0.06 [381.70] (0.25) 0.07 [374.89] (0.25) 0.06 [411.11] (0.23) 
TX 0.16 [232.21] (0.36) 0.16 [225.54] (0.37) 0.13 [262.67] (0.33) 
UT 3.56E-03 [1674.09] (0.06) 4.06E-03 [1566.90] (0.06) 1.65E-03 [2459.00] (0.04) 
VA 0.04 [480.82] (0.20) 0.04 [478.37] (0.20) 0.04 [490.53] (0.20) 
VT 1.1E-03 [2951.10] (0.03) 5E-04 [4439.76] (0.02) 3.6E-03 [1668.95] (0.06) 
WI 0.02 [748.24] (0.13) 0.02 [782.21] (0.13) 0.02 [650.09] (0.15) 
Note:  Values represent Means (Standard Deviations) [Coefficients of Variation*100]  
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Table 2.3: Cross-Tabulation Results 

 
Variable   Invasive Non-Invasive 
Age***   [115309799.0] [36723404.0] 
(<.0001)   
Age2***   [115309799.0] [36723404.0] 
(<.0001)   
Ndx***  [118720978.0] [33312225.5] 
(<.0001)  
Totchg***   [123045665.0] [28482271.0] 
(<.0001)   
Female*** 0 6798 1512 
(<.0001) 1 7006 2121 
Black*** 0 8079 2260 
(<.0001) 1 5725 1373 
Hispanic*** 0 12103 3301 
(<.0001) 1 1701 332 
Asian 0 13583 3587 
(.1437) 1 221 46 
Otherace 0 13439 3529 
(0.4689) 1 365 104 
Middle*** 0 10395 2809 
(.0117) 1 3409 824 
Uppermid** 0 11133 2872 
(.0312) 1 2671 761 
Upper*** 0 11941 3049 
(<.0001) 1 1863 584 
Selfpay*** 0 13334 3448 
(<.0001) 1 470 185 
Medcare** 0 4980 1385 
(.0226) 1 8824 2248 
Medcaid 0 11997 3164 
(.7733) 1 1807 469 
Otherpay 0 13527 3549 
(.2499) 1 277 84 
Elective*** 0 10868 3360 
(<.0001) 1 2936 273 
Bedsize*** 1 1133 389 
(<.0001) 2 3200 1031 
  3 9471 2213 
AZ*** 0 13589 3618 
(<.0001) 1 215 15 
CO*** 0 13646 3613 
(0.0015) 1 158 20 
CT 0 13574 3564 
(0.3356) 1 230 69 
FL*** 0 11645 3337 
(<.0001) 1 2159 296 
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HI 0 13702 3613 
(0.2254) 1 102 20 
IA** 0 13770 3617 
(0.0516) 1 34 16 
IN** 0 13301 3527 
(0.0339) 1 503 106 
KS 0 13653 3593 
(0.9707) 1 151 40 
MA** 0 13569 3550 
(0.0196) 1 235 83 
MD 0 13212 3469 
(0.5525) 1 592 164 
MI** 0 13543 3543 
(0.0251) 1 261 90 
MO*** 0 13138 3517 
(<.0001) 1 666 116 
NC 0 13065 3443 
(0.7677) 1 739 190 
NH*** 0 13795 3618 
(<.0001) 1 9 15 
NJ 0 13066 3275 
(<.0001) 1 738 358 
NY*** 0 12201 2900 
(<.0001) 1 1603 733 
PA*** 0 12893 3348 
(0.0082) 1 911 285 
RI** 0 13691 3588 
(0.0174) 1 113 45 
SC*** 0 13467 3572 
(0.0062) 1 337 61 
TN** 0 12887 3430 
(0.0210) 1 917 203 
TX*** 0 11536 3173 
(<.0001) 1 2268 460 
UT** 0 13748 3627 
(0.0302) 1 56 6 
VA 0 13226 3488 
(0.5980) 1 578 145 
VT***# 0 13797 3620 
(<.0001) 1 7 13 
WI*** 0 13582 3549 
(0.0040) 1 222 84 
Values represent number of observations (P-values) [Rank-Sum values] 

*Statistical Significance at P = .10     

**Statistical Significance at P = .05    

***Statistical Significance at P = .01    
# 25% of the cells have expected counts < 5. Chi-Square may not be a valid test. 
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Table 2.4: Logistic Regression Results 
 

 Dependent Variable 
 Invasive 
Independent 
Variable Coefficients Chi-Square P-Values 
Intercept*** 1.258 30.5862 <.0001 
Age*** 0.0294 20.0205 <.0001 
Age2*** -0.00048 75.0171 <.0001 
Female*** -0.1851 21.1674 <.0001 
Black** 0.1114 5.2379 0.0221 
Hispanic*** 0.4444 34.1472 <.0001 
Asian** 0.4163 4.5809 0.0323 
Otherace 0.1152 0.8742 0.3498 
Middle** 0.1231 5.3234 0.021 
Uppermid 0.0892 2.4991 0.1139 
Upper** 0.1276 3.8573 0.0495 
Selfpay*** -0.3817 13.8247 0.0002 
Medcare*** 0.6518 119.2473 <.0001 
Medcaid 0.00581 0.0062 0.9371 
Otherpay*** -0.3823 7.5262 0.0061 
Elective*** 1.0831 244.677 <.0001 
Ndx -0.0103 2.1799 0.1398 
Bedsize*** 0.1516 25.5385 <.0001 
AZ** 0.6688 5.7922 0.0161 
CO -0.0494 0.0384 0.8447 
CT*** -0.4868 9.4081 0.0022 
HI** -0.5754 3.7874 0.0516 
IA*** -1.2417 14.5558 0.0001 
IN*** -0.3918 9.3774 0.0022 
KS*** -0.637 10.6028 0.0011 
MA*** -0.7409 24.8761 <.0001 
MD*** -0.5383 22.3171 <.0001 
MI*** -0.8126 32.9655 <.0001 
MO* -0.2299 3.5203 0.0606 
NC*** -0.6882 42.1893 <.0001 
NH*** -2.2178 24.7544 <.0001 
NJ*** -1.2447 174.9342 <.0001 
NY*** -1.1556 208.3754 <.0001 
PA*** -0.7155 55.8816 <.0001 
RI*** -0.9158 22.2623 <.0001 
SC* -0.2786 3.1861 0.0743 
TN*** -0.5807 31.8056 <.0001 
TX*** -0.5342 40.8397 <.0001 
UT 0.00912 0.0004 0.9836 
VA*** -0.6316 29.2896 <.0001 
VT*** -2.1626 19.6401 <.0001 
WI*** -0.8665 34.9985 <.0001 
  *Statistical Significance at p = .10, ** at p = .05, & *** at p = .01 
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CHAPTER THREE 

PATIENTS’ PERCEPTIONS AND TREATMENT EFFECTIVENESS 
 
 
 

Abstract 

Though there is an extensive literature regarding the relationship between patients’ expectations 

and treatment outcomes, studies have failed to address the determinants of these expectations.  

We argue that factors such as treatment history provide a reference point that may influence 

patients’ expectations of how effective further treatment might be.  Therefore, decisions about 

whether to proceed with additional treatment, as well as perceptions of how effective that 

treatment is, may be influenced by this frame of reference.  We expect that patients with 

unsuccessful prior treatments have a frame of reference leaving them less likely to expect 

improvement from subsequent treatments.  Prospect theory is used to develop a theoretical 

foundation for these frame of reference effects on expectations and subsequent treatment.  Using 

data on patients diagnosed with idiopathic intracranial hypertension we test for a frame of 

reference effect.  The results support the proposition that prior treatment failure or success 

impacts a patient’s reference point, which in turn influences her perceptions about the 

effectiveness of subsequent treatments. 

Keywords: Prospect Theory, Expectations, Treatment outcomes, Treatment history, logistic 

regression, Monotone rank estimator. 
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Introduction 

For some illnesses or health disorders treatments are palliative rather than curative.  When 

conditions are without clear objective symptoms one commonly used measure of treatment 

effectiveness is self-reported changes in disease status.  Prior experience, particularly with earlier 

treatment for the condition, provides a reference point that may affect a patient’s perception of 

how much further treatment will improve her health status.  More specifically, by affecting 

patients’ expectations about how effective a treatment might be, this reference point influences 

whether a patient pursues an additional treatment, as well as perceptions of how effective that 

treatment is.  Although there is an extensive literature on how patient expectations influence 

treatment outcome and recovery speed, to our knowledge no existing research tests how 

expectations depend on prior treatment and other personal characteristics.  The purpose of this 

paper is to explore how reference points affect the perceived effectiveness of medical treatments. 

 The literature regarding the relationship between expectations and health is extensive, but 

many of these studies focus only on the fact that a connection exists, and not on the causal 

relationship (Carver et al., 1994; Frey et al., 1985; Koller et al., 2000). 1  For example, Miceli and 

Castelfranchi (2002) speculate on the psychological effects of combining forecasts of future 

events with hopes and fears, both before and after the event had occurred. 

 Another line of research found that positive expectations speeded recovery (Scheier, 1989 

and Scheier and Carver, 1987 for coronary bypass surgery; Frey et al., 1985 for recovery from 

accidents; and Kalauokalani et al., 2001, for low back pain).  Others have found that positive 

expectations improve patients’ perceptions of subjective health (Carver et al., 1994 for breast 

cancer patients; Llewellyn-Thomas, Thiel, and McGreal, 1992 for the general assessment of 

one’s own health; and Koller et al., 2000 for the quality of life of cancer patients). 
                                                 
1 For summaries see: Ditto and Hilton (1990), Jones (1982), and Jones (1990).  
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 But none of these studies address what determines expectations of treatment outcomes.  

We argue that prior treatment provides a frame of reference which, along with other personal 

characteristics, affects patients’ baseline expectations of treatment success, which in turn 

influences their perceived effectiveness of that treatment.  We expect that patients with 

unsuccessful prior treatments have a frame of reference leaving them less likely to expect 

improvement from subsequent treatments.  We use Prospect Theory (Kahneman and Tversky, 

1979) as a basis for a theoretical foundation for these frame of reference effects on expectations 

and subsequent treatment.  We test these ideas using the Monotone Rank Estimator (MRE) 

(Cavanagh and Sherman, 1998) with data on patients diagnosed with idiopathic intracranial 

hypertension (IIH).2  The results support the proposition that prior treatment failure or success 

impacts a patient’s reference point, which in turn influences her perceptions about the 

effectiveness of subsequent treatments. 

 The remainder of this paper is organized into four sections.  In the next section we 

describe our model of treatment choice.  Successive sections discuss our data and our empirical 

model and estimation results.  We finish the paper with conclusions and implications for future 

research. 

 

Theory 

Prospect theory (PT) was introduced as an alternative to expected utility theory (Von Neumann 

and Morgenstern, 2004) for modeling decisions under risk when those decisions are dependent 

on a frame of reference. 3  Unlike expected utility theory where values are placed on final states, 

                                                 
2 See Appendix A for a detailed explanation of this disorder. 
3 A revised version titled “cumulative prospect theory” (Tversky and Kahneman, 1992; Wakker and Tversky, 1993), 
applies to uncertain and risky prospects with multiple outcomes.  Under the extended theory decision weights are 
applied to cumulative, as opposed to individual, probabilities.  However, the extension gives the same results as the 
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PT assumes that individuals assign values to gains and losses relative to a reference point.  The 

frame of reference can in principle influence the valuation of possible outcomes, the subjective 

probabilities of treatment effectiveness, and risk preferences.  In our application, the patient’s 

reference point affects her expectations of treatment success, thus determining the path of 

treatment, and, for subjective outcomes, the perceived success of treatments after the treatments 

have been pursued. 

 The value of a given prospect is measured by:  

),()()()(),;,( yvqxvpqypxV ππ +=                                      (1) 

where x and y are potential outcomes that occur with probabilities p and q, respectively.  The 

decision weight, )(⋅π , measures not only the impact of the perceived (as opposed to actual) 

probabilities on the overall valuation of the prospect, but also the influence of factors such as 

ambiguity.  Kahneman and Tversky (1979) argue that in most cases pp <)(π , and 

1)1()( <−+ pp ππ .  However, they also argue that small probabilities tend to be overweighted 

so that pp >)(π  if p is small. 

The value function )(⋅v measures the value of gains and losses relative to the reference 

point.  This function is believed to be concave for gains and convex for losses, giving it an S-

shape, as illustrated in Figure 1 (Kahneman and Tversky, 1979).  Also note that the function 

passes through the reference point, and is steeper for losses than gains (risk aversion).  The 

overweighting of low probability events and the underweighting of high probability events is 

what can cause some people to be risk seeking for potential losses and risk averse for potential 

gains. 

                                                                                                                                                             
original theory for all two-outcome and mixed three-outcome prospects.  This paper focuses on three-outcome 
prospects, hence the earlier version of Prospect Theory (Kahneman and Tversky, 1979) is sufficient for our 
purposes. 
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 Though PT has been applied to topics in the field of health, its uses have been relatively 

limited.  One of the first and primary applications focuses on the effects of information framing 

on medical decisions (McNeil, Pauker, and Tversky, 1988).  Meyerowitz and Chaiken (1987) 

find that the use of negatively framed information leads to increased breast self-examination.  

Rothman et al. (1993) further corroborate the importance of framing by demonstrating that 

negative framing may be more effective in encouraging behaviors that are seen as risky (for 

example being tested for a sexually transmitted disease), while positive framing may be more 

effective in encouraging preventive behavior (for example, practicing safe sex).  It has also been 

shown that negative (positive) framing may be more persuasive when the perceived efficacy of a 

solution is low (high) (Block and Keller, 1995). 

 Lenert, Treadwell, and Schwartz (1999) provide empirical support for the “S” shaped 

utility function for health.  Treadwell and Lenert (1999) propose that the individual’s current 

health state is the reference level.  In more recent work, Rasiel, Weinfurt, and Schulman (2005) 

use PT to rationalize risk-seeking behavior among terminally ill patients.  They suggest that 

patients’ reference points differ due to factors such as pre- and post-diagnosis life expectancies 

which therefore affect the chosen treatment paths. 

 Unlike traditional PT models, which have the reference point affecting the valuation of 

outcomes, our model has the patient’s reference point influencing the subjective expectations of 

treatment success, thus determining the path of treatment, and impacting the perceived success of 

treatments after they have been pursued. 
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A Prospect Theory Model of Treatment Choice 

In our model patients choose a treatment path if they expect it to have a positive impact on their 

current health status.  We assume that an individual’s expectations of post-treatment disease 

status depend on her subjective probabilities of treatment effectiveness, which in turn are 

influenced by her reference point.  The reference point for our purposes is the patient’s current 

status and her success with earlier treatments.  We assume there are three possible outcomes of 

treatment: the patient improves (b = “better”) , the patient remains the same (0 = “no change”), 

and the patient worsens (w = “worse”). 

 These assumptions give us the following equation:  

).0()()()()()(),0;,;,( vrwvqbvprqwpbV πππ ++=                          (2) 

The value v(b) is the value a patient places on feeling better relative to her current status, which 

occurs with objective probability p.  This is a gain in well-being, so v(b) is positive.  On the other 

hand, v(w) is the value placed on feeling worse relative to her current status, and occurs with 

probability q.  This is a loss in well-being and therefore v(w) is negative.  A third possibility is 

that the patient observes no change from her current situation with a resulting value of v(0), and 

probability r=1-p-q.    

 One might initially expect v(0) to equal 0, but values are affected by the reference value, 

and as a result v(0) could be negative if the current situation is relatively poor compared to 

earlier states, although v(0) would still exceed v(w).  We hypothesize that  0>v(0)>v(w) because 

people seek medical treatment to improve their condition contingent upon the outcomes of 

previous treatments.  We further maintain that losses are feared at least as much as gains are 

valued, so the absolute value of v(w) will equal or exceed that of v(b) given a one unit change in 

disease status. 
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 The decision weights, ),(⋅π  are the subjective probabilities of each outcome.  Thus (2) 

represents the individual’s subjective valuation of the treatment outcome.  As such, a negative 

(positive) overall value indicates that the individual perceives a negative (positive) valuation of 

pursuing further treatment.  A zero value indicates a perceived neutral valuation of receiving 

subsequent treatment.  To a large extent the final value will depend on the relative magnitudes of 

the decision weights.  For example, we know that if a patient anticipates an equal one unit 

change in disease status one way or the other, i.e. b = -w, if ( ) ( )p qπ π≤ and if v(0) = 0 or 

0)( =rπ  or both, the overall prospect valuation from (2) would be negative due to the absolute 

valuation of a loss being at least equal to that of a gain. 

 Assuming medical treatment is voluntary, all individuals agreeing to a treatment should 

have a positive subjective valuation at their reference point of the outcome; that is, 

.0)0()()()()()(),0;,;,( >++= vrwvqbvprqwpbV πππ   Assuming that v(0)=0 or π(r)=0 or both, 

this means ( ) ( ) ( ) ( )p v b q v wπ π> − , or the subjective weighted gain from improving b units must 

exceed the subjective weighted loss from regressing w units. 4  Because v(w) is negative, the right 

hand side of the inequality is positive.  The inequality can then be rearranged to  

).(/)()(/)( bvwvqp −>ππ                                                                                                  (3) 

Equation 3 implies that a treatment is pursued only if the subjectively weighted probability of 

gain relative to that of a loss exceeds the ratio of the (absolute) utility value of a loss divided by 

the utility value of a gain.  In terms of our specific application this has an interesting 

interpretation.  For any given values of v(w) and v(b), treatment is more likely to be pursued if 

                                                 
4 Even though the model is conditioned on the assumption that v(0) = 0, it is a trivial extension to extend the results 
to the non-restricted case.  The math is available upon request from the authors.  Also, as we mentioned above, v(0) 
is most likely less than zero, otherwise treatment would not be sought.  Therefore, this assumption essentially allows 
us to group v(0) and v(w) and analyze the probability of feeling better relative to not. 
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there is only a relatively small subjective probability of the treatment leading to a worse 

outcome. 

 In Appendix A we discuss how the treatment path for IIH follows a specific sequence.  

Acetazolamide is the drug generally viewed as the most effective form of treatment for IIH, and 

is usually the treatment of first resort.  Other medicinal options are generally reserved for 

patients who cannot tolerate acetazolamide.  If medication is ineffective, subsequent treatment 

normally involves an invasive procedure such as neurosurgical shunts.  Consider two types of 

individuals, keeping in mind that treatment paths are being evaluated at a point in time after the 

previous treatment results have been observed.  Also assume for simplicity that all individuals 

place the same value on a one unit deviation from the reference point, regardless of what that 

point is.  Patient A is initially prescribed a medication of some sort; however, due either to its 

ineffectiveness or the individual’s inability to tolerate it, the patient is then given an invasive 

procedure.  Patient B on the other hand, for some reason moves directly to an invasive 

procedure.  We expect that because they have different frames of reference due to different 

treatment paths, these two individuals will have different perceived valuations for the invasive 

procedure.  Given that A has already experienced a failed treatment we anticipate that person B 

would have a higher perceived probability ratio of success to failure.  This implies the following: 

.)](/)([)](/)([ AB qpqp ππππ >                    (4) 

 One testable hypothesis implied by (4), but for which we unfortunately do not have the 

right data, is that prior failed treatment makes it less likely that individuals will pursue 

subsequent treatment.  However, by extension if, as the existing literature contends expectations 

directly influence perceived treatment outcomes, a testable hypothesis implied by equation (4) is 
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that patient A will be less likely to report an improvement in disease status from the invasive 

treatment, having already suffered a failure. 

 

Hypothesis 1: All else equal, a patient who has received more (fewer) failed treatments will be 

less (more) likely to report an improvement from the latest treatment. 

 

 In our application to IIH, hypothesis 1 suggests that among patients who received a 

medicinal prescription other than acetazolamide, those who had an initial unsuccessful 

experience with acetazolamide should be less likely to report an improvement in disease status 

than those who only had the alternative prescription. 5  Furthermore, among patients who 

eventually received an invasive procedure, those who received only the invasive procedure will 

be most likely to report an improvement, followed by patients who first had an alternative 

prescription, then individuals who were treated with acetazolamide before receiving the 

procedure, and finally patients who had both acetazolamide and an alternative prescription 

before receiving an invasive procedure.  The reason we expect patients who had acetazolamide 

prior to an invasive procedure to have a lower probability ratio than those who had an alternative 

prescription before a procedure is because acetazolamide is believed to be the most effective 

form of therapy for IIH.  We therefore expect patients who experienced a failure of this drug to 

be even less likely to anticipate an improvement from subsequent treatment.  To summarize: 

patients with fewer failed treatments will be more likely to report an improvement in the latest 

treatment than those having experienced more failed treatments. 

 

                                                 
5 In our application to IIH our ordering assumes that the acetazolamide was ineffective from its initial use.  If 
acetazolamide was at first effective and improving a patient’s condition, but over time lost its effectiveness, the 
ordering of anticipated probabilities may be opposite what we discuss. 
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Data 

Data for this study come from the Intracranial Hypertension Registry.6  The registry gathers 

information from individuals diagnosed with intracranial hypertension and their physicians.  

Patients are admitted to the registry on a voluntary basis, but cooperation from at least one of the 

patient’s physicians is required. 

Because participation in the registry is voluntary and either self or physician initiated, the 

patients in the registry may not be representative of the entire population of IIH sufferers.  At the 

time of this study the registry contained information from 732 IIH patients.  This study focuses 

solely on patients in the registry who reported a disease status relative to their pre-diagnosis 

condition.  Individuals who did so rated their relative health status on a scale of 0 to 10, 5 being 

“no change”.  Our primary variable of interest, better, is a binary variable created from this scale.  

Patients who had a rating between 6 and 10 were given a value of 1, and based on the assumption 

that patients would most likely place a negative value on observing no change in their disease 

status, patients who claimed a status of “no change” or “worse” are grouped into a “not-better” 

category and coded as 0.  One hundred fifty-one observations remained after deleting missing 

values, the majority resulting from patients who did not report a post-treatment disease status.  

Descriptions of the variables used in this study are contained in Table 1. 

Patient socioeconomic variables include real income earned from the last year worked 

(Earnings) and a collection of binary variables: whether the patient has health insurance 

(Health_Ins), whether the patient is working (Working), whether or not the patient is in a medical 

profession (MedDv), whether the patient has vision problems, (Vision), is obese (Obese), or 

                                                 
6 The registry is co-sponsored by the Intracranial Hypertension Research Foundation of Vancouver, Washington and 
the Casey Eye Institute at the Oregon Health and Science University (OHSU).  
http://www.ihrfoundation.org/news/registry.asp  
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suffers from headaches (Headache).  Male and White are dummy variables indicating the gender 

and race of the patient.   

 Each patient was placed into one of 8 treatment categories.  AcetaRx indicates that the 

patient had been prescribed acetazolamide as well as an alternative medication.  AcetaInv and 

RxInv identify patients that received an invasive procedure in addition to acetazolamide or an 

alternative medication, respectively.  Invasive, Rx, and Aceta are all binary variables which equal 

one if the patient received only the given treatment.  AcetaRxInv indicates whether the patient 

received all three forms of treatment.  Patients who did not receive any of the above treatments 

serve as the base case.  A dummy variable was also created to identify patients who attempted 

weight reduction (Diet), because diets are often recommended by physicians due to the apparent 

link between obesity and IIH. 

Summary statistics for the sample and the registry can be found in Table 2.  As shown by 

t-tests indicated in Table 2, the sample does not appear to be representative of all patients in the 

registry. Most mean values differ at p-values of 0.10 or less.  However, our sample does appear 

to be fairly representative of the population of all IIH patients, the statistics for which are also 

presented in Table 2.  Sixty-seven percent of the patients in our sample experienced vision 

problems, 85% suffered from headaches at some point, and 49% were obese at the time of 

diagnosis.  Roughly 93% of our sample is female and 92% is white. 

Forty-seven percent of our sample had attempted weight reduction (Diet), 9% had been 

prescribed only acetazolamide (Aceta), 5% had only been on an alternative form of medication 

(Rx), and 25% only received an invasive procedure (Invasive).  Five percent of our sample had 

been on both acetazolamide and an alternative prescription (AcetaRx), 21% had taken both of 

these and received an invasive procedure (AcetaRxInv), 14% had been on acetazolamide and 
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received an invasive procedure (AcetaInv), while 17% had taken an alternative form of 

medication and had an invasive procedure (RxInv). 

 

Empirical Methods 

Our model implies that an individual pursues a subsequent treatment only if her ratio of the 

subjectively weighted probability of a gain relative to that of a loss exceeds the ratio of the 

(absolute) utility value of a loss divided by the utility value of a gain, and that, in turn, influences 

a patient’s probability of assessing a taken treatment as effective, leading to hypothesis 1 that 

patients with fewer failed treatments are more likely to report an improvement from their latest 

treatment.  The empirical results are conditioned on a point in time after treatment paths have 

been observed, so the treatment paths can be represented in the model by dummy variables.  Our 

dependent variable is the patient’s self-assessed post-treatment disease status.  Because this 

binary variable is created by imposing a chosen cutoff point on the 0-10 scale variable measuring 

the patient’s perceived health status,7 there may be some miscoding, and thus misclassification, 

of the dependent variable.  Therefore, the variable measuring the patient’s true subjective 

outcome from the treatment is latent.  The relationship between the patient’s subjective outcome 

and the observed response is 
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where z is a vector of patient characteristics, including treatment history, T=1 implies that a 

given treatment was chosen, and R is the measured result.  R* represents the latent dependent 

variable denoting true subjective gains. 

                                                 
7 See the discussion of the dependent variable in the Data section. 
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Ordinarily a binary logistic or probit regression would be performed in this case to 

analyze the probability of a patient feeling better relative to not-better.  However, as mentioned 

above, one potential problem with this model is that the dependent variable is subject to 

misclassification error.  Failure to control for this when estimating a discrete-response model via 

traditional techniques such as Logit or Probit, can result in inconsistent estimates (Hausman, 

Abrevaya, and Scott-Morton, 1998).  Abrevaya and Hausman (1999) recommend using the 

semiparametric MRE as an alternative to parametric estimation.  Unlike the parametric approach, 

semiparametric estimation does not require that the mismeasurement be modeled correctly in 

order to obtain consistent estimates.  Therefore, the MRE is used to adjust for the potential 

misclassification bias.8 

 For each model, we estimate the probability that a status of better occurs as a function of 

a linear index in the following patient characteristics and treatment variables: Male, White, 

Earnings, Health_Ins, Working, MedDv, Vision, Obese, Headache, Diet, Rx, Aceta, Invasive, 

AcetaRx, AcetaRxInv, RxInv, and AcetaInv.  

 To test hypothesis 1, the effects of the relevant treatment paths on the dependent variable 

are tested against each other.  A Wilcoxon signed rank sum test, the nonparametric alternative to 

the paired t-test, is performed on the βX ˆ vectors from two regressions, one where the two 

treatment variables being tested enter the regression separately and one where they are combined 

to form one variable.  This test consists of ranking the absolute differences between each pair of 

sβ̂iX  and calculating the Wilcoxon signed rank statistic to test the whether the median 

difference is zero.  If the restriction is valid, the sum of the ranks for the positive differences 

should approximately equal the sum of the ranks of the negative differences.  A rejection of the 

                                                 
8 See Appendix B for a detailed discussion of the MRE. 
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null hypothesis that the median sβ̂iX  are equal, i.e. MRE
Restricted

MRE
edUnrestrict ii XX ββ ˆˆ = , implies that the effects 

of the two treatment variables being tested are significantly different, and thus can be compared 

to one another. 

 

Results 

Results from the MRE model can be viewed in Table 3.  Health insurance (Health_Ins) has a 

positive influence on disease status, and its estimate is the largest among all explanatory 

variables.  Patients in the medical profession (MedDv) and those who are obese are also 

significantly more likely to report an improvement in disease status.  The remaining significant 

patient characteristic variables have negative effects on the probability of better being reported 

by the patient, they are: Male, White, Earnings, Working, Vision, and Diet. 

 In terms of the seven primary treatment variables, we are most interested in comparing 

the magnitudes of the effects that the previous treatments have on the probability that a patient 

claims a status of better relative to not better. 9  Patients who received only acetazolamide 

(Aceta) show a highly significant increase in the probability of reported improvement.  This 

group has the largest coefficient estimate of all the treatment variables.  Individuals who had 

taken acetazolamide as well as a different medication (AcetaRx) have the second largest estimate, 

followed by those who only had an alternative medication (Rx), then patients who received 

acetazolamide as well as an invasive procedure (AcetaInv), those who only had an invasive 

procedure (Invasive) are next, then patients who received a medication other than acetazolamide 

in addition to an invasive procedure (RxInv), and finally patients who received all three forms of 

                                                 
9 This is possible because all of these variables are binary and share the same omitted category. 
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treatment (AcetaRxInv).  All of these estimates are positive.  The expected and actual orderings 

of the treatment variables are displayed in Table 4. 

 

Discussion 

Our primary hypothesis is that patients with unsuccessful prior treatments have a frame of 

reference leaving them less likely to expect improvement from subsequent treatments, and 

therefore less likely to report an improvement in disease status.  Our results indicate two failures 

out of six tests of this hypothesis: using acetazolamide prior to another treatment appears to 

increase a patient’s reported improvement from the subsequent treatment.  These results are 

presented in Table 4.  Patients who had acetazolamide prior to receiving a different prescription 

are more likely to claim a status of better than those who only had the alternative medication.  

The same is true of patients who had acetazolamide and an invasive procedure versus those who 

bypassed the medication and went straight to an invasive procedure.  This might indicate that for 

many of the patients acetazolamide was initially effective, giving them a frame of reference that 

the disease symptoms are treatable, but that they were unable to tolerate acetazolamide for an 

extended period of time due to its side effects (Wall, n.d.; IHRF, 2007c).  The ordering suggested 

in equation 4 appears to hold for the remainder of the patients.  That is, patients who only had an 

invasive procedure are most likely to report an improvement, followed by patients who first had 

an alternative prescription, and finally, patients who had both acetazolamide and an alternative 

prescription before receiving an invasive procedure. 

 Except for the case of acetazolamide we have support for our primary hypothesis, and 

that the deviation with the case of acetazolamide could be due to its outstanding  effectiveness at 

reducing CSF within the skull (Gücer and Viernstein, 1978; Lubow and Kuhr, 1976; Rubin et al., 
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1966; Tomsak, Niffenegger, and Remler, 1988).  Due to acetazolamide’s effectiveness, patients 

who were first on that drug may be predisposed to other treatments being effective, thereby 

increasing their expectations of success for subsequent treatments, and in turn increasing the 

likelihood of perceiving the given treatment to be effective.  Further support for this conjecture 

comes from the fact that the treatment group consisting of patients who were only prescribed 

acetazolamide is by far the most likely to report an improvement in disease status.  The 

coefficient estimate for this group is over twice as large as the estimate for patients who in 

addition to having had acetazolamide were prescribed an alternative form of medication.   

 Two additional insights about the treatment of IIH come out of our analysis.  The first is 

that attempted weight reduction is the only form of treatment to decrease the probability that a 

patient would end up in the better category.  When one considers how difficult dieting is for 

most people and the low success rate that exists among dieters, this result is not surprising.10  

Dieters are frustrated with the unsuccessful results leaving them with lower expectations for the 

treatment’s effectiveness.   

 Perhaps our finding that has the most important policy implications is that patients with 

health insurance are significantly more likely to see an improvement than those without it.  This 

may be due to the fact that the nature of the disease leads physicians to treat symptoms rather 

than the root cause, which is expensive, and those with health insurance would be more likely to 

be able to afford an extensive set of treatments over an extended period of time. 11   

 Among the other variables in the model, higher earnings decreases the probability of a 

better status; however, the coefficient estimate is close to zero; individuals with a history of 

vision problems and those who were working prior to IIH interfering with their daily life are 

                                                 
10 The long term success rate among all dieters is only 31%.  For females the success rate is only 27%. (Kruger, 
Blanck, and Gillespie, 2006). 
11 See Tanne, Rosenman, and Friesner (2008) for a detailed discussion on the economic costs of IIH. 
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significantly less likely to report an improvement in post-treatment disease status, as are males 

and whites; while patients in the medical profession and those who are obese are more likely to 

report an improvement.  These results are difficult to explain; however, they may deserve further 

attention. 

 

Conclusions 

We provide a conceptual basis for how prior treatment failure or success along with other factors 

can influence a patient’s reference point that helps determine expectations and decisions on 

future treatment, and empirically demonstrate support that a patient’s prior treatment failure or 

success may impact her perceptions about the effectiveness of subsequent treatments, and 

identified other factors that might influence patients’ reference points and perceptions.  The 

finding that prior treatment results affect the perceived success of subsequent treatments is 

important for physicians to know when prescribing additional treatment.  Physicians play a large 

role in providing information, and this knowledge would be very useful when prepping patients 

for whether or not the subsequent treatment will be effective.  The health insurance finding 

suggests that it may be especially important for patients diagnosed with idiopathic disorders 

where treatment is focused on symptoms to have good health insurance coverage if they are 

going to experience at least a perceived improvement in health status.  

 One of the primary shortcomings of our analysis is that our data come from a voluntary, 

self-reported registry.  While the data are likely to be quite accurate, they may not be 

representative of the population of IIH sufferers as a whole.  As such, this potential registration 

bias may limit some of our findings, particularly those associated with the race and gender of the 

patients.  Additionally, we are not able to explicitly control for the costs of IIH, which may 
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influence the decision making process, nor does the study account for all other comorbidities that 

might occur because of IIH.  Finally, our data limitations require an empirical analysis that relies 

on indirect evidence.  Our empirical approach requires we assume that prior expectations of how 

successful a treatment will be are matched by ex post perceptions of treatment effectiveness.  A 

more direct test would utilize the implications from equation (4) and compare directly how prior 

unsuccessful (or successful, for that matter) treatment influences patients’ perceptions of 

expected success of subsequent treatment, and therefore, their propensity to have the treatment.
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Table 3.1 
Data Descriptions 

 

Better Binary variable indicating patient's disease status.  Equals 1 if patient perceived 
themselves as better off than they were prior to diagnosis. 

Male Binary sex variable, equals 1 if patient is male 
White Binary race variable, equals 1 if patient is white_non hispanic 
Earnings Real income values from the last full year the individual worked. 

Working Binary variable, equals 1 if patient was working the year prior to symptoms interfering 
with daily life 

Health_Ins Binary variable, equals 1 if patient has health insurance 

MedDv Binary variable indicating whether or not the patient has a background in health care 

Vision Binary variable, equals 1 if patient suffered from problems with vision 
Obese Binary variable, equals 1 if patient was obese at time of diagnosis 
Headache Binary variable, equals 1 if patient suffered from headaches at any time 
Diet Binary variable, equals 1 if patient attempted weight reduction 

Invasive Binary variable, equals 1 if patient underwent a surgical procedure, including 
subsequent lumbar punctures, but was not on medication for IIH. 

Rx Binary variable, equals 1 if patient was prescribed a medication for IIH other than 
acetazolamide, but did not receive acetazolamide, nor a surgical procedure 

Aceta Binary variable, equals 1 if patient was prescribed acetazolamide, but did not receive 
additional medication for IIH, nor a surgical procedure 

RxInv Binary variable, equals 1 if patient was prescribed a medication other than 
acetazolamide and underwent a surgical procedure, but did not receive acetazolamide. 

AcetaRxInv Binary variable, equals 1 if patient was prescribed a medication other than 
acetazolamide in addition to acetazolamide, and underwent a surgical procedure. 

AcetaRx Binary variable, equals 1 if patient was prescribed a medication other than 
acetazolamide in addition to acetazolamide, but did not undergo a surgical procedure. 

AcetaInv Binary variable, equals 1 if patient was prescribed acetazolamide and underwent a 
surgical procedure, but did not receive additional medication for IIH.  
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Table 3.2 
Summary Statistics 

 
 Sample Registry 

Variable N Mean 
St. 

Deviation 
Coeff. Of 
Variation N Mean 

St. 
Deviation 

Coeff. Of 
Variation 

***Malea  151 0.0662 0.2495 376.7493 732 0.1393 0.3465 248.6950
*White b  151 0.9205 0.2714 29.4799 732 0.8784 0.3270 37.2294 

Earnings 151 6425.6000 5216.2400 81.1791 152 6410.3100 5202.3500 81.1560 

Health_Ins 151 0.9205 0.2714 29.4799 194 0.9330 0.2507 26.8692 

Working 151 0.8278 0.3788 45.7588 176 0.8239 0.3820 46.3697 

MedDv 151 0.2252 0.4191 186.1214 196 0.2296 0.4216 183.6509
***Visionc  151 0.6689 0.4722 70.5939 732 0.5246 0.4997 95.2623 
***Obesed  151 0.4901 0.5016 102.3463 732 0.1803 0.3847 213.3465

***Headachee  151 0.8477 0.3605 42.5306 732 0.2910 0.4545 156.2035

Diet*** 151 0.4702 0.5008 106.5022 732 0.1708 0.3766 220.5140

Rx 151 0.0464 0.2110 455.0667 732 0.0191 0.1371 716.6301

Aceta** 151 0.0861 0.2814 326.8968 732 0.0355 0.1852 521.4498

Invasive*** 151 0.2517 0.4354 173.0176 732 0.4194 0.4938 117.7395

AcetaRx 151 0.0464 0.2110 455.0667 732 0.0178 0.1322 744.1999

AcetaRxInv*** 151 0.2119 0.4100 193.4823 732 0.0724 0.2593 358.1738

RxInv*** 151 0.1656 0.3729 225.2465 732 0.0642 0.2453 382.0263

AcetaInv*** 151 0.1391 0.3472 249.6347 732 0.0560 0.2301 410.8128
* implies Ho: Sample Mean = Registry Mean, rejected at significance level of 10%    
** implies Ho: Sample Mean = Registry Mean, rejected at significance level of 5%    
*** implies Ho: Sample Mean = Registry Mean, rejected at significance level of 1%    
a) Incidence of IIH for men is approximately .3/100,000, compared to 1/100,000 women (Binder et al., 2004). 
b) There is no evidence to suggest that race or ethnicity are significant determinants of IIH (Goodwin, 2006). 
c) Approximately 20% - 68% of all patients with IIH experience vision problems (Binder et al., 2004). 

d) Obesity is believed to be a risk factor for IIH, especially for women, with the incidence increasing from 1/100,000 to approximately 
19/100,000 for obese females between the ages of 20 – 44 (Binder et al., 2004; IHRF, 2007b). 
e) Approximately 90% of all patients with IIH experience headaches (Binder et al., 2004). 
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Table 3.3 
MRE Results 

 
 Dependant Variable = Better 

Parameter Estimate 95% Confidence Interval 
Intercept ------ --------- 
 ------ --------- 
Male -0.0881** [-0.2250, -0.0250] 
 (0.0651)  
White -0.1244** [-0.2099, -0.0079] 
 (0.0595)  
Earnings -5.1E-07** [-6.82E-07, -5.1E-07] 
 (2.0473)  
Health_Ins 0.7468*** [0.4382, 0.8684] 
 (0.1354)  
Working -0.0054** [-0.0143, -0.0003] 
 (0.0044)  
MedDv 0.0045* [-0.0010, 0.0072] 
 (0.025)  
Vision -0.1259** [-0.1749, -0.0273] 
 (0.0440)  
Obese 0.1011* [-0.0005, 0.1997] 
 (0.0594)  
Headache 0.0634 [-0.0232, 0.1153] 
 (0.0415)  
Diet -0.1194** [-0.2457, -0.0305] 
 (0.0628)  
Rx 0.2063** [0.0033, 0.2657] 
 (0.0845)  
Aceta 0.4918*** [0.3398, 0.7892] 
 (0.1311)  
Invasive 0.0598** [0.0022, 0.0646] 
 (0.0199)  
AcetaRx 0.2801** [0.0098, 0.3324] 
 (0.0989)  
AcetaRxInv 0.0250** [0.0011, 0.0308] 
 (0.0094)  
RxInv 0.0411** [0.0014, 0.0619] 
 (0.0206)  
AcetaInv 0.0766* [-0.0104, 0.1037] 
 (0.0346)  
Standard errors are in parentheses.    
*Statistical Significance based on 90% confidence interval 

**Statistical Significance based on 95% confidence interval 

***Statistical Significance based on 99% confidence interval 
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Table 3.4 
 

Hypothesis p-value Result 
Expected 
Ordering 

Actual 
Ordering 

Rx > AcetaRx <.0001 AcetaRx > Rx Aceta Aceta 
Invasive > RxInv <.0001 Invasive > RxInv Rx AcetaRx 
Invasive > AcetaInv <.0001 AcetaInv > Invasive AcetaRx Rx 
Invasive > AcetaRxInv <.0001 Invasive > AcetaRxInv Invasive AcetaInv 
RxInv > AcetaRxInv <.0001 RxInv > AcetaRxInv RxInv Invasive 
AcetaInv > AcetaRxInv <.0001 AcetaInv > AcetaRxInv AcetaInv RxInv 

      AcetaRxInv AcetaRxInv
Note: p-values are for Wilcoxon signed rank sum test of the null hypothesis that the effects of the two treatment 
paths on the dependent variable are equal. 
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                                                 Figure 3.1 
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Appendix A 

Idiopathic Intracranial Hypertension 

Individuals afflicted with intracranial hypertension suffer from elevated cerebro-spinal fluid 

(CSF) pressure in the skull.  There are 2 types of intracranial hypertension (IHRF, 2007d).  The 

first is primary or idiopathic intracranial hypertension (IIH).  As the name implies, IIH arises 

spontaneously from an unknown cause.  The other is secondary intracranial hypertension, which 

is associated with, and usually a side effect of, an identifiable cause such as a different disease, 

an intracranial blood clot, or certain drugs (IHRF, 2007a).  The most common symptoms of 

increased intracranial pressure are headache and papilledema (Binder et al., 2004).  The latter is 

particularly problematic due to the fact that over time swelling of the optic disc can lead to 

blindness or irreversible deterioration of vision (Giovannini and Chrousos, 2005). 

Because the causes of secondary intracranial hypertension are known, its treatment can 

be tied to the patient’s primary condition, and thus treated relatively effectively even though the 

prevalence of the disease is unknown.  In this study we focus on IIH.  IIH is most common 

among women of child-bearing age and occurs at an approximate rate of 1/100,000 (Binder et 

al., 2004); roughly 3 times that of males.  Obesity is thought to be a risk factor for IIH, especially 

among women.  The rate increases approximately 19 fold for females between the ages of 20 – 

44 who are diagnosed as obese (Binder et al., 2004; IHRF, 2007b).  However, while gender is a 

significant determinant of IIH, there is little evidence to suggest that race or ethnicity are 

significantly correlated with IIH (Goodwin, 2006). 

There are several common treatments for idiopathic intracranial hypertension.  

Pharmaceutical treatments of IIH usually employ different types of diuretics, most commonly 

carbonic anhydrase inhibitors which reduce the production of CSF.  Medications of this type are 
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the only ones known to be effective (Binder et al., 2004).  Acetazolamide (originally sold under 

the trade name Diamox) is the most common medication of this sort, and the primary drug used 

to treat IIH.  Its success in treating IIH has been well documented (Gücer and Viernstein, 1978; 

Lubow and Kuhr, 1976; Rubin et al., 1966; Tomsak, Niffenegger, and Remler, 1988).  Another 

diuretic that has been shown to lower intracranial pressure is furosemide (Lasix).  However, this 

drug does not appear to be as effective as acetazolamide, and in most cases is prescribed to 

individuals who cannot tolerate the latter (Binder et al., 2004; Gans, 2005).  Other medicinal 

options do exist; however, little, if any, clinical evidence exists to support their efficacy 

(Friedman, 2005). 

Due to the link between weight gain and IIH, physicians often recommend weight loss 

programs as a form of treatment.  Previous studies have shown that weight loss appears to be an 

effective treatment for IIH (Johnson et al., 1998; Kupersmith et al., 1998).  However, the 

importance of weight loss in this context remains unclear (Ball and Clarke, 2006; Binder et al., 

2004).  

Sugerman et al. (1995) report systematic improvement in patient symptoms following 

gastric bypass surgery12.  Newborg (1974) documents resolution of papilledema in 9 patients 

after being treated with a diet alone.  However, the small sample size prevents these results from 

being generalized to the entire population afflicted with IIH. 

Surgical processes are generally reserved for patients who do not respond well to 

medicinal treatments.  There are 2 primary types of surgery that can be performed.  The first is 

optic nerve fenestration, where an incision is made in the sheath surrounding the optic nerve to 

relieve papilledema.  The second involves the use of neurosurgical shunts, which are used to 

                                                 
12 All of the patients in that study were on acetazolamide at one time, and it is unclear whether they continued to 
take the drug after surgery.   
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drain the CSF into another area of the body (IHRF, 2007c).  The principle types of shunting 

procedures used to treat IIH are lumboperitoneal (LP) and ventriculoperitoneal (VP), although 

LP shunts are used most often as they are easier to insert (Binder et al., 2004; Friedman and 

Jacobson, 2004).  Revisions are quite common with both procedures.  LP shunts have a revision 

rate somewhere between 38% and 64% (Friedman and Jacobson, 2004).  VP shunts appear to 

have a slightly lower revision rate in the range of 23% to 41% (Bynke et al., 2004; Lund-

Johansen, Svendsen, and Wester, 1994; Maher, Garrity, and Meyer, 2001). 

 Repeated lumbar punctures are sometimes used as a surgical alternative.  However, 

according to Binder et al. (2004), this is a less than ideal approach to treating IIH and should 

only be used as an emergency measure for patients who experience a sudden loss of vision 

resulting from serious cases of papilledema.  Curry, Butler, and Barker (2005) maintain that the 

best surgical procedure for IIH remains unknown. 
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Appendix B 

Monotone Rank Estimator (MRE) 

The following model is based on Abrevaya and Hausman (1999), and is an extension of Han’s 

(1987) generalized regression model.  The latent dependent variable is as follows: 

),,( 0
* εβxgR =                                                                                                                  (8) 

where ε is an i.i.d. error disturbance, and g is an unknown function containing strictly positive 

partial derivatives at every point.  The distribution of R then has the following c.d.f: 

),*|Pr()|(* dRnRdnF RR =≤=                                                                                        (9) 

where n and d represent potential values for the dependent variable.  For a model with a binary 

dependent variable, the probabilities of misclassification are: 

)0*1Pr(0 <=≡ RRα                                                                                                         (10) 

)0*0Pr(1 >=≡ RRα .                                                                                                       (11) 

The conditional c.d.f. becomes 
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 To estimate the parameters we use the MRE, which is a rank estimator for 

semiparametric monotonic linear index models.  The MRE consists of a vector MREβ̂  that 

maximizes the following objective function: 

∑ ⋅=
i

ii
MRE bxRankRMbS )()()(                                                                                       (14) 
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over the set },1:{ =ℜ∈≡ l
l bbB  where ℜ represents the real line, M is an increasing function 

in R, β'X  is the linear index, l represents the number of covariates in x, and lb is the 

determinant of the b vector.  Two comments are in order here.  First, note that because the MRE 

is based on a rank-order process, there is no need to explicitly include an intercept in bxi .  

Second, equations (12) and (13) imply that the stochastic-dominance conditions are fulfilled 

when 10 )1( αα >− , which if it holds implies consistency of the parameter estimates.   

The Rank function is defined by: 

.)(...21 mbxRankbxbxbx iminii =⇒<<<                                                                       (15) 

Some examples of functions for M are given by Cavanagh and Sherman (1998).  For robustness, 

)()( RRankRM = , for efficiency RRM =)( , or an intermediate alternative would be 

},{}{}{)( bRbbRaRaRaRM >+≤≤+<=  such that a and b are real numbers and a < b.  By 

using a semiparametric approach we may be sacrificing some efficiency relative to a correctly 

specified parametric model (Powell, 1994); therefore, we used the second option to increase the 

efficiency of our estimates.  Finally, the primary condition for consistency is that ])([E XRM  is 

a nonconstant increasing function of ;'βX  however, a sufficient condition for consistency is that 

the distribution of R for a higher R* first order stochastically dominates that of an R associated 

with a lower R*. 
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CHAPTER FOUR 

THE LATENT CHOICE MULTINOMIAL LOGIT MODEL: A SIMULATION 

 

Abstract 

Missing and ambiguous responses are often a major concern for applied researchers.  The 

reallocation of those responses could allow for correction of potential measurement error and 

sample selection bias, giving the researcher efficient estimates.  Using the “latent-choice 

multinomial logit model” (LCMNL), it is possible to determine whether these incomplete 

responses are more likely to belong to an outcome other than the one they are in.  Simulations of 

the LCMNL are performed to determine whether the conditional probabilities estimated by the 

model are accurate enough to assess the likelihood that any given observation belongs to a 

particular outcome, and whether doing so improves parametric estimation.  The data are created 

via a specified data generating process, allowing the true values of the incomplete responses to 

be known beforehand.  Previous applications have only used real-world data.  Tests imply that 

the reclassifications based on the estimated conditional probabilities are accurate, but the total 

number of reclassifications should be viewed with caution, as many of the ambiguous 

observations are not reassigned to one of the initial outcomes.  The best method for dealing with 

ambiguous observations in empirical analysis is also assessed.  The results indicate that the best 

course of action for managing the incomplete responses depends on the source of the ambiguity, 

i.e. whether these responses arise because of random events or true uncertainty. 

Keywords:  Latent choice multinomial logit, Don’t know, Reclassification.
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Introduction 
 
Missing and ambiguous information in a dataset are a major concern for applied researchers of 

many fields.  Estimation problems may arise due to this deficiency of information, leading to 

inaccurate results, and possibly limiting the types of analyses available to the researcher.  The 

question of how best to treat the don’t know (DK) response in contingent valuation data has 

received quite a bit of attention (Alberini, Boyle, and Welsh, 2003; Carson et al., 1998; 

Groothuis and Whitehead, 2002; Haener and Adamowicz, 1998; Wang, 1997).  Previous 

methods of dealing with DK responses include: grouping the responses with the no outcome, 

which results in more conservative estimates (Carson et al., 1998); exclusion of the responses 

based on the assumption that they either imply indifference (Johannesson et al., 1993), or that 

they are not significantly different from the rest of the sample (Wang, 1997); and treating them 

as a middle response between yes and no in ordered categorical models based on the assumption 

that the respondents were truly uncertain (Groothuis and Whitehead, 2002; Wang, 1997).  Wang 

(1997) provides four reasons why a respondent may provide an ambiguous response such as DK: 

1) some individuals may not be willing to consider the setting of the question, thereby refusing to 

attempt to determine their preferences; 2) some may know their preferences, but for some reason 

answer ambiguously; 3) some make an attempt to examine their preferences and answer 

honestly; and 4) some may not make enough of an effort to determine their preferences, but are 

still answering truthfully at the time.  Caudill and Groothuis (2005) argue that the first, second, 

and fourth explanations suggest that some of the DK responses may more appropriately be 

assigned to the yes or no outcome. 

Based on the assumption that some ambiguous responses are misclassified Caudill (2006) 

extends Dempster, Laird, and Rubin’s (1977) work on the expectations maximization (EM) 
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algorithm, developing a “latent-choice multinomial logit model” (LCMNL), which allows 

researchers to test for hidden alternatives while estimating a multinomial logit model with more 

options than are available given the data.  This method of estimation also provides the researcher 

with an approximation of how many of the misclassified responses belong to each subcategory.  

Examples include: Caudill (2006) testing for hidden unemployment, Caudill, Ayuso, and Guillen 

(2005) testing for dishonest insurance claims, and Caudill and Groothuis (2005) testing whether 

DK responses in the contingent valuation literature are more like yes or no responses. 

Using the conditional probabilities generated for each ambiguous observation by the 

LCMNL, it is possible to view the probability that a given response is misclassified.  Caudill, 

Ayuso, and Guillen (2005), present an example of this when they review the cases of two 

individuals whose insurance claims are likely misclassified as either “honest,” or “fraudulent.”  

Caudill and Groothuis (2005) recalculate willingness to accept (WTA) and willingness to pay 

(WTP) estimates after reclassifying some DK responses to either yes or no, based on the 

estimated conditional probabilities.  Our paper explores the possibility that inserting the 

reclassified ambiguous observations into the dependent variable could also serve as a method of 

controlling for the sample selection bias or measurement error that may arise due to these 

observations being absent from the sample, while simultaneously increasing the sample size.  

However, none of these applications directly assess the accuracy of the LCMNL, most 

specifically, how accurate the reassignments are and how this influences the statistical analysis 

of the data, as its only applications have been on real-world data without knowledge of the 

underlying data generating process. 

The purpose of this paper is to perform simulations of the LCMNL to determine: 1) if the 

conditional probabilities generated by the model are accurate enough to assess the likelihood that 
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any given observation belongs to a particular outcome as Caudill, Ayuso, and Guillen (2005) and 

Caudill and Groothuis (2005) did, and 2) the implications for statistical analysis of data with 

ambiguous observations among dependent binary outcomes.  Through the use of a specified data 

generating process, a random data matrix is created, inter-variable correlations from a real-world 

dataset are imposed on it, and a dependent variable is generated using known parameter values.  

As a result, the true values of the incomplete responses are known beforehand, which allows us 

to accomplish our first goal.  Knowledge of the true parameter values allows us to accomplish 

the second objective by being able to test estimated coefficients for the data generating process 

against their true values. 

The remainder of this paper proceeds as follows.  First, the accuracy of the LCMNL in 

reassigning ambiguous responses via the conditional probabilities generated by the model is 

analyzed.  Using the data generating procedure, three datasets with continuous dependent 

variables are created.  The three datasets have equal population means, but different standard 

deviations in order to assess the performance of the LCMNL under different data conditions.  

Next, the continuous dependent variables are transformed into binary variables by choosing a 

cutoff point.  A third outcome to represent ambiguous responses, e.g. the don’t knows, is then 

artificially imposed on the three sets of generated data.   

In the end two new dependent variables are generated for each of the three datasets by 

using two different methods to create the third (ambiguous) outcome.  One method is designed to 

capture the measurement error often observed with survey data, i.e. the new ambiguous 

responses are randomly chosen and thus completely unrelated to the underlying continuous 

dependent variable.  The other method is designed to represent respondent uncertainty in that the 

new responses are structured such that they fall very near the point where the underlying 
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continuous dependent variable are initially censored to create the binary variables.  The 

conditional probabilities generated by the LCMNL are then used to reclassify these responses, 

which in turn are compared to their true values in order to assess the accuracy of the 

reclassifications.  Tests imply that the reclassifications based on the estimated conditional 

probabilities are accurate, but the total number of reclassifications should be viewed with 

caution, as many of the ambiguous observations are not reassigned to one of the initial outcomes. 

Analyses are also performed on each of the three datasets to determine the best method 

for handling incomplete responses in empirical analysis.  A binary regression is initially 

performed on the original data prior to creating the ambiguous observations.  Using the same 

dataset, the ambiguous responses from each of the new dependent variables are removed and 

binary regressions are run on the remaining observations.  The estimates are then tested against 

their true values to determine whether a bias is introduced by removing these observations.  The 

LCMNL is subsequently used to reclassify the ambiguous observations that had been removed 

for the second regression. The regressions are rerun for the each of the three datasets with the 

reclassified observations.  Because the reassignments indicated by the LCMNL are not 

completely accurate, the Monotone Rank Estimator (Cavanagh and Sherman, 1998), an 

econometric technique used to adjust for misclassification of the dependent variable (Abrevaya 

and Hausman, 1999), is also applied to the reclassified data to see if it can aid in the correction of 

the estimates.  Finally, ordered logistic regressions are performed on the data, both before and 

after reclassification, to determine the effect of directly incorporating the ambiguous 

observations into the analysis.  Taken together, the results from the battery of comparisons 

described above indicate that the best course of action for managing the incomplete responses 

depends on the source of the ambiguity, i.e. whether these responses arise because of random 
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events or true uncertainty.  Subsequent sections describe the LCMNL, the data generating 

procedure, empirical methodology, and results.  The paper concludes with a summary of the 

findings and suggestions for future research. 

 

The Model 

Consider first the traditional multinomial logit model (MNL).  The probabilities in this model are 

as follows:  
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where ijP  represents the probability that individual i chooses alternative j, α  and β  are 

parameters to estimate, and iX  is a vector of exogenous variables specific to individual i.  The 

log-likelihood function is given by: 
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where n is the sample size and ijd  is a binary variable indicating whether individual i chose 

alternative j, for a total of J dummy variables. 

 The first step in developing the LCMNL is to extend the MNL to accommodate the case 

where the data contain missing information with respect to some individuals’ choices.  Caudill 

(2006) uses terminology generally reserved for nested logit models to help explain the modeling 

of hidden alternatives.  The observable choices are referred to as branches.  In the context of the 

application to DK responses (Caudill and Groothuis, 2005), assume that the DK branch contains 

three unobservable choices: yes, no, and DK.  These are referred to as stems.  As illustrated in 

Figure 1, the resulting logit has five final alternatives, two observed, and three unobserved. 
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 By re-formulating the MNL, the probabilities for the LCMNL differ from those of the 

MNL.  Assuming the branch associated with the DK responses is the third, the stem probabilities 

are now characterized as follows: 
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The probabilities of the remaining branches are then denoted by: 
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Again, α  and β  are the parameters that will be estimated and iX  is a vector of exogenous 

variables specific to individual i.13  When the DK alternatives are hidden, the log-likelihood 

function is: 
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where ijd remains a binary variable indicating whether individual i chose alternative j.  If, 

however, the characterizations of the DK are known we can directly estimate the parameters of a 

new model, as follows:  
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where *
ji,d 3  is an unobserved binary variable indicating whether observation i is associated with 

stem j.  If the stem associations of the DK responses were observable, maximum likelihood 

could be used to directly estimate the parameters, as it would simply be a traditional multinomial 

logit model.  But since these stem associations are not observable, setting the problem up in this 

manner allows for the maximum likelihood estimation of the parameters via the EM algorithm.  

                                                 
13 As with any logit model, one of the β  vectors must be set equal to 0 for identification purposes.  
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In the first stage of the algorithm, the expectations (E) step, the *
ji,d 3 s in equation (6) are replaced 

with their conditional probabilities, which are calculated as: 
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In the context of the DK example, the conditional probabilities are interpreted as the probability 

that a response is a yes, no, or DK, given the actual response of DK. 

 During the second stage of the algorithm, the maximization (M) step, the log-likelihood 

in equation (6) is maximized, providing new estimates of the α  and .β   The “E” and “M” steps 

are then repeated until the likelihood function converges to a maximum, at which point the 

standard errors can be calculated. 

 In order to apply the model to the case of misclassified responses, constraints must be 

imposed. 14  The constraints, j3j ββ =  for j = 1,2, come from the Cramer and Ridder (1991) 

pooling condition for alternatives in a multinomial logit model.15  The effect of the constraints is 

to pool observations from a particular stem with those from the corresponding branch.  In the DK 

example, this would result in some of the ambiguous responses being aligned with yes or no, and 

some remaining DK.  

 Once the constraints have been imposed, the focus shifts to the intercepts of the model.  

Profile likelihood confidence intervals are created to test the hypothesis that −∞→3jα  for j = 1, 

2.  Failure to reject this hypothesis implies that a statistically significant number of observations 

associated with stem j can not be pooled with those from branch j.  For example, the test could 

indicate that the number of reassignments from DK to either yes or no is not statistically 

                                                 
14 The unconstrained version of the model faces identification problems.  See Caudill (2006) for a more detailed 
explanation. 
15 The constraints allow for maximum likelihood estimation via algorithms other than the EM (Caudill and 
Groothuis, 2005). 
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significantly different from zero.  Profile likelihood confidence intervals are used instead of 

classic confidence intervals because the latter will always reject the null hypothesis.  Classic 

confidence intervals assume that the sampling distribution of the MLE is asymptotically normal, 

forcing the boundary values to be symmetric in relation to the estimate.  As a result, the 

confidence interval will always have a lower bound and the hypothesis will always be rejected.  

The boundary values of the profile likelihood confidence interval are not restricted in this 

manner because it is based on the chi-square distribution of the likelihood ratio statistic. 

 Caudill (2006) presents the following discussion of profile likelihood confidence 

intervals, which in turn draws from Venzon and Moolgavkar (1988).  Let θ  be a parameter 

vector of length k, and *θ  be the corresponding maximum likelihood estimate (MLE).  

Furthermore, let )(θL  be the log-likelihood function for this parameter vector, 

where nR⊂∈Θθ .  The profile likelihood technique maximizes the log-likelihood function, 

treating all parameters but one, say β , as nuisance parameters, which are allowed to vary.  This 

results in: 

}:{)( βθβ =∈=Θ jj Θθ ,  (8) 

with a profile likelihood function of: 

)(:)(max)( ββ jj ΘLL ∈= θθ , (9) 

and a confidence interval for jβ  of : 

)}1(5.0)()(:{ 1 αββ −≤− qLL j
*θ , (10) 

where )1(1 α−q represents the th)1( α− percentile of the chi-square distribution given one degree 

of freedom. 
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 In the case of the DK application of the LCMNL, the jβ  represents the intercept terms 

associated with the yes and no stems, implying that the profile likelihood confidence interval 

from equation (10) must be constructed for 31α  and 32α .  To construct the )1( α− % confidence 

interval, the likelihood function is maximized after fixing the alpha parameter, and allowing the 

remaining nuisance parameters to be estimated.  This process is repeated, increasing or 

decreasing the intercept of interest and comparing it to the original MLE until parameters are 

discovered that leave 2/α  in the tail of the chi-square distribution of the likelihood ratio test 

statistic.  If the confidence interval for the given stem intercept term contains a lower bound, then 

it is possible for a significant number of observations associated with that stem to be pooled with 

its respective branch. 

 

Data Generating Procedure 

The LCMNL is tested on data created via a specified data generating process, a flowchart of 

which can be viewed in Figure 2.  An important consideration when generating the sample data 

is that it could be considered to have been drawn from a population with multiple defining 

characteristics, iX .  Kaiser and Dickman (1962) propose a procedure to impose inter-variable 

correlations from a real world dataset onto one that is randomly generated.  To begin, a 

correlation matrix is calculated for a desired population.  Principal component analysis (PCA) is 

then performed on the correlation matrix in order to capture the inter-variable correlation pattern.  

If the sample data from which the correlation matrix is derived are composed entirely of binary 

variables, it is often recommended that tetrachoric correlations be used when performing PCA.  

The tetrachoric correlation coefficient between two variables is an estimate of what the Pearson 
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correlation would be if the variables were continuous.16  After performing the principal 

component analysis, Kaiser and Dickman (1962) create a data matrix, Ẑ , containing k 

uncorrelated random normal variables with a specified mean and standard deviation, and N 

observations.  Once the data matrix is in hand, the sample score matrix is calculated as follows: 

 (11) 

where P is the matrix made up of the principal components, and X̂ is the new data matrix with 

the inter-variable correlations imposed. 

 The next step in the data generation process is the creation of the dependent variable.  

This is accomplished using the following equation: 

,ˆ
(Nx1)(kx1)(Nxk)

* ΕΒXY
(Nx1)

+=                                                                                                (12) 

where X̂ is the data matrix from (11), B is a vector of specified parameter values, E is a vector 

of stochastic error terms, and Y* is a continuous variable, which will later be transformed to a 

categorical variable.  Because the LCMNL is a logistic model, the error terms are randomly 

generated from a logistic distribution. 

 To provide some real-world context, and in light of a future application, the correlation 

matrix for the PCA is derived from a dataset of patients suffering from idiopathic intracranial 

hypertension.17  A survey of patients with this disorder resulted in a significant number of blank 

responses to whether treatment had improved their conditions.  The ability to reassign some of 

these incomplete observations to the better or not-better outcome could allow for more accurate 

estimates of how various treatments and other factors influence patient well-being.  Also, 

                                                 
16 The tetrachoric correlations can be computed in SAS using the POLYCHOR macro, which can be found at:   
http://ftp.sas.com/techsup/download/stat/polychor.html 
 
17 The data come from the Intracranial Hypertension Registry: http://www.ihrfoundation.org/news/registry.asp.  This 
is a project co-sponsored by the Intracranial Hypertension Research Foundation of Vancouver, Washington and the 
Casey Eye Institute at the Oregon Health and Science University (OHSU). 

,ˆˆ
(kxk)(Nxk)(Nxk)

PZX =
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excluding ambiguous observations is generally discouraged on account of reduced sample size 

and econometric efficiency, as well as potential sample selection bias (Groothuis and Whitehead, 

2002; Wang, 1997).  Therefore, nine variables were chosen for the PCA from a highly significant 

binary logistic model estimating the effects of various treatments and patient characteristics on 

an individual’s post-treatment disease status.18   

 Three sets of sX̂  are created with the data generating procedure just described, each 

containing nine variables and 500 observations.  The variables in the first X̂  are constructed to 

have a population mean of zero and standard deviation of one (s=1).  The population means of 

the variables in the second and third sX̂  are equal to the original sample, but have standard 

deviations of s=2 and s=3 respectively, in order to assess the performance of the LCMNL under 

different data conditions.   

 The next step in transforming the data for use in the LCMNL test is to censor the 

dependent variable from equation (12).  Because Y* is continuous, it represents the latent log 

odds ratio in a logistic context.  Take, for example, the case where a patient is asked to claim a 

post-treatment disease status of “better” or “not-better”.  If )Pr(betterpi = = )(1
1

bxiie +−+ α , then 

)]1/(ln[*
iii ppy −=  = bxii +α , which implies that at *

iy = 0, )1( ii pp −= .  Therefore, the Y* 

variable in each new dataset is transformed such that 2=iy if *
iy  > 0, and iy  = 1 otherwise.  The 

observations with the value one will be referred to as belonging to outcome one, and those with 

the value two as belonging to outcome two. 

 To test the accuracy of the LCMNL reclassifications as discussed in the introduction of 

the paper, a third outcome to represent the ambiguous responses is created.  Two new dependent 

                                                 
18 The parameter values for equation (12) were also chosen from this regression. 
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variables are generated for each dataset through the use of two different methods of constructing 

this outcome.  First, 20% of the observations are randomly chosen and the dependent variable for 

these observations is set to the value 3.  The observations in this new outcome represent the 

measurement error that is often observed with survey data in that the missing data is completely 

unrelated to Y*.  For example, data could be missing because of random errors in record keeping 

or transmission, or because respondents answered ambiguously for some reason other than being 

truly unsure of their preferences.19  Second, observations are constructed to represent respondent 

uncertainty, i.e., those for which the respondents might reasonably truly not know or are 

ambivalent or effectively indifferent about how to answer.  To do so a parameter δ  is arbitrarily 

chosen such that: 

).0(:2

)0()0(:3

)0(:1

*

*

*

δ

δδ

δ

+>=

+≤≤−=

−<=

ii

ii

ii

yify

yify

yify

                                                                               (13) 

In this paper δ = 1 to ensure that there are a reasonable number of ambiguous observations 

representing respondent uncertainty in each dataset.  Summary statistics for the new datasets can 

be viewed in Table 1. 

 

Empirical Methodology 

The purpose of this paper is to assess the accuracy of the conditional probabilities used to 

determine whether a given observation is misclassified, and to determine the best course of 

action for dealing with incomplete responses in empirical analysis.  Tests used to analyze the 

LCMNL in previous applications are also presented here in order to compare the model’s 

performance in this paper to that of other studies. 

                                                 
19 See page 73 for a list of reasons why an individual may provide an ambiguous response. 
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 As suggested by Caudill (2006), two of Cramer and Ridder’s (1991) pooling tests are run 

on each set of ambiguous responses from each X̂ .  This test consists of a likelihood ratio test of 

the hypothesis that combining all of the ambiguous (i.e. outcome=3) responses with those from 

outcome=1, for example, and running a binary logistic regression on outcomes one and two, is 

statistically equivalent to running the multinomial logistic regression with all three outcomes.  

The test is then repeated, this time combining all outcome=3 observations with those from 

outcome=2.  The parameter estimates are indistinguishable: ,: 30 jH ββ = where j = 1,2.  Rejection 

of the null hypothesis implies that not all of the outcome=3 responses can be pooled with those 

from outcome=j, where j=1,2.  If the two tests performed on a given dataset agree, i.e. they don’t 

indicate that all responses could be grouped with outcome=1 for example, and not outcome=2, 

the implication is that it may be possible for some of the observations to belong to one group and 

some to the other. 

 The LCMNL does not physically reclassify individual observations.  Instead, the 

approximate number of responses that are reassigned within the procedure is calculated by 

summing the conditional probabilities from equation (7) for each stem of the dependent variable, 

i.e. ∑ ,ˆ *
3, jid where j=1,2,3.  At this point, the profile likelihood confidence intervals are used to 

determine whether a statistically significant number of reassignments occurred.  If the number of 

reassignments is significantly greater than zero, this indicates that the variable in question does 

contain hidden alternatives. 

 Previous applications of the LCMNL have suggested that the estimates are quite similar 

to those from the MNL, i.e. one that does not allow for hidden alternatives.  Therefore, the 

estimates from the LCMNL are compared to those from the MNL.  A Wilcoxon signed rank sum 

test, the nonparametric alternative to the paired t-test, is performed on the predicted probabilities 
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from the two models.  This test consists of ranking the absolute differences between each pair of 

predicted probabilities and calculating the Wilcoxon signed rank statistic to test the null 

hypothesis that the median difference is zero.  If the MNL restriction is valid, the sum of the 

ranks for the positive differences should approximately equal the sum of the ranks of the 

negative differences.  Recall that in the LCMNL the coefficients are constrained such that 

jj ββ =3 , where j = 1,2.  Therefore, the null hypothesis is that the median predicted probabilities 

are equal, i.e. MNLiLCMNLi jypjyp )(ˆ)(ˆ === , where j=1,2,3.  If the null hypothesis is rejected the 

LCMNL and the MNL will both be compared to the true data to determine which is better.   

 To test the LCMNL against the MNL the predicted probabilities from each model are 

compared to those from the data generating process allowing us to determine the number of 

observations that each model predicts correctly.  A two by two contingency table is constructed 

using the number of correct and incorrect predictions from each model, and a chi-square test of 

homogeneity is performed.  If the null hypothesis that the models perform equally well is 

rejected, the counts in the interior of the table will indicate which is better.  Assuming the 

LCMNL can reassign the ambiguous responses better than by chance, it should outperform the 

MNL. 

 Though the LCMNL does not physically reclassify individual observations, it is possible 

to determine which outcome each ambiguous response most likely belongs to by examining the 

conditional probabilities generated for each one (see equation 7).  For example, given that an 

observation is classified as a DK, one can discern the probability that it is actually a yes, a no, or 

truly a DK.  The incomplete responses are then physically reassigned based on their largest 

conditional probability.  For example, if the LCMNL predicts the probabilities for a given 

outcome=3 response to be .6 for outcome one, .3 for two, and .1 for three, the response is 
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reclassified as belonging to outcome one (Caudill and Groothuis, 2005).  To analyze the 

accuracy of the reassignments, the reclassified observations are compared to their known values, 

and t-tests are performed to determine whether the percentages of accurately reassigned 

observations are significantly different than 50%.  That is, we test whether the reassignments 

indicated by the LCMNL are more accurate than those re-assigned through chance.  Recall that 

the original binary dependent variable, Y, is generated by censoring Y* at the point on its 

distribution where )1( ii pp −= .20   Because the ambiguous observations representing respondent 

uncertainty are created such that they are within δ  of the Y* censoring point (see equation 13), 

on average they should have lower *
iy  values than the ambiguous observations representing 

measurement error, which are randomly chosen.  As a result, the conditional probabilities 

estimated by the LCMNL (see equation 7) should be more accurate for the observations 

representing measurement error.  

 

Ambiguous Responses in Empirical Analysis  

The issue of how to manage ambiguous responses in survey data has received a great deal of 

attention.  Therefore, regressions are performed to examine the best method of handling 

ambiguous responses in the empirical analysis.  See Figure 3 for an organizational chart of this 

process.  Recall that one method of dealing with ambiguous observations is exclusion.  So the 

first question is whether removing these observations generates a bias in the estimates.  The 

exclusion of the randomly created outcome=3 observations simulates the measurement error that 

is common in survey data, such as a response getting coded improperly.  Removing the 

structurally created outcome=3 responses simulates sample selection bias, e.g. individuals who 

                                                 
20 See discussion on page 83. 
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respond ambiguously for a reason.  A binary regression is first run on the original data, i.e. prior 

to the creation of the third outcome, and the estimates are tested against the true parameters.  

Wald tests are used to test for jointly significant differences, and t-tests for individual 

differences.  Regressions are then run on each of the dependent variables, minus the incomplete 

responses.  By testing each of these parameter estimates against their true values, we are able to 

determine whether a bias is created when the ambiguous responses are absent, or if the only 

difference is a loss of efficiency. 

 Next the outcome=3 observations that were removed are physically reclassified according 

to the conditional probabilities generated by the LCMNL.  Those that are reassigned to one of 

the original outcomes, i.e. outcome one or two, are inserted back into the binary dependent 

variables.  The regressions are rerun and the estimates are retested against their true values to 

determine what effect including the probabilistically reclassified observations  has on the bias if 

it exists.  Assuming a bias is created by the removal of the ambiguous observations, inserting the 

reclassified observations back into the dependent variable is expected to help alleviate it if 

enough of the ambiguous observations are accurately reclassified to outcomes one and two. 

 One potential problem with the regressions performed on the reclassified data is that 

unless the reclassifications indicated by the LCMNL are completely accurate, the dependent 

variables are subject to misclassification error.  Failure to control for this when estimating 

discrete-response models via traditional techniques such as logit or probit, can result in 

inconsistent estimates (Hausman, Abrevaya, and Scott-Morton, 1998).  To control for the 

misclassification error Abrevaya and Hausman (1999) recommend semiparametric estimation, 

more specifically the monotone rank estimator (MRE) from Cavanagh and Sherman (1998), as 

an alternative to parametric estimation.  Unlike the parametric approach, semiparametric 
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estimation does not require that the mismeasurement be modeled correctly in order to obtain 

consistent estimates.  Therefore, the MRE is used to adjust for the potential misclassification 

bias.21  The accuracy of these estimates is then tested. 

 First, the MRE is performed on the original data (prior to the creation of ambiguous 

responses) and confidence intervals used to test whether the estimates are significantly different 

than the normalized true parameter values.  The estimates from the MRE are not directly 

comparable to the true parameters, because the MRE estimates the coefficient vector, which does 

not include an intercept term, up to scale such that the sum of their squares is equal to one.  

Therefore, the true parameters are normalized in a similar manner to obtain some comparability 

with the estimates from the MRE.  Next, the MRE is performed on the binary dependent 

variables containing the reclassified ambiguous observations, and the estimates again tested 

against the normalized true parameters.  Because the confidence interval tests provide only a 

rough estimate of the MRE’s performance, a Wilcoxon signed rank sum test is performed on the 

sβ̂iX that are common to both regressions to test for differences between the original known 

responses and the reclassified responses.  The null hypothesis is that the median sβ̂iX are equal, 

i.e. MRE
edReclassifi

MRE
Original ii XX ββ ˆˆ = . 

 Finally, the incomplete responses are treated as an intermediate outcome corresponding 

to respondent uncertainty, and ordered logistic regressions are performed on the original datasets 

with ambiguous observations, as well as those where the ambiguous observations have been 

physically reclassified.  The expectation is that the original data containing observations 

structured to represent respondent uncertainty will perform better, because these responses are 

designed such that they fall between the outcome one and two responses, and a review of 

                                                 
21 See Appendix A for a detailed discussion of the MRE. 
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equation 13 reveals a data generating process equivalent to the assumed model structure 

underlying an ordered logistic regression and likelihood function. 

 

Results 

Though the primary foci of this paper are the accuracy of the reclassifications indicated by the 

conditional probabilities from the LCMNL and the handling of the ambiguous observations in 

empirical analysis, we first analyze the results from the LCMNL model itself, and compare them 

to previous applications in the literature.  The pooling test of the null hypothesis that all 

ambiguous observations could be grouped with one of the other outcomes, i.e. 

,: 30 jH ββ = where j = 1,2, is strongly rejected in each case at p<.01 or smaller. 22  These 

findings appear to contradict those of Carson et al. (1998), which support the method of grouping 

ambiguous responses with a different outcome, e.g. grouping the DK responses with the no 

responses in contingent valuation data.  The LCMNL can be used to determine whether it is 

possible for some of the ambiguous observations to be pooled with outcome=1, and some with 

outcome=2. 

 In each of the previous studies, as in this paper, summing the conditional probabilities 

indicates that observations are likely to be reassigned to all outcomes, including the one of 

origin, e.g. the ambiguous outcome (Caudill, 2006; Caudill, Ayuso, and Guillen, 2005; Caudill 

and Groothuis, 2005).  These results are presented in the top half of Table 2 for the ambiguous 

observations representing measurement error and those representing respondent uncertainty from 

the three X̂ s, i.e. s=1,2,and3.  The accuracy of the reassignments can not be compared to those 

                                                 
22 Pooling tests are discussed in more detail on page 85. 
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from prior applications of the model in the literature because the true classifications were 

unknown in those studies. 

 The results from the profile likelihood confidence interval tests of the intercepts 

associated with the three - one ( 31α ) and three - two ( 32α ) stems are mixed.23  For the dataset 

with an s=1 and observations structured to represent respondent uncertainty, both tests reject the 

null hypothesis that −∞→3jα , where j=1,2.  This result implies that the number of ambiguous 

observations reassigned to the first and second outcomes is statistically significantly greater than 

zero24.  Just the opposite is true for the two datasets with an s=2, in that none of the intercepts 

contain lower bounds, implying that a statistically significant number of ambiguous observations 

could not be pooled with either the outcome=1 or outcome=2 observations.  This has not been 

observed in the literature, but there have only been two applications of the LCMNL in which 

these tests have been performed.  In the three remaining datasets only 32α  is constrained away 

from negative infinity, implying that a statistically significant number of ambiguous observations 

are reassigned to outcome=2, but not outcome=1.  These findings are similar to those from the 

WTA and WTP applications of the LCMNL (Caudill and Groothuis, 2005), where only the 

intercepts associated with the DK-no responses contain lower bounds. 

 Next, the results from the LCMNL regressions on all of the dependent variables in this 

paper are compared to those from the corresponding MNL regressions.  The results from the 

LCMNLs for the datasets with an initial standard deviation of two can be viewed in Table 3, 

while those for the corresponding MNL regressions can be viewed in Table 4.25  Prior studies 

                                                 
23 See equations 6 and 7 and discussion on page 79. 
24 This finding is similar to Caudill (2006), where the tests indicate that a significant number of “own-account self-
employed” individuals are more like employers, and others more like the unemployed. 
25 The results for the dataset with an s=2 were arbitrarily chosen to be presented.  The results for the remaining 
datasets are similar, and are available from the author upon request. 
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report that the estimates from the LCMNL and MNL are quite similar.  This also appears to be 

the case here for the data containing observations designed to represent measurement error, but 

not necessarily for the data with observations representing respondent indifference.  The 

Wilcoxon signed rank sum test of the hypothesis that the median predicted probabilities are 

equal, i.e. MNLiLCMNLi jypjyp )(ˆ)(ˆ === , where j=1,2,3, is rejected at p=.04 and smaller in all but 

two of the tests, both from datasets with ambiguous observations representing measurement 

error.    

 The Chi-square test of homogeneity performed on the two by two contingency table of 

correctly and incorrectly predicted responses from the MNL and LCMNL is rejected in each 

instance at p<.0001.  Four of the tests suggest that the LCMNL outperforms the MNL.  The test 

of the data with an s=1 and observations representing measurement error indicates that the MNL 

is better than the LCMNL, and in the test of the data with an s=2 and observations representing 

respondent uncertainty the number of correctly predicted responses is equal across the models. 

 The physical reassignments based on the conditional probabilities can be viewed in Table 

2.  Similar to the findings of Caudill and Groothuis (2005), the number of within model 

reassignments mentioned above varies from the number of observations that are physically 

reclassified.  For the dataset created with an s=1, the conditional probabilities of the 100 

ambiguous responses representing measurement error indicate that 11 observations should be 

assigned to outcome=1, 52 to outcome=2, and 37 should remain as outcome=3.  While the 

probabilities of the 116 observations representing respondent uncertainty from the data with an 

s=1 indicate that the assignments should be 22 to outcome=1, 49 to outcome=2, and 45 to 

outcome=3.  With an s=2, the LCMNL applied to the data with observations representing 

measurement error (respondent uncertainty) indicates that of the 100 (55) ambiguous 
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observations 24 (2), 30 (19), and 46 (34) should be assigned to outcomes one, two, and three, 

respectively.  For s=3, the assignments of the observations representing measurement error 

(respondent uncertainty) are 31 (11), 35 (22), and 34 (12), out of 100 (45) ambiguous responses, 

to outcomes one, two, and three, respectively. 

 We now examine the accuracy of the reassignments from group three to the other two 

groups.  For the data with an s=1 and observations representing measurement error, 49 of the 63 

(78%) reclassifications are correct.  This is true for 51/54 (94%) and 62/66 (94%) of the 

ambiguous observations representing measurement error from the datasets with s=2 and s=3, 

respectively.  One-tailed t-tests are performed to determine whether these percentages are 

significantly greater than 50%.  The tests for the observations corresponding to measurement 

error are all significant at conventional levels of confidence, with p<.0001 or smaller.  The 

percentages for the observations representing respondent uncertainty are somewhat lower: 42/71 

(59%) for s=1, 15/21 (71%) for s=2, and 24/33 (73%) for s=3.  The one-tailed t-tests indicate that 

these percentages are also significantly greater than 50% at conventional levels (p=.06 for s=1, 

p=.02 for s=2, and p=.003 for s=3).  So in terms of overall accuracy, the LCMNL performs better 

on the ambiguous observations representing measurement error than it does on those 

corresponding to respondent uncertainty. 

 The preceding tests do not differentiate between reclassifications from outcome=3 to 

either outcome 1 or 2.  The results, however, suggest that  the reclassifications tend to be 

weighted heavily towards one outcome or another for certain datasets.  We therefore consider the 

percentage of correct reassignments to outcomes 1 and 2, respectively.  For the group three 

observations representing measurement error from the dataset with an s=1, of the 52 observations 

that are reassigned to the second outcome, 39 (75%) truly belong there.  This is true of 29/30 
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(97%) for s=2, and 33/35 (94%) for s=3.  The percentages for the first outcome are as follows: 

10/11 (91%) for s=1, 22/24 (92%) for s=2, and 29/31 (94%) for s=3.  All are significantly greater 

than 50% at better than the 1% level.  Once again, the corresponding percentages for the 

observations representing respondent uncertainty appear to be slightly lower.  For the second 

outcome they are: 27/49 (55%) for s=1, 13/19 (68%) for s=2, and 16/22 (73%) for s=3.  The p-

values for the one-tailed t-tests are: for s=1, p=.24; for s=2, p=.06; and for s=3, p=.01.  The 

percentages for the first outcome are: 15/22 (68%), 2/2 (100%), and 8/11 (73%) for s=1, 2, and 3, 

respectively.  The one-tailed p-values are p=.04 for s=1, and p=.07 for s=3. 

 As expected, the LCMNL performs better in terms of reclassifications when applied to 

the ambiguous observations corresponding to measurement error.  This holds true even after 

breaking down the reclassifications by outcome.  At the same time, all but one of the percentages 

of accurately reassigned observations, both overall and by outcome, are significantly greater than 

50%.  Therefore, it appears that the conditional probabilities produced by the LCMNL are 

accurate enough to analyze individual observations like Caudill, Ayuso, and Guillen (2005) and 

Caudill and Groothuis (2005) did, especially if there is reason to believe the incomplete 

responses are due to random events and not to random responses related to (approximate) 

respondent indifference. 

 

Ambiguous Responses in Empirical Analysis 

To determine the ideal method for handling the ambiguous observations in empirical analysis, 

regressions are first run on the original data, i.e. prior to the creation of the third outcomes.  The 

results from these regressions are presented in Table 5.  Wald and t-tests indicate that these 

estimates are not significantly different than the true parameter values.  Next, regressions are run 
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on each of the dependent variables, minus the ambiguous responses, and the estimates again 

tested against their true values.  Table 6 contains the results from these regressions.  Only one of 

the coefficient estimates from the regressions on the data with measurement error is rejected, and 

only at the 10% level.  This implies that bias is not a concern if the ambiguous observations 

occur as a result of random circumstances.  Each regression on the data containing respondent 

uncertainty produces between one and five estimates that significantly vary from their true 

values at traditional levels, indicating that bias is a concern if the incomplete responses arise 

because of true uncertainty on the part of the respondents. 

 Inserting the physically reclassified observations back into the dependent variables 

appears to increase the bias in the regressions performed on the data with respondent uncertainty, 

and create it in the regressions performed on the data with measurement error.  The results from 

these regressions are presented in Table 7.  In each regression, the number of parameter 

estimates that are significantly different from their true value increases, or at best doesn’t change.  

The question now is whether using the MRE, a procedure used to control for misclassification of 

the dependent variable, on the reclassified data can correct the distortion in the estimates. 

 Table 8 contains the results from the MRE regressions.  Two methods are used to test the 

accuracy of the estimates from the MRE.  The MRE is first performed on the original data, i.e. 

prior to the creation of the ambiguous outcomes, and the estimates are tested against the 

normalized true parameters via confidence intervals.  As mentioned above, the estimates from 

the MRE are not directly comparable to the true parameters, but the MRE performs quite well in 

that only two estimates, both from the dataset with an s=3, differ significantly from the 

normalized true parameters at the one percent level.   
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 Next, the MRE is performed on the dependent variables containing the reclassified 

observations, and the estimates are again tested against their true values.  Five estimates, three 

from the dataset with an s=3, now show up as significantly different than the normalized true 

parameters at the one percent level, but overall the magnitudes of the estimates are similar to 

those from the MRE regressions performed on the original data.  Because the confidence interval 

tests provide only a rough estimate of how the MRE performs, a better test may be to compare 

the vectors comprised of sβ̂iX that are common to both regressions, i.e. the MRE regression on 

the original data and the one on the reclassified data.  The βX ˆ vectors are tested using a 

Wilcoxon signed rank sum test, the nonparametric alternative to the paired t-test.  This test is 

repeated for each dataset.  All of the tests fail to reject the null hypothesis that the medians of 

the βX ˆ vectors are equal with p-values of .23 and higher.  These findings indicate that the MRE 

is successful at correcting the bias created from the removal of the observations representing 

respondent uncertainty, and/or the insertion of either type of reclassified ambiguous 

observations. 

 The results from the ordered logistic regressions can be viewed in Table 9.  The 

regressions run on the original data containing observations structured to represent respondent 

uncertainty perform very well.  In fact, t-tests indicate that only one of the coefficient estimates 

differs significantly from its true value at the 5% level, and none differ at the 1% level.  This was 

expected, as these responses are designed such that they fall between the outcome one and two 

responses (see equation 13).  This supports Wang’s (1997) finding that truly uncertain responses 

can be directly incorporated into the analysis via ordered categorical models.  The ordered logit 

performs poorly when applied to the data with observations representing measurement error, 

which was also expected being as this type of ambiguous observation is randomly created, and 
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thus unrelated to the underlying Y* variable.  The ordered logit also performs relatively poorly 

on the datasets where the ambiguous observations have been physically reassigned based on their 

estimated conditional probabilities from the LCMNL.   

 

Conclusions 

The focus of this paper is twofold.  First, simulations are performed to determine whether the 

conditional probabilities generated by the LCMNL are accurate enough to assess the likelihood 

that a given observation belongs to a particular outcome as Caudill, Ayuso, and Guillen (2005) 

and Caudill and Groothuis (2005) did.  Second, we attempt to determine the implications for 

statistical analysis of data with ambiguous observations among dependent binary outcomes.  In 

addition, we compare our results to those from previous applications of the LCMNL. 

 It appears that the reclassifications indicated by the LCMNL’s estimated conditional 

probabilities are quite accurate, implying that this could be an effective tool for analyzing 

individual observations believed to be misclassified.  However, the total number of 

reclassifications should be viewed with caution, as many of the ambiguous observations were not 

reclassified to one of the initial outcomes.  This is true not only of the physical reassignments, 

but also of the approximate number indicated by the summation of the conditional probabilities.  

As expected, the reclassifications associated with the models using observations designed to 

represent measurement error are more accurate than those associated with models using 

observations representing respondent uncertainty.  Recall that the original binary dependent 

variable, Y, is generated by censoring Y* at the point on its distribution where )1( ii pp −= .26   

Since the ambiguous observations representing measurement error are chosen at random versus 

                                                 
26 See discussion on page 83. 
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those representing respondent uncertainty, which are created such that they are within δ  of the 

Y* censoring point (see equation 13), on average the former have higher *
iy  values.  As a result, 

the conditional probabilities estimated by the LCMNL (see equation 7) are more accurate for the 

observations representing measurement error. 

 The best method for handling incomplete responses in data analysis appears to depend on 

the source of the ambiguity.  Results indicate that exclusion of the ambiguous responses only 

generates a bias in the estimates if the observations appear because of actual uncertainty on the 

part of the respondents.  And though all of the percentages of accurate reclassifications are 

significantly greater than 50%, using the physically reassigned observations in the binary model 

only appears to worsen the amount of bias in the regressions performed on the data with 

observations representing respondent uncertainty, and create it in the regressions performed on 

the data with observations representing measurement error.  Therefore, if there is reason to 

believe that the incomplete responses occur because of random events such as errors in record 

keeping or transmission, the best method appears to be excluding these observations.  Because 

this will result in biased estimates if the ambiguous observations occur as a result of actual 

uncertainty, the MRE, a method of controlling for misclassification in the dependent variable, is 

run on the dependent variables after incorporating the physically reclassified observations.  Tests 

indicate that the MRE successfully corrects the distorted estimates. 

 Given that the observations structured to represent respondent uncertainty lie in the 

middle of the Y* distribution (see equation 13), ordered logistic regressions are also performed 

as an alternative form of estimation.  As expected the regressions on the data with observations 

representing respondent uncertainty prior to reclassification perform very well in that none of the 

parameter estimates are significantly different from their true values at the 5% or 1% levels.  
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This implies that if there is reason to believe the incomplete responses are due to true uncertainty 

on the part of the respondents, they should be directly incorporated into the analysis via an 

ordered categorical model.  If the researcher is uncertain of the reason for the incomplete 

responses, as may often be the case, the best course of action appears to be integrating the 

physically reclassified observations into the dependent variable, followed by the use of the MRE. 

 Although many of these findings cannot be directly compared to those from previous 

papers due either to the lack of information about the underlying data generating process, or the 

lack of comparable analyses, the results that can, appear to be quite similar.  For example, in 

other applications of the LCMNL (Caudill, 2006; Caudill, Ayuso, and Guillen, 2005; Caudill and 

Groothuis, 2005), as in this paper, the model indicates that some ambiguous observations should 

be assigned to every outcome, including the one of origin, e.g. the DK outcome.  Also, in most of 

the previous examples the reclassifications are weighted towards one outcome or another, which 

is similar to our findings.  And the number of physical reclassifications in this paper varies from 

the approximate number indicated by the model, as is the case for the application by Caudill and 

Groothuis (2005) to DK responses, which is the only prior example where physical 

reclassifications are performed.  Finally, tests indicate that predicted probabilities from the 

LCMNL are significantly different than those from the MNL.  This appears to contradict 

previous findings by Caudill, Ayuso, and Guillen (2005) and Caudill and Groothuis (2005) that 

the estimates from the two models are similar.  Because the two models differ significantly, the 

predicted probabilities from each model are simultaneously tested against those from the data 

generating process to determine which model is better.  The LCMNL appears to outperform the 

MNL. 
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 By using data created via a known data generating process, this paper has shed new light 

on the best method for handling ambiguous observations in the empirical analysis.  Since the 

ideal method depends on the source of the ambiguity, future work could assess the technique 

used by Groothuis and Whithead (2001), where the authors use likelihood ratio tests of 

multinomial and ordered logit models to determine whether the ambiguous variable represents a 

distinct or middle response.  In addition, the analyses in this paper could be replicated using data 

generated with inter-variable correlations from different real-world datasets (see equation 11) to 

see how this influences the results.
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Table 4.1 

Summary Statistics 
 

Variable N Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev
Y (Measurement Error) 500 1.7480 2.0000 0.7679 1.7700 2.0000 0.7604 1.7580 2.0000 0.7646
Y (Uncertainty) 500 1.7880 2.0000 0.7952 1.6380 2.0000 0.6722 1.5760 1.0000 0.6520

X1 500 0.0684 0.0944 0.9688 -0.1016 -0.1393 1.9823 0.1844 0.3981 2.9421
X2 500 0.0159 -0.0028 0.9935 0.0085 0.0870 2.0359 -0.0688 0.0012 2.9895
X3 500 -0.0259 -0.0796 0.9721 -0.0040 -0.0387 2.0723 -0.1952 -0.1538 3.1397
X4 500 0.0620 0.1155 0.9960 -0.0619 -0.0396 1.9817 -0.0576 0.1496 2.9878
X5 500 0.0273 0.0392 0.9791 -0.0371 -0.0755 1.9431 -0.0961 -0.1457 2.9461
X6 500 0.0003 0.0349 1.0294 0.0083 0.0957 1.9254 -0.2408 -0.2230 2.9406
X7 500 0.0889 0.0594 1.0155 0.0905 0.0269 2.0762 0.0878 0.0315 2.9632
X8 500 0.0588 0.1130 1.0424 0.0539 -0.0097 1.9678 -0.1265 -0.1971 2.8849
X9 500 0.0634 0.1092 0.9536 0.0042 0.0503 1.9834 0.2040 0.2140 2.9842

S=1 S=2 S=3

s=n, implies results are for data created with a population standard deviation of n, where n=1,2,3.  
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Table 4.2 

Reclassification of Ambiguous Observations 
 

  Outcome  
Standard 
Deviation Method 1 2 3 

Number 
Correct 

1 ∑ *
3,

ˆ
jid 23.95 42.28 33.77 NA 

  (26.68) (50.61) (38.71) (NA) 
2  26.87 30.21 42.92 NA 
  (4.44) (19.61) (30.95) (NA) 
3  32.63 34.90 32.47 NA 
    (13.26) (17.44) (14.30) (NA) 
1 Actual 11 52 37 49/63 
  (22) (49) (45) (42/71) 
2  24 30 46 51/54 
  (2) (19) (34) (15/21) 
3  31 35 34 62/66 
    (11) (22) (12) (24/33) 
Numbers for the ambiguous observations representing respondent uncertainty 
are in parentheses. 
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Table 4.3 

LCMNL Results (s=2) 
 

    Data w/Measurement 
Error 

Data w/Respondent 
Uncertainty 

Parameter Y Estimate St. Error Estimate St. Error 
Intercept 2 -0.6841 0.1594 -6.3505 0.2748 
Intercept 31 -2.3692 1.0937 -3.2936 0.9193 
Intercept 32 -3.0208 0.8889 -7.6228 0.3120 
Intercept 33 -1.9246 0.5561 -0.6251 0.3571 
X1 2 -0.5229 0.0745 -8.3630 0.0893 
X1 33 -0.1829 0.1759 -1.1006 0.2348 
X2 2 -0.2206 0.0672 -6.1415 0.0803 
X2 33 -0.1318 0.1706 -0.3935 0.1874 
X3 2 1.3913 0.0930 22.0237 0.1159 
X3 33 0.4741 0.2908 2.3279 0.5329 
X4 2 -0.3348 0.0668 -5.6242 0.0773 
X4 33 0.0630 0.1487 -0.7604 0.2066 
X5 2 0.3278 0.0686 4.9108 0.0778 
X5 33 0.1687 0.1482 0.4265 0.2020 
X6 2 -0.5531 0.0763 -8.8899 0.0866 
X6 33 0.3352 0.2013 -0.4690 0.2186 
X7 2 0.3591 0.0642 5.7648 0.0768 
X7 33 -0.0160 0.1498 0.5405 0.1917 
X8 2 -0.4665 0.0729 -9.4049 0.0893 
X8 33 -0.0844 0.2053 -0.8775 0.2462 
X9 2 -0.2968 0.0710 -4.5793 0.0845 
X9 33 0.1259 0.1620 -0.6252 0.1781 
Recall: the parameter estimates for Y=31 and Y=32 are constrained to equal 
those for Y=1 and Y=2, respectively. 
s=2, implies results are for data created with a population standard deviation of 
2. 
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Table 4.4 

Traditional Multinomial Logit Results (s=2) 
 

 Data w/Measurement Error Data w/Respondent Uncertainty 
Parameter Y Estimate St. Error P Value Y Estimate St. Error P Value 
Intercept 2 -0.4609 0.1589 0.0037 2 -1.1473 0.2793 <.0001 
Intercept 3 -0.3945 0.1423 0.0056 3 -0.5699 0.2069 0.0059 
X1 2 -0.4446 0.0792 <.0001 2 -1.3091 0.1737 <.0001 
X1 3 -0.1954 0.0689 0.0045 3 -0.6969 0.1290 <.0001 
X2 2 -0.2074 0.0733 0.0046 2 -0.8071 0.1397 <.0001 
X2 3 -0.1471 0.0674 0.0290 3 -0.2103 0.1046 0.0443 
X3 2 1.1828 0.1079 <.0001 2 3.3820 0.3389 <.0001 
X3 3 0.5860 0.0896 <.0001 3 1.4422 0.2206 <.0001 
X4 2 -0.3020 0.0743 <.0001 2 -0.8411 0.1351 <.0001 
X4 3 -0.1375 0.0697 0.0484 3 -0.3646 0.1096 0.0009 
X5 2 0.2509 0.0769 0.0011 2 0.6893 0.1350 <.0001 
X5 3 0.1234 0.0722 0.0873 3 0.1809 0.1116 0.1050 
X6 2 -0.4287 0.0811 <.0001 2 -1.3322 0.1756 <.0001 
X6 3 -0.0496 0.0717 0.4888 3 -0.5054 0.1276 <.0001 
X7 2 0.2926 0.0701 <.0001 2 0.8505 0.1292 <.0001 
X7 3 0.0974 0.0652 0.1353 3 0.3109 0.0994 0.0018 
X8 2 -0.3822 0.0791 <.0001 2 -1.3450 0.1798 <.0001 
X8 3 -0.1557 0.0715 0.0294 3 -0.4781 0.1275 0.0002 
X9 2 -0.2400 0.0751 0.0014 2 -0.6545 0.1289 <.0001 
X9 3 -0.0496 0.0682 0.4676 3 -0.3684 0.1040 0.0004 
s=2, implies results are for data created with a population standard deviation of 2. 
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Table 4.5 

 

Parameter Estimate P Value
Normalized 

Estimate Estimate P Value
Normalized 

Estimate Estimate P Value
Normalized 

Estimate
Intercept -0.5351 0.0002 ------ -0.7527 0.0002 ------ -0.5211 0.0278

(0.1442) ------ (0.2016) ------ (0.2368)
X1 -0.817 <.0001 0.2482 -1.0058 <.0001 -0.3117 -1.1662 <.0001 -0.3758

(0.1598) (0.1427) (0.1723)
X2 -0.7378 <.0001 0.2241 -0.5607 <.0001 -0.1737 -0.3829 0.0003 -0.1234

(0.1552) (0.1132) (0.1069)
X3 2.3289 <.0001 0.7074 2.4691 <.0001 0.7651 2.3407 <.0001 0.7543

(0.2359) (0.2664) (0.3119)
X4 -0.6906 <.0001 0.2098 -0.5742 <.0001 -0.1779 -0.4399 <.0001 -0.1418

(0.1478) (0.1090) (0.0927)
X5 0.8811 <.0001 0.2676 0.5667 <.0001 0.1756 0.6999 <.0001 0.2255

(0.1587) (0.1154) (0.1122)
X6 -1.1506 <.0001 0.3495 -0.9382 <.0001 -0.2907 -0.8172 <.0001 -0.2633

(0.1631) (0.1412) (0.1350)
X7 0.5954 <.0001 0.1808 0.6131 <.0001 0.1900 0.5893 <.0001 0.1899

(0.1481) (0.1068) (0.1079)
X8 -1.0822 <.0001 0.3287 -0.9394 <.0001 -0.2911 -0.9340 <.0001 -0.3010

(0.1584) (0.1411) (0.1450)
X9 -0.3169 0.0290 0.0963 -0.4504 <.0001 -0.1396 -0.2725 0.0017 -0.0878

(0.1451) (0.1069) (0.0867)
Standard errors are in parentheses.
Normalized implies that the sum of the estimates’ squares is equal to one.
* implies Ho: βhat  = β, rejected at significance level of 10%
** implies Ho: βhat  = β, rejected at significance level of 5%
*** implies Ho: βhat  = β, rejected at significance level of 1%
s=n, implies results are for data created with a population standard deviation of n, where n=1,2,3.

s=2
Binary Logit Models (original data)

s=1 s=3
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Table 4.6 
 

Binary Logit Models (without outcome=3 observations) 
  s=1 s=2 s=3 

  
Data w/Measurement 

Error 
Data w/Respondent 

Uncertainty
Data w/Measurement 

Error
Data w/Respondent 

Uncertainty
Data w/Measurement 

Error
Data w/Respondent 

Uncertainty
Parameter Estimate P Value Estimate P Value Estimate P Value Estimate P Value Estimate P Value Estimate P Value 
Intercept -0.5505 0.0010 -0.7608 0.0010 -0.9420* <.0001 -1.0750** <.0001 -0.5644 0.0480 -0.9346 0.0050 

 (0.1599)   (0.2302)   (0.2467)   (0.2899)   (0.2848)   (0.3346)  
X1 -0.8555 <.0001 -1.2680 <.0001 -1.0475 <.0001 -1.1497 <.0001 -1.2346 <.0001 -1.4152* <.0001 

 (0.1749)   (0.2739)   (0.1664)   (0.2011)   (0.2016)   (0.2667)  
X2 -0.8041 <.0001 -0.6784 0.0020 -0.5222 <.0001 -0.7521 <.0001 -0.4288 <.0001 -0.6194 <.0001 

 (0.1756)   (0.2165)   (0.1312)   (0.1607)   (0.1195)   (0.1653)  
X3 2.2731 <.0001 3.2884*** <.0001 2.4912 <.0001 3.0595** <.0001 2.4716 <.0001 2.7835 <.0001 

 (0.2602)   (0.3987)   (0.3056)   (0.4051)   (0.3708)   (0.4704)  
X4 -0.7169 <.0001 -0.9482** <.0001 -0.6102 <.0001 -0.7144 <.0001 -0.4930 <.0001 -0.5036 <.0001 
 (0.1665)   (0.2264)   (0.1208)   (0.1421)   (0.1090)   (0.1221)  
X5 0.8830 <.0001 0.9098 <.0001 0.5620 <.0001 0.6098 <.0001 0.6855 <.0001 0.7357 <.0001 
 (0.1789)   (0.2359)   (0.1258)   (0.1482)   (0.1280)   (0.1455)  
X6 -1.1693 <.0001 -1.5716** <.0001 -1.0353 <.0001 -1.2447 <.0001 -0.9277 <.0001 -0.9866 <.0001 
 (0.1822)   (0.2730)   (0.1723)   (0.2083)   (0.1690)   (0.1871)  
X7 0.5761 0.0010 0.8970* <.0001 0.6252 <.0001 0.7626* <.0001 0.6462 <.0001 0.6513 <.0001 
 (0.1676)   (0.2283)   (0.1211)   (0.1478)   (0.1272)   (0.1475)  
X8 -1.1121 <.0001 -1.3662* <.0001 -1.0286 <.0001 -1.1839 <.0001 -1.0387 <.0001 -1.1182 <.0001 
 (0.1823)   (0.2426)   (0.1712)   (0.2104)   (0.1756)   (0.2098)  
X9 -0.1535 0.3100 -0.3370 0.1060 -0.4291 0.0010 -0.5071 <.0001 -0.3589 0.0010 -0.3219 0.0080 
  (0.1512)   (0.2084)   (0.1302)   (0.1421)   (0.1033)   (0.1216)   
Standard errors are in parentheses.           
Normalized implies that the sum of the estimates’ squares is equal to one.        
* implies Ho: βhat  = β, rejected at significance level of 10%         
** implies Ho: βhat  = β, rejected at significance level of 5%         
*** implies Ho: βhat  = β, rejected at significance level of 1%         
s=n, implies results are for data created with a population standard deviation of n, where n=1,2,3. 
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Table 4.7 
 

Parameter Estimate P Value
Normalized 

Estimate Estimate P Value
Normalized 

Estimate Estimate P Value
Normalized 

Estimate Estimate P Value
Normalized 

Estimate Estimate P Value
Normalized 

Estimate Estimate P Value
Normalized 

Estimate
Intercept -0.3206 0.0300 ------ -0.5719 0.0070 ------ -0.9806** <.0001 ------ -0.9575* 0.0010 ------ -0.6674 0.0190 -0.4933 0.0800

(0.1477) ------ (0.2126) ------ (0.2458) ------ (0.2836) ------ (0.2841) (0.2814)
X1 -0.8937 <.0001 -0.2574 -1.4367* <.0001 -0.2893 -1.0894 <.0001 -0.3166 -1.1794 <.0001 -0.2809 -1.3083* <.0001 -0.3676 -1.5229** <.0001 -0.3826

(0.1671) (0.2517) (0.1661) (0.1972) (0.2057) (0.2541)
X2 -0.8574** <.0001 -0.2470 -0.8408 <.0001 -0.1693 -0.5481 <.0001 -0.1593 -0.8024* <.0001 -0.1911 -0.4507 <.0001 -0.1266 -0.6880 <.0001 -0.1728

(0.1694) (0.2136) (0.1305) (0.1598) (0.1215) (0.1535)
X3 2.4427 <.0001 0.7036 3.6375*** <.0001 0.7325 2.6066 <.0001 0.7575 3.2328*** <.0001 0.7701 2.6659 <.0001 0.7490 2.9631* <.0001 0.7443

(0.2543) (0.3995) (0.3105) (0.4174) (0.3860) (0.4543)
X4 -0.7392 <.0001 -0.2129 -0.9823** <.0001 -0.1978 -0.6277 <.0001 -0.1824 -0.7514* <.0001 -0.1790 -0.5065 <.0001 -0.1423 -0.4838 <.0001 -0.1215

(0.1542) (0.2024) (0.1217) (0.1415) (0.1097) (0.1115)
X5 0.9007 <.0001 0.2594 0.9924 <.0001 0.1998 0.5877 <.0001 0.1708 0.6075 <.0001 0.1447 0.7137 <.0001 0.2005 0.8854 <.0001 0.2224

(0.1683) (0.2162) (0.1260) (0.1474) (0.1240) (0.1551)
X6 -1.1774 <.0001 -0.3392 -1.8413*** <.0001 -0.3708 -1.0731 <.0001 -0.3118 -1.3227* <.0001 -0.3151 -1.0007 <.0001 -0.2811 -1.0759 <.0001 -0.2703

(0.1732) (0.2632) (0.1718) (0.2092) (0.1749) (0.1872)
X7 0.6181 <.0001 0.1781 0.8880* <.0001 0.1788 0.6348 <.0001 0.1845 0.7956** <.0001 0.1895 0.7008 <.0001 0.1969 0.6783 <.0001 0.1704

(0.1541) (0.2104) (0.1186) (0.1479) (0.1318) (0.1347)
X8 -1.1803 <.0001 -0.3400 -1.5441** <.0001 -0.3109 -1.0454 <.0001 -0.3038 -1.2424 <.0001 -0.2960 -1.1175 <.0001 -0.3140 -1.2333 <.0001 -0.3098

(0.1728) (0.2382) (0.1672) (0.2122) (0.1820) (0.2115)
X9 -0.1789 0.2210 -0.0515 -0.3816 0.0410 -0.0768 -0.4166 0.0010 -0.1211 -0.5272 <.0001 -0.1256 -0.3723 <.0001 -0.1046 -0.3432 0.0020 -0.0862

(0.1463) (0.1871) (0.1239) (0.1395) (0.1032) (0.1087)
Standard errors are in parentheses.
Normalized implies that the sum of the estimates’ squares is equal to one.
* implies Ho: βhat  = β, rejected at significance level of 10%
** implies Ho: βhat  = β, rejected at significance level of 5%
*** implies Ho: βhat  = β, rejected at significance level of 1%

Data w/Respondent Uncertainty

s=n, implies results are for data created with a population standard deviation of n, where n=1,2,3.

Data w/Measurement Error Data w/Respondent UncertaintyData w/Measurement Error Data w/Respondent Uncertainty Data w/Measurement Error

Binary Logit Models (with reclassified data)
s=1 s=2 s=3
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Table 4.8 

 

Parameter Estimate Estimate Estimate
Intercept ------ ------ ------

------ ------ ------
X1 -0.2373** -0.2645** -0.3066

(0.0397) (0.0393) (0.0363)
X2 -0.2235 -0.2415 -0.1564

(0.0418) (0.0405) (0.0292)
X3 0.7131 0.7073 0.7296

(0.0347) (0.0301) (0.0301)
X4 -0.1936 -0.2174 -0.1895

(0.0371) (0.0392) (0.0301)
X5 0.2596 0.2362 0.1900

(0.0402) (0.0370) (0.0283)
X6 -0.3608 -0.3369 -0.3808

(0.0381) (0.0409) (0.0367)
X7 0.1746 0.1807 0.1610

(0.0317) (0.0290) (0.0302)
X8 -0.3308 -0.3452 -0.3181

(0.0398) (0.0372) (0.0346)
X9 -0.1016 -0.0550*** -0.0710**

(0.0209) (0.0105) (0.0151)

Parameter Estimate Estimate Estimate
Intercept ------ ------ ------

------ ------ ------
X1 -0.3191 -0.3213 -0.2823

(0.0280) (0.0306) (0.0283)
X2 -0.1658 -0.1434 -0.1930

(0.0232) (0.0230) (0.0229)
X3 0.7734** 0.7634 0.7661**

(0.0195) (0.0203) (0.0206)
X4 -0.1673 -0.1672 -0.1741

(0.0211) (0.0222) (0.0217)
X5 0.1631** 0.1685** 0.1497***

(0.0237) (0.0236) (0.0208)
X6 -0.2882 -0.3068 -0.3152

(0.0296) (0.0341) (0.0274)
X7 0.1875 0.1989 0.1897

(0.0228) (0.0255) (0.0237)
X8 -0.2852 -0.2988 -0.3037

(0.0257) (0.0266) (0.0307)
X9 -0.1355 -0.1188 -0.1257

(0.0195) (0.0202) (0.0179)

Parameter Estimate Estimate Estimate
Intercept ------ ------ ------

------ ------ ------
X1 -0.3663** -0.3814** -0.3900***

(0.0224) (0.0228) (0.0220)
X2 -0.1179*** -0.1235** -0.1711

(0.0191) (0.0206) (0.0178)
X3 0.7592 0.7499 0.7426

(0.0189) (0.0195) (0.0219)
X4 -0.1390 -0.1413 -0.1093***

(0.0193) (0.0209) (0.0166)
X5 0.2204 0.1958 0.2214

(0.0256) (0.0244) (0.0236)
X6 -0.2681*** -0.2771** -0.2732***

(0.0257) (0.0272) (0.0241)
X7 0.1883 0.1951 0.1482

(0.0213) (0.0207) (0.0212)
X8 -0.3045 -0.3066 -0.3179

(0.0220) (0.0221) (0.0223)
X9 -0.0869** -0.0987 -0.0922**

(0.0113) (0.0137) (0.0108)
Standard errors are in parentheses.
* implies Ho: βhat  = β, rejected at significance level of 10%
** implies Ho: βhat  = β, rejected at significance level of 5%
*** implies Ho: βhat  = β, rejected at significance level of 1%

[-0.1056, -0.0672] [-0.1268, -0.0817] [-0.1043, -0.0694]

[-0.3310, -0.2579] [-0.3486, -0.2771] [-0.3513, -0.2776]

[0.1532, 0.2225] [0.1615, 0.2285] [0.1297, 0.1982]

[-0.3016, -0.2143] [-0.3213, -0.2295] [-0.3007, -0.2198]

[0.1839, 0.2704] [0.1559, .2371] [0.1830, 0.2613]

[-0.1753, -0.1115] [-0.1772, -0.1078] [-0.1493, -0.0964]

[0.7192, 0.7822] [0.7145, 0.7792] [0.7016, 0.7730]

[-0.1560, -0.0936] [-0.1615, -0.0926] [-0.1981, -0.1387]

[-0.4162, -0.3448] [-0.4049, -0.3296] [-0.4253, -0.3543]

--------- --------- ---------

Original Data Reclassified Data w/Measurement Error Reclassified Data w/Respondent Uncertainty
95% Confidence Interval 95% Confidence Interval 95% Confidence Interval

MRE Models (s=3)

[-0.1673, -0.1045] [-0.1533, -0.0856] [-0.1549, -0.0977]

[-0.3311, -0.2485] [-0.3451, -0.2567] [-0.3407, -0.2440]

[0.1450, 0.2232] [0.1413, 0.2246] [0.1557, 0.2328]

[-0.3366, -0.2415] [-0.3642, -0.2511] [-0.3512, -0.2597]

[0.1336, 0.2123] [0.1309, .2082] [0.1095, 0.1790]

[-0.2136, -0.1448] [-0.2163, -0.1445] [-0.2178, -0.1451]

[0.7336, 0.7971] [0.7259, 0.7920] [0.7327, 0.8016]

[-0.2065, -0.1290] [-0.1945, -0.1174] [-0.2241, -0.1488]

[-0.3574, -0.2655] [-0.3638, -0.2646] [-0.3321, -0.2381]

95% Confidence Interval 95% Confidence Interval 95% Confidence Interval
--------- --------- ---------

MRE Models (s=2)
Original Data Reclassified Data w/Measurement Error Reclassified Data w/Respondent Uncertainty

Original Data

95% Confidence Interval
---------

[-0.3072, -0.1745]

[-0.2861, -0.1476]

[0.6439, 0.7588]

[-0.2672, -0.1458]

[0.2012, 0.3331]

[-0.4113, -0.2843]

[0.1277, 0.2330]

[-0.4003, -0.2689]

[-0.1319, -0.0640]

Reclassified Data w/Measurement Error

95% Confidence Interval
---------

[-0.3160, -0.1864]

[-0.3061, -0.1733]

[0.6510, 0.7515]

[-0.2759, -0.1459]

[0.1935, .3152]

[-0.4012, -0.2651]

[0.1330, 0.2264]

[-0.3984, -0.2770]

[-0.0681, -0.0340]

Reclassified Data w/Respondent Uncertainty

95% Confidence Interval
---------

[-0.3629, -0.2439]

[-0.2172, -0.1214]

[-0.4340, -0.3122]

[0.6676, 0.7688]

[-0.2500, -0.1491]

s=n, implies results are for data created with a population standard deviation of n, where n=1,2,3.

MRE Models (s=1)

[-0.0978, -0.0493]

[0.1190, 0.2214]

[-0.3728, -0.2584]

[0.1468, 0.2380]
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Table 4.9 

 

Parameter Estimate St. Error P Value Estimate St. Error P Value Estimate St. Error P Value Estimate St. Error P Value
X1 -0.3160*** 0.1001 0.0020 -0.4281*** 0.1146 <.0001 -0.8641 0.1256 <.0001 -1.3455** 0.1783 <.0001
X2 -0.3768 0.0981 <.0001 -0.4653 0.1115 <.0001 -0.6894 0.1221 <.0001 -0.9847*** 0.1655 <.0001
X3 0.9584*** 0.1088 <.0001 1.3270*** 0.1370 <.0001 2.4729* 0.1910 <.0001 3.7779*** 0.3353 <.0001
X4 -0.3877 0.0956 <.0001 -0.4814 0.1124 <.0001 -0.5452 0.1166 <.0001 -0.9506*** 0.1619 <.0001
X5 0.4107** 0.0991 <.0001 0.5363 0.1134 <.0001 0.7145 0.1220 <.0001 1.0989** 0.1682 <.0001
X6 -0.4738*** 0.0935 <.0001 -0.5119*** 0.1057 <.0001 -1.1997* 0.1299 <.0001 -1.8373*** 0.2039 <.0001
X7 0.2314*** 0.0935 0.0130 0.4185 0.1115 <.0001 0.5583 0.1185 <.0001 0.8397** 0.1582 <.0001
X8 -0.4521*** 0.0916 <.0001 -0.5682*** 0.1066 <.0001 -0.9482 0.1229 <.0001 -1.4491** 0.1795 <.0001
X9 -0.0504*** 0.0999 0.6140 -0.0231*** 0.1113 0.8350 -0.3231 0.1167 0.0060 -0.5362 0.1514 <.0001

Parameter Estimate St. Error P Value Estimate St. Error P Value Estimate St. Error P Value Estimate St. Error P Value
X1 -0.2581*** 0.0513 <.0001 -0.5685*** 0.0778 <.0001 -0.8514 0.0997 <.0001 -1.0483 0.1268 <.0001
X2 -0.1272*** 0.0491 0.0100 -0.3717** 0.0707 <.0001 -0.4785 0.0824 <.0001 -0.5766 0.0985 <.0001
X3 0.7455*** 0.0640 <.0001 1.5889*** 0.1305 <.0001 2.1873 0.1823 <.0001 2.6535** 0.2486 <.0001
X4 -0.1960*** 0.0506 <.0001 -0.3867 0.0721 <.0001 -0.5634 0.0861 <.0001 -0.7112** 0.1080 <.0001
X5 0.1486*** 0.0522 0.0040 0.3944*** 0.0770 <.0001 0.4744** 0.0869 <.0001 0.6031 0.1054 <.0001
X6 -0.2437*** 0.0522 <.0001 -0.5575*** 0.0803 <.0001 -0.8438 0.1030 <.0001 -1.0095 0.1288 <.0001
X7 0.1842*** 0.0478 <.0001 0.4040 0.0681 <.0001 0.5496 0.0793 <.0001 0.6745* 0.0966 <.0001
X8 -0.2153*** 0.0519 <.0001 -0.5417*** 0.0801 <.0001 -0.8636 0.1027 <.0001 -1.0576 0.1306 <.0001
X9 -0.1515*** 0.0496 0.0020 -0.2175 0.0679 0.0010 -0.4674* 0.0827 <.0001 -0.5393** 0.0975 <.0001

Parameter Estimate St. Error P Value Estimate St. Error P Value Estimate St. Error P Value Estimate St. Error P Value
X1 -0.2252*** 0.0371 <.0001 -0.4789*** 0.0583 <.0001 -1.0368 0.1142 <.0001 -1.3868** 0.1899 <.0001
X2 -0.0760*** 0.0331 0.0220 -0.1174*** 0.0475 0.0130 -0.4959 0.0820 <.0001 -0.6896 0.1246 <.0001
X3 0.4703*** 0.0427 <.0001 0.9597*** 0.0863 <.0001 2.1050 0.2070 <.0001 2.6847 0.3340 <.0001
X4 -0.0624*** 0.0328 0.0570 -0.1237*** 0.0444 0.0050 -0.4501 0.0711 <.0001 -0.5351 0.0967 <.0001
X5 0.1237*** 0.0344 <.0001 0.2732*** 0.0496 <.0001 0.5824 0.0753 <.0001 0.8016 0.1167 <.0001
X6 -0.1360*** 0.0340 <.0001 -0.2781*** 0.0501 <.0001 -0.8508 0.1033 <.0001 -0.9954 0.1480 <.0001
X7 0.1711*** 0.0354 <.0001 0.3609*** 0.0540 <.0001 0.6174 0.0826 <.0001 0.7061* 0.1129 <.0001
X8 -0.2389*** 0.0377 <.0001 -0.4499*** 0.0573 <.0001 -0.8888 0.1033 <.0001 -1.1350 0.1607 <.0001
X9 -0.0639*** 0.0342 0.0620 -0.1092*** 0.0469 0.0200 -0.2519 0.0646 <.0001 -0.3540 0.0861 <.0001
* implies Ho: βhat  = β, rejected at significance level of 10%
** implies Ho: βhat  = β, rejected at significance level of 5%
*** implies Ho: βhat  = β, rejected at significance level of 1%

Data w/Measurement Error Data w/Respondent Uncertainty
Original Reclassified Original Reclassified

Original Reclassified Original Reclassified

Data w/Measurement Error Data w/Respondent Uncertainty

Data w/Measurement Error Data w/Respondent Uncertainty

Ordered Logit Models (s=1)

Ordered Logit Models (s=2)

Ordered Logit Models (s=3)

s=n, implies results are for data created with a population standard deviation of n, where n=1,2,3.

Original OriginalReclassified Reclassified
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Figure 4.1 

Contingent Valuation Example of Latent Responses 
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     Figure 4.2 

Data Generation Process 

  

Generate the dependent variable for each X̂ as follows: 
,ˆ

(500x1)(9x1)(500x9)(500x1)
ΕΒXY * += where B is a vector of 

specified parameter values, E is a vector of random 
logistic error terms, and Y* is a continuous variable. 

Create 3 new data matrices with 
inter-variable correlations imposed 
using the following equation: 

.ˆˆ
(9x9)(500x9)(500x9) PZX =  

 
Obtain principal 
component 
matrix, (9x9)P , 
from IIH 
variables. 

Generate 3 datasets, (500x9)Ẑ , 
containing uncorrelated random 
normal variables, with 
population means and standard 
deviations, ( ,μ s), of (0,1), 
(0,2), and (0,3). 

Transform each Y* into a 
binary dependent variable, 
Y, by censoring such that 

iy  = 2 if *
iy  > 0, and iy  = 

1 otherwise. 

Generate a third outcome of ambiguous 
responses for Y using 2 different 
methods.  This is done for each dataset. 

Random 
Randomly choose 20% of the 
observations in Y and assign 
them a value of three.  These 
observations simulate the 
measurement error in that the 
missing data is unrelated to 
Y*. 

Structural 
Choose a parameter,δ , such that: 

).0(:2

)0()0(:3

)0(:1

*

*

*

δ

δδ

δ

+>=

+≤≤−=

−<=

ii

ii

ii

yify

yify

yify

 

These observations represent those 
respondents who might reasonably truly not 
know their preferences or are ambivalent or 
effectively indifferent about how to answer. 
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Figure 4.3 
Assessment of Ambiguous Observations in Empirical Analysis 

 
 

 
Note: This process is repeated for each dataset. 

Binary regression is 
performed on original 

data, i.e. prior to creation 
of outcome 3. 

Observations representing 
respondent uncertainty 

are removed from 
dependent variable. 

Observations representing 
measurement error are 

removed from dependent 
variable. 

Binary logit is performed 
on the remaining outcome 

1 & 2 observations. 

Binary logit is performed 
on the remaining outcome 

1 & 2 observations. 

LCMNL is used to physically 
reassign outcome 3 observations. 
Those reclassified as outcome 1 
or 2 are inserted back into binary 

dependent variable. 

LCMNL is used to physically 
reassign outcome 3 observations. 
Those reclassified as outcome 1 
or 2 are inserted back into binary 

dependent variable. 

Estimates are tested 
against true parameter 

values. 

Binary logit is performed 
on the outcome 1 & 2 

observations. 

Estimates are tested 
against true parameter 

values. 

Estimates are tested 
against true parameter 

values. 

Binary logit is performed
on the outcome 1 & 2 

observations. 

Estimates are tested 
against true parameter 

values. 

MRE regression is 
performed on the 
outcome 1 & 2 
observations. 

MRE regression is 
performed on the 
outcome 1 & 2 
observations. 

Accuracy of estimates 
is tested. 

Accuracy of estimates 
is tested. 

Ambiguous observations 
representing measurement 

error and respondent 
uncertainty are created using 

methods described in Figure 2.
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Appendix A 

Monotone Rank Estimator (MRE) 

The following model for the treatment of mismeasured dependent variables is based on 

Abrevaya and Hausman (1999), and is an extension of Han’s (1987) generalized 

regression model.  The true latent dependent variable is represented as follows: 

),,( 0
* εβxgY =                                                                                                                (14) 

where ε is an i.i.d. error disturbance, and g is an unknown function containing strictly 

positive partial derivatives at every point.  The distribution of Y then has the following 

c.d.f: 

),*|Pr()|(* dYnYdnF YY =≤=                                                                                      (15) 

where n and d represent potential values for the dependent variable.  For a model with a 

binary dependent variable, the probabilities of misclassification are: 

)0*1Pr(0 <=≡ YYφ                                                                                                         (16) 

)0*0Pr(1 >=≡ YYφ .                                                                                                       (17) 

The conditional c.d.f. becomes 

⎪
⎩

⎪
⎨

⎧
−=<

1
1
0

)0,|( 0
* φdYnFY   

if
if
if

  
⎪
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⎪
⎬

⎫

≥
∈
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)1,0[
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n
n
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                                                                      (18) 

⎪
⎩

⎪
⎨

⎧
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1

0
)0,|( 1

* φdYnFY   
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⎪
⎭

⎪
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∈
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                                                                         (19) 
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 The MRE, which is a rank estimator for semiparametric monotonic linear index 

models, is used to estimate the parameters.  It consists of a vector MREβ̂  that maximizes 

the following objective function: 

∑ ⋅=
i

ii
MRE bxRankYMbS )()()(                                                                                       (20) 

over the set },1:{ =ℜ∈≡ lbb lB  where ℜ represents the real line, M is an increasing 

function in Y, βX'  is the linear index, l represents the number of covariates in x, 

and lb is the determinant of the b vector.  Two comments are in order here.  First, note 

that since the MRE is based on a rank-order process, there is no need to explicitly include 

an intercept in bxi .  Second, equations (18) and (19) imply that the stochastic-dominance 

conditions are fulfilled when 10 )1( φφ >− , which if it holds implies consistency of the 

parameter estimates.   

The Rank function is defined by: 

.)(...21 mbxRankbxbxbx iminii =⇒<<<                                                                       (21) 

Some examples of functions for M in equation (20) are given by Cavanagh and Sherman 

(1998).  For robustness, M(Y) = Rank (Y), for efficiency M(Y) = Y, or an intermediate 

alternative would be },{}{}{)( bYbbYaYaYaYM >+≤≤+<=  such that a and b are real 

numbers and a < b.  By using a semiparametric approach we may be sacrificing some 

efficiency relative to a correctly specified parametric model (Powell, 1994); therefore the 

second option is used to increase the efficiency of the estimates.  Finally, the primary 

condition for consistency is that ])([E XYM  is a nonconstant increasing function of 
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;βX'  however, a sufficient condition for consistency is that the distribution of Y for a 

higher Y* first order stochastically dominates that of a Y associated with a lower Y*. 


