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A central objective in ecology and conservation biology is to understand processes 

limiting species’ distributions and population connectivity.  This is particularly important for 

amphibians, which are in global decline at rate exceeding other vertebrates.  Niche modeling and 

landscape genetics are well suited for addressing distribution and connectivity respectively.  This 

dissertation addresses four objectives: i) test whether landscape genetics is possible on spatial 

and temporal scales relevant to conservation, ii) examine whether spatial processes, 

environmental condition or dispersal limited niche best explains the observed differences in 

Pseudacaris maculata and Bufo boreas distributions in Yellowstone, iii) test alternative 

hypotheses of ecological processes driving B. boreas connectivity in Yellowstone, and iv) 

develop a new application of gravity models to estimate metapopulation connectivity for Rana 

luteiventris in central Idaho.  In Chapter 1, I developed and evaluated “genetic surfacing”, a 

continuous method for representing multilocus genetic variation.  I detected landscape genetic 

structure on a contemporary time scale relevant to conservation questions (≥5 generations post 
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vicariance, migration probability ≤ 0.10), even when population differentiation was minimal (FST 

≥ 0.00015).   Using spatial distribution models in Chapter 2, I found environmental conditions 

limiting species’ distributions to be divergent and distance limited niche theory best explained 

observed species’ distributions.   In Chapter 3, I implemented a novel algorithmic approach to 

test alternative hypotheses of processes limiting connectivity in B. boreas.  At fine scales, 

connectivity was limited by cover, precipitation and roads, whereas ridges, temperature, and 

precipitation limited connectivity at a broad scale.  Using newly derived gravity models in 

Chapter 4, I found R. luteiventris connectivity was a function of both at site and between site 

landscape processes.  Primary productivity and fish presence at sites limited production of 

potential migrants.  Temperature and major topographic complexity between sites limited 

connectivity.  The impact of temperature-moisture regimes on all three species suggests that 

future climate change may have a dramatic impact on anuran distribution and connectivity.  The 

methods developed in this dissertation could be used to predict species’ distributions (niche 

models) and resulting connectivity (landscape genetics) in future landscapes.   
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INTRODUCTION 

A central objective in ecology and conservation biology is to understand processes 

limiting species distribution and population connectivity.  Ecology often focuses on the 

question, “Why is a species here?” However, an equally important question is, “Why is this 

species not here?”  Species’ ranges are generally limited by biotic and abiotic factors, but 

species are often patchily distributed within their range with varying connectivity among 

occupied sites (Ovaskainen and Hanski 2004).  An explanation is that key abiotic variables 

(e.g., moisture, elevation) or inaccessibility exclude the species from a particular area. 

Therefore, on a local or regional scale, landscape complexity is likely critical in limiting 

dispersal and persistence (Seburn et al. 1997, Coulon et al. 2004, Geffen et al. 2004).  This 

leads to two questions.  First, why are some species more patchily distributed than others? 

Second, in these patchy distributions, what limits connectivity?  

In addressing these questions, detailed consideration of landscape processes is at the core 

of our understanding of fine scale species’ distributions and population connectivity.   

Processes limiting species distributions can be elucidated using niche theory and species 

distribution models.  Under the available set of environmental conditions (Ackerly 2003), 

divergent fine-scale distributions could result from random spatial process, differences in 

suitable environmental conditions (“Grinellian” niche theory), or restricted occupancy of the 

suitable environment due to limited dispersal (“dispersal limited” niche theory) (Pulliam 

2000).   Landscape genetics is an emerging discipline that provides a conceptual framework to 

address connectivity, through an integration of landscape ecology and population genetics 

(Manel et al. 2003, Holderegger and Wagner 2006, Storfer et al. 2007).  By integrating 
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methods from spatial statistics, hypotheses of connectivity can be tested with multivariate 

spatial analyses with no a priori definitions of relationships among variables.   

Understanding limits to species’ distribution and connectivity is particularly important for 

amphibians, as many species are in decline with habitat loss as the main causal factor (Storfer 

2003, Stuart et al. 2004).  Amphibian niches are likely restricted by environmental conditions 

such as roads (Mazerolle 2004, Arens et al. 2007, Eigenbrod et al. 2008), fish introduction 

(Pilliod and Peterson 2001, Bosch et al. 2006), wetland disturbance (Gray et al. 2004), and 

forest management (Walters 2007). Amphibians also demonstrate population structure on 

geographic scales appropriate for landscape level analyses of connectivity (Scribner et al. 

2001, Palo et al. 2004, Funk et al. 2005, Spear et al. 2006, Arens et al. 2007).  In addition, 

pond-breeding anurans generally have a biphasic lifecycle and therefore utilize both terrestrial 

and aquatic environments. Finally, identifying landscape variables influencing population 

connectivity in protected areas is vital for understanding currently unexplained declines 

(Collins & Storfer 2003).   

This dissertation is a study of amphibian distribution and connectivity in two natural 

areas, Yellowstone National Park and the Bighorn Crags ID.  I address four objectives: i) test 

whether landscape genetics is possible on spatial and temporal scales relevant to conservation 

(Chapter 1), ii) examine whether spatial processes, environmental condition or dispersal 

limited niche best explains the observed differences in Pseudacaris maculata and Bufo boreas 

distributions in Yellowstone National Park (Chapter 2), iii) test alternative hypotheses of 

ecological processes driving B. boreas connectivity (Chapter 3), and iv) use gravity models to 

estimate metapopulation connectivity for Rana luteiventris in the Bighorn Crags (Chapter 4). 
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OVERVIEW OF CHAPTERS 

Chapter 1: Representing genetic variation as continuous surfaces: An approach for 

identifying spatial dependency in landscape genetic studies 

Chapter 1 addresses three questions: i) Can “genetic surfaces” accurately represent 

landscape genetic structure?, ii) Is landscape genetics possible on a temporal and spatial scale 

relevant to conservation? and iii) What is the advantage of a continuous representation of 

population structure over more global measures of population structure?  

Landscape genetics studies are typically focused on explaining the influence of landscape 

factors on the spatial distribution of genetic variability (Storfer et al. 2007).  Current 

analytical methods often rely on definition of discrete population units, however many 

landscape processes are spatially continuous (e.g., elevation, moisture) limiting the 

applicability of delineated populations for landscape genetics studies (Manel et al. 2003, 

Storfer et al. 2007).  In addition, raw data from neutral markers are not direct measurements 

of a landscape process and must be converted into a spatially informed response variable (e.g., 

migration rate or a measure of relatedness) (Storfer et al. 2007).  To address these issues, I 

developed and evaluated a method for creating a continuous surface from microsatellite DNA.  

I then used the derived surface to test the spatial dependence of observed genetic structure in 

relation to landscape variables.   

 

Chapter 2: Frog and Toad (not) Together: Quantifying differences in species niche and 

distribution 

Chapter 2 addresses three questions: i) are observed distributions of P. maculata and B. 

boreas significantly different?, ii) can P. maculata and B. boreas niche be separated based on 
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environmental requirements (Grinellian niche)? and iii) are the observed distributions best 

explained by a Grinellian or dispersal limited niche theory?  In answering these questions, I 

developed modelling and evaluation methodology addressing current limitations of niche-

based species distribution models (Guisan and Thuiller 2005, Araujo and Guisan 2006).   

The Bufo boreas - Pseudacris maculata system in Yellowstone is ideal for comparison of 

niche-based species distribution models (Guisan and Zimmermann 2000, Guisan and Thuiller 

2005).  Bufo boreas and P. maculata share several basic habitat requirements including semi-

permanent wetlands and warm shallow waters for rearing (Koch and Peterson 1995).  

However, P. maculata is widespread, with a more continuous distribution (Koch and Peterson 

1995, Patla et al. 2006) than B. boreas which is in decline throughout large portions of its 

range (Carey 1993, Koch and Peterson 1995, Muths et al. 2003).  In addition, P. maculata has 

shorter dispersal capabilities and smaller clutch sizes than B. boreas (Spencer 1964, Muths 

2003).  Differences in environmental requirements and dispersal capabilities may explain the 

observed difference in distributions. 

 

Chapter 3: Quantifying Bufo boreas connectivity in Yellowstone National Park with 

landscape genetics 

Chapter 3 addresses three questions regarding B. boreas connectivity in Yellowstone 

National Park: i) what ecological processes (habitat permeability, topographic morphology, 

and temperature-moisture regime) influence connectivity of B. boreas breeding sites?, ii) at 

what scale(s) do these ecological processes affect B. boreas connectivity?, and iii) is B. 

boreas connectivity hierarchical with metrics operating at coarser spatial and temporal scales 
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driving connectivity between genetic clusters; while metrics operating at finer spatial and 

temporal scales will drive connectivity within a genetic cluster? 

Boreal toads (Bufo boreas) in Yellowstone National Park are highly suitable for testing 

ecological processes driving connectivity as measured with neutral genetic data with an 

ecoinformatic approach (Chon and Park 2006).  Distance is a limiting factor for B. boreas 

connectivity (Muths 2003, Manier and Arnold 2006).  However, many landscape factors may 

have an additional affect.  Bufo boreas is known to be sensitive to habitat permeability as 

measured by canopy cover (Bartelt et al. 2004), roads (Arens et al. 2007), and thermal 

influence (Koch and Peterson 1995).  Topographically complex areas prevalent throughout 

Yellowstone may make dispersal physiologically expensive (Lougheed et al. 1999, Funk et al. 

2005) and temperature-moisture regimes likely limit connectivity (Palo et al. 2003, Bartelt 

and Peterson 2005). Each of these processes (habitat permeability, topographic morphology, 

and temperature-moisture) may influence connectivity at multiple spatial scales. In addition, 

ecological processes likely operate in a hierarchy with fine-scale processes influencing local 

connectivity and more broad-scale processes resulting in major breaks in genetic connectivity. 

Genetic measures of connectivity may have some advantages over demographically based 

measures in amphibian studies.  Amphibian populations generally fluctuate greatly in census 

size from year to year, consequently reducing statistical power to detect population trends 

unless monitoring is long-term (i.e., up to twenty years) (Alford and Richards 1999, Green 

2003).  In addition, directional migration rates (Pritchard et al. 2000), effective population 

size (Xu and Fu 2004), and population decline (Cornuet and Luikart 1997, Luikart and 

Cornuet 1998, Luikart et al. 1998a, Luikart et al. 1998b, Beebee and Rowe 2001) can be 
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estimated from genetic data in a relatively short time-frame with fewer logistical constraints 

than demographic studies.   

 

Chapter 4:  Frogs in the high mountains: application of gravity models for landscape genetics 

Chapter 4 develops gravity models for landscape genetic application and addresses three 

primary questions: i) is genetic structure clustered by basin or drainage?, ii) is gene flow 

influenced by both at site and among site landscape processes?, and iii) what landscape 

processes explain observed gene flow among sites?   

Using traditional population genetic approaches and gravity models adapted for landscape 

genetics, I investigated fine-scale landscape genetic structure of R. luteiventris in eight basins 

in the Bighorn Crags, Idaho. The Bighorn Crags study area is well suited to addressing 

questions of metapopulation dynamics with genetic data.  Previous research on R. luteiventris 

habitat use identified individual movements to reach hibernation, breeding and summer 

feeding sites (Pilliod et al. 2002).  Rana luteiventris movements through terrestrial habitats 

are restricted by moisture conditions (Pilliod et al. 2002) and elevation (Funk et al. 2005).  In 

addition, breeding is limited by the presence of fish (Pilliod and Peterson 2001, Pilliod et al. 

2002).  Gravity models (Voorhees 1956, Anderson 1979, Willig and Bailey 1979, 

Fotheringham and O'Kelly 1989), adapted from transportation and economic modeling, allow 

the inclusion of both at site and between site landscape characteristics to estimate their 

influence on connectivity.   
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CHAPTER FORMATS AND ATTRIBUTION 

My dissertation is a collection of four manuscripts for publication in scientific journals.  

Although I made some minor formatting adjustments for the sake of consistency among 

chapters, each chapter is formatted for its respective journal including reference format and 

limits on display items (tables and figures).  I was the primary contributor for each chapter 

conducting data collection, analytical development, analysis, and writing.  However, both the 

challenge and strength of landscape genetics is the integrated nature of the field.  Therefore, 

several collaborations were important for integrating cutting-edge ideas and approaches for 

this dissertation.  As my committee chair, Andrew Storfer contributed to idea refinement and 

manuscript revisions on all chapters and is thus a coauthor on all chapters.  I collaborated with 

Jeffrey Evans, a landscape ecologist, to integrate cutting edge tools from landscape ecology 

and apply these tools to population genetic data.  I collaborated with Ray Dezzani to develop 

an implementation of gravity models for landscape genetics.  Chuck Peterson contributed to 

the development of sample design and interpretation of results based on years of experience 

working in Yellowstone.  David Pilliod developed the field design, was responsible for 

sample collection, and provided context for the results based on more than 10 years 

experience in the Bighorn Crags for Chapter 4.  At the time of defense, Chapter 1 was 

resubmitted and in review for Ecography.  Chapter 2 is formatted for Ecology which has a 

strict page limit and instructs authors to rely heavily on appendices as a way to include 

additional information.  Chapter 3 is in review with Ecology.  Chapter 4 is formatted for The 

American Naturalist, which prefers tables and figures imbedded in the text.  
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ABSTRACT 

Landscape genetics, an emerging field integrating landscape ecology and population genetics, 

has great potential to influence our understanding of habitat connectivity and distribution of 

organisms.  Whereas typical population genetics studies summarize gene flow as pair-wise 

measures between sampling localities, landscape characteristics that influence population genetic 

connectivity are often continuously distributed in space.  Thus, there are currently gaps in both 

the ability to analyze genotypic data in a continuous spatial context and our knowledge of 

expected of landscape genetic structure under varying conditions.  We present a framework for 

generating continuous “genetic surfaces”, evaluate their statistical properties, and quantify 

statistical behavior of landscape genetic structure in a simple landscape.  We simulated 

microsatellite genotypes under varying parameters (time since vicariance, migration, effective 

population size) and used ancestry (q) values from STRUCTURE to interpolate a genetic surface.  

Using a spatially adjusted Pearson’s correlation coefficient to test the significance of landscape 

variable(s) on genetic structure we were able to detect landscape genetic structure on a 

contemporary time scale (≥5 generations post vicariance, migration probability ≤ 0.10) even 

when population differentiation was minimal (FST ≥ 0.00015).  We show that genetic variation 

can be significantly correlated with geographic distance even when genetic structure is due to 

landscape variable(s), demonstrating the importance of testing landscape influence on genetic 

structure.  Finally, we apply genetic surfacing to analyze an empirical dataset of black bears from 

Northern Idaho, USA.  We find black bear genetic variation is a function of distance 

(autocorrelation) and habitat patch (spatial dependency), consistent with previous results 

indicating genetic variation was influenced by landscape by resistance.  These results suggest 
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genetic surfaces can be used to test competing hypotheses of the influence of landscape 

characteristics on genetic structure without delineation of categorical groups. 

 

INTRODUCTION 

A key objective of ecological studies is to understand the influence of biotic and abiotic 

factors on population connectivity, and resulting fine-scale species’ distributions across a 

landscape.  As a relatively new approach to assess connectivity, landscape genetics is an 

emerging discipline that aims to quantify the effect of landscape composition, configuration and 

matrix quality on the spatial distribution of genetic variation (Holderegger and Wagner 2006, 

Storfer et al. 2007).  Evaluating neutral genetic variation in a landscape context has already 

provided insights into species’ ecology such as identification of potential barriers to gene flow 

(for review, see Manel et al. 2003, Storfer et al 2007).  However, our ability to quantify the 

relationship between genetic variation and multiple landscape variables with a robust assessment 

of error is currently constrained by the unique nature of multilocus data and available analytical 

tools (Storfer et al. 2007).   

Compared to typical ecological data, spatial incorporation of neutral multilocus genetic data 

presents two unique complexities.  Whereas typical ecological response variables (e.g., soil 

moisture, tree height, site occupancy) have direct ecological interpretation and the observed 

value can be input directly into a statistical model, neutral genotypic measurements such as 

microsatellites are a collection of DNA fragment lengths.  These data are only a meaningful 

response variable when being considered in the context of relationships among alleles, as allele 

frequency distributions, and/or differences in heterozygosity.  In addition, ecological 

measurements can be associated with explicit spatial locations.  In contrast, genetic summary 
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statistics are generally not associated with sample locations, but represent an aspatial genetic 

distance between sample pairs (e.g, FST, Nei’s distance).   

Several studies propose methods to estimate spatial location(s) of gene flow between pairs of 

sample locations (Arnaud 2003, Cushman et al. 2006, McRae 2006, McRae and Beier 2007, 

Spear et al. 2005).  These approaches are extremely valuable; however, most methods only select 

a single path through the landscape based on ranked costs (but see McRae and Beier 2007).  

Although multiple costs or combinations can be tested (Cushman et al. 2006), empirical costs of 

movement though the landscape may be unknown, difficult to hypothesize, or landscape 

variables may have a non-linear relationship with gene flow.  In addition, significance of 

landscape genetic variation is often evaluated using the partial Mantel tests where significance 

tests may be unreliable (Castellano and Balletto 2002, Raufaste and Rousset 2001, Rousset 

2002).   

As an alternative, spatial autocorrelation statistics have been used to explain genetic variation 

in a spatially continuous manner (Epperson 2003, Shimatani and Takahashi 2003, Slatkin and 

Arter 1991, Sokal et al. 1997, Sokal et al. 1998).  However as opposed to strict spatial 

autocorrelation, the pattern of genetic variation may be the result of spatial dependency (Wagner 

and Fortin 2005), where another spatial variable drives genetic variation (e.g., habitat patch; 

Bockelmann et al. 2003, Keyghobadi et al. 2005).  If this variable is autocorrelated, the result can 

be a significant autocorrelation statistic, deemed “false autocorrelation” (Legendre et al. 2002).  

In addition, there may be an interaction between autocorrelation and spatial dependency (Fortin 

and Dale 2005, Legendre et al. 2002).  An optimal solution would allow testing of multiple 

landscape characteristics with competing hypotheses of autocorrelation, spatial dependency, and 

autocorrelation-spatial dependency interaction without the necessity of defining costs of 
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independent variables (Storfer et al. 2007).  To achieve this goal, raw multilocus genotypic data 

could be converted into point representations of genetic variation, creating a common theoretical 

base for data analysis between population genetics and spatial statistics (Shimatani and 

Takahashi 2003).   

Representing whole genotypes as spatially referenced, continuous measures of genetic 

structure would advance our ability to test the effect of continuous landscape variables with well-

developed multivariate spatial statistics, such as spatial regression methods (Fotheringham et al. 

2002, Haining 2003) and point pattern analysis (Diggle 2003).  These methods offer several 

advantages relative to widely applied methods in landscape genetics including: ability to estimate 

the influence of multiple independent variables simultaneously, parameter estimates for these 

variables that are valid in the presence of spatial autocorrelation, robust assessment of 

uncertainty, and ability to use landscape genetic models for spatial prediction (Wagner and 

Fortin 2005).  Thus far, such methods have yet to be derived for landscape genetics.   

To address these issues, we develop and evaluate an approach based on a novel integration of 

available methodological components for creating a continuous surface of genetic variation.  We 

use a Bayesian clustering algorithm (Pritchard et al. 2000) to generate an ancestry value for each 

spatially referenced genotype to generate point values for surface interpolation.  Via simulation, 

we address the following questions using a genetic surfacing approach: 1) Does landscape 

genetics have the power to detect the effect of contemporary landscape condition?; 2) How much 

data are needed to have the power to detect landscape genetic structure?;  3) Can landscape 

genetics accurately identify the process(es) generating landscape genetic structure?; and 4) What 

is gained using a landscape genetic approach compared to standard global statistics (e.g., FST)?  
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Finally, we use a black bear genetic dataset from Northern Idaho, USA (Cushman et al. 2006) to 

give an example of genetic surfacing with an empirical dataset. 

 

METHODS 

Simulation Components 

Our genetic surfacing simulations had six main steps: defining the landscape, simulation of 

multilocus genotypes, subsampling genotypes, estimating ancestry, surface interpolation, and 

testing models of landscape genetic structure.  We outline the steps of the simulations below and 

as a flow chart (Fig. 1).  Additional details are located in Appendix 1. 

Step 1 – Defining the Landscape  

We defined two landscapes (48 km X 48 km) in ArcInfo (ESRI 2005).  Landscape A (Fig. 

1A) contained two patches of equally suitable habitat separated by unsuitable habitat and was 

used to simulate a landscape effect independent of distance (i.e., spatial dependency).  In 

landscape B (Fig. 1B), each patch was partitioned into five subpatches of equally suitable habitat 

for simulations including autocorrelation.  In an empirical landscape, habitat patches could be 

defined by landscape variables (e.g., slope or moisture) or ideally, the landscape could be 

represented by continuous values (McGarigal and Cushman 2005).   

Step 2 – Simulation of Multilocus Genotypes 

To address if landscape genetics has the power to detect the effect of current landscape 

condition, we simulated microsatellite genotypes in EASYPOP 1.8 (Balloux 2001) under various 

conditions (Table 1).  In EASYPOP we parameterized either two (Fig. 1A; one “population” per 

habitat patch) or 10 “populations” (Fig. 1B; one “population” per subpatch).  It should be noted 

that these are “populations” only as the population parameter in EASYPOP (Balloux 2001).  That 
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is, with high levels of migration, they may be genetically indistinct.  In landscape A, we varied 

time since vicariance (T, number of generations of separation), migration (M, probability per 

individual of migration per generation), and effective population size (N, number of breeding 

individuals contributing to the next generation) (Balloux 2001). In landscape B, we implemented 

a hierarchical stepping-stone model of migration (HM) (Balloux 2001).  The hierarchical 

stepping-stone model of migration has two migration parameters: migration rate between 

subpatches within the same patch and migration rate between patches (Fig. 1B).  We used this 

model to simulate a distance effect (i.e., autocorrelation without an effect of the unsuitable 

habitat) and an interaction between distance and landscape patch (Fig. 1B, see Table 1 for range 

of conditions).  To model genetic variation within populations of a mobile species, we 

incorporated the potential for individuals to move freely within their given habitat patch within a 

generation.  We implemented this by randomly assigning individuals within their patch 

(landscape A, Fig. 1) or subpatch (landscape B, Fig. 1) using ArcMap 9.1 (ESRI 2005) for each 

simulation.   

Step 3 – Subsampling 

To address how much data are needed to detect landscape genetic structure, we varied 

sample size and number of loci used by subsampling genotypes and loci of each simulated 

dataset.  Using R statistical package (R Development Core Team 2006), we randomly sampled 

genotypes without replacement (at 100, 20, 10, and 5%) across the entire landscape to emulate 

different levels of field sampling without knowledge of habitat patch or population boundaries.  

We then analyzed each subsample for four quantities of loci: all 30, 20, 10 and 5 loci.   
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Step 4 – Estimating Proportion of Ancestry Values 

We used the Bayesian clustering algorithm STRUCTURE (Pritchard et al. 2000) to derive a 

continuous measure of genetic variation based on unclassified ancestry values (ranging from 0 - 

1).  STRUCTURE ancestry values are a proportion of ancestry of each individual’s genotype to 

each of K populations (“genetic clusters”).  A gradient in genetic structure is represented by 

expressing the degree of ancestry in a given genetic cluster, maintaining the spatial and statistical 

variability within cluster.  This is akin to fuzzy set theory as applied in remote sensing 

applications (Bosserman and Ragade 1982, Metternicht 2003), where the response variable may 

be proportion or probability of membership in multiple habitat classes.  The number of clusters 

identified by STRUCTURE was selected using ∆K (Evanno et al. 2005, Pritchard et al. 2000), and 

appending ancestry values to each genotype in R (Fig. 1).   

Step 5 – Interpolation of a Genetic Surface 

We interpolated a genetic surface from the ancestry values for each observed genotype using 

analyses that are comparable, repeatable, and automated across conditions and replicates.  In no 

cases did STRUCTURE identify more than two clusters (Evanno et al. 2005); therefore, one genetic 

surface could be generated from the ancestry values for each individual for one of the two 

genetic clusters.  In addition, to quantify whether random effects can be correctly identified with 

a genetic surface (i.e., no structure), surfaces were interpolated from ancestry values for all data 

sets (K=2).  We created genetic surfaces with an inverse distance weighted interpolation (IDW) 

(Cressie 1993) with the following parameters: a power function of 2 to control the tension of the 

surface, a variable search radius of 12 neighboring observations, and a resolution of 30 m2. 
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Step 6 – Test Landscape Genetic Models 

Under our simulated conditions, genetic variation could be due to spatial dependency 

(“habitat patch”), spatial autocorrelation (“distance”), both (“patch-distance interaction”) 

(Legendre et al. 2002), or random effects.  We calculated a raster to represent each hypotheses of 

landscape genetic structure in ArcInfo (ESRI 2002).  The habitat patch raster consisted of a 

unique value assigned to each habitat patch (Fig. 1).  The distance raster was mean distance (m) 

for a subpatch from patch 1a as a reference point (Fig. 1).  The patch-distance interaction raster 

evaluated an interaction between habitat and distance.  We achieved this by multiplying distance 

from the unsuitable habitat by patch value (1 for patch 1 and -1 for patch 2, Fig. 1).  Using a 

modified version of program MODTTEST (Legendre 2000), we calculated a Pearson’s correlation 

coefficient between the genetic surface and each of the three models of landscape genetic 

structure under each simulation condition (n=1000) (Dutilleul 1993, Fortin and Payette 2002, 

Legendre et al. 2002).  As implemented in MODTTEST, in our case the Pearson’s correlation is 

insensitive to violations of bivariate normal in the landscape patch analysis (r=0.987 to 

Spearman-rank correlation).   

Power, Accuracy and Process Identification 

We assessed model performance by power, accuracy, and identification of the simulated 

process (distance, habitat patch, patch-distance interaction).  We assessed statistical power (1-β) 

for both the complete simulated dataset and subsampling levels from Step 3.  This addresses both 

the power to detect landscape genetic structure for a given set of conditions, as well as the 

amount of data (sample size and number of loci) required to detect that landscape genetic 

structure.   
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We evaluated accuracy by two methods: presence of Type I errors and correct identification 

of simulated landscape genetic structure (distance, habitat patch, or patch-distance interaction).  

Type I errors occur where significant genetic structure is detected in the absence of simulated 

genetic structure (Legendre et al. 2002, Zar 1999).  We assessed Type I error under two 

conditions: 1) genotypes with randomized XY coordinates and 2) simulation conditions where no 

landscape genetic structure was present.  To assess the first, we randomized genotypes in step 2 

and then completed the analysis twenty times to evaluate a condition known to have no 

significant landscape genetic structure (Fig. 1).  For the second assessment of Type I error, we 

identified simulations where the null hypothesis (no landscape genetic structure) was true (T1; 

simulations where no significant landscape genetic structure was detected using the complete 

dataset, see Table 1).  If landscape genetic structure is not detected with the complete dataset, 

any subsample with a significant result is a Type I error.   

To evaluate the accuracy of variable selection, we calculated the number of instances where 

the simulated (“correct”) model of landscape genetic structure was identified out of the total 

number of analyses.  As a general estimate of model choice, we calculated the number of 

instances where the “correct” relationship had the highest correlation coefficient out of the total 

number of significant analyses.  For simulations in landscape A, the “correct” relationship was 

the habitat patch model (Table 1).  For simulations in landscape B, the “correct” relationship was 

the distance model for HM4 and HM8 where migration was equal across the landscape (Table 1).   

For the remaining simulations, identifying the “correct” relationship was more complex 

because we simulated multiple relationships simultaneously.  We identified the “best” 

relationship based on the ability to detect landscape genetic structure in simulations from 

landscape A (Appendix 1).  For example, if the within patch migration probability is 0.2 and 
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between patch migration 0.1, we would not expect to detect a distance effect if 0.2 probability of 

migration was undetectable in landscape A.  Therefore, the “best” relationship in these 

simulations would be the habitat patch model.  In addition, when the migration probability was 

disparate between versus within habitat patches, genetic surfacing may only detect the stronger 

restriction to migration probability.  We considered the strongest correlation non-spurious as 

long as it identified either the “best” relationship or the landscape genetic model corresponding 

to the lowest migration probability.  Then we evaluated the power to detect a significant 

interaction between autocorrelation and spatial dependency (i.e., patch-distance interaction) for 

different levels of migration within and between patches.   

Comparison to Standard Genetic Statistics 

To evaluate the comparability of the genetic surfacing approach to standard genetic statistics, 

we calculated FST (standard measure of genetic distance based on heterozygosity) and allelic 

richness by patch for all simulations.  We then calculated the number of significant genetic 

surfaces by level of genetic differentiation (FST) across all simulations. 

Empirical Illustration  

We utilized a previously published empirical dataset of black bear (Ursus americanus) 

genotypes from northern Idaho, USA (Cushman et al. 2006) for a simple illustration of the 

genetic surfacing approach.  The dataset consists of 146 unique black bear genotypes generated 

using nine microsatellite loci collected on a 2.6 km2 grid (Cushman et al. 2006).  We applied the 

genetic surfacing framework, with minor adjustments.  So that results would be comparable with 

out simulations, we identified relatively coarse-scale habitat patches based on the major 

elevation break in a digital elevation model (DEM) for the study area (elevation = 800 m) 

determined by presence of suitable habitat and bear observations.  This created four habitat 
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patches (Fig. 2): suitable habitat (1, 2, 4) and unsuitable habitat (3).  Patch four (Fig. 2) was 

outside the study area; therefore it was excluded from the analysis.  We used the resulting patch 

configuration to create the habitat patch, distance and patch-distance interaction models as in the 

simulation (see Fig 1, Step 6).  We executed STRUCTURE, interpolated the genetic surface, and 

performed the spatially adjusted Pearson’s correlation as in the analyses of the simulated data 

(Fig. 1).  We then compared the results to those of Cushman et al. (2006). 

 

RESULTS 

Using genetic surfacing, we were able to detect landscape genetic structure generated by 

contemporary landscape condition (≥5 generations post vicariance, Table 1), with low to 

moderately high levels of migration (migration probability 0.0-0.1) and when population 

differentiation is minimal (FST ≥ 0.00015).  In addition, we demonstrate that the correlation 

between genetic variation and distance can be significant when the simulated process was habitat 

patch only (i.e., spatial dependency).  However, by comparing multiple models (habitat patch, 

distance, patch-distance interaction) we were able to correctly identify the simulated relationship 

(e.g., habitat patch alone) 96% of the time (Appendix 2). 

We found genetic surfacing to be insensitive to misidentification of number of genetic 

clusters (K) in STRUCTURE.  In all simulations, analyses in STRUCTURE suggested that either one 

or two genetic clusters (K) were most likely.  However, in 9.37% (322/3434) of analyses, K=2 

was not a significant improvement over K=1 (Table 1, Appendix 2).  Even still, we found 

evidence of continuous genetic structure.  We identified significant landscape genetic structure 

for 16.15% (52/322) of these analyses with moderately high power (0.7453), and low Type I 

error (3.73%, 12/322).  In addition, when ancestry values for K greater than two were use for 
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surface interpolation for a cross section of simulations, Pearson’s correlations and model choice 

did not significantly change (r = 0.91). 

Statistical Power – Time, Migration, and Effective Population Size 

Using genetic surfacing, we were able to detect the effect of current landscape condition five 

generations post vicariance, 0 - 0.1 probability of migration, for the range of simulated 

population sizes, and in the presence of internal patch structure (Table 1, Appendix 1).  The 

strength of the relationship between the landscape model and the genetic surface increased as 

time since vicariance increased from zero, significant for all simulations 5 – 1000 generations 

post vicariance (Table 1; Figs. 3a,b).  Genetic surfaces appeared to be less distinct in the 

presence of migration between habitat patches (Figs. 3c,d).  However, all analyses detected 

significant landscape genetic structure for simulations with migration probabilities between 0 

(M1) – 0.1 (M6) (r = 0.574; Table 1).  Variation in effective population size or unequal 

population size had little effect on the power to detect the simulated genetic structure, unless 

global effective population size was small (n=50) compounded by the presence of migration 

(Appendices 1,2).  In the presence of internal patch structure (Fig. 1B), we were able to detect 

the simulated landscape genetic structure 97.5% of the time (Table 1).   

Statistical Power – Data requirements 

We gained more power by increasing sample size as opposed to increasing number of loci 

(Fig. 4a), with data requirements dependent on the amount of genetic structure.  As we increased 

time since vicariance, fewer samples were necessary to have sufficient power to detect 

significant landscape genetic structure (Fig. 4b).  For example, with 20% sampling genetic 

surfacing had 0.90 power 50 generations post vicariance but only 0.20 power to detect landscape 

genetic structure 10 generations post vicariance (Fig. 4c).  At the same sampling level, when 
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migration probability increased from 0.05 to 0.1, power decreased from 0.92 to 0.10 (Appendix 

2).  However, power increased to 0.55 with complete sampling of simulations with migration 

probability of 0.1 (Fig. 4d).  For more moderate levels of migration (≤0.005), we were able to 

detect landscape genetic structure regardless of sample size or number of loci (Fig. 4d, Appendix 

2).  In general, population size and unequal population size had little effect on power (for details, 

see Appendices 1,2).   

Accuracy and Process Identification 

We were able to identify the presence of landscape genetic structure and the model used to 

simulate landscape genetic structure accurately.  In the randomization assessment of accuracy, 

only 3.8% (468/12,300) of the correlations between the genetic surface and model of landscape 

genetic structure were significant, below the selected p-value (0.05).  The Type I error rate was 

also below 5% for all samples sizes and number of loci (0.11 – 0.48).  In simulation conditions 

without landscape genetic structure (T1, T2, M7), the Type I error was 5% (12/240).  When 

evaluating the accuracy to identify the simulated process (habitat patch, distance, patch-distance 

interaction), all correlations between the genetic surface and each model of landscape genetic 

structure was often significant (Figs. 5 a,b,c).  After model comparison the “correct” model was 

selected for most simulations without internal patch structure (>95%; Appendix 2, Figs. 5d,e).  

When we simulated a distinct hierarchical effect (HM5), genetic surfacing selected the patch-

distance interaction model (“best” model; Fig. 5f; Appendix 2).  When the hierarchical effect 

was less marked (HM1, HM6) or within patch migration was high (HM2, HM3, HM6, HM7) the 

habitat patch model was selected (Figs. 5c,f; Appendix 2).  When migration probability was 

constant between subpatches across the entire landscape (HM4, HM8), the distance model was 

correctly chosen more frequently than the other two models (Appendix 2).   
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Comparison to Standard Genetic Statistics 

Across all simulated conditions and sample sizes, we were able to detect landscape genetic 

structure even when FST values were minimal (0.00015 - 0.05, r = 0.113 – 0.934, p-value <0.001; 

Fig. 6).  This result was most striking when we simulated internal patch structure, which 

produced more continuous genetic structure (Appendix 2).  Significant landscape genetic 

structure when FST was minimal was not the result of Type I errors, which was < 0.05 for these 

cases.   

Empirical Application 

We identified weak genetic structure in the black bear samples from the study area with two 

supported genetic clusters (K =2) and FST = 0.061 (Pritchard et al. 2000).  Raw ancestry values 

formed a continuous distribution from 0.0806 – 0.909 (mean = 0.482, S.D. = 0.227), analogous 

to a transition from one cover type to a second cover type (Fig. 2).  We had the power to detect a 

landscape genetic structure, with significant correlations with all three models of landscape 

genetic structure and the genetic surface (p-values 0.01 - <0.0001).  Out of the tested models, the 

patch-distance interaction model (autocorrelation with spatial dependency) had the most support 

(r = 0.645; p-value < 0.0001).  In contrast, if we had applied STRUCTURE for discrete 

classification of population membership with an assignment threshold of 0.75 (ancestry value), 

63.7% (93/146) of individuals would be unclassified (“admixed”) indicating lack of genetic 

structure.  

 

DISCUSSION 

Our approach demonstrates that it is possible to achieve one of the central goals of landscape 

genetics: detect the effects of the current landscape on genetic variation of a focal species, even 
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with minimal genetic structure characteristic of fine-scale studies (Coulon et al. 2004).   In 

addition, a genetic surfacing approach addresses some of the current limitations in landscape 

genetics by providing a statistically powerful, continuous representation of genetic variation.  

When applied to a published, empirical dataset our approach produced consistent results.  

Finally, although we used discrete landscape patches for the sake of reproducibility and 

comparability among simulations, genetic surfacing provides a framework for modeling the 

effects of continuous landscape variables in empirical application. 

Statistical Power – Data requirements 

Genetic surfacing had the power to detect landscape genetic structure under conditions likely 

observed in extant landscapes:  ≥ 5 generations post vicariance and zero to moderately high 

migration rates (Riley et al. 2006, Scribner et al. 2001).  This is a substantial improvement over 

more traditional methods where up to 60 generations have been required to detect landscape 

effects (Holzhauer et al. 2006, Keyghobadi et al. 2005).  Genetic metrics based on heterozygosity 

(such as FST) are less sensitive to changes in genetic variation than metrics based on allele 

frequency distributions (e.g., ancestry values) and could represent the effects of past process in 

the presence of more recent landscape change (Holzhauer et al. 2006, Keyghobadi et al. 2005).   

The data required for high statistical power of genetic surfacing are practical for broad 

application to empirical systems, given the following considerations.  First, our simulations 

likely underestimate microsatellite allelic diversity relative to empirical application.  We 

randomly subsampled microsatellite loci for analysis, some of which were invariant.  However, 

researchers generally exclude monomorphic loci and may select highly polymorphic loci.  

Second, adding samples to the analyses increases statistical power of genetic surfacing more 

quickly than adding loci (Fig. 4a).  In application, it is generally easier for researchers to increase 
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sample size than develop additional loci, which add power in conventional population genetic 

application.  Because we randomly sampled genotypes across the landscape, increasing sample 

size enhances the spatial distribution of observations improving the estimate (Legendre et al. 

2002).  Third, the absolute number of samples per population does not notably increase (20 - 30 

samples) as population size decreases or populations become unequal in size (Appendix 2).  

Finally, more complex spatial sampling designs than the random sample employed in this study 

may reduce the number of samples required for equivalent power (Rempel and Kushneriuk 

2003).    

Accuracy and Process Identification 

Genetic surfacing as presented in this paper is accurate and robust.  The low Type I error 

rates demonstrate that significant relationships between the genetic surface and the three 

landscape genetic models are not artifacts of the simulation conditions, use of ancestry values, or 

how landscape rasters were calculated.  In addition, we show that landscape genetic structure can 

be distinguished from random effects and is robust to a misidentification of K.  However, genetic 

surfacing is not dependent on STRUCTURE ancestry used in this demonstration.  Any genotypic 

point data calculated independently from space could be used for a surface interpolation 

including other clustering algorithms (Corander et al. 2003), proportion of shared alleles, or other 

point estimates of genetic diversity.   

Although the genetic surfacing approach is accurate, misidentification of the process 

generating observed genetic structure is possible when multiple models are not considered.  We 

demonstrate that distance can be significant due to ‘false’ autocorrelation (Legendre 1993).  That 

is, genetic surfacing detected a significant distance relationship when observations were not 

spatially autocorrelated but rather dependent on some other variable, which is itself 
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autocorrelated.  For example, although genetic structure was simulated solely as a product of 

habitat patch in landscape A (Fig.1A), significant correlation coefficients between the genetic 

surface and the distance model are present due to autocorrelation of habitat patches ( I = 0.98, 

p<0.001).  However, when we compared multiple models, habitat patch explained more variation 

than distance or patch-distance interaction.  This demonstrates that genetic surfacing can 

differentiate between spatial autocorrelation (i.e., isolation-by-distance) and spatial dependency 

(i.e., genetic structure that is dependent on an autocorrelated variable such as habitat patch) 

(Fortin and Dale 2005).  This result emphasizes the value of incorporating landscape variables in 

broader population genetics research and the importance of testing multiple hypotheses of 

genetic structure. 

Genetic surfacing did not always detect patch-distance interaction as the correct condition for 

data generated under this model (Appendix 2).  Distance was only identified if within patch 

migration was restricted (probability of migration = 0.05) but not extremely different from the 

migration probability between habitat patches (Fig. 5c).  There are two principal reasons for this 

limitation.  First, genetic divergence with high levels of migration within patches (especially 

with low levels of migration between patches) is typically low.  Second, in the stepping-stone 

simulations with internal patch structure, the Pearson’s correlation may have low power to 

distinguish between the three landscape models (distance, habitat patch, patch-distance 

interaction).  Since genetic surfacing identified hierarchical structure when the simulated 

hierarchical genetic structure was most distinct (HM5), it is likely genetic signal that limits 

model choice more than more than spatial signal.  Significance testing via a randomization 

method (Gardner et al. 1987) may improve model choice.   
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Comparison to Standard Genetic Statistics 

Recent work suggests low values of FST may be statistically, but not necessarily biologically, 

significant when using highly polymorphic genetic markers such as microsatellites (Hedrick 

2005, Waples and Gaggiotti 2006).  With high power attained with highly polymorphic loci, it is 

possible to detect significant subdivision (i.e., Fst is significantly > 0) when the actual value of 

the statistic is quite low (e.g.,. FST < 0.05) and the implied level of gene flow is quite high.  

However, our continuous genetic surfacing approach suggests ecologically relevant landscape 

effects may be present even when FST <0.05 (Fig. 6).  Because the genetic surface is a spatially 

continuous measure of genetic structure, it reflects population structure not captured in a global 

summary such as FST.  Thus, analyzing the genotypic data in a spatially informed manner and 

using spatial analysis methods increases the power to explain how landscape features influence 

population genetic structure relative to standard methods.   

Empirical Application 

In application to an empirical dataset, we demonstrate the ability to detect landscape genetic 

structure with a realistic amount of data (146 samples, 9 loci) and select an ecologically 

reasonable model using a dataset with minimal global genetic structure.  In analysis of this 

dataset, Cushman et al. (2006) tested multiple hypotheses of genetic differentiation, including 

isolation-by-distance, barrier (valley), and landscape resistance.  They found the landscape 

resistance model had the most statistical support of their tested models.  We tested three coarser 

–scale models of landscape genetic structure consistent with our simulations: distance (analogous 

to the isolation-by-distance model), habitat patch (analogous to the barrier model), and patch-

distance interaction.  We found a habitat patch-distance interaction to have the most support.  Of 

our tested models, this is the only model that incorporates distance and habitat influences, both 



 

 33 

of which Cushman et al (2006) incorporate in the landscape resistance model.  Low elevation, 

water, and non-forest are present in the “unsuitable habitat” of our patch model and have high 

associated resistance in the landscape resistance model.  In addition, the landscape resistance 

model incorporates a measure of autocorrelation by calculating cumulative costs between pairs 

of observations. 

Our analysis of the black bear dataset was a substantial improvement over a standard 

population classification approach.  If we used a conventional application of STRUCTURE and 

classified individuals into discrete “populations”, the number of unclassified individuals (63.7%) 

would lead to the conclusion of little structure in these data.  By treating genetic structure as a 

continuous surface, and thus the ability to represent gradients of genetic structure, we found an 

increased sensitivity to spatially dependent relationships compared to a discrete classification of 

black bears.  Finally, although we used a continuous representation of genetic variation, we 

classified landscape variation into discrete patches to be consistent with the simulated conditions.  

In future genetic surfacing applications, continuous representation of both landscape and genetic 

variation would be more powerful allowing for both genetic and environmental gradients 

(McGarigal and Cushman 2005, Shimatani and Kubota 2004). 

Future Directions and Conclusions 

Genetic surfacing provides a common statistical framework for population genetics, spatial 

ecology, and spatial statistics for data analysis.  In future applications, the wide range of 

available multivariate spatial statistical techniques can be applied with genetic surfacing 

(Haining 2003).  These multivariate models will allow researchers to quantify the effect of 

multiple landscape variables simultaneously for a more complete understanding of how 

ecological variables affect species’ distributions.  In addition, the topology of the genetic surface 
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itself may provide meaningful information.  For example, genetic surfaces can be analyzed in a 

similar manner to other surfaces to quantify topographic complexity (Mucina et al. 1991), spatial 

trend (Lichstein et al. 2002), or identify areas of discontinuity and their associated landscape 

variables.  

Application of more sophisticated surfacing methods than IDW, implemented for 

reproducibility and comparability amount simulations, may increase the power of genetic 

surfacing.  This is especially true in the presence of complex genetic structure resulting from 

multiple interacting landscape processes.  Alternative methods that can produce a surface 

incorporate localized variation in the data such as empirical semivariogram/kriging models 

(Cressie 1986, Yfantis et al. 1987) or can apply more complex curve fitting parameters in spline 

models (Mitasova and Jaroslav 1993).  In addition, alternative methods allow for the inclusion of 

an estimate of uncertainty in the original point locations.  Given multiple locations or error in 

geographic positioning system (GPS) locations, kernel density estimates can give a probability 

density function of location over a range (Wand and Jones 1995).  However, it is important to 

understand that surfacing methods estimate a response variable across the extent and assume a 

well-distributed spatial sample (Lam 1983, Tobler 1979) and point data could be used directly 

without surface interpolation (Boots and Getis 1988, Diggle 2003).  In addition, due to the 

complexity of data collected in natural systems, low to moderate correlations between genetic 

structure and spatial variables are possible by chance alone.  Simulation or neutral landscape 

tests may be necessary to establish the significance of results (Isaaks and Srivastava 1989, 

Lancaster 2006).   

In all of our analyses, we were able to use K= 2 and therefore construct a single genetic 

surface representing membership in both genetic clusters.  Although STRUCTURE is not the only 
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potential implementation of genetic surfacing, in future application based on STRUCTURE there 

will be cases where more than two genetic clusters are supported.  Several approaches may be 

employed in cases where K > 2.  A genetic surface, and model of landscape genetic structure, 

could be constructed for each of K-1 clusters.  This may be extremely useful in cases where 

researchers suspect different processes explain genetic variation for different genetic clusters 

across the landscape.  Alternatively, genetic surfacing could be applied with methods that allow 

for multiple response variables.  Fuzzy set theory allows for the response variable to have 

proportional membership in multiple classes, which could be modeled as a single response 

variable (Bosserman and Ragade 1982, Metternicht 2003).  

Genetic surfacing will help fill a gap between population genetics and spatial ecology.  The 

approach integrates landscape and genetic analyses to allow testing of multiple ecologically 

relevant hypotheses (autocorrelation, spatial dependency, or an interaction) without the necessity 

of analyzing pairwise distance data.  In addition, this study demonstrates that significant distance 

relationships may be the result of spatial dependency or ‘false’ autocorrelation (Legendre et al. 

2002), emphasizing the importance of considering landscape measures in gene flow studies.  

Analysis of genetic surfaces could be readily applied to quantify the impact of ecological (e.g., 

temperature, moisture, natural barriers, elevation) and/or anthropogenic (e.g., roads, 

development, farming, forest management) variables on genetic structure.  Understanding of the 

ecological and spatial behavior of a population is necessary for designing recovery plans, 

conserving corridors and understanding potential new population threats.   
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TABLE 

Table 1  

Simulation parameters and power to detect landscape genetic structure with full dataset. 
Simulation Gen M- B M Within Total Ne Pops MGS Land µR Sig SD 
T1 0 0 Na 1000 2 None A 0.071 0 0.027 
T2  1 0 Na 1000 2 Patch A 0.073 0 0.030 
T3 5 0 Na 1000 2 Patch A 0.542 5 0.225 
T4 10 0 Na 1000 2 Patch A 0.867 5 0.048 
T5   50 0 Na 1000 2 Patch A 0.986 5 0.003 
T6 100 0 Na 1000 2 Patch A 0.991 5 0.001 
T7 250 0 Na 1000 2 Patch A 0.991 5 0.001 
T8 500 0 Na 1000 2 Patch A 0.991 5 0.001 
T9 1000 0 Na 1000 2 Patch A 0.992 5 0.002 
M1 500 0 Na 1000 2 Patch A 0.991 5 0.001 
M2 500 0.001 Na 1000 2 Patch A 0.912 5 0.167 
M3 500 0.005 Na 1000 2 Patch A 0.990 5 0.002 
M4 500 0.01 Na 1000 2 Patch A 0.976 5 0.002 
M5 500 0.05 Na 1000 2 Patch A 0.949 5 0.014 
M6 500 0.1 Na 1000 2 Patch A 0.574 5 0.107 
M7 500 0.2 Na 1000 2 Patch A 0.175 1 0.120 
HM1 500 0.001 0.05 1000 10 PXD B 0.991 5 0.002 
HM2 500 0.001 0.1 1000 10 PXD B 0.991 5 0.002 
HM3 500 0.001 0.2 1000 10 Patch B 0.989 5 0.001 
HM4 500 0.01 0.01 1000 10 Dist B 0.866 4 0.123 
HM5 500 0.01 0.05 1000 10 PXD B 0.899 5 0.016 
HM6 500 0.01 0.1 1000 10 PXD B 0.976 5 0.012 
HM7 500 0.01 0.2 1000 10 Patch B 0.982 5 0.004 
HM8 500 0.1 0.1 1000 10 Dist B 0.897 5 0.020 

 

Table 1 displays EASYPOP (Balloux 2001) simulation conditions as follows: simulation 

identification (Simulation), the number of generations populations post vicariance (Gen), 

probability of migration per individual per generation across the unsuitable habitat (Fig.1) (M 

Between), probability of migration between adjacent subpatches within populations (Fig.1) (M 

Within), total effective population size for the entire landscape (Total Ne), number of simulated 

(not genetically identified) populations or subpopulations (Pops), simulated model of genetic 

structure (MGS), and landscape used for simulation (Land).   Simulated MGS was distance 

(dist), habitat patch, or patch-distance interaction (PXD).  We held all other parameters constant 
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across simulations (see text).  The table displays mean correlation coefficient (µ R), number 

significant correlations (Sig, X/5), and standard deviation (SD) for correlations between the 

model of landscape genetic structure and genetic surface.  Simulation codes are as follows: T – 

time since vicariance, M- migration rate, and HM – hierarchical migration model.  For 

population size (N) and unequal effective population size (UN), see Appendix 1b. 
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FIGURE LEGENDS 

Figure 1 Flow chart of simulation and genetic surfacing methodology.   

Step 1 – Define landscapes.  Both landscapes consist of suitable and unsuitable habitat.  

Simulations in landscape A contain spatial dependency only, while simulations in landscape B 

contain autocorrelation or an interaction between spatial dependency and autocorrelation.  Step 2 

– Simulate genetic data.  Circles represent “populations” in EasyPop (labels correspond to 

habitat patches or subpatches on the corresponding landscape).  Simulations in landscape B had 

two migrations rates labeled as M1 (between habitat patches) and M2 (migration rate within 

habitat patches).  Step 3 – subsample simulated data prior to analysis by sample size (n) and 

number of loci (l).  Step 4 – analysis in program STRUCTURE.  Step 5 – interpolate genetic 

surface.  Patch and Distance on interpolated surfaces indicate condition under which data were 

simulated and n is the sample sized used to create that particular genetic surface.  Step 6 – model 

selection.  We correlated each genetic surface with each model of landscape genetic structure 

(patch, distance, patch-distance interaction), tested significance, and selected model based on 

highest correlation coefficient.  See methods for additional details for each step.   

 

Figure 2  Empirical Landscape - North Idaho, USA.   

The landscape was classified into habitat patches based on suitability as black bear habitat.  

Patch boundaries are superimposed on a shaded relief.  Patches are labeled on the figure – 1,3 are 

suitable habitat while 2 is unsuitable habitat.  Patch 4 was outside the study area and therefore 

excluded from the analysis.  Points represent sample locations overlaid on the genetic surface 

and shaded relief.  Light areas represent high ancestry values while dark areas represent low 

ancestry values. 
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Figure 3  Genetic Surfaces 

Example genetic surfaces interpolated from STRUCTURE ancestry values including all samples 

and loci (see methods for details).  Light areas represent high ancestry values while dark areas 

represent low ancestry values.  A. No landscape genetic structure (T1: Complete admixture); B. 

Strong differentiation in relation to habitat patch (spatial dependency; T8: 500 generations post 

vicariance);  C.  With migration, genetic surfaces become more variable but are still 

differentiated (M4; 0.01 between patch migration probability); D. Internal patch structure results 

in a gradient of ancestry values across the landscape (HM4; 0.01 between patch and within patch 

migration probability). 

 

Figure 4.  Power of genetic surfacing with no subsampling.   

a) Statistical power of the genetic surfacing approach to detect landscape genetic structure by 

sample size and number of loci; b) For all time since vicariance simulations (T), statistical power 

of the genetic surfacing technique to detect landscape genetic structure by time since vicariance 

and sample size, c) For 10 generations post vicariance (simulation T4), statistical power of the 

genetic surfacing technique to detect landscape genetic structure by sample size and number of 

loci, d) For all migration probability simulations (M), statistical power of the genetic surfacing 

technique to detect landscape genetic structure by probability of migration (migration rate) and 

sample size. 
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Figure 5  Accuracy of genetic surfacing.   

In panels a – e, habitat patch model is shown in closed circles, distance model by open circles, 

and patch-distance interaction model by triangles. a) Overall proportion of correlations between 

genetic surface and model of genetic structure (habitat patch, distance, patch-distance 

interaction) significant by time since vicariance for each model.  b) Overall proportion of 

correlations between genetic surface and model of genetic structure significant by migration 

probability for each model.  c) Overall proportion of correlation between genetic surface and 

model of genetic structure significant by within patch migration probability.  d) Proportion of 

analyses for which each model of genetic structure was selected for time since vicariance, e)  

Proportion of analyses for which each model of genetic structure was selected by migration 

probability.  f) Proportion of analyses for which the “correct” model was selected by between 

and within migration probabilities.   

 

Figure 6  Genetic Surface Significance by FST  

Proportion of Pearson’s correlation coefficients between the genetic surface and simulated 

landscape model significant (Y) by average FST value (X) across all analyses (simulation 

conditions, number of samples, number of loci).  We can detect significant landscape process 

even when genetic structure is below the level generally considered biologically significant 

(<0.05).   
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APPENDICES 

Appendix 1 

This appendix includes a) additional details on parameter settings for utilized software and b) 

effects of effective samples size and proportional sampling on the power and accuracy of genetic 

surfacing. 

  

Appendix 1.1.  Additional information on parameters settings for utilized software. 

EASYPOP: We simulated populations in EasyPop with the following universal parameter settings: 

diploid organisms, two sexes, equal sex ratio, random mating, free recombination between loci, 

mutation rate of 0.0005 (Dallas 1992), stepwise mutation with Kam events (0.05 probability), 

and 30 loci (see Table 1 for varied simulation conditions).  All simulations began with each locus 

fixed at one allele and 5000 generations for burn-in under complete admixture; all populations 

reached equilibrium in fewer than 3000 generations.   

 

STRUCTURE:  STRUCTURE analysis was executed under the following conditions with no a priori 

definition of clusters or cluster number: 100,000 generation burn-in followed by 50,000 Markov 

Chain Monte Carlo (MCMC) iterations, equal alpha (starting value 1.0), uniform priors, 

correlated allele frequencies, admixture of populations, population number (K) 1-11, and lambda 

inferred from the data.  
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Appendix 1.2  Effect of unequal population sizes and proportional sampling 

Not all extant populations are of equal size, therefore we simulated uneven effective 

populations with two migration probabilities (0.01 and 0): 500/500 (UN1, UN7, control), 

600/400 (simulations UN2, UN8), 700/300 (simulations UN3, UN9), 800/200 (simulations UN4, 

UN10), 900/100 (simulations UN5, UN11) and 950/50 (simulations UN6, UN11) (Table A1).  

We subsampled these data at both absolute levels (n=200, 100, and 50) and proportion of the 

data (100%, 20%, 10%, and 5%).  This was done to both provide a comparison among all 

simulation conditions, as well as to evaluate the relative power of detecting landscape genetic 

structure by sampling a percent of effective population size versus an absolute number of 

samples. 

Overall small effective population size or unequal effective population size by suitable 

habitat patch had little impact on the power to detect significant landscape genetic structure 

(54/60 significant; Table A1).  In the absence of migration, the genetic surfacing approach was 

extremely powerful (0.90 – 1) even with an effective population size of 100.  In the presence of 

migration (0.01 migration probability), the genetic surfacing approach had >0.50 power at an 

effective population size as small as 100 (Appendix 2).  In the absence of migration across the 

unsuitable habitat, all correlations were significant, while in the presence of low migration 

(probability = 0.01) landscape genetic structure was not detected when one effective population 

size was ≤ 100 or less (UN5, UN6; Table A1).  However, statistical power to detect landscape 

genetic structure increases with equal numbers of samples per population relative to a random 

draw of genotypes from the entire landscape (Appendix 2).   
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Table A1   

Simulation parameters and power to detect landscape genetic structure with full dataset.   

Table A1 displays EASYPOP (Balloux 2001) simulation conditions as follows: simulation 

identification (Simulation), the number of generations populations post vicariance (Gen), 

probability of migration per individual per generation across the unsuitable habitat (Fig.1) (M 

Between), probability of migration between adjacent subpatches within populations (Fig.1) (M 

Within), total effective population size for the entire landscape (Total Ne), number of simulated 

(not genetically identified) populations or subpopulations (Pops), and effective population size 

per habitat patch (Ne/Patch).   We held all other parameters constant across simulations (see main 

text).  All simulations for effective population size and unequal population size were conducted 

in landscape A.  The table displays number significant correlations (Sig, X/5), mean correlation 

coefficient (µ R), and standard deviation (SD) for correlations between the patch model of 

landscape genetic structure and genetic surface.   
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Simulation Gen M(B) M(WI) Total Ne Pops Ne/Patch Sig µR SD 

N1 500 0.01 Na 1000 2 500, 500 5 0.976 0.003 

N2 500 0.01 Na 500 2 250, 250 5 0.944 0.010 

N3 500 0.01 Na 200 2 100, 100 5 0.951 0.019 

N4 500 0.01 Na 100 2 50, 50 5 0.928 0.012 

N5 500 0.01 Na 50 2 25, 25 3 0.716 0.105 

N6 500 0 Na 1000 2 500, 500 5 0.976 0.001 

N7 500 0 Na 500 2 250, 250 5 0.985 0.003 

N8 500 0 Na 200 2 100, 100 5 0.977 0.002 

N9 500 0 Na 100 2 50, 50 5 0.968 0.003 

N10 500 0 Na 50 2 25, 25 5 0.886 0.105 

UN1 500 0.01 Na 1000 2 500, 500 5 0.976 0.003 

UN2 500 0.01 Na 1000 2 600, 400 5 0.949 0.009 

UN3 500 0.01 Na 1000 2 700, 300 5 0.911 0.025 

UN4 500 0.01 Na 1000 2 800, 200 5 0.867 0.040 

UN5 500 0.01 Na 1000 2 900, 100 3 0.458 0.376 

UN6 500 0.01 Na 1000 2 950, 50 1 0.235 0.174 

UN7 500 0 Na 1000 2 500, 500 5 0.991 0.001 

UN8 500 0 Na 1000 2 600, 400 5 0.989 0.002 

UN9 500 0 Na 1000 2 700, 300 5 0.985 0.003 

UN10 500 0 Na 1000 2 800, 200 5 0.971 0.009 

UN11 500 0 Na 1000 2 900, 100 5 0.928 0.033 

UN12 500 0 Na 1000 2 950, 50 5 0.878 0.012 
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Appendix 2   Extended table of results by sample size and number of loci. 

Simulation data summarized by sample size (N, on left) and number of loci (Loci, on right).  

Headings are as follows: Simulation (Sim): Simulation (conditions defined in Table 1, Appendix 

1b), Model: landscape model used to simulate data (habitat patch (Patch), distance (Dist), patch-

distance interaction (PXD); see text for definitions), Power (P): statistical power (1-β (Type II 

error)) to detect landscape genetic structure with the genetic surface, Model Choice (MC): the 

proportion of times the correct landscape model was selected out of the total number of 

significant simulations, FST: average FST between population clusters and A (allelic divergence): 

average allelic divergence between population clusters as estimated  in STRUCTURE.   

          

Sim Model N P MC Fst A Loci P MC Fst A 

T1 Patch 1000 na na 0.073 0.081 30 na na 0.069 0.085 

(0 gen) Patch 200 na na 0.042 0.040 20 na na 0.055 0.064 

 Patch 100 na na 0.064 0.085 10 na na 0.062 0.086 

  Patch 50 na na 0.040 0.043 5 na na 0.033 0.015 

T2 Patch 1000 na na 0.103 0.110 30 na na 0.091 0.130 

(1 gen) Patch 200 na na 0.064 0.081 20 na na 0.087 0.088 

 Patch 100 na na 0.056 0.067 10 na na 0.051 0.047 

  Patch 50 na na 0.059 0.063 5 na na 0.053 0.057 

T3 Patch 1000 0.60 0.80 0.069 0.111 30 0.30 1.00 0.047 0.071 

(5 gen) Patch 200 0.10 1.00 0.043 0.045 20 0.20 0.80 0.056 0.092 

 Patch 100 0.00 na 0.054 0.059 10 0.15 0.75 0.047 0.055 

  Patch 50 0.05 1.00 0.025 0.020 5 0.10 0.67 0.041 0.018 

T4 Patch 1000 0.95 0.86 0.064 0.095 30 0.35 1.00 0.058 0.083 

(10 gen) Patch 200 0.20 0.80 0.047 0.061 20 0.45 0.82 0.053 0.070 

 Patch 100 0.10 0.67 0.037 0.035 10 0.30 0.86 0.043 0.053 

  Patch 50 0.15 1.00 0.047 0.049 5 0.30 0.75 0.040 0.032 
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T5 Patch 1000 1.00 1.00 0.093 0.238 30 1.00 1.00 0.076 0.188 

(50 gen) Patch 200 0.90 0.95 0.075 0.183 20 0.85 1.00 0.068 0.166 

 Patch 100 0.85 0.94 0.067 0.138 10 0.75 1.00 0.076 0.167 

  Patch 50 0.40 0.89 0.046 0.057 5 0.55 0.79 0.062 0.094 

T6 Patch 1000 1.00 1.00 0.147 0.411 30 0.95 1.00 0.113 0.294 

(100 gen) Patch 200 1.00 0.91 0.121 0.342 20 1.00 1.00 0.118 0.304 

 Patch 100 0.95 0.90 0.104 0.270 10 0.90 0.90 0.114 0.310 

  Patch 50 0.65 0.87 0.077 0.153 5 0.75 0.79 0.103 0.268 

T7 Patch 1000 1.00 1.00 0.236 1.087 30 1.00 0.95 0.199 0.787 

(250 gen) Patch 200 1.00 1.00 0.205 0.863 20 0.95 1.00 0.198 0.823 

 Patch 100 1.00 1.00 0.196 0.780 10 1.00 1.00 0.211 0.875 

  Patch 50 0.95 0.86 0.159 0.572 5 1.00 0.91 0.188 0.817 

T8 Patch 1000 1.00 1.00 0.311 1.608 30 0.95 0.95 0.275 1.172 

(500 gen) Patch 200 1.00 1.00 0.277 1.320 20 0.95 1.00 0.273 1.228 

 Patch 100 1.00 1.00 0.268 1.197 10 0.95 1.00 0.277 1.382 

  Patch 50 0.80 0.94 0.238 0.954 5 0.95 1.00 0.270 1.308 

T9 Patch 1000 1.00 1.00 0.387 2.697 30 1.00 1.00 0.359 2.112 

(1000 gen) Patch 200 1.00 1.00 0.355 2.204 20 1.00 1.00 0.360 2.132 

 Patch 100 1.00 1.00 0.341 1.972 10 1.00 1.00 0.349 2.111 

  Patch 50 1.00 1.00 0.324 1.676 5 1.00 1.00 0.340 2.190 

M1 Patch 1000 1 1.00 0.311 1.608 30 1 0.95 0.275 1.172 

(0 mp) Patch 200 1 1.00 0.277 1.320 20 1 1.00 0.273 1.228 

 Patch 100 1 1.00 0.268 1.197 10 1 1.00 0.277 1.382 

  Patch 50 1 0.94 0.238 0.954 5 1 1.00 0.270 1.308 

M2 Patch 1000 1 0.80 0.213 0.912 30 1 0.85 0.195 0.733 

(0.001 mp) Patch 200 1 0.90 0.195 0.764 20 1 0.90 0.197 0.732 

 Patch 100 1 1.00 0.185 0.689 10 1 0.89 0.191 0.757 

  Patch 50 1 0.75 0.178 0.627 5 0.95 0.78 0.188 0.769 
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M3 Patch 1000 1 1.00 0.306 1.534 30 1 1.00 0.271 1.162 

(0.005 mp) Patch 200 1 1.00 0.280 1.300 20 1 0.95 0.281 1.307 

 Patch 100 1 1.00 0.263 1.134 10 1 1.00 0.267 1.148 

  Patch 50 1 0.90 0.248 0.973 5 1 0.95 0.278 1.325 

M4 Patch 1000 1 0.90 0.077 0.205 30 0.9 1.00 0.063 0.151 

(0.01 mp) Patch 200 0.9 0.88 0.070 0.169 20 0.9 0.94 0.068 0.158 

 Patch 100 0.7 0.79 0.057 0.101 10 0.65 0.77 0.062 0.123 

  Patch 50 0.3 1.00 0.046 0.053 5 0.4 0.63 0.058 0.097 

M5 Patch 1000 0.9 0.83 0.057 0.129 30 0.8 1.00 0.043 0.084 

(0.05 mp) Patch 200 0.6 0.92 0.048 0.070 20 0.8 0.88 0.062 0.125 

 Patch 100 0.7 0.77 0.061 0.083 10 0.4 0.88 0.058 0.084 

  Patch 50 0.1 0.50 0.052 0.065 5 0.25 0.00 0.056 0.054 

M6 Patch 1000 0.6 0.82 0.062 0.083 30 0.3 0.83 0.075 0.112 

(0.1 mp) Patch 200 0.1 1.00 0.051 0.053 20 0.2 0.75 0.057 0.086 

 Patch 100 0 na 0.062 0.066 10 0.1 na 0.056 0.029 

  Patch 50 0.1 1.00 0.045 0.044 5 0.15 1.00 0.032 0.019 

M7 Patch 1000 na na 0.045 0.122 30 na na 0.060 0.078 

(0.2 mp) Patch 200 na na 0.044 0.063 20 na na 0.056 0.088 

 Patch 100 na na 0.042 0.035 10 na na 0.049 0.055 

  Patch 50 na na 0.028 0.029 5 na na 0.044 0.028 

N1 Patch 500 0.90 0.90 0.311 1.608 30 0.90 0.63 0.275 1.172 

1000 Patch 200 0.90 0.88 0.277 1.320 20 0.90 0.77 0.273 1.228 

 Patch 100 0.65 0.79 0.268 1.197 10 0.65 0.94 0.277 1.382 

  Patch 50 0.40 1.00 0.238 0.954 5 0.40 1.00 0.270 1.308 

N2 Patch 500 0.72 0.95 0.084 0.133 30 0.72 0.90 0.052 0.088 

500 Patch 200 0.64 0.88 0.087 0.133 20 0.64 0.86 0.078 0.080 

 Patch 100 0.56 1.00 0.077 0.087 10 0.56 0.88 0.066 0.089 

 Patch 50 0.40 0.80 0.063 0.041 5 0.40 1.00 0.065 0.057 

  Patch 10 0.70 1.00 0.015 0.001           
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N3 Patch 200 0.73 0.84 0.155 0.169 30 0.70 0.56 0.052 0.120 

200 Patch 100 0.47 0.88 0.134 0.151 20 0.73 0.86 0.091 0.119 

 Patch 50 0.30 0.77 0.116 0.108 10 0.47 0.86 0.131 0.088 

 Patch 40 0.52 0.82 0.107 0.108 5 0.30 0.86 0.133 0.054 

 Patch 20 0.52 0.80 0.075 0.034      

  Patch 10 0.40 0.50 0.024 0.000           

N4 Patch 100 0.08 0.93 0.162 0.117 30 0.52 na 0.028 0.079 

100 Patch 50 0.50 0.86 0.155 0.095 20 0.52 0.80 0.093 0.057 

 Patch 20 0.30 0.67 0.064 0.024 10 0.40 0.85 0.106 0.053 

  Patch 10 0.30 0.00 0.041 0.001 5 0.08 1.00 0.132 0.000 

N5 Patch 40 0.00 1.00 0.214 0.146 30 0.50 na 0.047 0.053 

50 Patch 8 1.00 0.33 0.067 0.019 20 0.30 0.67 0.060 0.058 

 Patch       10 0.30 1.00 0.109 0.028 

  Patch           5 0.00 0.80 0.118 0.027 

N6 Patch 1000 1.00 1.00 0.311 0.205 30 1.00 0.95 0.063 0.151 

1000 Patch 200 1.00 1.00 0.277 0.169 20 1.00 1.00 0.068 0.158 

 Patch 100 0.95 1.00 0.268 0.101 10 1.00 1.00 0.062 0.123 

  Patch 50 0.73 0.94 0.238 0.053 5 0.95 1.00 0.058 0.097 

N7 Patch 500 0.83 1.00 0.566 5.137 30 0.73 1.00 0.490 3.980 

500 Patch 200 0.83 1.00 0.545 4.540 20 0.83 0.96 0.538 4.014 

 Patch 100 0.83 1.00 0.537 3.964 10 0.83 1.00 0.550 3.919 

 Patch 50 0.93 1.00 0.519 3.424 5 0.83 0.95 0.555 3.643 

  Patch 20 0.77 0.88 0.511 2.719           

N8 Patch 200 0.87 1.00 0.690 5.571 30 0.93 0.85 0.559 4.200 

200 Patch 100 0.90 1.00 0.684 5.046 20 0.77 0.73 0.658 4.418 

 Patch 50 0.68 0.95 0.671 4.436 10 0.87 0.91 0.703 4.120 

 Patch 40 0.60 0.90 0.672 4.261 5 0.90 0.86 0.700 3.963 

 Patch 20 0.68 0.60 0.655 3.580      

  Patch 10 0.64 0.00 0.557 2.427           
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N9 Patch 100 0.60 1.00 0.767 5.574 30 0.68 0.94 0.580 4.063 

100 Patch 50 0.60 1.00 0.752 4.898 20 0.60 0.88 0.705 4.087 

 Patch 20 0.90 0.88 0.733 4.012 10 0.68 0.87 0.751 3.890 

  Patch 10 0.50 0.57 0.657 2.832 5 0.64 0.94 0.753 3.431 

N10 Patch 40 0.50 0.60 0.817 4.638 30 0.60 0.60 0.390 2.745 

50 Patch 8 0.90 0.00 0.730 2.850 20 0.60 0.33 0.562 2.536 

 Patch       10 0.90 0.50 0.570 2.196 

  Patch           5 0.50 0.50 0.612 1.621 

UN1 Patch 1000 1 0.90 0.077 0.205 30 0.9 1.00 0.063 0.151 

500 Patch 200 0.9 0.88 0.070 0.169 20 0.9 0.94 0.068 0.158 

 Patch 100 0.7 0.79 0.057 0.101 10 0.65 0.77 0.062 0.123 

  Patch 50 0.3 1.00 0.046 0.053 5 0.4 0.63 0.058 0.097 

UN2 Patch 1000 0.9 1.00 0.038 0.136 30 0.75 0.93 0.051 0.094 

400 Patch 200 0.7 0.93 0.057 0.088 20 0.65 1.00 0.044 0.112 

 Patch 100 0.5 1.00 0.056 0.083 10 0.5 1.00 0.057 0.059 

  Patch 50 0.1 1.00 0.056 0.026 5 0.25 1.00 0.055 0.067 

UN3 Patch 1000 0.9 1.00 0.066 0.116 30 0.6 1.00 0.061 0.080 

300 Patch 200 0.6 1.00 0.062 0.068 20 0.45 1.00 0.068 0.123 

 Patch 100 0.2 0.80 0.062 0.066 10 0.4 1.00 0.076 0.072 

  Patch 50 0 Na 0.068 0.079 5 0.15 0.67 0.055 0.055 

UN4 Patch 1000 0.9 1.00 0.039 0.107 30 0.5 1.00 0.046 0.110 

200 Patch 200 0.4 0.88 0.062 0.050 20 0.35 0.86 0.058 0.076 

 Patch 100 0.2 1.00 0.054 0.074 10 0.3 1.00 0.048 0.053 

  Patch 50 0.1 0.00 0.063 0.049 5 0.25 0.80 0.067 0.041 

UN5 Patch 1000 0.6 1.00 0.047 0.090 30 0.2 1.00 0.060 0.137 

100 Patch 200 0.2 0.80 0.052 0.097 20 0.3 0.83 0.040 0.065 

 Patch 100 0.1 na 0.063 0.067 10 0.1 1.00 0.049 0.033 

  Patch 50 0 na 0.073 0.058 5 0.2 1.00 0.087 0.076 
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UN6 Patch 1000 0.2 1.00 0.033 0.063 30 0.05 1.00 0.042 0.064 

50 Patch 200 0 na 0.056 0.058 20 0.05 1.00 0.045 0.086 

 Patch 100 0 na 0.049 0.067 10 0.05 1.00 0.077 0.037 

  Patch 50 0 na 0.083 0.021 5 0.05 1.00 0.058 0.024 

UN7 Patch 1000 1 1.00 0.311 1.608 30 0.95 0.95 0.275 1.172 

500 Patch 200 1 1.00 0.277 1.320 20 0.95 1.00 0.273 1.228 

 Patch 100 1 1.00 0.268 1.197 10 0.95 1.00 0.277 1.382 

  Patch 50 0.8 0.94 0.238 0.954 5 0.95 1.00 0.270 1.308 

UN8 Patch 1000 1 0.91 0.268 1.770 30 1 0.95 0.282 1.415 

400 Patch 200 1 1.00 0.282 1.455 20 1 1.00 0.295 1.446 

 Patch 100 1 1.00 0.298 1.293 10 1 1.00 0.305 1.409 

  Patch 50 1 1.00 0.331 1.130 5 1 0.95 0.297 1.378 

UN9 Patch 1000 1 0.80 0.254 1.779 30 0.95 1.00 0.270 1.320 

300 Patch 200 1 1.00 0.273 1.423 20 1 0.90 0.289 1.355 

 Patch 100 1 1.00 0.287 1.263 10 1 0.95 0.287 1.472 

  Patch 50 1 1.00 0.318 1.059 5 1 0.90 0.286 1.375 

UN10 Patch 1000 1 0.83 0.277 1.961 30 1 0.85 0.275 1.623 

200 Patch 200 1 0.80 0.305 1.541 20 1 0.95 0.326 1.613 

 Patch 100 1 1.00 0.326 1.315 10 0.9 0.83 0.331 1.537 

  Patch 50 0.8 1.00 0.359 1.049 5 0.9 0.89 0.336 1.093 

UN11 Patch 1000 1 0.91 0.257 2.580 30 0.75 0.47 0.307 1.805 

100 Patch 200 1 0.44 0.309 2.054 20 0.65 0.62 0.343 1.642 

 Patch 100 0.6 0.15 0.374 1.492 10 0.7 0.57 0.326 1.752 

  Patch 50 0.2 1.00 0.402 1.001 5 0.65 0.69 0.366 1.927 

UN12 Patch 1000 1 0.95 0.127 1.426 30 0.5 0.70 0.094 1.207 

50 Patch 200 0.5 0.67 0.197 0.855 20 0.5 0.60 0.188 1.087 

 Patch 100 0.3 0.42 0.215 0.688 10 0.5 0.90 0.260 0.736 

  Patch 50 0.3 1.00 0.288 0.370 5 0.55 0.91 0.285 0.309 
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HM1 PXD 1000 1 1.00 0.264 1.225 30 1 1.00 0.245 1.033 

0.05 PXD 200 1 1.00 0.242 1.054 20 1 1.00 0.242 1.041 

0.001 PXD 100 1 1.00 0.225 0.923 10 0.95 1.00 0.248 1.107 

  PXD 50 0.9 0.95 0.203 0.767 5 0.9 0.95 0.200 0.790 

HM2 PXD 1000 1 1.00 0.270 1.380 30 1 0.95 0.250 1.146 

0.1 PXD 200 1 1.00 0.246 1.185 20 1 0.95 0.254 1.158 

0.001 PXD 100 1 0.95 0.240 1.084 10 0.95 1.00 0.238 1.148 

  PXD 50 0.9 0.89 0.225 0.907 5 0.95 0.95 0.238 1.104 

HM3 Patch 1000 0.8 1.00 0.328 2.171 30 0.8 0.94 0.296 1.718 

0.2 Patch 200 0.8 1.00 0.306 1.851 20 0.8 1.00 0.296 1.689 

0.001 Patch 100 0.8 1.00 0.300 1.721 10 0.8 1.00 0.323 1.963 

  Patch 50 0.8 0.93 0.274 1.423 5 0.75 1.00 0.293 1.795 

HM4 Dist 1000 0.8 0.42 0.268 2.034 30 0.8 0.43 0.264 1.693 

0.01 Dist 200 0.8 0.25 0.247 1.594 20 0.75 0.38 0.249 1.684 

0.01 Dist 100 0.8 0.33 0.235 1.435 10 0.75 0.33 0.231 1.435 

  Dist 50 0.8 0.50 0.210 1.138 5 0.8 0.30 0.216 1.390 

HM5 PXD 1000 0.8 1.00 0.179 0.625 30 0.75 0.92 0.150 0.491 

0.05 PXD 200 0.8 1.00 0.159 0.545 20 0.8 0.88 0.154 0.514 

0.01 PXD 100 0.7 0.67 0.144 0.449 10 0.65 0.80 0.158 0.516 

  PXD 50 0.6 0.88 0.131 0.366 5 0.6 1.00 0.152 0.464 

HM6 PXD 1000 1 1.00 0.164 0.652 30 1 1.00 0.138 0.530 

0.1 PXD 200 1 0.85 0.141 0.555 20 1 0.85 0.140 0.507 

0.01 PXD 100 1 0.70 0.135 0.492 10 0.9 0.74 0.140 0.505 

  PXD 50 0.9 0.76 0.118 0.393 5 0.95 0.72 0.140 0.549 

HM7 Patch 1000 1 1.00 0.161 0.545 30 1 0.90 0.131 0.450 

0.2 Patch 200 1 1.00 0.143 0.472 20 1 1.00 0.130 0.423 

0.01 Patch 100 1 0.79 0.129 0.404 10 0.95 0.95 0.151 0.450 

  Patch 50 0.9 0.76 0.124 0.359 5 0.85 0.71 0.143 0.458 
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HM8 Dist 1000 0.9 0.47 0.076 0.197 30 0.95 0.53 0.057 0.130 

0.1 Dist 200 0.8 0.54 0.075 0.158 20 0.85 0.50 0.087 0.186 

0.1 Dist 100 0.6 0.17 0.062 0.103 10 0.5 0.18 0.061 0.116 

  Dist 50 0.5 0.25 0.061 0.069 5 0.3 0.50 0.069 0.096 
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ABSTRACT   

A fundamental goal in ecology and biogeography is to understand processes driving differences 

in species’ distributions.  Divergent fine-scale distributions could arise from random spatial 

process, differences in species’ suitable environmental conditions (“Grinellian” niche theory), or 

restricted occupancy of suitable environment due to limited dispersal (“dispersal limited” niche 

theory).  These concepts provide a theoretical background for predicting spatially explicit species 

distribution models.  The Pseudacris maculata - Bufo boreas system in Yellowstone National 

Park is well-suited to test alternative processes explaining observed differences in distribution.  

Both anuran species breed in similar habitats (shallow, temporary wetlands) but have differing 

dispersal capabilities and only rarely co-occur.  We found the distributions are significantly 

different (p-value = 0.032), with P. maculata occupying more sites than B. boreas.  We were 

able to separate species niche base on environmental conditions with models developed in one 

species unable to reciprocally predict the other species (percent correctly classified (PCC) < 5%).  

The breeding niche of P. maculata in Yellowstone was defined by temperature, abiotic wetland 

characteristics, rainfall, dominant cover (shrub), and absence of thermal influence (percent 

correctly classified (PCC) 98%, out of bag (OOB) error 21.1 %,).  The breeding niche of B. 

boreas in Yellowstone was defined by abiotic wetland characteristics, topographic complexity, 

rainfall, dominant cover and temperature (PCC 95.8%, OOB error 23.9%).  The dispersal limited 

niche theory best explained the observed distribution for both species.  In these models, distance 

to nearest source population was the most important predictor for both species.  This suggests 

that the availability of a source population is extremely important for site occupancy and 

reinforcing the importance of metapopulation dynamics.  Finally, niche-based distribution 
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models from our study can be used for targeted sampling of rare species and to predict 

distributional shifts under climate change scenarios.   

Keywords: niche theory, species distribution model, topographic variables, algorithmic models, 

Grinellian niche theory, dispersal limited niche theory, Boreal chorus frog, Boreal toad, 

amphibians 

INTRODUCTION 

A fundamental goal in ecology and biogeography is to understand processes driving 

differences in species’ distributions (Pulliam 2000, Guisan and Thuiller 2005).  In a realized 

environment (Ackerly 2003), divergent fine-scale distributions could result from random spatial 

process, differences in suitable environmental conditions (“Grinellian” niche theory), or 

restricted occupancy of the suitable environment due to limited dispersal (“dispersal limited” 

niche theory) (Pulliam 2000).   These concepts provide a theoretical background for predicting 

spatially explicit species distribution models (Guisan and Zimmermann 2000).   

The applicable niche theory may depend on the ecological questions and study organism(s), 

with respective predictions of processes driving distribution divergence.  At fine-scales, all 

available habitat may satisfy species’ environmental requirements and observed differences in 

distributions may be explained by random spatial process (Alonso et al. 2006).  Alternatively, 

species presence may be explained by environmental conditions (Pulliam 2000) which can be 

used to predict suitable habitat (Guisan and Thuiller 2005).  However, otherwise suitable habitat 

may be unoccupied due to species dispersal constraints or intervening hostile matrix.  If the 

underlying research goal is to predict potential habitat (Rehfeldt 2006), this is not problematic.  

However, if the goal is to predict the realized distribution, predictions based solely on 

environmental conditions may result in an over-prediction of species distribution.  Distribution 
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models based on the dispersal limited niche theory incorporate both environmental condition and 

geographic accessibility (Pulliam 2000). 

Quantifying species’ distribution based on environmental requirements is crucial for 

amphibian ecology and conservation (Semlitsch 2002).  Amphibians are declining globally 

(~33% of species threatened) with habitat as the leading causal factor even in unexplained 

declines (Storfer 2003, Stuart et al. 2004, Gardner et al. 2007).  Distribution models based on 

niche theory can be used in identification of reserve priorities (Garcia 2006, Pawar et al. 2007) 

and predict shifts in suitable environmental conditions due to climate change (Araujo et al. 

2006).  Several environmental conditions limit amphibian occurrence including: physiological 

constraints (Bartelt and Peterson 2005), hydroperiod (Werner et al. 2007b), cover requirements 

(Babbit et al. 2006),  and disturbance (Arens et al. 2007, Hossack and Corn 2007) .  In addition, 

amphibians generally have limited dispersal abilities (Marsh et al. 1999, Arens et al. 2007), may 

operate as metapopulations (Smith and Green 2005), and geographic features can act as barriers 

to dispersal (Lougheed et al. 1999, Funk et al. 2005).  For these reasons, observed distributions 

may be explained by dispersal limited niche theory.     

The Pseudacris maculata (boreal chorus frog) - Bufo boreas (boreal toad) system in 

Yellowstone National Park is well-suited to test alternative processes explaining observed 

differences in distribution. Pseudacris maculata and B. boreas share several basic breeding 

habitat requirements including semi-permanent wetlands and warm shallow waters for rearing 

(Koch and Peterson 1995).  However, the observed breeding distributions of these species in 

Yellowstone appear divergent: P. maculata is relatively widespread, while B. boreas is locally 

abundant but patchily distributed and thought to be in decline (Carey 1993, Koch and Peterson 

1995, Muths et al. 2003).    
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We investigated differences in fine-scale species distribution of P. maculata and B. boreas to 

address three central questions: i) are observed distributions of P. maculata and B. boreas 

significantly different?, ii) can P. maculata and B. boreas niche be separated based on 

environmental requirements (Grinellian niche)? and iii) are the observed distributions best 

explained by a Grinellian or dispersal limited niche theory?  While upland habitat is important 

for amphibian persistence (Semlitsch 2002, Denoel and Lehmann 2006), niche is defined from 

empirical observation of successful reproduction in an environment (Guisan and Thuiller 2005).  

Therefore, we predict breeding niche and distribution for these two species.   In answering these 

questions, we developed modelling and evaluation methodology addressing current limitations of 

niche-based species distribution models (Guisan and Thuiller 2005, Araujo and Guisan 2006).   

METHODS 

Field sampling   

To capture the environmental range of variability in observations, we stratified suitable 

wetlands from the National Wetlands Inventory (NWI) (USFWS 2001) (Munger et al. 1998) for 

Yellowstone National Park by elevation and precipitation excluding closed or inaccessible areas 

(Fig. 7).  Elevation impacts time to metamorphosis and may limit gene flow among populations 

(Palo et al. 2003, Giordano et al. 2007).  Precipitation impacts wetland persistence (Corn 2003), 

amphibian breeding behavior (Bosch and Martinez-Solano 2003), and amphibian genetic 

connectivity (Murphy et al. in review).  We randomized wetlands within strata and sampled at 

least twenty sites per stratum.  Because occurrences of B. boreas in Yellowstone are rare (~3% 

of wetlands; D. Patla pub. comm.), known B. boreas breeding sites were visited in addition to the 

stratification to ensure adequate sampling (Fig. 7).  Geographic Positioning System (GPS) 

coordinates were taken at each site with a Garmin 12XL recreation-grade device with at least 50 
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points averaged per location. We detected individuals (adults, metamorphs, larvae) by walking 

the parameter of the site and conducting random dip-net sweeps (D. Patla pub. comm.).  We 

recorded presence of adult breeding activity (amplexus, calling), eggs, larvae, and metamorphs.  

Abundance was ranked as high (more than 100 larvae or 10 breeding adults), medium (at least 30 

larvae or 3 breeding adults), low (less than 30 larvae or 1 breeding adults), and none (no 

breeding activity detected).  We derived probability of detection using standard protocols 

(MacKenzie et al. 2002) from ongoing monitoring efforts concurrent with our field sampling (P. 

maculata – 0.89, B. boreas – 0.88; D. Patla, pub. comm.).  

Spatial distribution   

We described the spatial distribution for each species by evaluating: clustering in species 

presence (Batcheler 1971), autocorrelation in species abundance (Moran 1950, Geary 1954), and 

range of autocorrelation (Cliff and Haggett 1988).  We estimated clustering using nearest-

neighbor statistic on presences for each species (Batcheler 1971).  Because wetlands in 

Yellowstone are significantly clustered from complete spatial randomness (p <0.001), we 

evaluated whether species presence is more clustered than expected conditioned on the 

distribution of wetlands.  To this end, we calculated the average distance to nearest neighbor 

with standard methodology but used an iterative random draw of selected sites as the null 

distribution (R core development team 2007). We evaluated spatial autocorrelation in species 

abundance using Moran’s I (Moran 1950) and Geary’s C (Geary 1954) with small distance 

correction in Crimestat 3.0 (Levine 2004).  We investigated the strength and distance die-off of 

autocorrelation using a Moran’s correlogram (1000 simulations, 200 bins, (Cliff and Haggett 

1988)). Finally, we tested for significant differences between P. maculata and B. boreas spatial 
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distribution in Yellowstone using species abundance at each sample location and 1000 

permutations (Syrjala 1996). 

Grinellian niche  

We evaluated the Grinellian niche of P. maculata and B. boreas by deriving variables of 

environmental condition that may define niche.  We then developed modelling and evaluation 

methodology including: model selection, evaluation of model fit, validation of niche models for 

each species, and evaluation of difference in species’ niche.   

Variables of environmental condition   

We modeled species niche based on environmental conditions: climate (temperature and 

rainfall), wetland characteristics, solar energy, dominant cover, site topography and water 

holding capacity, water chemistry, and disturbance (Table 2; for detailed variable description, 

source data, predicted effect, and ecological justification see Appendix 3).  We derived 

independent variables from 30m spatial data: digital elevation model (DEM) derived from the 

spaceshuttle radar topography mission (SRTM), 2001 national landcover data (NLCD), and a 

spline-based climate model (Rehfeldt 2006, Rehfeldt et al. 2006) (Table 2; Appendix 3).  In 

addition, we included wetland category and type from national wetland inventory (NWI) data for 

Yellowstone (Table 2, Appendix 3).   

Model Parameterization  

Using the variables in Table 2, we quantified species environmental requirements with 

RANDOM FORESTS.  RANDOM FORESTS is a classifier based on a bootstrap of the data that grows 

many trees (Classification and Regression Trees – CARTs) where the prediction is based on 

votes across all tree nodes for the most popular (or likely) classification (Breiman 2001, Cutler et 

al. 2007). This powerful, non-parametric approach is able to incorporate complex interactions 
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among independent variables and outputs measures of variable importance (Déath and Fabricius 

2000, Cutler et al. 2007).  We executed RANDOM FORESTS in classification mode with 5000 

trees, 34% out of bag (OOB) sample, m (number independent variables iterated at each node) set 

by the tuning parameter, and removal of multivariate redundant variable using qr matrix 

decomposition (threshold = 0.05) (Becker et al. 1988).   

With rare species, presences may occur at a much lower rate than absences across surveyed 

sites.  This results in an unbalanced sample, where one class (presence) is observed at a much 

lower rate than the other class (absences).  Unbalanced samples are known to be a potential bias 

in RANDOM FORESTS models, especially for assessing classification accuracy (Svetnik et al. 

2004).  Therefore, we balanced the sample by iteratively subsampling absences at 2n the rate of 

presences (n).  We subsampled the data, ran the model, and compared the covariance matrix 

(Morrison 2002) of the independent variables in the subsample to the independent variables of 

the whole dataset.  We then repeated the process until the covariance matrices from the whole 

and subsampled datasets converged at p=0.05, thus representing the true distribution of 

independent variables.  We then combined all trees into one model to calculate a final votes 

matrix, assess model fit, and calculate variable importance.  This created a suite of trees that 

have balanced sample and yet still have a true bootstrap of the data unlike approaches that 

oversample the underrepresented class (Svetnik et al. 2004).   

Model selection and fit   

As an output of RANDOM FORESTS, variables are ranked in order of importance based on 

improvement of the model (IM, calculated by predicted OOB accuracy and accuracy across 

permuted variables at a node normalized by standard error).  We ran an initial model with all 

variables, and then calculated a model improvement ratio (MIR).  The MIR is a standardized 
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measure of model improvement given by [IMn / IMmax].  We selected a MIR threshold (n, tested 

at 0.1 increments) and a corresponding model retaining all variables above the threshold, based 

on overall OOB error and smallest maximum class error.  The overall OOB error is the median 

cross-classification rate for both classes (presence and absence).   

   We assessed model fit by overall model significance, overall OOB error and OOB error by 

class (presence vs. absence). To assess overall model significance, we created a null distribution 

by randomizing observed presences and calculating percent variation explained for each 

randomization (n=1000). We then calculated whether the percent variation explained for a given 

model was > 95th percentile of the null distribution (p-value < 0.05) (Murphy et al. in review).  

However, overall OOB error may be relatively low for one class but high for the other class.  

Therefore, we also assessed OOB error by class (presence vs. absence).  We also evaluated the 

ability to separate presence-absence in multivariate space using multidimensional scaling (MDS) 

of the RANDOM FORESTS node proximity matrix. 

Model validation   

We validated selected models by fixing the parameters, excluding 10% of the data, refitting 

the votes matrix, and predicting to the withheld data (n=100 iterations).  Based on the validation, 

we calculated overall percent of observations correctly classified (PCC), PCC by class, Kappa 

(Landis and Koch 1977) and the area under curve (AUC) using the Presence package in R 

(Presence/Absence package, R).  To incorporate probability of detection < 1 (MacKenzie et al. 

2002, MacKenzie et al. 2003), we reclassified presences as absences at 1-rate of detection 

estimated from monitoring surveys conducted in the same years (D. Patla, pub. comm.).  We 

iterated this analysis 100 times for each species, rerunning the model each time to assess the 

effect of detection rate on stability of the validation statistics. 
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Grinellian niche separation  

Based on the final environmental requirements model for each species, we assessed 

Grinellian niche dissimilarity by reciprocally predicting B. boreas presence using the model 

developed for P. maculata and vice versa.  If these species have similar environmental 

requirements, a niche model developed for one species should be able to predict the niche of the 

other species.  For each niche model, we exchanged the observed presences/absences with those 

for the other species and recalculated the fit and validation statistics.   

Niche-based species distribution models   

To predict dispersal limited niche, we added variables measuring dispersal limitation to the 

selected Grinellian niche model for each species.  To account of the availability of a source 

population, we calculated distance to nearest occupied site scaled by the minimum distance to a 

surveyed site for each observation (Table 2, Appendix 3).  We also included spatial coordinates 

as independent variables to account for regional trends.    Finally, dispersal into suitable habitats 

may be limited environmental condition of the surrounding landscape.  Therefore, we calculated 

the percent landscape for cover and disturbance variables at 200, 400, and 1000m radii around 

each site (PLAND, Fragstats (McGarigal and Marks 1995), Table 2). We followed model 

parameterization, selection, fit, and validation from the Grinellian niche method outline above. 

We compared model fit for Grinellian niche versus dispersal limited niche within a species by fit 

statistics, validation statistics, and spatial prediction.  By treating the votes matrix as a 

probability density function, we predicted probability of occurrence for the landscape for both 

the Grinellian and dispersal limited niche distribution by passing a specialized function to the 

grid ASCII predict function in yaImpute (Crookston & Finley 2008) in R.  This predicted species 
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distribution model based on each niche concept.  We then compared the spatial predictions of 

Grinellian versus dispersal limited niche.  

RESULTS 

Field sampling   

From 2004-2005, 378 sites were visited at least once during the amphibian breeding season 

(May-July).  Pseudacris maculata was observed at 43.39% (164/378) of the selected sites; 6.88% 

(26/378) at low abundance, 8.20% (31/378) at medium abundance, and 28.04% (106/378) at high 

abundance (Fig 7).  Bufo boreas was observed at 12.43% (42/378) of the selected sites; 5.82% 

(22/378) at low abundance, 3.17% (12/378) at medium abundance, and 3.44% (13/378) at high 

abundance (Fig. 7).  Both species were present at 1.59% (6/378) of the sites.  

Distribution   

We found spatial distributions of P. maculata and B. boreas to be significantly different.  

Both P. maculata and B. boreas are spatially clustered based on a standard nearest neighbor ( p < 

0.01, Table 3).  However, when nearest-neighbor is based on the null distribution of wetlands, 

only P. maculata distribution is significantly clustered (p < 0.05).  There was significant spatial 

autocorrelation in abundance for both species with both Moran’s I and Geary’s C (Table 3), 

rejecting the null hypothesis of complete spatial randomness.  Pseudacris maculata was more 

highly spatially autocorrelated (I = 0.175, p < 0.001) than B. boreas (I= 0.054, p < 0.05) across 

the whole study area (Table 3).  Both species were significantly autocorrelated across all distance 

bins (p < 0.05, Appendix 4).  However, P. maculata was more highly spatially autocorrelated 

across the range and degree of spatial autocorrelation declined more slowly than B. boreas 

(Appendix 4).  Finally, spatial distribution of P. maculata and B. boreas presences are 

significantly different from each other (psi – 3.982, p-value 0.034). 
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Grinellian niche   

Pseudacris maculata  and B. boreas breeding niche can be separated based on environmental 

requirements.  Pseudacris maculata breeding niche in Yellowstone is defined by temperature 

(degree days > 5° C, frost free period), wetland characteristics (type and category), moisture 

(mean annual precipitation, growing season precipitation), cover (shrub), and absence of thermal 

activity (p < 0.05, Table 4, MIR 0.7).  We did not observe an imbalance in P. maculata presence 

(43.49%) versus absence observations, therefore we did not balance the sample.   For model fit, 

OOB error was 21.1% for the whole model and 25.2% for the presence class (Table 4).  When 

we validated the model, 98% of sites were correctly classified as presence/absence with a Kappa 

of 0.96 (Table 4).  The two classes were visually separable on the MDS plot of the RANDOM 

FORESTS node proximity matrix (Appendix 4).   

We only observed B. boreas at 12.43% of the sites.  Initial models of B. boreas without 

balanced sample had > 60% error in the presence class but only 5% error in the absence class.  

Therefore, we followed the methods for an unbalanced sample.  The B. boreas breeding niche in 

Yellowstone is defined by wetland characteristics (type), topography (elevation relief ratio at 

27X 27 cell window size, topographic roughness at 27X27 cell window size), mean annual 

precipitation, surrounding wetland cover, and degree days > 5° C (p < 0.05, Table 4, MIR 0.6).  

For model fit, OOB error was 23.9% for the whole model, 31.8% for the presence class (Table 

4).  In model validation, we were able to correctly classify presence/absence for 95.8% of sites 

(presence 100%, absence 92.2%) with a Kappa of 0.915 (Table 4).   Classes were only visually 

separable on a portion of the MDS plot (Appendix 4).    

Grinellian niche models developed for each species performed poorly in the reciprocal 

prediction test, providing evidence of niche dissimilarity of these two species Yellowstone 
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(Table 4).  When the P. maculata model was used to predict B. boreas, 4.2% were correctly 

classified on validation, and Kappa was -0.91 (Table 4).  When the B. boreas model was used to 

predict P. maculata, 1.6% were correctly classified on validation, and Kappa was -0.968 (Table 

4).  Probability of detection < 1 had little effect on the results for either species (< 5% standard 

error), suggesting probability of detection was high enough that pseudo-absences had little effect 

(MacKenzie et. al 2003). 

Niche-based species distribution models   

Observed P. maculata and B. boreas distributions were best explained by dispersal limited 

niche theory.  In our dispersal limited niche model for P. maculata, distance to nearest occupied 

site was the most important variable. After model selection, we also retained location (X) and 

cover (Shrub at 400m radius), in addition to all of the variables from the P. maculata Grinellian 

niche model (Table 4).   For the niche-based distribution model, OOB error improved to 14.3% 

overall and 16.4% for the presence class (Table 4).  Model validation also improved compared to 

the Grinellian model with 99.15 % correctly classified with a Kappa 0.983 (Table 4).  As in the 

Grinellian model, the two classes were visually separable on the MDS plot (Appendix 4).  The P. 

maculata distribution model based on the Grinellian niche lead to over-prediction of suitable 

habitat whereas the distribution model based on a dispersal limit niche was more restricted.  Both 

distribution models identified Hayden Valley and wetlands north of Lewis Lake (Fig. 8) as high 

probability of species presence.   

When we added variables measuring dispersal limitation to the B. boreas Grinellian niche 

model, distance to nearest occupied site was also the most important variable.  We retained no 

other measures of dispersal limitation.  With the inclusion of distance to nearest occupied site, 

OOB error improved to 20.9% overall and 22.9% for the presence class (Table 4).  Model 
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validation also improved compared to the niche model with 97.35% correctly classified with a 

Kappa 0.947 (Table 4).  The presence class had two clusters, one separable and one intermixed 

with absences (Appendix 4). In addition, the B. boreas niche distribution model still had higher 

OOB error in the presence class than the P. maculata Grinellian niche model (22.9% vs. 25.2%).  

The B. boreas distribution model based on the Grinellian niche led to slight over-prediction of 

suitable habitat whereas the distribution model based on a dispersal limited niche was more 

restricted.  Both distribution models identified the areas around Old Faithful and east side of 

Lewis Lake (Figs. 7,8; Appendix 5) as areas with high probability of occupancy.  In addition, we 

identified high probability of occupancy areas in the inaccessible southern arms of Yellowstone 

Lake (Fig. 8), where there are multiple historic observations (Koch and Peterson 1995).  

DISCUSSION 

We found P. maculata and B. boreas distributions were significantly different in 

Yellowstone with separable niches based on environmental requirements.  However, species 

distribution models based on the Grinellian niche theory resulted in an over prediction of species 

presence.  If our goal was to locate all habitats meeting basic environmental requirements, 

models based on the Grinellian niche theory would be preferred (Rehfeldt et al. 2006).  However, 

the dispersal limited niche theory best explained the observed distributions.  As part of our 

approach, we develop a cohesive framework that addresses current limitations of species 

distribution models (Guisan and Zimmermann 2000, Guisan and Thuiller 2005, Araujo and 

Guisan 2006, Austin 2007).   For this reason, our models have high predictive power often 

lacking in amphibian distribution models (Green 2003, Denoel and Lehmann 2006).   

Araujo and Guidan (2006) identify five challenges in species distribution modelling: 

clarification of the niche concept, improving study design, improving parameterization 
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(modelling) strategies, improving model selection and evaluation of variable contribution, and 

improving model validation. We successfully address these needs by i) testing competing niche 

theories and resulting predictions of distribution (Pulliam 2000, Austin 2007), ii) utilizing a 

stratified random sample (Guisan and Zimmermann 2000), iii) applying a non-parametric 

algorithmic approach (RANDOM FORESTS) with methodology for unbalanced samples and 

imperfect detection rates, iv) developing model selection criterion for RANDOM FORESTS that 

incorporate variable importance, and v) implementing a test of overall model significance while 

conducting both internal and external model validation.  Using this modelling framework, we 

were able to build species distribution models based on ecological theory with high classification 

accuracy (>90%) for both P. maculata and B. boreas.     

Distribution   

Testing for a significant difference in the observed spatial distributions of two species is an 

important first step before proceeding to infer differentiation in species’ distributions contingent 

on environmental requirements.  Based on the location and abundance of observations for each 

species, we found the spatial distributions of P. maculata and B. boreas to be significantly 

different.  Properties of the spatial distribution (e.g., autocorrelation, clustering) can also give 

insight into species’ dispersal ability.  Amphibian dispersal tends to be limited (Marsh et al. 

1999, Manier and Arnold 2006), therefore we expected occupied sites to be spatially 

autocorrelated for both species.   While we detected spatial autocorrelation in occupied sites in 

both cases, stronger autocorrelation in P. maculata than B. boreas occupancy suggests B. boreas 

is capable of colonizing suitable habitat farther from occupied sites.  This observation is 

supported by maximum recorded dispersal distances for each species (P. maculata 600 m 

(Spencer 1964),  B. boreas 6000 m (Muths 2003)).  In addition,  P. maculata presence is 
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significantly clustered relative to the expected distribution based on wetland availability. This 

suggests suitable habitat remains unoccupied due to lack of a source population.  

Grinellian niche   

Although P. maculata and B. boreas are both pond-breeding amphibians with similar habitat 

requirements, we were able to differentiate their niches based on environmental conditions  in 

Yellowstone (the “realized environment”).  Our ability to effectively differentiate Grinellian 

niche was due in part to improvements in the modelling framework developed for this study.  

Using a random stratified sample, we were able to capture the variation in the temperature-

moisture gradient.  By balancing observations of species presence/absence, we were able to 

decrease error in predicting B. boreas presence.  By incorporating uncertainty due to potential 

pseudo-absences, we demonstrated that our model results were insensitive to pseudo-absences.  

RANDOM FORESTS already contains a bootstrap of the data, so presence at a single site is unlikely 

to have disproportionate influence across replicate trees and therefore the final model. Finally, 

our Grinellian niche models have high (>92%) classification accuracy when validated against 

withheld data. 

Pseudacris maculata  

 Pseudacris spp. are often through to be opportunistic with regard to breeding site selection 

(Stevens et al. 2007), laying eggs in any wetland with emergent vegetation for egg deposition 

(Koch and Peterson 1995).  However, we found P. maculata in Yellowstone to be restricted 

based on environmental conditions with a definable Grinellian niche as seen both in the selected 

variables and PCC (98%).  As demonstrated by the clear separation between presence and 

absence in the MDS plot (Appendix 4), P. maculata is not equally probable across the range of 

environmental variability as expected with an opportunistic species.  There are two explanations 
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for this result: throughout its range P. maculata is not an opportunistic species as previously 

believed or the environmental conditions at the edge of the species’ range represent only a 

marginal portion of the species’ fundamental niche (Braunisch et al. 2008).  

In the extreme environment of Yellowstone, two competing forces limit environmental 

suitability for P. maculata: wetland evaporation and length of the growing season (Corn 2003).  

In order to survive, P. maculata larvae must reach metamorphosis is a single season before 

temporary wetlands evaporate and subsequently larva must grow large enough to survive the 

harsh winter (Semlitsch et al. 1999, Beck and Congdon 2000).  The effect of wetland 

evaporation, as measured by degree days > 5° C and wetland type, may be amplified by the long-

term drought in Yellowstone (>8 year at time of data collection).  In the most arid section of the 

park (Lamar valley, NE),  we observed P. maculata at only two sites even though our surveys 

included multiple locations with historic breeding records (Koch and Peterson 1995).   

Short growing seasons with cool temperatures, as measured by frost-free period, slow time to 

metamorphosis (Palo et al. 2003).  We did not find P. maculata above 2654m in elevation, likely 

due to short frost-free period (average < 3 days).  In addition, occupied sites above 2500m tended 

to be in areas with warmer temperatures and less cover then unoccupied sties at these elevations.  

Run-off from thermal pools elevates water temperature, which would be beneficial for P. 

maculata at sites with a short frost-free period.  However, we observed a negative relationship 

between P. maculata presence and thermal influence.  Thermal influence also changes water 

chemistry (e.g., conductivity) which may negatively impact P. maculata eggs, larvae, or 

vegetation required for egg deposition.   

Occupancy of suitable habitats is further limited by competition and predation.  Wetland 

category identified shallow, inundated wetlands with low current and vegetation required for P. 
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maculata breeding success (palustrine category).  However, wetland category may also be an 

indirect measure of predation and competition.   Rana luteiventris breeds in deeper, cooler 

wetlands and there may be competitive exclusion with P. maculata.  In addition, many riverine 

(river) and lacustrine (lake-like) wetlands contain fish predators, which preclude P. maculata 

breeding (Pilliod and Peterson 2001).  

Bufo boreas 

 We were able to define B. boreas Grinellian niche with high classification accuracy (PCC 

95.5%).  Although B. boreas is thought to have more specific breeding requirements than P. 

maculata, species’ Grinellian niche was less definable.   The MDS plot for B. boreas shows two 

clusters of presences intermixed with absences (Appendix 4).  There are three alternative 

explanations for our result: B. boreas is a more opportunistic breeder than previously thought, 

the two breeding strategies (ponds vs. rivers) form a bimodal niche distribution, or the sample 

size is insufficient to clearly separate B. boreas presence/absence.  Although our sample fairly 

represents the rarity of B. boreas in the study area by including both a random stratification and 

directed sampling, it may still lack the size needed for clear MDS clusters.   

Environmental conditions related to site specific characteristics such as muddy, flat wetlands 

with slow moving water are highly important in defining B. boreas niche (Table 4).  Although B. 

boreas breeds in both ponds and rivers, the utilized wetland types had similar muddy substrates 

that provide cover for larvae and breeding adults.  We also found topographic measures related 

to broad-flat areas (elevation relief ratio and topographic roughness) were important.  Elevation 

relief ratio is higher on slope angles, which are unlikely to contain these habitats.  Topographic 

roughness is low in flatter areas such as thermal basins around Old Faithful which have a 

relatively high density of B. boreas breeding sites (Fig. 7).    
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Although not as important as in defining P. maculata niche, rainfall and temperature are 

driving variables for B. boreas niche.  Moisture is essential for B. boreas hydration, as the 

species has little physiological control over water loss (Bartelt and Peterson 2005). However, 

mean annual precipitation is in the selected model as opposed to the additional inclusion of 

growing season precipitation as in the case of P. maculata.  Bufo boreas river sites are not 

ephemeral and the wetlands associated with muddy flats are often fed by thermal springs which 

maintain some water in the wetland throughout the season. In addition, while degree days >5° is 

retained in the B. boreas model, it is not the most important variable as for P. maculata.  Bufo 

boreas is highly terrestrial in the late summer and may have behavioral adaptations for avoiding 

water loss (Bartelt et al. 2004).      

Niche-based species distribution models  

Species distribution models based on a Grinellian niche alone resulted in over-prediction of 

species’ fine-scale distribution (Fig. 8, Appendix 5).  If dispersal is limited, as in both our focal 

organisms (Spencer 1964, Muths 2003, Manier and Arnold 2006), we would expect some 

habitats meeting species’ environmental requirements to be unoccupied (Pulliam 2000).  

Therefore, observed P. maculata and B. boreas distributions are best explained by dispersal 

limited niche theory with distance to nearest occupied site the most important predictor.  In 

addition, predicting probability of occurrences identifies the suitability of the habitat and 

certainty of the estimate giving a clearer understanding of distribution than presence-absence 

only predictions.   

Pseudacris maculata is more spatially dependant than B. boreas as reflected in spatial 

autocorrelation of presences, significant clustering, and the including of additional spatial 

variables in the dispersal limited niche model (UTM_X and percent shrub cover, 400m window).  
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Location (UTM_X) indicated a regional effect on the east to west axis where sites in the central 

region of Yellowstone were more likely to be occupied.  Drought conditions in the Lamar valley 

(northeastern section of the park) were particularly severe and may be drive this relationship.  

Finally, shrub cover at 400m radius was also important for P. maculata niche-based distribution 

emphasizing the importance of this cover type for site occupancy. 

Species distribution model predictions based on the dispersal limited niche are more 

constrained than Grinellian niche species distribution model predictions (Fig. 8). The dispersal 

limited niche species distribution models more effectively reflect both regional variation and 

fine-scale occupancy.  In addition, we were able to predict high probability of occupancy in 

unsampled areas supported by historic observations. 

CONCLUSIONS 

Species distribution models have many applications in ecology and conservation such as 

quantifying the environmental niche of a species, testing multiple ecological hypotheses, or 

providing guidance for directed sampling of rare or difficult to find species (Guisan and Thuiller 

2005, Guisan et al. 2006).  The prediction of probability of occurrence can identify hotspots 

(Garcia 2006) and will be useful in directing field surveys to sites likely to have breeding 

activity, especially for B. boreas (Appendix 5).  In addition, the species distribution model can 

be projected forward in time under different scenarios of climate change (Rehfeldt et al. 2006) 

which may greatly impact amphibians (Araujo et al. 2006).  Finally, the niche models will be 

used to inform future landscape genetics models assessing connectivity for both species (Manel 

et al. 2003, Storfer et al. 2007).   
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TABLES 

Table 2 

Independent variables.  Table 2 includes variables measuring environmental or dispersal 

limitation conditions.  Expanded version of Table 2 with data source, variable calculation, 

expected relationship, and ecological justification is found in Appendix 3. 

Condition Variables Code 
Climate Degree days > 5° C  dd5 
 Frost free period  ffp 
 Growing season precipitation gsp  
 Mean annual precipitation map 
Wetland characteristics Wetland category category 
 Wetland Type type 
Solar energy Heat Load Index  hli 
 Hot-dry slopes ssina 
 Solar insolation  inso 
 Canopy Percent1 canopy 
Cover Water1 water 
 Forest1 forest  
 Wetlands1 wetland  
 Meadow1 meadow 
 Barren1 barren 
Water holding capacity Compound topographic index  cti  
 Curvature  crv 
Topography Topographic roughness2  rough 
 Elevation relief ratio2 err 
 Relative slope position  rsp 
 Hierarchical slope position hsp 
Disturbance 1988 Fire perimeter1 burn 
 Impervious surfaces1 imperv 
Water Chemistry Thermal1 therm 
Isolation Distance to nearest occupied site distance 
Regional effects Location X, Y 
Dispersal cover Water3 water 
 Forest3 forest  
 Wetlands3 wetland  
 Meadow3 meadow 
 Barren3 barren 
Some variables were calculated at multiple window sizes 1 Percent of landscape (PLAND) in a 100m radius around 
the sample location 2Calcualted at 3X3, 15X15, and 27X27 cell window sizes. 3PLAND in 200, 400, and 1000m 
radii around the sample location.
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Table 3 

Spatial clustering and autocorrelation of P. maculata and B. boreas.  NN is the standard nearest 

neighbor cluster statistic.  Relative NN is the modified NN statistic based on the distribution of 

wetlands.  Moran’s I and Geary’s C are measures of spatial autocorrelation.    

Species NN Relative NN Moran’s I Geary’s C 

P. maculata 0.21** 0.18* 0.175*** 0.894*** 

B. boreas 0.25** 0.11 0.0535* 0.946* 

*Significant 0.05  **Significant < 0.01  *** Significant < 0.001
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Table 4 

Model Results for Grinellian and dispersal limited niche models.  Model is the species for which the model was fit (PSMA - P. 

maculata; BUBO - B. boreas) and niche theory used (G – Grinellian, DL – dispersal limited).  Species – species predicted with a 

given model.  Model fit – out of bag error (OOB) give as: overall model (absence, presence).  Validation statistics - percent correctly 

classified (PCC: overall model (absence, presence)), Kappa, and area under curve (AUC).  Selected model lists variables in order of 

importance.  Abbreviations and explanations of variables are in Table 2.   

  Model Fit Validation Selected Model 

Model Species OOB PCC Kappa AUC Variables ranked by importance 

PSMA-G PSMA 21.1 (18.2, 25.2) 98.0 (97.8, 98.3) 0.960 0.980 

 BUBO Na 1.6 (1.2, 1.9) -0.968 -0.984 

dd5, wetland type, ffp, map, shrub(100), 

wetland category, gsp, therm(200) 

BUBO-G BUBO 23.9 (11.5,31.8) 95.8 (92.2, 100) 0.915 0.957 

 PSMA Na 4.2 (0, 4.2) -0.915 -0.96 

wetland type, err27, map, wetland(100), 

dd5, rough27 

PSMA-DL PSMA 14.3 (12.7,16.4) 99.2 (99.5, 98.8) 0.995 0.995 distance,dd5,wetland type, map, 

shrub(400), X, gsp, ffp, wetland category, 

therm(200)  

BUBO-DL BUBO 20.9 (11.1,22.9) 97.4 (95.5, 99.4) 0.947 0.964 distance, wetland type, map, dd5, err27, 

rough27, wetland(100) 
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FIGURE LEGENDS 

Figure 7.  Study area and observations. Figure 7 is a map of the study area with points 

represented surveyed locations overlaid on a shaded relief.  Colors are as follows: black – no 

breeding presence for focal species, gray – P. maculata breeding presence, and white – B. boreas 

breeding presence.  Dark areas represent major water bodies as a reference.  Focal areas referred 

to in the text are labeled as follows: A) Yellowstone Lake, B) Hayden Valley, C), Lewis Lake, 

and D) Old Faithful geyser basin. 

 

Figure 8. Species distribution models.  Figure 8 displays the predicted probability of using 

spatial distribution models developed from each niche theory.  Probability of occurrence scales 

from 0 (white) – 1 (black) predicted to the NWI data.  Predicted distributions are as follows: A) 

P. maculata species distribution model based on the Grinellian niche, B) P. maculata species 

distribution model based on the dispersal-limited niche, C) B. boreas species distribution model 

based on the Grinellian niche, and D) B. boreas species distribution model based on the dispersal 

limited niche.  Color versions of the figures and figures of focal areas are available in Appendix 

5.
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APPENDICES 

Appendix 3.  Independent variables.   

Appendix 3 is an expanded version of Table 2 from the text.  Table headings are as follows.  Condition is the environmental or 

dispersal condition that may define niche.  Variables of these conditions and respective codes are listed in the next two columns.  

Source is the data source, either spatial data or model from which the data were derived.  Pred is the predicted relationship between 

the variable of condition and species presence for each species (P. maculata  - PSMA, B. boreas – BUBO).  Plain text is a neutral 

relationship, bold text is a negative relationship, and italicized text is a positive relationship.  Variable explanation is a short 

explanation of what the variable is measuring.  Calculation gives either an explanation of how the variable was derived or a reference 

for the variable.  Ecological justification is a justification for using the variable as a measure to define P. maculata and/or B. boreas 

niche including selected references.  
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Condition Variable Code Source Pred Variable Explanation Calculation Ecological Justification 

 
Climate Degree days  

> 5° C  

dd5 Splinea BUBO 
PSMA 

Sum of degrees for all 
days > 5° C 

(Rehfeldt 2006) High temperatures increase desiccation 
risk (Bartelt and Peterson 2005) and 
related to hydroperiod, important for 
breeding (Werner et al. 2007a) 

 Frost free 

period  

ffp Spline  BUBO 
PSMA 

Julian date of last freeze 
to date of first freeze  

(Rehfeldt 2006) Length of frost free period controls the 
length of the breeding season, which 
affects time to metamorphosis (Palo et 
al. 2003) and may correspond to areas 
more recently colonized (Moriarty 
Lemon et al. 2007). 

 Growing 
season 
precipitation 

gsp  Spline BUBO 
PSMA 

Average growing season 
precipitation 

(Rehfeldt 2006) Affects hydroperiod (Sinsch 1988, 
Werner et al. 2007a) and moisture. 

 Mean annual 
precip 

map Spline BUBO 
PSMA 

Average annual 
precipitation  

(Rehfeldt 2006) Year-round precipitation, including 
snow pack, may influencing breeding 
timing and hydroperiod (Corn 2003, 
Werner et al. 2007a) 

 Hot-dry slopes ssina SRTMb BUBO 
PSMA 

Indicates temperature-
moisture  

(Stage 1976) High temperatures increase desiccation 
risk (Bartelt and Peterson 2005).  

 Solar insolation  inso SRTM BUBO 
PSMA 

Measure of solar energy 
at wetland 
Breeding: April – July 

(Fu and Rich 
1999)   

Year – measure of site productivity.  
Breeding season solar insolation relates 
energy needed for tadpole rearing (Rose 
2005) 

 Canopy 
Percent1 

canopy NLCDc BUBO 
PSMA 

Percent cells forest 
cover in 3X3 window 
around wetland 

PLAND 
(McGarigal and 
Marks 1995) 

B. boreas prefers more open habitats 
(Bartelt et al. 2004) 

Abiotic 
wetland 
characteristics 

Wetland 
category 

category NWI BUBO 
PSMA 
 

Category of wetland 
(river, lake, pond) 

NWI P. maculata sensitive to fish predation, 
while B. boreas is toxic to many 
predators 

 Wetland Type type NWI BUBO 
PSMA 

Permanence and 
substrate type 

NWI Breeds in shallow, inundated wetlands 
(Koch and Peterson 1995) which may 
be created by bison or beaver (Stevens 
et al. 2007).   

10
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Condition Variable Code Source Pred Variable Explanation Calculation Ecological Justification 
 

Cover Water1 water NLCD BUBO 
PSMA 

 Open water PLAND 
(McGarigal and 
Marks 1995) 

May provide stopping locations during 
long-distance dispersal (Pilliod et al. 
2002) 

 Forest1 forest  NLCD BUBO 
PSMA 

Classes Deciduous, 
Evergreen,  Mix 

PLAND 
(McGarigal and 
Marks 1995) 

Woodland proximity (Babbit et al. 
2006), surrounding habitat important 
(Denoel and Lehmann 2006) 

 Wetlands1 wetland  NLCD BUBO 
PSMA 

Classes Emergent & 
Herbaceous 

PLAND 
(McGarigal and 
Marks 1995) 

Number of sites in close proximity may 
be important for sustaining populations 
(Stevens et al. 2007). 

 Meadow1 meadow NLCD BUBO 
PSMA 

Classes: 71, 81, 82 PLAND 
(McGarigal and 
Marks 1995) 

Provide shrub cover (Bartelt et al. 2004) 

 Barren1 barren NLCD BUBO 
PSMA 

Classes: 31, 12 PLAND 
(McGarigal and 
Marks 1995) 

Little cover, exposed  (Bartelt et al. 
2004) 

Holding 
capacity and 
topography 

Compound 
topographic 
index  

cti  SRTM BUBO 
PSMA 

Measure of wetness: 
flow accumulation by 
catchment size 

(Moore et al. 
1993) 

Wetness may enhance dispersal (Bartelt 
and Peterson 2005, Goates et al. 2007) 
and influence breeding site hydroperiod 
(Pechmann et al. 1989). 

 Curvature  crv SRTM BUBO 
PSMA 

Curvature in elevation 
raster  

(Zeverbergen and 
Thorne 1987) 

High curvature may retain moisture 
while low curvature may be exposed. 

 Topographic 
roughness2  

rough SRTM BUBO 
PSMA 

Variance in elevation for 
a given window size 

(Riley et al. 
1999) 

Topographically complex areas may 
make dispersal energetically expensive  

 Elevation relief 
ratio2 

err SRTM BUBO 
PSMA 

Index of elevational 
complexity  

(Evans 1972) Topographically complex areas may 
make dispersal energetically expensive 

 Relative slope 
position  

rsp SRTM BUBO 
PSMA 

Relative position 
between valley floor and 
ridge top 

(Murphy et al. in 
review) 

Sites of similar slope position may be 
more connected  

 Hierarchical 
slope position 

hsp SRTM BUBO 
PSMA 

Scale decomposition of 
slope position 

(Murphy et al. in 
review) 

Exposed areas may impede dispersal 
(Bartelt et al. 2004). 

Disturbance 1988 Fire 
perimeter1 

burn USGSe BUBO 
PSMA 

Fire parameter from 
1988 

PLAND 
(McGarigal and 
Marks 1995) 

Increased movement post fire (Hossack 
and Corn 2007) 
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 Impervious 
surfaces1 

imperv NLCD BUBO 
PSMA 

0-100% impervious 
surface 

PLAND 
(McGarigal and 
Marks 1995) 

Roads & development  may limit 
dispersal ability (Arens et al. 2007) 

Water 
Chemistry 

Thermal1 therm USGS BUBO 
PSMA 
 

Percent thermal cells   PLAND 
(McGarigal and 
Marks 1995) 

Direct thermal is unsuitable habitat, but 
breed in areas with thermal influence. 
(Koch and Peterson 1995) 

Regional 
Effects 

UTM_X 
UTM_Y 
coordinates 

XY GPSf BUBO 
PSMA 

Location of site – gives 
similarity of location to 
other sites  

None Sites with more nearby occupied sites 
may be more likely to be occupied 
(Tobler 1979).  Regional effect (Manier 
and Arnold 2006) 

Isolation Distance distance SRTM BUBO 
PSMA 

Distance to nearest 
occupied site 

Topographically 
correct distance 
to nearest 
neighbor 

Beyond the maximum dispersal 
distance, habitat may be unavailable 
(Spencer 1964).  Local effect 

Dispersal 
cover 

Water3 water NLCD BUBO 
PSMA 

 Open water PLAND 
(McGarigal and 
Marks 1995) 

Water may provide stopping points 
during dispersal (Pilliod et al. 2002) 

Condition Variable Code Source Pred Variable Explanation Calculation Ecological Justification 
 

 Forest3 forest  NLCD BUBO 
PSMA 

Classes Deciduous, 
Evergreen,  Mix 

PLAND 
(McGarigal and 
Marks 1995) 

Woodland proximity (Babbit et al. 
2006), surrounding habitat important 
(Denoel and Lehmann 2006) 

 Wetlands3 wetland  NLCD BUBO 
PSMA 

Classes Emergent & 
Herbaceous 

PLAND 
(McGarigal and 
Marks 1995) 

Proximity to other potentially occupied 
sites, number of sites may be important  
(Stevens et al. 2007). 

 Meadow3 meadow NLCD BUBO 
PSMA 

Classes: 71, 81, 82 PLAND 
(McGarigal and 
Marks 1995) 

Provide shrub cover (Bartelt et al. 2004) 

 Barren3 barren NLCD BUBO 
PSMA 

Classes: 31, 12 PLAND 
(McGarigal and 
Marks 1995) 

Little cover, exposed  (Bartelt et al. 
2004) 

Some variables were calculated at multiple window sizes 1 Percent of landscape (PLAND) in a 100m radius around the sample 

location 2Calcualted at 3X3, 15X15, and 27X27 cell window sizes. 3 Percent of landscape (PLAND) in 200, 400, and 1000 m radii 

around the sample location.  aSpline climate model (Rehfeldt 2006)bSRTM – Spaceshuttle radar telemetry mission data used to derive 

10
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a digital elevation model (DEM).  cNLCD National Landcover dataset, 2001 d NWI – National Wetland Inventory eUSGS – United 

States Geological Survey data for Yellowstone National Park.  fGPS - Geographic Positioning System point location taken in the field. 

 

10
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Appendix 4 Additional figures for Moran’s correlogram and MDS plots  

Appendix 4 contains additional figures for a) Moran’s correlogram and b) 

multidimensional scaling (MDS) plots. 

 

Figure A4.1 Moran’s correlogram. Figure A4.1 is a correlogram plotting Moran’s I (Y) 

by  distance bin (X, ~583 m/distance bin).  P maculata values are represented by dashed 

lines while B. boreas values are represented by solid lines.  Black lines are the observed 

Moran’s I by distance bin.  Gray lines are the upper bound for the 95% confidence 

interval simulation envelope. 
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Figure A4.2.  Figure A4.2 displays the multidimensional scaling (MDS) plots for each 

niche model.  The MDS plots show separation between presences and absences by the 

nodes matrix.  Panels are as follows: I) B. boreas MDS plot for the Grinellian niche 

mode, II) B. boreas MDS plot for the dispersal limited niche mode, III) P. maculata 

MDS plot for the Grinellian niche model, and IV) P. maculata MDS plot for the dispersal 

limited niche model.  For all plots, presence is given in blue while absence is given in 

read.   

 

 

I II  

III  IV 
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Appendix 5.  Color figures and focal distribution maps 

Figure A5.1.  Species distribution models (Color version of Fig. 8).  Figure 8 displays the 

predicted probability of occurrence to the landscape using spatial distribution models 

developed from each niche theory.  Probability of occurrence scales from 0 (white) – 1 

(black) limited to the NWI wetlands.  Predicted distributions are as follows: A) P. maculata 

species distribution model based on the Grinellian niche, B) P. maculata species distribution 

model based on the dispersal-limited niche, C) B. boreas species distribution model based on 

the Grinellian niche, and D) B. boreas species distribution model based on the dispersal 

limited niche.   

 

Figure A5.2.  Species distribution models by focal regions (see Fig. 7 for overall context).  

A) Pseudacris maculata species distribution models for Yellowstone Lake area.  AI – P. 

maculata species distribution model based on Grinellian niche.  The areas south of the lake 

are likely over predicted.  AII – P. maculata species distribution model based on dispersal 

limited niche.  Small wetlands in the southern portion of this focal area now have higher 

probability of presence, likely due open shrub habitat.  The prediction is also more restricted, 

with fewer high probability sites on the south end of Yellowstone Lake.  However, in the 

Grinellian niche model, an island in the northern portion of Yellowstone is predicted as high 

probability of breeding presence.  Probability of presence drops with the dispersal limited 

niche model.  This site is occupied (D. Patla, pers. com.), suggesting that there is a trade-off 

between over prediction of distribution and potential commission errors.  Although this site is 

occupied, due to it’s isolation the biological reality may be that it has a low probability of 

occupancy.  B) Comparison of P. maculata (BI) and B. boreas (BII) species distribution 



 

 109 

models (dispersal limited) for the Hayden Valley/Alum creek focal area.  Although species 

presence in spatially intermixed, we are able to predict P. macualta versus B. boreas 

presence. In this area, B. boreas tends to breed in the river channel while P. maculata breeds 

in inundated wetlands.  However, the two B. boreas non-river breeding sites are correctly 

classified as high probability for B. boreas and low probability for P. maculata.  C)  Species 

distribution model (dispersal limited) for B. boreas around Lewis Lake.  Observations of B. 

boreas are marked with a cross symbol (all non-breeding), while unoccupied sites are denoted 

with a white dot.  We did not observe any breeding site occupancy in this area and non-

breeding observations were not included in the model.  However, adjacent to the site where 

we observed a subadult (western location) was identified as high probability of breeding 

presence.  All of the unoccupied sites had low probability of breeding presence.  D) Species 

distribution model (distance limited) for P. maculata around Old Faithful.  Most observations 

were well predicted (presence – cross symbol, absence white dot), even though presence-

absences were in close proximity (nearly adjacent wetlands).  There are a few commission 

errors on the E side of this focal area (wetlands with presence predicted to have low 

probability of breeding).  This could be due to thermal influence in the area, negatively 

associated with P. maculata breeding.  Although these wetlands are immediately adjacent to 

thermal areas, thermal run-off drains away from occupied sites into the Firehole River.  The 

ability to include drainage patterns would likely improve model accuracy.  



 

 110 

Figure A5.1 
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Figure A5.2 
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In review with Ecology 

 

 

ABSTRACT  

A major objective of ecology is to understand how ecological processes limit dispersal and 

species’ distributions. By spatially quantifying ecological components driving connectivity 

among occupied habitats, we can understand why some locally suitable habitats are 

unoccupied resulting in observed discontinuities in distribution. Using a novel application of 

spatial analysis and algorithmic modeling, we address the effects of three key ecological 

components on Bufo boreas genetic connectivity in Yellowstone National Park: ecological 

process, scale, and hierarchical organization. Although topographically corrected distance 

alone is significant, it explained little of the overall variation in genetic connectivity (10-

21%).  Habitat permeability, topographic morphology, and temperature-moisture are all 

significant processes influencing B. boreas connectivity. Connectivity was enhanced by 
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growing season precipitation, 1988 Yellowstone fires, cover, and length of frost free period.  

Conversely, connectivity was restricted by impervious surfaces (roads and development), hot-

dry slopes, ridges, length of the hot season, and presence of complex topography (56% 

variation explained).  In a hierarchical analysis, we were able to explain more variation within 

four genetic clusters as identified using STRUCTURE (74%; meadows, growing season 

precipitation, impervious surfaces) as opposed to between genetic clusters (45%; ridgelines, 

hot-dry slopes, length of hot season, and annual precipitation). We found that some metrics of 

ecological process operate on fine scales, while others operate at broad scales or across 

multiple scales making cross-scale spatial analysis critical for ecological interpretation.   In 

the future, the approach we developed can be used to predict the impact of landscape change 

on B. boreas connectivity.  Additionally, the analytical methods developed can be applied in 

any species or system with appropriate landscape and genetic data. 

 

Keywords: Landscape genetics, ecoinformatics, multiple scales, RANDOM FORESTS, species 

connectivity, landscape ecology, algorithmic models, ecological process, Boreal toad 

 

INTRODUCTION 

A major objective of ecology is to understand how ecological processes that underlie 

dispersal affect species’ distributions and population connectivity. Species’ ranges are 

generally limited by biotic and abiotic factors (Morin et al. 2007). However, within a species 

range, underlying ecological processes influence connectivity among occupied habitat patches 

(Pulliam 2000, Ovaskainen and Hanski 2004). Quantifying spatial connectivity among these 
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habitats can elucidate why some locally suitable habitats are unoccupied, resulting in 

discontinuities of species distribution (Hanski and Gaggiotti 2004).    

Amphibians generally have patchy distributions (Wagner and Fortin 2005) which may 

result in limited connectivity (Smith and Green 2005).  Connectivity is likely driven by 

ecological processes (Turner 1989) such as habitat permeability (Mazerolle 2004), 

topographic morphology (Funk et al. 2005), and temperature-moisture regimes (Palo et al. 

2003).  Understanding how these ecological processes affect amphibian population 

connectivity and habitat occupancy is particularly important for conservation because many 

species are in decline for “enigmatic” reasons (Stuart et al. 2004).   

Demographically derived measures of amphibian connectivity and distribution may vary 

drastically from year to year due to population stochasticity, possibly requiring decades of 

data for reliable estimates (Pechmann et al. 1991, Green 2003).  However, connectivity 

among occupied habitats can be assessed by estimating genetic distance using neutral markers 

(Keyghobadi et al. 2005, Storfer et al. 2007), an effective approach for amphibian systems 

(Beebee 2005). Nonetheless, ecological data used to assess connectivity are often 

autocorrelated with non-linear relationships between dependent and independent variables, 

violating assumptions of standard parametric models (Wagner and Fortin 2005).  In addition, 

these data and corresponding measures of genetic distance may have a low statistical signal to 

noise ratio resulting in models with little predictive power.   

Ecoinformatic approaches (Chon and Park 2006), such as classification and regression 

trees, are well suited for studies of connectivity using genetic and ecological data. RANDOM 

FORESTS is an implementation of classification and regression trees that uses a bootstrap of 

the data to grow many trees (Breiman 2001, Cutler et al. 2007). This non-parametric approach 
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has the advantage of the ability to incorporate complex interactions among independent 

variables, measures of variable importance, and high power (Déath and Fabricius 2000, Cutler 

et al. 2007). 

Boreal toads (Bufo boreas) in Yellowstone National Park are highly suitable for testing 

ecological processes driving connectivity as measured with neutral genetic data using an 

ecoinformatic approach.  Bufo boreas is known to be sensitive to habitat permeability as 

measured by canopy cover (Bartelt et al. 2004), roads (Arens et al. 2007), and thermal 

influence (Koch and Peterson 1995).  Topographically complex areas prevalent throughout 

Yellowstone may be barriers to gene flow (Loughheed et al. 1999) and temperature-moisture 

regimes likely limit connectivity (Palo et al. 2003, Bartelt and Peterson 2005). Each of these 

processes (habitat permeability, topographic morphology, and temperature-moisture) likely 

influences connectivity at multiple spatial scales. In addition, ecological processes likely 

operate in a hierarchy with fine-scale process influencing local connectivity and more broad-

scale processes producing major breaks in genetic connectivity. 

We test three hypotheses regarding B. boreas connectivity in Yellowstone National Park 

using neutral genetic markers: 1) connectivity of B. boreas breeding sites is a function of 

three ecological processes: habitat permeability, topographic morphology, and temperature-

moisture regimes, 2) ecological processes in the surrounding landscape affect B. boreas 

connectivity across multiple spatial scales, and 3) connectivity is hierarchical with metrics 

operating at coarser spatial and temporal scales driving connectivity between genetic clusters; 

while metrics operating at finer spatial and temporal scales will drive connectivity within a 

genetic cluster. 
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METHODS 

Field Data Collection   

We stratified the National Wetlands Inventory data for Yellowstone National Park 

(USFWS 2002) by elevation and precipitation with at least twenty wetlands randomly 

sampled per stratum. To address low site occupancy (3%), we visited known B. boreas 

breeding sites in addition to the stratification to ensure adequate sampling (D. Patla, pub. 

comm.). Geographic site locations were recorded with a Garmin 12XL (Fig. 9). Tissue 

samples were collected by buccal swab from adults (Goldberg et al. 2003) and tail clip from 

tadpoles (2-5 mm) for DNA analysis following sterile field protocol. 

Genetic Data Collection  

DNA was extracted using the Qiagen DNeasy96 tissue protocol (Qiagen Inc). Fifteen 

microsatellite loci (Simandle et al. 2006) were genotyped with an ABI 3730 automated 

sequencer and scored with GeneMapper 3.7 (ABI) (for loci, optimized conditions, quality 

control, and basic validation see Appendix 6). A maximum likelihood algorithm (COLONY) 

was used to identify full sibling tadpoles (Wang 2004) and subsample sites at the size of the 

smallest sibling cluster to avoid biasing allele frequency distributions (C. Goldberg, pers. 

comm.). We represented the pair-wise genetic relationship between sample sites by 

connecting each site with a vector to every other site (Fig. 9B) in ArcInfo using a user 

designed Arc Macro Language (AML) program (ESRI 2000). We measured B. boreas 

connectivity for each vector with FST (Wright 1951, Weir and Cockerham 1984), Dps 

(Bowcock et al. 1994), Dc (Cavelli-Sforza and Edwards 1967), and Nei’s genetic distance 

(Nei 1978) as calculated in Microsatellite Analyser (MSA) (Dieringer and Schlötterer 2003).  
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Ecological Process  

To evaluate the effect of each ecological process (habitat permeability, topographic 

morphology, temperature-moisture); we derived a set of metrics for each process from 30 m 

data (see Appendix 7 for detailed metric explanation, source data, predicted effect, and 

ecological justification). We assessed habitat permeability by cover class (forest, meadow, 

barren, water, wetland), percent cover, impervious surfaces, and thermal influence (Table 5; 

Appendix 7).  We measured topographic morphology with a set of topographically derived 

variables including previously published (elevation, topographic roughness, elevation relief 

ratio, and ridges) and newly described metrics (relative slope position and hierarchical slope 

position (Table 5; Appendix 7). We evaluated temperature-moisture with metrics derived 

from the DEM and a spline-based climate model (Rehfeldt 2006, Rehfeldt et al. 2006) (Table 

1). We calculated multiple temperature-moisture metrics based on topography: heat load 

index, compound topographic index, slope temperature-moisture, curvature, and solar 

insolation (Table 5; Appendix 7). Using the climate model, we calculated an average by 

vector for: growing season precipitation, mean annual precipitation, frost free period, and 

degree days >5° C (Table1).  Due to the pair-wise nature of the data, we included topographic 

distance in all models.   

We built a model of connectivity for each ecological process in RANDOM FORESTS 

(Breiman 2001, Liaw and Wiener 2002) and developed methodology for empirical model 

selection.  We implemented RANDOM FORESTS in regression mode with 5000 trees, 34% out 

of bag (OOB) sample, and m (number independent variables iterated at each node) optimized 

to the OOB error estimate (Liaw and Wiener 2002).  We removed multivariate redundant 

variables using qr matrix decomposition (threshold = 0.005) (Becker et al. 1988). In addition, 
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we developed methodology for empirical model selection in RANDOM FORESTS to improve 

model fit and ecological interpretability as follows.  As an output of RANDOM FORESTS, 

metrics are ranked in order of importance based on the number of times a given metric 

improves overall model mean squared error (MSE).  To compare variable importance among 

models, we developed a standardized measure (Model Improvement Ratio (MIR)).  The MIR 

standardizes the mean increase in squared OOB residual error (MSE) importance measure to a 

ratio [MSEn / MSEmax].  For each model we then subset variables > MIR threshold(s) (0.1-0.9 

in 0.1 increments, replicates = 10).  We then selected a model based on maximum 

improvement in MSE and percent variation explained, retaining all metrics above the MIR 

threshold.  

We then assessed model fit by percent variation explained (pseudo-r2), observed vs. 

predicted connectivity, residual distribution, MSE, and overall model significance. To assess 

overall model significance, we created a null distribution by randomizing observed genetic 

distances and calculating percent variation explained for each randomization (n=1000). We 

then calculated if the percent variation explained for a given model was > 95th percentile of 

the null distribution (p-value < 0.05). RANDOM FORESTS iterates through independent 

variables at each node.  Therefore, to evaluate the amount of variation explained by 

topographically corrected distance alone we needed to create random dummy metric in R (R 

development core 2007).   Finally, we established the general nature of the relationship 

between connectivity and metrics of ecological process (+, - , =, complex) using a bivariate 

kernel density plot (Wand and Jones 1995). 
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Multiple scales  

To assess the overall scale of landscape influence on B. boreas connectivity, we increased 

vector widths between sampling localities by creating round buffers around vectors in ArcInfo 

and recalculating all metrics (60, 120, 240, 480, and 960m diameter; ESRI 2000). For each 

scale, we tested the significance of each ecological process, created a final model using the 

above methods in RANDOM FORESTS and combined all selected metrics across all scales into 

one model to produce a cross-scale model of B. boreas connectivity. When removing 

multivariate redundant metrics, we retained the smallest scale if multiple scales of the same 

metric were statistically redundant as identified in the qr decomposition.  

Hierarchical Effect  

We partitioned the data into two hierarchical levels: vectors within a genetic cluster and 

vectors between genetic clusters. We identified genetic clusters using STRUCTURE (Pritchard 

et al. 2000) with 700,000 Markov-chain Monte-Carlo iterations (500,000 burn-in, 200,000 

post burn-in) correlated allele frequencies, admixture model, inferred alpha with uniform 

prior, number of populations (K) 1-13, and 10 replicates. The number of genetic clusters (K) 

was estimated using ∆K (Evanno et al. 2005). To establish the validity of using identified 

genetic clusters as spatially defined groups and avoid the modifiable areal unit problem 

(MAUP) (Jelinski and Wu 1996), we assessed within versus among cluster genetic variation 

using an Analysis of Molecular Variance (AMOVA) (Peakall and Smouse 2006). For each 

hierarchical level, we tested significance of the three ecological processes and built a full 

model of connectivity using the above methods in RANDOM FORESTS and repeated the process 

at each scale (0, 60, 120, 240, 480, and 960 m).  Using the metrics selected at each scale, we 

then built a cross-scale model for each hierarchical level, pruning metrics using MIR.  
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RESULTS 

Genetic results  

We collected B. boreas samples at 26 breeding locations for a total sample size of 805, 

reduced to 685 after screening tadpoles for full siblings (Fig. 9; see Appendix 6 for basic 

population genetic tests and statistics). Pair-wise FST ranged from 0 to 0.449; all pair-wise FST 

values were significantly greater than zero except between two sites around Alum creek (Fig. 

9, square symbols).  We were consistently able to explain more genetic variation using fewer 

metrics with the allele frequency distribution based measure Dps than FST, Dchord, or Dn. 

Therefore, unless otherwise noted in the text, B. boreas connectivity is measured by the 

genetic distance statistic Dps (0.1396 – 0.6437).  Model results for all genetic distance 

measures are included in Appendix 8.  

Ecological Process  

Topographically corrected distance alone explained 21% of the variation in genetic 

distance (p < 0.05, Table 6). However, all tested ecological processes models were significant 

(p < 0.05, 52-55% variation explained) and explained more variation than distance alone 

(Table 6). The temperature-moisture models of connectivity explained more variation in 

genetic distance than habitat permeability or topographic complexity (55% vs. 52-54%, Table 

6).  Although the full model including all ecological processes explained only marginally 

more variation than any individual ecological process model (56%; Table 6), there was an 

overall improvement in model fit as assessed by MSE, observed vs. predicted plots, residual 

distribution, and model parsimony (Appendix 8).  The full ecological process model included 

metrics of all the tested ecological processes: temperature-moisture (growing season 
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precipitation, slope-aspect transformation, degree days > 5° C (dd5), and frost free period), 

topographic morphology (topographic roughness, hierarchical slope position, elevation relief 

ratio), and habitat permeability (burned, canopy, and forest; Table 6).   

Multiple Scales  

We found that ecological processes and corresponding metrics operate at multiple spatial 

scales (Fig. 10).  Overall, habitat permeability and topographic morphology do not show a 

clear trend between model performance and scale (Appendix 8).  However, models of 

connectivity based on temperature-moisture improve with increasing scale (53.74 – 57.97%, 

Appendix 8).  When all ecological processes are included in a single model, percent variation 

explained also improves with increasing scale (56.28% scale 0 – 59.99% scale 960 m; 

Appendix 8).  In addition, metrics of these ecological processes had distinct scale effects 

around 240 m (Fig. 10).  Two metrics, growing season precipitation and slope temperature-

moisture were important across all scales (Fig. 10; 11).  Additional temperature-moisture (dd5 

and frost free period), habitat permeability (burned, canopy), and topographic morphology 

metrics (roughness, elevation relief ratio and hierarchical slope position) function at ≤ 240 m 

(Fig. 10).  Conversely, ridge lines are only an important metric ≥ 240 m (Fig. 10).  We were 

able to explain the most variation in genetic distance by creating a single cross scale model 

(59.09%, Table 6).  The cross scale model had an overall improvement in model fit assessed 

by MSE, observed vs. predicted plots, residual distribution, and model parsimony (Appendix 

8).  The cross scale model included: topographic morphology (ridges - 960 m, elevation relief 

ratio - 60 m), temperature-moisture regime (growing season precipitation and hot-dry slopes), 

and habitat permeability (canopy -60 m, impervious surfaces - 240 m; Table 6).  
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Hierarchical Effect  

We identified 4 well supported genetic clusters using STRUCTURE, three of which 

contained substructure (Fig. 9) (Pritchard et al. 2000, Evanno et al. 2005). The four main 

genetic clusters are spatially justifiable units; they minimize within cluster variation and 

maximize between cluster genetic variation as established with an AMOVA (p < 0.001). As 

predicted, different ecological processes explain within cluster variation compared to between 

cluster variation (Table 6). In addition, at a given hierarchical level (within or between genetic 

clusters) distance was not selected as an important variable.  Within clusters, we were able to 

explain 74.03% of the variation in Dps, the most variation explained in any tested model, with 

little model error (Table 6).  Meadows, growing season precipitation (at multiple scales), and 

impervious surfaces are all important variables (Fig. 11; Table 6).  Between clusters, we were 

able to explain 45.32% of the variation in genetic distance (Table 6) with FST and Dps models 

of connectivity explaining an equivalent amount of variation (45.32% Dps vs. 44.85% FST, 

Table 6).  Between clusters, connectivity is negatively associated with hot-dry slopes (ssina), 

dd5, and ridges (Fig. 11f,h,i).  Connectivity is positively associated with mean annual 

precipitation and canopy cover (Fig. 11c; Table 6).  

 

DISCUSSION 

We contribute to ecological understanding of species fine-scale distributions by 

explaining the influence of key ecological processes on population connectivity utilizing 

population genetic data.  Habitat permeability, topographic morphology, and temperature-

moisture regimes are all strongly correlated with B. boreas connectivity in Yellowstone, with 

relatively little variation explained by distance alone.  Processes driving connectivity operate 
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at multiple spatial scales.  Habitat permeability tends to operate on fine scales, topographic 

morphology at broad scales, and temperature-moisture across spatial scales.  Hierarchical 

structure is present, with finer spatial and temporal processes driving connectivity within 

genetic clusters while broader spatial and temporal processes drive connectivity between 

genetic clusters.  Finally, this study puts the Yellowstone distribution of B. boreas in an 

ecological context.  Distribution may be limited by growing season precipitation, ridges, and 

impervious surfaces resulting in the observed patchy distribution (Table 6).  

Genetic Metrics  

Our results demonstrate that allele frequency distribution based genetic distance (Dps) is 

more powerful and detects more recent landscape changes than heterozygosity based genetic 

distance (FST).  Allele frequency distribution based methods are more likely to detect recent 

events (Miller and Waits 2003), identifying landscape genetic structure within five 

generations post change (Murphy et al. in revisions). Conversely, FST may reflect past 

landscape condition (Holzhauer et al. 2006) and assumes population equilibrium which is 

often violated in natural populations.  

Ecological Process  

In contrast to other studies (Arnaud 2003, Manier and Arnold 2006), topographic distance 

was not the strongest predictor of connectivity (Table 6; Appendix 8).  Instead, habitat 

permeability, topographic morphology, and temperature-moisture all significantly influence 

B. boreas connectivity and are represented in the final model, although temperature-moisture 

regime had the strongest influence (Table 6).   

The importance of habitat permeability, topographic morphology, and temperature-

moisture for B. boreas connectivity is well supported in the literature.  Habitats with mid-
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range canopy cover (such as shrubby areas) are preferentially selected during dispersal, thus 

increasing connectivity (Bartelt et al. 2004).  Post-fire habitats also result in increased 

connectivity through B. boreas colonization of new habitats as well as increased dispersal in 

the years immediately following fire (Hossack and Corn 2007).  This is possibly due to 

terrestrial microhabitats provided by woody debris, increased water temperature at breeding 

sites, and stable temperature of burrowing sites in burned areas (Hossack and Corn 2007). A 

study of tiger salamanders in northern Yellowstone also found a positive correlation between 

burned habitats and gene flow (Spear et al. 2005).   Measures of topographic morphology 

represent physiological cost of moving through the landscape and across watershed 

boundaries, which may be barriers for amphibians (Funk et al. 1999).  Growing season 

precipitation corresponds to the B. boreas active period, indicating breeding site persistence 

(Corn 2003) and habitat moisture. Metamorphosed B. boreas have little physiological control 

over evaporation (Bartelt and Peterson 2005); therefore, individuals likely prevent desiccation 

by avoiding hot, exposed habitats. Finally, length of the growing season (frost free period) 

affects time to metamorphosis in amphibians and may limit gene flow among populations 

(Giordano et al. 2007).  

Multiple Scales  

We demonstrate that metrics of ecological processes influencing B. boreas connectivity 

operate at multiple scales.  Fine-scale metrics include measures of local habitat condition, 

microclimate, and topography in which local variability influences B. boreas connectivity 

(Table 6).  Two key metrics, growing season precipitation and hot-dry slopes, operate across 

scales suggesting a more general relationship with B. boreas connectivity (Fig. 10).   
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Each scale, analyzed independently, results in a slightly different inference about B. 

boreas connectivity.  Incorporating all of these scales into a single analysis captures a more 

complete picture of the effects of ecological processes on B. boreas. The cross scale model 

includes metrics measured at fine scales (canopy, elevation relief ratio), mid-scale 

(impervious surfaces), broad scale (ridges), and across multiple scales (growing season 

precipitation and hot-dry slopes; Fig. 10).  However, cross-scale models only improved the 

percent variation explained by ~3-5%, indicating that the straight-line model (scale 0) had 

high predictive power. This model of connectivity may be performing well for two major 

reasons: inclusion of multi-scale metrics and the protected nature of the study system.  Multi-

scale metrics (i.e., multiple window sizes) may capture the surrounding landscape, even at 

finer-scales. In addition, although Yellowstone has areas of high human use, it is a relatively 

intact landscape. For this reason, historic and current gene flow may be very similar 

strengthening the overall observed pattern of connectivity.  The influence of the surrounding 

landscape and subsequent scale effect may be more notable in highly fragmented systems. 

Hierarchical Effect  

Within cluster variation in connectivity represents a finer spatial and temporal scale than 

between cluster variation. Between clusters, genetic variation represents historic or long-term 

conditions. Therefore, it is not surprising that we are able to explain more variation in 

connectivity within clusters (74.03%) as compared to between clusters (44.85%, Table 6) 

using current landscape condition.  Topographic distance is notably absent as an important 

variable in predicting B. boreas connectivity both within and between genetic clusters.  These 

results reinforce the cross-scale analyses and suggest two things: 1) distance may be acting as 
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a surrogate for the hierarchical effect in the ecological process and scale models and 2) 

landscape features can have a strong effect on connectivity independent of distance. 

Overall, within genetic cluster connectivity is governed by habitat permeability and 

moisture; areas with high growing season precipitation, mid-range cover and low impervious 

surface density are positively associated with high connectivity (Table 6). The overwhelming 

importance of growing season precipitation within genetic clusters may indicate 

fragmentation due to drought conditions over the past 8-12 years (Table 6). These effects are 

also consistent with apparent drought-induced genetic bottlenecks in tiger salamanders 

throughout northern Yellowstone (Spear et al. 2006).  In addition, growing season 

precipitation is important at multiple non-redundant scales suggesting it represents multiple 

mechanisms. Local growing season precipitation may represent average humidity and soil 

moisture. At the 960m scale, growing season precipitation may represent regional differences 

in temperature-moisture regime across Yellowstone.  

Connectivity between genetic clusters can be explained by more general, mostly broad 

scale metrics. Major topographic features, such as ridgelines, can explain the observed genetic 

groups suggesting that topography is a barrier for B. boreas in Yellowstone. In contrast to the 

multi-scale models that are based on all pair-wise connections, hot-dry slopes only operate at 

mid to broad scales and degree days > 5° C only at broad scales (Table 6).  Mean annual 

precipitation replaces growing season precipitation as the prominent measure of moisture 

across scales, reinforcing the more long-term nature of processes driving connectivity 

between genetic groups. 
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CONCLUSIONS 

Our study has several important implications for ecological applications of genetic data, 

B. boreas conservation, and understanding mechanisms of fine-scale species distributions. 

Isolation-by-distance and autocorrelation are important considerations in landscape genetics.  

However, even in relatively intact landscapes such as Yellowstone, distance may only explain 

a small portion of the variation in genetic connectivity compared to the variation explained in 

models including other potential explanatory processes. By using an algorithmic approach, we 

are able to simultaneously include multiple metrics of ecological processes to explain a high 

proportion of variation in genetic distance (up to 74%).  

Because B. boreas is thought to be in decline throughout large portions of its range 

(Muths et al. 2003), it is essential to assess species’ connectivity and vulnerability in protected 

areas where populations remain. At all scales (Table 6; Appendix 8), precipitation and 

temperature are major drivers of B. boreas connectivity. As Yellowstone becomes warmer 

and drier as predicted due to climate change (Bartlein et al. 1997), connectivity in this 

landscape will likely degrade. In addition, niche space for species limited by temperature-

moisture regimes will likely shift (Rehfeldt et al. 2006), potentially resulting in much of the 

presently occupied habitat being unsuitable. Knowledge of these threats may help inform 

management decisions; e.g., an increase in impervious surfaces due to development, also 

shown to limit this species’ connectivity, may have a greater impact in a context of climate 

change than it would otherwise.  Finally, implementation of landscape genetic approaches can 

provide robust estimates of population connectivity to assist in development of science-based 

conservation and management decisions.   
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TABLES 

Table 5 

Metrics for each ecological process, code, and data source or metric derivation.   Source 

acronyms: SRTM (Space Radar Telemetry Mission), DEM (Digital Elevation Model), NLCD 

(2001 National Land Cover Database)Table is expanded to include predicted relationship, 

metric explanation, and ecological justification in Appendix 7.1.   In addition, definitions for 

newly derived metrics (rsp, hsp) are included in Appendix 7.2. 

Process Metric Code Source 

IBD Topographic Distance (m) distance SRTM DEM 

Habitat Water water NLCD: 11 

 Forest forest  NLCD: 41, 42, 43 

 Wetlands wetland  NLCD: 90, 95 

 Meadow meadow NLCD: 71, 72 

 Canopy Percent  manopy % cells classified as forest 

 Impervious surfaces imperv NLCD: 21, 22, 23, 24 

 Thermal1 therm (McGarigal and Marks 1995) 

 1988 Fire perimeter burn USGS 

Topo-morph Elevation (m) elev SRTM DEM 

 Topographic roughness2  rough (Riley et al. 1999) 

 Elevation relief ratio err2 err (Evans 1972) 

 Relative slope position3  rsp Newly derived (Appendix 7.2) 

 Hierarchical slope 

position3 

hsp Newly derived (Appendix 7.2) 
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 Ridges ridge Hsp threshold 

Temp-Moist Heat Load Index  hli (McCune and Keon 2002) 

 Compound topographic 

index  

cti  (Moore et al. 1993) 

 Slope-aspect 

transformation  

ssina (Stage 1976) 

 Curvature  crv (Zeverbergen and Thorne 1987) 

 Solar insolation  inso (Fu and Rich 1999) 

 Growing season precip gsp  (Rehfeldt 2006) 

 Mean annual precip map (Rehfeldt 2006) 

 Frost free period  ffp (Rehfeldt 2006) 

 Degree days > 5° C  dd5 (Rehfeldt 2006) 

Some metrics were calculated at multiple window sizes 1 Percent of landscape (PLAND) 
thermal at 0, 13, and 26 cell radii.  2Calcualted at 3X3, 15X15, and 27X27 cell window sizes.  
3Decomposed from 0 – 27X27 cell window size (see Appendix 7.2).
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Table 6   

Landscape genetic models of B. boreas connectivity in Yellowstone National Park.  Group is the group tested within a hypothesis.  

Distance is genetic distance as FST or Dps.  PVE is percent variation explained, a pseudo-R2 from RANDOM FORESTS.   Model is the 

selected model with metrics in descending order of importance. Type indicates type of relationship: bold – negative relationship, 

normal – positive relationship, and italics – no single direction across the range of the metric.  Numbers proceeding a _ indicated 

window size for multi-scale variables and numbers following a _ indicate buffer size.  For full model results and additional 

validation statistics, see Appendix 8. 
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Hypothesis Group Distance PVE Model 
Distance Distance FST 10.050 Distance 
  DPS 21.069 Distance 
Process Habitat  FST 33.481 Meadow, canopy, wetland, distance, burn, forest, therm720, imperv 
  DPS 51.797 burn, distance, canopy, water, forest, meadow, imperv, wetland, therm360 

 Topo FST 34.357 elev, distance, rough15, rsp, rough3, rough27, err27, hsp, err15, err3 

  DPS 53.570 Hsp, elev, rough15, err27, distance,rough27, err3, err15, rough3 

 Temp-moist FST 39.939 map, gsp, distance, hli, dd5, ffp 
  DPS 55.309 Gsp, distance 
 All FST 38.420 meadow, wetland, gsp, map, canopy, dd5, elev, rough3, rough15, ffp, burn, errr27, 

imperv, distance, rsp, err15, hli, rough27, therm720, forest, hsp 
  DPS 56.284 gsp, distance, ssina, rough27/15, burn, canopy, hsp, err27, dd5, err15, forest, ffp 

Scale X-Scale FST 43.925 Meadow_60,meadow_480,imperv_480,meadow_240,ridge_960, canopy, meadow_960, 
imperv_240, err15_60, ridge_240, dd5_960, err15_120, wetland_960, gsp_60, 
dd5_60, imperv_120, map_120, imperv_60, canopy_120, imperv_960, gsp_120, 
gsp_480  

  DPS 59.087 ridge_960, gsp, ssina_480, canopy_60, ssina_240, ssina_960, imperv_240, err27_60 
Hierarchical  Within FST 38.902 imperv_960, err27, canopy 
  DPS 74.027 Meadow_480, gsp_960, imperv_480, gsp_120, gsp_480, gsp 
 Between FST 45.324 canopy_960, ridge_480, dd5_960, ssina_480, gsp_240, meadow_60, ridge_240, 

meadow_960, ssina_240, wetland_960, meadow_480, ridge_960, gsp_480, 
imperv_240, meadow_120, gsp_960, imperv_120, err15_60, water_120, imperv_60, 
meadow_240, canopy_120, canopy_60, err15_120, cti_120, cti_60, canopy, 
imperv_480, gsp_120, gsp_60 

  DPS 44.848 ssina_240, ssina_480, map, ssina_960, ridge_960, canopy_480, map_240, 
meadow_960,canopy_240,imperv_240,map_120,imperv_480,imperv_120, dd5_960 

13
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FIGURE LEGENDS 

Figure 9. A) Study area (Yellowstone National Park) with sample locations and genetic 

groups as identified in STRUCTURE.  We identified four levels of genetic structure (circles, 

stars, triangles, and squares) with substructure in three of those groups (circles, starts, 

triangles) displayed by symbol shade (white, gray, or black).  Numbers indicate areas where 

more than one site was present (see blow-up of these areas in Appendix 9). B) Pair-wise 

connections between sites overlaid on a shaded relief.  Figure can be seen in color in 

Appendix 9. 

Figure 10.  Scale of ecological process (m) for selected metrics (metric abbreviations are 

given in Table 5).  Bars indicate at which scales a metric was selected, bar color indicates 

ecological process. 

Figure 11.  Select important metrics mapped for the study area by ecological process (habitat 

permeability (A-C), ecological morphology (D-F), and temperature-moisture (G-I)).   Circles 

represent sample locations.  Metrics are as follows: A) 1988 fire perimeters (gray) with 

impervious surfaces overlaid, B) NLCD classification showing water (white), open/shrub 

(light gray), forest (dark gray), and wetlands (black), C) canopy cover (0 (white)- 100% 

(black)), D) roughness at 15X15 window (0 (white)- 100% (black)), E) elevation relief ratio 

(0 (white)- 100% (black)), F) ridges (black), G) growing season precipitation (low (white)- 

high (black)), H) ssina (0 (white) – 100% (black)), and I) dd5 (low (white) – high (black)).  

For full color see Appendix 9.  
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Figure 11 
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APPENDICES 

Appendix 6.   

Appendix 6.1  Genetic summary information.  To ensure genotype accuracy, we included 

at least 2 negative controls per extraction and PCR, amplified a known genotype in each 

reaction, and reamplified all rare alleles (<5% frequency) in addition to at least 10% of 

samples from each PCR to screen for genotyping and human error. After subsampling sibling 

clusters (Wang 2004, C. Goldberg pers. comm.), all loci were tested for global concordance 

with Hardy-Weinberg equilibrium, significant linkage disequilibrium between all pairs of 

loci, and Hardy-Weinberg equilibrium at each site using GENEPOP and MICROSATELLITE 

ANALYSER (MSA) (Raymond and Rousset 1995, Dieringer and Schlötterer 2003). No loci or 

populations were out of Hardy-Weinberg equilibrium or linkage equilibrium (Raymond and 

Rousset 1995) with the exception of three sites with small sample sizes which were excluded 

from the pair-wise analysis (see Fig3.1A, B).  

 

Appendix 6.2  Microsatellite conditions and basic statistics.  Includes the following: locus 

(Simandle et al. 2006), PCR multiplex (what primers were in a single PCR reaction), panel 

(what product were run in a single capillary), fluorescent label color (R- red, G- green, B-

blue, Y-yellow), primer concentration in PCR reaction, number of alleles found,  and 

expected heterozygosity.  Qiagen multiplex kit (including Q-solution) was used for all 

reactions with standard conditions.  General PCR cycle was: initial denaturing (95° C) 15 

min, 35 cycles (94° C 30 sec denature, X° C annealing 90 sec, 72° C extension 60 sec),  and 

60° C 60 min final extension.   
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Locus Multiplex Panel Label [Primer] Annealing # alleles Hexp 

BBR36 1 1 R .31 µM 56 °C 11 0.8261 

BBR233 1 1 G .31 µM 56 °C 6 0.2768 

BBR29 1 1 B .26 µM 56 °C 3 0.3227 

BBR86 1 1 B .26 µM 56 °C 7 0.7910 

BBR87b 1 1 G .26 µM 56 °C 16 0.9041 

BBR17 1 1 Y .26 µM 56 °C 2 0.1893 

BBR297 1 1 G .26 µM 56 °C 10 0.6006 

BBR4-2 1 1 B .26 µM 56 °C 4 0.1482 

BBR281 2 2 R .26 µM 55 °C 10 0.4522 

BBR292 2 2 B .26 µM 55 °C 14 0.8093 

BBR16 2 2 B .26 µM 55 °C 22 0.9223 

BBR4 2 2 G .26 µM 55 °C 5 0.6414 

BBR293 2 2 B .26 µM 55 °C 10 0.2855 

BBR34-2 2 2 R .31 µM 55 °C 12 0.8224 

BBR45 single 1 Y .26 µM 53 °C 15 0.7426 

Average      9.8 0.5823 
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Appendix 7   1 

Metric explanation, source data, predicted effect, ecological justification, and new metric definitions.   2 

Appendix 7.1 Table of ecological processes and respective metrics.  Process – process of which the metric is a measure (distance 3 

(IBD), habitat permeability (Habitat), topographic morphology (Topo), or temperature-moisture (Temp-Moist).  Metric – metric name.  4 

Code- metric code or abbreviation.  Source – source of data which contained the variable or from which the variable was derived.  5 

Sources are as follows: NLCD – National Land Cover Database (2001), USGS – coverages developed for Yellowstone National Park 6 

research unit, SRTM - Shuttle Topographic Radar Mission digital elevation model (DEM), and Rehfeldt 2006 – climate spline model 7 

that adjusts weather stations using elevation (used SRTM data).  Predicted relationship (Pred) – if we expected to find a positive (+), 8 

negative (-), or neutral (=) relationship between the metric and connectivity.  Metric explanation – brief description of variable and 9 

reference if a previously published metric.  Calculation – description of how the metric was calculated or reference.  Ecological 10 

justification – brief justification for including metric in analysis with select reference(s). 11 

 12 
Process Metric Code Source Pred Metric Explanation Calculation Ecological Justification 

IBD Topographic 
Distance (m) 

distance SRTM - Topographically corrected distance Sum Isolation-by-distance (IBD) has been seen in B. 
boreas (Manier and Arnold 2006) 

Habitat Water water NLCD - Class Open water Count of cells Large areas of open water likely barrier to 
dispersal 

 Forest forest  NLCD + Classes Deciduous, Evergreen,  Mix Count of cells Forest provides cover (Bartelt et al. 2004) 

 Wetlands wetland  NLCD + Classes Emergent & Herbaceous Count of cells Provide food, breeding, and moisture 

 Meadow meadow NLCD + Classes: 71, 81, 82 Count of cells Provide shrub cover (Bartelt et al. 2004) 

 Barren barren NLCD - Classes: 31, 12 Count of cells Little cover, exposed  (Bartelt et al. 2004) 

14
7 



 

 148 

 Canopy Percent canopy NLCD + Percent cells forest cover # cells forest/total # 
cells 

Use mid-range cover (Bartelt et al. 2004) 

 Impervious surfaces imperv NLCD - 0-100% impervious surface Count of cells Roads & development  may limit dispersal 
ability (Arens et al. 2007) 

 Thermal1 therm USGS -, +, = Percent thermal cells   PLAND 
(McGarigal and 
Marks 1995) 

Direct thermal is unsuitable habitat, but breed 
in areas with thermal influence. (Koch and 
Peterson 1995) 

 1988 Fire perimeter Burn USGS + Fire parameter from 1988 Count of cells Increased movement post fire (Hossack and 
Corn 2007) 

Topo Elevation (m) Elev SRTM - Elevation in meters Average elevation Regulates breeding phenology, affecting gene 
flow (Giordano et al. 2007) 

 Topographic 
roughness2  

Rough SRTM - Variance in elevation for a given 
window size 

(Riley et al. 1999) Topographically complex areas may make 
dispersal energetically expensive 

 Elevation relief ratio2 Err SRTM - Index of elevational complexity  (Evans 1972) Topographically complex areas may make 
dispersal energetically expensive 

 Relative slope 
position3  

Rsp SRTM + Relative position between valley floor 
and ridge top 

Appendix 7.2 Sites of similar slope position may be more 
connected  

 Hierarchical slope 
position3 

Hsp SRTM + Scale decomposition of slope position Appendix 7.2 Exposed areas may impede dispersal (Bartelt et 
al. 2004). 

 Ridges Ridge SRTM - Count of ridge cells Ridges derived 
from hsp 

May limit dispersal (Funk et al. 1999) 

Temp-
Moist 

Heat Load Index  Hli SRTM - Cool – hot values (slope-aspect 
transformation)  

(McCune and Keon 
2002 

Toad have little physiological control over 
water loss, hot areas impede dispersal (Bartelt 
and Peterson 2005) 

 Compound 
topographic index  

cti  SRTM + Measure of wetness: flow accumulation 
by catchment size 

(Moore et al. 1993) Wetness may enhance dispersal. (Bartelt and 
Peterson 2005). 

 Hot-dry slopes Ssina SRTM - Indicates temperature-moisture  (Stage 1976) Hot-dry slopes areas impede dispersal (Bartelt 
and Peterson 2005) 

 Curvature  Crv SRTM + Curvature in elevation raster  (Zeverbergen and 
Thorne 1987) 

High curvature may retain moisture while low 
curvature may be exposed. 

 Solar insolation  Inso SRTM + Measure of solar energy  
Breeding: April – July 

(Fu and Rich 1999)   Year – measure of site productivity.  Breeding 
season solar insolation relates energy needed 
for tadpole rearing 

 Growing season 
precipitation 

gsp  Spline + Average growing season precip  (Rehfeldt 2006) May affect breeding and dispersal (Bartelt and 
Peterson 2005) 

 Mean annual precip Map Spline + Average annual precipitation  (Rehfeldt 2006) Year-round precipitation, including snow pack, 
may influencing breeding timing and dispersal 
(Corn 2003) 

 Frost free period  Ffp Spline  + Julian date of last freeze to date of first 
freeze  

(Rehfeldt 2006) Later last freeze means a shortened breeding 
season, which may result in restricted gene 
flow (Palo et al. 2003). 

 Degree days > 5° C  Dd5 Spline - Sum of degrees for all days > 5° C (Rehfeldt 2006) High temperatures increase desiccation risk 
(Bartelt and Peterson 2005) 

Some metrics were calculated at multiple window sizes 1 Percent of landscape (PLAND) thermal at 0, 13, and 26 cell radii.  13 
2Calcualted at 3X3, 15X15, and 27X27 cell window sizes.  3Decomposed from 0 – 27X27 cell window size. 14 

14
8 



 

 149 

Appendix 7.2 

Definitions for newly derived topographic morphology metrics.   

We define relative slope position the elevation of a site relative to the valley floor and ridge 

top by  

rsp = ((zs – zv)/(zr – zv)) *100 +0.05 

where zs = elevation at a site, zv = elevation of the valley floor, and zr = elevation of the ridge.  

 

Hierarchical slope position is a cross-scale slope decomposition function calculated by 

applying moving-windows with increasing window sizes to the DEM (3X3 – 27X27 

windows). For the smallest window size, hsp calculates the difference between elevation of 

the center cell (focal cell) and mean elevation. The mean is then standardized and becomes 

the base grid, iterated to the largest window size (see pseudo-code). 

hsp pseudo-code: 
Definitions 
tmp = original DEM  
#Window size range (min to max) and increment (i)# 
min = 3 
max = 27 
i=2 
s=min 
mean(sx) = global mean of grid sx 
stdv(sx) = global standard deviation for grid sx 
 
Begin loop: 
xs = tmp – FOCALMEAN 
#for each cell, value in the tmp grid minus mean for window# 
 
scale_s = 100 * (xs – mean(xs)/stdv(sx)) 
s = s + i 
#increase window size by one increment# 
kill tmp 
rename sx temp 
kill scale_s 
Go to beginning of loop 
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Appendix 8   

Full table of model results (expanded from Table 6).  Landscape genetic models of B. boreas connectivity in Yellowstone National 

Park.  Hypothesis – overall hypothesis group (Process, Scale, or Hierarchical).  Process is the tested ecological processs (“Class”): 

habitat permeability, topographic morphology, temperature-moisture, or an interaction of all process (All).  Scale is the buffer size 

around each vector connecting sites (meters).  Distance is the pair-wise genetic distance measure.  We present several validation 

statistics: R2 - amount of variation explained (a pseudo-R2), rmse - root mean squared error, rmsd - root mean standard deviation, 

resd.mean - mean of the residuals, resd.stdv - standard deviation of the residuals, resd.skew – skewness of the residuals, reds.kurt 0 

kurtosis of the residuals, MSE is mean squared error, Sig - overall model significance.  Model is the selected model with metrics in 

order of importance (abbreviations in Table 5).  Number after a variable indicates the scale (in 30 m pixel window size) for multi-

scale variables.  Number after “_” for cross scale models indicates buffer size.  Threshold is the MIR threshold for the model. 

  

Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Process Habitat FST 33.480 0.03 0.385 8.00E-04 0.0295 0.5562 -0.0027 0.00392 p < 0.001 meadow, canopy, wetland, distance, 

burn, forest, therm720, imperv 

70 

  DPS 51.797 0.031 0.289 -0.001 0.0307 0.4117 0.2911 0.00546 p < 0.001 burn, distance, canopy, water, forest, 

meadow, imperv, wetland, therm360 

70 

  DAN 44.400 0.036 0.343 -0.0016 0.0359 0.4541 -0.2608 0.00616 p < 0.001 distance, forest, burn, meadow, 

canopy, water 

70 

  CAS 50.838 0.031 0.343 -9.00E-04 0.0312 0.2272 -0.3687 0.00408 p < 0.001 burn, distance, forest, canopy 80 

15
3 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Temp

Moist 

FST 39.939 0.029 0.378 7.00E-04 0.029 0.4669 0.1759 0.00354 p < 0.001 map, gsp, distance, hli, dd5, ffp 70 

  DPS 55.309 0.034 0.322 -4.00E-04 0.0343 0.0464 -0.2954 0.00466 p < 0.001 gsp, distance 70 

  DAN 47.705 0.038 0.362 -3.00E-04 0.0379 0.3433 -0.3016 0.00576 p < 0.001 gsp, distance, map   70 

  CAS 54.043 0.031 0.347 -3.00E-04 0.0315 0.0523 -0.4234 0.00381 p < 0.001 distance, gsp 80 

 Topo FST 34.357 0.028 0.37 9.00E-04 0.0284 0.5309 -0.0101 0.00389 p < 0.001 elev, distance, rough15, rsp, rough3, 

rough27, err27, hsp, err15, err3 

60 

  DPS 53.570 0.031 0.293 -9.00E-04 0.0311 0.5469 0.4277 0.00524 p < 0.001 hsp, elev, rough15, err27, 

distance,rough27, err3, err15, rough3 

70 

  DAN 42.678 0.036 0.348 -2.00E-04 0.0364 0.5355 0.0564 0.00631 p < 0.001 rough27, distance, err27, elev, hsp, 

rough15, rough3, err3, err15, ridge 

60 

  CAS 51.380 0.028 0.31 -0.001 0.0281 0.2353 -0.1505 0.00405 p < 0.001 hsp, err27, rough27, elev, rough15, 

distance, err3, err15 

70 

15
4 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 38.420 0.026 0.343 8.00E-04 0.0263 0.5854 0.1614 0.00364 p < 0.001 meadow, wetland, gsp, map, canopy, 

dd5, elev, rough3, rough15, ffp, burn, 

errr27, imperv, distance, rsp, err15, 

hli, rough27, therm720, forest, hsp 

50 

  DPS 56.284 0.03 0.282 -2.00E-04 0.03 0.3196 -0.0205 0.00501 p < 0.001 gsp, distance, ssina, rough27, 

rough15, burn, canopy, hsp, err27, 

dd5, err15, forest, ffp 

60 

  DAN 45.106 0.033 0.312 7.00E-04 0.0327 0.4946 0.1801 0.00602 p < 0.001 ssina, err27, rough15, distance, burn, 

rough27, gsp, dd5, ffp, hsp, ridge, 

forest, meadow, insob, imperv, err15, 

canopy, rough3, map, err3, elev, rsp, 

wetland, water, insoy, hli, cti 

40 

  CAS 53.462 0.026 0.288 -0.001 0.0262 0.2446 -0.116 0.00384 p < 0.001 ssina, burn, err27, distance, rough15, 

ridge, hsp, canopy, err3, gsp, ffp, dd5, 

err15, forest, rough27, meadow, 

imperv 

40 

15
5 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Scale 60 Habitat FST 33.851 0.029 0.377 6.00E-04 0.0289 0.525 0.1753 0.00387 p < 0.001 meadow, canopy, burn, imperv, 

distance, forest, wetland, therm720 

70 

  DPS 51.251 0.03 0.286 -1.00E-04 0.0304 0.4272 0.2653 0.00548 p < 0.001 burn, distance, canopy, water, forest, 

imperv, meadow 

60 

  DAN 40.754 0.035 0.339 -6.00E-04 0.0355 0.4781 -0.1316 0.00653 p < 0.001 burn, distance, canopy, water, forest, 

imperv, meadow 

70 

  CAS 49.571 0.028 0.305 -6.00E-04 0.0277 0.2331 0.0146 0.00413 p < 0.001 burn, distance, canopy, forest, 

meadow, imperv 

80 

 Temp

Moist 

FST 41.598 0.029 0.384 8.00E-04 0.0294 0.499 0.2338 0.00344 p < 0.001 map, gsp, distance, dd5, ffp 70 

  DPS 54.557 0.033 0.309 7.00E-04 0.0329 0.1528 -0.2818 0.00518 p < 0.001 gsp, distance, ssina, map, dd5 50 

  DAN 45.120 0.039 0.372 3.00E-04 0.039 0.4393 0.0296 0.00604 p < 0.001 gsp, distance, map, dd5 60 

  CAS 53.752 0.029 0.317 4.00E-04 0.0288 0.0834 -0.296 0.00383 p < 0.001 gap, distance, ssina, map 70 

 Topo FST 35.185 0.031 0.404 8.00E-04 0.031 0.4621 0.1286 0.00380 p < 0.001 elev, rough15, rough27, distance, 

rough3, err15 

80 

  DPS 53.081 0.033 0.312 1.00E-04 0.0332 0.3206 0.0468 0.00532 p < 0.001 elev, hsp, rough15, distance, err27, 

rough27, err15 

50 

  DAN 42.164 0.036 0.348 -3.00E-04 0.0365 0.5326 0.1599 0.00633 p < 0.001 elev, hsp, distance, rough27, rough15, 

err27, rough3, err15, rsp, ridge 

50 

  CAS 50.585 0.029 0.325 2.00E-04 0.0295 0.1609 -0.1356 0.00407 p < 0.001 elev, hsp, distance, rough15, err27, 

rough27 

60 

15
3 15
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 42.150 0.027 0.347 3.00E-04 0.0266 0.5079 0.3514 0.00339 p < 0.001 meadow, gsp, err15, imperv, dd5, 

map, canopy, rough15 

50 

  DPS 56.866 0.03 0.282 3.00E-04 0.0299 0.2757 -0.1683 0.00490 p < 0.001 gsp, ssina, hsp, burn, rough15, err27, 

canopy, dd5, ffp, distance, rough27 

60 

  DAN 45.891 0.033 0.315 6.00E-04 0.033 0.4075 -0.2027 0.00597 p < 0.001 hsp, ssina, rough15, err27, distance, 

gsp, burn, ffp, rough27, meadow, dd5, 

canopy, rough3, elev, water, forest, 

insob, err15, wetland, rsp, map, insoy, 

ridge, hli 

50 

  CAS 55.204 0.026 0.287 -4.00E-04 0.0261 0.1722 -0.3302 0.00370 p < 0.001 ssina, burn, rough15, canopy, err27, 

distance, imperv, ffp, water, gsp, 

meadow, dd5, elev 

40 

Scale 120 Habitat FST 34.751 0.029 0.38 8.00E-04 0.0292 0.5236 -4.00E-04 0.00387 p < 0.001 imperv, meadow, canopy, distance, 

burn, forest, wetland, therm720 

70 

  DPS 51.993 0.033 0.31 -9.00E-04 0.0329 0.4414 0.2972 0.00541 p < 0.001 burn, distance, imperv, water, canopy, 

meadow, forest 

60 

  DAN 44.428 0.035 0.337 -0.0011 0.0353 0.3935 -0.2897 0.00613 p < 0.001 imperv, burn, distance, forest, 

meadow, water, canopy, wetland 

50 

  CAS 52.343 0.028 0.306 -9.00E-04 0.0277 0.2109 0.0458 0.00396 p < 0.001 burn, imperv, distance, forest, water, 

meadow, canopy, wetland 

50 

15
7 

15
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Temp

Moist 

FST 40.043 0.029 0.377 0.0011 0.0289 0.4858 0.2742 0.00356 p < 0.001 map, gsp, distance, ffp, hli 50 

  DPS 53.744 0.034 0.325 0.0011 0.0345 0.1015 -0.3304 0.00529 p < 0.001 gsp, distance, ssina, map 50 

  DAN 46.239 0.038 0.36 1.00E-04 0.0377 0.4464 -0.1261 0.00591 p < 0.001 gsp, distance, map, dd5, ffp 60 

  CAS 53.314 0.032 0.348 1.00E-04 0.0315 0.1155 -0.5228 0.00386 p < 0.001 gsp, distance 90 

 Topo FST 35.134 0.031 0.407 0.0013 0.0312 0.4682 0.1761 0.00379 p < 0.001 elev, rough15, rough27, distance, 

rough3, err15 

80 

  DPS 50.980 0.033 0.311 -7.00E-04 0.0331 0.334 0.0201 0.00557 p < 0.001 elev, hsp, rough15, err27, distance, 

rough27, ridge, rough3, err15 

40 

  DAN 43.646 0.037 0.357 0.0012 0.0374 0.431 -0.2178 0.00617 p < 0.001 elev, hsp, distance, rough27, rough15, 

err27, ridge, rough3, rsp, err15 

60 

  CAS 49.957 0.03 0.332 -1.00E-04 0.0302 0.1888 -0.3043 0.00413 p < 0.001 elev, hsp, distance, err27, rough15 70 

15
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 40.689 0.027 0.347 3.00E-04 0.0266 0.5579 0.1853 0.00351 p < 0.001 meadow, imperv, gsp, err15, canopy, 

map, dd5, rough3, rough27  

50 

  DPS 56.914 0.03 0.287 -4.00E-04 0.0305 0.2035 -0.1915 0.00487 p < 0.001 gsp, ssina, hsp, rough15, burn, err27, 

canopy, dd5, ffp, distance, imperv 

60 

  DAN 45.854 0.033 0.315 1.00E-04 0.033 0.4298 -0.2547 0.00600 p < 0.001 ssina, hsp, err27, imperv, rough15, 

distance, burn, ffp, ridge, meadow, 

dd5, rough27, gsp, water, canopy, 

insob, rsp, rough3, forest, elev, 

wetland, map, err15 

50 

  CAS 54.784 0.027 0.296 4.00E-04 0.0269 0.2306 -0.3023 0.00372 p < 0.001 ssina, hsp, burn, err27, rough15, 

imperv, canopy, distance, ffp 

60 

Scale 240 Habitat FST 31.496 0.031 0.406 0.0013 0.0311 0.5473 0.25 0.00400 p < 0.001 imperv, meadow, canopy, forest, 

distance, wetland, burn, therm720, 

water, therm360 

40 

  DPS 49.502 0.033 0.306 -3.00E-04 0.0326 0.3678 0.4328 0.00570 p < 0.001 distance, burn, meadow, forest, 

canopy, water, imperv 

50 

  DAN 40.702 0.037 0.354 -4.00E-04 0.0371 0.3977 -0.1671 0.00649 p < 0.001 distance, imperv, forest, meadow, 

water, burn, canopy 

60 

  CAS 48.176 0.029 0.319 -5.00E-04 0.029 0.1604 -0.0374 0.00425 p < 0.001 distance, burn, imperv, water, forest, 

meadow, canopy 

60 

15
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Temp

Moist 

FST 40.199 0.029 0.378 7.00E-04 0.029 0.5404 0.2601 0.00352 p < 0.001 map, gsp, distance, ffp, dd5, insob 60 

  DPS 56.558 0.034 0.324 8.00E-04 0.0345 0.1667 -0.5071 0.00498 p < 0.001 ssina, gsp, distance, map 60 

  DAN 47.418 0.039 0.373 0.001 0.0391 0.4291 -0.3788 0.00573 p < 0.001 ssina, gsp, distance 80 

  CAS 56.654 0.03 0.33 2.00E-04 0.03 0.0642 -0.5057 0.00355 p < 0.001 ssina, distance, gsp 70 

 Topo FST 32.773 0.03 0.394 0.001 0.0302 0.5339 0.0496 0.00398 p < 0.001 elev, ridge, distance, rough3, 

rough15, rough27, err27, rsp, err3, 

err15, hsp 

10 

  DPS 51.655 0.032 0.301 -9.00E-04 0.032 0.4302 0.2721 0.00557 p < 0.001 hsp, elev, err27, err3, ridge, distance, 

rough27, rough15, rough3, err15 

60 

  DAN 44.368 0.038 0.36 -4.00E-04 0.0377 0.4697 0.0726 0.00612 p < 0.001 rough27, distance, hsp, ridge, 

rough15, err27 

90 

  CAS 51.139 0.029 0.322 -8.00E-04 0.0292 0.2034 0.0079 0.00402 p < 0.001 hsp, rough27, ridge, elev, rough15, 

err3, err27 

90 

15
5 

16
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 38.043 0.028 0.37 7.00E-04 0.0284 0.6517 0.3501 0.00366 p < 0.001 meadow, imperv, ridge, gsp, map, 

wetland, dd5, canopy, rough3, 

rough15, burn, ffp, elev, rough27, rsp 

50 

  DPS 58.325 0.031 0.295 -5.00E-04 0.0314 0.1621 -0.1929 0.00477 p < 0.001 ssina, gsp, ridge, canopy, imperv, 

burn 

50 

  DAN 46.959 0.036 0.34 -4.00E-04 0.0356 0.4581 -0.1957 0.00584 p < 0.001 ssina, ridge, imperv, err27, gsp, 

rough15, hsp, distance 

60 

  CAS 53.297 0.029 0.315 -5.00E-04 0.0286 0.2086 -0.2964 0.00387 p < 0.001 ssina, ridge, burn, err27, hsp, imperv, 

rough15, rough3 

50 

Scale 480 Habitat FST 36.181 0.03 0.391 2.00E-04 0.03 0.3654 0.1794 0.00372 p < 0.001 imperv, meadow, wetland 70 

  DPS 50.139 0.034 0.324 -3.00E-04 0.0344 0.3336 0.3994 0.00565 p < 0.001 distance, water, imperv, meadow, 

burn, forest, canopy, wetland 

70 

  DAN 42.361 0.041 0.39 -6.00E-04 0.0409 0.407 -0.2075 0.00633 p < 0.001 distance, water, imperv, meadow, 

burn, forest, canopy, wetland 

90 

  CAS 49.014 0.031 0.339 -8.00E-04 0.0307 0.2038 -0.0411 0.00421 p < 0.001 meadow, distance, imperv 70 

 Temp

Moist 

FST 39.721 0.031 0.409 9.00E-04 0.0313 0.4904 0.1838 0.00354 p < 0.001 map, gsp, distance, ffp 80 

  DPS 57.762 0.034 0.321 -4.00E-04 0.0341 0.1104 -0.5304 0.00479 p < 0.001 ssina, gsp, distance 60 

  DAN 48.522 0.038 0.366 -4.00E-04 0.0383 0.3629 -0.3901 0.00569 p < 0.001 ssina, gsp, distance 80 

  CAS 56.068 0.03 0.332 -4.00E-04 0.0301 0.0824 -0.5606 0.00362 p < 0.001 ssina, distance, gsp 60 

16
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Topo FST 32.582 0.032 0.419 6.00E-04 0.0322 0.4517 0.0909 0.00394 p < 0.001 elev, rough3, distance, ridge, 

rough27, rough15, rsp 

80 

  DPS 48.892 0.035 0.326 -3.00E-04 0.0347 0.3477 0.0504 0.00578 p < 0.001 elev, err3, hsp, rough27, ridge, 

distance, err27, rough3 

80 

  DAN 41.446 0.039 0.37 1.00E-04 0.0387 0.4708 -0.1316 0.00643 p < 0.001 ridge, rough27, distance, rough15, 

elev, hsp, err27, err3, rough3, err15, 

rsp 

40 

  CAS 50.723 0.029 0.323 -8.00E-04 0.0293 0.2274 -0.0666 0.00409 p < 0.001 ridge, elev, hsp, rough15, distance, 

err27, rough27, err3 

90 

 Full FST 40.101 0.028 0.365 8.00E-04 0.028 0.4869 0.1872 0.00354 p < 0.001 meadow, imperv, ridge, gsp, wetland, 

map, rough3 

60 

  DPS 56.120 0.035 0.334 -3.00E-04 0.0355 0.1081 -0.3892 0.00502 p < 0.001 ssina, gsp, ridge  60 

  DAN 45.088 0.036 0.346 -3.00E-04 0.0363 0.462 -0.0849 0.00604 p < 0.001 ssina, ridge, meadow, gsp, distance, 

imperv, rough15, burn, rough3, err3, 

rough27, ffp, err27 

50 

  CAS 53.496 0.029 0.323 -6.00E-04 0.0293 0.1117 -0.3678 0.00385 p < 0.001 ssina, ridge, burn, imperv, gsp, err27, 

meadow, distance, rough3, err3, hsp 

40 

15
5 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Scale 960 Habitat FST 35.903 0.029 0.381 0.0014 0.0292 0.4777 0.0688 0.00380 p < 0.001 wetland, imperv, meadow, canopy, 

burn, distance, therm 720, therm360, 

water, forest 

50 

  DPS 51.380 0.033 0.309 -7.00E-04 0.0328 0.4729 0.6727 0.00553 p < 0.001 water, meadow, distance, burn, forest, 

imperv, wetland 

70 

  DAN 43.050 0.038 0.362 -1.00E-04 0.0379 0.4701 -0.1543 0.00627 p < 0.001 water, meadow, distance, burn, 

wetland, imperv 

70 

  CAS 51.176 0.029 0.325 -4.00E-04 0.0295 0.2575 -0.1028 0.00402 p < 0.001 water, meadow, distance, burn, forest, 

wetland, imperv 

70 

 Temp

Moist 

FST 40.876 0.03 0.389 8.00E-04 0.0298 0.5603 0.2117 0.00350 p < 0.001 map, gsp, distance, dd5 70 

  DPS 57.975 0.034 0.316 -1.00E-04 0.0337 0.1207 -0.196 0.00474 p < 0.001 gsp, ssina, distance 60 

  DAN 45.800 0.038 0.367 0 0.0385 0.4556 -0.0994 0.00592 p < 0.001 gsp, distance, ssina 90 

  CAS 56.301 0.03 0.327 -1.00E-04 0.0297 0.0776 -0.3122 0.00362 p < 0.001 sinna, distance, gsp 70 

 Topo FST 34.247 0.034 0.441 4.00E-04 0.0339 0.3402 0.1626 0.00388 p < 0.001 ridge, elev, distance 90 

  DPS 51.462 0.032 0.304 3.00E-04 0.0324 0.2758 0.125 0.00555 p < 0.001 ridge, distance, elev, rough15, hsp, 

rough27, err3, err27, rough3, err15, 

rsp 

30 

  DAN 42.436 0.043 0.415 -3.00E-04 0.0434 0.4658 -0.2242 0.00629 p < 0.001 ridge, distance, err27 90 

  CAS 51.720 0.033 0.359 -3.00E-04 0.0326 0.2554 0.1632 0.00397 p < 0.001 ridge, distance, err27, elev 80 

16
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 42.140 0.028 0.365 8.00E-04 0.028 0.5268 0.3009 0.00343 p < 0.001 meadow, imperv, ridge, wetland, 

canopy, gsp, map, dd5 

50 

  DPS 59.988 0.034 0.319 2.00E-04 0.0339 0.1464 -0.1307 0.00454 p < 0.001 ssina, ridge, gsp 60 

  DAN 48.804 0.035 0.331 -4.00E-04 0.0347 0.5575 0.1345 0.00563 p < 0.001 ridge, ssina, meadow, scosa, imperv, 

gsp, rough3, dd5, err27, water, burn, 

cti, distance 

50 

  CAS 57.473 0.026 0.29 -2.00E-04 0.0263 0.2186 -0.0752 0.00353 p < 0.001 ssina, ridge, burn, scosa, gsp, 

meadow, err27, imperv, rough3, 

distance, water, dd5 

40 

Cross-scale Habitat FST 40.622 0.025 0.324 0.001 0.0249 0.3894 0.2451 0.00352 p < 0.001 imperv_480, wetland_960, 

imperv_240, meadow_480, 

meadow_960, distance, imperv_960, 

canopy, meadow_240, forest, 

wetland, meadow_60, imperv_120 

80 

  DPS 52.174 0.033 0.307 -0.0018 0.0326 0.4547 0.3208 0.00541 p < 0.001 distance, burn, burn_60, imperv_240, 

canopy_60, imperv_120 

60 

 Temp

Moist 

FST 39.117 0.03 0.39 0.001 0.0299 0.5309 0.3356 0.00360 p < 0.001 gsp, map_60, map, distance, dd5, ffp 80 

  DPS 57.490 0.033 0.314 1.00E-04 0.0334 0.1273 -0.5501 0.00483 p < 0.001 gsp, distance, ssina_480 50 

 Topo FST 36.967 0.032 0.418 5.00E-04 0.032 0.4526 -0.0088 0.00372 p < 0.001 elev, err15_60, distance, ridge_960 80 

  DPS 52.515 0.034 0.32 8.00E-04 0.034 0.3088 0.0046 0.00540 p < 0.001 hsp_60, hsp_120, ridge_960, 

rough27, distance, err27, err27_60 

80 

15
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 43.925 0.025 0.327 8.00E-04 0.0251 0.5993 0.1912 0.00334 p < 0.001 meadow_60, meadow_480, 

imperv_480, meadow_240, 

ridge_960, canopy, meadow_960, 

imperv_240, err15_60, ridge_240, 

dd5_960, err15_120, wetland_960, 

gsp_60, dd5_60, imperv_120, 

map_120, imperv_60, canopy_120, 

imperv_960, gsp_120, gsp_480 

70 

  DPS 59.087 0.031 0.29 0.0012 0.0308 0.2978 -0.1841 0.00467 p < 0.001 ridge_960, gsp, ssina_480, 

canopy_60, ssina_240, ssina_960, 

imperv_240, err27_60 

70 

Within   0 Habitat FST 31.723 0.045 0.517 -0.0011 0.0451 0.252 -0.1266 0.00507 p < 0.001 canopy, imperv, therm 40 

  DPS 56.699 0.043 0.332 -0.001 0.043 0.2868 0.4798 0.00707 p < 0.001 burn, imperv, meadow, canopy 70 

  DAN 50.993 0.038 0.323 -3.00E-04 0.0383 0.4419 0.326 0.00669 p < 0.001 meadow, distance, burn, imperv, 

forest, canopy, wetland, them 

40 

  CAS 49.477 0.036 0.337 -8.00E-04 0.0366 0.2686 0.3427 0.00582 p < 0.001 meadow, burn, distance, forest, 

imperv, canopy, wetland 

40 

 Temp

Moist 

FST 25.852 0.043 0.492 0.0027 0.0429 -0.1003 -0.6608 0.00544 p < 0.001 map, distance 60 

  DPS 62.484 0.033 0.261 5.00E-04 0.0338 0.0332 -0.1315 0.00620 p < 0.001 gsp, distance, cti, map, ssina, ffp, dd5 30 

  DAN 52.750 0.04 0.341 1.00E-04 0.0404 0.0201 0.1615 0.00648 p < 0.001 distance, gsp, map 60 

  CAS 53.050 0.036 0.334 -5.00E-04 0.0364 -0.0492 -0.0845 0.00538 p < 0.001 distance, gsp, map 70 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Topo FST 21.118 0.045 0.522 5.00E-04 0.0456 0.0128 -0.9327 0.00579 p < 0.001 err27, distance, rsp, err15, rough3 40 

  DPS 54.845 0.038 0.3 -0.0026 0.0388 0.5793 1.102 0.00741 p < 0.001 err27, elev, hsp, rough27, ridge, 

rough15, err15, rough3 

70 

  DAN 47.637 0.041 0.347 -7.00E-04 0.0412 0.4407 0.2892 0.00708 p < 0.001 distance, err3, err27, rough27, 

rough3, err15, rough15, rsp, hsp 

50 

  CAS 53.685 0.034 0.312 -0.0012 0.034 0.0657 0.3284 0.00526 p < 0.001 err27, ridge, rough27, err15, hsp, err3, 

distance, rough15, rough3, rsp 

60 

 Full FST 28.640 0.044 0.511 9.00E-04 0.0446 0.0991 -0.663 0.00526 p < 0.001 canopy, err27 80 

  DPS 62.052 0.033 0.257 -0.0021 0.0333 0.1434 0.7708 0.00615 p < 0.001 gsp, err27, meadow, burn, hsp, 

imperv, canopy, err15 

40 

  DAN 49.372 0.038 0.324 -8.00E-04 0.0384 0.305 0.1744 0.00692 p < 0.001 meadow, burn, gsp, err27, forest, 

distance, ridge, err3, imperv, err15, 

rough27, rough15, wetland, rough3, 

ssina, hsp, rsp 

40 

  CAS 53.490 0.03 0.282 -3.00E-04 0.0307 0.2524 0.9332 0.00530 p < 0.001 meadow, burn, ridge, gsp, err27, 

forest, distance, hsp, err3, rough27, 

ssina, wetland, canopy, rough15, 

err15, imperv, rough3, cti, rsp, dd5 

30 

16
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Within   60 Habitat FST 26.918 0.042 0.485 -2.00E-04 0.0424 0.105 -0.8016 0.00543 p < 0.001 canopy, imperv, distance, burn 60 

  DPS 52.530 0.05 0.391 -0.0036 0.0506 0.3762 0.4017 0.00768 p < 0.001 burn, meadow, imperv  80 

  DAN 46.107 0.039 0.335 -0.0018 0.0397 0.4834 0.3261 0.00750 p < 0.001 burn, meadow, distance, imperv, 

forest, canopy, wetland, therm 

40 

  CAS 51.721 0.038 0.355 -0.0018 0.0386 0.3072 -0.1246 0.00558 p < 0.001 burn, meadow, canopy 60 

 Temp

Moist 

FST 31.173 0.038 0.44 0.0031 0.0383 -0.0864 -0.4905 0.00506 p < 0.001 map, distance 70 

  DPS 65.567 0.031 0.239 0.0018 0.0309 0.0754 0.0038 0.00554 p < 0.001 gsp, distance, map, ssina, dd5, cti 30 

  DAN 55.527 0.037 0.315 0.001 0.0374 0.1466 0.0416 0.00608 p < 0.001 gsp, distance, map 70 

  CAS 55.124 0.031 0.291 5.00E-04 0.0317 -0.0269 -0.4353 0.00531 p < 0.001 gsp, cti, distance, map, ssina 60 

 Topo FST 30.369 0.041 0.475 1.60E-03 0.0415 -0.0933 -0.8186 0.00510 p < 0.001 err27, distance 70 

  DPS 53.536 0.042 0.325 -0.0019 0.0421 0.3392 0.4142 0.00753 p < 0.001 err27, rough15, rough3, rough27, elev 80 

  DAN 45.027 0.04 0.339 -2.50E-03 0.0401 0.2751 -0.2747 0.00757 p < 0.001 err27, hsp, distance, rough27, ridge, 

rough15, err15, rough3 

80 

  CAS 46.921 0.037 0.345 -0.0026 0.0375 0.4211 0.924 0.00613 p < 0.001 err27, distance, ridge, rough27, 

rough3, hsp, elev, rough15, err15 

50 

16
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 28.851 0.034 0.392 1.20E-03 0.0342 0.1467 -0.6561 0.00520 p < 0.001 sinna, ffp, wetland, imperv, hli, 

rough15, rough3, burn, map, err15, 

distance, elev, dd5, canopy, err27, 

meadow 

30 

  DPS 62.204 0.03 0.234 -0.0017 0.0303 0.1782 0.4862 0.00627 p < 0.001 distance, rough27, canopy, forest, 

dd5, err27, err15, ssina, burn, imperv, 

meadow 

30 

  DAN 51.536 0.034 0.287 -4.00E-04 0.034 0.4157 0.2179 0.00657 p < 0.001 gsp, meadow, distance, err27, burn, 

hsp, imperv, forest, canopy, rough27, 

rough15 

50 

  CAS 58.182 0.031 0.29 -5.00E-04 0.0316 0.3978 0.9553 0.00483 p < 0.001 meadow, gsp, burn, err27, ssina, 

forest, canopy 

60 

Within   120 Habitat FST 24.062 0.043 0.499 9.00E-04 0.0436 0.1832 -0.7421 0.00563 p < 0.001 imperv, canopy, burn, distance 60 

  DPS 53.125 0.044 0.346 -0.003 0.0447 0.4771 0.3662 0.00754 p < 0.001 burn, meadow, imperv, canopy 70 

  DAN 46.837 0.041 0.35 1.20E-03 0.0415 0.5414 0.4057 0.00719 p < 0.001 burn, meadow, forest, distance, 

imperv, therm, wetland, canopy 

40 

  CAS 49.597 0.036 0.33 -0.0017 0.0359 0.3192 0.0797 0.00572 p < 0.001 burn, meadow, therm, forest, distance, 

imperv, wetland, canopy 

30 

16
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Temp

Moist 

FST 29.206 0.038 0.442 0.004 0.0384 -0.1515 -0.4829 0.00521 p < 0.001 distance, map 70 

  DPS 65.732 0.03 0.231 5.00E-04 0.03 0.1662 -0.0635 0.00585 p < 0.001 gsp, distance, map, cti, dd5, ssina, ffp 20 

  DAN 54.481 0.035 0.297 5.00E-04 0.0353 0.098 -0.4375 0.00630 p < 0.001 distance, gsp, map 50 

  CAS 58.147 0.032 0.293 0.001 0.0319 0.0186 -0.4485 0.00477 p < 0.001 gsp, distance, ssina, map, cti 50 

 Topo FST 26.724 0.044 0.514 3.00E-04 0.0449 -0.0641 -0.8182 0.00541 p < 0.001 err27, distance 80 

  DPS 57.983 0.033 0.261 -0.0034 0.0336 0.2887 0.78 0.00677 p < 0.001 elev, err27, hsp, rough27, rough15, 

ridge 

80 

  DAN 47.123 0.049 0.42 -0.0016 0.0498 0.4856 0.2309 0.00724 p < 0.001 distance, ridge, err27 90 

  CAS 49.763 0.035 0.321 -0.0023 0.0349 0.2978 0.4283 0.00577 p < 0.001 err27, hsp, distance, ridge, rough27, 

rough15 

70 

 Full FST 28.605 0.038 0.435 1.90E-03 0.038 0.1915 -0.8132 0.00528 p < 0.001 imperv, dd5, map, meadow, err15, 

err27, canopy 

40 

  DPS 64.864 0.03 0.231 -0.0025 0.0299 0.1034 0.0703 0.00582 p < 0.001 err15, forest, err27, dd5, hsp, imperv, 

ffp, burn, meadow, gsp 

30 

  DAN 52.332 0.032 0.276 -1.20E-03 0.0327 0.267 0.1575 0.00638 p < 0.001 gsp, meadow, burn, forest, hsp, 

distance, err27, ridge, imperv, map, 

wetland, rough15, ssina, canopy, dd5, 

ffp, rough27, err15, cti, rough3 

30 

  CAS 56.208 0.038 0.35 -8.00E-04 0.0381 -0.0242 0.4275 0.00502 p < 0.001 burn, gsp, meadow, err27 70 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Within   240 Habitat FST 26.055 0.045 0.532 6.00E-04 0.0456 0.0207 -0.6683 0.00523 p < 0.001 canopy, burn 80 

  DPS 49.241 0.045 0.357 -0.0021 0.0455 0.153 0.1068 0.00786 p < 0.001 burn, meadow, imperv, distance, 

barren, therm, water 

40 

  DAN 47.537 0.044 0.382 -1.90E-03 0.0446 0.0406 -0.8437 0.00690 p < 0.001 burn, meadow, imperv, therm 50 

  CAS 48.937 0.04 0.376 -2.70E-03 0.0403 -0.2156 -0.556 0.00573 p < 0.001 burn, meadow, imperv, therm 40 

 Temp

Moist 

FST 27.494 0.042 0.492 0.0025 0.0421 -0.0395 -0.6641 0.00514 p < 0.001 map, distance 90 

  DPS 57.862 0.041 0.322 -4.00E-04 0.041 -0.1032 -0.5992 0.00660 p < 0.001 distance, ssina, gsp 50 

  DAN 45.012 0.043 0.37 1.40E-03 0.0432 0.1161 -0.5853 0.00716 p < 0.001 gsp, distance, hli, ssina, map, cti 50 

  CAS 52.799 0.035 0.329 -7.00E-04 0.0353 -0.1131 -0.6668 0.00531 p < 0.001 ssina, gsp, distance, map 60 

 Topo FST 20.644 0.048 0.57 4.00E-04 0.0488 -0.1364 -0.6375 0.00564 p < 0.001 err27, distance 80 

  DPS 55.013 0.038 0.298 -0.0011 0.0379 0.0496 0.2623 0.00714 p < 0.001 err27, elev, rough15, err3, hsp 80 

  DAN 38.768 0.048 0.416 -0.002 0.0486 0.1066 -0.2511 0.00807 p < 0.001 err3, ridge, distance, err27 80 

  CAS 45.994 0.038 0.357 5.00E-04 0.0383 -0.0472 0.0519 0.00595 p < 0.001 err27, ridge, rough27, err3, rough15, 

rsp, distance, rough3, hsp 

70 

 Full FST 25.765 0.043 0.501 7.00E-04 0.0429 -0.0274 -0.7864 0.00529 p < 0.001 meadow, map, imperv, canopy, err27 70 

  DPS 59.429 0.034 0.271 -7.00E-04 0.0346 0.4554 0.3136 0.00633 p < 0.001 rsp, ffp, imperv, err15, ssina, 

rough15, err27, dd5, hsp, err3, burn, 

meadow, gsp 

40 

  DAN 44.846 0.04 0.348 0 0.0407 0.3529 -0.1642 0.00739 p < 0.001 gsp, burn, meadow, distance, err27 60 

  CAS 53.496 0.04 0.375 -0.0015 0.0402 0.0019 -0.4845 0.00521 p < 0.001 burn, meadow, ssina, err27, rsp 40 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Within   480 Habitat FST 37.814 0.035 0.4 0.002 0.0348 -0.084 -0.7897 0.00462 p < 0.001 imperv, canopy 60 

  DPS 59.335 0.034 0.266 4.00E-04 0.0345 0.3656 1.0157 0.00662 p < 0.001 imperv, burn, meadow, water, 

wetland, distance 

40 

  DAN 61.403 0.035 0.298 -2.00E-04 0.0353 0.0268 -0.3478 0.00528 p < 0.001 meadow, imperv 90 

  CAS 54.678 0.036 0.33 0 0.0359 -0.0935 -0.3171 0.00514 p < 0.001 meadow, imperv 90 

 Temp

Moist 

FST 30.273 0.04 0.458 0.0013 0.04 -0.1107 -0.6138 0.00513 p < 0.001 map, distance 60 

  DPS 61.492 0.033 0.258 5.00E-04 0.0334 -0.0953 -0.3595 0.00622 p < 0.001 ffp, map, dd5, hli, ssina, distance, cti, 

gsp 

30 

  DAN 50.718 0.038 0.327 0.0011 0.0387 0.0367 -0.2725 0.00667 p < 0.001 distance, gsp, cti, hli, map, ssina, ffp, 

dd5 

20 

  CAS 51.584 0.035 0.324 7.00E-04 0.0352 -0.0576 -0.3126 0.00551 p < 0.001 gsp, distance, hli, ssina 70 

 Topo FST 20.189 0.047 0.543 0.0013 0.0474 0.0044 -0.8439 0.00585 p < 0.001 elev, distance, rough3, err15, rsp, 

err27 

50 

  DPS 51.163 0.042 0.327 -0.0016 0.0423 0.2663 0.541 0.00795 p < 0.001 elev, rough15, err3, hsp, err27 80 

  DAN 42.630 0.042 0.361 -0.0015 0.0428 0.1334 -0.3827 0.00783 p < 0.001 err3, err27, err15, hsp, distance, ridge, 

rough27, rough15 

80 

  CAS 46.671 0.042 0.394 -0.0018 0.0428 -0.1042 -0.0433 0.00615 p < 0.001 rough, ridge, err3, rough15, err27 80 

 Full FST 42.986 0.034 0.39 2.30E-03 0.034 -0.0285 -0.4731 0.00420 p < 0.001 err27, burn 80 

  DPS 72.508 0.032 0.246 -0.0012 0.0319 -9.00E-04 0.4466 0.00450 p < 0.001 gsp, meadow, imperv 60 

  DAN 63.342 0.034 0.292 -1.00E-04 0.0346 0.0089 -0.3821 0.00499 p < 0.001 meadow, imperv 60 

  CAS 55.500 0.035 0.322 -2.50E-03 0.0349 -0.0495 -0.01 0.00506 p < 0.001 burn, meadow, imperv, ssina 60 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Within   960 Habitat FST 30.146 0.042 0.49 0.0027 0.0427 0.0523 -1.0051 0.00513 p < 0.001 imperv, meadow 60 

  DPS 65.280 0.036 0.283 -0.0033 0.0365 0.6712 1.5063 0.00571 p < 0.001 distance, meadow, wetland, water, 

burn, forest, imperv 

50 

  DAN 60.962 0.035 0.294 -2.10E-03 0.0349 0.4714 0.2547 0.00536 p < 0.001 distance, meadow, water, forest, burn, 

wetland, imperv 

40 

  CAS 58.663 0.032 0.299 -2.20E-03 0.0325 0.3975 -0.1924 0.00478 p < 0.001 distance, water, wetland, burn, forest, 

meadow, imperv 

70 

 Temp

Moist 

FST 31.706 0.033 0.379 0.0036 0.0329 0.0887 -0.4737 0.00505 p < 0.001 distance, map, dd5  60 

  DPS 63.590 0.035 0.276 5.00E-04 0.0358 -0.3252 -0.4376 0.00583 p < 0.001 gsp, cti, ssina 50 

  DAN 51.089 0.036 0.307 -1.00E-04 0.0365 0.1769 0.0271 0.00679 p < 0.001 distance, gsp, ssina, cti, map, hli, dd5 40 

  CAS 53.408 0.035 0.327 -6.00E-04 0.0356 0.0088 -0.0706 0.00530 p < 0.001 distance, gsp, ssina  70 

 Topo FST 22.204 0.042 0.482 1.00E-03 0.0421 0.0192 -0.745 0.00575 p < 0.001 rough27, rsp, elev, rough3, err15, 

ridge, distance, err27 

30 

  DPS 55.175 0.04 0.312 -7.00E-04 0.0404 0.8133 1.8855 0.00739 p < 0.001 rough3, err15, err27, elev, ridge, hsp 90 

  DAN 46.629 0.048 0.406 1.00E-04 0.0482 0.3579 -0.0143 0.00722 p < 0.001 distance, ridge, err27 90 

  CAS 53.952 0.037 0.341 0.0024 0.0371 0.4414 0.5974 0.00529 p < 0.001 ridge, err27, rsp 70 

15
5 

17
2 



 

 173 

 
Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 33.581 0.035 0.404 2.80E-03 0.0352 0.1893 -0.5931 0.00493 p < 0.001 burn, elev, err27, dd5, meadow, 

imperv 

30 

  DPS 67.649 0.037 0.289 -3.00E-04 0.0375 -0.201 0.956 0.00527 p < 0.001 gsp, imperv 60 

  DAN 51.768 0.037 0.316 1.60E-03 0.0374 0.3921 0.4177 0.00654 p < 0.001 ssina, meadow, ridge, gsp, err27, 

distance, burn, water, imperv, 

wetland, hsp, err15, forest 

50 

  CAS 52.257 0.032 0.296 -5.00E-04 0.0323 0.4769 1.3613 0.00545 p < 0.001 meadow, ssina, burn, err27, ridge, 

forest, gsp, water, err15, rsp, distance, 

imperv, rough3, err3, wetland, hsp, 

scosa 

40 

Within X Habitat FST 34.311 0.039 0.452 0.0025 0.0389 0.1844 -0.7824 0.00470 p < 0.001 imperv_960, canopy  

  DPS 63.966 0.036 0.297 -0.0023 0.0367 0.3201 0.023 0.00531 p < 0.001 meadow_480, imperv_480 80 

 Temp

Moist 

FST 22.882 0.039 0.458 2.60E-03 0.0394 0.0705 -0.6492 0.00553 p < 0.001 map_60, distance, hli_60 60 

  DPS 62.317 0.033 0.268 -5.00E-04 0.0333 -0.3417 -0.4028 0.00554 p < 0.001 gsp, distance, ssina_60, gsp_240 40 

 Topo FST 30.157 0.045 0.533 2.00E-04 0.0459 0.0583 -0.6993 0.00495 p < 0.001 err27, err27_480, err27_60 80 

  DPS 53.003 0.042 0.345 -0.0019 0.0428 0.5229 0.5828 0.00712 p < 0.001 err27, err27_60, rough27_60 70 

 Full FST 38.902 0.037 0.432 0.0013 0.0372 0.1721 -0.6027 0.00438 p < 0.001 imperv_960, err27, canopy 50 

  DPS 74.027 0.028 0.228 -0.0011 0.0283 -0.3435 0.619 0.00385 p < 0.001 meadow_480, gsp_960, imperv_480, 

gsp_120, gsp_480, gsp 

60 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Between   0 Habitat FST 35.075 0.026 0.364 2.00E-04 0.026 0.7348 0.0028 0.00330 p < 0.001 meadow, canopy, wetland, forest, 

distance, burn, imperv, therm720 

60 

  DPS 43.484 0.035 0.377 -0.0024 0.0353 0.3017 -0.5366 0.00496 p < 0.001 distance, burn, forest, canopy, water 60 

  DAN 33.383 0.035 0.363 -0.0024 0.035 0.5618 -0.3414 0.00621 p < 0.001 distance, forest, burn, canopy, water, 

meadow, imperv 

70 

  CAS 40.323 0.028 0.357 -0.0026 0.0281 0.3293 -0.4417 0.00376 p < 0.001 burn, distance, forest, canopy, water, 

meadow 

60 

 Temp

Moist 

FST 41.925 0.027 0.381 0 0.0271 0.8275 0.4689 0.00294 p < 0.001 map, distance, gsp, dd5 70 

  DPS 44.578 0.035 0.376 -8.00E-04 0.0353 0.3811 -0.2806 0.00486 p < 0.001 distance, map, gsp, dd5 70 

  DAN 32.155 0.043 0.447 -0.0016 0.0432 0.6285 -0.1585 0.00632 p < 0.001 map, distance, dd5, ffp, gsp 70 

  CAS 40.333 0.032 0.406 -0.0013 0.0321 0.3964 -0.3401 0.00370 p < 0.001 distance, map, dd5, ffp, gsp 70 

 Topo FST 35.322 0.031 0.442 -8.00E-04 0.0315 0.7486 0.2968 0.00330 p < 0.001 distance, elev 40 

  DPS 39.471 0.038 0.402 -0.0015 0.0377 0.5212 0.0576 0.00530 p < 0.001 rough27, distance, err27 70 

  DAN 31.239 0.042 0.436 -0.0011 0.0422 0.6622 0.2352 0.00637 p < 0.001 distance, rough27, elev, hsp 50 

  CAS 36.658 0.034 0.427 -6.00E-04 0.0338 0.4666 -0.267 0.00395 p < 0.001 distance, rough27, elev, err27 60 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 39.815 0.024 0.335 1.00E-04 0.0239 0.7496 0.3983 0.00306 p < 0.001 meadow, canopy, map, wetland, 

forest, gsp, dd5, ridge, elev, distance, 

imperv, ffp, burn, rough27, rough3, 

rough15 

50 

  DPS 44.242 0.034 0.363 -0.0018 0.034 0.4897 -0.0727 0.00484 p < 0.001 distance, map, burn, rough27, gsp, 

err27, forest 

70 

  DAN 32.835 0.041 0.425 -0.0011 0.0411 0.7391 0.0905 0.00622 p < 0.001 rough27, distance, map, dd5, elev, 

forest, err27, ffp, burn, imperv, gsp 

70 

  CAS 38.581 0.028 0.35 -8.00E-04 0.0277 0.4873 -0.2532 0.00384 p < 0.001 burn, distance, ssina, err27, rough27, 

map, dd5, elev, forest, ridge, canopy, 

imperv, hsp, cti, ffp, gsp, water, err15 

50 

Between   60 Habitat FST 37.388 0.026 0.364 -7.00E-04 0.0259 0.6978 0.0371 0.00320 p < 0.001 meadow, canopy, burn, distance, 

forest, imperv 

70 

  DPS 45.240 0.03 0.325 -0.0012 0.0305 0.3821 -0.1607 0.00481 p < 0.001 distance, burn, water, canopy, 

meadow, imperv, forest 

70 

  DAN 33.817 0.037 0.38 -0.001 0.0367 0.5711 -0.2427 0.00612 p < 0.001 distance, imperv, forest, burn, water, 

meadow, canopy 

70 

  CAS 41.732 0.027 0.346 -0.0015 0.0273 0.3931 -0.2801 0.00363 p < 0.001 distance, burn, imperv, forest, 

meadow, water, canopy 

50 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Temp

Moist 

FST 42.176 0.027 0.376 3.00E-04 0.0268 0.7053 0.3799 0.00292 p < 0.001 ffp, dd5, distance, gsp, map 70 

  DPS 44.544 0.036 0.381 -8.00E-04 0.0357 0.5123 -0.1985 0.00487 p < 0.001 dd5, distance, gsp, map 80 

  DAN 32.992 0.042 0.44 -8.00E-04 0.0426 0.6502 -0.0336 0.00625 p < 0.001 dd5, distance, gsp, ffp, map 80 

  CAS 42.520 0.032 0.402 -0.0011 0.0318 0.357 -0.3641 0.00357 p < 0.001 dd5, distance, gsp, map 80 

 Topo FST 36.058 0.027 0.378 1.00E-04 0.027 0.7888 0.4194 0.00323 p < 0.001 elev, distance, err15, rough15, 

rough27, rough3 

60 

  DPS 39.191 0.037 0.398 -4.00E-04 0.0373 0.445 -0.2411 0.00532 p < 0.001 distance, rough27, elev, err27 80 

  DAN 28.234 0.046 0.475 2.00E-04 0.0459 0.6566 -0.0646 0.00671 p < 0.001 distance, rough27, elev, err27 80 

  CAS 37.276 0.032 0.409 -6.00E-04 0.0324 0.3822 -0.471 0.00391 p < 0.001 elev, rough27, distance, err27 70 

 Full FST 44.471 0.021 0.294 0 0.0209 0.5856 0.5525 0.00282 p < 0.001 meadow, gsp, err15, imperv, forest, 

canopy, rough27, ffp, map, dd5, cti, 

elev, wetland 

40 

  DPS 44.658 0.037 0.398 -0.0011 0.0373 0.4163 -0.0683 0.00485 p < 0.001 gsp, distance 90 

  DAN 33.500 0.039 0.408 -0.0012 0.0395 0.6566 0.0329 0.00620 p < 0.001 imperv, rough27, dd5, distance, err27 90 

  CAS 43.831 0.028 0.354 -7.00E-04 0.028 0.4962 -0.1959 0.00350 p < 0.001 err27, dd5, imperv, distance, elev, 

map, burn 

80 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Between   

120 

Habitat FST 37.846 0.024 0.335 1.00E-04 0.0239 0.7774 0.2916 0.00317 p < 0.001 imperv, meadow, canopy, distance, 

burn, forest, wetland, therm720, water 

60 

  DPS 46.847 0.029 0.315 -0.0022 0.0295 0.3353 -0.1907 0.00461 p < 0.001 distance, imperv, forest, burn, 

meadow, water, canopy 

70 

  DAN 33.598 0.036 0.376 -0.0013 0.0363 0.5621 -0.2137 0.00620 p < 0.001 imperv, forest, water, distance, 

meadow, burn, canopy 

70 

  CAS 41.184 0.029 0.365 -0.0013 0.0288 0.4622 -0.3435 0.00365 p < 0.001 imperv, forest, burn, distance, water, 

meadow 

70 

 Temp

Moist 

FST 42.120 0.027 0.375 -2.00E-04 0.0267 0.8003 0.4616 0.00292 p < 0.001 distance, ffp, dd5, gsp, map 70 

  DPS 46.027 0.035 0.374 -0.0013 0.035 0.4262 -0.4278 0.00472 p < 0.001 gsp, dd5, distance, map 80 

  DAN 31.604 0.043 0.448 -0.0012 0.0433 0.6893 -0.0182 0.00636 p < 0.001 ffp, distance, gsp, dd5, map 80 

  CAS 42.901 0.031 0.388 -0.0015 0.0307 0.4643 -0.2615 0.00355 p < 0.001 ffp, gsp, dd5, distance, map 80 

 Topo FST 37.489 0.026 0.368 4.00E-04 0.0263 0.7648 0.3303 0.00317 p < 0.001 elev, err15, rough27, rough15, 

rough3, ridge 

60 

  DPS 40.771 0.037 0.39 -6.00E-04 0.0366 0.4489 -0.3006 0.00520 p < 0.001 rough27, distance, elev, err27 90 

  DAN 27.817 0.045 0.469 -5.00E-04 0.0454 0.6586 -0.1096 0.00670 p < 0.001 distance, rough27, elev, err27 80 

  CAS 36.401 0.033 0.412 -6.00E-04 0.0326 0.3675 -0.3341 0.00394 p < 0.001 elev, rough27, distance, rough15, 

err27 

80 

17
1 

17
7 



 

 178 

 
Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 43.229 0.022 0.31 1.00E-04 0.0221 0.7543 0.3887 0.00291 p < 0.001 meadow, imperv, dd5, ffp, gsp, map, 

canopy, burn, elev, distance, err15, 

ridge, rough27, wetland, forest, 

rough15, rough3, water, cti 

40 

  DPS 43.207 0.032 0.341 -0.0012 0.0319 0.3698 -0.1125 0.00497 p < 0.001 distance, rough27, map, imperv, burn, 

gsp, canopy, ssina, err27, water, 

meadow 

70 

  DAN 35.165 0.038 0.398 -0.001 0.0385 0.7131 0.0913 0.00604 p < 0.001 imperv, dd5, rough27, err27, distance, 

map 

80 

  CAS 43.534 0.028 0.358 -0.0016 0.0283 0.4551 -0.1857 0.00353 p < 0.001 dd5, distance, imperv, err27, map, 

burn 

90 

Between   

240 

Habitat FST 32.392 0.027 0.38 5.00E-04 0.0271 0.8336 0.4261 0.00343 p < 0.001 imperv, meadow, canopy, forest, 

distance, wetland, burn, therm720, 

water, therm360 

40 

  DPS 41.850 0.033 0.353 -0.0024 0.0331 0.3888 -0.2576 0.00514 p < 0.001 distance, burn, meadow, forest, 

canopy, water, imperv 

50 

  DAN 31.683 0.039 0.406 -0.0011 0.0392 0.6032 -0.1374 0.00638 p < 0.001 distance, imperv, forest, meadow, 

water, burn, canopy 

60 

  CAS 39.921 0.03 0.375 -0.0014 0.0297 0.3957 -0.3879 0.00375 p < 0.001 distance, burn, imperv, water, forest, 

meadow, canopy 

60 

 Temp

Moist 

FST 41.684 0.027 0.382 8.00E-04 0.0272 0.9113 0.5757 0.00293 p < 0.001 map, gsp, ffp, distance, dd5, ssina 70 
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  DPS 44.745 0.037 0.392 -4.00E-04 0.0368 0.3881 -0.4007 0.00482 p < 0.001 ssina, map, gsp, distance 80 

  DAN 32.635 0.043 0.442 -9.00E-04 0.0427 0.6727 -0.0313 0.00626 p < 0.001 ssina, map, ffp, gsp, distance, dd5 70 

  CAS 42.204 0.031 0.394 -0.0011 0.0312 0.3469 -0.3795 0.00359 p < 0.001 map, ssina, distance, dd5, gsp, ffp 70 

 Topo FST 35.400 0.03 0.418 2.00E-04 0.0298 0.8645 0.4069 0.00327 p < 0.001 distance, elev, ridge 90 

  DPS 42.289 0.035 0.377 -0.0017 0.0353 0.3968 -0.2021 0.00508 p < 0.001 rough27, distance, elev, ridge 80 

  DAN 31.494 0.044 0.451 -0.0014 0.0436 0.6685 0.0385 0.00634 p < 0.001 rough27, distance, elev, ridge 70 

  CAS 37.446 0.033 0.416 -0.0014 0.0329 0.4305 -0.1757 0.00393 p < 0.001 distance, rough27, err27 90 

 Full FST 42.160 0.024 0.341 6.00E-04 0.0243 0.7865 0.5715 0.00293 p < 0.001 imperv, ssina, rough15, meadow, 

rough27, ridge, map, ffp, canopy, 

dd5, distance, wetland, gsp 

60 

  DPS 44.551 0.032 0.341 -0.0013 0.032 0.5344 -0.1089 0.00485 p < 0.001 ssina, map, rough27, canopy, 

distance, imperv, ridge, meadow, 

burn 

40 

  DAN 34.227 0.038 0.396 -1.00E-04 0.0383 0.68 -0.0569 0.00606 p < 0.001 ssina, rough27, imperv, map, 

distance, ridge, canopy 

50 

  CAS 40.182 0.028 0.36 -0.0011 0.0285 0.4138 -0.2975 0.00374 p < 0.001 ssina, rough27, imperv, burn, map, 

distance, ridge, canopy 

50 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Between   

480 

Habitat FST 37.685 0.025 0.352 -9.00E-04 0.0251 0.5522 0.0569 0.00316 p < 0.001 imperv, meadow, distance, burn, 

wetland, canopy, forest, therm720 

50 

  DPS 41.743 0.032 0.348 -0.0014 0.0325 0.4669 0.0237 0.00507 p < 0.001 meadow, distance, burn, imperv, 

canopy, forest, water 

70 

  DAN 29.645 0.04 0.421 -0.0012 0.0406 0.6472 -0.0522 0.00647 p < 0.001 meadow, distance, water, imperv, 

canopy, burn, forest 

50 

  CAS 39.937 0.029 0.369 -0.0015 0.0291 0.429 -0.1579 0.00378 p < 0.001 meadow, imperv, distance, water, 

forest, burn, canopy 

60 

 Temp

Moist 

FST 38.618 0.028 0.388 7.00E-04 0.0277 0.8492 0.5744 0.00312 p < 0.001 map, gsp, distance, ffp, ssina, dd5 80 

  DPS 43.988 0.035 0.371 -9.00E-04 0.0347 0.4213 -0.3224 0.00490 p < 0.001 ssina, map, distance, gsp, ffp, dd5 60 

  DAN 33.202 0.042 0.435 -5.00E-04 0.0419 0.6888 -0.01 0.00616 p < 0.001 ssina, map, ffp, dd5, distance, gsp 70 

  CAS 41.494 0.031 0.394 -0.0012 0.0311 0.413 -0.3604 0.00362 p < 0.001 map, ssina, distance, ffp, dd5, gsp 50 

 Topo FST 34.506 0.029 0.414 -2.00E-04 0.0295 0.8031 0.177 0.00330 p < 0.001 elev, ridge, rough27, distance, 

rough15, rough3 

80 

  DPS 38.742 0.035 0.376 -0.0016 0.0351 0.5439 -0.1615 0.00532 p < 0.001 distance, rough27, ridge, err3, elev, 

rough15 

80 

  DAN 29.445 0.043 0.443 -0.0011 0.0427 0.6927 0.1503 0.00652 p < 0.001 rough27, distance, ridge, elev, 

rough3, rough15, err27, err3 

70 

  CAS 35.043 0.032 0.406 -0.0017 0.032 0.4959 -0.1007 0.00404 p < 0.001 distance, rough27, err27, rough15, 

ridge, elev, err3 

80 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 41.411 0.026 0.358 -4.00E-04 0.0256 0.7709 0.4017 0.00297 p < 0.001 meadow, ridge, ssina, imperv, 

canopy, gsp, rough15, wetland, 

rough27, dd5, elev, map 

50 

  DPS 40.332 0.035 0.376 -0.0012 0.0352 0.4478 -0.1472 0.00524 p < 0.001 ssina, canopy, meadow, map, 

distance, ridge, imperv 

40 

  DAN 31.884 0.041 0.427 -0.0011 0.0412 0.6734 0.0076 0.00626 p < 0.001 ssina, rough27, map, ffp, ridge, 

canopy, meadow, distance, imperv 

60 

  CAS 39.068 0.029 0.369 -0.0016 0.0291 0.4206 -0.3354 0.00373 p < 0.001 ssina, ridge, imperv, canopy, burn, 

meadow, map, err27, rough27, hsp, 

insoy, dd5, distance, therm, ffp, scosa, 

gsp, forest, rough15, elev 

30 

Between   

960 

Habitat FST 42.189 0.024 0.338 -2.00E-04 0.0241 0.5771 0.281 0.00294 p < 0.001 canopy, meadow, wetland, distance, 

therm720, imperv, water 

50 

  DPS 41.582 0.034 0.362 -0.0019 0.0339 0.4055 -0.1581 0.00517 p < 0.001 distance, meadow, canopy, burn, 

forest, water 

70 

  DAN 30.625 0.041 0.423 -0.0014 0.0409 0.6086 -0.1572 0.00642 p < 0.001 distance, water, meadow, wetland, 

forest, burn, canopy, imperv 

50 

  CAS 38.256 0.03 0.376 -0.0013 0.0297 0.4227 -0.2862 0.00389 p < 0.001 meadow, distance, wetland, water, 

imperv, burn, forest, canopy 

60 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Temp

Moist 

FST 38.116 0.028 0.394 2.00E-04 0.0281 0.8314 0.4672 0.00315 p < 0.001 distance, dd5, map 90 

  DPS 44.387 0.035 0.377 -0.0011 0.0354 0.4189 -0.1039 0.00487 p < 0.001 gsp, ssina, dd5, map, distance 70 

  DAN 32.907 0.041 0.427 -0.0011 0.0412 0.7008 0.1556 0.00625 p < 0.001 ssina, dd5, ffp, scosa, map, distance, 

gsp, hli 

60 

  CAS 42.403 0.031 0.396 -0.001 0.0313 0.4126 -0.1551 0.00359 p < 0.001 dd5, ssina, distance, gsp, map 70 

 Topo FST 34.588 0.031 0.439 -3.00E-04 0.0313 0.7716 0.2006 0.00330 p < 0.001 distance, ridge elev 90 

  DPS 41.556 0.038 0.406 -0.0015 0.0381 0.4572 -0.1321 0.00509 p < 0.001 distance, ridge, rough27 90 

  DAN 29.812 0.045 0.467 -0.0015 0.0451 0.6921 0.0757 0.00651 p < 0.001 distance, err27, ridge, rough15, elev, 

rough3, rough27, err16 

80 

  CAS 38.920 0.034 0.426 -0.0011 0.0337 0.362 -0.389 0.00379 p < 0.001 ridge, distance, elev  90 

 Full FST 46.374 0.024 0.333 4.00E-04 0.0237 0.6964 0.6231 0.00274 p < 0.001 meadow, canopy, ridge, wetland, gsp, 

dd5 

50 

  DPS 45.983 0.036 0.39 -9.00E-04 0.0365 0.482 -0.0634 0.00470 p < 0.001 ridge, distance, ssina 80 

  DAN 32.840 0.044 0.456 -7.00E-04 0.0441 0.7293 0.3226 0.00622 p < 0.001 dd5, ssina, meadow, ridge 80 

  CAS 38.252 0.029 0.371 -9.00E-04 0.0293 0.4218 -0.1582 0.00384 p < 0.001 ssina, meadow, ridge, canopy, dd5, 

rough3, distance, burn, scosa, 

rough15, forest, err27, elev, ffp, 

water, cti, err15, hli, map, rough27, 

err3, imperv, hsp, gsp, wetland 

50 
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Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

Between   X Habitat FST 39.418 0.024 0.337 2.00E-04 0.024 0.596 0.233 0.00308 p < 0.001 canopy_60, imperv_240, 

wetland_960, distance, meadow_960, 

forest, canopy, meadow_480, 

meadow_120, canopy_120, 

imperv_60, canopy_480, imperv_120, 

meadow_60, meadow_240, 

canopy_60 

50 

  DPS 42.294 0.03 0.32 -0.001 0.03 0.4051 -0.2045 0.00507 p < 0.001 distance, canopy_240, canopy_480, 

forest, imperv_240, imperv_120, 

burn, meadow_960, meadow_480, 

imperv_480, canopy_120, 

meadow_240, burn_120, water_120, 

meadow_120 

30 

 Temp

Moist 

FST 41.843 0.026 0.371 2.00E-04 0.0264 0.8456 0.4765 0.00292 p < 0.001 dd5, ssina_480, distance, ffp, gsp_60, 

map, ffp_60 

90 

  DPS 44.545 0.035 0.369 -7.00E-04 0.0346 0.3624 -0.2817 0.00488 p < 0.001 map_120, map, ssin_960, ssina_480, 

ssina_240, gsp, dd5_960, distance 

40 

 Topo FST 41.097 0.027 0.384 0 0.0274 0.7475 0.2029 0.00299 p < 0.001 distance, elev, ridge_960, err15_60 80 

  DPS 43.774 0.037 0.391 -0.0012 0.0366 0.2922 -0.2597 0.00493 p < 0.001 ridge_960, distance, rough27_240 80 

18
3 



 

 184 

 
Hypothesis Class Dist R^2 rmse Rmsd resd.mean resd.stdv resd.skew Resd.kurt MSE Sig Model Threshold 

 Full FST 45.324 0.021 0.296 6.00E-04 0.0211 0.6515 0.3118 0.00282 p < 0.001 Canopy_960, ridge_480, dd5_960, 

ssina_480, gsp_240, meadow_60, 

ridge_240, meadow_960, ssina_240, 

wetland_960, meadow_480, 

ridge_960, gsp_480, imperv_240, 

meadow_120, gsp_960. imperv_120, 

err15_60, water_120, imperv_60, 

meadow_240, canopy_120, 

canopy_60, err15_120, cti_120, 

cti_60, canopy, imperv_480, gsp_120, 

gsp_60 

40 

  DPS 44.848 0.033 0.349 -5.00E-04 0.0327 0.4108 -0.2252 0.00481 p < 0.001 ssina_240, ssina_480, map, 

ssina_960, ridge_960, canopy_480, 

map_240, meadow_960, canopy_240, 

imperv_240, map_120, imperv_480, 

imperv_120, dd5_960 

60 
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Appendix 9  Full color versions of Figures 9 and 11 from text. 
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Figure 11.  Select important metrics mapped for the study area by ecological process (habitat 

permeability (A-C), ecological morphology (D-F), and temperature-moisture (G-I)).   Circles 

represent sample locations.  Metrics are as follows: A) 1988 fire perimeters (red) with 

impervious surfaces (yellow), B) NLCD classification, C) canopy cover (0 (lt. green)- 100% 
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(dark green)), D) roughness at 15X15 window (0 (blue)- 100% (red)), E) elevation relief ratio 

(0 (blue)- 100% (red)), F) hierarchical slope position (blue – orange, ridges in red), G) 

growing season precipitation (low (red)- high (blue)), H) ssina (0 (blue) – 100% (red)), and I) 

dd5 (low (blue) – high (red)).  
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ABSTRACT 

Landscape genetics, which focuses on quantifying the impact of landscape composition on 

gene flow, is ideally suited for addressing metapopulation connectivity.  Metapopulation theory 

highlights the importance of landscape composition and dispersal for maintaining population 

persistence.  In a discrete patch system such as typically occupied by pond breeding amphibians, 

landscape properties both at and between sites may affect population connectivity.  Therefore, 

we adapt gravity equations to predict genetic connectivity as a function of both at site and 

between site landscape processes. We then apply gravity models to Columbia spotted frogs 

(Rana luteiventris) in the Bighorn Crags, Idaho USA (8 loci, 37 sites, n=441). Using standard 

analyses, we found significant isolation-by-distance, multiple levels of genetic clustering 

(STRUCTURE), and more variation explained between basins than between drainages (AMOVA).  

The gravity model allowed us to reveal additional information: population connectivity is 

correlated with distance, at site landscape processes (predation, site productivity), and between 

site landscape processes (major topographic features, frost-free period).  The negative effect of 

predation and positive effect of site productivity on connectivity in combination with bottleneck 

tests allowed us to infer source-sink dynamics.  Finally, gravity models prove to be a highly 

powerful tool to predict metapopulation connectivity in systems with discrete habitats.  

 

Keywords: Landscape genetics, gravity models, metapopulations, source-sink, R. luteiventris, 

amphibians 
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INTRODUCTION  

A central objective in biology and conservation is to understand species’ connectivity.  

Connectivity is central in metapopulations dynamics where migration of individuals among 

subpopulations is critical for recolonization and long-term viability (Bouchy et al. 2005; Jiang et 

al. 2007; Ovaskainen and Hanski 2004; Wiens 1996).  Pond breeding amphibians are often 

thought to function as metapopulations (Compton et al. 2007; Smith and Green 2005), with an 

inhospitable habitat matrix among sites resulting in restricted connectivity and elevated 

extinction risk (Storfer 2003; Wiens 1996). Understanding how landscape processes affect 

connectivity in the context of metapopulation structure is critical for conservation as many 

amphibian species are in global decline, with habitat fragmentation and alteration a primary 

cause (Collins and Storfer 2003; Stuart et al. 2004).   The affect of reduction in the proportion of 

suitable habitat across the landscape may be difficult to quantify (Gardner et al. 2007), 

particularly in metapopulations where habitat modifications may have a non-linear cumulative 

effect on dispersal and recolonization (Gilpin 1991).   

Collecting sufficient demographic data to estimate landscape effects on connectivity among 

subpopulations can be problematic, particularly in amphibian populations that fluctuate widely in 

size from year to year (Green 2003; Pechmann et al. 1991).  Alternatively, connectivity among 

sites can be estimated by genetic distance based on neutral genetic markers such as 

microsatellites (Keyghobadi et al. 2005).   Landscape genetics is a newly emergent field 

combining population genetics and landscape ecology well suited to address these effects of 

landscape process on population genetic connectivity (Manel et al. 2003; Storfer et al. 2007).   

In metapopulations, amount of connectivity is likely driven by both between and at site 

processes (Hanski and Gaggiotti 2004).  Between sites, distance and the suitability of intervening 



 

 191 

landscape matrix for dispersal will influence gene flow and recolonization potential (Beebee 

2005; Manier and Arnold 2006; McRae 2006; Pellet et al. 2007).  At sites, productivity (Johnson 

and Semlitsch 2003) and predation (Bosch et al. 2006; Orizaola and Brana 2006; Pilliod and 

Peterson 2001) control the number of offspring produced driving source-sink dynamics (Pulliam 

1988).  The more offspring produced, the more potential for connectivity between sites and 

likelihood of being a source population (Pulliam 1988).  In addition, at site characteristics may 

make a location both attractive to potential migrants and sustain those arriving individuals.   

Gravity models (Fotheringham and O'Kelly 1989), or spatial interaction models, are well-

suited for assessing metapopulation connectivity whereby flow is governed by both at site and 

among site processes.  Based on Newton’s law of gravitation, gravity models explicitly model 

flow or number of trips based on “mass” or potential flow from a site (Anderson 1979).  Gravity 

models are typically used to for predicting transportation flow and trade of economic goods 

(Voorhees 1956; Willig and Bailey 1979).  Application in natural sciences is relatively new, with 

examples in epidemiology (Xia et al. 2004) and ecology (Bossenbroek et al. 2007; Bossenbroek 

et al. 2001; Ferrari et al. 2006) estimating connectivity and spread.  In addition to the ability to 

include at site data, gravity models have advantageous model properties compared to matrix 

approaches typically applied in landscape genetics (Mantel 1967).  Estimates are multivariate 

and do not suffer from potential bias in assessing model uncertainty (Castellano and Balletto 

2002; Legendre 2000; Raufaste and Rousset 2001; Rousset 2002).   

The Columbia spotted frog (Rana luteiventris) functions as metapopulations in the Bighorn 

Crags, Idaho with processes influencing breeding site occupancy both at sites and between sites 

(Pilliod et al. 2002).  Located in the Frank-Church Wilderness Area, the system has extreme 

climatic and topographic conditions represented by a limited growing season and granitic peaks 
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over 3000 m separating basins (Pilliod et al. 2002).  In this high elevation system, differences in 

breeding phenology between low elevation and high elevation sites may result in a biological 

barrier to gene flow (Palo et al. 2003; Giordano et al 2007).  In addition, introduced trout species 

prey on R. luteiventris eggs, larvae and newly metamorphosed individuals in otherwise suitable 

habitat (Pilliod and Peterson 2001) which may result in a population sink.  Despite the observed 

ability to move though inhospitable habitat matrix (Pilliod et al. 2002), sites in the southern 

basins contain significant population genetic structure suggesting little connectivity among sites 

(Funk et al. 2005).  By including both at site and between site landscape processes, we can 

estimate fine-scale metapopulation connectivity of R. luteiventris in a natural environment.   

Using traditional population genetic approaches and newly derived gravity models, we 

investigated fine-scale landscape genetic structure of R. luteiventris in eight basins in the 

Bighorn Crags, Idaho. Our goal was to model gene flow among sites as a function of three types 

of independent variables: distance between sites, landscape processes at sites, and landscape 

processes between sites.  We addressed three primary questions: i) is genetic structure clustered 

by basin or drainage?, ii) is connectivity influenced by both at site and among site landscape 

processes?, and iii) which landscape processes explain observed connectivity among sites?  

Based on previous research identifying ridges as potential barriers to gene flow in amphibians 

(Funk et al. 2005; Lougheed et al. 1999), we hypothesize that more genetic variation can be 

explained by basin than by drainage.  Because at site characteristics influence the number of 

potential migrants, we hypothesize both at site and among site landscape processes significantly 

influence R. luteiventris connectivity.   We predict high connectivity between sites will be 

associated with high primary productivity and lack of fish.  In addition, areas of high 

connectivity will have similar elevation, higher than average rainfall, and a longer growing 
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season than areas of low connectivity.  Finally, connectivity will be limited by major topographic 

features and geographic isolation. 

METHODS 

Study area and field methods   

We collected tissue samples from R. luteiventris at 37 sites in eight basins in the Bighorn 

Crags in 2005-06 (Fig. 12).  Field crews collected buccal swabs from adults (Goldberg et al. 

2003) and a small tail clip (~2 mm) from larvae with the goal of at least 20 individuals per site.  

We also collected data on surveyed wetlands including: wetland size (area, perimeter, depth), 

distance to habitat types (forest, shrub, rock), and presence of fish (Pilliod et al. 2002). 

 

(Figure 12 caption)  

Figure 12 shows the study area with sites (A), pruned network (B), and location overview 

(lower right hand corner).  A) Figure 12A is a map of study area with basins labeled in text. 

Major genetic groups identified in STRUCTURE (Table 7), are shown as circles (I) and triangles 

(II).  Subclusters are shown by gray scale (I: black(A), gray (B), and white (C) and II: black (A) 

and gray (B)).  Symbols with a black dot in the center represent sites where assignment was 

nebulous, likely due to small sample size (Table 8).  B)   Figure 12B shows the pruned network 

including only sites with large enough sample size for reliable pair-wise estimates of gene flow.   
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Figure 12 

 

Genetic clustering  

 DNA was extracted using the Qiagen DNeasy96 tissue protocol (Qiagen Inc). We generated 

multi-locus genotypes using eight microsatellite loci (Funk et al. 2005; Monsen and Blouin 

2003), an ABI 3730 automated sequencer and scored with GeneMapper 3.7 (ABI) (for loci, 

optimized conditions, quality control, and basic validation see Appendix 10). We implemented a 

maximum likelihood algorithm (COLONY) to identify full sibling larvae (Wang 2004).  We then 

subsampled by site at the size of the smallest sibling cluster to avoid biasing allele frequency 

distributions (C. Goldberg, pers. comm.). We tested all loci for concordance with Hardy-
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Weinberg equilibrium and significant linkage disequilibrium between all pairs of loci using 

FSTAT 2.9.3.2 and GENEPOP 3.4 (Goudet 2001; Raymond and Rousset 1995). 

We estimated gene flow and other standard measures of population structure and genetic 

distance with GENEPOP 3.4 (Raymond and Rousset 1995) and Microsatellite Analyser (Dieringer 

and Schlötterer 2003). We tested overall isolation-by-distance by calculating a Mantel statistic 

(Mantel 1967) between genetic distance (Nei 1972) and geographic distance in GenAlEx 6.0 

(Peakall and Smouse 2006).  We assessed overall hierarchical partitioning of genetic structure by 

site, basin, and drainage using an Analysis of Molecular Variation (AMOVA) with the following 

parameters: co-dominate markers, FST as the distance statistic, and 999 permutations (Peakall and 

Smouse 2006; Peakall et al. 1995).  We compared three hierarchical population groupings with 

AMOVA to test which explained the most genetic variation: site – basin, site – drainage, and 

basin – drainage.  

 We assessed the clustering of  multilocus genotypes with no a priori definition of population 

identification using program STRUCTURE (Prichard et al. 2000) with 500,000 iterations burn-in, 

200,000 Markov-chain Monty-Carlo replicates post burn-in, correlated allele frequencies, 

admixture model, inferred alpha with uniform prior, and number of populations (K) for 1-20.  

We estimated major genetic clusters (K) using the methods proposed by Evanno et al. (2005). 

Because this approach identifies the first major break in genetic variation, we reran each 

identified genetic cluster in STRUCTURE until K=1 had the most support to identify hierarchical 

substructure.  To visualize connectivity, we estimated the most likely connections among sites 

using a graph theory based maximum likelihood approach (Dyer and Nason 2004).  Finally, to 

identify potential population sinks, we assessed bottleneck effects as identified by sign-ranked 

(models: IAM, SSM), Wilcoxon (models: IAM, SSM), and mode-shift tests in program 
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BOTTLENECK  (Cornuet and Luikart 1997; Luikart and Cornuet 1998; Luikart et al. 1998a; 

Luikart et al. 1998b). 

Landscape genetics models 

Introduction to gravity models 

Gravity models fit our data structure with “trips” (Tij, number of trips between sites i and j, in 

our case gene flow) estimated by three model components: weights (wj, distance to destination 

site), production/attraction measures (vi, landscape processes at site - the “mass” of the gravity 

equation), and resistance measures (cij, landscape processes between sites) (Fotheringham and 

O'Kelly 1989).  The gravity equation takes the following form with µ, α, and β as the estimated 

parameters (eq. 1, Fotheringham and O'Kelly 1989): 

                         Tij = kvi
µwj

αcij
-β

                                                                   (eq. 1) 

Samples at a node share a proportion of co-dominant alleles from neutral loci (as measured by 

Dps, Bowcock et al. 1994) such that the role of intervening landscape can be used to predict the 

spatial distribution of gene flow (Appendix 11).  Thus, we can estimate “flow”, performing the 

equivalent of estimating a trip distribution matrix from transportation to allocate flows given a 

network of sites (Anderson 1979; Fotheringham and O'Kelly 1989).   

We estimated landscape genetic structure using the above gravity equation (eq. 1).   We 

measured flow between sites (Tij) as 1-Dps (Bowcock et al. 1994) because allelic similarity in 

allele frequency distributions can be justified as a substitution for the number of trips (Appendix 

11), this genetic distance measure has relaxed equilibrium assumptions compared to FST, and it 

has the power to detect fine-scale genetic structure (Bowcock et al. 1994; Murphy et al. 

submitted). A more detailed justification and derivation of gravity models for landscape genetic 

application is found in Appendix 11. 
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Network optimization and bandwidth  

In transportation applications of gravity models, the network on which flow is measured is 

generally a physical entity such as road network.  In this case, all the between site connections 

and spatial locations of those connections are known.  In our landscape genetic application, we 

must estimate both the network and an area of influence of between site connections 

(“bandwidth”).  To estimate the network, we first connected each site to every other site 

(“saturated network”).  However, we know that this is not a realistic representation of direct gene 

flow.  However, we did not want to optimize the network based on the dependent variable (e.g., a 

threshold gene flow value) or fit the network to independent variables (e.g., drop connections 

based on model fit).  Both these approaches may introduce bias when inferring process based in 

part on the network topology.  However, direct gene flow will not occur past the maximum 

dispersal distance of the species.  Therefore, we estimated a gravity model for the saturated 

network and for a network pruned (i.e., connections dropped) to include pair-wise connections 

less than 4000 m (~2 times the maximum recorded travel distance for R. luteiventris in the 

Bighorn Crags (Pilliod et al. 2002)).  We optimized connection bandwidth by testing 30, 120, 

240, 480, and 960m sections of landscape between sites. We selected the final bandwidth based 

on overall model fit.     

Independent variables   

For the distance term (w), we calculated topographically corrected distance between sites.  

We also estimated landscape processes influencing production/attraction (v) at the site and 

resistance (c) between sites (Table 7, see Appendix 12 for detailed variable explanation, source 

data, predicted effect, and ecological justification).   
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Production/attraction of migrants may be influenced by presence of fish, site productivity, 

water permanence, and quality of surrounding habitat.  To include a measure of predation risk, 

we incorporated wetland depth as deeper wetlands tend to have introduced trout predators 

(Oncorhynchus clarki, O. mykiss) (Pilliod et al. 2002).  Primary productivity and water 

temperature, as measured by solar radiation (McCune and Keon 2002) and elevation, are likely 

limitations to larval development at high elevations (Palo et al. 2003; Giordano et al 2007).  Site 

permanence may also be important as temporary water bodies may evaporate before larva 

metamorphose.  Compound topographic index measures the potential hydrological flow into an 

area and water holding capacity, thus is a measure of site permanence (Moore et al. 1993).  In 

addition, surrounding habitat may provide cover and foraging for breeding adults and newly 

metamorphosed individuals.  To assess dominant cover around a site, we measured the distance 

from the site to forest, rock, and shrub habitat (Table 7, Appendix 12).  

We assessed landscape resistance between sites by habitat permeability, topographic 

morphology, and temperature-moisture regime with a set of variables derived from 30m data (for 

complete list of variables see Table 7, Appendix 12).   We assessed habitat permeability by cover 

classes shown to have an impact amphibian connectivity other studies: forest (Eigenbrod et al. 

2008), meadow (Munger et al. 1998), and water (Munger et al. 1998; Pilliod et al. 2002) (Table 

7; Appendix 12).  Topography may restrict gene flow by either acting as a physical barrier (Funk 

et al. 1999; Lougheed et al. 1999) or due to phenological differences between low and high 

elevation sites (Funk et al. 2005; Giordano et al. 2007).   We measured topographic morphology 

with a set of DEM derived variables: change in elevation between sites, ridgelines, elevation 

relief ratio (Evans 1972), relative slope position (Murphy et al. submitted), and hierarchical slope 

position (Murphy et al. submitted) (Table 7, Appendix 12).  Amphibians generally have little 
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physiological control over water loss (Bartelt and Peterson 2005; Duelman and Trueb 1994).  

Therefore, temperature-moisture regime may directly affect connectivity (Pilliod et al. 2002).   

We calculated average temperature-moisture condition between sites based on both topography 

(compound topographic index and heat load index) and climate (temperature and rainfall, Table 

7). 
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Parameter Process Variable Code 

Distance (w) Isolation by distance Topographic Distance Distance 

Production (v) Productivity Elevation Elev 

  Heat load index  Hli 

  Compound topographic index  cti  

 Predation Depth Depth 

Resistance (c) Habitat  Water Water 

  Forest forest  

  Meadow Meadow 

 Topo-morph Elevation relief ratio1 Err 

  Relative slope position Rsp 

  Hierarchical slope position Hsp 

  Ridges Ridge 

 Temp-Moist Heat load index  Hli 

  Compound topographic index  cti  

  Precipitation ratio Pratio 

  Frost free period  Ffp 

 

Table 7 

Independent variables used to build gravity models of metapopulation connectivity.   

The table headings are as follows: Parameter - the gravity model parameter estimated by a given 

set of independent variables (see eq. 1), Process - the landscape process being measured for a set 

of independent variables (Topo-morph – topographic morphology, Temp-Most – temperature-

moisture), Variable - the variable name and code is the abbreviation for the given variable (using 

previously published codes when available).   

1Elevation relief ratio was calculated at multiple window sizes (3X3, 15X15, and 27X27 30m 

cells).  For an expanded version of this table with variable calculation, references, predicted 

effects, and ecological justification see Appendix 12. 
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Estimating gravity models   

We estimated global connectivity of R. luteiventris in the Bighorn Crags using an 

unconstrained gravity model (Fotheringham and O'Kelly 1989).  As an unconstrained model (i.e. 

estimate is not distributed based on origin or destination site), the gravity equation (eq. 1) can be 

linearized as (eq. 2, Fotheringham and O’Kelly 1989): 

lnTij = lnk + lnµvi + lnαwj  -lnβ cij                                                                        (eq. 2)  

We then estimated the parameters using linear regression in R (R Development Core Team 

2007).  We evaluated model fit using residual maximum likelihood estimation (REML) and 

parameter significance.  For model selection, we implemented the Akaike Information Criterion 

(AIC) (Aikaike 1973).   

 To get a more spatially distributed estimate of flow incorporating local effects, gravity 

models can be either singling constrained (by origin (production, landscape processes 

influencing flow coming from a site) or destination (attraction, landscape processes influencing 

flow arriving at a site)) or doubly constrained (by origin and destination sites).  We estimated 

spatially distributed connectivity of R. luteiventris in the Bighorn Crags using a gravity model 

singly constrained by origin (Fotheringham and O'Kelly 1989).  The production constrained 

gravity equation can be linearized as (eq. 3, Fotheringham and O’Kelly 1989): 

lnTij = lnki + (lnµvi + lnαwj  -lnβ cij)                                                                  (eq. 3) 

This linearized form is identical to the unconstrained equation (eq. 2), with the exception of a 

unique constant for each origin site.  We estimated parameters using hierarchical linear mixed 

models grouped by origin site in R (lme function, R Development Core Team 2007).  We then 

evaluated model fit using REML and parameter significance.  For model selection, we used AIC 

(Aikaike 1973).   
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To validate our gravity models, we evaluated if the spatial distribution of sites explained 

observed connectivity, overall model significance, and the effect of missing sites on model 

estimates.  To test if observed connectivity is simply a function of the spatial distribution of sites 

(Rickets 2001), we calculated maximized flow (entropy) through the network (Brooks and Wiley 

1988).   We then correlated the expected distribution of flows based on entropy with observed 

gene flow of R. luteiventris in the landscape.  If distance, at site landscape processes and between 

site landscape processes have no effect then the observed genetic distances will be highly 

correlated with entropy expectations.  To quantify the probability of getting the selected model 

by random chance, we randomized observed flow through the network (n=1000), calculated 

REML, and used this to create a null distribution.  We then calculated whether the observed 

REML was greater than the 95th percentile of this null distribution (p < 0.05). We assessed the 

impact of missing sites by a jackknife of the data, removing one site at a time (and all related 

pair-wise connections) and re-estimating the model.   

 

RESULTS 

Genetic Structure  

 We found more genetic structure in R. luteiventris was explained by basins than drainages.  

We collected 477 R. luteiventris samples (adults (418), tadpoles (59)) and successfully 

genotyped 442 samples for at least 6 of the 8 loci (Table 8) (Funk et al. 2005; Monsen and 

Blouin 2003).   The northern basins had fewer occupied sites than the southern basins, many with 

low occupancy as reflected in our sample sizes (Table 8).  Overall average heterozygosity across 

all sites is 0.42, consistent with findings in Funk et al. (2005) (Appendix 10).  No loci were out 
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of linkage equilibrium after correcting for multiple tests and no sites with greater than five 

samples were out of Hardy-Weinberg equilibrium.    

 FST between sites ranged from 0.012 – 0.500, with the most genetically divergent sites 

located in Tip Top basin and the most genetic connectivity in Skyhigh basin (Fig. 12A).   Across 

the study area, we found most sites to be significantly differentiated, although some FST values 

were not significant from zero (Appendix 10). However, all pair-wise FST values between 

drainages and between basins were significant from zero.  Based on the Mantel test between 

geographic distance and Nei’s distance, we found significant isolation-by-distance (Mantel r = 

0.20, p-value < 0.001, Appendix 10).  Across all the AMOVA tests (Table 9), we found most 

variation explained within sites.  However, grouping by basin minimized more within group 

variation (5%) and maximized among group variation (12%), compared to drainage (9% within, 

10% among) or basin within drainage (7% within, 8% among) (Table 9). All grouping were 

significant in the AMOVA analyses (p < 0.001).  Using PopGraph, we were able to visualize 

genetic clustering by basin based on the most likely connections between sites (Appendix 10). 

 We identified two major genetic clusters using STRUCTURE, each with significant sub-

clustering (Fig. 12A).  Main clustering corresponds to a major ridgeline, resulting in a north (I)-

south (II) break in the study area.  Substructure is by basins, suggesting that topography 

considerably restricts connectivity (Fig. 12A).  We identified three genetic subgroups in the 

north and two primary subgroups in the south.   Of the northern sites with large enough sample 

sizes to run bottleneck tests, 60% (6/10) had significant bottleneck signatures (heterozygosity 

excess and/or shifts in allele frequency distribution) for at least 3/5 tests.  In contrast, this was 

true for only one site in the southern cluster (1/26; Appendix 12).   
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Table 8  

Sample summary.  Table 8 is a summary of samples collected in the Bighorn Crags including 

drainage and basin (see Fig. 12 for basin locations).  Samples are the number of samples 

collected as: # adults (# tadpoles).  Genotypes are the number of samples successfully genotyped.  

For an expanded version of the table including bottleneck test results, see Appendix 12. 
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Drainage Basin Site Cluster Genotypes 
Basin 
Total 

Drainage 
Total 

Clear Birdbill Birdbill Lake1 IA 4   
  Gentian Lake IA 20   
  Gentian Ponds IA 18   
  Meadow Lake IA 20   
  Mirror Lake1 I* 1   
   Stocking Cap Lake IA 6 69  
 Glacier Golden Lake IB 6   
    Pothole Lake IB 13 19 88 
Nopez Nopez Nopez Lake IC 5   
   Ship Island Lake IC 18 23  
 Sheepeater Airplane Lake IC 22   
    Elenas Lake IC 20 42 65 
Waterfall Terrace Barking Fox Lake IIB 14   
    Terrace Lakes2 IIA 10 24 24 
Wilson Harbor Bob Lake IIA 17   
  Buteo Meadow1 II* 4   
  Tobias Lake1 IIA 3   
   Welcome Lake IIA 15 39  
 Skyhigh Bachelor Meadow IIA 8   
  Buck Lake1 IIA 3   
  Cache Lake IIA 7   
  Doe Lake II* 6   
  Egg White Lake IIA 17   
  Fawn Lake IIA 17   
  Frog Pond Lake IIA 10   
  Glacial Lake1 IIA 2   
  Homer Pond1 II* 1   
  In and Out Lake IIA 10   
  Skyhigh Lake IIA 23   
  Mount Wilson IIA 15   
   Twin Cove Lake IIA 7 126  
 Tip Top Greggs Lake IIB 20   
  Moose Lake IIB 18   
  Paragon Lake IIB 20   
  Ramshorn Lake IIB 18   
  U. Paragon Wetland IIB 6   
    Walkabout Lake IIB 17 99 264 
Total    441   

1Not included in pair-wise analysis (FST or gravity models) due to small sample size.. 2Terrace lakes consist of four small interconnected lakes, all 

with low sample size.  Sites were combined for all pair-wise analyses.   *Assignment for this site is unclear, likely due to small sample size.   
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Table 9 

AMOVA summary tables.  Table 9 is a summary of AMOVA results, testing alternative 

grouping criteria.  Heading are as follows : Groups – tested grouping levels.  Df – degrees of 

freedom.  SS – sum of squares, MS – mean sum of squares, Est. Var. – estimated variance, 

variation – variation explained, p-value – significance of that group. 

Summary AMOVA Table – Drainage vs. Site 
Groups Df SS MS Est. Var. Variation p-value 

Among Drainages 3 137.208 45.736 0.225 10% <0.001 
Among Sites 31 197.427 6.369 0.190 9% <0.001 
Within Sites 843 1483.648 1.760 1.760 81% <0.001 

Total 877 1818.282 53.865 2.175     
 
 

Summary AMOVA Table – Basin vs. Site 
Groups Df SS MS Est. Var. Variation p-value 

Among Basins 7 213.162 30.452 0.244 12% <0.001 
Among Sties 27 121.472 4.499 0.117 5% <0.001 
Within Sites 843 1483.648 1.760 1.760 83% <0.001 

Total 877 1818.282 36.711 2.121     
 
 

Summary AMOVA Table – Drainage vs. Basin 
Groups Df SS MS Est. Var. Variation p-value 

Among Drainages 3 137.208 45.736 0.175 8% <0.001 
Among Basins 4 75.954 18.989 0.155 7% <0.001 
Within Basins 870 1605.120 1.845 1.845 85% <0.001 

Total 877 1818.282 66.570 2.175     
  

   

Landscape genetic models  

We found both at site and between site landscape processes influenced connectivity, 

supported by significance of all components of the gravity model (distance, 

production/attraction, and resistance, p-value < 0.05).  The optimal bandwidth, as determined by 

model fit, was 30m.  However, the area of landscape influence considered between sites had little 

effect on model fit. Using the saturated network, global connectivity was a function of distance, 
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production (site depth, heat load index), and landscape resistance (frost free period, elevation 

relief ratio at a 27X27 cell window size; REML = 287.41, AIC = -558.8, Table 10).  The next 

most likely model included relative slope position, but did not improve AIC (Table 10).  Pruning 

the network had little effect on model fit, with all three gravity components still significant (p-

value < 0.05).  For the pruned network, global connectivity was a function of distance, 

production (heat load index), and landscape resistance (frost free period, elevation relief ratio at a 

27X27 cell window size;  REML = 139.3, AIC = -264.6; Table 10).   

 The constrained gravity model results were very similar.  We found all components of the 

gravity model to be significant.  Using the saturated network, global connectivity was a function 

of distance, production (heat load index), and landscape resistance (frost free period, elevation 

relief ratio at a 27X27 cell window size; REML = 287.41, AIC = -558.8, Table 10).  The same 

variables were selected using the pruned network (REML = 150.22, AIC = -286.44, Table 10).  

Although the REML and AIC scores can not be compared between pruned and unpruned 

networks, unconstrained and constrained models of the same network topology can be compared.  

Overall, the constrained gravity models incorporating local effects had higher REML and AIC 

scores, suggesting that singly constrained models are a better fit to the data. All final 

unconstrained and constrained gravity models were significant compared to null flow (entropy) 

and randomized Dps (p-values < 0.05).  In addition, the jackknife did not change parameter 

selection and had only trivial affect on parameter estimates (data not shown).  
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Table 10 

Model results.  Table 10 displays model results as follows with the selected model in bold text: 

Type – type of model (null entropy, unconstrained gravity model or constrained gravity model), 

Network – saturated or pruned network, Parameters – selected parameters for each model (dist – 

distance (w), v – production term, c - resistance term).  Test statistics are: residual maximum 

likelihood (REML) and Akaike Information Criterion (AIC).  Variable codes are found in Table 

1.  Model significance values is the result of the randomization test. 

 



 

 209 

 
Type Network Parameters REML  AIC  P-value 
Entropy Saturated None Na Na 0.857 
 Pruned None Na Na 0.881 
Unconstrained Saturated Dist 218.90 -447.59 <0.0001 
  Dist+ V(Depth) 236.54 -463.08 <0.0001 
  Dist + v(hli) 241.52 -473.03 <0.0001 
  Dist + c(ffp) 262.97 -515.95 <0.0001 
  Dist + v(hli) +c(ffp) 274.92 -537.84 <0.0001 
  Dist + v(Depth) + v(hli) + c(ffp) 278.60 -543.20 <0.0001 
  Dist+ v(Depth) + v(hli) + c(ffp) +           

    C(rsp) 
281.78 -547.56 <0.0001 

  Dist + v(Depth) + v(hli) + c(ffp)       
    + c(err27) 

287.41 -558.84 <0.0001 

  Dist + v(Depth) + v(hli) + c(ffp) +  
    C(err27) + c(rsp) 

287.69 -557.38 <0.0001 

  Dist + v(Depth) + v(hli) + c(dd5) +  
    C(err27)+ c(scosa) 

283.24 -548.47 <0.0001 

 Pruned Dist 97.56 -187.11 <0.0001 
  Dist + v(Depth) 108.98 -207.96 <0.0001 
  Dist + v(hli) 116.29 -222.59 <0.0001 
  Dist + c(dd5) 121.30 -232.60 <0.0001 
  Dist + v(Depth) + v(hli) 112.73 -213.46 <0.0001 
  Dist + v(hil) + c(ffp) 122.23 -254.46 <0.0001 
  Dist + v(hli) + c(ffp)+ c(err27) 139.30 -264.60 <0.0001 
  Dist + v(hli) + c(ffp) + c(rsp) 132.30 -250.59 <0.0001 
Constrained Saturated Dist 280.41 -552.81 <0.0001 
  Dist+ v(Depth) 280.06 -550.12 <0.0001 
  Dist + v(hli) 283.09 -556.19 <0.0001 
  Dist + c(ffp) 304.09 -598.18 <0.0001 
  Dist + v(hli) + c(ffp) 304.16 -594.32 <0.0001 
  Dist + v(hli) + c(ffp) +c( rsp) 309.40 -604.80 <0.0001 
  Dist + v(hli) + c(ffp) + c(err27) 311.04 -608.09 <0.0001 
  Dist + v(hli) + c(ffp) +c( rsp) +  

     c(elev_diff) 
307.09 -598.18 <0.0001 

  Dist + v(hli) + c(ffp) +c( rsp) +  
     c(err27) 

312.17 -608.34 <0.0001 

  Dist + v(Depth) + v(hli) + c(ffp) +  
     c(err27) 

309.69 -603.37 <0.0001 

 Pruned Dist 123.78 -257.56 <0.0001 
  Dist + v(hli) 127.01 -264.01 <0.0001 
  Dist + v(Depth) 133.76 -255.52 <0.0001 
  Dist + c(ffp) 141.37 -272.74 <0.0001 
  Dist + v(hli) + c(ffp) 144.89 -277.78 <0.0001 
  Dist + v(hli) + c(ffp) + c(err27) 150.22 -286.44 <0.0001 
  Dist + v(hli) + c(ffp) + c(err27) +c(rsp) 148.58 -281.15 <0.0001 
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DISCUSSION 

Connectivity and source-sink dynamics are critical components for understanding 

metapopulation systems (Rickets 2001; Wiens 1996).  Using a new implementation of gravity 

models, we were able to estimate connectivity in a metapopulation and identify potential drivers 

of source-sink dynamics (Pulliam 1988).  Gravity models are unique compared to existing 

methods in landscape genetics.  They are able incorporate both at site and between site landscape 

processes, directly model flow, and can simultaneously estimate multiple parameters.   

Genetic Structure 

We found basins, and not drainages, explained the most genetic variation congruent with 

results from Funk et al. (2005).  Based on radio telemetry,  R. luteiventris will preferentially 

travel along stream corridors when available but is capable of traveling through open, dry 

habitats (Pilliod et al. 2002).  These results from both the genetic and movement data suggest 

topographic barriers limit connectivity among wetlands more than availability of stream 

corridors for dispersal.   

 We found a high level of genetic differentiation in R. luteiventris consistent with genetic 

variation generally observed in amphibians (Arens et al. 2007; Shaffer et al. 2000).  We 

identified two primary genetic clusters in STRUCTURE, each with additional subclustering.  The 

northern and southern clusters were highly separable (average q-values by site > 0.85), likely 

driven by a major ridgeline separating the regions.  Identifying substructure within these initial 

clusters gave a more complete picture of the pattern of genetic variation.  Subclusters in the 

northern region correspond to basins while the first level of substructuring in the south separates 

Tip Top basin from the remaining three basins (Fig. 12), similar to results found by Funk et al. 

(2005).  Detection of multiple sites with significant bottlenecks in the north suggests the 
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presence of demographic sinks, likely due to fish introductions (Pilliod and Peterson 2001).  This 

is supported by ongoing monitoring which has not observed a major recruitment event in the 

northern basins over the past 10 years (D. Pilliod, unpublished data) 

Landscape genetics models  

In studying metapopulations, it is important to separate and quantify the effects of at site and 

between site conditions on connectivity (Hayes and Cronin 2004; Gonzalez et al. 1998).  In 

addition, including at site measurements in metapopulation dynamics is vital for assessing 

population persistence and extinction risk (Baguette and Schtickzelle 2003; Lopez and Pfister 

2001).  Using gravity models, we were able to separate these effects by demonstrating that 

distance between sites, at site landscape processes and between site landscape processes are all 

correlated with connectivity (Table 10).   

Isolation-by-distance is common in anuran species (Arens et al. 2007; Beebee 2005; Manier 

and Arnold 2006), and the importance of distance in explaining connectivity is reflected in all of 

the selected gravity models.  Our observed isolation-by-distance supports the isolation 

assumption in metapopulation dynamics (Pellet et al. 2007).  That is, geographically isolated 

sites are less connected to other sites in the metapopulation, in contrast to structure observed 

resulting from general population decline in fragmented systems where populations are equally 

disjoined (Marsh and Trenham 2001). 

At site characteristics are important drivers of metapopulation connectivity.  Connectivity 

generated from a site (i.e., gravity “mass”) will be greater when many offspring are produced 

compared to when few offspring are produced at a site.  Landscape processes driving this 

production of offspring generate the observed source-sink dynamics.  In our system, trout are 

negatively associated with breeding success leading to negligible recruitment and therefore 
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population sinks (Pilliod et al. 2002). Site depth, as an indirect measure of fish presence, was 

selected in the saturated unconstrained gravity model.  However, in the constrained models the 

impact of fish is accounted for by the local effect incorporated in the constant term.  At site 

characteristics also identify variables associated with source populations.  Larval growth and 

development is directly related to water temperature (Pough et al. 2004).  With the short frost 

free period in the Bighorn Crags, warming water or melting ice by solar radiation may decrease 

time to metamorphosis and increase site productivity (Beck and Congdon 2000). 

The area of landscape influencing connectivity between sites gives insight into species’ 

ecology.  In R. luteiventris, bandwidth used to infer landscape influence between sites had little 

effect.  There are two possible explanations for this observed insensitivity to a broader landscape 

context between sites.  In the Bighorn Crags, individuals appear to move via the most direct 

route (Pilliod et al. 2002).  In addition, there is minimal landscape heterogeneity between sites 

for our selected predictor variables.  Therefore, 30m connections captured both the spatial 

variation between sites and species movement behavior.  However, we would expect surrounding 

landscape context between sites to have more of an effect in fragmented habitats or for species 

that move by less direct routes.  

Elevation is negatively correlated with both genetic diversity (Funk et al. 2005) and gene 

flow in amphibians (Giordano et al. 2007; Spear et al. 2005).  However, elevation or difference 

in elevation between sites was not selected in any of our models.  Although elevation is 

significantly correlated with restricted gene flow in the above cases, inaccessibility due to high 

elevation may not be the mechanism.  Similar patterns have been observed along latitudinal 

gradients (Palo et al. 2003), suggesting temperature or length of growing season may be the 

underlying landscape process.  Supporting this argument, temperature was selected in all our 
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final gravity models, being the first resistance variable retained in all cases.   However, all of our 

sites are at high elevation (>2000m ) and have low genetic diversity.  Alternately at this fine-

scale we may lack the variation in elevation and genetic diversity to see a broader effect.   

Ridges are a common barrier for anuran species (Lougheed et al. 1999), demonstrated by 

high levels of substructure in mountainous areas (Funk et al. 2005; Monsen and Blouin 2003).  

Although we found evidence for genetic structuring by basin in both the AMOVA and 

STRUCTURE analyses, ridges were not significant in any of the gravity models.  However, 

topography (elevation relief ratio at a 27X27 cell window size) was highly significant.  Elevation 

relief ratio is a measure of rugosity, indicating high positive or negative dissection of the 

landscape.   At this scale, elevation relief ratio measures ridges, canyons and other major 

topographic features.   

Different landscape processes may govern gene flow across a species range.  Our study and 

Funk et al. (2005) estimate gene flow in R. luteiventris at different scales, and provide 

complimentary information about the species.  Broad-scale studies tend to generalize local 

processes into global averages, elucidating trends that may be unobservable at fine-scales.  They 

give a broader understanding, but may be unable to explain local observations such as 

metapopulation dynamics.  In contrast, fine-scale studies give depth of information about 

specific landscape processes which may be unique to the study system (Scribner et al. 2001; 

Spear et al. 2005).  

 

CONCLUSIONS 

Gravity models are well-suited for modeling metapopulation connectivity in systems with 

patches of breeding habitat and an intervening landscape matrix.  Measuring connectivity within 
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a metapopulation is crucial because it generally has a positive effect on population persistence 

which can be incorporated when estimating thresholds of connectivity (Bowne and Bowers 2004; 

With 2002).   In combination with bottleneck tests (Appendix 12), we were able to identify 

potential sink populations, an element not incorporated in other approaches.  In addition, gravity 

models are not inherently limited to genetic data.  If demographic data are available, estimates of 

population size could be directly included as an at site (production) parameter.  Based on this 

property, gravity models have the potential to combine both demographic and genetic data in a 

single connectivity estimate. Finally, once parameters are estimated, gravity models can be used 

to predict connectivity under alternative landscape conditions such as development alternatives 

or climate change. 
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APPENDICES 

On-line Appendix 10    

Appendix 10 contains general genetic supplementary methods, basic genetic summary statistics, 

AMOVA tables, and non-significant pair-wise FST values.    

 

Genetic summary information.  To ensure genotype accuracy, we included at least 2 negative 

controls per extraction and PCR, amplified a known genotype in each reaction, and reamplified 

all rare alleles (<5% frequency) in addition to at least 10% of samples from each PCR to screen 

for genotyping and human error. After subsampling sibling clusters (Wang 2004), all loci were 

tested for global concordance with Hardy-Weinberg equilibrium, significant linkage 

disequilibrium between all pairs of loci, and Hardy-Weinberg equilibrium at each site using 

GENEPOP and MICROSATELLITE ANALYSER (MSA) (Dieringer and Schlötterer 2003; Raymond 

and Rousset 1995). No loci or populations were out of Hardy-Weinberg equilibrium or linkage 

equilibrium (Raymond and Rousset 1995) with the exception of sites with < 5 samples (see 

Table 8).  

 

Table A10.1.  Microsatellite conditions and basic statistics.  Table A10.1 includes the following: 

locus (Funk et al. 2005; Monsen and Blouin 2003), multiplex (what primers were in a single 

PCR reaction), primer concentration in PCR reaction, number of alleles found,  and expected 

heterozygosity.  Qiagen multiplex kit (including Q-solution) was used for all reactions with 

standard conditions.  General PCR cycle was: initial denaturing (95° C) 15 min, X cycles (94° C 

30 sec denature, Y° C annealing 90 sec, 72° C extension 60 sec),  and 60° C 60 min final 

extension.   



 

 216 

 

 
Locus Multiplex [Primer] Cycles Annealing Alleles Hexp 

RP17 1 0.31 µM 35 57 °C 3 0.15 

RP193 1 0.28 µM 35 57 °C 6 0.52 

SRC128 1 0.31 µM 35 57 °C 5 0.08 

SFC134 1 0.28 µM 35 57 °C 4 0.55 

SFC139 1 0.28 µM 35 57 °C 10 0.76 

RP15 2 0.28 µM 40 50.5 °C 3 0.03 

RP23 2 0.39 µM 40 50.5 °C 5 0.53 

RP3 2 0.28 µM 40 50.5 °C 8 0.72 

Average     5.5 0.42 

 

 Table A10.2  Mantel test Genetic distance to geographic distance. 

Samples 439    
Permutations 999    
     
SSx SSy SPxy Rxy Prob 
684683002484.44 2083282.13 238641448.27 0.200 <0.001 
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Figure A10.1.  Non-significant pair-wise FST values.  Black dots represent sites while yellow 

lines represent non-significant pair-wise comparisons. 
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Fig. A10.2.  Estimate of most likely connections based on genetic distance (PopGraph).  The 

sites are sized by genetic diversity, colored by drainage (Table 8), and joined by most likely 

connections based on a maximum likelihood estimate.   
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On-line Appendix 11  

Gravity model justification and derivation 

We are presented with the problem of estimating spatial interaction among sample sites 

(consisting of individuals or groups of individuals), as a function of the landscape.  Sites share a 

proportion of co-dominant alleles from neutral loci such that the spatial distribution of the 

genetic distances can be estimated by the role of intervening geography.  The collection of sites 

and connections among sites forms a network consisting of nodes (sites) and edges (pair-wise 

comparisons between sites).  Our goal is to estimate “flow” through a network as measured by 

shared genetic information (“genetic distance”).  To do this, we perform the equivalent of 

estimating a trip distribution (Anderson 1979) from gravity (spatial interaction) models to 

allocate flows given network of sites: 

Tij = kvi
µwj

αcij
-β

                                                                                        (eq. 1) 

Where Tij is the number of trips between sites, vi are production/attraction characteristics at the 

site, wj is distance to site j (or weight given as a function of distance) and cij is the resistance 

between locations (Fotheringham and O'Kelly 1989).   

We chose to employ a maximum entropy form to justify use of gravity equations for 

landscape genetic applications.  This has several advantages.  First, an entropy maximizing 

approach serves to minimize or eliminate unlikely scenarios (“microstates”) resulting in 

maximized probability (Wilson and Bennett 1985).   In addition, the stochastic nature of 

processes generating genetic variation at neutral loci, mutation and drift, fit well in an entropy 

context (Brooks and Wiley 1988).  Finally, an entropy approach is based on random process and 

therefore circumvents the need to model individual motivation for movement (Anderson 1979).  



 

 220 

The maximum entropy approach permits description of spatial interaction across scales of 

measurement.  Globally (“macrostate”), the system can be described by the flow of genetic 

information among major regions of the network, which could be identified by genetic clusters.  

Locally, each sample (individual or group of individuals) is assigned to a single {i, j} position in 

the origin-destination data matrix.  In this approach, instead of trips, we will consider the flow of 

genetic material as an interaction rate between sites (i.e., migration).  The flow of genetic 

information could be measured by a variety of methods including Fst (Wright 1951), Dps - 

proportion of shared alleles (Bowcock et al. 1994), Nei’s genetic distance (Nei 1972), and 

genetic chord distance (Cavelli-Sforza and Edwards 1967).  However, shared alleles and allele 

frequencies has an intuitive translation in the transportation framework.  Therefore, we use Dps in 

the following justification. 

The data matrix takes the form: 

     destinations Dj  
    1 2 …. N-1 N 
 
  1  T11 T12 …. T1,N-1 T1N 
  2  T21 T22 …. T2,N-1 T2N 
origins Oi ‘’’  … … …. … …  
  N-1  TN-1,1 … …. … TN-1,N 
  N  TN1 TN2 …. TN,N-1 TNN 
 

where i and j are row and column indexes of sites.   A modified gravity model notation will be 

employed to describe the spatial genetic context.  To be consistent with the definition of 

interaction, an origin and destination set of sites will be identified.  These sites will be termed Oi 

and Dj corresponding to rows (i) and columns (j) in the spatial interaction data matrix.  The 

entries in the matrix Tij will correspond to the number of “trips” (geneflow) between site i and j 

and will be represented by Dps.  Then F1(Tij) will be the number of microstates giving rise to the 



 

 221 

matrix {Tij}. Note that T = ∑i Oi = ∑ j Dj is the relative flow of genetic material.  The number of 

ways of selecting n individuals (sample) from N (total population) is N![n!(N-n)!]-1 which is set 

to NBn.  Then combinatorially, the number of ways of selecting and counting all microstates in 

{T ij} is F1({T ij}) = T![ (∏ij Tij!)
-1 ]. 

Now that the number of microstates (local effect given by connections) is known, this needs 

to be maximized to identify the likelihood of the macrostate (global effect).  In practice, the 

function H = log F1({T ij}) is maximized.  The objective function used is max H = log ( T! ( ∏ij 

Tij! )
-1 ) over all elements of {Tij} and subject to the interaction constraints ∑j Tij = Oi, ∑i Tij = Dj, 

∑i ∑j Tij kij = K.  But this is a non-linear optimization problem and although usually solved 

through Lagrange multiplier techniques (Wilson and Bennett 1985), Stirling’s approximation 

provides a simplified objective function by linearizing factorial terms: H = log T! - ∑ i∑ j log Tij! 

= log T! - ∑ i∑ j ( Tij log Tij – Tij).  The optimization can now be executed using ∂H/∂Tij = -log Tij 

as the objective function.  The gravity formulation follows directly arriving at eq. 1 

(Fotheringham and O'Kelly 1989; Wilson and Bennett 1985).   

For the purposes of landscape genetics, if the problem is reformulated by defining Pij = Tij/T 

where Tij is a measure of gene flow between i and j then Pij is a probability of an individual case 

being in the (i,j) state.   Then, H can be defined directly as the entropy of the probability 

distribution G(Pij | for all i,j) as H = -∑i∑j Pij log Pij . This measure then becomes identical with 

the Shannon information index (Shannon 1948).  Maximizing entropy maximizes the likelihood 

of spatial interaction and expands possible state space.   

Gravity models assume a distance effect (w).  Isolation-by-distance is commonly seen, and 

generally expected in the presence of genetic structure (Nei 1972; Nei 1973). Unlike other 

available landscape genetic approaches, gravity models include both at site characteristics 
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(production/attraction - v) and between site characteristics (resistance - c).  Although landscape 

condition may restrict migration between sites, at site landscape characteristics may be highly 

influential.  For example, high quality habitat produces more offspring, therefore more 

opportunities for gene flow from that site.  In addition, poor quality habitat may result in 

breeding failure and therefore no probability of gene flow. 

 



On-line Appendix 12 

Appendix 12.1 is an expanded version of Table 7 with metric explanation, source data, predicted effect, and ecological justification. 

Appendix 12.2 is an expanded version of Table 8 including bottleneck results.  

Table of ecological processes and respective independent variables.  Parameter – parameter being estimated in the gravity 

equation.  Table headings are as follows.  Process – process of which the metric is a measure:  isolation by distance (IBD), 

productivity, predation,  habitat permeability and cover (Habitat), topographic morphology (Topo), or temperature-moisture (Temp-

Moist).   Variable – independent variable name.  Code- metric code or abbreviation.  Source – source of data which contained the 

variable or from which the variable was derived.  Sources are as follows: NLCD – National Land Cover Database (2001), USGS, 

SRTM - Shuttle Topographic Radar Mission digital elevation model (DEM), and a climate spline model that adjusts weather stations 

using elevation (Rehfeldt 2006).  Predicted relationship (Pred) – if we expected to find a positive (+), negative (-), or neutral (=) 

relationship between the independent variable and gene flow.  Metric explanation – brief description of variable.  Calculation – 

description of how the metric was calculated or reference.  Ecological justification – brief justification for including the variable in our 

analyses, including selected reference(s).   

Some metrics were calculated at multiple window 1Calcualted at 3X3, 15X15, and 27X27 cell window sizes.  2Decomposed from 0 – 
27X27 cell window size
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Parameter Process Variable Code Source Pred Metric Explanation Calculation Ecological Justification 

Distance Isolation by 
distance 

Topographic 
Distance (m) 

Distance SRTM - Topographically 
corrected distance 

Sum Isolation-by-distance (IBD) has been seen in Rana sp. 
(Arens et al. 2007) and generally have little gene flow 
among populations (Shaffer et al. 2000).  In addition, 
distance seems to be the major limiting factor in R. 
luteiventris connectivity (Pilliod et al. 2002) 

Producing/ 
Attracting 

Productivity Elevation (m) elev SRTM - Elevation in meters Elevation at site 
from DEM 

Regulates breeding phenology and site productivity (Funk et 
al. 2005; Giordano et al. 2007) 

  Heat Load Index  hli SRTM + Cool – hot values 
measuring solar 
radiation  

(McCune and Keon 
2002) 

Solar radiation controls water temperature and primary 
productivity.  High water temperature associated with 
breeding (Pilliod et al. 2002) 

  Compound 
topographic index  

cti  SRTM + Measure of wetness: 
flow accumulation 
by catchment size 

(Moore et al. 1993) Hydroperiod is important for amphibian diversity (Babbitt et 
al. 2003) and R. luteiventris prefers deep lakes without fish 
(Pilliod et al. 2002). 

 Predation Depth depth Field - Depth of wetland(m) Wetland depth 
(Pilliod et al. 2002) 

Bigger, deeper wetlands are more likely to have fish 
predators (Pilliod and Peterson 2001) and is negatively 
associated with breeding (Pilliod et al. 2002; Watson and 
McAllister 2003). 

Resistance Habitat  Water water NLCD + Class Open water Percent cells of 
habitat type  

Water may provide stopping points during migration (Pilliod 
et al. 2002)  

  Forest forest  NLCD + Classes Deciduous, 
Evergreen,  Mix 

Percent cells of 
habitat type  

Forest provides cover (Eigenbrod et al. 2008) and is 
associated with breeding sites (Pilliod et al. 2002) 

  Meadow Meadow NLCD + Classes: 71, 81, 82 Percent cells of 
habitat type  

Moist areas good for dispersal or seasonal use, importance of 
vegetative cover  (Munger et al. 1998) 

 Topo Elevation relief 
ratio1 

err SRTM - Index of elevational 
complexity  

(Evans 1972) Fine scale – topographic complexity may make travel 
energetically expensive.  Coarse scale – identify major 
topography which may be barriers (Funk et al. 2005).   

  Relative slope 
position  

rsp SRTM + Relative position 
between valley floor 
and ridge top 

(Murphy et al. 
submitted) 

May be adaptation along attitudinal clines, areas of similar 
relative position in drainage similar breeding phenology 
(Bonin et al. 2006; Funk et al. 2005; Giordano et al. 2007) 

  Hierarchical slope 
position3 

hsp SRTM + Scale decomposition 
of slope position 

(Murphy et al. 
submitted) 

Areas high in the drainage may have reduced genetic 
variation (Funk et al. 2005).   

  Ridges ridge SRTM - Percent ridge cells 
between sites 

(Murphy et al. 
submitted) 

May be a barrier or semi-permeable barrier to gene flow 
(Funk et al. 2005; Funk et al. 1999; Lougheed et al. 1999) 

 Temp-Moist Heat Load Index  hli SRTM - Cool – hot values, 
measure of solar 
radiation  

(McCune and Keon 
2002) 

Amphibians have little physiological control over water loss, 
hot areas impede dispersal (Bartelt and Peterson 2005; 
Duelman and Trueb 1994)  

  Compound 
topographic index  

cti  SRTM + flow accumulation 
by catchment size 

(Moore et al. 1993) Wetness may enhance dispersal (Bartelt and Peterson 2005; 
Pilliod et al. 2002). 

  Precipitation ratio pratio Spline + Growing season 
precipitation/annual 
precipitation  

(Rehfeldt 2006) Year-round precipitation, including snow pack, may 
influencing breeding timing and dispersal (Corn 2003) 

  Frost free period  ffp Spline  + Julian date of last 
freeze to date of first 
freeze  

(Rehfeldt 2006) Later last freeze means a shortened breeding season, which 
may result in restricted gene flow (Palo et al. 2003). 
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Drainage Basin Site Cluster Genotypes 
Basin 
Total 

Drainage 
Total Sign Wilcoxon 

Mode 
shift 

Clear Birdbill Birdbill Lake1 IA 4   na na na 
  Gentian Lake IA 20   n,n ex,ex y 
  Gentian Ponds IA 18   n,n n,n n 
  Meadow Lake IA 20   n,n n,n n 
  Mirror Lake1 I* 1   na na na 
   Stocking Cap Lake IA 6 69   n,n ex,ex y 
 Glacier Golden Lake IB 6   n,n n,n y 
    Pothole Lake IB 13 19 88 n,n ex,ex y 
Nopez Nopez Nopez Lake IC 5   n,n n,n y 
   Ship Island Lake IC 18 23   y,n ex,ex y 
 Sheepeater Airplane Lake IC 22   n,n n,def N 
    Elenas Lake IC 20 42 65 n,n n,n N 
Waterfall Terrace Barking Fox Lake IIB 14   n,n n,n N 
    Terrace Lakes2 IIA 10 24 24 n,n n,n Y 
Wilson Harbor Bob Lake IIA 17   n,n n,n N 
  Buteo Meadow1 II* 4   na na Na 
  Tobias Lake1 IIA 3   na na Na 
   Welcome Lake IIA 15 39   n,y n,def N 
 Skyhigh Bachelor Meadow IIA 8   n,n n,n Y 
  Buck Lake1 IIA 3   na na Na 
  Cache Lake IIA 7   n,n ex,ex Y 
  Doe Lake II* 6   n,n n,n Y 
  Egg White Lake IIA 17   n,n ex,ex Y 
  Fawn Lake IIA 17   n,n n,n N 
  Frog Pond Lake IIA 10   n,n n,n N 
  Glacial Lake1 IIA 2   na na Na 
  Homer Pond1 II* 1   na na Na 
  In and Out Lake IIA 10   n,n n,n N 
  Skyhigh Lake IIA 23   n,n def,n N 
  Mount Wilson IIA 15   n,n n,n N 
   Twin Cove Lake IIA 7 126   n,n n,n Y 

22
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Drainage Basin Site Cluster Genotypes 
Basin 
Total 

Drainage 
Total Sign Wilcoxon 

Mode 
shift 

 Tip Top Greggs Lake IIB 20   n,n n,n N 
  Moose Lake IIB 18   n,n n,n N 
  Paragon Lake IIB 20   n,n def,n N 
  Ramshorn Lake IIB 18   n,n n,n N 

  
U. Paragon 
Wetland 

IIB 
6   

n,n n,n Y 

    Walkabout Lake IIB 17 99 264 n,n def,n N 
Total    441      
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