
PURCHASING, INVENTORY CONTROL, PRICING, AND CONTRACT DESIGN 

UNDER PURCHASING PRICE UNCERTAINTIES 

 
 
 
 
 
 
 
 
 

By 
 

XIANGLING HU 
 
 
 
 
 
 
 
 
 
 
 
 
 

A dissertation submitted in partial fulfillment of 
the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY  

 
WASHINGTON STATE UNIVERSITY 

College of Business 
 

August 2008 
 
 
 
 
 
 
 



Acknowledge 

 

Many people have contributed to the production of this dissertation. I owe my gratitude 

to all those people who have made this dissertation possible and thank them so much for 

making my graduate experience the one that I will cherish forever.  

My deepest gratitude is to my advisor, Dr. Charles L. Munson. I have been 

astonishingly fortunate to have an advisor who gave me the freedom to explore on my own, 

taught me how to express ideas and write papers, and guide me to get through when my 

steps faltered. His patience and sincere support helped me overcome many difficulties and 

finish this dissertation. I am also thankful to him for checking grammar and the consistence 

in notation in my writings and for carefully reading and commenting on countless revisions 

of this manuscript.  

Dr. Fotopoulos' is a very nice and caring person. In research aspect, he is strict. He sets 

high standards for his students and he encourages, helps, and guides them through. His 

insightful comments and constructive criticisms in my research were thought-provoking 

and they boosted my ideas. I am very thankful for his help in sorting out the technical 

details of my work, holding me to a high research standard, and enforcing strict validations 

for each research result, and thus teaching me how to do research.  

I am very grateful to Dr. Chen for his encouragement and practical advice. I deeply 

thank him for reading my reports, commenting on my views, helping me understand 

research problems, and enriching my ideas. He not only instructs us researches, but also 

teaches us how to be a good person and provides us a good example himself. 

 ii



I appreciate the help and care I received from the faculty and staff in the department. 

Thanks Elena for helping me to check the grammar and I also have to give a special 

mention for the supports given by Dr. Ahn, Xiaohui, Janet, and Barbara. I really appreciate 

your support and care during my graduate study.  

Most importantly, none of this would have been possible without the love and patience 

of my family. My husband – Pei Zhan, my parents, and my lovely daughter Eileen, to 

whom this dissertation is dedicated, has been a constant source of love, concern, support 

and strength all these years. Thank you and love you. 

 

 iii



 
 
 
 
 
 
 
 
 
 
To the Faculty of Washington State University: 

 
    The members of the Committee appointed to examine the dissertation of 
Xiangling Hu find it satisfactory and recommend that it be accepted. 

 
 
 ___________________________________ 
 Chair 
 
 ___________________________________ 
 
 
 ___________________________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iv



 
PURCHASING, INVENTORY CONTROL, PRICING, AND CONTRACT DESIGN 

UNDER PURCHASING PRICE UNCERTAINTIES  

Abstract 

 

by Xiangling Hu, Ph.D. 

Washington State University 

August 2008 

 

Chair: Charles L. Munson  

This dissertation focuses on exploring how companies design and adjust purchasing, 

inventory, and selling strategies when facing stochastic purchasing prices.  

First we develops a supply contract that considers environments with changing 

prices, we then investigate characterization properties of the price processes, and determine 

expressions of the contract’s expected low price and its second moment for a given horizon, 

then we identify an expected optimum time before the contract expires at which the lowest 

price occurs.  Simulation experiments verify our analysis, and they illustrate how the 

optimum purchase time decreases as the change rate of the cost increases. 

Next, we analyze purchasing strategies for retailers regarding the best timing and 

amount of purchases when operating under combined timing and quantity flexibility 

contracts in an environment of uncertain prices. To decrease the computational complexity 

and make the procedure adaptable to the case of multiple suppliers, we develop, analyze, 

and compare a Time Strategy and a Target Strategy and then combine these methods into 
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an approximate algorithm to facilitate the purchasing decision in a more efficient way. We 

then extend the solution procedure to the multiple suppliers case. 

Last we study the problem of planning the procurement and sales for a newsvendor 

for whom the price of the raw material fluctuates along time and the demand of the output 

product is random and price-sensitive. After we provide a backward deduction method to 

solve this problem, we provide an efficient solution algorithm adapted for multiple-

supplier cases and long-term-length scenarios, and a corresponding lower bound for the 

expected profit. We further analyze how to choose between a forward contract and spot 

market purchasing. Then we extend the above analysis to the profit and risk analysis in 

multiple-supplier cases and multiple-period newsvendor cases. Through numerical analysis 

we demonstrate how the potential supplier base and the parameters influence profit and 

risk, and the purchasing decisions. 
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CHAPTER I: BACKGROUND 

Price uncertainties are pervasive in many industries, and they can significantly 

deteriorate profits if left unmanaged. For example (Nagali et al. 2002), the price of DRAM 

memory used by HP dropped by over 90% in 2001 and more than tripled in 2002. 

Palladium prices for Ford doubled over the year 2000 and then decreased by over 50% in 

2001. Figure 1 lists the gasoline and diesel fuel prices in the past two years. The gasoline 

price fluctuated a lot and increased from about 290 cents per gallon in August 2006 to 

about 415 cents per gallon in July 2008 with a positive cost trend. The diesel fuel price 

also fluctuated a lot and increased from about 295 cents per gallon in August 2006 to about 

460 cents per gallon in July 2008 with a positive cost trend. For any firm purchasing 

commodities such as these, careful purchasing programs must be implemented to try to 

alleviate the potentially devastating effects of wildly fluctuating prices  

Purchase prices fluctuate for a variety of reasons, including exchange rate movements, 

uncertainty of supply, lack of a futures market, information disclosure, hyperinflation 

conditions, technical developments, political events, environmental influences, and 

changing risk preferences of consumers.  For example, floating exchange rates may cause a 

buyer to pay substantially more or less than the original contract price (Carter and Vickery 

1988), especially when the contract terms are expressed at an agreed-upon purchase price 

in the supplier's home currency. Nevertheless, “For the numerous purchasing managers of 

a global manufacturing concern, the presence of risk-sharing agreements still implies 

purchasing price uncertainty, even if there exists a contract at an agreed-upon purchase 

price in the buyer's home currency”(Arcelus et al., 2002).  Figure 2 and 3 show the 
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exchange rates from US Dollar to Chinese Yuan and from US Dollar to Canadian Dollar, 

respectively, from April 4, 2008 to July 4, 2008.  In the figures, the exchange rate from US 

Dollar to Chinese Yuan drops about 22% in these three months, while the trend of 

exchange rate from US Dollar to Canadian Dollar is flatter. The fluctuations of both 

exchange rates are severe, especially the exchange rate from US Dollar to Canadian Dollar. 

 

 

Figure 1. Gasoline and Diesel Fuel Prices in the US 

  

  
http://tonto.eia.doe.gov/oog/info/gdu/gasdiese1.asp 
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Figure 2. US Dollar to Chinese Yuan 

 

Figure 3. US Dollar to Canadian Dollar 
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When raw material purchasing prices fluctuate significantly, proper design of a 

purchasing strategy to hedge risk and increase profits becomes critical. According to 

Metagroup (2003), lower price ranks highest among the valid reasons driving 

manufacturers to outsource. Systematic purchase-price risk is the major financial risk to 

consider in inventory control (Berling and Rosling, 2005).  To manage the risk and control 

the cost, purchasing at an earlier time when the price is relatively low is a common practice 

in industry. For example, to handle the increase in fuel cost, a lot of the airlines have 

already purchased futures for those fuels to hedge their prices as time goes on. Containing 

fuel costs is a key to maintaining profit margins for Southwest Airlines (Cart et. al.,  2002). 

With fuel being an airline's most important variable cost, Southwest's measures have 

become a model for the industry. In fact, 70% of the fuel needed by Southwest for 2008 is 

purchased years ago. And Since 1999, hedging has saved Southwest $3.5 billion. 

Purchasing at an earlier time is also being implemented by the other airline companies 

(Schreck, 2008). For example, 55% of the fuel used in 2000 by Delta was purchased in 

1997 (Cobbs, 2004). However, this earlier purchasing is not always profitable.  In 2006, 

Delta reported a loss of $108 million from the trading when oil prices dropped midyear 

(Micheline, 2008). Examples can also be found in other industries. Ford posted a $1 billion 

loss on precious metals inventory and forward contract agreements in December 2001, and 

Dell’s announcement in October 1999 about the impact of higher-than-expected memory 

prices resulted in a 7% decline in its stock in one day (Metagroup, 2003). As we can see, 

purchasing time decisions for raw materials with significant price fluctuations can greatly 

impact profits.  This management dilemma provides the motivation for this dissertation.  
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In this dissertation, we use Black-Scholes equation to describe underlying purchase 

price movements. Merton (1973) was the first to publish a paper expanding the 

mathematical understanding of the options pricing model. Black and Scholes (1973) 

improved the model and developed "Black-Scholes" options pricing model. The 

fundamental indication of Black-Scholes is that the option is implicitly priced if the stock 

is traded. Their research was founded on work developed by scholars such as Louis 

Bachelier, A. James Boness, Sheen T. Kassouf, Edward O. Thorp, and Paul Samuelson 

(MacKenzie and Millo 2003, MacKenzie 2003). Merton and Scholes received the 1997 

Nobel Prize in Economics for this and related work.  

The Black-Scholes model contributes to our understanding of a wide range of contracts 

with option-like features. For example, the Black-Scholes model explains the prices on 

European options, which cannot be exercised before the expiration date. The basic idea of 

the model is that the options are equivalent to a portfolio constructed from the underlying 

stocks and bonds, and investors gain profits from gaps in asset pricing.  

However, many option related expressions cannot be derived directly using Black-

Sholes equations, so we need to refer to the other methodologies. The Binomial Options 

Pricing model approach is a methodology which is able to handle a variety of conditions 

for which other models cannot easily be applied. Various versions of the Binomial model 

are widely used by practitioners in the options markets. This is largely because it models 

the underlying instrument over time, as opposed to at a particular point, and can therefore 

be readily implemented in a software environment. Although it is slower than the Black-
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Scholes model, it is considered more accurate for longer-dated options and options on 

securities with dividend payments, and it is able to be used in more extensive environments.  

For options with several sources of uncertainty or for options with complicated features, 

Lattice methods like the Binomial Tree method face several difficulties and are not 

practical. Choosing the most profitable supplier from multiple suppliers to invest is one of 

them. Monte Carlo option models are generally used in these cases.  Monte Carlo 

simulations are used to analyze financial models by simulating the various sources of 

uncertainty affecting their value, and then determining their average value over the range 

of resultant outcomes. Broadie and Glasserman (1996) use Monte Carlo simulation to 

estimate security price derivatives. Longstaff and Schwartz (2001) implement a least 

squares approach in a simulation to value American options. Related work includes Boyle 

(1997), McLeish (2005) and Robert and Casella (2005), and so on.  The Monte Carlo 

method is more advantageous when the dimensions (sources of uncertainty) of the problem 

increase. Monte Carlo simulation is, however, time-consuming in terms of computation, 

and it is not used when the Lattice approaches or formulas are sufficient.   

In this dissertation, I implement all three methods in the study and develop some 

formulas and strategies to ease the calculations of those uncertain price related problems 

without the complex calculations of Monte Carlo simulation or a multiple dimensional 

Binomial Tree Lattice approach. As the result of the uncertainties of the purchasing cost 

and as the cost is so crucial to companies’ development, I dig into the purchasing strategies, 

the contract design and options, the selection of suppliers, the joint pricing strategies, and 

the corresponding profit and risk analysis of firms’ purchasing and selling decisions. In the 
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next chapter, I investigate characterization properties of the price processes and then 

employ these expected price and second moment values to identify an expected optimum 

time before the contract expires at which to purchase. In Chapter III, I analyze purchasing 

strategies for retailers regarding the best timing and amount of purchases when operating 

under combined timing and quantity flexibility contracts. In Chapter IV, I study the 

problem of planning the procurement and sales for a newsvendor in the case that the 

newsvendor has a particular time period before the commencement of the selling season to 

make the purchase and that the demand for the product is random and selling price-

sensitive. Finally, I conclude and propose future research in Chapter V. 
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CHAPTER II: FLEXIBLE SUPPLY CONTRACTS UNDER 

PRICE UNCERTAINTY 

 

1. Introduction   

The purpose of this study is to investigate supply contracts subject to an environment 

of uncertain prices. I consider the situation where a firm signs a contract with its supplier 

for the purchase of a certain amount of a material in order to satisfy its customers’ future 

demand. I suppose that a deterministic demand D needed by time T is fixed.  Further, I 

assume that the firm specifies the amount of material needed, but at the same time, I 

assume that the time of purchasing the material should be flexible within the period [ ]T,0 .  

A “time flexible” contract allows the firm to specify the purchase amount over a given 

period without specifying the exact time of purchase.  Fixed-quantity contracts can arise in 

numerous settings, for example, purchasing supplies in response to contractual 

commitments with the buyer’s customers, or purchasing supplies to prepare for a fixed six-

month production plan, etc.  Examples of time-flexible contracts from industry include HP 

(Nagali et al., 2002) and Ben and Jerry’s entry into the Japanese market (Hagen, 1999).   

 Some recent literature analyzing supply contracts of a specific form include Lee and 

Namias (1993), Porteus (1990), Tsay et. al. (1999), Bassok and Anupindi (1997), Li and 

Kouvelis (1999), and Milner and Kouvelis (2005), just to name a few.  Our study is closely 

related to Li and Kouvelis (1999). 
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In this chapter, and consistent with Dixit and Pindyck (1994), Hull (1997), Li and 

Kouvelis (1999), Kamrad and Siddique (2004), and Berling and Rosling (2005),  I assume 

that the market material price per unit satisfies the usual Black-Scholes equation.  The 

price is a process ( ){ }0 , ≥ttS , which can be expressed by the stochastic differential 

equation 

 

 ( ) ( ) ( ){ }tWttStS d d d σμ += ,      , (1) 0≥t

 

where R∈μ  denotes the usual appreciation rate and represents the volatility rate.  

For purely modeling purposes, I assume that both the appreciation and volatility rates are 

constants.  The process  is a standard Brownian motion defined on the filtered 

probability space , where 

+∈Rσ

( ){ 0 , ≥ttW }

Ptt ,0,,, ≥=Ω YY F { }( ) Ω  is a space of continuous functions such 

that   a.s.,  and ( )0W 0= ( )[ ] 0=tWE ( )[ ]2tWE  t= , .  The geometric Brownian process 

 is by now well known in financial economics and is routinely used to model 

prices under uncertainty (see, e.g., Karatzas and Shreve, 1988 or Øksendal 1995).   

0>t

( ){ 0, ≥ttS }

 Continuous time models built out of Brownian motion play a crucial role in modern 

mathematical finance.  These models provide the basis of most option pricing, asset 

allocation and term structure theory currently being used.  The examples referred to above 

have been routinely modeled in the literature, using as a basis model (1).  These models 

imply that the log-returns over intervals of length 0>δ  are normal and independently 

distributed with a mean of ( )δσμ  22− and a standard deviation of σ .  Unfortunately, for 
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moderate to large values of  δ  (corresponding to returns measured over five-minute to 

one-day intervals), returns are typically heavy tailed, exhibit volatility clustering and are 

skewed.  For higher values of  δ , a central limit theorem seems to hold and so Gaussianity 

becomes a less poor assumption for the log-returns (see, e.g., Campbell et al, 1997).  This 

means that at this “macroscopic” time scale every single assumption underlying the Black-

Scholes model is routinely rejected by the type of data usually seen in practice.  Given the 

empirical facts, I strive to improve model (1) by adding a compound Poisson process into 

(1) (see e.g. Dufresne and Gerber, 1993).   This extension coincides with jump diffusion 

processes and constitutes the family of Lévy processes, i.e., processes expressed as a linear 

combination of Brownian motion and a pure jump process.  Thus, Lévy sample paths are 

more credible to fit asset prices over time than the traditional standard Brownian motions 

with drifts.  

 To sketch how supply contracts under price uncertainty work, I assume that the firm 

will pay the supplier  dollars per unit when purchasing at time t.  The total number of 

units needed for the project to complete by time T is D.  The D units are not necessarily 

purchased at the same time. The time flexible contract allows them to be partitioned 

throughout the period T.  The purchasing cost of the unit is a function of the spot price at a 

purchased time t.  Thus, given a supply contract, the firm’s decision is to determine when 

each purchase occurs and how many units are required to be purchased each time, such that 

the expected net present value (NPV) of the purchasing cost plus the inventory holding 

cost is minimized.   This is referred as the discounted total cost at time t.   The purchasing 

cost of the material and the inventory holding cost are discounted at a fixed annual 

0>tS
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rate .  Thus, the process  is described by a deterministic differential 

equation given by 

0>r ( ){ 0, ≥ttB }

 

 ( ) ( ) trtBtB  dd =  or ( ) rteStB 0= ,            .  (2) 0>t

 

 If the firm purchases a unit at time t and uses it to satisfy the demand at time T, then the 

purchasing cost becomes  and the holding cost for the same unit is tS ( )( )( )1;exp −− tThgSt , 

where  is a continuous positive function of the holding coefficient “h” and the 

difference T- t.  Obviously, when t=T, 

( tThg −; )

( ) 00; =hg , i.e., there is no holding cost.  I let ( )⋅⋅;g  

be differentiable at its second argument.  Thus, the discounted total cost 

 per unit is expressed by  ( ){ 0  ,: ≥= ttDTCDTC }

 

  ( ) ( )
( ) ( )( )tThg
tB
tStDTC −= ;exp 0>,    t . (3) 

 Using the above formulation, the buyer should decide what instant of time to pay the 

supplier.  It is therefore of interest to study those periods of time that the process 

spends below certain levels.  In particular, conditioning upon being below its 

initial level, it is of concern to examine the expected duration that the process remains 

below that level.  Ideally, it would be of use to provide table values below the initial 

process value with their corresponding probability values as a function of time .  

Further, knowledge of the unconditional and conditional probabilities related to the 

expected minimum of the process by time T (and even for times earlier than T) would play 

DTC DTC

[ ]Tt ,0∈
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a significant role in the firm’s decision making.  To that end, I will propose extensive 

analytical procedures in determining the expected minimum of the process and its second 

moment by the expiration time and will also compute an expected optimum time within the 

horizon time that the minimum value of the process has been achieved.   

 The layout of this chapter is as follows.   Section 2 outlines the model of interest.  In 

Section 3 I propose extensive analytical procedures in order to understand how the 

discounted total cost process behaves throughout the period T.  Specifically, I determine 

the expected minimum of the discounted total cost of a unit process and its variance.  I 

then utilize these quantities to obtain an optimum time, prior to the time T, such that the 

discounted total cost process achieves its minimum.  In Section 4 I demonstrate via 

simulations the existence of an optimal stopping time, which varies according to the drift 

term.  Finally, I offer concluding remarks in Section 5. 

 

2. The discounted total cost process   

 I begin with some preliminary steps.  Specifically, in solving equation (1), one simply 

uses that the price process S satisfies 

 

( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= tWtStS   

2
exp0

2

σσμ , R∈μ , 0>σ and . (4) 0>t

 

Using the one-dimensional Ito’s formula, one can then have that 
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( ) ( ) ( ) ( )
( )

( )
( )

( )
( ) ( )tW
tS

tDTCt
tS

tDTC
tS

tDTCtS
t

tDTCtDTC d
 

d
 2

1
  

d 2

2
2

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

+
∂

∂
= σσμ , 

 

which leads to  

 

( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
∂

−∂
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= tW

t
tThgtrtDTCtDTC d

 
;d 

2
d

2
σσμ . (5) 

 

The solution of (5) as in (4) can be then shown to satisfy  

 

( ) ( ) ( ) (
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= tWtThgtrDTCtDTC σσμ ;

2
exp0

2
) ,   R∈r ,μ , 0>σ and . (6) 0>t

 

It is analytically convenient one to analyze the log-DTC price instead of the actual discount 

total cost process.  Thus, using once more the Ito’s formula, it can be shown that 

 

( ) ( ) ( ) ( ) ( ) ( )tWtThgtrYtDCTtY σσμ +−+−−+== ; 20log: 2 , R∈μ , 0>σ and .   (7) 0>t

 

 13



Assuming that g is purely linear (see e.g., Li and Kouvelis, 1999), i.e., ( ) =− tThg ; ( )tTh − , 

equation  (7) is then formed as  

 

( ) ( ) ( ) ( ) ( ){ }   20 2 tWtutWthrhTYtY ++=+−−−++= θσσσμ , (8) 

 

where ( )
σ

σ hTYu += 10:  and 
σ

σμθ 22−−−
=

hr  with  and +∈Rhr, ,μ 0>σ .   

 It is known that 
σ

μ r−  represents the market price of risk.  Further, transforming (8), 

the process of interest then becomes ( ) ( ) ( )tWtutYtX ++==  : θσ , with , , being 

the standard Brownian motion shifted at u (u>0) , and with drift 

( )tW 0>t

θ .   

 

3. Development of the optimum rule   

In this section I begin by preparing a few elementary inequalities of the distribution of 

the log-DTC.  We establish the distribution of the minimum of the log-DTC, which is 

further utilized to obtain the first two moments.  Finally, we demonstrate the existence of 

an optimum stopping time, and we provide a mechanism to compute the expected optimum 

time.  

 Using the Kolmogorov’s forward equation, it is not hard to see that the diffusion 

equation (8) satisfies  
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f
y

f
y

f
t 2

2

2∂
∂

+
∂
∂

−=
∂
∂ θ , (9) 

 

where ( ) ( ) ( )( )xsXtXP
y

xsytf =≤
∂
∂

= y  ,, ,
σ

σμθ 22−−−
=

hr  and R∈x  and . The 

transition probability distribution from 

ts <≤0

( )tX  to ( )1+tX  , satisfies normal distribution.   0≥t

 In light of (9), we observe that the following elementary inequalities for the process 

,  are satisfied. ( )tX 0≥t

 

Lemma 2.1.  The process ( ){ 0, ≥= ttXX }satisfies   

 

( )( )utXP ≤
⎪
⎩

⎪
⎨

⎧

<>

==

><

  .  0         

0         

0         

2
1
2
1
2
1

θ

θ

θ

 

 

 Note that as t increases, the probability that the process will stay below level u by time 

t tends to zero, remains equal to 2
1 , or tends to one according toθ  being greater than, equal 

to, or smaller than zero, respectively.  To understand the speed at which the probability 

,( )( )utXP ≤ 0>θ , tends to zero as a function of the time t, the following inequality is of 

great help: 
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( ) ( )( ) ( )t
t

utXPt
t

t θϕ
θ

θϕ
θ

θ 1
1 2 <≤<
+

,   [ ]Tt ,0∈ . (10) 

 

When 0<θ , the inequalities in (10) are reversed.  Along the same vein, one can also show 

that the process X  drifts towards ∞ , oscillates or drifts towards ∞− , as θ  is positive, zero 

or negative, respectively.   For the case of 0>θ , it is clear that the process X  will stay 

below the level u (if it stays) for only a finite amount of time.  Eventually, it will cross the 

u level and will finally drift towards infinity.   Similar arguments also hold if 0<θ  but the 

statements above are now reversed.  It is, however, clear that the case of 0<θ  cannot 

occur in most contract scenarios.   

 

  To develop the following property, let ( ) =:TI ( )tXTt≤inf  denote the minimum of the 

process ,  by time T.  Incorporating Dassios (1995), it can be shown that for ( )tX 0≥t R∈θ  

and , the minimum  is absolutely continuous, i.e.,  0≥T ( )TI ( )( ) ( ) xxfxTIP T d d =∈  (using 

the reflection principle) with  probability density function given by  

 

( )
( ) ( )( )

⎪
⎩

⎪
⎨

⎧

≥

<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
Φ−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−⎟

⎠
⎞

⎜
⎝
⎛

=

   ,                                                                                                         ,0

  ,   2exp 2
2

 exp2 221

ux

ux
T

Tuxux
T

Tux
TxfT

θθθθ
π   (11) 

 

where ( ) yex
x y d

2
1  

- 

22

∫ ∞

−=Φ
π

, and R∈x . 
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 Substituting 0=θ  into (11), one can then demonstrate that  

  

( )( )
( )

⎪
⎩

⎪
⎨

⎧

≥

<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎠
⎞

⎜
⎝
⎛

=∈

.                                          ,0

   ,d
2

exp2
d

2

ux

uxx
T
ux

TxTIP π  (12) 

 

The density of log-DTC in (12) represents the case where the process oscillates around its 

initial level.   

   In view of (11), Theorem 2.1 below establishes computational expressions for the first 

two moments of the random variable ( )TI .  

 

Theorem 2.1.   The first two moments of ( )TI , the standardized minimum of log-DTC 

process by time  , are given by 0≥T

 

( )[ ] ( ) ( ) ( ) ( )TTutuTTuIE θθθ
θπ

θ
θ

−Φ++−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+Φ⎟

⎠
⎞

⎜
⎝
⎛ −= 22exp

2
1

2
1

22
1 T 2 ,  

( )[ ] ( ) ( ) ( )TTuTTuuIE θθθ
θθ

−Φ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−+Φ⎥⎦
⎤

⎢⎣
⎡ +−= 2

2
22 2

2
2

2
1

2
7T  

2
23

2
1

2
11

2
1

2
12

22
5 TeuuTuTT θ

θθπθπ
θ −

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ ++−+ ,  
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where ( )
σ

σ hTYu += 10  and 
σ

σμθ 22−−−
=

hr R∈ . 

 Furthermore, as , then  ∞→T

 

( )[ ] ⎟
⎠
⎞

⎜
⎝
⎛ −=∞→ θ2

1 Tlim uIET   

and for , ( ) 110 −< θu

( )( ) 24
1

2
5Tlim

θθ
+−=∞→

uIVarT . 

 

Proof.   

Calling upon (11), we redefine the density of the random variable ( )TI  as 

( ) ( ) ( )( ) ( uxIxIxIxfT <+= 21 2 )θ , where ( )AxI ∈  denotes the indicator function, which 

becomes one if the event occurs and zero otherwise.   

 Consequently, .  We thus compute the 

two parts separately.  The first can be expressed as  

( )[ ] ( ) ( ) 21

 

- 2

 

- 1 2d2d IIxxxIxxxITIE
uu

θθ +≡+= ∫∫ ∞∞

 

( ) ( ) ( )∫ ∞
++−⎟

⎠
⎞

⎜
⎝
⎛=

T
xuTuTTI

θ
ϕθθ

π
- 

- 

2
21

1 d22exp
2

2  

( ) ( ) ( )TTuTT θθθ
π

−Φ++−⎟
⎠
⎞

⎜
⎝
⎛= 22exp

2
2 2

21

, R∈θ , (13) 
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where ( ) ( ) yyx
x

d 
2
1  

- ∫ ∞
=Φ ϕ

π
 and ( ) 22

2
1 xex −=
π

ϕ , R∈x . 

 
 To determine the second term, we first set uxy −= .  Further, based upon 

( ) =yyy d2exp2 θθ   ( )( )yy θ2expd ( ) yy d2exp θ−  and an integration by parts, it follows that  

 

=22 Iθ ( )( ) ( )  d   2exp
2
122expd 

0 

- 

0 

- 
y

T
Tyyuyy

T
Ty

∫∫ ∞∞
⎟
⎠

⎞
⎜
⎝

⎛ +
Φ⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠

⎞
⎜
⎝

⎛ +
Φ

θθ
θ

θθθ  

( ) ( ) ( )  d   2exp
2
12d 

2
12exp

0 

- 

0 

- 

22

y
T

Tyyuye
T

yy TTy ∫∫ ∞∞

+− ⎟
⎠

⎞
⎜
⎝

⎛ +
Φ⎟

⎠
⎞

⎜
⎝
⎛ −+−=

θθ
θ

θ
π

θ θ  

( )TueuT T  
2
1

2
1

2
1

2
22

θ
θθπ

θ Φ⎟
⎠
⎞

⎜
⎝
⎛ −+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −+−= − . (14) 

 
Using (13) and (14), the expected value of ( )TI , , immediately follows.    0≥T

 Arguing the same way as in the determination of the first moment, we have that 

( )[ ]=TIE 2   .  The first term ( ) ( )∫∫ ∞∞
+≡+

uu
IIxxIxxxIx

 

- 212
2 

- 1
2 ~2~d2d θθ 1

~I  can be expressed as 

 

( ) ∫∫ ∞

−

∞

− ++=
T vT v vveTTuvevTI

θθ

π
θ

π

- 

- 

2- 

- 

22
1 d

2
4d

2
2~ 22 ( ) ∫ ∞

−+−
T v veTu

θ

π
θ

- 

- 

22 d
2
12

2
 

( ) 2 

2 

21 2

2 2
4d

2
2 T

T

v eTTuvevT θ

θ π
θ

π
−∞ − ++= ∫ ( ) ( )TTu θθ −Φ+− 22 . (15) 

 

 Since  and ( ) ( ) xaexxaaxa −+Γ=+Γ ,,1 ( ) ( )( )xx Φ−=Γ 122,21 2 π , equation (15)  can be 

expressed as  
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1
~I ( ) ( ) ( ) 22 2

2
542

2
2 TeTTuTTuT θ

π
θθθ −+

+−Φ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= .  

 
To obtain the second term, we again set uxy −=  and then it follows that  

 

=2
~2 Iθ ( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ +
Φ+⎟

⎠

⎞
⎜
⎝

⎛ +
Φ ∫∫ ∞∞

y
T

Tyyyuy
T

Tyyy d   2exp22d   2exp2
0 

- 

0 

- 

2 θθθθθθ  

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ +
Φ+ ∫ ∞

y
T

Tyyu d   2exp2
0 

- 

2 θθθ . (16) 

 

Since ( ) ( ) y
T

TyyuIy
T

Tyyy d   2exp22d   2exp2
0 

- 2

0 

- ∫∫ ∞∞
⎟
⎠

⎞
⎜
⎝

⎛ +
Φ−=⎟

⎠

⎞
⎜
⎝

⎛ +
Φ

θθθθθθθ ,equation (16) 

can be replaced by 

 

=2
~2 Iθ ( ) y

T
Tyyy d   2exp2

0 

- 

2∫ ∞
⎟
⎠

⎞
⎜
⎝

⎛ +
Φ

θθθ  

( ) y
T

TyyuIu d   2exp222
0 

- 

2
2 ∫ ∞ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
Φ−+

θθθθ  (17) 

  

Using the fact that ( ) ( )( )yyyyy θθθ 2expdd2exp2 22 = ( ) yyy d2exp2 θ− , the first term in (16) can 

be further simplified by 

 

( ) ( )( ) ( ) y
T

Tyyyyy
T

Tyy
T

Tyyy d   2exp2 2expd  d   2exp2
0 

- 

20 

- 

0 

- 

2 ∫∫∫ ∞∞∞
⎟
⎠

⎞
⎜
⎝

⎛ +
Φ−⎟

⎠

⎞
⎜
⎝

⎛ +
Φ=⎟

⎠

⎞
⎜
⎝

⎛ +
Φ

θθθθθθθ

         ( ) ( ) ( ) y
T

TyyuIyeyy
T

TTy d   2expd  2exp
2
1 0 

- 2

0 

- 

2 2 2

∫∫ ∞∞

+−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
Φ−−−=

θθθ
π

θ . (18) 
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Substituting (17) into (18), we obtain  

 

=2
~2 Iθ ( ) ( ) yeyy

T
TTy d  2exp

2
1 0 

- 
2 2 2

∫− ∞
+− θθ

π
 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛ +
Φ⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −+ ∫ ∞

y
T

TyyuuIu d   2exp2
2
1212

0 

- 2
θθθ

θ
θ

θ
.  (19) 

 

Note that the first term 21
~I  in (19) can be written as  

 

 ( ) ( ) ( ) 2220 

- 

2
21

222

22
232d 2exp

2
1~ TTTTy eTeTyeyy

T
I θθθ

π
θ

π
−−+−

∞
−=

Γ
−=−= ∫ . (20) 

 
Further, it is easy to see that  

 

( ) ( ) 20 

- 

2

2
1 d   2exp2 TeTy

T
Tyy θθθθθ −

∞
−Φ=⎟

⎠

⎞
⎜
⎝

⎛ +
Φ∫ . (21) 

 
In light of (13), (20) and (21), it then follows that  

 

=2
~2 Iθ ( )Tuuuu θ

θθθ
Φ
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ −

2
1

2
112  

22
1

2
11

2
1

2
12

2
TeuuTuT θ

θθπθ
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+− . (22) 

 
Combining (16) and (22), the computation of the second moment is now completed.    

 The second part of the theorem easily follows by just letting ∞→T . 
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 The following result presents a stochastic integral representation of the infimum of the 

log-DCT.  It will play a significant role in identifying an optimum time before the horizon 

T, at which the loss function becomes minimum. Specifically, if `  denotes a family of 

Markov times with respect to −σ algebra Y , then  `∈∗τ is chosen such that  

 

( ) ( )( ) ( ) ( )( )[ ]22
inf ττ τ XTIEXTIE −=⎥⎦

⎤
⎢⎣
⎡ − ∈

∗
` .    (23) 

 

 This part of the work was influenced by Graversen et al. (2001) and Graversen et al. 

(2007), who studied the existence of optimum times when the deviation considered in (23) 

is just the ( ) ( )τWtWTt −≤<0max , where ( )⋅W  here is only a standard Brownian motion.  Even 

though there are a few similar ideas between the two studies, the investigation here 

assumes initial values and, of course, assumes Brownian motions with drifts.  To that 

aspect the calculations become more complex and the use of Theorem 2.1 is essential.  

Further, the aim here is to achieve the ultimate minimum (not the maximum) of the log-

DCT, which was by no means approached earlier. 

 

Proposition 2.1.  Let ( ) ( ) ( ) 0  , ≥+=++= ttWutWtutX θθ  denote the log–DTC process. The 

ultimate minimum of  and ( )tX ( ) 0  , ≥ttWθ  are ( ) uTu XTI ≤≤= 0inf  and ( ) ( )uWTI Tu θθ ≤≤= 0inf , 

, respectively. Let 0≥T ( ) ( )( )xstIPxF st ≤−=− θ  and ( )( )suuXs ≤= :σY .  Then,  
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( ) ( )[ ] ( ) ( )( ) sWsXsIFTIETI
 T

sT d 
0∫ −+= − ( ) . 

 

Proof.  Using the time homogeneity property, it follows that  

 

( )[ ] ( ) ( ) ( )[ ]tTstt tIsXEtITIE YY −+= ≤≤inf  

( ) ( ) ( )( ) ( ) ( )( ){ }[ ]tTst tXtItXsXEtI Y−−−+= ≤≤inf  

( ) ( ) ( ) ( )(([ −−−−+= tXtItTIEtI θ )) ] , (24) 

 

where .  It is known that ( ) 0∨−=− xx ( )[ ] ( ) zzXPcXE
c

d 
 

 ∫ ∞−

− <=− . Upon substituting the 

last identity into (24), we obtain that 

 

( )[ ] ( ) ( ) ( ) ( ) ( ) ( )( tItXtfzzFtITIE
tXtI

tTt ,,d  
 

- 
=+= ∫

−

∞ −Y ). (25) 

 

Applying Itô’s formula to the right hand side of (25) and using the fact that the left hand 

side defines a continuous martingale, we have  

 

( )[ ] ( )[ ] ( ) ( )( ) sWsIsXs
x
fTIETIE

t

t d ,, 
 

0 ∫ ∂
∂

+=Y ( ) 
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( )[ ] ( ) ( )( ) sWsXsIFTIE
t

sT d 
 

0 
−+= ∫ − ( ). (26) 

 

This is a nontrivial continuous martingale and does not have paths of bounded variation.   

 Setting Tt =  and then equalizing the left hand sides of (25) and (26) the desired result 

easily follows.      

  

 Using Dassios (1995), equation (21), or Shiryaev et al (1993), it can be seen that  

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
Φ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +−
Φ=

t
θ txe

t
txxF θx

t
2 θ . (27) 

 

Equation (27) will be used for Proposition 2.1 in order to evaluate the cumulative 

distribution .   ( )⋅−tTF

 The drive of the next result is to find { }−tY stopping time, , such that T≤∗τ ( )∗τX  is 

the closest to  in some sense.  Clearly, ( ) ( )tXTI Tt≤≤= 0inf ( )⋅X  describes the evolution of 

the log-DTC process on the interval Tt ≤≤0 .  The financial motivation of such a problem 

is to observe the log-DTC and then pay off the contract at its lowest price.   The next 

theorem suggests that such a time does exist.  The determination of evaluating the 

optimum time is very complex and tedious.  It is, however, available for the case when the 

underlying process is only a standard Brownian motion and when the process attains its 

maximum (see, e.g., Urusov, 2005).  Below, we provide various steps of how this can be 
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achieved for the case of Brownian motion with a drift with initial value and when the 

process attains its minimum.   

 In light of Proposition 2.1, the main theorem of this chapter is then formulated as 

follows.   

 

Theorem 2. 2.   Let `  denote a family of Markov times with respect to −σ algebra Y .  

There exists a stopping time `∈∗τ , , such that  T≤∗τ

 

( ) ( )( ) ( ) ( )( )[ ]22
inf ττ τ XTIEXTIE −=⎥⎦

⎤
⎢⎣
⎡ − ∈

∗
` .    

 

The expression of ( ) ( )( )[ ]2τXTIE − in terms of u, θ , `∈τ , and ( )TI  is given by  

 

( ) ( )( )[ ] =− 2τXTIE ( )[ ]( ) ( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−−+−+∫ −

τ
θθ 

0 

2

d 212
2

ssXsIFTIEusE sT  

( )[ ] ( )[ ]TIE uTIuE 22 +++ . 

 

Proof.  Note that for any `∈τ , we have  

 

( ) ( )( )[ ] ( )[ ] ( )[ ] ( ) ( )[ τττ XTIEXETIEXTIE 2222 −+=− ] . (28) 

 25



 

 The terms of interest in equation (28) are, of course, the second and the third term.  The 

first term is given in Theorem 2.1.     To evaluate the third term, we utilize Proposition 2.1.  

Specifically, we substitute  by its integral representation, as follows ( )TI

 

( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( ) ( )( ) ⎥⎦
⎤

⎢⎣
⎡ −+= ∫ −

T

sT sWsXsIFXEXETIEXTIE
 

0 
d τττ ( )

)

( )

 

 . (29) ( )[ ] ( )[ ] ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ⎥⎦
⎤

⎢⎣
⎡

⎭
⎬
⎫

⎩
⎨
⎧ −+−+= ∫ ∫ −−

τ

τ
ττ

 

0 
d d 

T

sTsT sWsXsIFsWsXsIFXEXETIE

 

Note that  and  ( ) ( )( )∫ −−

T

sT sWsXsIF
τ

d ( )τX  are independent, thus the second product in 

the expectation (29) vanishes.  Since , one can then use the Itô’s 

isometry property to finally obtain    

( ) ( )∫++=
τ

θττ
 

0 
d sWuX

 

( ) ( )[ ] ( )[ ] [ ]( )   τθτ EuTIEXTIE += ( ) ( )( ⎥⎦
⎤

⎢⎣
⎡ −+ ∫ −

τ 

0 
d ssXsIFE sT ) . (30) 

 

To evaluate the second term in (28), we note that 

 

( )[ ] ( )( )[ ] ( ) [ ] [ ]22222 12 τθτθττθτ EEuuWuEXE +++=++= . (31) 
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Combining (28), (30) and (31), we obtain 

 

( ) ( )( )[ ] [ ] ( )[ ]( ){ } [ ]τθτθτ ETIEuEXTIE  1 -2222 ++=− ( ) ( )( ) ⎥⎦
⎤

⎢⎣
⎡ −− ∫ −

τ 

0 
d 2 ssXsIFE sT  

( )[ ] ( )[ ]TIE uTIuE 22 +++ . (32) 

 

 This completes the proof of Theorem 2.2.  

 

 To complete our investigation, as equation (32) remains complex, we seek to obtain a 

more explicit expression.  To achieve more thorough understanding of (3.4), one can 

condition the loss function and notice that ( ) ( )( )[ ] =− 2τXTIE ( ) ( )( )[ ][ ]ττ   2XTIEE − .  It is 

thus appropriate to study the inside expectation first.  In light of this, the following 

corollary is in order. 

Corollary 2.1.  Let `∈∗τ be as in Theorem 2.1.  Then the optimum time can be 

computed from the following:  

 

( ) ( )( ) =⎥⎦
⎤

⎢⎣
⎡ − ∗ 2

τXTIE ( )[ ]( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−+−+∫ ∫ ∞ −∈

τ

τ θθ 

0 

0 

- 

2

d d 21 2
2

inf syFyFTIEusE ssT`  

( )[ ] ( )[ ]TIE uTIuE 22 +++ . 
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Proof.  From Theorem 2.2, it is cleat that ( ) ( )( )[ ]2τXTIE −  will change only through the 

first expectation in the right-hand side.  In particular, the change will occur through the 

term  

 

( ) =θV ( ) ( )( ) ⎥⎦
⎤

⎢⎣
⎡ −∫ −

τ 

0 
d ssXsIFE sT . 

 

 It is known (Bertoin, 1996, p156) that the reflected process ( ) ( ){ }TttXtI ≤≤− 0:  is a 

Markov process in the filtration ( )( )tuuWt ≤= :σY  and its semi-group has the Feller 

property.  That is, we need only to consider stopping times, which are hitting times 

for .   ( ) ( )⋅−⋅ X I

 Using the homogeneity property for the Brownian motions, it can be seen that for any 

  0<x

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )ytWtsxtstWsWPytWxtXtIP =<≤−−−==≤−    somefor    θ  

( ) ( ) ( )( )ytWtsxststWP =<−≥−−−=    somefor  θ  

( ) ( )( )ytWtsxssWP =<−≥−=    somefor  θ . (33) 

 

In view of the well-known formula of Siegmund (1986), we have that 
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( ) ( )( ) ( )( )tyxtxytWtsxssWP −−==<−≥−  2exp   somefor  θθ , . (34) 0<x

 

In conjunction with (32) and since ( ) ( )[ ]τθθ    VEV = , the conditioning upon τ , ( τθ    V )  can 

be then expressed as follows 

 

( )=τθ    V ( ) ( )( )[ ]∫ −−

τ 

0 
d ssXsIFE sT  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) s
sT

sTsXsIe
sT

sTsXsIE sXsIθ d   

0 

2∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+−
Φ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−++−
Φ= −τ θθ  

( ) ( ) ( ) ( )( ) sysXsIP
sT

sTye
sT

sTy θy d d    

0 

0 2 ≤−
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−+

Φ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+−
Φ= ∫ ∫ ∞−

τ θθ . (35) 

 

Using (34) and (35), it follows that  

 

( ) ( )( ) ( ) ( )( ) ( )( )ytWPytWtssxsWPxtXtIP
tx

d     somefor  1 
  

∈=<+−≤−=≤− ∫
+−

∞−

θ
θ  

( ) z
t

z
t

zytxyu
d  2exp11

  

-∫
−−

∞ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−

−−=
θ

ϕθ  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
Φ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +−
Φ−=

t
θ tye

t
ty θy2 1 θ  

( )xFt−=1 , , (36) 0<x
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and its density is given by (21), for u=0.  

 Substituting (36) into (35), the result follows immediately.      

 

4. Simulation Analysis of Stopping Times 

 The best stopping time for a given contract is highly dependent upon the drift term θ.  

When θ is large enough, the units should be purchased at the beginning of the time horizon, 

and vice-versa.  However, when the drift term approaches 0, the best purchase time to 

minimize expected cost will not be at the beginning or the end.   

 We conducted simulations to illustrate the optimal purchase time under various values 

of θ.  In particular, we generated 2000 price processes of length T = 100 periods.  We let σ 

= 1 and u = 0 (note that the results are independent of the value of u chosen).  For 

purchasing at each stopping time period τ  between 0 and 100, we calculated the squared 

loss of the difference between the process X(τ) and I(T) (the minimum of the process X(t) 

over the full time horizon).  Thus, each graph in Figure 1 represents a plot of 101 points. 

 Figure 4 presents simulation results for θ values of 0.20, 0.03, 0.02, 0.01, 0.00, -0.01, -

0.02, -0.03, and -0.20.  The corresponding expected optimal stopping times based on the 

simulation results were τ = 0, 11, 30, 40, 50, 60, 70, 88, and 100, respectively. 
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Figure 4. Simulation Results Plotting the Squared Loss Average  

 

From the plots, we notice that when there is a steep upward cost trend, the optimal 

purchasing time is at the very beginning; when there is a steep downward cost trend, the 

optimal purchasing time is at the very end; and when there is a level cost tend, the optimal 

purchasing time is likely to appear in the middle of the time horizon. 
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We use a binomial tree to approximate the decision process to further demonstrate our 

result for the case when the price trend is level. Here is a simple example.  The following is 

a binomial tree with three periods: period 0, period1, and period 2. Each X at period 

τ satisfies  .  The plot is as follows: 
⎩
⎨
⎧

=−−=
=+−=

5.1)1()(
5.1)1()(

probXX
probXX

down

up

ττ
ττ

Figure 5: An Example of Three Periods Binomial Tree 
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So there are four paths as shown below, and each path has a probability of .25 to occur. 

 

Figure 6.  ALL Possible Paths for the Three Periods Binomial Tree 
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 For these four paths, we can calculate ( ) ( )( )[ ]2τXTI − for purchasing time 0=τ , 1=τ , 

2=τ and get the following table. Here 2=T . 

 

Table 1.  Squared Losses for Each Cost Path in the Binormal Tree 
 

Path Probability 

The lowest 
cost  
on that 

path 

)2(I ( ) ( )( )[ ]202 XI −

at time 0 

( ) ( )( )[ ]212 XI −  

at time 1 

( ) ( )( )[ ]222 XI −

at time 2 

0 — 1 — 2 1/4 0 0 1 22  

0 — 1 — 0 1/4 0 0 1 0 

0 — -1 — -2 1/4 -2 22  1 0 

0 — -1 — 0 1/4 -1 1 0 1 

Average of  [ ]  ( ) ( )( )2τXTI − 5/4 3/4 5/4 

 

 From the table, we find that the lowest average square lose ( ) ( )( )[ ]2τXTIE − is ¾ and it 

occurs at time 1=τ .  It is interesting that the average lose ( ) ( )( )τXTIE − is all ¾ for 

time 0=τ , 1=τ , and 2=τ .  

The example and our intuition suggest the following explanation for a level cost trend.  

In terms of choosing a time to attain the lowest cost, any time during the horizon is equally 

likely to be correct.  However, choosing a time in the middle of the horizon reduces the 

risk of a very poor guess (as represented by the squared loss).  In other words, purchasing 

in the middle of the horizon prevents us from being too far away from the lowest possible 

cost.  Finally, for cost processes with slight increasing (decreasing) cost trends, the 

optimum purchasing time is between 0 (T) and the midpoint of the horizon to represent a 

balance between the squared loss minimization phenomenon of a level cost trend and the 
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obvious desire to purchase at the beginning (end) of the horizon for a significant cost trend, 

i.e. to represent a risk-return tradeoff. 

In this section, we have used Monte Carlo simulation to find the optimal purchasing 

time when the expected square loss is minimum.  The corresponding simulation process is 

as follows：1) Get the initial values (refer to (1) to (7) for the definitions) , calculate u and 

θ  using ( )
σ

σ hTYu += 10  and 
σ

σμθ 22−−−
=

hr , and choose the simulation length.  2) 

Input the initial values to the program in the appendix and run the program. 3) Retrieve the 

results from the outputs of the program.  The output of the program will provide the 

optimal purchasing time and the corresponding plot for the expected square loss against the 

purchasing time.  

 

5. Concluding Remarks 

 Today’s increased globalization has opened up many more possibilities for procuring 

goods from around the world.  However, the increased options generate even more 

exposure to purchase price fluctuations, particularly with regard to issues such as exchange 

rate movements, political turmoil, and supply and demand shifts in emerging markets like 

China.  In response, supply contracts have begun to include a time flexibility component, 

allowing the buyer to choose the time of purchase.  With a risky option of purchase timing 

in hand, firms need assistance to help determine when, in fact, the best time to purchase 

might be.  This chapter provides a solution for that decision. 
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In the formulation developed in this chapter we regard log-DTC as a state of a game at 

time T, where each realization, Ω∈ω , corresponds to one sample of the game.  For each 

time period prior to the end of the horizon T , the buyer has the option of stopping the 

game and accepting the current cost or continuing the game in the hope that purchasing 

later will reduce the cost further.  The problem is of course that we do not know in what 

state the game will be in the future, we can only estimate the probability distribution of the 

‘future’.   Among all possible stopping times T<τ  in the above formulation, we have 

demonstrated a procedure for obtaining an optimal time  such that   give 

us the best result “in a long run’, i.e., the expected loss  

T<∗τ ( )⋅DTClog

( ) ( )( )[ ]2τXTIE − becomes 

minimum.   
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CHAPTER III: PURCHASING DECISIONS UNDER 

STOCHASTIC PRICES AND TIMING AND QUANTITY 

OPTIONS 

 

1. Introduction & Literature Review 

In response to purchasing and selling uncertainties, researchers and practitioners like 

IBM, Hewlett Packard, Sun, Compaq, and Solectron have incorporated into purchasing 

contracts various combinations of quantity and timing flexibility. For example, IBM 

provides a flexibility option, in which, within the flexibility zone, both due dates and lot 

quantities can be changed from one procurement plan to the next (Connors, 1995). This 

contract represents the type of combined timing and quantity flexibility contract that we 

analyze in this chapter.  In combined timing and quantity flexibility contracts, the contract 

specifies neither the exact purchase time nor the exact quantity. Quantity flexibility allows 

the buyer to purchase an amount within a pre-specified range. Such contracts typically 

define an )10( ≤≤ αα quantity flexibility, so the buyer agrees to purchase a maximum 

of  units from a supplier, but the buyer can purchase a total of Q x  units, 

where QxQ ≤≤− )1( α . Alternatively, timing flexibility allows the buyer to choose when 

to purchase within a pre-specified time period. We use the term fully dynamic contract to 

denote a contract that combines timing with quantity flexibility and 1=α . The fully 
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dynamic case allows complete quantity and purchase timing freedom for the buyer. 

Combined timing and quantity flexibility contracts can be thought of as purchasing 

Q)1( α−  from the supplier using a timing flexibility contract without quantity flexibility, 

while purchasing Qα from the supplier using a fully dynamic contract.   

As a consequence of price fluctuations in spot markets, a pure fixed-price contract 

rarely exists. If the actual work or spot price varies from estimates, the client will often pay 

the difference (Metagroup, 2003). This is especially true for high-volume commodities. 

For example, Southwest Gas (William et al., 1992) received a proposal from gas producers 

in the form of a combined timing and quantity flexibility contract in which contract 

provisions included a commodity rate tied to an index of fluctuating but increasing spot 

market prices. Even though Carter and Vickery (1988) reported that more than 50% of the 

surveyed firms used some form of risk-sharing agreements with their suppliers, “For the 

numerous purchasing managers of a global manufacturing concern, the presence of risk-

sharing agreements still implies purchasing price uncertainty, even if there exists a contract 

at an agreed-upon purchase price in the buyer's home currency.” (Arcelus et al., 2002). In 

this chapter, the purchase price at the execution date is assumed to have already taken into 

account any risk-sharing discount, i.e., the purchase price has already been adjusted by 

supressing the natural price variability.  

Previous research about quantity flexibility contracts with or without timing flexibility 

has focused on the use of contractual quantity flexibility to handle uncertain demand 

situations.  Sethi et al. (2004) discusses single- and multi-period quantity flexibility 

contracts involving one demand forecast update in each period.  Chen and Song (2001) 

consider nonstationary demand in a multi-echelon setting and introduce a state-dependent, 
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echelon base-stock policy. Tsay (1999) analyzes the impact of system flexibility on 

inventory characteristics and the patterns by which forecast and order variability propagate 

along the supply chain. Fotopoulos et al. (2006) develop an equation to study the 

probability of purchasing at a certain cost with timing flexibility contracts, and they 

determine the optimal time length of a contract. Milner and Kouvelis (2005) consider three 

demand processes: a standard demand case, a Bayesian demand case, and a Martingale 

demand case. They analyze how product demand characteristics affect the strategic value 

of two complementary forms of flexibility: quantity flexibility in production and timing 

flexibility in scheduling. 

Another relevant research stream analyzes how stochastic purchase price affects 

inventory policies. These papers analyze how to find the best purchasing time under time-

flexibility cases. Bjerksund et al. (1990) discuss project values and operational decision 

rules by interpreting investment as an option and the output price as an underlying asset. Li 

and Kouvelis (1999) develop the optimal purchasing strategies for both time-flexible and 

time-inflexible contracts with risk–sharing features in environments of price uncertainty.  

They expand the analysis to two-supplier sourcing environments and quantity flexibility in 

such contracts. Berling and Rosling (2005) study how to adjust (R, Q) inventory policies 

under stochastic demand and purchase costs. Li and Kouvelis (1999) analyze fully 

dynamic contracts for two suppliers, where the total order quantity for these suppliers is 

fixed and the problem is how to distribute that quantity between them.   

In this chapter, we seek to identify the best timing and order quantity to purchase from 

single or multiple suppliers when operating under purchase price uncertainty. This chapter 

has three primary contributions. First, the chapter is among the first to address the issue of 
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combining timing and quantity flexibility under price uncertainty. Second, we design a 

very efficient approximate optimal solution procedure, which quickly decreases the 

computational complexity to solve the computational problem of multiple suppliers and 

long time length. Third, we analyze how to select suppliers for different purposes: (1) 

minimizing downside risk, (2) maximizing profit, and (3) maximizing profit subject to a 

constraint on downside risk. 

The rest of the chapter is organized as follows. In the next section we present the basic 

profit model. Section 3 studies the optimal purchasing strategies when purchasing from a 

single supplier. We introduce a Time Strategy and a Target Strategy for both timing 

flexibility contracts and fully dynamic contracts, and we determine how to combine these 

methods to produce the best procedures to apply to combined time and quantity flexible 

contracts. We further present results of a computational study using the solution 

procedures. Section 4 extends the results to estimate the profit and risk when multiple 

suppliers are available. Section 5 extends the results to a more general case in which the 

market price for the final product price is influenced by the price of the raw material 

purchasing and studies how to invest when multiple correlated suppliers are available.  We 

conclude in Section 6 with some final observations. 

 

2. Modeling Basics 

To introduce the model, we assume (like Bering and Mosling, 2005 and Li and 

Kouvelis, 1999) that the purchase price per unit satisfies the usual Black-Scholes equation 
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(Black, Fischer and Myron S. Scholes, 1973), i.e., the price at time t  is a 

process , which is expressed by the stochastic differential equation ( ){ 0, ≥= ttPP }

( ) ( ) ( ){ }tWttPtP d d d σμ += ,      ,        (1) 0≥t

where R∈μ  denotes the average rate and represents the volatility rate. The process 

 is the standard Brownian motion satisfying 

+∈Rσ

( ){ 0, ≥= ttWW } ( )0W  0=  a.s.,  

and , .The process 

( )[ ] 0=tWE

( )[ ] ttWE =2 0>t ( ){ }0, ≥= ttPP  is commonly used in modeling 

uncertain prices (see, e.g., Karatzas and Shreve, 1988). 

We model a company obtaining a single product over a time period from one or 

more suppliers, transforming the product into a finished good and selling to the market. 

Specifically, we assume that the firm will pay the supplier  dollars per unit when 

the unit is purchased at time t. If the firm purchases one unit at time t and uses it to satisfy 

the demand at time

],0[ T

0)( >tP

T , the holding cost for this unit is )]()[( tThtP − , where h is the 

periodic holding cost percentage. To aid us in subsequent derivations, we will use 

to approximate this holding cost, which is similar to the Berling and 

Rosling (2005) approach. Higher-order terms of this Taylor approximation quickly move 

toward zero when the holding cost is much smaller than . Next, the cost is further 

discounted at a constant periodic interest rate 

]1)[( )( −−tThetP

P

r > 0. This discount rate represents the 

buyer’s opportunity cost of capital (Li and Kouvelis 1999, Berling and Rosling 2005) and 

is an important part of the cost because some contracts can extend for more than 20 years 

(William et al 1992). Then the discounted total cost ( ){ }0  , ≥= ttCC  per unit is expressed 

by  
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From (1), it is easy to derive that the price process P  satisfies 

( ) ( ) ⎟⎟
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(exp0

2

tWtPtP σσμ , R∈μ , 0>σ and .       (3) 0>t

Using the one-dimensional Ito’s formula, we then conclude that 
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which after some simple calculations, one may obtain that  

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎟
⎠

⎞
⎜
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⎝

⎛
−−−+= tWthrhTptC σσμ

2
exp)0(

2
, (5) 

R∈r ,μ , 0>σ and .    0>t

Subsequently, we shall focus on analyzing the ( )( )tClog  instead of the actual discounted 

total cost process.  Since  is continuous and twice differentiable on [ ] , it 

implies that  is again an Ito process, and 

( )( tClog )

)

R×T,0

( ) ( )( tCtY log=

( ) ( ) ( ){    
2

))0(log(
2

tWtutWthrhTPtY ++=+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−++= θσσσμ } , (6) 

where
σ

hTPu +
=

))0(log(  and 
σ

σμθ
25.0−−−

=
hr  with  and+∈Rhr, ,μ 0>σ . Based on 

the above analysis, our strategies rely on how the behavior of the process 

( ) ( ) ( )tWtutYtw +=−=  : θσθ  evolves. Here we define ( )twθ  as the “discounted price,” 
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which follows the Brownian motion at time zero with drift θ . So the discounted total cost 

can be expressed as . )(tC σθ ))(( twue +

We define R as the selling price. In combined timing and quantity flexibility contracts, 

the buyer must purchase Q)1( α−  to satisfy its contracted amount no matter what the price 

is, and then it has the option to purchase the remaining Qα . The buyer will purchase the 

remaining Qα at time t only if 0)( >− tCR . We use )(t∏ to represent the corresponding 

buyer’s unit profit at time . Then the firm’s objective in timing flexibility cases 

is . The firm’s objective in fully dynamic cases is 

. Here .  

t

[ ])(max)(max
],0[],0[

tCRt
TtTt

−=Π
∈∈

+

∈∈
−=Π )]([max)(max

],0[],0[
tCRt

TtTt
]0,max[][ xx =+

 

3. Purchasing Strategies Using One Supplier 

We could employ the Binomial Lattice method to approximate the process of  in 

the way suggested by Cox et al. (1979) and then we design a backward deduction heuristic 

to solve purchasing problems for timing and quantity flexibility contracts.  

)(tP

Using backward deduction method, the time interval  is divided into small time 

intervals. . From section 2, we can get total cost at t  small interval 

satisfy

],0[ T n

nT /=Δ

)(tC ( ) ( ) ( ){ }tWttCtC d d )(d σθσ += , ( ){ }0, ≥= ttWW  is the standard Brownian 

motion satisfying ( )0W   a.s., 0= ( )[ ] 0=tWE  and ( )[ ] ttWE =2 , .If  represents 

the approximation of  using Binomial Lattice method introduced by Cox et al (1979), 

we can get: 

0>t )1( +tCθ

)(tC
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The maximized possible expected profit using fully dynamic contract is calculated 

recursively backward as: 

}0)],1([)]1([,max{))(( 11
))(( +++−= ++

+ tCqUtCpUeRtCU down
t

up
t

twu
t θθ

σ
θ

θ  

Then the decision function is as follows: 
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Then we can prove that if
2
σθ −> , the decision is to purchase at point , then 

we should purchase at . 
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eRqeRpeR

      σθ ))(( twueR +−=

So we know that purchasing should be at the highest point of binomial tree at a certain 

time period t .  

Then we can get the idea to solve this problem is to find out the corresponding level for 

each time point so that we will purchase at that level.  

However, reliable calculations for this heuristic method require each time period to be 

segmented into many small intervals, which significantly increases the computational 
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burden for a large time horizon scenario. For one supplier and a short horizon, we can use 

this method to solve the problem, but when there are multiple suppliers, the number of 

calculations of all the combinations will evolve exponentially. For example, if and 

there are 6 suppliers, the computational complexity is about .  In this chapter, 

we study the properties of the model and the Brownian motion to develop a fast solution 

procedure which significantly decreases the computational complexity, especially for the 

multiple-supplier case. For

20=T

186 101000 =

2/σθ −< , i.e., when the discounted total cost is trending down, 

we can even provide a one-step exact solution. Using the above example, the 

computational complexity of our procedure is approximately 1200.  

Next we introduce strategies used in our solution procedure. We will then apply those 

for two specific cases: the fully dynamic case and the timing flexibility case. Finally, we 

merge our strategies to explore the combined timing and quantity flexibility case. 

 

3.1. Solution Strategies 

We analyze three specific strategies as defined below. 

(1) Time Strategy—At the beginning of the time horizon, calculate the expected profit for 

purchasing in each of the periods in the time horizon. Choose to purchase during the 

period that corresponding to the highest expected profit. 

(2) Target Strategy— At the beginning of the time horizon, calculate the expected profit for 

purchasing in each of the periods in the time horizon. The highest expected profit becomes 

the target. As time passes, purchase as soon as purchasing in that period would generate a 

profit that equals or exceeds the target. 
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(3) Dynamic Target Strategy—At each new period, as long as the units have not yet been 

purchased, recalculate the expected  profit for purchasing in each of the remaining periods 

in the time horizon. The highest expected profit calculated becomes the new target. During 

the next period, purchase if doing so would equal or exceed the new target. If not, then 

recalculate expected profits, updating the target level to be used in the succeeding period. 

Continue in this manner until the units have been purchased or the end of the time horizon 

has been reached. 

The Time Strategy attempts to predict today the best purchase time in the future. On 

the other hand, the Target Strategy focuses on estimating the highest level that expected 

profit will reach. The purchasing strategy in that case is akin to a “limit order” placed by a 

stock market investor, wherein the investor directs the broker to sell (or buy) the stock as 

soon as the stock price reaches a certain “reservation price.” Finally, the Dynamic Target 

Strategy is like the Target Strategy, except that the reservation price (in this case the target 

unit profit level) is adjusted each period as new information comes in. 

 

3.2. Fully Dynamic Case 

Since the buying firm has the option not to purchase any units when using fully 

dynamic contracts, our strategies incorporate that option. Specifically, if all expected 

profits are negative when using the Time Strategy, then the firm will choose not to 

purchase. And for the two target strategies, if the buyer reaches the end of the horizon 

having not purchased yet, it will only purchase if the profit at that point would be positive. 

 

3.2.1. Time Strategy under the Fully Dynamic Case  
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Using the Time Strategy, the buying company will purchase D units at time 
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otherwise, the company will not purchase.  

Since )()( twttw += θθ , the corresponding expected value of is as follows. +Π )(t
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3.2.2. Target Strategy under the Fully Dynamic Case 

To further our analysis, we cite a theorem from Sakhanenko (2005): 

Theorem 2.1.  Let be the standard Wiener Process defined for)(tW ),0[ ∞∈t . 

Set ))((max),(
0

bttWTbW
Tt

+=
≤≤

 and 0)0( =θW , then the cumulative distribution of  ),( TbW  is 
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the following result. 

 

Corollary 3.1. The cumulative distribution of =:)(tM θ ( )uwtu θ≤≤0min and  

( ) ( ){ }xtwtx =≥= θθτ :0inf: ,  where w )()( twtt = θ +θ , is given by 
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This corollary provides us with the probability that the minimum value of the 

discounted total cost process  during is less than)(twθ ],0[ t x , i.e., the probability that the 

target level x  has been reached during . We use this to estimate the expected profit of 

the Target Strategy. 

],0[ t

In choosing the best target cost x to utilize in the Target Strategy, we need to strike a 

balance between selecting a low x , which would, if reached, provide a low cost, versus 

selecting a large enough x such that the probability of actually reaching that cost during the 

time horizon is reasonable. Next we describe a procedure for choosing a good value for x . 
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We use  to represent the profit of the Target Strategy at cost level)(xTΠ x . For any 

target unit profit , , so L LeR xu =− + σ)( uLRx −
−

=
σ

)( .  Then the problem becomes 

determining whether the cost level x  is ever reached by )()( twttw +=θθ . Furthermore, 

since  includes the holding cost h and interest rate)(twθ r , the purchasing price level y can 

be computed by  and the problem reduces to comparing the fluctuating price 

with  to decide whether to purchase right away or wait.  Here 

hrxy ++=

y
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Note in (11), when 2/σθ −≥ , referring to (7), the second term of (11) satisfies 
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while the first term of (11) satisfies 

[ ]+≤+− TxxwuRE )(|))((exp( θθθ τστ  
([ ,)(exp ++−= σxuR  where the target level 0≤x .    (13) 

When 2/σθ −≥ , (13) is larger than (12). Furthermore, if 0>θ , we can show that 

( )( ) x
T eTx θ

θτ
21lim −=>∞→ , and if ( )( ) 0lim,0 =≤≤ ∞→ TxPT θτθ . Thus, when θ is small or 

less than zero, the second term of (11) goes to zero and is comparatively much smaller than 

the first term. Moreover, as the value of θ grows, is 

much larger than , especially for large T. Therefore, we 

+≤+− ])(| θτ)))((exp([ TxxwuRE θθ στ

+>+− ])(|))(exp([ TxTwuRE θθ τσ
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can conclude that for any 2/σθ −≥ , we can approximate (11) by ignoring the second term. 

Thus  
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Let . Then from section 2, we can derive that the optimal purchase 

price is

)]([maxarg* xEx TΠ=

[ ]hTthrx −++ )(exp * . 

 

3.2.3. Strategy Comparison under the Fully Dynamic Case 

Proposition 3.2. In fully dynamic cases, when 2/σθ −≤ , the Target Strategy is no better 

than the Time Strategy at timeT , which is purchasing at the end when the profit at that 

point is positive.  

Proof:  
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If 2/σθ −≤ , , so the better strategy is to purchase at , i.e., when 

price is falling, it is better to wait until the end to purchase. 

])([)]([ +Π≤Π TExE T Tt =
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Proposition 3.3. In fully dynamic cases, the expected profit of the Target Strategy is better 

than or equal to the expected profit of purchasing right away.  

Proof: 

For the Target Strategy, if we set the purchase level 0=x , we will get the same result 

as purchasing at time 0.  

Next we will find when the expected profit of the Target Strategy exceeds that of the 

Time Strategy. From (15), 
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When (17) < 0, we can get  
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>Φ , the right side of (18) is negative, implying (17) > 0, which 

means the optimal solution for the Target Strategy is to purchase at 0=x , which is to 

purchase at time 0. From this condition, we notice that when θ is relatively large, or σ  is 

relatively small, and the profit at time , which is , is relatively big, it is better to 

purchase at the beginning. This is consistent with common sense.  

0 σueR −

If
)(2

)( σ

σσθθ u

u

eR
eT
−

<Φ  and
)()(2

)(2 2

2

σσ

σθ

θθσπ uu

uTt

eRTe
eRet

−Φ−

−
> ,  is 

supported. In this case, we can get that (17) < 0. That implies that at point 0, the total profit 

follows an increasing trend; so that the optimal purchase level is lower than 0. So in this 

situation, the Target Strategy is better than the Time Strategy. 

0)( '
0 <xG

From the above analysis, we find that if there is an upper trend, we maximize our profit 

by taking the risk only when the current profit is relatively small or even negative, price 

fluctuation is relatively big, and the time to observe and make the decision is relatively 

long; otherwise, it is not worth taking the risk and we should purchase right away.  

In the time interval , if],0[ T [ ] 0)(maxarg
0

* =Π= +

≤≤
tEt

Tt
, i.e., the optimal “time” is to 

purchase at the beginning. From Proposition 3.3, we get that the optimal solution of the 

fully dynamic case is to purchase at specific level [ ])(maxarg* xEx TΠ=  during . ],0[ T

If [ ]+
≤≤

Π= )(maxarg
0

* tEt
Tt

, and , we can not tell which one is better, the Time 

Strategy or the Target Strategy, without the exact parameter values. So our strategy is to 

Tt ≤< *0
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compare [ ]+Π )(max tE  and [ ])(max xE TΠ . If [ ] [ ])(max)(max xEtE TΠ≥Π + , we will choose to 

wait until and apply the Target Strategy after that, otherwise we will purchase at a 

specific level during . 

*t

[ )(maxarg* xEx TΠ= ] ],0[ T

If 0])([
>

Π +

td
tEd  for all , the optimal “time” is to purchase at the end. 

Specifically as

],0( Tt∈

2/σθ −< , from proportion 3.1, the optimal strategy is to purchase using 

“time” where . Tt =

In the model, θ  is used to include all the information about interest rate, price trend, 

and holding cost rate and σ is used to describe the fluctuation of total discounted cost trend. 

From the above analysis, we get that if θ  and σ  keep constant, as 2/σθ −< , the optimal 

strategy is to purchase using the Time Strategy where . Otherwise, we calculate the 

optimal solutions for the Target Strategy and the Time Strategy to see if it is the right time 

and right level to purchase right away. 

Tt =*

 

3.2.4. Dynamic Target Strategy under the Fully Dynamic Case  

Note that the Target Strategy and analysis previously described refer to the decision at 

time 0. On the other hand, if the firm has not purchased at time 0, the Dynamic Target 

Strategy allows it to incorporate new information. 

The Dynamic Target Strategy sets a new target level x as time processes. When 

2/σθ −< , the Time Strategy dominates the Target Strategy, so we wait until the end of the 

time horizon to consider purchasing in that case. Otherwise, the initial target x is set at the 

point where the basic Target Strategy first provides a better profit than the Time Strategy. 
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We then update the target level if it has not been reached in the previous period. The 

Dynamic Target solution strategy is presented below. 

Dynamic Target Strategy Algorithm 

If 2/σθ −≥  
Then For  1,...2,1 −= Ti

Do 

Let , iTTi −=
σ

ihTip
iu

+
=

))(log(
)( , 

]),(|)([maxarg* iT
x

TiuxEx Π= ,  ihTthrxey −++= )(*

If  ])([max]),(|)([max +

≤≤
Π>Π tETiuxE

iTtiiTx

and the price level y is reached in period i, 
  Then Purchase at period i and stop. 
  Else Wait until the next period (set i=i+1) 
 Loop 
Else Wait until the last period (set i=T) 
Purchase at i=T if . 0)( >Π T

In the appendix, we show that the profit obtained from the Dynamic Target Strategy is 

very close to optimal.  

 

3.3. Timing Flexibility Case 

In the timing flexibility case without quantity flexibility, the buyer must purchase the 

contracted quantity, without regard to expected profit. In the following propositions we 

illustrate that the Timing Strategy dominates the Target Strategy. Furthermore, the 

Dynamic Target Strategy reaches to the same result as the Time Strategy, i.e., purchase at 

time 0 if 2/σθ −> , purchase at any time between  if],0[ T 2/σθ −= , and purchase at time 

T  if 2/σθ −< .  
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Proposition 3.4. In timing flexibility cases, the expected profit of the Time Strategy at time 

 is],0( Tt∈ )
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Proposition 3.5. In timing flexibility cases, the optimal decision by using the Time Strategy 

during is to purchase at time 0 if],0[ T 2/σθ −> , purchase at any time between  

if

],0[ T

2/σθ −= , purchase at time T  if 2/σθ −< . 

Proof: 

],0[
max

Tt=
)(tEΠ  

],0[
max

Tt=
= ][ 2/2σσθσ ttueR ++−      

 

The optimal condition depends only onθ  andσ , the Time Strategy for timing flexibility 

case is to purchase at time at time 0 if 2/σθ −>  , purchase at time T otherwise. 

 

Proposition 3.6. In timing flexibility cases, the optimal decision by using the Target 

Strategy is never better than the optimal decision by using the Time Strategy. 

Proof: 

Let 0};)(;0:inf{)( ≤=+≥= xxtwtttx θτθ , )()( twttW +=θθ  

We use to represent the Target Strategy with level)(xtΠ x .  
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Then the optimal profit for the Target Strategy is: 
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Therefore, the optimal decision for a timing flexibility case using the Target Strategy is 

no better than the Time Strategy. 

 

In section 2, we define
σ

σμθ
25.0−−−

=
hr , so 2/σθ −> , 2/σθ −=  and 2/σθ −<  can 

be written as 0>−− hrμ , 0=−− hrμ , and 0<−− hrμ  correspondingly. Here 
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hr −−μ can be interpreted as the “cost slope”, which is the slope of price trend minus the 

annual interest rate and the unit holding cost. So we can conclude that in the timing 

flexibility case where the contracted amount must be purchased, the firm should purchase 

right away if there is an upper cost trend, purchase at any time if the cost has no trend, and 

purchase at the end if there is a downward cost trend. 

 

3.4. Combined Timing and Quantity Flexibility Contract 

The strategy for the combined timing and quantity flexibility contract is composed of 

two parts: Q)1( α− purchased from the supplier using a timing flexibility contract, and Qα  

using a fully dynamic contract. The results can be summed up as follows.  

 

Table 2. Strategies for the Combined  Timing and Quantity Flexibility Contract 
 If 2/σθ −≤  If 2/σθ −>  

Q)1( α−  Purchase at the beginning Purchase at the end 
Qα  Dynamic Target Strategy Purchase at the end if the 

profit at the end is positive 
 

3.5. Numerical Analysis 

In this section we present numerical analysis and simulation results to test how the 

different strategies perform under various parameter settings. For all the tests we let 

T =100 and use a demand of 1000 units. Here we assume σ =0.1. At time 0 the selling 

price for these 1000 units is $362,217 and the purchase cost for these 1000 units is 

$242,801. The parameter value

=8.12e

=4.12e θ  is given in Table 3. We run the simulation 100 

times and calculate the averages as the simulation results.  

In the simulation, the computational time of the Dynamic Target Strategy method 

averaged 3.2 seconds, whereas the backward deduction method using a binomial 
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approximation averaged about 4,725.47 seconds (We divided each period into 10 time 

intervals to approximate the price process).  

 

Table 3. Profit Information 
 

Timing 
Flexibility 
Contract 

Fully Dynamic Contract 
 

Time 
Strategy 

Time 
Strategy Target  Strategy Dynamic Target 

Strategy 

θ  *t  )(ˆ *tΠ  *t  +Π )(ˆ *t  Prob. of 
purchasing )(ˆ *xTΠ

Prob. of 
purchasing

Π̂  
 

Backward 
Deduction 

Upper 
Bound

.03 0 119,416 0 119,416 .81 123,424 .91 127,256 119,416 166,322

.02 0 119,416 0 119,416 .82 137,736 .85 140,054 130,010 167,735

.01 0 119,416 0 119,416 .75 134,043 .87 144,044 132,121 175,576

.00 0 119,416 0 119,416 .72 145,734 .81 148,763 139,274 179,060
-.02 0 119,416 50138,113 .76 148,824 .84 150,142 144,139 182,556
-.05 0 119,416 50185,766 .76 168,227 .86 185,766 185,766 194,528
-.08 50 181,775 50232,299 .80 219,267 .90 232,299 232,299 247,407

 

Table 3 provides simulation results for the optimal time and the corresponding profit 

for the Time Strategy under both a timing flexibility contract and a fully dynamic contract, 

the probability of purchasing and the corresponding profit for the Dynamic Target Strategy, 

the profit using the backward deduction method, and the upper bound which is the average 

lowest profit of the history data of these 1000 price lines. From the table we notice that the 

Dynamic Target Strategy always performed at least as well as the backward deduction 

method. (Note that the profit of the backward deduction profit does increases in the 

number of time intervals used per period). 

For fully dynamic contracts, when 2/σθ −≥  , the Target Strategy outperformed the 

Time Strategy while the Dynamic Target Strategy was the best. When 2/σθ −< , 
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purchasing at timeT , which provides the same result as the Dynamic Target strategy, was 

always the best solution. Therefore the results were consistent with our analysis. 

 

4. Extensions to the Multiple Suppliers 

When the price processes differ between suppliers, the retailer can benefit by 

comparing their price movements and selecting the lowest cost supplier. The price 

processes for multiple suppliers may differ for a variety of reasons. For example, their 

inputs might derive from different commodities (e.g., aluminum vs. steel), or they might 

come from different countries where the exchange rate fluctuations impact their 

corresponding price movements differently.  

In this section, we examine the general case of choosing among multiple suppliers 

under three objectives: (1) maximizing expected profit, (2) minimizing downside risk, and 

(3) maximizing profit subject to a limit on downside risk. We assume that each potential 

supplier has enough capacity to satisfy the retailer’s demand and that each offers a fully 

dynamic contract. 

 

4.1. Profit Maximization 

Given suppliers, the corresponding , n u θ and σ  for supplier  are ,i iu iθ  and iσ for 

. We first study how to extend the Target Strategy to the multiple suppliers case. 

We search for a common targeted price for all the suppliers so that the expected profit, 

which is the product of the profit at this cost and the probability of any of these suppliers’ 

prices reach this target price, is maximized. If any supplier’s unit profit reaches the target 

ni ...,2,1=
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profit during , we will purchase ],0[ T D from this supplier right away. The corresponding 

expected profit can then be described as: 

⎥
⎥
⎦

⎤

⎢
⎢
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⎞
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Because ⎟⎟
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ii σσ θθ )(max)(1
1,1 , the Target Strategy for 

multiple suppliers provides a better expected profit than solely applying the Target 

Strategy to all of the suppliers individually. Thus, the expected profit increases in the 

number of suppliers n. 

Next, we can extend the Dynamic Target Strategy to the multiple suppliers case. We 

set a new target level x for all suppliers as time progresses. The initial target level x is set at 

the point where the Target Strategy using (19) can first provide a better profit than the 

Time Strategies of any supplier. We then update the target level if it has not been reached 

by purchasing from any supplier in the previous period. Note when 2/kk σθ −< , , 

even if purchasing from supplier i reaches the target profit, from proposition 3.2, we see 

that a higher expected profit is achieved by waiting until the end of the period.  

],1[ nk ∈∀

The Dynamic Target solution strategy for n suppliers is presented below. Here 

use , , and to represent the price, u -value, and the unit profit of supplier )(ip j )(iu j )(sup tjΠ

j at time t correspondingly. 

 

Dynamic Target Strategy Algorithm for n Suppliers 

For  1,...2,1 −= Ti
Do 

Let , iTTi −=
σ

ij
j

hTip
iu

+
=

))(log(
)(  for nj ...2,1= ; 
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 Then Purchase from supplier at period i  and stop. k
 Else Wait until the next period (set i=i+1) 
Loop 
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Here  is the target unit profit for the retailer, xR exp−
⎥
⎥
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the probability of reaching this target unit profit and can be calculated using (9).  

 

4.2. The Probability of Reaching Target Profit 

We consider the downside risk using a certain supplier as the probability that the 

realized profit is less than or equal to the retailer’s specified target unit profit (Gan, Sethi, 

and Yan, 2005). Let γ be the target unit profit. Clearly, the optimal strategy to minimize 

the downside risk is to purchase when the profit is bigger than γ during . From the 

definition of the Target Strategy, we can obtain that the downside risk of choosing supplier 

1 to  at target unit profit 

],0[ T

n γ  is  

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
>Π=≤Π = i

i

n
iM uRtwPxp

i σ
γγ θ

)log()())( 1       (20) 

To minimize the risk expressed in (20), the corresponding optimal purchasing strategy 

is to purchase right away from supplier i when γ>Π )(xM , i.e., when the price of supplier 

first drops below i [ Th ]hrRy iii t −+−= (exp)( )γ  , i =1, 2 … or n.  
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4.3. Maximizing Profit Subject to a Downside Risk Limit 

With a downside risk limitτ , the company’s decision problem becomes:  

)(max ΠE            

s.t. ( ) τγ ≤≤Π)(Ep           

 According to Gan, Sethi, and Yan (2005), the target level γ could be associated with 

bankruptcy or something less drastic.  

 If we use the Dynamic Target Strategy to solve this problem, then the above problem 

can be written as: 

)(max xE MΠ          (21) 
s.t. [ ] τγ ≤≤Π )(xEp M         (22) 
The approximate solution is to purchase D  from the supplier whose price first drops 

below price c (defined below) during . If no purchase has been maded before 

time

],0[ T

T and have not yet purchased, the buyer should purchase D from supplier i , where 

. }0],,1[,)(max{) supsup njTj ∈∀Π=Π ++(Ti
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)(xE MΠ  and [ ]yxEp M ≤Π )( *  can be calculated referring to (19) and (20).  

The intuition for this solution is the following. If the optimal profit by using (21) is 

higher than γ  and [ ] τθ ≤< *)( xTwp , (22) is satisfied by the optimal solution from (21). 

Otherwise, we will try to find the lowest target price so that the probability of not attaining 

the corresponding profit is no more thanτ and the corresponding profit is the highest profit 
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we can get. If (22) is not satisfied, the downside risk constraint cannot be reached. Note 

this is only a roughly estimation and the real profit should be higher than this result 

because we use the first target profit to estimate the profit here, where the profit using the 

Dynamic Target Strategy should be higher than this. 

 

4.4. Numerical Analysis with Multiple Suppliers 

4.4.1. Profit Impact of Adding Potential Suppliers 

Use the same assumption of 3.5, we let T=100 and use a demand of 1000 units. But we 

further assume there are n suppliers, .9...,3,2,1=n  For all n suppliers, 

, )0(...)0()0( 21 nppp === 1.0...21 ==== nσ σσ , and θθθθ ~)0(...)0()0( 21 ==== n , where 

θ~ is as defined in the Plot 4.1. At time 0 the selling price for these 1000 units are all 

$362,217 and the purchase cost for these 1000 units is $242,801. We run the 

simulation 100 times and calculate the averages as the simulation results. Figure 7 shows 

how the profit increases using the above method when the number of suppliers increases 

from 1 to 9. 

=8.12e =4.12e

From this plot, we can see as the number of suppliers increases, the profit increases, 

and the increasing of profit is steeper when the number of suppliers is smaller. Furthermore, 

when the number of suppliers increases from 1 to 9, the profits are all almost doubled.  
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Figure 7. Profit Trend vs the No. of Suppliers 
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4.4.2. Risk Impact of Adding Potential Suppliers 

Using the example in 4.4.1, we assume the target profit for these 1000 units is $150,000. 

Then the optimal purchasing strategy is to purchase right away when the price of any 

supplier drops below. The following plot shows how the corresponding downside risks 

drops as the number of suppliers increases. 

From the plot, we can see that decrease in downside risk is very sharp when the 

number of suppliers is small while the decrease in downside risk is much flatter when the 

number of suppliers is bigger. No matter what the cost trend θ is, for this example, 

choosing 4 suppliers can decrease the downside risk to lower than 5%, so choosing 4 

suppliers will be enough if we want to control our downside risk to 5% in this case. 
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Figure 8. The Downside Risks vs the No. of Suppliers 
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4.4.3. An Example Applying the Three Optimization Criteria 

Let us look at one round of one specific case of the above example with θ =0.1 and four 

suppliers. With the purpose of profit maximization, the buyer reaches his satisfied profit at 

time 5, and his profit is $215,162. With the purpose of profit maximization, the buyer 

reaches his satisfied profit at time 3, and his profit is 147,945.  With the purpose of profit 

maximization subject to a downside risk limit [ ] %5)150)( <≤Π xp M , the buyer reaches his 

satisfied profit at time 4, and his profit is 169,609. How much the profit with the purpose 

of profit maximization subject to a downside risk limit is depends on how strict the 

downside risk limit is. 
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5. Conclusions 

In this chapter, we study combined timing and quantity flexibility contracts under price 

uncertainty. Even though a binomial tree approximation is used extensively to solve price 

uncertainty problems, the solution time of that method increases exponentially with the 

number of the suppliers and the number of periods. Therefore we propose another solution 

algorithm for this specific problem that substantially decreases the computational 

complexity.  

As a byproduct of the analysis, we demonstrated that in the case of time flexibility 

without quantity flexibility, the best strategy is to buy at the beginning or the end 

depending on the total cost trend. In this case, the price fluctuation σ  does not influence 

the purchasing strategy. On the other hand, for fully dynamic contracts, our Dynamic 

Target Strategy appears to perform best. That strategy utilizes a profit target, which is 

updated over time as conditions change.  

When facing multiple potential suppliers with potentially different price processes, the 

analysis of timing flexible cases does not differ much from the single-supplier case. But if 

there is quantity flexibility available, purchasing from multiple suppliers with potentially 

different price processes can lead to higher profits due to a higher probability of being able 

to buy at a low price from at least one of the suppliers. We develop a solution algorithm for 

the case of multiple suppliers. We further provide downside risk analysis and study how to 

maximize profit subject to a downside risk limit for the multiple supplier case to provide 

multiple criteria for the selection of suppliers. We demonstrate the profound impact that 

increasing the potential supplier base can have on profit and downside risk. 
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CHAPTER IV: THE NEWSVENDOR PROBLEM UNDER PRICE-

SENSITIVE STOCHASTIC DEMAND AND PRESEASON 

PURCHASE PRICE UNCERTAINTY  

 

1. Introduction 

As a consequence of price fluctuations in spot markets, a pure fixed-price contract also 

rarely exists. If the actual work or spot price varies from estimates, most of the cases, the 

client will pay the difference (Metagroup 2003) or the supplier and retailer share the risks 

(Li and Kouvelis 1999). This is especially true for high-volume commodities such as 

gasoline and natural gas (Avery et al.1992). So no matter the company makes a purchase 

from the spot market or the contracted suppliers, purchase-price risk commonly exists. 

Systematic purchase-price risk is the major financial risk to consider in inventory control 

(Berling and Rosling 2005). 

On the one hand, as purchase costs of the components fluctuate, the company needs to 

adjust the selling price of the product to optimize profit under new costs. On the other hand, 

as a result of the changes in selling price, the customer demand will be negatively affected. 

For example, the fuel cost increases led to increased air fares. But a significant portion of 

the fuel cost increase is being borne by the customers, because for many passengers, 

particularly leisure travelers, significant fare increases make the difference between taking 

a trip and staying at home.  In order to handle the increase in fuel cost, a lot of the airlines 

like American Airlines, Delta, and Southwest, have already purchased futures for those 
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fuels to hedge their prices as time goes on. For example, 55% of the fuel used in 2000 by 

Delta was purchased in 1997 (Schriver, 2008).  

Facing high component price uncertainty, forward purchasing is commonly used to 

hedge procurement risks; however, forward purchasing itself may lead to significant 

“incremental” risk. For example, in mid 2000, HP signed a long-term binding contract with 

a major supplier to actively manage the substantial future price uncertainty of Flash 

Memory. It turned out that HP was put in a disadvantageous position while Flash Memory 

prices dropped; HP paid more through that fixed- price commitment than its competitors. 

To ensure that such increased risks stemming from forward contracts were minimal and 

more manageable in the future, it was necessary to compare, in detail, the demand and 

price uncertainty scenarios for Flash memory with the quantity and price HP committed to 

in the contract. In the 2002 report of the Procurement Risk Management Group at HP, the 

researchers concluded that “the long-term binding contract for Flash memory signed in 

mid-2000 set the course for the active management of procurement uncertainties and risks 

in HP”.   

The above business practices bring to light three important research questions which 

we plan to address in this chapter. First, we study how to plan the procurement and selling 

for a newsvendor who has a specific time period prior to selling season to make the 

purchase, where it is assumed that the purchasing cost of the raw material fluctuates over 

time and the demand for the product is random and price-sensitive. Second, we analyze 

how to evaluate and compare the potential profit and risk of purchasing from a forward 

contract as opposed to purchasing from the spot market. Third, we explore how to evaluate 

and minimize risk in the spot market. 
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This chapter makes three primary contributions. First, it is among the first to combine 

purchase-order-quantity, purchase-order-time, and selling-price decisions all together 

where purchase prices fluctuate over time and demand is random and price-dependent. 

Second, we design practical and efficient solution procedures for purchasing solely from 

the spot market, and for choosing between the spot market and a forward contract, which 

quickly decreases the computational complexity in solving the computational problem of 

multiple suppliers, long term length, and multiple demand points. Third, we apply risk 

analysis to the procurement and selling problems under settings of stochastic customer 

demand and purchase price uncertainty. 

The rest of the chapter is organized as follows: In the following section, we present the 

relevant literature. Section 3 addresses the basic profit model for optimal one-time 

purchasing strategies in the Newsvendor problem with purchasing before the selling season; 

this section also finds the optimal pricing policy in closed form, and provides an upper 

bound on the expected cost before the selling season. We extend our analysis to study 

structural properties for purchasing from spot markets and estimate the profit and risk 

when multiple suppliers or multiple periods are available in section 4. In section 5, we 

provide numerical analysis to decide when to purchase and how much to order if we plan a 

second purchase option during the horizon, compare the profit and strategy of purchasing 

at the lowest expected cost with the profit and strategy of purchasing at the highest 

expected profit, evaluate the impact of the unit holding cost rate on the purchasing decision,  

and demonstrate the profound impact that increasing the potential supplier base can have 

on profit and risk, together with the effect of these parameters on the purchasing decision. 

We conclude in the last section with some final observations. 
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2. Literature Review 

One relevant research stream analyzes how stochastic purchase price affects inventory 

policy. Bjerksund and Steinar (1990) discuss project values and operational decision rules 

by interpreting investment as an option and the output price as the underlying asset. Their 

paper compares the present price with the expected price at any future time to decide on 

purchase right away or choose to wait and see. Li and Kouvelis (1999) develop optimal 

purchasing strategies for both time-flexible and time-inflexible contracts with risk-sharing 

features in environments of price uncertainty. They also expand the analysis to two-

supplier sourcing environments and quantity flexibility in such contracts. Berling and 

Rosling (2005) study how to adjust (R, Q) inventory policies under stochastic demand or 

stochastic purchase costs. In those models, the inventory decision under stochastic 

purchase costs is studied under the assumption that demand and total order quantity are 

constant and that the purpose of their strategy is to lower the total cost without considering 

the sale. In this chapter, the demand is assumed to be stochastic; we combine the 

purchasing and selling into one whole and take into consideration not only the timing of 

the purchase but also the order quantity and the selling price to maximize the overall profit.  

Another kind of relevant literature is newsvendor-pricing problems with random price-

dependent demand function. Most published papers study single period problems. Among 

those papers, Mills (1959) studies additive demand cases like we do in this chapter. Others 

like Karlin and Carr (1962) study multiplicative case, and Young (1978) combined 

additive and multiplicative effects. Petruzzi and Dada (1999) provide a comprehensive 

review of single period price-dependent demand newsvendor literatures, and further 

develop additional results to enrich the existing knowledge base.  Theirs is the paper most 
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related to our models. Petruzzi and Dada (1999), Chan, Simchi-Levi, and Swann (2001), 

and Monahan and Petruzzi (2004) extend the analysis of newsvendor-pricing problems to 

multiple period cases. However, in these papers, the purchase cost is assumed to be fixed 

and the main concern is how to design selling strategies without considering the 

purchasing side. 

A third stream of relevant literature, studies risk-control and the inventory decisions of 

risk-averse firms. In the field of economics and finance, agents are often assumed to be 

risk-averse (Agrawal and Seshadri 2000). There are also some attempts at dealing with risk 

control and risk aversion in the operations area. For example, Bouakiz, and Sobel (1992) 

and Eeckhoudt et al. (1995) study the inventory problem of a risk-averse firm. Buzacott et 

al. (2001) study how to make the price and inventory decision jointly for a risk-averse 

company. Among those papers, two common methods to deal with risk aversion are mean-

variance analysis and downside risk analysis. Markowitz (1959) is the first person to 

induce the mean-variance method to evaluate risk aversion in investment. Others apply this 

method to inventory decisions or supply contracts design (Chen and Federgruen 2000, 

Martlnez-de-Albeniz and Simchi-Levi 2006). The mean-variance approach works best 

when the retailer’s profit follows normal distribution. But this assumption does not fit the 

newsvendor setting. Therefore, the downside risk is more important than simply the 

variance of the profit for the newsvendor (Gan et al. 2005). Telser (1955) and Gan et al. 

(2005) define downside risk as a critical value for profit, a measure we borrow in this 

dissertation. There are a number of other measurements of downside risk, for example: 

semi-variance computed from mean return (SVM), semi-variance computed from a target 

return (SVT), and value at risk computed from a specific fractile of the return distribution 
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(VaR). Sample works about downside risk in the newsvendor setting include Telser (1955), 

Buzacott et al. (2001), Gan et al. (2005), and so on. These papers are concerned on how to 

prevent the profit from being lower than the expected return instead of how to prevent the 

profit from deviating  from the expected return, so that downside risks fit these settings 

better. 

In this chapter, demand uncertainty and purchase price uncertainty are combined 

together into one consideration and procurement and selling are considered together as an 

entire entity instead of independent problems. We further extend the previous research by 

first applying risk analysis to the procurement problem under stochastic demand and 

purchase price uncertainty settings. We want to find effective and efficient ways to 

simplify these highly complex problems companies face.  

 

3. The Model 

Consider the situation where a firm stocks a certain amount of a single product over a time 

period from one supplier and process it into the final product, facing a random price-

dependent demand for the final product at selling seasonT .  

],0[ T

This process is composed of two stages. The first stage is to purchase a product from 

the stochastic spot market or a contracted supplier whose price was impacted by the 

exchange rate movement and turn it into the final product during a time period and 

the second stage is the retailer selling the final product to the customer at time T. The 

corresponding total cost includes the fixed cost and the variable cost. We use k to represent 

the total fixed cost for both stages. Next, we will study the variable cost in both stages. 

),0[ T
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The variable cost in the first stage includes the unit purchasing cost, processing cost, 

and holding cost from the time of purchasing to the time of processing. Because these costs 

happen before selling seasonT , we name this total cost preseason cost.  

To model the unit purchasing cost, we assume that the retailer will pay the supplier 

 dollars per unit when the unit is purchased at time0)( >ta ],0[ Tt ∈ . As in chapter III, the 

purchase price per unit for the retailer satisfies the usual Black-Scholes equation (Black 

and Scholes 1973), i.e., the price at time t  is a process ( ){ }0, ≥= ttaa , which is expressed 

by the stochastic differential equation 

( ) ( ) ( ){ }tWttata d d d σμ +=      ,                              (1) 0≥t

where R∈μ  denotes the average rate and represents the volatility rate.  +∈Rσ

As in chapter III, the unit purchase price process  at time t satisfies )(ta

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= )()

2
(exp0

2

tWtata σσμ , R∈μ , 0>σ and .               (2) 0>t

An important part of the preseason cost is the processing cost per unit. It may turn out 

to be the processing cost of turning the raw materials into final product for the production 

company or the transportation fee and packing fee for the retailer company. In this chapter, 

we assume that operation cost per unit and operation time are constant. Without loss of 

generality, we can take the operation cost as a constant part of purchasing cost and will 

not study it separately; we also let the operation time to be zero. 

)(ta
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If the firm purchases one unit at time t and uses it to satisfy the demand at time T, the 

holding cost for this unit is )]()[( tThta − , where is the periodic holding cost percentage. 

The preseason cost  per unit is expressed by  

h

( ){ 0  , ≥= ttcc }

)1)(()()()()( hthTtatThtatatc −+=−+=                          (3) 

The second stage is the retailer selling the final product to the customer at time T. Here 

we assume that the retailer charges  dollars per unit for the customer, and the demand is 

random and negatively influenced by the selling price in the additive 

form

p

p

εε += )(),( pypD , where is a downward sloping, concave, deterministic 

function of the unit selling price, and 

)( py

ε has a linear or log-concave density function 

with mean ( )xf μ and variance  and . This additive demand form and the 

assumptions about are common in the literature (Petruzzi and Data 1999). 

2σ Ax >

)( py

To jointly decide purchasing time, order quantity, and selling price to maximize the 

total profit, we first look at the second stage and model as to how the optimal order 

quantity and selling price will depend on the preseason purchasing unit cost c. Next, we 

can look backwards at the first stage to find the optimal purchasing strategy and then the 

corresponding optimal order quantity and selling price. 

 

3.1. The Selling Season Decisions  

During the selling season, if the demand is less then the order quantity q , the leftovers 

),( εpDq −  are disposed of at the unit cost and the revenue isv ),( εppD . Alternatively, if 

demand exceeds , then the shortage q qpD −),( ε is penalized at the unit cost and the s
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revenue becomes . Here we use to represent the realized preseason unit cost, then the 

total cost is the sum of the preseason cost and disposal or shortage cost, and the profit 

for a certain preseason cost c is the difference between sales revenue and the 

total costs. By substituting 

pq c

)|,( cpqΠ

εε += )( py),( pD and consistent with Ernst (1970), defining 

 :)( pyqz −=

)(][])([])([)|,( zIzvkzpycpypcpz ≤−−−+−+=Π + εεε  

)(][])([])([ zIzszpyczpyp >−−+−++ + εε            (4) 

Note in the above equation, and q p are decision variables, while  relies on the 

evolution of purchase price process and the corresponding purchasing strategy. For each 

realized purchasing cost c , the corresponding optimal purchasing, stocking, and pricing 

policy is to stock q units with unit selling price , where and 

maximize . 

c

*** )( p zy += *p *p

*z )]|,([ cpzE Π

Expected profit is: 

( ) dxxfxzvxpypcpzE
z

A
)(][])([)]|,([ ∫ −−+=Π  

( )( ) kzpycdxxfzxszpypz −+−∫ −−++ +∞ ])([)(])([ , 

 (5) 

This equation can be rewritten as 

)|,()|()]|,([ cpzcpcpzE ψϕ −=Π .                                  (6) 

Where 
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])()[()|( μϕ +−= pycpcp ,  (7) 

and  

kdxxfzxcspdxxfxzvccpz z
z
A +∫ −−++∫ −+= +∞ )()()()()()()|,(ψ .         (8) 

Equation (6) shows that expected profit is expressed by the “riskless” profit, which 

would occur in the absence of demand uncertainty, less the expected loss that occurs as a 

result of demand uncertainty. Equation (7) is the “riskless” profit function (Mills 1959), in 

which ε is replaced by μ .Equation (8) is the loss function, which assesses overage cost 

and underage cost like the newsvendor problem with demand satisfying density 

function .  )(xf

To find the maximized expected profit for a certainc , we take the first partial 

derivatives of  with respect to and then ,  )]|,([ cpzE Π z p

                          )()()]|,([ zFvspcsp
z

cpzE
++−−+=

∂
Π∂ . (9) 

Thereby we solve the optimal value of z as a function of p for a given : c

                                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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−+

= −

vsp
cspFcpz 1)|( .  (10) 

By substituting the result back into )]|,([ cpzE Π and then searching over the resulting 

track to maximize , we get  )]|,([ cpzE Π
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Referring to the results in Whitin (1955) and Petruzzi and Dada (1999), the 

corresponding and )(* cz ( )cczpcp |)()( ** = by solving (10) and (11) are unique. However, 

a closed form expression is not obtainable in general (Porteus 1990) and we need to solve 

(11) using numerical analysis. Here we define ( )[ ]ccpczEc ),(),()( *** Π=Π .Then is 

a function uniquely decided by the preseason unit costc . On the other hand, as the 

preseason purchase price fluctuates over time, the preseason unit cost  relies on both the 

purchase price and purchase time. So we need to catch the best purchasing chance to 

optimize the expected profit. Next, we analyze the evolution of the purchase price and then 

set up models to analyze how to decide on purchasing.  

)(* cΠ

c

 

3.2. The Backward Solution Process 

The optimal order quantity, as well as selling price, all depends on the preseason cost. 

However, because an important part of the preseason cost— the purchasing cost is an 

external factor, we cannot decide what the cost is but can only try to design optimal 

strategies to “catch” a purchase price so that this maximizes our total profit.   

First, we design a backward deduction — a program to “catch” a purchase price and 

order quantity to maximize the expected profit over the whole horizon  for the ],0[ T
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newsvendor with preseason procurement problem. To create this program, we introduce a 

binomial tree approximation method to buildup a discrete-time framework to approximate 

the evolution of . This method is suggested by Cox et al. (1979) and is a widely used 

numerical procedure to approximate the movement of fluctuating market price. The 

method is applied as follows: First, the time interval  is divided into small time 

intervals. , the unit purchasing cost

)(ta

],0[ T n

nT /=Δ )1( +ta , which represent the unit purchasing 

cost of the ith node of the  time interval of the binomial tree satisfies: Δ+ )1(t
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σ
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probeta

probeta
ta

i

i

i         (12) 

After fixing the purchase price, we can get the preseason cost c  for each node in each 

time interval of the binomial tree using (11).Then the corresponding optimal and for 

each c  is calculated by (6) and (7), and the corresponding equation recursively backwards 

is: 

p q

( ) ( ){ }])1[(,)]1)(([max)( 1|,
* Δ+Δ−+ΔΠ=Δ + tUEhthTtaEtU ttii ,              (13) 

( ){ }])1()1(])1[(,)]1)(([max)( 1
* Δ+−+Δ+Δ−+ΔΠ=Δ + tUtUhthTtaEtU iiii ςς    (14) 

Then the decision function is as follows: 

If , the optimal decision at 

this node is to purchase with order quantity  immediately, the corresponding order 

quantity and the potential selling price are calculated using (6) and (7). If not, then it 

would be logical to wait until the next period and continue in this manner until the units 

have been purchased or the end of the time horizon has been reached. 

])1()1(])1[()]1)(([ 1
* Δ+−+Δ+≥Δ−+ΔΠ + tUtUhthTta iii ςς

*q

*q *p
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The advantage of this method is that we can make the solution close enough to the 

optimal solution by dividing each time period into small enough intervals. For small 

preseason time length (<40) and single supplier, this method can be used to provide 

reliable result. 

 

3.3. Strategy for Multiple Suppliers or Long Term Length Scenarios 

In the above analysis, we employ the Binomial Lattice method to approximate the process 

of  in the way suggested by Cox et al. (1979) and then design a backward deduction 

heuristic to solve the purchasing and selling problems. However, reliable calculations for 

this heuristic method require each time period to be segmented into many small intervals, 

which significantly increases the computational burden for a large time horizon scenario. 

Furthermore, optimal selling price  and order quantity  are not obtainable in general 

(Porteus 1990) and we need to solve (11) using numerical analysis, which also adds to the 

calculation burden. What is more, when there are multiple suppliers, the number of 

calculations of all the combinations will evolve exponentially and closed form optimal 

solutions using the Binomial Lattice method will be almost impossible to compute. For 

example, if and there are 3 suppliers, even assuming that a closed form expression 

for  and  is obtainable in general, the computational complexity is already about 

. In this part, we study the properties of the model and of Brownian motion to 

develop a close-form solution procedure that significantly decreases the computational 

complexity, especially for the multiple-supplier case and large time horizon scenarios. 

Using the same-sized example described above, the computational complexity of our 

procedure is approximately 18,000.  

)(ta

*p *q

20=T

*p *q

1836 10)10( =

 78



To introduce this strategy, we assumed that the company chooses to purchasing in a 

later time instead of purchase right away only when the potential increase in profit 

overweighs the potential decrease in probability of reaching such a profit, i.e., there exists 

a certain expected profit ( )*ΠE  such that the product of ( )*ΠE  and the probability of 

reaching ( )*ΠE  by purchasing at a future procurement price is higher than the expected 

profit of purchasing at present procurement price. As in the backward deduction method, 

we first divide the time interval  into n small observation time periods. , the 

unit purchasing cost  represents the unit purchasing cost of the ith node of 

the  time periods. At each new period, as long as the units have not yet been 

purchased, we recalculate the expected profit for purchasing at a certain price in each of 

the remaining periods in the time horizon. We compare the corresponding highest expected 

profit with the present profit. We will purchase right away if the highest expected profit 

drops below the present profit. If not, then we wait for the next period and continue in this 

manner until the units have been purchased or the end of the time horizon has been reached. 

Next, we introduce the detailed formula and process to calculate the results. 

],0[ T nT /=Δ

)1( +ta

Δ+ )1(t

First, (10) can be approximated by ⎥
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Higher-order terms of this Taylor approximation quickly move towards zero when the 

holding cost is much smaller than the purchase price.  Then  
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Subsequently, we shall focus on analyzing the ( )( )tclog  instead of the actual discounted 

total cost process.  Since  is continuous and twice differentiable on [ ] , it 

implies that  is again an Ito process, and 

( )( tclog )

)

R×T,0

( )( tclog

( ) ( )tWt
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hhTatc σσμ +⎟⎟
⎠
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−+++=  

21
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2

.         (16) 
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σσ
μ

σ
 as the “discounted price,” which follows 

Brownian motion at time zero with driftα . So the preseason cost can be expressed 

as

)(tc

[ ]σα )()0(exp tWg + , which is an increasing function of .   )(tWα

To further our analysis, we derive from theorem 2.1 from Sakhanenko (2005) and we 

can get the following corollary. 

 

Corollary 4.1.  The cumulative distribution of =:),( 21 ttM α ( )uWtut α21
min ≤≤ , where 

)()( tWttW +=αα , is given by 
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This corollary provides us with the probability that the minimum value of the 

discounted price  during is less than ; i.e., the probability that level  has 

been reached by  during . Note that 

)(uWα ],[ Ti y y

)(uWα ],[ Ti

  ( ) ))((min iWxuWp Tui αα +≤≤≤  

   ( )[ ] ( )( ))1log()0(log)1log()0(logmin ++++≤+++= ≤≤ hTaiWxhTauWp Tui σσσ αα  

[ ] [ ]( ))(log)(logmin icxucp Tui +≤= ≤≤ σ     (17) 

So at any time point , , we can estimate the expected profit for purchasing with 

a certain preseason cost  in the remaining periods  as 

i Ti <≤0

σxeic )( ],[ Ti

[ ]( ) ( )( xTiMPeicE x ≤Π ,)(*
α

σ ) . Furthermore, if 0=x , ( )( )xTiMP ≤,α =1, 
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and [ ]( ) ( )( ) [ ])(,)( ** icxTiMPeicE x Π=≤Π α
σ , which is the profit at this i . As x  decreases 

from zero, [ ]( )σxeicE )(*Π  increases from [ ]( ))(* icE Π  while ( )( )xTiMP ≤,α  decreases from 1. 

Therefore, if [ ]( ) ( )( ) 0,)(maxarg * <≤Π xTiMPeicE x

x
α

σ , we can get better-than-expected profit 

for purchasing at a lower preseason cost in the remaining periods . Based on 

these observations, we can design our algorithm as follows.  

σxeic )( ],[ Ti

 

 Algorithm for One Supplier 

nT /=Δ ,  Δ= iti

For  )1,..(2,1,0 −= nk
Do 

Let , nkTi /= ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
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+=
1

exp)1)(()(
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hihTiaic , 

If [ ]( ) ( )( ) 0,)(maxarg * =≤Π xTiMPeicE x

x
α

σ  

  Then Purchase at period i with ( )( ) ( ))()( ** iczicpy + and stop. 
  Else Wait until the next period (set k=k+1). 
 Loop 

If  nk =
Then Purchase with ( )( ) ( ))()( ** TczTcpy +  at time T.  

 

3.4. Properties and Lower Bound 

From the previous section, we know that the optimal order quantity during the preseason 

purchasing and the optimal selling price during the selling season all depend on preseason 

cost. In the deterministic case, the retailer will increase the selling price p ; in response to a 

higher preseason cost, the order quantity will be lowered, and the total profit will increase 

accordingly. We then show that such results also hold in the stochastic case studied in this 

chapter.  
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Proposition 4.1.  As preseason cost  increases, then c

i) The optimal selling price is strictly increasing in preseason cost  *p c

ii) The optimal order quantity is strictly decreasing in preseason cost . *q c

iii) The optimal expected profit ( )]),(),([ ** ccpczE Π  is strictly decreasing in preseason 

cost . c

Proof: 

Apply the result of Ha (2001) here, we can get i) and ii) of Proposition 4.1 directly. 

Proof of iii: If , then  21 cc <

( )]),(),([ 11*1* ccpczE Π  

( ) ( )],),([]),(),([ 122*22*2* ccczEccpczE Π+Π≥  

( )]),(),([ 22*2* ccpczE Π> . 

 

The lower the preseason cost, the higher the order quantity, the lower the selling price, 

and the higher the potential profit. Combined with Corollary 4.1, we can find out how 

those parameters affect the probability of reaching certain expected profits. 

 

Proposition 4.2.  For a certain target expected profit ( )*ΠE , which is higher 

than ( )]),(),([ ** ccpczE Π where c is the present preseason cost, we can get: 

i) The longer the preseason period T, the higher the probability of reaching ( )*ΠE  in the 

preseason period. 

ii) The lower the preseason cost trendθ , the higher the probability of reaching ( )*ΠE  in 

the preseason period. 
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iii) The lower the present preseason cost, the higher the probability of reaching ( )*ΠE  in 

the preseason period. 

Proof: 

From the condition, we can get 0<x , the 
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Combine (18) and (19), we get (17)>0. Then ( )( ))0(,0 αα WxTMP +≤  strictly increase inT . 

So the longer the preseason period T, the higher the probability of the higher the 

probability of reaching  in the preseason period. *Π
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iii) The lower the present preseason cost, the smaller x for a certain target expected profit. 
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This proposition accords with our intuition. When there is a longer time length to make 

the purchase before the selling season, there is more possibility of purchasing at a certain 

price and then gaining a target expected profit; when the preseason cost trend is lower, 
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which may be because of the lower purchase price trend or because of the lower holding 

cost rate, there is a greater chance of reaching a certain profit in the preseason period; 

when the present preseason cost is lower, which is the result of a lower present purchase 

price, there is less chance to reach a target expected profit in the preseason period.  

We pursue the lowest preseason cost, so that the expected profit can be maximized. 

However, because the price movement is stochastic, we can only try to get a low enough 

point, but it is almost impossible to catch the lowest preseason cost. Here we try to find the 

lower bound for the expected preseason cost so that we can find out how good our 

purchase cost is, and also estimate the lowest price we can get and its corresponding 

expected profit. 

 

Proposition 4.3.  The expected lowest preseason cost in the preseason purchasing 

newsvendor problem is 
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Proposition 4.4. The expected profit function  is a convex function.  )(* cΠ 0)(
2

2

≤
∂
Π∂
x

x  

 

Proof: 
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Assuming and *p *z are the optimal price p  and demand variable part z for cost 

, and 21 )1( cttc −+ **p **z are the optimal p  and z for cost , and 1c ***p ***z are the optimal p  

and z for cost . Then we have  2c
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Proposition 4.5.  The expected profit in the preseason purchasing newsvendor problem is 

no lower than ,  )ˆ(* cΠ
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        Here we assume the lowest cost during the time horizon [0, T] is represented by . 

Then for each possible price path, the corresponding profit is lower than  (from 

Proposition 4.1), i.e., . Then the corresponding expected profit for any 

strategy is no more than 

minc

( min
* cΠ )

)

( ) ( )min
** cc Π≤Π

(( )min
* cE Π .  Here ( )( )min

* cE Π  is the average profit if our 

purchasing price is always the lowest price at each possible price path.  In Proposition 4.3, 

we prove that . Then by applying Taylor’s approximation, we can prove that the ccE ˆ)( min =
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expected profit at the lowest cost  , i.e., minc ( )( )min
* cE Π ,  is lower than the profit at , 

i.e., .  The corresponding proof is as follows: 

)( mincE

( ))ˆ* cΠ

Proof: 

From Proposition 4.4, the second derivative of П*(c) is non-negative; therefore, П*(c) 

is convex. 

Use Taylor’s approximation,  
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4. Extensions 

4.1. Forward Contracts or Spot Market 

In the above situation, we studied preseason purchasing from spot markets. To reduce the 

effect of price uncertainty, the retailer can sign a forward contract, in which the order price 

per unit is specified to hedge against the fluctuations of the purchase price. In a typical 

forward contract, the buyer makes a commitment to purchase from the supplier at a special 

time  with the contract unit price . To choose between a forward contract and the spot 

market, we need to compare the expected profits for purchasing from each of them.  

t̂ â

First, the preseason cost using a forward contract can be calculated as )]ˆ(1[ tThac −+= )) . 

Subsequently, the corresponding optimal profit is ( )[ ]ccpczEc ˆ),ˆ(),ˆ()ˆ( *** Π=Π . Next, let us 

look at the spot market. As we discussed in the previous section, the optimal profit can be 

roughly estimated using ( )[ ] ( ) ( )( ){ }xtWTtMPxtg
x

≤−+Π 111
* ,)(expmax αασ  (for a more 

accurate result, we need to run large numbers of simulations and find the corresponding 

average profit using the methods introduced in the previous sections as the expected profit 

from the spot market). So from the profit-maximization aspect, if  ≥Π )ˆ(* c

( )[ ] ( ) ( )( ){ }xtWTtMPxtg
x

≤−+Π 111
* ,)(expmax αασ , we should choose the forward contract. 

The corresponding optimal order quantity, selling price, and profit can be calculated using 

(7) and (8); otherwise, we should consider purchasing from the spot market.  

 

4.2. Purchasing from Multiple Suppliers 

In this section, we examine how to choose among multiple suppliers to maximize profit. 

We assume there are n independent suppliers and the price of supplier at time k t  is a 
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process , which is expressed by the stochastic differential 

equation

( ){ 0, ≥= ttaa kk }

( ) ( ) ( ){ tWttata kkkkk d d d }σμ += . Correspondingly, we 
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. As in the single supplier case, we first divide the time 

interval into small observation time periods.

=:),( 21 ttM
kα ( )uW

ktut α21
min ≤≤

],0[ T n nT /=Δ , and the unit purchasing 

cost  represents the unit purchasing cost of the tth period, i.e., the unit purchasing cost 

at time point . At each new period

)(tak

Δt t , we first choose the highest present profit among all 

the suppliers, i.e., , where [ )(max * tckk
Π ] )1)(()( hthTtatc kk −+= represents the unit cost of 

supplier k, and  represents the supplier with the highest expected profit 

at present preseason cost , . Then we calculate the highest expected target 

profit that at least one supplier can reach in the remaining time

[ )(maxarg * icj kk
Π= ]

kc ....,2,1 nk =

],[ TtΔ , which equals the 

product of the target profit and the probability of any of the suppliers’ prices reaching this 

target expected profit. The corresponding target expected profit can then be described as:  
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expected profit is no higher than the highest present profit, i.e., 
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σ , we will purchase 

from supplier j  right away; otherwise, we will wait till the next period and continue in this 

manner until the units have been purchased or the end of the time horizon has been reached. 

Because 

 91



( ) [ ] [ ] ( ) [ ] [ ]
,

)(log)(log
,max

)(log)(log
,1 )(

1
)(1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
<≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
>Π−

≤≤
= x

tctc
TtMPx

tctc
TtMP

k

kj
t

nkk

kj
t

n
k kk σσ αα

purchasing from multiple suppliers provides a better expected profit than solely purchasing 

from any of the suppliers individually.  Thus, the expected profit increases along with the 

number of suppliers n. 

 

4.3. Risk Minimization 

In the previous part, we discussed how to compare the profit of purchasing from the spot 

market with purchasing from a forward contract. An important purpose of a forward 

contract is to hedge against risk. As the purchase price has been set in the forward contract, 

the risk of the fluctuation of the spot market price is avoided. So whether or not we should 

choose purchasing from the spot market or purchasing from the forward contract, we 

should not only compare their profits, but also consider the risks in the spot market. 

Similar to Gan, Sethi, and Yan (2005), we consider the risk of using a certain supplier 

as the probability that the realized profit is less than or equal to the retailer’s specified 

target unit profit. Let γ be the target unit profit. Clearly, the optimal strategy to minimize 

risk is to purchase when the expected profit is bigger than γ during [0, T]. As we discussed 

in previous sections, has a unique solution for each preseason unit cost , so for each 

target profit

)(* cΠ c

γ , we can get a benchmark preseason unit cost of . Then 

the risk of choosing suppliers 1 to n at target unit profit γ from time t to time T is 
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To minimize the risk expressed in (18), the corresponding optimal purchasing strategy 

is to purchase right away from supplier k when its preseason unit cost drops below c~ , 

k=1,2…,n. 

When we calculate the risk of our purchasing strategy introduced in section 3.2.2, the 

profit can be estimated using =γ )ˆ(* cΠ .So the corresponding risk to purchase from 1, 

2 …or n suppliers will be ( ) [ ] [ ]
⎥
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4.4. Multiple Demand Points  

A natural extension of preseason purchasing and in season selling problem studied in the 

previous section is a corresponding management situation involving multiple demand 

points, where units are stocked to satisfied demands in multiple time points. Let 

jj pypD εε += )(),(  be the demand of the final product at time , jt mj ...,2,1= , where 

, units left over from one time point will not be available to meet demand in 

subsequent time points, is a downward sloping, concave, deterministic function of the 

unit selling price, and 

mttt <<< ...21

)( py

jε has a linear or log-concave density function ( )xf with mean 

μ and variance . Thus, for , the  is needed to be stocked before . When 

setup cost for each time is zero, obviously, such a problem can be decomposed into 

subproblems in which the jth problem has a time period to make the purchase to 

satisfy the demand at time . When setup cost is not zero, such a problem can be 

decomposed into m subproblems in which the jth problem compare the expected profit of 

having a time period to make the purchase to satisfy demand and the expected 

2σ mj ...,2,1= jD jt

m ],0[ jt

jt

],0[ jt jD
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profit of having a time period to make the purchase to satisfy 

demand minus the setup cost and then choose the one with higher profit.  

],0[ 1−jt

1−+ jj DD

When units left over from one time point will be available to meet demand in 

subsequent time points, this problem will be more complicated.  A special case is that there 

exists a salvage market such that each leftover remaining at the end of a period can be sold 

at the corresponding preseason cost. Thus, the multiple-period problem reduces to a 

sequence of single-period problems as no left over being carried to the next period case. 

People who interest in this question can refer to Petruzzi and Dada (1999) for detail 

discussion.   

 

4.5. Presale Procurement and Production Problem 

If the firm manufactures the product from the distinct raw material from the market 

before the selling season and sell to the market during the selling season, in addition to 

purchasing cost and holding cost, there are additional production time and production cost.  

Referring to the Chen and Munson (2004) model, we assume is the unit production cost 

if the production time length equal or bigger than

k

t~ ,where Tt ≤< ~0 .Then the unit 

production cost , where is a multiplier function that is assumed to be 

concave and strictly decreasing with respect to production run length t when

)()( tMktG += )(tM

tt ~0 ≤<  and 

when 0)( =tM tt ~> .As a special case, the multiplier function could take the exponential 

form of )~()( ttIetM t ≤= −λ . 
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If we purchase at time , then the unit holding cost before the selling season 

is and the unit production cost is

],0[ Tt ∈

)]()[( tThta − )( tTMk −+ . The unit purchasing, holding, 

and manufacturing cost before selling season is )()]()[()()( tTMktThtatatcc −++−+== . 

The backward deduction Binomial Tree method is applied as follows: First the time 

interval  is divided into small time intervals.],0[ T n nT /=Δ , the unit presale cost 

, which represent the unit purchasing cost of the ith node of the),)1(( 11 tttC Δ++ Δ+ )1(t  

time interval of the binomial tree satisfies: 
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Then the profit is )0(]})1([{ 1UtTMk Δ+−+ . The corresponding recursively backward 

is: [ ]{ }])1[()1(])1[(,)()1)((max)( 1
* Δ+−+Δ+Δ−++Δ−+ΔΠ=Δ + tUtUtTMkhthTtatU iiii ςς , then 

the decision function is as follows: 

If , the optimal 

decision at this node is to purchase with order quantity  immediately, otherwise the 

optimal decision is to wait for another period. The corresponding order quantity and the 

potential selling price are calculated the same as the ones in preseason purchasing part: 

[ ] ])1[()1(])1[()()1)(( 1
* Δ+−+Δ+≥Δ−++Δ−+ΔΠ + tUtUtTMkhthTta iii ςς

*q

*q

*p

The approximate method is as follows:  

We can approximate the calculation by finding 0≤τ  andη that maximize ),( ητΛ , 

),( ητΛ = [ ][ ]{ }∑ −−Δ−++Δ−+ΔΠ
=

++

T

t
tti tFtFtTMkhthTta

1
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* )1()()()1)(( ητϕητϕ . ),( ητΛ has a 
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unique optimal solution, where  is the unique *τ τ that satisfies 0))(,( =Λ τητd and 

( )** τηη = . 

We then approximate the calculation by finding 0≤τ  andη that maximize 

[ ][ ]{ }∑ −−Δ−++Δ−+ΔΠ
=

++

T

t
tti tFtFtTMkhthTta

1
)()(

* )1()()()1)(( ητϕητϕ .If we use ),(2 ητΛ to 

represent this formula, similar to proposition 3.4, ),( ητΛ has a unique optimal solution, 

where  is the unique *τ τ that satisfies 0))(,( =Λ τητd and ( )** τηη = . If 0=τ , it means the 

present purchasing is better than later purchasing and the purchasing strategy is purchasing 

right away. The corresponding order quantity and selling price are: 
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p
cpzpEpcp , and the corresponding expected profit is 

( ).),(),()( *** ccpczc Π=Π . 

 
4.6. Make a Second Purchase 

If we omit the setup cost for each purchase, multiple times purchasing can provide no 

worse profit than one time purchasing and the expected profit will increase as the number 

of purchase events increases. One time purchasing can be seen as a special case of multiple 

purchasing in which the second and up purchasing have zero order quantities. Finding the 

optimal purchasing strategy for multiple times purchasing is very difficult and may vary in 

different scenarios. However, even we can not find an optimal purchasing strategy for 

multiple times purchasing, we can design a certain purchasing strategy to improve the 

expected profit.  For example, if we have made a purchasing at time Tt <  with a certain 
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preseason cost c , and we make a second purchasing during  if and only if the 

preseason cost is lower than c . The probability that we make a second purchasing equals 

to the probability of the cost is lower than c during and the corresponding preseason 

cost drop from c to  

with is

ˆ ],[ Tt
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α . Because the cost of 

the second purchase is lower than the first one. So the average cost of both the first and 

second purchasing is lowered. So according to propositions 4.1 and 4.2, the optimal order 

quantity will increase and the optimal profit will increase too. In this way, a second 

purchasing will increase the expected profit than single purchasing for sure. 

We assume that we have made a purchasing at time Tt <1  with the corresponding 

purchasing price , order quantity and potential selling price , then the preseason 

cost 
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We assume that for each purchasing, there is a setup cost 

[ ]111 |, cqpΠ

M , . When the preseason 

cost is ,  is to find the optimal order quantity and optimal selling price for the 

total order quantities from both orders so that the increase of profit is maximized.  The 

expected profit for the second purchasing can be expressed as 

0≥M

c [ cqp |,2Π ]
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Then we can derive from the above equation and calculate the optimal price and order 

quantity as follows: 
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It is easy to derive in a similar way as proposition 4.1 that the corresponding and )(* cz

( )cczpcp |)()( ** =  are unique. The corresponding optimal profit as the preseason cost 

at c is [ ]ccpcz ),(),( **
2Π , and we use to represent it. )(*

2 cΠ

When now we are at time , where2t Ttt ≤< 21 , the purchasing price is and a 

second purchasing right away is profitable if and only if 

profit and order quantity

)( 2ta

[ 0)1)(( 11
*
2 >−+Π hthTta ] [ ] 0)(* >+ cpyz . 

The backward deduction Binomial Tree method is applied for time interval as 

follows: First the time interval  is divided into n small time intervals. , 

the unit presale cost 

],[ 1 Tt

],[ 1 Tt ntT /)( 1−=Δ

),)1(( 11 tttC Δ++ , which represent the unit purchasing cost of the ith 

node of the  time interval of the binomial tree satisfies: Δ+ )1(t
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 The corresponding recursively backward is: 
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optimal decision is to wait for another period. 

For the above solution process, we can also derive a quick solution heuristic. First we 

use the one time purchasing strategy to make the first purchasing at , then after the first 

purchasing, we purchase at a specific cost level which is decided by comparing different 

exponential cost curves and choose the one that maximize the profit , i.e., finding the 

exponential cost curve in which
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If 0=τ , it means the present purchasing is better than later purchasing and the 

purchasing strategy is purchasing right away. Here ⎥
⎦
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thhTtac , then the 

 99



corresponding order quantity and selling price can be calculated using (22) and (23) and 

the corresponding expected profit is ⎥
⎦

⎤
⎢
⎣

⎡
⎥
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⎠
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exp)1)((*
2 hT
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5. Numerical Analysis 

5.1. Profit Impact of Increasing Cost Trends 

CASE I: ε+−= pricesellingDemand
3
1150 , ε is standard normal. For the purchasing price 

movement, we let 1=σ , T = 100 weeks, 150=k and weekpricepurchaseh /007.= .  

In this example, we define bpgpy −=)(  and assume that ε follows a standard normal 

distribution. We also let the disposal cost v  and shortage cost s be zero. Then equation (10) 

can be written as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Φ= −

p
cpcpz 1* )|(  and the optimal selling price by solving this 

equation +

)(* cp

bcbpg +− 2 0
2
1)( 21 1

2

=∫+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Φ

−
p

cp

∞−

−− −
x

dxex
p

cp
p
c φ

π
. Then . 

The corresponding profit can be simplified 

as

bpgcpzq −+= )|( ***

∫ −−−=Π ∞−

−*
2

2******

2
1)()()]|,([ z

x

dxexzpqcpcpzE
π

. From previous analysis, fixing 

some parameters of the selling season will not influence the properties of these analyses 

and can be easily extended to other cases. 

In this case, we run the simulation 100 times and calculated the averages of the simulation 

results and the present expected profit is 356.91. 

Table 4 compares the results of “purchasing at the highest expected profit” with 

“purchasing at the lowest expected cost”. The averages for the purchasing time, order 

quantity, selling price, and expected profit of “purchasing at the highest expected profit” 
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method are on the left side, and the averages for the purchasing time, order quantity, 

selling price, and expected profit of “purchasing at the lowest expected cost” method are 

on the right side. Through the table, we notice the big differences of the expected profit of 

these two methods. The expected profit of “purchasing at the highest expected profit” is 

about 21.7% higher than the expected profit of “purchasing at the lowest expected cost”  at 

05.=μ . So “purchasing at the lowest expected cost” may lead to much lower expected 

profit than the “purchasing at the highest expected profit” method when 2/σθ −> , i.e., the 

cost trend μ is more than holding cost percentage . If h 2/σθ −< , i.e., the purchasing cost 

is increasing very slowly and is lower than the holding cost, the two methods comes to the 

same results and that is “purchasing at the end”. However, for many commodities like rice, 

oil, gas, and fuel, the high cost increasing trends are much more common.  

Table 4 also provides averages for the purchasing time, order quantity, selling price, 

and expected profit during time period  using our strategy when purchasing cost 

trends

]100,0[

μ changes from .05 to .7. From the table, when μ is no more than .62, the higher μ  is, 

the lower will be the expected profit and order quantity, and the higher the potential selling 

price will be. This result is consistent with proposition 4.2. The ideal purchasing strategy at 

time 0 is to wait for some time instead of purchasing right away. Whenμ is more than .62, 

it is better to purchase right away and the corresponding expected profit is $356.91. So for 

a slightly positive cost trend, even if the cost is increasing, it is still possible to gain better 

profit by waiting for some time to catch the chance to purchase at a lower cost from the 

fluctuating market.  As μ  increases, the profit increases but at a decreasing rate, and the 

purchasing time also increases at a decreasing rate, i.e., we can wait for a short time but 
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we’d better not purchase too late. When the purchasing cost trend is high enough, we’d 

better purchase at the very beginning. 

 

Table 4. Profit Comparison for Changing Purchasing Cost Drift Term 
 

Solved by Maximizing Expected Profit Solved by Minimizing Expected 
Cost 

μ  Order 
Quant Price Purchasing.

Time Profit Order
Quant Price Purchasing. 

Time Profit

0.05 7.4 370 28.94 434.5 3.43 377.8 0 356.91
0.1 7.13 370 26.67 434.5 3.43 377.8 0 356.91
0.15 6.75 370 26.15 434.5 3.43 377.8 0 356.91
0.2 6.41 370 25.21 434.48 3.43 377.8 0 356.91
0.25 6.1 370 24.21 434.46 3.43 377.8 0 356.91
0.3 5.71 370.04 23.46 434.08 3.43 377.8 0 356.91
0.36 5.31 370.08 21.76 433.56 3.43 377.8 0 356.91
0.4 5.02 370.19 21.57 432.21 3.43 377.8 0 356.91
0.44 4.8 370.37 18.78 430.23 3.43 377.8 0 356.91
0.46 4.61 370.9 18.74 426.13 3.43 377.8 0 356.91
0.5 4.38 371.14 17.96 422.06 3.43 377.8 0 356.91
0.54 4.2 371.64 14.21 416.69 3.43 377.8 0 356.91
0.58 3.98 372.66 8.33 406.24 3.43 377.8 0 356.91
0.6 3.88 373.33 7.57 399.67 3.43 377.8 0 356.91
0.62 3.74 374.57 6.54 387.64 3.43 377.8 0 356.91
0.64 3.43 377.8 0 356.91 3.43 377.8 0 356.91
0.66 3.43 377.8 0 356.91 3.43 377.8 0 356.91
0.7 3.43 377.8 0 356.91 3.43 377.8 0 356.91

     

Figure 9 further illustrates the corresponding profit increase trends when μ increased 

from .05 to .7 and figure 10 illustrates the corresponding purchase time trends. From figure 

9 and 10, we observe that as t μ  increases, the profit increases but at a decreasing rate and 

the purchasing time also increases at a decreasing rate.  
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Figure 9. Numerical Example of Profit Trend when Mu  Increases 
 

 

 
Figure 10. Numerical Example of Purchasing Time Trend when Mu Increases 
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In this example, we examine how the holding cost percentage impacts the purchasing 

decision and expected profit.  

We define  and assume that bpgpy −=)( ε follows a truncated normal distribution 

within the interval with mean and variance1, i.e., ),0( +∞ 0 ),0(,2)( 2

2

+∞∈=
−

xexf
x

π
.We 

also let the dispose cost v  and shortage cost s be zero. Then equation (10) can be written 

as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
Φ= −

p
cpcpz

2
2)|( 1*  and (11) can be simplified as 
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2
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2
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2
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−
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e . We can get the optimal selling 

price by solving this equation, and then . The corresponding 

profit can be simplified as

)(* cp bpgcpzq −+= )|( ***

∫ −−−=Π
−*

2

0
2******

2
2)()()]|,([ z

x

dxexzpqcpcpzE
π

.  

We let , b=.005, h=.1, and the present cost7.3=g 09.20=c .  

Table 5 compares the results of “purchasing at the highest expected profit” with 

“purchasing at the lowest expected cost”. The averages for the purchasing time, order 

quantity, selling price, and expected profit of “purchasing at the highest expected profit” 

method are on the left side, and the averages for the purchasing time, order quantity, 

selling price, and expected profit of “purchasing at the lowest expected cost” method are 

on the right side. In the table, the expected profit of “purchasing at the highest expected 

profit” is higher than “purchasing at the lowest cost” when purchasing cost trend μ  is 

between .14 and .54 . When μ is .14, the expected profit of “purchasing at the highest 

expected profit” is about 7.8% higher than the expected profit of “purchasing at the lowest 
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expected cost”. So “purchasing at the lowest expected cost” may lead to much lower 

expected profit than the “purchasing at the highest expected profit” method. When 

2/σθ −> , i.e., the cost trend μ is more than holding cost parameter  in this case, our 

purchasing depends on how much is the difference of 

h

μ and . If h μ is much higher than , 

we’d better purchase at the very beginning, otherwise, wait a little bit later to make a 

purchase. If 

h

2/σθ −< , i.e., the purchasing cost is increasing very slowly and is  lower than 

the holding cost, the two methods come to the same results and that is “purchasing at the 

end”. However, today, high increasing cost trends are much more common.  

The following table also provides averages for the purchasing time, order quantity, 

selling price, and expected profit during time period  using our strategy when the 

cost trend changes from .09 to .59. From the table, when 

]100,0[

μ is no more than .1,  the 

higher μ  is, the lower will be the expected profit and order quantity, and the higher the 

potential selling price will be. The ideal purchasing strategy at time 0 is to wait for some 

time instead of purchasing right away. When μ  is more than .49, it is better to purchase 

right away and the corresponding expected profit is $466.9. So for a slightly positive cost 

trend, even if the cost is increasing, it is still possible to gain better profit by waiting for 

some time to catch the chance to purchase at a lower cost from the fluctuating market. As 

μ  increases, the profit increases, but the purchasing time increases at a decreasing rate, i.e., 

we can wait for a short time but we’d better not purchase too late.  

Figure 11 further illustrates the corresponding profit increase trend when μ increased 

from .09 to .59, we observe that as μ  increases, the profit decreases but the decreasing rate 

is not so smooth. Sometime it decreases fast and sometimes it decreases slowly. However 
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our sample size is 100, but the potential paths are countless, so the plot can only describe 

the rough trend of expected profit.  

 
Table 5. Profit Comparison for Changing Holding Cost 

 
Maximize Expected Profit Minimize Expected Cost 

μ  Avg. 
Profit 

Avg. 
Quant 

Avg 
Price 

Avg 
Time

Avg 
Cost 

Avg 
Profit

Avg 
Quant.

Avg 
Price 

Avg 
Time 

Avg 
Cost 

0.09 1364 7.867 450.9 8.78 7.651 1366 11.44 450.5 20 7.833
0.14 1358 7.483 451.8 7.43 2.019 1259 5.412 466.9 0 20.09
0.19 1355 7.268 452.1 6.22 6.751 1259 5.412 466.9 0 20.09
0.24 1344 6.872 453.9 6.06 298 1259 5.412 466.9 0 20.09
0.29 1325 6.52 456.8 6.47 10.44 1259 5.412 466.9 0 20.09
0.34 1324 6.431 456.4 5.52 50.07 1259 5.412 466.9 0 20.09
0.39 1319 6.257 457.8 4.41 46.68 1259 5.412 466.9 0 20.09
0.44 1299 5.968 460.8 4.28 157.9 1259 5.412 466.9 0 20.09
0.49 1259 5.412 466.9 0 20.09 1259 5.412 466.9 0 20.09
0.54 1259 5.412 466.9 0 20.09 1259 5.412 466.9 0 20.09
0.59 1259 5.412 466.9 0 20.09 1259 5.412 466.9 0 20.09

 
 

Figure 11. Numerical Example of Profit Trend when Mu Increases 
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To show how the purchasing works, we choose one example that 29.=μ , in which the 

purchasing is not at the very beginning. We have run the simulation 100 times. The 

purchasing price movement satisfies the Black-Scholes equation and in each time the path 

is different, so do our purchasing time, order quantity, and pricing strategies and the 

corresponding profit. Figure 12 and Figure 13 show how the purchasing time distributes 

and how the corresponding expected profit distributes in these 100 times simulation.  

Figure 12 shows that the purchasing time more falls in the early stage and the chances of 

purchasing drops as time moves on. Only about ten times the purchasing is made after 12 

weeks. Figure 13 shows that the expected profit distributes from 950 to 1400, but it more 

focuses on the range of 1300 to 1400 and only about 15%, the expected profit is below 

1300. 

Figure 12. Numerical Example of the Distribution of Purchasing Time 
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The Summary Table 

Range Frequency Percentage Cumulative %
[0,4) 43 43.00% 43.00%
[4,8) 34 34.00% 77.00%
[8,12) 13 13.00% 90.00%
[12,16) 5 5.00% 95.00%
[16,20) 5 5.00% 100.00%
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Figure 13. Numerical Example of the Distribution of Expected Profits 
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The Summary Table 

Range Frequency Percentage Cumulative %
[950,1000) 1 1.00% 1.00%
[1000,1050) 0 0.00% 1.00%
[1050,1100) 1 1.00% 2.00%
[1100,1150) 0 0.00% 2.00%
[1150,1200) 3 3.00% 5.00%
[1200,1250) 3 3.00% 8.00%
[1250,1300) 7 7.00% 15.00%
[1300,1350) 52 52.00% 67.00%
[1350,1400) 33 33.00% 100.00%

 
 

CASE III: ε+−= pricesellingDemand 5400 , ε is truncate normal defining within 

with mean 0 and standard deviation 2. For the purchasing price movement, we let ),0( +∞

15.=μ , 5.=σ , T = 20 weeks.  

We run the simulation 50 times and table 6 provides the averages for the purchasing 

time, purchasing cost order quantity, selling price, and expected profit of “purchasing at 
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the highest expected profit” method is on the left side, and the averages for the purchasing 

time, purchasing cost, order quantity, selling price, and expected profit of “purchasing at 

the lowest expected cost” method is on the right side. Through the table, we notice the 

expected profit of “purchasing at the highest expected profit” is higher than “purchasing at 

the lowest cost” when holding cost is .035 and higher. When the holding cost is .04, the 

expected profit of “purchasing at the highest expected profit” is about 11% higher than the 

expected profit of “purchasing at the lowest expected cost”. So “purchasing at the lowest 

expected cost” may lead to much lower expected profit than the “purchasing at the highest 

expected profit” method.  

Table 6 also provides averages for the purchasing time, order quantity, selling price, 

and expected profit during time period  using our strategy when the holding cost 

percentage changes from .01 to .04. From intuitive, the expected profit should be always 

increasing as holding cost percentage decreases. From the table, however, when is .35, 

the expected profit jump up. There may be several reasons behind that. First, we define  

as the purchasing cost percentage, even if increases, if the purchasing cost is lower, the 

expected profit will still increase. Second, our method is only a close-form solution instead 

of the optimal solution, the results only reflect the outcomes of our method. Third, our 

sample size is 50, but the potential paths are countless, so the results in table 6 can only 

describe the rough numbers of expected profit.  

]100,0[

h

h

h

 From the table, when holding cost percentage is .035 and .04, the ideal purchasing 

strategy at time 0 is to wait for some time instead of purchasing right away. When  is less 

than .3, since it is not so costly to hold the inventory, it is better to purchase right away and 

the corresponding expected profit increases pretty smoothly to cover more holding cost.  

h
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Table 6. Profit Comparison for Changing Holding Cost 
 

Maximize Expected Profit Minimize Expected Cost Holding 
Cost 
Percent. 

Avg. 
Profit 

Avg. 
Quant 

Avg 
Price 

Avg 
Time

Avg 
Cost 

Avg 
Profit

Avg 
Quant. 

Avg 
Price 

Avg 
Time

Avg 
Cost 

0.01 6633.2 183.8 43.79 1 7.3891 6633.2 183.8 43.79 1 7.3891
0.015 6491.3 181.76 44.179 1 8.1662 6491.3 181.76 44.179 1 8.1662
0.02 6336.4 179.51 44.608 1 9.025 6336.4 179.51 44.608 1 9.025

0.025 6167.4 177.03 45.083 1 9.9742 6167.4 177.03 45.083 1 9.9742
0.03 5983.3 174.3 45.608 1 11.023 5983.3 174.3 45.608 1 11.023

0.035 6195.6 176.8 45.151 4.04 18.922 5783.2 171.3 46.187 1 12.182
0.04 6116.8 175.89 45.315 4.24 20.109 5566.1 167.99 46.828 1 13.464

 

Figure 14 further illustrates the corresponding profit increase trend when holding cost 

percentage increased from .01 to .04, we observe that the overall trend of expected profit is 

decreasing but there is a small jump up when holding cost percentage is .035. The result 

shows the differences between practice and theorem, quick solution process and optimal 

solution, and numerical example and theoretical results. 

 
Figure 14. Expected Profit Trend when Holding Cost Percentage Increases 
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From Figure 15, when holding cost percentage is .035 and .04, the ideal purchasing 

strategy at time 0 is to wait for some time instead of purchasing right away. When  is less 

than .3, since it is not so costly to hold the inventory, it is better to purchase right away and 

the corresponding expected profit increases pretty smoothly to cover more holding cost.  

h

 

Figure 15. Purchasing Time Trend when Holding Cost Percentage Increases 
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CASE IV: ε+−= pricesellingDemand 5300 , ε is  normal with mean 0 and standard 

deviation 2. For the purchasing price movement, let 0=μ , 1.=σ , 005.=h ,and T = 20 

weeks.  

 In this case, we run simulate 10 times and try to have a view at multiple purchasing 

strategies. First, we draw the plot of these ten paths of the unit cost before selling season 

(purchasing price and holding cost together) as Figure 16. The trend is zero with diverse 

variance. Here we assume that we need at least 100 units for the production and have 
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purchase these 100 units at the beginning. We plan to make a second purchase if the unit 

cost drops from the present $20 to below $13.5 before the selling season. The dashed line 

shows the target purchasing cost line.  

 

Figure 16. Numerical Examples of Unit Cost (Before Selling Season) Paths  
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We have already purchased  50 units at $20 unit cost, in the second purchasing, let us 

purchase additional 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, and 300 units when the 

cost goes below $13.5 and see how the second purchasing impacts the profit. From the plot, 

we notice that the target cost have been reached four times in these ten times (Theoretically 

the probability is .371) and the corresponding costs for these four times are $13.12,  $12.64, 

$12.95, and $11.67. The corresponding average unit cost (average cost for both 

purchasing), optimal selling price, and the optimal profits for these four purchasing are as 

following:  
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Table 7. Numerical Example of the Second Purchasing Decision 
 

 Second Purchasing. 
Unit Cost=13.12 

Second Purchasing. 
Unit Cost=12.95 

Second Purchasing. 
Unit Cost=12.64 

Second Purchasing. 
Unit Cost=11.67 

Addit. 
Order 

Quant. 

Avg. 
Unit 
Cost 

Sell. 
Price 

Exp. 
Profit 

Avg. 
Unit 
Cost 

Sell.
Price

Exp.
Profit

Avg.
Unit
Cost

Sell.
Price

Exp.
Profit

Avg. 
Unit 
Cost 

Sell. 
Price 

Exp.
Profit

25 17.7 38.9 1586 17.7 38.8 1588.1 17.5 38.8 1592 17.2 38.6 1604.1
50 16.6 38.3 2172 16.5 38.2 2176.2 16.3 38.2 2184 15.8 37.9 2208.2
75 15.9 37.8 2209 15.8 37.8 2225.7 15.6 37.7 2256.2 15 37.4 2350.9

100 15.4 37.6 1898.7 15.3 37.6 1920 15.1 37.4 1958.7 14.4 37.1 2079.3
125 15.1 37.4 1583 15 37.4 1608.8 14.7 37.3 1655.6 14.1 36.9 1801.5
150 14.8 37.3 1264.1 14.7 37.3 1294.2 14.5 37.1 1349.1 13.8 36.8 1519.9
175 14.6 37.2 943.04 14.5 37.2 977.54 14.3 37 1040.3 13.5 36.7 1235.9
200 14.5 37.1 620.53 14.4 37.1 659.37 14.1 37 730.07 13.3 36.6 950.31
225 14.4 37.1 296.98 14.2 37 340.14 14 36.9 418.7 13.2 36.5 663.5
250 14.3 37 -27.34 14.1 37 20.118 13.9 36.8 106.53 13.1 36.4 375.83
275 14.2 37 -352.2 14 36.9 -300.5 13.8 36.8 -206.3 13 36.4 87.498
 

From table 7, we notice that the optimal selling price drops as we order more, and the 

lower unit cost we spend in the second purchasing, the less the selling price and the more 

expected profit. For example, as the unit cost decreases from 13.12 to 12.95, then to 12.64, 

and then to 11.57, the optimal selling prices for order 150 units in the second purchasing 

are 37.3, 37.3, 37.1, and 36.8 correspondingly and the corresponding expected profit are 

1264.1, 1294.2, 1349.1 and 1519.9. The same rule applies to the other order quantity. 

Figure 17 further shows how the order quantity in the second purchasing influences our 

expected profits. We notice that in these four cases, ordering additional 75 units brings the 

highest expected profit. The corresponding expected profits are then 2209, 2225.7, 2256.2, 

and 2350.9.   

If we only purchase 50 units at the very beginning without a second purchasing, the 

optimal selling price is 40 and the expected profit is about 1000. If we purchase an 

additional 75 unit if the unit cost drops below 12.6, the average expected profit for these 

ten trials are (2209+2225.7+2256.2+2350.9+1000*6)/10=$1504.18. 
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Figure 17. Numerical Examples of Expected Profits of Second Purchasing 
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CASE V: ε+−= pricesellingbgDemand * , ε is uniform distribution with density 

function
⎪⎩

⎪
⎨
⎧ <<=

otherwise

A
Af
0

01
)( εε  ., T = 30 weeks, and weekpricepurchaseh /007.= . 1.=σ  

In this case, we ran the simulation 50 times and calculated the averages of the 

simulation results.  

We also let the dispose cost v  and shortage cost s to be zero. Then equation (9) can be 

written as )1()|(*

p
cAcpz −=  and (10) can be simplified as bpg 2− + 0

2 2

2

=−
p

AcA . We can 

get the optimal selling price by solving this equation, and then . 

The corresponding profit can be simplified as 

)(* cp bpgcpzq −+= )|( ***

2**** )1(5.))(()]|,([
p
cApbpgcpcpzE −+−−=Π .  
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From the analysis in the previous section, fixing some parameters of selling season will 

not influent the properties of the analysis and can be easily extended to other cases. In the 

following numerical example, we specifically define b=.004, g=6.667, A=10, k=5000, and 

present expected profit is 1,253.651. 

In this example, we try a different distribution and let σ be a small one. We find out the 

outputs are consistent with our theories and are consistent with the observations in 

previous numerical examples. Table 8 lists the results of comparing “purchasing at the 

highest expected profit” with “purchasing at the lowest expected cost”. The averages for 

the purchasing time, order quantity, selling price, and expected profit of “purchasing at the 

highest expected profit” method which are on the left side of the table are different from 

the averages for the purchasing time, order quantity, selling price, and expected profit of 

“purchasing at the lowest expected cost” method which are on the right side of the table. In 

the table, the expected profit of “purchasing at the highest expected profit” is a little higher 

than “purchasing at the lowest cost” when purchasing cost trend μ  is between .07 and .22. 

When purchasing cost trend μ  is lower than 0 or higher than .15 , these two results are the 

same. The expected profit of “purchasing at the highest expected profit” is not more than 

1.1% higher than the expected profit of “purchasing at the lowest expected cost” in this 

example. So “purchasing at the lowest expected cost” may lead to lower expected profit 

than the “purchasing at the highest expected profit” method, but the differences are not too 

much. It satisfies our estimation that these two methods are quite consistent when σ is 

small. When 2/σθ −> , i.e., the cost trend μ is more than holding cost parameter (h 07.=h ) 

in this case, our purchasing depends on how much is the difference of μ and . If h μ is 

much higher than , we’d better purchase at the very beginning, otherwise, wait a little bit h
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later to make a purchase. If 2/σθ −< , i.e., the purchasing cost is increasing very slowly 

and is lower than the holding cost, the two methods come to the same result and that is 

“purchasing at the end”.  

Table 8 also provides averages for the purchasing time, order quantity, selling price, 

and expected profit during time period  using our strategy when the cost trend 

changes from -.03 to .67. From the table, when 

]30,0[

μ is no more than .22,  the higher μ  is, the 

lower will be the expected profit and order quantity, and the higher the potential selling 

price will be. The ideal purchasing strategy at time 0 is to wait for some time instead of 

purchasing right away. When μ  is more than .22, it is better to purchase right away and 

the corresponding expected profit is $1253.251. So for a slightly positive cost trend, even 

if the cost is increasing, it is still possible to gain better profit by waiting for some time to 

catch the chance to purchase at a lower cost from the fluctuating market. As μ  increases, 

the profit increases, but the purchasing time increases at a decreasing rate, i.e., we can wait 

for a short time but we’d better not purchase too late.  

 

Table 8. Profit Comparison for Changing Drift Term (Uniform Distribution) 
 

Maximize Expected Profit Minimize Expected Cost 
μ  Avg. 

profit 
Avg. 
Quant. 

Avg. 
Price 

Avg.
Time

Avg. 
profit 

Avg. 
Quant.

Avg. 
Price 

Avg.
Time

0.67 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
0.62 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
0.57 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
0.52 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
0.47 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
0.42 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
0.37 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
0.32 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
0.27 1176.382 9.969 1253.651 0 1176.382 9.969 1253.651 0
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0.22 1189.56 9.974 1253.001 5.17 1176.382 9.969 1253.651 0
0.17 1203.532 9.979 1252.311 11.9 1176.382 9.969 1253.651 0
0.12 1212.88 9.983 1251.847 17.22 1176.382 9.969 1253.651 0
0.07 1223.452 9.987 1251.323 28.75 1176.382 9.969 1253.651 0
0.02 1230.221 9.991 1251.174 30 1230.221 9.991 1251.174 30

-0.03 1234.24 9.994 1250.245 30 1234.24 9.994 1250.245 30
 

Figure 18 further illustrates the corresponding profit increase trend when μ decreases 

from .22 to -.03, we observe that as μ  decreases, the profit increase in a decreasing rate. 

Sometime it decreases fast and sometimes it decreases slower. When μ is higher than .22, 

the purchasing strategy is purchasing at the beginning and the expected profits are the 

present expected profit 1253.651. 

 

Figure 18. Numerical Example of Expected Profit Trend when Cost Trend Decreases 
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5.2. Profit Impacts of Adding Potential Suppliers  

We let T = 100, , ppy 2.700)( −= )1,0(~ Nε , 000,200=k , and the unit holding cost 

percentage .We further assumed there were 9 suppliers. For each 001.=h
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supplier, 1.0... 921 ==== σσσ , and 6.0... 921 ==== μμμ . At time 0 the purchase costs for 

supplier 1,2,3…,9 are exp(6), exp(6.1), exp(6), exp(5.8), exp(6.05), exp(6.05), exp(6.05), 

exp(6.05), exp(6.05) correspondingly. We ran the simulation 25 times and calculated the 

averages from the simulation results. Table 9 provides simulation results for the purchasing 

time, order quantity, selling price, and profit during time period  using our strategy 

when the potential suppliers increases from only1 supplier to all nine. From the simulation, 

we found that when the number of suppliers increased from 1 to 9, the average purchase 

price drops from $403.43 to $109.29, the order quantity increases from 310.7 to 340.81, 

the average selling price drops from $1,952.8 to $1,805.71, the corresponding average 

profits increase from $279,816.8 to$375,608.8, and the ideal purchasing time moves from 

the very beginning to close to the end. This indicates that when there are more potential 

suppliers, it is possible to wait to catch the chance to purchase at a lower cost from any of 

the suppliers, and then the company can order more and gain a higher expected profit from 

a larger demand by charging a lower selling price. 

]100,0[

  

Table 9. Profit Comparison from the Numerical Experiment for the Increasing 
Supplier Base 

 
No of 

Suppliers 
Fixed 
Cost 

Purchasin
g price 

Purchasin
g Time 

Order 
Quantity 

Selling 
Price Profit 

1 200,000 403.43 0 310.7 1,952.8 279,816.8
2 200,000 243.66 58.81 326.96 1,872.92 331,050.4
3 200,000 193.97 79.48 332.06 1,848.08 347,542.9
4 200,000 162.77 91.15 335.29 1,832.46 357,973 
5 200,000 146.22 91.81 336.43 1,824.18 363,239.7
6 200,000 130.22 92.15 338.64 1,816.18 368,651.4
7 200,000 122.93 92.78 339.41 1,812.53 371,106.5
8 200,000 111.9 94.11 340.54 1,807.02 374,751.4
9 200,000 109.29 94.93 340.81 1,805.71 375,608.8
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Figures 19 and 20 further illustrate the increase in both profit and purchasing time 

using our method when the number of suppliers increased from 1 to 9. From Figures 19 

and 20, we observe that as the number of suppliers increases, the profit increases but at a 

decreasing rate, and the purchasing time also increases at a decreasing rate.  

 
Figure 19. Numerical Example of Profit Trend when Increasing the Supplier Base 
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Figure 20. Numerical Example of Purchasing Time Trend When Increasing the 
Supplier Base   
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5.3. Risk Impact of Adding Potential Suppliers and Increasing Cost Trends   

let T = 100 days and the unit holding cost percentage daypricepurchaseh /*001.= . We 

further assumed that there were 9 suppliers. For the cost trend of each supplier, 

1.0... 921 ==== σσσ , and μμμμ ~... 921 ==== , where μ~ varied according to the key in 

Figure 21 to 23. At time 0 the purchase costs for supplier 1,2,3…,9 are exp(1), exp(1.1), 

exp(.8), exp(.9), exp(1.05), exp(1.05), exp(1.05), exp(1.05), exp(1.05) correspondingly. 

Here we try to compare how the coefficient in the price sensitive demand function and the 

target profit influence the downside risks. 

 

Case I: ε+−= pricesellingdemand *1.7.3 , whereε  is a truncate normal in with 

mean 0 and variance 1.  The target profit is $42. 

),0( +∞
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The optimal purchasing strategy was to purchase right away when the price of any supplier 

caused the profit to drop below the target profit. We ran the simulation 100 times and 

calculated the averages from the simulation results. Figure 21 illustrates how the 

corresponding risks, the probabilities of not reaching the target profit $42 as the cost trend 

α  increases from .2 to .6 by .02, drop as the number of supplier increases. 

 

Table 10. Numerical Example I of Downside Risk when Increasing the Supplier Base 
 

 Number of Suppliers 
α  1 2 3 4 5 6 7 8 9

0.2 0.0055 3E-05 2E-07 0 0 0 0 0 0
0.22 0.0093 9E-05 8E-07 0 0 0 0 0 0
0.24 0.0152 0.0002 3E-06 1E-07 0 0 0 0 0
0.26 0.0241 0.0006 1E-05 3E-07 0 0 0 0 0
0.28 0.0368 0.0014 5E-05 2E-06 1E-07 0 0 0 0
0.3 0.0546 0.0031 0.0002 8E-06 5E-07 0 0 0 0

0.32 0.0784 0.0063 0.0005 4E-05 3E-06 2E-07 0 0 0
0.34 0.1093 0.0122 0.0013 0.0001 1E-05 2E-06 2E-07 0 0
0.36 0.1477 0.0223 0.0032 0.0005 7E-05 1E-05 1E-06 2E-07 0
0.38 0.194 0.0384 0.0072 0.0014 0.0003 5E-05 1E-05 2E-06 4E-07
0.4 0.2479 0.0625 0.015 0.0036 0.0009 0.0002 6E-05 1E-05 4E-06

0.41 0.2773 0.0782 0.021 0.0057 0.0016 0.0004 0.0001 4E-05 1E-05
0.42 0.3083 0.0966 0.0288 0.0087 0.0027 0.0008 0.0003 8E-05 3E-05
0.43 0.3406 0.1177 0.0389 0.013 0.0045 0.0015 0.0005 0.0002 6E-05
0.44 0.3739 0.1418 0.0515 0.019 0.0071 0.0027 0.001 0.0004 0.0001
0.45 0.408 0.1687 0.067 0.027 0.0111 0.0045 0.0019 0.0008 0.0003
0.46 0.4427 0.1985 0.0856 0.0374 0.0167 0.0074 0.0033 0.0015 0.0007
0.47 0.4776 0.2309 0.1076 0.0508 0.0244 0.0117 0.0056 0.0027 0.0013
0.48 0.5125 0.2657 0.1331 0.0674 0.0348 0.0179 0.0092 0.0048 0.0025
0.49 0.5472 0.3026 0.162 0.0877 0.0482 0.0265 0.0146 0.008 0.0044
0.5 0.5812 0.3412 0.1943 0.1118 0.0653 0.0381 0.0223 0.013 0.0076

0.51 0.6145 0.3811 0.2298 0.1399 0.0863 0.0533 0.0329 0.0203 0.0125
0.52 0.6467 0.4218 0.268 0.1718 0.1116 0.0725 0.0471 0.0306 0.0199
0.53 0.6776 0.4629 0.3085 0.2074 0.1411 0.096 0.0653 0.0444 0.0302
0.54 0.7072 0.5038 0.3509 0.2463 0.1748 0.1241 0.0881 0.0625 0.0444

 121



0.55 0.7352 0.5442 0.3945 0.288 0.2125 0.1567 0.1156 0.0853 0.0629
0.56 0.7616 0.5837 0.4387 0.3319 0.2536 0.1937 0.148 0.1131 0.0864
0.57 0.7862 0.6217 0.4829 0.3774 0.2976 0.2346 0.185 0.1459 0.115
0.6 0.8495 0.7249 0.6101 0.5159 0.4392 0.374 0.3184 0.2711 0.2308

 
 

Figure 21. Risk Trends when Increasing the Supplier Bases (Example I) 
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From the table and the figure, we can see that the risk decreases at a decreasing rate as 

the number of suppliers increases. As the purchasing cost trend μ increases, the risk 

increases. As there are 1, 2, 3…9 suppliers, the risks for one supplier is  around 0 when 

purchasing cost trend 2.=μ , when purchasing cost trend increase to 6.=μ , the downside 

risk for 1, 2, 3, 4, 5, 6, 7, 8, and 9 are about .85, .72, .61, .52, .44, .37, .32, .27, and .23 
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respectively. It shows clearly that the downside risk increases quickly when the purchasing 

cost trend is more upward and increasing supplier bases will effectively decrease our 

downside risk. We can easily decide the necessary number of suppliers for a certain risk 

level. For instance, in this example, choosing three suppliers decreased the risk to less than 

20% when 5.=μ . 

 

Case II: ε+−= pricesellingdemand *01.7.3 , whereε  is a truncate normal in with 

mean 0 and variance 1.  The target profit is $420. 

),0( +∞

The optimal purchasing strategy was to purchase right away when the price of any supplier 

caused the profit to drop below the target profit. We ran the simulation 100 times and 

calculated the averages from the simulation results. Figure 22 illustrates how the 

corresponding risks, the probabilities of not reaching the target profit $420 as the cost trend 

α  increases from .2 to .6 by .02, drop as the number of supplier increases. 

From the table and the figure, we can see that the risk decreases at a decreasing rate as 

the number of suppliers increases. As the purchasing cost trend μ increases, the risk 

increases. As there are 1, 2, 3…9 suppliers, the risks for one supplier is are all around 0 

when purchasing cost trend 2.=μ , when purchasing cost trend increase to 6.=μ , the 

downside risk for 1, 2, 3, 4, 5, 6, 7, 8, and 9 are about .73, .54, .38, .28, .20, .15, .11, .08, 

and .06 respectively. It shows clearly that the downside risk increases quickly when the 

purchasing cost trend is more upward and increasing supplier bases will effectively 

decrease our downside risk. We can easily decide the necessary number of suppliers for a 

certain risk level. For instance, in this example, choosing three suppliers decreased the risk 

to less than 8% when 5.=μ . Comparing  case I, in which the coefficient of the selling price 
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is .1,  the selling price has less negative impact to the market demand and the risk drops 

from 20% to 8%.  

 
Table 11. Numerical Example II of Downside Risk when Increasing the Supplier Base 

 
 

 Number of Suppliers 
α  1 2 3 4 5 6 7 8 9

0.2 0.0023 5E-06 0 0 0 0 0 0 0
0.22 0.004 2E-05 1E-07 0 0 0 0 0 0
0.24 0.0068 5E-05 3E-07 0 0 0 0 0 0
0.26 0.0113 0.0001 1E-06 0 0 0 0 0 0
0.28 0.018 0.0003 6E-06 1E-07 0 0 0 0 0
0.3 0.0279 0.0008 2E-05 6E-07 0 0 0 0 0

0.32 0.0418 0.0018 7E-05 3E-06 1E-07 0 0 0 0
0.34 0.0606 0.0038 0.0002 1E-05 8E-07 0 0 0 0
0.36 0.0854 0.0075 0.0006 5E-05 4E-06 4E-07 0 0 0
0.38 0.1168 0.014 0.0016 0.0002 2E-05 3E-06 3E-07 0 0
0.4 0.1553 0.0247 0.0037 0.0006 9E-05 1E-05 2E-06 3E-07 1E-07

0.41 0.1771 0.0321 0.0054 0.0009 0.0002 3E-05 5E-06 1E-06 2E-07
0.42 0.2007 0.0412 0.0079 0.0016 0.0003 6E-05 1E-05 3E-06 5E-07
0.43 0.2259 0.0521 0.0113 0.0025 0.0006 0.0001 3E-05 7E-06 1E-06
0.44 0.2527 0.0652 0.0158 0.0039 0.001 0.0003 7E-05 2E-05 4E-06
0.45 0.2809 0.0804 0.0217 0.006 0.0017 0.0005 0.0001 4E-05 1E-05
0.46 0.3103 0.0981 0.0293 0.0089 0.0028 0.0009 0.0003 9E-05 3E-05
0.47 0.3407 0.1182 0.0388 0.013 0.0045 0.0015 0.0005 0.0002 6E-05
0.48 0.372 0.1407 0.0506 0.0185 0.0069 0.0026 0.001 0.0004 0.0001
0.49 0.4039 0.1658 0.0648 0.0257 0.0105 0.0043 0.0017 0.0007 0.0003
0.5 0.4361 0.1932 0.0816 0.035 0.0154 0.0068 0.003 0.0013 0.0006

0.51 0.4686 0.2228 0.1013 0.0467 0.0221 0.0104 0.0049 0.0023 0.0011
0.52 0.5009 0.2544 0.1238 0.0611 0.0308 0.0156 0.0078 0.004 0.002
0.53 0.5329 0.2877 0.1492 0.0784 0.0421 0.0226 0.0121 0.0065 0.0035
0.54 0.5643 0.3225 0.1773 0.0988 0.0561 0.0319 0.0181 0.0103 0.0058
0.55 0.595 0.3583 0.208 0.1223 0.0732 0.0438 0.0262 0.0157 0.0094
0.56 0.6248 0.3948 0.241 0.1489 0.0935 0.0588 0.0369 0.0232 0.0146
0.57 0.6536 0.4317 0.276 0.1784 0.1172 0.077 0.0506 0.0333 0.0218
0.6 0.7321 0.5407 0.3886 0.282 0.2073 0.1525 0.1121 0.0825 0.0606
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Figure 22. Risk Trends when Increasing the Supplier Bases (Example II)  
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Case III: ε+−= pricesellingdemand *001.7.3 , whereε  is a truncate normal in with 

mean 0 and variance 1.  The target profit is $4200. 

),0( +∞

The optimal purchasing strategy was to purchase right away when the price of any supplier 

caused the profit to drop below the target profit. We ran the simulation 100 times and 

calculated the averages from the simulation results. Figure 23 illustrates how the 

corresponding risks, the probabilities of not reaching the target profit $4200 as the cost 

trend α  increases from .2 to .6 by .02, drop as the number of supplier increases. 
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Table 12. Numerical Example III of Downside Risk when Increasing the Supplier Base 
 

 Number of Suppliers 
α  1 2 3 4 5 6 7 8 9

0.2 0.0007 6E-07 0 0 0 0 0 0 0
0.22 0.0014 2E-06 0 0 0 0 0 0 0
0.24 0.0025 6E-06 0 0 0 0 0 0 0
0.26 0.0042 2E-05 1E-07 0 0 0 0 0 0
0.28 0.0071 5E-05 3E-07 0 0 0 0 0 0
0.3 0.0114 0.0001 1E-06 0 0 0 0 0 0

0.32 0.0179 0.0003 5E-06 1E-07 0 0 0 0 0
0.34 0.0272 0.0008 2E-05 5E-07 0 0 0 0 0
0.36 0.04 0.0017 6E-05 2E-06 1E-07 0 0 0 0
0.38 0.057 0.0034 0.0002 1E-05 6E-07 0 0 0 0
0.4 0.079 0.0065 0.0005 4E-05 3E-06 2E-07 0 0 0

0.41 0.092 0.0088 0.0007 7E-05 6E-06 6E-07 1E-07 0 0
0.42 0.1064 0.0117 0.0012 0.0001 1E-05 1E-06 2E-07 0 0
0.43 0.1223 0.0155 0.0018 0.0002 3E-05 3E-06 4E-07 0 0
0.44 0.1395 0.0201 0.0026 0.0004 5E-05 7E-06 1E-06 1E-07 0
0.45 0.1582 0.0258 0.0038 0.0006 9E-05 2E-05 2E-06 4E-07 1E-07
0.46 0.1782 0.0328 0.0055 0.0009 0.0002 3E-05 6E-06 1E-06 2E-07
0.47 0.1996 0.041 0.0077 0.0015 0.0003 6E-05 1E-05 3E-06 5E-07
0.48 0.2221 0.0508 0.0106 0.0023 0.0005 0.0001 3E-05 6E-06 1E-06
0.49 0.2458 0.0622 0.0144 0.0034 0.0009 0.0002 5E-05 1E-05 3E-06
0.5 0.2704 0.0752 0.0192 0.005 0.0014 0.0004 0.0001 3E-05 8E-06

0.51 0.2959 0.0899 0.0252 0.0072 0.0022 0.0007 0.0002 6E-05 2E-05
0.52 0.3221 0.1065 0.0325 0.0102 0.0033 0.0011 0.0004 0.0001 4E-05
0.53 0.3488 0.1248 0.0413 0.014 0.005 0.0018 0.0006 0.0002 8E-05
0.54 0.3759 0.1448 0.0517 0.019 0.0072 0.0027 0.001 0.0004 0.0002
0.55 0.4032 0.1664 0.0639 0.0251 0.0103 0.0042 0.0017 0.0007 0.0003
0.56 0.4305 0.1896 0.0778 0.0327 0.0143 0.0062 0.0027 0.0012 0.0005
0.57 0.4577 0.2141 0.0936 0.0419 0.0194 0.009 0.0042 0.0019 0.0009
0.6 0.5371 0.2942 0.1516 0.0798 0.0433 0.0235 0.0127 0.0069 0.0037
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Figure 23. Risk Trends when Increasing the Supplier Bases (Example III) 
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From the table and the figure, we can see that the risk decreases at a decreasing rate as 

the number of suppliers increases. As the purchasing cost trend μ increases, the risk 

increases. As there are 1, 2, 3…9 suppliers, the risks for one supplier is are all around 0 

when purchasing cost trend 2.=μ , when purchasing cost trend increase to 6.=μ , the 

downside risk for 1, 2, 3, 4, 5, 6, 7, 8, and 9 are .54, .29, .15, .08, .04, .02, .01, .01, and .00 

respectively. It shows clearly that the downside risk increases quickly when the purchasing 

cost trend is more upward and increasing supplier bases will effectively decrease our 
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downside risk. We can easily decide the necessary number of suppliers for a certain risk 

level. For instance, in this example, choosing three suppliers decreased the risk to less than 

8% when 5.=μ .  

From these three cases, we notice that the downside risk is very sensitive to the impact 

factor of selling price to demand, i.e., b in the demand function εε +−=+= bpgpyD )( . As 

b shrink in ten times from .1 to .01, and then to .001, even the target profit increase in ten 

times from $42 for b=.1 to $420 for b=.01, and then to $4200 for b=.001, the 

corresponding downside risks decreases for anyμ and number of suppliers. For example, 

as cost trend α =.2, .3, .4, .5, .6, the downside risks for ppy 1.7.3)( −= with target profit 42 

for purchasing from one supplier are .0007, .0114, .079, .2704, .5371 respectively; the 

downside risks for with target profit 420 for purchasing from one supplier 

are .0023, .0279, .1553, .43361, .7321 respectively; and the downside risks for 

with target profit 42 for purchasing from one supplier 

are .0055, .0546, .2479, .5812, .8495 respectively.  It seems that as the market demand is 

more sensitive to the selling price, the downside risk will become progressively larger. 

ppy 01.7.3)( −=

ppy 001.7.3)( −=

 

6. Conclusions 

In this chapter, I study how to design integrated procurement and selling strategies for a 

newsvendor to maximize profit, under the assumption that the newsvendor has a specific 

time period before the commencement of the selling season to make the purchase. The 

purchasing cost of the raw material fluctuates over time, and the demand for the product is 

random and price-sensitive. Even though a Binomial Tree approximation is used 

 128



extensively to solve price uncertainty problems, the solution time of that method increases 

exponentially with the number of the suppliers and the number of periods. Therefore, we 

go further and propose another solution algorithm for this specific problem, which 

substantially decreases its computational complexity.  

We extend our solution algorithm to the cases of forward contracts, multiple suppliers, 

multiple demand points and risk minimization. Whether it is more profitable to choose a 

forward contract or to purchase directly from the spot market depends on whether the 

expected profit from the spot market using our strategy exceeds the profit from a forward 

contract. When facing multiple potential suppliers with potentially different price 

processes, purchasing from multiple suppliers with potentially different price processes can 

lead to higher profits due to a higher probability of being able to buy at a low price from at 

least one of them. When units are stocked to satisfy demands in multiple time points, we 

discuss the scenarios in which such a problem can be decomposed into several single-

period subproblems. We further provide numerical analysis to show how to use Monte 

Carlo simulation to plan the second purchasing when there is a second purchase option 

available during the horizon, reveal how  and when the profit, purchasing time, and selling 

price of purchasing at the lowest expected cost differ from those of purchasing at the 

highest expected profit, reveal that  higher unit holding cost rate will postpone the purchase,  

and demonstrate the profound impact that increasing the potential supplier base can have 

on profit and risk, together with the effect of these parameters on the purchasing decision.  
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CHAPTER V: CONCLUSIONS & FUTURE DIRECTIONS 

 
For some products, prices fluctuate constantly and unpredictably.   This dissertation 

provides tools and insights for managers to handle the purchasing decisions for these 

products effectively.  The basic suggested approach is, given a purchasing time horizon, to 

pick a goal (expected profit or cost), and keep delaying the purchase until that goal has 

been reached.  We apply this idea under scenarios that include identifying the expected 

optimum time at which the lowest price occurs, planning the procurement with and without 

quantity flexibility when the selling price is extrinsic, and investigating how to design 

integrated procurement and selling strategies for a newsvendor. 

In chapter II, we derived expressions of the contract’s expected low price and its 

second moment for a given horizon, then we identified an expected optimum time to 

minimize the expected squared loss.  Simulation experiments verified our analysis, and we 

identified that the expected optimum purchasing time is in the middle of the time horizon 

when the cost trend is level, at the very beginning when the cost rises sharply, and  is at the 

very end when the cost drops sharply.  

In chapter III, we analyzed purchasing strategies for retailers regarding the best timing 

and amount of purchases when operating under contracts in which the purchasing time and 

order quantity are flexible and the purchasing price is stochastic. We developed a Time 

Strategy and a Target Strategy and compared these two strategies in timing flexibility 

contracts with or without quantity flexibility and then combined these methods into an 

approximate algorithm to facilitate the purchasing decision in a more efficient way. We 
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then extended the solution procedures to cases of multiple suppliers, minimizing 

downside-risk, and maximizing profit given a risk level. 

Finally, in Chapter IV, we studied the problem of planning the procurement and sales 

for a newsvendor for whom the price of the raw material fluctuates along time and the 

demand of the output product is random and price-sensitive. After we provided a backward 

deduction method to solve this problem, we developed an efficient solution algorithm 

adapted for multiple-supplier cases and long-term-length scenarios and a corresponding 

expected lowest profit. We proved that when the cost drops and satisfies certain criteria, 

the optimal purchasing decision is to purchase at the end. We further revealed that when 

risk increase dominates the profit increase, a risk-averse (even a risk-neutral) agent will 

hedge the risk by either purchasing earlier or using option or forward contracts. 

Furthermore, we discussed the scenarios in which the multiple time points problem can be 

decomposed into several single-period subproblems and  illustrated how purchasing from 

multiple suppliers with different modes of price movements leads to higher profits.  

Much work remains to be done in the study of contracts under uncertain sourcing 

conditions. For example, further research can extend our analysis to include uncertainties 

of lead-time and supply capacity. Combining processing flexibility and demand flexibility 

is also an interesting topic for future research.  The research can also be extended to the 

purchasing, order quantity and selling decisions under multiple objectives of risk control, 

cost efficiency and profit maximum. Some other possible extensions include studying how 

to make the decisions of entering and switching among projects facing information update 

and price uncertainties, examining the make vs. buy decision, designing investment 

strategies when there are multiple projects available, investigating how to use options to 
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hedge the risk in operations, and making inventory decisions in the EOQ setting in which 

the purchasing price or the capacity is uncertain.  
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APPENDIX: Simulation of Squared Losses in the Stochastic 

Environment 

#initial values 

n = 100  #time horizon 

h = 2000  #simulation times 

sita = 0.2   #cost trend 

u=124   #starting total cost position minimize E(I-x)^2 for the ith simulation 

sigma = 0.1  #standard deviation 

 

X = matrix(0, nrow = h, ncol = n)   # w[i, j]record x value at time j for the 

ith simulation 

Difmin = matrix(0, nrow = h, ncol = n)  # Difmin[i, j]=(I(T)-x(j))^2 for the ith 

simulation, that is the squred difference between value at time j and minimum value for 

the ith simulation 

I= rep(0,h)  #record the minimum point for the ith simulation 

Edif = rep(0,n)  #record the E(I-x(t))^2 for time t 

MinT =0  #record the time that minize E(I-x(t))^2 

 

# Caculate the results for the simulated reality 

for(j in 1:h){ 

 X[j,1]=u  #the process start from value u 
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 I[j]=X[j,1]    

 for(i in 2:n){ 

  k=i-1  

  X[j,i]=sita+ rnorm(1,mean=0,sd=1) +X[j,k]  

  if(X[j,i]<I[j]){   #Find the minimum in the j process  

   I[j]=X[j,i]   

  } 

 }  

} 

for(j in 1:h){ 

 for(i in 1:n){ 

  Difmin[j,i]=(X[j,i]-I[j])^2 #Fine the squred difference between value at time j and 

minimum value for the ith simulation 

 }  

} 

 

MinVal=mean(Difmin[,1]) #Initial MinVal, MinVal record the minimum E(I-x(t))^2 

MinT=1  #Initial MinT, MinT record the time that minimize E(I-x(t))^2 

for(i in 1:n){  #Find the time that minimize E(I-x(t))^2 

 Edif[i]=mean(Difmin[,i]) #Find the E(I-x(t))^2 for time t 

 if (Edif[i]<MinVal){ 

  MinT=i  #MinT record the time that minimize E(I-x(t))^2 

  MinVal=Edif[i] #MinVal record the minimum E(I-x(t))^2 
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 } 

} 

  

#results 

Edif #the E(I-x(t))^2 for time t 

MinT #the time that minimize E(I-x(t))^2 

 

#plot 

tt=1:100  #time 

par(mfrow=c(3,3))                

plot(tt,Edif[tt],main=paste("theta=",sita),xlab="time",ylab="E(I-x(t))^2")     #plot 
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