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DISLOCATION INTERACTIONS WITH INTERFACES 

 

 

ABSTRACT 

 

 

By Sreekanth Akarapu, Ph.D. 

Washington State University 

August 2009 

 

Chair: Hussein M Zbib 

 

In this dissertation work, our main focus was to investigate the interactions of dislocation 

with interfaces. Plastic deformation in polycrystalline materials and multi-layered metallic 

composites, on a microscopic scale, involve interaction of dislocations with grain boundaries and 

bi-material interfaces respectively.  Towards the end of investigating the interaction of 

dislocations with bi-material interface, we have derived analytical expressions for the stress field 

due to an arbitrary dislocation segment in an isotropic inhomogeneous medium. We have 

developed a new approach as compared with attempts made in the literature. One of the main 

advantages our derivation is separation of solution into homogeneous and image parts which 

facilitates an easy modification of existing dislocation dynamics simulation codes to incorporate 

the image stress effect.  

 In the case of polycrystalline materials, as grain boundaries are major obstacles to plastic 

deformation, it is of fundamental importance to study the interactions of dislocations with grain 

boundaries. Towards this goal, in chapter four, we have investigated the basic phenomena of 

transmission of dislocation through a pure tilt wall. In this work, we have studied the structure of 

the symmetric tilt wall acquired after transmission of several dislocations and modeled the 

structures to which it relaxes.  



 v 

 In chapter five, digressing from the main theme of the dissertation, we have studied the 

kinematic and thermodynamics effect of representing discrete dislocations in terms of 

continuously distributed dislocations. In this work, we have considered infinite stacked double 

ended pile-ups in an isotropic elastic homogeneous medium. The error in number of dislocations, 

microstructural energy and slip distribution between discrete and semi-discrete representation 

was quantified. The asymptotic expressions are derived and threshold values of certain key 

parameters are also deduced.  

 In the appendix, we have investigated the deformation of single crystal micropillars under 

uniaxial compression using a multi-scale model for plasticity. Our simulation results are 

qualitatively and quantitatively comparable with that of experiments. Dislocation arm operation 

was found to be the prominent mechanism to plastic deformation in micron to submicron size 

specimens. The observed strain hardening is attributed to the formation of entangled dislocation 

structures and stagnation of dislocations.  
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CHAPTER ONE: INTRODUCTION 

 

Modeling of plastic deformation of metals under extreme loading conditions depends 

mainly on our knowledge of microscopic mechanisms and their influence on the 

macroscopic response. In plastic deformation, dynamics of dislocations which pattern 

into various dislocation structures are the key microscopic phenomena which influence 

the macroscopic behavior. Towards the goal of understanding plastic deformation from 

the more physical perspective, various researchers have established discrete models to 

investigate the origin of dislocation structures by perceiving the problem as a dynamical 

evolution of dislocations in deforming crystals. Some of the most original models were 

two-dimensional based on periodic cells each with infinite edge dislocations. Although 

these 2D models have shed light on glide mechanisms of dislocations, they lacked the 

incorporation of important mechanisms such as cross-slip, jogs, junctions and line tension 

associated with curvature of dislocations. These issues of more idealistic 2D models were 

addressed in a pioneering work by (Kubin et al. 1992) on the development of three 

dimensional dislocation models. In their model, the dislocation curves are discretized into 

pure edge and pure screw dislocation segments. (Zbib et al. 1996a) have established a 

new approach for three dimensional dislocation dynamics (3D-DD) by discretizing 

arbitrarily curved dislocations into piecewise continuous arrays of mixed dislocation 

segments. The dynamical evolution of these dislocation segments on their respective 

crystallographic planes is determined by solving the first order differential equation 

consisting of an inertia term, a drag term and a driving force vector as given by 
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( )
*

,

D
D i

s i i

v
m v F

M T p
+ =&   (1.1) 

In the above equation, the subscript s stands for the segment, m
*
 is   the effective 

dislocation segment mass density given by (Hirth et al. 1998a), M is the dislocation 

mobility which could depend both on the temperature T and the pressure p. The driving 

force Fi per unit length arises from a variety of sources. Since the strain field of the 

dislocation varies as the inverse of the distance from the dislocation core, dislocations 

interact among themselves over long distances, yielding a dislocation-dislocation 

interaction force FD.   A moving dislocation has to overcome local constraints such as the 

Peierls stresses (i.e. lattice friction), FPeierls. The dislocation may encounter local obstacles 

such as stacking fault tetrahedra, defect clusters and vacancies that interact with the 

dislocation at short ranges, giving rise to a dislocation-obstacle interaction force FObstacle.  

Furthermore, the internal strain field of randomly distributed local obstacles gives rise to 

stochastic perturbations to the encountered dislocations, as compared with deterministic 

forces such as the applied load. This stochastic stress field, or thermal force FThermal 

arising from thermal fluctuations, also contributes to the spatial dislocation patterning in 

the later deformation stages.  Dislocations also interact with free surfaces, cracks, and 

interfaces, giving rise to what is termed as image stresses or forces FImage. In addition, a 

dislocation segment feels the effect of externally applied loads, FExternal, osmotic force 

FOsmotic resulting from non-conservative motion of dislocation (climb) and its own self-

force FSelf.  Adding all of these effects together yields the following expressions for the 

driving force in (1.1). 

 

  ThermalOsmoticImageObstacleExternalSelfDPeirelsi FFFFFFFFF +++++++=                   (2.1) 
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One of the major contributions to the driving force is from the dislocation-dislocation 

interactions. As the complicated dislocation structures are discretized into straight 

dislocation segments, the stress field of a dislocation segment is fundamental to compute 

the driving force from the dislocation-dislocation interactions. In an isotropic 

approximation, the explicit expressions of stress components in the coordinate system 

oriented along the dislocation segment are derived by deWit (Hirth and Lothe 1982). It is 

worth noting that these expressions can also be easily derived from Mura’s formula found 

later (Mura 1987). Chapter two mainly focuses on developing unified approach to tackle 

both short-range and long-range dislocation interactions in dislocation dynamics 

simulations. In this chapter, we have developed a computational approach to determine 

the stress field of a dislocation segment in a general anisotropic homogeneous medium to 

deal with short-range interactions. The long-range interactions in dislocation dynamics 

simulations are dealt with continuous distributions of dislocations and we have presented 

the case of an array of infinite edge dislocations with different domains of 

homogenization. For an inhomogeneous medium such as composites, chapter three deals 

with the derivation of line integral expressions to compute stress fields due to arbitrarily 

oriented dislocation segment in isotropic joined perfectly bonded half-spaces. To validate 

the derived analytical expressions, the stress field of an infinite edge dislocation is 

determined by analytically integrating the line integral expressions and compared with 

existing results in the literature. Using the derived line integral expressions, we have 

studied the interaction of glide and prismatic dislocation loops with a bi-material 

interface.  
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As an application of the approach described in chapter one, chapter four investigates the 

interaction of dislocations with tilt walls. As a premise to the work described in chapter 

four, previous works on the interactions of dislocations with grain boundary is reviewed 

in the following paragraphs. 

 

On a microscopic scale, plastic deformation of polycrystalline metals is caused by 

dynamics of dislocations within a grain as well as their propagation across several grains. 

Therefore, grain boundary is a key microscopic feature, which influences the 

macroscopic strength of the material. The overall yield strength of the polycrystalline 

metal depends on the statistical average resistance of the grain boundary to dislocation 

motion. In macroscopic terms, the well-known Hall-Petch relation quantifies the increase 

in yield strength as an inverse function of grain size. The Hall-Petch effect is rationalized 

from the perspective of dislocations piling up against an impenetrable grain boundary. 

This, in turn, would increase the stress at the spearhead of the pile-up to reach a critical 

value to facilitate the flow of plasticity across the grains. To find an explanation in terms 

microscopic events, several researchers have devoted to understand the interactions of 

dislocation and grain boundary through experimental as well as theoretical investigations. 

 

Several mechanisms responsible for slip transmission like dislocation absorption, 

dislocation absorption and emission at a different site, dislocation nucleation, dislocation 

reflection and dislocation transmission were discovered using various different 

experimental techniques. One of the major conclusions of these observations was that 

grain boundaries act both as dislocation obstacles as well as sources. Apart from 
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investigating the dislocation interactions with grain boundaries using dynamic in-situ 

TEM, (Shen et al. 1998) proposed criteria to predict the conditions for slip propagation 

across the grain boundary. According to this work, the slip plane of the emitted 

dislocation is predicted from the minimum angle between lines traced by the incoming 

and outgoing slip planes on the boundary plane and the slip direction is predicted using 

the criteria of maximum resolved shear stress on the emitted slip plane. 

 

Using in situ TEM deformation study, another significant contribution was made by (Lee 

et al. 1990) in studying the interactions of glissile dislocations with grain boundary. In 

this work, they have proposed modified criteria to predict the slip system for the slip 

transmission phenomena. According to (Lee et al. 1990), the angle between the traces of 

the slip planes and grain boundary should be a minimum, the resolved shear stress on the 

slip planes in the adjoining grain should be a maximum and the magnitude of the residual 

dislocation left in the grain boundary should be a minimum. Unlike the criteria of (Shen 

et al. 1998), the slip direction is determined considering not only by the maximum 

resolved shear stress but also the minimum residual left at the boundary. 

 

Computational modeling of deformation of polycrystalline solids is a highly complicated 

task as it is controlled by simultaneous processes occurring at various length and time 

scales. Thus, it is imperative to develop a multi-scale approach by passing information 

from one scale to another. In the case of single crystal plasticity, the unit dislocation 

mechanisms such as dislocation short-range reactions and dislocation mobility were 

studied using atomistic simulations and passed to higher scale dislocation dynamics 
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simulations (Zbib et al. 2000; Kubin et al. 1990) and further combined with finite 

elements to develop a multi-scale model for single crystal elasto-viscoplasticity (Zbib and 

De la Rubia 2002). In principle, to extend this approach to polycrystalline solids, a 

thorough understanding of unit mechanisms involving dislocation-grain boundary 

interactions is necessary. There are numerous possible combinations of dislocation-grain 

boundary interactions with various different outcomes which, in turn, increases the 

number of parameters required to quantify these unit processes. This makes a 

comprehensive study of dislocation-grain boundary interactions highly intractable. 

Towards this end, 2D atomistic simulations (Kurtz et al. 1999) are performed to provide a 

detailed structural understanding of the unit dislocation-grain boundary interactions such 

as dislocation absorption, dislocation transmission and dislocation reflection. Three 

dimensional atomistic simulations were done to study slip transmission of dislocation 

loops nucleating from a crack tip near a series of different pure tilt grain boundaries 

(Koning et al. 2002). Using a simple line-tension model, the results suggested only three 

parameters to quantify the slip transmission resistance of grain boundaries in accordance 

with in-situ TEM observations. 

 

As opposed to atomistic simulations involving unit dislocation-grain boundary 

interactions, Dewald et. al studied interactions of one to five edge dislocation pile-ups 

with a symmetric pure tilt boundary using a coupled-atomistic-dislocation dynamics 

modeling approach. In their work, the continuous source activation of grain boundary 

dislocations was found to be the main mechanism for deformation. They have also 

studied change in structure of grain boundary due absorption of more than one 
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dislocation into the grain boundary. The slip transmission criteria developed by Lee et. al 

is modified to include these effects. In the present work regarding interaction of 

dislocations with grain boundary, chapter four focuses on the study of structure of a pure 

tilt grain boundary after transmission of several dislocations and the relaxed structures 

attained. The stress and strain energy of the dislocation configurations before and after 

the relaxation of grain boundary structure is studied.   

 

In the spirit of studying the effect of homogenization of dislocations, chapter five focuses 

to understand the kinematic and thermodynamic effects of representing discrete 

dislocations as continuous distributions in their slip planes. Towards this end, we have 

considered stacked double ended pile-ups of edge and screw dislocations and computed 

their distributions and microstructural energies.  The microstructural energy is the elastic 

interaction energy of geometrically necessary dislocations (GNDs). In general, three 

kinds of representations of GNDs are used: discrete, semi-discrete, and, continuous 

representation.  The solutions from discrete representations, being close to reality, are 

considered exact.  In the semi-discrete representation, the discrete dislocations are 

smeared out into continuous planar distributions within discrete slip planes.  We have 

studied and quantified the errors in dislocation distributions (number of dislocations) and 

microstructural energies owing to different representation of discrete dislocations. 

 

The major conclusions and future extensions based on the present work are presented in 

chapter six. In the appendix, deformation of single crystal micropillars under uniaxial 

compression is investigated using a multi-scale model of plasticity. In this work, we have 
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considered micropillars with sizes ranging from 0.2 to 2.5 microns and predicted size 

effects. The simulation results are qualitatively as well as quantitatively compared with 

the experiments. 
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CHAPTER TWO: A UNIFIED APPROACH TO DISLOCATION STRESS 

FIELDS IN DISLOCATION DYNAMICS SIMULATIONS 

 

 

2.1 Introduction 

 

In recent times, three dimensional discrete dislocation dynamics simulations have gained 

a lot of impetus in understanding many key dislocation mechanisms and their influence 

on the macroscopic plastic deformation in both single crystals as well as inhomogeneous 

medium like bi-materials and nano-metallic multi-layered composites. In dislocation 

dynamics simulations, the dynamics of dislocations on their respective crystallographic 

planes are evolved under the influence of the external agents and the internal stress due to 

other dislocations, defects and obstacles. Among all the driving forces for the dynamics 

of dislocations, the contribution of dislocation-dislocation interactions is quite significant.  

These simulations deal with high density of dislocations and complicated dislocation 

configurations. To compute the dislocation-dislocation interactions, the stress field of a 

general curved dislocation in a general anisotropic medium is crucial. A brief review of 

different methodologies to efficiently compute the stress field of general curved 

dislocations is presented. 

 

A general theory was developed by (Indenbom and Orlov 1967; Indenbom and Orlov 

1968) and for a simpler planar case by (Brown 1967) for the computation of deformation 

and stress field of curved dislocations. From physical arguments, as a dislocation segment 

by itself has no physical meaning, (Indenbom and Orlov 1967) has introduced elementary 
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configurations such as elementary loop, semi-dipole and hairpin. The stress field of semi-

dipole is synthesized from the solution of the elementary loop and, in the same way; the 

solution of hairpin dislocation configuration is synthesized from the solution of semi-

dipole configuration. Instead of dealing with isolated dislocation segment which is 

physically non-existent, (Indenbom and Orlov 1967) dealt with hairpin configuration as 

the physically complete basic ingredient. As the stress field of an infinite straight 

dislocation at a field point can be constructed from a collection of infinitely many hairpin 

configurations with the field point as the common apex, the stress field of the hairpin 

configuration is expressed in terms of infinite straight dislocation stress factors and its 

derivatives. This idea and methodology is essentially similar to that originally presented 

by (Brown 1967). (Brown 1967) has derived a formula to compute the stress field at a 

point in the plane of a planar loop in terms of infinite straight dislocation stress factors 

and its derivatives similar to (Indenbom and Orlov 1967). A remarkable feature of 

Brown’s formula for the planar case is that it can be integrated over a straight dislocation 

segment. (Indenbom and Orlov 1967; Indenbom and Orlov 1968) independently extended 

this theory to a more general non-coplanar case. The Indenbom-Orlov-Brown theory is 

most general and valid even for general anisotropic medium. Although, theoretically, 

Brown-Indenbom-Orlov formula is very convenient in that they have nice features such 

as semi-rational dislocation elements and transparent connections to energy relations, 

their actual numerical implementation is quite difficult. 

 

As the Indenbom-Orlov-Brown theory expresses its solution in terms of infinite straight 

dislocation stress factors and its derivatives, for anisotropic cases, an elegant approach to 
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deal with straight dislocations in anisotropic media is the key factor. (Stroh 1962) 

extended the theory developed by (Eshelby et al. 1953) and developed an elegant and 

powerful six dimensional eigenvector theory often referred as sextic theory. Later, 

(Barnett and Lothe 1973) developed an integral theory by transforming Stroh’s six 

dimensional eigenvector theory.  The sextic theory relies on numerical solution of six 

dimensional eigenvalue problem where as the integral theory relies on numerical 

integration of certain definite integrals. Computationally, the numerical evaluation of 

eigenvalue problem is difficult compared to numerical quadrature. Later (Rhee et al. 

2001) developed look up tables by numerically integrating the angular stress factors and 

its derivatives derived by (Asaro and Barnett 1973). These look up tables were used to 

deal with anisotropic stress fields in dislocation dynamics simulation code. 

 

Alternatively, (Willis 1970) and (Steeds 1973) developed theories in the spirit of 

mathematical simplicity and explicitness as compared with work of Indenbom-Orlov-

Brown theories. Within a much simpler framework, (Mura 1987) derived the line 

integrals for the stress fields due to a dislocation segment in a general anisotropic 

medium using Fourier analysis with eigenstrain method. These integrals are also naturally 

extended to continuous distribution of dislocations. In the spirit of easy implementation 

in computer simulation, as suggested by Lothe, the simplest procedure to find the stress 

field of an arbitrarily oriented dislocation segment in a general anisotropic medium is the 

combination of Mura’s integral formula with anisotropic Green’s function derivatives.  
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To tackle the short-range as well as long-range interactions of dislocations, in this 

chapter, we have presented a unified approach following Mura’s methodology for both 

homogeneous general anisotropic medium and isotropic inhomogeneous medium. In 

section 2.2, we present the approach employed to find the stress field of dislocation 

segment in a general anisotropic medium by numerically integrating the Green’s function 

derivatives and combining them with Mura’s line integral. The short-range interactions of 

dislocation configurations can be addressed by this approach. In section 2.3, we suggest 

the use of continuous distribution of dislocations to address the long-range interactions of 

dislocations. Here, we consider an array of straight infinite edge dislocations to illustrate 

the effect of homogenization of the stress field distribution. In section 2.4, we summarize 

the approach for homogeneous case along with presenting the line integrals derived for 

inhomogeneous case in the chapter three.  

 

2.2 Discrete dislocations/Short range interactions 

 

In this section, according to (Mura 1987), we present the formal derivation of the line 

integral for the stress field due to a dislocation segment in a general anisotropic medium. 

In the presence of a dislocation loop in an infinite homogeneous medium, the 

displacement gradient 
ij

u  is assumed to consist of elastic distortion 
ji

β  and plastic 

distortion p

jiβ .  

p

ij ji jiu β β= +   (2.1) 
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The elastic distortion 
ji

β is caused by the presence of eigenstrain/plastic distortion due to 

the dislocation loop. According to linear elasticity, using Hooke’s law, the stress field 

caused due to the presence of dislocation loop is due to the elastic distortion 
ji

β given by 

ij ijkl lk
Cσ β=   (2.2) 

where 
ij

σ  and 
ijkl

C are the components of symmetric second order stress tensor and fourth 

order stiffness tensor. 

According to the principle of conservation of linear momentum, the stress must satisfy 

the following equilibrium equations 

,
0

jij
σ =   (2.3) 

Using (2.2) and (2.1), the equilibrium equations in terms of displacement gradient is give 

by 

, ,
0

lj j

p

ijkl k ijkl lk
C u C β− =   (2.4) 

The second term in the above equation is perceived as a body force due to the presence of 

eigenstrain strain caused by dislocation loop. Using the method of Greens function, the 

displacement solution due to the body force 
, j

p

ijkl lk
C β− is given by 

( )
( ) ( , )

p

nm

i ip pqmn

q

x
u x G x x C dx

x

β
∞

−∞

′∂′ ′= −
′∂∫   (2.5) 

The second rank tensor ( ),
ij

G x x′ is defined as the mapping between the displacement 

response in the i direction at x  due to the th
j component of the point force acting at x′ in 

an infinite medium.  This mapping, Greens tensor, satisfies the following equilibrium 

equations given as 
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( )( , )
0

pi

mnpq mi

q n

G x x
C x x

x x
δ δ

′∂
′+ − =

∂ ∂
  (2.6) 

where δ is a Dirac’s delta function. 

 

Using Guass theorem, (2.5) can be expressed as 

( , )
( ) ( )

ip p

i pqmn nm

q

G x x
u x C x dx

x
β

∞

−∞

′∂
′ ′=

′∂∫   (2.7) 

By taking the first derivative of displacement, using (2.7), the displacement gradient can 

be expressed as 

,

( , )
( ) ( )

j

ip p

i pqmn nm

q j

G x x
u x C x dx

x x
β

∞

−∞

′∂
′ ′=

′∂ ∂∫   (2.8) 

Using (2.1), (2.8) can rewritten as an expression for elastic distortion  

( , )
( ) ( ) ( )

ip p p

ji pqmn nm ji

q j

G x x
x C x dx x

x x
β β β

∞

−∞

′∂
′ ′= −

′∂ ∂∫   (2.9) 

Using (2.6), the plastic distortion ( )p

ji
xβ can be expressed as  

( )
( , )

( ) ( ) ( )
pip p p

ji jm mi mnpq jm

q n

G x x
x x x x dx C x dx

x x
β β δ δ β

∞ ∞

−∞ −∞

′∂
′ ′ ′ ′ ′= − = −

∂ ∂∫ ∫   (2.10) 

Substituting (2.10) into (2.9), we have 

( , ) ( , )
( ) ( ) ( )

ip pip p

ji pqmn nm mnpq jm

q j q n

G x x G x x
x C x dx C x dx

x x x x
β β β

∞ ∞

−∞ −∞

′ ′∂ ∂
′ ′ ′ ′= +

′∂ ∂ ∂ ∂∫ ∫  (2.11) 

The above equation is the most general solution for the elastic distortion for any medium 

provided the knowledge of Greens tensor function for a point source in the medium. For a 

general anisotropic homogeneous medium, few key properties of Greens tensor function 
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enable the transformation of (2.11) into a line integral over the dislocation segment. The 

Greens function for a general homogeneous medium is a function of relative 

displacement vector and a symmetric second order tensor. Mathematically, the equations, 

which hold true for Green’s tensor and its derivatives, for homogenous medium, are 

( ), ( ) ( )
ip ip pi

G x x G x x G x x′ ′ ′= − = −   (2.12) 

( ) ( )
ip ip

j j

G x x G x x

x x

′ ′∂ − ∂ −
= −

′∂ ∂
  (2.13) 

( ) ( )
ip ip

q n q n

G x x G x x

x x x x

′ ′∂ − ∂ −
=

′ ′∂ ∂ ∂ ∂
  (2.14) 

Using the properties (2.12)-(2.14), (2.11) can be written as 

( ) ( )
( ) ( ) ( )

ip ipp p

ji pqmn nm mnpq jm

q j q n

G x x G x x
x C x dx C x dx

x x x x
β β β

∞ ∞

−∞ −∞

′ ′∂ − ∂ −
′ ′ ′ ′= − +

′ ′ ′ ′∂ ∂ ∂ ∂∫ ∫   (2.15) 

Using Gauss theorem and properties (2.12)-(2.14), (2.15) can be expanded as 

( ) ( )

( ) ( )
,

, ,

,

( ) ( ) ( )

( ) ( )
j n

ip ipp p

ji mnpq jm pqmn nm

q qn j

ip p p

pqmn nm jm

q

G x x G x x
x C x dx C x dx

x x

G x x
C x x dx

x

β β β

β β

∞ ∞

−∞ −∞

∞

−∞

    ′ ′∂ − ∂ − ′ ′ ′ ′ ′= − +       ′ ′∂ ∂     

 ′∂ −
′ ′ ′−  ′∂ 

∫ ∫

∫
(2.16) 

The first two terms in (2.16) vanish at infinity and reduces to  

( ) ( )
, ,

( ) ( ) ( )
j n

ip p p

ji pqmn nm jm

q

G x x
x C x x dx

x
β β β

∞

−∞

 ′∂ −
′ ′ ′ ′= −  ′∂ 
∫  (2.17) 

According to (Kroner 1958), the dislocation density tensor defined as the curl of plastic 

distortion can be easily shown to satisfy  

, ,
( )

n j

p p

jnh hm jm nm
xε α β β′ = −   (2.18) 

Using (2.18) and (2.13), (2.17) can be written as 
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( )
( )

( )
ip

ji jnh pqmn hm

q

G x x
x C x dx

x
β ε α

∞

−∞

′∂ −
′ ′=

∂∫   (2.19) 

The dislocation density tensor 
hm

α quantifies the m
th

 component of total Burgers vector 

of all the dislocation intersecting the plane whose normal is in the h direction. 

Mathematically, the dislocation density tensor 
hm

α is expressed as 

hm h m
dx b dlα ν′ =   (2.20) 

Using (2.20), the volume integral for elastic distortion can be transformed into a line 

integral over the dislocation segment given as 

( ) ( )
ip

ji jnh pqmn m h
l

q

G x x
x C b dl

x
β ε ν

′∂ −
=

∂∫   (2.21) 

Thus, the stress due to an arbitrary dislocation segment in a general homogenous 

anisotropic medium can be expressed as a line integral over the dislocation line as 

( ) ( )
kp

ij ijkl lnh pqmn m h
l

q

G x x
x C C b dl

x
σ ε ν

′∂ −
=

∂∫   (2.22) 

For explicit evaluation of stress by integrating (2.22), the knowledge of Greens function 

derivatives is essential. For an isotropic approximation, the convenient explicit 

expressions are given by (Mura 1987) 

, 1 1 2 2 3 3

1 3

1

5

( , , )

( ) ( ) ( )1
(1 2 )

8 (1 )

( )( )( )
3

qpqmn ip

ni m m im n n mn i i

m m n n i i

C G x x x x x x

x x x x x x

R

x x x x x x

R

δ δ δν
π ν

′ ′ ′− − − =

′ ′ ′− + − − −−  −− 

′ ′ ′− − − + 


  (2.23) 

where  

2 2 2

1 1 2 2 3 3( ) ( ) ( )R x x x x x x′ ′ ′= − + − + −  
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For a general anisotropic homogeneous medium, there are no explicit expressions for 

Greens function derivatives. Several attempts have been made to find approximate 

expressions. In the following sub-section, we present a brief review of the work of 

(Barnett 1972) on evaluation of anisotropic Greens function derivatives using Fourier 

transform method.  

2.2.1 Anisotropic Greens functions derivatives 

Using Fourier transform method, (Barnett 1972) has extended the well-documented 

method of finding Greens functions by solving (2.6) to its first and second derivatives. In 

this section, for the sake of completeness, we briefly present the method derived in 

(Barnett 1972). Rewriting (2.6), 

( )( )
0km

ijkl mi

j l

G x x
C x x

x x
δ δ

′∂ − ′+ − =
∂ ∂

  (2.24) 

Using Fourier integral transform, the Dirac delta function can be represented as 

( )
( )

( ). 3

3

1

2

i x x
x x e d

ξδ ξ
π

′−′− = ∫∫∫
r

  (2.25) 

Similarly, the Greens tensor can be represented using Fourier integral representation as 

( )
( )

( ) ( ). 3

3

1

2

i x x

km kmG x x g e d
ξξ ξ

π
′−′− = ∫∫∫

rr
  (2.26) 

where ( )g ξ
r

,ξ
r

and ξ are Fourier amplitude of Greens tensor, wave vector and its 

magnitude respectively. Substituting (2.26) and (2.25) in (2.24), Greens tensor Fourier 

amplitude satisfies  

( ) ( ) 0j ijkl l km miC gξ ξ ξ δ− + =
r

 (2.27) 

Denoting ( ) ( )ik j ijkl lK Cη η η=
r

and [ ] 1*

ik ikK K
−= , the Fourier amplitude can be written as 
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*

2

ij

ij

K
g

ξ
=   (2.28) 

where η
r

is the unit vector along the wave vector ξ
r

. 

Substituting (2.28) in (2.26), Greens tensor can be written as 

( )
( )

( ) ( )
*

. 3

3 2

1

2

i x xkm

km

K
G x x e d

ξη
ξ

ξπ
′−′− = ∫∫∫

r
r

  (2.29) 

Considering only the real part of (2.29),  

( )
( )

( ) ( ){ }
*

3

3 2

1
cos .

2

km

km

K
G x x x x d

η
ξη ξ

ξπ
′ ′− = −∫∫∫

r
r

  (2.30) 

and the first derivatives can be expressed as 

( )
( )

( ) ( ){ }
*

3

3

1
sin .

2

j kmkm

j

KG x x
x x d

x

η η
ξη ξ

ξπ

′∂ − − ′= −
∂ ∫∫∫

r
r

  (2.31) 

Let ψr  and R be the unit vector along ( )x x′− and its magnitude respectively and (2.31) 

can be re-written as 

( )
( )

( ) ( ){ }
*

3

3

1
sin .

2

j kmkm

j

KG x x
R d

x

η η
ξ η ψ ξ

ξπ

′∂ − −
=

∂ ∫∫∫
r

r r
  (2.32) 

Changing variables to Rχ ξ=
rr

, 3 3 3d R dχ ξ= , χ χ=
r

, (2.32) becomes 

( )
( )

( ) { }
*

3

3 2

1
sin .

2

j kmkm

j

KG x x
d

x R

η η
χη ψ χ

χπ

′∂ − −
=

∂ ∫∫∫
r

r r
  (2.33)  

The triple integral in (2.33) can be transformed into a line integral about a unit circle in 

the plane . 0η ψ =
r r

 using spherical polar coordinate system aligned alongψr . The volume 

element can be expressed as 3 2 sind d d dχ χ φ χ φ θ=  with . cosη ψ φ=
r r

 where θ  being 
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the polar angle in the plane . 0η ψ =
r r

.Using spherical polar coordinates, (2.33) can be 

written as 

( )
( )

( ) { }*

3 2

1
sin cos sin

2

km

j km

j

G x x
K d d d

x R
η η χ χ φ φ χ φ θ

π

′∂ − −
=

∂ ∫∫∫
r

  (2.34) 

Considering integration of (2.34) over χ  and noting that 

( ) ( ) ( ) ( )
0 0

sin cos cos cos cos
cos sin

d d
πχ χ φ χ χ φ χ δ φ

φ φ φ

∞ ∞
∂ ∂

= − =
∂ ∂∫ ∫   (2.35) 

The result of the integration over χ is given as 

( )
( ) { }

( ) ( )

*

3 2

2

*

2 2

0 0

1
sin cos sin

2

1
cos

8

j km

j km

K d d d
R

d d K
R

π π

η η χ χ φ φ χ φ θ
π

θ φη η δ φ
π φ

−

− ∂
=

∂

∫∫∫

∫ ∫

r

r

 (2.36) 

( ) ( ) ( )
2 2

* *

2 2 2 2
2

0 0 0

1 1
cos

8 8
j km j kmd d K K d

R R

π π π

πφ
θ φη η δ φ η θ

π φ π φ =

− ∂ ∂
=

∂ ∂∫ ∫ ∫
r

  (2.37) 

Considering the integrand in (2.37) and using product rule, 

( )
*

* *

2
2 2

j km
j km km j

K
K K

πφ
π πφ φ

η
η η

φ φ φ=
= =

∂    ∂∂
= +   ∂ ∂ ∂   

  (2.38) 

Noting that 

2

j

j

πφ

η
ψ

φ
=

∂ 
= − ∂ 

  (2.39) 

and differentiating ( ) ( )ik j ijkl lK Cη η η=
r

with respect to φ , 

ij l k
ijkl k l

K
C

η ηη η
φ φ φ

∂  ∂ ∂
= + ∂ ∂ ∂ 

  (2.40) 
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*
* *km rs
kr sm

K K
K K

φ φ
∂ ∂

= −
∂ ∂

  (2.41) 

 

Using (2.39), (2.40) and (2.41) in (2.38), 

( ) { }* * * *

2
j km j km j kr sm ijkl k l k lK K K K Cπφ

η ψ η η ψ ψ η
φ =

∂
= − + +

∂
  (2.42) 

Using (2.42), the first derivatives of Greens tensor can expressed as  

{ }
2

* * *

2 2

0

1

8

km
j km j kr sm ijkl k l k l

j

G
K K K C d

x R

π

ψ η η ψ ψ η θ
π

∂
 = − + + ∂ ∫   (2.43) 

 

2.2.2 Mura’s Integral with Anisotropic Greens Tensor Derivatives 

 

In our work, as suggested by Lothe, we have combined the Mura’s integral (2.22) with 

anisotropic Greens function derivatives (2.43) to provide a simplest possible approach to 

tackle the short range interactions of dislocations in a general anisotropic medium. The 

Greens tensor function derivatives given by the line integral in (2.43) is integrated over a 

periphery of a plane cutting a unit sphere. The normal to this planeψ  is the unit vector 

along the relative displacement vector. As the integration is done on the boundary of 

plane . 0η ψ =
r r

, a general wave vector ηr which lies only on this plane is considered (see 

figure 2.1).  
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Figure 2.1 The plane cutting the unit sphere which is normal to the unit vector along 

relative displacement vector. The anisotropic Greens tensor derivatives are integrated 

along the peripheral circle of this plane. 

 

For the numerical integration of Mura’s line integral, for each quadrature point in the 

linear domain of the dislocation segment, a right-handed orthogonal triad ψψ ψ′ ′′r r r
is 

formed for the integration of Greens tensor function derivatives. The components of a 

general unit vector ηr with respect to ψψ ψ′ ′′r r r
can be expressed as  

cos sinη θψ θψ′ ′′= +   (2.44) 

Using spherical polar coordinate system, the mapping between the trial ψψ ψ′ ′′r r r
 and the 

global Cartesian coordinate system can be determined by expressing the components 

ofψr , ψ ′r  and ψ ′′r
 as  

1 2 3

1 2 3

1 2 3

sin cos , sin sin , cos

sin , cos , 0

cos cos , cos sin , sin

ψ β α ψ β α ψ β
ψ α ψ α ψ
ψ β α ψ β α ψ β

= = = 
′ ′ ′= = − = 
′′ ′′ ′′= = = − 

  (2.45) 

where β  and α are the angular spherical polar coordinates. 

ψr

ψ ′r

ψ ′′r

. 0η ψ =
r r

θ ηr
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For the numerical integration of Greens function derivatives, using the mapping defined 

in (2.45), the integrand which is a function of ηr is expressed with respect to global 

Cartesian coordinate system.  

To validate the above described approach to compute the stress fields of discrete 

dislocations to tackle the short range interactions, we considered an infinite edge 

dislocation on the basal plane of Cu cubic crystal (see figure 2.2). The material Cu is 

chosen due to its considerably high anisotropy factor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Infinite edge dislocation on the basal plane of Cu cubic crystal 

 

Derivation of exact analytical expressions requires the analytical solutions for the roots of 

the six dimensional eigenvalue problems or analytical integration of integrals in the 

integral formalism. Although it is a very difficult task for a general case, for the case of 

[ ]100

[ ]010

[ ]001
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high symmetry crystals and symmetrical orientation of the dislocation line, analytical 

expressions have been documented in (Indenbom and Lothe 1992). The analytical 

expressions for the case considered for the validation of the approach are documented in 

(Indenbom and Lothe 1992).  As it can be seen in figure 2.3, the shear stress computed by 

numerically integrating the Mura’s integral in conjunction with numerically integrated 

Greens tensor derivatives validates well with the available analytical solutions. It is worth 

noting that the short range anisotropic stress field is significantly different from the 

isotropic approximation. But, after about 80 units of Burgers vector magnitude, the 

anisotropic stress field converges to isotropic approximation. 

Figure 2.3 Comparison of shear stress component of an infinite edge dislocation oriented 

as shown in figure 2.2 with ordinate in units of MPa and abscissa in units of 10b. The 

stress computed from the numerical integration is validated with that of available 

analytical solution.  
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2.3 Continuous distribution of dislocations/ Long range interactions 

 

Using the same approach, we propose to deal with long range interactions in dislocation 

dynamics by representing the ensemble of dislocations in the form of dislocation density 

tensor. As described above, the stress field of continuous distribution of dislocations can 

be computed by numerically integrating the Mura’s formula given by 

 

( ) ( ), hmij pqmnijkl lnh kp q

V

x C C G x x dVσ ε α
′

′ ′= −∫
r r r

 (2.46) 

 

where V ′ is the volume over which the dislocations are homogenized and the dislocation 

density tensor defined in (2.20) is rewritten as  

hm m hdV b dlα ν′ ′=  (2.47) 
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Figure 2.4 (a) An array of infinite edge dislocations with the surrounding rectangle 

denoting the domain (axd) of homogenization (b) Comparison of shear stress due to the 

array of infinite edge dislocations for different domains of homogenization with discrete 

solution. 

 

To illustrate the approach to deal with long-range interactions, we considered an array of 

infinite edge dislocations as shown in the figure 2.4(a) and compared the shear stress 

field for different domains of homogenization by varying the parameter d with the 

discrete solution (see figure 2.4(b)). For the case of edge dislocations, the only surviving 

component of dislocation density tensor is 31α and is given by 

31
Nb

ad
α =  (2.48) 

where N,b,a and d represent the number of dislocations, Burgers vector magnitude, length 

and breadth of the homogenizing domain respectively.  
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As it can be seen from the figure 2.4(b), the stress field due to the homogenized 

dislocations approaches the discrete solution with the decrease of the domain of 

homogenization. The stress field due to discrete array and distributed dislocation density 

converges to the same value after about 80 units of Burgers vector magnitude away from 

the array of dislocations.  

 

2.4 Summary 

 

In this chapter, we have presented an approach to deal with short range and long range 

interactions of dislocations. For short range interactions, we have presented the derivation 

of line integral expressions over the dislocation segment which involved numerical 

integration of Greens tensor function derivatives. The long-range interactions of 

dislocations are dealt by numerically integrating volume integrals for stress field due to 

continuously distributed dislocations. This chapter solely dealt with the stress field of 

dislocations in homogenous medium. In the following chapter, we have derived integral 

expressions for stress field due to discrete dislocations and continuously distributed 

dislocation tensor in an inhomogeneous isotropic medium. 
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Washington State University, Pullman, WA-99164 

 

Abstract 

 

The solution for the stress and displacement fields due to an arbitrary dislocation segment 

in an isotropic bi-material medium consisting of joined three-dimensional (3D) half 

spaces are derived and expressed in terms of line integrals whose integrands are given in 

an exact analytical form, which, in turn, can also be integrated to yield analytical 

expressions for the stress-displacement field. The solution is constructed by employing a 

general solution derived by (Walpole 1996)  for any elastic singularity in joined isotropic 

half space, and combining it with Mura’s integral formula for the displacement gradient 

of an arbitrary dislocation segment in homogeneous medium. The resulting new solution 

provides a framework for deriving analytical expressions for stress and displacement 

fields of dislocation curves of arbitrary shapes and orientations. The benefit of the 

method we developed, as compared to other methods found in the literature, is that the 

new solution presented in this paper is naturally divided into two components, a 

homogenous component representing the field of a dislocation in an infinitely 

homogenous medium, and an image component. This makes it easy and straightforward 

to modify existing dislocation dynamics codes which already include the homogenous 

part.     To illustrate the accuracy of the method, the stress field expressions of an edge 
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dislocation with Burgers vector perpendicular to the bi-material interface are derived as a 

degenerate case of the general result. It is shown that our solution is identical to that 

found in the literature for this case.  

Keywords: Dislocation, image stress, interface
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3.1 Introduction  

 

Three-dimensional discrete dislocation dynamics (3D-DD) modeling and simulation has 

gained plenty of momentum in recent years.   The dislocation dynamics is a method that 

attempts to rigorously simulate the evolution of dislocation structures and to provide a 

clear understanding of dislocation mechanisms responsible for the macroscopic plastic 

behavior in both single crystals as well as inhomogeneous medium like multi-layered 

materials(Kubin et al. 1992; Zbib et al. 1998; Zbib et al. 2002a).   One key component of 

dislocation dynamics analysis is the evaluation of long-range interaction among 

dislocations. This interaction arises from linear elastic strain field associated with each 

dislocation curve.   Since dislocation curves can be of arbitrary shapes, in DD 

dislocations are discretized into a set of straight dislocation segments. As a result, the 

long-range stress field of any arbitrarily oriented dislocation curve is then constructed by 

summing over the fields of the discrete segments that approximate the curve. Thus, in 

3D-DD the basic unit that is used to construct any dislocation configuration is a finite 

straight dislocation segment of mixed character and with an arbitrary orientation in space.  

The solution for the stress field of a finite dislocations segment in an isotropic 

homogenous linear elastic 3D space is well known in closed form(Hirth and Lothe 1982). 

But it is not the case for a segment in an isotropic bi-material medium.  In order to deal 

with dislocations in bi-materials with interfaces, as well as dislocations in finite  domains, 

current approaches use superposition methods and solve numerically an auxiliary 

problem to correct for image stresses(Needleman 2000; Yasin H et al. 2001; Zbib and De 



 30 

la Rubia 2002).  Although these approaches are very useful, they have limitations on their 

accuracy based on the mesh size used in the numerical approximations.  This issue 

becomes particularly important when a dislocation is located near an interface, or in the 

interface, requiring the use of a very fine mesh size in order to achieve good accuracy, 

but this is turn yields high computational cost. These issues are resolved in this paper by 

exactly deriving analytical expressions for the field of a dislocation segment in a bi-

material medium.  

 

One of the first attempts at this problem of solving for the stress field due to a dislocation 

in an inhomogeneous medium is done by (Head 1953b; Head 1953a) for infinite edge and 

infinite screw dislocations using the elastic potential theory. As a different approach to 

solving the problem using Green’s functions, it is well known that stress fields of any 

elastic singularity can be easily constructed from Green’s functions of a point source in 

the medium. The Green’s functions of a point source in a semi-infinite solid bounded by 

a plane were obtained by (Mindlin 1936). The solutions of all the possible nuclei of strain 

were also given by (Mindlin and Cheng 1950). The anisotropic half space Green’s 

functions were obtained by (Walker 1993), and the Green’s functions of a point source in 

a bi-material medium with a planar interface were obtained by (Rongved 1955), 

(Salamon and Dundurs 1971), (Yu and Sanday 1991b), and (Walpole 1996). Recently, 

the anisotropic Green’s functions of a point source in bi-material medium were obtained 

by (Pan and Yuan 2000).  
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Using Green’s function for a point source in isotropic bi-material medium, the stress field 

of prismatic and glide loops was derived by integration over the area of the loop by 

(Salamon and Dundurs 1971). Using anisotropic Green’s function for a point source in 

multi-layered medium(Yang and Pan 2002), (Han and Ghoniem 2005) numerically 

studied the stress fields of an infinitesimal dislocation loop and finite dislocation loop and 

investigated their interactions with interfaces. On the other hand, (Yu and Sanday 1991a) 

derived the stress filed of the dislocation loop on a plane in an arbitrary orientation by 

superposition of solutions of appropriate fundamental nuclei of strain. Although this 

method is more general as compared with Green’s functions approach, the solution is 

obtained by integrating over the area of the closed dislocation loop which is not suitable 

for the 3D discrete dislocation simulations with highly complicated dislocation structures.  

 

In all the aforementioned efforts, the stress field of a dislocation loop is expressed in the 

form of an integral over the area of the loop. For complex and arbitrary shaped 

dislocation networks encountered in DD simulations, the approach of integrating over the 

area to find the stress fields is not practical. As mentioned above, the stress field of a 

straight dislocation segment in bi-material medium combined with the approach of 

discretization of arbitrary dislocation curves enables the computation of stress field due to 

a complex dislocation network.  To address this issue, (Tan and Sun 2006) derived line 

integral expressions for stress fields by converting the Volterra’s area integral over the 

dislocation loop using bi-materials Green’s function (Rongved 1955). However, their 

solution is applicable only to closed dislocation loops whose Burgers vector lies in the 

slip plane. Moreover, the integrands in their line integral expressions are themselves 
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expressed in terms of a second set of line integrals, and the resulting line integrals are 

solved numerically. These two shortcomings are resolved in this paper as discussed 

below.  

 

In the present paper, we derive exact analytical expressions for the stress field due to a 

dislocation segment of arbitrary orientation and Burgers vector in a bi-material medium.  

Our approach is based on combining the general solution derived by (Walpole 1996) for 

any elastic singularity in joined isotropic half space and Mura’s line integral expression 

for stress field of a dislocation segment in a homogeneous medium.  The advantage of the 

method we developed as compared to the methods discussed above, can be summarized 

as follows. 1) The solution presented in this paper is naturally divided into two 

components, a homogenous component representing the field of a dislocation in an 

infinitely homogenous space, and an image component. This makes it easy and 

straightforward to modify existing DD codes which already include the homogenous part.  

2) We are able to provide exact analytical expressions for the integrands of the line 

integrals for the dislocation segment, which in turn are solved analytically.  

 

In section 3.2, the method of derivation of the line integral expressions is presented for a 

perfectly bonded interface. In section 3.3 various particular solutions are derived and 

compared with solutions found in the literature followed by conclusions in the final 

section. 
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3.2. Methodology 

 

In this section, the method of derivation of line-integral representation for stress and 

displacement fields due to a dislocation segment in joined isotropic half spaces is 

presented. As shown in the Figure 3.1, region 1 occupies the half space with positive x3 

values and region 2 occupies the half space with negative x3 values. The dislocation is 

located in region 1.  

 

Following the method developed by (Walpole 1996), in the joined isotropic half spaces, 

the displacement components for any elastic singularity in region 1 can be decomposed 

as  

 

0

1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , )I

i i iu x x x u x x x u x x x= +   (3.1) 

 

for positive values of x3, that is region 1, and for negative values of x3 , that is region 2, as 

 

1 2 3 1 2 3( , , ) ( , , )II

i iu x x x u x x x=  (3.2) 

 

where  0

iu , I

iu  and II

iu  represent the displacement components in infinite homogeneous 

medium with material properties of region 1, image displacement components in region 1 

and complete displacement solution in region 2 respectively. 
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3.2.1) Bonded Interface 

 

For a perfectly bonded interface, the continuity of all displacement and traction 

components at the interface is required. A general solution for the displacement 

components for the case of perfectly bonded interface in both regions is given by 

(Walpole 1996). In the following expressions, the general solution is given in terms of 

0

iu and 0 0

,iiuθ = (dilation), where the subscript “,i” indicates  derivative with respect to xi , 

and repeated index means summation over the index. Note that the subscript α  in the 

following expressions takes only 1 or 2 as its value denoting 1x and 2x  components of 

displacement. 

 

The following equations represent the general solution for perfectly bonded interface. For 

material points in region 2, negative values of 3x ,  

 

3

3

0 0 0

1 2 3 1 2 3 3 1 2 3 1 2

0 0 0

3 1 2 3 3 1 2 3 3 1 2 3 1 2

( , , ) ( , , ) ( , , ) ( ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

x

II

x

II

u x x x Au x x x Bu x x t Ct Dx x x t dt
x

u x x x Eu x x x Fx x x x G x x t dt

α α
α

θ

θ θ

−∞

−∞

 ∂
 = + + +  ∂ 

= + +

∫

∫
(3.3) 

 

and for material points in region 1, positive values of 3x , 
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3

0 0 2 0

1 2 3 1 2 3 3 3 1 2 3 3 1 2 3

0 0

3 1 2 3 1 2

0 0 0

3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3

3

( , , ) ( , , ) 2 ( , , ) ( , , )

( , , ) ( ) ( , , )

( , , ) ( , , ) 2 ( , , ) ( , , )

I

x

I

u x x x Hu x x x Jx u x x x Kx x x x
x x

Bu x x t C x t x x t dt
x

u x x x Mu x x x J x u x x x x x x x
x

α α
α α

α

θ

θ

θ

∞

∂ ∂
= − + − + −

∂ ∂

 ∂
 + − + − −  ∂ 

 ∂
= − + − + − ∂

∫

3

2 0 0

3 1 2 3 1 2

3

( , , ) ( , , )

x

Kx x x x G x x t dt
x

θ θ
∞





∂
+ − + −

∂ ∫

 (3.4) 

 

where the constants are given by 

 

1 2 1 1 1 2

1 2 1 2 1 2 1

1 1 1 1 2 2 2 1

1 1 2 1 2 1 2

1 1 1 1 2 2 1

1 1 1

2 (1 2 )( )
, ,

( )( (3 4 ))

2 (1 )( (1 2 )(3 4 ) (1 2 )(3 4 ))

(1 2 )( (3 4 ))( (3 4 ))

(1 ) 4 (1 )( (1 2 ) (1 2 ))
2 ,

(1 2 ) (1 2 )(

H B

G

C G B F

µ µ µ ν µ µ
µ µ µ µ µ µ ν

µ ν µ ν ν µ ν ν
ν µ µ ν µ µ ν
ν µ ν µ ν µ ν
ν ν µ µ

− − −
= =

+ + + −
− − − − − −

= −
− + − + −
− − − − −

= + =
− − + 2 1 2 1 2

1 1 1 2 1 2

1 2 1 1 2 1 1 1 2 1

,
(3 4 ))( (3 4 ))

4 (1 ) ( ) ( )
, ,

(3 4 ) (3 4 ) (1 2 )( (3 4 ))

1, 1

D F C

E J K

E M A H

ν µ µ ν
µ ν µ µ µ µ

µ µ ν µ µ ν ν µ µ ν

= −
− + −

− − −
= = − =

+ − + − − + −
= + = +

 

In the above constants, the shear modulus µ  and Poisson’s ratioν correspond to 

respective regions according to their subscripts. It is worth noting that the above solution 

is expressed as a superposition of solutions of different fundamental nuclei of strain. This 

understanding would facilitate the extension of the method to multi-layered medium. 

 

As it can be noticed, the general displacement solution in a joined isotropic half space 

medium is expressed as a function of homogeneous solution. For the present objective of 

finding line-integral representation of stresses due to the presence of dislocation segment 
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in joined isotropic half-spaces, it would be appropriate to express the homogeneous 

solution for such a case using Mura’s line integral expression. 

 

According to Mura’s formulation(Mura 1987), the displacement gradient due to a 

dislocation segment in a homogeneous infinite medium can be expressed as a line 

integral over the dislocation line as given by 

 

0

, 1 2 3 , 1 1 2 2 3 3( , , ) ( , , )
j qi jnh pqmn ip m h

u x x x C G x x x x x x b dlε ξ′ ′ ′= − − −∫  (3.5) 

 

where , ,bε ξ are permutation tensor, Burgers vector and line sense respectively and  

 

1 1 2 2 3 3 , 1 1 2 2 3 3

1 3

1

5

( , , ) ( , , )

( ) ( ) ( )1
(1 2 )

8 (1 )

( )( )( )
3

qmni pqmn ip

ni m m im n n mn i i

m m n n i i

CG x x x x x x C G x x x x x x

x x x x x x

R

x x x x x x

R

δ δ δν
π ν

′ ′ ′ ′ ′ ′− − − = − − − =

′ ′ ′− + − − −−  −− 

′ ′ ′− − − + 


 (3.6) 

with 2 2 2

1 1 2 2 3 3( ) ( ) ( )R x x x x x x′ ′ ′= − + − + −  

 

Using the line integral expression for the displacement gradient in infinite homogeneous 

medium given by (3.5)-(3.6) and the general displacement solution given by (3.3)-(3.4), 

the line integral expressions for displacement gradients can be derived.  Before going 

further, it is very important to note that, in region 2, the derivation would yield a 

complete solution for displacement gradient, whereas in region 1, the expressions 
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represent only the image displacement gradient. To illustrate the method, let us consider 

equation (3.1) and substitute (3.5) to yield 

    

( )

( )

3

3

,

0

1 2 3 1 2 3 3 , 1 1 2 2 3

3 1 1 2 2 3

( , , ) ( , , ) ( , , )

( ) ( , , )

q

q

x

II

nh pqmn p m h

x

jnh pqmn jp m h

u x x x Au x x x B C G x x x x t x b dl dt

Ct Dx C G x x x x t x b dl dt
α

α α αε ξ

ε ξ

−∞

−∞

′ ′ ′= + − − −

′ ′ ′+ + − − −

∫ ∫

∫ ∫

 

 (3.7) 

The order of integration can be interchanged as the domains of integration are disjoint. 

Thus, the above expression can be rewritten as 

3

3

,

3

,

0

1 2 3 1 2 3 3 , 1 1 2 2 3

1 1 2 2 3

3 1 1 2 2 3

( , , ) ( , , ) ( , , )

( , , )

( , , )

q

q

q

x

II

nh pqmn p m h

x

jnh pqmn jp m h

x

jnh pqmn jp

u x x x Au x x x B C G x x x x t x dt b dl

C t C G x x x x t x dt b dl

Dx C G x x x x t x dt

α

α

α α αε ξ

ε ξ

ε

−∞

−∞

−∞

 
 ′ ′ ′= + − − −
 
 

 
 ′ ′ ′+ − − −
 
 


 ′ ′ ′+ − − −



∫ ∫

∫ ∫

∫ m hb dlξ





∫

(3.8) 

The integrals inside the parenthesis are convergent and can be evaluated analytically. 

(This was done using Mathematica). As a result the above expression can be written as 

 

 

0

1 2 3 1 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

3 1 1 2 2 3 3

( , , ) ( , , ) ( , , )

( , , )

( , , )

II II

nh mn m h

II

jnh mnj m h

II

jnh mnj m h

u x x x Au x x x B IG x x x x x x b dl

C IGT x x x x x x b dl

Dx IGS x x x x x x b dl

α α α

α

α

ε ξ

ε ξ

ε ξ

′ ′ ′= + − − −

′ ′ ′+ − − −

′ ′ ′+ − − −

∫
∫
∫

  (3.9) 

where 
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3

1 1 2 2 3 3 1 1 2 2 3( , , , , , ) ( , , )

x

II

mni mniIG x x x x x x CG x x x x t x dt

−∞

 
 ′ ′ ′ ′ ′ ′= − − −
 
 
∫  (3.10.1) 

3

,1 1 2 2 3 3 1 1 2 2 3( , , , , , ) ( , , )

x

II

mnj mnjIGT x x x x x x t CG x x x x t x dt
αα

−∞

 
 ′ ′ ′ ′ ′ ′= − − −
 
 
∫                       (3.10.2) 

3

,1 1 2 2 3 3 1 1 2 2 3( , , , , , ) ( , , )

x

II

mnj mnjIGS x x x x x x CG x x x x t x dt
αα

−∞

 
 ′ ′ ′ ′ ′ ′= − − −
 
 
∫                      (3.10.3) 

 

Furthermore, upon taking the spatial derivative of equation (3.9) and after expressing the 

first term A 0

,k
uα in an integral form using Mura’s formula, one can express the 

displacement gradient as follows 

             

( ) ( ) ( )
( ) ( ){ }

,

, 1 2 3 1 1 2 2 3 3

1 1 2 2 3 3 3 ,

3 , 3

( , , ) ( , , , , , )

( , , , , , )

k

k k

k

II II

k mh m h
l

II II II

k mh knh mn nh mn jnh mnj

II II

jnh mnj k jnh mnj

u x x x K x x x x x x b dl

K x x x x x x A CG B IG C IGT

D x IGS IGS

α α

α α α α

α α

ξ

ε ε ε

ε δ ε

′ ′ ′=

′ ′ ′ = + +

+ +

∫
 (3.11) 

Similarly, all other components of displacement gradient can be derived and are given as 

follows.  

Region 2 

( ) ( )
( ) ( )

3, 1 1 2 2 3 3

1 1 2 2 3 3 3 3

3 , ,

( , , , , , )

( , , , , , )

k

k k

II II

kmh m h
l

II

kmh knh mn k jnh mnj

II

jnh mnj jnh mnj

u S x x x x x x b dl

S x x x x x x E CG F CG

Fx CG G IG

ξ

ε δ ε

ε ε

′ ′ ′=

′ ′ ′ = + +

+

∫
 (3.12) 

Region 1 
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( )
( ) ( )

( ) ( )
( )

( )

, ,

,

, 1 1 2 2 3 3

1 1 2 2 3 3

3 3, 3 3

2

3 3 3

3,

3 3

( , , , , , )

( , , , , , )

2

2

i

i

i

i

i

I I

i mh m h
l

I

i mh inh mn

nh mn i nh mn

jnh mnj i jnh mnj

I

nh mn

I

jnh mnj i jnh mnj

u K x x x x x x b dl

K x x x x x x H CG

J x CG CG

K x CG x CG

B IG

C x IGS IGS

α α

α α

α α

α α

α

α

ξ

β ε

ε δ ε

ε δ ε

ε

ε δ ε

′ ′ ′=

′ ′ ′ =

 + +
 

 + +
 

+

+ +

∫

( )
( ),i

I

I

jnh mnjIGT

α

αε




−


 (3.13) 

( ) ( )
( ) ( )
( )
( ) ( )

( )

,

,

,3 ,3

3, 1 1 2 2 3 3

1 1 2 2 3 3 3 3 3 3

3 3 3 3

3

2

3 3 3

,

( , , , , , )

( , , , , , ) 2

2

i

i

i

i

i

I I

imh m h
l

I

imh inh mn nh mn

i nh mn jnh mnj

i jnh mnj

jnh mnj i jnh mnj

I

jnh mnj

u S x x x x x x b dl

S x x x x x x M CG J x CG

CG x CG

CG

K x CG x CG

G IG

ξ

β ε ε

δ ε ε

δ ε

ε δ ε

ε

′ ′ ′=

′ ′ ′ = + −


− +

+ 

 + + +
 

∫

 (3.14) 

 

1 3

1

i

otherwise

β = − = 
= 

 

where the tensors I
IG , I

IGS and I
IGT in region 1 are defined in a similar way as 

3

1 1 2 2 3 3 1 1 2 2 3( , , , , , ) ( , , )I

mni mni

x

IG x x x x x x CG x x x x t x dt

∞ 
 ′ ′ ′ ′ ′ ′= − − − −
 
 
∫            (3.15.1) 

,

3

1 1 2 2 3 3 1 1 2 2 3( , , , , , ) ( , , )
I

mnj mnj

x

IGS x x x x x x CG x x x x t x dt
αα

∞ 
 ′ ′ ′ ′ ′ ′= − − − −
 
 
∫            (3.15.2) 
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,

3

1 1 2 2 3 3 1 1 2 2 3( , , , , , ) ( , , )I

mnj mnj

x

IGT x x x x x x t CG x x x x t x dt
αα

∞ 
 ′ ′ ′ ′ ′ ′= − − − −
 
 
∫            (3.15.3) 

 

The analytical expressions of all the components of the tensors 

, , , ,I I I II IIIG IGS IGT IG IGS and II
IGT  have been derived using Mathematica, a few of 

these expression are given in Appendix 3.A, a complete list in the form of  FORTRAN 90 

subroutines can be downloaded from the site 

http://www.cmm.wsu.edu/Downloads/Downloads.html 

 

With the displacement gradient fields derived in both regions, the total stress field can 

also be derived using Hooke’s law and can be expressed in the following form: 

 

Region 1 

( ) ( )1 1
, 1 , ,

1

2

1 2 p j i

H I H I I I

ij ij ij ij p ij i ju u u
µνσ σ σ σ δ µ

ν

  
= + = + + +   −   

                              (3.16) 

Region 2   

( ),

2 2
2 , ,

2

2

(1 2 ) p j j

II II II II

ij ij p ij i iσ σ u u u
µ ν δ µ

ν
 

= = + + − 
                   (3.17) 

 

where H

ijσ  denotes the solution in homogeneous medium with material properties of 

region 1. 
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3.2.2) Dislocation segment 

 

Using the derived line integral expressions over the dislocation line, one can compute the 

stress field due to a dislocation segment by employing a coordinate transformation along 

the dislocation line. 

 

For integration of the above integrals over any dislocation segment in an arbitrary 

orientation, the coordinate system χ along the dislocation is employed. The origin of this 

coordinate system is always at the center of the dislocation segment with positive 

direction along the dislocation line sense. The mapping of this coordinate system onto the 

three dimensional Cartesian coordinate system is given by (see Figure 3.2) 

                                                                           

( )
( )
( )

1 1

1 2

1 3

2

2

2

lx x

ly y

lz z

ξ χ

ξ χ

ξ χ

′ ′ ′= + +

′ ′ ′= + + 

′ ′ ′= + +


 (3.18) 

 

where ξ  is the dislocation line sense vector. 

 It is worth noting that the above expressions can be easily extended to continuous 

distribution of dislocations by noting that the dislocation density α  is defined as 

 

hm m hdV b dlα ξ′ =     (3.19) 
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The line integral expressions derived above can also be used to compute the stress field 

of any arbitrary Voltera dislocation, or Somgliani dislocation with Burgers varying along 

the dislocation line. 

 

3.3. Infinite edge dislocation  

 

In this section, the displacement gradient and, in turn, the stress field expressions due to 

an infinite edge dislocation are derived by analytically integrating over the dislocation 

line from −∞  to ∞  for various cases and compared with the existing analytical solutions 

found in the literature. It is worth noting that the particular solutions presented below are 

degenerated from the general line integral expressions for a dislocation segment derived 

above. 

 

3.3.1) Isotropic joined half space with bonded interface 

 

Using the above line integral expressions, the analytical expressions for the displacement 

gradient in equations (3.16) and (3.17) due to an infinite edge dislocation with its Burgers 

vector perpendicular to the perfectly bonded interface are derived to yield the following.   

For positive values of 3x , that is in region 1, 
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For negative values of 3x , that is in region 2, the displacement gradients are given by 
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The expressions above when combined with equations (3.16) and (3.17) along with the 

homogenous solution, which can be found in (Hirth and Lothe 1982), yield the complete 

stress field in both regions.  Subtracting the homogenous solution from both equations 

(3.16) and (3.17) yields the image stress part which can then be compared with the exact 

solution provided by (Head 1953a).    

 

For the purpose of comparison, a bi-material medium with Cu (shear modulus, 1µ  equal 

to 54.6GPa) as region 1 and Ni (shear modulus, 2µ  equal to 94.7GPa) as region 2 is 

considered with an infinite edge dislocation 5 units of Cu Burgers vector magnitude away 

from the interface is considered.  In all the figures discussed below, the shear stress 

component along the ordinate is normalized by shear modulus of Cu (region 1), and 

along the abscissa the distance from the interface (located at the origin) is normalized 

with the magnitude of the Burgers vector of Cu. 
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Typical results of shear stress component are shown in Figure 3.3. It is evident from the 

shear stress field comparison that our analytical solution, although is in different 

algebraic form, is identical to that derived by (Head 1953a).  As the dislocation is in 

softer medium, the presence of stiffer medium near it exerts an image force which repels 

the dislocation further away from the interface and into the softer medium. 

 

3.3.2) Isotropic half space with traction-free boundary 

 

The second particular solution considered is that of an infinite edge dislocation in an 

isotropic Cu half space with Burgers vector perpendicular to traction free boundary. The 

edge dislocation is 5 units of Cu Burgers vector magnitude away from the free boundary. 

The displacement gradient and in turn the stress expressions for this case can be easily 

deduced by equating 2µ to zero. A typical comparison of our analytical solution for the 

image shear stress component is made with (Head 1953a) solution which shows perfect 

agreement as can be seen from Figure 3.4.  

 

As can be deduced from Figure 3.4, as the boundary of the half space is a traction free 

surface, the shear stress is negative which results in Peach-Koehler force attracting the 

edge dislocation towards the surface as expected. 
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3.3.3) Isotropic half space with rigid boundary 

 

As another extreme case, the solution of an infinite edge dislocation in isotropic Cu half 

space with Burgers vector perpendicular to the rigid boundary is considered. For this 

particular case, the solution can be deduced when 2µ tends to infinity. It can be noticed 

that the constants B, C and G vanish in this limit. The image shear stress component 

shown in Figure 5.5 implies that the dislocation is repelled by the rigid boundary as 

expected.  

 

3.3.4) Interface dislocation 

 

Finally, we consider the solution of an infinite edge dislocation at the perfectly bonded 

interface with its Burgers vector perpendicular to the interface which can be obtained by 

equation  3x′   to zero. The image shear stress plot for this case is shown in Figure 5.6. 

 

3.3.5) Circular dislocation loop 

 

In this sub-section, to illustrate the scope of the method, we consider prismatic circular 

loop in the plane parallel to the interface 5 units of Cu Burgers vector magnitude away 

from the Cu/Ni interface into the Cu medium. The circular loop is discretized into 

collection of straight dislocation segments and the stress field is computed by numerically 

integrating the above derived line integral expressions along all the straight dislocation 

segments. The image shear stress component plotted along a line parallel to 3x axis and 5 
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units of Cu Burgers vector magnitude away from the origin in the 1x direction is shown in 

the Figure 5.7(a) for different refinement in discretization of circular loop. As it can be 

noticed from the plot, the solution converges upon mesh refinement of the dislocation 

loop. 

 

We have also considered a glide circular loop in the plane parallel to the interface 5 units 

of Cu Burgers vector magnitude away from the Cu/Ni interface into the Cu medium. By 

numerically integrating the line integral expressions along all the dislocation segments, 

the stress field and , in turn , the Peach-Koehler force acting on the loop only due to the 

presence of a different material is computed and shown as a vector plot in the Figure 

5.7(b). As it can be seen from the plot, the equilibrium of the loop is disturbed by the 

effect of image stresses due to the presence of a different material.  

 

3.4. Conclusions 

 

A method is presented to derive line integral expressions for stress and image 

displacement fields due a dislocation segment in joined 3D half space medium with 

perfectly bonded interface. The methodology is based on combining Walpole’s general 

solution, which is expressed in terms of homogeneous solution, and Mura’s integral 

formula for a dislocation segment in homogeneous medium. The line integral expressions 

can be solved analytically, providing exact solutions. A particular case of an edge 

dislocation with its Burgers vector perpendicular to the interface is considered and 

analytical expressions are derived which are then compared with Head’s solution. The 
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solutions of an edge dislocation near a traction free and rigid boundary of a half space 

and at the interface of joined half space are also computed as special degenerate cases 

and the stress fields are shown.  

 

Although Walpole’s general solution is not derived from the method of images by 

superposition of solutions of appropriate nuclei of strain, the separation of the solution in 

terms of two components, homogenous and image components, and expressing the image 

part in terms of the homogeneous solution enabled the derivation of the line integral 

expressions for the dislocation segment. A general extension of such method for multi-

layered medium can be possible by expressing the solutions of fundamental nuclei of 

strain in joined half space in terms of homogenous solutions.  
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Figure 3.3 Comparison of image shear stress component of our solution ‘AZ Solution’ 

with that of Head solution due to an edge dislocation near a bi-material interface.  
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Figure 3.4 Comparison image shear stress component of our solution ‘AZ solution’ with 

that of Head solution  due a edge dislocation near a traction-free surface 
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Figure 3.5 Image shear stress component of an infinite edge dislocation near a rigid 

boundary  
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Figure 3.6 Image shear stress component of an infinite edge dislocation in the interface 
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Figure 3.7(a) Image shear stress component of a circular prismatic loop for different 

discretizations 
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Figure 3.7(b) Vector plot of Peach-Koehler force on a circular glide loop 
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Abstract 

 

The flow of plastic deformation in polycrystalline materials can be due to activation of 

sources in adjacent grains due to the effect of pile up dislocations against the grain 

boundary and also through the transmission of dislocations across the grain boundary. In 

this paper, we focus on these two issues by studying the evolution of resolved shear stress 

as a result of pile up dislocations against the boundary and understanding the basic 

phenomena of dislocation transmission through grain boundary. We also investigated the 

relaxed structures a grain boundary acquires after the process of dislocation transmission. 

 

 

4.1 Introduction  

 

The polycrystalline deformation of material can be explained on the basis of 

phenomenological knowledge of single crystal deformation properties. The single crystal 

deformation can be studied by classical phenomenological theory which does not include 

size effects or by improved gradient plasticity theories which have shear strain gradients 

as internal variable to better describe size effects inherent in plasticity (Zbib and Aifantis 

1989d; Zbib and Aifantis 1989c; Zbib and Aifantis 1989b; Fleck and Hutchinson 2001). 

In the top-down approach, these theories are improved by employing internal variables 
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derived from the microscopic mechanisms (Gurtin 2000; Mesarovic 2005b; Shizwa and 

Zbib 1999). The single crystal deformation is also studied in a bottom-up approach using 

atomistic simulations (Horstemeyer and Baskes 1999). In all the polycrystalline models 

developed from the single crystal deformation using Taylor-type assumptions (Asaro and 

Needleman 1985; Hutchinson 1976; Kalidindi et al. 1992), Sachs-type assumptions 

(Leffers and Van Houtte 1989) and using self-consistent approaches (Molinari et al. 

1987) have a single crystal as their representative volume element and as a result are 

deficient of grain boundary effect into the theory. In this paper, we study the dislocation 

interactions with grain boundary to point out the importance of these effects in the 

polycrystalline theories. 

 

In polycrystalline materials, plastic deformation is caused by flow of plasticity across 

several grains. The nature of flow of plastic deformation from one grain to another is 

mainly dependent on the resistance of the grain boundary. Depending on the strength of 

the grain boundary, dislocations can pile-up against it or shear the boundary and transmit 

into the adjacent grain. In the former case, the pile-up of dislocations against the grain 

boundary would activate sources in the neighboring grains thus enabling the flow of 

plasticity across many grains. In this paper, we mainly focus on these two issues: Firstly, 

the effect of pile-up dislocations against the grain boundary on the plasticity in the 

adjacent grains and secondly, the basic phenomena of dislocation transmission across the 

grain boundary and the relaxed structure it acquires after accommodating the plastic 

incompatibility. In section 4.2, we study the effect of pile-up of dislocations against a 

pure tilt wall in the adjacent grain as a function of misorientation across the boundary. In 
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section 4.3, we study the basic phenomenon of dislocation transmission and followed by 

the methodology of computing the long-range stress field of dislocation configuration in 

section 4.4. In section 4.5, we propose and explain the relaxed configurations the grain 

boundary stabilizes to after transmission of dislocations and followed by summary. 

 

 

4.2 Effect of Pile-up dislocations   

 

In this section, we consider the flow of plasticity to the adjacent grains through the 

activation of sources caused by the piled up dislocations against the grain boundary. 

Towards this end, we considered an infinite bi-crystal with pure tilt wall as the grain 

boundary model as shown in the Figure 4.1(a) and studied the evolution of resolved shear 

stress in grain B as the dislocations pile-up in grain A against the boundary. The effect of 

pile-up dislocations in grain A on the stress field in grain B is a function of misorientation 

across the grain boundary which is governed by the inter-dislocation spacing in the wall. 

As shown in the Figure 4.1 (b), the resolved shear stress in the grain B is plotted as 

function of slip in grain A for various misorientations across the boundary. The slip in 

grain A is defined as  

 

   Slip = 
2

1

N

i

i

x
b

L
=
∑   (4.1) 

 

Where ix , L, b and N denote the position of dislocation, length of pile-up, burgers vector 

and number of dislocations in the pile-up respectively. 
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In this study, we considered a single ended pile-up of dislocations on a length of 3 

microns under 30 MPa applied stress along the slip plane in grain A. As it can be 

observed from the Figure 4.1 (b), the effect of pile-up dislocations on the source 

activation in grain B reduces as the misorientation across the boundary increases. 

Therefore, the deformation in polycrystalline material is mostly local to itself as the 

misorientation increases unless the stress at the pile-up tip reaches a point of transmission 

of dislocations across the grain boundary. In the following sections, we discuss the basic 

phenomena of transmission of dislocation across the grain boundary and relaxed 

structures it acquires. 

 

 

4.3 Dislocation transmission  

 

A grain boundary, which separates two stress-free crystallites, is often conceived as an 

infinite array of alternating perfect dislocations with an inter-dislocation spacing resultant 

after core relaxation. As the grain boundary dislocations (GBDs) belong to neither of the 

two crystals, the grain boundary is generally represented by an array of dislocations with 

Burgers vector
g

b
r

 with respect to a reference lattice (the overlapping dichromatic pattern 

(Pond and Vlachavas 1983)). The lattice parameter of this reference lattice depends on 

the misorientation of the grains. As a result, the grain boundary is represented by 

dislocations with a Burgers vector normal to the boundary and separated by reference 

spacing. The transmission of a perfect dislocation from grain A to grain B cutting through 

the grain boundary shears it by an amount equal to the Burgers vector of the grain 

boundary dislocation ( )( )2 2 2 cos
2

g A Bh b b b b ω= = + =
r r r

 and leaves a 
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dislocation ( )( )2 sin
2

d A Bb b b b ω= − =
r r r

 in the boundary (see Figure 4.2) with ω  being 

the angle misorientation across the boundary. This grain boundary defect, a 

disconnection, has both step character as well as dislocation character. The dislocation 

configuration of this structure is shown in Figure 4.2.  

 

This dislocation structure is unstable and tends to relax to a lower energy configuration. 

As proposed in (Hirth et al. 2006), in case of low angle boundary, the offset wall glides to 

restore its perfect tilt configuration. For high angle boundary, in principle, the wall can be 

relaxed by a similar glide mechanism but unlike the low-angle case, the glide motion 

takes place within a non-linear core region, which encumbers the process to a great 

extent. Alternatively, as has been proposed in (Hirth et al. 2006), the relaxation can take 

place with the removal of disconnection as a result of its glide along the boundary. Such 

glide motion of defects along the boundary has been observed in experiments (Kurtz et 

al. 1999). 

 

In this paper, we consider the configuration resulting from the transmission of several 

dislocations through the grain boundary. We characterize the relaxed structure by 

comparing shear stress as well as strain energy density plots. In the next section, the 

methodology of stress computation is presented before the relaxed configuration is 

discussed. 
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4.4. Stress computation method 

 

Before going further into the discussion of long-range stress fields of concerned 

dislocation configurations, we present a general methodology for finding the stress fields. 

The long-range stress field of the dislocation is calculated using Mura’s formula (Mura 

1987), which is given by 

 

( ) ( ) ( ),ij pqmnijkl lnh kp q hm

V

x C C G x x x dVσ ε α
′

′ ′ ′= −∫
r r r r

 (4.2) 

 

where kphm G,α,C,σ ιjκλιj ,  and lnhε denote the stress tensor at a material point x
r

, material 

stiffness tensor, dislocation density tensor, Green’s function and permutation tensor 

respectively, and the subscript ,q indicates spatial derivative with respect to spatial 

coordinate qx .  We developed a computational algorithm to solve equation (4.2) for any 

given anisotropic material stiffness tensor and dislocation density tensor. For isotropic 

materials we use the following reduction: 

 

( ) ( ) ( ), 3 5

1
1 2 3

8 1

n ni m mn imk n m i
pqmn kp q

x x x x x x
C G x

x x

δ δ δ
υ

π υ
+ −−  = − + −  

  (4.3)       

 

in which x x x′= −r r
 and x x x′= −r r

, with υ  and δ being the Poisson ratio and Kroneker 

delta function, respectively. 
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Thus, one can calculate the stress distribution of a collection of dislocations in an infinite 

medium by numerically integrating (4.2) with an appropriate dislocation density tensor 

which aptly represents the dislocation configuration and content. The long-range stress 

field of a collection of discrete dislocations can be computed as the sum of the self stress 

fields of each dislocation. A pure edge dislocation can be represented in terms of Dirac’s 

delta functions through the dislocation density tensor as  

 

( ) ( )31 1 1 2b x xα δ δ=  (4.4)               

 

where 1b  denotes the 1x  component of Burgers vector. 

 

The shear stress field of a finite edge dislocation wall as computed analytically was 

compared with the numerical result obtained from Mura’s formula to gain confidence in 

the present methodology. We obtained the analytical results using the expressions for the 

stress field of a pure edge dislocation given in (Hirth and Lothe 1982).  As shown in 

Figure 4.3, there is a good agreement with the analytical result.  

 

The components of stress field of a disclination dipole are computed from the formulae 

given in (Li 1972), which, in units of ( )2 1µω π ν− , are given by 
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σ

σ

σ

+ −
= + −
+ + + + + −

+ − = − + 

+ + + + + − 


+ − 
= − 

+ + + − 

 (4.5) 

 

where , ,µ ω and L  denote shear modulus , strength of a wedge disclination dipole and 

half the length of the dipole respectively. 

 

 

4.5. Disconnections and disclination dipoles 

 

In this section, we consider the structure formed after transmission of several dislocations 

through the grain boundary.  Shear stress and strain energy density plots show that the 

structure relaxes to a configuration which can be represented as a connected array of 

disclination dipoles and a grain boundary dislocation GBD (Hirth et al. 2006). 

 

A pure tilt wall, which is a low energy structure, separates two crystals misoriented by a 

small angle. The transmission of a dislocation from a grain to another through the grain 

boundary, shears the wall, resulting in the structure shown in Figure 4.2. This structure 

comprises two offset tilt walls and a disconnection. The disconnection, which can be 

considered as a defect in the boundary, has both step and dislocation character.  In the 

same manner, after transmission of many dislocations, a larger disconnection with a step  

several atomic planes in extent and containing an array of dislocations would result. 
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Alternatively, an array of unit disconnections formed at various locations along the grain 

boundary can possibly glide along the boundary to form the larger disconnection.  This 

structure, shown in Figure 4.4(b), with the array of dislocations lumped into a dislocation 

at the origin can be considered as a general configuration. The long-range stresses are 

unaltered by lumping according to St. Venant’s principle. In this particular study, we 

consider an offset of height equal to 4D (D, being the inter-dislocation spacing) with an 

array of m ( )4 g
D b=

r
 dislocations, with m being the number of transmitted dislocations 

needed to produce a step of height 4D. This general configuration reduces to the structure 

resulting after a dislocation transmission in the limit as 4D h→ (see Figure 4.2 and 

4.4(b)). In the calculations, finite dislocation walls with lengths L>>D are considered 

instead of infinite and semi-infinite walls for ease of computation of stress and energy 

density.  The local fields are the same in all of these cases. 

 

 To confirm the fact that transmission of dislocations through a grain boundary results in 

a higher energy structure, a comparison of shear stress and strain energy density was 

made between the structures shown in Figure 4.4.  The shear stress plot in Figure 4.5(a) 

shows that the stresses are higher for the configuration in Figure 4.4(b) as compared with 

the finite edge dislocation wall. The long-range stresses of both configurations, after a 

distance approximately equal to the length of the wall, are almost equal, which conforms 

to St. Venant’s principle. The dislocation structure formed after transmission is also a 

higher energy configuration as compared with the finite edge dislocation wall as can 

observed from Figure 4.5(b).  
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Intuitively, one can argue that as the offset walls are separating two grains misoriented 

with each other, the material in the offset region will undergo some local changes (e.g. 

local lattice rotation) and relax into a dislocation structure that would preserve the 

misorientation between the grains. For the dislocation configuration shown in Figure 

4.4(b), the step portion of the larger disconnection relaxes to form a connecting branch to 

the offset walls preserving the misorientation, which is indeed a lower energy structure. 

The lattice planes of the connecting wall are orthogonal to that of the offset wall in order 

to preserve the nature of rotation across the boundary (Hirth and Ballufi 1973).  

 

In other words, the stresses of an offset disclination dipole should decrease upon 

formation of disconnection comprising steps with right-angle bends because the shear 

stress of an equal-armed right angle bend is zero at angle of 45°. Accordingly, the 

resultant configuration after the relaxation of the disconnection portion of the dislocation 

structure (see Figure 4.4 (b)) can be represented as a connected array of disclination 

dipoles. The details of stress and energy plots are given in (Akarapu et al. 2008). 

  

The general configuration after transmission of several dislocations through the boundary 

with an offset of several atomic planes in extent, as shown in Figure 4.6(a), relaxes into a 

connected array of disclination dipoles and a grain boundary dislocation as shown in 

Figure 4.6(b). The energy of the structure is further reduced by splitting the grain 

boundary dislocation into two at one-third positions from the origin as shown in Figure 

4.6(c). The splitting of the grain boundary dislocation is terminated based on structural 

considerations with the smallest Burgers vector belonging to the dichromatic pattern 
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(Pond and Vlachavas 1983). One can demonstrate the relaxation quantitatively by 

comparing the strain energy density of the configurations shown in Figure 4.6(d). It can 

be observed from the Figure 4.6(c) that there is a significant decrease in strain energy 

density. 

  

While relaxed the configuration of Figure 4.6 (c) has no long-range stresses, evidently 

there remain local stresses near the defect.  These remaining stresses can be reduced, or 

in the limit, removed by local pileup-like rearrangements of both intrinsic GBDs in the 

discontinuous tilt walls and of both intrinsic and extrinsic dislocations in the step.  For a 

step other than the right-angle steps considered here, the stresses would be longer range 

and the rearrangements more complex.  Consideration of the details of these 

rearrangements is beyond the scope of the present work. 

 

 

4.6 Summary  

 

In summary, we have addressed the effect of pile-up dislocations against the grain 

boundary and its influence in activating sources in the adjacent grains. We also studied 

the basic phenomena of dislocation transmission and resulting configurations. The stress 

analysis of dislocation configurations resulting from the transmission of dislocation 

through a finite wall is discussed and their strain energies are compared. The results show 

that the dislocation configuration resulting after the formation of an array of 

disconnections relaxes into a connected array of disclination dipoles of equal strength and 

a grain boundary dislocation.  The relaxed array has no long-range stresses but has local 
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stresses that can only be removed by local rearrangements of dislocation spacings near 

the defect.     
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Figure 4.1(a) Infinite bi-crystal with pure tilt wall as the grain boundary (b) Evolution of 

resolved shear stress in grain B (normalized by ( )3*10 2 1µ π ν− − ) as the dislocations pile 

up in grain A against the grain boundary quantified as slip. 
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Figure 4.2 Finite edge dislocation wall sheared by a perfect lattice dislocation to form a 

disconnection in the boundary 
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Figure 4.3 Comparison of shear stress plot of finite edge dislocation wall computed 

analytically with the numerical result using Mura’s formula. The shear stress is 
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Figure 4.4(a) Finite edge dislocation wall (b) Finite wall with a multi-offset and a grain 

boundary dislocation 
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Figure 5(b) 

 

Figure 4.5 Comparison of (a) Shear stress (normalized with 
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*10
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−

− ) (b) strain 

energy density (normalized with ( )( )2 15
1 *10µ υ −− ) plotted along a-a of finite edge 

dislocation wall ‘Finite_Wall_a-a’ (see Figure 3a) and an offset dislocation wall with a 

grain boundary dislocation ‘Offset_mbd_4D_a-a’ (see Figure 4.4b) 
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Figure 4.6(a) Dislocation structure formed after transmission of several dislocations 

through a grain boundary (b) the configuration to which it relaxes (c) Configuration in 

which the GBD is split into two at one-third positions from the center. 
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Figure 4.6(d) Comparison of strain energy density (normalized 

with ( )( )2 15
1 *10µ υ −− ) plotted along a-a of finite walls with a large offset and a grain 

boundary dislocation ‘Offset_mbd_4D_a-a’ (see Figure 4.6(a)) and the relaxed 

configurations ‘Disconnection_a-a’ (see Figure 4.6(b)) and “Splitting GBD_a-a” (see 

Figure 4.6(c))  
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CHAPTER FIVE: ENERGIES AND DISTRIBUTIONS OF DISLOCATIONS IN 

STACKED PILE-UPS 

 

Raghuraman Baskaran, Sreekanth Akarapu, Sinisa Dj. Mesarovic* & Hussein M. Zbib 

School of Mechanical and Materials Engineering, Washington State University, Pullman, 

WA 99164-2620 

 

 

Abstract 

 

To understand the kinematic and thermodynamic effects of representing discrete 

dislocations as continuous distributions in their slip planes, we consider stacked double 

ended pile-ups of edge and screw dislocations and compute their distributions and 

microstructural energies, i.e., the elastic interaction energies of geometrically necessary 

dislocations (GNDs).   

In general, three kinds of representations of GNDs are used: discrete, semi-discrete, and, 

continuous representation.  The discrete representations are closest to reality.  Therefore, 

the corresponding solutions are considered exact.  In the semi-discrete representation, the 

discrete dislocations are smeared out into continuous planar distributions within discrete 

slip planes.  The solutions to problems formulated using different descriptions are 

different.  We consider the errors in:  dislocation distributions (number of dislocations), 

and, microstructural energies; when the discrete description is replaced by the semi-

discrete one. 

Asymptotic expressions are derived for: number of dislocations, maximum slip, and, 

microstructural energy density.  They not only provide a powerful insight into the 

behavior, but are also accurate for a very wide range of parameters.  Two characteristic 

                                                 

* Corresponding author: mesarovic@mme.wsu.edu 
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lengths emerge from the analysis: the ratio of pile-up length to slip plane spacing 

(lambda), and, the ratio of slip plane spacing to the Burgers vector.  For large enough 

lambda and large enough number of dislocations, both the discrete and semi-discrete 

solutions are well-approximated by asymptotic solutions.  Results of a comprehensive 

numerical study are presented. 

 

 

Keywords: Microstructural energy, discrete dislocations, dislocation density 

distributions, geometrically necessary dislocations. 
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5.1 Introduction 

 

The relevance of dislocation pile-ups has been appreciated since Hall (1951) and Petch 

(1953) analyses of the grain size dependence of yield strength of polycrystals.  The 

earliest investigations of pile-ups of discrete dislocations (Eshelby et al, 1951) have been 

used as a rational for the Hall-Petch effect.  A different description of dislocation pile-ups 

– called the semi-discrete description here, whereby discrete dislocations are smeared out 

within its slip plane, has been used to model crack discontinuities (Smith, 1966, 

Weertman, 1996), as well as periodic array of cracks (Fleck, 1991, Chen & Pindera, 

2007a,b).  It is often assumed that these two descriptions give similar enough results, as 

long as the number of dislocations in the pile-up is high enough.  This assumption has 

never been systematically quantified for stacked pile-ups of dislocations, and this is the 

main purpose of this work.  

Dislocation pile-ups on a single slip plane have been systematically analyzed by Chou & 

Li (1969) using both, discrete and semi-discrete description.  For stacked pile-ups, a 

comparison between the two descriptions has been done for the special case of screw 

dislocations in slip planes orthogonal to the boundary (Roy et al, 2007), for which an 

analytic solution exists (Louat, 1963). 

In this paper, we consider double-ended pile-ups of edge and screw dislocations, in 

stacked slip planes of various orientations.  We present a systematic, quantitative 

comparison of dislocation distributions and interaction energies resulting from the two 

descriptions.  We use the integral formulation (Mesarovic, 2005) of dislocation 
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thermodynamics, which provides a convenient way of computing energies of dislocation 

pile-ups (e.g., Yassar et al, 2007). 

Additional motivation for this work is the development of the size dependent continuum 

crystal plasticity.  Classical crystal plasticity is size-invariant and incapable of 

incorporating boundary conditions for slip (Sun et al, 2000).  Motivated by frequent 

observation of size effects (Fleck et al, 1993, and references therein) in confined plastic 

deformation and Ashby’s (1970) analysis of geometrically necessary dislocations (GND), 

a number of gradient theories have been proposed in the past two decades1.  The size 

effects are the result of constraint enforced high-energy configurations – stacked pile-ups 

of dislocations.  Therefore, for development of rational size-dependent theory, a 

systematic analysis of kinematics and thermodynamics of stacked pile-ups is needed.  In 

this paper we focus on the thermodynamic consequences of substituting the exact discrete 

description with the semi-discrete descriptions of dislocation kinematics.  The latter 

consists of smeared out dislocation density distributions in discrete slip planes.  The next 

coarsening step, i.e., the thermodynamic consequences of replacing the semi-discrete 

description with a continuum one, is addressed in the forthcoming paper (Mesarovic et al, 

2009).    

The paper is organized as follows.  In Section 5.2, the kinematic representations of 

dislocations, and the method for computing the interaction energies, are discussed.  In 

Section 5.3, the problems are formulated and the preliminary dimensional analysis is 

given.  The results are presented in Section 5.4.  Summary and discussion are given in 

Section 5.5. 

                                                 

1 The recent special issue of  Modelling Simul. Mater. Sci. Eng., edited by Tvergaard 

(2007) provides a sampling. 
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5.2 Representations of geometrically necessary dislocations and the microstructural 

energy 

  

The densities of geometrically necessary dislocations (GND) can be represented by Nye’s 

(1953) dislocation density tensor field ( )α x .  In an infinitesimal volume element dV, 

about the point x, we consider segments of dislocations of type s, with the Burgers vector 

sb , and the unit tangent vector sξ .  Let ( )s dVρ x  be the total length of dislocation 

segments of type s in dV.  Then: 

  
( ) s s s

s
ρ=∑α x b ξ

 (5.1)  

The expression s sb ξ  denotes a dyadic product, so that the components of α  are given by 

s s s
ij i js

bα ρ ξ=∑ .  Einstein index notation with summation over repeated lower indices 

is used, unless otherwise noted. 

To illustrate different representations of GND, we consider a simple two-dimensional 

problem: an infinite thin film sandwiched between elastic half-spaces, with prescribed 

far-field shear stress 12
Rσ σ= , as shown in Figure 5.1.  The slip planes are orthogonal to 

the interfaces and to the plane of the picture.  The interfaces are impenetrable to 

dislocations.  All dislocations are edge with the magnitude of Burgers vector b.  Slip 

planes are equidistant (h) and the film is infinite in 2x  direction.  The only non-vanishing 

component of Nye’s tensor for the case of edge dislocations piling-up in slip planes 

orthogonal to the boundary is 13α . 
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We differentiate between three types of kinematic representations of GND: 

(i) Discrete representation is mathematically represented as 

 ( ) ( )13 1 2 21 1
ˆ , ( ) ( )j j

j k

x x b sign x x x khα δ δ
∞

=−∞

=− −∑ ∑ , (5.2)  

where 1
jx  are 1x - coordinates of individual dislocations, δ  is the Dirac delta function, 

and h is the distance between slip planes (Figure 5.1).    

(ii) Semi-discrete representation is obtained by smearing out the Burgers discontinuity 

in the slip plane, but keeping the slip planes discrete: 

( ) ( ) ( )13 1 2 1 2,
k

x x B x x khα δ
∞

=−∞

= −∑ . (5.3) 

(iii) Continuous representation is obtained from the semi-discrete one by smearing out B 

in the direction normal to the slip planes.  For the simple problem shown in Figure 

5.1, this representation is easily related to the semi-discrete one: 

( ) ( )13 1 1x B x hα = .  (5.4) 

 

Microstructural energy is the elastic interaction energy associated with the presence of 

geometrically necessary dislocations.  The direct method for computation of 

microstructural energy from a given Nye’s distribution 
( )α x

 has been derived by 

Mesarovic (2005).  For the general case with elastically dissimilar solids, free surfaces 

and GNDs in more than one solid, the exact computations are rather complex, but 

approximations have been devised (Mesarovic, 2005).  The computations simplify 

considerably when a dislocated solid is embedded in an elastically identical infinite 

medium.  In such case, the microstructural energy is given by double convolution 
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( ) ( ) ( )3 31
: :

2

m

V V
W dx dξ

′
= −∫ ∫ α x M x ξ α ξ . (5.5) 

 

In (5.5), V ′  and V represent the same dislocated volume, and ,  V V ′∈ ∈x ξ .  The double-

dot contraction in (5.5) is defined so that the integrand is ij jilk klMα α .  For elastically 

isotropic case, the rank-four, two-point tensor field M assumes a simple form 

 

 ( ) ( )2
2

8 8
jilk jk il ij kl pij qkl pq p q

E
M d d

R R

µ δ δ δ δ δ
π π

= − + ∈ ∈ − . (5.6) 

 

In (5.6), R is the magnitude of the direction vector = −R ξ x , pd  are the components of 

the unit direction vector R=d R , while ( )2 1E µ ν= −  is the plane strain modulus, 

with ν  and µ  being the Poisson’s ratio and the shear modulus.  

 

The microstructural energies computed from (5.5), using different representations (5.2, 

5.3, and 5.4), differ.  Since the elasticity problems are essentially energy minimization 

problems, the solutions obtained using different representations will yield different 

dislocation distributions.   

 

5.3 Formulation of the problem and numerical methods 

 

5.3.1 Semi-discrete representation 
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We consider a simple case of thin film with single slip system, and slip planes inclined at 

an angle θ  with respect to 1x -axis (Figure 5.2).  The resolved shear stress, 
Rσ , resulting 

from the applied far-field tractions, is prescribed.  The interfaces are considered 

impenetrable to dislocations.  The slip planes are equidistant with normal distance h, and 

extend to ±∞  in the 2x direction.  For 0θ = , the problem reduces to the one shown in 

Figure 5.1.  Dislocations are either edge or screw, corresponding to a plane strain 

problem, or an anti-plane problem, respectively.  

 

To compute the microstructural energy from (5.5), the integration is first performed in the 

( )3 3x ξ  direction (along the length of dislocation lines); handling of infinities is 

facilitated by noting that α  is odd in ( )1 1x ξ , i.e., ( ) ( )1 1x xα α− =− .  Since the 

integration over ( ) ] [2 2  over ,x ξ −∞ ∞  yields infinite values, we consider the 

microstructural energy density per unit layer, ω , averaged over a slab of thickness h, 

such that:  

( ) 2
m

W dxωα
∞

−∞
= ∫ .        (5.7) 

The least complicated expression is obtained with non-orthogonal coordinates ( )1 2,y y  

shown in Figure 5.2.  The problem is, in fact, one-dimensional.  To simplify notation, we 

drop the indices, i.e., 1y will be denoted y.  For the plane strain case (edge dislocations), 

the unit-layer microstructural energy density can be written as: 

 

 ( ) ( ) ( )
cos cos

cos cos

cos
,

16 cos

L L

L L

E y
dyB y d B G

h h

θ θ

θ θ

θ ηω η η θ
π θ

α

− −

 −  =    ∫ ∫ . (5.8) 
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For the anti-plane case (screw dislocations), E  should be replaced by 2µ .  The analytic 

forms of ( ),G cθ  are given in Appendix 5.A for both plane strain and anti-plane strain 

case.  The functions are also plotted for different values of θ in Figure 5.3.  The function 

has a logarithmic singularity at the origin.  It diverges for c→±∞ , except for edge 

dislocations with 0θ = .  This anomaly is explained by considering the specific nature of 

long-range interactions between the resulting infinite walls of dislocations.  For edge 

dislocations, the long-range interactions become stronger with increasing θ, while the 

trend is opposite for screws. 

 

To compute the microstructural energy, one must solve the corresponding boundary value 

problem for the equilibrium distribution ( )B y .  The governing equations are derived using 

the principle of virtual work2 and the details of derivation are shown in Appendix 5.B.  

The resulting singular integral equation (for the plane strain case) is   

 

 ( )
cos

0

cos

, ,   
4 cos cos

L

R

L

E y L
B K d y

h

θ

θ

ηη θ η σ τ
π θ θ
−

 −   + = ≤   ∫ , (5.9) 

 

where 0τ  is the Peierls stress, i.e., the friction-like resistance to dislocation motion, and 

Rσ  is the prescribed resolved shear stress.  For the anti-plane case (screw dislocations), 

the governing equation still has the form (5.9), with E  replaced by 2µ .  The singular 

kernels are  

                                                 

2 Alternatively, one may equilibrate the forces acting to each infinitesimal dislocation 

( )B y dy . 
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( )

( )
,1 cos cos

, , ,
cos 2 cos

G cy y
K G k c

h y h h c h

θη η θ θθ θ θ
θ θ

    ∂− ∂ −   = = =     ∂ ∂   
 . (5.10) 

The non-dimensional kernels ( ),k cθ  have the singularity of order 
1c− .   Moreover, with 

increasing c , they converge to ( ) ( )sgnk cθ∞− , where: 

 

 ( )
24 cos sin ,         for edge dislocations

2 cos ,                  for screw dislocations
k

π θ θθ
π θ

∞
   =    

   .   (5.11) 

 

The convergence is rapid; already, at 1c ≈  , (5.11) is a good approximation.  For large 

values of c  in (5.10), the first derivative of the energy kernels ( ),G cθ  becomes 

independent of c. Consequently, the energy kernels ( ),G cθ  become asymptotically linear 

in c for increasing c .  The physical interpretation of (5.11) becomes clear if one 

interprets the kernel in (5.9) as the back-stress resulting from an infinite wall of 

dislocations with the Burgers vector ( )B dη η , which, except for the small neighborhood 

of the wall, is constant (Hirth & Lothe, 1992).  In view of (5.11) and Figure 5.3, it is 

apparent that the case of edge dislocations in planes orthogonal to the boundary ( )0θ =  

is pathological, as it produces no long-range stresses.  The asymptotic solutions discussed 

next do not apply for that case, which will be discussed separately in Section 5.4.3. 

 

The non-dimensional parameter λ , emerging from the analysis, involves the only two 

lengths in the semi-discrete problem:  
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 L hλ = . (5.12) 

In the limit 0λ→ , the kernel (10) becomes ( )1 xξ− , so that the problem (5.9) reduces 

to the standard Hilbert transform problem (Weertman, 1996). 

 

5.3.2 Asymptotic solutions for the semi-discrete representation 

 

Rapid convergence of kernels ( ),k cθ  and ( ),G cθ  allows for useful asymptotic 

expressions for the relevant quantities – in particular, for the number of dislocations in 

one pile-up, and, for the energy density (5.8).  These asymptotic formulae will provide 

useful starting point for analysis of computational results in Section 5.4.   

The number of dislocations on one side of the double pile-up (Figure 5.2), can be 

obtained as 

 ( ) ( )
cos 1

0 0

1
, ,

cos

L
L

N B y dy B y dy
b b

θ

λ λ
θ

− −
= =∫ ∫ , (5.13) 

 

where b is the magnitude of the Burgers vector.  The resulting number N  is not 

necessarily an integer.  It is shown in Appendix 5.C that, for a sufficiently large λ : 

 

 
( )0

4

cos
N N

k

πϕσ
θ θ∞≈ = , (5.14) 

 

where  

 

 
h bϕ =  (5.15)  
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is the second non-dimensional ratio of lengths, and  

 
( )
( )

0

0

,     for edge dislocations  

2 ,    for screw dislocations

R

R

Eσ τ
σ

σ τ µ

  −  =  −   

 (5.16) 

 

is the non-dimensional stress parameter.   

 We first determine numerically the domain of validity of asymptotic formula 

(5.14)3.  The singular integral equation (5.9) is solved using the numerical procedure 

developed by Erdogan & Gupta (1972) which is outlined in Appendix 5.D.  From 

governing equation (5.9), we see that the solution must always be proportional to σ .  

Since the parameter ϕ  only enters (5.14) because we count dislocations in units b, 

(which has no meaning in semi-discrete representation), we do not expect that its value 

will affect the validity of (5.14).  Thus, we only expect the dependence of number of 

dislocations on λ  and θ .   Indeed, as evident from Figure 5.4, the asymptotic expression 

(5.14) is accurate if 1λθ >  for edge dislocations,  and 1λ>  for screw dislocations.  

Thus, we write: 

 

 
( )0

1   edge, 0< /34
 for 

1    screw, 0 /3cos
N N

k

λθ θ ππϕσ
λ θ πθ θ∞

 > ≤  ≈ =   > ≤ ≤  
. (5.17) 

 

For screw dislocations [Figure 5.4(b)], there is an additional weak dependence on θ , 

when the asymptotic expression is not valid, i.e., for 1λ< .  For 1λ>  such dependence 

is not noticeable.  We note that this covers all cases of interest in this work.  For 1λ < , 

                                                 

3 Louat’s (1963) analytic solution for screw dislocations with 0θ = , indicates exponential 

convergence to the asymptotic formula (14). 
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the problem approaches the single slip plane problem, much studied in the past (see 

references in Section 5.1).  We also note that,  

The discontinuity in displacement across the slip plane, ( )s y , is obtained by integrating 

the function ( ),B yλ : 

 ( ) ( )
cos

,

L

y

s y B d

θ

λ η η=− ∫ , (5.18) 

 

so that the maximum slip is  

 

( )
( )0 0

4
0

cos
s s bN bN h

k

πσ
θ θ∞= = ≈ = .       (5.19) 

 

Thus, asymptotically, the maximum slip and number of dislocations are independent of 

the length of the pile-up L.  This counterintuitive result is the consequence of the constant 

elementary back-stress [see the discussion after (5.11)] and sharply localized distributions 

( )B η , as explained in Appendix 5.C.  

 

The unit-layer microstructural energy density (5.8) also has a simple asymptotic 

representation.  It is shown in Appendix 5.C that, for sufficiently large λ , 

 

 ( )
( )

2

0 0

4

cos
LE LE N

k

πσ σω ω
ϕθ θ∞≈ = =α . (5.20) 
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As before, E  should be replaced by 2µ for screw dislocations.  And, as before, we do not 

expect that the validity of asymptotic formula (5.20) to depend on  and σ ϕ .  The 

numerical studies, summarized in Figure 5.5, confirm that.  In summary: 

 

 ( )
( )

2

0

5   edge, 0< /34
= ,     for 

5    screw, 0 /3cos
LE

k

λθ θ ππσω ω
λ θ πθ θ∞

 > ≤  ≈   > ≤ ≤  
α  . (5.21)  

 

The microstructural energy density of screw dislocations, much like the number of 

dislocations in Figure 5.4(b), exhibits an additional weak dependence on θ  in the region 

where the asymptotic expression is not valid [Figure 5.5(b)]. Finally, from (5.9, 5.19), we 

expect the functional dependences: 

 

( ) ( )0, ;     and    , ;B B y s s s yσ λ θ λ θ= = ,      (5.22) 

where B  and s  are non-dimensional functions. 

 

It bears emphasis that the above analysis of the semi-discrete problem effectively (albeit 

approximately) reduces a dependence on three non-dimensional parameters ( ), ,λ θ σ  to 

the dependence on one parameter ( λθ  for edge dislocations and λ  for screws).  Similar 

accomplishment in the discrete case will represent much greater challenge, since four 

non-dimensional parameters are present and a linear dependence on σ  is not guaranteed. 

The asymptotic results (5.17, 5.21) are remarkably simple and have wide range of 

applicability – at least for the semi-discrete problem.  In our analysis of numerical results 

(Section 5.4), we will use these asymptotic expressions as reference values; the actual 
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numerical solutions will be represented as a discrepancy from asymptotic solutions 

(except for the pathological case of edge dislocations with 0θ = , which is discussed 

separately in Section 5.4.3. 

 

5.3.3 Discrete representation 

  

The expression for the microstructural energy density (per unit layer) for discrete 

representation is obtained by simply substituting ( ) ( )j j

j
b sign y yδ− ∑  for the function 

( )B y  in (5.8)  

 

 ( )
2 2 2cos

ˆ ,
16 cos

i jN N

i j i

Eb y
G

h h

θ ηω θ
π θ≠

 −  =    
∑∑α , (5.23) 

 

where N  is the total number of dislocations in one of the pile-ups. 

 

With the same substitution, the governing integral equation for the semi-discrete 

description (5.9), transforms into a set of nonlinear algebraic equations for the unknown 

positions of individual dislocations:   

 

 
2

0, ;       1, 2,...,
4 cos

i jN
R

j i

Eb y y
K i N

h
θ σ τ

π θ≠

 −  + = =   
∑ . (5.24) 
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The equations (5.24) are simply equilibrium conditions at each dislocation position iy , 

stating that a dislocation is arrested when the sum of internal and external Peach-Koehler 

forces is exactly matched by Peierls (lattice friction) resistance 0τ .  

 

For a given N , the system (5.24) is readily solved.  However, the number of dislocations 

in one of the pile-ups, N , is not known a priori.  In fact, the number of dislocations is 

determined by the activity of the source.  Let the source, located at sy , have the strength 

sτ .  The condition for quiescent source requires that the sum of all Peach-Koehler forces, 

external and internal, does not exceed the source strength: 

 

 
2

1

,
4 cos

s jN
R

s

j

Eb y
K

h

ηθ σ τ
π θ=

 −
+ <  

 
∑ , (5.25) 

 

In each step, the mathematical problem is one of constrained minimization.  The non-

linear simultaneous equations (5.24), with (5.25) as a constraint, are solved using the 

standard Newton method with constant prescribed resolved shear stress and iterations to 

determine N.  In each step, the value for N from the previous step is initially assumed, 

(24) solved, then iterations performed checking for violations of the constraint (5.25) , 

i.e., for emission of an additional dislocation pair.  The problem is computationally very 

intensive.  Some details are given in the Appendix 5.D, together with the validation of the 

algorithm.  The discrete positions of dislocations obtained can then be substituted in 

(5.23) to get unit layer microstructural energy ( )ˆω α .   
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Problems formulated using the discrete description have three characteristic lengths:  the 

Burgers vector b, the slip plane spacing h, and, the half-width of the film, L.  Thus, two 

non-dimensional length ratios will appear as independent variables: λ  (5.12), and ϕ  

(5.15).  For the discrete representation, one can formally define the slip discontinuity ŝ , 

consisting of steps at each dislocation position.  Similarly, the dislocation density 

distribution B̂ can take a form of steps, if each dislocation is smeared within the two half-

intervals between itself and its nearest neighbors.  These functions, as well as the number 

of dislocations N, will now not only depend on the parameter ϕ , but may be have 

nonlinear dependence on σ .  The functional dependence on the microstructural energy 

density (5.23) is consequently more complex than in the semi-discrete case.   

 

Finally, all functions of interest will, in general, depend on the Peierls lattice friction 0τ  

(5.9, 5.24), and on the source strength sτ  (5.25).  For most metals, the applied stresses of 

interest are much higher than either 0τ  or sτ , particularly if dislocation pile-ups with the 

resulting back-stresses are involved.  For example, for fcc metals, 0τ  and sτ  are of the 

order of 1 MPa ( 510 µ−
∼ ), while the applied stresses of interest are of the order 100 MPa 

( 310 µ−
∼ ).  In our study, we set 0 0sτ τ= = . 

 

 

5.4 Numerical results and analysis  
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Pile-ups of edge and screw dislocations, in periodically spaced slip planes, inclined at 

angle θ  to the 1x -axis (Figure 5.2), are analyzed numerically.   The case of edge 

dislocations piling-up in slip planes orthogonal to the boundary ( )0θ =  is qualitatively 

different from other cases, since it produces no long-range stresses.  It is discussed 

separately is Section 5.4.3.   

 

In general, the solutions to the semi-discrete problem are expected to depend on four non-

dimensional parameters ( ), , ,λ θ σ ϕ .  Our goal is to define the limits of validity of 

asymptotic expressions (5.17, 5.20) in terms of as few parameters as possible.  To that 

end, we have conducted a comprehensive numerical study using both, the semi-discrete 

and the discrete descriptions.  The results are summarized below. 

 

5.4.1 Number of dislocations in a pile-up and the microstructural energy 

 

In Section 5.3.2, we have established conditions for validity of asymptotic expression for 

number of dislocations N , obtained from the semi-discrete representation (5.17).  Now, 

we consider discrete representation.  In our numerical studies, we have found that the 

limits of validity of asymptotic expressions (5.17, 5.20) are much more complex for edge 

dislocations then for screws.   

 

The results for number of dislocations are summarized in Figure 5.6, where the 

asymptotic, non-integer value 0N
 is replaced by its larger integer approximation.  To 
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arrive at dependence on the single parameter 
( )1 4λθ σϕ

 for edge dislocations, we have 

first confirmed that the dependence can be reduced to two parameters: λθ  – a guess 

inspired by semi-discrete solutions (Figures 5.4 and 5.5), and σϕ  – inspired by the form 

of asymptotic solution (5.17).  Then, we plotted the transition points between numerical 

solutions for which the asymptotic (5.17) is valid within 5% error and those for which the 

asymptotic is not valid in 
( )ln , lnλθ σϕ

 plane to obtain a straight line with slope ¼.  In 

summary: 

[ ] ( )1 4

0 0

1,   edged.ˆ int +1, for 
1,                   screw d.

N N N
λθ σϕ
λ

  > ≈ =   >  
. (5.26) 

 

The number of dislocations N, in a pile-up on one side, is found while solving equation 

(5.24) for equilibrium positions of dislocations.  Since for edge dislocations 

2
0 sin 2N θ−∝  (5.11, 5.14), the number of edge dislocations in the pile-up will have a 

minimum at 4θ π= .  However, for screw dislocations, 2
0 cosN θ−∝ , so that the 

number of dislocations in the pile-up steadily increases with increasing θ. 

 

We now consider microstructural energy density obtained from discrete representation 

(5.23), ( )ˆ ˆω ω≡α .  The discrete microstructural energy density is expected to require 

more complicated conditions for validating asymptotic approximation than those 

described  in section 5.3.2 (Figure 5.5) for the semi-discrete microstructural energy 

density. In particular, we expect that the number of dislocations must be high enough if 
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the asymptotic expression (5.20) is to hold.   This is indeed true, as shown in Figure 5.7.  

From Figures 5.7 and 5.8: 

 

  
( )1 4

0
0 0

0

ˆ5   and 10,      edge d.
ˆˆ ˆ =  , for 

ˆ5                   and  10,      screw d.

N
LE N

N

λθ σϕσω ω
ϕ λ

  > >  ≈   > >   
. (5.27) 

 

 

In Figure 5.7, large scatter of data is noticeable for screw dislocations for 0
ˆ 20N < .  With 

increasing 0N̂ , this scatter disappears.  In Figure 5.8(b), the weak dependence of 

microstructural energy on θ  and  ( )σϕ  is apparent, even for 1λ> .  Moreover, the 

discrete microstructural energy seems to converge to values theta are up to 5% different 

from 0ω̂ .  We consider these variations too small to justify the additional complications 

required to resolve them.  

 

5.4.2 Slip distributions 

 

Based on (5.19, 5.17), we expect that the discrete slip distribution is close to the semi-

discrete one if 1 (edge)λθ > , and 1 (screw)λ > .  That, however, is not sufficient.  Our 

numerical analysis, illustrated in Figure 5.9, suggests that the number of dislocations 

must be high enough, roughly 10N > , if the two slip distribution are to be similar.   

 

As discussed earlier, the solutions are characterized by highly localized dislocation 

distributions near the boundary, as shown in Figures 5.9 and 5.10, which produce a 
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uniform back stress, except in a small region near the boundary.  The localization 

intensifies with increasing λ , as evident in Figure 5.9.  The dependence on the slip plane 

inclination, θ, is shown in Figure 5.10.  For screw dislocations, boundary localization 

intensifies with decreasing θ.   For edge dislocations, localization intensifies with 

increasing θ, up to 4θ π= , where it begins to relax as θ increases further.  In this, the 

localization follows the number of dislocations, which is discussed in the previous 

section; the fewer dislocations, the more intense the localization. 

 

5.4.3 Special case: edge dislocations in slip planes orthogonal to the boundary  

 

In this case, the long-range stresses are non-existent, i.e. the stresses vanish outside the 

interval h±  (Figure 5.3).  Consequently, the number of dislocations in pile-up increases 

rapidly with increasing stress.  The asymptotic expressions for number of dislocations 

(5.14), and energy density (5.20) are not applicable for this case, since ( )0 0k∞ =  for 

edge dislocations (5.11).  Instead, we obtain an accurate asymptotic curve fit (large λ ) to 

semi-discrete computational results, for: the number of dislocations N  (5.13) and the 

energy density ( )ω ω≡α  (5.8).  From Figure 5.11: 

 

 

( )

( )

0

2
0

4 1.5 0.567 ,       for 1,

8
1.53 0.986 ,   for 5.

N N

EL

σ ϕ λ λ λ

ω ω σ λ λ λ
π

⊥

⊥

≈ = + >

≈ = + >
 (5.28) 
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However, for discrete problem, this is not the sufficient condition.  The approximation 

fails for small values of ( )σ ϕ . As shown in Figure 5.12, a more complete condition can 

be written as  

 

 
[ ]0 0

0

ˆ int 1,    for 1 and 1,

ˆ ,                          for  5 and 1.

N N N λ λσϕ
ω ω λ λσϕ

⊥ ⊥

⊥

≈ = + > >

≈ > >
 (5.29) 

 

The critical value in (5.28, 5.29) is based on a relative error of less then 5% .   The 

conditions (5.29) are easily interpreted by means of the asymptotic expression for the 

number of dislocations (5.28).  Simply, the estimate (5.28) for the number of dislocations 

is good if there are at least 6 dislocations in the pile-up.  The energy estimate (5.28), on 

the other hand, requires at least 30 dislocations in the pile-up. 

 

Slip distributions are shown in Figure 5.13.  Owing to the vanishing long-range stresses, 

the number of dislocations is much larger than in the previous cases, and dislocations are 

spread throughout the slip plane.  The slip distribution is, roughly, a parabola, except at 

the boundaries where there is a small singular portion.  Slip distributions computed from 

discrete representation are close to those obtained for semi-discrete representation even 

for small values of λσϕ . 

 

 

 

5.5 Summary 
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Pile-ups of dislocations, stacked in equidistant slip planes, in plane strain (edge) and anti-

plane (screw) conditions, are studied using two different representations of dislocations: 

discrete and semi-discrete.  The configuration consists of a thin elastic plastic film, 

embedded into elastic medium. 

 

Dimensional analysis yielded one non-dimensional stress parameter (5.16) and two non-

dimensional length parameters: the ratio of the film thickness and the slip plane spacing 

λ  (5.12) and the ratio of the slip plane spacing and the Burgers vector ϕ  (5.15).  

 Asymptotic expressions for number of dislocations, maximum slip, and microstructural 

energy density are derived for the general case:   

 

( )
[ ] ( )0 0 0 0 0 0

4 ˆ ˆ,  int +1, or 
cos

N N N LE N N
k

πϕσ σω
ϕθ θ∞= = = .  (5.30) 

 

The special case of edge dislocations piling-up in slip planes orthogonal to the boundary 

is qualitatively different from other cases as it produces zero long-range stresses.  

Asymptotic expressions for this case have been developed numerically (5.28, 5.29). 

Based on the comprehensive numerical study of the parameter space, the conditions for 

validity of asymptotic expressions are found.  These are summarized in Table 5.1. 

 

Owing to the long-range stresses, the distributions are highly localized near the boundary; 

the localization intensifies with λ  for both edge and screw dislocations.  For screw 

dislocations, boundary localization decreases with θ; while for edge dislocations, 
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localization intensifies with increasing θ, up to 4θ π= , where it begins to relax as θ 

increases further.  In the special case of edge pile-ups with 0θ =  dislocations pile-up in 

large numbers and are spread throughout the slip plane producing a parabolic slip 

distribution with a small singular portion at the boundaries.   
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Appendix 5.A  Kernel functions for two-dimensional problems 

 

For edge dislocations: 

 

 
( )

( ) ( )
( ) ( )

( ) ( )( )

cos 2 sinh 2 cos sin 2 sin 2 sin
, 2 cos

cos h 2 cos cos 2 sin

               ln 2cosh 2 cos 2cos 2 sin   ,             

c c
G c c

c c

c c

θ π θ θ π θ
θ π θ

π θ π θ

π θ π θ

+
=

−

− −

  (5.A1) 

 

which, for the case 0θ = , reduces to  

 

( ) ( ) ( )20, 2 coth ln 4sinhG c c c cπ π π= − . (5.A2) 

 

 For screw dislocations: 

 

( ) ( ) ( )( ), ln 2cosh 2 cos 2cos 2 sinG c c cθ π θ π θ=− − , (5.A3) 

( ) ( )20, ln 4sinhG c cπ=− . (5.A4) 

 

Appendix 5.B   Formulation of singular integral equations  

 

 In the continuous representation, the Nye’s dislocation density tensor 
( )α x

 can 

be represented in terms of continuum slip tensor field γ  (Fleck et al, 1993): 

 

 =− ×∇α γ . (5.B1) 
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The slip tensor is obtained from slips βγ on all active slip systems: 

 

 
β β β

β
γ=∑γ s m , (5.B2) 

 

where unit vectors 
βs and 

β
m  represent the slip direction and the slip plane normal for 

the slip system β. 

To apply the principle of virtual work to the problem at hand, we first note that a version 

of microstructural energy (5.5), computed from the continuous representation (5.4), is 

included in the standard elastic strain energy.  Separation of the microstructural energy 

from the elastic strain energy requires separation of compatible and incompatible elastic 

strains.  The details of the general procedure are given in the forthcoming paper 

(Mesarovic et.al, 2009).  When the configuration in Figure 5.2 is loaded only by the far-

field stress 12σ
, the compatible elastic strain is the average elastic shear  

 

( )
2 22 1

12 21 1
1 2

1
sin cos

2 2

L

L

u s u s
e e dx

L x h x h
θ θ

−

  ∂ ∂ = = + + −  ∂ ∂  
∫ ,  (5.B3) 

 

where s is the displacement discontinuity across the slip plane, and iu
 are components of 

a continuous, single-valued displacement field.  The principle of virtual work (per unit 

layer) is then written as 
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( ) ( )

( ) ( )

cos

12 12 0 1

cos

12 2 2

2 2 cos

      

L

L

W L e s h dy

u L u L

θ

θ

δ σ δ θ τ δ δω

σ δ δ
−

= + +

 = − − 

∫
    (5.B4) 

 

Then, upon substituting (5.B3) into (5.B4) and noting that ( )1 2 1 0
L

L
u x dx

−
∂ ∂ =∫ , the 

equation (5.B4) reduces to 

 

 ( )( )( )
cos

0 12 1

cos

cos cos 2 0

L

L

s h dy

θ

θ

θ τ σ θ δ δω
−

− + =∫  .   (5.B5) 

 

The microstructural energy is given by (5.8).  Its variation can be written as 

 

 

( ) ( ) ( )

( ) ( )

cos

1 1 1

cos

cos

1
1

cos

1
,  where

cos
; .

8 cos

L

L

L

L

m y B y dy
h

E y
m y G B d

h

θ

θ

θ

θ

δω δ

θ ηθ η η
π θ

α

−

−

=

 −  =    

∫

∫
 (5.B6) 

 

Now, we denote 1s ds dy′ = .  Using the usual integration by parts and noting that 

( )cos 0s Lδ θ± = , the variational equation (5.B5) becomes  

 

 ( )( ) ( )
cos

0 12 1

cos

cos 2 cos 0

L

L

m s h dy

θ

θ

τ σ θ θ δ
−

 ′− − =  ∫ ,    (5.B7) 
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 yielding the governing equation: 

 

 ( )( )0 12 cos 2 cos 0mτ σ θ θ ′− − = ,      (5.B8) 

 

When m is substituted from (5.B6), one obtains the governing equation (5.9) with the 

kernel (5.10). 

 

Appendix 5.C  Asymptotic expressions 

 

Using (5.10, 5.12, 5.16), the non-dimensional version of (5.9) can be written as  

 

 ( ) ( )( )
1

1

8
, 0,       1B k y d y

πση θ λ η η
λ

−

− + = ≤∫ .    (5.C1) 

 

Then, since B is an odd function of η :  

 

 ( ) ( )( ) ( )( )
1

0

8
, , 0,       1B k y k y d y

πση θ λ η θ λ η η
λ

 − − + + = ≤  ∫ . (5.C2)   

 

Since (5.C2) is true for any 1y ≤ , we take 0y = , and note that the function B has 

significant non-zero values only near the boundaries, 1η → .  Then we can take (5.11): 

( ) ( ) ( ), ,k k kθ λη θ λη θ∞− =− = .  It follows that 
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 ( )
( )

1

0

4
B d

k

πση η
λ θ∞− =∫ .       (5.C3) 

 

Upon substitution of (5.C3) into (5.13), the asymptotic expression (5.14) is derived. 

To derive the asymptotic expression for energy density (5.8), we first note that, using 

(5.10), the integral in (5.9) is the derivative of inner integral in (5.8) with respect to y.  

Thus, the energy expression (5.8) can be written as 

 

 ( ) ( )( ) ( )
cos 1

cos 1

cos
8

16 2 cos

L

L

E
dyB y y EL yB y dy

h

θ

θ

θ σ λω πσ
π θ

α

− −

= − = −∫ ∫ . (5.C4) 

 

Since B is concentrated near the boundary, the approximation for the integral is obtained 

by taking 1y =± , whereupon the expression (5.C3) can be used: 

 

 ( ) ( )
( )

1 1

1 0

8
2yB y dy B d

k

πση η
λ θ∞

−

− ≈− =∫ ∫ ,     (5.C5) 

 

which yields the asymptotic expression (5.20). 

 

Appendix 5.D   Numerical methods  

 

Semi-discrete representation.  The numerical method for solving (5.9) was developed by 

Erdogan & Gupta (1972).  The singularities of ( )B η at 1η =±  are of the order 

2 1 2(1 )η −− , so that: 
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 ( ) ( ) 21B η η ηΦ= − . (5.D1) 

 

The unknown regular function ( )ηΦ is approximated using the Chebyshev polynomials 

of the first kind, ( )mT η : 

 

 ( ) ( )
0

n

m m

m

b Tη ηΦ
=

=∑ . (5.D2) 

 

When (5.D1) and (5.D2) are substituted into (5.9), the properties of Chebyshev 

polynomials dictate the necessary condition for (5.9) in a form of the system of n linear 

algebraic equations for n unknowns ( ),  1,...,k k nηΦ = , where kη  are the zero’s of 

Chebyshev polynomials.  The solution provides the function ( )ηΦ , and thus ( )B η  

(5.D1).  

 

Discrete representation.  The equilibrium positions of dislocations in the pile-up are 

computed by solving non-linear equations (5.24), under the constraint (5.25).  Let the 

first N pairs of dislocations in a double ended pile-up be equilibrated, and the next, 

(N+1)
th

 pair has nucleated.  Its equilibrium position is calculated iteratively.  In the first 

iteration, the crude approximation for the position of the new pair is obtained by keeping 

the original N pairs locked in their previous positions, and solving (5.24).  This is then the 

starting point for Newton-Raphson iterations until the equilibrium positions of all pairs 

are found. 
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The procedure is computationally intensive.  The long-range interactions imply the full 

system matrix.  Moreover, the change of positions in each step require full matrix 

inversion in each step, so that the number of operation for N
th

 step is of the order 
3N .  

Therefore, the total number of operations scales with 
4N . To validate the algorithm and 

the numerical code, we considered the single-ended pile-up on a single slip plane, and 

compared our numerical result to the Eshelby et al (1951) analytical solutions.  Apart 

from a negligible round-off error, the agreement between two sets of dislocation positions 

was perfect. 
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Figure 5.1  A thin film with single slip system and slip planes orthogonal to the boundary  
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Figure 5.2 A thin film with a single slip system embedded in an elastic space. Resolved 

shear stress is prescribed.  The slip planes are inclined at an angle θ  with respect to 1x -

axis.   
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Figure 5.3 Function ( ),G cθ  for 0, , ,
6 4 3

π π πθ =  (a) Edge dislocations. (b) Screw 

dislocations. 
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Figure 5.4  Comparison of number of dislocations as computed from semi-discrete 

representations (13) and the asymptotic expression (14).  a) Edge dislocations: data 

includes 90, 36, 18, 12, 6, 3θ π π π π π π=   b) Screw dislocations: data include 

36, 6, 3θ π π π= .   
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Figure 5.5  Comparison of microstructural energy density (8) as computed from semi-

discrete representation with the asymptotic expression (20).  Data include 

36, 6, 3θ π π π= .  (a) Edge dislocations.  (b) Screw dislocations.   
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Figure 5.6  Comparison of number of dislocations as computed from discrete 

representation and the asymptotic expression (14).  (a) Edge dislocations.  Data include 

36, 18, 12, 6, 3θ π π π π π= .  (b) Screw dislocations.   
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Figure 5.7  Comparison of energy densities computed from discrete representation (23) to 

asymptotic expression (27), as function of the number of dislocations, 0N̂ .   
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Figure 5.8  Comparison of microstructural energy density (8) as computed from discrete 

representation (23) with the asymptotic expression (27).  (a) Edge dislocations.  Data 

include 36, 6, 3θ π π π= . (b) Screw dislocations.   
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Figure 5.9  Slip distributions, as computed from discrete (symbols) and semi-discrete 

(lines) representations for 6θ π= .  Similar conclusions hold for 0 3θ π< ≤ .  (a)  Edge 

dislocations.  (b)  Screw dislocations.   
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Figure 5.10a  Slip distributions for different  θ.  (a) Edge dislocations – the number of 

dislocations in the pile-up is minimal at 4θ π=  corresponding to the distribution most 

localized at the boundary.  (b) Screw dislocations – the number of dislocations in the pile-

up decreases with θ , so that the most localized distribution is obtained for 0θ = . 
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ŝ

s

x L: 100Edge λ =

0

0.2

0.4

0.6

0.8

1

0.999 0.9995 1

θ=π/36

θ=π/12

θ=π/4

θ=π/3

(b)

0

ŝ
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Figure 5.11 Comparison of number of dislocations (13) and energy density (8) as 

computed from semi-discrete representation with the asymptotic fit (28), as a function of 

λ . 
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Figure 5.12 Comparison of number of dislocations and energy density (23) as computed 

from discrete representation with the asymptotic fit (29), as a function of λσϕ .  The 

scatter of data indicates different values of λ . 
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Figure 5.13 Comparison of slip distributions, as computed from discrete (symbols), and 

semi-discrete (lines) representations. 
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Table 5.1  Conditions for validity of asymptotic expressions (5.30). 

 

 

Asymptotic Conditions, edge Conditions, screw 

0N N≈  1λθ >  1λ>  

0
ˆN N≈  ( )1 4

1λθ σϕ >  1λ>  

0ω ω≈  5λθ >  5λ>  

0
ˆ ˆω ω≈  ( )1 4

5λθ σϕ > , 0
ˆ 10N >  5λ> , 0

ˆ 20N >  

( ) 0edge, 0N Nθ ⊥= ≈  1λ>       N/A 

( ) 0
ˆedge, 0N Nθ ⊥= ≈  1 and 1λ λσϕ> >      N/A 

( ) 0edge, 0ω θ ω ⊥= ≈  5λ>  N/A 

( ) 0
ˆ ˆedge, 0ω θ ω ⊥= ≈  5 and 1λ λσϕ> >     N/A 
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CHAPTER SIX: SUMMARY AND FUTURE WORK 

 

In this work, we have developed an approach to deal with short and long range 

interactions of dislocations. For the homogeneous anisotropic medium, the short range 

interactions are dealt with by combining the Mura’s line integral with anisotropic Greens 

tensor derivatives. An algorithm was developed to numerically integrate the Greens 

tensor derivatives in conjunction with the numerical integration of Mura’s integral for the 

stress field due to a dislocation segment. For the case of inhomogeneous media, we have 

developed a new approach and derived analytical expressions for the stress field due to a 

dislocation segment in an isotropic bi-material medium. The derived expressions are 

validated with the results existing in the literature and special cases such as dislocation 

segment near a traction-free surface, rigid surface and in the interface are degenerated. 

The line integrals for the stress field due to discrete dislocation segment in homogeneous 

and inhomogeneous media are naturally extended to volume integrals for the stress field 

due to continuously distributed distributions to deal with long-range interactions of 

dislocations.  

As a future work, our study on line integral for image stresses due to dislocation segment 

in 3D bi-material medium can be incorporated in the dislocation dynamics codes to 

investigate the interactions of dislocations in multi-layered metallic composites. In 

chapter four, we have investigated interaction of dislocations with pure tilt wall. After the 

transmission of several dislocations through the pure tilt, the boundary with a large offset 

relaxes to a configuration consisting of an array of disclination dipoles with a grain 

boundary dislocation. As a future work, molecular dynamics simulations of interactions 
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of several dislocations with pure tilt wall can be done to thoroughly understand the path 

and process of relaxation. 

 

As a digression from the main theme, in chapter five, we have studied the kinematic and 

thermodynamic effects due to different representation of discrete dislocations. The error 

in number of dislocations, microstructural energy and slip distributions due to semi-

discrete dislocations is quantified. A dimensional analysis is done and the threshold 

values for certain key parameters are deduced from asymptotic expressions. This work is 

used in the development of a size dependent crystal plasticity theory. 

 

In appendix, we investigated the macroscopic deformation and microscopic dislocation 

mechanisms of micropillars under uniaxial compression experiment using multi-scale 

discrete dislocation plasticity approach. We have discovered the key dislocation 

mechanism responsible for the observed slip bursts and strain hardening. We mainly 

concluded the observed plastic deformation is due dislocation stagnation caused by the 

formation of entangled dislocation structures and reduction in the mean free length of the 

dislocation arms.  
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APPENDIX A: ANALYSIS OF HETEROGENEOUS DEFORMATION AND 

DISLOCATION DYNAMICS IN SINGLE CRYSTAL MICROPILLARS UNDER 

COMPRESSION 

 

S Akarapu, H M Zbib, and DF Bahr 

School of Mechanical and Materials Engineering 

Washington State University, Pullman, WA, 99164-2920 

 

Abstract 

 

The size dependent deformation of Cu single crystal micropillars with thickness ranging 

from 0.2 to 2.5 µm subjected to uniaxial compression is investigated using a Multi-scale 

Discrete Dislocation Plasticity (MDDP) approach. MDDP is a hybrid elasto-visco plastic 

simulation model which couples discrete dislocation dynamics at the micro-scale 

(software micro3d) with the macroscopic plastic deformation. Our results show that the 

deformation field in these micropillars is heterogeneous from the onset of plastic flow 

and is confined to few deformation bands, leading to the formation of ledges and stress 

concentrations at the surface of the specimen.   Furthermore, the simulation yields a 

serrated stress-strain behavior consisting of discrete strain bursts that correlates well with 

experimental observations. The intermittent operation and stagnation of discrete 

dislocation arms is identified as the prominent mechanism that causes heterogeneous 

deformation and results in the observed macroscopic strain bursts. We show that the 

critical stress to bow an average maximum dislocation arm, whose length changes during 

deformation due to pinning events, is responsible for the observed size dependent 

response of the single crystals. We also reveal that hardening rates, similar to that shown 

experimentally, occur under relatively constant dislocation densities and are linked to 



 130 

dislocation stagnation due to the formation of entangled dislocation configuration and 

pinning sites.  

 

Key words: Size effect, micropillars, dislocation dynamics, micro3d  
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A.1 Introduction 

 

Current trends in the miniaturization of micro-electronic-mechanical systems, medical 

devices, and microelectronic devices have lead to systems that consist of multiscale 

structural components whose dimensions, or the dimensions of their substructure, lie in 

the range of a few nanometers to a few micrometers, with extremely large surface-to-

volume ratios, ranging from 10
6
 to 10

9
 m

2
/m

3
.  At these length scales the mechanical 

properties can vary significantly with decreasing dimensions.  Many experiments by 

several groups have shown that in metallic systems as the dimensions are reduced to 

below a few micrometers the material begins to exhibit extremely high strengths, within a 

fraction of the theoretical strength. This behavior is not only confined to a component 

made of single material, such as in thin membranes, nanobeams, nanotubes, microbeams 

and micropillars [ see e.g. (Fleck et al. 1994), (Stolken and Evans 1998), (Dimiduk et al. 

2005), (Greer and Nix 2005), (Volkert and Lilleodden 2006), (Frick et al. 2008)], but is 

also observed in nanolaminate metallic systems [see e.g. (Koehler 1970), (Oberle and 

Cammarata 1995), (Was and Foecke 1996), (Misra et al. 1998), (Clemens et al. 1999), 

(Misra and Kung 2001), (Misra et al. 2003)] which, in addition to high strength, exhibit 

very high fatigue resistance [(Stoudt et al. 2001),  (Zhang et al. 2005), (Wang et al. 

2006)], morphological stability even at high temperatures, (Mara et al. 2004), and 

fracture resistance even after large plastic deformation, (Misra et al. 2004).    However, 

accurate determination of mechanical properties at these length scales remains a very 

challenging problem. More so is the issue of modeling of the behavior of systems that 

may contain components with sub-micrometer dimensions.  
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Although the nanoindentation technique is the most frequently used method to determine 

mechanical properties, there are several problems that arise when using such a technique 

at the submicron scale. Because of the complexity of the stress-strain field under the 

indenter tip, extraction of mechanical properties, such as yield strength, hardness, and 

elastic properties, relies on models that may include certain assumptions and 

approximations with a direct dependence on the shape and size of the indenter tip, see for 

example (Nix 1989), (Bahr and Gerberich 1996), (Bahr et al. 1998), (Nibur and Bahr 

2003), (Nibur et al. 2007).  The complexities of the indentation stress field due to the tip 

shape and the subsequent problems in adapting axisymmetric and isotropic materials 

assumptions to experimental systems has led many researchers to miniaturize 

conventional material test techniques, such as torsion, bending and uniaxial tests.  (Fleck 

et al. 1994) performed torsion experiments on microscale copper wires to show size 

effects, and (Stolken and Evans 1998) carried out bending tests on nickel foils and 

showed strong dependence of strength on foil thickness.  In both of these experiments, 

the size dependence was attributed to strain gradients that result from the formation of 

dislocation walls which form in order to accommodate curvature distortion of the lattice. 

However, a pioneering work by (Horstemeyer et al. 2001) showed through a molecular 

dynamics simulations that size dependent behavior can exist even in the absence of strain 

gradients. One of their main discoveries is the presence of a strong inverse-power 

relationship between the yield strength and the volume-to-surface area ratio of the 

computational cell.  Subsequently, a number of experiments have been performed 

confirming that size dependent behavior exists in “homogenously” deformed small scale 
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specimens where strain gradients do not exist.  For example, recent experiments on 

compression of single crystal micropillars for example by (Dimiduk et al. 2005), (Greer 

and Nix 2006),  (Volkert and Lilleodden 2006) and (Frick et al. 2008) show significant 

size-effects, and the argument that the size effect is inherently due to the presence of 

strain gradients resultant of inhomogeneous loading does not explain the observed size 

effects in these micropillars.  

 

Compression experiments by (Dimiduk et al. 2005) were done on  gold micropillars, 

micromachined using focused ion beam techniques, with diameters ranging from 200 nm 

to several micrometers in the  <001> loading direction. Even though the orientation is 

one of high symmetry, the lack of stage II hardening in the stress-strain response leads to 

an explanation based on dislocation starvation hypothesis given by  (Greer and Nix 

2006). According to this hypothesis, as the specimen dimensions are small and 

unconstrained all the mobile dislocations glide to the surface and annihilate causing a 

strain burst in the macroscopic response resulting in a dislocation free crystal, whereupon 

further plastic deformation requires dislocations to nucleate under very high stresses. 

(Volkert and Lilleodden 2006) and (Frick et al. 2008) have performed compression 

experiments on Au and Ni micropillars respectively oriented effectively for single slip 

and showed significant hardening. (Frick et al. 2008) also showed TEM micrographs of 

dislocation structure in the compressed micropillars, while (Shaw et al. 2008) show 

evidence of dislocation free pillars in very small pillars. Tensile tests that eliminate some 

stress concentrations at the base of micropillar have been used to suggest that there are 

also hardening effects due to non-uniform stresses in micromachined copper samples 
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(Kiener et al. 2008).  Although these experiments capture size effects at small scale, they 

seem to yield drastically different results for the same material depending on the 

fabrication conditions of the test specimen which may result in different initial 

dislocation structure as suggested by (Maaß et al. 2006) and (Maaß et al. 2008), as well 

as boundary conditions that may result in stress-concentrations. 

 

Size effects can be addressed from a purely continuum mechanics approach by means of 

strain-gradient theories. The basic notion in these theories is that the deficiency of the 

classical continuum theory lies in the absence of the long-range or non-local effects that 

arise from dislocations structures such the so called geometrically necessary dislocations 

(GND) or more precisely finite dislocation walls, dislocation interactions with interfaces, 

disconnection in tilt walls,  (e.g. Khan et al., 2004; Akarapu and Zbib, 2008; Akarapu et 

al., 2008).  To remedy this deficiency, a number of proposals have been put forward by 

introducing strain gradients into classical theories.  The earlier works of (Bammann and 

Aifantis 1981), (Bammann 1984), (Aifantis 1984), (Zbib and Aifantis 1989a), Khraishi et 

al. (2001) and motivated by the earlier works of (Mindlin 1964), (Dillon and Kratochvil 

1970) and reinforced by (Ashby 1971) physical arguments, initiated an intense interest in 

the community to develop a new class of constitutive laws that include length scales. For 

example a number of  “gradient plasticity” theories based on the concept of GND’s have 

been developed by many researchers including (Fleck et al. 1994), (Ohashi 1994), 

(Arsenlis and Parks 1999), (Shizawa and Zbib 1999), (Acharaya and Bassani 2000) and  

(Mesarovic 2005a). The main idea  in these theories is based on the assumption that 

Nye’s dislocation density tensor, (Nye 1953), represents the dislocation microstructure.    
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However, these theories introduce complex mathematical difficulties associated with 

higher order gradients, and have a number of problems, including identification of 

boundary conditions, and non-uniqueness of geometrically necessary configurations 

associated with Nye’s tensor, inability to explain statistically stored dislocation 

configurations with long range stress ((Mughrabi 1983), and the nature of the 

phenomenological length scale – the value of the length scale in these theories is not 

intrinsic and varies from one experiment to the other  for the same material. To addresses 

these problems, a number of more sophisticated theories have also been developed that 

include higher order terms and additional degrees of freedom, see for example the recent 

work by (Abu Al-Rub and Voyiadjis 2004), (Clayton et al. 2006), and (Sansour and 

Saktulla 2008).  The complexities associated with gradient theories multiply when one 

attempts to model interfaces using such theories; upon interacting with dislocations, 

interfaces can block, transmit, emit, and/or absorb dislocations.  

 

Since it is well established by experiments and theory that strength in metals at all length 

scales is strongly dependent on short-range dislocation reactions and on the manner in 

which dislocations interact with grain boundaries, interfaces and various defects that may 

be present in the crystal, size effects in metals can be tackled more rigorously by means 

of discrete dislocation dynamics (DD).  The DD method is suited for tackling problems 

where size effects and interfaces are important for two reasons: First, the constitutive 

behavior of a small material volume is captured naturally within the DD simulations 
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reflecting the effect of both the microstructure and internal/external geometry of the 

material [e.g., (Grohm et al. 2008)]. Second, the dynamics of an individual dislocation 

can be sensitive to any changes in the scale describing the problem and these changes are 

directly determined in DD.   For example, in an attempt to understand the underlying 

dislocation mechanisms responsible for the macroscopic response of micropillars, two 

dimensional (2D) dislocation dynamics simulations by (Deshphande et al. 2005) and 

(Benzerga and Shaver 2006) have been performed on a planar single crystal both under 

tension and compression. Although the 2D dislocation analyses provided useful insights, 

they lack many key three dimensional (3D) dislocation interactions. (Tang et al. 2007) 

and (Tang et al. 2008) performed 3D-DD simulations of micropillar compression and 

showed that the yield stress increases as the specimen size is decreased.   

 

In all the aforementioned DD simulations, the stress and strain fields were assumed to be 

homogeneous and no surface effects were accounted for. However, as shown in all the 

experiments, the deformation field in submicron scale specimens is far from being 

homogenous, and becomes highly heterogeneous and localized with increased strain.  

Slip bands with local strains approaching 50% have been observed experimentally, 

highlighting the extreme heterogeneity in the strain fields. Moreover, surface and size 

effects in such small dimensions are very important and can’t be neglected as was 

originally shown by Yasin et al (2001).  To capture the heterogeneity of the macroscopic 

deformation and its influence on the microscopic mechanisms, a multi-scale model of 

plasticity developed by Zbib and collaborators [see, e.g. (Zbib et al. 2002b) (Zbib and 

Diaz de la Rubia 2002)] is employed in this work. The paper is organized as follows: in 
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Section A.2, the approach of multi-scale discrete dislocation plasticity is described. In 

Section A.3, we discuss the problem of micropillars and present and discuss the results 

for various specimen dimensions, with specific emphasis placed on the relationship 

between the macroscopic behavior and the microscopic mechanisms, and effect of initial 

dislocation density and boundary conditions on the behavior.   

 

A.2 Multi-scale Discrete Dislocation Plasticity (MDDP) 

 

In this work, we employ a hybrid model developed by (Zbib and Diaz de la Rubia 2002) 

which combines microscopic mechanisms and dislocation dynamics, with the 

macroscopic deformation of the solid. The model couples a discrete dislocation dynamics 

model (micro3d) with a continuum elasto-visoplasticity model, making it possible to 

address a wide range of complex boundary value problems which may involve external 

and internal surfaces and interfaces with large surface-to-volume ratios.  The coupling is 

based on a framework in which the material obeys the basic laws of continuum 

mechanics. A brief description of this coupling is given below with emphasis on issues 

related to the topic of size effects. 

 

A.2.1 Elasto-viscoplasticity continuum model 

 

Within the continuum mechanics framework, the governing equations of the material 

response are developed based on a representative volume element (RVE) over which the 

deformation field is assumed to be homogeneous.  In this approach, the effect of internal 

defects, such as dislocations, voids, microcracks, etc., on material behavior and the 
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manner in which they influence material properties is modeled through a set of internal 

variables and corresponding phenomenological evolution equations. Generally, the 

material response is measured in terms of the macroscopic strain rate tensor ε&  and its 

relation to the stress tensorσ . We consider a computational cell of size in the order of a 

few tens of micrometers which may contain dislocations and other defects (micocracks, 

stacking fault tetrahedra, Frank sessile loops, rigid particles, etc.). On the macroscopic 

level, it is assumed that the material obeys the basic laws of continuum mechanics at any 

material point that lies within the material volume V, i.e. the linear momentum balance: 

 

 vσ &ρdiv = , in V   with tσ.m =    on V∂                                           (A.1) 

 

 

where σ is the Cauchy stress tensor, v  is the particle velocity respectively, and where m 

is the unit outer normal vector on the boundary V∂ , and t is the traction vector. [Note: 

Dot over a symbol indicates material time derivative, and “div” is the divergence 

operator].  

 

For elasto-viscoplastic behavior, the strain rate tensor εεεε&  is decomposed into an elastic 

part eεεεε& and a plastic part pεεεε&  such that 

 

    pe  + =  εεεεεεεεεεεε &&& , [ ]Tvvε ∇+∇=
2

1
& , [ ]TvvW ∇−∇=

2

1
         (A.2) 

 

where W is the spin tensor. For most metals, the elastic response is linear and can be 

expressed in the incremental form of Hooke’s law for large deformation and material 

rotation as 
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[ ] [ ]pe
o

ε-ε C = σ &&   , σωωσσ= σ
o

+−& ,   p
ω = W -W                                   (A.3) 

 

where C
e
 is a fourth order elasticity tensor,  ω  is the lattice rotation and is given as the 

difference between the material spin W  and plastic spin pW . 

 

The main challenge in the plasticity theory is the development of proper constitutive laws 

for pεεεε&  and pW (see, e.g. Watanabe et al, 1998).  In order for these laws to be meaningful, 

they should be based on fundamental understanding of deformation mechanisms and the 

underlying microstructure.  Nonetheless, this task is perhaps formidable, especially when 

bridging two scales orders of magnitude apart, i.e. the continuum scale and the discrete 

dislocation scale.  Here we emphasize that the “assumed” constitutive nature of pεεεε&  and 

flow stress and their dependence upon internal variables and gradients of internal 

variables is very critical, since they dictate, among other things, the length scale of the 

problem and the phenomena that can be predicted by the model. In this respect, it goes 

without question that the most rigorous and physically based approach for computing the 

plastic strain and strain hardening in metals, with all relevant length scales clearly 

accounted for, is through explicit evaluation of interaction, motion and evolution of each 

individual discrete dislocations as briefly described in the next section. 

 

 

A.2.2 Discrete dislocation dynamics model (micro3d) 
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In discrete dislocation dynamics, the motion of each dislocation segment contributes to 

the overall macroscopic plastic strain 
p
ε&   and  plastic spin 

pW  via the relations: 

 

                                 )nbb(nε i

N

i

iii

D

iip

2V

vl
⊗+⊗=∑

=1

& ,                                       (A.4)1 

                                )nbbn( i

N

i

iii

D

iip

2V

vl
W ⊗−⊗=∑

=1

,                                          (A.4)2 

 

where li is the dislocation segment length, ni  is a unit normal to the slip plane, D

iv  is the 

magnitude of the glide velocity of the dislocation segment, and N is the total number of 

dislocation segments in V and bi is the Burgers vector.  In equation (A.4), “V” is the RVE 

which in general would be the size of a continuum “material point”, say a finite element 

in an FEA for finite domain problems.  

 

The velocity
D

iv
 of a dislocation segment i is governed by a first order differential 

equation consisting of an inertia term, a drag term and a driving force vector, such that  
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&                            (A.5) 

 

In the above equation, the subscript s stands for the segment, m
*
 is   the effective 

dislocation segment mass density given by (Hirth et al. 1998b), M is the dislocation 

mobility which could depend both on the temperature T and the pressure p. The driving 

force Fi per unit length arises from a variety of sources. Since the strain field of the 
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dislocation varies as the inverse of the distance from the dislocation core, dislocations 

interact among themselves over long distances, yielding a dislocation-dislocation 

interaction force FD.   A moving dislocation has to overcome local constraints such as the 

Peierls stresses (i.e. lattice friction), FPeierls. The dislocation may encounter local obstacles 

such as stacking fault tetrahedra, defect clusters and vacancies that interact with the 

dislocation at short ranges, giving rise to a dislocation-obstacle interaction force FObstacle.  

Furthermore, the internal strain field of randomly distributed local obstacles gives rise to 

stochastic perturbations to the encountered dislocations, as compared with deterministic 

forces such as the applied load. This stochastic stress field, or thermal force FThermal 

arising from thermal fluctuations, also contributes to the spatial dislocation patterning in 

the later deformation stages.  Dislocations also interact with free surfaces, cracks, and 

interfaces, giving rise to what is termed as image stresses or forces FImage. In addition, a 

dislocation segment feels the effect of externally applied loads, FExternal, osmotic force 

FOsmotic resulting from non-conservative motion of dislocation (climb) and its own self-

force FSelf.  Adding all of these effects together yields the following expressions for the 

driving force in (5). 

 

  ThermalOsmoticImageObstacleExternalSelfDPeirelsi FFFFFFFFF +++++++=                   (A.6)  

 

Exact expressions for each of these terms as well as treatment of short-range interactions 

when two dislocations approach each other over a core distance, have been developed by 

Zbib and co-workers,  see for example (Zbib et al. 1996b), (Zbib et al. 1998), and 

implemented into a dislocation dynamics software called micro3d.  
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In DD, once the velocity of the dislocation is calculated from (5), a search algorithm is 

applied to check if there are any possible interactions with other dislocations within a 

virtual area of the gliding dislocation. The length of the dislocation segment and the free 

flight distance, define the virtual area gliding. The relation between the Burgers vector 

and the slip systems of the two intersecting dislocation segments define the type of 

interaction. When two dislocations intersect each other, one of the following interactions 

occurs: 

• Annihilation: if the two dislocations have opposite Burgers vectors and glide in 

the same slip plane. 

• Collinear annihilation: if the two dislocations have collinear Burgers vectors and 

glide in intersecting slip planes, each plane being the cross-slip plane of the other. 

• Hirth lock: if the two dislocations have perpendicular Burgers vector and glide on 

different slip planes. 

• Glissile junction: if the resulting Burgers vector is glissile on either of the planes. 

• Lomer Lock: if the resulting Burgers vector is sessile on either of the planes. 

 

Screw dislocations may cross-slip to reduce internal stresses and to circumvent internal 

obstacles. This process is a thermally activated process and, therefore, in DD it is 

determined numerically using a Monte-Carlo type simulation as discussed by Kubin et al. 

(1992), Rhee et al (1998) and Groh et al (2009).  The probability P for a screw 

dislocation segment of length L to cross-slip is given by  
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where β  is a normalization factor, τ is the resolves shear stress on the slip plane, V is the 

activation volume, W
*
 is the activation energy to form a kink configuration in the cross-

slip plane as discussed by Rhee et al. (1998) plus constriction energy, tδ is the simulation 

time step. k is the Boltzmann constant, T is the absolute temperature and is set to room 

temperature; L0 = 1 µm and st 10 =δ  are reference values of length and time, 

respectively.   

 

A.2.3 Auxiliary Problem  

 

The exact solution for the stress field of a dislocation segment, which is used among 

other things to compute dislocation-dislocation interaction FD in equation (A.6), is known 

for the case of infinite domain and linear elastic homogeneous materials, which is used in 

DD codes. To account for surface effects in a finite domain, as well as for the case of 

dislocations in linear elastic heterogeneous materials, one can use the principle of 

superposition to solve for what is called above the image force FImage as briefly discussed 

below.  

 

A.2.3.1 Dislocation interaction with surfaces  

 

The principle of superposition was used by (Van der Giessen and Needleman 1995) and 

(Needleman 2000) for the 2D-DD case, and was extended to 3D-DD by (Fivel et al. 

1998) and (Yasin et al. 2001) to correct for the actual boundary conditions, for both finite 
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domain and homogenous materials.  Assuming that dislocation segments, dislocations 

loops and any other internal defects with self induced stress [e.g. cracks can be modeled 

as pile-ups of dislocation, (Demir and Zbib 2001)] are situated in a finite domain  V  

bounded by V∂ and subjected to arbitrary external traction and displacement constraints, 

then the stress field is given by the sum of two solutions: 

 

ε*εε,u*uu,σσσ
* +=+=+= ∞∞∞                                                            (A.8) 

 

where  ∞
σ , ∞εεεε  and ∞

u  are the stress, strain and displacement fields, respectively, caused 

by the internal defects as if they were in an infinite domain, whereas *
σ , *εεεε  and *

u  are 

the fields corresponding to the auxiliary problem satisfying the boundary conditions 

                            V of part onV,  on ∂=∂−= ∞ aa uuttt                                                              

where a
t  is the externally applied traction, and ∞

t is the traction induced on  V∂  by the 

defects (dislocations)  in the infinite domain problem. The traction - ∞
t  on V∂ results into 

an image stress which is superimposed onto the dislocations segments, thus accounting 

for surface-dislocation interaction.     

 

A.2.3.2 Dislocations in Heterogeneous Materials 

 

The superposition method described above for a dislocation in a finite and homogenous 

domain has also been extended to the case of a dislocation in heterogeneous materials by 

(Zbib and Diaz de la Rubia 2002).   Briefly, suppose that domain V is divided into two 

sub-domains V1 and V2 with domain V1 containing a set of dislocations.  Then the stress 
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field induced by the dislocations and any externally applied stresses in both domains can 

be constructed in terms of two solutions,  

 

*, 1*1 εεεεεεεεεεεεσσσσσσσσσσσσ +=+= ∞∞                                                                                    (A.9) 

 

where  1∞σσσσ  and 1∞εεεε  are the stress and strain fields, respectively, caused by the 

dislocations (the infinite solution)  with the entire domain V having the same material 

properties of domain V1 (homogenous solution) . The problem is now reduced to solving 

for the auxiliary parts *σσσσ and *εεεε  in each of the domains.  To do so, we first combine 

equations (A.10) with Hooke’s law for each of the sub-domains and obtain a new set of 

elastic constitutive equations for each of the materials in each of the sub-domains as: 
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                                              (A.10) 

 

where eC1

 
 and eC2 are the elastic stiffness tensors in V1 and V2, respectively.  The 

“eigenstress” *21
σ  is due to the difference in material properties.  The method yields very 

accurate results when compared to known exact solution for simple dislocation 

configurations, e.g. pure edge dislocation [(Akasheh et al. 2009)], and for a more general 

case of a dislocation segment of arbitrary orientation and Burgers vectors [(Akarapu and 

Zbib 2009)].  
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The three models described above, i.e. the DD model (micro3d), the elastic-

viscoplasticity model, and the auxiliary problem, are integrated into a unified system as 

summarized in Figure A.1 yielding a hybrid multiscale model termed a “multiscale 

dislocation dynamics plasticity -MDDP”   which has the following two main features4:  

1) It couples the continuum mechanics problem with discrete dislocation dynamics, and 

2) it can deal with many possible boundary conditions, interfaces and dislocations in 

heterogeneous materials.  

 

A.3 Analysis of Plasticity and Deformation Mechanisms in Micropillar Compression 

Test: Results and Discussions 

 

We have considered cuboid shaped Cu specimens with thickness ranging from 0.2 

microns to 2.5 microns. The length L is kept constant at 2.5 micron.  The material 

properties used in the simulation are summarized in Table 1. The values for the 

dislocation mobility and stacking fault energy and their effect on the DD prediction have 

been addressed in a number of articles, e.g. Kubin et al (1992), Rhee et al. (1998) Zbib et 

al. (1998). In the compression experiments of single crystal Ni micropillars, Shan et. al 

(2008) have observed an initial  high dislocation density of the order of ~ 10
15

 (1/m
2
).  

This density is almost three orders of magnitude larger than the typical density for a well 

annealed material in bulk (~ 10
12

/m
2
).   They have also classified the defects into two 

types: small loop-like and long arm like dislocation sources as depicted in Figure A.2a.  

Kiener et al (2008) also argued that the partial removal of   initial dislocation sources 

during FIB milling produces single dislocation arms as depicted in Figure A.2a, and each 

                                                 

4micro3d and MDDP software with more details can be found at www.cmm.wsu.edu  
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can operate as depicted in Figure A.4a.  Similar observations and models for dislocation 

sources in micropillars have also been proposed by other investigators, e.g. Espinosa et 

al. (2006), Tang et al. (2007, 2008) who also noted initial dislocation densities ranging 

form 10
13

 to 10
14

/m
2
.  In the present work, an initial dislocation density of the order of 

10
13

 (1/m
2
) with a random distribution of Frank-Read sources and jogged dislocation 

arms extending from one surface to the other  is considered as shown in the Figures  

A.2a-c for the three cases of 0.5, 1.0 and 2.0 microns.  The loading axis of the specimen 

is along the <001> direction which is a high symmetry and low Schmid factor allowing 

multi-slip.  We impose the following boundary conditions.   

 

Bottom surface: 

 

In order to mimic as close as possible the experimental conditions in micropillar 

compression test, in all the simulations, we keep the bottom of the specimen fixed such 

that  

 

ux=uy=uz=0, at Z=0 

 

This, however, does not imply rigid boundary condition as far as the dislocations are 

concerned. During the simulation, dislocations can penetrate the bottom surface and leave 

the specimen. This condition is in conformity with the fact that the micropillars are 

machined into a surface of a large-grained sheet and therefore, a micropillar and the 

surface it sets on are of the same material, see for example, (Volkert and Lilleodden 
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2006).  All other surfaces as far as the dislocations are concerned are free surfaces where 

dislocation segments may annihilate.  

 

Upper surface: Indenter-micropillar interface 

 

The upper surface is subjected to a velocity vz so that the overall engineering strain rate  

ε&   is kept constant at 100/s. i.e. 

 

vz  =  Lε& ,  at Z=L 

 

Moreover, we consider two possible cases for the contact condition of the upper surface 

with the loading apparatus:  

Case 1: No friction, and therefore no additional constraints are imposed on the degrees of 

freedom at the Z=L. 

Case 2: Sticking friction, and therefore the additional following condition is imposed 

 

ux=0, uy=0, at Z=L 

 

A number of MDDP simulations were performed for various specimen sizes and 

dislocation distributions with the boundary conditions as described above. The results are 

summarized in Figures A.2-A.12. Below we discuss these results and present our 

findings.  

 

A.3.1 Effect of specimen size on yield stress 
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In this section, we present the stress-strain response for 0.2 to 2.5 microns thick 

specimens under uniaxial compression at a constant strain rate of 100/s. Although the 

strain rate used in the simulation is few orders of magnitude high when compared with 

experiments, it does not have significant effect on the overall predictions in these types of 

simulations, especially in the low strain rate regime where inertia effects are negligible 

and the mobility is constant. The effect of both inertia and velocity-dependent mobility 

on the overall mechanical behavior becomes important at very high strain rates (10
4
/s and 

above). These effects have been discussed in a number of articles, see e.g. Rhee et al 

(1998), Hirth et al (1998),  Zbib and Diaz de la Rubia  (2002), Tang et al (2007), 

Espinosa et al (2006).  Figures A.2d-f show typical results of dislocation structures after 

straining as predicted by MDDP.  The predicted stress-strain curves are shown in Figure 

A.3 for various specimen sizes.   In qualitative terms, a typical stress-strain curve consists 

of elastic regime followed by discrete strain bursts with considerable hardening. The 

response in between two strain bursts has almost a linear elastic behavior. The predicted 

stress-strain behavior is qualitatively similar in nature to that observed in experiments, 

e.g. see (Volkert and Lilleodden 2006), Frick et al (2008), and Gruber et al (2008). At 

higher strain rates, the stress-strain response is similar in nature but less serrated due to 

the increased frequency of operation of dislocation arms. From these stress-strain curves, 

we compute the yield stress at 0.02%, 0.2% and 0.4% strain offsets, and plotted the 

results in Figure A. 4(a).  The figure shows clearly significant size dependence for 

specimens size less than 1.0 microns. The yield stress of 0.5 micron thick specimen is 

almost 3-4 times the bulk yield stress.  The simulation data at 0.02%, 0.2% and 0.4% 
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offset strain can be fitted to a modified source model (equation A.11) which we present in 

section A.3.6 below.  The simulation result at 0.02% and 0.4% offset strain is also plotted 

in Figure A.4b. In the same figure we also plot experimental results extracted from the 

literature, namely, from Greer and Nix (2006) for Au micropillars under compression, 

Frick et al. (2008) for Ni micropillars under compression and Gruber et al. (2008) for Cu 

free-standing thin films in tension. Form the experimental figures given in Greer and Nix 

(2006) and Frick et al (2008), we estimated the flow stress at 3% (it was not possible to 

extract data at lower offset).  For the case of Cu, Gruber et al (2008) provide data for the 

flow stress at 0.1% offset. Each experimental data set for the flow stress is normalized by 

the shear modulus µ of the respective material and plotted in Figure A.4b. As it can be 

seen from the figure, all the experimental data has the same trend in all cases, and for the 

case of Cu it is quantitatively comparable to the simulation data.   These results clearly 

indicate that there is a considerable size effect even though the overall loading condition 

is macroscopically homogenous. While under torsion and bending experiments, the 

observed size effects can be attributed to the increase in the density of geometrically 

necessary dislocations to accommodate for the strain gradients. There are no macroscopic 

strain gradients in uniaxial compression and therefore, this effect can’t be explained by 

strain gradient theories. To understand this effect and the observed macroscopic response 

of the sub-µm specimens, a correlation between dislocation dynamics and macroscopic 

response is presented in the following sub-section.  

 

A.3.2 Correlation between microscopic mechanisms with macroscopic response 
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In micrometer to sub-µm thick specimens, plastic deformation is mainly due to the 

intermittent bowing out of dislocation arms, which are pinned inside the crystal at the 

jogged portion on various slip planes, and at the point of their termination on the surface, 

as illustrated in Figures A.5a-d. Each such mechanism of dislocation arm AB, ending on 

the surface, bowing out intermittently and the annihilation of part of the arm BE and DF 

by gliding towards the free surface under the effect of image stresses contributes to the 

plastic deformation (see Figures A.5a-b). The dislocation arm changes its length and 

curvature based on the geometry of the slip plane intersecting the free surface under the 

influence of image and applied stress fields. The observed intermittency is caused by this 

change in length and curvature of the dislocation arm during motion. In addition to the 

dislocation arm mechanism, a dislocation arm ABC with AB portion on the (1 11 ) plane 

and BC portion of the arm on the ( 111) plane with both of its ends on the free surface 

acting as a spiral source also contributes to the strain bursts (see Figure A.5c). If the 

stresses were homogeneous, these portions of arms under the dominance of image 

stresses would have glided towards the line of intersection of the slip planes and 

eventually disappeared on the surface (see Figure A.5c dotted lines). But due to the 

heterogeneity of stress, the arms on the different planes are forced away from the surface 

to act as a spiral source about the node B which is constrained to move along the line of 

intersection. Thus, the dislocation arm operation and spiral sources are the major 

contributors to the observed strain bursts. 

 

The plastic deformation with intermittent dislocation bursts is quite prominent in the 0.5 

micron thick specimen and gradually smoothens as the specimen size increases, similar to 
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the experimental observations.  As it can be noticed, hardening, the slope of the stress-

strain response, significantly increases as the specimen size decreases (see Figure A.3). 

The mechanisms responsible for the observed hardening in 0.2 to 0.5 µm are 

fundamentally different from those in the 1.0 to 2.5 µm thick specimens. The dislocation 

density is almost constant for 0.2 to 0.5 µm thick specimens unlike a gradual increase in 

1.0 to 2.5 µm thick specimens (see Figure A.6). The dislocation density being constant in 

sub-µm specimens implies that the hardening is not conventional Taylor work hardening 

caused by the storage of dislocations in a statistical sense. During the deformation of sub-

 µm  specimens in which hardening is not caused by increase in dislocation density , there 

are moments when the dislocation structure becomes immobile or stagnant, which 

corresponds to elastic loading between strain bursts. Unlike the dislocation starvation 

hypothesis, the elastic loading sections are due to stagnated dislocation structure as 

opposed to the absence of dislocations in the specimen. The stagnation can be caused by 

the pinning of dislocations by any one or a combination of the following mechanisms:  

formation of entangled dislocation segments (Figure A.7), pinning of dislocations at 

stress concentrations points (Figure A.9), and junction formation between interacting 

dislocations (Figures A.8b).  It is worth noting that the entangled structure is dependent 

on the initial dislocation structure. The increase in stress required to mobilize the stagnant 

dislocation structure can be explained by following reasons. 

 

First of all, the dislocation arm under motion on the glide plane not only changes its 

length and curvature but also forms entangled dislocation configurations which are hard 

to mobilize (see Fig. 7a for such a typical structure). A schematic (Figure A.7b) is shown 
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to explain the typical process of formation of such dislocation structures. Consider a 

dislocation arm AB on ( 111 ) with one end A pinned while the other end B on the free 

surface having burgers vector along [ 101] and a dislocation CD of a Frank-Read source 

on (111) with the same burgers vector as AB. During deformation, a segment pq of AB 

on ( 111 ) aligns itself along the line of intersection to react with a similar segment rs of 

CD on (111). This annihilation reaction of two screw segments along the line of 

intersection of the slip planes results in two dislocation structures CqB and AsD. The 

source length of the dislocation arm AB is now reduced to qB with motion of q end of the 

dislocation restricted along the line of intersection of the slip planes. The formation of 

dislocation structure CqB also reduces the source length of the CD to Cq. Moreover, the 

motion of the dislocation end q is dependent on the motion of both Cq and qB. The 

dislocation structure AsD also reduces the source length but it is much harder to mobilize 

than CqB as both its ends are pinned on different slip planes. The formation of such 

structures contributes to hardening to a considerable extent. Besides these entangled 

dislocation structures, short range interactions of dislocations on different slip systems 

resulted in the formation of jogs and junctions (see figure A.8b) have increased the 

number of pinning sites which in turn contributed to the observed hardening. Upon 

increase of stress to a critical value, these stagnant entangled dislocation structures AsD 

and CqB become mobile and bow out to contribute to dislocation bursts after the 

stagnation of dislocations. 

 

As the bowing out of the dislocation arm is the primary mechanism for dislocation 

motion, the yield stress of the specimen depends on the critical stress required to operate 
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a dislocation arm of maximum length. As the maximum length of the arm scales with the 

sample thickness, the increase in yield stress with decrease in size relates inversely with 

the length of the arm. Moreover, the number of such arms also scales with the specimen 

thickness, which implies that the small sized specimens have fewer contributors to plastic 

strain as opposed to large sized specimens. Thus, to accommodate for the imposed strain 

rate, the frequency of activity of dislocation arms in the small sized specimens must be 

greater to produce enough plastic strain, which in turn requires increase in stress. This is 

a plausible explanation for the hardening observed in these sized specimens given the 

absence of work hardening. 

 

As noted above, the plastic deformation with intermittent dislocation bursts is quite 

prominent in the 0.5 µm thick specimen.  There is a clear correlation among the 

dislocation bursts, stress drops, the formation of junctions, and the activation of cross-slip 

as shown in Figure A.8a-b as well as Figure A.6.  Figure A.8b shows the number of 

dislocations junctions as well as the number of cross-slip events; cross-slip took place 

when the dislocations were pinned against a junction and or against a pinning site. 

Furthermore, after the burst the dislocations that cross-slipped glide to the surface as 

explained above in connection with Figure A.5, and as they terminate at the surface they 

cause distortion and, therefore, a stress concentration as explained below in connection 

with Figure A.9.  

 

A.3.3 Effect of heterogeneous deformation 
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Figure A.9a, showing the deformed contour plots of effective plastic strain of the 0.5 µm 

thick specimen, exhibits localized plasticity along certain slip planes. At the top of the 

specimen, the activity of the dislocation arm ‘1’ is responsible for the plasticity on (1 11 ) 

slip planes and the activity of loop ‘2’ near the surface resulted in localized deformation 

and ledge formation at the surface as shown in Figure A.9b. The ledge results in a 

heterogeneous stress field around the dislocation curve. Under a homogeneous stress 

field, as would commonly be assumed for DD simulations that did not couple to FEM, 

the loop would have been operating once the stress has reached a critical value. But as the 

stress concentration at the surface is opposite to the attractive effect of image stresses, the 

loop operates intermittently resulting in the observed serrated flow behavior. The 

significant localization on ( 111 ) and (1 11 ) near the base also results in ledges and 

subsequent stress concentrations at the surface. These heterogeneous stress fields assisted 

the dislocation arms, shown in Figure A.5c, to act as spiral sources instead of annihilating 

at the surface, as would occur under homogeneous stresses. As shown in the schematic 

Figure A.9c, the dislocation arm AB gliding towards a stress concentrated spot at the 

surface bows around that spot becomes stagnated. Until the stresses have reached a 

certain level to overcome the effect of stress concentration and annihilate the dislocation 

arm AB at the surface, dislocation arms CD and EF gliding towards the surface are also 

stopped and a pile-up is formed. In this way, the stress concentration spots cause 

dislocation arms to pile-up around them and in turn contribute to hardening (see the 

snapshot shown in Figure A.9b.  
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To understand the importance and effect of heterogeneity, a comparison of stress-strain 

response of 0.5 µm thick specimen under constant strain rate compression using discrete 

dislocation dynamics simulation (DD) was made with the response obtained using multi-

scale discrete dislocation simulation (MDDP). The results are shown in Figures A.10a-c.  

In the constant strain rate dislocation dynamics simulation, the analysis is done solely at 

the microscopic scale. During each loading time step, for the imposed strain, the stress is 

computed homogenously over the entire domain (similar to the manner reported by (Tang 

et al. 2008)). Under this homogeneous stress, the dislocations glide on the slip planes 

during the loading time step and the plastic strain is computed from the collective motion 

of the dislocations which is averaged over the entire domain. By doing the simulation 

solely at the microscopic scale, the configuration change and, more importantly, its 

influence on the dynamics of dislocations are not captured. Thus, as it can be seen from 

the Fig. 10a, once the stress reaches a value which could activate the smallest dislocation 

arm, the stress-strain response increases only slightly due to internal dislocation 

interactions. This is not the case when performing the full MDDP analysis. As it can be 

seen from Figure A.10a, once yielding begins the stress-strain curve exhibits more 

pronounced serrated behavior with increasing stress levels and a more significant 

hardening slope. More importantly, while the deformation field in the case the DD only 

analysis is assumed to be homogenous, the MDDP analysis shows that the field is highly 

heterogeneous as can be deduced from the inserts in Figure A.10a which show the 

distribution of plastic strain for two boundary conditions (discussed in section A.3.5). 

 



 157 

In this work, we are emphasizing that the heterogeneity of deformation and in turn the 

stress distribution play a key role in capturing the observed hardening. The multi-scale 

model, used in the present work, combines macroscopic and microscopic scales which 

enables to take into account the effect of change in configuration and in turn the stress 

heterogeneity on the dynamics of dislocations.  Figures A.10b and A.10c clearly show 

this effect, in terms of both evolution of dislocation density, and formation of dislocation 

junctions, intersections, and cross-slip activities.  

 

A.3.4 Effect of dislocation distribution 

 

In a small volume at the sub-micron scale a relatively high dislocation density, say, on 

the order of 10
13

 /m
2
, corresponds to only a limited number of dislocation segments 

which may be distributed non-uniformly in the crystal, as shown in Figure A.2a. For the 

same specimen with the same dislocation density, the dislocations can be spatially 

rearranged in different ways, which yield different behavior. Towards this end, we have 

done MDDP simulations with same dislocation density but different random 

distributions. One of the two distributions is spatially heterogeneous with more 

dislocation clustered at the base of the specimen whereas the other distribution has 

dislocations homogeneously spaced over the entire specimen. The stress-strain response 

of these two different distributions under uniaxial compression is shown in figure A.11. 

As it can be seen from the figure A.11, for the case of heterogeneous distribution, there 

are significant dislocation bursts as opposed to the case of homogenous distribution. In 

the heterogeneous distribution, the proximity of dislocations is small enough for 
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interactions to form entangled dislocation structures. At a critical state of stress, the bow 

out of these entangled structures leads to an avalanche of dislocations which occurs near 

the bottom where the stresses are high because of boundary effects and where there is a 

small cluster of dislocation sources.  This leads to localized deformation as can be 

deduced from the insert in Figure A.10. However, when the distribution is relatively 

homogenous this behavior doesn’t occur.  We also note that in the case of homogenous 

distribution, dislocations do not get pinned against each other as in the case of 

heterogeneous distribution and therefore no cross-slip events take place and no 

dislocation bursts are observed.  Assumption of the existence of a few dislocation 

sources, rather than a homogeneous array of sources, is supported by experiments in the 

literature.  Transmission electron microscopy of compression tests of ultra fine pillars 

(smaller than the simulations in this current study by Shan et. al.  (2008) showed that the 

defects induced by machining pillars were prevalent, but rapidly removed during initial 

contacts, leading to few, if any, sources and those are likely in the “bottom” of the pillar 

where TEM observations are not possible.  Kiener et. al. (2008) discuss the likelihood of 

damage during micromachining of microtensile experiments, and we follow their 

assumptions in this paper; there are few sources in these samples, but the sources do exist 

and are positioned as individual heterogeneous sources.  

 

A.3.5 Effect of boundary conditions 

 

In this final section, we examine the effect of boundary conditions on the mechanical 

behavior of the micropillars under compression, especially the condition on the upper 
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surface of the specimen.  In all of the experiments on micropillars, the columns are 

compressed using a nanoindentation apparatus. The conditions at upper surface will 

depend on the type and the topological conditions of the indenter tip.  Therefore, here we 

examine two extreme cases: Case 1: No friction and Case 2: Sticking friction.   The 

results shown in Figure A.12 clearly illustrate that there is a significant effect on the 

deformation behavior for the case of a 0.5 µm size specimen with the same initial 

dislocation distribution and density but under different boundary conditions.  When the 

upper surface is free to move, one slip system dominates and the deformation is localized 

in two adjacent slip bands located towards the bottom end of the specimen while the 

upper portion of the specimen glides freely over these bands and deforms elastically. On 

the other hand, when the upper end is constrained two slip systems are activated and the 

localization occurs towards the upper surface of the specimen.  These results are 

consistent with the experimental observations found in the literature, see for example, 

(Greer and Nix 2005) and (Volkert and Lilleodden 2006).   One last observation is that 

when the dislocation density is relatively high and homogenous as is the case in Figure 

A.10, the effect of the conditions on the upper surface is not as pronounced as can be 

deduced from the two inserts in Figure A.10a.   In this case, and because of the 

abundance of dislocations, the deformation is not as highly localized as in the case shown 

in Figure A.12.   
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A.3.6 A model for size effects in micro-samples 

 

Assuming that the initial flow stress in micro-samples is determined by the size of a 

single dislocation arm, we consider an arm with length equal to one-half of the size of the 

specimen as depicted in Figure A.5a. One end of the arm is pinned at the center of the 

crystal and the other end pinned on the surface lying on {111} slip plane. Under a 

homogeneous stress state, the critical resolved shear stress to operate the arm with and 

without the effect of image stresses is determined using MDDP. The critical resolved 

shear stress is converted to uniaxial yield stress using a Schmid factor (m) of 0.422 and 

plotted in Figure A.4a for different specimen sizes. As it can be seen from the figure, the 

yield stress computed at 0.02% offset strain closely matches with the yield stress to 

operate a single arm. This implies that the onset of plasticity in these micropillars is 

mainly due to single arm operation with minimal effect of image stresses; the difference 

between image-stress versus without image-stress is less that 10%. The flow stress yσ
 to 

operate a single source of the type shown in Figure A.5a can be derived analytically from 

the size of the dislocation source (source model; Foreman, 1967),   which in this case is 

equal to s/2, with s being the thickness of the micropillar (see also Kiener et al. 2008, and 

Gruber et al 2008), and can be expressed as 
)2//()2/ln()2/( sbsby βπµσ =

, where β  is 

a numerical constant in the order of unity.  This relation can explain the onset of yielding 

when the dislocation arm with the highest resolved shear stress operates freely without 

obstacles and in a homogenous stress field.  However, as discussed in this paper in 

connection with the MDDP result, with increased plastic deformation, strain hardening 

occurs (Figures A.3 and A.4a) which is attributed to two phenomena: dislocation 
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stagnation caused by the formation of an entangled dislocation structure, and the 

formation of ledges.  The dislocation entanglement effectively reduces the size of the 

dislocation arm, and this effect can be introduced in the “source model” by introducing a 

power term, i.e. 1/s
n
 (Rhee et al., 1994). The ledge formation takes place as a result of 

dislocation emerging on the surface, and this in turn results in a back stress which is 

dependent on the surface energy and the size of the ledge and is inversely proportional to 

the specimen size (Dewald et al, 1989).  This leads us to propose the following model. 

 

2 1 ln( ) 2 2
;

2

y

n

s s
s

m s s b

πσ π αγ
µ µ

′  ′= + = ′ 
                                            (A.11)  

 

The first term quantifies the effect of source length but modified (power n<1) to account 

for strain hardening as discussed above. (In the “source model” n=1).  The second term 

on the right hand side of equation (A.11) gives the effect of stress concentration due to 

ledge formation, with γ  being the surface energy (for Cu it is taken as 1.69 J m-2; 

Dewald et al. 1989). It is assumed that the parameter α is an integer measuring the 

number of the dislocations that emerged on the surface to form the ledge, implying that 

the size of the ledge increases proportionally to the number of the emerging dislocations. 

The contribution of the ledge term in equation (A.11) becomes important as the specimen 

size is decreased and as the size of the ledge increases with deformation.  The two 

parameters, n andα , are thus functions of plastic strain. Their values are obtained by 

fitting equation (A.11) to the MDDP numerical result for the yield stress evaluated at 

0.02%, 0.2% and 0.4% offset strain; see Figure A.4a. While the value of n decreases with 

increasing plastic strain, implying strain hardening due to pinning effects, the value of 
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α increases which implies an increase in the back stress due to ledge formation.  At 

0.02% strain offset, the exponent n and factor α  take the values 1 and 5 respectively. 

This implies that the yield stress at 0.02% strain offset is mainly due to the single arm 

mechanism with some effect from stress concentration due to the ledge formation.  

 

A.4 Conclusions 

 

In this work, we have investigated the deformation of micropillars under compression 

with constrained loading axis using a multi-scale discrete dislocation approach. The 

predicted qualitative behavior of the stress-strain response is comparable with 

experimental observations. Dislocation arm operation on different glide planes is 

identified as the primary mechanism for plastic deformation in these micro-size 

specimens. The jerky behavior in the plastic deformation is attributed to the intermittent 

operation of the dislocation arms. Due to the absence of storage of dislocations, it is 

concluded that the observed hardening is not because of the conventional work hardening 

but because of pinning of dislocation segments due to the formation of junctions and 

entangled dislocation structures, as well as due to surface effects such as formation of 

ledges and stress concentration sites. Our results lead us to the hypotheses that jerky flow 

and hardening is mainly caused by dislocation stagnation (also noted in the literature as 

exhaustion) due to both the formation of pinning sites resulting in an effective reduction 

of the source length of dislocation, and not from a starvation and re-nucleation 

mechanism, as well as from back stress resulting form ledges.  These predictions are 

made possible by the use of a multi-scale technique which enables the rigorous analysis 
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of non-uniform deformation of small scale specimens with realistic treatment of loading 

and boundary conditions.   
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Table A.1 Material and control parameters of the simulation 

 

 

 

 

 

 

 

 

Table A.2 Coloring legend of dislocations 

 

Color label notation 

1  (black) (1,-1,1) plane 

2  (orange) (-1,1,1) plane 

3  (yellow) (-1,-1,1) plane 

4       (red) (1,1,1) plane 

5     (cyan) Jogs 

6    (green) Junctions 

 

Material and Control 

parameters 

Value 

Density (kg/m
3
)  8960 

Shear Modulus (Pa) 4.83e+10 

Poisson’s ratio 0.3 

Dislocation Mobility (1/Pa sec) 1000 

Burgers vector magnitude (m) 2.5e-10 

Temperature (K) 300   

Staking Fault Energy (J/m
2
) 0.04 

Strain rate (1/sec) 100 
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Figure A.1. Multiscale Dislocation Dynamics Plasticity Model: Coupling of dislocation 

dynamics with continuum elasto-visoplasticty 
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Figure A.2. a, b and c are random distributions of  Frank-Read sources and  dislocation 

arms as initial dislocation structure of the order of 10
13 

(1/m
2
)  for specimen sizes of 0.5, 

1.0 and 2.0 micron respectively (see Table 2 for color coding); d, e and f are the 

corresponding dislocation structures  after 1.0%, 0.8% and 0.5% strain, respectively.  
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Figure A.3.  Stress-strain behavior of Cu specimens with thickness ranging from 0.2 

microns to 2.5 microns 
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Figure A.4(a). A log-log plot of normalized yield stress ( )2
y

πσ µ as a function of 

specimen size at various %strain offsets (closed symbols); the open symbols represent the 

critical stress with and without the effect of image stresses to operate a single arm; the 

lines represent the data from equation A.11 for various n and α  
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Figure A.4(b) log-log plot of yield stress normalized with shear modulus ( )2
y

πσ µ of 

respective material (
Au

µ = 27GPa, 
Ni

µ = 76GPa and 
Cu

µ = 48.3 GPa) vs. specimen size in 

microns; Comparison of the experimental data of Au, Cu and Ni micropillar compression 

is made with simulation result at 0.02% and 0.4% strain offset and the data from equation 

A.11
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Figure A.5. a) Schematic depicting the operation of dislocation arm. b) Side view of the 

dislocation arm. c) Schematic of dislocation arm structure acting as a spiral source. d) 

Snap shot of spiral source (see Table 2 for coloring) 
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Figure A.6. Evolution of dislocation density in specimens with thickness ranging from 

0.2 microns to 2.5 microns 
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Figure  A.7. a) Snapshot of an immobile dislocation structure during elastic loading of 

0.5 micron thick specimen (see Table 2 for color coding) b)  Schematic explaining the 

process of formation of an entangled dislocation structure (see Table 2 for coloring) 
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Figure A.8a-b.  Correlation among stress drop, dislocation bursts, cross-slip and 

dislocation interactions, for the 0.5 microns thick specimen. The vertical axis in Figure 

A.8(b) denotes the number of jogs, junctions and cross-slip events occurred during the 

process of deformation. Note: a cross-slip node is where a dislocation line changes slip-

plane as a result of a cross-slip event, e.g. node B in Figure A.5c.  Two cross-slip nodes 

form when a screw dislocation segment cross-slip from its primary glide plane to a 

secondary plane to overcome an obstacle or a pinning site, such as junction or a stress 

concentration site.  
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Figure A.9. a) Contour of percentage effective plastic strain of the deformed 0.5 microns 

thick specimen. b) The stress contour of the component along the z-axis/loading axis 

depicting the stress concentration at the ledges on the surface. c) Schematic showing the 

effect of stress concentration at the surface. 
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Figure A.10.  Effect of image stress; comparison of the behavior of a 0.5 micron thick 

specimen using DD and MDDP, a) stress-strain response, b) evolution of dislocation 

density, c) evolution of number of dislocation segments that are parts of junctions 

(junction segments), and “cross-slip nodes”, a cross-slip node is where a dislocation line 

changes slip-plane as a result of a cross-slip event, e.g. node B in Figure 5c. The initial 

dislocation density in these simulations is 10
14

 /m
2
 

c) 
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Figure A.11.  Sensitivity of stress-strain response to the distribution of dislocation with 

same density of (10
13

 1/m
2
) in 0.5 micron specimen 
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Figure A.12. Effect of boundary conditions, no friction versus sticking friction. The 

simulations were performed for the same specimen with same dislocation distribution and 

density of 10
13

 1/m
2
 in 0.5 micron thick specimen. [Note: The displacement field in the 

deformed configurations is magnified by factor of 10 for better visualization]   
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