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 This dissertation presents an Oscillation Monitoring System (OMS) based on 

real-time wide-area measurements from Phasor Measurement Units (PMU). This 

OMS is designed to detect poorly-damped or negatively-damped electromechanical 

modes in the early stage of an oscillation event, as well as provide warning signals 

from normal system operating conditions when mode damping becomes insufficient 

for safe operation of power systems. Depending on different mathematical models of 

the measured data, different processing algorithms are used. The system disturbance 

part of the OMS is designed to monitor system events in real-time for the purpose of 

emergency control, while the ambient part monitors the system without any 

disturbances for the purpose of preventive control. These two parts are 

complementary to each other, constituting a complete monitoring system. 

Power system responses following system disturbances contain both linear and 

nonlinear phenomena. Moreover, presence of noise and switching events in the 

measurements can upset the accuracy of results. For these reasons, we developed 

different crosscheck rules to avoid false alarms due to inconsistent estimations.  

Three signal processing algorithms are used, namely, Prony‟s Method, Matrix Pencil 
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Method and Hankel Total Least Squares (HTLS) method. Results from these engines 

are processed using a custom developed set of rules for handling the complexities of 

modal analysis from real-time PMU measurements.  

Ambient data are collected during normal system operations. Unlike previous 

methods used for ambient data processing, the modified Frequency Domain 

Decomposition (FDD) is able to simultaneously identify damping and mode shape of 

the dominant mode using several minutes of ambient data. FDD also works well for 

noisy measurements and correlated inputs, and it appears to be useful specifically for 

analyzing real-time PMU measurements. Together with the post-disturbance data 

processing following system events, it provides a powerful framework of an 

oscillation monitoring system from wide-area PMU measurements. 
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CHAPTER ONE 

INTRODUCTION 

 

Small signal stability problem of power systems has remained a concern for 

power engineers for the past several decades. With growing loads, the power transfers 

over long geographical distances among different power companies have been 

increasing steadily. However, these power transfers are limited by low frequency 

electromechanical oscillations in many power systems all over the world. In the 

system of the Western Electricity Coordinating Council (WECC) in the US for 

example, the threat of low-frequency oscillations is a persistent concern in summer 

when a large amount of power is transmitted from the hydro-power abundant region 

in the Pacific Northwest to the load centers in the southwest. When the power transfer 

is high, the damping of the oscillatory inter-area modes can decrease accordingly, and 

the resulting insufficient damping can lead to growing oscillations as seen during the 

Aug 10
th

 blackout in 1996 [1], [2]. Such inter-area oscillations, as well as local 

oscillations involving only one or several generators, are concerns for operational 

reliability of power systems. 

Traditionally, modal analysis is the most widely used offline method to analyze 

oscillatory stability of power systems. This method needs to linearize the 

Differential-Algebraic Equation (DAE) model of a power system around an 

equivalent point and then calculate the eigenvalues of the linearized system matrix 

[3]. Thus the result from each modal analysis is valid for only one operating point. 

For a real power system, its operating point keeps changing due to changes in load 

pattern and system topology. Furthermore, power transfers among power companies 

have become more and more unpredictable in recent years because of market 

deregulation, making it more difficult to predict actual system behaviors based on 

modal analysis for limited number of system conditions.  
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Moreover, modal analysis is based on modeling of individual components in the 

system, e.g. generators, exciters etc. The model and model parameters can be obtained 

from field tests, either by the manufacturer before the commissioning of the device or 

by the utilities afterwards. For a large system, modeling the dynamics of all the 

devices is a daunting task if not impossible. Even for the devices which have had field 

tests, inaccurate model and model parameters are still not uncommon. This is the 

main reason why system behaviors are not well captured in some cases, e.g. the 

WECC blackout in August 10
th

 1996[1].  

Due to these limitations of offline modal analysis, there has been increasing 

interest in measurement-based methods in recent years. All over the world, efforts are 

underway to use synchrophasor measurement-based information networks to bring the 

Phasor Measurement Units (PMU) measurements into the control center from 

different parts of a large power system to determine the current state of the system [4]. 

These networks are called Wide Area Measurement Systems (WAMS). In WAMS, 

the data from the PMUs are tagged with an accurate time stamp from satellites and 

sent to Phasor Data Concentrators (PDC) located in control centers through digital 

communication channels. These measurements from the whole power system are 

synchronized in time. The synchronized view of the system, as well as the angle 

information available from PMUs, provides great potential for many applications in 

power systems. For example, PMU measurements can be used to improve state 

estimation, both in speed and robustness. Wide area monitoring and control based on 

PMU measurements has shown great potential in problems such as transient stability, 

small signal stability and voltage stability. In this dissertation, we present a complete 

Oscillation Monitoring System (OMS) based on real-time wide-area measurements 

from PMUs. This OMS is designed to detect poorly-damped or negatively-damped 

electromechanical modes in the early stage of an oscillation event, as well as provide 

warning signals from normal system operating conditions when mode damping 

becomes insufficient for safe operation of power systems. Then, we can initiate 



 

 

  

3 

 

appropriate controls to damp out the oscillations before they become critical. 

PMU measurements can be categorized into three different types. Each type of 

these measurements has its own mathematical model and processing algorithms. The 

system disturbance type data are the measurements immediately after small or large 

disturbances to the system, including generator outage, transmission line tripping etc. 

System response following a small disturbance is linear, in the form of a sum of 

exponential terms [3]. It can be processed by prony analysis, which includes Prony‟s 

Method, Matrix Pencil Method, Hankel Total Least Squares (HTLS) method etc [5], 

[6]. System response following a large disturbance is more complicated because 

nonlinearities play an important role in the measured data, especially in the first few 

cycles after the disturbance. There are algorithms from nonlinear system theory to 

deal with these nonlinearities, such as Hilbert Transformation [7]. In our proposed 

Oscillation Monitoring System, prony analysis is combined with moving window 

analysis and crosscheck rules to deal with these nonlinearity factors [6]. 

The second type is called ambient type measurements, which are collected when 

power system is in normal operating condition without major system disturbances. 

Most ambient type methods model ambient PMU measurements as outputs from a 

linear system driven by white noises. The linear system model can be an 

autoregressive (AR) model [8], [9], an autoregressive moving average (ARMA) 

model [10] or a Stochastic State Space model [11], [12]. Besides these 

block-processing algorithms, recursive algorithms also use AR model but their 

coefficients are updated in a recursive manner. These methods include Kalman 

filtering technique [13], Least-mean-square (LMS) adaptive filtering [14], robust 

recursive least square (RRLS) [15], Regularized Robust RLS (R3LS) [16]. RRLS and 

R3LS are shown to be able to process ambient as well as ringdown measurements 

following system disturbances. An overview of the above methods is available in 

[17]. In addition to the algorithms applied to direct measurements, other derived 

information can be utilized as well. For example, covariance matrices are used for 
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least square estimation of system matrix in [18]. Generally speaking, all of the 

methods mentioned above belong to the time domain. In the frequency domain, a 

simple FFT of real power signals is used in [19], but it provides no damping 

estimation. The Yule-Walker Spectrum (YWS) method in [20] is basically the same 

as [9] except that it calculates autocorrelations from Power Spectral Density (PSD) 

instead of directly from the time domain. The authors in [21] model the phase angle 

difference as the output of a second order system driven by random step changes. 

However, the measurements are needed over a rather long time-window for damping 

estimation, and this restricts options for initiating any preventive control. 

The third type of data is measured from direct dynamic tests of the system, 

including brake tests, single mode probing tests and noise probing tests. The brake 

tests and single mode probing tests are essentially the same as system disturbances 

and can be processed by prony analysis. If both input and output measurements from 

noise probing tests are used, it is a problem of system identification. Methods such as 

Subspace State Space System Identification (N4SID) [11], [12], [22] can be used to 

identify critical system modes. If only outputs from noise probing testes are 

processed, the problem is basically the same as the ambient condition except that the 

noise probing signal has larger impact than the random load variation across the 

system. 

Besides mode frequency and damping, mode shape is also important 

information in understanding and controlling a specific mode. Mode shape can be 

obtained from offline model analysis [3] or prony analysis of measured data after 

system disturbances [5], [6]. Recent research has focused on estimating mode shape 

from ambient PMU measurements. In [23], magnitudes of a mode shape are given by 

relative magnitude of Power Spectrum Density of each measured channel and phases 

of the mode shape are given by relative angle of Cross Spectrum Density (CSD). In 

[24], mode shape is calculated by curve fitting on the ratio of CSD and PSD. Authors 

in [25] further demonstrate that mode shape is actually a transfer function between 
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state variables evaluated at that mode. This transfer function can be identified by 

Channel Matching Method in [26] or by a least square ARX model in [25]. The 

accuracy of the above mode shape estimations depends on not only the identified 

transfer function, but also the accuracy of the estimated mode. Moreover, no damping 

can be estimated at the same time.  

In this dissertation, we present an Oscillation Monitoring System that monitors 

frequency, damping and mode shape of dominant electromechanical modes from both 

ambient and post-disturbance PMU measurements. As discussed in [27], ambient type 

methods and real-time post-disturbance methods are complementary to each other and 

should work in parallel to monitor small signal stability of power systems. The 

ambient type methods are mainly suited for identifying the dominant oscillatory 

modes for the current system condition. In most cases, problematic oscillations are 

triggered by some radical changes in the system, and the post-disturbance type 

methods are more appropriate for identifying sudden changes in the damping of 

oscillatory modes. In our proposed Oscillation Monitoring System developed at 

Washington State University (WSU) [28], these two types of methods work in a 

complementary manner. A prototype version of our OMS has already been 

implemented into the Phasor Data Concentrator at Tennessee Valley Authority (TVA) 

[29]. A more detailed description of the proposed OMS is shown in Chapter 2. 

Chapter 3 discusses the post-disturbance type methods, and extends the earlier 

work by Jaime Quintero in his doctoral dissertation [5] at WSU. In this chapter, we 

summarize our efforts to develop an automatic oscillation monitoring system which is 

a rule-based expert system that monitors PMU measurements in real time to detect the 

danger of growing or poorly damped oscillations in the early stages of the event. 

Three modal analysis methods from signal processing theory are used in this chapter, 

namely, Prony‟s Method, Matrix Pencil Method and Hankel Total Least Square 

(HTLS) method [6]. Section 3.1 provides the common mathematical model for all the 

algorithms. All these methods try to fit a sum of exponential terms to the uniformly 
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sampled data. In section 3.2, Prony‟s method, Matrix Pencil Method and Hankel Total 

Least Squares (HTLS) are introduced and compared. The application of modal 

analysis engine following large disturbances is discussed in Section 3.3, followed by 

actual testing cases from real power system measurements in Section 3.4. 

In Chapter 4, we combine prony analysis with the original method of Frequency 

Domain Decomposition (FDD) [30]-[33] for real time analysis of ambient PMU 

measurements in power systems. Unlike the previous ambient methods, this modified 

FDD method is able to simultaneously identify damping and mode shape of the 

dominant mode using several minutes of ambient data. Section 4.1 presents the 

theoretical background and some implementation issues for Frequency Domain 

Decomposition. In Section 4.2, FDD is applied to simple linear systems to illustrate 

some of its important properties. In Section 4.3, FDD is applied to simulated response 

of a small power system. Section 4.4 discusses several case studies using real PMU 

measurements in power systems. 

Finally in Chapter 5, we present conclusions for our proposed OMS. 

Challenging issues and future research trend are also discussed. 
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CHAPTER TWO 

FRAMEWORK OF OSCILLATION MONITORING SYSTEM 

 

In this chapter, we introduce the framework of the proposed Oscillation 

Monitoring System (OMS). This OMS is able to deal with both system disturbance 

data and ambient data using different algorithms. The system disturbance part is 

designed to monitor system events in real-time for the purpose of emergency control, 

while the ambient part monitors the system without any disturbances for the purpose 

of preventive control. These two parts are complementary to each other, constituting a 

complete monitoring system. 

This chapter is organized as follows. Section 2.1 introduces the background of 

phasor measurement technology. Different types of measurements from PMUs are 

described in Section 2.2. In Section 2.3, we present a complete structure of the 

proposed OMS. 

2.1. Background of Phasor Measurement Technology 

A phasor is a short-hand expression for sinusoidal waveforms with a common 

frequency. For example, a sinusoidal waveform )cos()(   tXtx m  is represented 

by a phasor j
m eXX 2/ , where the phase angle  of the phasor is determined by 

the starting time (t = 0) of the sinusoid [34]. When the waveform is observed at a 

constant interval of multiples of the signal period, the observed phasor X is a constant. 

Otherwise the observed phasor only has constant magnitude with changing phase 

angles. For a synchrophasor, the instantaneous phase angle is relative to a cosine 

function at nominal system frequency synchronized to Universal Time Coordinated 

(UTC). The time source of high accuracy is available from Global Positioning System 

(GPS). 

Phasor Measurement Unit (PMU) is a commercial product of this technology. 
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Since its birth in the 1990s, PMU has changed the power industry in many ways. 

Measurements from PMUs are tagged with an accurate time stamp from the satellites 

and sent to Phasor Data Concentrator (PDC) in the control center, so the 

measurements from the whole power system can be synchronized in time. The 

synchronized view of the system, as well as information of phasor angles, provides 

great potential for many applications including state estimation, wide area monitoring 

and control etc. System operators equipped with these powerful tools are more 

efficient in operating power systems safely. 

2.2. Types of Measurement Data 

PMU measurements can be categorized into three different types according to 

the nature of the measurements. The system disturbance type data are the 

measurements immediately after small or large disturbances to the system, including 

generator outage, transmission line tripping etc. The responses can be in the form of a 

growing oscillation, a sustained undamped oscillation or a “ringdown”, i.e. an 

oscillation back to the old or new equivalent point. Since the response is 

mathematically a sum of exponential terms [3] when the disturbance is small, prony 

analysis is used to analyze this type of data. The methods used for prony analysis in 

the proposed OMS include Prony‟s Method, Matrix Pencil Method, Hankel Total 

Least Squares (HTLS) method [6] etc. 

Ambient type data are collected when the system is in a normal operating 

condition and the only inputs to the system are the random load changes across the 

entire system. The main advantage of analyzing ambient data is that the ambient type 

methods work in a non-intrusive manner, so the collection of ambient data is cheap 

and always available. For this reason, research on ambient type measurements has 

been a hot topic in recent years. Frequency Domain Decomposition (FDD) [27], 

subspace identification [11], [12] etc are the methods for this type of data. 

The third type of data is measured from direct dynamic tests applied to power 
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systems. These tests include brake tests, single mode probing tests and noise probing 

tests. For example, Bonneville Power Administration (BPA) conducts brake tests at 

Chief Joseph every year to investigate the dynamic performance of the WECC 

system. However, if the system is small signal unstable, brake tests may lead to 

growing oscillations and cascading blackouts, thus the tests need to be carefully 

planned and implemented. Noise probing tests have also been performed by BPA in 

recent years and they have smaller impacts to the system. Since system dynamic tests 

are expensive and require a lot of man power, this type of PMU measurements is the 

rarest among all three categories. From analysis point of view, the brake tests and 

single mode probing tests are essentially the same as system disturbances. For noise 

probing tests, the measured outputs are also random, although colored by system 

dynamics. If both input and output measurements are used, it is a problem of system 

identification. If only outputs are processed, the problem is basically the same as the 

ambient condition except that the noise probing signal has larger impact than the 

random load variation across the system. 

2.3. Basic Framework of Oscillation Monitoring System 

The complete Oscillation Monitoring System includes both ambient type 

methods and post-disturbance type methods. A simplified flowchart of the Oscillation 

Monitoring System is shown in Fig. 2.1. The program periodically reads data from the 

PDC and preprocess them to deal with issues such as missing channels, bad data etc. 

Depending on whether any system event is detected in the system, the OMS will 

choose either ambient or post-disturbance type methods accordingly. If the results 

from moving window analysis are consistent, the OMS will send an alarm to system 

operators or trigger damping controllers directly. The event detection part of the OMS 

is covered in more detail in the later sections in Chapter 2. In Chapter 3, we describe 

the system-disturbance part of the OMS, and Chapter 4 corresponds to the ambient 

part of the OMS. 
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Fig. 2.1.  Simplified flowchart for the Oscillation Monitoring System 

 

2.3.1. Data Preprocessing 

After data is read from PDC, the first step is to clean up the measurements. It is 

not uncommon to have bad data in the original data stream, including missing data, 

missing channels, bad measurements etc. So data preprocessing is an important step to 

ensure the accuracy of further analysis. A simple criterion is used in the proposed 

OMS, i.e. if there is a missing data channel, the remaining channels will be used. If 

there are only a few missing or bad data in a channel, linear interpolation is applied. 
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However, if there are too many missing or bad data, that channel is simply discarded. 

The number of bad data that is considered to be „too many‟ depends on the algorithm 

used for analysis, and the thresholds of different algorithms are set according to 

off-line studies based on historical measurements. 

2.3.2. Event Detection 

The next step after data preprocessing is to detect system events. In the proposed 

OMS, we use frequency, voltage magnitude and current magnitude for this purpose. 

The flowchart is shown in Fig. 2.2 as follows. Relative angles between key 500kV 

buses also contain useful information, and they can be used with care for event 

detection as well. 

From the flowchart in Fig. 2.2, it is seen that three types of calculated values are 

used for event detection. The maximum and minimum value of frequency 

measurements are calculated first, which should be in the small range of 59.95~60.05 

Hz in normal operating conditions. If the maximum or minimum value is out of the 

above range, it usually indicates something abnormal in the system. The maximum 

absolute difference between adjacent samples is used to detect fast changes in the 

system, e.g. a line fault, or capacitor switching etc. And the standard deviations of 

voltage and current magnitudes are used mainly for slower events, such as low 

frequency oscillations. If any of the above tests exceeds pre-defined thresholds, the 

OMS will set the event flag to be true and proceed to the next step involving actual 

prony or FDD analysis. The choice of these pre-defined thresholds is in fact a 

compromise between two requirements. On the one hand, the OMS is required to 

capture all actual system events. A high threshold can result in missing some of these 

events. On the other hand, the OMS is required to send warnings or control signals 

only when actual system events occur. A low threshold will trigger too many 

unnecessary calculations, even false alarms. Our solution is to use a relative 

conservative threshold, i.e. a relatively low threshold value. Any channel that has an 

event flag is further processed by prony or FDD analysis, and the results are 
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combined with moving window analysis and result crosschecks before warning 

signals are sent to the operators. 
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Fig. 2.2.  Flowchart for event detection in the Oscillation Monitoring System 

 

2.3.3. Moving Window Analysis and Result Crosschecks 

The reason to conduct moving window analysis and crosschecks is to avoid 
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false alarms from the OMS. When a large disturbance occurs, the power system 

responses contain both linear and nonlinear phenomena following the disturbance. 

Moreover, presence of noise in the measurements can upset the accuracy of results. 

Typically, there are also many discrete switching events that occur during a routine 

disturbance event, and the damping of the modes can change after each of these 

switching events. Therefore, it is not uncommon to get different results from different 

methods, different signal groups or different time windows for the actual signals 

measured from power systems. Crosscheck is a crucial step to ensure the consistency 

of the online modal analysis.  

In the proposed Oscillation Monitoring System, rules have been developed to 

crosscheck results from a) moving time-window analysis, b) multiple signal groups 

that contain modal responses, and c) different types of signal processing engines. 

Only when all the results are considered to be consistent will the system trigger an 

alarming signal, and here „consistent‟ means the identified dominant modes from all 

the results fall into a pre-specified frequency range and damping ratio range. The 

choice of parameters in crosschecking is a trade-off between the speed of detection 

and accuracy. 

2.3.3.1) Result crosscheck for post-disturbance measurements 

The proposed Oscillation Monitoring System provides two levels of oscillation 

detection from post-disturbance measurements. That is, the OMS is able to detect 

local modes as well as inter-area modes. For the local oscillation detection, we use the 

signals from the same PMU. The signal groups used for local analysis are 

pre-specified. However, the pre-specified signal groups for inter-area mode may be 

not enough to capture some unexpected inter-area oscillations. For this reason, we 

also form the inter-area mode signal groups automatically from the subset of the 

PMUs that participate in the oscillations. All these tasks of local oscillation detection 

are executed in parallel by multi-threading in a powerful computer exclusively for 

oscillation monitoring in the control center. 
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After the local mode analysis, the next step is to determine the dominant mode 

in each PMU for each method, and then the crosscheck for all methods is performed 

in each PMU. The results are considered to be consistent if the dominant modes from 

different methods fall in a specified frequency range and damping ratio range. The 

above crosscheck is called local mode crosscheck. If more than two PMUs have 

consistent local crosschecks, then the inter-area mode detection tasks are activated. 

Inter-area mode crosscheck is performed from the subset of PMUs showing 

oscillations of the same frequency. Moving window crosscheck is to compare results 

along the sliding data windows. If several moving window crosschecks give 

consistent estimates, for example, four consecutive consistent moving windows 

crosschecks, then the resulting damping ratios are compared to a threshold to 

determine whether further action is needed. For instance, the damping ratio threshold 

for detecting poorly damped oscillations could be set to be say +3% for reliable 

operation of power systems. More detail and examples of PMU grouping for 

disturbance data processing can be found in Chapter 3. 

2.3.3.2) Results crosscheck for ambient measurements 

In the ambient data part of the OMS, the algorithm of FDD itself is able to 

handle multiple measurements. However, with the growing number of measurements, 

the computational burden for evaluating Power Density Spectrum matrix and the later 

SVD performed at each spectrum line, grows dramatically. Therefore, the capability 

of on-line computation requires only a small number of measurements used for each 

FDD analysis. With the fast spread of PMU installation across the power systems, we 

are now facing hundreds of PMU measurements at the control center. Then, it is 

important to group these measurements effectively to provide both local information 

and global view. 

Our solution is a hierarchical structure similar as the one used in system 

disturbance part. In the lower level, we group the signals from each PMU and analyze 

many signal groups in a parallel manner by multi-threading of the FDD program. 
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Each PMU contains 5-10 signals, which is an ideal size for FDD. These individual 

PMUs contain local information, but they may produce inconsistent results for a 

global event. For this reason, we also form signal groups for global information in a 

higher level. The signal groups are formed automatically when more than one local 

PMU indicate insufficient damping at a similar frequency. The signals are drawn from 

these PMUs which show similar dominant frequency component, and analyze them 

by FDD. This gives a more consistent view for events involving many PMUs.  
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CHAPTER THREE 

OSCILLATION MONITORING USING SYSTEM DISTURBANCE DATA 

 

In this chapter, we summarize our efforts to develop an automatic oscillation 

monitoring system which is a rule-based expert system that monitors post-disturbance 

PMU measurements in real-time to detect the danger of growing or poorly damped 

oscillations in the early stages of the event. Three modal analysis methods from signal 

processing theory are used in this chapter, namely, Prony‟s Method, Matrix Pencil 

Method and Hankel Total Least Square (HTLS) method. All these methods try to fit a 

sum of exponential terms to the uniformly sampled data.  

The prony analysis of real-time system disturbance data or event recordings in 

power systems is especially challenging because the power system responses contain 

both linear and nonlinear phenomena. Moreover, presence of noise in the 

measurements can upset the accuracy of results. Typically, there are also many 

discrete switching events that occur during a routine disturbance event, and these 

damping of the modes can change after each of these switching events.  In the 

oscillation monitoring system developed at WSU, three types of rules have been 

developed to crosscheck results from a) moving time-window analysis, b) multiple 

signal groups that contain modal responses, and c) different types of signal processing 

engines, in order to ensure consistency of the modal analysis. 

 This chapter is organized as follows. Section 3.1 provides the common 

mathematical model for all the following algorithms. In section 3.2, Prony‟s method, 

Matrix Pencil Method and Hankel Total Least Squares (HTLS) are introduced and 

compared. The application of modal analysis engine following large disturbances is 

discussed in Section 3.3, followed by actual testing cases from real power system 

measurements in Section 3.4.  
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3.1. Linear Analysis of Power System Small Signal Stability 

The power system is a high-order nonlinear system. However, for analyzing 

small disturbances, we can linearize a system around its operation point (or the 

equilibrium point). The linearized system can be simplified into the following form: 

xcy

ubxAx

ii 


  , mi ,...,2,1         (3.1) 

where x  are the state vector, b and c are the input and output vectors respectively, 

u is the input and iy  is the output. As shown in [3], the transfer functions 

between the input and output has the following form, 
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where bcR iiii  , i  and i  are right eigenvector and left eigenvector 

corresponding to i  respectively. 

If we apply an impulse as input to the system, the m outputs are 


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
n

i

iij tRty
1

)exp()(  , mj ,...2,1             (3.3) 

If the input is not an impulse, e.g. a step input, the linearized system response 

will still be a sum of exponential terms. This is the form that our methods can be 

applied to for modal estimation. When )(ty j  is sampled at a constant sampling 

period t , we get the following discrete form. 
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ii zRky
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)(                     (3.4) 

where )exp( tz ii   , iii j  . n is called the model order, which is not known 

for real power system measurements. 

3.2. Engines for Modal Analysis 

We summarize the three signal processing engines in this section mainly aimed 
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at providing an introduction. Each method has its own advantages and weaknesses. 

3.2.1. Prony’s Method 

Prony‟s Method tries to fit a sum of exponential terms to the uniformly sampled 

data. It was originally developed by Baron de Prony in 1795 to explain the expansion 

of various gases [35]. Prony analysis and classical eigenanalysis have become two 

standard approaches to study the problem of power system small signal stability 

[36]-[38]. The main steps are summarized below.  

First, (3.4) can be written in the following form. 
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The iz ‟s are necessarily the roots of a nth-order polynomial with unknown 

coefficients ia , and thus satisfy 
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If we left-multiply ]0,...0,1,,...,,[ 11 aaa nn    to the both sides of (3.5), then we 

get the following equation using (3.6). 
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We can left-multiply ]0,...0,1,,...,,,0[ 11 aaa nn    to the both sides of (3.5) and 

the resulting right hand side is also zero.  

Next, (3.7) can be repeated to get the following form. 
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We can summarize the procedure of Prony‟s Method in the following three 

steps.  

Step 1. Solve (3.8) to get the coefficients ia . 

Step 2. Calculate the roots of (3.6) to get iz . 

Step 3. Solve (3.5) for complex residues iR . 

Prony‟s Method can be extended to analyze multiple signals simultaneously. In 

step 1, we stack equations for each signal in (3.8). Consider a set of m 

signals )(ty j , mj ,...2,1 . Now we have a total of mnN  )(  equations with n 

unknown coefficients ia  in (3.8). The coefficients ia  are solved in the least-square 

sense. After calculating roots iz , Step 3 becomes solving the following equations. 
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A practical issue in Prony‟s Method is to determine the unknown model order n. 

The common procedure is to fit a high order model to the data, and the modes 

corresponding to the noise have small residue magnitudes that can be filtered out from 

the result.  

3.2.2. Matrix Pencil Method 

The idea of Matrix Pencil method comes from the pencil-of-function approach. 

It is used in the areas like system identification and spectrum estimation [39]-[42]. 

The main steps of Matrix Pencil method are shown below. 

First, define two matrices as follows. 
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where x(k) are the noise-free data points. L is the pencil parameter. 

Using (3.4), we can write (3.10) and (3.11) as  
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where diag[] represents a diagonal matrix. 

The matrix pencil is defined as follows. 

]]}[[]]{[][[][][ 20112 ZIZRZYY          (3.14) 

where [I] is identity matrix.  

When nNLn  , the rank of ]}[]{[ 12 YY   is n if iz  [39].  

However, if iz , then the i-th row of ]}[]{[ 0 IZ   becomes zero, and the rank of 

]}[]{[ 12 YY  is reduced by one. Hence, the parameters iz ‟s are the generalized 

eigenvalues of the matrix pair ]}[];{[ 12 YY . Or, equivalently, we can solve the 
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ordinary eigenvalues of ]}[][]{[ 21 IYY   to get the parameters iz , where ][ 1Y is 

pseudo-inverse of  1Y . After solving for parameters iz , we solve (3.5) for residues. 

For the actual measured data, define a new matrix ][Y  containing the noisy 

data as follows. 
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Comparing to (3.10) and (3.11), we can see that ][ 1Y is obtained by deleting the 

last column of ][Y , and ][ 2Y  is obtained by deleting the first column of ][Y .  

Next, apply SVD to ][Y  as follows. 

HVUY ][                  (3.16) 

where U and V are unitary matrices.   is a diagonal matrix containing the singular 

values of ][Y  with descending order. The superscript H denotes conjugate transpose. 

If the data were noise free, the matrix ][Y  has n nonzero singular values. 

However, when noise is present, the zero singular values are perturbed and become 

nonzero. Now, the Singular Value Decomposition provides an effective way of noise 

filtering. The singular values below some specified threshold are considered to be 

caused by noise and need to be set as zero.  

Then, we use the n significant singular values to reconstruct the original data 

matrix. Now, we have 
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where svi ' are column vectors of V corresponding to the n dominant singular 
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values. '  is the first n columns of  . ][ '

1V  is obtained from ]'[V  with the last 

column of ]'[V  deleted. ][ '

2V  is obtained from ]'[V  with the first column of ]'[V  

deleted. 

Now, we have  
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HH
VV  is an nn  matrix. Calculating the eigenvalues of an 

nn  matrix is computationally inexpensive since n is usually a small number. After 

the eigenvalues are obtained, solve (3.5) for the residues. 

3.2.3. Hankel Total Least Square (HTLS) Method 

HTLS method is a more recent method and it also fits an exponential decay 

model onto a waveform. It is proposed in papers [43], [44], and the main steps are 

summarized next.  

First, form the Hankel matrix as follows. 
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where L is a parameter chosen to be larger than n, LNM  1 , N is the number of 

measurements. 

If there is no noise, i.e 
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where both S and T are Vandermonde matrices. 

The matrix S is shift-invariant, that is  


 SZS                  (3.22) 

where the up (down) arrow placed behind a matrix stands for deleting the top 

(bottom) row of the matrix and Z is the nn diagonal matrix whose diagonal entries 

are nzz ,...,1 . 

The Hankel matrix can also be decomposed by SVD as follows. 

 
H

H

V

V
UUVUH 






















00

0

ˆˆ
ˆ          (3.23) 

where U and V and unitary matrix, i.e IUU H  , IVV H  , I is identity matrix, H 

denotes complex conjugate transpose.   is a diagonal matrix with singular values on 

the diagonal in decreasing order. ̂  is the submatrix containing first n singular 

values. If there is no noise in the signal, the submatrix 0  is null. Otherwise, 0  is 

a full matrix with small singular values on the diagonal. When noise is present, the 

usual procedure is to set a threshold and those singular values below the threshold are 

considered to be generated by noise and can be discarded.  

In the noise-free case, HVUH ˆˆˆ . Compare this equation with (3.21), we have 

the following relationship. 

SQU ˆ               (3.24) 

where Q is a n by n nonsingular matrix. Deleting the last row in the above equation 

gives QSU


ˆ , while deleting the first row gives QSU


ˆ . 

Thus 


Û  and 


Û  are related by the following equation. 
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where ZQQZ 1~  , which has the same eigenvalues as Z, ie. nzz ,...,1 . 
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In the noisy case, equation (3.25) does not hold exactly. In this case, we solve 

Z
~

 by total lease square method. After calculating Z
~

, the signal poles are calculated 

as the eigenvalues of Z
~

. 

When we need to analyze multiple signals simultaneously, simply replace H in 

(3.20) by the horizontally stacked Hankel matrices as follows. 

 mseries HHHH ...21            (3.26) 

where m is the number of signals. 

The last step to calculate residues iR ‟s is the same as that of Prony‟s method. 

3.2.4. Comparison of Three Methods 

Given three analysis methods described above, we are now interested in 

comparing their performances. The accuracy of the estimated frequency and damping 

ratio under noisy measurement is of special interest to our problem. In the following, 

we add different levels of noise to the data, and then calculate the mean value and 

standard deviation of the estimated frequencies and damping ratios from 100 

independent runs. The test signal used for comparison is shown below. 

)()3.0*2cos()2.0*2cos()( 1.005.0 tntetety tt     

where n(t) denotes noise component. y(t) is sampled at 30 Hz and a total of 10 

seconds data is used for analysis. 

The signal contains two modes at 0.2 and 0.3 Hz with damping ratio of 3.98% 

and 5.30% respectively. A hundred simulation runs for each Signal-Noise-Ratio 

(SNR) level and each method are carried out and the results are shown in Table 3.1 

and 3.2. For Matrix Pencil method and HTLS method, the SVD threshold is set to 

10% of the largest singular value.  

From Tables 3.1 and 3.2, we can see that all of the three methods can estimate 

the frequencies of both modes quite accurately. However, damping ratio estimation, 

which is more important in oscillation monitoring, has larger variance, especially 
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under higher noise level. For example, at the 20 dB SNR level, the standard 

deviations of the estimated damping ratio of the first mode are 1.41%, 0.99% and 

0.92% for Prony‟s Method, Matrix Pencil and HTLS respectively. These standard 

deviations are comparable to the mean values, and this indicates we get less reliable 

estimation results when the noise is high. Among the three methods, Matrix Pencil 

Method and HTLS method have similar noise performance, and they are better than 

Prony‟s Method as shown by their standard deviations. In other words, Prony‟s 

Method is more sensitive to noise. 

 

TABLE 3.1  

COMPARISON OF THREE METHODS UNDER NOISY MEASUREMENTS 

 (30 DB NOISE) 

 

 
Frequency 

(Hz) 

Damping Ratio 

(%) 

Frequency 

(Hz) 

Damping Ratio 

(%) 

True Value 0.2000 3.98 0.3000 5.30 

Mean Value (Prony‟s Method) 0.1999 4.12 0.2999 5.20 

Standard Deviation (Prony‟s Method) 0.0008 0.74 0.0013 0.38 

Mean Value (Matrix Pencil)  0.1990 4.05 0.3031 4.93 

Standard Deviation (Matrix Pencil) 0.0004 0.26 0.0005 0.16 

Mean Value (HTLS) 0.1990 4.07 0.3032 4.89 

Standard Deviation (HTLS) 0.0004 0.26 0.0005 0.18 

 

 

TABLE 3.2 

COMPARISON OF THREE METHODS UNDER NOISY MEASUREMENTS 

 (20 DB NOISE) 

 

 
Frequency 

(Hz) 

Damping Ratio 

(%) 

Frequency 

(Hz) 

Damping Ratio 

(%) 

True Value 0.2000 3.98 0.3000 5.30 

Mean Value (Prony‟s Method) 0.1991 3.97 0.3010 4.84 

Standard Deviation (Prony‟s Method) 0.0017 1.41 0.0021 1.15 

Mean Value (Matrix Pencil) 0.1990 4.11 0.3031 4.91 

Standard Deviation (Matrix Pencil) 0.0012 0.99 0.0017 0.68 

Mean Value (HTLS) 0.1988 3.86 0.3036 5.01 

Standard Deviation (HTLS) 0.0011 0.92 0.0015 0.65 
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Next, a comparison of the speeds of three methods is performed and the average 

time needed for one simulation run is shown in Table 3.3. For Prony‟s method, the 

speed depends on how we solve the least squares problem (section 3.2.1). The SVD 

based least square procedure is numerically more robust than the QR based procedure, 

but it is much more time-consuming since SVD is an O(n
3
) procedure. For Matrix 

Pencil and HTLS method, they have similar procedure of SVD for the Hankel matrix. 

The result in Table 3.3 shows that the HTLS method is relatively the fastest among 

the three methods. 

The average computational times reported in Table 3.3 were computed using 

Matlab code running in a “typical” three-year old laptop. The times are meant for 

relative comparison among the three methods. In actual field implementation with 

efficient C code, the algorithms are quite fast as reported in [29].  

 

TABLE 3.3 

AVERAGE TIME NEEDED FOR ONE SIMULATION RUN 

 

Methods Average Time (sec) 

Prony (SVD) 0.44983 

Prony (QR) 0.12250 

Matrix Pencil 0.17046 

HTLS 0.11625 

 

3.3. Oscillation Monitoring Following Large Disturbances 

Power system is basically a high-order nonlinear system. These nonlinearities 

are caused by many factors such as the fundamentally nonlinear nature of power 

balance equations, the limiting functions in exciters, Power System Stabilizers (PSS), 

etc., the nonlinearities of generator saturation curves as well as nonlinear load 

responses in the system [45]. The power system responses following large 

disturbances usually show strong nonlinearities, especially immediately following a 

line outage when the field currents in the exciters may hit the upper limits trying to 
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boost generator terminal voltages. If the system is transient stable, the system should 

move to the previous or a new operating point in the form of a damped oscillatory 

response which is also sometimes referred to as the “ring-down”.  

In [7], the authors apply the Hilbert spectral analysis to the responses following 

the fault and obtain the instantaneous frequency and damping. The resulting 

instantaneous damping ratios are comparable to the damping ratio from prony 

analysis. However, the instantaneous damping varies much after fault, and it has to be 

averaged over time to provide useful information.  

In the following paragraph, we will show that the proposed OMS is able to give 

good estimate for the ring-down case following a large disturbance. The test system is 

a two-area four-generator system from [3]. The one-line diagram of the system is 

shown as follows.  

 

G1

G2

G3

G4

L7 L9C7 C9

7 8 96 105 11

 

Fig. 3.1.  One line diagram of two-area system 

 

The operating condition and system parameters are the same as those in [3]. 

Note that only two PSS‟s are installed on G1 and G3 respectively. The complete 

eigenvalue analysis is done using SSAT [46] for the system. The original system has 

an inter-area mode with 0.6176 Hz and 5.35% damping ratio. When line 7-8 circuit #1 

is out of service, the inter-area mode will change to 0.4589 Hz and 4.70% damping 

ratio. Now, for the original system, we apply a three-phase fault using TSAT [47] in 

the middle of the line 7-8 circuit #1, and clear the fault after 0.1 sec. by tripping the 

faulted line. No reclosing action is performed and the active power of the parallel line 

7-8 circuit #2 is shown below. 
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Fig. 3.2.  Active powers of line 7-8 circuit #2 following a 0.1 sec three phase line 

fault 

 

The three methods are applied to the above tie-line active powers using a 5 

second sliding window after the fault and the resulting frequency and damping ratio 

are plotted at the end of each analysis window in Fig. 3.3. The upper part of the plot 

shows the frequency estimates and the lower part shows the damping ratio estimates. 
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Fig. 3.3.  Frequency and damping ratio estimates following a 0.1 sec three phase line 

fault 
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From Fig. 3.3, we clearly see the nonlinear effects on the analysis results. In the 

first few swings after the fault, the damping ratios from three methods are different 

from each other and they also differ a lot from the result from eigenanalysis. The 

nonlinearities in the first few swings from factors such as saturations and exciter 

limiters can result in an underestimate (or overestimate) of damping ratio for the 

inter-area mode. From linear system theory, we note that the concepts of eignevalues 

and modal analysis are only applicable for small disturbances away from an 

equilibrium point. It is imperative that we ignore the results of modal analysis when 

the system responses are large in being away from the equilibrium point.  However, 

after the first few swings, the three methods give consistent and accurate damping 

ratio estimates. This test shows the importance of avoiding the adverse effect of 

nonlinearities. In the proposed OMS, the first one or two swings are ignored 

immediately after the fault by our consistency crosscheck rules in order not to trigger 

false warning signals. 

3.4. Case Studies for Oscillation Monitoring 

3.4.1. Case I 

In this test case, we will apply three methods to PMU measurements recorded in 

WSCC system on August 4
th

, 2000. At about 19:56 GMT Standard Time, the Alberta 

system separated from the rest of the system, resulting in poorly damped oscillations 

[48]. The voltage magnitude at Malin Substation is shown in Fig. 3.4. The 0.27 Hz 

inter-area mode involved in this event appears to be the same inter-area mode that led 

to the August 10
th

, 1996 WSCC blackout. The solid black vertical line in the middle 

of the figure shows the time instant when the OMS issues an alarm. This is explained 

in more detail in the following paragraphs. 
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Fig. 3.4.  The voltage magnitude at Malin in Aug. 4, 2000 

 

The recorded data contains measurements from a total of ten PMUs, eight of 

which are located at 500kV substations, including Grand Coulee, Malin, Colstrip, 

Devers etc. In the following analysis, we only use the measurements from these eight 

PMUs. First, we form signal groups in each PMU and cross-check their results for all 

methods. The signals used for analysis are voltage and current magnitudes in each 

PMU, while the frequency measurements are avoided because of lesser accuracy. A 

series of analyses using a 5-second sliding window are applied to the data segment 

from 60 sec. to 130 sec., where the time at 0 sec corresponds to 19:55:00 GMT 

Standard Time. The results are plotted at the end point of the sliding widow for each 

analysis. The frequency and damping ratio estimates shown in Fig. 3.5, 3.6 and 3.7 

correspond to the results at Grand Coulee, Malin and Devers substation respectively. 

Again, the upper part of the plot shows the frequency estimates and the lower part 

shows the damping ratio estimates. 
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Fig. 3.5.  Frequency and damping ratio estimates at Grand Coulee for Case I 
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Fig. 3.6.  Frequency and damping ratio estimates at Malin Substation for case I 
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Fig. 3.7.  Frequency and damping ratio estimates at Devers (SCE1) for case I 
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From the figures above, we see that the estimates become consistent for all three 

methods when the analysis window begins to cover the oscillation segment. Fig. 3.8 

shows consistent estimates in all the PMUs, where each dot stands for a consistent 

estimate in the corresponding PMU. It is seen that the measurements at John Day, 

Malin and Keeler substations have more consistent estimates than others during this 

event. This is because these PMUs are located along main transmission corridors for 

the inter-area oscillation.  

All three methods, Prony‟s Method, Matrix Pencil, and HTLS can compute for 

the mode shape associated with an inter-area mode when we use consistent 

measurements from each PMU in the inter-area mode detection stage above. That is, 

if we use all bus voltage measurements or bus voltage phase angles from different 

PMUs, the related residues and phase angles in the inter-area detection shape can give 

us valuable insight into the mode shape of that oscillatory mode.  

 

60 70 80 90 100 110 120 130

1

2

3

4

5

6

7

8

Consistent Local Estimates

Time (s)

BE50

COLS

GC50

MALN

JDAY

KEEL

SCE0

SCE1

 

Fig. 3.8.  Consistent local estimates in all PMUs for case I 

 

When more than two consistent local crosschecks are found at a specific time, 

the inter-area mode detection is activated automatically. The signals used here for 

inter-area mode detection are voltage magnitudes at the PMUs showing consistent 

local crosschecks. The results for inter-area mode detection are shown in Fig. 3.9. An 
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acceptable result of a predefined number (say 4) of consecutive moving window 

consistent inter-area crosschecks occur at 109 sec., with the mean frequency at 0.2871 

Hz and the mean damping ratio is +0.96%. Therefore, the OMS is able to trigger an 

alert to system operator with a reliable estimation at the early stage of the oscillation, 

showing a good compromise between the speed of detection and accuracy.  
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Fig. 3.9.  Frequency and damping ratio estimates of inter-area oscillation detection 

for case I 

3.4.2. Case II 

The second case is recorded recently in eight PMUs located in TVA system 

[29]. After a 500kV line tripping, we can see an oscillation in the system. The voltage 

magnitude at one 500kV substation PMU 3 is plotted below for the initial stage of the 

oscillation. The bold black vertical line again shows the time instant when the OMS 

issues an alarm. 

The measurements from each PMU form a signal group. A series of analyses 

using 5-second sliding window are applied to the data segment from 330 sec. to 360 

sec. The consistent estimates for all PMUs are shown in Fig. 3.11. The results show 

that this event is either a local oscillation or an intra-area oscillation, and the 

problematic area is somewhere between PMU 2 and PMU 3. This information is also 

quite useful to choose appropriate damping controls. 
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Fig. 3.10.  The voltage magnitude at PMU 3 for case II 
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Fig. 3.11.  Consistent local estimates in all PMUs for case II 

The local crosscheck at PMU 3 is shown in Fig. 3.12. The inter-area crosscheck 

is activated automatically and the results are shown in Fig. 3.13. The OMS will 

trigger an alert at 350s, when the number of moving window consistent inter-area 

estimates reaches a predefined number say 4. The mean frequency is 1.1754 Hz and 

the mean damping ratio is +0.39% for the inter-area crosscheck.  The local 

crosscheck at PMU 3 also gives a consistent estimate at 350s with the mean frequency 

at 1.1777 Hz and the damping ratio at 0.14%, The OMS will therefore issue an alarm 

or a control trigger thus indicating the need for some operator intervention or control 

action. 
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Fig. 3.12.  Frequency and damping ratio estimates at PMU 3 for Case II 
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Fig. 3.13.  Frequency and damping ratio estimates of inter-area oscillation detection 

for Case II 

3.4.3. Case III 

This case is also from the eastern interconnection in the US. Here we only have 

measurements from three PMUs, so the OMS will trigger an alarm when local moving 

window crosscheck reaches a consistent estimate. Again, the signal groups are formed 

in each PMU. The voltage magnitude at PMU 1 is shown in Fig. 3.14.  The bold 

black vertical line shows the time instant when the Oscillation Monitoring System 

issues an alarm.  
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Fig. 3.14.  The voltage magnitude at PMU 1 for case III 

Sliding 5 second time-windows are applied to the data segment form 740 sec. to 

820 sec. The results for the signal group from PMU 1 are shown in Fig. 3.15. 

Consecutive 4 moving window consistency crosschecks occur at 811 sec., with the 

mean frequency at 0.6892 Hz and the mean damping ratio of -0.59%. This shows that 

system operator may have seen an alert at the beginning stage of the oscillation if the 

OMS had been installed. The signal groups in other PMUs do not have consistent 

estimates, so they are not shown here. Had any damping control been applied in the 

early stage, the system may have avoided the eight minutes of sustained oscillation. 
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Fig. 3.15.  Frequency and damping ratio estimates of PMU 1 for Case III
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CHAPTER FOUR 

OSCILLATION MONITORING USING AMBIENT DATA 

 

In this chapter, we combine prony analysis with the original method of 

Frequency Domain Decomposition (FDD) towards real-time analysis of ambient 

measurements from PMUs in power systems for the purpose of oscillation 

monitoring. Unlike previous methods used for ambient data processing, this modified 

FDD is able to simultaneously identify damping and mode shape of the dominant 

mode using several minutes of ambient data.  

The main idea of this approach is to apply Singular Value Decomposition 

(SVD) to the power density spectrum matrix. The resulting singular values and 

singular vectors can be further processed by prony analysis to obtain mode damping 

and mode shapes.  Whenever one of the oscillatory modes moves toward the 

imaginary axis, i.e. damping of the mode decreases toward zero, the standard 

deviation of damping estimates decrease significantly, making it possible to capture 

the problematic mode before it becomes critical. The ambient data processing by 

FDD, together with the real-time post-disturbance monitoring in [6], constitute a 

complete Oscillation Monitoring System (OMS). A prototype version of this OMS 

has been implemented at Tennessee Valley Authority (TVA) [29]. 

This chapter is organized as follows. Section 4.1 presents the theoretical 

background and some implementation issues for Frequency Domain Decomposition. 

In Section 4.2, FDD is applied to simple linear systems to illustrate some of its 

important properties. In Section 4.3, FDD is applied to simulated response of a small 

power system. Section 4.4 discusses several case studies using real PMU 

measurements in power systems.  
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4.1. Frequency Domain Decomposition 

4.1.1. Theoretical Background 

4.1.1.1) Power Spectrum Representation 

The high-order nonlinear power system model can be linearized around its 

equilibrium point and expressed in the state space form as follows [3, Page 703], 

uDxCy

uBxAx




          (4.1) 

where x , u , y  are the state, input and  output vector respectively.  

Assume that y is not a direct function of u (i.e. D = 0), then the transfer 

function matrix between the inputs and outputs has the following form [3, Page 720], 

           
 


n

i i

i

s

R
sH

1

)(


          (4.2) 

where iii j   is the eigenvalue of A. BCR iii  , where i  and i  are 

the right and left eigenvector corresponding to i respectively. And n is the order of 

the system model. Note that s and i are scalars and Ri is a matrix.  

For a stationary random process )(ty , its autocorrelation function is defined as 

)]()([)(    tytyEyy , where the symbol * and E stand for complex conjugate and 

expectation respectively. The power density spectrum or power spectral density 

(PSD) )(S  is the Fourier transform of the above autocorrelation function by 

Wiener-Khintchine theorem [49, Page 902]. For a single-input single-output (SISO) 

system, the input and output power density spectrum has a simple relationship as 

)(|)(|)( 2  uuyy SHS  . In the multi-input multi-output (MIMO) case, the 

relationship is extended as follows [50, Page 263]. 

H

uuyy jHSjHS )()()()(           (4.3) 

where the superscript H denotes complex conjugate transpose. 
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If the inputs are white noise, the power spectrum )(uuS will be a constant 

diagonal matrix, denoted by F. In Appendix A, the following expression of )(yyS  

for white noise inputs is derived, 


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
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4.1.1.2) Power Spectrum Decomposition and SVD 

 The peaks in )(yyS  can correspond to poorly damped modes of the system 

when such modes exist in the system. In the following subsections, we will show that 

the inverse FFT of decomposed spectrum )(yyS  has an exponential form and can 

be further processed by prony analysis. This is different from the post-disturbance 

type methods which apply prony analysis to the measured data directly. First, we will 

start the theoretical derivation from the following two observations when )(yyS  is 

evaluated near the frequency of a poorly damped mode rrr j  . 

4.1.1.2.1) )(yyS  evaluated near r  can be approximated by a rank one matrix, if 

there is no significant contribution from other poorly damped modes nearby.  

The r-th residue term rA  has the following form. 
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When r  is small, i.e. when r is close to the imaginary axis in the complex 

s-plane, the first term is much larger than the remaining terms, so rA  can be 
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approximated as
r

H

rr FRR

2
 and now H

rr AA  . If there are no other poorly damped 

modes near r , then the contributions from the other terms in (4.4) are negligible for 

)(yyS near r . )(yyS can be approximated as follows, 

)()(
|)(   

rr

r

rr

r
nearyy

j

A

j

A
S

r 
 





    

    
22 )( rr

H

rr FRR

 
         (4.6) 

Let H

iii lwR  , where ii Cw   and Bl i

H

i   . Note that iw is the mode 

shape for mode i when C is an identity matrix. i.e it is possible to extract mode shape 

information when state variables are observed. Now, 
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where r

H

rr Flld   and 
22 )(

)(
rr

r
r

d
s





  are scalars. And the expression in 

(4.7) is a rank one matrix. 

4.1.1.2.2) The rank determined by SVD of )(yyS  corresponds to the number of 

contributing modes when )(yyS  is evaluated near r . 

If there are several poorly damped modes near r , there will be more terms in 

(4.7). For example, if iii j   has small i  and i is close to r , then 

22 )( ii    is also small when evaluating )(yyS near r . Usually the number 

of these terms in (4.7) is small. If we sort these )(is ‟s by their influence on )(yyS  
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near r  in decreasing order and take only the first on  terms, then )(yyS  near r  

can be expressed as  

 

































H

nr

H

r

nr

r

nrrnearyy

oo

or

w

w

s

s

wwS

,

1,

,

1,

,1,  

)(

)(

,...,|)( 





 
  

HWWS )(            (4.8) 

where on  is the total number of outputs. And )(, irs  is the i-th most influential 

mode on )(yyS  near r , usually the most influential mode is r . The columns of 

W are linearly independent since they are mode shape vectors corresponding to 

distinct eigenvalues. Note that W does not depend on  . 

The next step is to relate (4.8) to the Singular Value Decomposition (SVD) of 

)(yyS  near r shown as follows. 
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where U and V are unitary matrices, i.e IUU H  , IVV H  , I is identity matrix, H 

denotes complex conjugate transpose.   is a diagonal matrix with singular values on 

the diagonal in decreasing order.  

Here VU  because )(yyS  is a Hermitian matrix. Then (4.9) becomes 

H

nearYY UUS
r

)()()(|)(             (4.10) 

Since U is unitary, its columns are orthogonal to each other and the rank of U 

is on . The matrix W can be spanned by columns of U, i.e. )()(  QUW  . Compare 

(4.8) and (4.10) above, it is easy to see that 

HQSQ )()()()(         (4.11) 
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 When the columns of W are also orthogonal, Q will be a diagonal matrix, thus 

nonsingular. Then the rank of    and S will be the same. So the rank of )(yyS  

evaluated near r , equivalently the number of nonzero singular values, is the same as 

the number of nonzero terms in )(S , i.e. the number of contributing terms. 

4.1.1.3) Mode Identification: (4.11) can be written as follows, 

)()()(...)()()()( ,111,  H

nnnr

H

r ooo
qqsqqs     (4.12) 

where qj is the j-th column of Q. 

Then it follows that 
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1,1,1, 
oooooooo nnnnnrnnrn qqsqqs    (4.13) 

where qij is the i-th element in qj. 

In case of single mode contribution near r , )(2, rs ,…, )(, 
onrs are negligible. 

Now the first row of (4.13) becomes )()()()( *

11111,1  qqsr . In case of multiple 

modes, if the columns of W are also orthogonal, Q will be a diagonal matrix. Then, 

(4.13) becomes 

)()()()( *

11111,1  qqsr  

… 

)()()()( *

,,, 
oooooo nnnnnrn qqs                   (4.14) 

Furthermore,  

)()()()()]()([  QQQUQUWW HHH           (4.15) 

Thus the element in the first column and first row of WW H , can be represented 

as 
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           )()( 11

*

11  qq      (4.16) 

where q2,1,…qno,1 are zero since Q is diagonal. 

From (4.14) and (4.16), one arrives 

 1,1,1,1 )()( r

H

rr wws            (4.17) 

This means that the largest singular value )(1   is proportional to )(1, rs , 

which is )(rs near r . Also, the first left singular vector )(1 u  is a normalized 

version of rw when the columns of W are orthogonal. Furthermore, the inverse FFT of 

the largest singular value )(1  shows the following form 
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where r

H

r ww  is a scalar, 
r

rd
B





2
 . 

For the part t > 0,  f(t) is in an exponential form as follows 

ttj rrr BeBetf



 )(

)(       (4.19) 

The exponential form above is processed by a simple logarithmic decrement 

technique for damping estimation in [32], [33]. Here, the methods in prony analysis 

are used [6], since all these methods are based on the exponential sum model. In case 

of multiple contributing modes near r , if the modes are orthogonal, the SVD process 

decomposes their impacts into separate singular values. If the modes are 

non-orthogonal, Q is not diagonal and the modes are not completely decomposed. In 

this case, prony analysis is more appropriate than logarithmic decrement technique, 

which is suitable for single mode identification only.  
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4.1.2. Implementation Issues 

There are some important technical issues in the actual implementation of FDD. 

Issues such as verification of basic assumptions and parameter tuning need special 

attention. Otherwise, the results may lead to incorrect conclusions. 

4.1.2.1) Stationarity Test: The basic assumption for all the methods using ambient 

data is that the ambient measurements are stationary in the normal operating condition 

and the measurements can be modeled as the outputs from a linear system driven by 

white noise. This assumption is justified since the highly distributed load variations 

across the whole system are the only source of inputs for the system during the 

normal operating condition, and their aggregate effects can be modeled as white 

noise. 

 In the implementation of FDD, the first step is to test the stationarity of the 

measurements before they are further processed. There are many types of 

non-stationarity, including trend, increasing variance, changing frequency 

components etc. In this chapter, a simple but powerful method called Reverse 

Arrangement Test is used [50, Page 105]. It is not able to detect all types of 

non-stationarity, but works well in most common forms of non-stationarity. First, 

from a set of observations ,,..., 21 Nxxx  define the following function: 



 


otherwise      0

       1 ji

ij

xif x
h        (4.20) 

Then, calculate 





1

1

N

i

iMM , where 



N

ij

iji hM
1

. M is the total number of 

reverse arrangement, and its value will fall into some range with some level of 

significance if the observations are stationary. 

4.1.2.2) Estimation of Power Density Spectrum: Power density spectrum estimation is 

the first step in FDD, thus its accuracy has a great impact on the damping estimation 

later. Unlike the application of FDD in other fields, the estimation of power density 
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spectrum becomes a tricky problem for oscillation monitoring.  The reason is that the 

power system is basically a time-varying system and the system condition keeps 

changing from time to time. Even when the system is operating in a normal state for a 

long time, it is still desired to use ambient data as short as possible in order to give the 

system operator sufficient time for preventive control. However, the use of short-time 

ambient measurements tends to decrease the accuracy of power density spectrum.  

The most basic way of spectrum estimation, spectrum by periodogram [49, 

Page 902], is known to be an inconsistent estimate of the true spectrum, and the bias 

is significant especially when the data is short and Signal Noise Ratio (SNR) is low. 

The techniques of windowing and moving window average are successfully used to 

reduce the bias, for example, Welch‟s method [49] is widely used in FDD for other 

applications. However, with the same frequency resolution, Welch‟s method uses 

several times longer data window, which is not acceptable for our application. In this 

chapter, the nonparametric method of Multi-Taper Method (MTM) [51] is used. The 

idea of windowing and averaging in MTM is the same as that in Welch‟s method, but 

MTM uses orthogonal data taper, thus it can take average on these orthogonally 

tapered data to avoid longer time window.  The examples in later part of this chapter 

show that 3 to 5 minutes of data are sufficient for spectrum estimation by Multi-Taper 

Method. 

4.1.2.3) Separation of Modes: As shown in the theoretical part, the largest singular 

value corresponds to the strongest mode near a poorly damped mode. If the system 

contains several well-separated poorly-damped modes, there will be several peaks in 

the plot of largest singular values versus frequencies. Usually this plot of singular 

values versus frequency is in log scale and called Complex Mode Indication Function 

(CMIF) plot. Now it is necessary to separate the largest singular values for these 

peaks and then take inverse FFT. Note that the separation of largest singular values 

here is different from the SVD process which separate modes into stronger one and 

weaker ones.  
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The problem now is to determine the boundary for each mode. Since the first 

left singular vector is a normalized version of mode shape, the use of Modal 

Assurance Criterion (MAC) is suggested in  [33] to determine whether a specific 

singular value belongs to a nearby mode or not. MAC provides a measure of degree of 

similarity between two vectors, it is defined as follows. 

B

H

BA

H

A

B

H

A
BAMAC









2||
),(     (4.21) 

In FDD, A  is taken as the left singular vector corresponding to a peak in 

largest singular value plot. B  is searched in nearby frequency region until the MAC 

is below some pre-specified value. Any singular vector with an MAC value larger 

than the pre-specified value is considered to belong to the same mode. 

4.1.2.4) Summary of FDD Procedure: The main steps of Frequency domain 

decomposition is summarized as follows.  

Step 1: Test the stationarity of the signals from the PMU measurements. Set a 

warning flag if the signals do not pass the reverse arrangement test. 

Step 2: Estimate the auto and cross power density spectrum by Multi-Taper 

Method. Form the power spectrum matrix. 

Step 3: Within the frequency range of interest, e.g. 0.1 ~ 2.0 Hz for oscillation 

monitoring, apply SVD to the spectrum matrix evaluated at each frequency line. Plot 

the largest singular value versus frequency and find the peak in the plot. 

Step 4: From the peak of largest singular values, search nearby largest singular 

values and calculate the MAC value in (4.21). The search terminates when the MAC 

value is below a pre-specified value. 

Step 5: Examine the singular values for a specific mode, check the truncation 

level as discussed in next section. If severe truncation is observed, set a flag that 

shows the result is not reliable. 
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Step 6: Take the singular values from the same mode back to the time domain 

by inverse FFT. Apply prony analysis to this curve in time domain. 

Step 7: Repeat step 4 to step 6 for other peaks in the largest singular values. For 

automatic mode identification, we can set up a threshold, e.g. 1/4. Only those modes 

whose peak is larger than 1/4 of the highest peak in CMIF plot are processed by FDD. 

The number of identified modes is also useful information for oscillation monitoring. 

4.2. Test of Frequency Domain Decomposition on Small Linear Systems 

4.2.1. Test of FDD for Systems with Different Damping Ratios 

In this section, the FDD is tested for simulation data for a known system. First, 

a system with a poorly damped mode is tested. Usually, a mode with damping ratio 

less than say 3% is considered poorly damped, while a mode with damping ratio 

larger than say 10% is well damped. A linear time-invariant (LTI) system with four 

pairs of poles is created in state space form as in (4.1). The order of matrix A is 8, 

with four modes at 0.25, 0.4, 0.7 and 0.9 Hz respectively. Except that the mode at 

0.25 Hz has a damping ratio of 2%, the damping ratios of all other modes are 15%. 

The system has 2 inputs and 5 outputs and the sampling frequency is 30 Hz. The 

system matrices are randomly generated as listed in Appendix B. The system is 

excited by Gaussian white noise for 4 minutes and measurement noises with 20 dB 

SNR are added to the outputs.  The measured data are mean-value-removed and 

normalized before FDD analysis, but no down-sampling is required. After applying 

SVD to the spectrum matrix at each frequency line, we get the Complex Mode 

Indication Function (CMIF) plot, i.e. the plot of singular values in log scale versus 

frequency. One example is shown in Fig. 4.1. The blue curve at the top of the figure 

corresponds to the largest singular values and the peak around 0.25 Hz is clearly 

visible. The second largest singular values are much less than the largest one around 

0.25 Hz, which means that the spectrum around the dominant mode is effectively 

affected by only one mode near 0.25 Hz. 
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Fig. 4.1.  Complex Mode Indication Function (CMIF) for a poorly damped linear 

system 

 

The test is repeated for 100 times and FDD is performed around the highest 

peak in CMIF plot. The results are shown in the complex S-plane with y-axis scaled 

by )2/(1  to show the frequency, while x-axis remains unchanged. In Fig. 4.2, the red 

circles are the true system modes and the blue stars are the identified modes. The 

mean and standard deviation of 100 identified frequencies are 0.2497 Hz and 0.0024 

Hz respectively. The mean and standard deviation of the damping ratios are 2.57% 

and 1.07% respectively. Compare the results to the true values, and it is concluded 

that FDD can identify the dominant frequency and damping ratio well under noisy 

environment. 

Next, the damping ratio of the 0.25 Hz mode is changed to 5%. The FDD results 

for 100 simulation tests are shown in Fig. 4.3. The mean and standard deviation of 

100 identified frequencies are 0.2501 Hz and 0.0046 Hz respectively. The mean and 

standard deviation of the damping ratios are 5.68% and 1.73% respectively. The 

estimated frequencies are quite accurate and have a small variance. However, the 

damping ratio estimates have larger variance than the poorly damped case. 
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In the third case, a reasonably well-damped system is tested. The damping ratio 

of 0.25 Hz mode is changed to 10% in this case. The FDD results for 100 simulation 

tests are shown in Fig. 4.4. The mean and standard deviation of 100 identified 

frequencies are 0.2520 Hz and 0.0094 Hz respectively. The mean and standard 

deviation of the damping ratios are 8.59% and 2.43% respectively. The biased mean 

value and a large variance of damping ratio are not surprising because the 

approximation in developing FDD algorithm is less justified when the actual pole is 

far away from the imaginary axis. Other tests on well damped systems indicate that 

FDD is not reasonable for identification of well-damped modes with damping ratios 

well over +10%. However, the primary focus in real-time oscillation monitoring is the 

reliable detection of poorly damped modes with damping less than +10% which suits 

the strengths of the FDD algorithm. Whenever one of the oscillatory modes moves 

toward the imaginary axis, i.e. when the damping ratio decreases below 10%, the 

variance of FDD results also decreases, making it possible to capture the problematic 

mode before it becomes critical. 
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Fig. 4.2.  Pole estimates by FDD for a poorly damped LTI system  
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Fig. 4.3.  Pole estimates by FDD for a medium damped LTI system 
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Fig. 4.4.  Mode estimates by FDD for a well damped LTI system 

 

Finally, FDD is tested on more systems to show it works for general LTI 

systems. In the following test, we will randomly change matrices B, C and T as 

mentioned in Appendix B to create many different test systems. All these systems 

have the same eigenvalues since matrix   remains unchanged. The number of inputs 

is randomly chosen from 1 to 5, and the number of outputs is randomly chosen form 2 

to 5 since FDD only works for more than one output. For each system, excite the 

system with Gaussian white noise 100 times, and FDD is applied to the outputs using 
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the same settings as in previous cases. Mean frequency and mean damping ratio from 

these simulations are recorded for each system. 100 different systems are created for 

each of the three previous cases with 2%, 5% and 10% damping ratios for the 0.25 Hz 

mode respectively.  

In Table 4.1, we summarize the resulting 100 mean values and standard 

deviations by their mean value only. Note that the 0.25 Hz mode is not always the 

most excited one, especially in well damped systems, where the nearby 0.4 Hz mode 

may be the highest peak in CMIF plot even though it has 15% damping ratio. Whether 

a specific mode is the most excited one or not depends on not only the damping ratio 

of the mode, but also the controllability and observability of system depending on 

matrices B and C respectively. Even when 0.25 Hz is the highest peak, the damping 

ratio estimate by FDD can be unreliable due to truncation effect as explained in 

Section 4.2.4. This phenomenon is more common for well damped systems, where the 

nearby mode has a larger impact on 0.25 Hz mode. In Table 4.1, we also record the 

number of times when the 0.25 Hz mode is successfully identified. From Table 4.1, it 

is clear that FDD works well for general LTI systems, especially when the damping 

ratio of the most excited mode is low.  

 

TABLE 4.1 

TEST OF FDD ON 100 DIFFERENT SYSTEMS 

 

Damping 

Ratio of 0.25 

Hz Mode 

0.25Hz 

Mode 

Count 

(Total 

10000) 

Mean Value of 

Mean 

Frequencies 

(Hz) 

Mean of 

Frequency 

Standard 

Deviations (Hz) 

Mean Value 

of Mean 

Damping 

Ratios (%) 

Mean of 

Damping Ratio 

Standard 

Deviations (%) 

2% 9739 0.2504 0.0036 2.69 1.21 

5% 9010 0.2522 0.0104 5.70 1.97 

10% 7402 0.2553 0.0168 9.27 2.86 

 

The inputs and outputs in the 100 test systems studied in Table 4.1 were chosen 

randomly as stated earlier. It is interesting that the 0.25 Hz mode is estimated 

reasonably well for the three damping ratio levels of +2%, +5% and +10% even with 



 

 

  

52 

 

the random choice of inputs and outputs. In practical systems, the estimation results 

can be relatively made better with a well-designed choice of outputs which show good 

responses of the oscillatory mode of interest.  

4.2.2. Test of FDD for Different Data Lengths 

To determine the appropriate data length for real-time application, the 

performances of FDD for different data lengths are tested on the previous three 

systems with the T, B and C matrices listed in Appendix B. 100 tests are performed 

for each data length and the mean and standard deviation of the frequency and 

damping ratio estimates are compared. The results of the poorly, medium and well 

damped system are shown in Table 4.2, 4.3 and 4.4 respectively.  

From the tables, it is clear that the frequency estimates are all very good for all 

data lengths tested and longer data lengths tend to provide smaller variance for all 

three systems. For damping ratio estimation, the standard deviation of the damping 

ratio estimates usually gets smaller when FDD is applied with longer data length for 

poorly and medium damped system. However, for the well damped system, increasing 

data length does not help much for damping ratio estimates. For the poorly and 

medium damped system, if the data length is too short, like the 2 minute time window 

length, the damping ratio gets severely biased with large variance. Longer data length 

tends to have better spectrum estimation and gives smaller variance for damping ratio 

estimation, but the effect of underestimation is more significant. Also, for the purpose 

of real-time oscillation monitoring, short data length is desired. For these reasons, 3 to 

5 minutes of data are considered appropriate for FDD application in ambient data 

processing. 
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TABLE 4.2 

EFFECT OF DATA LENGTH ON THE RESULTS OF FDD (2% DAMPING RATIO) 

 

Data Length 

(minutes) 

Mean 

Frequency 

(Hz) 

Standard Deviation 

for Frequency (Hz) 

Mean Damping 

Ratio (%) 

Standard Deviation for 

Damping Ratio (%) 

2 0.2470 0.0041 5.65 1.21 

3 0.2477 0.0029 3.20 0.92 

4 0.2497 0.0024 2.57 1.07 

5 0.2480 0.0023 2.22 0.81 

8 0.2483 0.0017 1.67 0.64 

10 0.2480 0.0017 1.46 0.59 

 

 

TABLE 4.3 

EFFECT OF DATA LENGTH ON THE RESULTS OF FDD (5% DAMPING RATIO) 

 

Data Length 

(minutes) 

Mean 

Frequency 

(Hz) 

Standard Deviation 

for Frequency (Hz) 

Mean Damping 

Ratio (%) 

Standard Deviation for 

Damping Ratio (%) 

2 0.2508 0.0066 7.55 2.07 

3 0.2510 0.0051 6.19 1.78 

4 0.2501 0.0046 5.68 1.73 

5 0.2509 0.0042 5.30 1.80 

8 0.2493 0.0028 4.59 1.42 

10 0.2494 0.0026 4.39 1.17 

 

TABLE 4.4 

EFFECT OF DATA LENGTH ON THE RESULTS OF FDD (10% DAMPING RATIO) 

 

Data Length 

(minutes) 

Mean 

Frequency 

(Hz) 

Standard Deviation 

for Frequency (Hz) 

Mean Damping 

Ratio (%) 

Standard Deviation for 

Damping Ratio (%) 

2 0.2527 0.0102 9.69 2.01 

3 0.2513 0.0098 8.84 2.49 

4 0.2520 0.0094 8.59 2.43 

5 0.2501 0.0082 8.84 2.10 

8 0.2495 0.0078 8.49 2.17 

10 0.2498 0.0074 8.06 2.13 

 

4.2.3. Some Features of FDD 

As shown previously, FDD is able to give good damping estimation for poorly 

damped modes. Besides this advantage, FDD also has the following important 

features. 
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4.2.3.1) Robustness for Measurement Noise: One of the main advantages of FDD is 

that it is robust under noisy environment. In the following example, the poorly 

damped system in Section 4.2.1 is excited by white noise, and four minutes of outputs 

are contaminated by different levels of measurement noises. 100 tests are performed 

for each noise level, and the mean and standard deviation of the frequency and 

damping ratio estimates are compared in Table 4.5. The result in the table shows that 

FDD gives good estimates even under very noisy environment. The robustness of 

FDD is due to the relatively low noise energy in the frequency band of 0.1~2 Hz and 

also the SVD performed in the process. This feature makes FDD very appealing 

compared to the time domain methods. 

 

TABLE 4.5 

EFFECT OF MEASUREMENT NOISE ON FDD (2% DAMPING RATIO) 

 

SNR 

(dB) 

Mean 

Frequency (Hz) 

Standard Deviation for 

Frequency (Hz) 

Mean Damping 

Ratio (%) 

Standard Deviation for 

Damping Ratio (%) 

40 0.2501 0.0024 2.53 0.91 

30 0.2500 0.0024 2.86 1.46 

20 0.2500 0.0023 2.68 1.06 

10 0.2502 0.0025 2.82 1.34 

5 0.2499 0.0023 2.54 0.98 

 

4.2.3.2) Mode Shape Identification: As shown in the theoretical part, the singular 

vector corresponding to the largest singular value near a poorly damped mode is a 

scaled version of its mode shape. This means that the FDD can also give mode shape 

estimation. For the poorly damped system in Section 4.2.1, repeat the simulation 30 

times and plot the estimated mode shape in Fig. 4.5. The blue solid lines correspond 

to the normalized true mode shape, and the red dashed lines correspond to the mode 

shapes estimated by FDD. Note that the SVD process leads to unique left or right 

singular vectors, up to a multiplication of a unit phase factor je . This multiplication 

of a unit phase factor je  is in fact a rotation in the complex plane. If rotate the 
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estimated mode shape in Fig. 4.5, they will match the normalized true mode shape 

quite accurately as shown in Fig. 4.6, showing the capability of FDD to estimate 

mode shapes. In practice, only the relative angle differences between mode-shape 

elements are important and rotation of mode shape is not actually needed.  
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Fig. 4.5. Mode shape identified by FDD for the LTI system 
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Fig. 4.6. Rotated mode shape identified by FDD for the LTI system 

 

The mode shape information is important in oscillation monitoring in that it 

provides more information for us to understand the nature of the oscillatory modes of 
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interest. For instance, mode shape can be used to distinguish whether the mode is a 

local mode versus inter-area mode, how the different PMUs participate in an 

oscillatory mode and how the PMUs compare in terms of relative phase angles along 

the oscillation.  Mode shape information is crucial for taking mitigative control 

actions to improve the damping ratios of problematic modes. Therefore, the capability 

of FDD to estimate mode shapes is an important advantage over other time domain 

methods. 

4.2.3.3) Correlated Inputs: The basic assumption for ambient data analysis is that the 

system is excited by load variation modeled by white noises. In the previous tests in 

this chapter, it is assumed that these white noises at different input locations are 

completely independent. However, the load variation can be somewhat correlated 

spatially, for example due to temperature rise in a specific region. In the following 

test, temporally independent but spatially correlated inputs are applied to the poorly 

damped system in Section 4.2.1. Now, the correlation matrix between the two inputs 

is as follows. 











1

1




C  

where   is correlation coefficient. 

TABLE 4.6 

EFFECT OF CORRELATED INPUTS ON THE RESULTS OF FDD 

(2% DAMPING RATIO) 

 

  

Mean 

Frequency 

(Hz) 

Standard Deviation for 

Frequency (Hz) 

Mean Damping 

Ratio (%) 

Standard Deviation for 

Damping Ratio (%) 

0 0.2501 0.0024 2.51 1.02 

0.1000 0.2497 0.0024 2.55 1.11 

0.3000 0.2504 0.0022 2.67 1.12 

0.5000 0.2503 0.0023 2.49 0.99 

0.7000 0.2502 0.0025 2.63 1.12 
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The result is shown in Table 4.6 and it is seen that FDD is able to handle 

spatially correlated inputs with reasonable accuracy. Besides spatially correlated 

inputs, FDD also works for relatively flat input spectrum, thus the basic assumption 

can be relaxed a little which makes FDD more applicable in real world applications. 

4.2.4. Guard against Underestimates 

A problem needs special attention when taking singular values of a single mode 

back to time domain by inverse FFT. The Fourier transform pair in (4.18) is now only 

a truncated version when MAC value is used to separate individual modes. The 

singular values whose corresponding left singular vector has a low MAC value with 

the peak have been discarded, and this leads to a tapering in the frequency domain by 

a rectangular window. Multiplication of rectangular window in the frequency domain 

leads to a convolution in the time domain, thus the inverse FFT of truncated singular 

values no long takes exactly the form in (4.19). An example below is used to clarify 

this point.  

In the following example, a system with a single known mode at 0.3 Hz and 5% 

damping ratio is tested. In the first case, those singular values less than one half of the 

peak value are discarded, and the truncated singular values taken back to the time 

domain by inverse FFT.  As shown in Fig. 4.7, the convolution in the time domain 

leads to an underestimation of the damping ratio. However, if the singular values less 

than 1/5 of the peak value are discarded, the convolution in time domain has lesser 

effect and the two curves are almost indistinguishable as shown in Fig. 4.8.  In the 

implementation of FDD, the level for discarding singular values is determined by 

MAC value. What we can do is to set a warning value, e.g. 1/5, if many singular 

values larger than 1/5 of the peak value are discarded, the resulting damping ratio 

from FDD may be underestimated. We put less confidence on these results, or simply 

discard the result. 
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Fig. 4.7.   Time domain convolution when singular values less than one half of the 

peak value are truncated 
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Fig. 4.8.  Time domain convolution when singular values less than 1/5 of the peak 

value are truncated 

4.3. Test of Frequency Domain Decomposition on Small Power Systems 

FDD has been tested on synthesized linear-time invariant systems in the 

previous section. In this section, the method of FDD is tested on the simulated 

responses of a small power system. The two-area four-generator system is taken from 

[3, 813], and has been used by many researchers. The power-flow condition and the 

parameters of generators, exciters and PSSs are the same as those in the book. In the 

following tests, three different cases are created with details shown in Table 4.7. The 
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power-flow condition remains unchanged for all three cases. The number of PSSs 

installed has a significant impact on the damping ratios of the inter-area mode, in 

which the generators G1 and G2 in Area 1 swing against G3 and G4 in Area 2. The 

frequencies and damping ratios in Table 4.7 are calculated by eigen-analysis using 

SSAT [46]. These three cases represent a typical poorly damped, medium damped and 

well damped system respectively. 

To simulate random load variations, white Gaussian noise is added to the load at 

bus 7 using TSAT [47], with the variance being 1% of the total load at that bus. The 

outputs are recorded at a sampling frequency of 30 Hz. Generator rotor angles at all 

generators are processed together by FDD. Measurement noise is modeled by white 

noise passing a low pass filter [20], and the variance of the noise is adjusted so that 

the Signal Noise Ratio (SNR) is 10 dB. The recorded data are mean-value-removed 

and normalized before FDD analysis, but no down-sampling is required. The random 

load simulation is repeated 100 times with 5 minutes data window. One FDD analysis 

takes an average of 0.76 sec on a laptop with Intel 2GHz CPU and 4GB RAM. The 

mean and standard deviation of the identified mode frequencies and damping ratios 

are shown in Table 4.8.   

TABLE 4.7 

SYSTEM CONDITIONS FOR THREE TEST CASES 

 

Case No. PSS Installed Freq. of Inter-area Mode (Hz) Damping of Inter-area Mode (%) 

I G1 0.6160 2.29 

II G1,G2 0.6123 6.06 

III G1,G2,G3 0.6165 9.21 

 

 

TABLE 4.8 

RESULTS BY FDD FOR THREE TEST CASES USING 5 MINUTES GENERATOR ANGLE DATA 

 

Case 
True Freq. 

(Hz) 

Mean Freq. 

(Hz) 

Freq. Std. 

Dev. (Hz) 

True 

Damping 

(%) 

Mean 

Damping 

(%) 

Damping 

Std. Dev. 

(%) 

I 0.6160 0.6162 0.0046 2.29 2.51 0.85 

II 0.6123 0.6155 0.0147 6.06 6.18 1.75 

III 0.6165 0.6183 0.0244 9.21 7.39 4.26 
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As shown in Table 4.8, the frequency estimates from FDD are quite accurate for 

all cases. For damping ratio estimates, the standard deviation grows with increasing 

system damping. It is not surprising because the approximation in developing FDD 

algorithm is less justified when the actual pole is far away from the imaginary axis. 

Fortunately, the primary focus in real-time oscillation monitoring is the reliable 

detection of poorly damped modes. Whenever one of the oscillatory modes moves 

toward the imaginary axis, the standard deviation of damping estimates also 

decreases, making it possible to capture the problematic mode before it becomes 

critical. Moreover, the standard deviation is very useful in distinguishing a medium 

damped case as in Case II and a well damped case as in Case III, in which the mean 

damping ratio is under-estimated. For actual PMU measurements, moving window 

analysis is used since repeated tests are not possible. Another distinguished feature of 

FDD is that it is able to estimate mode shape and damping ratios simultaneously. The 

mode shapes identified in Case I and Case III are compared with theoretical values 

given by SSAT and shown in Fig. 4.9 and Fig. 4.10 respectively. In the figures, it is 

clear that the generators G1 and G2 are anti-phase with G3 and G4. This information 

can be utilized in damping controller design or in other control strategies in real time. 

Note that mode shape estimates are still good for well damped case as shown in Fig. 

4.10. 
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Fig. 4.9.  Mode shape estimated by FDD in the two-area system for Case I 
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Fig. 4.10.  Mode shape estimated by FDD in the two-area system for Case III 

 

Next, FDD is applied to all three cases for different window sizes and compared 

to two other methods. Here we test FDD on voltage angles at generator buses because 

they are good approximations of generator rotor angles, which are not directly 

measured by PMUs. The results are first compared to the ARMA model using the 

method of modified Yule Walker (YW) [10], [20]. The results are plotted side by side 

in Fig. 4.11. In the figure, the vertical line is the mean  standard deviation versus 

window size, while the horizontal dash line is the result from eigen-analysis using 
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SSAT. For each window size, the result from FDD is plotted on the left while YW on 

the right. The results are also compared to Subspace State Space System Identification 

(N4SID) [11], [12], [22] as shown in Fig. 4.12. Note that the measurements are 

low-pass filtered and down-sampled to 5 Hz before applying YW or N4SID. The 

parameters used are the recommended values (n = 25, m = 10 in YW, n = 20 in 

N4SID) in [20] and the algorithms are available in DSItoolbox [52] and Matlab 

System Identification Toolbox [22] respectively. 

From the figures, it is seen that FDD gives comparable results as YW and 

N4SID. All three methods give better estimation when mode damping is low. 

Frequency estimates are more accurate than damping ratio estimates from all three 

methods. For damping ratio estimates, the standard deviation grows with increasing 

system damping, especially in FDD. For well damped system, it is possible for YW or 

N4SID to reduce the bias and variance by increasing window size and the usual 

practice is to use 10 minutes or more ambient data [20]. However, increasing window 

size does not help for FDD because the approximation we made in developing FDD 

algorithm is less justified when the actual pole is far away from the imaginary axis. 

After extensive tests, we find that 4 or 5 minutes data window is appropriate for FDD 

analysis. This data window is updated every 10 sec for moving-window analysis for 

actual PMU measurements. 
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Fig. 4.11.  Means and standard deviations of frequency and damping ratio estimates 

by FDD and YW for all three cases 
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Fig. 4.12.  Means and standard deviations of frequency and damping ratio estimates 

by FDD and N4SID for all three cases 

4.4. Case Studies 

4.4.1. WECC August 10
th

 1996 Event 

On August 10
th

 1996, a major blackout occurred in WECC system [1], [2]. At 

that time, a large amount of power was transmitted from the north to the south. After 
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some major line-trippings and McNary generator tripping, the western power system 

experienced a growing oscillation which finally led to a widespread blackout.  The 

active power in one of the major tie-lines from Malin to Round Mountain Line #1 is 

shown in Fig 4.13 for a brief review of the event. As shown in Fig. 4.13, after the 

Keeler-Allston 500kV line trips, the system experienced a decaying oscillation. Prony 

analysis of this signal from 400s to 420s shows a mode at 0.26 Hz with about 2.5% 

damping ratio. Analysis by other researchers can be found in [48], [53]. 
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Fig. 4.13.  Active power in the tie-line from Malin to Round Mountain line #1 during 

Aug 10
th

 1996 blackout 

 

First, FDD is applied to the data before the Keller-Allston line tripping. A total 

of 12 signals are analyzed simultaneously, including line active powers in 

Malin-Round Mountain #1, BCH-Custer and LADWP-Celilo etc. The sampling 

frequency is 20 Hz, and a total of four minutes data are used for each FDD analysis. 

Moving window analysis is applied and the result is updated every ten seconds. The 

results are summarized in Table 4.9. To identify the source of the first mode, we 

check the auto-PSD of each signal and find that the 1 Hz mode only appears in the 

auto-PSD of McNary generation, indicating that this mode is a local mode involving 

generators at McNary only. The local nature of the McNary mode can also determined 
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from the mode shape computed by FDD. Owing to lack of frequency and angle data, 

illustrations of mode shape computations using FDD are postponed to the next case. 

 

TABLE 4.9 

IDENTIFIED MODES FROM FDD ON AUGUST 10
TH

, 1996 

 

Identified Mode 

Mean 

Frequency 

 (Hz) 

Frequency 

Std. Dev.  

(Hz) 

Mean 

Damping  

(%) 

Damping 

Std. Dev.  

(%) 

Highest peak before the 1st line trip 1.0080 0.0016 0.37 0.11 

Second highest peak before the 1st line trip 0.2710 0.0012 4.47 1.15 

Highest peak after the 1st line trip 0.2510 0.0002 1.60 0.18 

Second highest peak after the 1st line trip 0.9701 0.0010 0.25 0.08 

 

The well-known WECC inter-area mode corresponds to the second highest peak 

in CMIF plot. The result shows that the 0.27 Hz inter-area mode is moderately 

damped before the tripping of Keeler-Allston line. If the measurement of McNary 

generation is removed from the signal group and FDD is applied to the remaining 

measurements, the 0.27 Hz mode will become the highest peak in the CMIF plot, 

followed by the second highest peak at 0.43 Hz. This result shows the ability of FDD 

to identify the most excited poorly-damped mode in the current system condition. The 

above test also validates our signal grouping strategy, i.e. if the signals are grouped in 

a hierarchical way, the poorly-damped local mode can be identified geographically 

too. 

Next, FDD is applied to the ambient data after the tripping of Keeler-Allston 

line and before the tripping of Ross-Lexington line. The results are also shown in 

Table 4.9. Note that the most dominant mode before the tripping of Keller-Allston 

line is at 1 Hz, and it changed to 0.25 Hz after the line tripping. After the first line 

tripping, the mode at 1 Hz was already poorly damped; however, it did not become 

critical. On the other hand, the damping of the 0.25 Hz mode decreased substantially 

from 4.47% before Keeler-Allston tripping to 1.6% after the line tripping. Even 
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though the 0.25 Hz mode still had positive damping ratio at around 1.6%, the 

damping ratio became negative with subsequent tripping of transmission lines and 

generation in Pacific Northwest [2]. As such, ambient noise analysis by itself could 

not have detected the emergence of negatively damped 0.25 Hz oscillations during the 

August 10
th

, 1996 blackout. However, ambient methods such as FDD illustrated here, 

could have predicted the proximity of the system to instability by showing extremely 

low positive damping levels of the 0.25 Hz mode after the Keeler-Allston line 

tripping. 

4.4.2. TVA November 29
th

 2007 Event 

In this case, an example of local mode is shown in the system of Tennessee 

Valley Authority (TVA). This mode has been observed many times in TVA, and it is 

found to be related to two generators at Cumberland plant. On Nov 29
th

 2007, the 

Power System Stabilizers (PSS) on the generators are off. On 10:13:56 system time, 

Paradise unit 3 tripped due to a loss-of-excitation condition, the Cumberland 

machines sensed the trip and responded with a +/- 100MW swing, which damped out 

in about 15-20 seconds. The plot of voltage angle at Cumberland substation is shown 

in Fig. 4.14. The sampling frequency is 30 Hz. 
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Fig. 4.14.  Voltage angle at Cumberland Substation on November 29
th

, 2007 
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Prony analysis is applied to all voltage angles from 833 to 843s, where 0 sec 

corresponds to 10:00 system time. Each signal has its mean removed and been 

normalized before prony analysis. The result shows a poorly damped local mode at 

1.25Hz with 1.5% damping ratio. Prony analysis also gives residue associated with 

each mode, which is in fact a scaled mode shape [3, Page 710]. The mode shape from 

prony analysis is shown in Fig. 4.15. Note that the result is normalized, where the 

largest magnitude of all elements is 1 and the angle at Cumberland is set to be zero. 

The mode shape shows it is a local mode since voltage angles at Cumberland 

Substation have much larger magnitudes and also the phase displacements indicate 

voltage angles at Cumberland Substation swing against the rest of the system. 
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Fig. 4.15.  Identified mode shape by prony analysis on Nov 29
th

 2007 in TVA 

 

Next, FDD is applied to the ambient voltage angles of all available PMUs after 

the disturbance. Note that the reference angle is the mean value of all voltage angles. 

FDD analyses use a 4-minute data window and the result is updated every 10 seconds 

for moving-window analysis. 10 minutes ambient data are tested and the number of 

total FDD estimates is 37. The moving-window analysis gives the mean frequency of 

1.2240 Hz and the mean damping ratio of 1.17%. The standard deviation of frequency 

estimates is 0.0049 Hz, and the standard deviation of damping ratios is 0.21%. 
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Finally, the resulting normalized mode shape is shown in Fig. 4.16. The results match 

well with those obtained from prony analysis.  
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Fig. 4.16.  Identified mode shape by FDD on Nov 29
th

 2007 in TVA 

 

4.4.3. WECC August 22
nd

 2006 Event 

On August 22
nd

 2006, Bonneville Power Administration (BPA) performed a 

series of tests to investigate the dynamic performance of the WECC system, including 

two brake tests, several sinusoidal single mode probing tests and noise probing tests. 

The results are recorded at 30 Hz in PMUs in various locations throughout the system.  

First, prony analysis is applied to two brake tests at 13:10 and 13:15 local time 

respectively. A total of 15 seconds of bus voltage angles at twelve PMUs are 

processed. The results using different methods for prony analysis [6] are summarized 

in Table 4.10. The table clearly shows two major modes of the WECC system: the 

0.37 Hz mode called „Alberta Mode‟, and the 0.24 Hz mode whose instability led to 

system blackout in August 10
th

 1996. Both modes are shown to be well damped.  

The normalized mode shapes of both modes are shown in Fig. 4.17 and Fig. 

4.18 respectively. The mode in Fig. 4.17 is an inter-area mode because all elements in 

this mode shape have relative large magnitudes. Moreover, the angles at PMU 9, 

PMU 10, PMU 8, PMU 4 and PMU 12 form one group, while the angles at the 
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remaining buses are another group, including PMU 7, PMU 5, etc. These two groups 

are anti-phase with each other, and the intersection between these two groups is near 

central-northern Oregon. The mode shape in Fig. 4.18 is also an inter-area mode with 

high participation on all parts of the system, and the angles at PMU 9, PMU 10, PMU 

8, PMU 4 and PMU 12 are still in the same group. 

 

TABLE 4.10 

RESULTS OF PRONY ANALYSIS FOR THE BRAKE TESTS ON AUG 22
ND

 2006 

 

 Analysis Method Freq. (Hz) Damp Ratio (%) Freq. (Hz) Damp Ratio (%) 

Brake Test #1 

Prony‟s Method 0.3756 9.20 0.2457 9.10 

Matrix Pencil 0.3717 8.83 0.2449 9.86 

HTLS 0.3719 8.81 0.2449 9.87 

Brake Test #2 

Prony‟s Method 0.3752 10.41 0.2542 9.48 

Matrix Pencil 0.3682 8.51 0.2557 7.45 

HTLS 0.3682 8.50 0.2559 7.44 
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Fig. 4.17.  Mode shape of the 0.24 Hz mode by Matrix Pencil Method during the 

first Chief Joseph Brake test on August 22
nd

, 2006 
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Fig. 4.18.  Mode shape of the 0.37 Hz mode by Matrix Pencil Method during the 

first Chief Joseph Brake test on August 22
nd

, 2006 

 

Next, FDD is applied to 10 minutes ambient data before the first brake test. The 

window size for each FDD analysis is 4 minutes, and data window is updated every 

10 seconds for moving window analysis, so the total number of FDD performed is 37. 

The results are summarized in Table 4.11. The results from YW and N4SID are also 

listed in the table using the same sets of data. For YW and N4SID, the estimation can 

be improved by using longer data. But for FDD, increasing data window does not help 

because the approximation in FDD algorithm is less justified when the actual pole is 

far away from the imaginary axis. Even so, the mean and standard deviation of FDD 

estimates still clearly indicate that the 0.24 Hz mode is well damped. The damping 

ratio estimates will be more and more accurate when this mode approaches the 

imaginary axis. The mean mode shapes by FDD is shown in Fig. 4.19. It is clearly 

seen that the voltage angles at PMU 9, PMU 10, PMU 8, PMU 4 and PMU 12 are 

anti-phase with the other PMUs located in the north of the WECC system. The result 

matches well with the mode shape estimated by prony analysis in Fig. 4.17. FDD is 

also applied to the 10 minute ambient data after the probing test from 13:21:40 to 
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13:41:40.  The results from FDD, YW and N4SID are also shown in Table 4.11. The 

resulting mode shape from FDD is shown in Fig. 4.20.  

 

 

TABLE 4.11 

RESULTS OF DIFFERENT METHODS ON AMBIENT AND PROBING TEST DATA ON AUG 22
ND

 2006 

 

 
Analysis 

Method 

Mean 

Freq. 

(Hz) 

Freq. Std. Dev. 

(Hz) 

Mean 

Damping 

(%) 

Damping 

Std. Dev. 

(%) 

Ambient Before Brake 

Test #1 

FDD 0.2302 0.0087 13.13 2.87 

YW 0.2318 0.0126 11.36 2.85 

N4SID 0.2397 0.0105 15.36 3.37 

Ambient After Probing 

Test 

FDD 0.2392 0.0061 8.19 2.30 

YW 0.2286 0.0084 8.48 3.21 

N4SID 0.2386 0.0123 12.68 4.48 

Probing Test 

FDD 0.2268 0.0103 9.98 2.82 

YW 0.2414 0.0060 7.48 2.21 

N4SID 0.2282 0.0148 12.25 5.10 
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Fig. 4.19.  Identified mode shape by FDD before the first brake test on August 22
nd

 

2006 
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Fig. 4.20.  Identified mode shape by FDD after the probing test on August 22
nd

 2006 

 

Finally, FDD is applied to the noise probing test performed from 13:21:40 to 

13:41:40. The low level probing noises were injected into the rectifier side of Pacific 

HVDC Inter-tie with the bandwidth of 20 Hz. The ambient approaches are valid for 

noise probing tests because the noise input is independent from load variations across 

the whole system, thus the basic assumption for ambient condition is still valid. Here, 

we use the measured outputs only, even though the input is also available. The voltage 

angles from the same twelve PMUs are used and the parameters for FDD are the same 

as those in the previous section. Note that the total number of FDD estimates is 97 for 

20 min data. The 0.24 Hz mode is successfully estimated 94 times out of the total of 

97 and the results are shown in Table 4.11. For noise probing, the 0.37 Hz mode is 

also excited and identified 33 times. The mean frequency of this mode is 0.3650 Hz 

with standard deviation of 0.0106 Hz, and the mean damping ratio is 6.99% with 

standard deviation of 1.57%. The mode shape of the 0.24 Hz and 0.37 Hz mode are 

plotted in Fig. 4.21 and Fig. 4.22 respectively. The estimated mode shapes match well 

with the results form prony analysis and previous ambient conditions. 
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Fig. 4.21.  Identified mode shape by FDD during noise probing test on August 22
nd

 

2006 (0.24 Hz mode) 
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Fig. 4.22.  Identified mode shape by FDD during noise probing test on August 22
nd

 

2006 (0.37 Hz mode)
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CHAPTER FIVE 

CONCLUSIONS 

 

This dissertation presents a complete Oscillation Monitoring System (OMS) 

based on real-time wide-area measurements from PMUs. This OMS is designed to 

detect poorly-damped or negatively-damped electromechanical modes in the early 

stage of an oscillation event, as well as provide warning signals from normal system 

operating conditions when mode damping becomes insufficient for safe operation of 

power systems. Depending on different mathematical models of the measured data, 

different processing algorithms are used. The system disturbance part of the OMS is 

designed to monitor system events in real-time for the purpose of emergency control, 

while the ambient part monitors the system without any disturbances for the purpose 

of preventive control. These two parts are complementary to each other, constituting a 

complete monitoring system. 

Power system responses following system disturbances are in the form of an 

undamped oscillation or an oscillation back to the old or a new operating point.  

These responses contain both linear and nonlinear phenomena, especially in the first 

few cycles immediately following the disturbance. Moreover, presence of noise and 

switching events in the measurements can upset the accuracy of results. For these 

reasons, we developed different crosscheck rules to avoid false alarms due to 

inconsistent estimations. These rules and results have been illustrated on actual PMU 

recordings. 

Ambient data are collected during normal system operations. They are cheap 

and always available. Ambient data analysis by FDD is well-suited for estimating the 

frequency, damping ratio, and mode shape of oscillatory electromechanical modes 

when the respective damping ratios are less than about 10%. FDD also works well for 

noisy measurements and correlated inputs, and it appears to be useful specifically for 
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analyzing real-time PMU measurements. Together with the post-disturbance data 

processing following system events, it provides a powerful framework of an 

oscillation monitoring system from wide-area PMU measurements.  

It is important to remember that power system is actually a high-order 

time-varying nonlinear system. Only under certain circumstances can it be simplified 

to linear or time-invariant systems. Ambient condition is reasonably modeled as a 

linear system because we model all load variations as random small changes around 

the current operation point. For system response following some events, nonlinearities 

play an important role in the measured data. Currently in the OMS, prony analysis is 

combined with moving window analysis and crosscheck rules to deal with these 

nonlinearity factors. Future research may include algorithms such as Hilbert transform 

that are used for nonlinear systems.  

As for time-varying issue, it is not a major concern for responses following 

system disturbances because prony analysis uses data of five to twenty seconds each 

time. However, in the ambient condition, current algorithms including FDD use at 

least three to five minutes of data. During these three to five minutes, there may be 

many big or small changes across all the system such that simplification to time 

invariant system is no longer valid. Thus it is important to apply algorithms that use 

fewer minutes of data in the future. Future research may include other algorithms 

from the signal-processing world. Signal processing by artificial neural networks may 

also be useful. 

Oscillation monitoring presented in this dissertation is aimed at small signal 

stability of power systems. Damping ratios, frequencies and mode shapes obtained 

from the OMS are important information for damping controller design. There are 

many research works in controller design based on wide area measurements, but there 

are still many challenging issues in the real world. Controller design based on 

wide-area measurements will remain a hot topic in the near future.  
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APPENDIX A 

When the inputs to the linear system are white noise, the power density 

spectrum matrix of outputs is calculated as follows.  
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Change the summation order of the second term, and use a change of variables, 

the second term in (A.2) now becomes 
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Denote the numerator of the first term in (A.3) as iA . The numerator of the 

second term turns out to be H

iA . Then )(yyS  can be expressed as follows. 
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

 














n

i i

H

i

i

i
yy

j

A

j

A
S

1

)(


      (A.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

84 

 

 

APPENDIX B 

The LTI system matrices in Section 4.2 are created as follows. Given a pair of 

eigenvalues iii j  , form a 22 matrix 













ii

ii

i



 for this mode. 

Then form a block diagonal matrix   by placing all i ‟s on the diagonal. After a 

similarity transformation 1 TTA , the system matrix A will have exactly the same 

eigenvalues as specified. For example, in the system we tested in Section 4.2.1, the 

four pairs of eigenvalues are at 0.25, 0.4, 0.7 and 0.9 Hz, with damping ratio at 2%, 

15%, 15% and 15% respectively, then  

 



































0.8579-   5.6549        0         0            0         0                0         0         

5.6549-   0.8579-      0         0            0         0                0         0         

0         0          0.6673-   4.3982    0         0                0         0         

0         0         4.3982-   0.6673-   0         0                0         0         

0         0            0         0         0.3813-   2.5133         0         0         

0         0            0         0         2.5133-   0.3813-       0         0         

0         0            0         0             0         0         0.0314-   1.5708     

0         0            0         0             0         0         1.5708-   0.0314-   

 

The system matrix A is then calculated by 1 TTA , where T is randomly 

generated and remains the same throughout Section III as shown below.  

 



































0.6928    0.5591-  0.2157-   0.1435    0.2063     1.2261-  0.8661     2.0924    

0.8921   0.7342-   1.1157    0.1893    0.1294     0.1062    1.0380     1.2374    

0.0155-   0.4426    0.1711    0.0632    1.8737-   1.7455-   1.9230     1.0721-  

0.0098-  0.4449    1.2531-   0.7338-   1.6502    0.4565    0.2034     0.8997-  

0.0105-  0.7033    0.9459-  1.5566-   0.0023    0.8004-   0.7025-   0.3991    

1.1047-   0.7395    0.2324    1.0090    0.0692-   0.1343     1.0151-   0.1071    

0.5483    0.2647    0.5441    0.2319    0.6758-   1.5725     1.5785-   0.3406-  

1.8112-  1.0571-   0.1733-  0.8507-   1.2954    0.4195     2.2879     0.6397-  

T

 

The matrices B, C in (4.1) are also generated randomly as follows. For other 

systems in Section 4.2, the only modification is made on i  to change the damping 

ratio of a specific mode. 
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

































1.2831     0.8401     

1.9224-   1.6256     

0.6638-   0.8453-   

0.5074     1.1177-   

1.7079-   0.9393-   

0.2493     0.0121-   

2.4476-   0.2657-   

0.6979-   1.2264-   

B

 

 

























0.3046-   0.3652    0.2116-   1.4633    2.0034     1.3490-   0.7952-  1.0731-   

0.8815-   1.1407-   0.6049    0.1146    1.3605-    1.9581-   0.9963    0.2806    

0.6327    0.6588     0.0169    0.8755    0.3818-   0.4280    0.5162-   0.4666    

0.5944-   1.3347-   0.4181-  1.4962     0.4031    0.9372-   0.0280-   0.7545    

0.4272    1.2928-   0.5375    0.6531    0.3905-   0.1988-   0.6467-  0.0503-   

C

 

 


