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SOME GRAPH THEORETIC METHODS FOR DISTRIBUTED CONTROL OF

COMMUNICATING AGENT NETWORKS

Abstract

by Kristin Herlugson, M.S.
Washington State University

December 2004

Co-Chairs: Ali Saberi and Sandip Roy

Our work is motivated by the increasing application for fleets of autonomous agents;

specifically the design of local feedback laws for global action. First, we consider for-

mation and alignment of distributed sensing agents with double-integrator dynamics and

saturating actuators. We explore the role of the agents sensing architecture on their ability

to complete formation and alignment tasks. We also consider design of static controllers

for the network of agents, and find that static control is indeed possible for a large class of

sensing architectures. Second, we present a control-theoretic perspective on the design of

distributed agreement protocols. We explore agreement-protocol analysis and design for a

network of agents with single-integrator dynamics and arbitrary linear observations. We

explore agreement in a quasi-linear model with a stochastic protocol, which we call the

controlled voter model. Finally, we present a stochastic protocol for decision-making or

agreement for a network of sensing agents subject to communication faults. Throughout,

several examples are developed, to motivate our formulation and illustrate our results.
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Chapter 1

INTRODUCTION

Embedded systems are playing a much larger role in our lives now as our cars, computers,

and houses become increasingly more sophisticated. As the embedded systems become

more advanced, the need arises for network systems to perform more complicated tasks.

The increase in network complexity has generated renewed interest in distributed control

of networked agents. It is known that the coordination of several systems outperforms

the work of a single system. While there are several important applications of networked

control systems, there is one underlying ambition; local action to achieve a global goal.

How can we design controllers for the individuals in the network so that the network can

achieve a global goal?

Our work, which was sponsored by the Office of Naval Research ( grant number N000140310848),

is to design a communication structure for a network of underwater unmanned autonomous

vehicles (UAVs). As technology advances, engineers search for ways to increase human

safety in dangerous fields. A major appeal of UAVs is their potential for performing repet-

itive, dangerous, and information gathering tasks in hazardous environments. While we

are primarily interested in UAV control, other applications of our work include distrib-
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uted sensor network control, automated air and highway traffic control, analysis of arrays

of micro-devices, and automated factory control.

We are interested in designing controllers to achieve three global tasks: formation (the

settling of agents to specific locations or fixed-velocity trajectories), alignment (the partial

stabilization of the agents dynamics), and agreement (the convergence of each agent’s state

to the same fair value). The agents we are interested in controlling are coupled by their

task rather than dynamically coupled, so the key design aspect of the network becomes

the communication structure. Due to limited bandwidth and small communication radius,

and in some cases limited memory, each agent cannot observe and store information about

every other agent in the network. In this thesis, we study what communication structures

allow for control to achieve the network’s global goal.

As each agent would receive information, say the position and velocity of some neigh-

boring agents relative to its own, it is natural to model this communication structure as a

graph, as introduced in [1]. We consider, as in [1], systems in which the agents establish-

ing a formation, or alignment, or reaching agreement are coupled through a task rather

than dynamically coupled. This characteristic of cooperative vehicle control causes the in-

terconnection structure of the network to be the key to network stability rather than the

individual agent dynamics. We consider networks with a fixed topology; the agents are al-

ways in communication with the same set of neighbors. While Fax and Murray require that

each agent has the same controller, our work allows for each agent to have a different sta-

tic controller. Previously, the focus of decentralized control research was on the dynamics
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of the individual agents; the graph-theoretic approach treats the agents as simple systems

and directly analyzes the interplay between the network’s communication structure and

its task dynamics.

In addition to the contributions by Fax and Murray to distributed control, the following

papers have provided useful results and modeling techniques in our controller design.

In [8], Wang and Davison present influential results in the area of decentralized control

system stabilization. The authors consider stabilization of a linear time-invariant decen-

tralized system with local feedback control laws and develop the notion of fixed modes

which is used extensively in our work. In the final chapter of this thesis, we present a

first attempt at a control theory for distributed decision-making in a network in which the

opinion of each agent is discrete-valued. We use the influence model developed in [17, 18]

to describe our network and, from there, develop a stochastic agreement protocol for the

network. The influence model is advantageous in that its structure allows for significant

characterization of the asymptotics of the global dynamics of the system from low-order

recursions.

This thesis is a collection of papers either accepted or submitted for publication as summa-

rized here.

1. S. Roy, A. Saberi, and K. Herlugson, ”Formation and alignment of distributed sens-

ing agents with double-integrator dynamics and actuator saturation,” accepted for

publication in an IEEE Press monograph entitled Sensor Network Applications, Sep.

2004.
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2. S. Roy, A. Saberi, and K. Herlugson, ”A control-theoretic perspective on the design

of distributed agreement protocols,” submitted to Automatica, Jul. 2004.

3. S. Roy, K. Herlugson, and A. Saberi, ”A control-theoretic perspective on distributed

discrete-valued decision-making in networks of sensing agents,” submitted to IEEE

Transactions on Mobile Computing, Dec. 2004.

Each chapter is a submitted or published paper, with Chapter 2 being a slightly extended

version of the published paper. The remainder of this thesis is organized as follows: in

Chapters 2 and 3 we present approaches to controller design for formation and alignment

of a network of autonomous agents and agreement protocols, respectively; and in Chapter

4 we consider the case in which communication faults are present as the network tries

to reach agreement. Throughout each chapter, illustrative examples and simulations are

discussed as well as future directions of study.
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Chapter 2

FORMATION AND ALIGNMENT OF

DISTRIBUTED SENSING AGENTS WITH

DOUBLE-INTEGRATOR DYNAMICS AND

ACTUATOR SATURATION

In this article, we consider formation and alignment of distributed sensing agents with

double-integrator dynamics and saturating actuators. First, we explore the role of the

agents’ sensing architecture on their ability to complete formation and alignment tasks.

We develop necessary and sufficient conditions on the sensing architecture, for completion

of formation and alignment tasks using linear dynamic control. We also consider design of

static controllers for the network of agents, and find that static control is indeed possible for

a large class of sensing architectures. Next, we extend the control strategies developed for

completion of formation tasks to simultaneously achieve collision avoidance. In particular,

we consider formation stabilization with collision avoidance for sensing agents that move

in the plane. The control paradigm that we develop achieves avoidance and formation
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together, by taking advantage of the multiple directions of motion available to each agent.

Our explorations show that collision avoidance can be guaranteed, given some weak con-

straints on the desired formation and the distance that must be maintained between the

agents. Throughout, several examples are developed, to motivate our formulation and il-

lustrate our results.

Keywords: formation, alignment, sensing architecture, distributed control, collision avoid-

ance, stabilization.

2.1 Introduction

A variety of natural and engineered systems comprise networks of communicating agents

that seek to perform a task together. In such systems, individual agents have access to

partial information about the system’s state, from which they attempt to actuate their own

dynamics so that the system globally performs the required task. Recently, much effort has

been given to developing plausible models for systems of interacting agents and to con-

structing decentralized controllers for such systems (e.g., [3, 1, 4, 2, 5]). These studies vary

widely, in the tasks completed by the agents (including formation stabilization and col-

lision avoidance), the intrinsic dynamics and actuation of the agents, the communication

protocol among the agents, and the structure of the controllers.

Our research efforts are focused on understanding, in as general a manner as possible, the
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role of the communication/sensing network structure in allowing the network to perform

the required task. In this first study, we consider systems with simple but plausible local

dynamics (double-integrator dynamics with saturating actuators) and task aims (settling

of agents to specific locations or fixed-velocity trajectories in a Euclidean space without

collision avoidance, henceforth called formation stabilization). Within this simple con-

text, we assume a quite general sensing network architecture1, and specify necessary and

sufficient conditions on this architecture for the existence of a decentralized dynamic LTI

controller that achieves formation stabilization. Using our formulation, we are also able to

identify a broad class of sensing architectures for which static decentralized control is pos-

sible. While the agent dynamics considered here are limited, we believe that our approach

is promising because it clearly extracts the role of the sensing architecture in complet-

ing tasks and hence facilitates development of both appropriate sensing architectures and

controllers for them. Further, we are able to extend our control design to achieve collision

avoidance in addition to stabilization, for agents defined in the plane.

The goals of our analysis are clearly illustrated with an example. Let’s say that three co-

ordinating vehicles seek to locate themselves to the West, East, and South of a target. We

aim to achieve this task by controlling the accelerations of the vehicles. Our studies aim

to determine the class of observation topologies (ways in which the vehicles observe the

target location and/or each others’ locations) for which the formation stabilization task

can be achieved, without collision among the vehicles.

1We feel that our observation architecture is more accurately viewed as a sensing architecture rather than a
communication architecture, because measurements are assumed to be instantaneous; hence, we will use the
term sensing architecture, though our formulation may quite possibly provide good representation for certain
communication architectures also.
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Throughout our studies, we aim to delineate the connections between our formulation and

results, and those found in the existing literature on vehicle task dynamics. Broadly, our

key contributions to this literature are as follows:

• Our studies consider an arbitrary linear observation topology for the sensing archi-

tecture, that significantly generalizes the sensing architectures that we have seen in

the literature. Of particular interest is the consideration of multiple observations for

each agent; we find that multiple observations can sometimes permit stabilization

even when a single observation that is an average of these observations does not.

• We consider actuator saturation, which we believe to be realistic in many systems of

interest.

• We are able to develop explicit necessary and sufficient conditions on the sensing

architecture for formation stabilization. This analysis also serves to highlight that the

seminal research on decentralized control done by Wang and Davison [8] is central

in the study of distributed task dynamics. From this viewpoint, our work buttresses

the analysis of [3], by extending the application of [8] to sensing architectures beyond

leader-follower ones.

• We show that static stabilizers can be designed for a wide class of sensing architec-

tures, and we explore system performance upon static stabilization through simula-

tions.
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2.2 Model Formulation

In this section, we describe the model of distributed, mobile sensing agents that is studied

throughout this article. The model is formulated by first specifying the local dynamics of

each agent and then developing a sensing architecture for the agents. A vector representa-

tion for the model is also presented.

2.2.1 Local Dynamics

Each of the n agents in our system is modeled as moving in a 1-dimensional Euclidean

space. We denote the position of agent i by ri ∈ R. The position of agent i is governed

by the differential equation r̈i = σ(ui), where ui ∈ R is a decentralized control input

and σ() represents (without loss of generality) the standard saturation function. We also

sometimes consider double-integrator dynamics without saturation, so that r̈i = ui.

One note about our model is of particular importance: in our simulations, we envision

each agent as moving in a multi-dimensional Euclidean space, yet agents in our model

are defined as having scalar positions. We can do so without loss of generality because

the internal model for the agents in each coordinate direction is decoupled (in particular,

a double-integrator). Hence, we can simply redefine each agent in a multi-dimensional

system as a set of agents with scalar positions, each of which track the location of the

original agent in one coordinate direction. We will discuss shortly how observations in a

multi-dimensional model can be captured using a scalar reformulation.
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2.2.2 Sensing Architecture

We define the sensing architecture for the system quite generally: each agent has available

one or more linear observations of the positions and velocities of selected agents. Formally,

we denote the number of linear observations available to agent i by mi. The mi × n graph

matrix

Gi ,




g11(i) . . . g1n(i)

...
...

gmi1(i) . . . gmin(i)




specifies the linear observations that are available to agent i. In particular, the jth (1 ≤ j ≤

mi) observation available to agent i is the average

aij = gj1(i)




r1

v1


 + . . . + gjn(i)




rn

vn


 , (2.1)

where vi = ṙi is the velocity of agent i. Agent i’s mi observations can be concatenated into

a single observation vector:

aT
i ,

[
aT

i1

... aT
imi

]

In vector form, the observation vector for agent i can be written in terms of the state vector

as

ai = Cix, (2.2)
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where

Ci =




Gi 0

0 Gi


 . (2.3)

Sometimes, we find it convenient to append the graph matrices for individual agents into

a single matrix. We define the full graph matrix for the agents as GT =
[
GT

1 . . . GT
n

]
.

A couple notes about our sensing architecture are worthwhile:

• We can represent the graph-Laplacian sensing architecture described in, e.g., [1].

Graph-Laplacian observation topologies are applicable when agents know their po-

sitions relative to other agents. More specifically, each agent i’s observation is as-

sumed to be a average of differences between i’s position and other agents’ positions.

To capture Laplacian observations using our sensing architecture, we constrain each

agent to have available a single average (i.e., mi = 1 for all i), and specify the graph

matrix entries for agent i as follows:

g1i(i) = 1

g1j(i) = − 1
|Ni| , j ∈ Ni

g1j(i) = 0, otherwise, (2.4)

where Ni are the neighbors of agent i and |Ni| are the number of neighbors of agent

i (see [1] for details). Note that the full graph matrix for a Laplacian architecture is

square, has unity entries on the diagonals, has negative off-diagonal entries, and has

11



row sums of 0.

When we consider Laplacian observation topologies, we will often use a grounded

Laplacian to represent the sensing architecture. A grounded Laplacian represents a

sensing architecture in which the agents associated with each connected component

of the full graph matrix have available at least one absolute position measurement of

some sort. Mathematically, the full graph matrix has unity diagonal entries and neg-

ative off-diagonal entries, but each connected component of the full graph matrix is

assumed to have at least one row that sums to a strictly positive value. The difference

between a grounded Laplacian architecture and a Laplacian architecture is that each

agent’s absolute position can be deduced from the observations for the grounded

Laplacian architecture, but not for the Laplacian architecture. In most applications, it

is realistic that absolute positions can be deduced in the frame-of-reference of inter-

est. In, e.g., [1], some systems with a Laplacian architecture are shown to converge in

a relative frame, which can equivalently be viewed as absolute convergence of state

vector differences given a grounded Laplacian architecture. Here, we will explic-

itly distinguish between these two viewpoints by considering absolute and partial

stabilization of our systems.

Our sensing architecture is more general than the graph-Laplacian architecture, in

that arbitrary combinations of agents’ states can be observed, and multiple observa-

tions are possible. Consideration of multiple observations is especially important, in

that it allows comparison of controllers that use averaged measurements with those

that use multiple separate measurements. Our analyses show that stabilization is

12



sometimes possible when multiple observations are used, even though it might not

be possible when an average of these observations is used.

• When an agent with a vector (multi-dimensional) position is reformulated as a set

of agents with scalar positions, each of these new agents must be viewed as having

access to the same information as the original agent. Hence, the graph matrices for

these newly-defined agents are identical. We note that this formulation allows ob-

servations that are arbitrary linear combinations of state variables associated with

different coordinate directions.

• Notice that we have structured the model so that the observation architecture is iden-

tical for position and velocity measurements (i.e., whenever a particular position

average is available, the same velocity average is also available). The stabilization re-

sults that we present in the next section do not require identical observation architec-

tures for positions and velocities: in fact, only the sensing architecture for positions

is needed to verify stabilization. However, because static stabilization of the model

is simplified, we adopt this assumption (which we believe to be quite reasonable in

many applications). In some of our results, we will wish to distinguish that only the

position observation structure is relevant. For such results, we shall use the term

position sensing architecture to refer to the fact that the graph structure applies to

only positions, while velocity observations may be arbitrary (or nonexistent).

The types of communication topologies that can be captured in our formulation are best

illustrated and motivated via several examples.
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Example: Vehicle Coordination, String First, let’s return to the vehicle formation exam-

ple discussed in the introduction. Let’s assume that the vehicles move in the plane, and

(without loss of generality) that the target is located at the origin. A reasonable assump-

tion is that one vehicle knows its position relative to the target, and hence knows its own

position. Assuming a string topology, the second vehicle knows its position relative to

the first vehicle, and the third vehicle knows its position relative to the second vehicle. To

formulate the graph matrices for this example, we define agents to represent the x and

y positions of each vehicle. The agents are labeled 1x, 1y, 2x, 2y, 3x, and 3y. The graph

matrices for the six agents are as follows:

G1x = G1y =




1 0 0 0 0 0

0 1 0 0 0 0




G2x = G2y =



−1 0 1 0 0 0

0 −1 0 1 0 0




G3x = G3y =




0 0 −1 0 1 0

0 0 0 −1 0 1


 . (2.5)

Notice that the sensing architecture for this example is a grounded Laplacian architecture.

Example: Vehicle Coordination Using an Intermediary Again consider a set of three

vehicles in the plane that are seeking to reach a target at the origin. Vehicle 1 knows the

x-coordinate of the target, and hence effectively knows its own position in the x direc-

tion. Vehicle 2 knows the y-coordinate of the target, and hence effectively knows its own
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position in y direction. Both the vehicles 1 and 2 know their position relative to the inter-

mediary vehicle 3, and Vehicle 3 knows its position relative to Vehicles 1 and 2. We would

like to determine whether or not all three vehicles can be driven to the target.

We can use the following graph matrices to capture the sensing topology described above:

G1x = G1y =




1 0 0 0 0 0

−1 0 0 0 1 0

0 −1 0 0 0 1




G2x = G2y =




0 0 0 1 0 0

0 0 −1 0 1 0

0 0 0 −1 0 1




G3x = G3y =




−1 0 0 0 1 0

0 −1 0 0 0 1

0 0 −1 0 1 0

0 0 0 −1 0 1




. (2.6)

Example: Measurement Failures Three aircraft flying along a (straight-line) route are

attempting to adhere to a pre-set fixed-velocity schedule. Normally, each aircraft can

measure its own position and velocity and so can converge to its scheduled flight plan.

Unfortunately, because of a measurement failure on one of the aircraft, the measurement

topology on a particular day is as follows. Aircraft 1 can measure its own position and

velocity, as well as its position and velocity relative to Aircraft 2 (perhaps through visual
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inspection). Aircraft 3 can measure its own position and velocity. Aircraft 2’s measurement

devices have failed. However, it receives a measurement of Aircraft 3’s position. Can the

three aircraft stabilize to their scheduled flight plans? What if Aircraft 2 instead receives a

measurement of the position of Aircraft 1?

We assume that the aircraft are well-modeled as double integrators. Since each aircraft

seeks to converge to a fixed-velocity trajectory, this problem is a formulation-stabilization

one. We can again specify the graph matrices for the three aircraft from the description of

the sensing topology:

G1 =




1 0 0

−1 1 0




G2 =
[
0 0 1

]

G3 =
[
0 0 1

]
. (2.7)

If Aircraft 2 instead receives the location of Aircraft 1, then G2 =
[
1 0 0

]
.

Example: Vehicle Coordination, Leader-Follower Architecture As in the string of ve-

hicles example, we assume that the vehicles move in the plane and seek a target at the

origin. However, we assume a leader-follower sensing architecture among the agents, as

described in [3]. In particular, Vehicle 1 knows its position relative to the target, and hence

knows its own position. Vehicles 2 and 3 know their relative positions to Vehicle 1. The

following graph matrices can be used for this sensing topology:

16



G1x = G1y =




1 0 0 0 0 0

0 1 0 0 0 0




G2x = G2y =



−1 0 1 0 0 0

0 −1 0 1 0 0




G3x = G3y =



−1 0 0 0 1 0

0 −1 0 0 0 1


 . (2.8)

2.2.3 Vector Representation

In state-space form, the dynamics of agent i can be written as




ṙi

v̇i


 =




0 1

0 0







ri

vi


 +




0

1


σ(ui), (2.9)

where vi , ṙi represents the velocity of agent i. It is useful to assemble the dynamics of

the n agents into a single state equation:

ẋ =




0 In

0 0


x +




0

In


σ(u), (2.10)

where

xT = (
[
r1 . . . rn | v1 . . . vn

]
)T
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and

σ(uT ) = (
[
σ(uT

1 ) . . . σ(uT
n )

]
).

We also find it useful to define a position vector rT = (
[
r1 . . . rn

]
)T and a velocity

vector v = ṙ.

We refer to the system with state dynamics given by (2.10) and observations given by (2.2)

as a double-integrator network with actuator saturation. We shall also sometimes refer to

an analogous system that is not subject to actuator saturation as a linear double-integrator

network. If the observation topology is generalized so that the graph structure applies to

only the position measurements, we shall refer to the system as a position-sensing double-

integrator networks. (with or without actuator saturation). We shall generally refer to

such systems as double-integrator networks.

2.3 Formation Stabilization

Our aim is to find conditions on the sensing architecture of a double-integrator network,

such that the agents in the system can perform a task. The necessary and sufficient condi-

tions that we develop below represent a first analysis of the role of the sensing architecture

on the achievement of task dynamics; in this first analysis, we restrict ourselves to forma-

tion tasks, namely those in which agents converge to specific positions or to fixed-velocity

trajectories. Our results are promising because they clearly delineate the structure of the

sensing architecture required for stabilization.
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We begin our discussion with a formal definition of formation stabilization.

Definition 1 A double-integrator network can be (semi-globally2) formation stabilized to (r0,v0)

if a proper linear time-invariant dynamic controller can be constructed for it, so that the velocity

ṙi is (semi-globally) globally asymptotically convergent to vi0 and the relative position ri − vi0t is

(semi-globally) globally asymptotically convergent to ri0 for each agent i.

Our definition for formation stabilization is structured to allow for arbitrary fixed-velocity

motion and position offset in the asymptote. For the purpose of analysis, it is helpful

for us to reformulate the formation stabilization problem in a relative frame, in which all

velocities and position offsets converge to the origin. The following theorem achieves this

reformulation:

Theorem 2.1 A double-integrator network can be formation stabilized to (r0,v0) if and only if it

can be formation stabilized to (0,0).

Proof. Assume that network can be formation stabilized to (0,0). Then for every initial

position vector and velocity vector, there exists a control signal u such that the agents

converge to the origin. Now let’s design a controller that formation stabilizes the network

to (r0,v0). To do so, we can apply the control that formation stabilizes the system to the

origin when the initial conditions are computed relative to r0 and v0. It is easy to check that

the relative position offsets and velocities satisfy the initial differential equation, so that the

control input achieves the desired formation. The only remaining detail is to verify that the

2We define semi-global to mean that the initial conditions are located in any a priori defined finite set.
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control input can still be found from the observations using an LTI controller. It is easy to

check that the same controller can be used, albeit with an external input that is in general

time-varying.

The argument can be reversed to prove that the condition is necessary and sufficient.

We are now ready to develop the fundamental necessary and sufficient conditions relating

the sensing architecture to formation stabilizability. These conditions are developed by

applying decentralized stabilization results for linear systems ([8]) and for systems with

saturating actuators ([6]).

Theorem 2.2 A linear double-integrator network is formation stabilizable to any formation using

a proper dynamic linear time invariant (LTI) controller if and only if there exist vectors b1 ∈

Ra(GT
1 ), . . . ,bn ∈ Ra(GT

n ) such that b1, . . . ,bn are linearly independent.

Proof. From Theorem 2.1, we see that formation stabilization to any (r0,v0) is equivalent

to formation stabilization to the origin. We apply the result of [8] to develop conditions for

formation stabilization to the origin. Wang and Davison ([8]) prove that a decentralized

system is stabilizable using a linear dynamic controller if and only if the system has no

unstable (or marginally stable) fixed modes. (We refer the reader to [8] for details on fixed

modes.) Hence, we can justify the condition above, by proving that our system has no

unstable fixed modes if and only if there exist vectors b1 ∈ Ra(GT
1 ), . . . ,bn ∈ Ra(GT

n ) such

that b1, . . . ,bn are linearly independent.

It is easy to show (see [8]) that the fixed modes of a decentralized control system are a
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subset of the modes of the system matrix, in our case




0 In

0 0


. The eigenvalues of this

system matrix are identically 0, so our system is stabilizable if and only if 0 is not a fixed

mode. We can test whether 0 is a fixed mode of the system by using the determinant-based

condition of [8], which reduces to the following in our example: the eigenvalue 0 is a fixed

mode if and only if

det







0 In

0 0


 +




0

In


K




C1

...

Cn







= 0, (2.11)

for all K of the form




K1 0 0

0
. . . 0

0 0 Kn




, where each Ki is a real matrix of dimension 1× 2mi.

To simplify the condition (2.11) further, it is helpful to develop some further notation for

the matrices K1, . . . , Kn. In particular, we write the matrix Ki as follows:

Ki =
[
kp(i) kv(i)

]
,

where each of the four submatrices are length-mi row vectors. Our subscript notation for

these vectors represents that these control gains multiply positions (p) and velocities (v),

respectively.
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In this notation, the determinant in condition (2.11) can be rewritten as follows:

det







0 In

0 0


 +




0

In


K




C1

...

Cn







= det







0 In

Qp Qv





 , (2.12)

where

Qp =




kp(1)(G1)

...

kp(n)(Gn)




and

Qv =




kv(1)(G1)

...

kv(n)(Gn)




.

This determinant is identically zero for all K if and only if the rank of Qp is less than n for

all K, so the stabilizability of our system can be determined by evaluating the rank of Qp.

Now let’s prove the necessity and sufficiency of our condition.

Necessity Assume that there is not any set of vectors b1 ∈ Ra(GT
1 ), . . . ,bn ∈ Ra(GT

n )

such that b1, . . . ,bn are linearly independent. Then there is row vector w such that
∑n

i=1 kiGi 6=

w for any k1, . . . ,kn. Now consider linear combinations of the rows of Qp. Such linear
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combinations can always be written in the form

n∑

i=1

αik̃p(i)Gi (2.13)

Thus, from the assumption, we cannot find a linear combination of the rows that equals

the vector w. Hence, the n rows of Qp do not span the space Rn and so are not all linearly

independent. The matrix Qp therefore does not have rank n, so 0 is a fixed mode of the

system, and the system is not formation stabilizable.

Sufficiency Assume that there is a set of vectors b1 ∈ Ra(GT
1 ), . . . ,bn ∈ Ra(GT

n ) such

that b1, . . . ,bn are linearly independent. Let k1, . . . ,kn be the row vectors such that kiGi =

bT
i . Now let’s choose the control matrix K in our system as follows: k̃p(i) = ki. In this

case, the matrix Qp can be written as follows:

Qp =




k1G1

...

knGn




=




bT
1

...

bT
n




. (2.14)

Hence, the rank of Qp is n, 0 is not a fixed mode of the system, and the system is formation

stabilizable.

By applying the results of [6], we can generalize the above condition for stabilization of
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linear double-integrator networks to prove semi-global stabilization of double-integrator

networks with input saturation.

Theorem 2.3 A double-integrator network with actuator saturation is semi-globally formation

stabilizable to any formation using a dynamic LTI controller if and only if there exist vectors b1 ∈

Ra(GT
1 ), . . . ,bn ∈ Ra(GT

n ) such that b1, . . . ,bn are linearly independent.

Proof. Again, formation stabilization to any (ro,vo) is equivalent to formation stabilization

to the origin. We now apply the theorem of [6], which states that semi-global stabilization

of a decentralized control system with input saturation can be achieved if and only if

• The eigenvalues of the open-loop system lie in the closed left-half plane.

• All fixed modes of the system when the saturation is disregarded lie in the open

left-half plane.

We recognize that the open-loop eigenvalues of the double-integrator network are all zero,

and so lie in the closed left-half plane. Hence, the condition of [6] reduces to a check

for the presence or absence of fixed modes in the linear closed-loop system. We have

already shown that all fixed modes lie in the OLHP if and only if there exist vectors

b1 ∈ Ra(GT
1 ), . . . ,bn ∈ Ra(GT

n ) such that b1, . . . ,bn are linearly independent. Hence,

the theorem is proved.

We mentioned earlier that our formation-stabilization results hold whenever the position

observations have the appropriate graph structure, regardless of the velocity measurement
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topology. Let us formalize this result:

Theorem 2.4 A position-measurement double-integrator network (with actuator saturation) is

(semi-globally) formation stabilizable to any formation using a dynamic LTI controller if and only if

there exist vectors z1 ∈ Ra(GT
1 ), . . . , zn ∈ Ra(GT

n ) such that z1, . . . , zn are linearly independent.

Proof. The proof of Theorem 2.2 makes clear that only the topology of the position mea-

surements play a role in deciding the stabilizability of a double-integrator network. Thus,

we can achieve stabilization for a position-measurement double-integrator network by dis-

regarding the velocity measurements completely, and hence the same conditions for stabi-

lizability hold.

The remainder of this section is devoted to remarks, connections between our results and

those in the literature, and examples.

Remark, Single Observation Case In the special case in which each agent makes a sin-

gle position observation and a single velocity observation, the condition for stabilizability

is equivalent to simple observability of all closed right-half-plane poles of the open-loop

system. Thus, in the single observation case, centralized linear and/or state-space form

nonlinear control do not offer any advantage over our decentralized control in terms of

stabilizability. This point makes clear the importance of studying the multiple-observation

scenario.
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Remark, Networks with Many Agents We stress that conditions required for formation

stabilization do not in any way restrict the number of agents in the network or their relative

positions upon formation stabilization. That is, a network of any number of agents can be

formation stabilized to an arbitrary formation, as long as the appropriate conditions on

the full graph matrix G are met. The same holds for the other notions and means for

stabilization that we discuss in subsequent sections; it is only for collision avoidance that

the details of the desired formation become important. We note that the performance of

the controlled network (e.g., the time required for convergence to the desired formation)

may have some dependence on the number of agents. We plan to quantify performance in

future work.

Connection to [1] Earlier, we discussed that the Laplacian sensing architecture of [1] is a

special case of our sensing architecture. Now we are ready to compare the stabilizability re-

sults of [1] with our results, within the context of double-integrator agent dynamics. Given

a Laplacian sensing architecture, our condition in fact shows that the system is not stabiliz-

able; this result is expected, since the Laplacian architecture can only provide convergence

in a relative frame. In the next section, we shall explicitly consider such relative stabiliza-

tion. For comparison here, let us equivalently assume that relative positions/velocities

are being stabilized, so that we can apply our condition to a grounded Laplacian. We can

easily check that we are then always able to achieve fomation stabilization. It turns out

that the same result can be recovered from the simultaneous stabilization formulation of

[1] (given double-integrator dynamics), and so the two analyses match. However, we note
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that, for more general communication topologies, our analysis can provide broader condi-

tions for stabilization than that of [1], since we allow use of different controllers for each

agent. Our approach also has the advantage of producing an easy-to-check necessary and

sufficient condition for stabilization.

2.3.1 Examples

It’s illuminating to apply our stabilizability condition to the examples introduced above.

Example: String of Vehicles Let’s choose vectors b1x, b2x and b3x as the first rows of

G1x, G2x, and G3x, respectively. Let us also choose b1y, b2y and b3y as the second rows

of G1y, G2y, and G3y, respectively. It is easy to check that b1x, b2x, b3x, b1y, b2y and b3y

are linearly independent, and so the vehicles are stabilizable. The result is sensible, since

Vehicle 1 can sense the target position directly, and Vehicles 2 and 3 can indirectly sense the

position of the target using the vehicle(s) ahead of it in the string. Our analysis of a string

of vehicles is particularly interesting, in that it shows we can complete task dynamics for

non-leader-follower architectures, using the theory of [8]. This result complements the

studies of [3], on leader-follower architectures.

Example: Coordination Using an Intermediary We again expect the vehicle formation

to be stabilizable, since both the observed target coordinates can be indirectly sensed by

the other vehicles, using the sensing architecture. We can verify stabilizability by choosing
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vectors in the range spaces of the transposed graph matrices, as follows:

bT
1x =

[
1 0 0 0 0 0

]

bT
1y =

[
0 −1 0 0 0 1

]

bT
2x =

[
0 0 −1 0 1 0

]

bT
2y =

[
0 0 0 1 0 0

]

bT
3x =

[
−1 0 0 0 1 0

]

bT
3y =

[
0 0 0 −1 0 1

]
.

(2.15)

It is easy to check that these vectors are linearly independent, and hence that the system is

stabilizable.

Consideration of this system leads to an interesting insight on the function of the inter-

mediary agent. We see that stabilization using the intermediary is only possible because

this agent can make two observations, and has available two actuators. If the intemediary

is constrained to make only one observation or can only be actuated in one direction (for

example, if it is constrained to move only on the x axis), then stabilization is not possible.

Example: Measurement Failures It is straightforward to check that decentralized con-

trol is not possible if Aircraft 2 has access to the position and velocity of Aircraft 3, but is

possible if Aircraft 2 has access to the position and velocity of Aircraft 1. This example is
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interesting because it highlights the restriction placed on stabilizability by the decentral-

ization of the control. In this example, the full graph matrix G has full rank for both ob-

servation topologies considered, and hence we can easily check the centralized control of

the aircraft is possible in either case. However, decentralized control is not possible when

Aircraft 2 only knows the location of Aircraft 3, since there is then no way for Aircraft 2 to

deduce its own location.

2.4 Alignment Stabilization

Sometimes, a network of communicating agents may not require formation stabilization,

but instead only require that certain combinations of the agents’ positions and velocities

are convergent. For instance, flocking behaviors may involve only convergence of differ-

ences between agents’ positions or velocities (e.g., [4]). Similarly, a group of agents seeking

a target may only require that their center of mass is located at the target. Also, we may

sometimes only be interested stabilization of a double-integrator network from some ini-

tial conditions—in particular, initial conditions that lie in a subspace of Rn. We view both

these problems as alignment stabilization problems because they concern partial stabi-

lization and hence alignment rather than formation of the agents. As with formation stabi-

lization, we can employ the fixed-mode concept of [8] to develop conditions for alignment

stabilization.

We begin with a definition for alignment stabilization:
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Definition 2 A double-integrator network can be aligned with respect to a n̂×n weighting matrix

Y if a proper linear time-invariant (LTI) dynamic controller can be constructed for it, so that the

Y r and Y ṙ are globally asymptotically convergent to the origin.

One note is needed: we define alignment stabilization in terms of (partial) convergence of

the state to the origin. As with formation stabilization, we can study alignment to a fixed

point other than the origin. We omit this generalization for the sake of clarity.

The following theorem provides a necessary and sufficient condition on the sensing archi-

tecture for alignment stabilization of a linear double integrator network.

Theorem 2.5 A linear double-integrator network can be aligned with respect to Y if and only if

there exist b1 ∈ Ra(GT
1 ), . . . ,bn ∈ Ra(GT

n ) such that the eigenvectors/generalized eigenvectors

of V ,




bT
1

. . .

bT
n




that correspond to zero eigenvalues all lie in the null space of Y .

Proof. For clarity and simplicity, we prove the theorem in the special case that each agent

has available only one observation (i.e., G1, . . . , Gn are all row vectors). We then outline

the generalization to this proof to the case of vector observations.

In the scalar-observation case, the condition above reduces to the following: a linear double-

integrator network can be aligned with respect to Y if and only if the eigenvectors and

generalized eigenvectors of G corresponding to its zero eigenvalues lie in the null space of
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Y . We prove this condition in several steps:

1. We characterize the fixed modes of the linear double-integrator network (see [8] for back-

ground on fixed modes). In particular, assume that the network has a full graph matrix

G with n zero eigenvalues. Then the network has 2n fixed modes at the origin. That

is, the matrix Ac =




0 I

K1G K2G


 has 2n eigenvalues of zero for any diagonal K1

and K2. To show this, let’s consider any eigenvector/generalized eigenvector w of G

corresponding to a 0 eigenvalue. It is easy to check that the vector



w

0


 is an eigen-

vector/generalized eigenvector of Ac with eigenvalue 0, regardless of K1 and K2.

We can also check that




0

w


 is a generalized eigenvector of Ac with eigenvalue zero.

Hence, since G has n eigenvectors/generalized eigenvectors associated with the zero

eigenvalue, the network has at least 2n fixed modes. To see that the network has no

more than 2n fixed modes, we choose K1 = In and K2 = [0]; then the eigenvalues

of Ac are the square roots of the eigenvalues of G, and so Ac has exactly 2n zero

eigenvalues. Notice that we have not only found the number of fixed modes of the

network but also specified the eigenvector directions associated with these modes.

2. We characterize the eigenvalues and eigenvectors of the closed-loop system when decentral-

ized dynamic feedback is used to control the linear double-integrator network. For our

model, the closed-loop system when dynamic feedback is used is given by Adc =
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


0 I 0

K1G K2G Q

R1G R2G S




, where R1, R2, and S are appropriately-dimensioned block diag-

onal matrices (see [8] for details). It has been shown in [8] that the eigenvalues of

Adc that remain fixed regardless of the controller used are identical to the number of

fixed modes of the system. Further, it has been shown that the remaining eigenval-

ues of Adc can be moved to the OLHP through sufficient choice of the control gains.

Hence, for the double-integrator network, we can design a controller such that all

but 2n eigenvalues of Adc lie in the OLHP and the remaining 2n eigenvalues are

zero. In fact, we can determine the eigenvectors of Adc associated with these zero

eigenvalues. For each eigenvector/generalized eigenvector w of G, the vectors




w

0

0




and




0

w

0




are eigenvectors/generalized eigenvectors of Adc corresponding to eigen-

value 0. Hence, we have specified the number of zero modes of Adc, and have found

that the eigenvector directions associated with these modes remain fixed (as given

above) regardless of the controller used.

3. Finally, we can prove the theorem. Assume that we choose a control law such that all

the eigenvalues of Adc except the fixed modes at the origin are in the OLHP—we can

always do this. Then it is obvious that Y r is globally asympotically convergent to
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the origin if and only if
[
Y 0 0

]
is orthogonal to all eigenvectors associated with

eigenvalues of Adc at the origin. Considering these eigenvectors, we see that global

asymptotic stabilization to the origin is possible if and only if the all eigenvectors of

G associated with zero eigenvalues lie in the nullspace of Y .

In the vector-observation case, proof of the condition’s sufficiency is straightforward: we

can design a controller that combines the vector observations to generate scalar observa-

tions for each agent, and then uses these scalar observations to control the system. The

proof of necessity in the vector case is somewhat more complicated, because the eigenvec-

tors of Ac and Adc corresponding to zero eigenvalues change direction depending on the

controller used. Essentially, necessity is proven by showing that using a dynamic control

does not change the class of fixed-mode eigenvectors, and then showing that the possible

eigenvector directions guarantee that stabilization is impossible when the condition is not

met. We leave the details of this analysis to a future work; we believe strongly that our ap-

proach for characterizing alignment (partial stabilization) can be generalized to the class

of decentralized control systems discussed in [8], and hope to approach alignment from

this perspective in future work.
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2.4.1 Examples of Alignment Stabilization

Laplacian Sensing Topologies As discussed previously, formation stabilization is not

achieved when the graph topology is Laplacian. However, by applying the alignment sta-

bilization condition, we can verify that differences between agent positions/velocities in

each connected graph component are indeed stabilizable. This formulation recovers the

results of [1] (within the context of double-integrator networks), and brings our work in

alignment (no pun intended) with the studies of [4]. It more generally highlights an alter-

nate viewpoint on formation stabilization analysis given a grounded Laplacian topology.

We consider a specific example of alignment stabilization given a Laplacian sensing topol-

ogy here, that is similar to the flocking example of [4]. The graph matrix3 in our example

is

G =




1 −1
2 0 0 −1

2

−1
2 1 −1

2 0 0

0 −1
2 1 −1

2 0

0 0 −1
2 1 −1

2

−1
2 0 0 −1

2 1




(2.16)

The condition above can be used to show alignment stabilization of differences between

agents’ positions or velocities, e.g., with respect to Y =
[
1 0 0 −1 0

]
.

3To be precise, in our simulations we assume that agents move in the plane. The graph matrix shown here
specifies the sensing architecture in each vector direction.
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Matching Customer Demand Say that three automobile manufacturers are producing

sedans to meet fixed, but unknown, customer demand for this product. An interesting

analysis is to determine whether or not these manufacturer can together produce enough

sedans to exactly match the consumer demand. We can view this problem as an alignment

stabilization one, as follows. We model the three manufacturers as decentralized agents,

whose production outputs r1, r2, and r3, are modeled as double integrators. Each agent

clearly has available its own production output as an observation. For convenience, we de-

fine a fourth agent that represents the fixed (but unknown) customer demand; this agent

necessarily has no observations available and so cannot be actuated. We define rd to rep-

resent this demand. We are concerned with whether r1 + r2 + r3 − rd can be stabilized.

Hence, we are studying an alignment problem.

Using the condition above, we can trivially see that alignment is not possible if the agents

only measure their own position. If at least one of the agents measures r1 + r2 + r3 −

rd (e.g., through surveys), then we can check that stabilization is possible. When other

observations that use rd are made, then the alignment may or may not occur; we do not

pursue these further here. It would be interesting to study whether or not competing

manufacturers such as these in fact use controllers that achieve alignment stabilization.
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2.5 Existence and Design of Static Stabilizers

Above, we developed necessary and sufficient conditions for the stabilizability of a group

of communicating agents with double-integrator dynamics. Next, we give sufficient con-

ditions for the existence of a static stabilizing controller4. We further discuss several ap-

proaches for designing good static stabilizers, that take advantage of some special struc-

tures in the sensing architecture.

2.5.1 Sufficient Condition for Static Stabilization

The following theorem describes a sufficient condition on the sensing architecture for the

existence of a static stabilizing controller.

Theorem 2.6 Consider a linear double-integrator network with graph matrix G. Let K be the

class of all block diagonal matrices of the form




k1

. . .

kn




, where ki is a row vector with

mi entries (recall that mi is the number of observations available to agent i). Then the double-

integrator system has a static stabilizing controller (i.e., a static controller that achieves formation

stabilization) if there exists a matrix K ∈ K such that the eigenvalues of KG are in the open

left-half-plane (OLHP).

4We consider a controller to be static if the control inputs at each time are linear functions of the concurrent
observations (in our case the position and velocity observations).
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Proof. We prove this theorem by constructing a static controller for which the overall sys-

tem’s closed-loop eigenvalues are in the OLHP whenever the eigenvalues of KG are in

the OLHP. Based on our earlier development, it is clear that the closed-loop system matrix

takes the form

Ac =




0 I

K1G K2G


 , (2.17)

where K1 and K2 are control matrices that are constrained to be in K, but are otherwise

arbitrary.

Given the theorem’s assumption, it turns out we can guarantee that the eigenvalues of Ac

are in the OLHP by choosing the control matrices as K1 = K and K2 = aK, where a is

a sufficiently large positive number. With these control matrices, the closed loop system

matrix becomes

Ac =




0 I

KG aKG


 . (2.18)

To show that the 2n eigenvalues Ac are in the OLHP, we relate these eigenvalues to the n

eigenvalues of KG.

To relate the eigenvalues, we construct the left eigenvectors of Ac. In particular, we con-

sider vectors of the form w′ =
[
v′ αv′

]
, where v′ is a left eigenvector of KG. Then

w′Ac =
[
αρv′ v′(1 + αaρ),

]
(2.19)

where ρ—the eigenvalue of KG corresponding to the eigenvector v′—lies in the OLHP.
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Figure 2.1: We introduce the notation used for the geometric proof that the eigenvalues of
Ac are in the OLHP.

This vector is a left eigenvector of Ac with eigenvalue λ if and only if αρ = λ and 1 +

αaρ = αλ. Substituting α = λ
ρ into the second equation and rearranging, we find that

λ2−aρλ−ρ = 0. This quadratic equation yields two solutions, and hence we find that two

eigenvalues and eigenvectors of Ac can be specified using each left eigenvector of KG. In

this way, all 2n eigenvalues of Ac can be specified in terms of the n eigenvalues of KG.

Finally, it remains to be shown that the eigenvalues of Ac are negative. Applying the

quadratic formula, we find that each eigenvalue λ of Ac can be found from an eigenvalue ρ

of KG, as λ = aρ±
√

(aρ)2+4ρ

2 . Without loss of generality, let’s assume that ρ lies in the second

quadrant of the complex plane. (It’s easy to check that eigenvalues of Ac corresponding

to ρ in the third quadrant are complex conjugates of eigenvalues corresponding to ρ in the

second quadrant). We can show that the eigenvalues λ will have negative real parts, using
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a geometric argument. The notation that we use in this geometric argument is shown in

Figure 2.1. In this notation, λ = r±q
2 . Since r has negative real part, we can prove that λ

has negative real part by showing that the magnitude of the real part of q is smaller than

the magnitude of the real part of r. To show this, first consider the complex variables s and

t. Using the law of cosines, we can show that the length (in the complex plane) of s is less

than the length of t whenever

a >

√
2

|ρ|cos(90− tan−1−Re(ρ)
Im(ρ) )

. (2.20)

In this case, the length (magnitude) of q is also less than the magnitude of r. Hence, the

magnitude of the real part of q is less than the magnitude of the real part of r (because the

phase angle of q is smaller), and the eigenvalue λ has negative real part.

Thus, if we choose

a > max
ρ

√
2

|ρ|cos(90− tan−1−Re(ρ)
Im(ρ) )

, (2.21)

then all eigenvalues of Ac are guaranteed to be negative. Q.E.D.

Our proof demonstrates how to design a stabilizing controller, whenever we can find a

matrix K such that the eigenvalues of KG are in the OLHP. Since this stabilizing controller

uses a high gain on the velocity measurements, we henceforth call it a high velocity gain

(HVG) controller.
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Using a simple scaling argument, we can show that static stabilization is possible in a

semi-global sense whenever we can find a matrix K such that the eigenvalues of KG are

in the OLHP, even if the actuators are subject to saturation. We present this result in the

following theorem.

Theorem 2.7 Consider a double-integrator network with actuator saturation that has graph matrix

G. Let K be the class of all block diagonal matrices of the form




k1

. . .

kn




, where ki is a row

vector with mi entries. Then the double-integrator network with actuator saturation has a semi-

global static stabilizing controller (i.e., a static controller that achieves formation stabilization in a

semi-global sense) if there exists a matrix K ∈ K such that the eigenvalues of KG are in the open

left-half-plane (OLHP).

Proof. In the interest of space, we present an outline of the proof here. Since we are prov-

ing semi-global stabilization, we can assume that the initial system state lies within some

finite-sized ball. Notice that, if the double-integrator network were not subject to input

saturation, we could find a static stabilizing controller. Further note that, if the static sta-

bilizing controller were applied, the trajectory of the closed-loop system would remain

within a larger ball. Say that the closed-loop system matrix for the linear network’s stabi-

lizing controller is

Ac =




0 I

KG aKG


 . (2.22)
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Then it is easy to check that the closed-loop system matrix

Âc =




0 I

KG
ζ2

aKG
ζ


 . (2.23)

also represents a static stabilizer for the linear network. Further, the trajectory followed

by the state when this new controller is used is identical to the one using the original

controller, except that the time axis for the trajectory is scaled by ζ. Hence, we know

that the trajectory is bounded within a ball. Thus, if we choose large enough ζ, we can

guarantee that the input magnitude is always strictly less than 1 (i.e., that the actuators

never saturate), while also guaranteeing stabilization. Such a choice of controller ensures

stabilization even when the actuators are subject to saturation, and hence the theorem has

been proved.

Remark Multiple Integrator Case Now we give sufficient conditions for a static stabiliz-

ing controller in a network of agents with multiple integrator dynamics. The closed loop

system matrix of the network becomes

Ac =




0 I

. . .

I

K1G K2G K3G · · · KnG




(2.24)
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Given the assumption from Theorem 6 that the eigenvalues of KG are in the OLHP, we

can guarantee the eigenvalues of Ac are in the OLHP by choosing the control matrices as

Kn = an−1K. Here we are taking advantage of the multi time-scale behavior of dynamical

systems with fast and slow transients in their response to an input caused by singular

perturbation.

For the sake of clarity, let’s first consider the case of n = 3, in other words the input is an

acceleration. In this case, the closed loop system matrix is

Ac =




0 I 0

0 0 I

KG aKG a2KG




(2.25)

We relate the eigenvalues of Ac to the eigenvalues of KG we again consider the left eigen-

vectors of Ac as vectors of the form w′ =
[

v′ αv′ βv′
]

where v′ is a left eigenvector of

KG corresponding to the eigenvalue ρ. Then

w′Ac =
[
βρv′ (1 + aβρ)v′ (α + βa2ρ)v′

]
(2.26)

where ρ lies in the OLHP. This vector is the left eigenvector of Ac corresponding to eigen-

value λ if and only if βρ = λ, 1 + aβρ = αλ, and α + βa2ρ = βλ. By rearranging these

relationships, we form the cubic λ3 − a2ρλ2 − aρλ− ρ = 0. Using the Routh-Hurwitz sta-

bility criterion, the stability condition on the control matrix gain a is a3 > −1/ρ. Note that

since ρ lies in the OLHP, a is a positive constant.
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Using the same method as above, the general condition on the control matrix gain, a, for

n-integrator dynamics is

an > −1/ρ (2.27)

If a is sufficiently large, a network of agents with n-integrator dynamics can be stabilized

with a static controller.

2.5.2 Design of Static Stabilizers

Above, we showed that a static stabilizing controller for our decentralized system can be

found, if there exists a control matrix K such that the eigenvalues of KG are in the OLHP.

Unfortunately, this condition does not immediately allow us to design the control matrix

K or even to identify graph matrices G for which a HVG controller can be constructed,

since we do not know how to choose a matrix K such that the eigenvalues of KG are in

the OLHP.

In this section, we discuss approaches for identifying from the graph matrix whether an

HVG controller can be constructed, and for designing the control matrix K. First, we

show (trivially) that HVG controllers can be developed when the graph matrix has pos-

itive eigenvalues, and give many examples of sensing architectures for which the graph

matrix eigenvalues are positive. Second, we discuss some simple variants on the class of

graph matrices with positive eigenvalues, for which HVG controllers can also be devel-

oped. Third, we use an eigenvalue sensitivity-based argument to show that HVG con-
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trollers can be constructed for a very broad class of graph matrices. (For convenience and

clarity of presentation, we restrict the sensitivity-based argument to the case where each

agent has available only one observation, but note that the generalization to the multiple-

observation case is straightforward). Although this eigenvalue sensitivity-based argument

sometimes does not provide good designs (because eigenvalues are guaranteed to be in the

OLHP only in a limiting sense), the argument is important because it highlights the broad

applicability of static controllers and specifies a systematic method for their design.

2.5.2.1 Graph Matrices with Positive Eigenvalues

If each agent has available one observation (so that the graph matrix G is square) and the

eigenvalues of G are strictly positive, then a stabilizing HVG controller can be designed

by choosing K = −In.

The proof is immediate: the eigenvalues of KG = −G are strictly negative, so the condition

for the existence of a stabilizing HVG controller is satisfied.

Here are some examples of sensing architectures for which the graph matrix has strictly

positive eigenvalues:

• A grounded Laplacian matrix is known to have strictly positive eigenvalues (see,

e.g., [7]). Hence, if the sensing architecture can be represented using a grounded

Laplacian graph matrix, then the a static control matrix K = −I can be used to

stabilize the system.
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• A wide range of matrices besides Laplacians are also known to have positive eigen-

values. For instance, any strictly diagonally-dominant matrix—one in which the

diagonal entry on each row is larger than the sum of the absolute values of all off-

diagonal entries—has positive eigenvalues. Diagonally-dominant graph matrices are

likely to be observed in systems in which each agent has considerable ability to ac-

curately sense its own position.

• If there is a positive diagonal matrix L such that GL is diagonally dominant, then

the eigenvalues of G are known to be positive. In some examples, it may be easy to

observe that a scaling of this sort produces a diagonally-dominant matrix.

2.5.2.2 Eigenvalue Sensitivity-Based Controller Design, Scalar Observations

Using an eigenvalue sensitivity (perturbation) argument, we show that HVG controllers

can be explicitly designed for a very wide class of sensing architectures. In fact, we find

that only a certain sequential full-rank condition is required to guarantee the existence of a

static stabilizer. While our condition is not a necessary and sufficient one, we believe that

it captures most sensing topologies of interest.

The statement of our theorem requires some further notation:

• Recall that we label agents using the integers 1, . . . , n. We define an agent list i =

{i1, . . . , in} to be an ordered vector of the n agent labels. (For instance, if there are 3

agents, i = {3, 1, 2} is an agent list).
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• We define the kth agent sublist of the agent list i to be a vector of the first k agent

labels in i, or {i1, . . . , ik}. We use the notation i1:k for the kth agent sublist of i.

• We define the kth subgraph matrix associated with the agent list to be the k × k

submatrix of the graph matrix corresponding to the agents in the kth agent sublist.

More precisely, we define the matrix D(i1:k) to have k rows and n columns. Entry iw

of each row w is assumed to be unity, and all other entries are assumed to be 0. The

kth subgraph matrix is given by D(i1:k)GD(i1:k)′.

The condition on the graph matrix required for design of a HVG controller using eigen-

value sensitivity arguments is given in the following theorem:

Theorem 2.8 If there exists an agent list i such that the kth subgraph matrix associated with

this agent list has full rank for all k, then we can construct a stabilizing HVG controller for the

decentralized control system.

Proof. We prove the theorem above by constructing a control matrix K such that the eigen-

values of KG are in the OLHP. More specifically, we construct a sequence of control matri-

ces, for which more and more of the eigenvalues of KG are located in the OLHP and hence

prove that there exists a control matrix such that all eigenvalues of KG are in the OLHP.

Precisely, we show how to iteratively construct a sequence of control matrices

K(i1:1), . . . , K(i1:n), such that K(i1:k)G has k eigenvalues in the OLHP. In constructing

the control matrices, we use the agent list i for which the assumption in the theorem is
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satisfied.

First, let’s define the matrix K(i1:1) to have a single non-zero entry: the diagonal entry

corresponding to i1, or Ki1 . Let’s choose Ki1 to equal −sgn(Gi1,i1)—i.e., the negative of

the sign of the (non-zero) diagonal entry of G corresponding to agent i1. Then K(i1:1)G

has a single non-zero row, with diagonal entry −Gi1,i1sgn(Gi1,i1). Hence, K(i1:1)G has

one negative eigenvalue, as well as n − 1 zero eigenvalues. Note that the one non-zero

eigenvalue is simple (non-repeated).

Next, let’s assume that there exists a matrix K(i1:k) with non-zero entries Ki1 , . . . , Kik ,

such that K(i1:k)G has k simple negative eigenvalues, and n − k zero eigenvalues. Now

let’s consider a control matrix K(i1:k+1) that is formed by adding a non-zero entry Kik+1

(i.e., a non-zero entry corresponding to agent ik+1) to K(i1:k), and think about the eigen-

values of K(i1:k+1)G. The matrix K(i1:k+1)G has k + 1 non-zero rows, and so has at most

k + 1 non-zero eigenvalues. The eigenvalues of K(i1:k+1)G are the eigenvalues of its sub-

matrix corresponding to the kth agent sublist, or D(i1:k+1)K(i1:k+1)GD(i1:k+1)′. Notice

that this matrix can be constructed by scaling the rows of the (k + 1)th agent sublist,

and hence has full rank. Next, note that we can rewrite D(i1:k+1)K(i1:k+1)GD(i1:k+1)′ as

D(i1:k+1)K(i1:k)GD(i1:k+1)′ + D(i1:k+1)K(ik+1)GD(i1:k+1)′, where K(ik+1) only has diag-

onal entry Kik+1
nonzero. Thus, we can we can view

D(i1:k+1)K(i1:k+1)GD(i1:k+1)′ as a perturbation of D(i1:k+1)K(i1:k)GD(i1:k+1)′—which has

the same eigenvalues as K(i1:k)G—by the row vector D(i1:k+1)K(ik+1)GD(i1:k+1)′. Be-

cause
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D(i1:k+1)K(i1:k+1)GD(i1:k+1)′ has full rank, we can straightforwardly invoke a standard

eigenvalue-sensitivity result to show that Kik+1
can be chosen so that all the eigenvalues

of

D(i1:k+1)K(i1:k+1)GD(i1:k+1)′ are simple and negative. Essentially, we can choose the sign

of the smallest eigenvalue—which is a perturbation of the zero eigenvalue of D(i1:k+1)K(i1:k)GD(i1:k+1)′—

by choosing the sign of Kik+1
properly, and we can ensure that all eigenvalues are positive

and simple by choosing small enough Kik+1
. Thus, we have constructed K(i1:k+1) such

that K(i1:k+1)G has k + 1 simple non-zero eigenvalues. Hence, we have proven the theo-

rem by recursion, and have specified broad conditions for the existence and limiting design

of static (HVG) controllers.

2.5.3 Examples of Static Control

We develop static controllers for the four examples that we introduced earlier. Through

simulations, we explore the effect of the static control gains on performance of the closed-

loop system.
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2.5.3.1 Example: Coordination Using an Intermediary

The following choice for the static gain matrix K places all eigenvalues of KG in the OLHP,

and hence permits stabilization with a HVG controller:

K =




−1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

−2 0 0 0 0 0 −1 0 0 0

0 0 0 −2 0 0 0 0 0 −1




(2.28)

As K is scaled up, we find that the vehicles converge to the target faster and with less

overshoot. When the HVG controller parameter a is increased, the agents converge much

more slowly but also gain a reduction in overshoot. Figures 2.2, 2.3, and 2.4 show the

trajectories of the vehicles, and demonstrate the effect of the static control gains on the

performance of the closed-loop system.

Also, if a is made sufficiently large, the eigenvalues of Ac move close to the imaginary axis.

This is consistent with the vehicles’ slow convergence rate for large a.
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Vehicle 1

Vehicle 2

Vehicle 3

Figure 2.2: Vehicles converging to a target: coordination with an intermediary.

2.5.3.2 Example: Vehicle Velocity Alignment, Flocking

Finally, we simulate an example, with some similarity to the examples of [4], that demon-

strates alignment stabilization. In this example, a controller is designed so that five vehi-

cles with relative position and velocity measurements converge to the same (but initial-

condition dependent) velocity. Figures 2.5 demonstrates the convergence of the velocities

in the x-direction for two sets of initial velocities. We note the different final velocities

achieved by the two simulations.

2.6 Collision Avoidance in the Plane

Imagine a pedestrian walking along a crowded thoroughfare. Over the long term, the

pedestrian completes a task—i.e., she/he moves toward a target or along a trajectory. As

the pedestrian engages in this task, however, she must constantly take evasive action to
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Vehicle 1

Vehicle 2

Vehicle 3

Figure 2.3: Vehicles converging to the target. The gain matrix is scaled up by a factor of 5
as compared to Figure 2.2.

avoid other pedestrians, who are also seeking to complete tasks. In this context, and in

the context of many other distributed task dynamics that occur in physical spaces, colli-

sion avoidance—i.e., prevention of collisions between agents through evasive action—is a

required component of the task. In this article, we explore collision avoidance among a net-

work of distributed agents with double-integrator dynamics that are seeking to complete a

formation task. Like pedestrians walking on a street, agents in our double-integrator net-

work achieve collision avoidance by taking advantage of the multiple directions of motion

available to them.

We now specifically consider networks of agents that move in the plane and seek to con-

verge to a fixed formation. We develop a control strategy that uses localized sensing infor-

mation to achieve collision avoidance, in addition to using remote sensing to achieve the

formation task. We show that static and dynamic controllers that achieve both formation

stabilization and collision avoidance can be designed, under rather general conditions on
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Vehicle 1

Vehicle 2Vehicle 3

Figure 2.4: Vehicles converging to the target when the HVG controller parameter a is in-
creased from 1 to 3.

the desired formation, the size of the region around each agent that must be avoided by

the other agents, and the remote sensing topology,

We strongly believe that our study represents a novel viewpoint on collision avoidance, in

that avoidance is viewed as a localized sub-task within the broader formation stabilization

task. Our approach is in sharp contrast to the potential function-based approaches of,

e.g., [4], in which the mechanism for collision avoidance also simultaneously specifies or

constrains the final formation.

We recently became aware of the study of [9], which—like our work—seeks to achieve

collision avoidance using only local measurements. We believe that our study builds on

that of [9], in the following respect: we allow for true formation (not only swarming) tasks,

which are achieved through decentralized sensing and control rather than through the use

of a set of potential functions. To this end, our collision avoidance mechanism uses a com-

bination of both gyroscopic and repulsive forces, in a manner that leaves the formation
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Figure 2.5: We show alignment of x-direction velocities in two simulations. Notice that the
final velocity is different for the two simulations.

dynamics completely unaffected in one direction of motion. This approach has the advan-

tage that the collision avoidance and formation tasks can be decoupled, so that rigorous

analysis is possible, even when the task dynamics are not specified by potentials (as in our

case).

We believe that our study of collision avoidance is especially pertinent for the engineering

of multi-agent systems (e.g., coordination of autonomous underwater vehicles), since the

task dynamics required for the design are typically specified globally and independently

of the collision avoidance mechanism. Our study here shows how such a system can be

stabilized to a pre-set desired formation, while using local sensing information to avoid

collisions.

53



2.6.1 Our Model for Collision Avoidance

In our discussion of collision avoidance, we specialize the double-integrator network model

to represent the dynamics of agents moving in the plane, whose accelerations are the con-

trol inputs. We also augment the model by specifying collision avoidance requirements

and allowing localized sensing measurements that permit collision avoidance. We find

it most convenient to develop the augmented model from scratch, and then to relate this

model to the double-integrator network in a manner that facilitates analysis of formation

stabilization with collision avoidance. We call the new model the plane double-integrator

network (PDIN).

We consider a network of n agents with double-integrator dynamics, each moving in the

Euclidean plane. We denote the x− and y− positions of agent i by rix and riy, respectively,

and use ri ,




rix

riy


5. These n agents aim to complete a formation stabilization task; in

particular, they seek to converge to the coordinates (r1x, r1y), . . . , (rnx, rny), respectively.

The agents use measurements of each others’ positions and velocities to achieve the for-

mation task. We assume that each agent has available two position and two velocity ob-

servations, respectively. In particular, each agent i is assumed to have available a vector

of position observations of the form ypi = Ci
∑n

j=1 gijrj , and a vector of velocity obser-

vation yvi = Ci
∑n

j=1 gij ṙj . That is, we assume that each agent has available two position

measurements that are averages of its neighbors’ positions and two velocity measurements

5Notice that agents in our new model can have vector state; because we need to explicitly consider the
dynamics of the agents in each coordinate direction, it is convenient for us to maintain vector positions for the
agents rather than reformulating each agent as two separate agents.
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that are averages of its neighbors’ velocities. Each of these measurements may be weighted

by a direction-changing matrix Ci, which models that each agent’s observations may be

made in a rotated frame of reference. We view the matrix G = [gij ] as specifying a remote

sensing architecture for the plane double-integrator network, since it specifies how each

agent’s observations depend on the other agents’ states6. Not surprisingly, we will find

that success of the formation task depends on the structure G, as well as the structure of

C ,




C1 0 . . .

. . . 0

. . . 0 Cn




.

Our aim is to design a decentralized controller that places the agents in the desired forma-

tion, while providing collision avoidance capability. Collision avoidance is achieved using

local measurements that warn each agent of other nearby agents. In particular, we assume

that each agent has a circle of radius q about it, called the repulsion ball (see Fig. 2.6).

Collision avoidance is said to be achieved if the agents’ repulsion balls never intersect.

(We can alternately define collision avoidance to mean that no agent ever enters another

agent’s repulsion ball, as has been done in [4]. The analysis is only trivially different in this

case; we use the formulation above because it is a little easier to illustrate our controller

graphically.) We also assume that each agent has a circle of radius t > 2q about it, such

that the agent can sense its relative position to any other agent in the circle. We call these

circles the local sensing balls for the agents (see Fig. 2.6). That is, agent i has available the

6Two remarks should be made here. First, we note that our notation for the remote sensing architecture
differs from the notation for the sensing architecture presented before, because agents are considered to have
vector states rather than being reformulated as multiple agents with scalar statuses. Second, we note that
the analyses described here can be adopted to some more general sensing observations (e.g., with different
numbers of measurements for each agent), but we consider this structured formulation for clarity.
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Figure 2.6: The repulsion ball and local sensing ball are illustrated.

observation ri− rj , whenever ||ri− rj ||2 < t. The agents can use these local warning mea-

surements, as well as the position and velocity measurements, to converge to the desired

formation while avoiding collisions.

We view a plane double-integrator network as being specified by the four parameters

(G,C, q, t), since these together specify the remote sensing and collision avoidance re-

quirements/capabilities of the network. We succinctly refer to a particular network as

PDIN(G,C, q, t).
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2.6.2 Formation Stabilization with Collision Avoidance: Static and Dynamic

Controllers

We formulate controllers for PDINs that achieve both formation stabilization (i.e., conver-

gence of agents to their desired formation positions) and collision avoidance. In particular,

given certain conditions on the remote sensing architecture, the size of the repulsion ball,

and the desired formation, we are able to prove the existence of dynamic controllers that

achieve both formation stabilization and collision avoidance. Below, we formally state

and prove theorems giving sufficient conditions for formation stabilization with collision

avoidance. First, however, we describe in words the conditions that allow formation sta-

bilization with guaranteed collision avoidance.

In order to achieve formation stabilization with collision avoidance for a PDIN, it is req-

uisite that the remote sensing topology permit formation stabilization. Using Theorem

2.2, we can easily show that a sufficient (and in fact necessary) condition for formation

stabilization using the remote sensing architecture is that G and C have full rank. Our phi-

losophy for concurrently assuring that collisions do not occur is as follows (Fig. 2.7). We

find a vector direction along which each agent can move to its formation position without

danger of collision. As agents move toward their formation positions using a control based

on the remote sensing measurements, we apply a second control that serves to prevent col-

lisions; the novelty in our approach is that this second control is chosen to only change the

trajectories of the agents in the vector direction described above. Hence, each agent’s mo-

tion in the orthogonal direction is not affected by the collision avoidance control, and the
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Figure 2.7: Our approach for formation stabilization with collision avoidance is illustrated,
using snapshots at three time points.
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component of their positions in this orthogonal direction can be guaranteed to converge to

its final value. After some time, the agents are no longer in danger of collision, and so can

be shown to converge to their formation positions. What is required for this approach to

collision avoidance is that a vector direction exists in which the agents can move to their

formation positions without danger of collision. This requirement is codified in the defin-

itions below.

Definition 3 Consider a PDIN(G,C, q, t) whose agents seek to converge to the formation r, and

consider a vector direction specified by the unit vector (a, b). We shall call this direction valid, if

when each agent is swept along this direction from its formation position, the agents’ repulsion balls

do not ever intersect (in a strict sense), as shown in Fig. 2.7. From simple geometric arguments,

we find that the direction (a, b) is valid if and only if mini,j |− b(rix− rjx)+a(riy− rjy)| > 2q. If

PDIN(G,C, q, t) has at least one valid direction for a formation r, that formation is called valid.

Theorem 2.9 PDIN(G,C, q, t) has a dynamic time-invariant controller that achieves both for-

mation stabilization to r (i.e., convergence of the agents’ positions to r) and collision avoidance if G

and C have full rank, and r is a valid formation.

Proof. The strategy we use to prove the theorem is to first design a controller, in the special

case that C = I and the valid direction is the x-direction (1, 0). We then prove the theorem

generally, by converting the general case to the special case proven first. This conversion

entails viewing the PDIN in a rotated frame of reference.
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To be more precise, we first prove the existence of a dynamic controller for the planar

double integrator network PDIN(G, I, q, t), when G has full rank and the direction (1, 0)

is valid. For convenience, let’s define the minimum coordinate separation f to denote the

minimum distance in the y direction between two agents in the desired formation. Note

that f > 2q.

Let us separately consider the stabilization of the agents’ y-positions and x-positions to

their formation positions. We shall design a controller for the agents’ y-positions, that uses

only the remote sensing measurements that are averages of y-direction positions and ve-

locities. Then we can view the agents’ y-positions as being a standard double-integrator

network with full graph matrix G. As we showed in our associated article, formation sta-

bilization of this double-integrator network is possible using a decentralized dynamic LTI

controller whenever G has full rank. Let us assume that we use this stabilizing controller

for the agents’ y-positions. Then we know for certain that the y-positions of the agents will

converge to their formation positions.

Next, we develop a decentralized controller that determines the x-direction control inputs

from the x-direction observations and the warning measurements. We show that this de-

centralized controller achieves stabilization of the agents’ x-positions, and simultaneously

guarantees collision avoidance among the agents. To do so, note that we can develop a

decentralized dynamic LTI controller that achieves convergence of the agents’ x-positions

to their desired formation (in the same manner as for the y-direction positions). Say that
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the stabilizing decentralized controller is

ż = Axz + Bxyx, (2.29)

ux = Cxz + Dxyx,

where yx are the x-direction observations (i.e., measurements of x-direction positions and

velocities for each agent) , z is the state of the feedback controller, ux are the x-direction in-

puts, and the coefficient matrices are appropriately structured to represent a decentralized

controller. To achieve formation stabilization and collision avoidance, we use the following

controller:

ż = Axz + Bxyx, (2.30)

ux = Cxz + Dxyx +




∑n
j=1 g(r1 − rj)

...

∑n
j=1 g(rn − rj)




,

where the non-linear input term g(), which uses the warning measurements, is described

in detail in the next paragraph7.

The non-linear term g(ri − rj) acts to push away agent i from agent j whenever agent j is

too close to agent i. Of course, it can only be non-zero if agent j is in the sensing ball of

agent i. In particular, we define the function g(ri−rj) to be non-zero for 2q ≤ ||ri−rj ||2 ≤ ε

7Since the right-hand side of the CL system is discontinuous, we henceforth assume that solutions to our
system are in the sense of Filipov.
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Figure 2.8: An example potential function for collision avoidance is shown.

and 0 otherwise, where ε is strictly between 2q and min(f, t). Furthermore, we define

g(ri − rj) to take the form sgn(rix − riy)ĝ(||ri − rj ||2), where ĝ(||ri − rj ||2) is a decreasing

function of ||ri− rj ||2 in the interval between q and ε, and
∫ ε
t=q g(t) is infinite, for any ε. An

example of a function g() is shown in Fig. 2.8.

To prove that this controller achieves collision avoidance, let us imagine that two agents

i and j are entering each others’ local sensing balls. Now assume that agent i were to

follow a path such that its repulsion ball intersected the repulsion ball of agent j. Without

loss of generality, assume that rix < rjx at the time of intersection of the repulsion balls.

In this case, agent i would have an infinite velocity in the negative-x direction (since the

integral of the input acceleration would be infinite over any such trajectory). Thus, the

movement of the agent would be away from the repulsion ball, and the agent could not
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possibly intersect the ball. In the case where more than two agents interact at once, we can

still show collision avoidance by showing that at least one agent would be moving away

from the others at infinite velocity if the repulsion balls were to collide. Thus, collisions

will always be avoided.

Next, let’s prove that the x-positions of the agents converge to their desired formation po-

sitions. To do so, we note that there is a finite time T such that |riy(t) − rjy(t)| > ε for

all t ≥ T and for all pairs of agents (i, j), since the y-positions of the agents are stable and

(1, 0) is a valid direction. Thus, for t ≥ T ,the collision avoidance input is zero for all agents.

Hence, the dynamics of the agents’ x-positions are governed by the stabilizing controller,

and the agents converge to the desired formation. Hence, we have shown the existence of

a controller that achieves formation stabilization and collision avoidance.

We are now ready to prove the theorem in the general case, that is for a PDIN(G,C, q, t)

whose agents seek to converge to a valid formation r, and for which G and C have full

rank. Without loss of generality, let us assume that (a, b) is a valid direction. We will

develop a controller that stabilizes each agent’s rotated position si =




a b

−b a


 ri and

rotated velocity ṡi. Stabilization of the rotated positions and velocities imply stabiliza-

tion of the original positions and velocities, since the two are related by full rank trans-

formations. It is easy to check that the rotated positions and velocities are the positions

and velocities of a different PDIN. In the rotated frame, each agent i aims to converge
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to the position si =




a b

−b a


 ri, so the network seeks to converge to the formation s ,

(In ⊗




a b

−b a


)r. Also, each agent has available the observations ypi = Ci

∑n
j=1 gijsj

and yvi = Ci
∑n

j=1 gij ṡj . Hence, in the rotated frame, the agents’ positions are governed

by PDIN


G,C(In ⊗




a b

−b a




−1

), q, t


, where we implicitly assume that the agents will

back-calculate the accelerations in the original frame of reference for implementation. The

advantage of reformulating the original PDIN in this new frame of reference is that the new

PDIN has a valid direction (1, 0). Also, we note that a controller (that achieves formation

stabilization to s and collision avoidance) can be developed for PDIN


G,C(In ⊗




a b

−b a




−1

), q, t




whenever a controller can be developed for PDIN (G, I, q, t), because we can simply

pre-multiply (in a decentralized fashion) the measurements of the first PDIN by C(In ⊗


a b

−b a




−1

)−1 to obtain the measurements for the second PDIN. Hence, from the lemma

above, we can show formation stabilization with collision avoidance. Hence, we have

converted PDIN(G,C, q, t) to a form from which we can guarantee both formation stabi-

lization and collision avoidance.
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2.6.3 Discussion of Collision Avoidance

To illustrate our analyses of formation stabilization with collision avoidance, we make a

couple remarks on the results obtained in the above analysis and present several simula-

tions of collision avoidance.

Existence of a Valid Direction We have shown that formation stabilization with collision

avoidance can be achieved whenever there exists a valid direction—one in which agents

can move to their formation positions without possibility of collision with other agents.

For purpose of design, we can check the existence of a valid direction by scanning through

all possible direction vectors, and checking if each is valid (using the test described in De-

finition 2.6.2). More intuitively, however, we note that the existence of a valid direction

is deeply connected with the distances between agents in the formation, the size of the

repulsion ball, and the number of agents in the network. More precisely, for a given num-

ber of agents, if the distances between the agents are all sufficiently large compared to the

radius of the repulsion ball, we can guarantee existence of a valid direction. As one might

expect, the required distance between agents in the formation tends to become larger as

the repulsion ball becomes larger, and as the number of agents increases.

We note that existence of valid direction is by no means necessary for achieving collision

avoidance; however, we feel that, philosophically, the idea of converging to a valid direc-

tion is central to how collision avoidance is achieved: extra directions of motion are ex-

ploited to prevent collision while still working toward the global task. Distributed agents,
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such as pedestrians on a street, do indeed find collision avoidance difficult when they do

not have an open (i.e., valid) direction of motion, as our study suggests.

Other Formation Stabilizers In our discussion above, we considered a dynamic LTI

controller for formation stabilization, and overlayed this controller with a secondary con-

troller for collision avoidance. It is worthwhile to note that condition needed for collision

avoidance—i.e., the existence of a valid direction—is generally decoupled from the type

of controller used for formation stabilization. For instance, if we restrict ourselves to the

class of (decentralized) static linear controllers, we can still achieve collision avoidance if

we can achieve formation stabilization and show the existence of a valid direction. In this

case, our result is only different in the sense that a stronger condition on G is needed to

achieve static stabilization.

Different Collision Avoidance Protocols Another general advantage of our approach is

that we can easily replace our proposed collision avoidance mechanism with another, as

long as that new protocol exploits the presence of multiple directions of motion to achieve

both formation and avoidance. Of particular interest, protocols may need to be tailored

to the specifics of the available warning measurements. For instance, if the warning mea-

surements only flag possible collisions and do not give detailed information about the

distance between agents, we may still be able to achieve collision avoidance, by enforcing

that agents follow curves in the valid direction whenever they sense the presence of other

agents. We leave it to future work to formally prove convergence for such controllers, but
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we demonstrate their application in an example below.

Avoidance of Moving Obstacles Although we have focused on collision avoidance among

controllable agents, our strategy can adapted to networks with uncontrollable agents (ob-

stacles). Fundamentally, this adaptation is possible because only one agent is required to

diverge from its standard trajectory to avoid a collision. Hence, collisions between control-

lable agents and obstacles can be prevented by moving the controllable agents in a valid

direction. Some work is needed to specify the precise conditions needed to guarantee col-

lision avoidance (e.g., we must ensure two obstacles do not converge, and that the obstacle

does not constantly hinder stabilization). We leave this work for the future.

Simulation We illustrate our strategy for achieving both collision avoidance and forma-

tion stabilization using the examples below. Fig. 2.9 shows a direct implementation of

the collision avoidance strategy developed in this article. The figure verifies that collision

avoidance and formation are both achieved, but exposes one difficulty with our approach:

the agents’ trajectories during collision avoidance tend to have large overshoots, because

we must make the repulsion acceleration arbitrarily large near the repulsion ball to guar-

antee that collisions are avoided.

A simple approach for preventing overshoot after collision avoidance is to apply a braking

acceleration as soon as an agent is no longer in danger of collision. We choose this braking

acceleration to be equal in magnitude and opposite in direction to the total acceleration

applied during collision avoidance. Fig. 2.10 shows a simulation of collision avoidance,
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Collision Avoidance
Area 

Figure 2.9: Formation stabilization with collision avoidance is shown.

when a braking force is applied after the collision avoidance maneuver. We note that the

our proof for formation stabilization with collision avoidance can easily be extended to the

case where braking is used.

Fig. 2.11 shows a more advanced approach to collision avoidance. In this example, the each

agent is guided along curve in space, as soon it has detected the presence of another agent

in its local sensing ball. Curve-following can allow the formulation of much more intricate,

and optimized, collision avoidance protocols. Some more work is needed, however, to

develop curve-following protocols that can be analytically shown to achieve formation

and collision avoidance.
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Collision Avoidance Area

Figure 2.10: Another protocol for collision avoidance is simulated. Here, we have elimi-
nated the overshoot after collision avoidance using a braking acceleration.

Collision Avoidance Area 

Figure 2.11: In this simulation, we achieve collision avoidance by guiding the agents along
curves in space, once a potential collision is detected.
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Chapter 3

A CONTROL-THEORETIC PERSPECTIVE

ON THE DESIGN OF DISTRIBUTED

AGREEMENT PROTOCOLS

We present a control-theoretic perspective on the design of distributed agreement proto-

cols. First, we explore agreement-protocol analysis and design for a network of agents

with single-integrator dynamics and arbitrary linear observations. One key contribution

of our work is the analysis of protocols for networks with quite general observation topolo-

gies, including with multiple observations made by each agent. Another contribution is

the development of techniques for agreement law design—i.e., for assignment of the de-

pendence of the agreed-upon value on the initial states of the agents. Second, we explore

agreement in a quasi-linear model with a stochastic protocol, which we call the controlled

voter model. We motivate our study of this model, develop tests for whether agreement

is achieved, and consider design of the agreement law. Finally, we provide some further

thoughts regarding our control-theoretic perspective on agreement, including ideas for

fault-tolerant protocol design using our approach.
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3.1 Introduction

Agreement tasks among distributed agents are performed in several applications, such

among processors in a computer network and among unmanned aerial vehicles. In this

article, we approach the problem of agreement from a control-theoretic perspective. That

is, we represent the agreement problem as a linear decentralized control problem for a

network of sensing/communicating agents. Using this control-theoretic representation,

we consider agreement in both a purely deterministic model and one with a stochastic

protocol.

While agreement and agreement protocols are well-studied (see [10] for a thorough devel-

opment), the control-theoretic approach is relatively new ([2] and [11] are two significant

contributions) and, we believe, capable of providing fresh insight into agreement protocol

design. Our control-theoretic approach allows us to make the following contributions:

• We show how agreement laws—functions that relate the agents’ initial states to their

final, agreed-upon value—can be designed: in particular, we show how to construct

static agreement protocols (memoryless controllers) that achieve pre-specified linear

agreement laws, for our models. In this respect, our work builds on the analysis

of [2], which discusses how to check whether a static linear agreement protocol is

successful (in the same model as our deterministic one), but does not consider agree-

ment law design. Agreement protocol design using control-theoretic methods has

also been considered in [11], though the focus there is on optimizing the convergence
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rate rather than designing the agreement law.

• We develop agreement protocols for networks in which each agent makes multiple

observations. We find that the multiple observations can provide greater flexibility

in agreement law design. We also briefly discuss other issues related to agreement of

linear networks, including fault-tolerant design and use of protocols with memory.

The remainder of the Chapter is organized as follows. In Section 3.2, we explore agreement

in a network with agents having single-integrator dynamics and with a deterministic pro-

tocol. In Section 3.3, we motivate and introduce a network model with stochastic protocol

which we call the controlled voter model, and then study agreement in this model. Finally,

Section 3.4 briefly discusses further benefits (e.g., fault-tolerant protocol design) of our

control-theoretic perspective.

3.2 Agreement in a Single-Integrator Network

We seek to identify whether or not agreement can be achieved among a group of commu-

nicating or sensing agents with single-integrator dynamics, using a static linear agreement

protocol. Agreement protocols for single-integrator networks have also been considered

in [2]. Our work differs from [2] in that we design protocols for achieving a desired agree-

ment law, instead of simply checking whether a given protocol can achieve an agreement

law such as average consensus. Our design-based philosophy is more similar in spirit to

the approach of [11], but we focus on agreement law design rather than optimization of
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the protocol for a given agreement law.

3.2.1 Model Formulation

We consider a network of n agents, where each agent i has a scalar state xi. We assume

that each agent’s state is the integral of a control input ui:

ẋi = ui, (3.1)

where the control input ui is determined by a protocol (described precisely below) used

by agent i. This single-integrator model for individual agents is representative of various

physical systems (e.g., the velocity of a vehicle in a platoon is governed by an acceleration

input according to a single-integrator model), and so constitutes a useful context for study-

ing agreement. Also, our studies (as well as those of, e.g., [11] and [2]) highlight that agree-

ment in networks of single-integrators is quite feasible, and hence that a single-integrator

model may be a reasonable choice when an agent’s dynamic update can be designed along

with (or as part of) its protocol (e.g., in a computer network). For convenience, we also de-

fine a state vector

x =




x1

...

xn



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and an input vector

u =




u1

...

un




.

Each agent i has available mi observations, which are used by its protocol to determine

its control input. The observations made by agent i may in general be arbitrary linear

combinations of the state variables. That is, the vector yi of observations made by agent i

has the form

yi = Gix, (3.2)

where each Gi is an mi × n matrix. Because the matrix Gi specifies how agent i’s obser-

vations are influenced by the other agents in the network, we call Gi the graph matrix for

agent i. We find it convenient to define the full graph matrix

G =




G1

...

Gn




.

We also find it useful to stack the observation vectors in a single vector:

y =




y1

...

yn




. (3.3)
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In this notation, y = Gx.

Thus, we have specified the state update and observation processes for our network of

agents. We refer to the complete model as a single-integrator network.

3.2.2 Protocols, Agreement Protocols, and Agreement Laws

We are interested in developing protocols, or mappings between observations and inputs,

that achieve agreement in a single-integrator network. In this article, we shall consider

static linear protocols, as defined below:

A single-integrator network is said to be governed by (or to have) the static linear protocol (K, z),

where K is the block-diagonal matrix

K =




k′1

. . .

k′n




,

and z is an n-component vector, if each agent i’s input ui is given by ui = k′iyi + zi.

Notice that ki is a column vector with mi elements, so that the protocol K is a matrix

of dimension n × ∑n
i=1 mi. In words, a single-integrator network is governed by (has)

a static linear protocol, if each agent’s input at each time is an affine combination of its

observations at that time.
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We are concerned with understanding whether a single-integrator network with full graph

matrix G and protocol (K, z) achieves agreement. We define agreement as follows:

A single-integrator network with graph matrix G and protocol (K, z) is in agreement, if the states

of all agents in the network converge to the same (but in general initial condition-dependent) value

for all initial conditions. We refer to the value α reached by the agents, which is in general a function

of the initial conditions, as the agreement value. A protocol (K, z) that achieves agreement given a

full graph matrix G is said to be an agreement protocol or valid agreement protocol.

We note that our definition for agreement is identical to that of [2].

At the most basic level, we are interested in identifying whether or not a protocol is an

agreement protocol, for a single-integrator network with given graph matrix G. Once we

know that a protocol is an agreement protocol, we aim to characterize the agreement value

α for the protocol—in particular, to identify the dependence of α on the initial states of the

agents. By doing so, we can aim to design protocols that achieve desired dependencies on

the initial conditions. To this end, we define the notion of an agreement law:

Consider a single-integrator network with graph matrix G and agreement protocol (K, z). Because

the single-integrator network has linear dynamics, the agreement value for this network is an affine
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function of the agents’ initial states:

α = p′




x1(0)

...

xn(0)




+ q (3.4)

We refer to the pair (p, q) as the agreement law for the network.

The notion of an agreement law captures, in a general manner, the dependence of the

agreed-upon value on the initial conditions of the single-integrator network.

Because the idea of an agreement law is central to our development, and because it is

novel, we find it worthwhile to briefly discuss some examples. In [2] and [11], proto-

cols that achieve average consensus are studied. These are agreement protocols for which

the agreement value is the arithmetic average of the agents’ initial conditions. In our ter-

minology, a network that reaches average consensus is one that has the agreement law

(p =
[

1
n , . . . , 1

n

]′
, q = 0). While average consensus is indeed a reasonable design goal

for some networks, other design goals may be desired for some networks. For instance, a

network may require that all agents converge to the initial value of one of the agents, say

Agent 1. In our terminology, this design goal can be stated as the goal of achieving the

agreement law (p =
[
1 0 . . . 0

]
’, q = 0). Yet other design goals may be agreement on an

initial-condition independent value (agreement law (0, q) for some q), or agreement on a

particular weighted average of agents’ initial states (agreement law (p, 0) for some p).
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3.2.3 Test for Agreement and Identification of Agreement Laws

In this section, we specify tests for determining whether a particular static linear protocol

is in fact an agreement protocol, and calculate the agreement laws when these agreement

protocols are used. To specify these test, we first note that the state vector of a single-

integrator network with graph matrix G and protocol (K, z) satisfies the following differ-

ential equation:

ẋ = KGx + z. (3.5)

From this closed-loop system equation, we can straightforwardly identify whether or not

the single-integrator network reaches agreement, and determine the agreement law if it

does. We find it useful to differentiate between two cases, in specifying conditions for

agreement. In particular, we specify conditions for agreement to a value that is indepen-

dent of the initial conditions, and then separately specify conditions for agreement to an

initial-condition dependent value. These conditions are described in the following theo-

rem:

Theorem 3.1 A single-integrator network with graph matrix G and protocol (K, z) reaches agree-

ment if and only if one of the following two conditions hold:

• all the eigenvalues of KG lie in the open left half plane (i.e., have strictly negative real parts),

and −(KG)−1z = α1 for some α. In this case, the agreement law for the network is (0, α).

We refer to this scenario as Type 1 Agreement.

• KG has one eigenvalue of 0 with corresponding right eigenvector 1, the remaining eigenval-
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ues of KG are in the open left half plane, and z = 0. In this case, the agreement law for the

network is (w, 0) where w′ is the left eigenvector of KG corresponding to the 0 eigenvalue.

(In particular, we are referring to the left eigenvector w′ such that w′KG = 0 and w′1 = 1.

Henceforth, we refer to such a left eigenvector as a standard left eigenvector1.) We refer to

this scenario as Type 2 Agreement.

Proof. First, we verify that the conditions postulated for Type 1 Agreement indeed lead to

agreement. When the eigenvalues of KG are in the open left half plane (OLHP), it is well

known that the state vector x of the single-integrator network converges. From Equation

3.5, it is clear that the limiting value of x is −(KG)−1z for any set of initial conditions.

Hence, agreement is achieved if −(KG)−1z is a multiple of the vector of all ones (i.e., α1),

and the corresponding agreement law is (0, α). Thus, the conditions postulated for Type 1

Agreement are sufficient.

Next, we verify that the conditions postulated for Type 2 agreement are sufficient. From

the modal decomposition of KG, it is clear that the state vector converges from any initial

condition, and that its limiting value is given by 1w′x(0). Hence, agreement is achieved,

and the agreement value is given by w′x(0), so (w, 0) is the agreement law.

To prove that agreement is achieved exclusively in these two scenarios, note that otherwise

one of the following are true:

• KG has an eigenvalue in the ORHP.

1Notice that the sum of the components of the agreement law is always 1.
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• KG has multiple eigenvalues on the jω-axis.

• KG has eigenvalues in the OLHP except a single eigenvalue at 0, but the correspond-

ing right eigenvector is not 1.

• KG has eigenvalues in the OLHP except a single eigenvalue at the origin, but z 6= 0

(where (K, z) is the protocol).

It is easy to check from the modal decomposition of KG that agreement is not reached in

any of these cases. In particular, if KG has ORHP eigenvalues, some state variables are

non-convergent, and hence agreement is not reached. If KG has multiple jω axis eigenval-

ues, either some state variables are non-convergent or the state variables do not converge

to the same value for all initial conditions. Similarly, if the right eigenvalue of KG corre-

sponding to the zero eigenvalue is not 1, the state variables cannot converge to the same

value for all initial conditions. If KG has a single zero eigenvalue but z 6= 0, the state

variables are either non-convergent or do not converge to the same value.

Consider a single-integrator network with full graph matrix
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G =




1 −1
2 0 0 −1

2

−1
2 1 −1

2 0 0

0 −1
2 1 −1

2 0

0 0 −1
2 1 −1

2

−1
2 0 0 −1

2 1




and protocol (K = −I, z = 0). All but one of the eigenvalues of KG are negative, and the re-

maining eigenvalue equals zero. The right eigenvalue of KG corresponding to the zero eigenvalue

is 1, and the corresponding left eigenvector is 1′. Hence, Type 2 Agreement is achieved, with a

resultant agreement law of (p = 1, q = 0). In this case, average consensus is achieved.

3.2.4 Existence and Design of Agreement Laws

Now that we have developed tests for checking whether agreement is achieved by a given

protocol, we are in a position to study the existence and design of protocols that achieve

desired agreement laws. In this section, we present results that facilitate design of proto-

cols to achieve such agreement laws. The results fall into one of two categories:

• Given a single-integrator network with full graph matrix G and a set of allowed

agreement laws, we specify conditions on G for the existence of a protocol that

achieves some agreement law within the set.

• Given a single-integrator network with full graph matrix G and a set of desired

agreement laws, we specify conditions on G such that we can design protocols to
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achieve all agreement laws within the set. That is, we specify conditions on G for ar-

bitrary assignability of the agreement law within the set. As far as we know, our study

of agreement law assignment is novel not only among control-theoretic studies but

more generally in the computer science community.

Several of the conditions that we specify are of the following form: if G belongs to a certain

class of matrices, then existence/assignability of the agreement law is guaranteed.

Let us first consider Type 1 Agreement Laws—i.e., the set of agreement laws (0, α), where

α ∈ R. The following theorem presents a condition for both existence of protocol for

achieving an agreement law in this set, and assignability of any arbitrary agreement law

in the set.

Theorem 3.2 Consider a single-integrator network with graph matrix G. A protocol exists such

that an agreement law of the form (0, α), where α ∈ R, is achieved, if and only if there is a block-

diagonal matrix K (of the proper dimensions) such that all eigenvalues of KG are in the OLHP.

Furthermore, in this case, protocols can be designed to achieve any agreement law of the form (0, α).

Proof. From Theorem 3.1, Type 1 agreement can be achieved only if the eigenvalues of KG

are in the OLHP. Conversely, if we choose the protocol (K,−αKG1), then agreement is

achieved, from Theorem 3.1. The resulting agreement law is (0, α), and hence we see that

any Type 1 Agreement Law can be designed.

Thus, we have developed a condition that can (in theory) be checked to determine whether

an agreement law of the form (0, α) can be achieved. Notice that this theorem is essentially
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a restatement of Theorem 3.1. However, we believe that the re-phrasing is valuable, be-

cause it expresses the result from a agreement law design perspective.

The following theorem provides a more applicable test on G, which can be used to deter-

mine whether an agreement law of the form (0, α) can be designed. The theorem is only

applicable in the special case that G is square (i.e., the case that each agent makes a single

observation).

Theorem 3.3 Consider a single-integrator network with square graph matrix G. A protocol exists

such that an agreement law of the form (0, α), where α ∈ R, is achieved, if there is a permutation

of G such that all leading principal minors have full rank. Furthermore, in this case, protocols can

be designed to achieve any agreement law of the form (0, α).

Proof. In [12], we show that, if there is a permutation of G such that all leading principal

minors have full rank, we can find diagonal K such that the eigenvalues of KG are in

the OLHP. We refer the readers there for details. The required result thus follows from

Theorem 3.2.

Next, let us consider design of protocols for Type 2 Agreement (i.e., that achieve agreement

laws of the form (p, 0). We first study existence of a protocol that achieves some Type 2

Agreement Law.

Theorem 3.4 Assume there exists an appropriately-dimensioned block diagonal matrix K such

KG has a single zero eigenvalue with right eigenvector 1, and the remaining eigenvalues of KG
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are negative. Then we can design a protocol such that some agreement law of the form (p, 0) can be

achieved. In particular, the protocol (K,0) achieves the agreement law (w, 0), where w′ is the left

eigenvector of KG corresponding to the zero eigenvalue.

Proof. This theorem follows directly from Theorem 3.1. It is valuable as a restatement of

Theorem 3.1 from a design perspective.

Theorem 3.4 can be more easily applied, if its premises are rephrased explicitly in terms of

G. We do this rewriting in two steps, in the following two theorems:

Theorem 3.5 Assume that we can find vectors

v1 ∈ Ra(GT
1 ), . . . ,vn ∈ Ra(GT

n ), such that

V =




vT
1

...

vT
n




has one zero eigenvalue with corresponding right eigenvector 1, and that there is a diagonal matrix

K such that all but one of the eigenvalues of KV are in the OLHP. Then we can design a protocol

such that some agreement law of the form (p, 0) can be achieved.

Proof. Define vectors k̂1, . . . , k̂n, such that v1 = GT
1 k̂1, . . . ,vn = GT

n k̂n, and consider the
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matrix

M =




k1k̂1

. . .

knk̂n




. (3.6)

It is easy to check that MG = KV has one eigenvalue at 0 with corresponding right eigen-

vector 1, and all other eigenvalues are negative. Thus, from Theorem 3.4, we find that the

protocol (M, 0) achieves agreement, to the law (w, 0), where w′ is the left eigenvector of

KV corresponding to the zero eigenvalue.

Theorem 3.6 Assume that we can find vectors

v1 ∈ Ra(GT
1 ), . . . ,vn ∈ Ra(GT

n ), such that

V =




vT
1

...

vT
n




has one zero eigenvalue with corresponding right eigenvector 1, and that there is a permutation of

V whose leading principal minors have full rank. Then we can design a protocol such that some

agreement law of the form (p, 0) can be achieved.

Proof. This theorem is proved by invoking Theorem 3.6, and then applying a result from

[12] (which was also applied to prove 3.3). We omit the details.
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In the remainder of this section, we describe conditions on G that guarantee existence of an

agreement law within a particular quadrant, as well as conditions on G that guarantee that

every agreement law within a quadrant can be achieved using some protocol. (We use the

term quadrant of a Type 2 agreement law (p, 0) to refer to the sign pattern of the entries in

p. For instance, if all entries in p are positive, we refer to agreement law as lying in the first

or positive quadrant.) For convenience, we assume that each agents makes only a single

observation (i.e., that G is square) in these studies. The generalization to non-square G can

be achieved in much the same way as for Theorem 3.5 and Theorem 3.6.

We are especially interested in identifying G for which all agreement laws within a quad-

rant can be achieved, because these are graph matrices for which essentially arbitrary

agreement law design is possible2. That is, for such graph matrices we can decide on

a desired dependence of the agreement value on the initial states of the agents (at least

within a quadrant), and find a protocol that achieves this agreement law. Thus, we begin

with this case.

We find it most enlightening to relate arbitrary assignment of the agreement law within

a quadrant to the notion of D-semistability (e.g., [14]), so we begin with a definition of

D-semistability.

The matrix A is said to be D-semistable if the eigenvalues of the matrix DA are in the closed left

2When we study whether ”every” agreement law within a quadrant can be achieved, we implicitly consider
only agreement laws (p, 0) such that p′1 = 1. In other words, since the sum of the entries in p is 1 for any
achievable agreement law, we implicitly assume that this constraint is met for any desired agreement law.
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half plane and the eigenvalues of DA on the jω-axis are simple, for all positive diagonal D. 3

We shall show that arbitrary assignment of the agreement law is possible when the graph

matrix (or another matrix that is closely related with the graph matrix) is D-semistable.

The advantage of characterizing arbitrary assignment using D-semistability is that many

common classes of matrices are known to be D-semistable, so that we are immediately able

to identify classes of matrices for which arbitrary assignment is possible. The relationship

between D-semistability and arbitrary assignment is described in the following theorem:

Theorem 3.7 Consider a single-integrator network in which each agent makes a single observation.

We can develop a protocol to achieve any agreement law4 of Type II (i.e., of form (p, 0)) within some

quadrant if and only if the following three conditions hold:

• The matrix ZG is D-semistable, where Z =




−sign(g11) 0 . . .

0
. . . 0

... 0 −sign(gnn)




.

• The right eigenvector of G corresponding to the single eigenvalue at the origin is the vector

1. Also, the corresponding left eigenvector of G has strictly non-zero entries.

• ZG has no eigenvalues on the jω axis other than the single eigenvalue at the origin.

In this case, the quadrant in which any agreement law can be achieved is the one with sign pattern

given by w′Z, where w′ is the left eigenvector of G corresponding to the zero eigenvalue.

3Our notion of D-semistability differs from the linear algebra notion, in that we constrain eigenvalues on the jω
axis to be simple. We believe that this definition for D-semistability is germane in our context because internal stability
of linear systems requires that imaginary axis eigenvalues are simple. We shall clarify classes of matrices that are D-
semistable by our definition later in the article.

4As always, we implicitly consider only agreement laws whose components sum to one, since only these are possible.
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Proof. Let us assume that ZG is D-semistable and that the right eigenvector of G corre-

sponding to the eigenvalue at the origin is 1. Let us also assume, temporarily, that DZG

has no other eigenvalues on the jω-axis for any positive diagonal D. (We shall subse-

quently show that this final condition is equivalent to ZG having no eigenvalues on the

jω-axis.) Now consider control of this single-integrator network using any protocol of the

form KZ, where K is a positive diagonal matrix. Notice that all the eigenvalues of KZG

except one are in the OLHP, and the remaining eigenvalue is a zero eigenvalue with a cor-

responding right eigenvector 1. Hence, from Theorem 3.1, KZ is indeed a valid agreement

protocol. The agreement law for this protocol is w′Z−1K−1, where w′ is the left eigenvec-

tor of G corresponding to the zero eigenvalue. Thus, since for any positive diagonal K,

KZ constitutes a valid agreement protocol, we see that the agreement law can be placed

anywhere in the same quadrant as w′Z−1, or equivalently w′Z. In particular, say that we

wish to achieve the agreement law v, where sign(vi) = sign(wi)sign(zii) for each i. By

choosing ki = zii
wi
vi

, we can achieve this agreement law.

So far, we have assumed that G is structured so that DZG has only a single jω-axis eigen-

value (at the origin) for any positive diagonal D. Let us now show that this condition is

equivalent to the condition that ZG has only a single jω-axis eigenvalue. To do so, consider

the number of jω-axis eigenvalues of D̂ZG, where D̂ is a particular positive diagonal ma-

trix. We shall prove that this number remains the same for any positive diagonal D̂. First,

note that the D-semistability condition on ZG guarantees that all jω-axis eigenvalues of

D̂ZG are simple. Now consider the eigenvalues of (D̂ + ∆)ZG, where ∆ is a small pertur-

bation. Say that this perturbation causes one of the jω-axis eigenvalues of D̂ZG to move
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into the OLHP. However, if the perturbation is sufficiently small, then the perturbation−∆

on D̂ will necessarily drive one of the jω axis eigenvalues of D̂ZG into the ORHP, since

the jω-axis eigenvalues are simple. This is impossible, and hence for all sufficiently small

perturbations, the number of jω-axis eigenvalues of (D̂ +∆)ZG is the same as the number

of jω-axis eigenvalues of D̂ZG. By induction, we see that number of eigenvalues of DZG

on the jω axis is the same for all positive diagonal D. Hence, if we know that G has only a

single jω-axis eigenvalue (at the origin), we can be sure that DZG has only a single jω-axis

eigenvalue (at the origin) for any positive diagonal D. Thus, we have proved sufficiency

of the conditions above for assignability to a quadrant.

Next, we prove that the three conditions are in fact necessary for arbitrary agreement law

placement. Let us consider two cases:

1. If either ZG is not D-semistable, G does not have an eigenvalue at the origin with

right eigenvector 1, or ZG has some eigenvalues on the jω-axis other than the single

eigenvalue at the origin, then there is at least one positive diagonal K̂ such that is not

a valid agreement protocol. Then the agreement law w′Z−1K−1 cannot be achieved

by any protocol. Hence, arbitrary assignment of the agreement law to this quadrant

is not achieved. It is also easy to check that all agreement laws in another quadrant

cannot possibly be achieved by considering the diagonal entries of ZG (see, e.g., [14]

for the relevant argument).

2. If the left eigenvector of G corresponding to the zero eigenvalue at the origin has

null components, then some components of the agreement law are necessarily zero.
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Hence, arbitrary assignment of the agreement law to a quadrant is not possible.

Hence, the theorem is proven.

Although the conditions required for arbitrary assignment of the agreement law in a quad-

rant seem unwieldy, they can straightforwardly be checked because they are phrased di-

rectly in terms of the graph matrix G. In particular, the following steps can be followed to

identify whether the conditions for arbitrary agreement are met:

1. D-semistability of ZG can be verified by determining that ZG belongs to one of sev-

eral well-known classes of matrices. These classes of matrices are discussed in some

detail below.

2. The remaining conditions can be checked through eigenanalysis of ZG.

The procedure above highlights that D-semistability of the graph matrix must be deter-

mined to check whether arbitrary assignment is possible. Unfortunately, there is no sys-

tematic procedure for checking D-semistability of a matrix. Luckily, however, there are

several broad classes of matrices whose members are known to be D-semistable and also

can be easily identified. We list several such classes of matrices, briefly describing tech-

niques for determining whether a matrix is a member of each class as needed. We also

illustrate the relationships between these classes of matrices in Figure 3.2.4. We omit the
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justifications that matrices in these classes are D-semistable; the reader is referred to [14]

for these details.

D-Semistable

Matrices


Diagonally Semistable


Matrices


Irreducible


H-Matrices


Irreducible

M-Matrices


Connected


Laplacian Matrices


Figure 3.1: A Venn diagram of some classes of D-stable matrices is shown.

• Matrices that are diagonally semistable are also D-semistable. The matrix A is said

to be diagonally semistable if there exists a positive diagonal matrix D such that

AT D + DA is positive semi-definite. Optimization machinery has been used to de-

velop a test for whether a matrix is diagonally semistable (see [13]).

• If −A is an irreducible H-matrix with nonnegative diagonal entries, then A is diag-

onally semistable, and hence D-semistable. H-matrices are a fairly straightforward

generalization of the class of M matrices (see below).

• If −A is an irreducible M -matrix with nonnegative diagonal entries, then −A is an

91



irreducible H matrix with nonnegative diagonal entries, and so is diagonally semi-

stable and hence D-semistable. Recall that an M -matrix is one with non-negative

principal minors and non-positive off-diagonal entries.

• If −A is an irreducible Laplacian matrix, then −A is an irreducible M matrix, and

hence D-semistable. When −A is an irreducible Laplacian matrix, all the other con-

ditions of Theorem 3.7 also hold. Hence, arbitrary assignment of the agreement law

to a quadrant (in particular, the all-positive quadrant) is possible.

Again consider

G =




1 −1
2 0 0 −1

2

−1
2 1 −1

2 0 0

0 −1
2 1 −1

2 0

0 0 −1
2 1 −1

2

−1
2 0 0 −1

2 1




.

Since G is an irreducible Laplacian matrix. ZG is the negative of an irreducible Laplacian matrix,

and hence all premises of Theorem 3.8 hold. Thus, arbitrary placement of the agreement law in

the first quadrant is possible. For instance, say that we wish to place the agreement law at p′ =
[

1
12

1
12

1
4

1
4

1
3

]
. Noting that the left eigenvector of G is w′ =

[
1
5

1
5

1
5

1
5

1
5

]
, we can
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choose the protocol KZ =




z11
w1
v1

. . .

znn
wn
vn




=




−12
5

−12
5

−4
5

−4
5

−3
5




to achieve

the desired agreement law. Of course, any multiple of this matrix can also be used as the protocol to

achieve the desired agreement law.

We conclude this section with a test for whether some agreement law within a specified

quadrant can be achieved using a valid agreement protocol. We present this result without

proof, since the proof is fundamentally similar to those of Theorems 3.4 and 3.7. More pre-

cisely, we draw on a result of [14] regarding existence of a positive diagonal D such that

such that the product of D with a matrix A is stable. Our analysis is summarized in the

following theorem:

Theorem 3.8 Consider a single integrator network with square graph matrix G, and say that we

wish to see whether some agreement law with the same sign pattern as a particular n-component

vector v can be achieved. Assume that G has a zero eigenvalue, with corresponding right eigen-

vector 1 and left eigenvector w′. (We assume that the entries of w′ are non-zero; agreement within a

quadrant is impossible if they are not.) Also, define a diagonal matrix Z =




sign(w1)
sign(v1)

. . .

sign(wn)
sign(vn)




.

Then we can find some agreement protocol such that the agreement law has the same sign pattern

as v if there is a permutation of ZG for which all leading principal minors of order less than n are
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positive.

We note that Theorem 3.8 and Theorem 3.6 are closely related. In particular, if the premise

for Theorem 3.6—that there is a permutation of G such that the first n−1 leading principal

minors have full rank—is satisfied then we can necessarily find a diagonal matrix Z with

entries of ±1 on the diagonal, such that the first n − 1 leading principal minors of ZG are

positive. Thus, we verify that there is a quadrant in which we can place the agreement law,

as we would expect.

3.3 Agreement in a Controlled Voter Model

Second, we discuss the design of agreement protocols in the context of a quasi-linear

discrete-time, discrete-state stochastic model, which we call the controlled voter model. Our

motivations for studying agreement in a discrete-state and stochastic model are threefold:

first, agreement among agents with discrete-valued states is required in several contexts,

such as among jurors deciding on a defendant’s guilt or several parallel process compar-

ing the binary output of a computation. Second, protocols that are based on copying or

choosing among several decisions—such as the one to be developed for our model—are

easy to implement in some applications, since they often require minimal computation.

Third, when agreement among agents with discrete-valued states is required, probabilistic

decision-making often is necessary to reach agreement in an equitable manner, and hence

stochastic models for protocols are relevant.

94



The controlled voter model provides a realistic context for studying agreement, yet is suffi-

ciently structured to permit significant analysis of state dynamics and design of agreement

laws. Essentially, the model is tractable because expected value of the state of the closed-

loop system (the system when the protocol is applied) satisfies a linear recursion. Thus,

we can re-phrase the problem of agreement as a linear control problem, such as for the

single-integrator network.

3.3.1 Model Formulation and Connection to Literature

A controlled voter model comprises a network of n agents, each with a scalar state variable

xi ∈ {0, 1} that is updated in discrete time. The state update of each agent is governed by

a stochastic protocol: in particular, the state of agent i at time-k + 1 is given by

xi[k + 1] = 1, with probability ui[k]

xi[k + 1] = 0, with probability 1− ui[k],

where the mean input ui[k] ∈ [0, 1] is computed by the protocol from agent i’s concurrent

observations5. Notice that we define the protocol to include both the computation of ui[k]

from the observations, and the stochastic determination of the next-state xi[k +1] based on

ui[k]. That is, the protocol uses the observations to set the probability that the next state

will be 1, and then realizes the next state based on this probability. (This is in contrast to the

single-integrator network, in which we view the relationship between the input and state

5We use the term mean input since the expected value of the ”actual input” (which is the next-state) is ui[k].
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as part of the intrinsic dynamics of the model rather than the protocol.) For convenience,

we define a state vector

x =




x1

...

xn




,

and and a mean input vector

u =




u1

...

un




.

Each agent i makes mi observations. Each observation is a weighted average of the con-

current state variables. That is, the observations made by agent i are given by

yi = Gix, (3.7)

where the mi × n graph matrix Gi is a row-stochastic matrix—i.e., one in which the el-

ements in each row are non-negative and sum to 1. Notice that observations in our for-

mulation can include states variables of single agents and weighted averages of multiple

agents’ states (e.g., of neighboring agents in a graph). Because we have enforced that Gi

is row-stochastic, the entries in each vector yi are necessarily in the interval [0, 1] for any
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state vector. For convenience, we again define a full observation vector

y =




y1

...

yn




.

a full graph matrix

G =




G1

...

Gn




.

Our protocol calculates each agent’s mean input ui from its observation vector yi. We

assume that this mapping is static and linear: the mean input ui is determined as

ui = k′iyi. (3.8)

We further enforce that the entries in k′i are non-negative and sum to 1, so that ui is a

weighted average of the entries in yi. This further constraint ensures that each input ui

is in the interval [0, 1] at each time-step, as required. We note, further, that all ui equal

0 at a given time if all agents’ states at that time are zero, and that all ui equal one if

all agents’ concurrent states are unity. For convenience, we codify the protocol using the
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block-diagonal matrix

K =




k′1

. . .

k′n




.

Notice that ki is a column vector with mi elements, so that the protocol matrix K is a

matrix of dimension n×∑n
i=1 mi. The protocol matrix relates the observation vector to the

mean input vector, as

u = Ky. (3.9)

A controlled voter model is specified completely by its graph matrix G and protocol matrix

K, and hence we identify a particular model with its graph G and protocol K.

Our controlled voter model is a natural extension (in discrete time) of the voter model

(equivalently, invasion process), originally introduced in [15] and [16] and studied in fur-

ther detail in [17] and [18]. The stochastic realization of the next-state from the mean input

inthese models is identical to ours; they are different in that the mean inputs are prescpec-

ified linear combinations of state variables, rather than being specified as an observation

operation followed by a decentralized control operation. Thus, although the closed-loop

dynamics of the voter model and controlled voter model are identical, the voter model

is viewed as representing a fixed process (that may or may not reach agreement) while

the controlled voter model is a tool for designing protocols for agreement. It is our belief

that the protocol-design perspective on the voter model is a valuable one. While the voter

model may be too simplistic to represent many pre-existing systems, we are free to design
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protocols as we see fit, and the voter model turns out to be a good choice because of its

tractability and performance.

3.3.2 Definition of Agreement

The notion of agreement in the controlled voter model is essentially the same as for the

single-integrator network: a model is in agreement if the states of all the agents asymptoti-

cally reach the same value. In the case of a controlled voter model that reaches agreement,

this asymptotic value is either zero or one. The asymptotic value reached by the agents is

in general stochastic—convergence to either all zeros and all ones is possible on any given

trial. Thus, in contrast to the deterministic model, the agents’ initial states do not exactly

specify the value that is agreed upon by the agents; instead, these initial conditions specify

the probability that agreement to the zero state or the unity state is achieved. With this dif-

ference in mind, we define the notion of an agreement value and agreement law in terms

of the probabilities of reaching either asymptotic state. It is also worth mentioning that the

notion of convergence to the same value is now a probabilistic notion (e.g., convergence in

probability or convergence with probability 1, see [19] for instance). We formalize these notions

in the following definitions.

A controlled voter model with graph G and protocol K is in agreement, if the states of all agents in

the model converge to the same value (i.e., become identical) with probability 1, for all initial condi-

tions. We refer to the probability α that the agents reach the unity state (which, as our subsequent
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analysis shows, is a function of the initial conditions) as the agreement probability. A protocol K

that achieves agreement for a given graph G is said to be an agreement protocol.

Consider a single-integrator network with graph matrix G and agreement protocol K. As shown

in a following section, the agreement probability for this network turns out to be a linear function

of the agents’ initial states:

α = p′




x1[0]

...

xn[0]




(3.10)

We refer to p as the agreement law for the network.

Sections 3.3.4 and 3.3.5 describe analysis of agreement protocols and design of protocols

to achieve specific agreement laws, respectively. As with the deterministic model, the

agreement law achieved by a given protocol, and the possibility for designing protocols,

are strongly dependent on the structure of the graph matrix G.

3.3.3 Summary of Graph-Theoretic Concepts

Our study of protocol analysis and design for the controlled voter model turns out to

be deeply related to some graph-theoretic concepts for matrices with non-negative entries.

Hence, we review these graphical concepts before discussing protocol analysis and design.

We refer the reader to, e.g., [20] for more details on graphical representations for matrices.
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In particular, let us consider a square matrix n×n matrix A with non-negative entries. The

pictorial graph of A, denoted Γ(A), comprises n nodes or vertices. A directed edge (arrow)

is drawn from vertex i to vertex j, if and only if Aij is non-zero. The vertices and edges

together constitute the graph. (Notice that we use the term pictorial graph rather than graph

to distinguish from the graph matrix.)

We now introduce some concepts regarding pictorial graphs that are important for our

analysis. Two vertices i and j in the pictorial graph are said to communicate if and only

if there are a path of directed edges from i to j and from j to i. A set of vertices is called

a class, if and only if the vertices in the set all communicate with each other, and none of

the vertices in the set communicates with any vertex outside the set. A class is classified as

autonomous, if there is no path from any vertex outside the class to a vertex in the class. A

class is classified as recurrent, if there is no path from any vertex in the class to any vertex

outside the class. All other classes are classified as transient. The concept of ergodicity is

also important. A class is said to be ergodic if, given any sufficiently large length, we can

find a path between any two vertices in the class of that length. Classes in a pictorial graph

are illustrated in Figure 3.3.3.

The concepts regarding pictorial graphs summarized here have been considered in great

detail in the study of Markov chains. We refer the reader to [20] for more about these

concepts.
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Autonomous


Transient


Transient


Recurrent


Figure 3.2: Classes in a pictorial graph are illustrated.

3.3.4 Analysis of Protocols

In this section, we consider controlled voter models with given graph G and protocol K,

and 1) determine whether the model reaches agreement and, if so, 2) characterize the

agreement law for the model. Thus, as with the single-integrator network, we develop

conditions that can be used to check whether or not agreement is achieved, and to deter-

mine the agreement law achieved by a particular protocol. Because the graph matrix and

protocol matrix for the controlled voter model are rather strictly constrained (each matrix

is row-stochastic), it turns out that agreement is achieved for almost all G and K: unlike the

deterministic model, there is no possibility for strictly unstable closed-loop dynamics, and

achievement of agreement is instead solely contingent on whether a single status value

can dominate the dynamics. Like the single-integrator network, we find that the agree-

ment law for the controlled voter model can be determined through eigenanalysis of KG.
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Our analysis of agreement in the controlled voter model is formalized in two theorems

below:

Theorem 3.9 A controlled voter model with graph G and protocol K reaches agreement, if and

only if the pictorial graph Γ((KG)′) has a single autonomous class and that autonomous class is

ergodic.

Proof. We show that closed-loop dynamics of the controlled voter model are equivalent to

the dynamics of a standard voter model with network graph Γ((KG)′) (see [18]). We then

invoke a result given in [17] to prove the theorem.

The state update of the closed-loop model (i.e., the model with the protocol implemented)

at time k + 1 can be described using the following two-stage procedure:

• The n-component vector b[k + 1] , KGx[k] is computed. We note that each entry in

b[k + 1] is in the interval [0, 1].

• Each agent’s next state is realized according to the corresponding probability in b[k+

1]. That is, agent i’s next state xi[k + 1] is set to 1 with probability bi[k + 1] and is set

to 0 with probability 1− bi[k + 1].

As discussed in [17], this two-stage procedure constitutes the state update of a voter model

(there called the binary influence model) with network graph Γ((KG)′).

Once we have established that the closed-loop model can be viewed as a voter model, we
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can immediately invoke the results of [17] to justify the theorem above. We refer the reader

to [17] for a detailed justification of these results, but a broad outline is valuable to clarify

the fundamental constraints on a controlled voter model that are required for agreement.

Conditions for agreement are derived in [17] by viewing the entire state vector of a voter

model as being governed by a finite-state Markov chain with 2n possible states (since each

agent takes on two states). Agreement is achieved if this master Markov chain has only

two recurrent states, namely the state corresponding to each agent having individual state

of 1 and having individual state of 0, respectively. The existence of only these two recurrent

states can be connected with the structure of the network graph (in our case Γ((KG)′)). In

particular, existence of a single autonomous class that is ergodic guarantees that the two

recurrent states can be reached from any initial condition (and hence that they are only

recurrent states). Proof of necessity is similar.

The next theorem characterizes the agreement law for a controlled voter model with graph

G and agreement protocol K. For convenience, we only consider the case that KG com-

prises a single ergodic class, although the theorem readily generalizes to the necessary and

sufficient case considered in Theorem 3.9.

Theorem 3.10 Consider a controlled voter model with graph G and protocol K, for which Γ((KG)′)

comprises a single ergodic class. Notice that, from Theorem 3.3.4, K is an agreement protocol. The

agreement law for this controlled voter model is p, where p′ is the left eigenvector of KG corre-

sponding to its unity eigenvalue.
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Proof. The controlled voter model has an agreement probability that is a linear function of

the initial states of the agents specifically because the expectation of its state vector satisfies

a linear recursion. Thus, to characterize this agreement probability (and associated agree-

ment law), we develop the recursion for the mean dynamics of the model. This recursion

has already been developed in [17], but it is central to our studies and so we repeat the

derivation.

Before we do so, let us clarify how the expected of the controlled voter model relate to

its agreement probability. Note that the agreement probability is the limiting value of the

probability that any one agent (and hence all agents) is in the unity state, given the initial

states of all agents. However, since the state of each agent is an indicator, this probability

is equivalent to the limiting value of the agent’s expected state, given the initial states of

all agents. Thus, we can compute the agreement probability by finding the limiting value

of the expected state of an agent, conditioned on the agents’ initial states.

A recursion for the expected state vector can be developed as follows:

E(x[k + 1] |x[0])

= E(E(x[k + 1] |x[k]) |x[0])

= E(KGx[k] |x[0])

KGE(x[k] |x[0]). (3.11)

Thus, we find that the conditional expectation for the state vector given the initial state sat-
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isfies a discrete-time linear equation with state matrix KG. Since KG is a ergodic stochastic

matrix, the limiting value of E(x[k] |x[0]) is given by 1p′x[0], where p′ is the left eigenvec-

tor of KG associated with the simple unity eigenvalue. Thus, the agreement probability is

given by p′x[0], and the theorem has been proved.

3.3.5 Design of Agreement Laws

Just as in our deterministic model, design of the agreement law is feasible in the controlled

voter model. That is, we can characterize the set of agreement laws that can be achieved

by some protocol, for a given graph matrix. The ease with which agreement laws can be

designed is a compelling feature of our formulation, since it allows us to design agreement

protocols that weight each agent’s initial state differently.

The design of agreement laws for the controlled voter model is simpler than for the single-

integrator network: because stability is guaranteed for any protocol, the set of allowed

agreement laws can be characterized solely by determining how the protocol K impacts

the left eigenvector of KG corresponding to the unity eigenvalue6. Our characterization

of the set of achievable agreement laws is phrased in terms of left eigenvectors of certain

submatrices of G. We begin our development by defining appropriate notations for these

submatrices and eigenvectors:

6To be precise, we further need to check that KG is ergodic, but we envision that ergodicity will be achieved
naturally in many applications.
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We shall consider n × n submatrices of G comprising single rows from each agent’s graph matrix

G(i). In particular, let us consider a matrix whose jth row is row ij ∈ 1, . . . , mj of G(j). We refer

to this matrix as the reduced full graph matrix with observation list i = {i1, . . . , in}, and use the

notation Ĝi for the matrix. We also define the protocol Ki for observation list i to be the protocol

for which each block-diagonal matrix (vector) kj is an indicator vector with unity entry at entry ij .

We note that Ĝi = KiG. If Ĝi is ergodic, it has a single unity eigenvalue. In such cases, we use

the notation p̂′i for the corresponding left eigenvector. Finally, we note that there are m =
∏n

i=1 mi

reduced full graph matrices (and corresponding unity eigenvectors).

We are now ready to present our main theorem concerning agreement law design:

Theorem 3.11Consider a controlled voter model with graph matrix G, and assume that all reduced

full graph matrices for this controlled voter model are ergodic. Then an agreement law p can be

achieved using some protocol K, if and only if p can be written in the form

∑

i

αip̂i, (3.12)

where the m coefficients αi are positive and sum to one. That is, an agreement law can be achieved if

and only if it is a convex combination of the left eigenvectors of the full graph matrices corresponding

to the unity eigenvalue.

Proof. We first prove that, if p can be written as a convex combination of the p̂i (i.e., as

∑
i αip̂i), then we can design a protocol to make p the agreement law. To do so, note that

p̂i is the agreement law when the protocol Ki is used, or equivalently that p̂′iKiG = p̂′i.
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Thus, from linearity, (
∑

i αip̂′iKi)G =
∑

i αip′i. Now consider q′ = (
∑

i αip̂′iKi). This

vector, which has
∑n

i=1 mi components, has the following characteristics:

• All entries in q are non-negative.

• The sum of the entries of q corresponding to each agent j is equal to equal to the

jth entry of
∑

i αip′i, since the entries in each diagonal block (vector) of any protocol

matrix Ki sum to unity.

From the two points above, we see that q′ can be written as (
∑

i αip′i)K, for some valid

protocol matrix K. Thus, there exists a protocol matrix K such that (
∑

i αip′i) is a left

eigenvector of KG corresponding to a unity eigenvalue. Further, KG is ergodic, since an

average of ergodic matrices is ergodic. Hence, from Theorem 3.10, we see that the protocol

K achieves the agreeement law (
∑

i αip′i), as desired.

The proof of necessity is based on showing that all possible protocols in fact correspond

to particular agreement laws within the specified region. The proof is omitted due to its

length.

A few further notes about application of the stochastic protocol design are worthwhile:

• To determine whether a given agreement law p can be achieved, one must check

whether p lies in the convex hull defined by the vectors pi. Methods for checking are
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well-known (see, e.g., [21]). These methods also serve to identify the coefficients αi

that relate p to the pi.

• We have identified the set of achievable agreement laws, but have not yet shown

how to choose a protocol to achieve a particular agreement law in this set. In fact, the

procedure for choosing the protocol is implicitly contained in our sufficiency proof

above. In particular, given a desired agreement law p, we need to first compute

q′ = (
∑

i αip̂′iKi), where the αi are found as described in the first item in this list.

Next, we need to choose K so that q′ = (
∑

i αip′i)K. This can be done easily, by

normalizing7 the components of q corresponding to find ki.

We consider a controlled voter model with three agents. The first and third agents each make two

observations, while the second agent only makes a single observations. The full graph matrix for

this example is the following:

G =




0.9 0.1 0

0.6 0.3 0.1

−−−−−−−−−−

0.2 0.5 0.3

−−−−−−−−−−

0 0.2 0.8

0.4 0.3 0.3




(3.13)

7to a unity sum
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We apply Theorem 3.11 to identify the agreement laws that we can achieve using some protocol.

The agreement laws that can be achieved are illustrated in Figure 3.3.5. We only show the first two

components p1 and p2 of the agreement law on the plot, since the third component is determined

explicitly from the first two.

Let us say that we wish to achieve the agreement law p′ =
[
0.43 0.33 0.24

]
. From Figure 3.3.5,

we see that this agreement law can be achieved. Applying the steps described above, we find that the

protocol that achieves the desired agreement law is K =




0.31 0.69 0 0 0

0 0 1 0 0

0 0 0 0.33 0.67




.
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Figure 3.3: The agreement laws that can be achieved using some protocol are illustrated
for an example controlled voter model with three agents. We only show the first two
components p1 and p2 of the agreement law on the plot, since the third component is
determined explicitly from the first two.

110



3.4 Further Directions

We have developed agreement protocols for two applicable dynamic models, focusing in

particular on exposing the role of the communication network structure on protocol de-

velopment. We believe our studies provide a compelling framework for understanding

agreement in several dynamic systems. However, some further analyses can significantly

expand the applicability of our framework. Here, we briefly list several directions of analy-

sis that we are currently pursuing, along with some initial results.

Fault Tolerance Fault tolerance is often a requirement for an agreement protocol, espe-

cially in distributed computing applications (see, e.g., [10]). In these applications, proto-

cols must be tolerant of random loss of communication, as well as purposeful miscom-

munications. Loss-of-communication faults may also be prevalent in autonomous vehicle

applications (e.g., [22]) and other applications that involve transmission through a noisy

environment.

We believe that our framework permits study of fault tolerance, because we allow for

agents that make multiple observations, and because we explicitly consider design of

agreement protocols. Thus, we can hope to design agreement protocols that are robust

to common faults. For instance, for the single-integrator network, we can aim to develop

a protocol that is robust to a single fault among a set of observations. Another common

fault in a single-integrator network may be complete failure of an agent (i.e., loss of control

of the agent as well as exclusion of observation of it by the other agents). In such a situa-
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tion, our protocol should seek to achieve agreement among the remaining agents despite

the lost observations. We expect that the ability to design such a fault-tolerant protocol is

deeply connected to the notion of D-semistability, since D-semistable systems are robust

to many changes in the graph matrix.

In a similar manner, we can construct a stochastic agreement protocol in order to minimize

dependence on communications that are faulty or on potential agent failures. Further, by

assuming a stochastic model for faults, we can characterize the expected dynamics of our

network once a protocol is applied.

More Complicated Network Dynamics Another direction that we are currently pursu-

ing is the development of agreement protocols for networks with more complex intrin-

sic dynamics. In particular, agents with double-integrator dynamics (rather than single-

integrator dynamics) are common in mechanical systems, and so are of interest to us. For

instance, if we are interested in achieving agreement among the positions (rather than

velocities) of autonomous vehicles in a network, double-integrator dynamics must be con-

sidered since typically the accelerations of the vehicles are controlled. The techniques used

to design agreement protocols in this article can readily be adapted for double-integrator

networks, by meshing them with the analysis techniques discussed in [12]. We expect to

discuss agreement in double-integrator networks in future work.

We have just begun to study agreement for networks in which agents’ dynamics are intrin-

sically interconnected. Power networks and air traffic networks are examples of systems
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in which agents’ dynamics are dependent on each other. We believe that agreement in

such networks can be analyzed by applying the decentralized control analysis of [8], as we

have done for integrator networks in [12]. We are also interested in considering interde-

pendent dynamics in the controlled voter model, by meshing uncontrollable interactions

(i.e., standard voter model updates) with controllable dynamics.

Generalized Notions of Agreement In this article, we have solely considered agreement

of the entire state vector of a network. In some applications, agreement of part of the state

vector, or of functions of the state variables, may instead be required. The theory that we

have developed here can be extended for analysis of agreement among linear functions of

the state.
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Chapter 4

A CONTROL-THEORETIC PERSPECTIVE

ON DISTRIBUTED DISCRETE-VALUED

DECISION-MAKING IN NETWORKS OF

SENSING AGENTS

We address the problem of global sensor fusion for the purpose of distributed decision-

making, from a control-theoretic perspective. In particular, we introduce a quasi-linear

stochastic distributed protocol, using which a network of sensing agents can reach agree-

ment in order to take a collective action. Using control-theoretic methods, we design the

parameters of our protocol—which include weights in the local update rules used by the

agents and a finite stopping time—to achieve agreement in a fair and rapid manner. We

show analytically that the developed protocol achieves fair agreement with certainty in

the noise-free case, and achieves fair agreement with high probability even in the presence

of communication noise and assuming very little information storage capability for the

agents. Our development is illustrated throughout with a canonical example motivated
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by autonomous vehicle control.

4.1 Introduction

In many application areas, networks of agents with sensing capabilities are required to

integrate their individual observations, and to make decisions or take actions collectively

based on this fusion of information (e.g., [23]). The task of information fusion and decision-

making in these networks is often complicated by the essential decentralization of the net-

work dynamics and control: power/cost constraints and security/reliability concerns dic-

tate that communication is short-range and, in some cases, that decision-making is done by

the individual agents. For instance, swarms of military vehicles, such as unmanned aerial

vehicles (UAVs), may need to collectively decide on the presence or abscence of a target,

and take a decision on whether to destroy the target, in a totally distributed manner.

In this Chapter, we put forth the viewpoint that it is useful to consider the information-

fusion and decision-making tasks of networks with sensing agents1 jointly, as a decentral-

ized stabilization or agreement problem. In pursuing this control-theoretic viewpoint, we

propose a stochastic protocol for decision-making or agreement that is particularly suitable

given typical characteristics of networks with sensing agents—i.e., networks with agents

that operate at low power and with little memory, are subject to communication failures,

1We use the terminology “networks with sensing agents” rather than “sensor networks” because we en-
vision our work as applicable to not only distributed and wireless sensor networks but also to networks the
combine sensing with other dynamics (such as networks of UAVs). We also use the terminology to clarify that
the networks that we consider do not necessarily contain a large number of agents.
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and are seeking to make discrete-valued decisions such as whether or not to attack a tar-

get. By formulating the developed protocol in terms of the influence model (see [17, 18]), we

are able to analytically determine the performance characteristics of our protocol, and to

relate the protocol’s performance with the network topology and fault characteristics.

Our work draws on, and aims to contribute to, both the literature on sensor networking

and the control-theoretic study of agreement-protocol design. The article [23] contains a

review of recent developments and challenges in distributed sensor networking. Several

recent works have recognized the energy savings and scalability engendered by use of dis-

tributed algorithms (e.g., [24, 25, 26]) in sensor networks, providing broad motivation for

our study. Of particular interest to us, the article [24] develops a distributed algorithm that

uses information fusion for a specific application—event region detection—in a manner

that suppresses faults and hence allows commitment to a decision and ensuing action. We

also seek to achieve agreement among agents for the purpose of decision-making, but take

the perspective that these agents begin with heterogeneous opinions about the issue to be

decided on, not only because of faults but because of heterogeneity in their observation

capabilities and perhaps intrinsic differences in their motives. Thus, in contrast to [24],

we seek distributed algorithms for which the decided-on opinion of each agent takes into

account the initial opinions of agents throughout the network rather than of only a set of

nearby neighbors.

Agreement protocols are iterative algorithms using which a network of agents with initially-

different opinions can reach a collective decision (e.g., [10, 2]) and hence take an action, in
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a distributed manner. Agreement has been studied in the computer science literature for

several years—see [10] for a thorough introduction. Recently, a control-theoretic viewpoint

on agreement has been developed (e.g., [2, 11, 27]); this control-theoretic viewpoint is also

deeply connected with the more general graph-theoretic study of stabilization in distrib-

uted dynamic systems (e.g., [1, 12]). The control-theoretic viewpoint has the advantage

of facilitating development of graphical conditions for agreement, and of allowing charac-

terization of protocol performance using linear system analysis techniques. Our previous

work [27] is concerned with designing the dependence of the agreed-upon value on the

initial opinions of the agents. This idea of agreement-law design in [27] plays a significant

role in our current study, since we are interested in protocols that fairly2 weight the initial

opinions of the agents in making a collective decision.

We believe that several extensions of the control-theoretic studies on agreement and sta-

bilization ([2, 11, 1, 27, 12]) are required for broad application to various networks with

sensing capabilities:

• Agreement among discrete-valued opinions should be considered, since many net-

works with sensing capabilities perform (discrete-valued) detection or classification

tasks, as well as binary decision-making. With the exception of our previous work

[27], we do not know of any control-theoretic study of agreement that considers

discrete-valued opinions. We focus on agreement upon discrete-valued opinions in

2We use the term fair loosely, to describe a rule that weights the initial opinions of the agents in coming up
with the decided-upon value equitably, in the sense that the accuracy and motivation for each agent’s initial
opinion is properly incorporated.
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this paper.

• A stochastic protocol is needed, in order to achieve agreement in a manner that eq-

uitably weights the initial opinions of the agents. As will be discussed further, a

stochastic protocol can also be simpler to implement than some of the protocols de-

scribed in the literature. To this end, we pursue a stochastic protocol in this work.

• In many networks with sensing capabilities, faults in the communication of informa-

tion may occur (often because of severe limitations in transmitter power and com-

munication bandwidth) and hence communication faults should be considered ex-

plicitly in our protocol design. Our analysis of the developed agreement protocol

explicitly considers stochastic faults in communication.

• When the occurrence of faults is combined with limitations in the storage capabili-

ties of agents and/or a requirement of fast decision-making, loss of the information

contained in the initial opinions of the agents may result if too many iterations of the

agreement protocol are used. Thus, a metric for stopping the agreement algorithm

should be developed. In contrast to the previous control-theoretic studies of agree-

ment (which define agreement in an asymptotic manner), we define a stopping time

for our algorithm.

The stochastic protocol for agreement/decision-making that we propose here has a spe-

cial quasi-linear structure, that permits significant characterization of its performance. In

particular, the closed-loop dynamics of our network (i.e., the evolution of the opinions

of the agents upon application of the agreement protocol) can be represented using a
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specially-structured stochastic automaton known as the influence model ([17, 18]). The spe-

cial tractability of the influence model then allows us to check the fairness of our protocol

(and in turn to design the parameters of the protocol for fairness) using our results from

[27], and to choose an appropriate stopping time for the protocol. Further, the influence

model representation permits justification of the algorithm’s success in a limiting case, and

makes clear the connection between the the network topology and the performance of the

agreement protocol.

The remainder of the Chapter is organized as follows. We conclude this section with a

summary of the notation and terminology for graphs used in the article. In Section 4.2,

we formulate our model for a distributed network of sensing agents, and introduce our

stochastic strategy (protocol) for agreement or decision-making in this network. In Sec-

tion 4.3, we use the influence model representation of the closed-loop model to evalu-

ate the convergence properties and initial-condition dependence (and hence fairness) of

our agreement protocol, and in the process identify a stopping time for our protocol. Fi-

nally, Section 4.4 contains discussion and evaluation of our protocol, and pursues a sensor

networking-motivated application that combines our strategy with that of [24]. Examples

are used throughout to illustrate our development.

4.1.1 Graph-Theoretic Notation

The analyses in this article are concerned with the communication and/or interaction

topology of agents in a network, which we often find convenient to represent using a
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graph. Thus, we need to briefly introduce the graph-theoretic notation used here. For us,

a graph is an illustration of the pattern of non-zero entries in a square matrix. In partic-

ular, for an n × n matrix G = [gij ], the graph Γ(G) associated with this matrix comprises

n vertices, labeled 1, . . . , n. A directed edge is drawn from vertex i to vertex j if and only if

gij is non-zero. We note that these directed edges include self-loops—i.e., an edge is drawn

from vertex i back to itself if and only if gii is non-zero. As an example, the graph Γ(G)

associated with G =




1 1 0 1

1 1 1 0

0 1 1 1

1 0 1 1




is shown in Figure 4.1.1

Our terminology for the connectibity characteristics of a graph are standard in the context

of Markov chains (see [20]), but we briefly discuss the terminology here for convenience.

There is said to be a path from vertex i to vertex j in a graph Γ(G), if and only if there is a

set of directed edges that leads from vertex i to vertex j in the graph. Two vertices i and j

communicate of there are paths from i to j and from j to i in the graph. A graph is called

recurrent if all pairs of vertices in the graph communicate. A recurrent graph is ergodic

if, for any sufficiently large l, there is a path of length l (i.e., a path that traverses l not-

necessarily-distinct edges) between any two vertices. In other words, a graph is ergodic if

it is recurrent and also aperiodic. We note that a recurrent graph is ergodic whenever there

is at least one agent with a self-loop.
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Figure 4.1: Illustration of a graph Γ(G) associated with a particular n×n matrix. This graph
is the adjacency graph for the autonomous vehicle control example discussed throughout
the paper.

4.2 Formulation

We consider a network of n communicating agents, each of which has a discrete-valued

initial opinion about a topic of interest (e.g., whether or not there is an enemy vehicle

present; whether our next president should be Republican, Democrat, or Independent;

what the color of a pomegranate is). It is incumbent upon the agents to agree on a single

opinion over an interval of time, perhaps so that they can jointly take an action in response

to this common opinion. Agents communicate and/or sense (possibly in a faulty manner)

the current opinions of neighboring agents over time, and apply a stochastic protocol to

update their opinions based on these dynamic observations. In this article, we assume that

the agents update their opinions in discrete time. We use this discrete-time model for the

sake of clarity, and because we believe that, in many applications, agents are governed by
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a clock or at least can be meaningfully modeled at sampled time instances. Our protocol

and its analysis can be readily adapted to continuous-time systems, using models such as

those described in [28].

In the remainder of the section, we first formalize the notion of agreement and of an agree-

ment law. We then describe a protocol that we claim can be used to achieve agreement and

a desired agreeement law. Finally, we discuss the modeling of communication faults in our

framework. This model is needed to appropriately design the parameters of our protocol

and to evaluate the protocol, which is done in the subsequent section.

4.2.1 Opinions and Agreement: Definitions

Formally, we define each agent i to have a opinion xi[k] at discrete time k, where xi[0]

denotes the initial opinion of agent i. Each agent’s opinion at each time k is assumed to

be in a set of m opinions, which we shall label 1, . . . , m without loss of generality. We also

find it convenient to define an indicator notation for xi[k]; that is, we define si[k] to be an

m-component 0 − 1 indicator vector for the opinion of agent i at time k, i.e. a vector with

entry xi[k] equal to 1 and all other entries equal to 0.

We are concerned with developing a protocol, using which the opinions of the agents can

be brought into agreement in a rapid and equitable manner. Before developing and mod-

eling the protocol, it is worth our while to carefully define the notion of agreement:
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The network of n communicating agents is said to be in agreement at time k, if the opinions

x1[k], . . . , xn[k] of the n agents are identical at time k. We call the common opinion a[k] ∈ 1, . . . ,m

shared by the n agents the agreement value.

We stress that, in contrast to [2], our definition for agreement considers the opinions of the

agents at particular finite times rather than asymptotically.

Because our protocol is stochastic, and because we model communication/sensing in the

network as being subject to faults, agreement is achieved in a probabilistic sense using our

protocol. Hence, we define the notion of an agreement probability as a measure for the

efficacy of our protocol.

The time-k agreement probability for the network is the conditional probability that the agents are

in agreement at time k, given the initial opinions

x1[0], . . . , xn[0] of the agents.

We note that the agreement probability refers to the total probability that all agents have

the same opinion (whatever that opinion might be), rather than the probability that the

agents share a particular opinion.

Our aim is to achieve agreement among the agents in an equitable or fair manner. That

is, when the agents reach agreement, we intend for the agreement value to appropriately

reflect the initial opinions of the agents. Since our protocol is a stochastic one, the agree-

ment value turns out to be stochastic. Thus, it is natural for us to consider the probability
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of achieving each possible agreement value, and to characterize how these probabilities

depend on the initial opinions of the agents. With this motivation in mind, we consider

the following definition for an agreement law:

Consider a network that is in agreement at time k. We define the agreement law as the condi-

tional probability mass function for the agreement value a[k] given the initial opinions of the agents

x1[0], . . . , xn[0], i.e. the vector


P (a[k] = 1 |x1[0], . . . , xn[0])

...

P (a[k] = m |x1[0], . . . , xn[0])




. For short, we use the notation P (a[k] |x1[0], . . . , xn[0]) for the

agreement law.

Notice that the agreement law is a function that maps the initial opinions of the agents to

the probabilities of each possible agreement value, given that the network is in agreement.

These definitions are clarified using an example.

Example

Consider a network comprising n = 4 autonomous vehicles that are tasked with identify-

ing whether an enemy vehicle is present and destroying the vehicle through cooperative

action if it is present. Each vehicle i forms an initial opinion xi[0] about whether the target is

absent (opinion 1) or present (opinion 2). For instance, x1[0] = x3[0] = 1, x2[0] = x4[0] = 2
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denotes that vehicles 1 and 3 initially believe that the target is absent, while vehicles 2 and

4 initially believe that the target is present. These initial opinions can equivalently be writ-

ten in indicator vector notation, e.g., as s1[0] = s3[0] =




1

0


 and s2[0] = s4[0] =




0

1


. Using

the protocol described below, the agents update their opinions over time. The network is

said to be in agreement at a time k if all the agents have the same opinion (either a[k] = 1

or a[k] = 2), and the agreement value is that common opinion. Given that the network is

in agreement at time k, the agreement law is the conditional probability mass function for

the agreement value given the initial opinions. For instance, one possible agreement law

is 


P (a[k] = 1 |x1[0], . . . , x4[0])

P (a[k] = 2 |x1[0], . . . , x4[0])


 = 0.25(s1[0] + s2[0] + s3[0] + s4[0]). (4.1)

If the agents are in agreement and this agreement law holds, notice for instance that the

following are true:

• If all the agents initially believe that the enemy is present, then they agree that the

enemy is present at time k.

• More generally, if α of the 4 agents initially believe that the enemy is present, then

at time k they agree with probability α
4 that the enemy is present and agree with

probability 1− α
4 that the enemy is not present.

Thus, an agreement law of this form holds promise in equitably deciding on a common

opinion based on the initial opinions of the agents. Our aim is to develop a protocol that
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can achieve an equitable agreement law such as this one.

4.2.2 Agreement Protocol: Formulation

The agents in the network seek to reach agreement, by observing the current opinions of

other agents and updating their opinions based on these observations. We assume that the

agents are networked (distributed), in that each agent can only observe (through commu-

nication or sensing) the opinions of a subset of the other agents in the network. We define

the set of agents whose opinions can be observed by agent i as the neighborhood of i,

and label this set as N (i); we assume throughout that N (i) contains i, i.e., each agent can

observe its own opinion. In general, observations made by each agent may be faulty; we

shall explicitly model these communication/sensing faults in the next section. We find it

convenient to associate a graph with the observation topology of the network. In particu-

lar, we define the n×n adjacency matrix D = [dij ] of the network to reflect the observation

topology, as follows:

dij = 1, j ∈ N (i)

dij = 0, otherwise

We refer to Γ(D′) as the adjacency graph of the network. We note that the adjacency graph

captures the observation topology of the network, in that there is a directed edge from j to i

if and only if agent i can observe the opinion of agent j. We expect that the adjacency graph

is recurrent and hence ergodic (since the graph has self-loops) in most applications: we
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would expect for a communication pathway to be available between each pair of agents,

whenever fair decision-making is desired.

We propose a synchronous discrete-time protocol for reaching agreement3. The protocol

works as follows. At each time-step, each agent i stochastically updates its opinion us-

ing the opinions of its neighbors. The manner in which each agent i updates its opinion

between time k and time k + 1 is as follows:

1. Agent i polls its neighbors for their time-k opinions, and in general observes possibly-

faulty versions of these opinions. We use yij [k] as a 0 − 1 indicator-vector notation

for the agent i’s observation of agent j’s status at time k, for j ∈ N (i).

2. Agent i weights and linearly combines its observations. That is, agent i computes the

vector pi[k + 1] =
∑

j∈N (i) zijyij [k], where the weights zij are non-negative and sum

to 1. These weights zij are design parameters for our protocol. We note that pi[k+1] is

a probability vector—i.e., its entries are non-negative and sum to 1. For convenience

we also use the notation pi[k + 1] =
∑

zijyij [k], where zij , 0 for j 6= N (i).

3. We realize the time-(k+1) state of agent i according to the probability vector pi[k+1].

That is, the time-(k+1) opinion of agent i is selected to be c ∈ 1, . . . , m with probabil-

ity listed in component c of pi[k+1]. Each agent’s opinion is updated independently.

4. We stop updating each agent’s opinion at a stopping time T , which is also a design

parameter, once the network is in agreement with high probability and a desired

3An analogous asynchronous protocol can be analyzed in a very similar fashion to the synchronous proto-
col discussed here. Please see [29] for the necessary analysis tools.
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agreement law is achieved. The agents’ opinions at the stopping time are assumed

to be their final ones, based on which an action might be taken.

Thus, we have specified a protocol, which we claim can achieve agreement. Our aim is to

show that agreement can indeed be achieved with high probability in this manner, and to

design the weights zij and the stopping time T to achieve a desired agreement law and

a high agreement probability—i.e., to achieve agreement in a fair, rapid, and efficacious

manner.

A few remarks are in order at this point:

• We stress that our protocol is memoryless (static). The agents in the network do not

store, or at least do not make future updates based on, their past opinions. We believe

that a static protocol is appealing in many applications because of the limited storage

capacity and computational power of sensing agents in these applications. Static

protocols are also well-motivated from a humanistic viewpoint, in that individuals

tend to seek agreement by arguing for their current viewpoint, rather than basing the

argument from their historical sequence of opinions.

• The astute reader will notice that the protocol has a special quasi-linear structure.

In particular, the probability vector for the next-opinion of each agent is a weighted

linear combination of the observations made by each agent. As we will discuss in the

next section, this quasi-linear structure (which was studied in detail in the context

of the influence model in [17]) permits significant analysis of the network dynamics.
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Of course, the cost of restricting ourselves to a quasi-linear protocol is that we risk

reduction in performance of the protocol, for example in terms of the agreement

laws that we can design. Some evaluation of both the benefits and limitations of our

protocol can be found in Section 4.

• We find it convenient to assemble the weights zij into the protocol matrix Z = [zij ].

We sometimes use the term protocol graph for Γ(Z). We note that, in typical cases,

we will choose the protocol graph to be ergodic.

Example

Let us return to the autonomous-vehicle example. In our example, we assume that each

agent observes two of the other agents. Specifically, we assume that the neighborhoods

of the four agents are as follows: N (1) = {4, 1, 2}, N (2) = {1, 2, 3}, N (3) = {1, 2, 3},

and N (4) = {3, 4, 1}. The adjacency graph in this case is D =




1 0 0 1

1 1 1 0

0 1 1 1

1 0 1 1




, and so the

adjacency graph is the one shown in Figure 4.1.1. The protocol that we propose determines

the next-opinion of each agent stochastically, according to a weighted linear combination

of the observations available to that agent. For instance, say that, at time k, agent 1 observes

that agent 4 and agent 1 have opinion 1 (no target present), and observes that agent 2 has

opinion 2 (target present). In indicator vector notation, the observations made by agent 1
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are y14[k] =




1

0


, y11[k] =




1

0


,and y12[k] =




0

1


. A particular agreement protocol might

determine agent 1’s opinion at time k + 1 according to the probability vector 0.25y14[k] +

0.5y11[k] + 0.25y12[k], which would equal




0.75

0.25


 at this time instant.

4.2.3 A Model for Communication

We have now completely described the agreement problem and suggested a protocol to

achieve agreeement. In order to design the parameters of our protocol and to evaluate it,

however, we still require a model for the observations that employed in the protocol. In

applications of interest, we might expect these observations to be faulty, both because of

transmission power constraints on the agents and because of disturbances in the environ-

ment. Thus, we seek a model that captures that observations may be faulty versions of the

opinions of the other agents.

With this motivation in mind, we consider the following model for observation in the

network, or in other words for relating each observation yij [k] with the opinion xj [k],

j ∈ N (i). If the communication were fault-free, we could assume that yij [k] = sj [k]

(recall that sj [k] is the indicator-vector notation for xj [k]. Instead, we model yij [k] as be-

ing determined based on a probability vector that is parametrized by the current opinion

of agent j, xj [k]. That is, given that xj [k] = c, we model yij [k] as being realized from

the probability vector Aij(c), c = 1, . . . ,m. We can describe the model for observations
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more concisely, by noting that yij [k] is realized from the probability vector Aijsj [k], where

Aij =
[
Aij(1) . . . Aij(m)

]
. Hence, we have postulated a model for the observations.

This model for observations together with the specified protocol constitute a complete

model for the dynamics of the agents’ opinions.

A few notes are in order about our model for observations:

• Notice that the diagonal entries of each Aij represent probabilities that the opinion of

agent j is correctly observed by agent i, while the off-diagonal entries represent prob-

abilities of faulty transmission. Based on this, we shall associate a fault probability

with each edge in the adjacency graph (i.e., with each pair i, j, j ∈ N (i). We define

this fault probability as the maximum among the sums of the off-diagonal entries in

the columns of Aij .

• In designing the parameters of the agreement protocol in Section 3, we shall find it

useful to consider both a model in which observation faults do not occur, and one

in which faults are possible. Precisely, we refer to a model in which Aij = Im for all

i, j ∈ N (i) as a fault-free model. We use the term faulty model whenever at least

one of the Aij is not equal to Im.

• While the exact model for faults is likely to be specific to the application of interest, it

is worthwhile to ruminate on plausible fault models. A simple yet plausible model is

one in which each observation is subject to the same fault dynamics, i.e. Aij = A for

all i, j ∈ N (i). In many applications, we might expect the off-diagonal entries of A

to be small but strictly positive. That is, we might expect a small probability of each
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opinion being mis-observed as any other opinion. One shortcoming of this model is

that the agents’ observations of their own opinions are assumed to be faulty. More

realistically, we might expect Aii = Im for each i, while Aij = A 6= Im for j 6= i.

Example

Let us again consider the autonomous-vehicles example, and focus on a single observation

made by one of the agents, say y14[k]. In our model, the observation y14[k] is determined

according to a probability vector specified by the current opinion of agent 4. For instance,

if agent 4 has opinion 1, the observation specified by y14[k] is determined according to an

arbitrary probability vector, e.g.,




0.99

0.01


. That is, the observation indicates the opinion 1

with probability 0.99, and indicates the opinion 2 with probability 0.01. Similarly, if agent 4

has opinion 2, the observation is realized based on another arbitrary probability vector, say


0.04

0.96


. A more condensed notation for the observation probability vector in this example

is




0.99 0.04

0.01 0.96


 s4[k].

4.3 Design of the Agreement Protocol

In the previous section, we have proposed a protocol for discrete-valued decision-making

(agreement) in a network of sensing agents. What remains to be done is to determine
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how the parameters of this stochastic protocol—namely, the weights zij (equivalently, the

protocol matrix Z) and the stopping time T—should be selected, and in turn to decide

whether or not our strategy is in fact a useful approach for decision-making or agreement.

In this section, we analyze the model for agreement that was introduced with our protocol

in the previous section, and use this analysis to design the weights zij and the stopping

time so as to rapidly achieve a desired agreement law.

Our approach for analyzing the model for agreement and designing the agreement proto-

col is as follows. We first show that our model for agreement can be viewed as an influence

model (see [17, 18] for an introduction to the influence model), and use this perspective

to study the asymptotic behavior of the network when the agreement protocol is applied.

This asymptotic analysis shows that, when observation faults may occur, the agreement

law loses its dependence on the initial opinions of the agents and hence fair agreement

is impossible asymptotically. Thus, we are motivated to seek agreement in a finite time.

Specifically, we show how to design the weights zij to achieve a desired positive linear

agreement law given that faulty observation does not occur. We then discuss conditions

on the network for which these protocols can be used to achieve agreement to desired

agreement laws with high probability even when faults may occur. Application of the

protocols in these faulty cases is shown to require use of a finite stopping time.
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4.3.1 A Tool for Analyzing Asymptotics: the Influence Model

The influence model is a discrete-time and discrete-valued stochastic automaton defined

on a network, whose update has a special quasi-linear structure [17]. This quasi-linear up-

date is appealing because it permits characterization of state occupancy probabilities for

small groups of agents in the network using low-order linear recursions. The special struc-

ture of the influence model also allows for significant characterization of the asymptotics

of the automaton, in terms of these low-order recursions (or in terms of matrices or graphs

associated with these recursions). An introduction to the influence model can be found in

thesis [17] and the article [18], and a few further results can be found in the later thesis [29].

In the influence model, each agent (called a site in [17]) can take on one of a finite number

of opinions (called statuses) at each time step. (In general, the number of statuses taken by

each agent, and the interpretation of these statuses, may vary throughout the network.) At

each time-step, each agent updates its status independently, as follows:

• The agent polls its neighbors for next-status probability vectors, and then indepen-

dently realizes its next status based on a weighted linear combination of these prob-

ability vectors. The weights are assumed to be non-negative and to sum to 1.

• The probability vector provided by each neighbor is parametrized by the current sta-

tus of that neighbor; that is, the neighbor provides one of a set of possible probability

vectors, depending on its current status.
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From this description of the influence model update, it is clear that our model for agree-

ment can be viewed as an instance of an influence model in which each agent can take

on the same number of opinions. This interpretation immediately allows us to apply the

many analyses of the influence model to our model. For our purposes here, we shall only

be concerned with one analysis, namely characterization of the asymptotics of the global

dynamics of the network. In particular, we note that the joint opinions of the n agents in

our model are governed by a Markov chain with mn states. Because our model is an influ-

ence model, it turns out that characteristics of this master Markov chain can be phrased in

terms of the protocol matrix Z = [zij ] and the local fault matrices Aij , and hence asymp-

totic properties of the agreement law can be determined. Unfortunately, for a typical fault

model and protocol, these asymptotic properties constitute negative results: they show

that the agreement law loses its dependence on the initial condition asymptotically, so that

a desired agreement law cannot possibly be designed in an asymptotic sense. Results of

this sort are presented for a plausible fault model in the subsequent theorem.

Theorem 4.1 Consider a communication model where for each i there is j ∈ N (i) such that Aij is

dense (i.e., all entries are non-zero). For this communication model, the sequence of agreement laws

P (a[k] |x1[0], . . . , xn[0]) converges to a function that has no dependence on the initial conditions

x1[0], . . . , xn[0], whenever a protocol matrix with strictly positive weights zij (for j ∈ N (i)) is

used.

Proof. This theorem can be proved directly using results in [17], but a first-principles proof

is simple enough to warrant inclusion. In particular, notice that the transition matrix for the
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master Markov chain is dense, since each agent can transition to any other opinion in the

course of one time-step and the update for each agent is independent. Since this transition

matrix is dense, the master Markov chain comprises a single ergodic class. Hence, from

standard Markov chain analysis (see, e.g., [20]), the probability that the master Markov

chain is in any state, and so the conditional probability that the network has a particular

agreement value given that it is in agreement, converge and do not depend on the inital

conditions x1[0], . . . , xn[0]. ¤

We remark that the above theorem applies to the typical case in which the graph of the pro-

tocol matrix Γ(Z) is recurrent and agents have available perfect observations of their own

statuses, but communication between different agents is subject to arbitrary faults. The re-

sult of the theorem for this typical example makes clear that we cannot in general hope to

achieve fair agreement (i.e., to design the agreement law) from the asymptotic dynamics

of the network. In particular, in the limit, the agreement value of the network becomes

independent of the initial conditions of the agent, and hence agreement law design is im-

possible. This asymptotic loss of dependence on the initial condition has a conceptual

explanation: since our protocols are memoryless, over time the faults that impact the net-

work come to dominate its dynamics in comparison to the initial conditions of the agents,

and hence the opinions of the agents become independent of their initial values4. Hence,

we are motivated to use a finite stopping time for our protocol. More particularly, we are

motivated to stop the protocol after enough time has passed that agreement is likely, but

4It is worth noting that many other sufficient conditions for independence of the agreement value from the
initial opinions can be developed; this loss of information is common when memoryless protocols are used.
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before the faults have come to dominate the system dynamics. We pursue this finite-time

agreement strategy in the the next sub-section.

Example

Let us again consider the four-agent autonomous-vehicle example introduced in Section 2.

From Theorem 4.1, we see that the agreement law asymptotically loses its dependence on

the initial statuses of the agents whenever a protocol matrix with a recurrent graph is used

and observations are faulty.

Because of the small number of agents in the example, we can easily construct the master

Markov chain, and hence verify the result of Theorem 4.1. For instance, when the protocol

matrix Z =




0.5 0.25 0 0.25

0.25 0.5 0.25 0

0 0.25 0.5 0.25

0.25 0 0.25 0.5




is used and the fault model Aij = A =




0.99 0.04

0.01 0.96




is assumed, the asymptotic agreement law becomes




0.87

0.13


 regardless of the initial opin-

ions of the agents.
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4.3.2 Protocol Design for a Model with Faults

In this section, we consider the design of agreement protocols with finite stopping times.

In particular, we pursue agreement law design in the context of a fault-free model. We then

delineate conditions on the protocol matrix and the fault model given which agreement is

achieved with high probability before a fault occurs. Under these conditions, we can apply

the protocol designed for the the fault-free model for a finite duration, and guarantee that

the desired agreement law is achieved with high probability.

We begin by studying agreement law design for a fault-free model. Again, we find it

convenient to view the dynamics of our model as those of an influence model. Since we

are concerned with agreement among all the agents in the network, let us again consider

the asymptotics of the master Markov chain. In the fault-free case, we note that this master

Markov chain has at least m absorbing states: if all the agents have the same opinion,

then each agent will retain this opinion since there are no faults in communication. In

other words, if the network has reached agreement to any agreement value, it will remain

in agreement. In fact, given that the graph of the protocol matrix Γ(Z) is ergodic, it can

be shown (see [18]) that the network will in fact reach one of these m absorbing states,

and hence will reach agreement asymptotically. This result is formalized in the following

theorem:

Theorem 4.2 Consider a fault-free model. If the protocol graph Γ(Z) for the model is ergodic, then

the network reaches agreement in probability, i.e. the sequence of agreement probabilities converges5

5The network can also be shown to reach agreement with probability 1. This stronger notion of stochastic convergence
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to 1, for any set of initial opinions x1[0], . . . , xn[0].

Proof. We refer the reader to [18] for the proof in the case that m = 2. The generalization

of the proof to arbitrary m is trivial, so we omit it. ¤

In the fault-free case, we not only can guarantee agreement asymptotically, but can design

the asymptotic agreement law by intelligently choosing the protocol matrix Z. More pre-

cisely, we can design the asymptotic agreement law to be any linear function of the form

α1s1[0]+ . . .+αnsn[0], where α1, . . . , αn are positive and sum to 1. This ability to design the

agreement law is a primary advantage of our strategy for decision-making (agreement),

since it provides flexibility in the dependence of the agreed-upon value on the initial val-

ues of the agents. The result is formalized in the following theorem:

Theorem 4.3 Consider a network with a recurrent adjacency graph, and say that we seek to achieve

the positive linear asymptotic agreement law

lim
k→∞




P (a[k] = 1 |x1[0], . . . , xn[0])

...

P (a[k] = m |x1[0], . . . , xn[0])




= α1s1[0] + . . . + αnsn[0], (4.2)

where α1, . . . , αn are strictly positive and sum to 1. We can use the following three-step procedure

to construct a protocol matrix that achieves this agreement law:

is not needed for our purposes here.
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1. We construct the matrix Ẑ =




1
|N (1)|

. . .

1
|N (n)|




D (where D is the adjacency matrix

for the network), and note that Ẑ is a stochastic matrix whose graph is ergodic.

2. We find the left eigenvector ŵ of Ẑ corresponding to the dominant unity eigenvalue.

3. We choose the protocol matrix to be

Z =




bw1/α1Pn
i=1 bwi/αi

. . .

bwn/αnPn
i=1 bwi/αi




(Ẑ − I) + I .

Furthermore, the probability of agreement converges to 1 when this protocol is used.

Proof. This theorem takes advantage of one of the essential tractabilities of the influence

model, namely that opinion probabilities of single agents can be found using a low-order

linear recursion. Specifically, as long as the designed protocol graph is ergodic (which we

shall show to be always true when the procedure above is used), we know that the net-

work reaches agreement asymptotically, and hence that the agreement law can be deter-

mined by finding the asymptotics for the opinion-probability vector for any single agent.

These opinion probabilities for individual agents satisfy a linear recursion [17, 18]. In par-

ticular, for any agent i, we find that P (xi[k + 1] = j |x1[0], . . . , xn[0]) =
∑n

l=1 zjlP (xl[k] =

j |x1[0], . . . , xn[0]) for j ∈ 1, . . . , m. That is, the probability that an agent i has opinion j at a

particular time is a linear combination of the probabilities that the agent’s neighbors have

opinion j at that time, and hence these probabilities can be found recursively. By stacking
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the opinion probabilities into a single vector and applying the probability recursion for k

time-steps (see [18] for details), we obtain that




P (x1[k] = 1 |x1[0], . . . , xn[0])

...

P (x1[k] = m |x1[0], . . . , xn[0])

−−−−
...

−−−−

P (xn[k] = 1 |x1[0], . . . , xn[0])

...

P (xn[k] = m |x1[0], . . . , xn[0]




= (Z ⊗ Im)k




s1[0]

...

sn[0].




(4.3)

From standard linear systems results and and linear-algebraic manipulation, we can find

the asymptotic probability vectors for the opinions of the agents, which are equal (since the

network is in agreement asymptotically). We thus can find agreement law for the network.

Omitting the details (see [18] for these), we find that the asymptotic agreement law is

lim
k→∞




P (a[k] = 1 |x1[0], . . . , xn[0])

...

P (a[k] = m |x1[0], . . . , xn[0])




= w1s1[0] + . . . + wnsn[0], (4.4)

where w is the left eigenvector of Z corresponding to the dominant unity eigenvalue.
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Now let us check that the left eigenvector of Z is in fact the vector α =
[
α1 . . . αn

]
, to

check that the desired agreement law is achieved. To do so, note that

αZ = α(




bw1/α1Pn
i=1 bwi/αi

. . .

bwn/αnPn
i=1 bwi/αi




(Ẑ − I) + I) =
1∑n

i=1 ŵi/αi
ŵ(Ẑ − I) + α = α. (4.5)

Hence, the desired agreement law is achieved.

It remains to be shown that Z is a stochastic matrix with an ergodic graph. To do so, notice

first the Ẑ is a stochastic matrix since its entries are non-negative and each row sums to 1.

In fact, the graph Γ(Ẑ) is ergodic since the graph is recurrent by assumption, and further

the diagonal entries of Ẑ are non-zero. Since Ẑ is stochastic and has an ergodic graph, it

has a single dominant unity eigenvalue and the corresponding left eigenvector ŵ is strictly

positive (see, e.g., [20]). Now consider Z =




bw1/α1Pn
i=1 bwi/αi

. . .

bwn/αnPn
i=1 bwi/αi




(Ẑ−I)+I . Note

that Ẑ−I has row sums equal to zero, negative diagonal entries, non-negative off-diagonal

entries, absolute row sums less than 1, and has a graph that is recurrent. Since ŵ and α̂

are strictly positive,




bw1/α1Pn
i=1 bwi/αi

. . .

bwn/αnPn
i=1 bwi/αi




(Ẑ−I) also has row sums equal to zero,

negative diagonal entries, absolute row sums less strictly than 1, and has a recurrent graph.

Finally, we find that Z has row sums equal to 1 and non-negative entries. The diagonal

entries are strictly positive and the graph remains connected, so Z is a stochastic matrix
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with an ergodic graph.

Since Z is ergodic, we also see from Theorem 4.2 that the the probability of agreement

approaches 1 when this protocol is used. Hence, the proof is complete. ¤

For the fault-free model, we have so far designed a protocol to achieve a desired agreement

law, and also shown that the probability of agreement approaches 1 asymptotically when

this protocol is applied. In fact, we can also lower-bound the rates at which agreement, and

a desired agreement law, are achieved; such results on the speed of agreement are valuable

to gauge whether the developed protocol is effective even when faults may occur. Bounds

on the rate of agreement and the rate of convergence to the asymptotic agreement law are

given in the following theorem:

Theorem 4.4 Consider a fault-free model, and assume that the graph of the protocol matrix is

ergodic. Then the probability that the network is not in agreement by time k is upper-bounded

for any set of initial opinions by a function of the form Cλk, where C is a positive constant and

λ = max(|λs(D)|, |λd(D2)|). Here, λs(D) refers to the subdominant eigenvalue of D. Also, D2

is the matrix formed by taking the Kronecker product of D with itself and then removing rows and

columns corresponding to self-Kronecker products of rows and columns of D, and λd(D2) is the

dominant eigenvalue of D2. Furthermore, the distance between the agreement law at time k and the

asymptotic agreement law (in a two-norm sense) is upper bounded by a function of the form C2λ
k,

where C2 is a positive constant.

Proof. The bound on the agreement probability can be proved through a clever formulation
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of the master Markov chain of an influence model, which is pursued in the thesis [29]. The

details of this proof are unimportant to our current development and so are omitted. The

bound on the distance of the agreement law from the asymptotic law also can be obtained

by considering the settling properties of the master Markov chain. Again, we feel that the

details are unimportant. ¤

What is important is to note that we now have an exponential bound (with respect to

time) on the probability of disagreement of the agents. Hence, for a given protocol matrix,

we can lower-bound the probability of agreement within a given finite time interval. If,

further, the probability of a fault occurring within this time interval can be upper-bounded,

we can lower-bound the probability of agreement even when faults are permitted in our

model.

The final aspect to our agreement protocol design study is to upper-bound the probability

of a fault occurring within a number of time-steps in terms of the probability of a single

fault, so that we can guarantee agreement with high probability when the probability of a

fault is sufficiently small. The following theorem provides a bound on the probability that

a fault occurs within a number of time steps.

Theorem 4.5 Let fmax be the maximum fault probability among the edges in the adjacency

graph, and let L be the total number of edges in the adjacency graph. Then the probability that no

faulty transmissions have occurred by time-step k is greater than or equal to (1− fmaxL)k.

Proof. By viewing the event that a fault occurs somewhere in the network at a given time-
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step as the union of the events that a fault occurs on each particular link, we immediately

see that the probability of a fault at time k is less than or equal to fmaxL. Hence, the

probability that a fault has not occurred by time k is lower-bounded by (1 − fmaxL)k.

¤

We have thus developed a lower bound on the probability that no faulty transmissions

have occurred by time-step k. For each k, this bound approaches 1 in the limit of small

fmax. Hence, when fmax is sufficiently small, we can use the protocol developed in Theo-

rem 4.3 to achieve agreement with high probability before a fault occurs. In particular, by

stopping the algorithm at a time when agreement has been achieved with high probability

but a fault has likely not occurred, we can guarantee a high agreement probability while

achieving a desired agreement law. This ability to achieve agreement with high probability

at a finite stopping time is captured in the following theorem:

Theorem 4.6 Assume that the adjacency graph of the network is recurrent, and say that we design

a protocol matrix Z to achieve a desired asymptotic agreement law assuming fault-free communica-

tion, according to Theorem 4.3. When this protocol matrix is used together with a stopping time T ,

the agreement probability at the stopping time is lower-bounded in the faulty model (for any set of

initial opinions) by (1− CλT )((1− fmaxL)T ) (where C, λ, fmax, and L are defined in Theorems

4.4 and 4.5. In the limit as fmax approaches 0, the agreement probability approaches 1 when the

stopping time is chosen as 1√
fmaxL

. Furthermore, the agreement law approaches the asymptotic law

for the fault-free model in this limiting case.

Proof. The agreement probability at time T is greater than or equal to the joint probabil-
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ity that agreement is achieved at time T and no faults occur before time T . Hence, the

agreement probability is upper bounded by the product of the conditional probability of

agreement given that no faults have occurred and the probability that no faults have oc-

curred. Thus, invoking Theorems 4.4 and 4.5, we find that the agreement probability at

time T is lower-bounded by (1−CλT )((1−fmaxL)T ). We can straightforwardly check that

this lower bound on the agreement probability approaches 1 in the limit of small fmax,

when the stopping time T = 1√
fmaxL

is used. Further, since the probability of having a

fault by this stopping time approaches 0 as fmax approaches 0 while the stopping time

itself increases unboundedly with decreasing fmax, we recover that the agreement law ap-

proaches the asymptotic one for the fault-free case. ¤

Example

Let us again consider the four-agent example. Say that we wish to design the agreement

law 0.4s1[k] + 0.3s2[k] + 0.2s3[k] + 0.1s4[k]. Using Theorem 4.3, we find that the following

protocol matrix achieves the desired agreement law asymptotically, in the fault-free case:

Z =




0.92 0.040 0 0.040

0.053 0.89 0.053 0

0 0.080 0.84 0.080

0.16 0 0.16 0.68




. (4.6)
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Applying Theorem 4.4, we also obtain that the parameter λ that governs the rate of agree-

ment is λ = 0.92.

From Theorem 4.6, we know that the agreement protocol designed for the fault-free case

can also be used in the faulty case, whenever the probability of failure fmax is sufficiently

small. Application to this faulty case requires use of a finite stopping time, as discussed in

Theorem 4.6.

Because the number of agents in this example is small, we can explore the performance of

the protocol further by constructing the master Markov chain. We have done so, assum-

ing a probability of one fault per one-thousand transmissions (Aij = A =




0.999 0.001

0.001 0.999


,

fmax = 0.001). From the master Markov chain, we can find the agreement probability at

each time-step, given the initial opinions of the agents. These agreement probabilities are

plotted in Figure 4.3.2, for the case where agents 1 and 2 initially share opinion 2 while

the others have opinion 1. This plot shows that agreement is indeed achieved with high

probability before a fault occurs. We also illustrate the agreement law, in Figure 4.3.2. This

figure shows that the desired agreement law




0.7

0.3


 is achieved at a finite time but lost as-

ymptotocally. Finally, it is instructive to simulate the operation of the agreement protocol,

to provide a clearer understanding of why a finite stopping time is needed. In Figure 4.3.2,

we plot the number of agents that agree that a target is present (opinion 2) at each time-

step, We see that the network reaches agreement quickly (in this case to opinion 2), but

eventually the network is bumped out of this agreement value and reaches agreement on

147



opinion 1. Thus, we see that eventually the faults come to dominate the behavior of the

protocol, and the dependence of the agreement law on the initial opinions of the agents is

lost.

Although in this simple example we can verify the results of our analysis by constructing

the master Markov chain, we note that the power of our analysis derives from the fact that

in general we do not need to construct the master Markov chain. Design of the protocol

parameters and characterization of the protocol’s performance can be achieved systemati-

cally, without requiring consideration of the joint behavior of all the agents’ opinions.
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Figure 4.2: The agreement probability at each time-step is shown. We see that the network
is in agreement with high probability within 50 time-steps.
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Figure 4.3: The agreement law is illustrated. In particular, the conditional probability of
the agreement value 2 given that the network is in agreement is shown. We see that the
desired conditional probability of 0.7 is achieved around time-step 30. Slowly, this desired
agreement law is lost, as the conditional probability asymptotically approaches the initial
condition-independent value of 0.5.

4.4 Discussion

We have developed a protocol for fair agreement or decision-making in a network of

sensing agents that may be subject to faults in communication. As is made clear by the

autonomous vehicle control example, our protocol holds promise as a tool for distrib-

uted decision-making. In particular, it builds on the current control-theoretic studies of

agreement protocol design in several respects, including by permitting agreement among

discrete-valued opinions, explicitly modeling faults in observation, and introducing the

notion of a stopping time.

From a broader perspective, we view our work as a first step toward developing a control
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Figure 4.4: The number of agents with opinion 2 is shown for the four-agent autonomous
vehicle example. The agents quickly agree on opinion 2, but over time the network is
bumped out of agreement by faults, and consequently the dependence of the agreement
law on the initial opinions of the agents is also lost.

theory for decision-making in networks of communicating or sensing agents. Our control-

theoretic viewpoint allows for such advances as the design of the agreement law, by bring-

ing to bear linear systems and controls notions. We believe that our work (along with other

recent control-theoretic studies of agreement, e.g., [2]) also has the complementary benefit

of introducing the problem of fair, distributed decision-making to the control community.

While this article puts forth some advantages of a control-theoretic viewpoint on agree-

ment protocol design, we believe much remains to be done in evaluating the developed

protocol, and in tying our results by those given in the computer science community (e.g.,

[10]).

The following are a couple specific directions that we believe should be pursued to better

evaluate the application of our protocol, and to further improve the protocol.
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Figure 4.5: The agreement probability at each time-step is shown, when the optimized
(scaled) protocol is used. We see that the network is in agreement with high probability
within 20 time-steps.

Protocol Optimization: In this article, we have primarily been concerned with decid-

ing whether or not agreement can be achieved, rather than optimizing the rate at which

agreement is achieved. Optimization of the rate of agreement is worthwhile, both be-

cause rapid agreement may be required in the application of interest, and because im-

proving the rate of agreement may reduce the probability of a fault occurring before the

stopping time. One simple strategy for improving the agreement rate is through scaling

of the protocol matrix developed in Section 4.3.2. For instance, let us again consider the

autonomous vehicle control example. It can easily be checked that the protocol matrix

Z =




0.75 0.13 0 0.12

0.17 0.66 0.16 0

0 0.25 0.5 0.25

0.5 0 0.5 0




achieves the same desired agreement law as the protocol
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developed in Section 4.3.2, but achieves agreement more quickly6 (according to λ = .81

rather than λ = 0.92), as shown in Figure 4.4. We believe that more involved strategies for

optimizing the agreement rate could yield significant improvement of the protocol. We re-

fer the reader to [2] for a linear matrix inequality-based strategy for optimizing agreement

rates in a particular deterministic model; possibly a similar approach could be used for our

models.

Evaluation of Error Probabilities: In this paper, we have only been concerned with the

relationship between the agents’ initial opinions and a final decision taken by the agents.

In reality, we might expect these initial opinions to be noisy and possibly biased of an

underlying phenomenon. It would be interesting to enforce a probabilistic model on the

initial opinions of the agents, and—using this model—to characterize the success of our

decision-making strategy (e.g., in terms of the probability of making the correct decision

or the expected cost of the decision taken). One particularly compelling reason for pursu-

ing this Bayesian approach is to better evaluate the constraint of a linear agreement law. It

is easy to check that the minimum probability of error decision laws are not linear ones, ex-

cept in the special case where the optimal strategy is to distribute the opinion of one agent

to all the others. Thus, for applications where such minimum error agreement laws are

desired, a comparison between our laws and the minimum error laws would be valuable.

It is important to stress, however, that there are no known protocols that achieve min-

imum error agreement among distributed agents, and so linear agreement laws remain

6This scaling of the transition matrix can be developed more generally; we chose not to do so in Section
4.3.2 because it frustrates the notation without providing much further insight into the network dynamics.
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compelling even for these applications; the flexibility and tractability our protocol may be

well worth a degree of suboptimality in some applications. Further, we believe that it is

naive to assume accurate knowledge of priors in many applications, and also believe that

decision-making may often be impacted by agents’ selfish motivations rather than solely

a minimum error probability requirement. For these reasons, we have chosen to develop

our protocol without consideration of prior probabilities; we leave it to future work to

consider decision-making from both a minimum probability of error and a game-theoretic

viewpoint.

In considering our study of agreement from this Bayesian viewpoint, we also believe that

meshing our strategy with that of [24] is a valuable direction of research. In particular,

we believe that the sensor-network error reduction scheme of [24], which suggests using

measurements from neighboring sensors to reduce errors in a locally maximum likelihood

manner, could be used as a first step in our protocol. Thus, both an immediate reduction

in errors and an eventual fair agreement would be achieved.
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