
AutoDBT: A Framework for Automatic Testing of Web Database Applications

By

Lihua Ran

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

December 2004

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of Lihua
Ran find it satisfactory and recommend that it be accepted.

———————————————————
Chair

———————————————————

———————————————————

ii

Acknowledgment

I would like to express my gratitude to all the people helping me in making

the thesis possible. First, many thanks to my advisor, Dr. Dyreson, for his

brilliant insights and endless patience. It’s been a pleasure working with him.

Secondly, thanks to Dr. Andrews for bringing out this topic that leading me

to explore this new exciting research area, and also thanks to Dr. Medidi for

being in my committee and giving me many kind suggestions. Thanks to my

husband, my parents and parents-in-law for their love and support. Thanks

to my friend GaoYan Xie for many good helpful discussions and thanks to his

wife Yun Jiang for her kind help with my little baby. Finally, thanks to my

lovely little daughter Joy for all the joy and kisses she has given me.

iii

AutoDBT: A Framework for Automatic Testing of Web Database

Applications

Abstract

by Lihua Ran, M.S.
Washington State University

December 2004

Chair: Curtis Dyreson

The complex functionalities and high demands of software quality make

manual testing of a web application ineffective. Automatic software testing

methods can help to determine if an web application is working correctly,

but existing methods are unable to test whether such an application interacts

correctly with a back-end database. This paper elaborates an approach, called

the Automatic Database Tester (AutoDBT), that extends the functional or

black-box testing of a web database application to include database updates.

AutoDBT takes as input a model of the application and a set of testing criteria.

The model consists of a state transition diagram showing how a user navigates

among pages in the application, and a data specification which captures how

data flows in the application and how the database is updated. AutoDBT

uses the model along with the test criteria to generate test cases for functional

iv

testing of the application. AutoDBT can also generate an oracle to validate

whether a back-end database is updated correctly during a test. This paper

first reports on the design and architecture of AutoDBT, then the generality

and the implementation plan of the AutoDBT have been discussed.

v

Contents

Acknowledgment . iii

Abstract . iv

List of Figures . ix

1 Introduction 1

2 Motivating Example 6

3 Framework of Problem 9

3.1 Formal Description of Testing Web Application without Database 9

3.2 Formal Description of Testing Web Database Application . . . 12

3.2.1 Dirty Test Suite Approach 17

3.2.2 Clean Test Case Approach 18

3.2.3 Tradeoff between these two Approaches 18

3.3 One Possible Solution of Testing

Web Database Application . 19

vi

4 The AutoDBT Framework 23

4.1 Overview . 23

4.2 DEFSM Modeling . 24

4.2.1 State Transition Diagram 25

4.2.2 Data Specification . 27

4.3 Test Sequence Generator . 36

4.4 Dynamic Data Specification Generator 37

4.4.1 Update List . 38

4.4.2 Data Inheritance Graph Generation 40

4.4.3 Dynamic Input Specification Generation 41

4.5 Summary . 44

5 The Testing Process 45

5.1 Test Sequence Scheduler . 46

5.2 Guard Generation and Evaluation 48

5.3 Step Mode Execution and Test Result Evaluation 50

5.3.1 On-demand Oracle Generator 50

6 Analysis of the Test Report 54

7 Generality Analysis 57

7.1 Basic Cases of Database Update 58

vii

7.2 Generality Argument . 61

8 Implementation Architecture 65

8.1 Overview . 65

8.1.1 Test Sequence Generator 65

8.2 Dynamic Data Specification Generator 66

8.3 Test Sequence Scheduler . 68

8.4 Guard Generator . 69

8.5 Oracle Generator . 72

8.6 Step Mode Execution . 73

8.7 Test Result Evaluation . 73

8.8 Test Controller . 73

9 Related Work 74

10 Conclusions and Future Work 78

viii

List of Figures

1.1 A web application . 2

2.1 The online car rental system (OCRS) 8

3.1 The correspondence of pages between the specification and im-

plementation of page sequence P0, . . . , Pm 12

3.2 The correspondence of AD states between the specification and

implementation of page sequence P0, . . . , Pm 14

4.1 AutoDBT’s framework . 25

4.2 OCRS’s state transition diagram 26

5.1 Framework of the testing process 47

7.1 Implementation Framework 64

ix

Chapter 1

Introduction

Web applications are increasing in importance as consumers use the web for

a wide range of daily activities such as online shopping and banking. Though

web applications differ widely in their functionality and in the technologies

used in their implementation, at heart, these applications share the architec-

ture depicted in Figure 1.1. The figure shows that a web application interfaces

with users through a set of (HTML) forms. The forms collect input data that

is processed by the application. Typically, a web application is supported by

a back-end application database (AD), which is updated in response to user

actions.

Testing is critically important in ensuring that a web application has been

implemented correctly. Several methods have been developed for testing web

1

....

..

Form

Form

.
Form

Application
Web AD

Figure 1.1: A web application

applications (see Section 9), but current testing methods do not adequately

incorporate testing of the application database. Surprisingly, relatively lit-

tle attention has been given to developing systematic techniques for assuring

the correctness of the interactions between a database management system

(DBMS) and a web application program, although substantial effort has been

devoted to ensuring that the algorithms and data structures implemented in

a DBMS work efficiently and protect the integrity of the data [21, 22]. Given

the critical role that web applications play in e-commerce, there is a need for

new approaches to assess their quality.

This paper presents a framework for the functional or black-box testing of

web database applications called AutoDBT. Functional testing evaluates the

correctness of an application by judging whether the application passes or fails

selected test cases. The judge is called an oracle since it incorporates a predic-

tion of how the application should have performed had it been implemented

correctly. Previously, we developed an approach to perform functional testing

2

of web applications [1], we then extended our previous work to include the

interaction of the application with a database [2]. Additional problems that

emerge from this interaction are listed below.

• Evolving database state - An in-memory application can start a test from

a known, clean state by restarting the application for each test. But when

a database is involved, the state of the database might be different at the

start of each test since database modifications accumulate over time as

individual tests update the database. AutoDBT automatically generates

a guard query for each test case. The guard determines whether the test

can be performed given the current state of the database.

• Modeling of database updates - As the application executes, it will up-

date the database. AutoDBT allows a software tester to specify, at a

high-level, the database updates associated with page transitions.

• Correctly choosing test data - Each test case is self-contained in the

sense that it contains all of the test data that is input to the set of

forms during evaluation of the test. A test of an in-memory application

can manufacture the test data as needed since the application does not

store data between tests. But when testing a web database application,

the test data must be carefully selected. Some tests are based on data

3

that must be present in a database (e.g., a test to modify an existing

car reservation needs that reservation to be in the database prior to

the test) while other tests require that the same data be absent (e.g.,

a test to create a car reservation demands that the reservation be new

to the database). AutoDBT distinguishes between data that should be

drawn from the application database, and data that is not present in the

application database, and should instead be chosen from a database of

synthesized test data, called the synthetic database (SD).

• Correctness of the final database state - An oracle reports on the cor-

rectness of a software test. An in-memory web application passes a test

if it ends up in the expected final state (i.e., at the expected page). For

a web database application, however, the expected final state also has to

include the correct state of the database. AutoDBT automatically gen-

erates an oracle that can, in part, determine if an application correctly

updates its database.

In this paper, we extend our previous work [2] to include the formal frame-

work of the problem, the analysis of the test report, the generality of the

approach and the implementation plan of the AutoDBT.

The next section introduces an example that is used to illustrate the Au-

toDBT framework. A formal description of testing the web application is given

4

in Section 3. An overview of the framework is given in Section 4. The section

also describes how to model the page navigation, how to specify the input data

in each transition, and how the database is updated. Section 5 outlines the

test case generator. The generator is used to generate test cases for testing of

the application. Section 6 discusses how to analyze the test report. Section 7

discusses the generality of the AutoDBT. Section 8 gives the implementation

plan of the AutoDBT. Section 9 compares our contribution to related work,

both in the area of database technology and in the area of testing of web ap-

plications. Finally, the paper concludes and presents a few ideas for future

work.

5

Chapter 2

Motivating Example

This section presents a fragment of a web application that will be used to illus-

trate the ideas in this paper. The example application is an online car rental

system (OCRS). On the main page shown in Figure 2.1(a), there are buttons

to enable a customer to make a new reservation, to view a current reservation,

and to modify or cancel an existing reservation. For instance, consider the third

button, “Modify Reservation.” When this button is activated, the customer is

led to a new page as shown in Figure 2.1(b). On the modify reservation page

there are three text input boxes: First Name, Last Name and Confirmation

#. After entering the required data and activating the “Continue” button,

the desired car reservation, consisting of a Pickup Date, a Return Date, and

a Car Type, is shown in Figure 2.1(c). This page allows the car reservation

6

data to be updated. After activating the “Confirmation” button, the updated

reservation information is displayed in Figure 2.1(d). The modification process

can be terminated at any point by activating the “Cancel” or “Back to Main

Page” button, which transfers the customer to the main page (Figure 2.1(a)).

The Cancel Reservation branch can be explained in a similar fashion. When

the “Cancel Reservation” button is activated, the customer is led to a new

page as shown in Figure 2.1(e). On this page, there is a single text input box:

Confirmation #. After entering the required data and activating the “Cancel

Reservation” button, the Cancellation Notification page is reached as shown

in Figure 2.1(f). If the “Cancel Another Reservation” button is activated, the

customer is led back to the page of Figure 2.1(e). The cancellation process

can be terminated at any step by activating the “Back to Main Page” button,

which transfers the customer to the main page (Figure 2.1(a)).

One common feature of web database applications such as OCRS is the

frequent interaction between customers and an application database. An im-

portant component to testing this type of application is verifying whether the

database has been correctly updated in response to the customers’ inputs. For

instance, in the previous example, a customer provides required information

through the GUI in Figure 2.1(b) and changes some data in Figure 2.1(c).

After clicking the “Confirmation” button, the database should be updated.

7

Main Page
Back to

Reservation
Cancel Another

Online Car Rental System

Confirmation #

Cancel Reservation

Back to
Main Page

Cancel
Reservation

.................

.................

.................

Select Car Type

Select Date

Pickup Date
Return Date

Car Type

Cancel Reservation

Modify Reservation

View Reservation

Make Reservation Confirmation

Modify Reservation

Confirmation #
Last Name
First Name

Continue

Confirmation

Cancel

Reservation

(f)
(a)

Cancel

Cancel

Back to Main Page

Back to Main Page

Continue

(e)

(c) (d)

Reservation
Cancel Another

................

................

................

Back to Main Page

(b)

Cancel

Reservation Information

Cancel
Back to Main Page

Modify Reservation

Make Reservation

Cancel Reservation

View Reservation

Cancellation Notification

Figure 2.1: The online car rental system (OCRS)

Therefore, the application needs to be thoroughly tested to determine whether

the database has been successfully updated.

8

Chapter 3

Framework of Problem

In this section, we give a formal description of the problem of testing web

database application and a formal model of our solution.

3.1 Formal Description of Testing Web Appli-

cation without Database

First let’s abstractly consider a web application. A web application consists of

a sequence of transitions. A transition starts from a source web page, upon an

input, arrives at a destination page. The pages and the input can be simply

seen as strings and thus the transitions of a web application can be abstractly

9

considered as the following function T :

T (Psrc, I) = Pdstsuch that

T1(Psrc, I), if C1(Psrc, I) = true

...
...

Tn(Psrc, I), if Cn(Psrc, I) = true

(3.1)

in which Psrc, I, and Pdst are the source page, the input, and the destination

page, respectively, and I is a sequence of input variables V0, . . . , Vj, each of

which represents an input parameter of the input form. Each Ti (1 ≤ i ≤ n)

defines the page transition of transition i if the corresponding condition Ci is

true. We assume that the transition is deterministic, hence exactly one Ci is

true for a given input I. A web application can be modeled as the transitive

closure, W , of the transition function, T , as follows.

W (Psrc, I) = T (. . . T (. . . T (T (Psrc, I1), I2) . . . Ii) . . . Ik) = Pdst (3.2)

In specification-based black box testing, there are two functions: W and W ′; W

represents the specification function, while W ′ represents the implementation

function. The goal of the testing is to test, starting from same web page Psrc

and given input I, whether the implementation function, W ′, produces the

same destination web page, Pdst, as the function W . In testing, I is called a

test case, while Pdst is the corresponding oracle.

Before testing begins, a test coverage criterion is given that describes the

range of the testing based on the specification, i.e., which page sequence of

10

the web application should be tested. For instance, according to a given test

coverage criterion, the testing target is the page sequence P0, . . . , Pm. Based

on the definition of the transition function T , we can determine a transition

sequence, for instance, the transition sequence corresponding to the page se-

quence P0, . . . , Pm is T0, . . . , Tm−1. In order to drive a test along the specified

transition sequence, each Ii(0 ≤ i ≤ m−1) of the input sequence I needs to be

carefully designed to ensure the corresponding condition Ci true, so that each

transition Ti can be exercised. Figure 3.1 shows the correspondence of pages

between the specification and implementation functions for a page sequence.

The testing starts at the same page, P0. After applying an input sequence

I0, . . . , Ii−1, the implementation function W ′ transfers the web application to

a page P ′
i . Upon the input Ii, which is designed to make the condition Ci

true, function Ti is triggered and exercised, then the destination page Pi+1

should be reached by the function Ti. The testing process is designed to check

whether P ′
i+1 produced by the implementation function T ′

i is the same as the

page predicated by the specification Pi+1.

11

0P

P P

P’ P’m

m
i i ,

i

i P i+1

P’i+1

I)T

(P’,I)i i i

i(P

T’

Specification

Implementation

Figure 3.1: The correspondence of pages between the specification and imple-

mentation of page sequence P0, . . . , Pm

3.2 Formal Description of Testing Web Database

Application

Most web applications have a back-end application database (AD) behind the

web interface. The testing of web database applications is more complicated

because the tests must include whether the database is in a correct state after

a sequence of updates. The transitions of a web database application can be

modeled as the following function U :

U((Psrc,ADsrc), I) = (Pdst,ADdst) =

U1(Psrc,ADsrc, I) if C1(Psrc,ADsrc, I)

...
...

Un(Psrc,ADsrc, I) if Cn(Psrc,ADsrc, I)

(3.3)

in which ADsrc and ADdst are the source and destination AD state respectively,

12

and each Ui (1 ≤ i ≤ n) defines both the page navigation and database update

of transition i. Ui can be further defined as follows.

Ui((Psrc,ADsrc), I) = (Navigatei((Psrc,ADsrc), I),Updatei(ADsrc, I)) (3.4)

in which Navigatei defines page navigation, while Updatei defines how the

database should be updated. A web database application can be represented

as the transitive closure, WD, of the transition function, U , as follows:

WD((Psrc,ADsrc), I) = U(. . . U(. . . U(U((Psrc,ADsrc), I1), I2) . . . Ii) . . . Ik) =

(Pdst,ADdst)

A web database application can be tested, whether the implementation func-

tion, WD′, produces the same destination web page and database state, (P ′
dst,

AD′
dst), as the oracle, (Pdst,ADdst), as the specification function WD, when

started from the same page and database state.

In this paper, we only focus on testing the database state, i.e., whether each

database update function Update′i (1 ≤ i ≤ n) of the implementation function

U ′
i performs like the specification function Updatei, therefore, the following

assumption is made: the P ′
dst generated by Navigate′i is always the same as

Pdst specified by Navigatei, that is, Navigatei has been implemented correctly.

Additionally, since the web interface is visible to the tester, we further assume

that the source web page Psrc can always be reached after each test.

13

Figure 3.2 shows the correspondence of database states between the speci-

fication and implementation of a page sequence P0, . . . , Pm. It is similar to

Figure 3.1. The first row of Figure 3.2 shows the sequence of AD states

(AD0, . . . ,ADm) produced by specification WD, while the second row shows

the corresponding AD′ sequence (AD′
0, . . . ,AD′

m) of the implementation. The

testing starts at the same state, AD0. Each state ADi+1 (0 ≤ i ≤ m − 1) is

computed by applying the function Updatei on (ADi, Ii). A test oracle tests

whether the states ADi+1 and AD′
i+1 are the same, for each pair of states.

0AD

(ADUpdatei i ,I i)

i i ,I i)(AD’Update’

i+1

i+1Implementation

Specification AD

AD’ AD’i

i AD

AD’

ADm

m

Figure 3.2: The correspondence of AD states between the specification and

implementation of page sequence P0, . . . , Pm

In black box testing, the database state is invisible to the tester when

running a test. Thus it’s not possible to directly compare the state of AD′
i with

the oracle ADi. Furthermore, it is costly to instantiate ADi. But partial testing

is feasible. In partial testing, instead of trying to guess a precise instantiation

of the AD′
i, we can use one or a sequence of queries to detect whether AD′

i

14

satisfies some correctness properties, which we call a partial oracles. A partial

oracle can be specified by the tester based on which properties are meant to

test. For instance, in this paper, we focus on testing whether the database

update operations are correctly performed. Accordingly, each partial oracle

should be specified in a way that reflects the result of an update.

The input sequence needs to be carefully designed in order to drive the test-

ing process in a direction specified by a given test coverage criterion. However,

the sources of the input for web database application are AD when existing

data is required, and also new data which is different than AD. We use the

synthetic database (SD) to store the new data. The SD and AD are disjoint,

that is they have different tuples, but exactly the same schema. Additionally,

since the input data of one transition often depends on the data of a previous

transition. If we generate the input data for transitions separately, the input

data for a previous transition might or might not produce a “good” AD for

the generation of the next input data. For instance, in the OCRS example, if

we separate the First Name, Last Name and Confirmation # of Modify Reser-

vation path into different transitions, we need to make sure that the First

Name and Last Name generated for the previous transition results in an asso-

ciated Confirmation # for a later transition. Therefore, in order to maintain

the data dependency among the input data, we need to generate the entire

15

input sequence I as a whole. Moreover, since along the transition sequence,

the database sources (AD and SD) might be updated, the generation of each

input data Ii = (V 0
i , . . . , V i

i) can be seen as a function Gi of a particular AD

and SD version, and the generation of the entire input sequence I0, . . . , In for

a particular page sequence should be a function of following form.

I0, . . . , Insuch that

I0 = (V 0
0 , . . . , V a

0) = G0(V
1
0 , . . . , V a

0 ,AD0, SD0)

...

In = (V 0
n , . . . , V z

n) = Gn(V 1
n , . . . , V e

n ,ADn, SDn)

(3.5)

where each Gi(0 ≤ i ≤ n) defines how the input data of Ii should be generated.

A data dependency is maintained by sharing the same variable name, i.e., V 2
i ,

in Ii is inherited by Ij. Each ADi can be derived by applying the function

Updatei−1 on (ADi−1, Ii−1), while each SDi can be updated by simply deleting

whatever data has been used as an input in the previous transitions.

Another issue that makes the black box testing of the database state dif-

ferent than the traditional black box testing is that it’s not easy to bring the

database state back to the initial state AD0 after a test, or even worse, the

initial state is also invisible in the sense that the tester doesn’t know exactly

what data is in there and whether there is enough data to perform a certain

test. Traditional black box testing always assumes that the testing process

starts in a known initial state, so that all the tests are independent and will

16

be always valid if a bunch of tests are generated based on the initial state in

advance. However, in practice, keeping a copy of the initial database state for

each test is too expensive, moreover it’s not easy to trace back to the initial

state after a test. Therefore, new approaches are needed to solve this problem.

In this paper, we propose two approaches which complement each other in the

generation of the test data.

3.2.1 Dirty Test Suite Approach

In this approach, the entire test suite consists of many test cases generated

in advance. Each test case is generated based on the initial state (AD0). If

we kept a copy of the AD0 for running each test case, the test suite would be

valid at any time. However, it’s too expensive to do so in practice. A practical

solution is continuing to run later test cases on the database, i.e., ADi left over

from the previous tests. But the later test cases which are generated based

on the AD0 might not be valid any more based on the ADi since the AD0

might have been updated by the previous tests, so that the ADi is no longer

the same as the AD0. In order to ensure a valid test case for each test, before

running a test case, a filter query is evaluated based on the current state of the

database to check whether this particular preset test case is still valid. If the

query succeeds, the test case is run based on the current database, otherwise,

17

the test case is queued for later evaluation.

3.2.2 Clean Test Case Approach

Another approach, which is investigated in more detail in this paper, is to

generate valid test cases on the fly (during the testing process). This approach

is different from the dirty test suite approach in two ways. First, all the test

cases are generated on the fly during the testing process rather than having

the entire test suite generated in advance. Second, since the test cases are

always generated based on the most current version of the AD, all the test

cases generated are valid during the testing process.

3.2.3 Tradeoff between these two Approaches

The dirty suite approach is more efficient when there is no database updates,

or the database updates only influence a narrow range of the data in the AD.

It’s efficient in the sense that the whole test suite is generated in advance, and

there is no overhead on generating the tests at run time (though filter queries

must still be evaluated). Moreover, the entire test suite can be reused to retest

the same application. However, if the database has been influenced too much

by the previous tests and thus the filter query has very low percentage of

success, this approach won’t work well, and in the worst case, only the first

18

test case is valid.

Compared with the dirty suite approach, the clean test case approach is

less efficient but is guaranteed to make progress. Test cases are generated

during the testing process, so the testing process might take longer than the

dirty suite approach. However, every test case generated in this approach is

valid, so the approach works no matter how of the database has been updated.

In this paper, we design a framework of the clean test case approach.

Based on the tradeoff of the two approaches, we can use both to comple-

ment each other in testing one web application by using the dirty test suite

approach to test those page sequences involving few database updates, while

applying the second approach to test those with more intensive database up-

dates.

3.3 One Possible Solution of Testing

Web Database Application

For a web application function W , the output (Pdst) of one relation might

be a source page (Psrc) of another relation. We have found that FSMs are

a suitable tool for characterizing the transitive behaviors of the web appli-

cation function. Finite state machines (FSM) provide a convenient way to

19

model software behavior in a way that avoids issues associated with the im-

plementation. Several methods for deriving tests from FSMs have also been

proposed [8, 9, 19]. Theoretically, web applications can be completely modeled

with FSMs, however, even simple web pages can suffer from the state space

explosion problem. There can be a large variety of possible inputs to text

fields, a large number of options on some web pages, and choices as to the

order in which information can be entered. Factors such as these mean that

a finite state machine can become prohibitively large, even for a single page.

Thus, an FSM-based testing method can only be used if techniques are found

to generate FSMs that are descriptive enough to yield effective tests yet small

enough to be practically useful.

The technique in [1], FSMWeb, addresses the state explosion problem with

a hierarchical collection of aggregated FSMs. The bottom level FSMs are

formed from web pages and parts of web pages called logical web pages, and

the top level FSM represents the entire web application. Application level

tests are formed by combining test sequences from lower-level FSMs.

Our approach extends FSMWeb to include testing of the application database.

We introduce a Database Extended FSM (DEFSM) to model the behavior of

a web database application as follows.

Definition 1 (DEFSM) The DEFSM D is a six-tuple D〈S, s0, ADs, AD0, V, T 〉

20

where,

• S is a finite set of web states which correspond to the logical web pages.

• s0 is the initial web state or logical web page.

• ADs is a finite set of the associated back-end application database (AD)

states. The schemas of all elements of the ADs are the same: AD

(R1, . . . , Rn), where R1, . . . , Rn are relations in the AD. The schema

of relation Ri is the form: Ri(A1, . . . , Am) where Aj, 1 ≤ j ≤ m denotes

the jth attribute of relation Ri. However the state (instantiation) of each

element of the ADs is unique.

• AD0 is the initial AD state.

• V is a set of variables which denote all the possible web page input pa-

rameters.

• T is a set of state transitions, each element t is a quadruple 〈Ssrc, Sdst,

P (Vt), Updatet〉.

– Ssrc, Sdst ∈ S, they are the source and destination web states of

transition t respectively;

– Vt = (V 0
t , . . . , V j

t) (V i
t ∈ V, 0 ≤ i ≤ j) is the list of input variables of

transition t. If some variable V i
t has had a value, then the value is

21

inherited. P (Vt) is a predicate expressed in terms of Vt that defines

the evaluation of the variables of Vt. In our approach, P (Vt) is

defined as a Prolog rule in Section 4.2.2.

– Updatet consists of a sequence of database update operations includ-

ing insertions and deletions. It’s defined as Prolog rules in Section

4.2.2.

At state Ssrc, for an instantiation of Vt, if P (Vt) evaluates true, the web

state changes to Sdst, while the database state is transferred from ADsrc

to ADdst (ADsrc, ADdst ∈ ADs) in response to the Updatet. If there is

no update, ADsrc = ADdst.

Given a specification DEFSM, D, and a test coverage criterion (which dictates

the range of the testing), a set of test sequences is generated, each of which is

a sequence of transitions under test, TS = (t1, . . . , tn) (ti ∈ T, 1 ≤ i ≤ n).

Definition 2 (Test Case) A test case is an instantiation of the set of input

variables (Vt1 ∪ . . . ∪ Vtn) of a test sequence (t1, . . . , tn).

22

Chapter 4

The AutoDBT Framework

This section describes the AutoDBT framework for testing a web database

application. We present an overview of the architecture first. Then, each

component in the architecture is described.

4.1 Overview

AutoDBT is a framework for testing web database applications. The frame-

work is depicted in Figure 4.1. AutoDBT has three main steps. The first step

is to specify the expected behavior of the application as a DEFSM. In this

step, a modeler develops a DEFSM specification for the web application. As

shown inside the top-most component of Figure 4.1, the DEFSM consists of

two parts: a state transition diagram and a data specification. The state tran-

23

sition diagram is a directed graph that models the user navigation between

forms in the interface (see Figure 4.2). Each edge in the graph is labelled with a

unique transition number. The data specification articulates input constraints

and database updates associated with each transition in the state transition

diagram. In the second step the Test Sequence Generator automatically gener-

ates a set of test sequences. A test sequence traces a path in the DEFSM. The

test coverage criteria dictate the range of test sequences that are generated.

Meanwhile, a Dynamic Data Specification Generator automatically generates

a dynamic data specification based on the data specification given in the first

step. The dynamic data specification captures how the application database

is updated during evaluation of a test. The third step performs the testing

process which takes as input the dynamic data specification, the generated test

sequences, data sources and test data selection criteria, and generates a report

about the test result. The testing process is described in detail in Section 5.

The rest of this section illustrates the framework in detail using the OCRS

example.

4.2 DEFSM Modeling

The first step of using AutoDBT is to model the page navigation with a

DEFSM. Part of the DEFSM is a state transition diagram that captures the

24

Report

Data Sources

Test Coverage Criteria

Specification
Dynamic Data

Data
Specification

Generator
Test Sequence

State
Transition Diagram

Dynamic Data
Specification Generator

Test Sequences

Testing Process

DEFSM Modeling

Figure 4.1: AutoDBT’s framework

expected behavior of a given web application at an abstract level. We assume

that the modeler who builds the DEFSM has a thorough knowledge about the

requirements and behavior of the application.

4.2.1 State Transition Diagram

The state transition diagram is a directed graph, in which each node represents

a (logical) web page and each edge represents a possible page transition (button

or hyperlink). For the OCRS example, the diagram is given in Figure 4.2. In

this paper we focus only on the Modify Reservation and Cancel Reservation

paths, so in Figure 4.2, only those paths are drawn in detail. According

to this diagram, the web application begins in the Main state. There are

four paths that emanate from the Main state. Through transition 2, the

25

V

Main

MK MD

MD

MD

1

6

10

C

C

4

7

2
3

11

12

13
8

3’

2

3

1 1

2

5’

5

9

9’

Figure 4.2: OCRS’s state transition diagram

application is transferred first to state (MD1) of the Modify Reservation path,

then through transition 4 to state MD2, and finally through transition 6 to

state MD3. At each of these three states (MD1 through MD3), the application

can be transferred back to the original Main state by transition 3, 3′, 5, 5′,

or 7, respectively. The transitions of other functional paths can be similarly

explained. OCRS is a relatively simple application so a single state transition

diagram suffices. For complex applications, we allow the transition diagrams

to be “nested” [3]. That is, simple FSMs can be nested as states in other

FSMs as described in detail elsewhere [1].

26

4.2.2 Data Specification

A modeler also has to specify how data flows in the application, especially

between the application and its database. So associated with each transition

of the DEFSM, the modeler gives constraints on the input (the input specifi-

cation) and sketches the correctness criteria for the output. Since the output

correctness criteria are based on how the database should be updated, the

expected updates are modeled as well (the update specification). From among

the many potential approaches to giving data specifications, AutoDBT adopts

a declarative approach, in which database updates and input constraints are

expressed in Prolog. We chose Prolog because it offers a well-defined, declar-

ative semantics for expressing database queries. We use Prolog rather than

Datalog because we generally need to evaluate our queries using a top-down,

tuple-at-a-time evaluation technique, i.e., using Prolog’s evaluation model. In

the rest of this section, we illustrate how the input and output are specified in

Prolog through the OCRS example.

Web applications have many different kinds of input widgets, such as drop

down menus. For simplicity, this paper focuses only on text boxes and buttons.

The input specification consists of two related parts. The first part is to

specify the source of the test data. For a web database application, the input

data can be drawn from two sources: the application database (AD) and the

27

synthetic database (SD). The SD contains data that is not in the AD. For

instance, in a test of the page in Figure 2.1(b), the customer’s last name,

first name and confirmation number should be drawn from the AD since the

data should already exist in the application database. However, in a test of

Figure 2.1(c) some “new” data, which is not resident in the AD, is needed

when the customer changes an existing reservation. The new data is chosen

from the SD.

We assume that the schemas of the both data sources are known to the

modeler. If the modeler doesn’t know the schema of the AD, a mapping

between the AD and AutoDBT’s AD has to be provided before the testing

process starts. We further assume that the schema of the SD is the same as

that of the AD. Later on, we’ll show how this assumption can be relaxed.

The second part of the input specification captures the data flow on tran-

sitions in the DEFSM.

Definition 3 (Input data flow specification) The input data flow specifi-

cation for transition i is either a button name or a Prolog rule of the following

form followed by a button name:

inputi(Vi1 , . . . , Vin) :- Predicate1, . . . , Predicatem.

where

28

• inputi is a predicate with a list of variables (Vi1 , . . . , Vin) denoting all of

the required input parameters of transition i; and

• Predicate1, . . . , Predicatem is a list of predicates of the following form:

Database Relation(A1, . . . , Ak);

or

inputj(Vj1 , . . . , Vjk).

where

– Database ∈ {AD, SD};

– Relation ∈ {R1, . . . , Rn};

– Ai ∈ {constant, variable, ‘ ’}(1 ≤ i ≤ k), where constant ∈ domain

of the ith column; and

– the rule is safe which means all variables in the head appear in some

predicate in the body.

To help explain the input data flow specification, consider the OCRS ex-

ample. Table 4.1 shows the specification for transitions of the Modify Reser-

vation path and the Cancel Reservation path in Figure 4.2. According to the

29

Transition Input Data Flow Specification
2 Button(Modify Reservation).
3 input3(Fn,Ln,C#) :- AD Customer(Fn,Ln,Cid), AD Reserves(Cid,C#).

Button(Cancel).
3′ input3′(Fn, Ln, C#) :- SD Customer(Fn, Ln, Cid), SD Reserves(Cid, C#).

Button(Cancel).
4 input4(Fn, Ln, C#) :- AD Customer(Fn, Ln, Cid), AD Reserves(Cid, C#).

Button(Continue).
5 input5(Pd, Rd, Ct) :- AD Reservation(, Pd, Rd, Ct).

Button(Cancel).
5′ input5′(Pd, Rd, Ct) :- SD Reservation(, Pd, Rd, Ct).

Button(Cancel).
6 input6(Pd, Rd, Ct) :- SD Reservation(, Pd, Rd, Ct).

Button(Confirmation).
7 Button(Back to Main Page).
8 Button(Cancel Reservation).
9 input9(C#) :- AD Reservation(C#, , ,).

Button(Back to Main Page).
9′ input9′(C#) :- SD Reservation(C#, , ,).

Button(Back to Main Page).
10 input10(C#) :- AD Reservation(C#, , ,).

Button(Back to Main Page).
11 Button(Cancel Another Reservation).
12 Button(Back to Main Page).

Table 4.1: Input data flow specification for the Modify Reservation and Cancel
Reservation paths

specification, on transition 2, a “Modify Reservation” button is required. On

transition 4, the customer’s first and last names, and the confirmation number

of an existing reservation are required before a “Continue” button is activated.

The DEFSM modeler uses Fn, Ln, C# to denote the required input. The Fn

and Ln are chosen from the Customer relation while C# comes from the Re-

serves relation of the AD. The meaning of the input data flow specification for

the other transitions can be similarly explained.

30

For some applications the schema of the SD can be simplified. The relations

of the AD provide input data and also participate all the functionality of the

application. But the relations of the SD are only useful for generating the

input data. Relations that are not used in the SD can be removed from the

SD’s schema. For instance, the Available Car Type relation name does not

appear in Table 4.1, which means that this relation is not useful in defining

the input data. Therefore it’s safe to delete it from SD’s schema.

Definition 4 (Simplified SD schema) The simplified SD schema is a sub-

set of the original SD schema:

SD(R′
1, . . . , R′

k);

where {R′
1, . . . , R′

k} ⊆ {R1, . . . , Rn}, and each R′
i, 1 ≤ i ≤ k, appears at

least once in the body of input specification.

As for the OCRS example, the Available Car Type relation schema is

deleted from the SD schema and Table 4.2 shows the simplified schema di-

agram of the SD.

Before the testing process commences, the AD and SD need to be popu-

lated. Initially the SD is empty, while the AD might already contain some

data (if the web application has been running prior to testing). Since the

testing process will change values in the AD, the AD should be copied prior to

31

Customer
FirstName LastName CustomerID

Reserves
CustomerID Confirmation#

Reservation
Confirmation# PickupDate ReturnDate CarType

Table 4.2: Simplified schema diagram of the SD

testing and the copy used for testing. The SD will need to be populated with

synthetic data, that is, data generated strictly for testing purposes. Gray et

al. present several techniques to populate a database with synthetic data [10].

In particular they show how to quickly generate, in parallel, a large database

that obeys certain statistical properties among the records generated. Using

their techniques we can populate the SD (and the AD if needed) with synthetic

data. As for the OCRS example, the populated AD and SD are shown in Table

4.3 and Table 4.4, respectively. However, it’s not clear, in [10], how referential

integrity are maintained. Theoretically, it shouldn’t be a difficult problem to

solve. Thus it’s reasonable to make the following assumption: there is a per-

fect tool to populate the AD and SD with synthetic data which satisfies all

the integrity constraints.

In addition to the input specification, the modeler also needs to specify

how the database should be updated. This specification is used to evaluate

whether the application correctly updates the AD. There are three kinds of

32

Customer
FirstName LastName CustomerID
john smith c0001
mike green c0002
rick reed c0003
kate brown c0004

Reserves
CustomerID Confirmation#

c0001 0001
c0002 0002
c0003 0003
c0004 0004
c0004 0005

Reservation
Confirmation# PickupDate ReturnDate CarType

0001 10/01/03 10/03/03 economy
0002 10/02/03 10/05/03 compact
0003 10/15/10 10/23/03 full size
0004 11/03/03 11/30/03 minivan
0005 11/03/03 11/30/03 full size

Available Car Type
CarType CarNumber

economy 50
compact 40
full size 60
minivan 45
luxury 20
convertible 30

Table 4.3: An example application database (AD)

updates: insertion, deletion, and modification. We treat a modification as a

deletion followed by an insertion. To model deletions from AD Relation, we

add a relation, delete AD Relation, that is used to store tuples that should be

deleted. For insertions, we introduce insert AD Relation which buffers tuples

that should be inserted. The schema of each relation is the same as that of

AD Relation.

33

Customer
FirstName LastName CustomerID
franklin bond c0006
alicia wong c0007

Reserves
CustomerID Confirmation#

c0006 0006
c0007 0007

Reservation
Confirmation# PickupDate ReturnDate CarType

0006 12/04/03 12/10/03 luxury
0007 12/06/03 12/08/03 convertible

Table 4.4: An example synthetic database (SD)

In the update specification, the modeler gives a specification of what should

be deleted or inserted during an update.

Definition 5 (Update specification) The update specification is one or more

Prolog rules of the following two forms.

1) delete AD Relation(A1, . . . , An) :-

Predicate1, . . . , Predicatem.

2) insert AD Relation(A1, . . . , An) :-

Predicate1, . . . , Predicatem.

The form of each Predicatei is given in Definition 3.

Table 4.5 shows the update specification for transitions of the Modify Reser-

vation and Cancel Reservation paths. There is no update associated with

34

Transition Update Specification
6 delete AD Reservation(C#,Pd,Rd,Ct) :-

input4(, ,C#), AD Reservation(C#,Pd,Rd,Ct).
insert AD Reservation(C#,Pd,Rd,Ct) :-

input4(, ,C#), input6(Pd,Rd,Ct).
10 delete AD Reservation(C#,Pd,Rd,Ct) :-

input10(C#), AD Reservation(C#,Pd,Rd,Ct).
delete AD Reserves(Cid,C#) :-

input10(C#), AD Reserves(Cid,C#).

Table 4.5: The update specification for the Modify and Cancel Reservation
paths

most of the transitions so only a few of the transitions have update specifi-

cations. Transition 6 modifies the AD while transition 10 involves a deletion.

The modification is modeled as a deletion followed by an insertion, so two

rules are associated with transition 6. Transition 10 deletes a tuple from the

AD Reservation relation. In order to maintain referential integrity, the corre-

sponding tuple which has the same C# in the AD Reserves relation has to be

deleted as well.

Finally, we should note that the modeler has to be careful when developing

an update specification to associate updates only with transitions that reflect

transaction commit points. In our example the database is updated right after

each update transition, but in general the update could be delayed. Many web

database applications are designed to support concurrent users. For instance,

in the OCRS, many users can simultaneously make car reservations, and the

reservation process might extend over several transitions. An application often

35

packages the work done by a sequence of forms into a single transaction. A

transaction is a logical unit of database processing that includes one or more

database access operations, and it executes on an all-or-none basis. The ef-

fect of the transaction won’t be permanently recorded in the database until

the transaction commits. Since the database state won’t be updated until

the transaction commits (which might span over multiple transitions), oracles

should be evaluated until the commit point. Although the oracles can be gen-

erated automatically based on the update specification, the modeler needs to

account for transactions and should only associate updates with transitions in

which a transaction commits.

4.3 Test Sequence Generator

Based on the state transition diagram, for any given test coverage criteria, we

can automatically generate a test sequence. A test sequence is a sequence of

transitions. It describes which transitions need to be tested and in what order.

Common kinds of coverage criteria include testing combinations of transitions

(switch cover) [8], testing most likely paths [23], and random walks [17]. Since

the state transition diagram is a directed graph, well-known graph theory algo-

rithms can be applied to efficiently generate the test sequences automatically.

One algorithm that can be employed solves the New York Street Sweeper Prob-

36

lem [4] by generating a minimal length tour (which is a closed tour covering

each link) for a directed graph [5]. This algorithm can be applied to the test-

ing problem for generating a minimal length test sequence which starts and

ends at an initial state and covers each transition of the testing target. For

instance, after applying this algorithm to the Modify Reservation path, the

following test sequence is generated.

2→3→2→3’→2 →4→5→2→4→5’ →2→4→6→7

4.4 Dynamic Data Specification Generator

A test sequence is a sequence of transitions while a test case is an instantiation

of the input parameters for those transitions, i.e., it contains all of the data

necessary to perform the test. Since the state of the database is dynamic, the

test case generation process needs to model each database version. The input

specification stipulates which database is used in choosing the test data, while

the update specification models the expected dynamic behavior in response

to the input data. In this section we describe how AutoDBT combines the

input specification and the update specification to produce a dynamic data

specification that captures this dynamic behavior. Before illustrating how

to generate the dynamic data specification, we need to first to introduce an

37

important data structure which will be used to capture the dynamic behaviors.

4.4.1 Update List

In our approach, the dynamic behavior is captured by a Prolog data structure:

List. Each version of the AD is associated with one update list consisting of a

buffer of deleted tuples and a buffer of inserted tuples. The update list for the

application database, AUL, is represented as follows: [ADel, AIns] where ADel

is the delete buffer and AIns is the insert buffer. The SD is simpler since data

is only deleted but never inserted. One tuple is deleted from the SD whenever

it’s used (so that subsequent tests can’t reselect the data, thereby ensuring

that the data in the AD and SD are disjoint). The update list for SD (SUL) is

a buffer of deleted tuples. Initially the AD/SD buffers are empty (denoted as

[[],[]]/[]). For the AD, after each update transaction, the buffers are managed

to capture the effects of a modification as follows. When a tuple is deleted,

the tuple is inserted into the ADel buffer, unless it appears in the AIns buffer

(as a result of a previous insertion in the evaluation of the test case) in which

case it is simply removed from AIns buffer. Insertion is similar. If the update

transaction contains more than one transition, then the update list won’t be

changed until the transaction commits. Based on the update specification

given by the modeler, the updated AD versions can always be derived from

38

the initial version and the associated list, and each updated relation can be

derived by applying the following Prolog rules.

AD Relation(A1, . . . , Ak,AUL) :-

AD Relation(A1, . . . , Ak),

notdeleted(Relation(A1, . . . , Ak),AUL).

AD Relation(A1, . . . , Ak,AUL) :-

inserted(Relation(A1, . . . , Ak),AUL).

notdeleted(Fact, AUL) :-

AUL = [ADel, AIns],

¬ member(Fact, ADel).

inserted(Fact, AUL) :-

AUL = [ADel, AIns],

member(Fact, ADel).

The first rule says that a particular version of an AD Relation with an as-

sociated update list (AUL) can be derived by including all the tuples that

existed in the initial version and have yet to be deleted. Those facts can be

checked by the third rule that screens out the tuples that are members of the

ADel list. The second rule adds all of the tuples that have been inserted in

AD Relation, or have been re-inserted after being deleted. The fourth rule

that checks whether a particular tuple is a member of the AIns list.

39

Similarly, the Relation of updated SD versions can be derived by applying

the following rule.

SD Relation(A1, . . . , Ak, SUL) :-

SD Relation(A1, . . . , Ak),

¬ member(Relation(A1, . . . , Ak), SUL).

The dynamic data specification generator takes in both the input and update

specification, and generates a dynamic data specification which consists of two

components: a dynamic input specification (DIS) and a data inheritance graph

(DIG). The DIS expresses both how the input data should be generated, and

also how new versions of the AD and SD are generated as the database is up-

dated. The DIG captures how data flows from one transition into another. In

the following two sections, we outline how the two components are generated.

4.4.2 Data Inheritance Graph Generation

As a test navigates from page to page, input for a form in one transition may

have to appear in an update performed in a much later transition or as a

defining atom for a later input. For instance, the update rule associated with

transition 6 in Table 4.5 uses a confirmation number, C#, from the input4 fact

produced in the evaluation of the input rule associated with transition 4 in

Table 4.1. The DIG is a collection of these dependencies. The graph can be

40

automatically generated by analyzing the input and update Specifications. In

the OCRS example, the graph consists of nodes for transitions 4 and 6 and

one edge from 4 to 6, labelled with C#.

4.4.3 Dynamic Input Specification Generation

The DIS specifies how new versions of the database are created in response to

user inputs and database updates. The DIS is generated by merging the input

and update specifications. One rule is added to the DIS for each rule in the

input specification. The DIS rule is constructed in two steps as follows.

1) Generate the head The head of the DIS rule is derived from the head of

the input rule by modifying it to include the current AD version (denoted as

ADin) and the next version of the AD (denoted as ADout). For the SD, SDin

and SDout are used. In addition, for every variable inherited by this transition

in the DIG, add the variable to the head. For example, the head of the input

rule for transition 6 is input6(Pd,Rd,Ct) and the variable C# is inherited by

transition 6, so the corresponding head of the DIS rule for transition 6 should

be input6(Pd,Rd,Ct,C#,ADin,ADout, SDin, SDout).

2) Generate the body If the transition has no associated update specifi-

cation, then the input version of each database is the same as the output

version. So add ADin (SDin) to each predicate prefixed by AD (SD). Also

41

add one more atom: ADin = ADout. But if a transition updates the AD, then

there are four steps to creating the body.

1. Append the body of the update rule to the body of the input rule.

2. Remove input predicates from the body. For example, in transition 6,

input4(, ,C#) and input6(Pd,Rd,Ct) are removed from the body.

3. Add a variable ADin (SDin) to each body predicate prefixed by AD

(SD).

4. Append a AD update predicate of the following form to the body depend-

ing on whether the head of the update rule is delete AD Relation(x1, . . . , xn),

or insert AD Relation(x1, . . . , xn).

• delete AD(Relation(x1, . . . , xn),ADin,ADout)

• insert AD(Relation(x1, . . . , xn),ADin,ADout)

If the SD prefixes any body predicate of the input rule, such as

SD Relation(x1,. . . , xn), then SD update predicate of the following form

• delete SD(Relation(x1, . . . , xn), SDin, SDout)

is appended to the body.

The database update predicates are defined by the following Prolog rules,

respectively.

42

delete AD(Fact,AULin,AULout) :-

AULin = [ADel,AIns],

append(ADel, [Fact],ADel’),

delete(AIns,Fact,AIns’),

AULout = [ADel’,AIns’].

insert AD(Fact,AULin,AULout) :-

AULin = [ADel,AIns],

append(AIns, [Fact],AIns’),

AULout = [ADel,AIns’].

delete SD(Fact, SULin, SULout) :-

append(SULin, [Fact], SULout).

The first three steps are straightforward. The final step requires modifying

a rule based on a simple pattern matching technique on the head of an update

rule. The final step is complicated by the fact that for efficiency, we use two

buffers to store only the tuples that are deleted and inserted in each version

rather than the entire version. The delete buffer consists of a list of deleted

tuples and the insert buffer consists of a list of inserted tuples. So the final

step is to include a predicate that inserts or deletes a tuple from the specified

buffer, thereby generating the next version of the database.

43

As an example, the DIS rule for transition 6 is given below.

input6(Pd,Rd,Ct,C#,ADin,ADout, SDin, SDout) :-

SD Reservation(,Pd,Rd,Ct, SDin),

AD Reservation(C#,Pd’,Rd’,Ct’,ADin),

delete AD(Reservation(C#,Pd’,Rd’,Ct’),ADin,ADt),

insert AD(Reservation(C#,Pd,Rd,Ct),ADt,ADout),

delete SD(Reservation(,Pd,Rd,Ct), SDin, SDout).

4.5 Summary

The first step to using AutoDBT is to construct a model of the web application

to be tested. The model consists of an DEFSM and a data specification. The

data specification is a high-level description of the data flow in the applica-

tion. AutoDBT automatically generates a dynamic data specification, which

is a low-level, precise description of the data flow. The second step to using

AutoDBT is to decide on test coverage criteria. The criteria are input to the

Test Sequence Generator to generate a list of test sequences. Each test se-

quence is a list of DEFSM transitions. The next step is to generate and run

individual test cases as described in detail in the next section.

44

Chapter 5

The Testing Process

Figure 5.1 diagrams the testing process. The testing process starts with a test

sequence scheduler. The scheduler schedules all of the test sequences, forming

a queue of test sequences. Next, a test sequence is chosen from the queue and

a guard is generated. The guard checks whether a test sequence can generate

a test case given the current AD and SD states. A test case is an instantiation

of the input parameters for an entire test sequence. If the guard fails, then the

current AD and SD states can’t build a test case for the entire test sequence,

and the test sequence is placed at the end of the queue. Possibly, a future

database state will be conducive to generating the test case. If the guard

succeeds the test case is generated, as well as oracles to determine whether

the test succeeds or fails. The test case is subsequently evaluated on the web

45

application. During evaluation of the test case, an oracle is consulted after each

transaction. If the oracle fails then the database was updated incorrectly, and

the testing process aborts with a failure message. Finally, some test sequences

involve more than one test case, so if more tests are needed for this particular

test sequence, then the guard will be re-evaluated to generate more test cases.

The process completes when the queue of test sequences becomes empty or

the guard fails for every test sequence in the queue. The following sections

elaborate upon each component in the testing process.

5.1 Test Sequence Scheduler

In testing a web database application, the testing process is influenced by

cumulative effect of previous tests. The testing process of one test sequence

can modify the database state arbitrarily, consequently each test starts with

the database left over from the previous test. Since the database state is not

visible during the testing process, there is no way we can trace back to the

original state after running a test. Keeping a copy of the original database

state for each test sequence is not a practical solution either since it’s too

expensive to maintain multiple copies of a database.

In this paper we propose an approach that mitigates the impact of prior

tests. In our approach, a test sequence scheduler delays test sequences that

46

SDAD

SDAD

ReportSub−

Yes

Yes

Fail

Yes

No

More Steps?

No

Test Cases?

No

Test Report

More Sequences?

More

Test Result Evaluation

Pass

TrueFalse

Tset Sequence Scheduler

Test SequenceSpecification

Guard Generation
and Evaluation

Step Mode Execution Oracle Generator

Dynamic Data

Test CaseFailure Message

Specification

Update
Test Sequences

Oracle

Figure 5.1: Framework of the testing process

47

delete data. More precisely, based on the update specification, all the test

sequences are classified into four groups and scheduled in the following or-

der: read-only, insertion-only, mixed insertion and deletion, and deletion-only.

Within a group the test sequence order is random. For example, in OCRS,

suppose that we need to test all four of the paths. One test sequence will be

generated for each path. The four generated test sequences are classified as

follows.

1. read-only: View Reservation

2. insertion-only: Make Reservation

3. mixed insertion and deletion: Modify Reservation

4. deletion-only: Cancel Reservation

Then the four test sequences should be scheduled in the order listed above.

5.2 Guard Generation and Evaluation

A guard is a query to determine whether a test sequence can be instantiated to

produce a test case. A guard is automatically constructed for a test sequence

by concatenating the head of each DIS rule corresponding to a transition in

48

the sequence. In the following, we explain how to form a guard through an

example.

Consider the following test sequence for Modify Reservation path.

2→3→2→3’→2 →4→5→2→4→5’ →2→4→6→7

Ignoring the button inputs, the guard for this given test sequence is given

below.

?- input3(Fn1,Ln1,C#1, ADin, AD1),

input3′(Fn2,Ln2,C#2, SDin, SD1),

input4(Fn3,Ln3,C#3,AD1,AD2),

input5(Pd1,Rd1,Ct1,AD2,AD3),

input4(Fn4,Ln4,C#4,AD3,AD4),

input5′(Pd2,Rd2,Ct2, SD1, SD2),

input4(Fn5,Ln5,C#5,AD4,AD5),

input6(Pd3,Rd3,Ct3, C#5, AD5,AD6, SD2, SD3).

The following two points are important in generating the guard.

1. Variable Renaming - Variables should be renamed to be unique in the

guard, even though they are the same in the DIS. The exception is

variables that are inherited from a previous transition (the inheritance

is part of the DEFSM modeling). If a later transition inherits a variable

49

from an earlier transition then the same variable is used. For example,

C#5 is passed into transition 6 from transition 4.

2. Database versions - The database is (potentially) modified in each tran-

sition, so the output version of a database in one transition, e.g., AD2,

is passed as input into the next transition.

To generate a test case, the guard is evaluated. In a successful evaluation,

values will be bound to the variables. The binding produces a test case. An

unsuccessful evaluation implies that the initial AD/SD is not in a good state,

so the test sequence is put back to the queue.

5.3 Step Mode Execution and Test Result Eval-

uation

The generated test case will be subsequently evaluated on the web application

after each transaction commits, the updated AD is checked by an oracle. But

first, the oracles have to be generated.

5.3.1 On-demand Oracle Generator

For black box testing, the state of the AD is not visible to the tester. Instead,

AutoDBT generates an oracle to determine whether the current state of the

50

AD satisfies a correctness property, for instance, whether a deletion described

in the update specification has actually been done. An oracle is a set of rules,

which are evaluated to determine success of a test case. AutoDBT generates

the oracle from the update specification.

Definition 6 (Oracle) An oracle is a set of Prolog rules of the following two

forms.

1) insert Relation Failed :-

insert AD Relation(A1, . . . , Ak),

¬AD Relation(A1, . . . , Ak).

2) delete Relation Failed :-

delete AD Relation(A1, . . . , Ak),

AD Relation(A1, . . . , Ak).

The first rule defines a failed insertion operation. Tuples that should have

been inserted into AD Relation haven’t been inserted correctly. In other

words, some tuples stored in the insert AD Relation can not be found in

AD Relation. The second rule defines a failed deletion operation. Tuples that

should have been deleted from AD Relation haven’t been deleted correctly

which means that some tuples stored in the delete AD Relation can still be

51

found in AD Relation. Table 5.1 shows the oracles generated from the update

specification in Table 4.5.

Before the test data for a transaction is executed on the web application,

the associated update specification (if there is any) is evaluated on the most

current AD/SD version, then all the tuples that should be inserted or deleted

will be stored in the insert AD Relation or delete AD Relation, respectively.

Unlike the other Prolog queries, it is best to evaluate the update specification

using a bottom-up strategy, like Datalog. The reason is that more than one

tuple could be inserted or deleted, and bottom-up evaluation will capture

all of the insertions or deletions. Before the evaluation begins, the update

specification is adjusted by unifying the variables inherited from the previous

or current transitions with the values generated in the test case. The facts

generated on test case generated are used to evaluate the update specification.

Transition Oracles
6 delete Reservation Failed :- delete AD Reservation(C#,Pd,Rd,Ct),

AD Reservation(C#,Pd,Rd,Ct).
insert Reservation Failed :- insert AD Reservation(C#,Pd,Rd,Ct),

¬ AD Reservation(C#,Pd,Rd,Ct).
10 delete Reservation Failed :- delete AD Reservation(C#,Pd,Rd,Ct),

AD Reservation(C#,Pd,Rd,Ct).
delete Reserves Failed :- delete AD Reserves(Cid,C#),

AD Reserves(Cid,C#).

Table 5.1: The oracles for the Modify and Cancel Reservation paths

Oracles are evaluated during a test as follows.

52

Definition 7 (Oracle evaluation) An oracle is evaluated by executing one

of the following Prolog queries.

• ?- insert Relation Failed.

• ?- delete Relation Failed.

If an oracle succeeds, then the corresponding update operation failed.

Table 5.2 shows the queries to evaluate the oracles defined in Table 5.1. The

oracle is always evaluated using the current version of the AD/SD. If an oracle

fails, then the testing process for this test case aborts. Otherwise, testing will

continue. The following test case generation process will continue using the

Transition Oracle Evaluation
6 ?- delete Reservation Failed.

?- insert Reservation Failed.
10 ?- delete Reservation Failed.

?- delete Reserves Failed.

Table 5.2: Evaluating the oracles for the Modify and Cancel Reservation paths

AD/SD state left over by the previous processes, but with a new pair of empty

AUL and SUL.

53

Chapter 6

Analysis of the Test Report

After the testing process is finished, the test report is analyzed to find out

whether the application is correctly implemented, or more precisely, whether

the testing process has revealed any defects in the implementation. Several

conditions, which can be classified into the following three categories, can lead

to a failed evaluation of an oracle.

1. Modeling Error

In this category, the modeler didn’t model the transaction correctly,

giving either a wrong input specification or a wrong update specification,

leading to a buggy oracle, which can cause (1) correct results to be

evaluated as a failure (spurious failure) or (2) coincidental failure when

both the test result and oracle are buggy. In this paper, we assume that

54

the modeler can do a perfect job on modeling the application, therefore,

both the input and output specifications are given correctly, and the

oracles generated based on the update specification are always trusted.

Based on this assumption, this category can be eliminated.

2. Buggy Implementation of this Particular Transaction

When a failure is encountered, the first hunch to the tester is that the

implementation of this particular transaction is buggy. So the tester will

first narrow down the related code of this transaction and check where

the bug lies. If no bug is revealed, or after fixing the bugs and rerunning

the testing process on the whole test sequence, the same failure still

exists, then there is very large probability that the failure is caused by

a buggy implementation of the previous transaction which is explained

in the rest category.

3. Buggy Implementation of the Previous Transactions

If the second condition fails, the cause of the failure might lie in the

previous transactions. The buggy implementation of the previous trans-

action might distort the AD in an unexpected way. Due to the limitation

of the partial oracle which only tests whether the expected updates are

correctly performed rather than fully test the entire database, some bugs

55

hidden in the previous transaction are invisible when evaluating the spec-

ified partial oracle, but cause a spurious failure of a later transaction by

making the preset input data for the later transaction no longer valid.

Therefore, the later transaction can not be even triggered. Currently, we

can only be certain that the bugs are hidden in some transactions prior

to the failure one, but can not pinpoint exactly which transaction it is

if there are more than one. We hope in the future, we can narrow the

range of finding a bug by introducing new techniques.

56

Chapter 7

Generality Analysis

By modeling the input and update specifications for the OCRS example, we

demonstrate that the modeler can model the single tuple update easily, in

which case only one tuple of a relation is inserted, deleted, or modified at

one transition, and the AutoDBT can process the specification successfully.

However, for a real web database application, the database updates might be

much more complicated than what we have shown. So whether the modeler

can model every input and update required for a web database application

remains suspicious unless the generality of the approach has been discussed.

In the following subsections, we first explore the modeling steps of all the

basic cases compounding the complicated one, then an argument is made to

show that every other case can be modeled as the combination of the basic

57

cases.

7.1 Basic Cases of Database Update

In this section, we illustrate, from a modeler’s point of view, the steps of

modeling the most basic cases of database updates for the transition i. For

simplicity, we assume the input for the transition i has only one parameter X

and the update influences only one relation R which has only one column.

• Single Tuple Insertion Modeling

In this case, a input X retrieved from the SD/AD is used as an input of

a function (func(X, Y)), then the result of the function, Y , is inserted

into the AD. The function can be as simple as X = Y , or it can be any

complicated computation.

– Input Specification Modeling

∗ Source database: AD/SD

∗ Source relation: R

∗ Input specification:

inputi(X) :- SD R(X).

or

inputi(X) :- AD R(X).

58

– Update Specification Modeling

∗ Update database: AD (Since we only model the updates of the

AD, this step can be omitted and we won’t show it for the

following cases.)

∗ Update relation: R

∗ Update Specification: insert AD R(Y) :- inputi(X), func(X,Y).

• Single Tuple Deletion Modeling

In this case, a single tuple is deleted from the relation R of AD.

– Input Specification Modeling

∗ Source database: AD

∗ Source relation: R

∗ Input specification: inputi(X) :- AD R(X).

– Update Specification Modeling

∗ Update relation: R

∗ Update specification: delete AD R(X) :- inputi(X).

Note that more than one tuple could be deleted.

• Single Tuple Modification Modeling

59

The modification can be modeled as a deletion followed by an insertion.

In this case, a tuple specified by one input Y from previous transition j

is deleted from the relation R of AD, then a new tuple specified by the

input of the transition i is inserted into the same relation R.

– Input Specification Modeling

∗ Source database: AD/SD

∗ Source relation: R

∗ Input specification:

inputi(X) :- inputj(Y), AD R(Y), func(X, Y).

or

inputi(X) :- SD R(Y), func(X,Y).

– Update Specification Modeling

∗ Update relation: R

∗ Update specification:

delete AD R(Y) :- inputj(Y).

insert AD R(X) :- inputi(X).

60

7.2 Generality Argument

All the complicated cases can be modeled as a combination of the basic cases.

In the following, we illustrate a few complicated cases.

• Multiple Tuples Insertion Modeling

In this case, the transition i has more than one input parameters, i.e.,

V 1
i , . . . , V n

i (1 ≤ n). Each Vi(1 ≤ i ≤ n) retrieved from the SD/AD

is used as an input of a function (funci(Vi, Yi)), then the result of the

function, Yi, is inserted into the AD. In the worst case, each Vi is inserted

into a unique relation Ri.

– Input Specification Modeling

∗ Source database: AD/SD

∗ Source relation: R1, . . . , Rn

∗ Input specification:

inputi(V1, . . . , Vn) :- SD R1(V1), . . ., SD Rn(Vn).

or

inputi(V1, . . . , Vn) :- AD R1(V1), . . ., AD Rn(Vn).

– Update Specification Modeling

∗ Update database: AD (Since we only model the updates of the

61

AD, this step can be omitted and we won’t show it for the

following cases.)

∗ Update relation: R

∗ Update Specification:

insert AD R1(Y1) :- inputi(V1, , . . . ,), func1(V1, Y1).

...

insert AD Rn(Yn) :- inputi(, . . . , Vn), funcn(Vn, Yn).

• Multiple Tuples Deletion Modeling

In this case, multiple tuples which have the same attribute value specified

by the input of transition i are deleted from the relation R of AD. The

input and update specification are the same as the ones of single tuple

deletion

• Multiple Tuples Modification Modeling

We use an example to illustrate this case. For instance, in the Reserves

relation of OCRS example, increase the Confirmation# by 1 to those

tuples with a CustomerID = the input of transition i.

– Input Specification Modeling

∗ Source database: AD

62

∗ Source relation: Reserves

∗ Input specification:

inputi(CID) :- AD Reserves(CID,).

– Update Specification Modeling

∗ Update relation: Reserves

∗ Update specification:

delete AD Reserves(CID,C#) :-

inputi(CID), AD Reserves(CID,C#).

insert AD Reserves(CID,C#) :-

inputi(CID), AD Reserves(CID,C#’),C# = C#’ + 1.

When CID = c0004, two tuples are modified.

63

SDAD

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

Test Controller

Test Report

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

Report

Test Result Evaluation

TrueFalse

Test Sequence

Oracle Generator

Test CaseFailure Message

Oracle

Sub−

Specification
Dynamic Data

Tset Sequence Scheduler

Dynamic Data
Specification Generator

Specification
Data State Transition

Diagram

Test Sequence
Criteria

Test Coverage

Test Sequences Specification

Update

Guard Generation
and Evaluation

Step Mode Execution

Generator

Graph Prolog

C++ C++

Text
Prolog

C++

Text
Prolog

Text

C++

Prolog

Prolog Interpreter

Text

Text

C++

Datalog
E−Valid

Prolog Interpreter

Text

Note: the note besides each component is the language or tools the component will use and the input/output type.

Figure 7.1: Implementation Framework

64

Chapter 8

Implementation Architecture

8.1 Overview

Combining the Figure 4.1 and Figure 5.1, Figure 7.1 is created, in which

each shaded rectangular component is a tool that needs to implemented. In

the following subsections, we sketch out the implementation plan for each

component.

8.1.1 Test Sequence Generator

The inputs of the test sequence generator are a directed graph which is the

FSM of the web application and a test coverage criterion, while the output is

a set of test sequences. Since the FSM is a directed graph, some well-known

65

graph theory algorithms can be applied to achieve the given test coverage crite-

rion. For instance, as for the OCRS, if we’d like to test each branch separately,

the graph is first separated into four components. In each component, if we’d

like to execute every possible action in an efficient manner, an algorithm which

solves the New York Street Sweeper Problem can be applied.

8.2 Dynamic Data Specification Generator

The dynamic data specification generator includes two parts: the data in-

heritance graph (DIG) generator and the dynamic input specification (DIS)

generator.

1. DIG Generator

The inputs of the DIG generator are the input and update specifications,

while the output is a directed graph represented as an adjacency matrix.

We set aij = k, (1 ≤ k) if the variable represented by k is inherited from

transition j to transition i. Since the inputs are Prolog rules, so a parser

is needed to parse the specifications, and it can be generated by using

a lexical analyzer generator lex and a parser generator yacc. Whenever

the parser finds a pattern inputi(1 ≤ i ≤ n) in the body predicates of

the input or update rule of the transition j, an integer k representing

66

the variables associated with that predicate is set in aij of the adjacency

matrix.

2. DIS Generator

The inputs of the DIS generator are the output of DIG, input and output

specifications, while the output is the Dynamic Input Specification (DIS).

Each rule of DIS can be generated in two steps as follows.

(a) Head Generator

The head of each rule is generated by modifying the head of each

input specification based on the input and update specification, and

the DIG.

Algorithm 8.1

For each ith(0 ≤ i ≤ n) rule in the input sepcification

If AD (SD) prefixes any body predicate of the input

or update rule, add ADin,ADout (SDin, SDout)

to the head of the rule.

For each aij(0 ≤ j ≤ n) in DIG

If aij 6= 0, add the variable name represented by

the aij into the head of the rule.

(b) Body Generator

67

The body of the DIS is generated by modifying the body of the orig-

inal input specification by, first, as a parameter, adding ADin(SDin)

into each corresponding body predicate prefixed by AD (SD), then

appending the body of the update rule and the database update

predicates to the body of the input rule.

8.3 Test Sequence Scheduler

The input of the test sequence scheduler is a set of test sequences waiting to be

tested and the update specification, while the output is a queue of the ordered

test sequences. It can be implemented in the following way.

First, we assign two variables Deletion and Insertion to each test sequence,

which are initiated as 0. For each test sequence, a parser, generated by using

lex and yacc, is used to parse the head predicates of the update specification

of each transition, whenever a delete is encountered, the variable Deletion is

increased by 1. Similarly, whenever an insert is encountered, the variable

Insertion is increased by 1.

The test sequences are classified into four groups based on the final values

of the variables Deletion and Insertion in the following way.

68

1. Read Only: Deletion = 0 and Insertion = 0;

2. Insertion Only: Deletion = 0 and Insertion ≥ 0;

3. Mixed Insertion and Deletion: Deletion ≥ 0 and Insertion ≥ 0;

4. Deletion Only: Deletion ≥ 0 and Insertion = 0

The four groups are ordered in the above order and the order of the test

sequences in one group is random. Each test sequence is assigned a sequence

number SN and the ordered SN can be maintained in a linked list.

8.4 Guard Generator

The inputs of the Guard Generator are the first test sequence of the test

sequences queue formed by the test sequence scheduler, DIS and DIG, and the

AD and SD, while the output is a test case if the guard evaluates to true, or

a failure message otherwise.

The guard is generated by the following four functions.

1. Head Concatenator: Concatenating all the head predicates of the DIS

associated with the entire test sequence. (Input: the DIS, test sequence.

Output: a string)

69

In this step, a parser is used to parse all the head predicates associated

with the test sequence from the DIS. A string is formed after concate-

nating all the associated head predicates which are separated by “,”.

2. Variable Renamer: Renaming all the variables of each predicate. (Input:

the string generated by Head Concatenator. Output: a table.)

A Name Generator, which generates a unique string each time invoked,

is invoked whenever a variable, except the ADin,ADout, SDin, SDout, is

encountered in parsing the string generated by Head Concatenator, and

the variable is replaced by the new name generated. A table (T) is

maintained to store the correspondence between transition number, the

original variables and its new name. The following function is invoked

to ensure the data inheritance between transitions.

3. Data Inheritance: If a variable (e.g. A) inherits a value from a previous

variable (e.g. B), then rename variable A as B. (Input: the string gener-

ated by Head Concatenator, the table T generated by Variable Renamer

and DIG. Output: a string.)

Check DIG to find any data inheritance between transitions. If there is

any, e.g. aij = k, which means a variable represented by k e.g. C# is

inherited from transition j to i, then check the tuples associated with

70

transition j and i in table T and change the new name of the C# in the

transition i to the new name of the C# in the transition j. A new string

is generated by changing the variable in the input string to the updated

new name. The string is returned.

4. Pass DBVersion: Passing the database version from one transition into

the next. (Input: the string generated by Data Inheritance. Output:

the guard)

Algorithm 8.2

i = 0;

j = 0;

Parsing the input string;

For each tth (0 ≤ t ≤ n) predicate

If ADin is matched

Rename ADin to ADi;

i++;

Rename ADout to ADi;

If SDin is matched

Rename SDin to SDj;

j++;

71

Rename SDout to SDj;

t++;

return the new string.

After the guard is generated, it is evaluated based on the most current AD

and SD with a pair of empty AD0/SD0.

8.5 Oracle Generator

The input of the Oracle Generator is the update specification, while the output

is the oracle rules.

Algorithm 8.3

Parsing the update specification;

For each update rule

If the head = insert AD Relation(A1, . . . , Ak)

set oracle as

insert Relation Failed :-

insert AD Relation(A1, . . . , Ak),

¬AD Relation(A1, . . . , Ak).

If the head = delete AD Relation(A1, . . . , Ak)

72

set oracle as

delete Relation Failed :-

delete AD Relation(A1, . . . , Ak),

AD Relation(A1, . . . , Ak).

8.6 Step Mode Execution

We adapt a capture/playback tool: E-Valid to execute the test case.

8.7 Test Result Evaluation

After a transaction commits, the corresponding oracle is evaluated on the

current version of AD in a Prolog environment.

8.8 Test Controller

Test controller is implemented to control the testing process. The testing pro-

cess continues at the Step Mode Execution if more steps need to be executed,

at the Guard Generation and Evaluation if more test cases are needed, at the

Test Sequence Scheduler if more sequences are waiting to be tested.

73

Chapter 9

Related Work

Much of the literature on testing web applications is in the commercial sector

and tests non-functional aspects of the software. An extensive listing of ex-

isting web test support tools is on a web site maintained by Hower [11]. The

list includes link checking tools, HTML validators, capture/playback tools, se-

curity test tools, and load and performance stress tools. These are all static

validation and measurement tools, none of which support functional testing or

black box testing.

Kung, Liu, and Hsia [13, 14] developed a test generation method based on

multiple models of the applications under test. The models include Object

Relation Diagrams, Object State Diagrams, a Script Cluster Diagram, and a

Page Navigation Diagram. This model assumes that the source is available,

74

whereas our research does not. Also, this paper uses an enhanced Finite State

Machine that includes representation of test constraints and does not need

multiple types of diagrams. Unlike Kung et al., we also represent the FSM

via logical, rather than physical web pages and solve potential state space ex-

plosion problems through partitioning and a different approach towards input

description on the edges of the FSM.

Lee and Offutt [16] describe a system that generates test cases using a form

of mutation analysis. It focuses on validating the reliability of data interac-

tions among web-based software components. Specifically, it considers XML

based component interactions. This approach tests web software component

interactions, whereas our current research is focused on the web application

level.

Ricca and Tonella [20] proposed a UML model of web application for high

level abstraction. The model is based entirely on static HTML links and does

not incorporate any dynamic aspects of the software. Any web application can

be seen as an instance of the UML model. The model is supported by a tool

that creates a static graph based on HTML links and another that creates

tests comprised of sequences of URLs. Although the paper claims that the

tools can “guarantee that all paths in a web site” are covered, assumptions

about data inputs and lack of information about dynamically created links

75

clearly limit the paths that are covered.

Yang et al. [25, 26] present an architecture for test tools that is directed

towards testing web applications. The architecture consists of five subsystems

including test development, test measurement, test execution, test failure anal-

ysis and test management. From the paper, it is not clear whether the test

architecture includes new tools or whether it is meant to incorporate existing

tools. The FSM modeling-based tool proposed in [1] satisfies the test devel-

opment and test measurement portion of Yang et al.’s test architecture.

Jia and Liu [12] proposes an approach for formally describing tests for

web applications using XML. A prototype tool, WebTest, was also developed.

Their XML approach could be combined with the test criteria proposed in [18]

by expressing the tests in XML.

Benedikt, Freire and Godefroid [6] presented VeriWeb, a dynamic naviga-

tion testing tool for web applications. VeriWeb explores sequences of links in

web applications by nondeterministically exploring action sequences, starting

from a given URL. Excessively long sequences of links are limited by prun-

ing paths in a form of path coverage. VeriWeb creates data for form fields

by choosing from a set of name-value pairs that are initialized by the tester.

VeriWeb is the most similar work to the ideas presented in [1]. The primary

difference is in the graphs that are used and the technique applied to reduce

76

their size. VeriWeb’s testing is based on graphs where nodes are web pages

and edges are explicit HTML links, and the size of the graphs is controlled by

a pruning process. We rely on DEFSM models of the web application and use

aggregation abstraction of the DEFSMs to control the size.

None of the above papers deal with application databases. Database test-

ing research has focused primarily on techniques to automatically populate a

database with synthetic data for testing purposes [7, 10]. These approaches

are complementary to our research in modeling and testing the interaction of a

web application with a database. Database benchmarks like TPC are popular

for assessing the performance of DBMSs [22, 21]. However, DBMS benchmarks

aren’t useful for functional testing of database applications, though they could

play a role in the future if we extend AutoDBT to performance testing.

Finally, Prolog has been a popular language and tool used in AI for effi-

cient search. However, to our best knowledge, the use of Prolog in test case

generation in this paper is novel.

77

Chapter 10

Conclusions and Future Work

There is a need for strategies to automate testing of web database applications

since relying on manual testing is ineffective for many such applications. Au-

toDBT extends the functional testing of a web application to include database

updates. To use AutoDBT, a modeler develops a model of the application.

The model consists of a state transition diagram that shows how users navigate

from page to page in the application, and a Data Specification that describes

how data is input and the database is updated. Once the model is complete,

a tester decides on test coverage criteria. AutoDBT uses the model and the

coverage criteria to generate test cases. Each test case is a self-contained

test of the web application. AutoDBT selects test case data from either the

application database or the synthesized database as needed. AutoDBT also

78

generates a guard for each test. The guard checks whether the current state

of the database is conducive to generating a test case, since previous tests

may have modified the database to an extent that renders the test case gen-

eration impossible. Finally, AutoDBT also generates an oracle for each test.

The oracle checks whether a test case has correctly updated the application

database.

The main contributions of this paper include a design of AutoDBT and the

identification of testing as an important, open issue for web database appli-

cations. Much remains to be done. We plan to complete the implementation

of AutoDBT. We have yet to build tools for many of the components in the

framework. We designed AutoDBT for functional testing, but we’d like to

investigate other kinds of testing of web database applications, such as per-

formance testing. Another vein of future work is to improve the feedback on

failed tests. A test fails because an oracle detects a problem in the application

database. Ideally the oracle would also provide a hint on how to fix the prob-

lem; currently no such hints are provided. Finally, we’d like to improve the

guards. A guard checks whether a test case can be attempted, but it would

be better if the guard populated the database with the data that is needed to

perform the test.

79

Bibliography

[1] A. A. Andrews, J. Offutt, R. T. Alexander. Testing Web Applications

By Modeling with FSMs. Submitted to Software and System Modeling,

Springer-Verlag.

[2] Lihua Ran, Curtis E. Dyreson, Anneliese Andrews. AutoDBT: A frame-

work for Automatic Testing of Web Database Applications. To appear

in International Conference on Web Information Systems Engineering

(WISE), 2004.

[3] B. Beizer. Black-Box Testing. Wiley, 1995.

[4] E. Beltrami. Models for Public Systems Analysis, 1977.

[5] L. Bodin, A. Tucker. Model for Municipal Street Sweeping Operations.

In Modules in Applied Mathematics Vol. 3: Discrete and System Models,

1983.

80

[6] M. Benedikt, J. Freire, P. Godefroid. VeriWeb: Automatically Testing

Dynamic Web Sites. In Proceedings International WWW Conference(11),

Honolulu, Hawaii, USA. 2002

[7] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, E. J. Weyuker. A Frame-

work for Testing Database Applications. In Proc. of the International

Symposium on Software Testing and Analysis, pp. 147-157, 2000.

[8] T. S. Chow. Testing Software Design Modeled by Finite-State Machines.

In IEEE Transactions on Software Engineering, SE-4(3), pp. 178-187,

May 1978.

[9] S. Fujiwara, G. Bochmann, F. Khendek, M. Amalou, and A. Ghedasmi.

Test selection based on finite state models. IEEE Transactions on Soft-

ware Engineering, 17(6):591-603, June 1991.

[10] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, P.J. Weinberger.

Quickly Generating Billion Record Synthetic Databases. In Proc. ACM

SIGMOD, 1994

[11] R. Hower. Web site test tools and site management

tools. Software QA and Testing Resource Center, 2002.

www.softwareqatest.com/qatweb1.html (accessed November 2003).

81

[12] X. Jia, H. Liu. Rigorous and Automatic Testing of Web Application.

In Proceedings of the 6th IASTED International Conference on Software

Engineering and Applications (SEA 2002), Cambridge, MA, USA. pp.

280-285, November 2002

[13] D. Kung, C. H. Liu, and P. Hsia. A model-based approach for testing Web

applications. In Proc. of Twelfth International Conference on Software

Engineering and Knowledge Engineering, Chicago, IL, July 2000.

[14] D. Kung, C. H. Liu, and P. Hsia. An object-oriented Web test model

for testing Web applications. In Proc. of IEEE 24th Annual International

Computer Software and Applications Conference (COMP-SAC2000), pp.

537-542, Taipei, Taiwan, October 2000.

[15] D. Lee and M. Yannakakis, Principles and Methods of Testing Finite State

Machines, a survey. In Proceedings of the IEEE, vol. 84, 8, pp. 1090-1123,

1996.

[16] S. C. Lee and J. Offutt. Generating test cases for XML-based Web com-

ponent interactions using mutation analysis. In Proceedings of the 12th

International Symposium on Software Reliability Engineering, pp. 200-

209, Hong Kong China, November 2001. IEEE Computer Society Press.

82

[17] N. Nyman. GUI Application Testing with Dumb Monkeys. In Proceedings

of STAR West, 1998.

[18] J. Offutt and A. Abdurazik. Generating tests from UML specifications. In

Proceedings of the Second IEEE International Conference on the Unified

Modeling Language (UML99), Lecture Notes in Computer Science Volume

1723. pp. 416-429, Fort Collins, CO, October 1999.

[19] J. Ofutt, S. Liu, A. Abdurazik, and P. Ammann. Generating test data

from state-based specifications. The Journal of Software Testing, Verifi-

cation, and Reliability, 12(1):25-53, March 2003.

[20] F. Ricca, P. Tonella. Analysis and Testing of Web Applications. In 23rd

International Conference on Software Engineering (ICSE), Toronto, On-

tario, Canada. pp. 25-34, 2001

[21] D. Slutz. Massive stochastic testing of SQL, In Proceedings of the Twenty-

Fourth International Conference on Very-Large Databases, Morgan Kauf-

mann, pp. 618-622, 1998

[22] Transaction Processing Performance Council. TPC-Benchmark C. 1998

83

[23] J. Whittaker, M. Thomason. A Markov Chain Model for Statistical Soft-

ware Testing. In IEEE Transactions on Software Engineering, Vol. 20,

pp. 812-824, 1992.

[24] R. Elmasri, S. B. Navathe. Fundamentals of Database Systems. Third

Edition. Addison-Wesley 2000.

[25] J. Yang, J. Huang, F. Wang, and W. Chu. An object-oriented architecture

supporting Web application testing. In First Asian-Pacific Conference on

Quality Software (APAQS ’99), pp. 122-129, Japan, December 1999.

[26] J. Yang, J. Huang, F. Wang, and W. Chu. Constructing an object-oriented

architecture for Web application testing. Journal of Information Science

and Engineering, 18(1):59-84, January 2002.

84

