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A NUMERICAL STUDY OF NONLINEAR STATIC AND DYNAMIC BEHAVIOR
OF A SQUARE THIN PLATE-MEMBRANE STRUCTURE FOR

APPLICATION TO A MEMS MICRO-GENERATOR

Abstract

By Owen |. Crabtree, M.S.
Washington State University
December 2004

Chair: Cecilia D. Richards

The behavior of geometrically nonlinear, laminajgiézoelectric, square plate-
membrane was predicted using a finite differenchri@ue along with a step-by-step
matrix analysis technique to predict the static dyrdmic behavior. These methods
were implemented using the FORTRAN 90 programmamgliage, and then the
developed program was used to optimize the platen&ne for use in a micro-engine.

Optimum performance is such that the membraneexiiibit low frequencies of
operation to accommodate heat transfer in the rgagine and that the majority of the
energy into the system will be extracted througlrgh on a piezoelectric layer. In order
to achieve this the model was exercised and itfaasd that minimization of residual
stress and minimization of the other lamina thidgaes, besides the piezoelectric, can
assist in both these goals. For typical silicdokihesses (1-gm) it was found that the
optimum PZT thickness based on a strain energy imin the range of 2 todn. Also

it was evident that an increase in side length edllise a decrease in frequency of



vibration, and a decrease in deflection will redooalinear effects therefore also
reducing the frequency of vibration. The nonlinkeahavior was also studied and

harmonics were found and analyzed.
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Chapter 1: Introduction

1.1 Motivation

Geometric nonlinearity of membranes and plate$ geoeral interest to the
scientific and engineering communities. A multeuaf applications for these structures
is apparent. For instance, the basilar membratteeiear will exhibit this nonlinear
behavior [1]. The aircraft industry also has mutkrest in this, some of the early
mathematical solutions were motivated by this iligu]. In the civil engineering
world this is of interest and this was illustratedegards to the the behavior of window
glass plating [3]

Nonlinear behavior in the MEMS world is also quetedent; membrane
thermopnuematic actuators can show an impressiweiainof nonlinearity as
demonstrated in [4]. Power generation is alsodattempted on the MEMS scale, an
electromagnetic micro-generator, shown in [5], @alsplays these characteristics. The
current application which is being worked on at Wiagton State University by the P3
MEMS micro-engine group is also an application MBMS membrane to power
generation. The eventual goal of this projecbiprovide a micro-engine that uses a

structure similar to Figure 1.1 as the generator.
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Figure 1.1: P3 membrane generator schematic

It is apparent from the figure that the aspecbrafithe membrane structure is
approximately 1000. This means the behavior tastructure will undergo will be
more membrane-like than plate-like. In experimavith the structure it was shown that
deflections are on the order of multitudes of thiekness [6] implying a geometrically
nonlinear behavior. Subsequently a solution teplihat can solve for this behavior

accurately is desired.

1.2 Literature Review

Plate and membrane behavior in the dynamic anid skanains has been
examined since the end of the"@ntury where it began with the experimental wafrk
Chladni [7]. Since then it has developed into egbaning and expansive field with a
wide variety of theoretical and empirical technigué he first mathematical solutions
were attempted by Euler (1766) and his student®&er (1789), who analyzed the free
vibration problem of the membrane theory of pld&p. 7]. The first correct governing
equation for the free vibration of plates was depet by Lagrange in 1813 [8 p. 8]. The
plate problem has progressed through history notit where it is commonly analyzed

using the finite element method [9] and other cotaponally intensive methods. Which



are capable of analyzing many geometries and paeasn¢hat can occur. The emphasis
in this review is the theoretical work that hasrbdene in order to represent and solve
the plate/membrane problem.

Plates undergoing transverse deflection can bsifisinto regimes that
describe the nature of their behavior and thusadheristics of the mathematical
problem. These regimes are small deflection (neaoderately large deflection (non-
linear), and very large deflection (highly non-mg This behavior can generally be
classified by observation of the amount of defatin comparison to plate dimensions.
Small deflection theory can typically be used feflections less than twenty percent of
the thickness; moderately large deflection thesmgdplied when the deflection is a
multiple of the plate thickness but much less ttenplate side length; very large
deflection theory is applied when the deflectioriraf plate is similar in magnitude to the
plate side length. Depending on the plate clasgion the solution to these problems can
be relatively simple or highly complex, and typlgainpossible without the
implementation of approximating techniques. Cogeraf the linear deflection problem
and the moderately nonlinear problem will occuthiis review, very large deflection is
currently not pertinent to this work and subseqiyentll not be covered.

An important distinction in the following discussi@s between the plate and the
membrane. The membrane is a very thin structure/ifiich flexural rigidity is of such a
small magnitude in comparison to the in-plane meméiforces that the terms dependent
upon the flexural rigidity can be assumed negl@gibT herefore the lateral load carrying
capacity of a membrane is purely due to the ingfances [8 p. 144], unlike a plate

which can carry loads by both bending forces anglame forces. This distinction
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between a plate or a membrane will be emphasizeldebghoice of vocabulary in the

proceeding discussion.

1.2.1 Formulation of the Linear Deflection Theory

Small deflection vibrations have been widely stddieie to the general
applicability and the relative ease of obtainintysons. Therefore a large amount of
literature is available concerning these linearatibns. Leissa compiled an excellent
monograph detailing the available formulations aaldition techniques for various plate
shapes and parameters at the time of writing [@je of the classical reference for plate

problems, Timoshenko’s Theory of Plates and Shalé® provides an expansive amount

of literature on plates and their relatives [1Bkilard also provides an excellent overview
of the linear plate problem with an emphasis ondidifference techniques [8].
The classical linear free vibration theory for aatropic plate is governed by the

differential equation, equation (1.1) [8 p. 413].

DV*w+m-——=0 (1.1)

Which compares to the linearly vibrating membra®e.[420].

2

2., M O"W_
VoW oh ot?

(1.2)



w is the transverse deflectidns time, m is mass per unit ared, denotes

structure thickness; is a constant in-plane membrane strégé=V?V? and V? is the

two-dimensional Laplace operator defined in equifin3).

2 2
ve=2 O (1.3)
ox" 0y

The flexural rigidity,D, is defined in equation (1.4) for a single lamivizereE is

the modulus of elasticity andis Poisson's ratio.

_ ER
D_ldl—vﬁ (1.4)

1.2.2 Solutions to the Linear Deflection Theory

Solutions to the differential equations of platad amembranes is a vast topic
with many variations, although there is a consisséream of the more popular methods.
These can be broken down into two solution grobpditst being exact analytical
solutions and the second being approximate solsitignlimited number of exact
solutions exist and these are for fairly specitoditions.

There are 21 independent boundary conditions erabe applied to a rectangular

plate. Because of the lack of resistance to bgnofirmembranes the clamped and simply



supported boundary conditions are identical, tleeesbnly 6 independent boundary
conditions exist for membranes. Leissa detailseli®undary conditions for rectangular
plates, pointing out that the only exact solutiknewn are for the six cases of plates with
opposite edges that are simply supported [12].s&lselutions were obtained by Voigt
[13] in 1893 using the aptly called Voigt solutitathnique. Navier also developed an
“exact” method to solve these equations whichaésgia double Fourier series [11 p.
108]. This solution is only “exact” if the bounglaronditions are of the Navier type, i.e.
simply supported [8]. Solution of a membrane clathpn all edges can also be obtained
using a separation of variables technique as detay Inman [14 p. 471]. Exact
solutions have also been found for circular plaied membranes [11 p. 55], but these
being of little use in this work will subsequentlgt be covered.

The most common and readily available solutiongtawee of the approximating
techniques. These range from the familiar Rayl&tgh technique [15] to the
hierarchical finite element technique [16]. In ttese of Warburton's and Leissa's
analysis they use the Rayleigh-Ritz technique mjwaction with beam functions to
obtain approximate solutions for the remaining d&rxary conditions [12 p. 269 ]. This
technique is actually widely used and can be faarallarge assortment of the literature,
referenced in Leissa's monograph [10]. The wideadghe finite difference technique to
obtain solutions to problems of mathematical plg/@also evident in plate and
membrane literature. Szilard details this techaitpr multiple plate applications in his
book, going as far to develop this technique togslavith irregular boundaries [8 p. 175]
and also plates with orthotropic properties [8&i]3 Kharab used this technique in a

spreadsheet program and solves the two dimensianad equation for a membrane [17].
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The finite element technique is currently a poptdahnique in numerical
solutions. An incomplete survey performed by Cfbk. 319] includes references to
144 articles that included 88 different types aftelfinite elements. One of the more
recent finite element solution techniques for thedr plate problem is the hierarchical
finite element [18, 19]. Han and Petyt have putaddswork on this technique for plates in
free vibration [18] and plates under forced vilat[19], in Houmat's paper he analyzes
the vibrational behavior of a membrane instead phte [16]. Both sets of authors show
that this technique can be advantageous in tihadlitces the number of degrees of
freedom that must be used to yield an accuratdtyegien compared with the linear

finite element method.

1.2.3 Formulations of the Nonlinear Deflection Thery

Many formulations and solution techniques for tihedrly vibrating plate have
been derived and implemented. These techniqueshtiean rigorously tested and tried,
showing their validity in the linear plate/membrargime. Yet, deflections on the order
of approximately a tenth the thickness of a plate cause stiffening of the structure that
this theory can not predict. These forces, whiehaaresult of the deflected shape
requiring stretching or shortening of the midsuefeact to support part of the load. The
linear theory breaks down and gives solutionsiti@irrectly estimate the displacements
and vibrational characteristics considerably.

The credit of discovering the nonlinear theory thetounts for both bending and

stretching of the plate is given to G. Kirchhof824-1887). The analysis in his 1876



book Lectures on Mathematical Physics (in German) [20] is considered the first piece of
literature which notices that the nonlinear teras no longer be considered negligible [8
p. 8]. The final form of the nonlinear differeritequations governing the moderately
large deflection behavior of a statically deflecpgate was published by von Karman in
1910 [21]. Herrmann then expounded upon von Kaknaark, integrating dynamic
effects into the theory [22]. The final set of W@arman like equations for an isotropic
plate are shown in equations (1.5) and (1.6).

The Equilibrium Equation

o’w_ [0°w’F 0w o°F . o°w  O°F
DV*w+m=—-=h + - 1.5
ot ox’ oy* 8y’ ox° OXdyoxoy (1.5)
The Compatibility Equation
4 4 4 2 2 2 2
X OX’0y" oy 0X0y] ox" oy

Equations (1.5) and (1.6) are derived using anliéguim approach of an elastic
plate representative element in Cartesian coorelnathese equations are usually
referenced as th&-F formulation. The use of the Airy stress functiBnrequires the

assumption that in-plane inertia is negligible [28hich limits the applicability of this



theory. The plate can also be represented usieg tguations in terms of three
displacements in the x, y, and z directions [24lled thew-u-v formulation. These
equations are capable of representing the vibraisig with inclusion of the in-plane

inertia terms [23].

1-v 1+v 1-v 1+v
U, + > u,+ > V=W | W+ > W |— > W W, (1.7)
1-v 1+v 1-v 1+v
Vayt 5 Vet 5 Uy = Wy | Wyt =5 W | = 5 W Wy, (1.8)
4 Eh 1 5
DViw+pw =q+—— Uyt 5 W (W o Fvw )+
v (1.9)

O e 1 )|

Another popular approach to the representatioriaté ppehavior is the variational
technique [25 p. 163, 26 p. 295]. Both Washizu Betsmann illustrate this technique
which uses the principle of virtual work as themaf departure. Washizu then utilizes

the principle of stationary potential energy toasbtequations (1.5) and (1.6) [25 p. 165].

1.2.4 Solutions to the Nonlinear Deflection Theory

Solutions for the above sets of nonlinear equati@® been examined

extensively in the literature. These solutionssardestantially more complicated in the



geometrically nonlinear case then those discussetthé linear. Yet, some of the same
solution techniques are applied in the nonlineaedhat were applied in the linear (with
modification).

Exact solutions to the nonlinear plate are obvipdsficult to obtain. Although,
an “exact” solution for a uniformly loaded circulalate with a clamped edge was
developed by Way [27]. Manipulating the governgggations slightly, Way then applies
a power series solution, and obtains an “exactitemi to the static deflection of a
nonlinearly behaving circular plate. As far asthuthor has found, no exact solutions
exist for the dynamic behavior of a nonlinearlyléeting rectangular plates or
membranes.

The other solutions for this plate problem belamghie approximate solution
category. Generally these solutions either usecappating functions, assume certain
terms negligible, or use some finite discretizamogthod. Chia published a superb
compilation of information on nonlinear plates andny of the methods to approach the

different plate problems in his book, Nonlinear Msés of Plate§24].

Initially, examining the work done on the solutitanstatic deflection of plates a
large volume of techniques were found. One ofvrg prominent techniques found in
literature is attributed to H. M. Berger and consatly referred to as the Berger
formulation [28]. Writing the standard energy eegsion at the mid-plane of the plate,
Berger assumed that the second strain invariaregggible; based on the work done by
Way [27]. This then results with the decouplingl dinearization of the governing

equations. Although the caveat with this assumpsdhat there is no direct physical
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interpretation of the validity of the assumptioreds Berger compares his results to that
obtained by Levy [29] and Wang [2, 25] and findsesgnent.

In future works many other authors use the Berggrriique on a multitude of
plate problems. In Leissa's monograph [10] oteelniques are illustrated which extend
the Berger technique to include vibrational behagidthese nonlinear plates.
Application of this method to the nonlinear vibaatiof both plates and membranes was
done by Mazumdar, with the goal of modeling vilwas of the human tympanic
membrane [30]. Sathyamoorthy then extended thea éwrther to the vibration of
orthotropic clamped rectangular plates with immadeauige conditions [31]. Part of this
approach is to assume a solution based on thebkpaides and some function in time [7
p. 5]. This then reduces to the well known Duffoggillator problem. Detailed solution
methods are available in [32].

Another very popular technique is the double setigscally a Fourier series,
although in some cases a one term (single-modajiaolis used for the transverse
deflection [33, 34]. Levy implemented the Fouseries for a simply supported
rectangular plate under combined edge compressidtateral loading [29]. Deflection
and pressure were defined as a Fourier series mqtesentation for the Airy stress

function based on this was found. Levy exercisggltechnique and one of his findings

4
was that forp_a4:400 the membrane and bending stresses are of thersagrétude.

Wherep is applied pressura,is plate side lengtlt is Young's modulus, artdis plate

thickness. Seide used Levy's technique as a &enghd applied it to the problem of

11



rectangular membranes with edges that are fixechalaio the edge but free to move
parallel to the edge [35]. A similar technique $taitic deflection of membranes with the
w-u-v formulation was developed by Timoshenko and thgraeded by Maier-Schneider
[36]. It combines quadratic terms with a sine tiort profile of the membranes. This
technique is quite useful to obtain quick and yaatcurate results for load-deflection
solutions.

Extending the Fourier series technique into theadyio world is an obvious step,
using a generalized Fourier series. Often the etsnconsist of beam functions [24,
p.40]. Teng uses this technique for plates undeggalast loading with different degrees
of elastic restraint along the edges [37]. Inc@ent paper, Teng et al [38] used a Fourier
series to obtain a governing equation for nonlindates that is exactly the well known
Duffing equation. Lighthill's extension of the pebation method was then used and
transient solutions for rectangular plates undastilbading was obtained. Verification
against experimental data confirmed the validityhid technique.

Lee analyzed the two different formulations of thisblem, thev-F and w-u-v
formulations, a generalized Fourier series and3akerkin procedure were used for both
formulations [23]. Lee found that in the caseh&w-u-v formulation the number of
terms needed, 252, precluded the application eftéghnique. Lee did find, however in
using this procedure that the Duffing equation dropt of the mathematics.

A perturbation solution has also been investigaie@hu and Herrmann [39]
where the dynamiwa-F formulation was used which was derived in a presioork of
Herrmann [22]. A double sine series was usedherdeflection term and a double

cosine series was used for the stress function tembonly the first mode shape was
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accounted for. Nayfeh used a perturbation mettiodultiple scales to solve the
differential equations for a symmetrically exci@ctular plate, and documents the
solution steps in [40], finally noting that theembal resonance for plates involves three
modes [40 p. 514].

Yasuda [41] also used a perturbation method ofipiaelscales to obtain
oscillation characteristics of a square membrarme agprimary resonance with one nodal
line and showed that this method matched experinpeoting the validity of the
technique in this case. Although to simplify timalysis, mode shapes composed of a
multiple of two sine functions were used and ohly ¢1,2) and (2,1) mode were
accounted for. In 1981 Niyogi applied this sanahiteque to the non-linear dynamic
response of orthotropic plates and found good ageeewith other available numerical
results of the time. The perturbation method iy capable of treating problems with
weak nonlinearity, and quickly becomes difficulivtork with when calculating higher-
order approximations [42], therefore other techagmust be explored in order to obtain
results for stronger nonlinearity.

Hamilton's principle has also been applied to pincsolem. Benamar used this
technique in his PhD dissertation to examine tleghks in mode shapes and frequencies
of vibration in nonlinear clamped plates and beffhs A dependence on mode shapes
and frequencies were found, curvatures near tmeped edge increased as deflection
increased. Also spatial distortion was analyzetliawas found that there is interaction
at large deflections between the first and higldeoodd symmetric modes. This spatial
distortion characteristic was also explored in3ing the finite element technique and

the same conclusion was reached. This technigseaisa applied to symmetrically
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laminated rectangular composite plates [43], anteotangular plates with a combination
of simply supported and clamped boundary conditjdd$ Benamar also performed
experimental work to verify and compare his expernits and found agreement [7].

In the 1970's and early 1980's nonlinear plate efgsnwere being developed
using the FEM technique. Pica developed an elefoestatic situations using a Mindlin
formulation where it was found that the developkednents provided good results for
straight boundary's but had difficulty with curvedes [45]. In 1984 Lau [46] illustrated
a simple triangular incremental modified DiscreiecKoff Theory plate element for
dynamic behavior. Interesting results were founddiffering boundary conditions. In
the case where in-plane displacements are asswnedwer the entire membrane higher
mode interaction is evident, but in the case whidgeassumption is not enforced the
higher mode interaction is not evident [42]. Therdrchical finite element technique
(HFEM), which uses high-order polynomial displacetfenctions, allows the entire
plate to be modeled with one element. This teakiq illustrated for both isotropic [33]
and laminated plates [34]. As previously mentiotreHFEM technique can reduce the
number of degrees of freedom needed to obtainuticol

The method to be applied in this thesis is thadidifference technique. It has
been applied in the linear case previously [262d4] 2nd has also been applied in the
nonlinear case. A solution was detailed by Wandd@the static case with various
boundary conditions. It has also been appliedjt@se plates under hydrostatic loading
for conditions of a flat plate in liquid containeyspartitions [47]. Vallabhan used this

method in an application to window glass plating §&d he included vibration by using
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the Newmarl§} technique [48]. Comparisons were made to othpefsaand agreement

between the solutions was found.

1.3 Research Objectives

The primary objective of this work is too incredlse understanding of the
behavior of the membrane generator used to proglectrical work in the micro-engine.
In order to do this a model is developed that caneately predict what will occur. In
particular, the focus of this work is the dynamectromechanical behavior.

Model development begins with proper choice of ejaple equations. That is, a
set of governing equations must be found along gblicable boundary conditions.
Then lamination and piezoelectricty are integraméd the model. Solution of these
equations is pursued, proper choice of a solugchrtique that will result in accurate and
relatively quick results is desired. A simplifiagproach is assumed, instead of modeling
everything that occurs in Figure 1.1, what occarBigure 1.2 will be modeled. That is,
sloping boundary conditions are not accountedaind, the number of layers are reduced.
The developed model will be capable of modelinggetically nonlinear behavior of a

laminated, piezoelectric thin plate/membrane device

Gold ~ 325 nm
PZT ~ 1um
Platinum ~ 175 nm
Silicon ~ 2 ym

[P A
<€ 3 mm >

Figure 1.2: Actual modeled membrane structure
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Finally, the model is used to further the underditagn of the P3 MEMS micro-
generator by examination of what occurs for chamgesarious parameters in regards to
static and vibrational behavior. Specifically #gd@amined parameters are: lamina
thicknesses, pre-stress, side length, electroderage, loading amplitude, and excitation

frequency.
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Chapter 2: Theoretical Formulation

Determination of what equations and conditionsganeerning and affecting the
behavior of the generator membrane is importatiiéanodeling endeavor. From
literature it is determined that tkeF formulation of the equations are applicable.
Clamped boundaries are assumed and the conditiershawn below along with the
reasoning behind them. A simplified laminationdheis applied along with a simplified

piezoelectric theory.

2.1 Governing Equations

The membrane under examination is a geometricaltjimear deflecting
structure. This is due to the magnitude of defbectausing an in-plane stress that
contributes to the stiffness of the membrane/pl&ebsequently in the derivation of the
governing equations the nonlinear terms in theelatgflection strain-displacement

expression must be considered (Figure 2.1).

X%

oW gy

——

Z,W

Figure 2.1: Srain, &, due to large deflections.
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The nonlinear strain term is

NL ds—dx 1/ow ?
— ~— 2.1
© dx 2(6x) 1)

This nonlinear strain term then is introduced ia typical strain equations.

NL_ 1

L
€,—€,T€, :Eh(nx_vny)
_ L, N_ 1

L NL:a_U 6_V+6W6W:2(1+V)n
0y 0OX 0xdy Eh %

Where R, n, and Ry, are membrane forces defined as functions of thesiress

function [49].

0°F 0°F 0°F
< a_yz ny:hﬁ, and an:—haXay (2.3)

Using the nonlinear terms fey, &y, yx, and the Airy stress function the

compatibility condition for moderately nonlinearhaeior is obtained [8 p. 341]. The
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nonlinearity is evident in the right hand side qbiation (2.4), in the squared term and the

directionally coupled term.

V‘E=E (2.4)

R 2_ o°w o°w
oxoy| ox’ oy’

The original static governing equation was derikigd/on Karman [21] in 1910 as
stated in Chapter 1. Chia also shows a derivatidhese equations for dynamic
response of an anisotropic laminated plate [248p. Ihese equations account for in-
plane stretching and the coupling to transverskecksdn. In this application the
equations are shown for an isotropic undamped tiig glate, i.e. equation (2.5) has
both bending and stretching terms. For a deta&d/ation of equation (2.5) refer to

Chapter 1 of reference [24].

2

DV*w— p(x,y,t)era w

2

2.5
nOw(F ) Qw(eF |, d'w [ &°F (3)
oxt\ay: ° oay*\axt "°| "oxoy\oxay
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2.2 Boundary Conditions

Application of the proper boundary conditions (B@sprder to obtain an
applicable solution is of paramount importancecréss-section of a representative

generator membrane with silicon substrate is shiovirigure 2.2.

Silicon
Substrate

Actual
Boundary of
Generator
Membrane

Laminated
Generator
Membrane

Figure 2.2: 3D view of generator cross section

From the physical situation the actual BC appeatsetsome form of an
elastically restrained BC [24 p. 38]. The constape of the substrate near the boundary
is indicative of an increase stiffness the furtheny from the generator membrane
boundary. This would imply a BC that contains titrens for a clamped boundary
condition with an elastically restrained againsation modification [24 p. 167]. Where
this condition can be represented by equation .(2I&E subscriph denotes that the

value is normal to the boundary being considered.
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M. =+Ew, (2.6)

The bending momenh.,, is related to the slope,, by a proportionality constant,
&, that can vary between 0 ang corresponding with a simply supported BC and a
clamped BC, respectively. Itis known that thelarg the incline with the horizontal
plane is 54.7% it is assumed that this is sufficient to concladdamped BC. Allowing
elimination of the substrate from the model, anly omdeling the generator membrane

as shown in Figure 2.3.

Figure 2.3: Model schematic

The pertinent equations to enforce the clampeditiond are:

Zero transverse deflection at edges

W,_,,=0 and W,_,,=0 (2.7)
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Zero slope on edges, &tco

W, | 0 and W ly—0,=0 (2.8)

x:O,a:

Zero x or y strain on respective edges

el —L[PF_°F)_,
xly=0,a E ayZ 6x2
) ) (2.9)
. _1/0o F_Va F -0
ylx=0,a E 6X2 ayz
Specified edge displacements of zero
[ 2 2 2]
u= f g Fz—vg Fz_%(gv)\(/) dx=0
—con X
y=eonst | 0¥ (2.10)

(’F O°F 1(aw)2_
V= -V —-= dy=0
X_!mst_ax2 oy> 2\0y _y

2.3 Lamination

In the fabrication of the generator membrane migtigyers are deposited for a
variety of reasons: to improve adhesion betweeertayo provide electrodes to harvest
the charge, and to provide a piezoelectric layeiorder to model these layers they must

be incorporated into the above equations in somma.fo
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The primary assumption is that the plate-membraime a state of plane strain [50

p. 64].
0=T5=T5=0  whichimplies  1,,=7,= (2.11)

Equation (2.11) allows us to use the 2-D generdlizeoke's law [50 p. 152],

where the layer number is denoted by superscr)pt (k

(k)
w___E (k
1—(v(k>)2(€11+v €22)

K (2.12)

> (622+ v(k)en)

)

1-(v1)

From equation (2.12) a composite modulus can beiredd by first taking a
weighted average of the stresses in each layedlmasthe thickness, displayed in

equation (2.13) where superscript * stands forfeectve value.

BN s s S
" hY+h? 4.4 h"

, i=1 or 2 (2.13)

Expansion of equation (2.13), by insertion of (2.685ults in equation (2.14) for i = x.
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* _611 E*(l) h(1)+€11 E*(z) h(2)+"-—|—€11E*(n) h(n)
11 h(1)+h(2)+h(3)+---+h(”>

+

e,V E VY 1 e, v E PN 4o g, v E MR (2.14)
hY+h?+h®+...4h"
Where
. =0
E (k)_—
1_(V(k))2 (2.15)

By factoring out; in the first quotient of equation (2.14) and asiswga., = 0, an

effective modulus is obtained.

> E*(k)h(k)] (2.16)

This effective modulus can then be used in the gong equations (2.4) and
(2.5). An effective Poison ratio can be obtaingdising the uniaxial effective modulus

and solving for the composite Poison ratio usingaéign 2.17.

(2.17)

Where the uniaxial effective modulus is
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n
E=1| S hoE® (2.18)
hli
It is apparent that the effective Poison's ratio is
: E
v =4/1-— 2.19
= (2.19)

For the density, a simple weighted average is tsethtain the effective property.

RN PR LN
h+h?+...4+h"

p = (2.20)

The flexural rigidity term, equation (1.4), is farsingle layer plate. This value,
is then modified to account for lamination. Geaalty, a plate in pure bending will have

the relation

M =DK (2.21)
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WhereM is a momentD is the flexural rigidity, andK is the curvatureD is
solved for in terms ol and K. Assuming pure bending the following relations ased

to solve forD where Z is the neutral axis artdis the total plate thickness.

0=[.o(2)dz (2.22)
M=["o(2)(z-2)dz (2.23)
e=—K(z—2) a¥=E"Me(z) (2.24)

Using equations (2.22) and (2.24) a value focan be found. The individual

maximum value of a layer position from a referemzse,0, isz.
Ozfj E'Y(z-2) dz+f§2 E'?(z—2)dz+--- (2.25)

Through use of equation (2.23) and (2.24) the v&U& can be solved for as

shown in equation (2.26).

D:%:fj—E*‘l)(z—2)2d2+f?—E*(Z)(z—2)2d2+--~ (2.26)
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In the remainder of this document it will be assdrtteat all material properties

are considered effective properties without the=ssgript *.

2.4 Piezoelectricity

The lead zirconate titanate (PZT) layer is a pittigc material, meaning that
with an applied stress a charge will be developedice versa. The primary goal of this
device is to extract a charge from the generatmbrane and propagate electrical
power. Subsequently, the direct piezoelectricotifieust be integrated into the model.
Obviously, if energy is put into a system it is disathin the system for different tasks.

The case in the generator membrane is.

E.=E +E

in— —deflectior

+ Epiezo effec (2 . 27)

dissipate

In the static derivation, dissipative forces weogincluded, therefore dssipaedCan
be neglected. Then to simplify this analysis a &&ctromechanical coupling is
assumed, this is indicative ofid et~ 0. Therefore, all of the energy put into the
system goes into deflecting the membrane. Thisvalla charge profile to be obtained
from the stress-strain field. Utilizing the dirguézoelectric effect the equation for the
polarization charge per unit area is shown in éqonat.28 51, wherdix is the

piezoelectric coefficient.
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P=dy0 (2.28)

Simplification of equation (2.28) can be done bglimation of the properties of a
membrane. The only pertinent stressjnis o:ando», and due to crystal symmetry the
shear coefficients afx are zero. Also, the electrodes are in the 3 doechus, the

polarization is only important in this directiokquation (2.28) then simplifies to

P3:d311(011+0'22) (2.29)

Equation (2.12) gives us a charge per unit aresetare integration over the
electrode area is done, shown in equation (2.G3ing the total charge accumulated

under the electrode area.

J' P; dA= f d311(‘711+0'22) dA (2.30)

Area—electrode Area—electrode
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Chapter 3: Solution Technique

3.1 Nondimensionalization

Nomenclature from this point of departure diffdrart that used previously in
that nondimensional quantities must be represertexhdimensional variables are
signified by an over bar over the variable. Norelsionalization of the primary

expressions is done by the following relations:

= F W X
F—th W—h— X—g
oofa)’ a\’
= (5] =[5
2 3 (31)
_ pa = _ .2 _Eh
p= . V=aV =5
. __ph _(h 2
t=dt w——E (x—(a)

For simplicity a = b because the actual physicalads this model is developed
for are square in shape. Using the definitionsqpfations (3.1) and combining them with

equations (2.4) and (2.5). The nondimensional gong equations are obtained.

2
—.— [ &*w 0*W 0°w
‘E= - 3.2
Vv (axay) 0% 0Y (3.2)
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s NN 0w
W——p,+—5 =
v « P o
_ _ _ 3.3
O’w(oF )\ ow[F | , d'w [ °F (3.3)
UIPTe oy °| oy?*lex? °] "oxoyl\oxoy
The nondimensional boundary conditions are:
Zero transverse deflection at edges.
W|,_0,=0 and Wly—0,=0 (3.4)
Zero slope on respective edges.
V_V,x|x:o,1:O and V_V,y|y:0,1:O (3.5)
Zero strain on respective edges
_ _O°F  0°F _
Ex|y=0,1_a—y2_v 6X2 =0
e 2= (3.6)
o= E EF g
yix=01""7 02 0y’

Specified edge displacements of zero
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VLG S dx=0
8 (3.7)

— ) - 2:
= | Gf_ﬂjBF 1(aw) dy=0

3.2 Finite Difference Approximation

With the nondimensional equations of section 3sblation of the finite
difference type is approached. Using the centingé differences shown in Table 3.1

the nondimensional finite difference equations thiltbe used in the solution technique

are obtained.
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Derivative Central Finite Difference Equation for
Arbitrary Variable, f

of.. 1 _
a—x" Z(Tx)( fig—f i-1,j)
o° f . 1 _
o a2 )
o f 1 _ —
a—xg'l Z(A—><)3( f +2,] 2f i+1,j+2 f 1] fi-2,j)
4
a_f4iJ ﬁ(fi+2,j_4fi+1,j+6fi,j_4fi—1,j+fi—2,j)
0 X
o*f, 1 _ _
6X78§/ m( i Fuju— Frgjnt f i-l,j-l)
o't (Ax)zl(A y)2[4 Fii=2( fagyt Fiagt Fit Fipa )+
2~ 2
oxX oy f it T f 11T fi—l,j+l+ f i—1,j—l]

Table 3.1: Central finite difference approximations

Converting the analytical expressions of the G2 the BC's to finite
difference expressions at the generic mesh pgjpa(id simplifying, the following

discretized nondimensional compatibility equatismbtained.

20|Ei,j __8( IEi+1,jj— IEi-l,j +_|Ei,j+1+ IE_i,j—l)
+ 2( F i+1,j+1+ I:i+1,j—1+ I:i—l,j+1+ F i—l,j—l)

TRt Pt Pt Fis (3.8)
_1 2
—E(Wm,jﬂ_Wi+1,j.1_wi-1,j+1+Wi-l,j-l)

- (V_Vi+1,j - 2V—Vi,j +Wi-1,j) (V_Vi,j+l_ 2V_Vi,j +V_Vi,j-1)
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The discretized nondimensional equilibrium equatson

20W,;—8( W,y + Wy + W, + W,
+ 2( i+1,j+1+Wi+1,j-l+Wi-l,j+1+Wi-l,j-1)

4)7 6 W
(3.9
n[((A x) Tyt F,J+1 2F,+F, 1)( Wi = 2W, + W, )
( AX ‘70+Fi+11 2F, +F|11)( Wijea 2Wi,i+wi,i-l)
_%(F|+11+1 Fi+1,]l F|11+1+F|111)
(Wi+1,j+1_Wi+l,j_ i,j+1+Wi,j)]
The discretized nondimensional boundary conditemes
Zero transverse deflection at edges.
W liz01=0 and Wi liz01=0 (3.10)
Zero slope on respective edges.
(Wi+1,j_wi—1,j)|i=0,1:0 and Wi,j+1_wi,j—l)|j=0,l:O (3.11)

Zero strain on edges.
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(3.12)

Rearranging the elements of equation (3.7) soRlatd w terms are on different sides

of the equal signs, the boundary conditions spegfgdge displacements of zero are

obtained.

[’F °F |, [1(ow\?] . _
I oy Vax |07 B 5(5) ax
y=const ! 7 . E y=const | ) (313)
X=const | 6 Xz 8 yz | x=const | 2\ 0 y ]

Equation (3.13) is used to constrain the movemetiteoedges within the plane of
the flat plate. Therefore it is integrated acrioal$ of the plate to allow different

constraints to each edge, this will be reflectethennumerical expansion and integration

of the equations. The finite difference expansson

| [2(v=1)F+F . +F 1 —vFuy—vF.,ldx

y=const
1 (3.14)
B V—'!onst [g (WHl’j_Wi-lvj)z d X
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(3.15)

Numerical integration of equations (3.14) and (3i%%performed using the
trapezoidal rule [52], and the numerical expansoshown equations (3.16)-(3.19).

Refer to Figure 3.1 for interpretation of numeriicalices.

1=1 =t 1.-1 2,1 31 4,~1 5L
-1.0 0.0 x )l 1.0 2.0 3.0 4,0 S,Q
Yol
=11 0,1 1,1 21 2,1 4,1 5,1
-1,2 0,8 12 2.2 3,2 4,4 S,E.
i | 0.3 1.3 2.3 28 4, 5,3
-1,4 0.4 1,4 2,4 2,4 4,4 5,4
=5 0,5 1.5 28 b74) 4,5 5,5
Figure 3.1: Example Finite Difference Mesh
for n=5

0 =0 BC, constrained at wegt-edge, i = 0.
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i=1
2(v—-1)F __, +F +F -vF —vF
n-1
1 2 2 2 2
=3 (Woup ;= Wo.p) +22, (Wi~ Wiy ) +(v‘vn;l+lj—v—vn;1 _1j) d x
i=1 51, 5 L

0 =0 BC, constraining at east-edge, i = n-1.

1), _ 2 _ 2 _ 2|, -
:g (Wnl Wi j) +2 (Wi+1,j_wi-1,j) +(Wn-1+1,j_wn-1-1,j) dx
2

v =0 BC, constraining at nortk -edge, j = 0.
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[2(v—1)Fnl+F watF o mVF —vF_n_ll] (3.18)

1|, - B . _ _
=3 (Wi.0+1_Wi,O-l)2+2 z (Wi,j+1_Wi,J-l)2+(Wi ”—1+1_WiL1-1)2
A 5

v =0 BC, constraining at south-edge, j = n-1.

(3.19)

2

Now, with equations (3.8), (3.9), (3.10), (3.1B.,12), (3.16), (3.17), (3.18) and

(3.19) a numerical solution can be obtained, dsdar sections 3.3 and 3.4.

3.3 Iterative Solution Technique for Static Analyssi

In the following discussion variables will be batdemphasize that matrices and

vectors are being manipulated to obtain a solutibiwo matrices are formed to solve for
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the values of F and w. These matrices consist of the nondimensionééfitifferenced
governing equation and related boundary conditidf. the equilibrium equation the
matrix K consists of equations (3.9), (3.10), and (3.I)e compatibility matriXd then
consists of equations (3.8), (3.12), (3.16), (3.L318), and (3.19). Therefore in the

iterative scheme detailed below the relations ket

Equilibrium relation

K w=P (3.20)

Compatibility relation

HF=G (3.21)

The solution technique used to solve the statiegomg equations is the same
shown by Chia [24]. Itis an iterative solutiorcheaique of the two governing equations,
that holds one of the variable§ (or w) constant and solves for the other, then uses the
obtained values in the corresponding equation®taim a solution for the other unknown
variable. This is shown in equations (3.20) andiBin thatF and w have been
uncoupled. In the text below the iteration numbetenoted by the bracketed superscript

number.
1. Assume stress function value of 0 over the entieenbrane for the first iteration.
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F%=o0
2. Using this assumed stress function solve fod#fkection using the equilibrium
relation (3.20). A solution ofv is obtained for the first iteration step, .
3. Using w @ in the compatibility relation (3.21), a new stréssction, F 1, is
solved for.

4. F™is then used in the same fashionfa¥ was used in step 2 to obtain a new

solution for w, i.e. w,

5. To encourage faster convergence an acceleraorfy, is used.

n+1] (322)

v =Y is documented as resulting in the most efitcd®nvergence [24 p. 89], and
this value is used in the implementation.

6. This process is then continued until a valueisverged upon.

7. After the solution is deemed converged, streksegacan be extracted along with
piezoelectric charge. Convergence is determinegkbaynining the magnitude of
the center deflection in comparison to the changelue of each iteration. For
example, if a 3@um deflection is expected a change in iteration@@i~10 nm is

considered converged.
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3.4 Solution Technique for Dynamic AnalysisNo Damping

Initially work was done pertaining to the undampadillation of a membrane. A
time integration technique was used as shown belavthe following sections, 3.4 and
3.5, a lowercasw is used to denote any generic displacement. Témsations are
applicable in both the nondimensional and dimeraioases with no modification, and
thus are generally shown here. The step-by-stepniek 8 numerical integration
technique is used [48], the equations are expraagbe form where K is the time-step

number.

Wk+1:Wk+A'[V'vk—l-(At)z(%—B)Wk%—(At)ZBWk+l (3.23)

Wi =W+ 1—y At +y AtW,,, (3.24)
The formula for a general undamped oscillatingesysivith a distributed mass is:
M W, + K w, =P, (3.25)
Solving for M w,

M W, =P, — K w, (3.26)
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Then multiplying equations (3.23) and (3.24)Ndyand substituting equation

(3.26) the final equations are obtained.

[M+B(At)K Wy, =MW, +AtM W,

+At](1-B)(P—Kw, J+(At]BP,., (3:27)

M W, ;=M W, +At(1-y)(P,—Kw,)+Aty(P,,—Kw,,,) (3.28)

Where the stiffness matrik, is the same used in equation (3.20). The mass

matrix, M, is a diagonal matrix containing the te(rm)—()“iz which is the coefficient of
X

the time derivative shown in equation (3.9). Fheector is the forcing function defined
by the application of the load to the test subjgcandy are coefficients exclusive to the
Newmark technique, and can represent different oustiof time integration. In this case
the average acceleration technique is used, thisakgous t@ = ¥ andy = ¥2. These
values are chosen due to being unconditionallylestaimconditionally convergent, and
avoiding such problems as numerical damping anidgetongation. A review of the
different values off andy and their meaning in relation to the type of timiegration

can be found in [48].

Representing equations (3.27) and (3.28) in a cohfpam
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K W1 =P (3.29)

M W, =P, (3.30)

Where superscript * denotes effective values abhd@ipt (d) relates to

displacement and superscript (v) denotes veloditsing equations (3.21), (3.29), and

(3.30) an algorithm can be developed to iteratigsllye for the dynamic behavior.

1.

Assume initial values for displacement and veéjocinitial displacements and Airy
stress field are typically found from the stati@algsis. An assumed zero initial

velocity and acceleration are also implemented.

. For the first time-step the values from stepelumed foK™ andP’ ), a solution is

obtained fomv:1.

. From equation (3.21) a stress function valualsutated.

. The stress function value from step 3 is then usequation (3.29) to calculate a

new value fomvi:1.

. Steps 3 and 4 are repeated until a solutionnserged upon.

. Then using the converged values from step 5 elecity for the next time step is

calculated using equation (3.30).

. This process is repeated for additional timesstep
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3.5 Solution Technique for Dynamic Analysis — Damjpig

This technique numerically integrates a problerinre using the modified
Newmark technique for matrices developed by Wilsoh962 [53]. The initial
equations are derived by Newmark in [48] and waélldxpounded upon here. Beginning

with the generic distributed oscillating system.
Mw,+Cw,+Kw, =P, (3.32)
Then introducing the Newmark equations

Wi =Wy + At At (1= B W+ At B, (3.32)

Wi =W+ 1—y At +y AtW,,, (3.33)

Solving equation (3.32) forw,,,

1), (3.34)

Then inserting equation (3.34) into equation (3.32)
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Y

. Y
Wk+l: At'B

(Wk+l_Wk)+(l_E T

v'karAt(l—l)wk (3.35)

Then representing the coefficients of equation34(8and (3.35) concisely

1 1 1
b,= bh=——"—"— b.=1——
EY: > (At)B ° T 2B
(3.36)
Y Y Y
e — = | —— :A —_
b, AP b,=1 bg t(l 213)
Therefore equations (3.34) and (3.35) become
Wy =0 (Wi s — W, )+ b, W + by W, (3.37)
Wieey =04 ( Wiy — W, |+ D W, + D Vi (3.38)
Using equations (3.37) and (3.38) in equation (Bt@dk+1 and the simplifying
M lek+1+ C b4Wk+1+ K Wk+l (339)

=F . — M [b,W, + by, —b,w, |- C[ bW, + by, — b,

TheM matrix is the coefficient ofiTVl’ in diagonal format.
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(3.40)

Where theK matrix is the square stiffness matrix composethefquantities that

are partial derivatives in space af. TheC matrix is either proportional to thé or K

matrix or a combination of the twg = ¥4 andy = %2 are also used here for the same

reason previously stated. A solution is then penlsusing equations (3.37), (3.38), and

(3.39). The solution algorithm proceeds as follows

1.

2.

Obtain initial conditions for displacement, vatgcand acceleration.

For the 1 time-step use the initial conditions from ste bbtain a solution to

equation (3.39)W,,, .

. Using the solution from step 2 obtain a solufan F from equation (3.2).

. Then using the solution from step 3 obtain arasbéution for W, .

. Repeat this procedure until a convergent soldtiothat time-step is obtained.

. Solve for velocities and acceleration from steysig equations (3.37) and (3.38).

. Using the solutions from step 5 and 6 solvelierriext time step (i.eV,,, ) in the

same fashion done for the initial conditions.

. Repeat as necessary.
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Chapter 4: Model Validation and Numerical Study

4.1 Validation

In order to prove the assumptions and techniqued usthe presented model
verification is required. There are two regimeschimust be validated; what occurs
statically and what occurs dynamically. Prior expents were performed by others
involved in the P3 project, using either a Michelsaterferometer and a bulge tester [54]
or a laser vibrometer [55]. These experimentalltesre then compared to what the
model predicts for the same problem parameters.

All of the shown data is for blanket PZT, and wteféects of the electrode
pigtails occur in experimentation they are ignarethe model. The values shown in
Table 4.1 are typical of most devices examinedis thesis. When values deviate from
Table 4.1 the new values are tabulated.

Number of 4
Layers

Side length (mm) 3
Residual Stress

(MPa) 105

ds1 (pC/nY) 85

Static Load (kPa) 10

Material Modulus Poison's Density Thickness
(GPa) Ratio  (kg/m®)  (um)

PZT 70 0.27 7500 1

Silicon 125 0.30 2550 1

Gold 80 0.44 19280 0.3

Platinum 170 0.38 21440 0.18

Composite 112 0.31 8027 2.48

Table 4.1: Typical/Representative generator membrane parameters for Chapter 4 and
section 5.1
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Static verification of the model is first done kgneparison of the deflected shape
upon the diagonal profile, as seen in Figure Although the match is not exact, it is

within acceptable tolerances, and displays thasitmallated profile is sufficient.

40
Experimental
—— Model

__ 30}
E
3
c
S 2+
(S}
2
3

10

0 1 1 1 1
0 500 1000 1500 2000

Distance on Membrane Diagonal (um)

Figure 4.1: Validation of static shape profile along
the membrane diagonal

Figure 4.1 Parameters Experimental Model
Si thickness{m) 1.1 1.0
PZT thicknessym) 1.0 1.0
Pressure (kPa) 21.0 21.0

Table 4.2: Parameters for runs associated with Figure 4.1

Another static verification test performed compatescenter deflection for a

given pressure. This test is also used in vewgfyire assumptions used in the applied
lamination theory. Two tests were run, one waswith a single ply silicon membrane,

and another was run with the typical generator ntamdlaminate, using parameters
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shown in Table 4.1 and Table 4.3. These testsampared to what is obtained using the
developed model in Figure 4.2. In Figure 4.2 nhwious that the two curves agree,
proving that the model can fit a simple single plgmbrane and also proving that the
assumptions that were made in order to develofath@aation theory are correct, insofar

as the regime the model will be applied too.

0.030
0.025 ¢ /)
= 0.020 t
o
£ 0.015 —— Model (8 mm - single ply)
o —a— Experimental (8 mm - single ply)
@ 0.010 - —— Model (3 mm - Laminated)
8 —o— Experimental (3 mm - Laminated)
o 0.005 r /
0.000

0 20 40 60 80 100
Center Deflection (um)

Figure 4.2: Pressure deflection curve for model
validation

Figure 4.2 Parameters  Experimental Model Experimental Model

(3mm) (3mm) (8mm) (8mm)
Si thickness§m) 11 11 2.0 2.0
PZT thicknessim) 1.0 1.0 0.0 0.0
Residual Stress (MPa) 100.0 117.0 ~ 40. 44.0
E (GPa) NA 114.0 NA 125.0

Table 4.3: Parameters for runs associated with Figure 4.2
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Comparison of the charge accumulated on the meralegperimentally and
numerically is done in Figure 4.3. Charge waseoddd experimentally using an
integrating charge circuit that collected the cleaaig the membrane was brought down
from a maximum deflection [6]. The difference beem the collected experimental
charge and the charge obtained from the modelgkgilele. Thus, validating the

piezoelectric theory used.

2.5e-8

—— Experiment
2.0e-8 - —— Model
1.5e-8 |

Charge (C)
=
&
oo

5.0e-9

0.0 r

0 5 10 15 20 25 30
Pressure (kPa)
Figure 4.3: Charge comparison

Figure 4.3 Parameters Experimental Model
Si thicknessfm) 2.0 2.0
PZT thicknessym) 1.0 1.0
Residual Stress (MPa) ~70.0 87.0
E (GPa) NA 119.0

Table 4.4: Parameters associated with Figure 4.3
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One of the primary purposes of development ofitieslel is determination of
dynamic characteristics. Subsequently it is pravan this model accurately predicts the
dynamic behavior. Shown in Figure 4.4 is the comspa of predicted free vibration
frequency and a resonance frequency obtained threlegtrical excitation [55]. The
shown experimental residual stress was obtained) aspressure-deflection technique
[56].These should be similar in that they both bitithe dominant frequency in the
structure at an approximate deflection ofu®. Although there is some discrepancy in
the comparison, it is adequate to provide valigatibthe dynamic portion of the model.
The frequency overestimation provided by the maglplesumed to be due to the

relatively coarse mass lumping of the finite diéiece method.

~N L
T 32 4
< . - N
> -]
Q °
S 24r
>
o
I A Experimental, tg;= 1.1 pm, tpzr = .952 um
S 6r o Experimental, tg; = 1.1 pm, tp,r = 1.97 um
'E e Experimental, tg; = 2.3 um, tpzr = 1.5 um
_4>3 g| = Modeled, ts;= 1.1 pm, tpzr = .952 pm
) A MOdeled, tSi =1.1 um, tPZT =1.97 um
fL: [ ] Modeled, tSi =23 um, tpzr = 1.5 um

O L 1 1

80 100 120 140 160

Residual Stress (MPa)
Figure 4.4: Dynamic resonance verification

It has been shown that the presented model agrassrably well with
experimental data. Agreement with this data prdkasthe assumptions implemented to
apply a 1) theory of lamination, 2) a theory ofzmelectricity, and 3) a solution method

for dynamic and static behavior are sufficientlyreot.
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Errors in the proposed model will stem from the puags implemented.
Obviously, such things as using a finite differeegeations for derivatives and
numerical integration schemes will introduce errd8sit, numerical parameters can be
optimized, such as as mesh density, time stepspamerical precision, to help minimize

these spurious effects.

4.2 Numerical Study

Optimization of the numerical process is requirgtie goal is to decrease the
CPU time needed to solve the numerical problenbs8guently the areas of interest are
the physical mesh size, shown in Figure 3.1, aadithe step size. Another factor that
will affect program performance is the amount @f,Ibut this can be minimized and was
not analyzed here.

The most common value used for the physical mesh=i45, less common
values are n = 45 due to the increased CPU tirselinng the associated matrices. The
study shown in Figure 4.5 is performed for theistatoblem, using parameters from
Table 4.1 except for silicon thickness which ign2, and analyzes the effect of mesh size,
n, on time to converge and the associated changendér deflection. From Figure 4.5 it
is determined that the best choice for the statadyasis, keeping accuracy in mind and

desiring a run time of less than one minute, is21=
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Figure 4.5: Mesh size study

The dynamic analysis requires multiples of iterasteps, i.e. number of time
steps, therefore an even further decreasasrdone in the interest of solution time for a
relatively small sacrifice in accuracy. Shown igu¥e 4.6 is the effect of physical mesh
on the center deflection response for free vibratitt is discernible that different mesh
sizes will result in slightly different responsée further in time the analysis progresses.
Though all three different mesh sizes give appraxetly the same amplitude and phase

response, therefore a physical mesh of n = 15dserhto expedite the model.
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Figure 4.6: Effect on undamped free vibration of mesh size

The time step will also have an effect on the raspo Figure 4.7 displays that
too large of a time step, 3.38e-6 seconds, caiiti@swumerical damping and an
undesired phase shift, the other two time stepw sitite of these effects. The time step
of 3.38e-6 is approximately 10 steps per vibratigeie, 3.38e-7 is one hundred steps per
vibration cycle, and 3.45e-9 is approximately 10,86 ps per vibration cycle. The time

it takes to run these models is 1 minute, 8 minwed 10 hours, respectively.
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30 —— Time Step = 3.38e-6 seconds
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Figure 4.7: Effect of time step size on the center
deflection response

Establishment of the optimum physical mesh sizetaadptimum time step size
is shown. In the remainder of the thesis, datafigigles generated with a mesh size of
15 and a time step size of 100 steps/cycle are sh&esults from these numerical
parameters should be sufficiently accurate andrefltesent the actual behavior without

significant parasitic numerical behavior.
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Chapter 5: Results

5.1 Static — Profile Analysis

The static response can be better understood threxegmining reactionary

behavior and profiles of applicable values. Vigatlon of the structure under its
deformed configuration is a useful tool that walhtl insight into optimization.

The three-dimensional shape profile is shown iuféd.1. Refer to Table 4.1 for

parameters used in this section, except for tihesilwhich is 2um

o
o

w displacement (1)

8
6
4
2
0
3.

Figure 5.1: Deflected shape profile for typical
membrane

Next an analysis of the stress distributions éspnted. From equation (2.29) it is

known that the important stresses for charge aeaties, ando,. In Figure 5.2 the

stress in the x-direction is shown, the strest@ytdirection is exactly that of Figure 5.2,
but shifted 90° about the z-axis.
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X

s in PZT layer (MPa)

Figure5.2: oy profile

From theo, ando, profiles an X-like pattern for the charge disttibua is
expected. In Figure 5.3 the charge profile istpthtshowing maximum charge density at
the membrane center, which is expected. The istiagething to note is that the lines of
constant charge are rotated 45° in respect toides.s Meaning that if an electrode that
would harvest the maximum voltage is desired therapn placement would be a square

rotated 45° from the x or y-axis with an approxienside length of 2.12 mm.
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Figure 5.3: Charge profile

Principle stresses are also useful in determinihgresthe maximum or minimum
axial stresses will occur and therefore where failaight occur. The first principle
stress displays the maximum tensile stress in iddlenof each side of the membrane.
Figure 5.4 implies that failure would occur in tnédle of any of the four sides
assuming there would be no imperfections in theadtructure that would accelerate

failure elsewhere.
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mmm 28.75 MPa
mmm 29.00 MPa
. 29.25 MPa
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20 30.00 MPa
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o
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£
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X position (mm)
Figure5.4: First principle stress, o1 (Pa)

0.0

The charge distribution clearly does not matchafrte principle stresses. This
is due to the nature of how the charge is generafdthrge generation is dependent upon
the stresses, andoy, and not the principle stresses which are a coatioim ofoy, oy, and

Tyy. The relationship between charge distribution @amalciple stress distribution should

not be confused.

5.2 Static — Parameter Study

Characterization of the membrane generator invalvelerstanding its static
behavior. This is generally done by obtaining pues-deflection curves on a bulge tester
using a Michelson interferometer [57]. Other testsdone to also characterize the
piezoelectric response [6]. The ability of thisdebto match the data is illustrated in
Chapter 4. A parametric study is done to suggesigimum configuration. This section

uses the parameter values shown in Table 5.1.inlted examination pertains to the
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effect of residual stress upon the pressure-déflecurve and the deflection-charge

curve. ltis also noted that the electrode sizssumed to be the same size as the

membrane unless otherwise stated.

Number of 4
Layers

Side length (mm) 3
Residual Stress

(MPa) 105

ds: (pC/n) 85

Static Load (kPa) 1-20

Material Modulus Poisons Density Thickness
(GPa) Ratio  (kg/m®)  (um)

PZT 70 0.27 7500 1

Silicon 125 0.30 2550 2

Gold 80 0.44 19280 0.3

Platinum 170 0.38 21440 0.18

Composite 119 0.31 6448 3.5

Table 5.1: Typical/Representative generator membrane parameters for section 5.2

—— 0,,=50 MPa
0y, =75 MPa
—— 0, =100 MPa
| —— 0p=125MPa
—— 0,=150 MPa

20

[Eny
(&)

10 r

Pressure (kPa)

0 10 20 30 40
Center Deflection (um)

Figure 5.5: Pressure-deflection curve for a
variation of oo
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The rather obvious effect of increasing residuasst is emphasized in Figure 5.5.
As oo increases the structure becomes increasingly atitf the low pressure behavior
becomes more linear due to the requirement of menerated in-plane stress to

overcomeoo.

25

= 0y = 50 MPa
20| Op = 75 MPa
= 0y = 100 MPa

-
(6]
T

Charge (nC)
=
o

05r

0.0 : : :
0 10 20 30 40

Center Deflection (um)
Figure 5.6: Charge-deflection for a variation of oo

Intuitively, residual stress will decrease the &lde charge purely due to the
increase of effective stiffness. In Figure 5.6 ¢kater deflection versus charge curves are
obtained for a range of pressures from 1 kPa P20 where the line endpoints are at 20
kPa. The nature of how the residual stress isegj#ads to the result seen in Figure 5.6.
Residual stress is assumed uniform and applielaeix tand y directions, subsequently
different residual stresses will not result in @rfnt shapes. The structure has the same
shape at the same deflection for different residtralsses, (which requires a different

applied pressure) the charge distribution mushbesame and therefore the total charge
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is the same. Due to this increased effectiver&ts$ effect it is clear that reduction of
residual stress in the working device is of import.

Changes in thickness of the various layers indh@rnate are of interest in
optimization. Shown in Figure 1.1 is the actuaygbal structure and in Figure 1.2 is the
laminate used in the model for the sake of simiglicThe gold and platinum layer
thickness cannot practically be varied becauseasfufacturing complications, the PZT
and Si thicknesses, on the other hand, can bedvanieasonable amount in comparison.
Investigation of what occurs with the variancehade layers is examined below.

Curves relating the charge generated to the cdeftction are shown in Figure
5.7. The corresponding pressure-deflection cus\ahown in Figure 5.8. All curves
shown below have an applied pressure ranging fr&malto 20 kPa, therefore each line
endpoint is at 20 kPa. The other parameters ddechbastant in these figures and shown

in Table 5.1.

pzr = 0.5 pm
Rpzr =1.0 um
6 Npzr =2.0 pm
hpzr=3.0 um
Npzr = 4.0 pm

Charge (nC)
N

0 10 20 30 40 50
Center Deflection (um)

Figure 5.7: Charge-deflection curve for a
membrane with hg = 1.0 um
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25
—— hpr=0.5pm
— hpzr=1.0um
20 - hpyr = 2.0 um
— hpzr=3.0um
hpzr = 4.0 um

15

10 |

Applied Pressure (kPa)

0 10 20 30 40
Center Deflection (um)

Figure 5.8: Pressure-deflection curve for a
membrane with hg = 1.0 um

As the thickness is increased it is expected tlastiffness will increase, this is
proven in Figure 5.8. For thicker PZT the membrigHess compliant, yet increasing the
thickness of the PZT will allow more material todeilable that can generate charge. A
combination of these two phenomenon result in @mopn PZT thickness. Itis
assumed, for simplicity, that there is no changegidual stress for changes in lamina
thickness. An optimum thickness can be obtainewhfFigure 5.7 by observing which
curve gives the maximum charge at the line endgpirt 20 kPa). In Figure 5.7 the
optimum structure from a charge point of view camgapproximately 1m PZT for 1
um Si.

Although the charge extracted from the generatanbrane is of importance, the
energy required to obtain this charge is of impméa Analysis of this is performed by
taking a ratio of the useful strain energy in tZ& Rnd the strain energy in the entirety of

the structure. What is meant by useful straingnerthe strain energy that could be
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used to obtain an electric charge. From equati®@ the useful strain stems fraspand
oy, While 1,y still exists in the PZT layer it is ignored in thain energy expression for

the PZT (i.e. shear does not produce charge).

©
o
=

Rpzr = 0.5 pm

0.03

0.02

0.01 r

0.00 & : : : :
0 10 20 30 40 50

Strain Energy in PZT / Total Strain Energy

Center Deflection (um)
Figure 5.9: Strain energy ratio for a membrane
with hs = 1.0 um

Figure 5.9 does not agree with the optimum thickneplied by Figure 5.7, from
the strain energy ratio analysis a thickness of@pmately 2um appears to be ideal (i.e.
highest dependent value for any of the thicknesgamined). Each curve is for the same
pressures, i.e. 1-20 kPa, where the end point2ak&®a. The highest strain energy ration
is obtained for 2am PZT at 20 kPa, therefore the largest portiortrairs energy in the
PZT layer is for 2am of PZT and this is realized as the optimum. @digh not as much
charge is being generated by then2 thick PZT, due to its increase in stiffness,rgda
fraction of the total energy is contributing to cgeneration.

Also of interest is what occurs at different thieks of silicon. Multiple runs

where made for an applied pressure of 20 kPa andaime post processing was

performed that is shown in Figures 5.7 and 5.9uiéis 5.10 and 5.11 are the result of
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these runs. All data shown in Figures 5.10 and &r& at 20 kPa of applied pressure and
the horizontal lines correspond with constant ailithickness and the vertical lines

correspond with constant PZT thickness.

14
— Npzr=05pm
—— hgp;r=1.0um
12 + pzT 2
—— Npyr=2.0pm
—— Ny =3.0pm
10 F —— hpr=40pm
— hg; = 0.5 pm
(-C) hsi=1.0 um
E 8r hg; =2.0 pm
g_, hg;=3.0 pm
S 6F hsi=4.0 um
=
)
4+
2 L é é ; /
0 . . .
10 20 30 40 50

Center Deflection (um)

Figure5.10: S and PZT thickness effect on charge
generated
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Figure5.11: S and PZT thickness effect on strain
energy ratio

As was previously demonstrated, the optimum thisknmplied by the charge
curve does not correspond with that implied byehergy ratio curve; this is affirmed in
Figures 5.10 and 5.11. The optimum for a spesificon thickness is were the curve is
maximum in regards to either the strain energypratithe charge. For maximum charge
generation the PZT thickness varies fromufito ~2.5um and for the maximum strain
energy ratio the PZT thickness varies fromur2to ~4 um. The typical working device
lies between the lines with;k 1.0-2.0 um, meaning that optimum PZT thickness for
energy conversion will vary from 2 -@n.

The effect of electrode size on the gathered chargleown in Figure 5.12. From
examination of the charge profile, Figure 5.3 aih e assumed that the larger the
electrode the more charge will be gathered (ieretlare no sections of negative charge).

This is shown in Figure 5.12, the larger the etetdrthe larger the gathered charge.

Experimental results show a coverage of ~50 % @l ], this does not agree with the
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modeled results. The reasons for this is the moulglusessx ando, to obtain charge,
while in experimentation a piezoelectric momeneeffioccurs near the edges. Also,
another reason for this discrepancy is that sonteeoéxperimental devices the PZT is
etched at the boundaries creating a slightly défiedevice which the included model
cannot address. The waviness in the curve isatleetdiscrete nature of the model, and

would not actually occur in experimentation.

Charge (nC)

o
[}
T

0.0

0 zlo 4|o elo slo 1<I)o

Percent Coverage of Electrode
Figure 5.12: Electrode size effect on gathered
charge

5.3 Dynamic — Free Undamped Vibration

A linear structure in free vibration will displaigiresonant frequency. This free
vibration is also of interest here, yet with theenest of the contribution of various
parameters. These parameters are the membranerside, the residual stress, changes

in lamina thickness, and the effect of nonlinearity the following figures all parameters
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values, except the examined parameters and theedgpessure which is 10 kPa in the
following section, are available in Table 5.1.

Examination of the effect of thickness on a sirgielaminate is first examined
with the interest of seeing where the behavior @hhinge from membrane-like to plate-
like. In membrane like behavior an addition ot#miess will increase the overall mass,
while in plate behavior an increase of thicknedsmat only cause an increase of mass it

will also cause an increase in flexural rigidity.

66 50

64 —— Free Vibration Frequency
—— Center Deflection

62 140

60
58
56 |
54
52
50

48 L 1 L 1 1 1 O
0 5 10 15 20 25 30

130

120

Center Deflection |im)

110

Free Vibration Frequency (kHz)
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Figure 5.13: Thickness effect on free vibration of
single ply structure
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Number of

Layers 1
Side length (mm) 3
Residual Stress
(MPa) 105
Static Load (kPa) 10

Material Modulus Poisons Density Thickness
(GPa) Ratio  (kg/m®)  (um)
Si 125 0.3 2500 varied

Table 5.2: Parameters associated with Figure 5.13

In Figure 5.13 the free vibration response is shaleng with the center
deflection for varying thickness of a silicon stiwre using an applied initial load of 10
kPa. At approximately pm the free vibrational frequency appears to in@gtss can
be attributed to an increase in the contributioplate like behavior. As can be seen
from the center deflection curve, an increase icktiess stiffens the structure, causing a
decrease in deflection. From O taf® of silicon the structure exhibits membrane like
behavior, from the fum to 20um thickness range it exhibits plate like behavamrd
beyond a 2@um thickness plate behavior is even more significant

Figure 5.14 shows the effect on free vibrationdieanges in PZT thickness and
the silicon thickness for a residual stress of ¥ for all thicknesses. Although this
exclusion of residual stress change is not realistactual devices it is assumed here for

the reason of a pure thickness effect study.
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Figure5.14: S and PZT thickness change effects on
free vibration
An increase in PZT thickness clearly causes a dserm the free vibration
frequency, while an increase in silicon thicknessses an increase in free vibration

frequency. This behavior is explained by compatirgdensities and moduli of PZT and

silicon shown in Table 5.3.

Material Density (kg/mi)  Modulus (GPa)
Silicon 2550 125
PZT 7550 70

Table 5.3: PZT and S material properties

Conceptually it is informative to examine the eguafor the fundamental

vibration of a single degree of freedom vibration.

We=1|— (5.1)



From equation (5.1) it is rather obvious that areéase in stiffness, k, will cause
an increase in frequency, while an increase in pmaswill cause a decrease in
frequency. Following this logic, an increase iiiten thickness causes an increase in
stiffness and a decrease in mass leading to agaserin resonance. And an increase in
PZT thickness causes a decrease in stiffness amgr@ase in mass, thus a decrease in
resonance.

Another important effect, with obvious resultsthe effect of residual stress on
the vibrational frequency. In Figure 5.15 a congmar of a very low residual stress of 1

Pa is compared to a more realistic residual soe$85 MPa.

50

O,=1Pa
—— 0y =105 MPa

o

40 -

30

20 r

10 |

Free Vibration Frequency (kHz)

0 10 20 30 40 50
Applied Initial Load (kPa)

Figure 5.15: Residual stress effect on free vibration

for varying initial load

From this residual stress examination it is obvithag an increase in residual

stress and an increase in applied load will cansa@ease in the frequency of free
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vibration. A large dependence of the smaller rgaidtress curve on load is observed,
this is due to the nonlinear effect of an incraase-plane stress for an increase in
deflection. For the 1 Pa residual stress thisiaee of in-plane stress is a larger portion
of the total stiffness then in the 105 MPa curvel the 1 Pa residual stress structure will
therefore strongly exhibit this behavior.

Another parameter that can be studied and relgteaily changed is the side
length. This side length study is also chosen@atéorm to examine the linear versus

nonlinear frequencies of vibration.
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—— Nonlinear response
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Figure 5.16: Free vibration frequency for various

side lengths

From Figure 5.15 the curve with 105 MPa residu@sst it is apparent that the
change in frequency at low pressures is minimalnnd@mpared to the 1 Pa residual
stress curve. Comparing the frequencies of noatinad linear vibrations in Figure 5.16

it is apparent that these two frequencies are aimiDue to the large residual stress used
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in the side length analysis, the linear membraeguency is comparable to the nonlinear.
Although it is noticed that the nonlinear frequersiarger than the linear due to the
comparatively small increase of total in-planesgreCalculation of the linear frequency

was done using equation (5.2) [8 p. 421].

(5.2)

Analysis of the free vibration behavior of a muitie of applicable structures
implies optimum parameters depending on the chostaria. In the interest of
decreasing vibrational frequencies decreases igiliben thickness, the residual stress,
and the amplitude of the applied load should bel as®l an increase in PZT thickness
will also assist. It has also been shown thatitiear frequency is similar to the
nonlinear frequency of vibration. This is usefukinat a first estimate prediction of free
vibration frequency can be made with equation StBaut running the entire numerical

model.

5.4 Dynamic — Forced Damped Vibration

In real world operation of the generator membramdgli be undergoing a periodic
forced vibration. Understanding of the responsmortant in the application. The
frequency-response behavior is analyzed and thierspaf interest on the curve are
examined. Examination of what occurs at the mendcznter will be covered in

regards to displacement and velocities. Also Hapss that the membrane assumes for
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certain frequencies will be shown using centenplugs. The following data in the
remainder of this chapter is for a typical devitable 5.4.

Number of 4
Layers

Side length (mm) 3
Residual Stress

(MPa) 100

ds: (pC/n) 85

Static Load (kPa) 10

Material Modulus Poisons Density Thickness
(GPa) Ratio  (kg/n?®)  (um)

PZT 70 0.27 7500 1

Silicon 125 0.30 2550 1

Gold 80 0.44 19280 0.3

Platinum 170 0.38 21440 0.18

Composite 112 0.31 8027 2.48

Table 5.4: Typical/Representative generator mengpamameters for section 5.4

Presentation of the frequency response curve idithensional regime follows.
Figure 5.17 displays the dimensional frequencyarsp curve. Frequency-response
curves are useful tools in displaying the behawefdhe structure at a specified frequency
or amplitude. A linear oscillator will display @whinant resonant frequency [14 p. 103]
on a frequency-response curve, but a non-lineallaisc will not and therefore the

different behavior at different frequencies is exsed.
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Figure 5.17: Dimensional frequency response curve

From the above shown curve specific points of ageare chosen (shown by
dashed lines in Figure 5.17); the harmonics (6ldhkHz), a transition section (15, 26.3,
and 33 kHz), a double valued portion of the cuA@KHz), and on the bottom branch
beyond the double valued portion (55 kHz). Nondisienalization of Figure 5.17 is
also of interest, in that others may easily complaee results with those shown. In

Figure 5.18 this nondimensional response curvéoisaal, wherdy is obtained from

equation (5.2) and converted to units of Hz.
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Figure 5.18: Nondimensional frequency-response
curve for typical membrane

Further examination of the behavior at the befoemtioned frequencies follows,
commencing with study of behavior at tHef@&rmonic. The response as time progresses
is of direct interest, therefore in Figure 5.19 thgponse at the membrane center is shown

for a number of cycles.
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Figure 5.19: Center deflection time response for f =
6 kHz
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This response clearly shows interaction of anditfegjuency. Knowledge that
this is the % harmonic it is expected that this other frequeadive times the forcing
frequency. This can be easily proven by takingst Fourier Transform (FFT) of the

response which is shown in Figure 5.20.

0.08

6 kHz

0.06

0.04 +

0.02 + 30 kHz

18 kHz L 42 kHz
A S .

0 1 2 3 4 5 6 7 8

Fourier Coefficient

Frequency (w/wy)
Figure 5.20: FFT of center response for f = 6 kHz

The forcing frequency df= 6 kHz results in another response at 30 kHz lwlsc
5f. Analysis of what occurs in the phase planegs af interest. The phase space plots
can be used to represent the behavior of manysyglen one curve, and emphasize
behavior such as changes in velocity and non-synonabrations. When the phase
space curves lie upon each other for many cyckestdmdy state behavior is assured. In
the following phase space curves at least one ledngircles are typically plotted. Shown

in Figure 5.21 is the phase plane result at théecgmoint of the membrane.
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Figure 5.21: Phase plane for center response at
f=6kHz

A similar examination is done for th& Barmonic with the results being
displayed in Figures 5.22, 5.23, and 5.24. Thpawese af = 10 kHz is obviously the'3
harmonic; a response at 10 kHz and 30 kHz is appard-igure 5.23. Also the

appearance of the phase plot is what is expected.
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Figure 5.22: Center deflection time response for f =

10 kHz
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Figure 5.23: FFT of center response for f = 10 kHz
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Figure 5.24: Phase plane for center response at f =
10 kHz

At the 3% and 8 harmonics there is an expectation that the menslshape
during vibration will exhibit other shapes beyohdttof the (1,1) mode. Atthé'5
harmonic expected shapes of the (1,1) mode an@tBemode should occur and at the
3" harmonic expected shapes of the (1,1) mode an@Beshould occur. Summarily,
for these odd harmonics expected shapes will dbatrare odd and symmetric. Taking a
closer examination of Figure 5.22 in Figure 5.26ser analysis of the response at the
shown section 1 and 2 is taken by plotting of theterline shape profiles. Section 3 was
examined, but found to show the same responseciiose and subsequently will not be

shown.
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Figure 5.25: Zoomed in center response for
f=10kHz
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Figure 5.26: Center line profile shapes for section 1
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Figure 5.27: Center line profile shapes for section
2

Figure 5.26 shows no obvious other mode interacieation 1 appears to be a
solely (1,1) mode reaction. Yet, section 2 shotdaus other mode interaction. A
single sine function of the forsin(z x/L) could be used to approximate the shapes shown
in Figure 5.26, while a double sine would havedaibed in Figure 5.27 of the foism(z
x/L)sin(3z x/L). This is an important observation in tkat(z x/L)sin(3z x/L) can be
considered an approximation to the combination ofles (1,1) and (3,3).

What occurs at the single-valued rising portiomhef frequency-response curve is
analyzed using the frequencies of 15 kHz, 26.3 fifear resonance), and 33 kHz. The
center deflection versus time plots will be showst ffor 15 and 33 kHz, then a figure

showing all of the FFT's, and finally one figursmlaying all the phase plots.
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Figure 5.28: Center response for f = 15 and 33 kHz

Figure 5.28 shows that, unlike the responses atél kHz, there is not an

obvious other frequency interaction. To asse# thaim an FFT of the responses are

shown in Figure 5.29.
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Figure 5.29: FFT for f = 15, 26.3, and 33 kHz
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At the 15 kHz excitation frequency there appeaisgt@ higher frequency of
much smaller amplitude occurring. This is becarsexcitation frequency of 15 kHz is
close to the $harmonic and interactions might still occur. Exaation of the phase

space occurs in Figure 5.30.
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Figure 5.30: Phase plot for f = 15, 26.3, and 33
kHz

The rising single valued section on the frequemsponse curve shows similar
behavior in the non-dimensional phase space. tNetphase space curves become more
elliptical for higher frequencies possibly due tdexrease in the amount of additive
effects due to other frequency contributions.

Examination of the what occurs to the shape ohteenbrane for one cycle at 15
kHz is shown in Figure 5.31. Similar shapes werstl for the other excitation

frequencies (26.3 and 33 kHz), and are not showretsons of brevity.
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Figure 5.31: Center line shape profilesfor f = 15
kHz

Next, analysis of the behavior at an arbitrary patklouble valued frequency is
commenced and the value chosen hefe-i40 kHz. The center response over time is
not shown here, but was found to be very similashiape to the responses shown in
Figure 5.28. Examination of the phase space pesvadme interesting results discussed

in the following and shown in Figures 5.32 and 5.33
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Figure 5.32: Dimensional phase space for 40 kHz,
bottom and top branches

Through use of Figure 5.32 analysis and understgnafi the behavior that
different initial conditions will result in can performed. For example, if the initial
conditions lie within the small orbit, steady staghavior will follow the smaller orbit
and conversely if the initial conditions lie outsidf the larger orbit, the steady state
response will tend towards the larger orbit, wifikhe initial conditions lie within the
two orbits the response is not as predictable angrediction of what will occur the
model would need to be run. For example somairggnter point conditions that would
follow the low amplitude response would bes0um, w = 4.9 m/s, andea= 0 m/$ and
some initial conditions that would follow the higmplitude response would be, w20
um, Vo = 30 m/s, andea= 0 m/S. Where wis initial center displacement, is initial

center velocity, andoas initial center acceleration.
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Figure 5.33: Normalized phase space for 40
kHzbottom and top branches

The normalized phase space plot lends insighttivedype of resulting behavior.
It is known that more elliptic phase space cureesitto be less nonlinear. Figure 5.33
agrees with this. The bottom branch curve defbectesponse is much less than the top
branch response, meaning that less in-plane singtolecurs for the bottom branch and
subsequently it doesn't have as high a degreerdinearity as the top curve, which is
squarer.

The FFT of the both the bottom and top branch @shin Figure 5.34. ltis
obvious that both of responses on the top and mmott@nches show the same dominant

frequency of 40 kHz.
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Figure 5.34: FFT at 40 kHz, bottom and top
branches

The shape at 40 kHz on the top branch looks mehHigure 5.31, while the
bottom branch is shown in Figure 5.35. It is appathat the shapes for the top and the
bottom branches don't match at 40 kHz. This istdube much smaller deflection on the

bottom branch, and a flattening out of the prafiéar the boundary.
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Figure 5.35: Center line profile for f = 40 kHz on the
bottom branch
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Results for the behavior on the bottom branch fhestdouble valued portion is

shown below. The typical plots of phase space,, [BR@ center profiles are shown. The

center response over time plot is not shown, hgtstated that this response is similar in

shape to Figure 5.28.
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Figure 5.36: Phase space plot for f = 55 kHz
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Figure5.37: FFT for f = 55 kHz
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Figures 5.36 and 5.37 show the phase space pldhari€FT forf = 55 kHz. The
dominant frequency is the excitation frequency Wh&55 kHz, no other notable
responses occur. Also, of interest is what ociturslation to the membrane shape,
centerline profiles are shown below in Figure 5.8&mparing the two shapes, Figures
5.35 and 5.38, it is interesting to note that th@pe seems to be changing as the
frequency increases on the bottom branch. Thegreaap to be a flattening of the profile

near the boundaries that becomes more domindns &screased.
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Figure 5.38: Centerline profilesfor f = 55 kHz

A comparative analysis of what occurs neay, w0 is shown in Figure 5.39.
Shown are the centerline profiles for the previguscussed excitation frequencies. The
precise reason for the difference in shapes ikmoiv, but it is known that these shape

differences are due to the inherent nonlinearitig structure. It is interesting to note a
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very low amplitude occurrence of other vibratiomades throughout any excitation

frequency, though some occurrences are more obthausothers.
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Figure 5.39: Centerline profilesfor Wee ~ 0

Specific points on the frequency-response curveewgamined and results
showing obvious differences in behavior at différexcitation frequencies were shown.
These different behaviors could be utilized in ppgeneration or avoided. For example,
a possible advantage to using“@h@rmonic response would be that excitation cammocc
at a lower frequency then the overall responseo Adifferent shapes will affect power
generation, this work shows that different shap#isoacur and therefore an optimum
shape will exist, and that this optimum shape @olirespond with an excitation

frequency.
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Chapter 6: Conclusion

A finite difference model has been developed ugioeerning equations for a
nonlinear vibrating plate with fully clamped bounglaonditions. Theories were then
applied to allow for lamination and extraction dfcge information. Solution of this
problem was then pursued using a step-by-stepxratalysis procedure in conjunction
with an iterative solution technique. Using a commnalesktop computer, these theories
were then implemented using the FORTRAN 90 programgrianguage. It was then
illustrated that this model was valid for both #tatic and dynamic regimes by
comparison to experimental data of a MEMS device.

From the solution produced by the program a vaoéipformation was
extracted. Three dimensional profiles for varistresses, deflection, and charge were
obtained. From these plots it can be determinegtevto place electrodes to gain the
largest voltage signal, where the structure mighti operation, and what the deflected
structure looks like. All of which are useful vadicues as to what is occurring in the
actual device.

A parameter study was done using static analysiaderstand the effect of
different thicknesses of silicon and PZT and tHeatfof residual stress on the device. It
was shown that an optimum device will have a P4dktress of 2 — 3m, a minimum of
silicon, and a minimum residual stress (other \v@kmailable in Table 5.4). These
parameters were also studied in relation to vibratilt was found that depending on

what layer thickness is increased, the free vibrafiequency will either increase
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(increase in silicon thickness) or decrease (irsgé@ PZT thickness). The rather
obvious result of an increase in residual stress igcrease in vibrational frequency.
The nature of the nonlinear behavior was analya&guorced vibration. From
the frequency-response curve it was found thabticerrence of theBand %' harmonics
is expected along with a jump phenomena that isebedl of Duffing oscillators. From
literature and these simulations it is determiried the thin plate-membrane that is

studied within is a Duffing oscillator like and st behavior indicative of this.

Chapter 7: Recommendations

From this finite-difference model specific recomrdations for device
improvement are proposed with the goal in mindettuce vibrational frequency and
increase available output energy from the PZT.

1. Minimum substrate thickness (i.e. silicon).

2. Minimum Au and Pt thickness to increase stragrgyratio.

3. 2 — 3um thick PZT to increase strain energy ratio.

4. Reduce residual stress to decrease vibratioegiiéncy and increase
available output energy.

5. Operate at low deflections to minimize nonlinetiects therefore reducing
vibrational frequency.

6. Increase device side length to decrease vibitioaguency.

7. Operate away from harmonics to maintain a steadysoidal behavior for

application in the P3 micro-engine.
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Observing the double valued portion of the freqyemsponse curve and the
phase plot at this portion of the plot, Figure 5.82s apparent that this structure has two
responses of different deflections at the samdatian frequency. Utilizing this, a
switch could be developed that would always opeaitne frequency yet with some
imposed condition that could turn it off or on. rther analysis of this, and how to control
this phenomenon would be of interest and the dgeelanodel could be modified to
perform this.

Examination of the relationship between the excsiegipe and power generation
should also be investigated. That is, if a deisagsed in a spectrum of excitation
frequencies where will it obtain the most efficigioiwver generation and what would be
the contributing factors to this.

Improvement upon the program is also of interestriter to decrease model run
times and maintain accuracy. Possible avenues thislare 1) decrease numerical need
2) improve solution technique. Decreasing of tamarical need of the program could be
done by taking advantage of symmetry and only amadyY of the structure. Therefore
imposing symmetry conditions upon two of the bouredainstead of fully clamped on all
four. This could decrease program run time sigaifily and still maintain accuracy.
Improvement of the solution technique could be padsby implementing banded storage
schemes instead of a full matrix scheme, then usohgers that could take advantage of
this. Further investigation into both of these Widoe required, and would greatly

increase the efficiency of the developed code.
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Chapter 8: Appendix
8.1 Flowcharts for program VENM
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Program VENM
Star

Read in problem
parameters

Static or Dynamic?

~

Call iteratestatic to obtain

Call iteratestatic subroutine initial deflection

\ 4
Call Dynamik

Post Processing

v
Call iteratedynamik

Program VENM
Stor

\
Post Processing

Program VENM
Stor

Figure 8.1: VENM main program body flowchart
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lteratestatic
Subroutin

Form equilibrium matrix with F =0

'

Solve for transverse < N
deflection 0
Solve for F Converged?
Yes

Post Processing

End Iteratestatic

Figure 8.2: VENM subroutine Iteratestatic flowchart
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Dynamik Subroutine

v
Step time +1

\ 4
Call iteratedynamik

\ 4

Form equilibrium matrix for F
from previous time step

Solve for F

A 4

Form equilibrium
matrix for new F

Converged?

A 4

Solve for velocity and acceleratioj
and post process

N

All time steps
completed?

Return to main
progran

Figure 8.3: VENM subroutine Dynamik flowchart
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8.2 FORTRAN Source Code for Developed Model

The following is the FORTRAN source code for theeleped model.
FORTRAN Free 90 format was used along with Micro8veloper Studio, Fortran

Power Station 4.0 for debugging and compiling.

program VENM

use msimsl
use portlib

double precision, ALLOCATABLE :: wst(:),pst(:),Em{um(:),z(:), &
hm(:),rhom(:),psa(:),strsx(:,:),strsy(:,:),strsxy(strs1(:,:)

character(9), ALLOCATABLE :: matnme(:)

double precision a,h,ps,nu,dx,E,rs,drs,rho,ftnBtk,&s,Capc,chrgm,cc,delta, k2, &
E_uniaxial,nul,D,D_singlelayer,eta,alpha

character dyndec

CHARACTER(9)TODAY

CHARACTER(8)char_time

integer cj,cen,writcntr,n,nm,md,nl

! Debugging files
! open(unit=2000,file="pk.txt")

! General use files

! open(unit=10,file="w.txt")

! open(unit=11,file="'wbend.txt")
! open(unit=12,file="wstrt.txt")

! open(unit=13,file="wr.txt")

! open(unit=14 file="wk.txt")

! open(unit=15,file="wkp.txt")

! open(unit=20file="ps.txt")

! open(unit=21,file="psb.txt")

! open(unit=31,file="pss.txt")

! open(unit=40,file="conver.txt')
! open(unit=50,file="'wconv.txt’)
! open(unit=51,file="pssconv.txt’)
! open(unit=61,file="vk.txt")

98



open(unit=62,file="vkp.txt')
open(unit=71,file="p-d.txt’)
open(unit=72,file="p-q.txt’)
open(unit=81,file="parameters.txt')

Shape
open(unit=105,file="shapew-d.txt")
open(unit=100,file="shapew.txt’)
open(unit=101,file="shapeps.txt’)
open(unit=110,file="profile.txt")
open(unit=112 file="profile-d.txt")
open(unit=115,file="shape-frc.txt’)
open(unit=120,file="profile-diag.txt')
open(unit=125,file="profile-diag-d.txt’)

Stress Output
open(unit=200,file="strsx.txt")
open(unit=205,file="strsy.txt’)
open(unit=210,file="strsxy.txt")
open(unit=215file='strs1.txt")
open(unit=220,file='strs2.txt")

Electrical Output
open(unit=400,file="charge.txt’)
open(unit=410,file="voltage.txt’)
open(unit=420,file="power.txt’)

Time Output
open(unit=300,file="cent-time.txt")
open(unit=320,file="fourier.txt")
open(unit=330,file="wkmax.txt)
open(unit=340,file="time-freq.txt")
open(unit=310,file="soln-time.txt")

Material Properties
nm=4

IWrites w-shapdil®

Icenter profile ape
Icenter profilg shape - dimensional
Iforced shapes
Iprofile acse membrane diagonal
Iprofile emss membrane diagonal -
Idimensional

'Writes the cent
lwrites max centesfidat forcing freq

IWrites CPU tartaken.

Inumber of materials

allocate(Em(nm),num(nm),hm(nm),rhom(nm),matnme(amm+1))

Materials
matnme(1)="Silicon"
matnme(2)="Platinum"
matnme(3)="PZT"
matnme(4)="Gold"
Moduli of elasticity
Em(1)=125.D9 ISilicon
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Em(2)=170.D9 IPlatinum

Em(3)=70.D9 IPZT
Em(4)=80.D9 'Gold
Poisons ratio
num(1)=0.3 ISilicon
num(2)=0.38 IPlatinum
num(3)=0.27 IPZT
num(4)=0.44 Gold
Density
rhom(1)=2500. ISilicon
rhom(2)=21440. IPlatinum
rhom(3)=7550. IPZT
rhom(4)=19280. IGold
Thickness (m)
hm(1)=1.D-6 ISilicon
hm(2)=175.D-9 IPlatinum
hm(3)=1.D-6 IPZT
hm(4)=325.D-9 Gold
z(1)=0.
do i=1,nm
h=h+hm(i) ITotal thickness
z(i+1)=h
enddo
Effective Constants
do i=1,nm
E_uniaxial=E_uniaxial+Em(i)*hm(i)/h
E=E+(hm(i)/h)*(Em(i)/(1.-num(i)**2.)) IE*

nul=nu+(hm(i)/h)*num(i)

nu=sqrt(1-E_uniaxial/E)

rho=rho+(hm(i)/h)*rhom(i)
enddo
write(*,*)E_uniaxial,E
write(*,*)nu,nul

CALL D_value(hm,Em,num,z,nm,D)

D_singlelayer=(E*h**3.)/(12.*(1-nu**2.))

Geometry

a=0.003 ISidelength (m)

es=0.002 IElectrode size (m), es <=a
es=a

Piezoelectric properties

Capc=40.D-9
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d31=85.D-12 IC/m"2

Finite Difference Parameters

n=15 INumber of inclusive interior nodes
dx=1./(n-1.) INodal spacing, i.e. mesh size.
md=(n+2)**2 IMatrix dimension

Time parameters

ftm=10000.D0 ITotal time of vibration study (secopds
ts=2.5D-7

ts=(dx/(E/((1.-nu**2.)*rho))) !Time step (second$)ased on wave speed.

writcntr=1 !'Problem information written to file eme"writcntr” time step
Residual Stress

drs=1.D8 IResidual Stress, Pa
rs=(12.*(1.-nu**2.)*(drs/E)*(dx*a/h)**2.) INon-dimesional residual stress
Damping

delta=0.

cc=2000. lequivalent to 3.33 % of critical. cc=6ff¥ to 1 % of critical

delta=0.*ts/3.14159 IStiffness proportional damping

Vector/Matrix position quick reference values
cj=(n-1)/2 ICenterini
cen=cj+2+(cj+1)*(n+2) IMatrix row/column for centeode.

Nondimensional Coefficients
eta=E*h**3./D
alpha=(h/a)**2.

Static/Initial Loading(s)

nl=1 'number of loads applied

ALLOCATE (wst(md),pst(md),psa(nl),strsx(nm,md),grsm,md),strsxy &
(nm,md),strs1(nm,md)) !Sets size for static solutrectors

psa(l)=1.e-9

psa(1)=500. 'Multiple loads to obtain P-D curves.

psa(2)=1000.

psa(3)=2000.

psa(4)=4000.

psa(5)=6000.

psa(6)=8000.

psa(7)=10000.

psa(8)=12000.

psa(9)=14000.

psa(10)=16000.

psa(11)=18000.

psa(12)=20000.
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IQutputs the problem parameters to a file.
Call Date(Today)
Call Time(char_time)
write(81,*)"Problem Parameters”
write(81,*)"All units are SI."
write(81,*)"This file is comma seperated.”
write(81,*)"Date:,",today
write(81,*)"Time:,",char_time
write(81,*)"Mesh size:,",n
write(81,*)"Number of layers:,",nm
write(81,*)"Side Length:,",a
write(81,*)"Residual Stress:,",drs
write(81,*)"D31:,",d31
write(81,*)"Total time of vibration:,",ftm
write(81,*)"Time step size:,",ts
write(81,*)
write(81,*)"Material, Modulus,Poisons,Density, Thidss"
do i=1,nm
write(81,1004)matnme(i),",",Em(i),",",num(i),", hom(i),",",hm(i)
enddo
write(81,1004)"Composite/Total",",",E,",",nu,"," okl',",h
write(81,*)
write(81,*)"Static Loads Applied”
do i=1,nl
write(81,*)psa(i)
enddo
CLOSE(81)

IProgram main execution body - Static
DO ic=1,nl lic = load count
ps=psa(ic)
write(*,*)"Pressure: ",ps
write(*,*)"Residual Stress: ",drs
CALL iteratestatic(n,a,h,dx,md,ps,nu,E,rs,drs ps&td31,Em,num,hm,nm,
es,Capc,chrgm,strsx,strsy,strsxy,strs 1tk zkpha)
write(*,*)"Deflection: ",wst(cen)*h
! write(71,*)ps,wst(cen)*h IWrite P-D curve file
write(72,1030)ps,wst(cen)*h,chrgm,k2 lwrites p-ddgta
write(100,*)"Pressure Stamp: ",ps
do ii=0,n
do ij=0,n
write(100,*)ii*a*dx,ij*a*dx,wst(ii+2+(ij+1)*(n+2))*h IShape
enddo
enddo
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! Writes stresses out to file.

! do ii=0,n-1

! do ij=0,n-1

! write(200,1020)ii*a*dx,ij*a*dx, (strsx(mn,ii+24+1)*(n+2)),mn=1,nm)

! write(205,1020)ii*a*dx,ij*a*dx, (strsy(mn,ii+2+j+1)*(n+2)),mn=1,nm)

! write(210,1020)ii*a*dx,ij*a*dx, (strsxy(mn,ii+2¢j+1)*(n+2)),mn=1,nm)
! write(215,1020)ii*a*dx,ij*a*dx,(strs1(mn,ii+24#+1)*(n+2)),mn=1,nm)

! enddo

! enddo

ENDDO

IProgram main execution body - Dynamic
write(*,'(/,A38)")"Continue into dynamic analysig/f)?"
read(*,'(al)’)dyndec !dynamic decision
if (dyndec .eq. "y") then
continue
else
STOP
endif
write(*,'(/,a38)")"Commencing dynamic analysis."
Call Dynamik(E,nu,rho,n,a,h,dx,md,ftm,ts,rs,drsyst,d31,Em,num,hm,nm, &

es,Capc,writcntr,cc,delta,eta,alpha,D)

1004 FORMAT(al6,al,E9.3E3,al1,F3.2,a1,F6.0,al,E8.4E1)

1020 FORMAT(2(e16.10),4(e20.10e2))

1030 FORMAT(4(e20.10e2))

END

SUBROUTINE iteratestatic(n,a,h,dx,md,p,nu,E, rsysspss,d31,Em,num,hm,nm,es, &
Capc,chrgm,strsx,strsy,strsxy,strs1,k2,eta,alpha)

double precision w(md,md),pss(md),wr(md),ws(md)@ru,dx,E, &
ps(md,md),psb(md),wspi(md),clim,concrt,lamb,rs i34, &
strsx(hm,md),strsy(nm,md),ct,Em(nm),num(nm),hm(idian), &
voltage,voltwork(2,2),strainx(md),strainy(md),stray(md), &

es,Capc,strsxy(nm,md),chrgm,strs1(nm,md),kaktha

real*8 timefin,timef

integer ci,cj,cen,counti,nnes,nnie,n,i,j,md

do i=1,md
pss(i)=0.
ws(i)=0.
wspi(i)=0.
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enddo

ci=(n-1)/2 ICenter in X

cj=(n-1)/2 ICenterini
cen=ci+2+(cj+1)*(n+2) IMatrix row/column for centeonde.
clim=1.D-6 IConvergence Limit

concrt=10. IConvergence Criteria

counti=0 llteration counter

lamb=0.5 IMultiplicative factor

timefin=Timef()

do while (concrt .gt. clim)

enddo

counti=counti+1

doi=1,md

do j=1,md

w(i,j)=0.

ps(i,j)=0.

enddo

wr(i)=0.

psb(i)=0.

w(i,i)=1.
CALL bending(w,md,n) IForms bending part of the exgn
CALL membrane(w,pss,md,nu,n,eta) 'Forms membranegpshe eql. egn.
CALL clampedeqIBC(w,md,n) IApply boundary conditions
CALL wrmat(wr,a,nu,p,dx,E,h,md,n,eta,alpha) IFornght side
CALL ResidualStress(md,n,rs,w) IAdds residual stress
CALL DLSARG(md,w,md,wr,1,ws) ISolves equilibrium eapion
do i=1,md

ws(i)=lamb*wspi(i)+(1.-lamb)*ws(i) IConvergence amgntation.
enddo
CALL compat(n,md,ps) IForms compatibility equaticorimon
CALL clampstrainbc(n,md,nu,ps) !Forms strain =0
CALL uvDispBC(n,nu,md,ps) IForms u, v = 0 portion
CALL psbvec(psb,ws,n,md) IForms right side
do i=1,md

write(10,1000)(w(i,j),j=1,md)
write(20,1000)(ps(i,j),j=1,md)
write(13,*)wr(i)
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! write(21,*)pshb(i)
! enddo

CALL DLSARG(md,ps,md,psb,1,pss) IBoth, Solves cortiplitty matrix.
concrt=ABS(ws(cen)-wspi(cen)) IConvergence Tests

doi=1,md
wspi(i)=ws(i)
enddo

write(*,*)ws(cen)*h

ENDDO ! END ITERATION LOOP
write(*,*)ws(cen)*h

! do ii=(-1),n

! do ij=(-1),n

! write(105,*)ii*a*dx,ij*a*dx,ws(ii+2+(ij+1)*(n+2))*h IShape wd
! write(101,*)ii*a*dx,ij*a*dx,pss(ii+2+(ij+1)*(n+2))*E*h**2 IShape psi
! enddo

! enddo

timefin=Timef()

write(*,*)"Time to converge in seconds:",timefin

! Compute x-y stress values
CALL StrainCompute(pss,dx,a,nu,n,md,E,h,drs,Em,namstrsx,strsxy,strsy, &
strainx,strainxy,strainy,strs1,hm)
! write(400,*)"Static"
ct=0.

CALL piezo(strsx,strsy,md,d31,dx,a,n,ct,nm,voltagéwork,nnes,nnie,es, &
Capc,drs,chrgm)

voltwork(2,1)=voltwork(2,2)
voltwork(1,1)=voltwork(1,2)

! write(*,*)"Voltage: ",voltage
! write(410,*)ct,voltage

CALL StrainEnergy(strsx,strsxy,strsy,strainx,stsgijstrainy,md,nm,nnes, &
nnie,a,dx,n,hm,drs,k2)

! Write membrane shape across center
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doi=-1,n

write(110,*)i*a*dx,ws(i+2+(cj+1)*(n+2))/ws(cen)
write(112,*)i*a*dx,ws(i+2+(cj+1)*(n+2))*h

enddo

Write membrane shape across diagonal
da=((a*dx)**2+(a*dx)**2.)**(1./2.)

do i=0,n-1

write(120,*)i*da,ws(i+2+(i+1)*(n+2))/ws(cen)
write(125,*)i*da,ws(i+2+(i+1)*(n+2))*h

enddo

1000 FORMAT(49(F6.2,1X))

END

SUBROUTINE Dynamik(E,nu,rho,n,a,h,dx,md,ftm,ts,rs,dss,wst,d31,Em,num,hm, &
nm,es,Capc,writcntr,cc,delta,eta,alpha,D)
Handles the dynamic time-stepping for the vibnagiloproblem. *

double precision E,nu,rho,a,h,dx,ftm,ts,rs,ctppis(md),pkp,d31,strsx(nm,md),

strsy(nm,md),Em(nm),num(nm),hm(nm),voltage,voltw@rR),

strsxy(nm,md),strainx(md),strainy(md),strainxy(ned)Capc,chrgm,
strs1(nm,md),wst(md),wkm(md),wk(md),wkp(md),vk(mdp(md),
ak(md),akp(md),cc,delta,pkpd,f(50),nosc(50),f,jit1,ctc,tsc,da,
wkmax,freq,time_current,time_prev,w_prev,w_curredeta,alpha,D

real*8 timefin,timef
integer countk,writcntr,nf
logical convergence

wkp="w' solution for k+1
wk="w" solution for k

timefin=Timef()
tf1=0.

countk=0
c=(rho*h*(dx*a)**4.)/(D)
tts=int(ftm/ts)+1
ci=(n-1)/2

cj=(n-1)/2

cen=ci+2+(cj+1)*(n+2)

Initial conditions

ITotal time steps

ICenter in X

ICenteriny

IMatrix row/column for centaode.
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doi=1,md
wk(i)=wst(i)
vk(i)=0.
ak(i)=0.
enddo

I Excitation frequencies (hz)

=1

f(j)=15000. :;nosc(j)=50 ;j=j+1
f(j)=20000. :nosc(j)=50 ;j=j+1
f(j)=25000. :nosc(j)=75 ;j=j+1
f(j)=30000. ;nosc(j))=75 ;j=j+1
f(j)=35000. ;nosc(j))=75 ;j=j+1
f(j)=39000. ;nosc(j)=100 ;j=j+1
f(j)=40000. ;nosc(j)=400 ;j=j+1
nf=j-1 Inumber of frequencies.
! Starts stepping through time after initial conalits applied
iii=1

pf=A(iii)

kk=1

tf1=0.

write(*,*)

write(*,*)"VENM program running, will be taking dayof CPU time."
write(*,*)

write(*,*)"Number of frequencies”,nf

write(*,*)pf

write(320,*)1.4e-6
DO k=2,tts
kk=kk+1

! Establishes time step for forcing frequencies
if (f(iii) .le. 15000.) then

ts=1.4e-6
I' ts=0.01/f(iii) 1100 iterations per cycle for fragncies < 15 kHz
else

ts=0.01/1(iii) 1100 iterations per cycle.

endif
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ct=tf1+(kk)*ts Icurrent time

ctp=tfl+(kk+1.)*ts Ifuture time, k

ctc=ctp Itime in case of nonconvergence
tf=nosc(iii)/pf+tfl

tws=(nosc(iii)-5)/pf+tfl Itime to write shapes

if (ctp .ge. tf) then
write(320,*)ts
write(*,*)pf,wkmax
write(330,*)pf,wkmax
pf=f(iii)
tfl=ctp
tf=0.
kk=0
wkmax=0.
write(*,*)f(iii)
write(115,*)pf
write(320,*)pf,"-----mmmm e "
write(320,*)writcntr*ts
endif

pi2=2*3.14159256

pkpd=10000.*Dsin(pf*ctp*pi2-pf*tf1*pi2) !'LOAD, chang coefficent to change
Imagnitude

pkp=12.*(1.-nu**2.)*((a*dx)**4.*pkpd)/(E*h**4.) IN-D load

if (iii .gt. nf) then
write(*,*)"Run is completed”
read(*,*)

STOP

endif

CALL iteratedynamik(n,a,h,dx,md,nu,E,rs,pss,rhpks,wk,wkp,vk,vkp,ak,akp,cc,
delta,convergence,eta,alpha,D)
ISolves current time deflection/stress

if (convergence .eqv. .FALSE.) then lexercise cauten using
tsc=(ctc-ct)/2.
ctc=ct+tsc
pi2=2*3.14159256
pkpd=10000.*Dsin(pf*ctc*pi2-pf*tf1*pi2)
pkp=12.*(1.-nu**2.)*((a*dx)**4.*pkpd)/(E*h**4.) IN-D load
CALL iteratedynamik(n,a,h,dx,md,nu,E,rs,pss,rhogsp,wk,wkp,vk,vkp,

ak,akp,cc,delta,convergence,eta,alpha,D)
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endif

ISolves current time deflection/stress
if (convergence .eqv. .TRUE.) then
write(300,1030)ctc,wkp(cen)*h,vkp(cen)*h,akeid*h,pkpd, pf
endif
write(*,*)"Time Step,",tsc,” Current time,",ctc
write(*,*)"Time #: ",k

if (wkp(cen) .LT. wk(cen)) then
if (wkm(cen) .LT. wk(cen)) then

endif
endif

Imaximize freq
wW_prev=w_current
time_prev=time_current
time_current=ctp
w_current=wkp(cen)*h

freq=1./(time_current-time_prev)
write(340,1030)ctp,freq,w_current,pf

if (abs(w_current-w_prev) .LT. 0.001*.5*(w_curremi+prev)) then
write(*,*)"Deflections close",w_prev,w_current
endif

The below if statement causes the data to onhlyiitéen to the file at certain
intervals. Therefore saving time and file space.

countk=countk+1

IF (ctp .ge. tws) then !writes information for tteest five forced cycles.

write(115,*)ctp

write(112,*)ctp

write(110,*)ctp

write(120,*)ctp

write(125,*)ctp

IWrite membrane shape across center

do i=-1,n
write(110,*)i*a*dx,wkp(i+2+(cj+1)*(n+2))/wkp(cenpf
write(112,*)i*a*dx,wkp(i+2+(cj+1)*(n+2))*h,pf
enddo

IWrite membrane shape across diagonal
da=((a*dx)**2+(a*dx)**2.)**(1./2.)

do i=0,n-1
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ENDIF

write(120,*)i*da,wkp(i+2+(i+1)*(n+2))/wkp(cen),pf
write(125,*)i*da,wkp(i+2+(i+1)*(n+2))*h,pf
enddo
IWrite maximum amplitude deflection
if (wkp(cen) .GE. wk(cen)) then
wkmax=wkp(cen)*h
endif
IWrites full dimensional shape profile
write(100,*)ct
do ii=0,n-1
do ij=0,n-1
write(100,*)ii*a*dx,ij*a*dx,wkp(ii+2+(ij+1)*(n+2)) *h IShape
enddo
enddo

! Compute x-y stress values

CALL StrainCompute(pss,dx,a,nu,n,md,E,h,drs,Em namstrsx,strsxy,
strsy,strainx,strainxy,strainy,strs1,hm)

! Call stresscompute(pss,dx,a,n,md,E,h,drs,wk,stirsy)

CALL piezo(strsx,strsy,md,d31,dx,a,n,ctp,nm,voitagltwork,
nnes,nnie,es,Capc,drs,chrgm)

! Obtain strain energy and k2

CALL StrainEnergy(strsx,strsxy,strsy,strainx,stsgifstrainy,md,
nm,nnes,nnie,a,dx,n,hm,drs,k2)

For writing membrane shape across diagonal

write(*,*)pkpd,pf,wkp(cen)*h

write(*,1004)"Current Problem Time (s): ",ct

write(*,1006)"Center deflection (um): ",wkp(ceh)pkp

IF (countk .eq. writcntr) THEN !writes info at Wi center inc.

timefin=Timef()

write(320,*)wkp(cen)*h
write(300,1030)ctp,wkp(cen)*h,vkp(cen)*h,akp(cem)skpd,pf
countk=0

ENDIF

Steps the k+1 deflection solution to the kth siolt
do i=1,md

wkm(i)=wk(i)

wk(i)=wkp(i)

wkp(i)=0.

vk(i)=vkp(i)

vkp(i)=0.
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ak(i)=akp(i)
akp(i)=0.
enddo

ENDDO

! File format specifiers.

1002 FORMAT(2(F16.10,1x))

1004 FORMAT(a27,E9.3E3)

1006 FORMAT(a26,E15.8E2,E15.8€2)
1008 FORMAT(a31,F7.4)

1020 FORMAT(2(d16.10),4(d16.10))
1030 FORMAT(6(E15.8E3,1X))

END

! Subroutine that iterates the current time stegherdynamic solution
SUBROUTINE iteratedynamik(n,a,h,dx,md,nu,E,rs,p&sis,pkp,wk,wkp,vk,vkp, &
ak,akp,cc,delta,convergence,eta,alpha,D)

double precision w(md,md),pss(md),a,h,nu,dx,E,pstmdylpsb(md), &
clim,concrt,rs,c,D,rho,ts,pkp,wkpi(md),wk(md),wkpdin &
vk(md),vkp(md),ak(md),akp(md),b(6),beta,gam,ccalelia,alpha

integer ci,cj,cen,counti

logical convergence

convergence=.TRUE.

INewmark parameters
beta=1./4.
gam=1./2.

ICalculate integration constants
b(1)=(1.)/(ts**2.*beta);b(2)=-(1.)/(ts*beta);b(3)=(1.)/(2.*beta)
b(4)=gam/(ts*beta);b(5)=1.-gam/beta;b(6)=ts*(Lrrge2.*beta))

do i=1,md

wkpi(i)=wk(i)

enddo

ci=(n-1)/2 ICenter in X

cj=(n-1)/2 ICenterini
cen=ci+2+(cj+1)*(n+2) IMatrix row/column for centeode.
clim=1.E-9 IConvergence Limit

concrt=1. IConvergence Criteria

counti=0 llteration counter
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c=(rho*h*(dx*a)**4.)/(D) IEffective mass term, m_eff
! c=rho*eta/alpha**2.

! Start iteration to get convergent solution
DO WHILE (concrt .gt. clim)
counti=counti+1 literation counter

! Zero's out pertinent tensors, matrices, vectors.
do i=1,md
do j=1,md
w(i,j)=0.
ps(i,j)=0.
enddo
wkp(i)=0.
psb(i)=0.
w(i,i)=1.
enddo

! Dynamic
CALL bending(w,md,n) IAdds in bending portion of f@groblem
CALL membrane(w,pss,md,nu,n,eta) IAdds in membrarégn
CALL clampedeqIBC(w,md,n)
CALL ResidualStress(md,n,rs,w)
CALL wilsoneglegn(n,md,w,pkp,c,wk,wkp,vk,ak,b,cdicég

! Compatibility equation section
CALL compat(n,md,ps) IForms compatibility equatiooripon.
CALL clampstrainbc(n,md,nu,ps) !Forms strain = Otjmor
CALL uvDispBC(n,nu,md,ps) IForms u, v = 0 portion
CALL psbvec(psb,wkp,n,md) IForms right side of conipéity matrix.
CALL DLSARG(md,ps,md,psb,1,pss) ISolves compatipilitatrix.

! Convergence Tests
concrt=ABS(wkpi(cen)-wkp(cen))

! Set previous iteration value for next iteration
do i=1,md
wkpi(i)=wkp(i)
enddo

! Safety criteria to help avoid divergent solutions

if (counti .gt. 1000) then
write(*,*)"Error - ",counti,” Iterations for singléme-step"
write(*,*)cen,wkp(cen)

pause
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convergence=.FALSE.
write(105,*)ctp

|
! do ii=(-1),n
! do ij=(-1),n
! write(105,*)ii*a*dx,ij*a*dx,wk(ii+2+(ij+1)*(n+2))*h IShape
! enddo
! enddo
! close(100);close(105);close(300);close(320)
endif
if (convergence .eqv. .FALSE.) then
exit
endif
ENDDO IENDs convergence iteration loop
do i=1,md

vkp(i)=b(4)*(wkp(i)-wk(i))+b(5)*vk(i)+b(6)*ak(i) !Calculate velocity for k+1
akp(i)=b(1)*(wkp(i)-wk(i))+b(2)*vk(i)+b(3)*ak(i) 'Calculate acceleration for k+1
enddo

! write(*,*)"Time to converge in seconds:",timefin

1000 FORMAT(49(F8.3,1X))
1001 FORMAT(E10.4,F10.4,a8,f10.4)

END

SUBROUTINE wilsoneglegn(n,md,Kb,Fwp,m_eff,wk,wkp,ak,b,cc,delta)

! Where (var)b signifies bold, and is consideradadrix or vector.

! Kb is the stiffness matrix for the equilibriumuwegion, otherwise

! referenced as 'w' in other subrs.

! Fw is the "forcing" vector for Kw, otherwise reémces as 'pk’, needs to be
! nondimensional*

! Mb = ms

! dva = displacement, velocity, and acceleration

! cc = damping multiplicative coefficient

double precision Kb(md,md), Cb(md,md),Mb(md,mdj)tb_Eff(md,md),
m_eff, Fkp_eff(md), Fwp,wk(md),wkp(md),vk(md),akdicc,delta,
Cbk(md,md),Cdva(md),Fwpp(md)

Izero
doi=1,md
Cdva(i)=0.
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fwpp(i)=0.
doj=1,md
Kb_eff(i,j)=0.
enddo
Fkp_eff(i)=0.
enddo

IDamping factor

do i=1,md

do j=1,md
Cbk(i,j)=delta*Kb(i,j)
enddo

Mb(i,i)=m_eff
Cb(i,i)=cc*m_eff

enddo

ICoefficient matrix
doi=1,md
do j=1,md
Kb_Eff(i,j)=Kb(i,j) + b(1)*Mb(i,j) + b(4)*(Cbk(i,j)+Cb(i,j)) 'effective stiffness matrix
enddo
enddo

IDamping contribution to load

do i=1,md

do j=1,md
Cdva(i)=(Cbk(i,j))+Cb(i,j))*(-b(4)*wk(j)+b(5)*vk()+b(6)*ak(j))+Cdva(i)
enddo

enddo

IEffective load vector

IMass and damping contributions
do i=1,n-2

do j=1,n-2
fwpp(i+2+(j+1)*(n+2))=Fwp
enddo

enddo

do i=1,md

Fkp_eff(i)=Fwpp(i) + Mb(i,i)*( b(1)*wk(i)-b(2)*vk(i)-b(3)*ak(i) ) - Cdva(i)
enddo

CALL DLSARG(md,Kb_Eff,md,Fkp_eff,1,wkp)

END
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! Adds in the bending portion into the equilibriunamx.
SUBROUTINE bending(wbend,md,n)

double precision wbend(md,md)
integer i,j,r,n,md Ir=row

r=0

do j=1,(n-2)

do i=1,(n-2)

r=i+2+(j+1)*(n+2)
wbend(r,i+2+(j+1)*(n+2))=20.
wbend(r,i+1+2+(j+1)*(n+2))=-8.
wbend(r,i-1+2+(j+1)*(n+2))=-8.
wbend(r,i+2+(j+1+1)*(n+2))=-8.
wbend(r,i+2+(j-1+1)*(n+2))=-8.
wbend(r,i+1+2+(j+1+1)*(n+2))=2.
wbend(r,i+1+2+(j-1+1)*(n+2))=2.
wbend(r,i-1+2+(j+1+1)*(n+2))=2.
wbend(r,i-1+2+(j-1+1)*(n+2))=2.
wbend(r,i-2+2+(j+1)*(n+2))=1.
wbend(r,i+2+2+(j+1)*(n+2))=1.
wbend(r,i+2+(j+2+1)*(n+2))=1.
wbend(r,i+2+(j-2+1)*(n+2))=1.
enddo

enddo

END

! Adds in the membrane contribution to the equilibmi matrix
SUBROUTINE membrane(wstrt,pss,md,nu,n,eta)

double precision wstrt(md,md),pss(md),psx,psy, pBxgta
integer i,j,r,n,md

r=0

do j=1,(n-2)

do i=1,(n-2)
r=i+2+(j+1)*(n+2)

I 2nd derivative of Airy Stress in the y

! psy=12.*(1.-nu**2.)*(pss(i+2+(j+1+1)*(n+2))-2.*mi+2+(j+1)*(n+2))+
pss(i+2+(j-1+1)*(n+2)))

I 2nd derivative of Airy Stress in the x

! psx=12.*(1.-nu**2.)*(pss(i+1+2+(j+1)*(n+2))-2.*pi+2+(j+1)*(n+2))+
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pss(i-1+2+(j+1)*(n+2)))
I 2nd derivative of Airy Stress in the xy
! psxy=(12./8.)*(1.-nu**2.)*(pss(i-1+2+(j+1+1)*(n+2-
pss(i-1+2+(j-1+1)*(n+2))+pss(i+1+2+(j-1+1)*(n+2))-
pss(i+1+2+(j+1+1)*(n+2)))
I psxy=0.
I 2nd derivative of Airy Stress in the y
psy=eta*(pss(i+2+(j+1+1)*(n+2))-2.*pss(i+2+(j+1)1¢2))+
pss(i+2+(j-1+1)*(n+2)))
I 2nd derivative of Airy Stress in the x
psx=eta*(pss(i+1+2+(j+1)*(n+2))-2.*pss(i+2+(j+1)yH2))+
pss(i-1+2+(j+1)*(n+2)))
I 2nd derivative of Airy Stress in the xy
psxy=eta/8.*(pss(i-1+2+(j+1+1)*(n+2))-pss(i-1+2-4F#1)*(n+2))+
pss(i+1+2+(j-1+1)*(n+2))-pss(i+1+2+(+1+1)*(n+2)))
I psxy=0.
wstrt(r,i+1+2+(j+1)*(n+2))=wstrt(r,i+1+2+(j+1)*(n2))-psy
wstrt(r,i+2+(j+1)*(n+2))=wstrt(r,i+2+(j+1)*(n+2)) 2.*psy+2.*psx
wstrt(r,i-1+2+(j+1)*(n+2))=wstrt(r,i-1+2+(j+1)*(n2))-psy
wstrt(r,i+2+(j+1+1)*(n+2))=wstrt(r,i+2+(+1+1)*(n2))-psx
wstrt(r,i+2+(j-1+1)*(n+2))=wstrt(r,i+2+(j-1+1)*(n2))-psx
wstrt(r,i+1+2+(j+1+1)*(n+2))=wstrt(r,i+1+2+(j+ 1+ ¥jn+2))-psxy
wstrt(r,i+1+2+(j-1+1)*(n+2))=wstrt(r,i+1+2+(j-1+Xjn+2))+psxy
wstrt(r,i-1+2+(j+1+1)*(n+2))=wstrt(r,i-1+2+(j+1+Xjn+2))+psxy
wstrt(r,i-1+2+(j-1+1)*(n+2))=wstrt(r,i-1+2+(j- 1+ ¥[n+2))-psxy

enddo
enddo

END

! Applies zero deflection at edges and zero sloplges condition
! to the equilibrium matrix. It does this by setfithe

! deflection at the wall and outside the wall (suhist nodes)
! to zero.

SUBROUTINE clampedeq|BC(wbd,md,n)

double precision wbd(md,md)
integer i,m,md,n,nn

! Zero's row corresponding to zero edge deflection
do m=-1,n
do i=1,md
wbd(m+2+(-1+1)*(n+2),i)=0.
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wbd(i,m+2+(-1+1)*(n+2))=0.
wbd(m+2+(0+1)*(n+2),i)=0.
wbd(i,m+2+(0+1)*(n+2))=0.
wbd(m+2+(n-1+1)*(n+2),i)=0.
wbd(i,m+2+(n-1+1)*(n+2))=0.
wbd(m+2+(n+1)*(n+2),i)=0.
wbd(i,m+2+(n+1)*(n+2))=0.
wbd(-1+2+(m+1)*(n+2),i)=0.
wbd(i,-1+2+(m+1)*(n+2))=0.
wbd(0+2+(m+1)*(n+2),i)=0.
wbd(i,0+2+(m+1)*(n+2))=0.
wbd(n-1+2+(m+1)*(n+2),i)=0.
whbd(i,n-1+2+(m+1)*(n+2))=0.
wbd(n+2+(m+1)*(n+2),i)=0.
wbd(i,n+2+(m+1)*(n+2))=0.
enddo

enddo

! The BC programmed below uses forward and backwdference
! Sets edge nodes to zero deflection w(x=0,L)=w(i3€0

do m=-1,n
wbd(m+2+(-1+1)*(n+2),m+2+(-1+1)*(n+2))=1.
wbd(m+2+(0+1)*(n+2),m+2+(0+1)*(n+2))=1.
wbhd(m+2+(n-1+1)*(n+2),m+2+(n-1+1)*(n+2))=1.
wbd(m+2+(n+1)*(n+2),m+2+(n+1)*(n+2))=1.
enddo
do nn=1,(n-2)
wbd(-1+2+(nn+1)*(n+2),-1+2+(nn+1)*(n+2))=1.
wbd(0+2+(nn+1)*(n+2),0+2+(nn+1)*(n+2))=1.
wbd(n-1+2+(nn+1)*(n+2),n-1+2+(nn+1)*(n+2))=1.
wbd(n+2+(nn+1)*(n+2),n+2+(nn+1)*(n+2))=1.
enddo

END

! Forms b-matrix for equilibrium matrix. Adds thedd in.
SUBROUTINE wrmat(wr,a,nu,p,dx,E,h,md,n,eta,alpha)

double precision wr(md),nu,p,dx,E,h,a,eta,alpha
integer i,j,n,md

do i=1,(n-2)
do j=1,(n-2)
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! wr(i+2+(j+1)*(n+2))=12.*(1.-nu**2.)*((a*dx)**4.*p)/(E*h**4.)
wr(i+2+(j+1)*(n+2))=(a**2.*dx**4.)/(E*h**2.)*(eta/alpha)*p
enddo

enddo

END

! This subroutine enters the compatibility equaiitio the
! compatibility matrix.
SUBROUTINE compat(n,md,psc)

double precision psc(md,md)
integer r,i,j,n,md

r=1

do j=1,(n-2)

do i=1,(n-2)
psc(r,i+2+(j+1)*(n+2))=20.
psc(r,i+1+2+(j+1)*(n+2))=-8.
psc(r,i+2+(j+1+1)*(n+2))=-8.
psc(r,i-1+2+(j+1)*(n+2))=-8.
psc(r,i+2+(j-1+1)*(n+2))=-8.
psc(r,i+1+2+(j+1+1)*(n+2))=2.
psc(r,i-1+2+(j+1+1)*(n+2))=2.
psc(r,i-1+2+(j-1+1)*(n+2))=2.
psc(r,i+1+2+(j-1+1)*(n+2))=2.
psc(r,i+2+2+(j+1)*(n+2))=1.
psc(r,i+2+(j+2+1)*(n+2))=1.
psc(r,i-2+2+(j+1)*(n+2))=1.
psc(r,i+2+(j-2+1)*(n+2))=1.
r=r+1

enddo

enddo

END

! Sets the x-strains at the y=constant edges toamidhe

! y-strains at the x=constant edges to zero. Adts the
! corner airy-stress values=0.

SUBROUTINE clampstrainbc(n,md,nu,pse)

double precision pse(md,md),nu
integer r,n,md

118



r=(n-2)**2

Strainx=0aty=0andy=L
j=0

do i=1,(n-2)
r=r+1

pse(r,i+2+(j+1+1)*(n+2))=1.
pse(r,i+2+(+1)*(n+2))=2.*(nu-1.)
pse(r,i+2+(j-1+1)*(n+2))=1.
pse(r,i+1+2+(j+1)*(n+2))=-nu
pse(r,i-1+2+(j+1)*(n+2))=-nu
enddo
j=n-1

do i=1,(n-2)
r=r+1
pse(r,i+2+(+1+1)*(n+2))=1.
pse(r,i+2+(j+1)*(n+2))=2.*(nu-1.)
pse(r,i+2+(j-1+1)*(n+2))=1.
pse(r,i+1+2+(j+1)*(n+2))=-nu
pse(r,i-1+2+(j+1)*(n+2))=-nu
enddo

Strainy=0atx=0andx=L

i=0

do j=1,(n-2)

r=r+1

pse(r,i+1+2+(j+1)*(n+2))=1.
pse(r,i+2+(+1)*(n+2))=2.*(nu-1.)

pse(r,i-1+2+(j+1)*(n+2))=1.

pse(r,i+2+(+1+1)*(n+2))=-nu

pse(r,i+2+(j-1+1)*(n+2))=-nu

enddo

i=n-1

do j=1,(n-2)

r=r+1

pse(r,i+1+2+(j+1)*(n+2))=1.

pse(r,i+2+(+1)*(n+2))=2.*(nu-1.)

pse(r,i-1+2+(j+1)*(n+2))=1.

pse(r,i+2+(j+1+1)*(n+2))=-nu

pse(r,i+2+(j-1+1)*(n+2))=-nu

enddo

r+1
0
0

r

|
]
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END

pse(r,i+2+(+1)*(n+2))=1.
r=r+1

I=n-1

j=0
pse(r,i+2+(j+1)*(n+2))=1.
r=r+1

i=0

j=n-1
pse(r,i+2+(j+1)*(n+2))=1.
r=r+1

i=n-1

j=n-1
pse(r,i+2+(+1)*(n+2))=1.

Set "imaginary"” corner nodes equal zero so thdtime non-singular.
r=r+1

pse(r,-1+2+(-1+1)*(n+2))=1.

r=r+1

pse(r,-1+2+(n+1)*(n+2))=1.

r=r+1

pse(r,n+2+(-1+1)*(n+2))=1.

r=r+1

pse(r,n+2+(n+1)*(n+2))=1.

Applies the conditino that the u and v displacetaenust be zero
over constant lines in the membrane.

SUBROUTINE uvDispBC(n,nu,md,psd)

double precision psd(md,md),nu
integer cen,r,i,j,n

r=int(((n-2)**2+4*n)+1)
cen=int((n-1)/2)

v=0 at x=constant

Top section

do i=0,(n-1)

do j=0,(cen-1)
psd(r,i+1+2+(j+1)*(n+2))=1.+psd(r,i+1+2+(j+1)*(n}R
psd(r,i+2+(j+1)*(n+2))=nu-2.+psd(r,i+2+(+1)*(n+R)
psd(r,i-1+2+(j+1)*(n+2))=1.+psd(r,i-1+2+(j+1)*(nHR
psd(r,i+2+(j+1+1)*(n+2))=nu-2.+psd(r,i+2+(j+1+1)12))
psd(r,i+2+(j-1+1)*(n+2))=-nu+psd(r,i+2+(j-1+1)*(r&))
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psd(r,i+1+2+(j+1+1)*(n+2))=1.+psd(r,i+1+2+(j+1+1)1+2))
psd(r,i-1+2+(j+1+1)*(n+2))=1.+psd(r,i-1+2+(+1+1)+2))
psd(r,i+2+(j+2+1)*(n+2))=-nu+psd(r,i+2+(+2+1)*(12})
enddo

r=r+1

enddo

Bottom section

do i=0,(n-1)

do j=cen,(n-2)
psd(r,i+1+2+(j+1)*(n+2))=1.+psd(r,i+1+2+(j+1)*(nyR
psd(r,i+2+(j+1)*(n+2))=nu-2.+psd(r,i+2+(j+1)*(n+R)
psd(r,i-1+2+(j+1)*(n+2))=1.+psd(r,i-1+2+(j+1)*(nHR
psd(r,i+2+(+1+1)*(n+2))=nu-2.+psd(r,i+2+(j+1+1)¥2))
psd(r,i+2+(-1+1)*(n+2))=-nu+psd(r,i+2+(j-1+1)*(r2h)
psd(r,i+1+2+(j+1+1)*(n+2))=1.+psd(r,i+1+2+(j+1+1)1+2))
psd(r,i-1+2+(j+1+1)*(n+2))=1.+psd(r,i-1+2+(j+1+1)F+2))
psd(r,i+2+(j+2+1)*(n+2))=-nu+psd(r,i+2+(+2+1)*(12})
enddo

r=r+1

enddo

u=0 at y=constant

Left section.

do j=0,(n-1)

do i=0,(cen-1)
psd(r,i+2+(+1+1)*(n+2))=1.+psd(r,i+2+(+1+1)*(r2})
psd(r,i+2+(j+1)*(n+2))=nu-2.+psd(r,i+2+(j+1)*(nHR
psd(r,i+2+(-1+1)*(n+2))=1.+psd(r,i+2+(j-1+1)*(r2¥)
psd(r,i+1+2+(j+1)*(n+2))=nu-2.+psd(r,i+1+2+(+1)1+2))
psd(r,i-1+2+(j+1)*(n+2))=-nu+psd(r,i-1+2+(j+1)*¢R))
psd(r,i+1+2+(j+1+1)*(n+2))=1.+psd(r,i+1+2+(j+1+{h+2))
psd(r,i+1+2+(j-1+1)*(n+2))=1.+psd(r,i+1+2+(j-1+#h+2))
psd(r,i+2+2+(j+1)*(n+2))=-nu+psd(r,i+2+2+(j+1)*42))
enddo

r=r+1

enddo

Right Section

do j=0,(n-1)

do i=cen,(n-2)
psd(r,i+2+(+1+1)*(n+2))=1.+psd(r,i+2+(j+1+1)*(r2¥})
psd(r,i+2+(j+1)*(n+2))=nu-2.+psd(r,i+2+(j+1)*(nHR
psd(r,i+2+(j-1+1)*(n+2))=1.+psd(r,i+2+(-1+1)*(r2})
psd(r,i+1+2+(j+1)*(n+2))=nu-2.+psd(r,i+1+2+(j+ 1)1+2))
psd(r,i-1+2+(j+1)*(n+2))=-nu+psd(r,i-1+2+(j+1)*¢R))
psd(r,i+1+2+(j+1+1)*(n+2))=1.+psd(r,i+1+2+(j+1+{h+2))
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psd(r,i+1+2+(j-1+1)*(n+2))=1.+psd(r,i+1+2+(j-1+#Ih+2))
psd(r,i+2+2+(j+1)*(n+2))=-nu+psd(r,i+2+2+(j+1)*¢2))
enddo
r=r+1
enddo

END

I Forms the b-vector for the Psi matrix.
SUBROUTINE psbvec(psb,w,n,md)

double precision psb(md),w(md),compatr
integer r

! Form right hand side of compatibility egn.
r=1

do j=1,(n-2)

do i=1,(n-2)

psb(r)=compatr(w,md,n,i,j)

r=r+1

enddo

enddo

cen=(n-1)/2
r=((n-2)**2+4*n)+1

! v=0 at x=constant
! Top section.
do i=0,(n-1)
do j=0,(cen-1)
psb(r)=(1./8.)*((w(i+2+(j+1+1)*(n+2))-w(i+2+(j-11)*(n+2)))**2+
(W(i+2+(j+2+1)*(n+2))-w(i+2+(j+1)*(n+2)))**2)+psb ()
enddo
r=r+1
enddo
! Bottom section.
do i=0,(n-1)
do j=cen,(n-2)
psb(N=(1./8.)*((w(i+2+(j+1+1)*(n+2))-w(i+2+(j-11)*(n+2)))**2+
(W(i+2+(+2+1)*(n+2))-w(i+2+(j+1)*(n+2)))**2)+psb ()
enddo
r=r+1
enddo

! u=0 at y=constant
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! Left section.
do j=0,(n-1)
do i=0,(cen-1)
psb(N=(1./8.)*((w(i+1+2+(j+1)*(n+2))-w(i-1+2+(j1)*(n+2)))**2+
(W(i+2+2+(j+1)*(n+2))-w(i+2+(j+1)*(n+2)))**2)+psb(y
enddo
r=r+1
enddo
! Right section.
do j=0,(n-1)
do i=cen,(n-2)
psb(r)=(1./8.)*((w(i+1+2+(j+1)*(n+2))-w(i-1+2+(j1)*(n+2)))**2+
(W(i+2+2+(j+1)*(n+2))-w(i+2+(j+1)*(n+2)))**2)+psb(}
enddo
r=r+1
enddo

END

double precision FUNCTION compatr(w,md,n,i,))

double precision w(md)

compatr=(1./16.)*(w(i+1+2+(j+1+1)*(n+2))-w(i-1+2+H{l+1)*(n+2))

FW(i-14+2+(-1+1)*(N+2))-W(i+ 1+2+(j- 1+1)*(n+2)))**2
(Wi 142+ (+1)*(n+2))-2. 4w (i+2+(+1)*(n+2))
FW(i-1+2+(+ 1) (n+2))*(W(i+2+(+1+1)*(n+2))
-2 AW(i+2+(+ L) (n+2))FW(i+2+(-1+1)*(n+2)))

END

&
&
&
&

SUBROUTINE ResidualStress(md,n,rs,wres)
double precision rs,wres(md,md)

do j=1,(n-2)
do i=1,(n-2)
r=i+2+(j+1)*(n+2)

wres(r,i+1+2+(j+1)*(n+2))=wres(r,i+1+2+(j+1)*(n+2)s
wres(r,i+2+(+1)*(n+2))=wres(r,i+2+(j+1)*(n+2)) +&s+2.*rs
wres(r,i-1+2+(j+1)*(n+2))=wres(r,i-1+2+(j+1)*(n+2rs
wres(r,i+2+(j+1+1)*(n+2))=wres(r,i+2+(j+1+1)*(n+Xrs
wres(r,i+2+(j-1+1)*(n+2))=wres(r,i+2+(j-1+1)*(n+2rs
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enddo
enddo

END

SUBROUTINE StrainCompute(pss,dx,a,nu,n,md,E,h,anspiam,nm,strsx,strsxy, &
strsy,strainx,strainxy,strainy,strs1,hm)

double precision dx,a,E,h,drs,Em(nm),num(nm),ps¥Etrdinx(md), &
strainy(md),nu,strsx(nm,md),strsy(nm,md),compst(md) &
strainxy(md),strsxy(nm,md),strs1(nm,md),hm(nm)Zinsn,md) &

ci=(n-1)/2 ICenter in X

cj=(n-1)/2 ICenterini

cen=ci+2+(cj+1)*(n+2) IMatrix row/column for centeonde.

Calculate strain in the membrane

do i=0,(n-1)

do j=0,(n-1)

r=i+2+(j+1)*(n+2)

strainx(r)=(pss(i+2+(j+1+1)*(n+2))+pss(i+2+(j+1*(n+2))
+2.*(nu-1)*pss(i+2+(j+1)*(n+2))-nu*pss(i+1+2+(j+1fh+2))
-nu*pss(i-1+2+(j+1)*(n+2)))*(h/(a*dx))**2.

strainy(r)=(pss(i+1+2+(j+1)*(n+2))+pss(i-1+2+(+Ih+2))
+2.*(nu-1)*pss(i+2+(j+1)*(n+2))-nu*pss(i+2+(j+1+1fh+2))
-nu*pss(i+2+(j+1-1)*(n+2)))*(h/(a*dx))**2.

strainxy(r)=(pss(i+1+2+(j+1+1)*(n+2))-pss(i+1+2+j1)*(n+2))
-pss(i-1+2+(j+1+1)*(n+2))+pss(i-1+2+(j-1+1)*(n+2)))
*(1./4.)*(-2.)*(1+nu)*(h/(a*dx))**2.

enddo

enddo

R R R

do mn=1,nm Imaterial number loop
do i=1,md
strsx(mn,i)=hm(mn)/h*(Em(mn)/(1.-num(mn)**2.)) &
*(strainx(i)-num(mn)*strainy(i))+drs
strsy(mn,i)=hm(mn)/h*(Em(mn)/(1.-num(mn)**2.)) &
*(strainy(i)-num(mn)*strainx(i))+drs
strsxy(mn,i)=hm(mn)/h*(Em(mn)/(2.+2.*num(mn)))tatnxy(i)
enddo
enddo

Principle Stress Calculations (sigma 1)
do mn=1,nm
do i=0,(n-1)
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do j=0,(n-1)
strs1(mn,i+2+(j+1)*(n+2))=hm(mn)/h*0.5*(strsx(m#2+(j+1)
*(n+2))+strsy(mn,i+2+(j+1)*(n+2)))
+(0.5*(strsx(mn,i+2+(j+1)*(n+2))
-strsy(mn,i+2+(j+1)*(n+2)))**2.
+(strsxy(mn,i+2+(j+1)*(n+2)))**2.)**(1./2.)
strs2(mn,i+2+(j+1)*(n+2))=hm(mn)/h*0.5*(strsx(m#2+(j+1)
*(n+2))+strsy(mn,i+2+(j+1)*(n+2)))
-(0.5*(strsx(mn,i+2+(j+1)*(n+2))
-strsy(mn,i+2+(j+1)*(n+2)))**2.
+(strsxy(mn,i+2+(j+1)*(n+2)))**2.)**(1./2.)
enddo
enddo
enddo

do ii=0,n-1
do ij=0,n-1
write(220,1020)ii*a*dx,ij*a*dx, (strs2(mn,ii+24#+1)*(n+2)),mn=1,nm)
enddo
enddo

doi=1,md
compst(i)=hm(mn)/h*(E/(1.-nu**2.))*(strainy(i)u*strainx(i))+drs
enddo

write(*,*)"Stress in Silicon: ",strsx(1,cen)
write(*,*)"Stress in PZT:  ",strsx(2,cen)
write(*,*)"Composite Stress: ",compst(cen)

1020 FORMAT(2(e16.10),4(20.10e2))

END

P Rapp®

SUBROUTINE piezo
(strsx,strsy,md,d31,dx,a,n,ct,nm,voltage,voltwonkg nnie,es,Capc,drs,chrgm)

plrz:  polarization, units of charge/area

Ar: Electrode area per node

Qc: charge (coulombs)

Capc: Capacitance

nnes: number of nodes from wall to electrode

nnie: number of nodes on one edge of the electrode
voltage: voltage accumulation over entire electradea
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integer md,n,nnie,nnes
double precision strsx(nm,md),strsy(nm,md),plrz(@djmd),d31,dx,
a,Ar,Capc,voltage,ct,voltwork(2,2),chrg(md),chrgsges

ci=(n-1)/2 ICenter in X
cj=(n-1)/2 ICenterini
cen=ci+2+(cj+1)*(n+2) IMatrix row/column for centeode.

voltwork(1,2)=ct
voltwork(2,2)=0.
voltage=0.
chrgm=0.
Ar=(dx*a)**2.

doi=1,md
plrz(i)=0.
enddo

do i=1,md
plrz(i)=d31*(strsx(3,i)+strsy(3,i)-2.*drs)
Qc(i)=(Ar*plrz(i))/Capc
chrg(i)=Ar*plrz(i)

enddo

Computes total voltage in membrane for specifiedteode size (es)
nnes=int((a-es)/(2*dx*a))  !'number of nodes from walklectrode side
nnie=int(es/(dx*a)) Inumber of nodes within electeod

do i=nnes,(nnes+nnie)

do j=nnes,(nnes+nnie)
voltage=voltage+Qc(i+2+(j+1)*(n+2))
chrgm=chrgm+chrg(i+2+(j+1)*(n+2))
enddo

enddo

voltwork(2,2)=(Capc*voltage**2.)*.5
write(*,*)"Total Charge. ",chrgm

write(*,*)"Charge: ",chrgm
write(400,*)chrgm

Write charge profile.
do ii=0,(n-1)
do ij=0,(n-1)
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write(400,*)ii*a*dx,ij*a*dx,chrg(ii+2+(ij+1)*(n+2))
enddo
enddo

! STOP
write(400,%)"STOP"

END

SUBROUTINE StrainEnergy(ox,oxy,oy,ex,exy,ey,md,nngs,nnie,a,dx,n,hm,drs,k2)
! se: strain energy (dim: number of materials)

! OX: stress X, OXy: stress Xy, oy: stress 'y

! ex: strain x, exy: strain xy, ey: stress y

! sep: strain energy in PZT

! tse: total strain energy in stack

double precision se(nm),ox(nm,md),oxy(nm,md),oyfnd),ex(md), &
exy(md),ey(md),sep,tse,hm(nm),a,dx,k2,drs

tse=0.
sep=0.
do i=1,nm
se(i)=0.
enddo

! Energy in PZT layer
do i=nnes,(nnes+nnie)
do j=nnes,(nnes+nnie)
r=i+2+(j+1)*(n+2)
sep=(.5*(ox(3,r)-drs)*ex(r)+.5*(oy(3,r)-drs)*eyfFrhm(3)*(a*dx)**2.+sep
enddo
enddo

! Energy in each layer.
do m=1,nm
do i=0,(n-1)
do j=0,(n-1)
r=i+2+(j+1)*(n+2)
se(m)=(.5*ox(m,r)*ex(r)+oxy(m,r)*exy(r) &
+.5*oy(m,r)*ey(r))*hm(m)*(a*dx)**2.+se(m)
enddo
enddo
enddo

! Total Energy in the Stack
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do m=1,nm
tse=tse+se(m)
enddo

! write(*,*)"Total Strain Energy: ",tse
k2=sepltse

! write(*,*)"Energy Ratio: ",k2

END

SUBROUTINE D_value(hm,Em,num,z,nm,D)
double precision A,B,hm(nm),Em(nm),num(nm),z(nmxstar(nm),z_neutral,D

z_neutral=0.
D=0.

do i=1,nm
E_star(i)=Em(i)/(1.-num(i)**2.)
A=A+E_star(i)*(z(i+1)-z(i))
B=B+E_star(i)*(z(i+1)**2.-z(i)**2)/2.

enddo

z_neutral=B/A

do i=1,nm
D=D+E_star(i)*((z(i+1)**3.-z(i)**3.)/3.-z_neutral*¢(i+1)**2.
-z(i)**2.)+ z_neutral**2.*(z(i+1)-z(i)))
enddo

write(*,*)"Nuetral Axis at: ",z_neutral
write(*,*)"Flexural Ridigity, D: ",D
END

INDEX OF VARIABLES USED

ARR() = Array (dimensions), arrays are doublecmsi®n
DP = Double Precision

INT = Integer

a DP, Side-length of the membrane

C DP, Inertial constant term

cen INT, Index for the center node of the membrane
Ci INT, center coordinate in the x-direction
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Cj INT, center coordinate in the y-direction

clim DP, Convergence limit

compatr DP, Function that gives the value obtaifoedhe b-vector for the
psi matrix

concrt DP, Convergence check variable

counti INT, Counts the number of iterations to cerge

ct DP, Time for current solution

D DP, Flexural ridigity

drs DP, dimensional residual stress

dx DP, nodal spacing (1/(n-1))

E DP, Modulus of Elasticity

ftm DP, Final time, or the total time for model

h DP, Thickness

k INT, indexing variable for time stepping

lamb DP, Multiplicative factor for iterative con\ggnce

md INT, Matrix dimensions

mu DP, 12(1-nu”2)

n INT, number of inclusive interior nodes

nu DP, Poison's ratio

p DP, Pressure variable used within subroutines,
either dynamic or static depends on the subr.

pd DP, Pressure for the dynamic analysis

ps DP, Pressure for the static analysis

ps ARR(md,md), matrix for compatibility matrix

psb ARR(md), b-vector for compatibility matrix

psc ARR(md,md), psi-matrix used within the compgityosub

psd ARR(md,md), psi-matrix used within the u/v dépnent sub

pse ARR(md,md), psi-matrix used within the straishd

pss ARR(md), Airy stress solution for current k

pst ARR(md), Airy stress for the static case, ip&ssed to the
dynamik subroutine.

r INT, represents the position in a matrix fromJi#2+(j+1)*(n+2)]

rho DP, Density

rs DP, non-dimensional residual stress

timef INT, calls routine that counts the secondsMeen calls of the routine

timefin INT, variable used to keep track of timestlve

ts DP, Time step

tts DP, Total time steps

uo DP, Initial velocity

w ARR(md,md), matrix for the equilibrium eqgn.

whbd ARR(md,md), w-matrix variable used within theumdary

condition subroutine
wbend ARR(md,md), w-matrix variable used within thending subroutine
wsk ARR(md), w-deflection for current k
wsm ARR(md), w-deflection for k minus 1
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wsp ARR(md), w-deflection for k plus 1

wspi  ARR(md), w-deflection for past nonlinear iteoa (used with lamb)

wr ARR(md), b-vector for eql. egn. matrix

wres ARR(md,md), w-matrix variable used within tlesidual stress sub

WS ARR(md), w-deflection solution for iterative solbitines.

wstrt  ARR(md,md), w-matrix variable used within thrembrane subroutine

wst ARR(md), w-deflection for the static case ip@ssed to the
dynamik subroutine.
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