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A NUMERICAL STUDY OF NONLINEAR STATIC AND DYNAMIC BEHAVIOR

OF A SQUARE THIN PLATE-MEMBRANE STRUCTURE FOR

APPLICATION TO A MEMS MICRO-GENERATOR

Abstract

By Owen I. Crabtree, M.S.
Washington State University

December 2004

Chair: Cecilia D. Richards

The behavior of geometrically nonlinear, laminated, piezoelectric, square plate-

membrane was predicted using a finite difference technique along with a step-by-step

matrix analysis technique to predict the static and dynamic behavior.  These methods

were implemented using the FORTRAN 90 programming language, and then the

developed program was used to optimize the plate-membrane for use in a micro-engine.

Optimum performance is such that the membrane will exhibit low frequencies of

operation to accommodate heat transfer in the micro-engine and that the majority of the

energy into the system will be extracted through charge on a piezoelectric layer.  In order

to achieve this the model was exercised and it was found that minimization of residual

stress and minimization of the other lamina thicknesses, besides the piezoelectric, can

assist in both these goals.  For typical silicon thicknesses (1-2 µm) it was found that the

optimum PZT thickness based on a strain energy ratio is in the range of 2 to 3 µm.  Also

it was evident that an increase in side length will cause a decrease in frequency of
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vibration, and a decrease in deflection will reduce nonlinear effects therefore also

reducing the frequency of vibration.  The nonlinear behavior was also studied and

harmonics were found and analyzed.
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Chapter 1: Introduction

1.1 Motivation

Geometric nonlinearity of membranes and plates is of general interest to the

scientific and engineering communities.  A multitude of applications for these structures

is apparent.  For instance, the basilar membrane in the ear will exhibit this nonlinear

behavior [1].  The aircraft industry also has much interest in this, some of the early

mathematical solutions were motivated by this industry [2].  In the civil engineering

world this is of interest and this was illustrated in regards to the the behavior of window

glass plating [3].

Nonlinear behavior in the MEMS world is also quite evident; membrane

thermopnuematic actuators can show an impressive amount of nonlinearity as

demonstrated in [4].  Power generation is also being attempted on the MEMS scale, an

electromagnetic micro-generator, shown in [5], also displays these characteristics.  The

current application which is being worked on at Washington State University by the P3

MEMS micro-engine group is also an application of a MEMS membrane to power

generation.  The eventual goal of this project is to provide a micro-engine that uses a

structure similar to Figure 1.1 as the generator.
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Figure 1.1: P3 membrane generator schematic

It is apparent from the figure that the aspect ratio of the membrane structure is

approximately 1000.  This means the behavior that the structure will undergo will be

more membrane-like than plate-like.  In experiments with the structure it was shown that

deflections are on the order of multitudes of the thickness [6], implying a geometrically

nonlinear behavior.  Subsequently a solution technique that can solve for this behavior

accurately is desired.

1.2 Literature Review

Plate and membrane behavior in the dynamic and static domains has been

examined since the end of the 18th century where it began with the experimental work of

Chladni [7].  Since then it has developed into a burgeoning and expansive field with a

wide variety of theoretical and empirical techniques.  The first mathematical solutions

were attempted by Euler (1766) and his student, Bernouli (1789), who analyzed the free

vibration problem of the membrane theory of plates [8 p. 7].  The first correct governing

equation for the free vibration of plates was developed by Lagrange in 1813 [8 p. 8].  The

plate problem has progressed through history until now where it is commonly analyzed

using the finite element method [9] and other computationally intensive methods.  Which
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are capable of analyzing many geometries and parameters  that can occur.   The emphasis

in this review is the theoretical work that has been done in order to represent and solve

the plate/membrane problem.

Plates undergoing transverse deflection can be classified into regimes that

describe the nature of their behavior and thus characteristics of the mathematical

problem.  These regimes are small deflection (linear), moderately large deflection (non-

linear), and very large deflection (highly non-linear).  This behavior can generally be

classified by observation of the amount of deflection in comparison to plate dimensions.

Small deflection theory can typically be used for deflections less than twenty percent of

the thickness; moderately large deflection theory is applied when the deflection is a

multiple of the plate thickness but much less than the plate side length; very large

deflection theory is applied when the deflection of the plate is similar in magnitude to the

plate side length.  Depending on the plate classification the solution to these problems can

be relatively simple or highly complex, and typically impossible without the

implementation of approximating techniques.  Coverage of the linear deflection problem

and the moderately nonlinear problem will occur in this review, very large deflection is

currently not pertinent to this work and subsequently will not be covered.

An important distinction in the following discussion is between the plate and the

membrane.  The membrane is a very thin structure for which flexural rigidity is of such a

small magnitude in comparison to the in-plane membrane forces that the terms dependent

upon the flexural rigidity can be assumed negligible.  Therefore the lateral load carrying

capacity of a membrane is purely due to the in-plane forces [8 p. 144], unlike a plate

which can carry loads by both bending forces and in-plane forces.  This distinction
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between a plate or a membrane will be emphasized by the choice of vocabulary in the

proceeding discussion.

1.2.1 Formulation of the Linear Deflection Theory

Small deflection vibrations have been widely studied due to the general

applicability and the relative ease of obtaining solutions.  Therefore a large amount of

literature is available concerning these linear vibrations.  Leissa compiled an excellent

monograph detailing the available formulations and solution techniques for various plate

shapes and parameters at the time of writing [10].  One of the classical reference for plate

problems, Timoshenko’s Theory of Plates and Shells, also provides an expansive amount

of literature on plates and their relatives [11].  Szilard also provides an excellent overview

of the linear plate problem with an emphasis on finite difference techniques [8].

The classical linear free vibration theory for an isotropic plate is governed by the

differential equation, equation (1.1) [8 p. 413].

D ∇4 w m
∂2 w

∂2t
=0  (1.1)

Which compares to the linearly vibrating membrane [8 p. 420].

∇2w­ m
 h

∂2w

∂ t2 =0  (1.2)
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w is the transverse deflection, t is time, m  is mass per unit area,  h denotes

structure thickness, σ is a constant in-plane membrane stress, ∇ 4=∇ 2 ∇ 2  and ∇ 2  is the

two-dimensional Laplace operator defined in equation (1.3).

∇2=
∂2

∂ x2
∂2

∂ y2
 (1.3)

The flexural rigidity, D, is defined in equation (1.4) for a single lamina where E is

the modulus of elasticity and ν is Poisson's ratio.

D=
E h3

121­2
 (1.4)

1.2.2 Solutions to the Linear Deflection Theory

Solutions to the differential equations of plates and membranes is a vast topic

with many variations, although there is a consistent stream of the more popular methods.

These can be broken down into two solution groups the first being exact analytical

solutions and the second being approximate solutions.  A limited number of exact

solutions exist and these are for fairly specific conditions.

There are 21 independent boundary conditions that can be applied to a rectangular

plate.  Because of the lack of resistance to bending of membranes the clamped and simply
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supported boundary conditions are identical, therefore only 6 independent boundary

conditions exist for membranes.  Leissa details these boundary conditions for rectangular

plates, pointing out that the only exact solutions known are for the six cases of plates with

opposite edges that are simply supported [12].  These solutions were obtained by Voigt

[13] in 1893 using the aptly called Voigt solution technique.  Navier also developed an

“exact” method to solve these equations which utilizes a double Fourier series [11 p.

108].  This solution is only “exact” if the boundary conditions are of the Navier type, i.e.

simply supported [8].  Solution of a membrane clamped on all edges can also be obtained

using a separation of variables technique as detailed by Inman [14 p. 471].  Exact

solutions have also been found for circular plates and membranes [11 p. 55], but these

being of little use in this work will subsequently not be covered.

The most common and readily available solutions are those of the approximating

techniques.  These range from the familiar Rayleigh-Ritz technique [15] to the

hierarchical finite element technique [16].  In the case of Warburton's and Leissa's

analysis they use the Rayleigh-Ritz technique in conjunction with beam functions to

obtain approximate solutions for the remaining 15 boundary conditions [12 p. 269 ].  This

technique is actually widely used and can be found in a large assortment of the literature,

referenced in Leissa's monograph [10].  The wide use of the finite difference technique to

obtain solutions to problems of mathematical physics is also evident in plate and

membrane literature.  Szilard details this technique for multiple plate applications in his

book, going as far to develop this technique to plates with irregular boundaries [8 p. 175]

and also plates with orthotropic properties [8 p. 381].  Kharab used this technique in a

spreadsheet program and solves the two dimensional wave equation for a membrane [17].
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The finite element technique is currently a popular technique in numerical

solutions.  An incomplete survey performed by Cook [9 p. 319] includes references to

144 articles that included 88 different types of plate finite elements.  One of the more

recent finite element solution techniques for the linear plate problem is the hierarchical

finite element [18, 19].  Han and Petyt have published work on this technique for plates in

free vibration [18] and plates under forced vibration [19], in Houmat's paper he analyzes

the vibrational behavior of a membrane instead of a plate [16].  Both sets of authors show

that this technique can be advantageous in that it reduces the number of degrees of

freedom that must be used to yield an accurate result, when compared with the linear

finite element method.

1.2.3 Formulations of the Nonlinear Deflection  Theory

Many formulations and solution techniques for the linearly vibrating plate have

been derived and implemented.  These techniques have been rigorously tested and tried,

showing their validity in the linear plate/membrane regime.  Yet, deflections on the order

of approximately a tenth the thickness of a plate can cause stiffening of the structure that

this theory can not predict.  These forces, which are a result of the deflected shape

requiring stretching or shortening of the midsurface, act to support part of the load.  The

linear theory breaks down and gives solutions that incorrectly estimate the displacements

and vibrational characteristics considerably.

The credit of discovering the nonlinear theory that accounts for both bending and

stretching of the plate is given to G. Kirchhoff (1824-1887).  The analysis in his 1876
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book Lectures on Mathematical Physics (in German) [20] is considered the first piece of

literature which notices that the nonlinear terms can no longer be considered negligible [8

p. 8].  The final form of the nonlinear differential equations governing the moderately

large deflection behavior of a statically deflected plate was published by von Karman in

1910 [21].  Herrmann then expounded upon von Karman's work, integrating dynamic

effects into the theory [22].  The final set of von Karman like equations for an isotropic

plate are shown in equations (1.5) and (1.6).

The Equilibrium Equation

 D ∇ 4 w m
∂2w

∂ t2 =h∂2w

∂ x2

∂2 F

∂ y2 
∂2w

∂ y2

∂2 F

∂ x2 ­2
∂2w

∂ x ∂ y
∂2 F

∂ x ∂ y  (1.5)

The Compatibility Equation

∂4 F

∂ x4
2

∂4 F

∂ x2∂ y2


∂4 F

∂ y4
=E[ ∂2w

∂ x ∂ y 
2

­
∂2w

∂ x2

∂2w

∂ y2 ]  (1.6)

Equations (1.5) and (1.6) are derived using an equilibrium approach of an elastic

plate representative element in Cartesian coordinates.  These equations are usually

referenced as the w-F formulation.  The use of the Airy stress function, F, requires the

assumption that in-plane inertia is negligible [23], which limits the applicability of this
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theory.  The plate can also be represented using three equations in terms of three

displacements in the x, y, and z directions [24], called the w-u-v formulation.  These

equations are capable of representing the vibrating plate with inclusion of the in-plane

inertia terms [23].

u , xx
1­

2
u , yy

1

2
v , xy=­w , xw , xx

1­

2
w , yy­

1

2
w , y w xy

 (1.7)

v , yy
1­

2
v , xx

1

2
u , xy=­w , yw , yy

1­

2
w , xx­

1

2
w , x w xy

 (1.8)

D ∇4 w w , tt=q
Eh

1­2[u , x
1
2

w , x
2 w , xx w , yy

v , y
1
2

w , y
2 w , yy w , xx1­ w , xy u , yv , xw , x w , y]

 (1.9)

Another popular approach to the representation of plate behavior is the variational

technique [25 p. 163, 26 p. 295].  Both Washizu and Reismann illustrate this technique

which uses the principle of virtual work as the point of departure.  Washizu then utilizes

the principle of stationary potential energy to obtain equations (1.5) and (1.6) [25 p. 165].

1.2.4 Solutions to the Nonlinear Deflection Theory

Solutions for the above sets of nonlinear equations have been examined

extensively in the literature.  These solutions are substantially more complicated in the
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geometrically nonlinear case then those discussed for the linear.  Yet, some of the same

solution techniques are applied in the nonlinear case that were applied in the linear (with

modification).

Exact solutions to the nonlinear plate are obviously difficult to obtain.  Although,

an “exact” solution for a uniformly loaded circular plate with a clamped edge was

developed by Way [27].  Manipulating the governing equations slightly, Way then applies

a power series solution, and obtains an “exact” solution to the static deflection of a

nonlinearly behaving circular plate.  As far as this author has found, no exact solutions

exist for the dynamic behavior of a nonlinearly deflecting rectangular plates or

membranes.

The other solutions for this plate problem belong in the approximate solution

category.  Generally these solutions either use approximating functions, assume certain

terms negligible, or use some finite discretization method.  Chia published a superb

compilation of information on nonlinear plates and many of the methods to approach the

different plate problems in his book, Nonlinear Analysis of Plates [24].

Initially, examining the work done on the solution to static deflection of plates a

large volume of techniques were found.  One of the very prominent techniques found in

literature is attributed to H. M. Berger and consequently referred to as the Berger

formulation [28].  Writing the standard energy expression at the mid-plane of the plate,

Berger assumed that the second strain invariant is negligible; based on the work done by

Way [27].  This then results with the decoupling and linearization of the governing

equations.  Although the caveat with this assumption is that there is no direct physical
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interpretation of the validity of the assumption used.  Berger compares his results to that

obtained by Levy [29] and Wang [2, 25] and finds agreement.

In future works many other authors use the Berger technique on a multitude of

plate problems.  In Leissa's monograph [10] other techniques are illustrated which extend

the Berger technique to include vibrational behavior of these nonlinear plates.

Application of this method to the nonlinear vibration of both plates and membranes was

done by Mazumdar, with the goal of modeling vibrations of the human tympanic

membrane [30].  Sathyamoorthy then extended this even further to the vibration of

orthotropic clamped rectangular plates with immovable edge conditions [31].  Part of this

approach is to assume a solution based on the spatial modes and some function in time [7

p. 5].  This then reduces to the well known Duffing oscillator problem.  Detailed solution

methods are available in [32].

Another very popular technique is the double series, typically a Fourier series,

although in some cases a one term (single-mode) solution is used for the transverse

deflection [33, 34].  Levy implemented the Fourier series for a simply supported

rectangular plate under combined edge compression and lateral loading [29].  Deflection

and pressure were defined as a Fourier series and a representation for the Airy stress

function based on this was found.  Levy exercised this technique and one of his findings

was that for p a4

E h4=400 the membrane and bending stresses are of the same magnitude.

Where p is applied pressure, a is plate side length, E is Young's modulus, and h is plate

thickness.  Seide used Levy's technique  as a template and applied it to the problem of

11



rectangular membranes with edges that are fixed normal to the edge but free to move

parallel to the edge [35].  A similar technique for static deflection of membranes with the

w-u-v formulation was developed by Timoshenko and then expanded by Maier-Schneider

[36].  It combines quadratic terms with a sine function profile of the membranes.  This

technique is quite useful to obtain quick and fairly accurate results for load-deflection

solutions.

Extending the Fourier series technique into the dynamic world is an obvious step,

using a generalized Fourier series.  Often the elements consist of beam functions [24,

p.40].  Teng uses this technique for plates undergoing blast loading with different degrees

of elastic restraint along the edges [37].  In a recent paper, Teng et al [38] used a Fourier

series to obtain a governing equation for nonlinear plates that is exactly the well known

Duffing equation.  Lighthill's extension of the perturbation method was then used and

transient solutions for rectangular plates under blast loading was obtained.  Verification

against experimental data confirmed the validity of this technique.

Lee analyzed the two different formulations of this problem, the w-F and w-u-v

formulations, a generalized Fourier series and the Galerkin procedure were used for both

formulations [23].  Lee found that in the case of the w-u-v formulation the number of

terms needed, 252, precluded the application of this technique.  Lee did find, however in

using this procedure that the Duffing equation drops out of the mathematics.

A perturbation solution has also been investigated by Chu and Herrmann [39]

where the dynamic w-F formulation was used which was derived in a previous work of

Herrmann [22].  A double sine series was used for the deflection term and a double

cosine series was used for the stress function term, but only the first mode shape was
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accounted for.  Nayfeh used a perturbation method of multiple scales to solve the

differential equations for a symmetrically excited circular plate, and documents the

solution steps in [40], finally noting that the internal resonance for plates involves three

modes [40 p. 514].

Yasuda [41] also used a perturbation method of multiple scales to obtain

oscillation characteristics of a square membrane near a primary resonance with one nodal

line and showed that this method matched experiment, proving the validity of the

technique in this case.  Although to simplify the analysis, mode shapes composed of a

multiple of two sine functions were used and only the (1,2) and (2,1) mode were

accounted for.  In 1981 Niyogi applied this same technique to the non-linear dynamic

response of orthotropic plates and found good agreement with other available numerical

results of the time.  The perturbation method is only capable of treating problems with

weak nonlinearity, and quickly becomes difficult to work with when calculating higher-

order approximations [42], therefore other techniques must be explored in order to obtain

results for stronger nonlinearity.

Hamilton's principle has also been applied to this problem.  Benamar used this

technique in his PhD dissertation to examine the changes in mode shapes and frequencies

of vibration in nonlinear clamped plates and beams [7].  A dependence on mode shapes

and frequencies were found, curvatures near the clamped edge increased as deflection

increased.  Also spatial distortion was analyzed and it was found that there is interaction

at large deflections between the first and higher order odd symmetric modes.  This spatial

distortion characteristic was also explored in [7] using the finite element technique and

the same conclusion was reached.  This technique was also applied to symmetrically
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laminated rectangular composite plates [43], and on rectangular plates with a combination

of simply supported and clamped boundary conditions [44].  Benamar also performed

experimental work to verify and compare his experiments and found agreement [7].

In the 1970's and early 1980's nonlinear plate elements were being developed

using the FEM technique.  Pica developed an element for static situations using a Mindlin

formulation where it was found that the developed elements provided good results for

straight boundary's but had difficulty with curved ones [45].  In 1984 Lau [46] illustrated

a simple triangular incremental modified Discrete Kirchoff Theory plate element for

dynamic behavior.  Interesting results were found for differing boundary conditions.  In

the case where in-plane displacements are assumed zero over the entire membrane higher

mode interaction is evident, but in the case where this assumption is not enforced the

higher mode interaction is not evident [42].  The hierarchical finite element technique

(HFEM), which uses high-order polynomial displacement functions, allows the entire

plate to be modeled with one element.  This technique is illustrated for both isotropic [33]

and laminated plates [34].  As previously mentioned the HFEM technique can reduce the

number of degrees of freedom needed to obtain a solution.

The method to be applied in this thesis is the finite difference technique.  It has

been applied in the linear case previously [26 p. 224] and has also been applied in the

nonlinear case.  A solution was detailed by Wang [2] for the static case with various

boundary conditions.  It has also been applied to square plates under hydrostatic loading

for conditions of a flat plate in liquid containers or partitions [47].  Vallabhan used this

method in an application to window glass plating [3], and he included vibration by using
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the Newmark β technique [48].  Comparisons were made to other papers and agreement

between the solutions was found.

1.3 Research Objectives

The primary objective of this work is too increase the understanding of the

behavior of the membrane generator used to produce electrical work in the micro-engine.

In order to do this a model is developed that can accurately predict what will occur.  In

particular, the focus of this work is the dynamic electromechanical behavior.

Model development begins with proper choice of applicable equations.  That is, a

set of governing equations must be found along with applicable boundary conditions.

Then lamination and piezoelectricty are integrated into the model.  Solution of these

equations is pursued, proper choice of a solution technique that will result in accurate and

relatively quick results is desired.  A simplified approach is assumed, instead of modeling

everything that occurs in Figure 1.1, what occurs in Figure 1.2 will be modeled.  That is,

sloping boundary conditions are not accounted for, and the number of layers are reduced.

The developed model will be capable of modeling geometrically nonlinear behavior of a

laminated, piezoelectric thin plate/membrane device.

Figure 1.2: Actual modeled membrane structure

15



Finally, the model is used to further the understanding of the P3 MEMS micro-

generator by examination of what occurs for changes in various parameters in regards to

static and vibrational behavior.  Specifically the examined parameters are: lamina

thicknesses, pre-stress, side length, electrode coverage, loading amplitude, and excitation

frequency.
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Chapter 2: Theoretical Formulation

Determination of what equations and conditions are governing and affecting the

behavior of the generator membrane is important to the modeling endeavor.  From

literature it is determined that the w-F formulation of the equations are applicable.

Clamped boundaries are assumed and the conditions are shown below along with the

reasoning behind them.  A simplified lamination theory is applied along with a simplified

piezoelectric theory.

2.1 Governing Equations

The membrane under examination is a geometrically nonlinear deflecting

structure.  This is due to the magnitude of deflection causing an in-plane stress that

contributes to the stiffness of the membrane/plate.  Subsequently in the derivation of the

governing equations the nonlinear terms in the large-deflection strain-displacement

expression must be considered (Figure 2.1).
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The nonlinear strain term is

x
NL=

ds­dx
dx

≈
1
2∂ w

∂ x 
2

 (2.1)

This nonlinear strain term then is introduced in the typical strain equations.

x=x
Lx

NL= 1
E h nx­ n y

 y= y
L y

NL= 1
E h n y­ nx

=LNL=
∂ u
∂ y


∂ v
∂ x


∂ w
∂ x

∂ w
∂ y

=
21

E h
nxy

 (2.2)

Where nx, ny, and nxy, are membrane forces defined as functions of the Airy stress

function [49].

nx=h
∂2 F

∂ y2 , n y=h
∂2 F

∂ x2 , and nxy=­h
∂2 F

∂ x ∂ y
 (2.3)

Using the nonlinear terms for εx,  εy, γxy, and the Airy stress function the

compatibility condition for moderately nonlinear behavior is obtained [8 p. 341].  The
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nonlinearity is evident in the right hand side of equation (2.4), in the squared term and the

directionally coupled term.

∇4 F =E[ ∂2w
∂ x ∂ y 

2

­
∂2w

∂ x2

∂2w

∂ y2 ]  (2.4)

The original static governing equation was derived by von Karman [21] in 1910 as

stated in Chapter 1.  Chia also shows a derivation of these equations for dynamic

response of an anisotropic laminated plate [24 p. 33].  These equations account for in-

plane stretching and the coupling to transverse deflection.  In this application the

equations are shown for an isotropic undamped vibrating plate, i.e. equation (2.5) has

both bending and stretching terms.  For a detailed derivation of equation (2.5) refer to

Chapter 1 of reference [24].

D ∇4 w­ p  x , y , t 
∂2w

∂ t2 =

h[ ∂2w

∂ x2 ∂2 F

∂ y2 0
∂2w

∂ y2 ∂2 F

∂ x2 0­2
∂2w

∂ x ∂ y  ∂2 F
∂ x ∂ y ]

 (2.5)
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2.2 Boundary Conditions

Application of the proper boundary conditions (BCs) in order to obtain an

applicable solution is of paramount importance.  A cross-section of a representative

generator membrane with silicon substrate is shown in Figure 2.2.

From the physical situation the actual BC appears to be some form of an

elastically restrained BC [24 p. 38].  The constant slope of the substrate near the boundary

is indicative of an increase stiffness the further away from the generator membrane

boundary.  This would imply a BC that contains the terms for a clamped boundary

condition with an elastically restrained against rotation modification [24 p. 167].  Where

this condition can be represented by equation (2.6).  The subscript n denotes that the

value is normal to the boundary being considered.
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M n=± w , n  (2.6)

The bending moment, Mn, is related to the slope, w,n, by a proportionality constant,

x, that can vary between 0 and ¶, corresponding with a simply supported BC and a

clamped BC, respectively.  It is known that the angle of the incline with the horizontal

plane is 54.74±, it is assumed that this is sufficient to conclude a clamped BC.  Allowing

elimination of the substrate from the model, and only modeling the generator membrane

as shown in Figure 2.3.

The pertinent equations to enforce the clamped conditions are:

Zero transverse deflection at edges

w x=0,a=0 and w y=0,a=0  (2.7)
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Figure 2.3: Model schematic
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Zero slope on edges, or x=¶

w , x∣x=0,a=0 and w , y∣y=0,a=0  (2.8)

Zero x or y strain on respective edges

x∣y=0,a=
1
E ∂2 F

∂ y2 ­
∂2 F

∂ x2 =0

 y∣x=0,a=
1
E ∂2 F

∂ x2 ­
∂2 F

∂ y2 =0

 (2.9)

Specified edge displacements of zero

u= ∫
y=const

[ ∂2 F

∂ y2 ­
∂2 F

∂ x2 ­
1
2∂ w

∂ x 
2

]dx=0

v= ∫
x=const

[ ∂2 F

∂ x2
­

∂2 F

∂ y2
­

1
2∂ w

∂ y 
2

]dy=0

 (2.10)

2.3 Lamination

In the fabrication of the generator membrane multiple layers are deposited for a

variety of reasons: to improve adhesion between layers, to provide electrodes to harvest

the charge, and to provide a piezoelectric layer.  In order to model these layers they must

be incorporated into the above equations in some form.
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The primary assumption is that the plate-membrane is in a state of plane strain [50

p. 64].

33=31=32=0 which implies 13=23=0  (2.11)

Equation (2.11) allows us to use the 2-D generalized Hooke's law [50 p. 152],

where the layer number is denoted by superscript (k).

11
k =

E k 

1­k 2 11k 22

22
k =

E k 

1­k 2 22k 11

 (2.12)

From equation (2.12) a composite modulus can be obtained by first taking a

weighted average of the stresses in each layer based on the thickness, displayed in

equation (2.13) where superscript * stands for an effective value.

 ii
* =

 ii
1 h1 ii

2 h2⋯ ii
n hn

h1h2⋯hn
, i=1 or 2  (2.13)

Expansion of equation (2.13), by insertion of (2.12) results in equation (2.14) for i = x.
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11
* =

11 E * 1 h111 E * 2 h2⋯11 E * n hn

h1h2h3⋯hn


221 E * 1 h122
2 E * 2 h2⋯22

n E * n hn

h1h2h3⋯hn

 (2.14)

Where

E * k =
E k 

1­k 
2

 (2.15)

By factoring out e11 in the first quotient of equation (2.14) and assuming e22 = 0, an

effective modulus is obtained.

E *=
1
h [∑

k=1

n

E * k  hk ]  (2.16)

This effective modulus can then be used in the governing equations (2.4) and

(2.5).  An effective Poison ratio can be obtained by using the uniaxial effective modulus

and solving for the composite Poison ratio using equation 2.17.

E *=
E

1­*2
 (2.17)

Where the uniaxial effective modulus is
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E=
1
h [∑

k=1

n

hk  Ek ]  
(2.18)

It is apparent that the effective Poison's ratio is

*=1­
E

E *
 (2.19)

For the density, a simple weighted average is used to obtain the effective property.

*=
1 h12 h2⋯n hn

h1h2⋯hn
 (2.20)

The flexural rigidity term, equation (1.4), is for a single layer plate.  This value, D,

is then modified to account for lamination.  Generically, a plate in pure bending will have

the relation

M =DK  (2.21)
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Where M is a moment, D is the flexural rigidity, and K  is the curvature.  D is

solved for in terms of M and K .  Assuming pure bending the following relations are used

to solve for D where z  is the neutral axis and h is the total plate thickness.

0=∫0

h
 z dz  (2.22)

M =∫0

h
 z  z­z dz  (2.23)

=­K  z­z  k =E * k  z   (2.24)

Using equations (2.22) and (2.24) a value for z  can be found.  The individual

maximum value of a layer position from a reference, z0 = 0, is zi.

0=∫z0

z1

E * 1 z­z dz∫z1

z2

E * 2 z­z dz⋯  (2.25)

Through use of equation (2.23) and (2.24) the value M/ K  can be solved for as

shown in equation (2.26).

D=
M
K

=∫z0

z1

­E * 1 z­z 2 dz∫z1

z2

­E * 2 z­z 2 dz⋯  (2.26)
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In the remainder of this document it will be assumed that all material properties

are considered effective properties without the superscript *.

2.4 Piezoelectricity

The lead zirconate titanate (PZT) layer is a piezoelectric material, meaning that

with an applied stress a charge will be developed, or vice versa.  The primary goal of this

device is to extract a charge from  the generator membrane and propagate electrical

power.  Subsequently, the direct piezoelectric effect must be integrated into the model.

Obviously, if energy is put into a system it is used within the system for different tasks.

The case in the generator membrane is.

E in=EdeflectionEdissipatedE piezo effect  (2.27)

In the static derivation, dissipative forces were not included, therefore Edissipated can

be neglected.  Then to simplify this analysis a low electromechanical coupling is

assumed, this is indicative of Epiezo effect º 0.  Therefore, all of the energy put into the

system goes into deflecting the membrane.  This allows a charge profile to be obtained

from the stress-strain field.  Utilizing the direct piezoelectric effect the equation for the

polarization charge per unit area is shown in equation 2.28 51, where dijk is the

piezoelectric coefficient.
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P i=d ijk  jk  (2.28)

Simplification of equation (2.28) can be done by realization of the properties of a

membrane.  The only pertinent stress in sjk is s11 and s22, and due to crystal symmetry the

shear coefficients of dijk are zero.  Also, the electrodes are in the 3 direction thus, the

polarization is only important in this direction.  Equation (2.28) then simplifies to

P3=d 3111122  (2.29)

Equation (2.12) gives us a charge per unit area, therefore integration over the

electrode area is done, shown in equation (2.13).  Giving the total charge accumulated

under the electrode area.

∫
Area­electrode

P3 dA= ∫
Area­electrode

d 3111122 dA  (2.30)
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Chapter 3: Solution Technique

3.1 Nondimensionalization

Nomenclature from this point of departure differs than that used previously in

that nondimensional quantities must be represented.  Nondimensional variables are

signified by an over bar over the variable.  Nondimensionalization of the primary

expressions is done by the following relations:

F =
F

h2 E
w=

w
h

x=
x
a

y=
y
b

0=
0

E  a
h 

2

= a
h 

2

p=
p a2

E h2
∇=a2 ∇ =

E h3

D

t =  t =
 h
E

= h
a 

2

 (3.1)

For simplicity a = b because the actual physical devices this model is developed

for are square in shape.  Using the definitions of equations (3.1) and combining them with

equations (2.4) and (2.5).  The nondimensional governing equations are obtained. 

∇4 F= ∂2
w

∂ x ∂ y 
2

­
∂2

w

∂ x
2

∂2
w

∂ y
2

 (3.2)
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∇4
w­




pz



2

∂2
w

∂t 2 =

[ ∂2
w

∂ x
2 ∂2 F

∂ y
2 0

∂2
w

∂ y
2 ∂2 F

∂ x
2 0­2

∂2
w

∂ x ∂ y  ∂2 F
∂ x ∂ y ]

(3.3)

The nondimensional boundary conditions are: 

Zero transverse deflection at edges.

w∣x=0,1=0 and w∣y=0,1=0  (3.4)

Zero slope on respective edges. 

w , x∣x=0,1=0 and w , y∣y=0,1=0  (3.5)

Zero strain on respective edges

x∣y=0,1=
∂2 F

∂ y
2 ­

∂2 F

∂ x
2 =0

y∣x=0,1=
∂2 F

∂ x
2 ­

∂2 F

∂ y
2 =0

 (3.6)

Specified edge displacements of zero
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u= ∫
y=const

[ ∂2 F

∂ y
2
­

∂2 F

∂ x
2

­
1
2∂ w

∂ x 
2

]d x=0

v= ∫
x=const

[ ∂2 F

∂ x
2 ­

∂2 F

∂ y
2 ­

1
2∂ w

∂ y 
2

]d y=0

 (3.7)

3.2 Finite Difference Approximation

With the nondimensional equations of section 3.1 a solution of the finite

difference type is approached.  Using the centered finite differences shown in Table 3.1

the nondimensional finite difference equations that will be used in the solution technique

are obtained.
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Derivative Central Finite Difference Equation for

Arbitrary Variable, f

∂ f i,j

∂ x
1

2 x   f i+1,j­ f i-1,j

∂2 f i,j

∂ x2

1

 x 
2  f i+1,j­2 f i,j f i-1,j

∂3 f i,j

∂ x3

1

2 x 
3  f i+2,j­2 f i+1,j2 f i-1,j­ f i-2,j

∂4 f i,j

∂ x4

1

 x 
4  f i+2,j­4 f i+1,j6 f i,j­4 f i-1,j f i-2,j

∂2 f i,j

∂ x ∂ y

1
4 x  y   f i+1,j+1­ f i+1,j-1­ f i-1,j+1 f i-1,j-1

∂4 f i,j

∂ x2∂ y2

1

 x 
2
 y 

2 [4 f i,j­2 f i+1,j f i-1,j f i,j+1 f i,j-1

f i+1,j+1 f i+1,j-1 f i-1,j+1 f i-1,j-1]

Table 3.1: Central finite difference approximations

Converting the analytical expressions of the GDE's and the BC's to finite

difference expressions at the generic mesh point (i,j) and simplifying, the following

discretized nondimensional compatibility equation is obtained.

20 F i,j­8 F i+1,j F i-1,j F i,j+1 F i,j-1
2 F i+1,j+1 F i+1,j-1 F i-1,j+1 F i-1,j-1
 F i,j-2 F i+2,j F i-2,j F i,j+2

= 1
16  w i+1,j+1­ w i+1,j-1­ w i-1,j+1 w i-1,j-1

2

­ w i+1,j­2 w i,j w i-1,j w i,j+1­2 w i,j w i,j-1

 (3.8)
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The discretized nondimensional equilibrium equation is.

20w i,j­8 w i+1,j w i-1,j w i,j+1 w i,j-1
2 w i+1,j+1 w i+1,j-1 w i-1,j+1 w i-1,j-1
 w i,j-2 w i+2,j w i-2,j w i,j+2

= x 
4


pz­ x 

4

2

∂2
w

∂t 2

[ x 
2
0 F i,j+1­2 F i,j F i,j-1 w i+1,j­2 w i,j w i-1,j

 x 
2
0 F i+1,j­2 F i,j F i-1,j w i,j+1­2 w i,j w i,j-1

­1
8  F i+1,j+1­ F i+1,j-1­ F i-1,j+1 F i-1,j-1

 w i+1,j+1­ w i+1,j­ w i,j+1 w i,j ]

 (3.9)

The discretized nondimensional boundary conditions are:

Zero transverse deflection at edges.

w i,j∣i=0,1=0 and w i,j∣j=0,1=0  (3.10)

Zero slope on respective edges. 

 w i+1,j­ w i-1,j∣i=0,1=0 and  w i,j+1­ w i,j-1∣j=0,1=0  (3.11)

Zero strain on edges.
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x∣j=0,1=2­1 F i,j F i,j+1 F i,j-1­ F i+1,j­ F i-1,j=0

y∣i=0,1=2­1 F i,j F i+1,j F i-1,j­ F i,j+1­ F i,j-1=0
 (3.12)

Rearranging the elements of equation (3.7) so that F and w  terms are on different sides

of the equal signs, the boundary conditions specifying edge displacements of zero are

obtained.

∫
y=const

[ ∂2 F

∂ y
2 ­

∂2 F

∂ x
2 ]d x= ∫

y=const
[1

2∂ w
∂ x 

2

]d x

∫
x=const

[ ∂2 F

∂ x
2

­
∂2 F

∂ y
2 ]d y= ∫

x=const
[1

2∂ w
∂ y 

2

]d y

 (3.13)

Equation (3.13) is used to constrain the movement of the edges within the plane of

the flat plate.  Therefore it is integrated across half of the plate to allow different

constraints to each edge, this will be reflected in the numerical expansion and integration

of the equations.  The finite difference expansion is:

∫
y=const

[2­1 F i,j F i,j+1 F i,j-1­ F i+1,j­ F i-1,j ]d x

= ∫
y=const

[1
8

 w i+1,j­ w i-1,j
2]d x

 (3.14)
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∫
x=const

[2­1 F i,j F i+1,j F i-1,j­ F i,j+1­ F i,j-1 ]d y

= ∫
x=const

[1
8

 w i,j+1­ w i,j-1
2]d y

 (3.15)

Numerical integration of equations (3.14) and (3.15) is performed using the

trapezoidal rule [52], and the numerical expansion is shown equations (3.16)-(3.19).

Refer to Figure 3.1 for interpretation of numerical indices.

u  = 0 BC, constrained at west y -edge, i = 0.
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[2­1 F 0,j F 0,j+1 F 0,j-1­ F 0+1,j­ F 0-1,j]

2∑
i=1

n­1
2

[2­1 F i,j F i,j+1 F i,j-1­ F i+1,j­ F i-1,j ]

[2­1 F n­1
2

,j
 F n­1

2
,j+1

 F n­1
2

,j-1
­ F n­1

2
+1,j

­ F n­1
2

 -1,j]

=
1
8[ w0+1,j­ w0-1,j

2
2∑

i=1

n­1
2

 w i+1,j­ w i-1,j
2
 w n­1

2
+1,j

­ w n­1
2

 -1,j
2]d x

 
(3.16)

u  = 0 BC, constraining at east y -edge, i = n-1.

[2­1 F n­1
2

,j
 F n­1

2
,j+1

 F n­1
2

,j-1
­ F n­1

2
+1,j

­ F n­1
2

 -1,j]

2 ∑
i=

n­1
2

+ 1

n­1

[2­1 F i,j F i,j+1 F i,j-1­ F i+1,j­ F i-1,j ]

[2­1 F n-1,j F n-1,j+1 F n-1,j-1­ F n-1+1,j­ F n-1-1,j]

=
1
8[ w n­1

2
+1,j

­ w n­1
2

 -1,j
2
2 ∑

i=
n­1

2
+ 1

n­1

 w i+1,j­ w i-1,j
2
 wn-1+1,j­ wn-1-1,j

2]d x

 (3.17)

v  = 0 BC, constraining at north x -edge, j = 0.
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[2­1 F i,0 F i+1,0 F i-1,0­ F i,0+1­ F i,0-1]

2 ∑
j=1

n­1
2

­1

[2­1 F i,j F i+1,j F i-1,j­ F i,j+1­ F i,j-1 ]

[2­1 F
i,

n­1
2

 F
i+1,

n­1
2

 F
i-1,

n­1
2

­ F
i,

n­1
2

+1
­ F

i,
n­1

2
-1]

=
1
8[ w i,0+1­ w i,0-1

2
2 ∑

j=1

n­1
2

­1

 w i,j+1­ w i,j-1
2
 w

i,
n­1

2
+1

­ w
i,

n­1
2

 -1
2]

 (3.18)

v  = 0 BC, constraining at south x -edge, j = n-1.

[2­1 F
i,

n­1
2

 F
i+1,

n­1
2

 F
i-1,

n­1
2

­ F
i,

n­1
2

+1
­ F

i,
n­1

2
-1]

2 ∑
j=

n­1
2

+1

n­1

[2­1 F i,j F i+1,j F i-1,j­ F i,j+1­ F i,j-1 ]

[2­1 F i,n-1 F i+1,n-1 F i-1,n-1­ F i,n-1+1­ F i,n-1-1]

=
1
8[ w

i,
n­1

2
+1

­ w
i,

n­1
2

-1
2
2 ∑

j=
n­1

2
+1

n­1

 w i,j+1­ w i,j-1
2
 w i,n-1+1­ w i,n-1-1

2]
 (3.19)

Now, with equations (3.8), (3.9), (3.10), (3.11), (3.12), (3.16), (3.17), (3.18) and

(3.19) a numerical solution can be obtained, detailed in sections 3.3 and 3.4.

3.3 Iterative Solution Technique for Static Analysis

In the following discussion variables will be bold to emphasize that matrices and

vectors are being manipulated to obtain a solution.  Two matrices are formed to solve for
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the values of  F  and w .  These matrices consist of the nondimensional finite differenced

governing equation and related boundary conditions.  For the equilibrium equation the

matrix K consists of equations (3.9), (3.10), and  (3.11).  The compatibility matrix H then

consists of equations (3.8), (3.12), (3.16), (3.17), (3.18), and (3.19).  Therefore in the

iterative scheme detailed below the relations will be:

Equilibrium relation

K w=P  (3.20)

Compatibility relation

H F =G  (3.21)

The solution technique used to solve the static governing equations is the same

shown by Chia [24].  It is an iterative solution technique of the two governing equations,

that holds one of the variables (F  or w ) constant and solves for the other, then uses the

obtained values in the corresponding equations to obtain a solution for the other unknown

variable.  This is shown in equations (3.20) and (3.21) in that F  and w  have been

uncoupled.  In the text below the iteration number is denoted by the bracketed superscript

number.

1. Assume stress function value of 0 over the entire membrane for the first iteration.
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F [0]=0

2. Using this assumed stress function solve for the deflection using the equilibrium

relation (3.20).  A solution of w  is obtained for the first iteration step, w [0].

3. Using w [0] in the compatibility relation (3.21), a new stress function, F [1], is

solved for.

4. F [1] is then used in the same fashion as F [0] was used in step 2 to obtain a new

solution for w , i.e. w [1].

5. To encourage faster convergence an acceleration factor, g, is used.

w
[n +

3
2

]

= w
[n]1­ w

[n +1]  (3.22)

g = ½ is documented as resulting in the most efficient convergence [24 p. 89], and

this value is used in the implementation.

6. This process is then continued until a value is converged upon.

7. After the solution is deemed converged, stress values can be extracted along with

piezoelectric charge.  Convergence is determined by examining the magnitude of

the center deflection in comparison to the change in value of each iteration.  For

example, if a 30 µm deflection is expected a change in iteration value of ~10 nm is

considered converged.
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3.4 Solution Technique for Dynamic Analysis – No Damping

Initially work was done pertaining to the undamped oscillation of a membrane.  A

time integration technique was used as shown below.  In the following sections, 3.4  and

3.5, a lowercase w is used to denote any generic displacement.  These equations are

applicable in both the nondimensional and dimensional cases with no modification, and

thus are generally shown here.  The step-by-step Newmark b numerical integration

technique is used [48], the equations are expressed in the form where k is the time-step

number.

wk+1=wk t ẇk t 
2

 1
2
­ẅk t 

2
 ẅk+1

 (3.23)

ẇk+1=ẇk1­ t ẅk t ẅk+1  (3.24)

The formula for a general undamped oscillating system with a distributed mass is:

M ẅkK wk=Pk  (3.25)

Solving for M ẅk

M ẅk=Pk­K wk  (3.26)
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Then multiplying equations (3.23) and (3.24) by M, and substituting equation

(3.26) the final equations are obtained.

[ M   t  K ]wk+1=M w k t M ẇk

 t 
2

 1
2
­ Pk­K wk  t 

2
 Pk+1

 (3.27)

M ẇk+1=M ẇk t 1­ Pk­K wk  t   Pk+1­K wk+1  (3.28)

Where the stiffness matrix, K, is the same used in equation (3.20).  The mass

matrix, M, is a diagonal matrix containing the  term x 
4 

2
 which is the coefficient of

the time derivative shown in equation (3.9).The P vector is the forcing function defined

by the application of the load to the test subject.  b and g are coefficients exclusive to the

Newmark technique, and can represent different methods of time integration.  In this case

the average acceleration technique is used, this is analogous to b = ¼ and g = ½.  These

values are chosen due to being unconditionally stable, unconditionally convergent, and

avoiding such problems as numerical damping and period elongation.  A review of the

different values of b and g and their meaning in relation to the type of time integration

can be found in [48].

Representing equations (3.27) and (3.28) in a compact form
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K * wk+1=P(d)
*  (3.29)

M ẇk+1=P(v)
*  (3.30)

Where superscript * denotes effective values and subscript (d) relates to

displacement and superscript (v) denotes velocity.  Using equations (3.21), (3.29), and

(3.30) an algorithm can be developed to iteratively solve for the dynamic behavior.

1. Assume initial values for displacement and velocity.  Initial displacements and Airy

stress field are typically found from the static analysis.  An assumed zero initial

velocity and acceleration are also implemented.

2. For the first time-step the values from step 1 are used for K* and P*
(d), a solution is

obtained for wk+1.

3. From equation (3.21) a stress function value is calculated.

4. The stress function value from step 3 is then used in equation (3.29) to calculate a

new value for wk+1.

5. Steps 3 and 4 are repeated until a solution is converged upon.

6. Then using the converged values from step 5 the velocity for the next time step is

calculated using equation (3.30).

7. This process is repeated for additional time steps.
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3.5 Solution Technique for Dynamic Analysis – Damping

This technique numerically integrates a problem in time using the modified

Newmark technique for matrices developed by Wilson in 1962 [53].  The initial

equations are derived by Newmark in [48] and will be expounded upon here.  Beginning

with the generic distributed oscillating system.

M ẅkC ẇkK wk=Pk  (3.31)

Then introducing the Newmark equations

wk+1=wk t ẇk t 
2

 1
2
­ẅk t 

2
 ẅk+1

 (3.32)

ẇk+1=ẇk1­ t ẅk t ẅk+1  (3.33)

Solving equation (3.32) forẅk+1

ẅk+1=
wk+1­wk

 t 
2


­
1

 t 
ẇk­ 1

2
­1ẅk

 (3.34)

Then inserting equation (3.34) into equation (3.32)
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ẇk+1=


 t⋅
wk+1­wk 1­



 ẇk t1­


2ẅk
 (3.35)

Then representing the coefficients of equations (3.34) and (3.35) concisely

b1=
1

 t 
2


b2=­
1

 t 
b3=1­

1
2

b4=


 t⋅
b5=1­




b6= t1­



2
 (3.36)

Therefore equations (3.34) and (3.35) become

ẅk+1=b1wk+1­wk b2ẇkb3ẅk  (3.37)

ẇk+1=b4wk+1­wk b5ẇkb6ẅk  (3.38)

Using equations (3.37) and (3.38) in equation (3.31) for k+1 and the simplifying

M b1wk+1C b4wk+1K wk+1

=F k­M [b2ẇkb3ẅk­b1wk ]­C [b5ẇkb6ẅk­b4wk ]
 (3.39)

The M matrix is the coefficient of ∂
2W

∂ t2  in diagonal format.
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M =[
x 

4 

2
0 0 0

0 ⋱ 0 0
0 0 ⋱ 0
0 0 0 x 

4 

2
]  (3.40)

Where the K matrix is the square stiffness matrix composed of the quantities that

are partial derivatives in space of w .  The C matrix is either proportional to the M or K

matrix or a combination of the two.  b = ¼ and g = ½ are also used here for the same

reason previously stated.  A solution is then pursued using equations (3.37), (3.38), and

(3.39).  The solution algorithm proceeds as follows:

1. Obtain initial conditions for displacement, velocity, and acceleration.

2. For the 1st time-step use the initial conditions from step 1 to obtain a solution to

equation (3.39), wk+1 .

3. Using the solution from step 2 obtain a solution for F  from equation (3.2).

4. Then using the solution from step 3 obtain another solution for wk+1 .

5. Repeat this procedure until a convergent solution for that time-step is obtained.

6. Solve for velocities and acceleration from step 5 using equations (3.37) and (3.38).

7. Using the solutions from step 5 and 6 solve for the next time step (i.e. wk+2 ) in the

same fashion done for the initial conditions.

8. Repeat as necessary.

45



Chapter 4: Model Validation and Numerical Study

4.1 Validation

In order to prove the assumptions and techniques used in the presented model

verification is required.  There are two regimes which must be validated; what occurs

statically and what occurs dynamically.  Prior experiments were performed by others

involved in the P3 project, using either a Michelson interferometer and a bulge tester [54]

or a laser vibrometer [55].  These experimental results are then compared to what the

model predicts for the same problem parameters.

All of the shown data is for blanket PZT, and while effects of the electrode

pigtails occur in experimentation they are ignored in the model.  The values shown in

Table 4.1 are typical of most devices examined in this thesis.  When values deviate from

Table 4.1 the new values are tabulated.

Number of
Layers

4

Side length (mm) 3
Residual Stress
(MPa) 105
d31 (pC/m2) 85
Static Load (kPa) 10

Material Modulus
(GPa)

Poison's
Ratio

Density
(kg/m3)

Thickness
(µm)

PZT 70 0.27 7500 1
Silicon 125 0.30 2550 1
Gold 80 0.44 19280 0.3
Platinum 170 0.38 21440 0.18
Composite 112 0.31 8027 2.48

Table 4.1: Typical/Representative generator membrane parameters for Chapter 4 and
section 5.1
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Static verification of the model is first done by comparison of the deflected shape

upon the diagonal profile, as seen in Figure 4.1.  Although the match is not exact, it is

within acceptable tolerances, and displays that the simulated profile is sufficient.

Figure 4.1 Parameters Experimental Model

Si thickness (µm) 1.1 1.0

PZT thickness (µm) 1.0 1.0

Pressure (kPa) 21.0 21.0

Table 4.2: Parameters for runs associated with Figure 4.1

Another static verification test performed compares the center deflection for a

given pressure.  This test is also used in verifying the assumptions used in the applied

lamination theory.  Two tests were run, one was run with a single ply silicon membrane,

and another was run with the typical generator membrane laminate, using parameters
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shown in Table 4.1 and Table 4.3.  These tests are compared to what is obtained using the

developed model in Figure 4.2.  In Figure 4.2 it is obvious that the two curves agree,

proving that the model can fit a simple single ply membrane and also proving that the

assumptions that were made in order to develop the lamination theory are correct, insofar

as the regime the model will be applied too.

Figure 4.2: Pressure deflection curve for model
validation

Figure 4.2 Parameters Experimental
(3mm)

Model
(3mm)

Experimental
(8mm)

Model
(8mm)

Si thickness (µm) 1.1 1.1 2.0 2.0

PZT thickness (µm) 1.0 1.0 0.0 0.0

Residual Stress (MPa) 100.0 117.0 ~ 40. 44.0

E* (GPa) NA 114.0 NA 125.0

Table 4.3: Parameters for runs associated with Figure 4.2
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Comparison of the charge accumulated on the membrane experimentally and

numerically is done in Figure 4.3.  Charge was collected experimentally using an

integrating charge circuit that collected the charge as the membrane was brought down

from a maximum deflection [6].  The difference between the collected experimental

charge and the charge obtained from the model is negligible.  Thus, validating the

piezoelectric theory used.

Figure 4.3 Parameters Experimental Model

Si thickness (µm) 2.0 2.0

PZT thickness (µm) 1.0 1.0

Residual Stress (MPa) ~70.0 87.0

E* (GPa) NA 119.0

Table 4.4: Parameters associated with Figure 4.3
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Pressure (kPa)

0 5 10 15 20 25 30

C
ha

rg
e 

(C
)

0.0

5.0e-9

1.0e-8

1.5e-8

2.0e-8

2.5e-8

Experiment
Model



One of the primary purposes of development of this model is determination of

dynamic characteristics.  Subsequently it is proven that this model accurately predicts the

dynamic behavior.  Shown in Figure 4.4 is the comparison of predicted free vibration

frequency and a resonance frequency obtained through electrical excitation [55].  The

shown experimental residual stress was obtained using a pressure-deflection technique

[56].These should be similar in that they both exhibit the dominant frequency in the

structure at an approximate deflection of .5 µm.  Although there is some discrepancy in

the comparison, it is adequate to provide validation of the dynamic portion of the model.

The frequency overestimation provided by the model is presumed to be due to the

relatively coarse mass lumping of the finite difference method.

Figure 4.4: Dynamic resonance verification

It has been shown that the presented model agrees reasonably well with

experimental data.  Agreement with this data proves that the assumptions implemented to

apply a 1) theory of lamination, 2) a theory of piezoelectricity, and 3) a solution method

for dynamic and static behavior are sufficiently correct.
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Errors in the proposed model will stem from the numerics implemented.

Obviously, such things as using a finite difference equations for derivatives and

numerical integration schemes will introduce errors.  But, numerical parameters can be

optimized, such as as mesh density, time steps, and numerical precision, to help minimize

these spurious effects.

4.2 Numerical Study

Optimization of the numerical process is required.  The goal is to decrease the

CPU time needed to solve the numerical problem.  Subsequently the areas of interest are

the physical mesh size, shown in Figure 3.1, and the time step size.  Another factor that

will affect program performance is the amount of I/O, but this can be minimized and was

not analyzed here.

The most common value used for the physical mesh is n = 15, less common

values are n = 45 due to the increased CPU time in solving the associated matrices.  The

study shown in Figure 4.5 is performed for the static problem, using parameters from

Table 4.1 except for silicon thickness which is 2 µm, and analyzes the effect of mesh size,

n, on time to converge and the associated change of center deflection.  From Figure 4.5 it

is determined that the best choice for the static analysis, keeping accuracy in mind and

desiring a run time of less than one minute, is n = 21.
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Figure 4.5: Mesh size study

The dynamic analysis requires multiples of iteration steps, i.e. number of time

steps, therefore an even further decrease in n is done in the interest of solution time for a

relatively small sacrifice in accuracy.  Shown in Figure 4.6 is the effect of physical mesh

on the center deflection response for free vibration.  It is discernible that different mesh

sizes will result in slightly different responses the further in time the analysis progresses.

Though all three different mesh sizes give approximately the same amplitude and phase

response, therefore a physical mesh of n = 15 is chosen to expedite the model.
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The time step will also have an effect on the response.  Figure 4.7 displays that

too large of a time step, 3.38e-6 seconds, can result in numerical damping and an

undesired phase shift, the other two time steps show little of these effects.  The time step

of 3.38e-6 is approximately 10 steps per vibration cycle, 3.38e-7 is one hundred steps per

vibration cycle, and 3.45e-9 is approximately 10,000 steps per vibration cycle.  The time

it takes to run these models is 1 minute, 8 minutes, and 10 hours, respectively.
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Establishment of the optimum physical mesh size and the optimum time step size

is shown.  In the remainder of the thesis, data and figures generated with a mesh size of

15 and a time step size of 100 steps/cycle are shown.  Results from these numerical

parameters should be sufficiently accurate and will represent the actual behavior without

significant parasitic numerical behavior.
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Figure 4.7: Effect of time step size on the center
deflection response
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Chapter 5: Results

5.1 Static – Profile Analysis

The static response can be better understood through examining reactionary

behavior and profiles of applicable values.  Visualization of the structure under its

deformed configuration is a useful tool that will lend insight into optimization. 

The three-dimensional shape profile is shown in Figure 5.1.  Refer to Table 4.1 for

parameters used in this section, except for the silicon which is 2 µm.

 Next an analysis of the stress distributions is presented.  From equation (2.29) it is

known that the important stresses for charge creation are σx and σy.  In Figure 5.2 the

stress in the x-direction is shown, the stress in the y-direction is exactly that of Figure 5.2,

but shifted 90° about the z-axis.
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Figure 5.1: Deflected shape profile for typical
membrane



From the σx and σy profiles an X-like pattern for the charge distribution is

expected.  In Figure 5.3 the charge profile is plotted, showing maximum charge density at

the membrane center, which is expected.  The interesting thing to note is that the lines of

constant charge are rotated 45° in respect to the sides.  Meaning that if an electrode that

would harvest the maximum voltage is desired the optimum placement would be a square

rotated 45° from the x or y-axis with an approximate side length of 2.12 mm.
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Figure 5.2: σx  profile



Principle stresses are also useful in determining where the maximum or minimum

axial stresses will occur and therefore where failure might occur.  The first principle

stress displays the maximum tensile stress in the middle of each side of the membrane.

Figure 5.4 implies that failure would occur in the middle of any of the four sides

assuming there would be no imperfections in the actual structure that would accelerate

failure elsewhere.
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Figure 5.3: Charge profile



Figure 5.4: First principle stress, σ1 (Pa)

The charge distribution clearly does not match any of the principle stresses. This

is due to the nature of how the charge is generated.  Charge generation is dependent upon

the stresses σx and σy, and not the principle stresses which are a combination of σx, σy, and

τxy.  The relationship between charge distribution and principle stress distribution should

not be confused.

5.2 Static – Parameter Study

Characterization of the membrane generator involves understanding its static

behavior.  This is generally done by obtaining pressure-deflection curves on a bulge tester

using a Michelson interferometer [57].  Other tests are done to also characterize the

piezoelectric response [6].  The ability of this model to match the data is illustrated in

Chapter 4.  A parametric study is done to suggest an optimum configuration.  This section

uses the parameter values shown in Table 5.1.  The initial examination pertains to the
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effect of residual stress upon the pressure-deflection curve and the deflection-charge

curve.  It is also noted that the electrode size is assumed to be the same size as the

membrane unless otherwise stated.

Number of
Layers

4

Side length (mm) 3
Residual Stress
(MPa) 105
d31 (pC/m2) 85
Static Load (kPa) 1 – 20

Material Modulus
(GPa)

Poisons
Ratio

Density
(kg/m3)

Thickness
(µm)

PZT 70 0.27 7500 1
Silicon 125 0.30 2550 2
Gold 80 0.44 19280 0.3
Platinum 170 0.38 21440 0.18
Composite 119 0.31 6448 3.5

Table 5.1: Typical/Representative generator membrane parameters for section 5.2
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Figure 5.5: Pressure-deflection curve for a
variation of σ0
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The rather obvious effect of increasing residual stress is emphasized in Figure 5.5.

As σ0 increases the structure becomes increasingly stiff, and the low pressure behavior

becomes more linear due to the requirement of more generated in-plane stress to

overcome σ0.

Intuitively, residual stress will decrease the available charge purely due to the

increase of effective stiffness.  In Figure 5.6 the center deflection versus charge curves are

obtained for a range of pressures from 1 kPa to 20 kPa, where the line endpoints are at 20

kPa.  The nature of how the residual stress is applied leads to the result seen in Figure 5.6.

Residual stress is assumed uniform and applied in the x and y directions, subsequently

different residual stresses will not result in different shapes.  The structure has the same

shape at the same deflection for different residual stresses, (which requires a different

applied pressure) the charge distribution must be the same and therefore the total charge
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Figure 5.6: Charge-deflection for a variation of σ0
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is the same.  Due to this increased effective stiffness effect it is clear that reduction of

residual stress in the working device is of import.

Changes in thickness of the various layers in the laminate are of interest in

optimization.  Shown in Figure 1.1 is the actual physical structure and in Figure 1.2 is the

laminate used in the model for the sake of simplicity.  The gold and platinum layer

thickness cannot practically be varied because of manufacturing complications, the PZT

and Si thicknesses, on the other hand, can be varied a reasonable amount in comparison.

Investigation of what occurs with the variance in these layers is examined below.

Curves relating the charge generated to the center deflection are shown in Figure

5.7.  The corresponding pressure-deflection curve is shown in Figure 5.8.  All curves

shown below have an applied pressure ranging from 1 kPa to 20 kPa, therefore each line

endpoint is at 20 kPa.  The other parameters are held constant in these figures and shown

in Table 5.1.
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Figure 5.8: Pressure-deflection curve for a
membrane with hSi = 1.0 µm

As the thickness is increased it is expected that the stiffness will increase, this is

proven in Figure 5.8.  For thicker PZT the membrane is less compliant, yet increasing the

thickness of the PZT will allow more material to be available that can generate charge.  A

combination of these two phenomenon result in an optimum PZT thickness.  It is

assumed, for simplicity, that there is no change in residual stress for changes in lamina

thickness.  An optimum thickness can be obtained from Figure 5.7 by observing which

curve gives the maximum charge at the line endpoint (p = 20 kPa).  In Figure 5.7 the

optimum structure from a charge point of view contains approximately 1 µm PZT for 1

µm Si.

Although the charge extracted from the generator membrane is of importance, the

energy required to obtain this charge is of importance.  Analysis of this is performed by

taking a ratio of the useful strain energy in the PZT and the strain energy in the entirety of

the structure.  What is meant by useful strain energy is the strain energy that could be

62

Center Deflection (µm)

0 10 20 30 40

A
pp

lie
d 

P
re

ss
ur

e 
(k

P
a)

0

5

10

15

20

25
hPZT = 0.5 µm

hPZT = 1.0 µm

hPZT = 2.0 µm

hPZT = 3.0 µm

hPZT = 4.0 µm



used to obtain an electric charge.  From equation 2.29 the useful strain stems from σx and

σy, while τxy still exists in the PZT layer it is ignored in the strain energy expression for

the PZT (i.e. shear does not produce charge).

Figure 5.9 does not agree with the optimum thickness implied by Figure 5.7, from

the strain energy ratio analysis a thickness of approximately 2 µm appears to be ideal (i.e.

highest dependent value for any of the thicknesses examined).  Each curve is for the same

pressures, i.e. 1-20 kPa, where the end points are 20 kPa.  The highest strain energy ration

is obtained for 2 µm PZT at 20 kPa, therefore the largest portion of strain energy in the

PZT layer is for 2 µm of PZT and this is realized as the optimum.  Although not as much

charge is being generated by the 2 µm thick PZT, due to its increase in stiffness, a larger

fraction of the total energy is contributing to charge generation.

Also of interest is what occurs at different thickness of silicon.  Multiple runs

where made for an applied pressure of 20 kPa and the same post processing was

performed that is shown in Figures 5.7 and 5.9.  Figures 5.10 and 5.11 are the result of
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Figure 5.9: Strain energy ratio for a membrane
with hSi = 1.0 µm
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these runs.  All data shown in Figures 5.10 and 5.11 are at 20 kPa of applied pressure and

the horizontal lines correspond with constant silicon thickness and the vertical lines

correspond with constant PZT thickness.

Figure 5.10: Si and PZT thickness effect on charge
generated

64

Center Deflection (µm)

10 20 30 40 50

C
ha

rg
e 

(n
C

)

0

2

4

6

8

10

12

14
hPZT = 0.5 µm
hPZT = 1.0 µm
hPZT = 2.0 µm
hPZT = 3.0 µm
hPZT = 4.0 µm
hSi = 0.5 µm
hSi = 1.0 µm
hSi = 2.0 µm
hSi = 3.0 µm
hSi = 4.0 µm



As was previously demonstrated, the optimum thickness implied by the charge

curve does not correspond with that implied by the energy ratio curve; this is affirmed in

Figures 5.10 and 5.11.  The optimum for a specific silicon thickness is were the curve is

maximum in regards to either the strain energy ratio or the charge.  For maximum charge

generation the PZT thickness varies from ~1 µm to ~2.5 µm and for the maximum strain

energy ratio the PZT thickness varies from ~2 µm to ~4  µm.  The typical working device

lies between the lines with hsi = 1.0-2.0  µm, meaning that optimum PZT thickness for

energy conversion will vary from 2 - 3 µm.

The effect of electrode size on the gathered charge is shown in Figure 5.12.  From

examination of the charge profile, Figure 5.3, it can be assumed that the larger the

electrode the more charge will be gathered (i.e. there are no sections of negative charge).

This is shown in Figure 5.12, the larger the electrode the larger the gathered charge.

Experimental results show a coverage of ~50 % is ideal [55], this does not agree with the
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Figure 5.11: Si and PZT thickness effect on strain
energy ratio
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modeled results. The reasons for this is the model only uses σx and σy to obtain charge,

while in experimentation a piezoelectric moment effect occurs near the edges.  Also,

another reason for this discrepancy is that some of the experimental devices the PZT is

etched at the boundaries creating a slightly different device which the included model

cannot address.  The waviness in the curve is due to the discrete nature of the model, and

would not actually occur in experimentation.

Figure 5.12: Electrode size effect on gathered
charge

5.3 Dynamic – Free Undamped Vibration

A linear structure in free vibration will display its resonant frequency.  This free

vibration is also of interest here, yet with the interest of the contribution of various

parameters.  These parameters are the membrane side length, the residual stress, changes

in lamina thickness, and the effect of nonlinearity.  In the following figures all parameters
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values, except the examined parameters and the applied pressure which is 10 kPa in the

following section, are available in Table 5.1.

Examination of the effect of thickness on a single ply laminate is first examined

with the interest of seeing where the behavior will change from membrane-like to plate-

like.  In membrane like behavior an addition of thickness will increase the overall mass,

while in plate behavior an increase of thickness will not only cause an increase of mass it

will also cause an increase in flexural rigidity.

Figure 5.13: Thickness effect on free vibration of
single ply structure
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Number of
Layers 1
Side length (mm) 3
Residual Stress
(MPa) 105
Static Load (kPa) 10

Material Modulus
(GPa)

Poisons
Ratio

Density
(kg/m3)

Thickness
(µm)

Si 125 0.3 2500 varied

Table 5.2: Parameters associated with Figure 5.13

In Figure 5.13 the free vibration response is shown along with the center

deflection for varying thickness of a silicon structure using an applied initial load of 10

kPa.  At approximately 5 µm the free vibrational frequency appears to increase, this can

be attributed to an increase in the contribution of plate like behavior.  As can be seen

from the center deflection curve, an increase in thickness stiffens the structure, causing a

decrease in deflection.  From 0 to 5 µm of silicon the structure exhibits membrane like

behavior, from the 5 µm to 20 µm thickness range it exhibits plate like behavior, and

beyond a 20 µm thickness plate behavior is even more significant.

Figure 5.14 shows the effect on free vibration for changes in PZT thickness and

the silicon thickness for a residual stress of 105 MPa for all thicknesses.  Although this

exclusion of residual stress change is not realistic in actual devices it is assumed here for

the reason of a pure thickness effect study.
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An increase in PZT thickness clearly causes a decrease in the free vibration

frequency, while an increase in silicon thickness causes an increase in free vibration

frequency.  This behavior is explained by comparing the densities and moduli of PZT and

silicon shown in Table 5.3.

Material Density (kg/m3) Modulus (GPa)

Silicon 2550 125

PZT 7550 70

Table 5.3: PZT and Si material properties

Conceptually it is informative to examine the equation for the fundamental

vibration of a single degree of freedom vibration.

0= k
m

 (5.1)
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Figure 5.14: Si and PZT thickness change effects on
free vibration
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From equation (5.1) it is rather obvious that an increase in stiffness, k, will cause

an increase in frequency, while an increase in mass, m, will cause a decrease in

frequency.  Following this logic, an increase in silicon thickness causes an increase in

stiffness and a decrease in mass leading to an increase in resonance.  And an increase in

PZT thickness causes a decrease in stiffness and an increase in mass, thus a decrease in

resonance.

Another important effect, with obvious results, is the effect of residual stress on

the vibrational frequency.  In Figure 5.15 a comparison of a very low residual stress of 1

Pa is compared to a more realistic residual stress of 105 MPa.

Figure 5.15: Residual stress effect on free vibration
for varying initial load

From this residual stress examination it is obvious that an increase in residual

stress and an increase in applied load will cause an increase in the frequency of free
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vibration.  A large dependence of the smaller residual stress curve on load is observed,

this is due to the nonlinear effect of an increase in in-plane stress for an increase in

deflection.  For the 1 Pa residual stress this increase of in-plane stress is a larger portion

of the total stiffness then in the 105 MPa curve, and the 1 Pa residual stress structure will

therefore strongly exhibit this behavior.

Another parameter that can be studied and relatively easily changed is the side

length.  This side length study is also chosen as a platform to examine the linear versus

nonlinear frequencies of vibration.

Figure 5.16: Free vibration frequency for various
side lengths

From Figure 5.15 the curve with 105 MPa residual stress it is apparent that the

change in frequency at low pressures is minimal when compared to the 1 Pa residual

stress curve.  Comparing the frequencies of nonlinear and linear vibrations in Figure 5.16

it is apparent that these two frequencies are similar.  Due to the large residual stress used
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in the side length analysis, the linear membrane frequency is comparable to the nonlinear.

Although it is noticed that the nonlinear frequency is larger than the linear due to the

comparatively small increase of total in-plane stress.  Calculation of the linear frequency

was done using  equation (5.2) [8 p. 421].

0= 0 h

m
2

a2

 (5.2)

Analysis of the free vibration behavior of a multitude of applicable structures

implies optimum parameters depending on the chosen criteria.  In the interest of

decreasing vibrational frequencies decreases in the silicon thickness, the residual stress,

and the amplitude of the applied load should be used and an increase in PZT thickness

will also assist.  It has also been shown that the linear frequency is similar to the

nonlinear frequency of vibration.  This is useful in that a first estimate prediction of free

vibration frequency can be made with equation 5.2 without running the entire numerical

model.

5.4 Dynamic – Forced Damped Vibration

In real world operation of the generator membrane it will be undergoing a periodic

forced vibration.  Understanding of the response is important in the application.  The

frequency-response behavior is analyzed and then points of interest on the curve are

examined.  Examination of what occurs at the membrane center will be covered in

regards to displacement and velocities.  Also the shapes that the membrane assumes for
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certain frequencies will be shown using centerline plots.  The following data in the

remainder of this chapter is for a typical device, Table 5.4.

Number of
Layers

4

Side length (mm) 3
Residual Stress
(MPa) 100
d31 (pC/m2) 85
Static Load (kPa) 10

Material Modulus
(GPa)

Poisons
Ratio

Density
(kg/m3)

Thickness
(µm)

PZT 70 0.27 7500 1
Silicon 125 0.30 2550 1
Gold 80 0.44 19280 0.3
Platinum 170 0.38 21440 0.18
Composite 112 0.31 8027 2.48

Table 5.4: Typical/Representative generator membrane parameters for section 5.4

Presentation of the frequency response curve in the dimensional regime follows.

Figure 5.17 displays the dimensional frequency-response curve.  Frequency-response

curves are useful tools in displaying the behavior of the structure at a specified frequency

or amplitude.  A linear oscillator will display a dominant resonant frequency [14 p. 103]

on a frequency-response curve, but a non-linear oscillator will not and therefore the

different behavior at different frequencies is examined.
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From the above shown curve specific points of interest are chosen (shown by

dashed lines in Figure 5.17); the harmonics (6 and 10 kHz), a transition section (15, 26.3,

and 33 kHz), a double valued portion of the curve (40 kHz), and on the bottom branch

beyond the double valued portion (55 kHz).  Nondimensionalization of Figure 5.17 is

also of interest, in that others may easily compare their results with those shown.  In

Figure 5.18 this nondimensional response curve is plotted, where f0 is obtained from

equation (5.2) and converted to units of Hz.
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Figure 5.17: Dimensional frequency response curve
Excitation Frequency (kHz)

0 10 20 30 40 50 60

|A
| (

µ m
)

0

20

40

60

80

100

120



Figure 5.18: Nondimensional frequency-response
curve for typical membrane

Further examination of the behavior at the before mentioned frequencies follows,

commencing with study of behavior at the 5th harmonic.  The response as time progresses

is of direct interest, therefore in Figure 5.19 the response at the membrane center is shown

for a number of cycles.
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Figure 5.19: Center deflection time response for f =
6 kHz
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This response clearly shows interaction of another frequency.  Knowledge that

this is the 5th harmonic it is expected that this other frequency is five times the forcing

frequency.  This can be easily proven by taking a Fast Fourier Transform (FFT) of the

response which is shown in Figure 5.20.

Figure 5.20: FFT of center response for f = 6 kHz

The forcing frequency of f = 6 kHz results in another response at 30 kHz which is

5f.  Analysis of what occurs in the phase plane is also of interest.  The phase space plots

can be used to represent the behavior of many cycles upon one curve, and emphasize

behavior such as changes in velocity and non-symmetric vibrations.  When the phase

space curves lie upon each other for many cycles the steady state behavior is assured.  In

the following phase space curves at least one hundred cycles are typically plotted.  Shown

in Figure 5.21 is the phase plane result at the center point of the membrane.
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A similar examination is done for the 3rd harmonic with the results being

displayed in Figures 5.22, 5.23, and 5.24.  The response at f = 10 kHz is obviously the 3rd

harmonic; a response at 10 kHz and 30 kHz is apparent in Figure 5.23.  Also the

appearance of the phase plot is what is expected.
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Figure 5.21: Phase plane for center response at
f = 6 kHz
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Figure 5.22: Center deflection time response for f =
10 kHz
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Figure 5.23: FFT of center response for f = 10 kHz
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At the 3rd and 5th harmonics there is an expectation that the membrane shape

during vibration will exhibit other shapes beyond that of the (1,1) mode.  At the 5th

harmonic expected shapes of the (1,1) mode and the (5,5) mode should occur and at the

3rd harmonic expected shapes of the (1,1) mode and the (3,3) should occur.  Summarily,

for these odd harmonics expected shapes will occur that are odd and symmetric.  Taking a

closer examination of Figure 5.22 in Figure 5.25, closer analysis of the response at the

shown section 1 and 2 is taken by plotting of the centerline shape profiles.  Section 3 was

examined, but found to show the same response in section 2 and subsequently will not be

shown.
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Figure 5.24: Phase plane for center response at f =
10 kHz
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Figure 5.25: Zoomed in center response for
f = 10 kHz

Figure 5.26: Center line profile shapes for section 1
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Figure 5.27: Center line profile shapes for section
2

Figure 5.26 shows no obvious other mode interaction, section 1 appears to be a

solely (1,1) mode reaction.  Yet, section 2 shows obvious other mode interaction.  A

single sine function of the form sin(π x/L) could be used to approximate the shapes shown

in Figure 5.26, while a double sine would have to be used in Figure 5.27 of the form sin(π

x/L)sin(3π x/L).  This is an important observation in that sin(π x/L)sin(3π x/L) can be

considered an approximation to the combination of modes (1,1) and (3,3).

What occurs at the single-valued rising portion of the frequency-response curve is

analyzed using the frequencies of 15 kHz, 26.3 kHz (linear resonance), and 33 kHz.  The

center deflection versus time plots will be shown first for 15 and 33 kHz, then a figure

showing all of the FFT's, and finally one figure displaying all the phase plots.
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Figure 5.28 shows that, unlike the responses at 6 and 10 kHz, there is not an

obvious other frequency interaction.  To assert this claim an FFT of the responses are

shown in Figure 5.29.

Figure 5.29: FFT for f = 15, 26.3, and 33 kHz
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Figure 5.28: Center response for f = 15 and 33 kHz
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At the 15 kHz excitation frequency there appears to be a higher frequency of

much smaller amplitude occurring.  This is because an excitation frequency of 15 kHz is

close to the 3rd harmonic and interactions might still occur.  Examination of the phase

space occurs in Figure 5.30.

The rising single valued section on the frequency-response curve shows similar

behavior in the non-dimensional phase space.  Yet, the phase space curves become more

elliptical for higher frequencies possibly due to a decrease in the amount of additive

effects due to other frequency contributions.

Examination of the what occurs to the shape of the membrane for one cycle at 15

kHz is shown in Figure 5.31.  Similar shapes were found for the other excitation

frequencies (26.3 and 33 kHz), and are not shown for reasons of brevity.
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Figure 5.30: Phase plot for f = 15, 26.3, and 33
kHz
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Figure 5.31: Center line shape profiles for f = 15
kHz

Next, analysis of the behavior at an arbitrary picked double valued frequency is

commenced and the value chosen here is f = 40 kHz.  The center response over time is

not shown here, but was found to be very similar in shape to the responses shown in

Figure 5.28.  Examination of the phase space provides some interesting results discussed

in the following and shown in Figures 5.32 and 5.33.
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Figure 5.32: Dimensional phase space for 40 kHz,
bottom and top branches

Through use of Figure 5.32 analysis and understanding of the behavior that

different initial conditions will result in can be performed.  For example, if the initial

conditions lie within the small orbit, steady state behavior will follow the smaller orbit

and conversely if the initial conditions lie outside of the larger orbit, the steady state

response will tend towards the larger orbit, while if the initial conditions lie within the

two orbits the response is not as predictable and for prediction of what will occur the

model would need to be run.  For example some initial center point conditions that would

follow the low amplitude response would be w0 = 0 µm, v0 = 4.9 m/s, and a0 = 0 m/s2 and

some initial conditions that would follow the high amplitude response would be  w0 = 20

µm, v0 = 30 m/s, and a0 = 0 m/s2.  Where w0 is initial center displacement, v0 is initial

center velocity, and a0 is initial center acceleration.
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The normalized phase space plot lends insight into the type of resulting behavior.

It is known that more elliptic phase space curves tend to be less nonlinear.  Figure 5.33

agrees with this.  The bottom branch curve deflection response is much less than the top

branch response, meaning that less in-plane stretching occurs for the bottom branch and

subsequently it doesn't have as high a degree of nonlinearity as the top curve, which is

squarer.

The FFT of the both the bottom and top branch is shown in Figure 5.34.  It is

obvious that both of responses on the top and bottom branches show the same dominant

frequency of 40 kHz.
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Figure 5.34: FFT at 40 kHz, bottom and top
branches

The shape at 40 kHz on the top branch looks much like Figure 5.31, while the

bottom branch is shown in Figure 5.35.  It is apparent that the shapes for the top and the

bottom branches don't match at 40 kHz.  This is due to the much smaller deflection on the

bottom branch, and a flattening out of the profile near the boundary.

Figure 5.35: Center line profile for f = 40 kHz on the
bottom branch
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Results for the behavior on the bottom branch past the double valued portion is

shown below.  The typical plots of phase space, FFT, and center profiles are shown.  The

center response over time plot is not shown, but it is stated that this response is similar in

shape to Figure 5.28.
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Figure 5.36: Phase space plot for f = 55 kHz
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Figure 5.37: FFT for f = 55 kHz
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Figures 5.36 and 5.37 show the phase space plot and the FFT for f = 55 kHz.  The

dominant frequency is the excitation frequency which is 55 kHz, no other notable

responses occur.  Also, of interest is what occurs in relation to the membrane shape,

centerline profiles are shown below in Figure 5.38.  Comparing the two shapes, Figures

5.35 and 5.38, it is interesting to note that the shape seems to be changing as the

frequency increases on the bottom branch.  There appears to be a flattening of the profile

near the boundaries that becomes more dominant as f is increased.

Figure 5.38: Centerline profiles for f = 55 kHz

A comparative analysis of what occurs near wcen = 0 is shown in Figure 5.39.

Shown are the centerline profiles for the previously discussed excitation frequencies.  The

precise reason for the difference in shapes is not know, but it is known that these shape

differences are due to the inherent nonlinearity in this structure.  It is interesting to note a

89

Distance Along Center Line (mm)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
e
fle

ct
io

n
 (

µ
m

)

-30

-20

-10

0

10

20

30



very low amplitude occurrence of other vibrational modes throughout any excitation

frequency, though some occurrences are more obvious than others.

Figure 5.39: Centerline profiles for wcen ≈ 0

Specific points on the frequency-response curve were examined and results

showing obvious differences in behavior at different excitation frequencies were shown.

These different behaviors could be utilized in power generation or avoided.  For example,

a possible advantage to using a 3rd harmonic response would be that excitation can occur

at a lower frequency then the overall response.  Also, different shapes will affect power

generation, this work shows that different shapes will occur and therefore an optimum

shape will exist, and that this optimum shape will correspond with an excitation

frequency.
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Chapter 6: Conclusion

A finite difference model has been developed using governing equations for a

nonlinear vibrating plate with fully clamped boundary conditions.  Theories were then

applied to allow for lamination and extraction of charge information.  Solution of this

problem was then pursued using a step-by-step matrix analysis procedure in conjunction

with an iterative solution technique.  Using a common desktop computer, these theories

were then implemented using the FORTRAN 90 programming language.  It was then

illustrated that this model was valid for both the static and dynamic regimes by

comparison to experimental data of a MEMS device.

From the solution produced by the program a variety of information was

extracted.  Three dimensional profiles for various stresses, deflection, and charge were

obtained.  From these plots it can be determined where to place electrodes to gain the

largest voltage signal, where the structure might fail in operation, and what the deflected

structure looks like.  All of which are useful visual cues as to what is occurring in the

actual device.

A parameter study was done using static analysis to understand the effect of

different thicknesses of silicon and PZT and the effect of residual stress on the device.  It

was shown that an optimum device will have a PZT thickness of 2 – 3 µm, a minimum of

silicon, and a minimum residual stress (other values available in Table 5.4).  These

parameters were also studied in relation to vibration.  It was found that depending on

what layer thickness is increased, the free vibration frequency will either increase
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(increase in silicon thickness) or decrease (increase in PZT thickness).  The rather

obvious result of an increase in residual stress is an increase in vibrational frequency.

The nature of the nonlinear behavior was analyzed using forced vibration.  From

the frequency-response curve it was found that the occurrence of the 3rd and 5th harmonics

is expected along with a jump phenomena that is expected of Duffing oscillators.  From

literature and these simulations it is determined that the thin plate-membrane that is

studied within is a Duffing oscillator like and shows behavior indicative of this.

Chapter 7: Recommendations

From this finite-difference model specific recommendations for device

improvement are proposed with the goal in mind to reduce vibrational frequency and

increase available output energy from the PZT.

1. Minimum substrate thickness (i.e. silicon).

2. Minimum Au and Pt thickness to increase strain energy ratio.

3. 2 – 3 µm thick PZT to increase strain energy ratio.

4. Reduce residual stress to decrease vibrational frequency and increase

available output energy.

5. Operate at low deflections to minimize nonlinear effects therefore reducing

vibrational frequency.

6. Increase device side length to decrease vibrational frequency.

7. Operate away from harmonics to maintain a steady sinusoidal behavior for

application in the P3 micro-engine.
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Observing the double valued portion of the frequency-response curve and the

phase plot at this portion of the plot, Figure 5.32.  It is apparent that this structure has two

responses of different deflections at the same excitation frequency.  Utilizing this, a

switch could be developed that would always operate at one frequency yet with some

imposed condition that could turn it off or on.  Further analysis of this, and how to control

this phenomenon would be of interest and the developed model could be modified to

perform this.

Examination of the relationship between the excited shape and power generation

should also be investigated.  That is, if a device is used in a spectrum of excitation

frequencies where will it obtain the most efficient power generation and what would be

the contributing factors to this.

Improvement upon the program is also of interest in order to decrease model run

times and maintain accuracy.  Possible avenues to do this are 1) decrease numerical need

2) improve solution technique.  Decreasing of the numerical need of the program could be

done by taking advantage of symmetry and only analyzing ¼ of the structure.  Therefore

imposing symmetry conditions upon two of the boundaries instead of fully clamped on all

four.  This could decrease program run time significantly and still maintain accuracy.

Improvement of the solution technique could be pursued by implementing banded storage

schemes instead of a full matrix scheme, then using solvers that could take advantage of

this.  Further investigation into both of these would be required, and would greatly

increase the efficiency of the developed code.
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Chapter 8: Appendix

8.1 Flowcharts for program VENM
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Figure 8.1: VENM main program body flowchart
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Figure 8.2: VENM subroutine Iteratestatic flowchart

 
Iteratestatic 
Subroutine 

Form equilibrium matrix with F = 0 

Solve for transverse 
deflection 

Solve for F Converged? 

No 

Yes 

Post Processing 

End Iteratestatic 



97

Figure 8.3: VENM subroutine Dynamik flowchart
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8.2 FORTRAN Source Code for Developed Model

The following is the FORTRAN source code for the developed model.

FORTRAN Free 90 format was used along with Microsoft Developer Studio, Fortran

Power Station 4.0 for debugging and compiling.

program VENM

use msimsl
use portlib

double precision, ALLOCATABLE :: wst(:),pst(:),Em(:),num(:),z(:), & 
hm(:),rhom(:),psa(:),strsx(:,:),strsy(:,:),strsxy(:,:),strs1(:,:)

character(9), ALLOCATABLE :: matnme(:)
double precision a,h,ps,nu,dx,E,rs,drs,rho,ftm,ts,d31,es,Capc,chrgm,cc,delta,k2, &

E_uniaxial,nu1,D,D_singlelayer,eta,alpha
character dyndec
CHARACTER(9)TODAY
CHARACTER(8)char_time
integer cj,cen,writcntr,n,nm,md,nl

! Debugging files
! open(unit=2000,file='pk.txt')

! General use files
! open(unit=10,file='w.txt')
! open(unit=11,file='wbend.txt')  
! open(unit=12,file='wstrt.txt')
! open(unit=13,file='wr.txt')
! open(unit=14,file='wk.txt')
! open(unit=15,file='wkp.txt')
! open(unit=20,file='ps.txt')
! open(unit=21,file='psb.txt')
! open(unit=31,file='pss.txt')
! open(unit=40,file='conver.txt')
! open(unit=50,file='wconv.txt')
! open(unit=51,file='pssconv.txt')
! open(unit=61,file='vk.txt')
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! open(unit=62,file='vkp.txt')
! open(unit=71,file='p-d.txt')

open(unit=72,file='p-q.txt')
open(unit=81,file='parameters.txt')

! Shape
open(unit=105,file='shapew-d.txt')
open(unit=100,file='shapew.txt') !Writes w-shape to file
open(unit=101,file='shapeps.txt')
open(unit=110,file='profile.txt') !center profile shape
open(unit=112,file='profile-d.txt') !center profile of shape - dimensional
open(unit=115,file='shape-frc.txt') !forced shapes
open(unit=120,file='profile-diag.txt') !profile across membrane diagonal
open(unit=125,file='profile-diag-d.txt') !profile across membrane diagonal - 

!dimensional

! Stress Output
open(unit=200,file='strsx.txt')
open(unit=205,file='strsy.txt')
open(unit=210,file='strsxy.txt')
open(unit=215,file='strs1.txt')
open(unit=220,file='strs2.txt')

! Electrical Output
open(unit=400,file='charge.txt')

! open(unit=410,file='voltage.txt')
! open(unit=420,file='power.txt')

! Time Output
open(unit=300,file='cent-time.txt') !Writes the center
open(unit=320,file='fourier.txt')
open(unit=330,file='wkmax.txt') !writes max center defl at forcing freq
open(unit=340,file='time-freq.txt')

! open(unit=310,file='soln-time.txt') !Writes CPU time taken.

! Material Properties
nm=4 !number of materials
allocate(Em(nm),num(nm),hm(nm),rhom(nm),matnme(nm),z(nm+1))

! Materials
matnme(1)="Silicon"
matnme(2)="Platinum"
matnme(3)="PZT"
matnme(4)="Gold"

! Moduli of elasticity
Em(1)=125.D9 !Silicon
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Em(2)=170.D9 !Platinum
Em(3)=70.D9 !PZT
Em(4)=80.D9 !Gold

! Poisons ratio
num(1)=0.3 !Silicon
num(2)=0.38 !Platinum
num(3)=0.27 !PZT
num(4)=0.44 !Gold

! Density
rhom(1)=2500. !Silicon
rhom(2)=21440. !Platinum
rhom(3)=7550. !PZT
rhom(4)=19280. !Gold

! Thickness  (m)
hm(1)=1.D-6 !Silicon
hm(2)=175.D-9 !Platinum
hm(3)=1.D-6 !PZT
hm(4)=325.D-9 !Gold

z(1)=0.
do i=1,nm
 h=h+hm(i) !Total thickness
 z(i+1)=h
enddo

! Effective Constants
do i=1,nm
 E_uniaxial=E_uniaxial+Em(i)*hm(i)/h
 E=E+(hm(i)/h)*(Em(i)/(1.-num(i)**2.)) !E*
 nu1=nu+(hm(i)/h)*num(i)
 nu=sqrt(1-E_uniaxial/E)
 rho=rho+(hm(i)/h)*rhom(i)
enddo
write(*,*)E_uniaxial,E
write(*,*)nu,nu1

CALL D_value(hm,Em,num,z,nm,D)

D_singlelayer=(E*h**3.)/(12.*(1-nu**2.))

! Geometry
a=0.003 !Sidelength (m)

! es=0.002 !Electrode size (m), es <= a
es=a

! Piezoelectric properties
Capc=40.D-9
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d31=85.D-12 !C/m^2
 

! Finite Difference Parameters
n=15 !Number of inclusive interior nodes
dx=1./(n-1.) !Nodal spacing, i.e. mesh size.
md=(n+2)**2 !Matrix dimension

! Time parameters
ftm=10000.D0 !Total time of vibration study (seconds)
ts=2.5D-7

! ts=(dx/(E/((1.-nu**2.)*rho))) !Time step (seconds), based on wave speed.

writcntr=1 !Problem information written to file every "writcntr" time step
! Residual Stress

drs=1.D8 !Residual Stress, Pa
rs=(12.*(1.-nu**2.)*(drs/E)*(dx*a/h)**2.) !Non-dimensional residual stress

! Damping
delta=0.
cc=2000. !equivalent to 3.33 % of critical.  cc=600 eqv to 1 % of critical

! delta=0.*ts/3.14159 !Stiffness proportional damping

! Vector/Matrix position quick reference values
cj=(n-1)/2 !Center in i
cen=cj+2+(cj+1)*(n+2) !Matrix row/column for center node.

! Nondimensional Coefficients
eta=E*h**3./D
alpha=(h/a)**2.

! Static/Initial Loading(s)
nl=1 !number of loads applied
ALLOCATE (wst(md),pst(md),psa(nl),strsx(nm,md),strsy(nm,md),strsxy         &

(nm,md),strs1(nm,md)) !Sets size for static solution vectors
psa(1)=1.e-9

! psa(1)=500. !Multiple loads to obtain P-D curves.
! psa(2)=1000.
! psa(3)=2000.
! psa(4)=4000.
! psa(5)=6000.
! psa(6)=8000.
! psa(7)=10000.
! psa(8)=12000.
! psa(9)=14000.
! psa(10)=16000.
! psa(11)=18000.
! psa(12)=20000.
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!Outputs the problem parameters to a file.
Call Date(Today)
Call Time(char_time)
write(81,*)"Problem Parameters"
write(81,*)"All units are SI."
write(81,*)"This file is comma seperated."
write(81,*)"Date:,",today
write(81,*)"Time:,",char_time
write(81,*)"Mesh size:,",n
write(81,*)"Number of layers:,",nm
write(81,*)"Side Length:,",a
write(81,*)"Residual Stress:,",drs
write(81,*)"D31:,",d31
write(81,*)"Total time of vibration:,",ftm
write(81,*)"Time step size:,",ts
write(81,*)
write(81,*)"Material,Modulus,Poisons,Density,Thickness"
do i=1,nm
 write(81,1004)matnme(i),",",Em(i),",",num(i),",",rhom(i),",",hm(i)
enddo
write(81,1004)"Composite/Total",",",E,",",nu,",",rho,",",h
write(81,*)
write(81,*)"Static Loads Applied"
do i=1,nl
 write(81,*)psa(i)
enddo
CLOSE(81)

!Program main execution body - Static
DO ic=1,nl !ic = load count
 ps=psa(ic)
 write(*,*)"Pressure:  ",ps
 write(*,*)"Residual Stress: ",drs
 CALL iteratestatic(n,a,h,dx,md,ps,nu,E,rs,drs,wst,pst,d31,Em,num,hm,nm,        &

        es,Capc,chrgm,strsx,strsy,strsxy,strs1,k2,eta,alpha)
 write(*,*)"Deflection: ",wst(cen)*h

!  write(71,*)ps,wst(cen)*h !Write P-D curve file
 write(72,1030)ps,wst(cen)*h,chrgm,k2 !writes p-d-Q data
 write(100,*)"Pressure Stamp: ",ps
 do ii=0,n
  do ij=0,n
   write(100,*)ii*a*dx,ij*a*dx,wst(ii+2+(ij+1)*(n+2))*h !Shape
  enddo
 enddo
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! Writes stresses out to file.
!  do ii=0,n-1
!   do ij=0,n-1
!    write(200,1020)ii*a*dx,ij*a*dx,(strsx(mn,ii+2+(ij+1)*(n+2)),mn=1,nm)
!    write(205,1020)ii*a*dx,ij*a*dx,(strsy(mn,ii+2+(ij+1)*(n+2)),mn=1,nm)
!    write(210,1020)ii*a*dx,ij*a*dx,(strsxy(mn,ii+2+(ij+1)*(n+2)),mn=1,nm)
!    write(215,1020)ii*a*dx,ij*a*dx,(strs1(mn,ii+2+(ij+1)*(n+2)),mn=1,nm)
!   enddo
!  enddo

ENDDO

!Program main execution body - Dynamic
write(*,'(/,A38)')"Continue into dynamic analysis (y/n)?"
read(*,'(a1)')dyndec !dynamic decision
if (dyndec .eq. "y") then
 continue
else
 STOP
endif
write(*,'(/,a38)')"Commencing dynamic analysis."
Call Dynamik(E,nu,rho,n,a,h,dx,md,ftm,ts,rs,drs,pst,wst,d31,Em,num,hm,nm,    &

es,Capc,writcntr,cc,delta,eta,alpha,D)

1004 FORMAT(a16,a1,E9.3E3,a1,F3.2,a1,F6.0,a1,E8.4E1)
1020 FORMAT(2(e16.10),4(e20.10e2))
1030 FORMAT(4(e20.10e2))
END
-------------------------------------------------------------------------------------------------------------
SUBROUTINE iteratestatic(n,a,h,dx,md,p,nu,E,rs,drs,ws,pss,d31,Em,num,hm,nm,es,    &

Capc,chrgm,strsx,strsy,strsxy,strs1,k2,eta,alpha)

double precision w(md,md),pss(md),wr(md),ws(md),a,h,p,nu,dx,E,         &
ps(md,md),psb(md),wspi(md),clim,concrt,lamb,rs,drs,d31,         &
strsx(nm,md),strsy(nm,md),ct,Em(nm),num(nm),hm(nm),da,         &
voltage,voltwork(2,2),strainx(md),strainy(md),strainxy(md),         &

     es,Capc,strsxy(nm,md),chrgm,strs1(nm,md),k2,eta,alpha
real*8 timefin,timef
integer ci,cj,cen,counti,nnes,nnie,n,i,j,md

do i=1,md
 pss(i)=0.
 ws(i)=0.
 wspi(i)=0.
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enddo

ci=(n-1)/2 !Center in x
cj=(n-1)/2 !Center in i
cen=ci+2+(cj+1)*(n+2) !Matrix row/column for center node.

clim=1.D-6 !Convergence Limit
concrt=10. !Convergence Criteria
counti=0 !Iteration counter   
lamb=0.5 !Multiplicative factor

timefin=Timef()

do while (concrt .gt. clim)
counti=counti+1
do i=1,md
 do j=1,md
  w(i,j)=0.
  ps(i,j)=0.
 enddo
 wr(i)=0.
 psb(i)=0.
 w(i,i)=1.

enddo

CALL bending(w,md,n) !Forms bending part of the eql. eqn
CALL membrane(w,pss,md,nu,n,eta) !Forms membrane part of the eql. eqn.
CALL clampedeqlBC(w,md,n) !Apply boundary conditions
CALL wrmat(wr,a,nu,p,dx,E,h,md,n,eta,alpha) !Forms right side
CALL ResidualStress(md,n,rs,w) !Adds residual stress
CALL DLSARG(md,w,md,wr,1,ws) !Solves equilibrium equation

do i=1,md
 ws(i)=lamb*wspi(i)+(1.-lamb)*ws(i) !Convergence augmentation.
enddo

CALL compat(n,md,ps) !Forms compatibility equation portion
CALL clampstrainbc(n,md,nu,ps) !Forms strain = 0 
CALL uvDispBC(n,nu,md,ps) !Forms u, v = 0 portion

 CALL psbvec(psb,ws,n,md) !Forms right side

! do i=1,md
!  write(10,1000)(w(i,j),j=1,md)
!  write(20,1000)(ps(i,j),j=1,md)
!  write(13,*)wr(i)
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!  write(21,*)psb(i)
! enddo

CALL DLSARG(md,ps,md,psb,1,pss) !Both, Solves compatibility matrix.

concrt=ABS(ws(cen)-wspi(cen)) !Convergence Tests

do i=1,md
 wspi(i)=ws(i)
enddo

write(*,*)ws(cen)*h

ENDDO ! END ITERATION LOOP
write(*,*)ws(cen)*h

!  do ii=(-1),n
!   do ij=(-1),n
!    write(105,*)ii*a*dx,ij*a*dx,ws(ii+2+(ij+1)*(n+2))*h !Shape wd
!    write(101,*)ii*a*dx,ij*a*dx,pss(ii+2+(ij+1)*(n+2))*E*h**2 !Shape psi
!   enddo
!  enddo

timefin=Timef()
write(*,*)"Time to converge in seconds:",timefin

! Compute x-y stress values
CALL StrainCompute(pss,dx,a,nu,n,md,E,h,drs,Em,num,nm,strsx,strsxy,strsy,   &

strainx,strainxy,strainy,strs1,hm)
! write(400,*)"Static"

ct=0.

CALL piezo(strsx,strsy,md,d31,dx,a,n,ct,nm,voltage,voltwork,nnes,nnie,es,        &
         Capc,drs,chrgm)

voltwork(2,1)=voltwork(2,2)
voltwork(1,1)=voltwork(1,2)

! write(*,*)"Voltage: ",voltage
! write(410,*)ct,voltage

CALL StrainEnergy(strsx,strsxy,strsy,strainx,strainxy,strainy,md,nm,nnes,         &
         nnie,a,dx,n,hm,drs,k2)

! Write membrane shape across center
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do i=-1,n
 write(110,*)i*a*dx,ws(i+2+(cj+1)*(n+2))/ws(cen)
 write(112,*)i*a*dx,ws(i+2+(cj+1)*(n+2))*h
enddo

! Write membrane shape across diagonal
da=((a*dx)**2+(a*dx)**2.)**(1./2.)
do i=0,n-1
 write(120,*)i*da,ws(i+2+(i+1)*(n+2))/ws(cen)
 write(125,*)i*da,ws(i+2+(i+1)*(n+2))*h
enddo

1000 FORMAT(49(F6.2,1X))
END
-------------------------------------------------------------------------------------------------------------
SUBROUTINE Dynamik(E,nu,rho,n,a,h,dx,md,ftm,ts,rs,drs,pss,wst,d31,Em,num,hm,   &

      nm,es,Capc,writcntr,cc,delta,eta,alpha,D)
! Handles the dynamic time-stepping for the vibrational problem.  *

double precision E,nu,rho,a,h,dx,ftm,ts,rs,ctp,drs,pss(md),pkp,d31,strsx(nm,md),           &
strsy(nm,md),Em(nm),num(nm),hm(nm),voltage,voltwork(2,2),              &
strsxy(nm,md),strainx(md),strainy(md),strainxy(md),es,Capc,chrgm,       &
strs1(nm,md),wst(md),wkm(md),wk(md),wkp(md),vk(md),vkp(md),      &
ak(md),akp(md),cc,delta,pkpd,f(50),nosc(50),f,pi2,tf,tf1,ctc,tsc,da,          &
wkmax,freq,time_current,time_prev,w_prev,w_current,k2,eta,alpha,D

real*8 timefin,timef
integer countk,writcntr,nf
logical convergence

 
! wkp='w' solution for k+1
! wk='w' solution for k

timefin=Timef()
tf1=0.

countk=0

c=(rho*h*(dx*a)**4.)/(D)

tts=int(ftm/ts)+1 !Total time steps
ci=(n-1)/2 !Center in x
cj=(n-1)/2 !Center in y
cen=ci+2+(cj+1)*(n+2) !Matrix row/column for center node.

! Initial conditions
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 do i=1,md
  wk(i)=wst(i)
  vk(i)=0.
  ak(i)=0.
 enddo

! Excitation frequencies (hz)
j=1
f(j)=15000. ;nosc(j)=50 ;j=j+1
f(j)=20000. ;nosc(j)=50 ;j=j+1
f(j)=25000. ;nosc(j)=75 ;j=j+1
f(j)=30000. ;nosc(j)=75 ;j=j+1
f(j)=35000. ;nosc(j)=75 ;j=j+1
f(j)=39000. ;nosc(j)=100 ;j=j+1
f(j)=40000. ;nosc(j)=400 ;j=j+1

nf=j-1 !number of frequencies.

! Starts stepping through time after initial conditions applied

iii=1
pf=f(iii)
kk=1
tf1=0.

write(*,*)
write(*,*)"VENM program running, will be taking days of CPU time."
write(*,*)
write(*,*)"Number of frequencies",nf
write(*,*)pf

write(320,*)1.4e-6

DO k=2,tts
kk=kk+1

! Establishes time step for forcing frequencies
 if (f(iii) .le. 15000.) then
  ts=1.4e-6
!  ts=0.01/f(iii) !100 iterations per cycle for frequencies < 15 kHz
 else
  ts=0.01/f(iii) !100 iterations per cycle.
 endif
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 ct=tf1+(kk)*ts !current time
 ctp=tf1+(kk+1.)*ts !future time, k
 ctc=ctp !time in case of nonconvergence
 tf=nosc(iii)/pf+tf1
 tws=(nosc(iii)-5)/pf+tf1 !time to write shapes

if (ctp .ge. tf) then
  write(320,*)ts
  write(*,*)pf,wkmax
  write(330,*)pf,wkmax
  iii=iii+1
  pf=f(iii)
  tf1=ctp
  tf=0.
  kk=0
  wkmax=0.
  write(*,*)f(iii)
  write(115,*)pf
  write(320,*)pf,"---------------------------------------------"
  write(320,*)writcntr*ts
endif

pi2=2*3.14159256
pkpd=10000.*Dsin(pf*ctp*pi2-pf*tf1*pi2) !LOAD, change coefficent to change 

!magnitude
pkp=12.*(1.-nu**2.)*((a*dx)**4.*pkpd)/(E*h**4.) !N-D load

if (iii .gt. nf) then
 write(*,*)"Run is completed"
 read(*,*)
 STOP
endif

CALL iteratedynamik(n,a,h,dx,md,nu,E,rs,pss,rho,ts,pkp,wk,wkp,vk,vkp,ak,akp,cc,       &
delta,convergence,eta,alpha,D)

!Solves current time deflection/stress

if (convergence .eqv. .FALSE.) then !exercise caution when using
tsc=(ctc-ct)/2.
ctc=ct+tsc
pi2=2*3.14159256
pkpd=10000.*Dsin(pf*ctc*pi2-pf*tf1*pi2)
pkp=12.*(1.-nu**2.)*((a*dx)**4.*pkpd)/(E*h**4.) !N-D load
CALL iteratedynamik(n,a,h,dx,md,nu,E,rs,pss,rho,tsc,pkp,wk,wkp,vk,vkp,         &

ak,akp,cc,delta,convergence,eta,alpha,D)
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!Solves current time deflection/stress
if (convergence .eqv. .TRUE.) then
     write(300,1030)ctc,wkp(cen)*h,vkp(cen)*h,akp(cen)*h,pkpd,pf
endif
write(*,*)"Time Step,",tsc," Current time,",ctc
write(*,*)"Time #: ",k

endif

if (wkp(cen) .LT. wk(cen)) then
 if (wkm(cen) .LT. wk(cen)) then

!maximize freq
w_prev=w_current
time_prev=time_current
time_current=ctp
w_current=wkp(cen)*h

freq=1./(time_current-time_prev)
write(340,1030)ctp,freq,w_current,pf

if (abs(w_current-w_prev) .LT. 0.001*.5*(w_current+w_prev)) then
write(*,*)"Deflections close",w_prev,w_current

endif
 endif
endif

! The below if statement causes the data to only be written to the file at certain 
intervals.  Therefore saving time and file space.

countk=countk+1

IF (ctp .ge. tws) then !writes information for the last five forced cycles.
write(115,*)ctp
write(112,*)ctp
write(110,*)ctp
write(120,*)ctp
write(125,*)ctp
!Write membrane shape across center
do i=-1,n
 write(110,*)i*a*dx,wkp(i+2+(cj+1)*(n+2))/wkp(cen),pf
 write(112,*)i*a*dx,wkp(i+2+(cj+1)*(n+2))*h,pf
enddo
!Write membrane shape across diagonal
da=((a*dx)**2+(a*dx)**2.)**(1./2.)
do i=0,n-1
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  write(120,*)i*da,wkp(i+2+(i+1)*(n+2))/wkp(cen),pf
  write(125,*)i*da,wkp(i+2+(i+1)*(n+2))*h,pf
enddo
!Write maximum amplitude deflection
if (wkp(cen) .GE. wk(cen)) then
 wkmax=wkp(cen)*h
endif
!Writes full dimensional shape profile
write(100,*)ct
do ii=0,n-1
 do ij=0,n-1
 write(100,*)ii*a*dx,ij*a*dx,wkp(ii+2+(ij+1)*(n+2))*h !Shape
 enddo
enddo

!  Compute x-y stress values
 CALL StrainCompute(pss,dx,a,nu,n,md,E,h,drs,Em,num,nm,strsx,strsxy,          &

          strsy,strainx,strainxy,strainy,strs1,hm)
!  Call stresscompute(pss,dx,a,n,md,E,h,drs,wk,strsx,strsy)
 CALL piezo(strsx,strsy,md,d31,dx,a,n,ctp,nm,voltage,voltwork,         &

          nnes,nnie,es,Capc,drs,chrgm)
!  Obtain strain energy and k2
CALL StrainEnergy(strsx,strsxy,strsy,strainx,strainxy,strainy,md,                        &

          nm,nnes,nnie,a,dx,n,hm,drs,k2)
!  For writing membrane shape across diagonal
!  write(*,*)pkpd,pf,wkp(cen)*h
!  write(*,1004)"Current Problem Time (s): ",ct
!  write(*,1006)"Center deflection (um):  ",wkp(cen)*h,pkp

ENDIF

IF (countk .eq. writcntr) THEN  !writes info at write center inc.
 timefin=Timef()
 write(320,*)wkp(cen)*h
 write(300,1030)ctp,wkp(cen)*h,vkp(cen)*h,akp(cen)*h,pkpd,pf
 countk=0
ENDIF

! Steps the k+1 deflection solution to the kth solution.
do i=1,md  
 wkm(i)=wk(i)
 wk(i)=wkp(i)
 wkp(i)=0.
 vk(i)=vkp(i)
 vkp(i)=0.
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 ak(i)=akp(i)
 akp(i)=0.
enddo

ENDDO

! File format specifiers.
1002 FORMAT(2(F16.10,1x))
1004 FORMAT(a27,E9.3E3)
1006 FORMAT(a26,E15.8E2,E15.8e2)
1008 FORMAT(a31,F7.4)
1020 FORMAT(2(d16.10),4(d16.10))
1030 FORMAT(6(E15.8E3,1X))
END
-------------------------------------------------------------------------------------------------------------
! Subroutine that iterates the current time step for the dynamic solution
SUBROUTINE iteratedynamik(n,a,h,dx,md,nu,E,rs,pss,rho,ts,pkp,wk,wkp,vk,vkp,        &

   ak,akp,cc,delta,convergence,eta,alpha,D)

double precision w(md,md),pss(md),a,h,nu,dx,E,ps(md,md),psb(md),         &
clim,concrt,rs,c,D,rho,ts,pkp,wkpi(md),wk(md),wkp(md),         &
vk(md),vkp(md),ak(md),akp(md),b(6),beta,gam,cc,delta,eta,alpha

integer ci,cj,cen,counti
logical convergence

convergence=.TRUE. 

!Newmark parameters
 beta=1./4.
 gam=1./2.

 !Calculate integration constants
 b(1)=(1.)/(ts**2.*beta);b(2)=-(1.)/(ts*beta);b(3)=1.-(1.)/(2.*beta)
 b(4)=gam/(ts*beta);b(5)=1.-gam/beta;b(6)=ts*(1.-gam/(2.*beta))

do i=1,md
 wkpi(i)=wk(i)
enddo

ci=(n-1)/2 !Center in x
cj=(n-1)/2 !Center in i
cen=ci+2+(cj+1)*(n+2) !Matrix row/column for center node.
clim=1.E-9 !Convergence Limit
concrt=1. !Convergence Criteria
counti=0 !Iteration counter   
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c=(rho*h*(dx*a)**4.)/(D) !Effective mass term, m_eff.
! c=rho*eta/alpha**2.

! Start iteration to get convergent solution
DO WHILE (concrt .gt. clim)

counti=counti+1 !Iteration counter

! Zero's out pertinent tensors, matrices, vectors.
do i=1,md
 do j=1,md
  w(i,j)=0.
  ps(i,j)=0.
 enddo
 wkp(i)=0.
 psb(i)=0.
 w(i,i)=1.

    enddo

! Dynamic
CALL bending(w,md,n) !Adds in bending portion of plate problem
CALL membrane(w,pss,md,nu,n,eta) !Adds in membrane portion
CALL clampedeqlBC(w,md,n)
CALL ResidualStress(md,n,rs,w)
CALL wilsoneqleqn(n,md,w,pkp,c,wk,wkp,vk,ak,b,cc,delta)

! Compatibility equation section
CALL compat(n,md,ps) !Forms compatibility equation portion.
CALL clampstrainbc(n,md,nu,ps) !Forms strain = 0 portion
CALL uvDispBC(n,nu,md,ps) !Forms u, v = 0 portion
CALL psbvec(psb,wkp,n,md) !Forms right side of compatibility matrix.
CALL DLSARG(md,ps,md,psb,1,pss) !Solves compatibility matrix.

! Convergence Tests
concrt=ABS(wkpi(cen)-wkp(cen))

! Set previous iteration value for next iteration
do i=1,md
 wkpi(i)=wkp(i)
enddo

! Safety criteria to help avoid divergent solutions
 if (counti .gt. 1000) then

write(*,*)"Error - ",counti," Iterations for single time-step"
write(*,*)cen,wkp(cen)

pause
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convergence=.FALSE.
!  write(105,*)ctp
!   do ii=(-1),n
!    do ij=(-1),n
!    write(105,*)ii*a*dx,ij*a*dx,wk(ii+2+(ij+1)*(n+2))*h !Shape
!    enddo
!   enddo
!  close(100);close(105);close(300);close(320)
 endif

if (convergence .eqv. .FALSE.) then
exit

endif

ENDDO !ENDs convergence iteration loop

do i=1,md
 vkp(i)=b(4)*(wkp(i)-wk(i))+b(5)*vk(i)+b(6)*ak(i) !Calculate velocity for k+1
 akp(i)=b(1)*(wkp(i)-wk(i))+b(2)*vk(i)+b(3)*ak(i) !Calculate acceleration for k+1
enddo

! write(*,*)"Time to converge in seconds:",timefin

1000 FORMAT(49(F8.3,1X))
1001 FORMAT(E10.4,F10.4,a8,f10.4)

END
-------------------------------------------------------------------------------------------------------------
SUBROUTINE wilsoneqleqn(n,md,Kb,Fwp,m_eff,wk,wkp,vk,ak,b,cc,delta)
 ! Where (var)b signifies bold, and is considered a matrix or vector.
 ! Kb is the stiffness matrix for the equilibrium equation, otherwise
 ! referenced as 'w' in other subrs.
 ! Fw is the "forcing" vector for Kw, otherwise references as 'pk', needs to be
! nondimensional*
 ! Mb = ms
 ! dva = displacement, velocity, and acceleration
 !  cc = damping multiplicative coefficient
 
 double precision Kb(md,md), Cb(md,md),Mb(md,md),b(6),Kb_Eff(md,md),         &

 m_eff, Fkp_eff(md), Fwp,wk(md),wkp(md),vk(md),ak(md),cc,delta,         &
Cbk(md,md),Cdva(md),Fwpp(md)

!zero
do i=1,md
 Cdva(i)=0.
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 fwpp(i)=0.
 do j=1,md
 Kb_eff(i,j)=0.
 enddo
 Fkp_eff(i)=0.
enddo

!Damping factor
do i=1,md
 do j=1,md
  Cbk(i,j)=delta*Kb(i,j)
 enddo
 Mb(i,i)=m_eff
 Cb(i,i)=cc*m_eff
enddo

!Coefficient matrix
 do i=1,md
  do j=1,md
   Kb_Eff(i,j)=Kb(i,j) + b(1)*Mb(i,j) + b(4)*(Cbk(i,j)+Cb(i,j))  !effective stiffness matrix
  enddo
 enddo

 !Damping contribution to load
 do i=1,md
  do j=1,md
   Cdva(i)=(Cbk(i,j)+Cb(i,j))*(-b(4)*wk(j)+b(5)*vk(j)+b(6)*ak(j))+Cdva(i)
  enddo
 enddo
 
!Effective load vector
!Mass and damping contributions
do i=1,n-2
 do j=1,n-2
 fwpp(i+2+(j+1)*(n+2))=Fwp
 enddo
enddo

 do i=1,md
  Fkp_eff(i)=Fwpp(i) + Mb(i,i)*( b(1)*wk(i)-b(2)*vk(i)-b(3)*ak(i) ) - Cdva(i)
 enddo

 CALL DLSARG(md,Kb_Eff,md,Fkp_eff,1,wkp)

END
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-------------------------------------------------------------------------------------------------------------
! Adds in the bending portion into the equilibrium matrix.

SUBROUTINE bending(wbend,md,n)

double precision wbend(md,md)
integer i,j,r,n,md !r=row

r=0
do j=1,(n-2)
 do i=1,(n-2)
 r=i+2+(j+1)*(n+2)
 wbend(r,i+2+(j+1)*(n+2))=20.
 wbend(r,i+1+2+(j+1)*(n+2))=-8.
 wbend(r,i-1+2+(j+1)*(n+2))=-8.
 wbend(r,i+2+(j+1+1)*(n+2))=-8.
 wbend(r,i+2+(j-1+1)*(n+2))=-8.
 wbend(r,i+1+2+(j+1+1)*(n+2))=2.
 wbend(r,i+1+2+(j-1+1)*(n+2))=2.
 wbend(r,i-1+2+(j+1+1)*(n+2))=2.
 wbend(r,i-1+2+(j-1+1)*(n+2))=2.
 wbend(r,i-2+2+(j+1)*(n+2))=1.
 wbend(r,i+2+2+(j+1)*(n+2))=1.
 wbend(r,i+2+(j+2+1)*(n+2))=1.
 wbend(r,i+2+(j-2+1)*(n+2))=1.
 enddo
enddo

END
-------------------------------------------------------------------------------------------------------------
! Adds in the membrane contribution to the equilibrium matrix
SUBROUTINE membrane(wstrt,pss,md,nu,n,eta)

double precision wstrt(md,md),pss(md),psx,psy,psxy,nu,eta
integer i,j,r,n,md

r=0
do j=1,(n-2)
 do i=1,(n-2)
 r=i+2+(j+1)*(n+2)

! 2nd derivative of Airy Stress in the y
!  psy=12.*(1.-nu**2.)*(pss(i+2+(j+1+1)*(n+2))-2.*pss(i+2+(j+1)*(n+2))+         &

pss(i+2+(j-1+1)*(n+2)))
! 2nd derivative of Airy Stress in the x
!  psx=12.*(1.-nu**2.)*(pss(i+1+2+(j+1)*(n+2))-2.*pss(i+2+(j+1)*(n+2))+          &
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pss(i-1+2+(j+1)*(n+2)))
! 2nd derivative of Airy Stress in the xy
!  psxy=(12./8.)*(1.-nu**2.)*(pss(i-1+2+(j+1+1)*(n+2))-         &

pss(i-1+2+(j-1+1)*(n+2))+pss(i+1+2+(j-1+1)*(n+2))-         &
pss(i+1+2+(j+1+1)*(n+2)))

! psxy=0.
! 2nd derivative of Airy Stress in the y

 psy=eta*(pss(i+2+(j+1+1)*(n+2))-2.*pss(i+2+(j+1)*(n+2))+         &
pss(i+2+(j-1+1)*(n+2)))

! 2nd derivative of Airy Stress in the x
 psx=eta*(pss(i+1+2+(j+1)*(n+2))-2.*pss(i+2+(j+1)*(n+2))+                              &

pss(i-1+2+(j+1)*(n+2)))
! 2nd derivative of Airy Stress in the xy

 psxy=eta/8.*(pss(i-1+2+(j+1+1)*(n+2))-pss(i-1+2+(j-1+1)*(n+2))+                   &
pss(i+1+2+(j-1+1)*(n+2))-pss(i+1+2+(j+1+1)*(n+2)))

! psxy=0.
 wstrt(r,i+1+2+(j+1)*(n+2))=wstrt(r,i+1+2+(j+1)*(n+2))-psy
 wstrt(r,i+2+(j+1)*(n+2))=wstrt(r,i+2+(j+1)*(n+2))+2.*psy+2.*psx
 wstrt(r,i-1+2+(j+1)*(n+2))=wstrt(r,i-1+2+(j+1)*(n+2))-psy
 wstrt(r,i+2+(j+1+1)*(n+2))=wstrt(r,i+2+(j+1+1)*(n+2))-psx
 wstrt(r,i+2+(j-1+1)*(n+2))=wstrt(r,i+2+(j-1+1)*(n+2))-psx
 wstrt(r,i+1+2+(j+1+1)*(n+2))=wstrt(r,i+1+2+(j+1+1)*(n+2))-psxy
 wstrt(r,i+1+2+(j-1+1)*(n+2))=wstrt(r,i+1+2+(j-1+1)*(n+2))+psxy
 wstrt(r,i-1+2+(j+1+1)*(n+2))=wstrt(r,i-1+2+(j+1+1)*(n+2))+psxy
 wstrt(r,i-1+2+(j-1+1)*(n+2))=wstrt(r,i-1+2+(j-1+1)*(n+2))-psxy

 enddo
enddo

END
-------------------------------------------------------------------------------------------------------------
! Applies zero deflection at edges and zero slope at edges condition
! to the equilibrium matrix.  It does this by setting the
! deflection at the wall and outside the wall (substrate nodes)
! to zero.
SUBROUTINE clampedeqlBC(wbd,md,n)

double precision wbd(md,md)
integer i,m,md,n,nn

! Zero's row corresponding to zero edge deflection
do m=-1,n
 do i=1,md
  wbd(m+2+(-1+1)*(n+2),i)=0.
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  wbd(i,m+2+(-1+1)*(n+2))=0.
  wbd(m+2+(0+1)*(n+2),i)=0.
  wbd(i,m+2+(0+1)*(n+2))=0.
  wbd(m+2+(n-1+1)*(n+2),i)=0.
  wbd(i,m+2+(n-1+1)*(n+2))=0.
  wbd(m+2+(n+1)*(n+2),i)=0.
  wbd(i,m+2+(n+1)*(n+2))=0.
  wbd(-1+2+(m+1)*(n+2),i)=0.
  wbd(i,-1+2+(m+1)*(n+2))=0.
  wbd(0+2+(m+1)*(n+2),i)=0.
  wbd(i,0+2+(m+1)*(n+2))=0.
  wbd(n-1+2+(m+1)*(n+2),i)=0.
  wbd(i,n-1+2+(m+1)*(n+2))=0.
  wbd(n+2+(m+1)*(n+2),i)=0.
  wbd(i,n+2+(m+1)*(n+2))=0.
 enddo
enddo

! The BC programmed below uses forward and backward difference
! Sets edge nodes to zero deflection w(x=0,L)=w(y=0,L)=0

   do m=-1,n
 wbd(m+2+(-1+1)*(n+2),m+2+(-1+1)*(n+2))=1.
 wbd(m+2+(0+1)*(n+2),m+2+(0+1)*(n+2))=1.
 wbd(m+2+(n-1+1)*(n+2),m+2+(n-1+1)*(n+2))=1.
 wbd(m+2+(n+1)*(n+2),m+2+(n+1)*(n+2))=1.
enddo
do nn=1,(n-2)
 wbd(-1+2+(nn+1)*(n+2),-1+2+(nn+1)*(n+2))=1.
 wbd(0+2+(nn+1)*(n+2),0+2+(nn+1)*(n+2))=1.
 wbd(n-1+2+(nn+1)*(n+2),n-1+2+(nn+1)*(n+2))=1.
 wbd(n+2+(nn+1)*(n+2),n+2+(nn+1)*(n+2))=1.
enddo

END
-------------------------------------------------------------------------------------------------------------
! Forms b-matrix for equilibrium matrix.  Adds the load in.
SUBROUTINE wrmat(wr,a,nu,p,dx,E,h,md,n,eta,alpha)

double precision wr(md),nu,p,dx,E,h,a,eta,alpha
integer i,j,n,md

do i=1,(n-2)
 do j=1,(n-2)
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!  wr(i+2+(j+1)*(n+2))=12.*(1.-nu**2.)*((a*dx)**4.*p)/(E*h**4.)
 wr(i+2+(j+1)*(n+2))=(a**2.*dx**4.)/(E*h**2.)*(eta/alpha)*p
 enddo
enddo

END
-------------------------------------------------------------------------------------------------------------
! This subroutine enters the compatibility equation into the
! compatibility matrix.
SUBROUTINE compat(n,md,psc)

double precision psc(md,md)
integer r,i,j,n,md

r=1
do j=1,(n-2)
 do i=1,(n-2)
 psc(r,i+2+(j+1)*(n+2))=20.
 psc(r,i+1+2+(j+1)*(n+2))=-8.
 psc(r,i+2+(j+1+1)*(n+2))=-8.
 psc(r,i-1+2+(j+1)*(n+2))=-8.
 psc(r,i+2+(j-1+1)*(n+2))=-8.
 psc(r,i+1+2+(j+1+1)*(n+2))=2.
 psc(r,i-1+2+(j+1+1)*(n+2))=2.
 psc(r,i-1+2+(j-1+1)*(n+2))=2.
 psc(r,i+1+2+(j-1+1)*(n+2))=2.
 psc(r,i+2+2+(j+1)*(n+2))=1.
 psc(r,i+2+(j+2+1)*(n+2))=1.
 psc(r,i-2+2+(j+1)*(n+2))=1.
 psc(r,i+2+(j-2+1)*(n+2))=1.
 r=r+1
 enddo
enddo

END
-------------------------------------------------------------------------------------------------------------
! Sets the x-strains at the y=constant edges to zero and the
! y-strains at the x=constant edges to zero.  Also sets the
! corner airy-stress values=0.
SUBROUTINE clampstrainbc(n,md,nu,pse) 

double precision pse(md,md),nu
integer r,n,md
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r=(n-2)**2

! Strain x = 0 at y = 0 and y = L
j=0

    do i=1,(n-2)
 r=r+1

     pse(r,i+2+(j+1+1)*(n+2))=1.
 pse(r,i+2+(j+1)*(n+2))=2.*(nu-1.)
 pse(r,i+2+(j-1+1)*(n+2))=1.
 pse(r,i+1+2+(j+1)*(n+2))=-nu
 pse(r,i-1+2+(j+1)*(n+2))=-nu
enddo
j=n-1

    do i=1,(n-2)
 r=r+1
 pse(r,i+2+(j+1+1)*(n+2))=1.
 pse(r,i+2+(j+1)*(n+2))=2.*(nu-1.)
 pse(r,i+2+(j-1+1)*(n+2))=1.
 pse(r,i+1+2+(j+1)*(n+2))=-nu
 pse(r,i-1+2+(j+1)*(n+2))=-nu
enddo

! Strain y = 0 at x = 0 and x = L
i=0
do j=1,(n-2)
 r=r+1
 pse(r,i+1+2+(j+1)*(n+2))=1.

     pse(r,i+2+(j+1)*(n+2))=2.*(nu-1.)
 pse(r,i-1+2+(j+1)*(n+2))=1.
 pse(r,i+2+(j+1+1)*(n+2))=-nu
 pse(r,i+2+(j-1+1)*(n+2))=-nu
enddo 
i=n-1
do j=1,(n-2)
 r=r+1
 pse(r,i+1+2+(j+1)*(n+2))=1.
 pse(r,i+2+(j+1)*(n+2))=2.*(nu-1.)
 pse(r,i-1+2+(j+1)*(n+2))=1.
 pse(r,i+2+(j+1+1)*(n+2))=-nu
 pse(r,i+2+(j-1+1)*(n+2))=-nu
enddo

r=r+1
i=0
j=0
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pse(r,i+2+(j+1)*(n+2))=1.
r=r+1
i=n-1
j=0
pse(r,i+2+(j+1)*(n+2))=1.
r=r+1
i=0
j=n-1
pse(r,i+2+(j+1)*(n+2))=1.
r=r+1
i=n-1
j=n-1
pse(r,i+2+(j+1)*(n+2))=1.

! Set "imaginary" corner nodes equal zero so that matrix is non-singular.
r=r+1
 pse(r,-1+2+(-1+1)*(n+2))=1.
r=r+1
 pse(r,-1+2+(n+1)*(n+2))=1.
r=r+1
 pse(r,n+2+(-1+1)*(n+2))=1.
r=r+1
 pse(r,n+2+(n+1)*(n+2))=1.

END
-------------------------------------------------------------------------------------------------------------
! Applies the conditino that the u and v displacements must be zero
! over constant lines in the membrane.
SUBROUTINE uvDispBC(n,nu,md,psd)

double precision psd(md,md),nu
integer cen,r,i,j,n

r=int(((n-2)**2+4*n)+1)
cen=int((n-1)/2)

! v=0 at x=constant
! Top section

do i=0,(n-1)
 do j=0,(cen-1)
 psd(r,i+1+2+(j+1)*(n+2))=1.+psd(r,i+1+2+(j+1)*(n+2))
 psd(r,i+2+(j+1)*(n+2))=nu-2.+psd(r,i+2+(j+1)*(n+2))
 psd(r,i-1+2+(j+1)*(n+2))=1.+psd(r,i-1+2+(j+1)*(n+2))
 psd(r,i+2+(j+1+1)*(n+2))=nu-2.+psd(r,i+2+(j+1+1)*(n+2))
 psd(r,i+2+(j-1+1)*(n+2))=-nu+psd(r,i+2+(j-1+1)*(n+2))
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 psd(r,i+1+2+(j+1+1)*(n+2))=1.+psd(r,i+1+2+(j+1+1)*(n+2))
 psd(r,i-1+2+(j+1+1)*(n+2))=1.+psd(r,i-1+2+(j+1+1)*(n+2))
 psd(r,i+2+(j+2+1)*(n+2))=-nu+psd(r,i+2+(j+2+1)*(n+2))
 enddo
r=r+1
enddo

! Bottom section
do i=0,(n-1)
 do j=cen,(n-2)
 psd(r,i+1+2+(j+1)*(n+2))=1.+psd(r,i+1+2+(j+1)*(n+2))
 psd(r,i+2+(j+1)*(n+2))=nu-2.+psd(r,i+2+(j+1)*(n+2))
 psd(r,i-1+2+(j+1)*(n+2))=1.+psd(r,i-1+2+(j+1)*(n+2))
 psd(r,i+2+(j+1+1)*(n+2))=nu-2.+psd(r,i+2+(j+1+1)*(n+2))
 psd(r,i+2+(j-1+1)*(n+2))=-nu+psd(r,i+2+(j-1+1)*(n+2))
 psd(r,i+1+2+(j+1+1)*(n+2))=1.+psd(r,i+1+2+(j+1+1)*(n+2))
 psd(r,i-1+2+(j+1+1)*(n+2))=1.+psd(r,i-1+2+(j+1+1)*(n+2))
 psd(r,i+2+(j+2+1)*(n+2))=-nu+psd(r,i+2+(j+2+1)*(n+2))
 enddo
r=r+1
enddo

! u=0 at y=constant
! Left section.

do j=0,(n-1)
 do i=0,(cen-1)
  psd(r,i+2+(j+1+1)*(n+2))=1.+psd(r,i+2+(j+1+1)*(n+2))
  psd(r,i+2+(j+1)*(n+2))=nu-2.+psd(r,i+2+(j+1)*(n+2))
  psd(r,i+2+(j-1+1)*(n+2))=1.+psd(r,i+2+(j-1+1)*(n+2))
  psd(r,i+1+2+(j+1)*(n+2))=nu-2.+psd(r,i+1+2+(j+1)*(n+2))
  psd(r,i-1+2+(j+1)*(n+2))=-nu+psd(r,i-1+2+(j+1)*(n+2))
  psd(r,i+1+2+(j+1+1)*(n+2))=1.+psd(r,i+1+2+(j+1+1)*(n+2))
  psd(r,i+1+2+(j-1+1)*(n+2))=1.+psd(r,i+1+2+(j-1+1)*(n+2))
  psd(r,i+2+2+(j+1)*(n+2))=-nu+psd(r,i+2+2+(j+1)*(n+2))
 enddo
r=r+1
enddo

! Right Section
do j=0,(n-1)
 do i=cen,(n-2)
  psd(r,i+2+(j+1+1)*(n+2))=1.+psd(r,i+2+(j+1+1)*(n+2))
  psd(r,i+2+(j+1)*(n+2))=nu-2.+psd(r,i+2+(j+1)*(n+2))
  psd(r,i+2+(j-1+1)*(n+2))=1.+psd(r,i+2+(j-1+1)*(n+2))
  psd(r,i+1+2+(j+1)*(n+2))=nu-2.+psd(r,i+1+2+(j+1)*(n+2))
  psd(r,i-1+2+(j+1)*(n+2))=-nu+psd(r,i-1+2+(j+1)*(n+2))
  psd(r,i+1+2+(j+1+1)*(n+2))=1.+psd(r,i+1+2+(j+1+1)*(n+2))
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  psd(r,i+1+2+(j-1+1)*(n+2))=1.+psd(r,i+1+2+(j-1+1)*(n+2))
  psd(r,i+2+2+(j+1)*(n+2))=-nu+psd(r,i+2+2+(j+1)*(n+2))
 enddo
r=r+1
enddo

END
-------------------------------------------------------------------------------------------------------------
! Forms the b-vector for the Psi matrix.
SUBROUTINE psbvec(psb,w,n,md)

double precision psb(md),w(md),compatr
integer r

! Form right hand side of compatibility eqn.
r=1
do j=1,(n-2)
 do i=1,(n-2)
 psb(r)=compatr(w,md,n,i,j)
 r=r+1
 enddo
enddo

cen=(n-1)/2
r=((n-2)**2+4*n)+1

! v=0 at x=constant
! Top section.
do i=0,(n-1)
 do j=0,(cen-1)
  psb(r)=(1./8.)*((w(i+2+(j+1+1)*(n+2))-w(i+2+(j-1+1)*(n+2)))**2+                              &

(w(i+2+(j+2+1)*(n+2))-w(i+2+(j+1)*(n+2)))**2)+psb(r)
 enddo
r=r+1
enddo
! Bottom section.
do i=0,(n-1)
 do j=cen,(n-2)
  psb(r)=(1./8.)*((w(i+2+(j+1+1)*(n+2))-w(i+2+(j-1+1)*(n+2)))**2+         &

(w(i+2+(j+2+1)*(n+2))-w(i+2+(j+1)*(n+2)))**2)+psb(r)
 enddo
r=r+1
enddo

! u=0 at y=constant
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! Left section.
do j=0,(n-1)
 do i=0,(cen-1)
  psb(r)=(1./8.)*((w(i+1+2+(j+1)*(n+2))-w(i-1+2+(j+1)*(n+2)))**2+         &

(w(i+2+2+(j+1)*(n+2))-w(i+2+(j+1)*(n+2)))**2)+psb(r)
 enddo
r=r+1
enddo
! Right section.
do j=0,(n-1)
 do i=cen,(n-2)
  psb(r)=(1./8.)*((w(i+1+2+(j+1)*(n+2))-w(i-1+2+(j+1)*(n+2)))**2+         &

(w(i+2+2+(j+1)*(n+2))-w(i+2+(j+1)*(n+2)))**2)+psb(r)
 enddo
r=r+1
enddo

END
-------------------------------------------------------------------------------------------------------------
double precision FUNCTION compatr(w,md,n,i,j)

double precision w(md)

compatr=(1./16.)*(w(i+1+2+(j+1+1)*(n+2))-w(i-1+2+(j+1+1)*(n+2))         &
+w(i-1+2+(j-1+1)*(n+2))-w(i+1+2+(j-1+1)*(n+2)))**2         &
-(w(i+1+2+(j+1)*(n+2))-2.*w(i+2+(j+1)*(n+2))         &
+w(i-1+2+(j+1)*(n+2)))*(w(i+2+(j+1+1)*(n+2))         &
-2.*w(i+2+(j+1)*(n+2))+w(i+2+(j-1+1)*(n+2)))

END
-------------------------------------------------------------------------------------------------------------
SUBROUTINE ResidualStress(md,n,rs,wres)

double precision rs,wres(md,md)

do j=1,(n-2)
 do i=1,(n-2)   
 r=i+2+(j+1)*(n+2)  

 wres(r,i+1+2+(j+1)*(n+2))=wres(r,i+1+2+(j+1)*(n+2))-rs
 wres(r,i+2+(j+1)*(n+2))=wres(r,i+2+(j+1)*(n+2))+2.*rs+2.*rs
 wres(r,i-1+2+(j+1)*(n+2))=wres(r,i-1+2+(j+1)*(n+2))-rs
 wres(r,i+2+(j+1+1)*(n+2))=wres(r,i+2+(j+1+1)*(n+2))-rs
 wres(r,i+2+(j-1+1)*(n+2))=wres(r,i+2+(j-1+1)*(n+2))-rs
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 enddo
enddo

END
-------------------------------------------------------------------------------------------------------------
SUBROUTINE StrainCompute(pss,dx,a,nu,n,md,E,h,drs,Em,num,nm,strsx,strsxy,        &

    strsy,strainx,strainxy,strainy,strs1,hm)

double precision dx,a,E,h,drs,Em(nm),num(nm),pss(md),strainx(md),         &
strainy(md),nu,strsx(nm,md),strsy(nm,md),compst(md),         &
strainxy(md),strsxy(nm,md),strs1(nm,md),hm(nm),strs2(nm,md)         &

ci=(n-1)/2 !Center in x
cj=(n-1)/2 !Center in i
cen=ci+2+(cj+1)*(n+2) !Matrix row/column for center node.

! Calculate strain in the membrane
do i=0,(n-1)
 do j=0,(n-1)
 r=i+2+(j+1)*(n+2)
 strainx(r)=(pss(i+2+(j+1+1)*(n+2))+pss(i+2+(j+1-1)*(n+2))         &

+2.*(nu-1)*pss(i+2+(j+1)*(n+2))-nu*pss(i+1+2+(j+1)*(n+2))         &
-nu*pss(i-1+2+(j+1)*(n+2)))*(h/(a*dx))**2.

 strainy(r)=(pss(i+1+2+(j+1)*(n+2))+pss(i-1+2+(j+1)*(n+2))         &
+2.*(nu-1)*pss(i+2+(j+1)*(n+2))-nu*pss(i+2+(j+1+1)*(n+2))         &
-nu*pss(i+2+(j+1-1)*(n+2)))*(h/(a*dx))**2.

 strainxy(r)=(pss(i+1+2+(j+1+1)*(n+2))-pss(i+1+2+(j-1+1)*(n+2))         &
-pss(i-1+2+(j+1+1)*(n+2))+pss(i-1+2+(j-1+1)*(n+2)))         &
*(1./4.)*(-2.)*(1+nu)*(h/(a*dx))**2.

 enddo
enddo

do mn=1,nm !material number loop
 do i=1,md
  strsx(mn,i)=hm(mn)/h*(Em(mn)/(1.-num(mn)**2.))         &

*(strainx(i)-num(mn)*strainy(i))+drs
  strsy(mn,i)=hm(mn)/h*(Em(mn)/(1.-num(mn)**2.))         &

*(strainy(i)-num(mn)*strainx(i))+drs
  strsxy(mn,i)=hm(mn)/h*(Em(mn)/(2.+2.*num(mn)))*strainxy(i)
 enddo
enddo

! Principle Stress Calculations (sigma 1)
      do mn=1,nm

 do i=0,(n-1)

124



  do j=0,(n-1)
   strs1(mn,i+2+(j+1)*(n+2))=hm(mn)/h*0.5*(strsx(mn,i+2+(j+1)         &

*(n+2))+strsy(mn,i+2+(j+1)*(n+2)))         &
+(0.5*(strsx(mn,i+2+(j+1)*(n+2))         &
-strsy(mn,i+2+(j+1)*(n+2)))**2.         &
+(strsxy(mn,i+2+(j+1)*(n+2)))**2.)**(1./2.)

   strs2(mn,i+2+(j+1)*(n+2))=hm(mn)/h*0.5*(strsx(mn,i+2+(j+1)         &
*(n+2))+strsy(mn,i+2+(j+1)*(n+2)))         &
-(0.5*(strsx(mn,i+2+(j+1)*(n+2))         &
-strsy(mn,i+2+(j+1)*(n+2)))**2.         &
+(strsxy(mn,i+2+(j+1)*(n+2)))**2.)**(1./2.)

  enddo
 enddo
enddo

!  do ii=0,n-1
!   do ij=0,n-1
!    write(220,1020)ii*a*dx,ij*a*dx,(strs2(mn,ii+2+(ij+1)*(n+2)),mn=1,nm)
!   enddo
!  enddo

! do i=1,md
!   compst(i)=hm(mn)/h*(E/(1.-nu**2.))*(strainy(i)-nu*strainx(i))+drs
! enddo

! write(*,*)"Stress in Silicon: ",strsx(1,cen)
! write(*,*)"Stress in PZT:     ",strsx(2,cen)
! write(*,*)"Composite Stress:  ",compst(cen)

1020 FORMAT(2(e16.10),4(e20.10e2))
END
-------------------------------------------------------------------------------------------------------------
SUBROUTINE piezo
(strsx,strsy,md,d31,dx,a,n,ct,nm,voltage,voltwork,nnes,nnie,es,Capc,drs,chrgm)

! plrz: polarization, units of charge/area
! Ar: Electrode area per node
! Qc: charge (coulombs)
! Capc: Capacitance
! nnes: number of nodes from wall to electrode
! nnie: number of nodes on one edge of the electrode
! voltage: voltage accumulation over entire electrode area
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integer md,n,nnie,nnes
double precision strsx(nm,md),strsy(nm,md),plrz(md),Qc(md),d31,dx,         &

a,Ar,Capc,voltage,ct,voltwork(2,2),chrg(md),chrgm,es,drs

ci=(n-1)/2 !Center in x
cj=(n-1)/2 !Center in i
cen=ci+2+(cj+1)*(n+2) !Matrix row/column for center node.

voltwork(1,2)=ct
voltwork(2,2)=0.
voltage=0.
chrgm=0.
Ar=(dx*a)**2.

do i=1,md
 plrz(i)=0.
enddo

do i=1,md
 plrz(i)=d31*(strsx(3,i)+strsy(3,i)-2.*drs)
 Qc(i)=(Ar*plrz(i))/Capc
 chrg(i)=Ar*plrz(i)
enddo

! Computes total voltage in membrane for specified electrode size (es)
nnes=int((a-es)/(2*dx*a)) !number of nodes from wall to electrode side
nnie=int(es/(dx*a)) !number of nodes within electrode

do i=nnes,(nnes+nnie)
 do j=nnes,(nnes+nnie)
 voltage=voltage+Qc(i+2+(j+1)*(n+2))
 chrgm=chrgm+chrg(i+2+(j+1)*(n+2))
 enddo
enddo

voltwork(2,2)=(Capc*voltage**2.)*.5

! write(*,*)"Total Charge. ",chrgm

! write(*,*)"Charge: ",chrgm
! write(400,*)chrgm

! Write charge profile.
do ii=0,(n-1)
 do ij=0,(n-1)
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 write(400,*)ii*a*dx,ij*a*dx,chrg(ii+2+(ij+1)*(n+2))
 enddo
enddo

! STOP
write(400,*)"STOP"

END
-------------------------------------------------------------------------------------------------------------
SUBROUTINE StrainEnergy(ox,oxy,oy,ex,exy,ey,md,nm,nnes,nnie,a,dx,n,hm,drs,k2)
! se: strain energy (dim: number of materials)
! ox: stress x, oxy: stress xy, oy: stress y
! ex: strain x, exy: strain xy, ey: stress y
! sep: strain energy in PZT
! tse: total strain energy in stack

double precision se(nm),ox(nm,md),oxy(nm,md),oy(nm,md),ex(md),         &
exy(md),ey(md),sep,tse,hm(nm),a,dx,k2,drs

tse=0.
sep=0.
do i=1,nm
 se(i)=0.
enddo

! Energy in PZT layer
do i=nnes,(nnes+nnie)
 do j=nnes,(nnes+nnie)
  r=i+2+(j+1)*(n+2)
  sep=(.5*(ox(3,r)-drs)*ex(r)+.5*(oy(3,r)-drs)*ey(r))*hm(3)*(a*dx)**2.+sep
 enddo
enddo

! Energy in each layer.
do m=1,nm
 do i=0,(n-1)
  do j=0,(n-1)
  r=i+2+(j+1)*(n+2)
  se(m)=(.5*ox(m,r)*ex(r)+oxy(m,r)*exy(r)         &

+.5*oy(m,r)*ey(r))*hm(m)*(a*dx)**2.+se(m)
  enddo
 enddo
enddo

! Total Energy in the Stack
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do m=1,nm
 tse=tse+se(m)
enddo

! write(*,*)"Total Strain Energy: ",tse
k2=sep/tse

! write(*,*)"Energy Ratio: ",k2

END
-------------------------------------------------------------------------------------------------------------
SUBROUTINE D_value(hm,Em,num,z,nm,D)

double precision A,B,hm(nm),Em(nm),num(nm),z(nm),E_star(nm),z_neutral,D

z_neutral=0.
D=0.

 do i=1,nm
E_star(i)=Em(i)/(1.-num(i)**2.)
A=A+E_star(i)*(z(i+1)-z(i))
B=B+E_star(i)*(z(i+1)**2.-z(i)**2)/2.

 enddo
 z_neutral=B/A

 do i=1,nm
D=D+E_star(i)*((z(i+1)**3.-z(i)**3.)/3.-z_neutral*(z(i+1)**2.         &

-z(i)**2.)+ z_neutral**2.*(z(i+1)-z(i)))
 enddo

 write(*,*)"Nuetral Axis at: ",z_neutral
 write(*,*)"Flexural Ridigity, D: ",D
END
-------------------------------------------------------------------------------------------------------------
! INDEX OF VARIABLES USED
! 
!  ARR() = Array (dimensions), arrays are double precision
!  DP  = Double Precision
!  INT = Integer
! 
! a DP, Side-length of the membrane
! c DP, Inertial constant term
! cen INT, Index for the center node of the membrane
! ci INT, center coordinate in the x-direction
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! cj INT, center coordinate in the y-direction
! clim DP, Convergence limit
! compatr DP, Function that gives the value obtained for the b-vector for the 
! psi matrix
! concrt DP, Convergence check variable
! counti INT, Counts the number of iterations to converge
! ct DP, Time for current solution
! D DP, Flexural ridigity
! drs DP, dimensional residual stress
! dx DP, nodal spacing (1/(n-1))
! E DP, Modulus of Elasticity
! ftm DP, Final time, or the total time for model
! h DP, Thickness
! k INT, indexing variable for time stepping
! lamb DP, Multiplicative factor for iterative convergence
! md INT, Matrix dimensions
! mu DP, 12(1-nu^2)
! n INT, number of inclusive interior nodes
! nu DP, Poison's ratio
! p DP, Pressure variable used within subroutines,
! either dynamic or static depends on the subr.
! pd DP, Pressure for the dynamic analysis
! ps DP, Pressure for the static analysis
! ps ARR(md,md), matrix for compatibility matrix
! psb ARR(md), b-vector for compatibility matrix
! psc ARR(md,md), psi-matrix used within the compatibility sub
! psd ARR(md,md), psi-matrix used within the u/v displacment sub
! pse ARR(md,md), psi-matrix used within the strainbc sub
! pss ARR(md), Airy stress solution for current k
! pst ARR(md), Airy stress for the static case, it is passed to the 
! dynamik subroutine.
! r INT, represents the position in a matrix from [i+1+2+(j+1)*(n+2)]
! rho DP, Density
! rs DP, non-dimensional residual stress
! timef INT, calls routine that counts the seconds between calls of the routine
! timefin INT, variable used to keep track of time to solve
! ts DP, Time step
! tts DP, Total time steps
! u0 DP, Initial velocity
! w ARR(md,md), matrix for the equilibrium eqn.
! wbd ARR(md,md), w-matrix variable used within the boundary 
! condition subroutine
! wbend ARR(md,md), w-matrix variable used within the bending subroutine
! wsk ARR(md), w-deflection for current k
! wsm ARR(md), w-deflection for k minus 1
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! wsp ARR(md), w-deflection for k plus 1
! wspi ARR(md), w-deflection for past nonlinear iteration (used with lamb)
! wr ARR(md), b-vector for eql. eqn. matrix
! wres ARR(md,md), w-matrix variable used within the residual stress sub
! ws ARR(md), w-deflection solution for iterative subroutines.
! wstrt ARR(md,md), w-matrix variable used within the membrane subroutine
! wst ARR(md), w-deflection for the static case it is passed to the 
! dynamik subroutine.
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