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NUMERICAL ANALYSIS OF PLANE CRACKS IN

STRAIN-GRADIENT ELASTIC MATERIALS

Abstract
by Sreekanth Akarapu , M.S.

Washington State University
December 2005

Chair: Hussein. M. Zbib

The classical linear elastic fracture mechanics is not valid near the crack tip
because of the unrealistic singular stress at the tip. The study of the physical nature of the
deformation around the crack tip reveals the dominance of long-range atomic interactive
forces. Unlike the classical theory which incorporates only short range forces, a higher-
order continuum theory which could predict the effect of long range interactions at a
macro scale would be appropriate to understand the deformation around the crack tip. A
simplified theory of gradient elasticity proposed by Aifantis is one such grade-2 theory.
This theory is used in the present work to numerically analyze plane cracks in strain-
gradient elastic materials. Towards this end, a 36 DOF C' finite element is used to
discretise the displacement field. The results show that the crack tip singularity still
persists but with a different nature which is physically more reasonable. A smooth

closure of the structure of the crack tip is also achieved.
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CHAPTER 1

INTRODUCTION

A thorough understanding of the deformation at and around the crack tip is very
important to gain an insight into issues like crack nucleation and crack growth. Fracture
mechanics developed based on classical linear elasticity is not valid near the crack tip
because of the unrealistic singular solutions at the crack tip. Many researchers have
devoted a lot of effort towards resolving the crack tip singularity. The reasons why linear
elasticity is not appropriate to use in the study of near crack tip behavior and various
efforts made by researchers to modify linear elasticity to predict the behavior of cracks

are discussed below.

In general, the opening of crack faces is very much small compared to the longitudinal
dimensions. Therefore, cracks are considered as surfaces of discontinuity of displacement
vector. Cracks having discontinuous normal displacement component are Mode I type
and the ones having in-plane tangential component and out-of-plane component are

Mode IT and Mode III type respectively.

The physical nature of the deformation in the neighborhood of displacement
discontinuities in an elastic continuum is different from the rest of the continuum. A
comparison is made between the deformation of a crack neighborhood and a cavity
neighborhood in an elastic continuum to understand the peculiarity. Upon slight variation
of applied load, the variation in shape of crack and cavity is studied [1]. The crack

changes shape by an appreciable amount when subjected to even small changes in loads



unlike the very small change of the boundary of a cavity. This violates one of the basic
assumptions of classical linear elasticity of smallness of changes in the boundaries which
permits to satisfy the boundary conditions at the surface of the unstrained body.
Therefore, the classical differential equations of equilibrium and boundary conditions of
the theory of linear elasticity cannot in principle solve this problem without the
introduction of appropriate additional modifications. The various efforts towards

modifying these equations by many researchers are briefly discussed below.

The opposite faces of crack at the tip are so close together that large force of atomic
attractions prevails. Barenblatt [1], in his mathematical theory of equilibrium cracks, took
the forces of cohesion acting on the crack faces into account along with the applied
external loads. The forces of cohesion alone give singular compressive stresses at the
crack tip (with no remote tension applied) and the tension alone with traction free crack
faces give a singular tensile stresses at the crack tip. The possibility of one canceling with
the other, gives rise to a non-singular solution at the crack tip. Goodier and Kanninen [2]
used non-linear springs at the extremities of crack to model the locally non-linear
behavior of the crack. Atomic lattice models (Gehlen and Kanninen [3], Weiner and

sanders [4]) are also used to study the deformation around the crack.

The peculiar non-linearity in the neighborhood of the crack tip can also be interpreted as
dominance of micro-structural effects and long-range forces of interaction. The other
limitations of classical theory of elasticity can be attributed to local nature of the theory

which is based on only nearest neighbor interactions which in turn bereaves it from



having a characteristic length scale. An alternate way of tackling this problem is to
employ a continuum theory which could include long-range atomic interactive forces at a
macro scale. The effect of long-range atomic interactions is incorporated to an acceptable
extent by introducing a characteristic length scale into the continuum theory. Non-local
elasticity proposed by Eringen [5] includes a characteristic length and remarkably enough
eliminates stress singularity at the crack tip. Apart from non-local elasticity, higher-order
strain gradient continuum theories predict the effect of long-range atomic interactions to a
great extent by introducing a length scale. The theory of non-local elasticity and higher-
order continuum theories like cosserat couple stress theory, Mindlin’s theory and gradient

elasticity are discussed in the following paragraphs.

The distinction between the local continuum theories and non-local continuum theories
can be understood by deriving the local balance laws from the global statements. The
classical balance laws consist of the balance of mass, momentum, moment of momentum
and energy. To explicate the difference, only the balance law of mass is considered. The

global statement of conservation of mass is

D
E‘{pdv=0 ---------- (1.1)

where the operator % y denotes the material time derivate and o denotes the mass

density. In local continuum mechanics, this integral statement is assumed to be valid not

only for the whole body but also at all points of the body which turns an integral



statement to a differential statement. In non-local theory, the validation of the integral
statement is relaxed a bit by assuming it to be valid only for the whole body. This is key
conceptual difference between local and non-local theories. As seen from physical
perspective, this is equivalent to including non-local interactions and as a result long
range interactions. The local statement of conservation of mass in the non-local theory[5]

1S

DQt(pdv):,bdv """"" (1.2)

where p is the localization residual which takes into account of the local mass

production and destruction contributing nothing globally. The introduction of localization
residuals is idiosyncratic to non-local theories. The non-local theory of elasticity
proposed by Eringen and co-workers [5] is employed to regularize the crack-tip
singularity to remarkable extent. He proposed that stress at a point is not only dependent
on the strain at that point alone (which is local) but also on all the points in the whole

body. Therefore, the constitutive equations are in the form of an integral equation over

the volume.

0= =xDe ()8, 2 (e =xDe, i) e (13)
1%

Where,

t (x) is stress at a point X



€1 (x') are strains at all points in the volume V'

A'and g'are the non-local modulii which are functions of the distance|x—x'|

between the reference point x and any other point x'.

This non-local theory results in a finite stress solution at the crack tip but it is not clear
whether the satisfaction of stress-free boundary is ensured at the crack tip and whether
the strain distribution remains finite at the tip. The definition of the non-local integral on

the external boundary is also not clear [11].

An alternate way of tackling this problem is to employ higher-order continuum theories
which could manifest the micro-structural effects at the macroscale. Higher-order
continuum theories are developed by incorporating higher-order spatial gradients of strain
or displacement into the strain energy density function. Depending on the order of spatial
gradient, these theories are classified as grade-n theories. It has been shown that higher-
order continuum theories which have an intrinsic characteristic length can incorporate
nearest and next nearest neighbor interactions. These generalized continuum theories are
developed by various researchers differing by the various degrees of refinement of
kinematical description of the continuum with microstructure. An excellent compilation
of literature on higher-order continuum theory can be found in the first and third chapter

of [6].

In the early sixties, E & F cosserat [7] developed couple stress theory which is one of the

first attempts to include a characteristic length scale into the continuum theory. The



cosserat couple stress theory is taken as a motivation to develop physically meaningful
and computationally simple theories. One of such theories is the strain gradient theory
developed by Mindlin [9]. Gradient elasticity, proposed by Aifantis [11], which is used in
the present work, can be derived as a special case of Mindlin’s theory. In the following
paragraphs, first, the couple stress theory is discussed along with its limitations; secondly,
Mindlin’s theory is discussed briefly about how some of the limitations of couple stress
theory are avoided; and thirdly Aifantis gradient elasticity is presented as a

computationally simple theory compared to Mindlin’s theory.

Cosseart couple stress theory is based on the assumption that there exists a strain energy
density function which is a function of strain as well as rotational gradients. The work
conjugates of strain and rotational gradients are stress and couple stress respectively.

The introduction of a new kinematic variable, which is rotational gradient, demanded for
an extra modulus connecting couple stress with the rotational gradients. This bending-
twisting modulus has a dimension of force and it is through this modulus the
characteristic length is introduced into the couple stress theory. The length scale is
adopted as the square root of ratio of bending-twisting modulus to shear modulus. The
Couple stress theory is also employed to solve for stresses at the crack tip, however,
stress singularity persisted (Sternberg and Muki) [8]. The introduction of couple stress

made the force stress tensor asymmetric which made the computational implementation

difficult.



Mindlin’s [9] work on microstructure in linear elasticity is the most pertinent and notable
which introduced the idea of unit cell to account for the micro-medium in a continuum. A
restricted version of this Mindlin continuum is deduced by making the material micro-
homogeneous resulting in a strain energy density function depending on macroscopic
strain and strain gradient. In his paper with Eshel [10], the first order strain gradient
theory is dealt in detail and all the three possible forms are explored. The three forms are
distinguished based on the different groupings of the eighteen components of the
additional variable, apart from strain, of the strain energy density function: I, eighteen
components of second gradient of displacement gradient; II, eighteen components of
strain gradient; III, eight components of rotation gradient and ten components of fully
symmetric part of second gradient of displacement or strain gradient. All the three forms
lead to the same displacement equations of motion and same traction boundary
conditions. But the most noteworthy difference among the three forms is the symmetry of
the total stress, which is symmetric only in form II. This symmetry of total stress avoids

the problem of non-symmetric stress tensor in cosserat couple stress theory.

Mindlin developed the strain gradient theory for an isotropic material in the most general
form which introduced 5 more material constants in addition to the classical elastic
constants whose determination is formidable experimental challenge. The computational
implementation of Mindlin’s theory is very complex. Motivated by the ability of the
theory to exhibit the microstructural effects at the macroscale and towards an attempt to
reduce the material constants and reduce the computational complexities, Aifantis [11]

proposed the gradient elasticity with only one material constant. This simplified theory is



employed in the present work. Before going further, it is worth noting that a correlation
between the strain gradient elasticity and the lattice model of a crystal with nearest and

next nearest neighbor interactions has been shown (see R.A. Toupin & D.C. Gazis [12]).

The main objectives of this work are to 1) regularize the stress singularities at the crack
tip by solving Griffith’s problem using the special theory of gradient elasticity proposed
by Aifantis, 2) stress analyze the bi-material interface cracks 3) stress analyze the
problem of a crack normal to the bi-material interface and 100 microns away from it

using this theory.

The thesis is organized as follows: In Chapter 2, theory of gradient elasticity proposed by
Aifantis [11] is derived as a special case of Mindlin’s [10] form II of his first order strain
gradient theories. The moment equilibrium equations are derived which exhibits the
symmetry of the total stress tensor. The uniqueness theorem of the boundary value
problem of gradient elasticity is presented. The formulations of this theory from the
explicit and implicit definitions of non-local strain in terms of local strain are also
discussed. In Chapter 3, Finite element formulation of gradient elasticity is discussed. In
Chapter 4, results are presented and are discussed in Chapter 5. The thesis is concluded in

the final chapter followed by references and appendix.



CHAPTER 2
GRADIENT ELASTICITY FORMULATIONS

Mindlin’s [9] work on first order gradient theories is most noteworthy in his effort to
manifest the microstructural effects at a macroscale. In his work, he presented in detail all
the three possible forms of strain energy density for a grade-2 theory. Unlike the classical
linear elasticity, the grade-2 theories are based on an assumption that strain energy
density function is dependent not only on six components of strain but also on the
eighteen components of strain gradient. He classified the three forms on the basis of
different groupings of the eighteen additional arguments of strain energy density
function. The strain energy density function having the additional eighteen arguments

Form I: as second gradient of displacement, Form II: as strain gradient and Form III:
eight components of rotation gradient and ten components of fully symmetric part of
second gradient of displacement or strain gradient. In particular, gradient elasticity which
is employed in the present work can be shown as a special case of Form II of Mindlin’s
theory. In the following paragraphs, Mindlin’s theory is discussed and shown how

Aifantis theory is a special case.

The grade-2 theory of elasticity is based on an assumption that there exists a strain energy
density function which depends not only on six components strain but also on additional

eighteen components of strain gradient.

Mg e @1

where &jj is symmetric part of displacement field



1
gl.j:§<ui,j+ujai) ------ (22)
where uj denotes the component of displacement vector and the indices following the

comma denote partial derivatives with respect to the spatial coordinates.
2.1 Variational equations of motion:

According to the principle of virtual work, variation of strain energy i.e; internal work is

equal to the variation of work done by the external forces i.e; external work.

where W= [Wdv and WE is the work done by the external forces.
V

For the variation of strain energy, the work conjugates of strain and strain gradient are

defined as follows:

ow
c.=——=0, e (2.4a)
by bse Jl
i
ow
“eo = —u (2.4b)
Ji pe kij
ijk

10



where O Cauchy stress, is the work conjugate of strain. The first index denotes the
plane on which it is acting and the second index denotes the direction of action. i

double stress, is the work conjugate of strain gradient. The first index denotes the plane
on which double stress is acting, second index denotes the direction of lever arm and the
third index denotes the direction of action. The double stress can be easily appreciated

with the help of Fig. 1.
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Fig 1: This Fig. is a pictorial representation of one component of double stress. The <=
sign reads as “work conjugate of”. As it can be noticed from the figure, double stress is
self-equilibrating with no net moment and no net force [9]. The solid line represents the

undeformed and dashed line represents the deformed shape.
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The variation of strain energy density is

ow :a—W&"ij +88—W5gij k
8gl-j 'gij,k )

= Gjiégij + ’ukjié‘gij,k

Using the definition of strain as the symmetric part of displacement gradient, the above

equation can be expressed as

oW = ou, . —o S v Y E e — 2.6
Gji(ui,j a’if‘)+“1g'i(“i,jk wyk) (2.6)

As o ji 1s symmetric and u i 1s symmetric in indices i and j, we obtain

W=c ou +u
i T ik

13



SW = - Su, | - - 5 D I — 2.7
[(“ﬁ g kﬁ,k) } J (“ﬁ,f ”ka',kj) “ﬁ(ﬂ ki ui’j),k =0

Therefore, the variation of the total strain energy is

W, = Ij/é‘WdV ------------ (2.8)

Applying divergence theorem to equation (2.8), we obtain

nj(aﬁ _'ukji,k)&‘idS _Ij/(o-ji,j _'ukji,lg'j&lidl/

+£nkﬂ/g-i5ui’de ------------ (2.9)
In the last surface integral, the variation of u; j is not independent of variation of u;on
the surface. As the variation normal derivative of displacement » Ui is independent of
variation of displacement u; on the surface, u; . in the last integral can be resolved on

L]

the boundary into surface gradient and a normal gradient as follows:

nk‘ulg'i ij = nk‘ulg'i j k'ukjinjD&li """""" (2.10)

where the operators D | and D are defined as follows:

14



D, z(aﬂ —njnljal R —— @.11)

with &, being the kroneker delta and O, denotes the spatial partial derivative with

respect to the subscript.

The first term on the right hand side of equation (2.10) contains the non-independent

variation D j&‘i which can further be expressed as [using the product rule of
differentiation ( d(u) = d(uv)-d(v) )]

D 0u; :Dj(n

nk'ukjl J kﬂkji&ti)_Dj(nkﬂkji)&li ————————— (2.12)

The last term in the above equation (2.12) now contains the independent variation of du; .

Using surface divergence theorem, the first term of the equation (2.12) can be written as:

Dj(nkukjl.é'ul-):(Dlnl)njnkulg.l.é'ui ---------- (2.13)

Assembling all the results from (2.9) to (2.13), equation (2.8) can be written as

§WI = g[nj(aﬂ _’ulg'i,k)_Dj (nk'ulg'i) + (Dlnl)njnk'ulg'i}é‘uids

_Iﬁ[(aﬂ’j - Hygi g H&uidrf Ity ;DS

The variation of work done by the external forces, neglecting the body forces, is

15



W, = [toudS+[r,Ddds e (2.15)
S S

where ; and 7; are traction and double traction applied on the surface respectively.

For any independent variations of u; and Déu; , the principle of virtual work (equation

2.3) results in following stress-equilibrium equations and boundary conditions:

i Mk = 0 Equilibrium equations = smemmemeeeeee- (2.16)
Defining
O-]l :O-]l_’uk]l,k ________________ (217)

Equilibrium equations (2.16) becomes

o (2.18)

% ji,j =

and boundary conditions are

t; = I’l]-(O'jl- _ﬂ/g'i,k)_Dj(nkﬂlg'i)+(Dlnl)njnkﬂlg'i --------- (2.19)

16



T, = njnkﬂkji

2.2) Constitutive equations:

In Mindlin’s work, the strain energy density function is expressed as a function of &jj and

i p in the most general form for a linear, isotropic gradient-dependent elastic material

b

~ 1

TS ki TSkl

For the special form of gradient elasticity proposed by Aifantis, it is assumed that

c3 andc 4 are the only non-vanishing gradient coefficients. More explicitly, the strain

energy density function is taken as [11]:

1 2( 1
W=—-J¢c.e. +us.e.+17 |2 +us .| e 2.22
2 “ii® i T (2 gii,kgjj,k ﬂgij,kgij,kj (2:22)

Using the definitions of work conjugates of strain and strain gradient from equation (2.4)

with equation (2.22) as the strain energy density function, we have

17



ow
= = .. .. 2.23
oy agij /‘Lgppé'lj +2,uglj ( )

ow 2
= =1“1A S 2 2.24
X o (gpp i 'ugij)k (229
i,

9

Using equations (2.23)-(2.24) in equation (2.17),

2
- ““lae 5 +2us | e 2.25
O'jl_ /Igpp 5]1’ +2 ,ugjl, [ (ﬁ‘gpp 5],1, +2 ,uejl, ),kk (2.25)

The above equation is the constitutive relation for the gradient elasticity proposed by

Aifantis. The non-classical parameter / has the dimensions of length. This characteristic

length is attributed to the micro structure of the material.

A boundary value problem can be formulated in terms of solving for displacementul-,

strain &jj and stress &, which satisfies the equilibrium equations (2.18), constitutive

law (2.25) and the boundary conditions

L,=n; (Gji - ﬂkji,k) - Dj (nk/ukji) + (Dlnl)njnk,ukji = f """"""" (2.26a)

18



and

1

u, n; = U' or 1= T 3 (2.26b)

where U,,U",T and T.” are the prescribed values of displacement , normal derivative of

displacement, traction and double traction respectively on their appropriate boundary

portions [11].

2.3) Moment Equations:

The incorporation of displacement gradient into strain energy density function only in the
symmetric form, i.e; strain, guarantees a priori the invariance of strain energy with the
rigid body motion. Variational formulation with such a strain energy density function
does not explicitly give the moment equilibrium equations. The moment equilibrium
equations are derived from the variational formulation with a strain energy density
function, dependent on displacement gradient, with the imposition of its invariance with
respect to anti-symmetric part of displacement gradient. The proof presented here is a

slight modification of the proofin [10].

The strain energy density function takes the form:

w=w'u, .c.) e (2.27)

i,j> <.k

Considering the variation of internal work,
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W) =[oway (2.28)
vV

Considering the integrand in the above equation, we have

A T L e — (2229)
P A ik
u; ; Ejx
Defining,
i = ow' y
kji ag[j’k kij

The above equation (2.29) can be written as:

ow'
W' = ou. .+ .o,
5141-7]- i.j T HiiO% i
’ aW’ ’
oW’ = 5“[,_/ + Uy (&’li,_/’k - 5@'”-,,()

ou iy

: ! ’
Since w4, = 14 »

, oW’ ,
W' = uu é'ul.,j + lukji&’li,jk
LJ
ow'’ ow'’ ’ ’
i (a”ij &ll] . _Laui j] .&ti ’ (ﬂlqi&li’f)’k ~ MOty
: y g,
ow’ oW’ ,
i (aul. i &i] A _[aui jj ‘5”,- ’ (ﬂkﬁé‘ui«f),k
. y i),
i)+ (2.30)

Substituting equation (2.30) in equation (2.28) and applying divergence theorem, we

obtain
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W'=|n,
! !n’ ou, . ou,

i,j i/,

ow' ow') ,
H—J E yﬁi,k}&lids -| ( J — iy AV + [ m gt 0, ,dS
4 i N

Now defining,
~ oW
O :a_ﬂkji,k """""""" (2.31)

LJ

And then applying the condition of invariance of strain energy with respect to rigid body

rotation, that is

;W =0 where [] denotes anti-symmetric part =~ 00l —-emmmemmmemee- (2.32)
Ur. .
[i./]
we have,
W'—-W ,6'—> &, ' — u and equation (2.31) reduces to:
5[ it s =0 Moment Equilibrium equations (2.33)
Since g, = 14, »
(2.34)

Moment Equilibrium equations

The above equation proves that the stress tensor & is symmetric. The symmetry of the
stress tensor in this particular form of strain gradient theory reduces the computational

effort to a large extent as opposed to the asymmetric stress tensor of Form I, Form III of

Mindlin’s theory and couple stress theory.
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2.4) The Uniqueness theorem:

The proof of uniqueness of the solution of equilibrium equations (2.18) with the
constitutive equation (2.25) and the boundary conditions (2.26) is presented below [11].

Assuming, a contradiction of the uniqueness of solution, that there exist two different

solutions {u},gilj,gilj} , {uf,g;ﬁ; }of the same set of equations. It can be easily conceived

that the difference of the two different solutions is also a solution of the set of equations.

Therefore, the difference solution is

12 2 ~ _ o~ o~
w=u; —u; ., & =&;—&, , O.=0.—0" ---—-(2.35)

will, obviously, satisfy the governing equations

and the homogeneous boundary conditions

li=n,; (O-ji - Iukji,k) - Dj (nk/ukji) + (Dlnl)njnk/uk/‘i =0
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and

wn, =0 or r=nmu,=0 e (2.38)

Now, multiplying the equilibrium equations (2.36) with u, and integrating over the

volume,

[6,wav=0 (2.39)
Vv

[6u,av=[Gu) av e (2.40)
Vv Vv

Applying divergence theorem to the integral on the right hand side of equation (2.40) and

using the symmetry of 5, , we obtain

/i

[6edV=[6undS e (2.41)

Using the homogeneous boundary condition (2.37),

[6,e,dv=0 (2.42)

Substituting the constitutive equation (2.25) in the above equation, we have
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[(2e,6, +2ue, )edV —I[(Ae 6, +2ue,) £dV =0 e (2.43)

Applying divergence theorem to the second integral of equation (2.43) and rearranging

the terms, we obtain

[(Ae,6, +2ue, )edV +1'[(Ae, 6, +2ue,) & dV

Fi(Ae 6 +2ue) nedS e (2.44)
Using the boundary condition (2.38), the integral on the right hand side vanishes with

[(2e,6, +2ue,)edV +I'[(Ae,6, +2ue,) &, dV =0 e (2.45)

The above equation is quadratic in strain &; and strain gradiente, , .Since the above
equation holds true for any arbitrary strain field ¢, , strain gradient field ¢;, and over

any arbitrary volume, the following inequalities must be true [11a]

344+2u>0, >0 and">0 (2.46)

The first two inequalities in (2.46) are also the conditions of uniqueness of solution of
classical linear elasticity. The non-classical condition for the unique solution is that the

gradient parameter must be positive.
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To understand this condition from more physical perspective, an analogy is drawn
between the linear couple stress theory and the strain gradient theory. In the couple stress
theory for an isotropic material, the introduction of rotational gradients demands an
additional modulus of elasticity, apart from the classical modulli: shear modulus and
Youngs modulus, which relates the couple stress to the curvature or gradient of rotation
(i.e.; the ratio of couple stress to rotation gradient) with the dimensions of force. The
length parameter is introduced into the theory through this bending-twisting modulus.
The material length parameter is adopted as the square root of the ratio of bending-
twisting modulus to the shear modulus. The requirement of positive definiteness of strain
energy demands a positive bending-twisting modulus. This condition in turn implies that
the characteristic length parameter be positive. Analogously, in the strain gradient theory

of isotropic materials, an additional modulus which connects the double stress and the
strain gradient is introduced with the dimensions of force. The gradient parameter /° is

introduced through this modulus. The condition of uniqueness that [* be positive implies,
in other words, that the modulus connecting double stress to strain gradient be positive
for the strain energy to be positive definite (that is, energy is stored upon deformation not

produced).
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2.5) Gradient Enhanced formulations

The strain gradient elasticity can also be derived directly from the non-local theory.
These formulations are classified as implicit and explicit based on the way non-local
strain is expressed in terms of local strain. In these formulations, the higher order terms

are directly incorporated in a constitutive framework. (R.H.J.peerlings et al [14])

2.5.1) Implicit Formulation:

The non-local strain is defined as a weighted average of the local strain over a certain

volume.
g(x)= %J.g(‘f)g(x + rf)dV , with %J.g(f)dV =1 e (2.47)

where g(&) is a weight function and & denotes the relative position vector of the

infinitesimal volume dV . x is the material point of concern.
In the gradient formulation, the integrand in the definition of non-local strain is

approximated with a Taylor series expansion to keep the equations local, purely in

mathematical sense.

glx+&)=e(x)+Ve(x).& +%v%(x).<2>§<2)
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T %vm.(”g“) T %v“l“)gw e — (2.48)

(n) (n)

where V' and ."” are the n the order gradient operator and nth order inner product.
£" denotes the n factor product. Assuming isotropy and integrating (2.47) with the

substitution of (2.48) over a symmetric volume vanishes all the odd functions and results

in

g=e+cVe+dVie+... e (2.49)

where the coefficients ¢ and d are dependent on the weight function g(é) and the

volume over which averaging is done. Neglecting the higher order terms from (2.49), the

non-local strain can expressed as

g=¢+cNV'e (2.50)

The coefficient of laplacian of local strain, the non-classical parameter, with dimensions
of squared length is introduced. This characteristic length parameter is related to the
microstructure of the material. The dependence of the non-local strain on the local strain
is explicit in the above equation. Differentiating equation (2.49) twice and rearranging

terms gives,

Vie=V’§-cVie¢-avVle (2.51)
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Using equation (2.50), we have

R S — (2.52)

Neglecting the higher-order gradients and replacing ¢ with 7,

The dependence of non-local strain on the local strain in the above equation is implicit.

The governing equations of the implicit formulation of gradient elasticity:

Vo=0 (2.54.1)

E-I'VE=¢ (2.54.2)

Besides solving the classical equilibrium equations of linear elasticity with the classical
boundary conditions, the additional PDE (2.54.2) is required to be solved with
appropriate additional boundary conditions. In order to solve the additional PDE (2.54.2),
boundary conditions of the dirichlet or Neumann type have to be specified. From purely
mathematical perspective, it is necessary to specify either £ or V.£.7 on the boundary.

The boundary condition usually adopted in the literature is

VEA=0 (2.54.3)
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There is no reasonable physical explanation given to the above choice of boundary

conditions as opposed to the boundary conditions derived from a variational approach.

2.5.2) Explicit Formulation

In Explicit formulation, the dependence of non-local strain on local strain is explicit.
In the equation (2.50), the non-local strain is explicitly dependent of the local strain.
Rearranging terms in the equation (2.50), we obtain

e=g-cVie (2.55)

By approximating the laplacian of local strain to be almost same as the laplacian of non-

local strain and replacing ¢ with /2,

Substituting the above equation in the Hooke’s law, the constitutive law of explicitly

gradient enhanced elasticity theory is

oc=D(&-I'Vée)y e (2.57)

The governing equations of explicit form of gradient elasticity are
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A properly formulated boundary problem involves in solving above higher-order partial
differential equation with appropriate and sufficient boundary conditions. Argued purely
from a mathematical stand point, there is a need for higher-order boundary conditions to

solve a higher-order PDE. The higher-order boundary condition used in this case is

Any physical reasoning cannot be attached to this choice of boundary condition. It is
worth comparing the above boundary condition with the boundary conditions derived
from variational formulation. The higher-order boundary conditions derived from

variational method are,

un,=U" o t=nmu,=T" e (2.60)

By comparing BC (2.59) with BC (2.61), one can say that imposing BC (2.59) is

equivalent to prescribing double traction to zero. The question as to why only zero is still
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unanswered. The finite element formulation of gradient elasticity using C' interpolation

of displacement field is discussed in the following chapter.
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CHAPTER 3

Finite element formulation

The finite element formulation of the equilibrium equations (2.18) of the gradient
elasticity is presented in this chapter. The continuity requirements of the displacement
field for the gradient elasticity, the finite element used and the weak formulation of the

governing equations is also discussed below.

3.1) Continuity requirements:

An examination of boundary terms of variational statement of gradient elasticity suggests
that the essential boundary conditions involves the specification of displacement and
normal surface gradient of displacement, which constitute the primary variables of the
problem. Hence, the finite element which could guarantee continuity in displacement and
displacement gradient at the nodes and all along the element edge is sufficient. It seems
that a cubic interpolation using a 9-DOF element would be sufficient, but it does not
serve the purpose. A critical examination of 9-DOF cubic interpolation higher order

element is done below.

Triangular element with corner nodes (9 DOF)

A 9-DOF triangular element has displacement and two first partial derivatives of

displacement as its degrees of freedom per node. As the finite element has nine degrees
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of freedom, an interpolation polynomial with only nine terms is permissible. An

immediate difficulty arises as a complete cubic polynomial has ten terms.

u=a +ax+ayt+tax +axy+ay

+tax +tax’y+axy +a.y

To retain the sense of complete polynomial, all the ten terms in the equation (3.1) could
be retained with any two coefficients made equal (for example &, = &) to limit the

number of unknowns to nine. Several such possibilities have been investigated but a

further, much more serious, problem arises in deriving the shape functions [21].

To ensure the continuity of the displacement and displacement gradient across an element
edge, we must have both displacement and displacement gradient uniquely determined by
the values of the nodes along that edge. At any constant x, it can be noticed from the
equation (3.1) that the function varies as a cubic in y. Along a given side, there are two
nodes and two nodal values (displacement and its gradient) to uniquely determine a cubic

variation. Hence, the displacement is continuous at the nodes as well as all along the

element edge. The normal derivative of displacement (say# ) varies as a quadratic
X

function in y between the nodal points. Since, only two nodal values of normal

displacement gradient are available, a unique quadratic variation cannot be defined. This

results in an inter-element incompatibility of displacement gradient. In addition, u Xy is

not single-valued at the corner points of the element. This non-conforming 9-DOF
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triangular element is found to have convergence problems and singular behavior for

certain meshes [22].

A way out of this difficulty of non-conformity is to use cross derivative of displacement
as one of the degrees of freedom. By doing so, displacement gradient is inter-element
compatible. Unfortunately, the extension to nodes at which a number of element
interfaces meet at different angles is not in general permissible. Here the continuity of
cross-derivatives in several sets of orthogonal directions implies in fact a specification of

all second derivatives at a node [23].

Keeping in mind the non-conforming problems posed by 9-DOF triangular element, we
wisely chose an element with displacement, two first partial derivatives and all second
partial derivatives of displacement which guarantees continuity of displacement and

displacement gradient at nodes and all along the edge.

In addition to the above mentioned conformity requirements, the variational statement of
the gradient elasticity consists of strain as well as strain gradient which demand the
displacement field to be continuous enough so that the strain gradients exist. The
constitutive equation of gradient elasticity has Laplacian of the strain which even imposes
the higher continuity on the interpolation function of displacement field. Therefore, the
shape functions of displacement should be polynomials of sufficiently higher-order so
that they do not vanish when differentiated three times. The extra continuity requirements

on the interpolation function leave a very restricted choice of elements [24].
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3.2) C' finite element:

The finite element used in the present work is a higher-order triangular bending element
formulated by Dasgupta & Sengupta in the reference [14]. The C' finite element is shown

in the Fig. 2 below.

— >  Displacement
component

<> Two first partial
derivatives

Three second partial
derivatives

Fig 2: C' Finite Element

This element uses a complete quintic polynomial to interpolate displacement field. It has
3 nodes with six degrees of freedom per node for each displacement component. The
degrees of freedom are the displacement, its two first derivatives and its three second
derivatives at each node. This results in_ eighteen degrees of freedom for each

displacement component per each element. Therefore, for the displacement vector field,
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the total number of degrees of freedom per element are thirty six. The normal derivative
of displacement along the element edge is constrained to vary as a cubic polynomial. The

laplacian of strains vary as quadratic function inside the element.

ﬁz{Z}z[N].{‘} ---------------- G.1)

where

[NN0...0N,..N,,0...0N,;...N,0....0
" 10.....0N,....N,0....0N;....N,,0...0N,;...N;

where u is the displacement component along the global x-axis and v is the displacement
component along the global y-axis. A comma following each subscript denotes the spatial
partial derivative of the displacement component along that direction. N is the matrix of

shape functions. The shape functions of this element are given in the appendix.
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3.3) Weak formulation of the governing equations:

The weak form of the problem of solving equilibrium equations is the same as solving the
variational statement with appropriate boundary conditions. Therefore, the weak form of

the boundary value problem can be stated as follows:

Given ¢, and 7, on the traction boundary, findu,, which satisfies the prescribed

displacement conditions on the displacement boundary, such that for any arbitrary

variations ou; and du, n,

[o,8e.dV + [ u 8¢, dV =[tSudS+ [t Su ndS - (32)

equation (3.2) is true and, in turn, find gl.j,El.j using

& = l(Mt,j + uj,i) """"" (3.3)
2

6, =Ae, S +2ue —I'(Ae 8 +2ue) (3.4)

Strain and Strain gradient expressed in vector form:
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€72 =902 :Byy& -------------- (3.7)

€12,
where B,B,, and B, are the matrices with first partial derivatives , second partial

derivatives w.r.t x and second partial derivatives w.r.t y of shape functions repectively.

Stress and double stress expressed in the vector form:

O_ll
oc=30,¢=De=DBua e (3.8)
0_12
H,
U, =4p,r=I''De ="DBa e (3.9)
K,

38



where [* and D are squared characteristic length and isotropic elastic constitutive

matrix.
Substituting the equations from (3.5)-(3.10) and using (3.1) in the Variational statement

(3.2), Principle of virtual work, we obtain the following system of equations for the nodal

degrees of freedom for each element:

H(Ea B A EAR A AN ER

:[[[NT]f+(nl[NT]1 G N — (3.11)

where 7 and 7 are the applied traction and double traction respectively. The above

equation can also be written as:

{Kl +1I' (K. +Kw,)}.z,2 =F (3.12)
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where K and F are the stiffness and force matrix respectively. It can be observed from

the above equations that they reduce to the classical ones when the gradient coefficient

[ is set to zero.

The integration scheme used to integrate the left hand side of the equation (3.12) is

analytical using the formula derived by Eisenberg and Malvern [15]:

11! pl
[popaa=—""F —on (3.14)
(m+n+p+2)!

where L,,L,and L, are the area coordinates

m, n, p are non-negative integers and

A is the area of the triangle.
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CHAPTER 4
RESULTS
In this section, the results of FE analysis of, firstly, a crack in a homogeneous isotropic
material upon loading, secondly, an interfacial crack in structurally inhomogeneous bi-
material and thirdly, a crack normal to the bi-material interface under loading are

presented.

4.1) Crack in a Homogeneous Material:

4.1.1) Material

The material used for the simulation of crack in a homogeneous material is tungsten
carbide. Tungsten carbide is a brittle isotropic elastic material with Young’s modulus
(E =680*10° N/m?) and Poisson’s ratio (v = 0.25).

4.1.2) Geometry and boundary conditions

The geometry and boundary conditions of problem domain are shown in the Fig. 3.
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Fig 3: Problem Description: Geometry and boundary conditions

The specimen shown above is one-quarter of a rectangular tensile panel (20x10) with the
crack placed in the centre symmetrical both with x and y axes. The specimen is 10mm
high, 5Smm wide and it is assumed to deform in plane strain conditions. The portion AB
of the Fig. 3 represents the crack in the specimen which is traction free. The boundary
part BC is the line about which the geometry and loading are symmetric in the Y-
direction. BC is prevented from moving in the Y-direction only. The boundary part AE is
the line about which the geometry and loading are symmetric in X-direction. AE is
prevented from moving in the X-direction only. The specimen is pulled along DE by

displacing the surface uniformly by 0.01mm.

In higher-order elements, it is worth paying attention to the way boundary conditions are

imposed. In order to prescribe zero vertical displacement all along BC, it is not sufficient
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just to prescribe zero displacement at the nodes of the element. As the employed
interpolation is not linear, prescribing only at the nodes does not prevent the points
between the nodes from moving in the vertical direction. To achieve what is intended, all
the derivates of displacement along the element edge must also be prescribed to zero at
the nodes, as they are not independent of each other. So, in order to prescribe zero
vertical displacement along BC, vertical displacement, its first and second derivatives

along BC must be prescribed at all the element nodes.

To apply uniform loading along DE, the vertical displacement is prescribed at all nodes
and the first as well as second derivatives along DE are also prescribed as zero. And the

horizontal displacement degree of freedom is left free.

In regard to the higher-order boundary conditions, double traction, that is, the gradient of
strain normal to the boundary is prescribed as zero on the entire boundary. In order to
impose this BC, the second derivatives of displacement normal to the boundary as well as

mixed second derivatives are prescribed as zero on the entire boundary.

4.1.3) Mesh Sensitivity Analysis Results

Mesh Sensitivity analysis is a process of refining the mesh to achieve a converged
solution. This section presents the results of mesh sensitivity analysis for six different
meshes with meshl being the coarse and mesh6 being the finest. The results of mesh
sensitivity analysis for the structure of crack tip, local stress and Effective stress are

presented in the Figs. 4-6.
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the structure of crack tip are shown below for six different meshes as shown in Fig. 4(a)-
(f) and compared with the classical solution. As it can be seen from the Fig. the meshes

In Fig. 4(g) below, the vertical displacement of the crack face is plotted against the
distance along the crack face. In the Fig. 4(g), the crack tip is at Imm. The plot lines of

4.1.3.1) Displacement plots

we use length scale (/) as

fa e

T
i Loy

PLYTATAT

LTAT AT
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uTuTs

100 £ m. As can be seen from the Fig., the response is independent of the mesh size.

are designed so that it is finer at the crack tip. In this analysis,

(d)

(©)

(b)

(2)
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Structure of Crack Tip
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Fig 4 (a) mesh1 (b) mesh2 (c) mesh3 (d) mesh4 (e) mesh5 (f) mesh6
(g) Mesh Sensitivity of Structure of Crack Tip

4.1.3.2) Stress plots
4.1.3.2.1) Local stress plots

The Constitutive law employed in the present work is

2 .
Gji = A¢e p p5ji +2 'Ugji -1 (/18 D P5ji +2ue . ),kk (Effective stress) --------- (4.1a)

Jl

o . =/15pp5 4+ 2ue

ji i (Local) e (4.1b)

Jji
where A, pand ¢are lame’s constants and strain respectively. The term local stress

represents only the first part of the constitutive law which is given by equation (4.1b).

45



In the following two graphs, the mesh sensitivity results of the local o,, stress component

are presented. The graphs of local o,, stress are plotted for six different meshes as shown

in the Fig. 4(a)-(f), with meshl being the coarse and mesh 6 being the finest, along the
boundary line BC of the specimen (see Fig. 3 above). As can be seen the response is

almost independent of the mesh size.
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Fig 5 (a) Mesh Sensitivity of Local o,, Stress component
(b) Magnified view of the plot at the crack tip

4.1.3.2.2) Effective stress plots

The term effective stress represents the stress computed from the constitutive equation
(4.1a) unlike only the first term of the equation for local stress. In the following two
graphs, the plots of the effective o,, stress component are presented for six different
meshes as shown in Fig. 4(a)-(f) plotted along the boundary line BC (see Fig. 3 above). It
can be seen from the graph that although the solution does not converge completely, the

nature of the solution converges to the one shown by the mesh5 & meshé.
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Fig 6 (a) Mesh Sensitivity of Effective o,, stress component
(b) Magnified image of the plot near the crack tip
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4.1.4) Effect of characteristic length parameter

The length scale (/) is considered as the spatial span over which the non-local mechanical
interactions are taken into account. The effect of this length scale on the structure of the
crack tip, local stress and effective stress are presented in the Figs. 7-9. The unit of the

length scale shown in the legend of the following graphs is micrometers.

4.1.4.1) Displacement plots

The structure of the crack tip is shown for four different characteristic length scales (30,
50, 70& 100 micrometers) and compared with the classical solution. Fig. 7(b) shows a
closer look at the change in the graph near the crack tip. It can be observed that the

closure of the crack tip is smoothened as the length scale is increased.
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Fig 7 (a) Effect of Characteristic Length Scale (/) on the Structure of Crack Tip

(b) Magnified image of the plot at the crack tip
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4.1.4.2) Stress plots
4.1.4.2.1) Local stress

The following two graphs present the effect of length scale on the local o,, stress for

four different length scales (30, 50, 70& 100 micrometers). The stress is plotted along the
boundary line BC (see Fig. 3 above). It can be observed that the crack tip stress and the
rate at which decays as moved away from the tip are both decreased with increase in

length scale. Fig.8 (b) shows the magnified picture of the graph near the crack tip.
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Fig 8 (a) Effect of Characteristic Length Scale (/) on Local o,, Stress component
(b) Magnified image of the plot near the crack tip

4.1.4.2.2) Effective stress
The graphs below show the effect of length scale on the effective o,, stress component.
The effective o©,, stress component is plotted for four different length scales along the

boundary line BC (see Fig. 3 above). Fig. 9(b) is a magnified image of the stress plot near

the crack tip.
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4.1.5) Contour Plots:
In this sub-section, the contour plots of local and effective o©,, stress for various length

scales. The Figs. 10-15 show the contour plots for characteristic length scalel0, 20, 30,

50, 70&100 micrometers.
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4.2) Bi-material interface crack

Bi-material interface crack is a crack sandwiched between two different materials. A
problem of bi-material interface crack under mode-I loading is considered in this section.
The geometry and boundary conditions, materials used are discussed in the following two
subsections. The results of mesh sensitivity analysis and the effect of characteristic length
scale are presented in the following sections. In section (4.3), the problem of crack

normal to the bi-material interface and 100 microns away is discussed.

4.2.1) Geometry and Boundary Conditions

The geometry and boundary conditions of the bi-material problem domain are pictorially
presented in the Fig.10 below. The Fig. shown below is one-half of a square tensile
composite panel (10x10) with a crack at the bi-material interface. As the geometry, BC’s
and loading are symmetric about the y-axis, only one-half is considered for analysis. The
boundary portions AG & DE are prevented from moving in the positive x-direction. The
boundary part AB is fixed and the boundary portion GFE is traction free. The specimen is
pulled by applying load along DC by displacing the surface uniformly by 0.01mm. With
regard to the higher-order boundary conditions, the strain gradient normal to the

boundary is prescribed to be zero on the entire boundary.
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4.2.2) Materials
The materials used for the simulation of Bi-material interface crack are Tungsten carbide

and Tantalum carbide. Tungsten carbide is a brittle isotropic elastic material with
Young’s modulus (£ = 680%10° N /m?>) and Poisson’s ratio (v = 0.25).Tantalum carbide
is also a brittle isotropic material with Young’s modulus (E =480*10° N/ mz) and
Poisson’s ratio (v = 0.24). When a composite body consisting of two isotropic and elastic
materials is loaded by prescribed surface tractions, the stress field depends on three
parameters formed from the combinations of elastic constants. But, when the loading and
geometry is such that the body is in a state of plane deformations, the stress field induced
by the prescribed tractions is dependent on only two parameters formed from the
combinations of elastic constants. These parameters are named after professor J Dundurs

as Dundurs parameters [16]. The Dundurs parameter « is defined as
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_ ﬂl(Kz + 1)_ ﬂz(’(l + 1)
“" ,Ul(Kz + 1)+ ﬂz(Kl + 1) (%2

The parameter « for this particular combination of materials is 0.175.a measures the
mismatch in the in plane tensile modulus across the interface.

The Dundurs parameter £ is defined as

_ /Ul(’(z _1)_ﬂ2(K1 _1)
- H (Kz +1)+ ﬂz(Kl +1) 43

The parameter f for this particular combination of materials is0.064 . [ measures the

mismatch in the in plane bulk modulus.

4.2.3) Mesh Sensitivity analysis

Mesh Sensitivity analysis is a process of refining the mesh to achieve a converged
solution. This section presents the results of mesh sensitivity analysis for four different
meshes as shown in the Fig. 17(a)-(d) with meshl being the coarse and mesh4 being the
finest. As it can be seen, the mesh is designed such that it is fine at the crack tip. The
length scale used for this analysis is 100 micrometers. The results of mesh sensitivity
analysis for the structure of crack tip, local stress and Effective stress are presented in the

Figs. 17-22.

4.2.3.1) Displacement plots

The structure of crack tip is a plot of vertical displacement of the crack face verses
distance along the crack face. The following graphs shows the structure of crack tip for
four different meshes (see Fig. 17(a)-(d)) with meshl being the coarse and mesh4 being

the finest. It can be easily observed that the response is independent of the mesh size.
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4.2.3.2) Stress plots

As the bi-material interface belongs to both materials at the same time, the stresses are
plotted along F’H’ and F’’H’’ close to the interface as shown in the Fig. 18.

In this sub-section, the local as well as effective stress plots for four different meshes as
shown in the Fig. 17(a)-(d), with mesh1 being the coarse and mesh4 being the finest, are

presented in the Figs. 19-22.
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Fig 18: Problem Description
4.2.3.2.1) Local Stress plot
The term local stress represents the stress computed from only the first term of the
constitutive law (see equation (4.1b)) as described in the homogeneous case. The

following two graphs show the plots of local o,, stress component along the line F’H’ in

WC material. The graph shows the result for four different meshes as shown in the Fig.
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17(a)-(d). It can be easily noticed that the response is independent of the mesh size. Fig.

19(b) is a magnified image of Fig. 19(a) at the crack tip.
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Fig 19 (a) Mesh Sensitivity of Local o,, stress component
(b) Magnified image of the plot near the crack tip

The following two graphs show the plots of local o,, stress component along the line

F’H”’ in TaC material. The graph shows the result for four different meshes as shown in
the Fig. 17(a)-(d). It can be easily noticed that the response is independent of the mesh

size. Fig. 20(b) is a magnified image of Fig. 20(a) at the crack tip.
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4.2.3.2.2) Effective Stress plot

The term effective stress represents the stress computed from equation (4.1a) as described
in the homogeneous case. The following two graphs show the plots of effective o,
stress component along the line F’H’ in WC material. The graph shows the result for four
different meshes as shown in Fig. 17(a)-(d). It can be easily noticed that the response is

independent of the mesh size. Fig. 21(b) is a magnified image of Fig. 21(a) at the crack

tip
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Fig 21 (a) Mesh Sensitivity of Effective o,, stress component
(b) Magnified image of the plot near the crack tip.
The following two graphs show the plots of effective o,, stress component along the
line F”’H”’ in TaC material. The graph shows the result for four different meshes as

shown in Fig. 17(a)-(d). It can be easily noticed that the response is independent of the

mesh size. Fig. 22(b) is a magnified image of Fig. 22(a) at the crack tip
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4.2.4) Effect of characteristic length scale

The length scale is considered as the spatial span over which the non-local interactions
are taken into account. The effect of length scale on the structure of crack tip, local as
well as effective stresses are presented in the Figs. 23-31. The unit of the length scale in

the legend of the following graphs is micrometers.

4.2.4.1) Displacement plots

The structure of crack tip is a plot of vertical displacement verses distance along crack
face. The following two graphs show the effect of length scale on the structure of crack
tip for 30, 50, 70&100 micrometers and also compared with classical solution. Fig. 23(b)

is a magnified image of the Fig. 23(a) near the crack tip.
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Fig 23 (a) Effect of characteristic le(rll);th scale (/) on structure of crack tip
(b) Magnified image of the plot near the crack tip
4.2.4.2) Stress plots
4.2.4.2.1) Local Stress plots
The term local stress represents the stress computed from only the first term of the

constitutive law (see equation (4.1b)) as described in the homogeneous case. The

following two Fig. 24 show the plots of local o,, stress component along the line F’H’ in
WC material. The graph shows the effect of length scale on the local o,,stress

component for 30, 50, 70&100 micrometers and compared with classical solution. As it
can be seen, the crack tip stress decreases as the length scale is increased. Fig. 24(b)

shows a magnified view of the plots near the crack tip.
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The term local stress represents the stress computed from only the first term of the
constitutive law (see equation 4.1(b)) as described in the homogeneous case. The

following two Fig 25 show the plots of local o,, stress component along the line F’H”’
in TaC material. The graph shows the effect of length scale on the local o,,stress

component for 30, 50, 70&100 micrometers and compared with classical solution. As it
can be seen, the crack tip stress decreases as the length scale is increased. Fig. 25(b)

shows a magnified view of the plots near the crack tip.
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Fig 25(a) Effect of characteristic length scale (/) on local o,, stress component
(b) Magnified image of the plot near the crack tip
4.2.4.2.2) Effective stress plots
The term effective stress represents the stress computed from the equation (4.1a) as

described in the homogeneous case. The following Fig 26 show the plots of effective

0,, stress component along the line F’H’ in WC material. The graph shows the effect of
length scale on the local o,,stress component for 30, 50, 70&100 micrometers and

compared with classical solution. As it can be seen, there is a hump in the stress near the
tip and this hump stress is decreased as the length scale is increased. Fig. 26(b) shows a

magnified view of the plots near the crack tip.
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The term effective stress represents the stress computed from the equation (4.1a) as
described in the homogeneous case. The following Fig. 27 shows the plots of effective

0,, stress component along the line F’’H’’ in TaC material. The graph shows the effect
of length scale on the local o, stress component for 30, 50, 70&100 micrometers and

compared with classical solution. As it can be seen, there is a hump in the stress near the
tip and this hump stress is decreased as the length scale is increased. Fig. 27(b) shows a

magnified view of the plots near the crack tip.

3.5
3 =30
——L=50
25 ——L=70
_ —~L=100
P J ——Classical
e 2
N
N
: \
o 1.5
)
Q
2
o 14
£
w
S — .
0.5 =
O T T T T T
0 1 2 3 4 5 6
-0.5

Distance (mm)

(a)

75



\ —=—1=30
15 ——L=50

——L=70

——L1L=100
—— Classical
N

©
)

Effective sigma22 (GPa)

-0.5

Distance (mm)

(b)

Fig 27 (a) Effect of characteristic length scale (/) on Effective o, stress component
(b) Magnified image of the plot near the crack tip

4.2.4.2.3) Double stress gradient plots

The constitutive law of gradient elasticity can also be written as
i =%ji T ik
where

o ji 1s the effective stress

O ji is the local stress which is comparable to classical stress

ki ke is the double stress gradient

The following two Figs. 28 and 29 show the plots of double stress gradients for various

length scales plotted along the lines F’’H’” and F’H’ respectively (see Fig. 18).
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As it can be seen from the above Figs., the fluctuations in the effective stress are a cause
of the double stress gradient. The spatial fluctuations of double stress gradient can be
interpreted as moments which are the result of introduction of a new kinematic variable
(that is strain gradient). This interpretation is analogous to the couple stress in cosserat

couple stress theory which has curl of strain as the additional kinematic variable.

4.2.4.2.4) Local Shear Stress plots

As the specimen is made up of two different materials, there exists a conflict in
deformation in the transverse direction which results in shear stress and Mode-II type
deformation. The following Fig 30 represent the local shear stress plotted along F’H’ in
WC material for 30, 50, 70&100 micrometers and are compared with classical solution.

Fig. 30(b) shows a magnified view of the plots near the crack tip.
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Fig 30 (a) Effect of length scale (/) on local Shear Stress plots
(b) Magnified image of the plot near the crack tip
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The following Fig 31 represents the local shear stress plotted along F’H’’ in TaC
material for 30, 50, 70&100 micrometers and are compared with classical solution. Fig.

31(b) shows a magnified view of the plots near the crack tip
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4.2.4.2.4) Effective Stress plots:
The following Fig. 32 represent the plots of effective shear stress along the line F’H’ in
WC material for 30, 50, 70&100 micrometers length scales. Fig. 32(b) is a magnified

view of the plot at the tip
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Fig 32 (a) Effect of length scale (/) on effective Shear Stress plots
(b) Magnified image of the plot near the crack tip
The following Fig. 33 represent the plots of effective shear stress along the line F’’H’” in

TaC material for 30, 50, 70&100 micrometers length scales. Fig. 33(b) is a magnified

view of the plot at the tip.
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Fig 33(a) Effect of length scale (/) on effective Shear Stress plots

(b) Magnified image of the plot near the crack tip
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4.2.4.3) Contour Plots
In this sub-section, the contour plots of local and effective o,, stress for various length

scales. The Figs. 34-37 show the contour plots for characteristic length scale 30, 50,

70&100 micrometers.
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Fig 34: Contour plots of (a) local o,,stress and (b) effective o, stress for characteristic
length scale=30microns.
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Fig 35: Contour plots of (a) local o,, stress and (b) effective o, stress for characteristic
length scale=50microns
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Fig 36: Contour plots of (a) local o,, stress and (b) effective o, stress for characteristic
length scale=70microns
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Fig 37: Contour plots of (a) local o,, stress and (b) effective o, stress for characteristic
length scale=100microns
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4.3) Crack Normal to Bi-material Interface and 100 microns away:

The problem of a crack normal to the interface of a structurally non-homogeneous

ceramic bi-material specimen is solved and results are presented in this section. The

materials used are the same as in the case of a bi-material interface crack problem. The

geometry and loading of the specimen are shown in the Fig. 38 below.

MmNy

WC

TaC

ASmm

PLLLLLLLLLLLLL

Fig 38: Problem Description

It can be easily observed that the geometry of the specimen and loading are both

symmetrical about the dashed line. It is for this reason only half of the above specimen is

wisely chosen for simulation. The geometry and boundary conditions of the simulation

domain is shown in Fig. 39.
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Fig 39: Problem Description: Geometry and boundary conditions
The BC is a crack normal to the bi-material interface and 100 microns away from it under
Mode-I loading conditions. The domain is Smm wide and 10mm in length with a 0.4mm
crack normal to the interface. The portions AB & CD are subjected to symmetrical
boundary conditions restricting movement in the vertical direction. The specimen is
pulled along the boundary FE by displacing the surface uniformly by 0.01lmm. Regarding
the higher-order boundary conditions, the first gradient of strain normal to the boundary
is prescribed to zero. The results of mesh sensitivity analysis and effect of characteristic

length scale are presented below
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(b)

Mesh sensitivity analysis is a process of refining mesh size to achieve a converged
for four different meshes as shown in the Fig. 40(a)-(d), with meshl being coarse and

solution. The plots of structure of crack tip, local stress and effective stress are presented

4.3.1) Mesh Sensitivity analysis:

in the Figs. 40

3

mesh4 being the finest

The following graph shows the plot of vertical displacement of the crack face along the
crack face. The structure of crack tip is plotted for four different meshes as shown in the

4.3.1.1) Structure of the crack tip:

(d), and compared with the classical solution. As can be seen from the Fig.

Fig. 40(a)-

40(e), the response is almost independent of the mesh size.
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Fig 40 (a) mesh1 (b) mesh2 (c) mesh3 (d) mesh4
(e) Mesh sensitivity of structure of crack tip

4.3.1.2) Local Stress plots:

The term local stress represents the first term of the constitutive law (see equation (4.1a))
as described in the homogeneous case. The Fig. 41(a) is a plot of local o,, stress
component along the boundary line CD of the specimen (see Fig. 39 above) for four
different meshes as shown in Fig. 40(a)-(d). It can be observed that the response is
independent of mesh size. Fig. 41(b) shows the magnified view of Fig. 41(a) near the

crack tip.
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Fig 41 (a) Mesh Sensitivity of Local o,, stress component
(b) Magnified image of the plot near the crack tip
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The Fig. 42(a) show the plots of local o,, stress component along the boundary line BA

of the specimen (see Fig. 39 above) for four different meshes as shown in Fig. 40(a)-(d) .
It can be observed that the response is independent of mesh size. Fig. 42(b) shows the

magnified view of Fig. 42(a) near the crack tip.
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Fig 42 (a) Mesh Sensitivity of Local o,, stress component
(b) Magnified image of the plot near the crack tip

4.3.1.3) Effective Stress plots:

The term effective stress represents the stress computed from the equation (4.1a) as
described in the homogeneous case. The following Fig. 43 show the plots of effective
0,, stress component plotted along the boundary line CD (see Fig. 39 above) for four
different meshes as shown in the Fig. 40(a)-(d). It can be seen that the response neither
converges nor have a particular trend. Fig. 43(b) is a magnified view of the Fig. 43(a)

near the crack tip.
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Fig 43 (a) Mesh Sensitivity of Effective o, stress component
(b) Magnified image of the plot near the crack tip
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The following Fig. 44 show the plots of effective o,, stress along the boundary line BA

of the specimen (see Fig. 39 above) for four different meshes as shown in Fig. 40(a)-(d).

It can be observed that the effective stress is not a converging.
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Fig 44 (a) Mesh Sensitivity of Effective o,, stress component
(b) Magnified image of the plot near the crack tip
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4.3.2) Effect of Characteristic length scale (/):

The length scale is considered as the spatial span over which non-local interactions are
considered. The effect of characteristic length scale on the structure of crack tip, local

stress and effective stress are shown in the Figs. 45-51. The unit of the length scale

shown in the legend of the following graphs is micrometers.

4.3.2.1) Structure of Crack tip:

The Fig. 45 below shows the effect of length scale on the structure of crack tip. The

graph is plotted for four different length scales 20, 30, 50 & 70 micrometers and

compared with the classical solution.

Vertical Displacement (m)

o
for)
m
oy
X

——Classical

—=-L=20 4.5E-07 -
—+1=30

> L=50 4.0E-07 -
—*—L=70

-0.5 -0.4 -0.3 -0.2 -0.1 0

Distance (mm)

Fig 45: Effect of length scale (/) on Structure of Crack tip
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4.3.2.2) Local Stress plots:

The following Fig. 46 shows the plot of local o,, stress along the boundary line BA (see

Fig. 39) for four different length scales 20, 30, 50 & 70 micrometers and compared with

the classical solution. Fig. 46(b) shows the magnified image of the Fig. 46(a) near the

crack tip.
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Fig 46 (a) Effect of length scale (/) on Local o,, stress component
(b) Magnified image of the plot near the crack tip

The following Fig. 47 shows the plot of local &, stress along the boundary line CD (see
Fig. 39) for four different length scales 20, 30, 50 & 70 micrometers and compared with
the classical solution. Fig. 47(b) shows the magnified image of the Fig. 47(a) near the

crack tip.
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Fig 47 (a) Effect of length scale (/) on Local o,, stress component
(b) Magnified image of the plot near the crack tip
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4.3.2.3) Effective Stress plots:

The following Fig. 48 shows the plots of effective o,, stress along the boundary line BA
(see Fig. 39) for 20, 30, 50&70 micrometers. It can be observed that the effective stress
has many fluctuations without any particular trend. Fig. 48(b) shows the magnified image

of the Fig. 48(a) near the crack tip.
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Fig 48 (a) Effect of length scale (/) on Effective o, stress component
(b) Magnified image of the plot near the crack tip

The following Fig. 49 shows the plots of effective o, stress along the boundary line BA

(see Fig. 39) for 20, 30, 50&70 micrometers. It can be observed that the effective stress
has many fluctuations without any particular trend. Fig. 49(b) shows the magnified image

of the Fig. 49(a) near the crack tip.
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Fig 49 (a) Effect of length scale (/) on Effective o, stress component
(b) Magnified image of the plot near the crack tip
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Local Shear stress plots:

As the specimen is made up of two different materials, there exists a conflict in
deformation in the transverse direction which results in shear stress and Mode-II type
deformation. The local shear stress plots for four different length scales 20, 30, 50&70
micrometers are shown in Figs. 50(a)-(b) and 51(a)-(b). The Fig. 50 shows the plot of

local shear stress along the boundary line BA of the specimen (see Fig. 39 above).
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Fig 50 (a) Effect of length scale (/) on Local shear stress component
(b) Magnified image of the plot near the crack tip

The Fig. 51 shows the local shear stress plots along the boundary line CD of the

specimen (see Fig. 39 above) for 20, 30, 50&70 micrometers. Fig. 51(b) shows the

magnified image of Fig. 51(a) near the crack tip.
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Fig 51 (a) Effect of length scale (/) on Local shear stress component
(b) Magnified image of the plot near the crack tip

104



Contour plots:

In this sub-section, the contour plots of local o,, stress for various length scales. The

Fig. 52 shows the contour plots for characteristic length scale 20, 30, 50&70

micrometers.
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Fig 52: Contour plots of local o, stress for characteristic length scale (a) 20 microns
(b) 30 microns (c) 50 microns (d) 70 microns
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CHAPTER 5

DISCUSSION OF RESULTS

5.1) Crack in a homogeneous material:

The results obtained from the simulation of a crack in a homogeneous elastic brittle
material are presented for six meshes (meshl to mesh6) with meshl being the coarse and
mesh6 the finest as shown in the Fig. 4(a)-(f). Fig. 4(g) shows the mesh sensitivity
analysis of the structure of the crack tip. It can be easily seen from the graph that the
response is independent of mesh size. Fig. 5 shows the mesh sensitivity analyses of the
local o,, stress component plotted along the boundary line BC (see Fig. 3) which also
elucidates the mesh insensitivity of the local stress solution. The curves of the Effective

0,, stress component vs. distance along the boundary line BC (see Fig. 3) for different

meshes are shown in Fig. 6. Upon mesh refinement from mesh 1 to mesh6, the nature of

the solution converges to the one shown by mesh5 & mesho6 at the crack tip.

The effect of characteristic length scale on the structure of crack tip and stress field are
shown in the Figs. 7-9. The length scale embedded in the theory is considered as the
spatial span over which non-local interactions are taken in account. The length scale
choice has been made such that at least more than one element is covered. Fig. 7 shows
the effect of characteristic length scale on the structure of crack tip. It can be noticed
from the graph that the closure of the crack tip is smoothened with the increase in length
scale. This can be appreciated more clearly from the graph plotting the slope change of

Fig. 6 shown below.
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Fig 53: Slope change of the structure of crack tip
The curves of the Local o,, stress component vs. distance along the boundary line BC
(see Fig. 3) for different length scales are shown in the Fig. 8. It can be observed from the
graph that the crack tip stress and the rate at which it dies out as moved away from the tip

is decreased. Recalling that the classical stress solution varies as %/— with r being the
r

distance from the crack tip, we propose the variation of local stress field as

o« %n ------------ (5.1)

The order of singularity (n) of the local stress decreases as the length scale is increased as
shown in Fig. 54. Fig. 9 shows the effect of length scale on the Effective o,, stress
component plotted along the boundary line BC (see Fig. 3). As it can be seen from the
graph, the crack tip stress still persists but the nature of the solution is different from that

of classical in the neighborhood of the crack tip. Although the crack tip stress is singular,
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the stress approaches a finite value near the crack tip. There is a hump in the stress very
near the tip and the height of the hump decreases as the length scale is increased. It can
be observed more clearly in the Fig. 55. The hump in the effective stress is occurred at

about 72.5 microns from the crack tip.
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Fig 54: Change in the order of singularity with length scale
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Fig 55: Change in the Hump stress with characteristic length scale
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Mode-I Stress intensity factor:

The stress intensity factor is a parameter which is used to quantify the state of stress at

the crack tip. The Mode-I stress intensity factor is calculated using the formula
K = ljgon{\/ZﬂrO'n (r,O)} .......... (5.2)

The effect of crack length on the Mode-I stress intensity factor using both classical and

gradient elasticity is shown in the graph below.
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Fig 56: Effect of crack length on the stress intensity factor

5.2) Bi-material interface crack:

Theoretical investigations of bi-material interface crack are dated back to late fifties.
Williams [17] was the first to solve the problem of bi-material interface crack from a

LEFM perspective. He found that the stress and displacement fields at the crack tip are
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highly oscillatory. From the Williams asymptotic analysis, stresses and displacements

behave as

oar (sin,cos)elogr) e (5.3)

U= r% (sin,cos)(g log r) ________________ (5.4)

£ = Llog =5 (5.5)
2r 1+

where [ is a dimensionless composite parameter dependent on material properties

introduced by Dundurs given by equation (4.2). Erdogan [18] considered non-
homogeneous plane with cracks and found that the extent of oscillatory behavior is of the
order of 107° of the crack length. The oscillatory solution implies that the upper and
lower faces of the crack wrinkle and overlap at the tips, which is physically inadmissible.

The classical solution found from the finite element analysis is given in Fig. 57.
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Fig 57: Classical solution of bi-material interface crack problem

The length of the bi-material interface crack in the present work is Imm. Therefore, the

span of oscillation in the solution is around 0.1 Angstroms. To capture the oscillatory
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behavior which is over a spatial span of the order of 10, the finite element size around

the crack tip must be in this order.

The mesh sensitivity analysis results of the bi-material interface crack problem are
presented from Figs.17-22. The results for the mesh sensitivity analysis are presented for
four meshes (meshl to mesh4) as shown in Fig. 17(a)-(d), with mesh1 being the coarse
and mesh4 is being the finest. Fig. 17(e) shows the structure of the crack tip for four
different meshes. It is apparent from the graph that the response is independent of the
mesh size. As the bi-material interface FH belongs to different materials, local and
effective stresses are plotted on the lines F’H” and F’’H’’ as shown in the Fig. 58 below.

These two plot lines are very close to the bi-material interface.
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Fig 58: Problem Description
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Figs. 19 and 20 show the local stress plotted on F’H’ and F’’H’’ respectively. It can be
clearly seen from the graph that the response is independent of mesh size. Figs. 21and 22
show the effective stress plotted on F’H’ and F’’H’’ respectively. As can be observed

from the graph, the nature of the solution converges for mesh3 and mesh4.

Fig. 23 depicts the effect of characteristic length scale on the structure of the bi-material
interface crack. The closure of structure of the crack tip is smoothened as the length scale

is increased. This can be elucidated pictorially from the slope change graph shown in Fig.

59.
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Fig 59: Slope change of the structure of bi-material interface crack tip with characteristic
length scale.
Figs. 24 and 25 show the change in the local stress field with a change in the

characteristic length scale. As it can be observed from the graphs, the crack tip stress is
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decreased and the rate at which it decays as moved away from the tip also decreases, with
increase in the characteristic length scale. Figs. 26 and 27 show the effect of length scale
on the effective stress field. The crack tip singularity still persists but the nature of the
solution is different from the classical one. Although the crack tip stress is singular, a
finite stress is approached very close to the crack tip. Such a physically meaningful
solution at least in the neighborhood of crack tip is a consequence of incorporation of
non-local interactions by length scale. The effective stress has a hump in the curve very
near the crack tip and the peak stress of the hump decreases as the length scale is

increased.
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Fig. 60: change in hump stress with length scale

Effect of characteristic length scale on the stress intensity factor:

The stress intensity factor in classical linear theory (which is local) is parameter which

quantifies the state of stress at the crack tip. However, in the current non-local theory, the
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effective stress field is oscillatory near the crack tip. Nonetheless in order to compare the
two theories, we adopt similar definitions as in classical theory for the stress intensity

factors K-I and K-II as

{@022 (r,o)} & K, = lim {x/%al , (r,o)} ------------- (5.6)

K =
1 I r—>0

=%
with 0 and O being the local stresses evaluated from equation 4.1b.

As the specimen is made up of two different materials, Mode-I and Mode-II stress
intensity factors are calculated separately approaching the crack tip along lines F’H’ and
F’’H’’ in WC and TaC respectively. Figs. 61 and 62 show the effect of length scale on K-

I and K-II calculated separately for two different materials.
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Fig 61: Variation of Mode-I stress intensity factor (K-I) with length scale.
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As it can be observed from the above graphs, the Mode-I stress intensity factor decreases
with increase in length scale. As the length scale is increased, the non-local interactions
have increased as a result of which there is a smooth closure at the tip leading to a
decrease in K-I with length scale. Analytically, a complex stress intensity factor K is

employed by Rice [19] and Hutchinson et a/ [20] which include both K-I and K-II. .

5.3) Crack Normal to Bi-material Interface and 100 microns away:

The problem of a crack normal to the interface of a structurally non-homogeneous
ceramic bi-material is solved and the results for four different meshes as shown in Fig.
40(a)-(d), with mesh 4 being the coarse and meshl being the finest, are presented. The
structure of the crack tip for four different meshes is shown in the Fig. 40(e). It can be
seen that the response is almost independent of the mesh size. The local o,, stress
component is plotted along the boundaries AB (see Fig. 39) and CD (see Fig. 39). Figs.
41 and 42 show the Local o,, stress plots on the boundaries CD and AB respectively.
The response can be noticed to be almost independent of the mesh. Figs 43 and 44 show
the Effective o,, stress plots on the boundaries CD & AB respectively. The response is

highly oscillatory near the tip and does not have a particular trend.

The effect of characteristic length scale on the structure of the crack tip and stress is

explored. The change in the structure of the crack tip with characteristic length scale is

presented in the Fig. 45. It can be observed that the closure at the tip is smoothened as the
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length scale is increased. This can be elucidated clearly from the slope change of the

structure of the crack tip as shown in Fig. 63.
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Fig 63: Slope change of the structure of crack
The effect of length scale on the local stress is presented in Figs. 46 and 47 for boundary
portions AB and CD (see Fig. 39) respectively. The nature of solution near the crack tip
B, which is far away from the bi-material interface, is same as the nature of solution
shown by homogeneous case. But the nature of the stress field near the crack tip C which
is near the bi-material is entirely different from the homogeneous case. This difference in
nature can be attributed to the influence of TaC material on WC material. It can also be
observed that the crack tip stress is decreased as the length scale is increased. As it can be
seen from the Fig. 47, the heterogeneity in deformation is not entirely captured near the

bi-material interface as the element size is in the order of length scale used. The further
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refinement of mesh near the bi-material interface could capture the nature of the
deformation. Figs. 48 and 49 shows the effect of length scale on effective stress which is
highly fluctuating without a particular trend.

Effect of the characteristic length scale on the stress intensity factor:

As the specimen is composed of two different materials, even in Mode-I loading, Mode-
II phenomena exists. The Mode-I and Mode-II stress intensity factors are calculated using
the equation 5.6.

The effect of length scale on both Mode-I stress intensity factor (K-I) and Mode-II stress
intensity factor (K-II) are shown below for both crack tips B and C. The following graph

shows the change in K-I with length scale for the both crack tips B and C. (see Fig. 41).
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Fig 64: Effect of length scale on K-I for crack tip B and C
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It can be observed from the Fig. 64 that the Mode-I stress intensity factor decreases with
increase in length scale. Fig. 65 below shows that change in the Mode-II stress intensity

factor of the crack tips B and C with the characteristic length scale.
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Fig 65: Effect of length scale on K-II for crack tips B and C
It can be seen that K-II for the crack tip B is almost constant with length scale and equal
to zero. This behavior of K-II of the crack tip B can be attributed to the fact that it is in
the homogeneous region far away from the bi-material interface. The graph shows the
Mode-II stress intensity factor (K-II) for the crack tip C (see Fig. 25) increases with

increase in length scale.
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CHAPTER 6

CONCLUSIONS

The classical solution of stress around the crack tip using linear classical theory of
elasticity is singular and the structure of crack tip is closed abruptly at the tip. To capture
the heterogeneity of deformation at the tip, Aifantis modified the classical Hooke’s law
with higher order gradients of strain and proposed gradient elasticity. The theory of
gradient elasticity is presented as a special case of Mindlin’s first order strain gradient

theory and also as derived from gradient enhanced formulations.

A C' finite element with 36 degrees of freedom is used to interpolate the displacement
field. The results of FE simulation of a crack in homogeneous material, of a bi-material
interface crack and of a crack normal to the bi-material interface and 100 micrometers
away from it are presented. Mesh sensitivity analysis is demonstrated by presenting the
response for different meshes. The effect of characteristic length scale on the nature of

the solution is also studied.

Mesh sensitivity analysis results show that the structure of crack tip and local stress are
independent of mesh size. Although the effective stress is not converging completely, the
nature of the solution is converging. A smooth closure of the structure of the crack tip is
achieved which shows that gradient elasticity with an embedded characteristic length
scale could to some extent capture the heterogeneity in the deformation around the crack

tip. But the theory could not regularize the crack tip stress singularity and it persisted as
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before. Although there is crack singularity, the nature of obtained solution is such that it

approaches a finite value near the crack tip unlike predicted by classical theory.

For further investigations in the same lines, one can probe into problems such as (a)
investigation of stress field when the crack normal to the bi-material interface is moved
further away (b) interaction between a bi-material interface crack and a crack parallel to
the interface lying in single material (c) interaction between a bi-material interface crack
and a void lying in single material (d) investigation of stress field of a crack parallel to
the bi-material interface lying in single material when one crack tip rotated about the

other away from the interface.
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APPENDIX

The shape functions of the element used are

5 4 4 3,2 3,2 3 2, .2 2. .2
Ny = L] +5L{ Ly +5L{ Ly +10L] L5 +10L7 L5 + 2017 Ly Ly +30ry LTL, L3 +30ry LTL L5
N, =¢,LiL, —c,L Ly + 4c, L2 —4c, L2 + 4(c, — ¢, )L L, L, — (3¢, +15r,,¢, )L L, L
+ (3¢, +15ry,¢, )L L, L

N, =-b,LiL, +b,L'L, —4b, 1} +4b, 312 + 4(b, — b, )L’ L, L, + (3b, +15r,,b, )L} L, L’
—(3b, +15r,b, )L’ L, L

2 2
N, = %L?Lé +%L?L§ — 6,6, L, L, +(Clcz +§FZIC§ jLngle +(Clc3 +§r31032 jL3L§L?

Ns = _bzcstLi - bzchiLi + (bzc3 +byc, )LiLsz - (blcz +b,c, +5r,b,c, )LzLiLf
- (blc3 +byc, +5ry,bsc4 )L3L§Lf

b; b;
Ng = %L?Lé +?2L?L§ ~b,b,L1L, L, +[b1b2 +§r21b22 jLzLéle +[b1b3 +§r31b32 jLsLéLf

where,

bi = yj — Vi

¢, =X, — X,

with i, j,k being cyclic permutations of 1,2 and 3.
bb. +c.c,

p,=——H>” 7

[/ 2 2
/ b +c;

The remaining twelve components of the shape function, N, to N, corresponding to the

degrees of freedom at nodes 2 and 3 are obtained by the cyclic permutations of the
suffixes.
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