
AN EMPIRICAL COMPARISON OF PROGRAM AURALIZATION TECHNIQUES

By

ANDREAS MIKAL STEFIK

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

DECEMBER 2005

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesisof ANDREAS MIKAL STE-

FIK find it satisfactory and recommend that it be accepted.

Chair

ii

ACKNOWLEDGEMENT

Thanks goes out to Kelly Fitz, who put up with my constant revisions, often before he could

read the previous draft.

iii

AN EMPIRICAL COMPARISON OF PROGRAM AURALIZATION TECHNIQUES

Abstract

by Andreas Mikal Stefik, M.S.
Washington State University

December 2005

Chair: Kelly Fitz

This thesis presents a new approach to using music for human computer interaction, layered

program auralization. I use layers of musical structure to represent the state and behavior of a

computer program while it is running, taking advantage of metaphorical relationships between

musical structure and programming constructs. Layers overlap one another, and can intelligently

collaborate to create meaningful mappings from program state or behavior to music. I describe

three possible layers in this new system. A dynamically controlled tonal structure changes the

harmony while a computer program is running. Program state is represented by changes in the

orchestration during execution. Lyrics add semantic information that is difficult to represent with

music alone.

One possible application of layered program auralization is in debugging runtime behavior of

computer programs. Three programs, with faults strategically added, were written to test the

effectiveness of layered program auralization. The three programs created included a roulette

game, a bank automatic teller machine, and an address book. An empirical study was conducted

comparing the effectiveness of three groups of participants while debugging these programs. The

first group of participants were given no auralizations, thesecond strictly musical auralizations,

and the third musical auralizations with additional lyrics. Three sessions of experiments were run,

the first of which without training into how the auralizations work. In the last two sessions of the

experiment, participants in the music and music plus voice groups were given training in the

iv

auralizations.

Results indicate that layered program auralization was effective in the music group for the bank

example, but may not work for every type of computer program,using the current auralization

design. Interestingly, users debugging control flow aspects of programs found more errors than

other types of programs, like linked structures. In addition, in the music plus voice group, subjects

were found to debug less effectively than the control group if they were given no training, although

this effect was not seen with the music only group.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES .xii

CHAPTER

1. INTRODUCTION . 1

1.1 The Layered Program Auralization approach 1

1.2 Experimentation 2

2. BACKGROUND RESEARCH . 3

3. AURALIZATION DESIGN . 8

3.1 Layered Program Auralization 8

3.2 Communication between layers 11

3.3 When music meets code, the basic layers 12

3.4 Cadential Layer - Control Flow 14

3.5 Orchestration Layer - Program State 18

3.6 Lyrics Layer - Semantic Data 21

4. EXPERIMENTAL DESIGN . 25

4.1 Introduction .. . 25

vi

4.1.1 Motivation . 25

4.1.2 Hypothesis and variables selection 28

4.2 Method . 29

4.2.1 Participants .29

4.2.2 Materials and tasks .. 32

4.3 Procedure .38

4.3.1 Implementation issues .. . 38

4.3.2 Makeup sessions . 39

4.4 Results .39

4.4.1 Session 1 . 40

4.4.2 Session 2 . 40

4.4.3 Session 3 . 44

4.5 Analysis .45

4.6 Threats to Validity [49] 48

4.6.1 Conclusion Validity .. . 48

4.6.2 Construct Validity .. 49

4.6.3 Internal Validity .. 50

4.6.4 External Validity .. 50

5. CONCLUSION . 52

APPENDIX

A. CRASH COURSE IN MUSIC THEORY . 56

A.1 Notes and Intervals 56

A.2 Chords . 56

A.3 Harmony . 57

vii

B. SURVEYS . 60

B.1 Pre-qualification survey: Part 1 60

B.2 Pre-qualification survey: Part 2, Ear Training Exam 61

B.3 Pre-qualification survey: Part 2, Ear Training musical examples 61

C. GUIDEBOOK GIVEN TO SUBJECTS . 64

C.1 Introduction .. . 64

C.2 Roulette .65

C.2.1 Roulette Game description 65

C.2.2 Track Listings for V and M group .. . 66

C.3 Bank . 67

C.3.1 Bank Description .67

C.3.2 Track Listings for V and M group .. . 68

C.4 AddressBook .70

C.4.1 Address Book Description .. . 70

C.4.2 Track Listings for V and M group .. . 71

D. COMPLETE CODE . 75

D.1 Roulette .75

D.1.1 Bugs for the Roulette game .. . 75

D.1.2 Roulette code . 76

D.2 Bank . 81

D.2.1 Bugs for the Bank . 81

D.2.2 Bank code . 82

D.3 Address Book .87

D.3.1 Bugs for the Address Book .. 87

D.3.2 Address Book code . 88

viii

BIBLIOGRAPHY .98

ix

LIST OF TABLES

Page

3.1 Different types of layers and their properties. 9

3.2 Possible Responses to two conflicting properties. Notice that no matter the solu-

tion, the original properties are not fulfilled, and a user may not correctly perceive

the appropriate behavior through the given mapping. 9

3.3 Layered mappings from copying a file to sound. 10

3.4 Differences between parameterized icons and layered program auralization. 11

4.1 Variables used in this experiment. 28

4.2 Details for the subjects in group V. An x marks a participant that did did not show

up to any experimental sessions, which prohibited that participant from taking the

ear training exam. .30

4.3 Details for the subjects in group N. An x marks a participant that did did not show

up to any experimental sessions, which prohibited that participant from taking the

ear training exam. .31

4.4 Details for the subjects in group M. An x marks a participant that did did not show

up to any experimental sessions, which prohibited that participant from taking the

ear training exam. .31

4.5 Shapiro-Wilk test for normality on all for all sessions.Notice that all sessions but

one cannot reject the null hypothesis, and thus it is fair to assume the distributions

are normal. 40

4.6 Session 1 results for group V. Participants that did not show up to this session are

not included in this table. 41

4.7 Session 1 results for group N. All participants attendedthis session. 41

x

4.8 Session 1 results for group M. Participants that did not show up to this session are

not included in this table. 42

4.9 Session 2 results for group V. Participants that did not show up to this session are

not included in this table. 42

4.10 Session 2 results for group N. Participants that did notshow up to this session are

not included in this table. 43

4.11 Session 2 results for group M. Participants that did notshow up to this session are

not included in this table. 43

4.12 Session 3 results for group V. Participants that did notshow up to this session are

not included in this table. 44

4.13 Session 3 results for group N. Participants that did notshow up to this session are

not included in this table. 44

4.14 Session 3 results for group M. Participants that did notshow up to this session are

not included in this table. 45

4.15 Experimental results for each hypothesis, using a single factor anova. 45

A.1 The basic intervals 57

A.2 A selection of basic chords 58

A.3 The chords in C Major .. 58

xi

LIST OF FIGURES

Page

3.1 This is an auralization for copying a file. Assume that thequarter notes in this

example take up the appropriate amount of time. Since this auralization includes

only a saxophone, the file size must be small. To remind the reader, the lines

between notes indicate a glissando, or a continuing increase in pitch between notes. 10

3.2 The communication model for the three layers used in thisthesis, Cadential, Or-

chestral, and Lyrics. .. . 12

3.3 Overview of the auralization system 13

3.4 Overview of the auralization system, but with the lyricslayer removed, and with

both the boolean expression layer and the loop layer added. 15

3.5 An IF statement .. 16

3.6 Auralization for a true IF statement, using the cadential layer and the boolean

expression layer. The chord progressions in the piano are created by the cadential

layer, and the violin notes are created by the boolean expression layer. 16

3.7 Auralization for a false IF statement, using the cadential layer and the boolean

expression layer. The chord progressions in the piano are created by the cadential

layer, and the violin notes are created by the boolean expression layer. 17

3.8 This is an IF-ELSE combination. The music represented here is what would play

if, in the running computer program, the value of the variable d were, for example,

59. 17

3.9 Auralization for an IF-ELSE combination 18

3.10 A for loop .18

xii

3.11 This is an auralization for a for loop. The chords in the piano are created by the

cadential layer, and the violin melody is created by the looplayer. 19

3.12 A nested if statement 19

3.13 This is an auralization for a nested IF statement. In this example, the value of d

would be less than 5 and q would be 15 or greater. 19

3.14 The clear method in a linked list, annotated to identifythe layer corresponding to

each auralized construct. 20

3.15 This score shows dynamic memory allocation with the orchestration layer and the

lyrics layer. The piano part is created by the cadential layer. The part labeled tenor

is created by the lyrics layer, this time with the boolean expression layer and loop

layer removed. The last five staves are created by the orchestration layer. 21

3.16 Auralization for a nested if statement with the booleanexpression layer removed

and the lyrics layer added. .. . 22

3.17 Program fragment for adding a node to a linked list, annotated to identify the layer

corresponding to each auralized construct. 23

3.18 Auralization for the faulty add method. Notice that in this auralization, the lyrics

layer and the boolean expression layer are added. One benefitof layered program

auralization is that layers can combined without effectingthe other layers. 23

4.1 Experiment overview 33

B.1 Pre-Qualification survey: Part 2, Ear Training, Question 1 61

B.2 Pre-Qualification survey: Part 2, Ear Training, Question 2 62

B.3 Pre-Qualification survey: Part 2, Ear Training, Question 3 62

B.4 Pre-Qualification survey: Part 2, Ear Training, Question 4 62

B.5 Pre-Qualification survey: Part 2, Ear Training, Question 5 62

B.6 Pre-Qualification survey: Part 2, Ear Training, Question 6 [41] 62

xiii

B.7 Pre-Qualification survey: Part 2, Ear Training, Question 6, variation on [41] 62

B.8 Pre-Qualification survey: Part 2, Ear Training, Question 7 63

B.9 Pre-Qualification survey: Part 2, Ear Training, Question 7 63

xiv

Dedication

To my wife.

xv

CHAPTER 1

INTRODUCTION

Typical software does not go from design to implementation without error. Errors of design, errors

of requirements, and implementation errors can be a seriouscause of confusion and frustration.

In this thesis, I propose the use of sound during the debugging process to help find faults while

computer programs are executing. I use layers of musical structure to represent the state and

behavior of a computer program while it is running, taking advantage of metaphorical relationships

between musical structure and programming constructs. Musical layers overlap one another, often

similar to viewgraphs on an overhead projector.

1.1 The Layered Program Auralization approach

Musical layers are mapped to program constructs, like IF or WHILE. A layer is, “A method of

generating music, or properties of music, from behavior or data.” While a computer program

runs, program constructs are aurally enumerated, meaning sounds are emitted from the computer.

Sounds emitted relate to the computer code. Creating this mapping is non-trivial, and a general

process for creating such a mapping does not exist in the literature. In addition, not all parts of

a mapping from a running program to sound are equally difficult. Some program constructs, like

an IF, can be mapped to metaphorically equivalent sounds, oreven music. Other characteristics,

even those as simple as representing an arbitrary string or number, have no known, general case,

metaphorical mapping. Mapping sounds to computer programsmay benefit computer users, for

example those trying to debug computer programs.

This thesis introduces two concepts unique to the program auralization literature. The first is

the application of layers to sound mappings [16]. Mappings are divided into layers that work well

for any given part of a mapping, and these layers are transparently combined during auralization.

The second is the use of lyrics to represent program constructs where no metaphorical mapping

1

exists.

For the purpose of debugging, I define three main types of layers, the cadential layer, the

orchestration layer, and the lyrics layer. In the cadentiallayer, program structure is encoded into

musical cadential patterns, a common pattern of chords often used in classical music to indicate the

end of a phrase. The orchestral layer uses the number of instruments currently playing to represent

the state of a computer program. The lyrics layer is used to represent semantic information with

no obvious metaphorical mapping, like numbers and text.

1.2 Experimentation

I conducted an empirical study in order to test the effectiveness of the layered auralization ap-

proach. Novice programmers in an advanced data structures course, sophomore year, were asked

to debug auralized computer programs. There were three experimental groups, those with no au-

ralizations, and two groups with different types of auralizations.

The first non-control group was given auralizations with thecadential layer and the orchestral

layer. This group had no sounds mapped to semantic data. The second group was given the

cadential layer, the orchestral layer, and the lyrics layer. The audio for this group was extremely

similar to the first, but the lyrics were recorded, by a musician, and played back as an additional

layer while debugging.

Lastly, it is possible that the subjects will require training to use layered program auraliza-

tion techniques effectively. Techniques may or may not be effective without training, and may

become more effective with additional training. The experiment was designed to test participants

effectiveness without training, a second test with some training, and a third test with additional

training.

2

CHAPTER 2

BACKGROUND RESEARCH

In program auralization, sound is mapped to behavior or data. In my case, this means mapping

running computer programs to sound, and especially music. Other researchers have used sound

for a variety of purposes. For example, sound is used to help users perform a task like debugging

a program [48], is used to help the blind navigate hierarchical tree structures [38], and is used to

help users understand normal computing events, like copying a file [17]

One important concept for program auralization was first defined by Gaver when working on

the SonicFinder. Gaver defines two types of sound mappings, conceptual and perceptual [17, 16].

A conceptual mapping maps parts of the computer, transistors, gates, data structures, to a model

world. This can be thought of as a metaphor for the way the computer works, similar to thinking of

the computer as a desktop, with files and folders. A perceptual mapping maps the model world into

something a user can perceive, like a file or a menu. There are three types of perceptual mappings,

symbolic, metaphorical, and iconic or nomic.

A symbolic mapping has meaning only by convention, say a beepat an arbitrary frequency. A

metaphorical mapping makes use of a non-literal relationship between an object and its represen-

tation. An example is filling up a water glass representing copying a file. An iconic, or nomic,

representation looks or sounds like the thing it is trying torepresent. For example, a nomic map-

ping of deleting a file could be represented by a crash sound, acrunching sound, or an explosion.

Gaver later worked on representing “dimensional” information in sounds [18], and proposes

using sound synthesis techniques to parameterize the sounds. He presents this approach to give

auditory icons more parameterization capabilities. For example, a file could sound large if it is

large, or could sound small if it is small [18].

Sonnenwald describes an architecture for InfoSound, a program auralizer [40]. Sonnenwald

used several types of auralizations, including speech, everyday sounds like a telephone ringing,

3

in addition to musical events. These sounds corresponded tovarious events, where a telephone

ringing could, for the most obvious presentation, represent someone calling on a phone. Music

can, instead, represent events that are more difficult to define with a telephone ringing, or other

every day sounds. In the case of InfoSound, InfoSound used music to define abstract events in

parallel processing.

Earcons are defined as “... nonverbal audio messages used in the user-computer interface to

provide information to the user about some computer object,operation, or interaction” [27]. In

this context, Blattner considers computer objects to be things like files or menus and operations to

be things like editing or compiling. Editing a file would be anexample of an interaction that could

be auralized with an earcon.

The first empirical studies conducted on earcons were completed by Brewster [8]. Brewster

determined that earcons were more effective for portrayinginformation than unstructured sound.

Two experiments were conducted, and with that data, generalguidelines for creating earcons were

developed.

Knuth gives an interesting, and humorous, account of the complexity of song. In [23], reprinted

in [24], Knuth discusses the length of songs in relation to the length of the text for those songs. For

example, if a song has a refrain, and thenm verse refrain pairs, the total space complexity of the

song iscm, wherec < 1. Other songs have further reductions in space complexity. Old Macdonald

has a complexity of(20+λ+α)
√

n/(30 + 2λ)+O(1), the 12 days of christmas has a complexity

of
√

n/ log n, andn bottles of beer on the wall has a complexity ofO(log n) [24].

Boardman created the language Listen, now reimplemented inJava and called JListen [6]. The

original motivation for Listen was to create a tool for describing how computer source code can be

auralized. This work included the creation of the LSL, Listen specification language, that allows

auralization code to be put into other computer programs. This specification tells the Listen system

how to interpret computer code it receives, and what to auralize in that code. So, in Listen, the

focus was on inputting code and outputting auralized code, but not on the actual sounds themselves.

4

New work into JListen has included the creation of an auralized web server [32] and an intrusion

detection system [19].

Francioni et al describe an auralization of parallel programs [14, 12, 13]. In these papers, a

parallel program’s behavior is defined as a series of events that can be auralized, or played, during

program execution. Other work by Francioni in program auralization was intended to help users

with disabilities, especially non-sighted users. This work included an auralizing Java programming

tool, called JavaSpeak, which was created for visually impaired computer science students [39, 15,

38].

In 2005, Rigas and Alty present aural information about a 40 by 40 grid to visually impaired

users [34]. The results of the experiment indicated that, even without visual aid, users were able

understand the graphical information presented. Similarly, Alty used structured music stimuli to

help blind users understand shapes, which in turn formed diagrams [3, 2].

Bonar et al conducted empirical studies of novice programmers in an attempt to understand

why programming is difficult for novices [7]. They conductedvideo taped interviews with subjects

to try and understand the reasons why novices were making certain types of faults. Spohrer and

Solloway discuss several of the most common, or high frequency, faults, although they call them

bugs, created in novice programs [42]. Data from several universities was collected on a series

of computer science problems. Each problem involved typical program constructs, like file I/O,

loops, if-else like constructs, and several others. Faultswere then categorized by the frequency in

which they occur in novice computer programs.

Chmeil [9] gave training to novice debuggers in an attempt toincrease their debugging skills in

a CS1 course. They found, given debugging training, that students required significantly less time

to debug programs than students who were not given debuggingtraining. Ahmadzadeh created

a two phase debugging study, where they first tested student programs for common compilation

errors, and second tested for logic errors [1]. Results indicated that subjects who were considered

good programmers, according to the author’s criteria, werenot necessarily good debuggers. They

5

also found that weak programmers did not tend to use a desktopdebugging strategy, like using

print statements to indicate output at points in the program.

Alty discusses the importance of audio in computer programs, and gives examples of its poten-

tial use to help non-sighted users with computers [4]. Rigasused diatonic structures, specifically

those from the major scale, stereophony, and multiple timbres in an attempt to communicate infor-

mation to subjects about a sorting algorithm [33]. The results of this study on sorting algorithms

indicate that subjects can determine information about single entities or sets of information over

execution, like the ordering of elements during a bubble sort [33].

Paul Vickers uses tonal musical structures to design his auralizations [44, 47, 46, 48]. With his

program, CAITLIN, Vickers describes his method of program auralization for the Pascal program-

ming language. His auralizations are loosely based on tonaltheory models, and considered the use

of characteristics like harmony and melody. One of the most important aspects of his work is that

Vickers ran empirical experiments on his auralizations. Inthese experiments, he showed a positive

correlation between use of the auralizations and debuggingtoy Pascal computer programs.

One interesting concept in auralization to appear in Vickers is the so called “Point of Interest,”

or (POI). Vickers describes this concept as:

“A point of interest is a feature of a construct the details ofwhich are of interest to

the programmer at execution.” [44]

Since Vickers used Pascal in his CAITLIN sonification environment, he considered the points

of interest that are encompassed by that language. For example, a major chord could indicate a

true in an IF statement, and a minor chord could indicate a false [48]. In a point of interest, musical

or sonic events correspond to execution time events in the code.

An interesting topic in relation to program auralization techniques is the concept of aesthetics.

A recent topic of interest, for example in Scheirer [36], hasbeen user’s emotions when using an

auralization, and its role in the larger topic of human computer interaction. Vickers discusses

6

aesthetic computing [45], a topic of importance in auralization, as uninteresting auralizations may

prevent users from adopting an auralized system.

Leplatre and McGregor present a case study is designed around an email notification sys-

tem [25]. Several different types of auralizations are categorized, and the goal of the experiment

was to discover aesthetic differences within the differentsounds brought forth. The authors deter-

mined, through experiment, that the type of task that is analyzed, or what the user is asked to do,

effects the aesthetic judgment of the participants significantly.

Several studies attempt to analyze the emotional impact of user interfaces in human computer

interaction. Tractinsky discusses the general difficulties of considering aesthetics in HCI [43].

Light discusses the use of emotions in network media, and theethics of manipulating those emo-

tions [26]. In addition, Light consider’s the use of text in different styles, for example a passive or

corporate sounding [26] “voice” and then asks forty subjects of their impressions. Her work relates

a great deal to that of Klein [22, 21], Gilbert [10], and Picard [31].

Scheirer presents a computer system designed to intentionally frustrate the users and gives a

physiological method for determining whether a user is frustrated [36]. The key result of this paper

was to use a physiological method, as opposed to something akin to a survey, to measure a user’s

affective responses to a computer system.

7

CHAPTER 3

AURALIZATION DESIGN

3.1 Layered Program Auralization

In this section, I describe the layered design of the sounds in my program auralizer. I use layers

to represent behavior with sound. I chose three different categories of program comprehension to

represent: control flow, state, and semantic data [30]. Previous work, like Vickers, is concerned

only with control flow [48]. I use music to represent computercode for the purpose of debugging

runtime behavior in that code. The layered approach generates a musical score, which can be

performed by a music rendering system, like MIDI.

I define a layer as, “A method of generating music, or properties of music, from behavior or

data.” A layer is a method because it is a process for creatingeither music or musical properties.

A layer may or may not create music itself, depending on its layer type. Layers may, instead of

generating music, generate only properties of music. I interpret the definition of the termmusic

broadly, and do not limit it to a particular time period, genre, or compositional style.

Layers are either performing layers, non-performing layers, or layers that perform the functions

of both. I call layers that perform both functions heterogeneous layers. Performing layers literally

create sound, and take, as input, some behavior or property.The output of a performing layer is

sound or music.

Non-performing layers and heterogeneous layers, are similar. To understand these two layer

types, layer properties must first be described. A layer property is a characteristic of sound. Sim-

ple examples of a layer property would be high, low, sparse, dense, or a chord progression. A

heterogeneous layer outputs music and properties. A non-performing layer outputs only properties

and does not generate music itself. The concept of a heterogeneous layer is important, as the cre-

ation of layer properties allows for layers to map sounds to other layers properties, allowing layers

8

Layer Type Input Output

Performing Layer Behavior and/or PropertiesMusic or Sound
Heterogeneous Layer Behavior and/or PropertiesProperties and Sound
Non-Performing Layer Behavior and/or PropertiesProperties

Table 3.1: Different types of layers and their properties.

Responses to two musical properties, respectively requesting a sparse and dense sound

Make the resulting sound sparse
Make the resulting sound dense
Make the resulting sound somewhere between sparse and dense

Table 3.2: Possible Responses to two conflicting properties. Notice that no matter the solution, the
original properties are not fulfilled, and a user may not correctly perceive the appropriate behavior
through the given mapping.

to cooperate. For example, one layer can map a behavior to a chord progression. Another layer

can detect properties and “sing along” in the same key, or addinstruments to the musical score.

Table 3.1 several layer types and their properties.

Properties of a layer can be either conflicting or non-conflicting. In most cases, properties are

non-conflicting. A conflicting property is a single participant in a conflicting relationship between

two or more properties, where the output loses information.Properties can only conflict when they

attempt to modify musical parameters that would cause another property’s request to go unmet.

For example, two properties requiring that a sound be both sparse and dense would be conflict-

ing. If the propertydensestates that it wants the sound produced to be that of a full orchestra, and

sparsesays to create the sound of just a piano, a sparse timbre, thenthese two properties conflict.

If the resulting sound has a sparse texture, then thedenseproperty is not fulfilled. Likewise, if

the texture is dense,sparseis not fulfilled. No matter the resolution between this conflict, there is

information loss. Table 3.2 gives possible responses to twoconflicting properties. Notice that no

matter the solution, the at least one properties request is not fulfilled.

For an example of constructing a layer using layered programauralization, consider a layered

auralization approach to copying a file. Suppose that this file had a size of x. For n seconds, 1/x of

9

Attribute Example Mapping
File Size Full orchestra for a “large” file and a single guitar for a “small” file.
Time Required Voice saying, “You have x minutes remaining” every thirty seconds
Time since start Slowly raising pitch

Table 3.3: Layered mappings from copying a file to sound.

Figure 3.1: This is an auralization for copying a file. Assumethat the quarter notes in this example
take up the appropriate amount of time. Since this auralization includes only a saxophone, the
file size must be small. To remind the reader, the lines between notes indicate a glissando, or a
continuing increase in pitch between notes.

this file is copied from one location to another. The operation of copying a file has several attributes

which may or not be important to a user of a system. For example, the following may be important

to some users: the size of the file to be copied, the time required to copy the file, and how long the

file has been copying for.

Suppose we want to create a layered program auralization design of the attributes of this op-

eration. In layered program auralization, each characteristic is granted its own layer. Table 3.3

contains an example layering from the behavior of copying a file. Figure 3.1 shows a correspond-

ing musical score for this auralization.

Thus, to look at Figure 3.1, we can see that the concepts of timbre, vocals and pitch are used.

The timbre of the sounds do not effect the vocals. For example, a very deep voice can say, “You

have x minutes remaining,” but so can a “tinny” voice. Similarly, pitch does not effect the words

that can be sung. Singers can sing a given text high or low, subject to the limitations of physiology.

Thus, each element of this operation can be auralized.

10

Layered Program Auralization Parameterized Icons [18]

Layers can communicate Parameters do not communicate
Uses musical structure to create layers Uses sound synthesis techniques with pa-

rameters
Easily adjustable in real time through ad-
dition or subtraction of layers

Certain parameters are easier to adjust
than others. Synthesis techniques do not
always allow for the adjustment of arbi-
trary parameters.

Layers have sets of properties Parameters do not have sets of properties
Layers may represent sound abstractly Parameters imply a literal representation

of sound

Table 3.4: Differences between parameterized icons and layered program auralization.

Layered program auralization is a technique for letting multiple sound mappings play simulta-

neously and cooperatively. Layers should not be confused with Gaver’s parameterized icons [18].

In a parameterized icon, sounds are given parameters that correspond to a property of an operation.

For example, if a file is large, that file should sound like it islarge. Thus, parameterized icons may

give information regarding a parameter of an operation, like size. Gaver does not consider com-

binations of parameters. Table 3.4 enumerates several key differences between layered program

auralization and parameterized icons.

3.2 Communication between layers

Layers can be, potentially, independent sources of aural information, but this is not required.

In some cases, it becomes convenient for there to be a communication model for layers. Non-

performing layers would have no purpose if they could not communicate their properties to other

layers.

Allowing for communication to exist between layers can be useful. A non-performing layer

does not generate sound, only properties. For these properties to be rendered musically, they must

be communicated to another layer. Layers interpret properties, and then, depending on layer type,

may generate sound. Layers may need, however, to allow for two way communication. One

11

Figure 3.2: The communication model for the three layers used in this thesis, Cadential, Orchestral,
and Lyrics.

layer may create a set of properties from behavior. These properties are then communicated to

another layer, which in turn creates more properties. Thesesecond properties may be useful to the

first layer, or require a change in the first layer’s properties, and thus two way communication is

allowed.

The auralization design in this thesis consists of three primary layers. The design is a tree

based, top down, model of communication. The root note is a heterogeneous layer. This layer

creates music and properties of music. In my system, the rootlayer, called the cadential layer,

generates chord progressions over time. These chord progressions are communicated to lower

layers, which read these properties and create sound on those properties. I chose for all lower level

layers to be performing layers, they do not create properties.

3.3 When music meets code, the basic layers

To auralize C++ computer code, I designed a system to handle types of program constructs, like

looping, conditional statements, semantic data like numbers or text, and a system for memory

allocation and deallocation. The key to my system is mappingprogram constructs to like musical

structures by considering their fundamental properties metaphorically. However, metaphorical

mappings [17] fail in certain instances, especially in regards to semantic data, like numbers or text.

12

Figure 3.3: Overview of the auralization system

I have an alternate strategy for dealing with this data.

Elements of musical metaphor are powerful, however. The cadence, a chord progression often

used at the end of a musical phrase, is a common occurrence in music from a multitude of time

periods. The cadence is, in fact, so common, and used in so many works by so many composers,

that many common patterns were given special names. Two common examples are plagal, an amen

in a hymn, or perfect authentic, which is the traditional ending to a phrase in the classical period

of music. Cadences are defined, among other things, by givinga strong pull to the end of a phrase

or piece of music. The strong metaphor forthe endwas useful for mapping to program constructs,

which also have a well defined beginning and ending.

13

The three layers in Figure 3.3 are cadential patterns, orchestration, and lyrics. Cadential pat-

terns were used for auralizing control flow aspects of a program. Orchestration was used to repre-

sent elements of a program that sustain over time, or state, and so they add the layer of timbre to the

existing cadential structure. The timbres add instrumentswhich automatically integrate themselves

into the existing cadential structure via one way communication from the cadential layer. Lyrics

can be added as another layer to the auralization, and they also receive one way communication

from the cadential layer. Thus, in other words, the cadential layer, in this case, serves as a root

layer that sends messages to all other layers, allowing themto coordinate or change in real time.

The three layers in Figure 3.3 are not, however, the only layers that were generated during the

course of the auralization design. Two other layers, the boolean expression layer, and the loop

layer were created. These two layers are performing layers,and can be swapped out with the lyrics

layer to represent information without the use of lyrics. The purpose of these two layers is to create

a music only description of control flow. For example, the lyrics layer might literally sing the word

“true” if an IF statement results in true. If, however, the boolean expression layer is used instead,

a music only description of true is used, namely a major third, a common interval in tonal music.

Thus, the cadential layer generates chords that represent control flow, but it does not represent the

value control flow takes at runtime. If neither the lyrics layer were used, nor the boolean expression

layer, the user could identify aurally that an IF statement occurred, but whether that statement was

true or false could not be determined. Figure 3.4 shows the auralization system with the lyrics

layer removed, and with both the boolean expression layer and the loop layer added.

3.4 Cadential Layer - Control Flow

Cadential patterns were chosen to represent control flow because of their likeness to computer code

structures, and their recognizability as part of a musical structure. This metaphorical mapping may

give the listener an opportunity to guess what the music theyare listening to means. The goals of

using metaphor is to reduce training time in a given auralziation system. Any computer statement,

14

Figure 3.4: Overview of the auralization system, but with the lyrics layer removed, and with both
the boolean expression layer and the loop layer added.

syntactically, has a beginning and ending point. Even in unbounded, infinite, loops, there is a

starting and ending point for each iteration of the loop. Cadential patterns are similar, in that they

have a clear beginning and ending. Since the beginning and ending points are well defined, in

terms of voice leading, creating points in between the cadential patterns allowed me to create build

ups to the cadences. Suppose I choose a cadential pattern of I-V-I for some program construct.

To remind the reader, I-V-I is numeric representation of chords that are key neutral. I could allow

repeated instances of that construct to add notes in betweenthe cadential pattern, giving perhaps

I-IV-V-I, I-IV-ii-V-I, or I-vi-IV-ii-V-I.

To keep my auralizations short, I chose to use two chord cadential patterns, like V-I, for many

of my program constructs. Figure 3.5 shows code, and Figures3.6 and 3.7 an auralization, for an

IF statement in C++. These two figures show the control flow layer with the boolean expression

layer. Later, I will build upon this and other examples, and show how adding program state or

semantic information does not alter this design, except by the well defined method of one way

15

if(d < 10) {
//statements to be executed
//when d is less than 10

}

Figure 3.5: An IF statement

Figure 3.6: Auralization for a true IF statement, using the cadential layer and the boolean expres-
sion layer. The chord progressions in the piano are created by the cadential layer, and the violin
notes are created by the boolean expression layer.

communication. In addition, future examples will swap out the boolean expression layer with the

lyrics layer.

In addition, if multiple IF statements occur one after the other, in a typical IF-ELSE construct,

such as the one shown in Figure 3.8, the listener should be able to determine which block of the

code is about to be executed. Figure 3.9 gives a second example with several IF-ELSE combi-

nations. This second auralization combines several IF-ELSE blocks into a short set of cadential

patterns. The music represented in Figure 3.9 is what would play if, in the running computer

program, the value of the variabled were, for example, 59.

Looping constructs, WHILE and FOR, are represented with a different set of cadential patterns,

in this case plagal cadences, or IV-I. Each iteration of the loop, at runtime, changes the chords. In

Figure 3.10, a FOR loop with ten iterations is shown, now withthe cadential layer and the loop

layer, which plays the violin melody underneath the chords.Figure 3.11 shows its corresponding

auralization. The first chord is the beginning of the auralization. Each successive chord indicates

16

Figure 3.7: Auralization for a false IF statement, using thecadential layer and the boolean expres-
sion layer. The chord progressions in the piano are created by the cadential layer, and the violin
notes are created by the boolean expression layer.

if(d < 10) { //1
//statements to be executed
//when d is less than 10

}
else if(d > 10 && d <= 30) { //2

//when d is greater than 10
//and less than or equal to 30

}
else if(d > 30 && d < =50) { //3

//when d is greater than 30
//and less than or equal to 50

}
else { //4

//when d is none of the above
} //5

Figure 3.8: This is an IF-ELSE combination. The music represented here is what would play if, in
the running computer program, the value of the variable d were, for example, 59.

17

Figure 3.9: Auralization for an IF-ELSE combination

for(int i = 0; i < 10; ++i) {
//this loop would execute
//10 times

}

Figure 3.10: A for loop

another iteration of the loop. The last two chords indicate the end of the FOR loop.

For auralizations to indicate where in the code a particularstructure is nested, elements must

sound different. I use key changes to indicate nested structures. Each key change uses the same

cadential relationships, but shifted. As control flow leaves the nested region, the key changes back

to the original, eventually leading to cadences in the original key. Figure 3.12 gives an example of

a nested IF statement and Figure 3.13 gives its corresponding auralization.

3.5 Orchestration Layer - Program State

Program state is “the connections between execution of an action and the state of all aspects of

the program that are necessarily true at that point in time” [29]. Good examples of program state

in a music notation editor would be the number of notes in a score, the name of a score, and

each note itself. In my auralizations, I use orchestration to represent dynamic memory allocation

in the implementation of a linked list data structure. As I added elements to the list, I added

instruments to the auralization, and as I removed elements from the list, I removed instruments

from the auralization. These instruments follow the harmonic structure of the existing cadential

18

Figure 3.11: This is an auralization for a for loop. The chords in the piano are created by the
cadential layer, and the violin melody is created by the looplayer.

if(d < 10) { //1
//executes if d is less than 10
if(q < 15) { //2

//executes if d is less than 10
//and q is less than 15

}
else { //3

//executes if d is less than 10
//and q is greater than 15

}//4
}//5

Figure 3.12: A nested if statement

Figure 3.13: This is an auralization for a nested IF statement. In this example, the value of d would
be less than 5 and q would be 15 or greater.

19

void LinkedList::clear() {
Iterator it(this);
while(it.hasNext()) {

//Cadential layer

ListNode* node = it.next();
Object* ob = node->getObject();

//Lyrics layer

delete node;
delete ob;

//Orchestration layer

}
head = 0;
numNodes = 0;

//Lyrics layer
}

Figure 3.14: The clear method in a linked list, annotated to identify the layer corresponding to each
auralized construct.

patterns.

Figure 3.14 shows the program code for theclear method, which removes all the elements

from the list, and releases the associated memory. Figure 3.15 shows the auralization of theclear

method as it deletes four nodes. In this figure, the piano partis created by the cadential layer. The

part labeled tenor is created by the lyrics layer, this time with the boolean expression layer and

loop layer removed. The last five staves are created by the orchestration layer.

The calls toit.next()andnode→getObject()are not auralized. Thedeleteoperation is also not

auralized directly, but, instead, the orchestration changes from this operation occurring. Note that

the orchestration of the passage “thins out” as the memory isdeleted. This operation works well

when you do not need to know the exact number of objects removed. The thicker the orchestration,

the more memory is consumed.

20

Figure 3.15: This score shows dynamic memory allocation with the orchestration layer and the
lyrics layer. The piano part is created by the cadential layer. The part labeled tenor is created by
the lyrics layer, this time with the boolean expression layer and loop layer removed. The last five
staves are created by the orchestration layer.

3.6 Lyrics Layer - Semantic Data

Previous work in program auralization included only musical information [44]. However, in this

approach, it is difficult to represent numbers and text. Further, while musical elements may be

created with good reason or a strong sense of logic, they mustbe memorized to be understood by

the listener.

In the previous musical examples, I can see several difficulties in determining the location

of a running program in code from cadential sounds alone. Thelargest difficulty is making the

cadential structures sufficiently different, so that an untrained listener can tell them apart. To solve

this problem, words can be used to help the listener understand the current location in an executing

21

Figure 3.16: Auralization for a nested if statement with theboolean expression layer removed and
the lyrics layer added.

program. Figure 3.16 shows the nested IF statement from before, but this time with lyrics.

It is impractical to map numeric data into pitch numbers in the general case, and an obvious

intuitive mapping from music into text does not exist. As an example, consider trying to represent

the text “Hello, how are you Sally?” To assign auralizationsto this text, I could define melodies

for each character, melodies for each word, cadential patterns, or other techniques, but as the

number of text strings the user tries to remember grows in size, it becomes increasingly difficult

to determine an appropriate mapping. In addition, complex text strings that do not correspond to

spoken language, like a regular expression, are even more difficult to represent in an obvious way.

Since a metaphorical mapping does not exist for this type of information, a different solution was

necessary.

Adding a lyrics layer simplifies representing strings and numbers by making their audio rep-

resentation iconic [17]. Figure 3.17 and 3.18 show an example of program constructs causing the

auralizer, using the lyrics layer, to auralize a memory address. With music alone, representing the

address is difficult, but using the lyrics layer, the representation becomes non-ambiguous.

More work is required to design a program auralization system that can account for any type

of program construct. In addition, communication between layers is an open problem. What is

the best communication method for layered program auralization? Do particular communication

methods have consequences for design or for the listener? Other open questions include deciding

22

void LinkedList::add(ListNode* node) //1
{

if(NULL == head) //2
{ //Cadential layer

head = node; //3
//Lyrics layer

// ERROR here:
// should increment numNodes

}
else
{ //Cadential layer

node->setNext(head);

++numNodes;
head = node;

//Lyrics layer
}

} //4

Figure 3.17: Program fragment for adding a node to a linked list, annotated to identify the layer
corresponding to each auralized construct.

Figure 3.18: Auralization for the faulty add method. Noticethat in this auralization, the lyrics
layer and the boolean expression layer are added. One benefitof layered program auralization is
that layers can combined without effecting the other layers.

23

how to map these structures to other languages, like Java or Smalltalk. Other layers will need to be

created to handle different elements of program state, and work will need to be done to determine

the most useful elements of program state for a listener.

24

CHAPTER 4

EXPERIMENTAL DESIGN

4.1 Introduction

In Chapter 3, I discussed a new technique for mapping sounds to attributes or data, layered program

auralization. This system of auralization was used to create auralizations for C++ computer code,

for use in debugging computer programs. This section describes a formal empirical study testing

the effectiveness of the auralizations.

I conducted this empirical study in the fall of 2005, and useddata from this study to determine

whether my auralizations are effective tools for debuggingcomputer code and whether my aural-

izations are effective without training. In the course of this chapter I explain the motivation for this

study and the procedures used to help ensure correctness.

4.1.1 Motivation

There is little research that has been conducted into program auralization, and virtually no research

that includes formal empirical studies. There are, however, a few exceptions. Rigas and Alty

have conducted numerous studies into using audio for representing graphical information [34,

35, 3, 2]. Francioni has done work in using sound for parallelprograms [14, 12, 13] and assistive

technologies [39, 15, 38]. Francioni helped lay the groundwork for future auralization research, but

her experiments were often, at least to a degree, informal. Vickers did the most extensive testing on

program auralization [47], but Vicker’s only scratched thesurface of the empirical testing required

to verify that auralization works. Further, Vicker’s did not give a systematic approach, as I do with

layered program auralization, for creating new auralizations.

Thus, data on whether auralization works for any task at all is limited, and data regarding

auralization for debugging is virtually non-existent, with the exception of Vickers. One question

this study answers is whether auralization can work withouttraining. It may seem an intuitively

25

obvious hypothesis that the use of auralization would be less effective without training. However,

this question is unexplored in the auralization literature.

If auralization researchers find that program auralizationis a useful tool for debugging, but

requires a large amount of training to use effectively, it may not be adopted. Doing empirical work

on training in auralization could be beneficial, as it will give empirical data concerning how much

training each auralization takes. Further, not all auralizations are created equal, and it may be the

case that some auralizations take less training than others. In a sense, studying this element of

auralization could give users of an auralized system a better ”out of the box” experience.

Previous work on debugging with auralization by Vickers used Pascal as the programming

language, and did not use layered program auralization. Thus, the current work intends tests var-

ious layers I generated using the layered program auralization concept, and to test see if these

auralizations increased the number of bugs found by participants. When Vickers did his empirical

experiments, he created computer programs with only one error in them, and subjects either found

the error or they did not. In my experiment, participants were given much larger computer pro-

grams, each with eight faults. There was no empirical reasonwhy eight faults were chosen, other

than the number seemed about right for the size of programs.

The experimental goal is to verify a method for repeated testing with various types of aural-

izations. In this sense, the experiment should lay the groundwork for a way to effectively judge a

set of auralizations. This would allow for future experiments to be conducted by swapping aural-

ization types, but not adjusting the experiment or requiredcriteria. I use the goal question metric

approach to codifying these goals [5].

Goal

1. To determine whether particular auralizations increaseor decrease the ability to find bugs.

2. To determine how effective a particular auralization is with no training, or the effectiveness

“out of the box.”

26

The first goal is important because it gives a baseline for howeffective an auralization is with

its intended task, which is to help people debug. In this context, and for the purpose of this

experiment, the effectiveness of an auralization is definedas:

The ability of one particular auralization to increase the number of faults found in the

context of reading source code for faults.

The second goal is how effective an auralization technique is without training. A likely hypoth-

esis is that music-based auralizations will have lower level of effectiveness without training than

speech-based auralizations. In addition, it may be the case, that certain musical, or speech-based

auralizations require less training then others of the sametype. For example, it might be discovered

that jazz music works better as an auralization technique without training than baroque music, or

the opposite may be true. Likewise, it may be found that preferred music, music preferred by the

listener, has a significant effect on the understandabilityof auralizations.

This goal is important, as the amount of training required isa significant usability question, and

not all auralizations will, necessarily, require the same amount of training. The most fundamental

element of an auralization is its effectiveness, but its effectiveness without training is a reasonable

secondary condition to consider. In other words, all else being equal, if auralization A has a smaller

training time required than auralization B, then auralization A is superior to B. For this reason, the

effectiveness of an auralization without training should be analyzed. The questions and metrics

used in this experiment are enumerated below:

Question

1. Do the auralizations I created increase the ability to findbugs?

2. How effective was each auralization with no training?

27

Dependant Variable Definition
µNno The mean number of faults found without auralizations.
µNms The mean number of faults found using music as an auralization.
µNsp The mean number of faults found using speech as an auralization.

Table 4.1: Variables used in this experiment.

Metric

1. Measure the number of faults found after completing a debugging task with or without an

auralization.

2. Measure the effectiveness of each auralization technique with respect to first use, and without

training.

4.1.2 Hypothesis and variables selection

Table 4.1 shows several variables used throughout the experiment.

In addition to these variables, I define anyµNmsx, wherex = {1, 2, 3} to be an instance of the

experiment. Thus,µNms1 means the first of three runs for testing the number of faults using music

based auralization techniques.

Null and alternative Hypotheses:

Music Hypotheses The null and alternative hypotheses involving music.

1. Null: H0Mx : µnx = µmx, Alternative: HaMx : µnx 6= µmx.

Speech Hypotheses The null and alternative hypotheses involving speech.

1. Null: H0V x : µnx = µvx, Alternative: HaA : µnx 6= µvx.

Independent Variables

• Type of Auralization: None, music, or speech

• Debugging tasks

28

Dependent Variables

• The number of faults found.

4.2 Method

This experiment was conducted using student programmers intheir second year. All programs

used were toy programs, and as such, may be too specific to generalize into industry. While this

study may not generalize to debugging large computer programs, future work may allow for such

tests.

4.2.1 Participants

Participants were selected from a sophomore level course ondata structures in C++. There were 32

students in the course, 29 of whom chose to participate in thestudy. Twenty students participated

in all three sessions. The number of participants in the firstsession was greater than the number in

the last session, due to mortality. Since comparisons between groups are only made for individual

sessions, not between sessions, the change in the number of participants between sessions is not a

threat to validity. Since participants in this study were all students, I encouraged participation in

the study by allowing students to drop their lowest homeworkgrade for participating in all three

sessions of the experiment. This extra credit amounted to about 3% extra credit in the course. If a

subject attended only one or two experimental sessions, they received no extra credit.

Subjects were blocked and balanced into experimental groups according to GPA. There were

three experimental groups a single subject could be assigned to: the control group with no aural-

izations, the music group with only musical auralizations,and the music-plus-voice group. These

groups were labeled N, M, and V. To place subjects into groups, subjects were ranked and put into

subgroups of three subjects. To rank participants, overallGPA and computer science GPA was

used. Participants were first ranked by GPA, and in the case ofa tie, participants were ranked by

computer science GPA.

29

Group V Makeup GPA CS GPA Ear Training Score
1V yes 3.7 3.88 7
2V 3.3 4 x
3V yes 3.2 3.7 6
4V 3 3.5 7
5V yes 3 3.5 3
6V 2.95 2.15 5
7V 2.8 3.85 x
8V 2.8 3.35 6
9V 2.5 2.475 x
Average: 3.03 3.38 5.67
Std dev: 0.34 0.64 1.51

Table 4.2: Details for the subjects in group V. An x marks a participant that did did not show up to
any experimental sessions, which prohibited that participant from taking the ear training exam.

Of the top three students, each individual was randomly put into a group, one in M, one in

N, and one in V. Of the next three students, each was, again, randomly selected into a group.

Tables 4.2, 4.3, and 4.4 show information about the groups. Groups were blocked by GPA, and not

experience with a debugger, as we could not guarantee subjects experience to be accurate.

Of note in these tables is the column labeled makeup. When theexperiment was originally

run, attendance was lower than anticipated. A second set of three sessions was run with additional

subjects. This makeup column indicates whether or not that subject participated in the original

experiment or the experimental makeup sessions. A subject is marked with a yes if they were a

member of the second set of three sessions. In addition, notice that participant 11M, does not fit

with the balancing and blocking scheme. This subject was originally scheduled to participate in

group V, but due to scheduling restraints could not attend this session. We moved this subject to

group M so that he/she could still participate in the study. Allowing these makeup sessions was

better then having next to no subjects, but may have effectedthe validity of the conclusions, as

isomorphism between experimental sessions cannot be guaranteed.

Lastly, subjects were given an ear training test, or a test todetermine whether they could tell

the difference between basic musical constructs. Since thescores were nearly identical between

30

Group N Makeup GPA CS GPA Ear Training Score
1N 3.65 3.7 6
2N 3.32 3.5 5
3N 3.2 3.77 7
4N 3 3.75 6
5N 3 3.35 5
6N 3 2.75 7
7N 2.75 3 5
8N 2.5 2.9 6
9N 2.4 3 4
Average: 2.98 3.30 5.67
Std dev: 0.39 0.40 1

Table 4.3: Details for the subjects in group N. An x marks a participant that did did not show up to
any experimental sessions, which prohibited that participant from taking the ear training exam.

Group M Makeup GPA CS GPA Ear Training Score
1M yes 3.5 3.65 7
2M 3.5 3.5 3
3M 3.2 3.2 x
4M yes 3 3.85 6
5M yes 3 3.15 6
6M yes 3 2.7 6
7M 2.9 3.2 6
8M 2.8 3.07 6
9M 2.5 2.75 5
10M 2.25 3.4 5
11M yes 2.7 2 7
Average: 2.94 3.13 5.7
Std dev: 0.38 0.51 1.16

Table 4.4: Details for the subjects in group M. An x marks a participant that did did not show up
to any experimental sessions, which prohibited that participant from taking the ear training exam.

31

all three groups, I determined that the musical aptitude between groups is at least roughly similar.

Vickers [47] showed no correlation between musical knowledge and debugging performance, so

this attribute would likely not have had an effect even if there were a significant difference between

groups.

4.2.2 Materials and tasks

This was a multiple phase experiment. In each phase, a different test was administered to subjects,

and at each phase, various amounts of training were given. There were three phases to the experi-

ment. In the first phase, groups were administered an ear training test to test their ability to perceive

music. The averages for all three groups were similar. The purpose of this test was to detect any

significant differences between groups in regards to musical perception. No significant differences

were detected, and thus these results were not used for any further purpose. See Appendix B for

the details of this test. In the second and third tests, groups M and V were given training in the

auralizations. Chmeil showed that giving users training indebugging tasks increased their ability

to debug [9], and thus no debugging training was given to any group. Figure 4.1 shows the phases

of the experiment.

The following is outline of the experiment.

1. Administer pre-qualification survey.

2. Break subjects into three blocked and balanced groups.

(a) Control Group, no auralization provided, source code only.

(b) Use of musical sound as an auralization in addition to source code.

(c) Use of speech plus music as an auralization in addition tosource code.

3. Run three tests. Each group is given the same source code example, with or without aural-

izations.

32

4. In the first test, no training was given in how to use the auralizations. In the second and third

sessions, the non-control group received training into howto use the auralizations, but not

training in debugging.

(a) Test 1: Debugging a roulette game with or without auralizations.

(b) Test 2: Debugging a bank program with or without auralizations.

(c) Test 3: Debugging an address book with or without auralizations.

Figure 4.1: Experiment overview

In this section, all debugging tasks used in the experiment are discussed. For a complete listing

of the code, or associated faults, for any of this software, see Appendix D.There are three debug-

ging tasks that were used: a game of roulette, a bank automatic teller machine, and an address

book. An attempt was made to make these tasks as similar as possible. Each task contained eight

faults, faults were similar in nature, and programs were of approximately the same length. The last

program, the address book, was slightly longer than the other two programs, and thus in this test,

participants were informed that all faults were in either the AddressBook.cpp, AddressBoook.h,

LinkedList.cpp, or LinkedList.h file. This narrowed the region participants had to look for faults

down to a region of code similar to the other two experiments.

In addition to this, auralizations for all three debugging tasks were as similar as possible. All

three sets of auralizations, both musical and musical with lyrics, had eight tracks. Participants

33

were given a compact disc with all eight auralizations on them when they were asked to debug a

program. Not all tracks illuminated a fault. Participants then used Windows Media Player to listen

to the tracks while debugging the program.

For each track during a debugging task, an input to the program was given. For example,

an input for the address book might be “5.” This would mean that audio for that track starts at

the beginning, or first line of, the printAll function in AddressBook.cpp. Essentially, this tells

the participant the state of the running computer program atthe time the auralization begins. For a

complete list of code and tracks see Appendix C. This approach is analogous to setting a breakpoint

in a traditional program, except that I set the breakpoints for the participants and they listen to what

sounds would be created at that breakpoint. This information was not given to the control group,

which is a threat to validity.

In the roulette game test, users were asked to debug a commandline version of the game of

roulette. This version of roulette had only two methods of betting, color and number, and thus is

a simplified version of the American casino game. In the colorgame, the user bets on either black

or red. A ball is then spun on a roulette table. This table has sockets where the ball can land after

it stops spinning. The ball will land on either a numbered redspace, black space, or green space.

If the player bets on a color, and the ball lands on what the player chose, that person wins

twice the amount they bet. If the ball lands on either green orthe opposite color of what the player

chose, they lose their bet. Having green slots in the table is, of course, how the house always wins,

over time. If the ball lands on a green spot, the player alwaysloses. The other type of bet is on a

number. Each slot on the roulette table is numbered, green slots being 0 and 00. If the user guesses

the correct number, that person wins 35 times the amount theybet. Like before, if the ball lands

on 0 or 00, the player loses.

In this command line version of roulette, the user is given $1000 dollars to begin playing the

game. The player is then asked how much they want to bet, and they then place their corresponding

bet on a color or number. The wheel is virtually spun, and the user either wins or loses. The money

34

is then tabulated, and the player is asked whether he/she would like to play another game.

The bank debugging task is a model of an automatic teller machine. The command line inter-

face to this program has a menu, which has the following options:

1. Login

2. Deposit

3. Withdraw

4. Transfer

5. Check funds

6. Logout

Essentially, these functions simulate the behavior of a simple bank automatic teller machine.

Since this is a bank system, the most obvious of security protocols should be implemented, namely

that you must log in before you can withdraw, transfer, or deposit money.

The address book program is also a menu driven command line program for adding friends to

a virtual address book. This third program was chosen, especially, because it includes the imple-

mentation for a linked list. Linked structures can have several obvious faults like memory leaks,

garbage pointers, nodes not being properly instantiated, and others. This program had several

common address book like functions, which are enumerated asfollows:

1. Add a friend

2. Delete a friend

3. Edit information for a friend

4. Search for a friend

35

5. List all friends

6. Delete all friends

Fault insertion process

A list of the eleven most common faults in novice computer programs was created by Spohrer and

Solloway [42]. These eleven common faults were categorizedinto what Spohrer and Solloway call

”bug types” . Not all eleven bug types were used. Adding too many faults to a small program may

make the faults obvious, or may saturate the program with faults. To ensure there were not too few

or too many faults, a pilot test was run, and no ceiling or flooreffect was discovered from that data,

meaning the number of faults in the program was about right. The following ”bug types” [42] were

identified as the six most common in novice programs:

• Off-by-one bug: A bug involving boundary conditions in the program.

• Output fragmentation bug: This type of bug occurs when the program prints out an unini-

tialized variable.

• Or-for-and bug: A bug when an OR statement is mistakingly used for an AND, or vice versa.

• Incorrect Constant bug: A bug that occurs when a constant in aprogram has the wrong value.

An example would be accidentally typing SOMECONSTANT = 9999 instead of, perhaps,

99999 [42]. This occurs most often when a value is dropped at the end of a number with

repeating digits.

• Incorrect formula bug: This occurs when, literally, an incorrect formula or calculation is

used.

• Missing parentheses bug: Occurs when parentheses are left out of a calculation. This type

of bug can be avoided with a thorough understanding of operator precedence, or likewise by

the use of parentheses.

36

For each debugging task, computer programs were created, modeling a game of roulette, a

bank, and an address book. Working versions of these programs were created, before adding in

faults. While I can certainly make no guarantee the programswere fault free, the programs went

through an extensive testing process. To test the programs Iused simple unit testing techniques,

conducted several code reading sessions, and performed manual testing on the computer. After

testing, faults from the above categories, and other similar faults were inserted into the code in

appropriate places. Since Spohrer and Solloway suggest these faults are the most common in

novice programmers, and my participants for my experiment are novices, it is reasonable to assume

there will not be a ceiling effect in the study. However, a pilot test was run to be sure, and no ceiling

or floor effects were found. The goal was to add faults that aresufficiently difficult to find.

Pilot study

In order to test the initial correctness of the programs and auralizations further, I conducted a

small pilot study. In this study, I tracked the number of faults found for each group and found

no ceiling or floor effect. In addition, during this process,several errors and problems in the

auralizations, the code, and the study handbook given to participants were found and corrected

before implementation of the study itself.

Most importantly, running the initial pilot study helped determine initial problems with the

auralizations in terms of perception. For example, the largest problem I corrected before imple-

mentation was in a set of auralizations that use only music, no voice. I discovered that participants

had difficulty determining the difference between true and false on conditional statements. Before

the pilot, this was done using major and minor chords. This was helpful feedback, as it made it

clear that I needed to change the true and false in conditional statements to more aurally different

constructs. In the end, I chose a major chord, in key, for true, and for false I chose aIb5b9 chord, a

chord that is strikingly different from a major chord.

37

4.3 Procedure

The debugging experiment was designed to test the effectiveness, in this case the number of bugs

found, of the auralizations for debugging computer programs. Several hypotheses were tested,

including whether the users in groups M, the music group, andV, the music and voice group,

found more errors than group N, the control group, without auralizations. This was done in three

separate experimental sessions, the first of which subjectswere given no training into how to use

the auralizations.

4.3.1 Implementation issues

In this first session, the no-show rate in the experiment was 70% in the V group, 40% in the M

group, and 0% in the N group. I attempted to minimize the high no show rate in groups M and

V by holding makeup sessions for those that did not show up. Two makeup sessions were held,

at different times, for group V, and one makeup session was held for group M. The number of

participants, if you include those that made up the sessions, was five in group V, six in group M,

and nine in group N, at this point. Unfortunately, this introduces a threat to validity, as it is not

possible to make sessions 100% isomorphic. However, running makeup sessions, with the same

packet, same code to debug, same procedure, same training, but at a different time, is certainly

better than having no participants at all.

In the second session, participants in groups M and V were given a 25 minute training ses-

sion into use of the auralizations. Since it has been shown that giving participants training into

debugging techniques does impact how effective they are at debugging, no training into debugging

techniques was given to any group [9]. The training exampleswere chosen carefully, as to not

highlight bugs, but instead to highlight what sounds different program constructs made. For exam-

ple, participants learn what an IF statement sounds like in the auralizations, but do not learn how

to use that information to debug an IF statement that is exhibiting incorrect behavior. Thus, groups

M and V were trained in the auralizations, not debugging, giving them no unfair advantage over

38

group N.

No-show rates were similarly bad in the second session. Since only participants that went to the

first session, or did a makeup, could attend the second session, no-show rates were worse than in the

first session. In group V, two people attended the study, and only one person attended a makeup

session. In group M, similarly, only four people attended, and no students attended a makeup

session. For session three, no-show rates were similar to previous weeks. Most participants, except

for one, that attended in week two, also attended in week three.

4.3.2 Makeup sessions

Overall, no-show rates were so bad, that a second complete set of sessions was completed to

increase the overall experimental validity. To do this, a second round of all three sessions of the

experiment was run with only participants that missed the initial session. Participants were kept in

their original groups, but asked, again, to participate. Many more participants attended the makeup

sessions. While the makeup sessions were at different timesand days, great care was taken to

ensure the sessions were as close as possible to the previousones.

4.4 Results

In this section we enumerate the data and results from the experimental study created to test the

effectiveness of the auralizations. Groups were blocked and balanced, originally, but because of

the the no shows, groups ended up with an uneven number of participants. Statistics were run on

each category separately, using one way ANOVA tests.

To test my hypotheses, an analysis of variance test was used [28, 20]. ANOVA assumes a

normal distribution, though even without a normal distribution the test is considered robust [28].

To test for normality, a Shapiro-Wilk test was used [37, 11].Shapiro-Wilk is typically used for

sample sizes up to 50 [37]. Table 4.5 gives the results of the Shapiro-Wilk test. The null hypothesis

of the Shapiro-Wilk test is that the data is normally distributed. Notice that all data but one fails

to reject the null hypothesis. However, the mean number of bugs found in the session that for the

39

Session and group Shapiro-Wilk Statistic df Sig.
Session 1V 0.876137791 6 0.251786
Session 1N 0.976489567 6 0.932837
Session 1M 0.821615562 6 0.091135
Session 2V 0.681970284 6 0.003969
Session 2N 0.826904886 6 0.101171
Session 2M 0.915458969 6 0.473271
Session 3V 0.889821884 6 0.317256
Session 3N 0.912375133 6 0.452205
Session 3M 0.91290618 6 0.45579

Table 4.5: Shapiro-Wilk test for normality on all for all sessions. Notice that all sessions but one
cannot reject the null hypothesis, and thus it is fair to assume the distributions are normal.

Shapiro-Wilk the null hypothesis can be rejected is so closeto the mean of the control group, that

running a test for this comparison is inconsequential anyway.

4.4.1 Session 1

In the first session, participants were given no training in how to use the auralizations. In turn,

this lack of training had a clear effect on the results for this section. The two results of note

are that group V actually performed worse than group N, and group M seemed to perform only

marginally better. In order to give further insight into theeffectiveness, or potential lack thereof,

of the auralizations bugs are tracked by number. This way, I can analyze the frequency of which

individual bugs were found, and compare them to the groups. Tables 4.6, 4.7, and 4.8 show the

data for the first session of the experiment.

4.4.2 Session 2

In this session, group M clearly outperformed the control group,p−value = 0.003, indicating that

M group significantly found more errors than N group. Group V,however, did not reach statistical

significance. Tables 4.9, 4.10, and 4.11 show the data for thesecond session of the experiment.

40

Group V Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1V 0 0 0 0 0 0 0 0 0
3V 2 1 1 0 0 0 0 0 0
4V 3 0 1 1 1 0 0 0 0
5V 0 0 0 0 0 0 0 0 0
6V 3 1 0 0 0 1 0 0 1
8V 4 1 1 1 0 0 1 0 0

Average: 2 0.5 0.5 0.5 0.25 0.25 0.25 0 0.25
Std dev: 1.67 0.55 0.55 0.52 0.41 0.41 0.41 0 0.41

Table 4.6: Session 1 results for group V. Participants that did not show up to this session are not
included in this table.

Group N Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1N 5 0 0 1 1 1 0 1 1
2N 1 1 0 0 0 0 0 0 0
3N 4 1 0 1 1 0 0 0 1
4N 4 0 1 1 1 0 1 0 0
5N 3 1 0 1 1 0 0 0 0
6N 7 1 0 1 1 1 1 1 1
7N 5 1 0 1 1 0 1 0 1
8N 6 1 0 1 1 1 0 1 1
9N 4 1 0 1 1 0 0 0 1

Average: 4.33 0.78 0.11 0.89 0.89 0.33 0.33 0.33 0.67
Std dev: 1.73 0.44 0.33 0.33 0.33 0.5 0.5 0.5 0.5

Table 4.7: Session 1 results for group N. All participants attended this session.

41

Group M Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1M 5 0 1 1 1 0 0 1 1
2M 5 1 1 0 0 1 0 1 1
4M 4 1 0 0 1 0 0 1 1
5M 4 1 1 0 1 1 0 0 0
6M 5 0 1 1 0 1 0 1 1
7M 3 0 1 0 0 0 1 0 1
8M 3 0 0 1 1 0 0 0 1
9M 7 1 1 1 1 1 1 1
10M 5 1 1 1 1 0 1 0 0
11M 7 1 1 1 1 1 1 1 0

Average: 4.78 0.67 0.78 0.56 0.63 0.56 0.44 0.56 0.67
Std dev: 1.40 0.52 0.42 0.52 0.5 0.53 0.52 0.52 0.48

Table 4.8: Session 1 results for group M. Participants that did not show up to this session are not
included in this table.

Group V Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1V 4 1 1 1 0 0 1 0 0
3V 3 0 0 1 0 1 0 0 1
4V 4 1 1 1 0 0 0 0 1
5V 3 1 1 1 0 0 0 0 0
6V 3 0 0 1 0 0 1 0 1
8V 8 1 1 1 1 1 1 1 1

Average: 4.17 0.75 0.75 1 0.25 0.25 0.5 0.25 0.75
Std dev: 1.94 0.52 0.52 0 0.41 0.52 0.55 0.41 0.52

Table 4.9: Session 2 results for group V. Participants that did not show up to this session are not
included in this table.

42

Group N Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1N 5 0 1 1 1 0 1 0 1
2N 3 0 0 1 0 0 1 0 1
3N 3 0 1 1 0 0 1 0 0
4N 5 1 0 1 1 0 1 0 1
6N 2 0 0 1 0 0 1 0 0
7N 3 0 0 1 0 0 1 0 1
8N 6 0 1 1 1 0 1 1 1
9N 3 0 0 1 1 0 1 0 0

Average: 3.75 0.13 0.38 1 0.5 0 1 0.13 0.63
Std dev: 1.39 0.35 0.52 0 0.53 0 0 0.35 0.52

Table 4.10: Session 2 results for group N. Participants thatdid not show up to this session are not
included in this table.

Group M Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1M 7 1 1 1 1 0 1 1 1
2M 6 1 1 1 1 0 1 0 1
4M 4 1 1 1 0 0 0 0 1
5M 6 1 1 1 1 0 1 0 1
6M 6 0 1 1 1 1 1 0 1
7M 5 1 1 1 1 0 0 0 1
9M 8 1 1 1 1 1 1 1 1
10M 5 1 1 1 1 0 1 0 0
11M 8 1 1 1 1 1 1 1 1

Average: 6.11 0.88 1 1 0.88 0.38 0.75 0.25 0.88
Std dev: 1.36 0.33 0 0 0.33 0.5 0.44 0.5 0.33

Table 4.11: Session 2 results for group M. Participants thatdid not show up to this session are not
included in this table.

43

Group V Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1V 6 1 0 1 1 1 1 1 0
3V 1 0 0 1 0 0 0 0 0
4V 2 1 0 0 1 0 0 0 0
5V 0 0 0 0 0 0 0 0 0
6V 1 0 0 0 1 0 0 0 0
8V 3 1 0 1 1 0 0 0 0

Average: 2.17 0.5 0 0.25 0.75 0 0 0 0
Std dev: 2.12 0.55 0 0.55 0.52 0.41 0.41 0.41 0

Table 4.12: Session 3 results for group V. Participants thatdid not show up to this session are not
included in this table.

Group N Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1N 5 1 0 1 1 1 0 1 0
2N 0 0 0 0 0 0 0 0 0
3N 3 0 0 1 1 0 0 0 0
4N 3 1 0 0 1 0 0 1 0
6N 2 1 1 0 0 0 0 0 0
7N 0 0 0 0 0 0 0 0 0
8N 0 0 0 0 0 0 0 0 0

Average: 1.86 0.43 0.14 0.29 0.43 0.14 0 0.29 0
Std dev: 1.95 0.53 0.38 0.49 0.53 0.38 0 0.49 0

Table 4.13: Session 3 results for group N. Participants thatdid not show up to this session are not
included in this table.

4.4.3 Session 3

In the third session, unfortunately, the number of of participants in group M dropped again, leaving

only 7 participants. In this session, again, group V did not reach statistical significance, and group

M, while it looked as if they performed better than N, had ap−value = 0.16. Thus, no significant

effects were found. However, it is unclear if significance would have been reached had more

participants been available for this session. Tables 4.12,4.14, and 4.13 show the experimental data

for session three, and Table 4.15 shows the results of the ANOVA test.

Using a one factor ANOVA test for each hypothesis we found that in session 1, V group did

statistically significantly worse than N group, and that in session 2 M group did statistically sig-

nificantly better than N group. Session three yielded no significant results, although M group was

44

Group M Bugs found Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7 Bug 8
1M 4 1 0 1 0 1 0 1 0
2M 5 1 0 1 1 1 0 1 0
4M 2 1 0 0 0 0 0 1 0
5M 4 1 0 1 0 1 0 1 0
9M 2 1 0 0 0 0 0 1 0
10M 1 1 0 0 0 0 0 0 0
11M 5 1 0 1 1 1 0 1 0

Average: 3.29 1 0 0.5 0.33 0.5 0 0.83 0
Std dev: 1.60 0 0 0.53 0.49 0.53 0 0.38 0

Table 4.14: Session 3 results for group M. Participants thatdid not show up to this session are not
included in this table.

Null Hypothesis Session F-value P-value F-crit

H0M1 : µn1 = µm1 Roulette 0.421558704 0.524836218 4.451321691
H0M2 : µn2 = µm2 Bank 12.47553816 0.003018224 4.543077123
H0M3 : µn3 = µm3 Address Book 2.23880597 0.16041536 4.747225336
H0V 1 : µn1 = µv1 Roulette 6.705263158 0.022450692 4.667192714
H0V 2 : µn2 = µv2 Bank 0.220913108 0.646771682 4.747225336
H0V 3 : µn3 = µv3 Address Book 0.074517978 0.789925598 4.844335669

Table 4.15: Experimental results for each hypothesis, using a single factor anova.

not terribly far off from statistical significance, and the number of participants in this session was

lower than desired.

4.5 Analysis

In the first sessions, participants in the V and M group expressed, nearly universally, confusion over

the task they were attempting to accomplish with the auralizations. Several students in V group

wrote comments on their debugging forms indicating how theywere interpreting the auralizations.

For example, by far the most common writing in V group was “4123456789”. This was usually

written near where the wheel is spun in the roulette wheel code. No one in M or N group made this

marking. In the first test, the roulette game, participants heard a spinning roulette wheel, which is

a FOR loop that displays characters on the command line.

The numbers participants wrote on the computer code shed light on the interpretation of the

45

auralizations in two ways. The first is that participants interpreted the first word used in a FOR

loop, which is “for”, to mean the number four. The first word inthe auralization was intended

to give the program construct, or the beginning of the FOR loop, and was not intended to mean

the number four. This may have been confusing, and this problem would not have occurred had

the loop been a while. Future auralizations of the FOR and WHILE program constructs may be

switched to say ”loop”, as the meaning of the word loop is unambiguous. The second important

aspect is that participants were focusing on what the auralizations were telling them, the fact that

the computer was audibly counting. This was done instead of focusing on whether a bug could

possibly exist in a for loop that only prints characters to the command line! In other words, since

the music was likely foreign, at least without training, participants may have latched onto the lyrics,

in an attempt to understand them. This occurred to the detriment of debugging.

Interestingly, the reaction to the auralizations was mixedin the second session. All three stu-

dents in V group indicated verbally that they understood what the auralizations were telling them.

In group M, however, participants gave little aural feedback about what they were doing in the

training session. During the actual debugging work, however, one subject became particularly

frustrated, stood up, walked to the proctor of the session and said that the auralizations were, “...

stupid and not helping me.” While this does not indicate thatthe auralizations were or were not

helping, it certainly indicates a negative reaction to the auralizations for that subject. Interestingly,

this session achieved statistical significance in the positive direction, indicating the auralizations

were, indeed, helping at least some participants.

While it is unclear, for certain, why group M did not, again, reach statistical significance in

session three, there are several possibilities. It may be the case that certain debugging tasks require

different techniques. It may also be the case that the auralizations, inadvertently, tended to favor

finding one type of error over another. In addition, in task three, performance amongst all groups

was worse, perhaps indicating that the debugging task itself was harder. It might be enlightening,

in future work, to give participants debugging tasks that are ranked in difficulty, then see how

46

the auralizations fare in regard to their level of difficulty. In other words, not reaching statistical

significance in this task points out several important pieces of information that are still needed to

increase the effectiveness of the auralizations.

In interviews with group V after the third session, most participants claimed that the voice on

the auralizations was distracting. In addition, on participants debugging forms there were several

common traits amongst all of V group. By far, similar to session 1, the most common was for

their to be numbers written on the code. These numbers were clearly taken from the auralization

compact disc, which gives semantic information about memory addresses, variable values, or other

data. V group may have been focusing too closely on the low level details, and not focusing on

other issues, like control flow. Another interesting experiment, based on this result, would be to

remove any numbers indicating semantic information about memory addresses, and other such

items, and keep the lyrics only for control flow.

However, there are a number of reasons why group V could have outperformed M group. It

could be the case that the human voice is invariably distracting when debugging code. However,

there are numerous factors with the voice, quality of performance, gender of singer, melody choice,

word choice for program constructs, enunciation, and even choice of the singer. Further testing

should attempt to incorporate these other possible factors, to discover the most important elements

of the vocal performance or auralization design. Another possibility is that music with lyrics is

only helpful for certain classes of debugging problems. It might be the case that for control flow

lyrics are helpful, but for debugging linked structures, lyrics are distracting. Another possibility is

that V groups required a different type of training than M group. Auralizations with vocals might

require learning how to appropriately listen, else they arenot helpful. For now, the best way to

incorporate the voice is unclear.

47

4.6 Threats to Validity [49]

There were several problems effecting the validity in this experiment. The categories chosen to

describe the threats to validity are described by Wohlin [49]. These categories are conclusion

validity, construct validity, internal validity, and external validity.

4.6.1 Conclusion Validity

One problem I faced was a very high no-show rate between sessions and between groups. For

example, in the first experimental sessions, group V had three members show up, group M had

five members, and group N had nine members show up. This puts V group at a 70% no-show rate,

group M at a 40% no-show rate, and group N at a 0% no-show rate. This no-show rate occurred

despite carefully scheduling the experimental times so that no subject had a time conflict and giving

extra credit to the students that participated. It is unclear whether these makeup sessions had an

effect on the outcome.

The great disparity between groups could cause statisticalproblems in the analysis, and thus

we decided to run extra experimental makeup sessions to givethose that missed an opportunity

to participate. These makeup sessions did not equalize the experimental group sizes, but they did

make them closer in size. While makeup sessions were identical in content to the original sessions,

they were done at different times, and some students did these makeup sessions alone, instead of

in the original group.

In addition to the above threats, the room used for the experiment occasionally had neighbors

making noise. There was no way to predict when other people from the university would be near

the lab during testing time. Overall, however, neighbors were quite and unobtrusive, but since this

is a sound based experiment, it is a threat. Subjects would wear headphones and make judgments

about the sounds they were hearing in relation to the code. Any outside sound may have effected

the results. While this is a threat, it is unlikely, because the typical amount of sound from neighbors

was extremely small, for example, an individual walking by the laboratory.

48

Lastly, the control group in this experiment did not receivethe same inputs to the computer

programs that the two other groups received. Group M and V received inputs to each track, that

would cause the sound output to occur. When designing the experiment, it seemed to me that the

control group would only be confused by the extra inputs, since it related to only the sound output,

and this sequence of inputs did not necessarily illuminate abug. It is unclear whether this omission

from the control group had an effect on the results, and it is an additional threat to validity.

4.6.2 Construct Validity

The interaction of testing and treatment and hypothesis guessing [49] may have had an effect on

the construct validity of this experiment. Participants were aware that they were involved in a

debugging study and probably inferred that the number of bugs was a measure, since it is the

most obvious way to grade a study such as this. Subject’s may also have “decided” that a musical

treatment was or was not effective. Subject 8M, for instance, indicated in the second session, to

the proctor, that his treatment was, “stupid, and not useful.” This subject may have adjusted his/her

behavior to accommodate his/her opinion, or what he/she thought was being tested about that

opinion. However, other subjects may have felt similarly tosubject 8M’s response, but were not

verbal about their opinions. Thus, there is no way to know whether this was a typical or atypical

response.

Experimenter expectancies may also have been a threat to this experiment. The proctor of

this experiment was also the designer of the auralization system. This was necessary as subjects

could not have received training from another proctor, other than the designer, without giving that

individual significant training into how the auralizationswere designed and created. However,

in defense, I had virtually no way of predicting the outcome of the experiment beforehand, as

there is little empirical precedent for such experiments onprogram auralization. Thus, my own

expectations were, at best, limited, and I essentially had no idea what the results would show.

49

4.6.3 Internal Validity

Since the no-show rate was so high, makeup sessions were heldto increase participation in the

study. An attempt was made to have the amount of time between each experimental session be

exactly one week, although, for logistical reasons with subjects schedules, this was not always

possible. Notably, in the second set of three makeup sessions, the first session was conducted

only two days before the second session. While this situation was unfortunate, subject’s schedules

prevented a different approach. The second and third, of themakeup sessions were conducted

exactly one week apart, like the previous sessions.

Maturation effects may also have been an issue. In the secondsession, one subject, subject

6V, reported having “Slept throughout the session.” This subject, it turns out, was not literally

sleeping, but that subject may have been taking a mental hiatus. This may indicate this subject was

tired during that particular session, or that he/she did nothonestly participate. Interestingly, this

subject had the worst score in the second session, although the score was not significantly worse

than other participants. It is unclear whether other subjects took similar mental breaks, but were

not vocal about it.

In addition to no-show rates, mortality was also an issue in this experiment. While the mortality

rate was relatively low, a few subjects dropped out of the experiment after attending only one, or

two, sessions. There was no obvious pattern to the mortalityrates, and thus this is likely not a

significant threat to validity. For example, it was not the case that all of the high GPA or low GPA

students dropped from the experiment. The dropouts seemed to be unrelated to a particular factor.

4.6.4 External Validity

The participants used in this experiment were taken from a second year course in data structures.

My results may hold only for beginning programmers, and theymay not scale to industrial practice.

In addition, the programs the participants debugged were toy programs, and were only several

hundred lines long. The results may not apply to large programs.

50

In industrial practice, debugging is often done in a debugger. In this experiment subjects were

asked to listen to compact discs while debugging source code. This is highly unusual, and incon-

sistent with industrial practice. However, because creating a sonified debugger is a significant task,

which may take several years to complete, it was a necessary intermediary step for mitigating risk

into this line of research. In other words, this step was taken to determine whether using sound in

a debugger could have a positive effect at all. Thus, while this is certainly different from industrial

practice, a positive correlation between listening to auralizations and debugging could indicate that

creating a sonified debugger is worth the effort. The currentstudy’s use of a compact disc, if any-

thing, likely made it more difficult for participants to debug. With a compact disc, subjects cannot

visually see what elements of code are being executed, like can be done in a debugger.

51

CHAPTER 5

CONCLUSION

I have discussed a new system of using musical layers for auralization of program code. I used

this system of auralization to write music that potentiallyhelps programmers debug computer

programs more effectively, and ran an empirical study to test this hypothesis. The results of this

study indicate that in some cases, the auralizations worked, and in others, they did not. Future

research into auralization techniques should begin to classify, empirically, auralization techniques.

The approach I will take with future work falls into two categories, iteration and automation.

The most obvious, and important, element of this research isto iterate the designs of the au-

ralizations. The next iteration of the design should minimize the most problematic areas of the

system. For example, a study of what semantic data would be useful to participants at runtime

may be helpful in determining why the lyrics layer was unsuccessful. Future studies should, then,

determine which elements of a computer program’s runtime behavior are the most important, and

then map sound or music directly to those elements.

Lyrics posed a problem for the participants in this study. Initial empirical results indicated that

participants were either hurt, without training, or not helped, with training, when using lyrics based

auralizations. However, to be clear, these initial resultsdo not imply that lyrics are not useful, but

that they were not useful in the current iteration of the design. In the next iteration, a two way

communication model is extremely important, as it will allow more time to be given to longer

words. Recall that in the current auralization design, words are spoken very quickly. The speed at

which words are spoken may have had an effect on the participants interpretation of the sounds. In

addition, elements of semantic data may not be useful to participants, and future iterations of the

design should try to determine which elements are helpful, which are not, and most importantly,

why.

52

The orchestration layer in this experiment aurally indicated information about the state of mem-

ory usage in the program, but did not indicate other elementsof program state. Other elements,

besides memory usage, may be useful to a participant debugging a program, but research is needed

to determine the specifics. In regards to memory and the orchestration layer, saturation may occur

if too much memory is used. In other words, if a computer program has no dynamic memory

usage at a given point during execution, and then it, at some point in time, increases the memory

usage dramatically, this will likely be obvious to a listener. Subtle changes in memory usage are,

however, probably much more difficult to detect. Future iterations of the design should allow for

subtle changes in memory usage to be obvious, as well as not sosubtle changes.

However, by far the biggest problem with the auralization design, at this time, is the process

of creating them. Creating an auralization, using current technology, requires the creation of com-

puter code, generating inputs to that code, hand parsing thecode, entering the results into a music

notation editor, editing and recording sound files, and transferring the recordings to the appropriate

medium such as compact disc. Any error that occurs in a stageXi requires thatXi+1 throughXi+n

stages are reworked from scratch. In addition, all stages must occur for each and every sound file

created, and with multi-group experiments, creating the auralizations takes months.

For example, in the current experiment, after a few months ofwork on the auralization creation,

I discovered that a two way communication model between the lyrics layer and the cadential layer

would allow the lyrics layer to have more time to say long numbers. However, a small change

like changing the communication model would have required me to throw away months of work,

for a change that would only potentially make the lyrics layer better. Since I had no empirical

evidence suggesting one communication model was superior to another, reworking the design may

have been wasted effort. If, however, a tool existed to automate the auralization creation process,

iterations on the design could be created, and tested, far more efficiently.

Thus, in my opinion, automating the auralization creation process is by far the most important

53

short term element of this research, as it will encourage rapid creation and testing of new aural-

ization ideas. Unfortunately, not every element of auralization is trivial to automate. Automating

the auralization process will require several key components, a parser, a music notation file writer,

and perhaps teaching a computer program to sing lyrics. Creating these components may take

significant effort, but not creating them may take more.

Program auralization is in its infancy. A nominal amount of empirical work has been done,

virtually no sonified debuggers exist, and the auralizationcreation process itself is not well under-

stood. The next generation of research will need to create structure for generating these auraliza-

tions, create standard empirical tests for testing their effectiveness, and determine which elements

of runtime behavior programmers actually need to hear.

54

APPENDIX

APPENDIX A

CRASH COURSE IN MUSIC THEORY

This section enumerates the basic terminology used in musictheory. This section is provided as a

crash course in common musical concepts, used for the designof the current auralization system.

Subjects do not necessarily need to understand any of the theory described here to potentially

benefit from the auralization system created, similarly to adriver not needing to understand the

engineering behind a car to drive it. However, for the purpose of enumerating the design, and

design decisions, an understanding of music theory terminology is helpful. A comprehensive

overview of music theory is beyond the scope of this work.

A.1 Notes and Intervals

The simplest possible idea in music theory is probably the note. Notes are graphically written onto

a musical staff, and these notes indicate pitch in a score. Notations are attached to notes which

indicate rhythms, and these rhythms indicate what frequencies are played over time, essentially

creating music. Notes can be combined, creating intervallic relationships between other notes.

While there are a huge variety of useful intervals, the most common are listed in Table A.1, along

with an example pair of notes for that interval.

One of the easiest ways to think of particular interval is in analogy to a particular song. For

example, an octave is the “Somewhere” in “Somewhere over theRainbow,” from the Wizard of

Oz, and a minor second is heard in the music to “Jaws” repeatedly. Of course, it much easier to

understand intervals if they can also be heard.

A.2 Chords

Intervals are a useful construct because they give one building block for creating larger musical

structures. Attempting to understand a concept like counterpoint without a firm knowledge of

56

Interval Name Example Notes

Perfect Unison C to C (The same note)
Minor second C to Db
Major second C to D
Minor third C to Eb
Major third C to E
Perfect fourth C to F
diminished fifth C to Gb
Perfect fifth C to G
minor sixth C to Ab
Major sixth C to A
Minor seventh C to Bb
Major seventh C to B
Octave C to C (The frequency of the original C * 2)

Table A.1: The basic intervals

intervals is, at best, difficult. The idea of intervals builds further into the idea of chords. Chords

build up combinations of intervals. The most common chords are major and minor, which consist

respectively of a perfect fifth and major third, and a perfectfifth and a minor third. Table A.2 gives

examples of some of the most common chords, although the reader should be aware that there are

thousands of others with fully qualified names. Further, depending on the musical genre, different

notations and naming conventions exist. For example, classical musicians tend to use names like

I7, pronounced one-seven, whereas jazz players tend to use names likeC Major 7 or C∆.

A.3 Harmony

Chords can, again, be built up into larger conglomerates of notes over time, harmony. I limit the

discussion here, again, to the most common chord progressions in classical music. Contemporary

developments in harmony, although incredibly interestingin and of themselves, are far beyond the

scope of this thesis. Harmony is typically written in classical music as numbers related to a key. A

key is a focal point, like the note C, which all chords are considered relative too. For example, a C

Major chord in the key of C Major is called aI, pronounced one, chord. If the key were C Minor,

57

Chord Name Intervals involved Example Notes

Major chord Major third and Perfect fifth C-E-G
Minor chord Minor third and Perfect fifth C-Eb-G
Major Seventh chord Major third, Perfect fifth, and

Major seventh
C-E-G-B

Minor Seventh chord Minor third, Perfect fifth, and
Minor seventh

C-Eb-G-Bb

Fully diminished seventh Minor third, diminished fifth,
and Diminished seventh

C-Eb-Gb-Bbb

Half diminished seventh Minor third, diminished fifth,
and Minor seventh

C-Eb-Gb-Bb

Table A.2: A selection of basic chords

Chord Number Chord Name Example Notes

I C Major C-E-G
ii D Minor D-F-A
iii E Minor E-G-B
IV F Major F-A-C
V G Major G-B-D
vi A Minor A-C-E
viio B diminished B-D-F

Table A.3: The chords in C Major

the chord C minor would also be considered ai chord, but the letteri would be lower case, as the

chord in that key is minor. Note thati exists only in a minor key, not a major key. Table A.3 shows

all of the typical chords considered to be in C Major in classical music. Notice that these chords

only contain notes that are in the key of C Major, and no others.

Using numbers to represent harmony is useful, as the exact position and relation of notes can

be abstracted. For example, the phraseI − V − I, in the key of C, would be the chord C Major

followed by G Major, followed by C Major again. The phraseI − IV − V − I is similar, but

with an F Major chord after the initialI chord. Notice that if a key change occurs, perhaps to G,

the phraseI − IV − V − I will sound essentially the same, except for a transposition. Using

numbers in this way is useful in an analogous way to using variables in mathematics. In the phrase

I − IV − V − I the exact key is an unknown, but the relationships between chords are important,

58

similarly to y = mx + b. In the last equation, the numbers are unknown, but it is the relationship

between the numbers that is what is important.

Leading further into harmony, secondary dominants are typically encountered. A secondary

dominant can be considered a temporary key change, which will be discussed in more detail next.

A secondary dominant is a V chord that is borrowed from another key. The easiest example of

a secondary dominant would have the notation V/V. For example, if a piece of music was in the

key of C, the V chord would have the notes G, B, and D. A secondary dominant for this V chord

temporarily changes the key to this chord, or G major. thus theV/V in the key of C has the notes

D, F#, and A. A typical chord progression using a secondary dominant would beI−V/V −V −I,

taking note that theV/V chord leads to the V chord, the most common case.

The next topic of interest is a cadential pattern. A cadential pattern, or cadence, is a well

defined, common, use of specific chords. These chords are usedas endings to a phrase or piece

of music. These endings are used so often, and in so many composer’s works, that they are given

special names to indicate their importance. The most important cadences are the authentic cadence

and the plagal cadence. An authentic cadence is aV − I progression, by far considered to be

the most common cadential pattern in classical music. A plagal cadence, or amen cadence, is an

ending with aIV − I pattern, and is often heard in hymns.

Lastly, key changes are used in the current program auralization system I created, and thus

should be discussed. A key change is when the tonal center of aseries of chord progressions

changes. For example, if I have the chord progressionI − V − I in the key of C, the chords are

C-G and C respectively. If, however, I change keys to the key of G, the chord progression will be

G-D-G. When classical music is written in 12-tone equal temperament, the typical tuning system

used on modern pianos, every key sounds the same. Keep in mind, however, that historically this

was not always the case, including in such famous pieces as The Well Tempered Clavier, by J.S.

Bach.

59

APPENDIX B

SURVEYS

B.1 Pre-qualification survey: Part 1

1. Name:

2. What is your current GPA?

3. What is your current GPA in computer science?

4. List all previously taken computer science courses, and grade received:

Grade:

Grade:

Grade:

Grade:

Grade:

Grade:

Grade:

Grade:

5. Have you ever used a debugger, if so, which ones?

How many years?

How many years?

How many years?

How many years?

60

B.2 Pre-qualification survey: Part 2, Ear Training Exam

In this portion of the test you will be asked to identify the differences between specific musical

sounds. In each instance two sounds will be played, one afterthe other, and you will be asked to

circle the word you feel most appropriately defines your answer.

1. Is the second note higher or lower than the first note? Higher/Lower/Don’t know

2. Is the second note higher or lower than the first note? Higher/Lower/Don’t know

3. Is the second note higher or lower than the first note? Higher/Lower/Don’t know

4. Is the second note higher or lower than the first note? Higher/Lower/Don’t know

5. Is the second note higher or lower than the first note? Higher/Lower/Don’t know

6. Is the first melody exactly the same as the second melody? The same/Not the same/Don’t

know

7. Is the first melody exactly the same as the second melody? The same/Not the same/Don’t

know

B.3 Pre-qualification survey: Part 2, Ear Training musical examples

Previously shown was the survey sheet given to participants. The following are the musical ex-

amples played to participants. Note that the musical notation shown here was not shown to any

subjects.

Figure B.1: Pre-Qualification survey: Part 2, Ear Training,Question 1

61

Figure B.2: Pre-Qualification survey: Part 2, Ear Training,Question 2

Figure B.3: Pre-Qualification survey: Part 2, Ear Training,Question 3

Figure B.4: Pre-Qualification survey: Part 2, Ear Training,Question 4

Figure B.5: Pre-Qualification survey: Part 2, Ear Training,Question 5

Figure B.6: Pre-Qualification survey: Part 2, Ear Training,Question 6 [41]

Figure B.7: Pre-Qualification survey: Part 2, Ear Training,Question 6, variation on [41]

62

Figure B.8: Pre-Qualification survey: Part 2, Ear Training,Question 7

Figure B.9: Pre-Qualification survey: Part 2, Ear Training,Question 7

63

APPENDIX C

GUIDEBOOK GIVEN TO SUBJECTS

In this section we give the guide students receive when beginning the experimental study. Note

that the introduction for this section was given in all threeexperimental sessions. In this thesis, to

save space, the introduction is not repeated. In the last test, the address book, the subjects were told

that bugs existed only in the AddressBook.cpp, AddressBook.h, LinkedList.cpp, and LinkedList.h

files. Because the address book was so much larger, this was done to keep the amount of code they

were actually looking through to a manageable level, and to keep the amount of code similar to the

other tests.

C.1 Introduction

The following is the study description given to the participants.

Study Description:

Welcome to the CS223 study. In the following study, you will be asked to debug a computer

program. Please do not turn the page until you are instructedto do so. You will be given 45 minutes

to complete this task.

Task description:

Imagine you are developing software for a startup company. You just joined the team and

are told that the latest version of this software needs to be checked for errors. No one on your

development team knows how many errors exist in the code, if there are any at all. Your job is to

read the code, from a printout your manager gives you, and findas many errors as you can.

Method for notating a bug:

Please clearly mark any errors you find directly on the code handout you are given. In addition,

if you find an error, please write one or two short sentences asto why you think it is an error. Write

these sentences, again, directly on the code handout.

64

Participation note:

Since this debugging study is based on participation over time, our results depend on your

active participation. Reminder: You may drop an assignmentin this course if and only if you

attend all 3 debugging sessions, and we strongly encourage you to do so.

If you drop the course:

We ask that if you drop the CS223 course that you continue to attend all three debugging

sessions. While you are by no means obligated to do so, our data depends on your consistent

participation, and we would be grateful if you would continue for the 3 sessions anyway.

Again, thank you for your willingness to participate in thisstudy, we appreciate it a great deal!

Please do not turn the page until you are instructed to do so.

C.2 Roulette

C.2.1 Roulette Game description

Roulette:

In game of roulette a ball is put onto a spinning table. Participants in the game place bets on

where the ball will land. The version of Roulette you are about to analyze is simplified from the

American casino game. In this version only two types of betting are allowed.

Bet type 1: Red-Black

Description: The user decides whether to place a bet on a red square or a black square. How to

win: The participant wins if they chose the correct color. Ifyou win: You receive 2 times the bet

amount. If you had 500 dollars and you bet 50, you would now have 550 dollars. 500 - 50 + (50 *

2).

Bet type 2: Number

Description: The user chooses a number to bet on, between 1 and 35. How to win: The

participant wins if they chose the correct number. Payout: You receive 35 times the bet amount. If

you had 500 dollars and you bet 50 you would now have 500 - 50 + (35 * 50), or 2200 dollars.

65

C.2.2 Track Listings for V and M group

This list presents a series of program inputs. These inputs indicate the current state of the computer

program at a particular point during execution. In additionto input, track numbers are listed, which

correspond to the accompanying CD. Each track contains audio that relates to the program you are

attempting to debug, although not all audio will illuminatea bug. Each track/Input pair has the

following format:

******************** Example ***********************

Track Number: 4

Input: 362, c

Starting position for audio: spinWheel

******************** Example ***********************

In this example, this means that for track 4, the program was given an initial input of 362, c and

that the audio on track 4 begins at the top line of the spinWheel() method. Not all methods have

sound associated with them. Specifically, only custom written methods have sound, not system

calls like cin, cout, or rand().

Track Number: 1

Input: 500, c, 5

Starting position for audio: spinWheel

Track Number: 2

Input: 361, c, 9

Starting position for audio: spinWheel

Track Number: 3

Input: 100, c, 5,

Starting position for audio: playNumber

Track Number: 4

66

Input: 600, c, 5,

Starting position for audio: playNumber

Track Number: 5

Input: 600, c, 0,

Starting position for audio: playNumber

Track Number: 6

Input: 600, n, r,

Starting position for audio: playRedBlack

Track Number: 7

Input: 600, q,

Starting position for audio: play

Track Number: 8

Input: 600, c, 5,

Starting position for audio: play

C.3 Bank

C.3.1 Bank Description

Bank:

The class you are about it analyze is a simple model of a standard bank’s automatic teller

machine, or ATM. There are several characteristics about this ATM machine which you should be

aware to correctly debug this code.

1. To login the user must enter a username and password.

2. A blank name, the empty string, signifies that no one is logged in.

3. Any password is acceptable, real security was not implemented, and this is not considered a

bug.

67

4. Bank users are allowed to withdraw a maximum of 300 dollarsper day.

5. Bank users are only allowed to transfer money to three people, Andy, Melissa, or Fitz.

C.3.2 Track Listings for V and M group

This list presents a series of program inputs. These inputs indicate the current state of the computer

program at a particular point during execution. In additionto input, track numbers are listed, which

correspond to the accompanying CD. Each track contains audio that relates to the program you are

attempting to debug, although not all audio will illuminatea bug. Each track/Input pair has the

following format:

******************** Example ***********************

Track Number: 4

Input: 6

Starting position for audio: logout

******************** Example ***********************

In this example, this means that for track 4, the program was given an initial input of 6 and that

the audio on track 4 begins at the top line of the logout() function. Not all methods have sound

associated with them. Specifically, only member functions of the Bank class have sound associated

with them.

Track Number: 1

Input: 6

Starting position for audio: logout

Track Number: 2

Input: 1

Bill

password

2

68

500

Starting position for audio: deposit

Track Number: 3

Input: 1

Bill

password

2

500

6

1

Starting position for audio: login

Note: Audio for track starts on the SECOND call to login.

Track Number: 4

Input: 4

Starting position for audio: withdraw

Track Number: 5

Input: 1

Bill

password

2

500

4

400

yes

Starting position for audio: withdraw

Track Number: 6

69

Input: 1

Bill

password

2

500

4

5134

Starting position for audio: withdraw

Track Number: 7

Input: 1

Bill

password

2

500

3

Andy

900

Starting position for audio: transfer

Track Number: 8

Input: 5

Starting position for audio: checkFunds

C.4 AddressBook

C.4.1 Address Book Description

Address Book:

70

The class you are about it analyze is a simple model of an address book. There are a few traits

of this address book you should be aware of before debugging:

1. Only the AddressBook.cpp, LinkedList.cpp, AddressBook.h, and LinkedList.h files poten-

tially have bugs in them.

2. All other files besides those listed in 1 are supplied only for your reference, theyDO NOT

contain bugs.

C.4.2 Track Listings for V and M group

This list presents a series of program inputs. These inputs indicate the current state of the computer

program at a particular point during execution. In additionto input, track numbers are listed, which

correspond to the accompanying CD. Each track contains audio that relates to the program you are

attempting to debug, although not all audio will illuminatea bug. Each track/Input pair has the

following format:

******************** Example ***********************

Track Number: 4

Input: 5

Starting position for audio: AddressBook.printAll

******************** Example ***********************

In this example, this means that for track 4, the program was given an initial input of 5 and that

the audio on track 4 begins at the top line of the printAll() function. Not all methods have sound

associated with them. Specifically, only member functions in the AddressBook and LinkedList

class have sound associated with them.

Track Number: 1

Input: 1

Bill

71

122 N. Walnut St.

509-226-3476

Starting position for audio: LinkedList.add

Track Number: 2

Input: 1

Bill

122 N. Walnut St.

509-226-3476

2

Bill

Starting position for audio: LinkedList.remove

Track Number: 3

Input: 1

Bill

122 N. Walnut St.

509-226-3476

1

John

Blurft St.

555-555-5555

2

Bill

Starting position for audio: LinkedList.remove

Track Number: 4

Input: 1

Bill

72

122 N. Walnut St.

509-226-3476

1

John

Blurft St.

555-555-5555

2

John

Starting position for audio: LinkedList.remove

Track Number: 5

Input: 1

Bill

122 N. Walnut St.

509-226-3476

1

John

Blurft St.

555-555-5555

1

Adam

HappyTown Rd.

645-938-3635

1

Andy

MustBeAStud St.

938-490-3749

73

6

Starting position for audio: LinkedList.clear

Track Number: 6

Input: 1

Bill

122 N. Walnut St.

509-226-3476

4

John

Starting position for audio: AddressBook.findFriend

Track Number: 7

Input: 1

Bill

122 N. Walnut St.

509-226-3476

2

Bill

Starting position for audio: AddressBook.removeFriend

Track Number: 8

Input: 1

Bill

122 N. Walnut St.

509-226-3476

5

Starting position for audio: AddressBook.printAll

74

APPENDIX D

COMPLETE CODE

In this section we give the full code for all debugging examples, without bugs, and the bugs them-

selves are made explicit. If any bug has an obvious classification, when compared to [42], the

classification is given.

D.1 Roulette

D.1.1 Bugs for the Roulette game

1. Method Roulette::play() Line: 35, 38, playRedBlack() and playNumber() should be

swapped.

2. Method Roulette::play() Line: 42, If the user enters neither ’c’ nor ’n’, the program will

display an uninitialized variable. This is an output fragmentation bug.

3. Method Roulette::play() Line: 88, The boolean should be set to true, else the program will

never quit.

4. Method Roulette::play() Line: 78-81, The> and < signs should be swapped, else they

display the reverse amount of money earned or gained.

5. Method Roulette::playRedBlack() Line: 103, This line should be an AND, not an OR, else

the user will always choose black, regardless of whether they selected red. This bug is similar

to an Or-for-and bug.

6. Method Roulette::playRedBlack() Line: 117, This line should be wonLost -= currentBid. If

it were the other way, then the user would gain money when he/she was supposed to lose.

This bug is similar to an Incorrect formula bug.

75

7. Method Roulette::playNumber() Line: 132, This line should be an OR, not an AND, else

the user will never have an error condition, regardless of whether they choose an incorrect

number. This bug is similar to an Or-for-and bug.

8. Method Roulette::playNumber() Line: 138, thecoutstatement should have the variablean-

sweroutput to the console, not wonLost. The way it is currently written, 0 is always output.

D.1.2 Roulette code

1 # i n c l u d e ” R o u l e t t e . h ”

2

3 /∗∗

4 T h i s program s i m u l a t e s a ve ry s i m p l e v e r s i o n o f r o u l e t t e . Only two t y p e s o f b e t s

5 are a l lowed i n t h i s s i m p l e program , namely b l a ck / red and a number .

6 ∗ /

7 i n t main (i n t argc , i n t ∗argv []) {

8 R o u l e t t e r o u l e t t e ;

9 r o u l e t t e . p l ay () ;

10 re t u rn 0 ;

11 }

1 # i f n d e f ROULETTE H

2 # d e f i n e ROULETTE H

3

4 t yp ed ef s t r u c t sp i n V a l u e {

5 i n t number ;

6 char c o l o r ;

7 }SpinValue ;

8

9

10 c l a s s R o u l e t t e {

11 p u b l i c :

12 R o u l e t t e () {}

13 ˜ R o u l e t t e () {}

14

15 vo id p l ay () ;

16 p r i v a t e :

17 s t a t i c con st i n t STARTING DOLLARS = 1000;

18 s t a t i c con st i n t RED BLACK BID = 0 ;

19 s t a t i c con st i n t NUMBER BID = 1 ;

20 s t a t i c con st i n t NUM ROULETTENUMBERS = 3 8 ;

21 i n t cur ren tMoney ;

22 i n t c u r r e n t B i d ;

23 i n t bidType ;

24

25 vo id i n i t () ;

26 i n t g e t B i d () ;

27 char getColorFromNumber (i n t num) ;

76

28 i n t p layRedBlack () ;

29 i n t playNumber () ;

30 Sp inVa lue sp inWheel () ;

31 } ;

32

33 # e n d i f

1 # i n c l u d e ” R o u l e t t e . h ”

2

3 # i n c l u d e <i o s t r eam>

4 # i n c l u d e <windows . h>

5 # i n c l u d e <winbase . h>

6 # i n c l u d e <s t d l i b . h>

7 # i n c l u d e <t ime . h>

8

9 u s in g namespace s t d ;

10

11 vo id R o u l e t t e : : i n i t () {

12 co u t<< ”\n ” <<

13 ”∗∗\n” ;

14 co u t<< ”Welcome t o R o u l e t t e . The house has g iven you ”<<

15 ” $1000 wi th which t o t r y your l u ck . A l l b e t amounts ”<<

16 ” must be i n whole d o l l a r s . To p lay , e n t e r your b e t ”<<

17 ” amount and t h en choose how you want t o b e t . ”<< en d l ;

18

19 co u t<< ”∗∗\n\n” ;

20 cur ren tMoney = STARTINGDOLLARS ;

21 }

22

23 vo id R o u l e t t e : : p l ay () {

24 i n i t () ;

25 b oo l q u i t = f a l s e ;

26 char answer ;

27

28 wh i l e (! q u i t) {

29 i n t amountWon ;

30 c u r r e n t B i d = g e t B i d () ;

31 co u t<< ”Would you l i k e t o b e t on a c o l o r o r a number? (P r ess c f o r c o l o rand n f o r number) ” ;

32 c i n >> answer ;

33

34 i f (answer == ’ c ’) {

35 amountWon = playNumber () ;

36 }

37 e l s e i f (answer == ’n ’) {

38 amountWon = p layRedBlack () ;

39 }

40

41 co u t<< ”\n∗∗\n” ;

42 i f (amountWon< 0) {

43 co u t<< ”You l o s t ” << amountWon ∗ −1 << ” d o l l a r s . ” ;

44 }

45 e l s e {

46 co u t<< ”You won ” << amountWon<< ” d o l l a r s . ” ;

77

47 }

48 co u t<< ”\n∗∗\n” ;

49

50 co u t<< ”\nWould you l i k e t o p l ay ag a i n ? (P r ess y f o r yes and n f o r no) ” ;

51 c i n >> answer ;

52 i f (answer == ’y ’) {

53 co u t<< ”\n” ;

54

55 q u i t = f a l s e ;

56

57 i f (cur ren tMoney == 0){

58 co u t << ” Sor ry , you can ’ t c o n t i n u e t o p lay , you ’ r e broke .\n ” ;

59 q u i t = t ru e ;

60 }

61 e l s e i f (cur ren tMoney< STARTING DOLLARS) {

62 co u t << ”Ok , you c u r r e n t l y have ”<< cur ren tMoney<< ” d o l l a r s , hav ing l o s t ”<<

63 ” a t o t a l o f ” << STARTING DOLLARS − cur ren tMoney<< ” d o l l a r s . ” ;

64 }

65 e l s e i f (cur ren tMoney> STARTING DOLLARS) {

66 co u t << ”Ok , you c u r r e n t l y have ”<< cur ren tMoney<< ” d o l l a r s , hav ing won ”<<

67 ” a t o t a l o f ” << cur ren tMoney− STARTING DOLLARS << ” d o l l a r s . ” ;

68 }

69 e l s e {

70 co u t << ”Ok , you c u r r e n t l y have ”<< cur ren tMoney<< ” d o l l a r s . ” <<

71 ” So f a r you have broken even . ” ;

72 }

73 }

74 e l s e {

75 i f (cur ren tMoney == 0){

76 co u t << ” Looks l i k e you l o s t your s h o r t s . . .\ n” ;

77 }

78 i f (cur ren tMoney> STARTING DOLLARS) {

79 co u t << ”Ok , you l o s t a t o t a l o f ”<< STARTING DOLLARS − cur ren tMoney<< ” d o l l a r s . ” ;

80 }

81 e l s e i f (cur ren tMoney< STARTING DOLLARS) {

82 co u t << ”Ok , you won a t o t a l o f ”<< cur ren tMoney− STARTING DOLLARS << ” d o l l a r s . ” ;

83 }

84 e l s e {

85 co u t << ”Ok , l o o k s l i k e you broke even today . ” ;

86 }

87

88 q u i t = f a l s e ;

89 }

90 co u t<< ”\n” ;

91 }

92 }

93

94 /∗∗ Re t u rn s t h e amount o f money won or l o s t i n t h i s game .∗ /

95 i n t R o u l e t t e : : p layRedBlack (){

96 char answer ;

97 i n t wonLost = 0 ;

98

78

99 bidType = REDBLACK BID ;

100 co u t<< ”Would you l i k e t o b e t on Red or Black ? (P r ess r f o r r ed and b f o rb l ack) ” ;

101 c i n >> answer ;

102

103 i f (answer != ’b ’ | | answer != ’ r ’) {

104 co u t<< ” S t range , cho ice , how about b l ack i n s t e a d . ”<< en d l ;

105 answer = ’ b ’ ;

106 }

107

108 co u t<< ”\nYou chose ”<< answer<< ” .\n ” << en d l ;

109

110 Sp inVa lue v a l = sp inWheel () ;

111 i f (v a l . c o l o r == answer){

112 cur ren tMoney += c u r r e n t B i d ;

113 wonLost = c u r r e n t B i d ;

114 }

115 e l s e {

116 cur ren tMoney−= c u r r e n t B i d ;

117 wonLost = c u r r e n t B i d ;

118 }

119

120 re t u rn wonLost ;

121 }

122

123 /∗∗ Re t u rn s t h e amount o f money won or l o s t i n t h i s game .∗ /

124 i n t R o u l e t t e : : p layNumber (){

125 i n t answer ;

126 i n t wonLost = 0 ;

127

128 bidType = NUMBERBID ;

129 co u t<< ”What number do you wish t o b e t on ? (Between 1 and 35) ” ;

130 c i n >> answer ;

131

132 i f (answer< 1 && answer > 35) {

133 co u t<< ” S t range , cho ice , how about 17 i n s t e a d . ”<< en d l ;

134

135 answer = 1 7 ;

136 }

137

138 co u t<< ”\nYou chose ”<< wonLost << ” .\n” << en d l ;

139

140 Sp inVa lue v a l = sp inWheel () ;

141 i f (v a l . number == answer){

142 cur ren tMoney−= c u r r e n t B i d ;

143 c u r r e n t B i d ∗= 3 5 ;

144 cur ren tMoney += c u r r e n t B i d ;

145 wonLost = c u r r e n t B i d ;

146 }

147 e l s e {

148 cur ren tMoney−= c u r r e n t B i d ;

149 wonLost = c u r r e n t B i d∗ −1;

150 }

79

151 re t u rn wonLost ;

152 }

153

154 Sp inVa lue R o u l e t t e : : sp inWheel (){

155 Sp inVa lue v a l ;

156

157 co u t<< ”\n∗∗\n” ;

158 co u t<< ” S p i n n i n g wheel ” ;

159 f o r (i n t i = 0 ; i < 1 0 ; ++ i) {

160 co u t<< ” . ” ;

161 S leep (1 0 0) ;

162 }

163 co u t<< ”\n∗∗\n\n ” ;

164

165 s r an d ((unsigned) t ime (NULL)) ;

166

167 i n t num = rand () % NUMROULETTENUMBERS;

168 v a l . c o l o r = getColorFromNumber (num) ;

169 i f (num == 37) {

170 num = 0 ;

171 }

172 v a l . number = num ;

173

174 i f (v a l . c o l o r == ’ g ’) {

175 co u t<< ”The wheel l an d ed on ”<< v a l . number<< ” , g reen . ” << en d l ;

176 }

177 e l s e i f (v a l . c o l o r == ’ r ’){

178 co u t<< ”The wheel l an d ed on ”<< v a l . number<< ” , r ed . ” << en d l ;

179 }

180 e l s e i f (v a l . c o l o r == ’b ’){

181 co u t<< ”The wheel l an d ed on ”<< v a l . number<< ” , b l ack . ” << en d l ;

182 }

183 e l s e {

184 co u t<< ”Oops , t h e b a l l f e l l o f f t h e t a b l e . ”<< en d l ;

185 }

186

187 co u t<< ”\n ” ;

188

189 re t u rn v a l ;

190 }

191

192 char R o u l e t t e : : getColorFromNumber (i n t num) {

193 char answer ;

194 i f (num == 1 | | num == 3 | | num == 5 | | num == 7 | | num == 9 | | num == 12 | |

195 num == 14 | | num == 16 | | num == 18 | | num == 19 | | num == 21 | |

196 num == 23 | | num == 25 | | num == 27 | | num == 30 | | num == 32 | |

197 num == 34 | | num == 36) {

198 answer = ’ r ’ ;

199 re t u rn answer ;

200 }

201 e l s e i f (num == 2 | | num == 4 | | num == 6 | | num == 8 | | num == 10 | | num == 11 | |

202 num == 13 | | num == 15 | | num == 17 | | num == 20 | | num == 22 | | num == 24 | |

80

203 num == 26 | | num == 28 | | num == 29 | | num == 31 | | num == 33 | | num == 35) {

204 answer = ’ b ’ ;

205 re t u rn answer ;

206 }

207 e l s e i f (num == 0 | | num == 37) {

208 answer = ’ g ’ ;

209 re t u rn answer ;

210 }

211 e l s e {

212 co u t<< ” I n v a l i d number i n getColorFromNumber : ”<< num<< en d l ;

213 re t u rn ’ q ’ ; / / r e t u r n someth ing i n v a l i d

214 }

215 }

216

217 i n t R o u l e t t e : : g e t B i d () {

218 co u t<< ” P l ease e n t e r your b e t amount : ” ;

219 i n t b i d ;

220 c i n >> b i d ;

221

222 i f (b i d < 1) {

223 co u t<< ”\n I n v a l i d Amount , s e t t i n g b e t t o 1.\n” << en d l ;

224 b i d = 1 ;

225 }

226 e l s e i f (b i d > cur ren tMoney) {

227 co u t<< ”\n I n v a l i d Amount , s e t t i n g b e t t o ”<< cur ren tMoney<< ” .\n ” << en d l ;

228 b i d = cur ren tMoney ;

229 }

230 re t u rn b i d ;

231 }

D.2 Bank

In this case, all bugs existed in Bank.cpp.

D.2.1 Bugs for the Bank

1. Method Bank::useAtm() Line: 56, 59, transfer() and withdraw() should be

swapped. The menu for the system indicates that withdraw andtransfer should be mapped

to different keys than is indicated in the switch statement.

2. Method Bank::logout() Line: 96, The logout method does not actually logout the user from

the system. To do this, it should set the user’s name to “”, setmoney = 0, and set amoun-

tWithdrawn = 0. Another approach would be to call init(), as this would also logout the

current user.

81

3. Method Bank::deposit() Line: 106. A deposit should add tothe user’s account, not subtract

from it. This line should be money += dep;

4. Method Bank::withdraw() Line: 132. The output statementabove this line suggests to type

“y” for yes, but the conditional statement expects the user to type yes.

5. Method Bank::withdraw() Line: 125. Since totWith is not initialized to 0, if (draw> money)

or if(draw< 0), the output statement on line 153 will print out garbage.

6. Method Bank::withdraw() Line: 149. The line amountWithdrawn -= draw should be amoun-

tWithdrawn += draw, else the user can actually withdraw morethan the maximum amount

allowed on the system.

7. Method Bank::transfer() Line: 173. Melissa is spelled differently in in this line, when com-

pared to the output statement. This bug is similar to an Incorrect constant bug.

8. Method Bank::transfer() Line: 177. This bug would force the user to transfer all money in

the account. This would in turn allow the user to transfer more money than is in the account.

This line should have if (amount> money), not if(amount< money).

D.2.2 Bank code

1

2 # i n c l u d e ”Bank . h ”

3

4 /∗∗

5 T h i s program s i m u l a t e s a ve ry s i m p l e v e r s i o n o f o f an ATM machine .

6 ∗ /

7 i n t main (i n t argc , char ∗argv []) {

8 Bank bank ;

9 bank . useAtm () ;

10 re t u rn 0 ;

11 }

1 # i f n d e f BANK H

2 # d e f i n e BANK H

3

4 # i n c l u d e <s t r i n g>

5

82

6 u s in g namespace s t d ;

7

8 c l a s s Bank {

9

10 p u b l i c :

11 Bank () ;

12 ˜ Bank () ;

13 b oo l l o g i n () ;

14 b oo l l o g o u t () ;

15 b oo l d e p o s i t () ;

16 b oo l wi thdraw () ;

17 vo id checkFunds () ;

18 vo id useAtm () ;

19 b oo l t r a n s f e r () ;

20

21 p r i v a t e :

22 s t a t i c con st i n t MAX WITHDRAW;

23 i n t showMenu () ;

24 vo id i n i t () ;

25 s t r i n g l o g g ed I n ;

26 i n t money ;

27 i n t amountWithdrawn ;

28 } ;

29

30 # e n d i f

1 # i n c l u d e ”Bank . h ”

2 # i n c l u d e <s t r i n g>

3 # i n c l u d e <i o s t r eam>

4

5 con st i n t Bank : :MAX WITHDRAW = 300;

6

7 Bank : : Bank () {

8 i n i t () ;

9 }

10

11 Bank : : ˜ Bank () {

12 }

13

14 b oo l Bank : : l o g i n (){

15 s t r i n g name , p ass ;

16

17 i f (l o g g ed I n != ” ”) {

18 co u t<< l o g g ed I n<< ” i s c u r r e n t l y logged in , p l e a s e ”<<

19 ” l o g o u t b e f o r e a t t e m p t i n g t o l o g someone e l s e i n . ”<< en d l ;

20 re t u rn f a l s e ;

21 }

22 e l s e {

23 b oo l goodName = f a l s e ;

24 wh i l e (! goodName) {

25 co u t<< ” P l ease e n t e r your name : ” ;

26 g e t l i n e (c in , name) ;

27 i f (name != ” ”) {

83

28 goodName = t ru e ;

29 }

30 e l s e {

31 co u t << ” I n v a l i d name , t r y ag a i n . ”<< en d l ;

32 }

33 }

34 co u t<< ” P l ease En t e r your password : ” ;

35 c i n >> p ass ;

36 l o g g ed I n = name ;

37 co u t<< ”\n\n ” ;

38 re t u rn t ru e ;

39 }

40 }

41

42 vo id Bank : : useAtm () {

43 co u t<< ”Welcome t o BrokeAsSmoke bank ing . P l ease e n t e r your bank ing ch o i ce : \n\n” ;

44

45 b oo l q u i t = f a l s e ;

46 wh i l e (! q u i t) {

47 i n t ch o i ce = showMenu () ;

48 swi t ch (ch o i ce) {

49 case 1 :

50 l o g i n () ;

51 break ;

52 case 2 :

53 d e p o s i t () ;

54 break ;

55 case 3 :

56 t r a n s f e r () ;

57 break ;

58 case 4 :

59 wi thdraw () ;

60 break ;

61 case 5 :

62 checkFunds () ;

63 break ;

64 case 6 :

65 l o g o u t () ;

66 break ;

67 case 7 :

68 l o g o u t () ;

69 q u i t = t ru e ;

70 break ;

71 d e f a u l t :

72 co u t << ” I n v a l i d cho ice , t r y ag a i n . ”<< en d l ;

73 break ;

74 }

75 }

76 }

77

78 i n t Bank : : showMenu () {

79 i n t i n p u t ;

84

80 co u t<< ”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Menu ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n\n” ;

81 co u t<< ” 1 . Login ” << en d l ;

82 co u t<< ” 2 . Make a D ep o s i t ”<< en d l ;

83 co u t<< ” 3 . Make a w i t h d r aw a l ”<< en d l ;

84 co u t<< ” 4 . T r a n s f e r funds ”<< en d l ;

85 co u t<< ” 5 . Check funds ”<< en d l ;

86 co u t<< ” 6 . Logout ” << en d l ;

87 co u t<< ” 7 . Ex i t ” << en d l ;

88

89 co u t<< ”\n∗∗\n\n” ;

90 co u t<< ” Your ch o i ce : ” ;

91 c i n >> i n p u t ;

92 c i n . i g n o r e (1) ;

93 re t u rn i n p u t ;

94 }

95

96 b oo l Bank : : l o g o u t () {

97 co u t<< ” Thanks f o r bank ing . ”<< en d l ;

98 re t u rn t ru e ;

99 }

100

101 b oo l Bank : : d e p o s i t (){

102 i f (l o g g ed I n != ” ”) {

103 i n t dep = 0 ;

104 co u t<< ” P l ease e n t e r t h e amount you would l i k e t o d e p o s i t : ” ;

105 c i n >> dep ;

106 money−= dep ;

107 co u t<< dep << ” d ep o s i t ed , g i v i n g you ”<< money<< ” d o l l a r s t o t a l . ” << en d l ;

108 }

109 e l s e {

110 co u t<< ”You must l o g i n b e f o r e you can make a d e p o s i t . ”<< en d l ;

111 }

112 re t u rn t ru e ;

113 }

114

115 b oo l Bank : : w i thdraw (){

116 i f (l o g g ed I n != ” ”) {

117 i f (amountWithdrawn>= MAX WITHDRAW) {

118 co u t<< ” Sor ry , no more money can be withdrawn , you have ”<<

119 ” r each ed your 300 d o l l a r l i m i t . ”<< en d l ;

120 }

121 e l s e {

122 i n t draw = 0 ;

123 co u t<< ” En t e r t h e amount you would l i k e t o wi thdraw : ” ;

124 c i n >> draw ;

125 i n t t o t W i t h ;

126 i f (draw + amountWithdrawn> MAX WITHDRAW) {

127 co u t << ”You can n o t w i thdraw t h a t amount today , would you l i k e ”<<

128 ” t o wi thdraw ” << MAX WITHDRAW − amountWithdrawn<< ” i n s t e a d ? ”<<

129 ” (y f o r yes , n f o r no) ” ;

130 s t r i n g answer ;

131 c i n >> answer ;

85

132 i f (answer == ” yes ”) {

133 money −= (MAX WITHDRAW − amountWithdrawn) ;

134 amountWithdrawn = MAXWITHDRAW;

135 t o t W i t h = MAX WITHDRAW;

136 }

137 e l s e {

138 t o t W i t h = 0 ;

139 }

140 }

141 e l s e i f (draw > money) {

142 co u t << ” Sor ry , you do n o t have ”<< draw << ” d o l l a r s i n your acco u n t . ”<< en d l ;

143 }

144 e l s e i f (draw < 0) {

145 co u t << ” Sor ry , you can n o t w i thdraw a n e g a t i v e amount . ”<< en d l ;

146 }

147 e l s e {

148 money −= draw ;

149 amountWithdrawn−= draw ;

150 t o t W i t h = draw ;

151 }

152

153 co u t<< ”\n” << t o t W i t h << ” d o l l a r s wi thdrawn , l e a v i n g you wi th ”<<

154 money<< ” d o l l a r s l e f t i n t h e bank .\n” ;

155 }

156 }

157 e l s e {

158 co u t<< ”You must l o g i n b e f o r e you can make a w i t h d r aw a l . ”<< en d l ;

159 }

160 re t u rn t ru e ;

161 }

162

163 b oo l Bank : : t r a n s f e r (){

164 i f (l o g g ed I n != ” ”) {

165 s t r i n g name ;

166 co u t<< ”The f o l l o w i n g p eo p l e can have money t r a n s f e r e d t o them :\n ” << en d l ;

167 co u t<< ”Andy” << en d l ;

168 co u t<< ” Me l i ssa ” << en d l ;

169 co u t<< ” F i t z \n” << en d l ;

170

171 co u t<< ” Type t h e name of t h e p e r so n you wish t o t r a n s f e r money t o : ” ;

172 c i n >> name ;

173 i f (name == ”Andy” | | name == ” Mel i sa ” | | name == ” F i t z ”) {

174 co u t<< ”How much would you l i k e t o t r a n s f e r : ” ;

175 i n t amount ;

176 c i n >> amount ;

177 i f (amount< money) {

178 co u t << ”You on ly have ” << money<< ” d o l l a r s . ” << en d l ;

179 co u t << ”Would you l i k e t o t r a n s f e r a l l o f your money ? (y f o r yes , n f o rno) ” ;

180 s t r i n g answer ;

181 c i n >> answer ;

182 i f (answer == ”y ”) {

183 co u t << ” T r a n s f e r i n g ” << money<<

86

184 ” d o l l a r s , l e a v i n g you wi th 0 d o l l a r s . ”<< en d l ;

185 money = 0 ;

186 }

187 e l s e {

188 co u t << ”Ok , s t o p p i n g t r a n s f e r . ”<< en d l ;

189 }

190 }

191 e l s e i f (amount< 0) {

192 co u t << ” Cannot t r a n s f e r a n e g a t i v e amount ”<< en d l ;

193 }

194 e l s e {

195 money −= amount ;

196 co u t << ” T r a n s f e r i n g ” << amount<<

197 ” d o l l a r s , l e a v i n g you wi th ”<< money<< ” d o l l a r s . ” << en d l ;

198 }

199 }

200 e l s e {

201 co u t<< ”No one by t h a t name e x i s t s , s o r r y . ”<< en d l ;

202 }

203 }

204 e l s e {

205 co u t<< ”You must l o g i n b e f o r e you can t r a n s f e r funds . ”<< en d l ;

206 }

207 re t u rn t ru e ;

208 }

209

210 vo id Bank : : checkFunds (){

211 i f (l o g g ed I n != ” ”) {

212 co u t<< ”You c u r r e n t l y have ”<< money<< ” d o l l a r s . ” << en d l ;

213 }

214 e l s e {

215 co u t<< ”You must l o g i n b e f o r e you can check your funds . ”<< en d l ;

216 }

217 }

218

219 vo id Bank : : i n i t (){

220 l o g g ed I n = ” ” ;

221 amountWithdrawn = 0 ;

222 money = 0 ;

223 }

D.3 Address Book

In this test, bugs were located between two files, AddressBook.cpp and LinkedList.cpp.

D.3.1 Bugs for the Address Book

1. Method AddressBook::findFriend(), editFriend(), and removeFriend() Line: 105, 117, 130.

These methods all assume that the value returned from the linked list will not be null, which

87

is not the case if the key is not contained anywhere in the list.

2. Method AddressBook::printFriend(Friend* fr) Line: 143. This method assumes that Friend*

fr is not null.

3. Method LinkedList::add(ListNode* node) Line: 15. When ahead node is created the number

of nodes is not incremented.

4. Method LinkedList::remove(string key) Line: 44. If the element being removed is the last in

the list, the number of nodes is not properly decremented.

5. Method LinkedList::remove(string key) Line: 51. The prev = head line should be nested at

the end of the while block, not the end of the if(node→ getKey() == key) block.

6. Method LinkedList::remove(string key) Line: 55. The endof this method should return 0,

not prev, because no node was found to remove.

7. Method LinkedList::clear() Line: 78. Deleting the ListNode does not delete the friend. The

friend should also be deleted.

8. Method LinkedList::clear() Line: 80. Clear should set head = 0, to clear the linked list after

deleting all of its elements.

D.3.2 Address Book code

1

2 # i n c l u d e ” AddressBook . h ”

3

4 /∗∗

5 T h i s program s i m u l a t e s a ve ry s i m p l e a d d ress book .

6 ∗ /

7 i n t main (i n t argc , char ∗argv []) {

8 AddressBook book ;

9 book . run () ;

10 re t u rn 0 ;

11 }

88

1 # i f n d e f ADDRESSBOOK H

2 # d e f i n e ADDRESSBOOK H

3

4 # i n c l u d e ” L i n k ed L i s t . h ”

5 # i n c l u d e ” F r i en d . h ”

6

7 c l a s s AddressBook{

8

9 p u b l i c :

10 AddressBook () ;

11 ˜ AddressBook () ;

12 vo id run () ;

13 p r i v a t e :

14 vo id i n i t () ;

15 vo id p r i n t F r i e n d (F r i en d∗ f r) ;

16 vo id p r i n t A l l () ;

17 vo id ad d F r i en d () ;

18 vo id removeFr iend () ;

19 vo id e d i t F r i e n d () ;

20 vo id f i n d F r i e n d () ;

21 L i n k ed L i s t book ;

22 i n t showMenu () ;

23 } ;

24

25 # e n d i f

1 # i n c l u d e ” AddressBook . h ”

2 # i n c l u d e ” L is tNode . h ”

3 # i n c l u d e ” I t e r a t o r . h ”

4

5 # i n c l u d e <i o s t r eam>

6 # i n c l u d e <s t r i n g>

7

8 u s in g s t d : : s t r i n g ;

9 u s in g s t d : : co u t ;

10 u s in g s t d : : c i n ;

11 u s in g s t d : : en d l ;

12

13 AddressBook : : AddressBook (){

14 }

15

16 AddressBook : : ˜ AddressBook (){

17 }

18

19 vo id AddressBook : : run (){

20 co u t<< ” Address book menu , p l e a s e choose what you would l i k e t o do :\n\n” ;

21

22 b oo l q u i t = f a l s e ;

23 wh i l e (! q u i t) {

24 i n t ch o i ce = showMenu () ;

25 swi t ch (ch o i ce) {

26 case 1 :

27 ad d F r i en d () ;

89

28 break ;

29 case 2 :

30 removeFr iend () ;

31 break ;

32 case 3 :

33 e d i t F r i e n d () ;

34 break ;

35 case 4 :

36 f i n d F r i e n d () ;

37 break ;

38 case 5 :

39 p r i n t A l l () ;

40 break ;

41 case 6 :

42 book . c l e a r () ;

43 break ;

44 case 7 :

45 q u i t = t ru e ;

46 break ;

47 d e f a u l t :

48 co u t << ” I n v a l i d cho ice , t r y ag a i n . ”<< en d l ;

49 break ;

50 }

51 }

52 }

53

54 i n t AddressBook : : showMenu (){

55 i n t i n p u t ;

56 co u t<< ”\n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Menu ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n\n” ;

57 co u t<< ” 1 . Add a f r i e n d ” << en d l ;

58 co u t<< ” 2 . D e l e t e a f r i e n d ”<< en d l ;

59 co u t<< ” 3 . Ed i t i n f o r m a t i o n f o r a f r i e n d ”<< en d l ;

60 co u t<< ” 4 . Search f o r a f r i e n d ”<< en d l ;

61 co u t<< ” 5 . L i s t a l l f r i e n d s ” << en d l ;

62 co u t<< ” 6 . D e l e t e a l l f r i e n d s ”<< en d l ;

63 co u t<< ” 7 . Ex i t ” << en d l ;

64

65 co u t<< ”\n∗∗\n\n” ;

66 co u t<< ” Your ch o i ce : ” ;

67 c i n >> i n p u t ;

68 c i n . i g n o r e (1) ;

69 re t u rn i n p u t ;

70 }

71

72 vo id AddressBook : : i n i t () {

73 book . c l e a r () ;

74 }

75

76 vo id AddressBook : : ad d F r i en d (){

77 s t r i n g name , ad d r ess , phone ;

78 co u t<< ” P l ease t y p e t h e name : ” ;

79 g e t l i n e (c in , name) ;

90

80

81 co u t<< ” P l ease t y p e t h e ad d r ess : ” ;

82 g e t l i n e (c in , ad d r ess) ;

83

84 co u t<< ” P l ease t y p e t h e phone number : ” ;

85 g e t l i n e (c in , phone) ;

86

87 F r i en d∗ o b j = new F r i en d (name) ;

88 obj−>ad d r ess = ad d r ess ;

89 obj−>phoneNumber = phone ;

90

91 co u t<< ”\n ” ;

92 p r i n t F r i e n d (o b j) ;

93

94 Lis tNode∗ node = new Lis tNode (name , o b j) ;

95 book . add (node) ;

96 }

97

98 vo id AddressBook : : f i n d F r i e n d (){

99 s t r i n g name ;

100 co u t<< ” P l ease t y p e t h e name of t h e f r i e n d you wish t o f i n d : ” ;

101 g e t l i n e (c in , name) ;

102

103 Lis tNode∗ node = book . g e t (name) ;

104

105 F r i en d∗ f r = node−>g e t O b j e c t () ;

106 co u t<< ”\n F r i en d ” << name<< ” found . ” << en d l ;

107 p r i n t F r i e n d (f r) ;

108 }

109

110 vo id AddressBook : : removeFr iend (){

111 s t r i n g name ;

112 co u t<< ” P l ease t y p e t h e name of t h e f r i e n d you wish t o remove : ” ;

113 g e t l i n e (c in , name) ;

114

115 Lis tNode∗ node = book . remove (name) ;

116

117 F r i en d∗ f r = node−>g e t O b j e c t () ;

118 co u t<< ”\n F r i en d ” << name<< ” found , d e l e t i n g . ”<< en d l ;

119 d e l e t e (f r) ;

120 d e l e t e (node) ;

121 }

122

123 vo id AddressBook : : e d i t F r i e n d (){

124 s t r i n g name , ad d r ess , phone ;

125 co u t<< ” P l ease t y p e t h e name of t h e f r i e n d you wish t o e d i t : ” ;

126 g e t l i n e (c in , name) ;

127

128 Lis tNode∗ node = book . g e t (name) ;

129

130 F r i en d∗ f r = node−>g e t O b j e c t () ;

131 co u t<< ”\n F r i en d ” << name<< ” found . ” << en d l ;

91

132

133 co u t<< ” P l ease t y p e t h e new ad d r ess : ” ;

134 g e t l i n e (c in , ad d r ess) ;

135

136 co u t<< ” P l ease t y p e t h e new phone number : ” ;

137 g e t l i n e (c in , phone) ;

138

139 f r−>ad d r ess = ad d r ess ;

140 f r−>phoneNumber = phone ;

141

142 co u t<< ”New I n f o r m a t i o n f o r ” << f r−>getName ()<< en d l ;

143 p r i n t F r i e n d (f r) ;

144 }

145

146 vo id AddressBook : : p r i n t F r i e n d (F r i en d∗ f r) {

147 co u t<< ”Name : ” << f r−>getName ()<< en d l ;

148 co u t<< ” Address : ” << f r−>ad d r ess<< en d l ;

149 co u t<< ” Phone Number : ”<< f r−>phoneNumber<< en d l ;

150 }

151

152 vo id AddressBook : : p r i n t A l l () {

153 co u t<< ”You have ” << book . s i z e ()<< ” f r i e n d s . ” << en d l ;

154 I t e r a t o r i t (&book) ;

155 wh i l e (i t . hasNext ()) {

156 F r i en d∗ f r = (i t . n ex t ())−> g e t O b j e c t () ;

157 co u t<< f r−>getName ()<< en d l ;

158 }

159 }

1 # i f n d e f FRIEND H

2 # d e f i n e FRIEND H

3

4 # i n c l u d e <s t r i n g>

5

6 u s in g s t d : : s t r i n g ;

7

8 c l a s s F r i en d {

9 p u b l i c :

10 F r i en d (s t r i n g f r iendsName) ;

11 ˜ F r i en d () ;

12 s t r i n g ad d r ess ;

13 s t r i n g phoneNumber ;

14 s t r i n g getName () ;

15

16 p r i v a t e :

17 s t r i n g name ;

18 } ;

19

20 # e n d i f

1 # i n c l u d e ” F r i en d . h ”

2

3 F r i en d : : F r i en d (s t r i n g f r iendsName){

92

4 name = f r iendsName ;

5 }

6

7 F r i en d : : ˜ F r i en d () {

8

9 }

10

11 s t r i n g F r i en d : : getName (){

12 re t u rn name ;

13 }

1 # i f n d e f LINKED LIST H

2 # d e f i n e LINKED LIST H

3

4 # i n c l u d e ” L is tNode . h ”

5

6 # i n c l u d e <s t r i n g>

7

8 u s in g s t d : : s t r i n g ;

9

10 c l a s s L i n k ed L i s t {

11 p u b l i c :

12 L i n k ed L i s t () ;

13 ˜ L i n k ed L i s t () ;

14 b oo l add (L is tNode∗ node) ;

15 Lis tNode∗ remove (s t r i n g key) ;

16 Lis tNode∗ g e t F i r s t () ;

17 Lis tNode∗ g e t (s t r i n g key) ;

18 vo id c l e a r () ;

19 i n t s i z e () ;

20

21 p r i v a t e :

22 i n t numNodes ;

23 Lis tNode∗ head ;

24 } ;

25

26

27 # e n d i f

1 # i n c l u d e ” L i n k ed L i s t . h ”

2 # i n c l u d e ” I t e r a t o r . h ”

3

4 L i n k ed L i s t : : L i n k ed L i s t () {

5 head = 0 ;

6 numNodes = 0 ;

7 }

8

9 L i n k ed L i s t : : ˜ L i n k ed L i s t () {

10 c l e a r () ;

11 }

12

13 b oo l L i n k ed L i s t : : add (L is tNode∗ node) {

14 i f (! head) {

93

15 head = node ;

16 re t u rn t ru e ;

17 }

18 e l s e {

19 node−>se t N ex t (head) ;

20 ++numNodes ;

21 head = node ;

22 re t u rn t ru e ;

23 }

24 }

25

26 Lis tNode∗ L i n k ed L i s t : : remove (s t r i n g key){

27 I t e r a t o r i t (t h i s) ;

28 Lis tNode ∗prev = 0 ;

29 wh i l e (i t . hasNext ()) {

30 Lis tNode∗ node = i t . n ex t () ;

31 i f (node−>getKey () == key) {

32 i f (p rev == 0) {

33 i f (node−>getNex t () == 0) {

34 head = 0 ;

35 −−numNodes ;

36 }

37 e l s e {

38 head = node−>getNex t () ;

39 −−numNodes ;

40 }

41 }

42 e l s e {

43 i f (node−>getNex t () == 0) {

44 prev−>se t N ex t (0) ;

45 }

46 e l s e {

47 prev−>se t N ex t (node−>getNex t ()) ;

48 −−numNodes ;

49 }

50 }

51 prev = node ;

52 re t u rn node ;

53 }

54 }

55 re t u rn prev ;

56 }

57

58 Lis tNode∗ L i n k ed L i s t : : g e t (s t r i n g key){

59 I t e r a t o r i t (t h i s) ;

60 wh i l e (i t . hasNext ()) {

61 Lis tNode∗ node = i t . n ex t () ;

62 i f (node−>getKey () == key) {

63 re t u rn node ;

64 }

65 }

66 re t u rn 0 ;

94

67 }

68

69 Lis tNode∗ L i n k ed L i s t : : g e t F i r s t () {

70 re t u rn head ;

71 }

72

73 vo id L i n k ed L i s t : : c l e a r () {

74 I t e r a t o r i t (t h i s) ;

75 wh i l e (i t . hasNext ()) {

76 Lis tNode∗ node = i t . n ex t () ;

77 F r i en d∗ f r = node−>g e t O b j e c t () ;

78 d e l e t e (node) ;

79 }

80 numNodes = 0 ;

81 }

82

83 i n t L i n k ed L i s t : : s i z e () {

84 re t u rn numNodes ;

85 }

1 # i f n d e f LIST NODE H

2 # d e f i n e LIST NODE H

3

4 # i n c l u d e ” F r i en d . h ”

5 # i n c l u d e <s t r i n g>

6

7 u s in g s t d : : s t r i n g ;

8

9 c l a s s Lis tNode{

10 p u b l i c :

11 L is tNode (s t r i n g nodeKey , F r i en d∗o b j) ;

12 ˜ L is tNode () ;

13 Lis tNode∗ getNex t () ;

14 vo id se t N ex t (L is tNode∗ nextNode) ;

15

16 F r i en d∗ g e t O b j e c t () ;

17 s t r i n g getKey () ;

18

19 p r i v a t e :

20 s t r i n g key ;

21 F r i en d ∗o b j e c t ;

22 Lis tNode ∗n ex t ;

23 } ;

24

25

26 # e n d i f

1 # i n c l u d e ” L is tNode . h ”

2

3 Lis tNode : : L is tNode (s t r i n g nodeKey , F r i en d∗o b j) {

4 key = nodeKey ;

5 o b j e c t = o b j ;

6 n ex t = 0 ;

95

7 }

8

9 Lis tNode : : ˜ L is tNode () {

10

11 }

12

13 Lis tNode∗ Lis tNode : : ge tNex t () {

14 re t u rn n ex t ;

15 }

16

17 vo id Lis tNode : : se t N ex t (L is tNode∗ nextNode) {

18 n ex t = nextNode ;

19 }

20

21

22 F r i en d∗ Lis tNode : : g e t O b j e c t (){

23 re t u rn o b j e c t ;

24 }

25

26 s t r i n g Lis tNode : : getKey (){

27 re t u rn key ;

28 }

1 # i f n d e f ITERATOR H

2 # d e f i n e ITERATOR H

3

4

5 # i n c l u d e ” L is tNode . h ”

6 # i n c l u d e ” L i n k ed L i s t . h ”

7

8 c l a s s I t e r a t o r {

9 p u b l i c :

10 I t e r a t o r (L i n k ed L i s t∗ l i n k e d L i s t) ;

11 ˜ I t e r a t o r () ;

12 Lis tNode∗ n ex t () ;

13 b oo l hasNext () ;

14 vo id r e s e t () ;

15 p r i v a t e :

16 L i n k ed L i s t∗ l i s t ;

17 Lis tNode∗ c u r r e n t ;

18 } ;

19

20 # e n d i f

1 # i n c l u d e ” I t e r a t o r . h ”

2

3 I t e r a t o r : : I t e r a t o r (L i n k ed L i s t∗ l i n k e d L i s t) {

4 l i s t = l i n k e d L i s t ;

5 c u r r e n t = l i s t−>g e t F i r s t () ;

6 }

7

8 I t e r a t o r : : ˜ I t e r a t o r () {}

9

96

10 Lis tNode∗ I t e r a t o r : : n ex t () {

11 Lis tNode∗ re tu rnMe = c u r r e n t ;

12 i f (c u r r e n t != 0) {

13 c u r r e n t = c u r r e n t−>getNex t () ;

14 re t u rn re tu rnMe ;

15 }

16 e l s e {

17 re t u rn 0 ;

18 }

19 }

20

21 b oo l I t e r a t o r : : hasNext (){

22 i f (c u r r e n t == 0) {

23 re t u rn f a l s e ;

24 }

25 e l s e {

26 re t u rn t ru e ;

27 }

28 }

29

30 vo id I t e r a t o r : : r e s e t (){

31 c u r r e n t = l i s t−>g e t F i r s t () ;

32 }

97

BIBLIOGRAPHY

[1] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. Ananalysis of patterns of de-

bugging among novice computer science students. InITiCSE ’05: Proceedings of the 10th

annual SIGCSE conference on Innovation and technology in computer science education,

pages 84–88, New York, NY, USA, 2005. ACM Press.

[2] James L. Alty and Dimitrios Rigas. Exploring the use of structured musical stimuli to com-

municate simple diagrams: the role of context.Int. J. Hum.-Comput. Stud., 62(1):21–40,

2005.

[3] James L. Alty and Dimitrios I. Rigas. Communicating graphical information to blind users

using music: the role of context. InCHI ’98: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 574–581, New York, NY, USA, 1998. ACM

Press/Addison-Wesley Publishing Co.

[4] James L. Alty, Dimitrios I. Rigas, and Paul Vickers. Using music as a communication

medium. InCHI ’97 electronic publications, pages 22–27, 1997.

[5] V.R. Basili. Software modeling and measurement: The goal/question/metric paradigm.Uni-

versity of Maryland at College Park Computer Science Technical Report UMIACS-TR-92-96,

pages 1–24, sep 1992.

[6] David B. Boardman, Geoffrey Greene, Vivek Khandelwal, and Aditya P. Mathur. Listen: A

tool to investigate the use of sound for the analysis of program behavior. InComputer Soft-

ware and Applications Conference, 1995. COMPSAC 95. Proceedings., Nineteenth Annual

International, pages 184–189, 1995.

[7] Jeffrey Bonar and Elliot Soloway. Uncovering principles of novice programming. InPOPL

98

’83: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of program-

ming languages, pages 10–13, New York, NY, USA, 1983. ACM Press.

[8] Stephen A. Brewster, Peter C. Wright, and Alistair D. N. Edwards. An evaluation of earcons

for use in auditory human-computer interfaces. InCHI ’93: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 222–227, New York, NY, USA,

1993. ACM Press.

[9] Ryan Chmiel and Michael C. Loui. Debugging: from novice to expert. InSIGCSE ’04:

Proceedings of the 35th SIGCSE technical symposium on Computer science education, pages

17–21, New York, NY, USA, 2004. ACM Press.

[10] Gilbert Cockton. From doing to being: bringing emotioninto interaction. Interacting with

Computers, 14(2):89–92, feb 2002.

[11] Alan R. Dyer. Comparisons of tests for normality with a cautionary note. Biometrika,

61(1):185–189, Apr 1974.

[12] Joan M. Francioni, Larry Albright, and Jay Alan Jackson. Debugging parallel programs

using sound. InPADD ’91: Proceedings of the 1991 ACM/ONR workshop on Parallel and

distributed debugging, pages 68–75, New York, NY, USA, 1991. ACM Press.

[13] Joan M. Francioni and Jay Alan Jackson. Breaking the silence: auralization of parallel pro-

gram behavior.J. Parallel Distrib. Comput., 18(2):181–194, 1993.

[14] Joan M. Francioni, Jay Alan Jackson, and Larry Albright. The sounds of parallel programs.

In Proceedings, The Sixth, pages 570–577, April, May 1991.

[15] Joan M. Francioni and Ann C. Smith. Computer science accessibility for students with vi-

sual disabilities. InSIGCSE ’02: Proceedings of the 33rd SIGCSE technical symposium on

Computer science education, pages 91–95, New York, NY, USA, 2002. ACM Press.

99

[16] William W. Gaver. Auditory icons: Using sound in computer interfaces.Human-Computer

Interaction, 2:167–177, 1986.

[17] William W. Gaver. The sonic finder: An interface that uses auditory icons.Human-Computer

Interaction, 4:67–94, 1989.

[18] William W. Gaver. Synthesizing auditory icons. InCHI ’93: Proceedings of the SIGCHI

conference on Human factors in computing systems, pages 228–235, New York, NY, USA,

1993. ACM Press.

[19] M.C. Gopinath. Auralization of an intrusion detectionsystem. Master’s thesis, Purdue Uni-

versity, BITS, Pilani, India, May 2004.

[20] Franklin A. Graybill. Discussion: What is an analysis of variance?The Annals of Statistics,

15(3):921–923, sep 1987.

[21] J. Klein, Y. Moon, and R. W. Picard. This computer responds to user frustration: Theory,

design, and results.Interacting with Computers, 14(2):119–140, feb 2002.

[22] Jonathan Klein, Youngme Moon, and Rosalind W. Picard. This computer responds to user

frustration. InCHI ’99: CHI ’99 extended abstracts on Human factors in computing systems,

pages 242–243, New York, NY, USA, 1999. ACM Press.

[23] Donald E. Knuth. The complexity of songs.SIGACT News, 9(2):17–24, 1977.

[24] Donald E. Knuth. The complexity of songs.Commun. ACM, 27(4):344–346, 1984.

[25] Grgory Lepltre and Iain McGregor. How to tackle auditory interface aesthetics? discussion

and case study. InProceedings of ICAD 04-Tenth Meeting of the International Conference

on Auditory Display, july 2004.

100

[26] Ann Light. Designing to persuade: the use of emotion in networked media.Interacting with

Computers, 16(4):729–738, jul 2004.

[27] Robert M. Greenberg Meera M. Blattner, Denise A. Sumikawa. Earcons and icons: Their

structure and common design principles.Human-Computer Interaction, 4:11–44, 1989.

[28] D.C. Montgomery.Design and Analysis of Experiments, Fourth Edition. John Wiley and

Sons, 1997.

[29] Nancy Pennington. Comprehension strategies in programming. In Gary M. Olson, Sylvia

Sheppard, Elliot Soloway, and Ben Shneiderman, editors,Empirical Studies of Programmers:

Second Workshop, pages 100–113, Westport, CT, USA, 1987. Greenwood Publishing Group

Inc.

[30] Nancy Pennington. Stimulus structures and mental representations in expert comprehension

of computer programs.Cognitive Psychology, 19:295–341, 1987.

[31] R. W. Picard, J. Klein, and Y. Moon. Computers that recognize and respond to human emo-

tion: theoretical and practical implications.Interacting with Computers, 14(2):141–169, feb

2002.

[32] R. Jagadish Prasath. Auralization of web server using jlisten. Master’s thesis, Purdue Uni-

versity, BITS, Pilani, India, May 2004.

[33] D. I. Rigas and J. L. Alty. Using sound to communicate program execution. InEUROMI-

CRO ’98: Proceedings of the 24th Conference on EUROMICRO, volume 2, pages 625–632,

Washington, DC, USA, aug 1998.

[34] Dimitrios Rigas and James Alty. The rising pitch metaphor: an empirical study.Int. J.

Hum.-Comput. Stud., 62(1):1–20, 2005.

101

[35] Dimitrios Rigas, James Alty, and F.W. Long. Can music support interfaces to complex data-

bases? EUROMICRO 97. ’New Frontiers of Information Technology’.,Proceedings of the

23rd EUROMICRO Conference, pages 78–84, 1997.

[36] Jocelyn Scheirer, Raul Fernandez, Jonathan Klein, andRosalind W. Picard. Frustrating the

user on purpose: a step toward building an affective computer. Interacting with Computers,

14(2):93–118, feb 2002.

[37] S. S. Shapiro and R. S. Francia. An approximate analysisof variance test for normality.

Journal of the American Statistical Association, 67(337):215–216, 1972.

[38] Ann C. Smith, Justin S. Cook, Joan M. Francioni, Asif Hossain, Mohd Anwar, and

M. Fayezur Rahman. Nonvisual tool for navigating hierarchical structures. InASSETS ’04:

Proceedings of the ACM SIGACCESS conference on Computers and accessibility, pages 133–

139, New York, NY, USA, 2004. ACM Press.

[39] Ann C. Smith, Joan M. Francioni, and Sam D. Matzek. A javaprogramming tool for students

with visual disabilities. InAssets ’00: Proceedings of the fourth international ACM confer-

ence on Assistive technologies, pages 142–148, New York, NY, USA, 2000. ACM Press.

[40] Diane H. Sonnenwald, B. Gopinath, Gary O. Haberman, William M. Keese III, and John.S.

Myers. Infosound: an audio aid to program comprehension. InSystem Sciences, 1990.,

Proceedings of the Twenty-Third Annual Hawaii International Conference on, volume 2,

pages 541–546, jan 1990.

[41] Fernando Sor. Variations on a theme by mozart, op. 9.

[42] James G. Spohrer and Elliot Soloway. Analyzing the highfrequency bugs in novice programs.

In Papers presented at the first workshop on empirical studies of programmers on Empirical

studies of programmers, pages 230–251, Norwood, NJ, USA, 1986. Ablex Publishing Corp.

102

[43] Noam Tractinsky. Tools over solutions? comments on interacting with computers special

issue on affective computing.Interacting with Computers, 16(4):751–757, jul 2004.

[44] Paul Vickers.CAITLIN: Implementation of a Musical Program AuralisationSystem to Study

the Effects on Debugging Tasks as Performed by Novice PascalProgrammers. PhD thesis,

Loughborough University, 1999.

[45] Paul Vickers. External auditory representations of programs: Past, present, and futurean aes-

thetic perspective. InProceedings of ICAD 04-Tenth Meeting of the International Conference

on Auditory Display, july 2004.

[46] Paul Vickers and James L. Alty. Musical program auralisation: a structured approach to motif

design.Interacting with Computers, 14(5):457–485, 2002.

[47] Paul Vickers and James L. Alty. When bugs sing.Interacting with Computers, 14(6):793–

819, 2002.

[48] Paul Vickers and James L. Alty. Siren songs and swan songs debugging with music.Com-

munications of the ACM, 46(7):86–93, jul 2003.

[49] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders

Wesslén.Experimentation in Software Engineering An Introduction. Kluwer Academic Pub-

lishers, Boston/Dordrecht/London, 2000.

103

