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AN EMPIRICAL COMPARISON OF PROGRAM AURALIZATION TECHNIQUIS

Abstract

by Andreas Mikal Stefik, M.S.
Washington State University
December 2005

Chair: Kelly Fitz

This thesis presents a new approach to using music for huorapwter interaction, layered
program auralization. | use layers of musical structureepesent the state and behavior of a
computer program while it is running, taking advantage ofapkorical relationships between
musical structure and programming constructs. Layerdayene another, and can intelligently
collaborate to create meaningful mappings from prograne stabehavior to music. | describe
three possible layers in this new system. A dynamically iaieid tonal structure changes the
harmony while a computer program is running. Program ssategresented by changes in the
orchestration during execution. Lyrics add semantic mi@tion that is difficult to represent with
music alone.

One possible application of layered program auralizasdn debugging runtime behavior of
computer programs. Three programs, with faults stratégiadded, were written to test the
effectiveness of layered program auralization. The thregnams created included a roulette
game, a bank automatic teller machine, and an address baoémpirical study was conducted
comparing the effectiveness of three groups of particgaiiile debugging these programs. The
first group of participants were given no auralizations,d4eeond strictly musical auralizations,
and the third musical auralizations with additional lyrigsiree sessions of experiments were run,
the first of which without training into how the auralizat®owork. In the last two sessions of the

experiment, participants in the music and music plus voroggs were given training in the



auralizations.

Results indicate that layered program auralization wascgtfe in the music group for the bank
example, but may not work for every type of computer prograsing the current auralization
design. Interestingly, users debugging control flow aspetiprograms found more errors than
other types of programs, like linked structures. In additia the music plus voice group, subjects
were found to debug less effectively than the control grétipely were given no training, although

this effect was not seen with the music only group.
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CHAPTER 1

INTRODUCTION

Typical software does not go from design to implementatigdhout error. Errors of design, errors
of requirements, and implementation errors can be a secause of confusion and frustration.
In this thesis, | propose the use of sound during the debgggiacess to help find faults while
computer programs are executing. | use layers of musicattsire to represent the state and
behavior of a computer program while it is running, takingatage of metaphorical relationships
between musical structure and programming constructsiddidayers overlap one another, often

similar to viewgraphs on an overhead projector.

1.1 The Layered Program Auralization approach

Musical layers are mapped to program constructs, like IF &HIME. A layer is, “A method of
generating music, or properties of music, from behavior alad While a computer program
runs, program constructs are aurally enumerated, meaaingls are emitted from the computer.
Sounds emitted relate to the computer code. Creating thppim@ is non-trivial, and a general
process for creating such a mapping does not exist in thatitee. In addition, not all parts of
a mapping from a running program to sound are equally ditficédbme program constructs, like
an IF, can be mapped to metaphorically equivalent soundsyesr music. Other characteristics,
even those as simple as representing an arbitrary stringraber, have no known, general case,
metaphorical mapping. Mapping sounds to computer programs benefit computer users, for
example those trying to debug computer programs.

This thesis introduces two concepts unique to the prograwmdiaation literature. The first is
the application of layers to sound mappings [16]. Mappinmgsdivided into layers that work well
for any given part of a mapping, and these layers are traespijprcombined during auralization.

The second is the use of lyrics to represent program cortstwirere no metaphorical mapping



exists.

For the purpose of debugging, | define three main types ofraytbe cadential layer, the
orchestration layer, and the lyrics layer. In the cademaiadr, program structure is encoded into
musical cadential patterns, a common pattern of chorda oed in classical music to indicate the
end of a phrase. The orchestral layer uses the number aimetrts currently playing to represent
the state of a computer program. The lyrics layer is usedpgresent semantic information with

no obvious metaphorical mapping, like numbers and text.

1.2 Experimentation

| conducted an empirical study in order to test the effeckgs of the layered auralization ap-
proach. Novice programmers in an advanced data structatgse; sophomore year, were asked
to debug auralized computer programs. There were threeimxg@al groups, those with no au-
ralizations, and two groups with different types of auratians.

The first non-control group was given auralizations with¢hadential layer and the orchestral
layer. This group had no sounds mapped to semantic data. éldond group was given the
cadential layer, the orchestral layer, and the lyrics lajiére audio for this group was extremely
similar to the first, but the lyrics were recorded, by a musiciand played back as an additional
layer while debugging.

Lastly, it is possible that the subjects will require tragito use layered program auraliza-
tion techniques effectively. Techniques may or may not lbecafe without training, and may
become more effective with additional training. The expemt was designed to test participants
effectiveness without training, a second test with somigitrg, and a third test with additional

training.



CHAPTER 2

BACKGROUND RESEARCH

In program auralization, sound is mapped to behavior or.datany case, this means mapping
running computer programs to sound, and especially musiberQesearchers have used sound
for a variety of purposes. For example, sound is used to regpsiperform a task like debugging
a program [48], is used to help the blind navigate hieraadhree structures [38], and is used to
help users understand normal computing events, like cgpyiile [17]

One important concept for program auralization was firstngefiby Gaver when working on
the SonicFinder. Gaver defines two types of sound mappiogseptual and perceptual [17, 16].
A conceptual mapping maps parts of the computer, transisgates, data structures, to a model
world. This can be thought of as a metaphor for the way the edenpvorks, similar to thinking of
the computer as a desktop, with files and folders. A percéptapping maps the model world into
something a user can perceive, like a file or a menu. Therdgre types of perceptual mappings,
symbolic, metaphorical, and iconic or nomic.

A symbolic mapping has meaning only by convention, say a laéep arbitrary frequency. A
metaphorical mapping makes use of a non-literal relatipnisétween an object and its represen-
tation. An example is filling up a water glass representingyarg a file. An iconic, or nomic,
representation looks or sounds like the thing it is tryingepresent. For example, a nomic map-
ping of deleting a file could be represented by a crash soucyreching sound, or an explosion.

Gaver later worked on representing “dimensional” inforimatin sounds [18], and proposes
using sound synthesis techniques to parameterize the sotiel presents this approach to give
auditory icons more parameterization capabilities. F@naxe, a file could sound large if it is
large, or could sound small if it is small [18].

Sonnenwald describes an architecture for InfoSound, arpnoguralizer [40]. Sonnenwald

used several types of auralizations, including speechydag sounds like a telephone ringing,



in addition to musical events. These sounds correspondedrious events, where a telephone
ringing could, for the most obvious presentation, represemeone calling on a phone. Music
can, instead, represent events that are more difficult to@efith a telephone ringing, or other
every day sounds. In the case of InfoSound, InfoSound usesicnw define abstract events in
parallel processing.

Earcons are defined as “... nonverbal audio messages usee usér-computer interface to
provide information to the user about some computer obggmtration, or interaction” [27]. In
this context, Blattner considers computer objects to begthlike files or menus and operations to
be things like editing or compiling. Editing a file would be @xample of an interaction that could
be auralized with an earcon.

The first empirical studies conducted on earcons were cdatpley Brewster [8]. Brewster
determined that earcons were more effective for portraynf@grmation than unstructured sound.
Two experiments were conducted, and with that data, gegardélines for creating earcons were
developed.

Knuth gives an interesting, and humorous, account of theptexity of song. In [23], reprinted
in [24], Knuth discusses the length of songs in relation elémgth of the text for those songs. For
example, if a song has a refrain, and therverse refrain pairs, the total space complexity of the
song iscm, wherec < 1. Other songs have further reductions in space complexityMacdonald
has a complexity of20 + A + «)1/n/(30 + 2)\) + O(1), the 12 days of christmas has a complexity
of W, andn bottles of beer on the wall has a complexity@flogn) [24].

Boardman created the language Listen, now reimplementéalenand called JListen [6]. The
original motivation for Listen was to create a tool for deisicrg how computer source code can be
auralized. This work included the creation of the LSL, Lisgpecification language, that allows
auralization code to be putinto other computer programss Jjpecification tells the Listen system
how to interpret computer code it receives, and what to egrah that code. So, in Listen, the

focus was on inputting code and outputting auralized coafendt on the actual sounds themselves.



New work into JListen has included the creation of an auedliweb server [32] and an intrusion
detection system [19].

Francioni et al describe an auralization of parallel proggd14, 12, 13]. In these papers, a
parallel program’s behavior is defined as a series of evhatsan be auralized, or played, during
program execution. Other work by Francioni in program amasion was intended to help users
with disabilities, especially non-sighted users. Thiskiacluded an auralizing Java programming
tool, called JavaSpeak, which was created for visually inepacomputer science students [39, 15,
38].

In 2005, Rigas and Alty present aural information about ayi@®grid to visually impaired
users [34]. The results of the experiment indicated thanevithout visual aid, users were able
understand the graphical information presented. Singjlédty used structured music stimuli to
help blind users understand shapes, which in turn formegtalnas [3, 2].

Bonar et al conducted empirical studies of novice programnrean attempt to understand
why programming is difficult for novices [7]. They conductddeo taped interviews with subjects
to try and understand the reasons why novices were makingirceypes of faults. Spohrer and
Solloway discuss several of the most common, or high frequdaults, although they call them
bugs, created in novice programs [42]. Data from severalensities was collected on a series
of computer science problems. Each problem involved tygiocagram constructs, like file 1/0,
loops, if-else like constructs, and several others. Faudte then categorized by the frequency in
which they occur in novice computer programs.

Chmeil [9] gave training to novice debuggers in an attempit¢oease their debugging skills in
a CS1 course. They found, given debugging training, thakestts required significantly less time
to debug programs than students who were not given debudggiming. Ahmadzadeh created
a two phase debugging study, where they first tested studegtgms for common compilation
errors, and second tested for logic errors [1]. Resultcatdd that subjects who were considered

good programmers, according to the author’s criteria, wetenecessarily good debuggers. They



also found that weak programmers did not tend to use a deslkdbpgging strategy, like using
print statements to indicate output at points in the program

Alty discusses the importance of audio in computer programd gives examples of its poten-
tial use to help non-sighted users with computers [4]. Rigaed diatonic structures, specifically
those from the major scale, stereophony, and multiple &sbr an attempt to communicate infor-
mation to subjects about a sorting algorithm [33]. The issoil this study on sorting algorithms
indicate that subjects can determine information aboulsiantities or sets of information over
execution, like the ordering of elements during a bubblé[S&.

Paul Vickers uses tonal musical structures to design haediaations [44, 47, 46, 48]. With his
program, CAITLIN, Vickers describes his method of prograsmedization for the Pascal program-
ming language. His auralizations are loosely based on tbhealy models, and considered the use
of characteristics like harmony and melody. One of the nmagiortant aspects of his work is that
Vickers ran empirical experiments on his auralizationghbse experiments, he showed a positive
correlation between use of the auralizations and debugginBascal computer programs.

One interesting concept in auralization to appear in Viskethe so called “Point of Interest,”

or (POI). Vickers describes this concept as:

“A point of interest is a feature of a construct the detailsvbfch are of interest to

the programmer at execution.” [44]

Since Vickers used Pascal in his CAITLIN sonification enmirent, he considered the points
of interest that are encompassed by that language. For éxaammajor chord could indicate a
true in an IF statement, and a minor chord could indicateszf@8]. In a point of interest, musical
or sonic events correspond to execution time events in tte.co

An interesting topic in relation to program auralizationliriques is the concept of aesthetics.
A recent topic of interest, for example in Scheirer [36], bagn user's emotions when using an

auralization, and its role in the larger topic of human cotepunteraction. Vickers discusses



aesthetic computing [45], a topic of importance in aurditrg as uninteresting auralizations may
prevent users from adopting an auralized system.

Leplatre and McGregor present a case study is designed cirmuremail notification sys-
tem [25]. Several different types of auralizations are gatezed, and the goal of the experiment
was to discover aesthetic differences within the diffeseninds brought forth. The authors deter-
mined, through experiment, that the type of task that isyeea, or what the user is asked to do,
effects the aesthetic judgment of the participants sicamtiy.

Several studies attempt to analyze the emotional impactefiaterfaces in human computer
interaction. Tractinsky discusses the general difficaltié considering aesthetics in HCI [43].
Light discusses the use of emotions in network media, anéttiies of manipulating those emo-
tions [26]. In addition, Light consider’s the use of text iffekent styles, for example a passive or
corporate sounding [26] “voice” and then asks forty sulgettheir impressions. Her work relates
a great deal to that of Klein [22, 21], Gilbert [10], and Pa&31].

Scheirer presents a computer system designed to intelyidnestrate the users and gives a
physiological method for determining whether a user istfaied [36]. The key result of this paper
was to use a physiological method, as opposed to somethinga# survey, to measure a user’s

affective responses to a computer system.



CHAPTER 3

AURALIZATION DESIGN

3.1 Layered Program Auralization

In this section, | describe the layered design of the soumaisyi program auralizer. | use layers
to represent behavior with sound. | chose three differeteigmaies of program comprehension to
represent: control flow, state, and semantic data [30]. iBuswvork, like Vickers, is concerned
only with control flow [48]. | use music to represent computede for the purpose of debugging
runtime behavior in that code. The layered approach gezemimusical score, which can be
performed by a music rendering system, like MIDI.

| define a layer as, “A method of generating music, or propsrtif music, from behavior or
data.” A layer is a method because it is a process for creaithgr music or musical properties.
A layer may or may not create music itself, depending on ¥erdype. Layers may, instead of
generating music, generate only properties of music. rpnét the definition of the terrmusic
broadly, and do not limit it to a particular time period, genor compositional style.

Layers are either performing layers, non-performing layer layers that perform the functions
of both. | call layers that perform both functions hetercgmus layers. Performing layers literally
create sound, and take, as input, some behavior or propémg/output of a performing layer is
sound or music.

Non-performing layers and heterogeneous layers, areasimib understand these two layer
types, layer properties must first be described. A layergmyps a characteristic of sound. Sim-
ple examples of a layer property would be high, low, spare@sd, or a chord progression. A
heterogeneous layer outputs music and properties. A ndorpeng layer outputs only properties
and does not generate music itself. The concept of a heteeogs layer is important, as the cre-

ation of layer properties allows for layers to map soundgheolayers properties, allowing layers



| Layer Type | Input | Output |
Performing Layer Behavior and/or PropertiesMusic or Sound
Heterogeneous Layer| Behavior and/or PropertigsProperties and Sound
Non-Performing Layer Behavior and/or PropertiesProperties

Table 3.1: Different types of layers and their properties.

\ Responses to two musical properties, respectively reiqgesisparse and dense soqnd
Make the resulting sound sparse
Make the resulting sound dense
Make the resulting sound somewhere between sparse and dense

Table 3.2: Possible Responses to two conflicting propefilesice that no matter the solution, the
original properties are not fulfilled, and a user may notectty perceive the appropriate behavior
through the given mapping.

to cooperate. For example, one layer can map a behavior tord phogression. Another layer

can detect properties and “sing along” in the same key, orirgtduments to the musical score.
Table 3.1 several layer types and their properties.

Properties of a layer can be either conflicting or non-cainfigc In most cases, properties are
non-conflicting. A conflicting property is a single partiaift in a conflicting relationship between
two or more properties, where the output loses informatRyoperties can only conflict when they
attempt to modify musical parameters that would cause an@itoperty’s request to go unmet.

For example, two properties requiring that a sound be bathsgpand dense would be conflict-
ing. If the propertydensestates that it wants the sound produced to be that of a futlestca, and
sparsesays to create the sound of just a piano, a sparse timbretttasa two properties conflict.
If the resulting sound has a sparse texture, therddreseproperty is not fulfilled. Likewise, if
the texture is denssparseis not fulfilled. No matter the resolution between this canflihere is
information loss. Table 3.2 gives possible responses toctwdlicting properties. Notice that no
matter the solution, the at least one properties request iifilled.

For an example of constructing a layer using layered prograralization, consider a layered

auralization approach to copying a file. Suppose that tl@dfld a size of x. For n seconds, 1/x of



Attribute Example Mapping

File Size Full orchestra for a “large” file and a single guitar for a “dhhfle.
Time Required | Voice saying, “You have x minutes remaining” every thirtgseds
Time since start Slowly raising pitch

Table 3.3: Layered mappings from copying a file to sound.

st | il
e o= =
Sax. —H— —

AL - — - m——— S S . e Em—— S i i S |
ANIV4
oJ

You have 60 se-conds re-mai-ning You have 30 se-conds re-mai-ning

Figure 3.1: This is an auralization for copying a file. Asstihm the quarter notes in this example
take up the appropriate amount of time. Since this auraizancludes only a saxophone, the
file size must be small. To remind the reader, the lines betwetes indicate a glissando, or a
continuing increase in pitch between notes.

this file is copied from one location to another. The operatibcopying a file has several attributes
which may or not be important to a user of a system. For exartipdollowing may be important
to some users: the size of the file to be copied, the time redudar copy the file, and how long the
file has been copying for.

Suppose we want to create a layered program auralizatiogrdesthe attributes of this op-
eration. In layered program auralization, each charatieris granted its own layer. Table 3.3
contains an example layering from the behavior of copyindga Figure 3.1 shows a correspond-
ing musical score for this auralization.

Thus, to look at Figure 3.1, we can see that the concepts bféinvocals and pitch are used.
The timbre of the sounds do not effect the vocals. For exanaplery deep voice can say, “You
have x minutes remaining,” but so can a “tinny” voice. Simiapitch does not effect the words
that can be sung. Singers can sing a given text high or loyesuto the limitations of physiology.

Thus, each element of this operation can be auralized.
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| Layered Program Auralization | Parameterized Icons [18] |

Layers can communicate Parameters do not communicate
Uses musical structure to create layers|| Uses sound synthesis techniques with pa-
rameters
Easily adjustable in real time through agCertain parameters are easier to adjust
dition or subtraction of layers than others. Synthesis techniques do ot
always allow for the adjustment of arhi-
trary parameters.

Layers have sets of properties Parameters do not have sets of properties
Layers may represent sound abstractly| Parameters imply a literal representation
of sound

Table 3.4: Differences between parameterized icons artddyprogram auralization.

Layered program auralization is a technique for lettingtipld sound mappings play simulta-
neously and cooperatively. Layers should not be confusdd@aver’s parameterized icons [18].
In a parameterized icon, sounds are given parameters titaspond to a property of an operation.
For example, if a file is large, that file should sound like itige. Thus, parameterized icons may
give information regarding a parameter of an operatiorg $ilke. Gaver does not consider com-
binations of parameters. Table 3.4 enumerates severalikeyedces between layered program

auralization and parameterized icons.

3.2 Communication between layers

Layers can be, potentially, independent sources of aufafnration, but this is not required.
In some cases, it becomes convenient for there to be a cornatiom model for layers. Non-
performing layers would have no purpose if they could noticamicate their properties to other
layers.

Allowing for communication to exist between layers can befuls A non-performing layer
does not generate sound, only properties. For these pieptrtbe rendered musically, they must
be communicated to another layer. Layers interpret pragsernd then, depending on layer type,

may generate sound. Layers may need, however, to allow forvtey communication. One
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Cadential Layer:

, Heterogeneous \
Orchestration Lyrics La_yer:
Layer: Performing Performing

Loop Layer: > Boolean Expression

Performing Layer: Performing

Figure 3.2: The communication model for the three layersd usthis thesis, Cadential, Orchestral,
and Lyrics.

layer may create a set of properties from behavior. Thespepties are then communicated to
another layer, which in turn creates more properties. Teesend properties may be useful to the
first layer, or require a change in the first layer’s propsrtand thus two way communication is
allowed.

The auralization design in this thesis consists of thremgry layers. The design is a tree
based, top down, model of communication. The root note isterbgeneous layer. This layer
creates music and properties of music. In my system, thelaget, called the cadential layer,
generates chord progressions over time. These chord ggigns are communicated to lower
layers, which read these properties and create sound oa pinogerties. | chose for all lower level

layers to be performing layers, they do not create proggertie

3.3 When music meets code, the basic layers

To auralize C++ computer code, | designed a system to haypkes tof program constructs, like
looping, conditional statements, semantic data like nusbe text, and a system for memory
allocation and deallocation. The key to my system is mappnoegram constructs to like musical
structures by considering their fundamental propertiesapterically. However, metaphorical

mappings [17] fail in certain instances, especially in rdgdo semantic data, like numbers or text.
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/Cadential Layer:\

Control Flow

Looping - IV-I
While
For

Conditional — V-1
If
\ Switch /

/ 0rchestration\ / Lyrics Layer: \

Layer: Program Semantic Data

State Boolean Expressions
Evaluates to True
Memory Usage - Instruments Evaluates to False
Memory Allocation
Memory De-allocation Loops at Runtime

Iteration
Loop Entry
Loop Termination

Numbers or Text
Sing numbers or text

Speak memory addresses
\ / N Sing, “Hello! /

Figure 3.3: Overview of the auralization system

| have an alternate strategy for dealing with this data.

Elements of musical metaphor are powerful, however. Themeg a chord progression often
used at the end of a musical phrase, is a common occurrencasdit fnom a multitude of time
periods. The cadence is, in fact, so common, and used in sp waks by SO many composers,
that many common patterns were given special names. Two coreramples are plagal, an amen
in a hymn, or perfect authentic, which is the traditionaliegdo a phrase in the classical period
of music. Cadences are defined, among other things, by gavetgong pull to the end of a phrase
or piece of music. The strong metaphor fioe endwas useful for mapping to program constructs,

which also have a well defined beginning and ending.
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The three layers in Figure 3.3 are cadential patterns, stckteon, and lyrics. Cadential pat-
terns were used for auralizing control flow aspects of a @ogrOrchestration was used to repre-
sent elements of a program that sustain over time, or stades@they add the layer of timbre to the
existing cadential structure. The timbres add instrumehish automatically integrate themselves
into the existing cadential structure via one way commuiocarom the cadential layer. Lyrics
can be added as another layer to the auralization, and teeyeteive one way communication
from the cadential layer. Thus, in other words, the cadel#yer, in this case, serves as a root
layer that sends messages to all other layers, allowing tbemmordinate or change in real time.

The three layers in Figure 3.3 are not, however, the onlyrtagfeat were generated during the
course of the auralization design. Two other layers, thddaooexpression layer, and the loop
layer were created. These two layers are performing lagadscan be swapped out with the lyrics
layer to represent information without the use of lyricseurpose of these two layers is to create
a music only description of control flow. For example, thedgidayer might literally sing the word
“true” if an IF statement results in true. If, however, theolsan expression layer is used instead,
a music only description of true is used, namely a major ffardommon interval in tonal music.
Thus, the cadential layer generates chords that represetibotflow, but it does not represent the
value control flow takes at runtime. If neither the lyricsdayere used, nor the boolean expression
layer, the user could identify aurally that an IF statemecuored, but whether that statement was
true or false could not be determined. Figure 3.4 shows thaliaation system with the lyrics

layer removed, and with both the boolean expression layettaloop layer added.

3.4 Cadential Layer - Control Flow

Cadential patterns were chosen to represent control floausecof their likeness to computer code
structures, and their recognizability as part of a musicatsure. This metaphorical mapping may
give the listener an opportunity to guess what the music #neyistening to means. The goals of

using metaphor is to reduce training time in a given aurtaiesystem. Any computer statement,
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/Cadential Layer:\

Control Flow

Looping - IV-]
While
For

Conditional — V-I

Orchestration Boolean Expression
Layrer'S tPrt'ogra Layer: Runtime Loop Layer
ate

Values Loop information — Melody
Memory Usage - Instruments i fisrsin
: Boolean Expressions Loop Entry
Memaory Allocation Evaluates to True Loop Termination

NMematy De-dllocatin Evaluates fo False

Figure 3.4: Overview of the auralization system, but witd irics layer removed, and with both
the boolean expression layer and the loop layer added.

syntactically, has a beginning and ending point. Even inounbled, infinite, loops, there is a
starting and ending point for each iteration of the loop. €4l patterns are similar, in that they
have a clear beginning and ending. Since the beginning adishgpoints are well defined, in
terms of voice leading, creating points in between the caalgratterns allowed me to create build
ups to the cadences. Suppose | choose a cadential patteivtidiolr some program construct.
To remind the reader, I-V-I is numeric representation ofrdsdhat are key neutral. | could allow
repeated instances of that construct to add notes in bettheesadential pattern, giving perhaps
[-IV-V-, 1-IV=ii-V-L, or 1-vi-1V-ii-V-1.

To keep my auralizations short, | chose to use two chord ¢adgatterns, like V-1, for many
of my program constructs. Figure 3.5 shows code, and Fighifeand 3.7 an auralization, for an
IF statement in C++. These two figures show the control flovedayith the boolean expression
layer. Later, | will build upon this and other examples, ahdw how adding program state or

semantic information does not alter this design, exceptheywell defined method of one way
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if(d < 10) {
//statenents to be executed
[/when d is |less than 10

Figure 3.5: An IF statement

Begin IF End IF

1
1
o
.
I

ko JHEE

Piano

ﬂaﬁj
P
Hee
P

{ S

for true
o

|
> -

Violin

tci"‘b
MY
™
[ 180

Figure 3.6: Auralization for a true IF statement, using tademtial layer and the boolean expres-
sion layer. The chord progressions in the piano are createdebcadential layer, and the violin
notes are created by the boolean expression layer.

communication. In addition, future examples will swap dwe boolean expression layer with the
lyrics layer.

In addition, if multiple IF statements occur one after thieesf in a typical IF-ELSE construct,
such as the one shown in Figure 3.8, the listener should leetaldletermine which block of the
code is about to be executed. Figure 3.9 gives a second examitpl several IF-ELSE combi-
nations. This second auralization combines several IFEEbI®cks into a short set of cadential
patterns. The music represented in Figure 3.9 is what wolalg i in the running computer
program, the value of the variabdevere, for example, 59.

Looping constructs, WHILE and FOR, are represented witlifarént set of cadential patterns,
in this case plagal cadences, or IV-I. Each iteration of tog] at runtime, changes the chords. In
Figure 3.10, a FOR loop with ten iterations is shown, now it cadential layer and the loop
layer, which plays the violin melody underneath the chofelgure 3.11 shows its corresponding

auralization. The first chord is the beginning of the auedian. Each successive chord indicates
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Begin IF End IF
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Figure 3.7: Auralization for a false IF statement, usingdadential layer and the boolean expres-
sion layer. The chord progressions in the piano are createdebcadential layer, and the violin
notes are created by the boolean expression layer.

if(d <10) { //1
//statements to be executed
[/when d is less than 10
}
else if(d > 10 & d <= 30) { //2
[Iwhen d is greater than 10
/land | ess than or equal to 30
}
else if(d > 30 & d < =50) { //3
/[/when d is greater than 30
//and | ess than or equal to 50
}
else { /14
//when d is none of the above
} /15

Figure 3.8: This is an IF-ELSE combination. The music regnésd here is what would play if, in
the running computer program, the value of the variable eewfer example, 59.
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IF ELSE IF N ELSE IF LSE End IF
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Figure 3.9: Auralization for an IF-ELSE combination

for(int i =0; I < 10; ++i) {
//this | oop woul d execute
/110 tines

}

Figure 3.10: A for loop

another iteration of the loop. The last two chords indichgednd of the FOR loop.

For auralizations to indicate where in the code a particstiarcture is nested, elements must
sound different. | use key changes to indicate nested stest Each key change uses the same
cadential relationships, but shifted. As control flow |lesatiee nested region, the key changes back
to the original, eventually leading to cadences in the aabkey. Figure 3.12 gives an example of

a nested IF statement and Figure 3.13 gives its correspgadiralization.

3.5 Orchestration Layer - Program State

Program state is “the connections between execution of tonaand the state of all aspects of
the program that are necessarily true at that point in ti8].[ Good examples of program state
in a music notation editor would be the number of notes in aescine name of a score, and
each note itself. In my auralizations, | use orchestratmorepresent dynamic memory allocation
in the implementation of a linked list data structure. As tHed elements to the list, | added
instruments to the auralization, and as | removed elemeois the list, | removed instruments

from the auralization. These instruments follow the harimatructure of the existing cadential
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Iterations 2-10

FOR End
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Violin %\#:WIIFI H— i

Figure 3.11: This is an auralization for a for loop. The clsoml the piano are created by the
cadential layer, and the violin melody is created by the legpr.

if(d <10) { //1
//executes if dis less than 10
if(qg<15) { //2
[/l executes if dis |less than 10
/land q is |less than 15

}
else { //3
|l executes if dis less than 10
/land q is greater than 15
} 14
} 15

Figure 3.12: A nested if statement

2 3 4
1 Change keys for nesting 5

Begin IF End IF End IF
0 . R . I 2
s T t { rS
o — f f e o .
ANIVAES S A o | 1 *
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for true for false
f — P—
e e S S— I B — S E—S— |
Violin o7 —< P S . S— —r— i |
ks 3 - I Hhael I il |
i

e

Figure 3.13: This is an auralization for a nested IF statenierthis example, the value of d would
be less than 5 and q would be 15 or greater.
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voi d LinkedList::clear() {
Iterator it(this);
whil e(it.hasNext()) {
/| Cadential |ayer

Li st Node* node = it.next();
(bj ect* ob = node->get Obj ect ();
/'lLyrics |ayer

del et e node;
del et e ob;
/1 Orchestration | ayer

}
head = O;
numNodes = 0;
[lLyrics |ayer

}

Figure 3.14: The clear method in a linked list, annotatedémiify the layer corresponding to each
auralized construct.
patterns.

Figure 3.14 shows the program code for ttlear method, which removes all the elements
from the list, and releases the associated memory. Figliteshows the auralization of tlodear
method as it deletes four nodes. In this figure, the pianocipareated by the cadential layer. The
part labeled tenor is created by the lyrics layer, this tinih ihe boolean expression layer and
loop layer removed. The last five staves are created by tiest@tion layer.

The calls tat.next()andnode—getObject(Jare not auralized. Theeleteoperation is also not
auralized directly, but, instead, the orchestration clearfgom this operation occurring. Note that
the orchestration of the passage “thins out” as the mematgleted. This operation works well
when you do not need to know the exact number of objects rethdvee thicker the orchestration,

the more memory is consumed.

20



Begin Function
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Figure 3.15: This score shows dynamic memory allocatioi wie orchestration layer and the
lyrics layer. The piano part is created by the cadentiallayle part labeled tenor is created by
the lyrics layer, this time with the boolean expression fared loop layer removed. The last five
staves are created by the orchestration layer.

3.6 Lyrics Layer - Semantic Data

Previous work in program auralization included only mukinéormation [44]. However, in this
approach, it is difficult to represent numbers and text. lartwhile musical elements may be
created with good reason or a strong sense of logic, they beustemorized to be understood by
the listener.

In the previous musical examples, | can see several difisulh determining the location
of a running program in code from cadential sounds alone. latgest difficulty is making the
cadential structures sufficiently different, so that arrained listener can tell them apart. To solve

this problem, words can be used to help the listener undwetskee current location in an executing
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Figure 3.16: Auralization for a nested if statement withltleelean expression layer removed and
the lyrics layer added.
program. Figure 3.16 shows the nested IF statement fromrdgddat this time with lyrics.

It is impractical to map numeric data into pitch numbers ia general case, and an obvious
intuitive mapping from music into text does not exist. As aamaple, consider trying to represent
the text “Hello, how are you Sally?” To assign auralizatiomshis text, | could define melodies
for each character, melodies for each word, cadential nppatteor other techniques, but as the
number of text strings the user tries to remember grows &, sibecomes increasingly difficult
to determine an appropriate mapping. In addition, compak dtrings that do not correspond to
spoken language, like a regular expression, are even nmificailito represent in an obvious way.
Since a metaphorical mapping does not exist for this typafofmation, a different solution was
necessary.

Adding a lyrics layer simplifies representing strings andibars by making their audio rep-
resentation iconic [17]. Figure 3.17 and 3.18 show an exarmpprogram constructs causing the
auralizer, using the lyrics layer, to auralize a memory adslr With music alone, representing the
address is difficult, but using the lyrics layer, the repnégtton becomes non-ambiguous.

More work is required to design a program auralization sydfeat can account for any type
of program construct. In addition, communication betwesgrets is an open problem. What is
the best communication method for layered program autaiza Do particular communication

methods have consequences for design or for the listendr® Gpen questions include deciding
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voi d Li nkedLi st::add(Li st Node*x node) //1

{
i f(NULL == head) //2
{ //Cadential |ayer
head = node; //3
/'lLyrics |ayer
/1 ERROR here:
[/ shoul d i ncrement nunNodes
}
el se
{ [//Cadential |ayer
node- >set Next ( head) ;
++nuniNodes;
head = node;
/'lLyrics |ayer
}
} /14

Figure 3.17: Program fragment for adding a node to a link&tgl dinnotated to identify the layer
corresponding to each auralized construct.

2 4
IF Return early from function

1 3
Begin Function Speak the number of a Iilemory address
Jon ] ] ]
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.. P’ A /1 T | T - N |
Violin  Hps—72—= 7 m— P f i |
ANIVAES 3 - | il |

Figure 3.18: Auralization for the faulty add method. Notibat in this auralization, the lyrics
layer and the boolean expression layer are added. One behlkafitered program auralization is
that layers can combined without effecting the other layers
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how to map these structures to other languages, like Javaailtt8lk. Other layers will need to be
created to handle different elements of program state, amid will need to be done to determine

the most useful elements of program state for a listener.
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CHAPTER 4

EXPERIMENTAL DESIGN

4.1 Introduction

In Chapter 3, | discussed a new technique for mapping soorattributes or data, layered program
auralization. This system of auralization was used to eraatalizations for C++ computer code,
for use in debugging computer programs. This section dess formal empirical study testing
the effectiveness of the auralizations.

| conducted this empirical study in the fall of 2005, and udath from this study to determine
whether my auralizations are effective tools for debuggogputer code and whether my aural-
izations are effective without training. In the course a$tthapter | explain the motivation for this

study and the procedures used to help ensure correctness.

4.1.1 Motivation

There is little research that has been conducted into prograalization, and virtually no research
that includes formal empirical studies. There are, howeadew exceptions. Rigas and Alty
have conducted numerous studies into using audio for reptieg graphical information [34,
35, 3, 2]. Francioni has done work in using sound for pargifegrams [14, 12, 13] and assistive
technologies [39, 15, 38]. Francioni helped lay the groumdhor future auralization research, but
her experiments were often, at least to a degree, informekeYs did the most extensive testing on
program auralization [47], but Vicker’s only scratched siueface of the empirical testing required
to verify that auralization works. Further, Vicker’s didtrgive a systematic approach, as | do with
layered program auralization, for creating new auralorati

Thus, data on whether auralization works for any task atsalinmited, and data regarding
auralization for debugging is virtually non-existent, kvthe exception of Vickers. One question

this study answers is whether auralization can work withiaihing. It may seem an intuitively
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obvious hypothesis that the use of auralization would be éffective without training. However,
this question is unexplored in the auralization literature

If auralization researchers find that program auralizatsoa useful tool for debugging, but
requires a large amount of training to use effectively, iymat be adopted. Doing empirical work
on training in auralization could be beneficial, as it wiNgiempirical data concerning how much
training each auralization takes. Further, not all auadilons are created equal, and it may be the
case that some auralizations take less training than ottera sense, studying this element of
auralization could give users of an auralized system atjtte: of the box” experience.

Previous work on debugging with auralization by Vickersdug&ascal as the programming
language, and did not use layered program auralizations,Tthe current work intends tests var-
ious layers | generated using the layered program aur@izabncept, and to test see if these
auralizations increased the number of bugs found by ppaints. When Vickers did his empirical
experiments, he created computer programs with only ooe irthem, and subjects either found
the error or they did not. In my experiment, participantsevgiven much larger computer pro-
grams, each with eight faults. There was no empirical reaggneight faults were chosen, other
than the number seemed about right for the size of programs.

The experimental goal is to verify a method for repeatedrigswith various types of aural-
izations. In this sense, the experiment should lay the ghaork for a way to effectively judge a
set of auralizations. This would allow for future experirtgeto be conducted by swapping aural-
ization types, but not adjusting the experiment or requargigria. | use the goal question metric

approach to codifying these goals [5].

Goal

1. To determine whether particular auralizations increasecrease the ability to find bugs.

2. To determine how effective a particular auralization ithwo training, or the effectiveness

“out of the box.”
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The first goal is important because it gives a baseline for éfbective an auralization is with
its intended task, which is to help people debug. In this &mtand for the purpose of this

experiment, the effectiveness of an auralization is defased

The ability of one particular auralization to increase thenber of faults found in the

context of reading source code for faults.

The second goal is how effective an auralization techniguethout training. A likely hypoth-
esis is that music-based auralizations will have lowerlleveffectiveness without training than
speech-based auralizations. In addition, it may be the tlaecertain musical, or speech-based
auralizations require less training then others of the dgpee For example, it might be discovered
that jazz music works better as an auralization techniquieoat training than baroque music, or
the opposite may be true. Likewise, it may be found that prefemusic, music preferred by the
listener, has a significant effect on the understandalaifiguralizations.

This goal is important, as the amount of training requireasgynificant usability question, and
not all auralizations will, necessarily, require the sammant of training. The most fundamental
element of an auralization is its effectiveness, but its@ieness without training is a reasonable
secondary condition to consider. In other words, all elsedequal, if auralization A has a smaller
training time required than auralization B, then aural@a® is superior to B. For this reason, the
effectiveness of an auralization without training shoutdamalyzed. The questions and metrics

used in this experiment are enumerated below:

Question

1. Do the auralizations | created increase the ability to hugs?

2. How effective was each auralization with no training?
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Dependant Variablé Definition

I Nno The mean number of faults found without auralizations.

HNms The mean number of faults found using music as an auralizatio
KN sp The mean number of faults found using speech as an aurahzati

Table 4.1: Variables used in this experiment.

Metric

1. Measure the number of faults found after completing a gging task with or without an

auralization.

2. Measure the effectiveness of each auralization teclkemgiiln respect to first use, and without

training.

4.1.2 Hypothesis and variables selection

Table 4.1 shows several variables used throughout the iexgre:

In addition to these variables, | define amy,,.., wherex = {1, 2,3} to be an instance of the
experiment. Thusyy..s1 means the first of three runs for testing the number of fawlitsgumusic
based auralization techniques.

Null and alter native Hypotheses:
Music Hypotheses The null and alternative hypotheses involving music.
1. Null: Hopre : fine = fme, Alternative: Hoarg @ fhne # -
Speech Hypotheses The null and alternative hypotheses involving speech.
1. Null: Hoyy : pine = s, Alternative: Hya @ pine # foe-

Independent Variables

e Type of Auralization: None, music, or speech

e Debugging tasks
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Dependent Variables

e The number of faults found.

4.2 Method

This experiment was conducted using student programmetfgein second year. All programs
used were toy programs, and as such, may be too specific toafjeaento industry. While this
study may not generalize to debugging large computer pnogjréuture work may allow for such

tests.

4.2.1 Participants

Participants were selected from a sophomore level courdat@structures in C++. There were 32
students in the course, 29 of whom chose to participate isttdy. Twenty students participated
in all three sessions. The number of participants in thedession was greater than the number in
the last session, due to mortality. Since comparisons let\geoups are only made for individual
sessions, not between sessions, the change in the numkbatioigants between sessions is not a
threat to validity. Since participants in this study werkeséihldents, | encouraged participation in
the study by allowing students to drop their lowest homewgdde for participating in all three
sessions of the experiment. This extra credit amounteddata8%6 extra credit in the course. If a
subject attended only one or two experimental sessiongyéoeived no extra credit.

Subjects were blocked and balanced into experimental graopording to GPA. There were
three experimental groups a single subject could be assignehe control group with no aural-
izations, the music group with only musical auralizaticesg the music-plus-voice group. These
groups were labeled N, M, and V. To place subjects into grosydgects were ranked and put into
subgroups of three subjects. To rank participants, ov&BA and computer science GPA was
used. Participants were first ranked by GPA, and in the caadief participants were ranked by

computer science GPA.
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Group V | Makeup | GPA | CSGPA | Ear Training Score
1v yes| 3.7 3.88 7
2V 3.3 4 X
3V yes| 3.2 3.7 6
4V 3 3.5 7
5V yes 3 3.5 3
6V 2.95 2.15 5
1A% 2.8 3.85 X
8V 2.8 3.35 6
)\ 2.5 2.475 X
Aver age: 3.03 3.38 5.67
Std dev: 0.34 0.64 1.51

Table 4.2: Details for the subjects in group V. An x marks dipigrant that did did not show up to
any experimental sessions, which prohibited that pagrdifrom taking the ear training exam.

Of the top three students, each individual was randomly mpiat & group, one in M, one in
N, and one in V. Of the next three students, each was, agampnaly selected into a group.
Tables 4.2, 4.3, and 4.4 show information about the groupsus were blocked by GPA, and not
experience with a debugger, as we could not guarantee s$sipguerience to be accurate.

Of note in these tables is the column labeled makeup. Wheexperiment was originally
run, attendance was lower than anticipated. A second skted sessions was run with additional
subjects. This makeup column indicates whether or not thigjest participated in the original
experiment or the experimental makeup sessions. A sulgeuntirked with a yes if they were a
member of the second set of three sessions. In additiorgentdtat participant 11M, does not fit
with the balancing and blocking scheme. This subject wagiraily scheduled to participate in
group V, but due to scheduling restraints could not atterglgéssion. We moved this subject to
group M so that he/she could still participate in the studylowing these makeup sessions was
better then having next to no subjects, but may have effatiedalidity of the conclusions, as
isomorphism between experimental sessions cannot bergaaca

Lastly, subjects were given an ear training test, or a tedetermine whether they could tell

the difference between basic musical constructs. Sincedberes were nearly identical between
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Group N | Makeup | GPA | CSGPA | Ear Training Score
1IN 3.65 3.7 6
2N 3.32 35 5
3N 3.2 3.77 7
4N 3 3.75 6
5N 3 3.35 5
6N 3 2.75 7
7N 2.75 3 5
8N 2.5 2.9 6
ON 2.4 3 4
Aver age: 2.98 3.30 5.67
Std dev: 0.39 0.40 1

Table 4.3: Details for the subjects in group N. An x marks dipi@ant that did did not show up to
any experimental sessions, which prohibited that pagrdifrom taking the ear training exam.

Group M | Makeup | GPA | CSGPA | Ear Training Score
1M yes| 3.5 3.65 7
2M 3.5 3.5 3
3M 3.2 3.2 X
4M yes 3 3.85 6
5M yes 3 3.15 6
6M yes 3 2.7 6
™ 2.9 3.2 6
8M 2.8 3.07 6
oM 2.5 2.75 5
10M 2.25 3.4 5
11M yes| 2.7 2 7
Average: 2.94 3.13 5.7
Std dev: 0.38 0.51 1.16

Table 4.4: Details for the subjects in group M. An x marks dipgoant that did did not show up
to any experimental sessions, which prohibited that pgpeid from taking the ear training exam.
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all three groups, | determined that the musical aptitude/éen groups is at least roughly similar.
Vickers [47] showed no correlation between musical knogéednd debugging performance, so
this attribute would likely not have had an effect even ifrtheere a significant difference between

groups.

4.2.2 Materials and tasks

This was a multiple phase experiment. In each phase, aelifféest was administered to subjects,
and at each phase, various amounts of training were givegreMaere three phases to the experi-
ment. In the first phase, groups were administered an eairtgaiest to test their ability to perceive
music. The averages for all three groups were similar. Thipgae of this test was to detect any
significant differences between groups in regards to mugeraeption. No significant differences
were detected, and thus these results were not used for ghgifpurpose. See Appendix B for
the details of this test. In the second and third tests, grdd@mnd V were given training in the
auralizations. Chmeil showed that giving users trainingebugging tasks increased their ability
to debug [9], and thus no debugging training was given to aoym Figure 4.1 shows the phases
of the experiment.

The following is outline of the experiment.

1. Administer pre-qualification survey.

2. Break subjects into three blocked and balanced groups.

(a) Control Group, no auralization provided, source codg.on
(b) Use of musical sound as an auralization in addition tos®aode.

(c) Use of speech plus music as an auralization in additiGotoce code.

3. Run three tests. Each group is given the same source cadgbx with or without aural-

izations.
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4. In the first test, no training was given in how to use the laatons. In the second and third
sessions, the non-control group received training into tewse the auralizations, but not
training in debugging.

(a) Test 1: Debugging a roulette game with or without ausadilons.
(b) Test 2: Debugging a bank program with or without auraiores.

(c) Test 3: Debugging an address book with or without auaibns.

Auralization experiment
Phase 1 Phase 2 Phase 3 Analysis
-
8 -
= & o
£ s : s
8 z £ 5
= 2 3 2
g 2 e £
2
g i :
o

Figure 4.1: Experiment overview

In this section, all debugging tasks used in the experimendiscussed. For a complete listing
of the code, or associated faults, for any of this softwage,Sppendix D.There are three debug-
ging tasks that were used: a game of roulette, a bank autome#ier machine, and an address
book. An attempt was made to make these tasks as similar abf@<£ach task contained eight
faults, faults were similar in nature, and programs werepptraximately the same length. The last
program, the address book, was slightly longer than the tteeprograms, and thus in this test,
participants were informed that all faults were in eithex fddressBook.cpp, AddressBoook.h,
LinkedList.cpp, or LinkedList.h file. This narrowed the re&g participants had to look for faults
down to a region of code similar to the other two experiments.

In addition to this, auralizations for all three debuggiagks were as similar as possible. All

three sets of auralizations, both musical and musical witicd, had eight tracks. Participants
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were given a compact disc with all eight auralizations omthehen they were asked to debug a
program. Not all tracks illuminated a fault. Participaritert used Windows Media Player to listen
to the tracks while debugging the program.

For each track during a debugging task, an input to the pnogras given. For example,
an input for the address book might be “5.” This would mean thalio for that track starts at
the beginning, or first line of, the printAll function in AdelssBook.cpp. Essentially, this tells
the participant the state of the running computer progratineatime the auralization begins. For a
complete list of code and tracks see Appendix C. This apjrizeemnalogous to setting a breakpoint
in a traditional program, except that | set the breakpomt$te participants and they listen to what
sounds would be created at that breakpoint. This informatias not given to the control group,
which is a threat to validity.

In the roulette game test, users were asked to debug a comimancersion of the game of
roulette. This version of roulette had only two methods dfibg, color and number, and thus is
a simplified version of the American casino game. In the cgéone, the user bets on either black
or red. A ball is then spun on a roulette table. This table lbakets where the ball can land after
it stops spinning. The ball will land on either a numberedspdce, black space, or green space.

If the player bets on a color, and the ball lands on what thgeplahose, that person wins
twice the amount they bet. If the ball lands on either greeth®opposite color of what the player
chose, they lose their bet. Having green slots in the tabtd ourse, how the house always wins,
over time. If the ball lands on a green spot, the player aMagss. The other type of betis on a
number. Each slot on the roulette table is numbered, greéntsting 0 and 00. If the user guesses
the correct number, that person wins 35 times the amountligeyLike before, if the ball lands
on 0 or 00, the player loses.

In this command line version of roulette, the user is give@GklLdollars to begin playing the
game. The player is then asked how much they want to bet, agdrkn place their corresponding

bet on a color or number. The wheel is virtually spun, and gex gither wins or loses. The money
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is then tabulated, and the player is asked whether he/shielfikeito play another game.
The bank debugging task is a model of an automatic teller maci’he command line inter-

face to this program has a menu, which has the following ogtio

1. Login

2. Deposit

3. Withdraw

4. Transfer

5. Check funds

6. Logout

Essentially, these functions simulate the behavior of gkrbank automatic teller machine.
Since this is a bank system, the most obvious of securitypod$ should be implemented, namely
that you must log in before you can withdraw, transfer, oras#amoney.

The address book program is also a menu driven command lagggm for adding friends to
a virtual address book. This third program was chosen, &dpedecause it includes the imple-
mentation for a linked list. Linked structures can have smvabvious faults like memory leaks,
garbage pointers, nodes not being properly instantiated,oéhers. This program had several

common address book like functions, which are enumeratéullaws:

1. Add a friend
2. Delete a friend
3. Edit information for a friend

4. Search for a friend
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5. List all friends
6. Delete all friends

Fault insertion process

A list of the eleven most common faults in novice computeigpams was created by Spohrer and
Solloway [42]. These eleven common faults were categoir®dvhat Spohrer and Solloway call
"bug types” . Not all eleven bug types were used. Adding toayrfaults to a small program may
make the faults obvious, or may saturate the program witlsfatlio ensure there were not too few
or too many faults, a pilot test was run, and no ceiling or fleftect was discovered from that data,
meaning the number of faults in the program was about rigie. fdllowing "bug types” [42] were

identified as the six most common in novice programs:
e Off-by-one bug: A bug involving boundary conditions in th@gram.

e Output fragmentation bug: This type of bug occurs when tlog@m prints out an unini-

tialized variable.
¢ Or-for-and bug: A bug when an OR statement is mistakinglgdsean AND, or vice versa.

¢ Incorrect Constant bug: A bug that occurs when a constanpiogram has the wrong value.
An example would be accidentally typing SOMEONSTANT = 9999 instead of, perhaps,
99999 [42]. This occurs most often when a value is droppetieaend of a number with

repeating digits.

e Incorrect formula bug: This occurs when, literally, an irreat formula or calculation is

used.

e Missing parentheses bug: Occurs when parentheses areiledf a calculation. This type
of bug can be avoided with a thorough understanding of opepsiecedence, or likewise by

the use of parentheses.
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For each debugging task, computer programs were createdglimg a game of roulette, a
bank, and an address book. Working versions of these pragwasre created, before adding in
faults. While | can certainly make no guarantee the prograere fault free, the programs went
through an extensive testing process. To test the prograrsed simple unit testing techniques,
conducted several code reading sessions, and performegiairtasting on the computer. After
testing, faults from the above categories, and other sirfalalts were inserted into the code in
appropriate places. Since Spohrer and Solloway suggest flaalts are the most common in
novice programmers, and my participants for my experimenhavices, it is reasonable to assume
there will not be a ceiling effect in the study. However, apiest was run to be sure, and no ceiling

or floor effects were found. The goal was to add faults thasaficiently difficult to find.

Pilot study

In order to test the initial correctness of the programs am@leations further, |1 conducted a
small pilot study. In this study, | tracked the number of tadbund for each group and found
no ceiling or floor effect. In addition, during this procesgyveral errors and problems in the
auralizations, the code, and the study handbook given ticyants were found and corrected
before implementation of the study itself.

Most importantly, running the initial pilot study helpedtdemine initial problems with the
auralizations in terms of perception. For example, thedsirggroblem | corrected before imple-
mentation was in a set of auralizations that use only musivorce. | discovered that participants
had difficulty determining the difference between true aaldd on conditional statements. Before
the pilot, this was done using major and minor chords. This e&lpful feedback, as it made it
clear that | needed to change the true and false in conditsdaiements to more aurally different
constructs. In the end, | chose a major chord, in key, for, tane for false | chose &#°* chord, a

chord that is strikingly different from a major chord.
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4.3 Procedure

The debugging experiment was designed to test the effeetss in this case the number of bugs
found, of the auralizations for debugging computer prograr8everal hypotheses were tested,
including whether the users in groups M, the music group, \@nithe music and voice group,
found more errors than group N, the control group, withoutkzations. This was done in three
separate experimental sessions, the first of which subjemis given no training into how to use

the auralizations.

4.3.1 Implementation issues

In this first session, the no-show rate in the experiment vids ih the V group, 40% in the M
group, and 0% in the N group. | attempted to minimize the higrshow rate in groups M and
V by holding makeup sessions for those that did not show upo Mmakeup sessions were held,
at different times, for group V, and one makeup session wéas foe group M. The number of
participants, if you include those that made up the sesswas five in group V, six in group M,
and nine in group N, at this point. Unfortunately, this inluces a threat to validity, as it is not
possible to make sessions 100% isomorphic. However, rgmrmigikeup sessions, with the same
packet, same code to debug, same procedure, same training, & different time, is certainly
better than having no participants at all.

In the second session, participants in groups M and V werenga/25 minute training ses-
sion into use of the auralizations. Since it has been shoandiring participants training into
debugging techniques does impact how effective they arelaighing, no training into debugging
techniques was given to any group [9]. The training exampleie chosen carefully, as to not
highlight bugs, but instead to highlight what sounds dédfermprogram constructs made. For exam-
ple, participants learn what an IF statement sounds likberauralizations, but do not learn how
to use that information to debug an IF statement that is éxingancorrect behavior. Thus, groups

M and V were trained in the auralizations, not debuggingingithem no unfair advantage over
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group N.

No-show rates were similarly bad in the second sessioneQinly participants that went to the
first session, or did a makeup, could attend the second sessishow rates were worse than in the
first session. In group V, two people attended the study, ahgane person attended a makeup
session. In group M, similarly, only four people attendedld @o students attended a makeup
session. For session three, no-show rates were similagwopis weeks. Most participants, except

for one, that attended in week two, also attended in weelethre

4.3.2 Makeup sessions

Overall, no-show rates were so bad, that a second completa sessions was completed to
increase the overall experimental validity. To do this, eosel round of all three sessions of the
experiment was run with only participants that missed tlteairsession. Participants were kept in
their original groups, but asked, again, to participateniiaore participants attended the makeup
sessions. While the makeup sessions were at different @meéslays, great care was taken to

ensure the sessions were as close as possible to the prenesls

4.4 Results

In this section we enumerate the data and results from theriexental study created to test the
effectiveness of the auralizations. Groups were blocketlatanced, originally, but because of
the the no shows, groups ended up with an uneven number @fiparits. Statistics were run on
each category separately, using one way ANOVA tests.

To test my hypotheses, an analysis of variance test was @8c®0]. ANOVA assumes a
normal distribution, though even without a normal disttibo the test is considered robust [28].
To test for normality, a Shapiro-Wilk test was used [37, 1%hapiro-Wilk is typically used for
sample sizes up to 50 [37]. Table 4.5 gives the results of biagigo-Wilk test. The null hypothesis
of the Shapiro-Wilk test is that the data is normally disitddl. Notice that all data but one fails

to reject the null hypothesis. However, the mean number g§lbound in the session that for the
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Session and group | Shapiro-Wilk Statistic | df | Sig.
Session 1V 0.876137791 6 | 0.251786
Session 1N 0.976489567 6 | 0.932837
Session 1M 0.821615562 6 | 0.091135
Session 2V 0.681970284 6 | 0.003969
Session 2N 0.826904886 6 | 0.101171
Session 2M 0.915458969 6 | 0.473271
Session 3V 0.889821884 6 | 0.317256
Session 3N 0.912375133 6 | 0.452205
Session 3M 0.91290618 6 | 0.45579

Table 4.5: Shapiro-Wilk test for normality on all for all sgsns. Notice that all sessions but one
cannot reject the null hypothesis, and thus it is fair to assthe distributions are normal.
Shapiro-Wilk the null hypothesis can be rejected is so ctogbe mean of the control group, that

running a test for this comparison is inconsequential ayywa

441 Sessionl

In the first session, participants were given no trainingow o use the auralizations. In turn,
this lack of training had a clear effect on the results fos thection. The two results of note
are that group V actually performed worse than group N, aondgM seemed to perform only
marginally better. In order to give further insight into teiectiveness, or potential lack thereof,
of the auralizations bugs are tracked by number. This wagnlanalyze the frequency of which
individual bugs were found, and compare them to the groupbles§ 4.6, 4.7, and 4.8 show the

data for the first session of the experiment.

442 Session?2

In this session, group M clearly outperformed the controbgy,p — value = 0.003, indicating that
M group significantly found more errors than N group. Group®yvever, did not reach statistical

significance. Tables 4.9, 4.10, and 4.11 show the data f@dbend session of the experiment.
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Group V | Bugsfound | Bugl | Bug2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7 | Bug 8
1V 0 0 0 0 0 0 0 0 0
3V 2 1 1 0 0 0 0 0 0
4V 3 0 1 1 1 0 0 0 0
5V 0 0 0 0 0 0 0 0 0
6V 3 1 0 0 0 1 0 0 1
8V 4 1 1 1 0 0 1 0 0

Aver age: 2 0.5 0.5 05| 0.25| 0.25| 0.25 0| 0.25

Std dev: 1.67| 0.5 0.5 0.5 041, 041 041 0| 041

Table 4.6: Session 1 results for group V. Participants tichhdt show up to this session are not
included in this table.

Group N | Bugsfound | Bugl | Bug2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7 | Bug 8
IN 5 0 0 1 1 1 0 1 1
2N 1 1 0 0 0 0 0 0 0
3N 4 1 0 1 1 0 0 0 1
4N 4 0 1 1 1 0 1 0 0
5N 3 1 0 1 1 0 0 0 0
6N 7 1 0 1 1 1 1 1 1
7N 5 1 0 1 1 0 1 0 1
8N 6 1 0 1 1 1 0 1 1
9N 4 1 0 1 1 0 0 0 1

Average: 433| 0.78| 0.11| 0.89| 0.89| 0.33| 0.33| 0.33]| 0.67

Std dev: 1.73| 0.44| 0.33| 0.33| 0.33 0.5 0.5 0.5 0.5

Table 4.7: Session 1 results for group N. All participantsraded this session.
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Group M | Bugsfound | Bugl | Bug2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7 | Bug8
1M 5 0 1 1 1 0 0 1 1
2M 5 1 1 0 0 1 0 1 1
4M 4 1 0 0 1 0 0 1 1
5M 4 1 1 0 1 1 0 0 0
6M 5 0 1 1 0 1 0 1 1
™ 3 0 1 0 0 0 1 0 1
8M 3 0 0 1 1 0 0 0 1
9M 7 1 1 1 1 1 1 1
10M 5 1 1 1 1 0 1 0 0
11M 7 1 1 1 1 1 1 1 0

Aver age: 4.78| 0.67| 0.78| 056| 0.63| 0.56| 0.44| 0.56| 0.67

Std dev: 1.40| 0.52| 0.42| 052 05| 0.53| 052| 052| 0.48

Table 4.8: Session 1 results for group M. Participants tithhdt show up to this session are not
included in this table.

Group V | Bugsfound | Bugl | Bug?2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7 | Bug8
1v 4 1 1 1 0 0 1 0 0
3V 3 0 0 1 0 1 0 0 1
a4V 4 1 1 1 0 0 0 0 1
5V 3 1 1 1 0 0 0 0 0
6V 3 0 0 1 0 0 1 0 1
8Vv 8 1 1 1 1 1 1 1 1

Aver age: 4.17| 0.75| 0.75 1| 0.25| 0.25 05| 0.25| 0.75

Std dev: 194 0.52| 0.52 O 041, 052| 055| 041 0.52

Table 4.9: Session 2 results for group V. Participants tichhdt show up to this session are not
included in this table.
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Group N | Bugsfound | Bugl | Bug?2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7 | Bug8
1IN 5 0 1 1 1 0 1 0 1
2N 3 0 0 1 0 0 1 0 1
3N 3 0 1 1 0 0 1 0 0
4N 5 1 0 1 1 0 1 0 1
6N 2 0 0 1 0 0 1 0 0
7N 3 0 0 1 0 0 1 0 1
8N 6 0 1 1 1 0 1 1 1
ON 3 0 0 1 1 0 1 0 0

Aver age: 3.75| 0.13| 0.38 1 0.5 0 1| 0.13| 0.63

Std dev: 1.39| 0.35| 0.52 0| 0.53 0 0| 0.35| 0.52

Table 4.10: Session 2 results for group N. Participantsdithhot show up to this session are not
included in this table.

Group M | Bugsfound | Bug1l | Bug2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7
1M
2M
4M
5M
6M
™
oM
10M
11M 8 1

Aver age: 6.11| 0.88

Std dev: 1.36| 0.33

o8]
c
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o|lr|olr|ojlo|lojlo
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o|lr|olo|ojo|o|r
OlR|R|Rr| R PR~

1 1 1 1 1
0.88| 0.38| 0.75| 0.25| 0.88
0.33 05| 0.44 05| 0.33

R

OlR| R R IR PR IR PR PR

o

Table 4.11: Session 2 results for group M. Participantsdithhot show up to this session are not
included in this table.
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Group V | Bugsfound | Bugl | Bug?2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7 | Bug8
1v 6 1 0 1 1 1 1 1 0
3V 1 0 0 1 0 0 0 0 0
a4V 2 1 0 0 1 0 0 0 0
5V 0 0 0 0 0 0 0 0 0
6V 1 0 0 0 1 0 0 0 0
8Vv 3 1 0 1 1 0 0 0 0

Aver age: 2.17 0.5 0| 025, 0.75 0 0 0 0

Std dev: 212 05 0| 055| 052 041 041 041 0

Table 4.12: Session 3 results for group V. Participantsdithhot show up to this session are not
included in this table.

Group N | Bugsfound | Bugl | Bug2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7 | Bug 8
AN 5 1 0 1 1 1 0 1 0
2N 0 0 0 0 0 0 0 0 0
3N 3 0 0 1 1 0 0 0 0
4N 3 1 0 0 1 0 0 1 0
6N 2 1 1 0 0 0 0 0 0
7N 0 0 0 0 0 0 0 0 0
8N 0 0 0 0 0 0 0 0 0

Average: 1.86| 0.43| 0.14| 0.29| 0.43]| 0.14 0| 0.29 0

Std dev: 1.95| 0.53| 0.38| 0.49| 0.53]| 0.38 0| 0.49 0

Table 4.13: Session 3 results for group N. Participantsdigahot show up to this session are not
included in this table.

4.4.3 Session3

In the third session, unfortunately, the number of of pgyéints in group M dropped again, leaving
only 7 participants. In this session, again, group V did eath statistical significance, and group
M, while it looked as if they performed better than N, hgad-avalue = 0.16. Thus, no significant
effects were found. However, it is unclear if significancewdohave been reached had more
participants been available for this session. Tables 4.12, and 4.13 show the experimental data
for session three, and Table 4.15 shows the results of the\/ANEst.

Using a one factor ANOVA test for each hypothesis we found ithaession 1, V group did
statistically significantly worse than N group, and that@ssion 2 M group did statistically sig-

nificantly better than N group. Session three yielded noiggmt results, although M group was
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Group M | Bugsfound | Bugl1l | Bug2 | Bug3 | Bug4 | Bug5 | Bug6 | Bug7 | Bug 8
1M 4 1 0 1 0 1 0 1 0
2M 5 1 0 1 1 1 0 1 0
4M 2 1 0 0 0 0 0 1 0
5M 4 1 0 1 0 1 0 1 0
oM 2 1 0 0 0 0 0 1 0
10M 1 1 0 0 0 0 0 0 0
11M 5 1 0 1 1 1 0 1 0

Aver age: 3.29 1 0 05| 0.33 0.5 0| 0.83 0

Std dev: 1.60 0 0| 05 0.49| 0.53 0| 0.38 0

Table 4.14: Session 3 results for group M. Participantsdithhot show up to this session are not

included in this table.

| Null Hypothesis | Session | F-value | P-value | F-crit |
Hop : pin1 = 1 | Roulette 0.421558704 0.524836218 4.451321691
Hoprs @ pine = e | Bank 12.47553816 0.003018224 4.543077123
Hops @ pinz = s | Address Book 2.23880597 | 0.16041536 | 4.747225336
Hov1 @ pn1 = por | Roulette 6.705263158 0.022450692 4.667192714
Hoyys : jina = y2 | Bank 0.220913108 0.646771682 4.747225336
Hyys : jin3 = pp3 | Address Book 0.074517978 0.789925598 4.844335669

Table 4.15: Experimental results for each hypothesis guisingle factor anova.

not terribly far off from statistical significance, and thember of participants in this session was

lower than desired.

4.5 Analysis

In the first sessions, participants in the V and M group exg@esnearly universally, confusion over
the task they were attempting to accomplish with the auaabns. Several students in V group
wrote comments on their debugging forms indicating how tliege interpreting the auralizations.
For example, by far the most common writing in V group was ‘3426789”. This was usually

written near where the wheel is spun in the roulette wheedcblib one in M or N group made this

marking. In the first test, the roulette game, participaeirth a spinning roulette wheel, which is

a FOR loop that displays characters on the command line.

The numbers participants wrote on the computer code shbetldigthe interpretation of the
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auralizations in two ways. The first is that participant®ipteted the first word used in a FOR
loop, which is “for”, to mean the number four. The first wordthe auralization was intended
to give the program construct, or the beginning of the FOR J@nd was not intended to mean
the number four. This may have been confusing, and this enoblould not have occurred had
the loop been a while. Future auralizations of the FOR and M#Hirogram constructs may be
switched to say ”loop”, as the meaning of the word loop is ubigimous. The second important
aspect is that participants were focusing on what the aatadns were telling them, the fact that
the computer was audibly counting. This was done instead@fding on whether a bug could
possibly exist in a for loop that only prints characters ® tommand line! In other words, since
the music was likely foreign, at least without training, g@pants may have latched onto the lyrics,
in an attempt to understand them. This occurred to the detrimf debugging.

Interestingly, the reaction to the auralizations was mixethe second session. All three stu-
dents in V group indicated verbally that they understoodtwiia auralizations were telling them.
In group M, however, participants gave little aural feedbabout what they were doing in the
training session. During the actual debugging work, howewee subject became particularly
frustrated, stood up, walked to the proctor of the sessiahsaind that the auralizations were, “...
stupid and not helping me.” While this does not indicate thatauralizations were or were not
helping, it certainly indicates a negative reaction to thhzations for that subject. Interestingly,
this session achieved statistical significance in the pestlirection, indicating the auralizations
were, indeed, helping at least some participants.

While it is unclear, for certain, why group M did not, agaieach statistical significance in
session three, there are several possibilities. It maydedhe that certain debugging tasks require
different techniques. It may also be the case that the aataiins, inadvertently, tended to favor
finding one type of error over another. In addition, in tasle#) performance amongst all groups
was worse, perhaps indicating that the debugging task wsed harder. It might be enlightening,

in future work, to give participants debugging tasks that mnked in difficulty, then see how
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the auralizations fare in regard to their level of difficultp other words, not reaching statistical
significance in this task points out several important meafeinformation that are still needed to
increase the effectiveness of the auralizations.

In interviews with group V after the third session, most gpants claimed that the voice on
the auralizations was distracting. In addition, on pgpacits debugging forms there were several
common traits amongst all of V group. By far, similar to sessi, the most common was for
their to be numbers written on the code. These numbers weagelyltaken from the auralization
compact disc, which gives semantic information about mgraddresses, variable values, or other
data. V group may have been focusing too closely on the loel léetails, and not focusing on
other issues, like control flow. Another interesting expemt, based on this result, would be to
remove any numbers indicating semantic information aboemory addresses, and other such
items, and keep the lyrics only for control flow.

However, there are a number of reasons why group V could hatgedormed M group. It
could be the case that the human voice is invariably distrgethen debugging code. However,
there are numerous factors with the voice, quality of penfmmce, gender of singer, melody choice,
word choice for program constructs, enunciation, and evence of the singer. Further testing
should attempt to incorporate these other possible fadmiscover the most important elements
of the vocal performance or auralization design. Anothessgwlity is that music with lyrics is
only helpful for certain classes of debugging problems. ilihhibe the case that for control flow
lyrics are helpful, but for debugging linked structuresidyg are distracting. Another possibility is
that V groups required a different type of training than Mupo Auralizations with vocals might
require learning how to appropriately listen, else theyraoehelpful. For now, the best way to

incorporate the voice is unclear.
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4.6 Threats to Validity [49]

There were several problems effecting the validity in thipegiment. The categories chosen to
describe the threats to validity are described by Wohlirl.[4Bhese categories are conclusion

validity, construct validity, internal validity, and exteal validity.

4.6.1 Conclusion Validity

One problem | faced was a very high no-show rate betweenmsesand between groups. For
example, in the first experimental sessions, group V hacthrembers show up, group M had
five members, and group N had nine members show up. This putsip @t a 70% no-show rate,
group M at a 40% no-show rate, and group N at a 0% no-show rédtis. ib-show rate occurred
despite carefully scheduling the experimental times soribhaubject had a time conflict and giving
extra credit to the students that participated. It is uncldaether these makeup sessions had an
effect on the outcome.

The great disparity between groups could cause statigtrohlems in the analysis, and thus
we decided to run extra experimental makeup sessions totlgpge that missed an opportunity
to participate. These makeup sessions did not equalizexpieimental group sizes, but they did
make them closer in size. While makeup sessions were i@gmnticontent to the original sessions,
they were done at different times, and some students di@ tmekeup sessions alone, instead of
in the original group.

In addition to the above threats, the room used for the expari occasionally had neighbors
making noise. There was no way to predict when other peopia the university would be near
the lab during testing time. Overall, however, neighborsangiite and unobtrusive, but since this
is a sound based experiment, it is a threat. Subjects woudd nesadphones and make judgments
about the sounds they were hearing in relation to the codg.ofitside sound may have effected
the results. While this is a threat, it is unlikely, becaulsetypical amount of sound from neighbors

was extremely small, for example, an individual walking bg taboratory.
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Lastly, the control group in this experiment did not receive same inputs to the computer
programs that the two other groups received. Group M and ¥ived inputs to each track, that
would cause the sound output to occur. When designing therement, it seemed to me that the
control group would only be confused by the extra inputs;esitirelated to only the sound output,
and this sequence of inputs did not necessarily illumindigg It is unclear whether this omission

from the control group had an effect on the results, and ihiadditional threat to validity.

4.6.2 Construct Validity

The interaction of testing and treatment and hypothesisgng [49] may have had an effect on
the construct validity of this experiment. Participantsrevaware that they were involved in a
debugging study and probably inferred that the number oslwags a measure, since it is the
most obvious way to grade a study such as this. Subject’s lsayhave “decided” that a musical
treatment was or was not effective. Subject 8M, for instanmudicated in the second session, to
the proctor, that his treatment was, “stupid, and not usettiis subject may have adjusted his/her
behavior to accommodate his/her opinion, or what he/shegtmowas being tested about that
opinion. However, other subjects may have felt similarlgtject 8M’s response, but were not
verbal about their opinions. Thus, there is no way to knowtiwiethis was a typical or atypical
response.

Experimenter expectancies may also have been a threatst@xtperiment. The proctor of
this experiment was also the designer of the auralizatigtegy. This was necessary as subjects
could not have received training from another proctor, othan the designer, without giving that
individual significant training into how the auralizatiomere designed and created. However,
in defense, | had virtually no way of predicting the outconfig¢h® experiment beforehand, as
there is little empirical precedent for such experimentpoygram auralization. Thus, my own

expectations were, at best, limited, and | essentially fwadi®@a what the results would show.
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4.6.3 Internal Validity

Since the no-show rate was so high, makeup sessions weréohigicrease participation in the
study. An attempt was made to have the amount of time betwaem experimental session be
exactly one week, although, for logistical reasons withjectis schedules, this was not always
possible. Notably, in the second set of three makeup sessibe first session was conducted
only two days before the second session. While this sitnati&s unfortunate, subject’s schedules
prevented a different approach. The second and third, ofrthieeup sessions were conducted
exactly one week apart, like the previous sessions.

Maturation effects may also have been an issue. In the sex@s®ion, one subject, subject
6V, reported having “Slept throughout the session.” Thiject, it turns out, was not literally
sleeping, but that subject may have been taking a mentaishi&his may indicate this subject was
tired during that particular session, or that he/she didhootestly participate. Interestingly, this
subject had the worst score in the second session, althbegscore was not significantly worse
than other participants. It is unclear whether other subjemk similar mental breaks, but were
not vocal about it.

In addition to no-show rates, mortality was also an issukig@xperiment. While the mortality
rate was relatively low, a few subjects dropped out of theseixpent after attending only one, or
two, sessions. There was no obvious pattern to the mortaigs, and thus this is likely not a
significant threat to validity. For example, it was not thee#hat all of the high GPA or low GPA

students dropped from the experiment. The dropouts seamiezlunrelated to a particular factor.

4.6.4 External Validity

The participants used in this experiment were taken froncargkyear course in data structures.
My results may hold only for beginning programmers, and tnay not scale to industrial practice.
In addition, the programs the participants debugged wergtograms, and were only several

hundred lines long. The results may not apply to large progra
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In industrial practice, debugging is often done in a debuggethis experiment subjects were
asked to listen to compact discs while debugging source.cbigis is highly unusual, and incon-
sistent with industrial practice. However, because angadisonified debugger is a significant task,
which may take several years to complete, it was a necessaryriediary step for mitigating risk
into this line of research. In other words, this step wasnakedetermine whether using sound in
a debugger could have a positive effect at all. Thus, whikeithcertainly different from industrial
practice, a positive correlation between listening to Bzaions and debugging could indicate that
creating a sonified debugger is worth the effort. The cursady’s use of a compact disc, if any-
thing, likely made it more difficult for participants to dejpuwith a compact disc, subjects cannot

visually see what elements of code are being executed,dikdoe done in a debugger.
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CHAPTER S

CONCLUSION

| have discussed a new system of using musical layers folizatian of program code. | used
this system of auralization to write music that potentidiglps programmers debug computer
programs more effectively, and ran an empirical study tottes hypothesis. The results of this
study indicate that in some cases, the auralizations wowked in others, they did not. Future
research into auralization techniques should begin tsiflagmpirically, auralization techniques.
The approach | will take with future work falls into two categes, iteration and automation.

The most obvious, and important, element of this researth iigrate the designs of the au-
ralizations. The next iteration of the design should mizieihe most problematic areas of the
system. For example, a study of what semantic data would &Rlu® participants at runtime
may be helpful in determining why the lyrics layer was unssstul. Future studies should, then,
determine which elements of a computer program’s runtinmawer are the most important, and
then map sound or music directly to those elements.

Lyrics posed a problem for the participants in this studitidhempirical results indicated that
participants were either hurt, without training, or notgeal, with training, when using lyrics based
auralizations. However, to be clear, these initial resaddisiot imply that lyrics are not useful, but
that they were not useful in the current iteration of the giesiin the next iteration, a two way
communication model is extremely important, as it will allanore time to be given to longer
words. Recall that in the current auralization design, 8@ spoken very quickly. The speed at
which words are spoken may have had an effect on the pantiisifr@erpretation of the sounds. In
addition, elements of semantic data may not be useful tacgaants, and future iterations of the
design should try to determine which elements are helpfhiclvare not, and most importantly,

why.
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The orchestration layer in this experiment aurally indecaihformation about the state of mem-
ory usage in the program, but did not indicate other elemeihpsogram state. Other elements,
besides memory usage, may be useful to a participant defmiggirogram, but research is needed
to determine the specifics. In regards to memory and the st@t®n layer, saturation may occur
if too much memory is used. In other words, if a computer pragihas no dynamic memory
usage at a given point during execution, and then it, at sayimé ; time, increases the memory
usage dramatically, this will likely be obvious to a listen8ubtle changes in memory usage are,
however, probably much more difficult to detect. Futureatens of the design should allow for
subtle changes in memory usage to be obvious, as well as sobsie changes.

However, by far the biggest problem with the auralizatiosigle, at this time, is the process
of creating them. Creating an auralization, using currecthihology, requires the creation of com-
puter code, generating inputs to that code, hand parsingpithe, entering the results into a music
notation editor, editing and recording sound files, andsieming the recordings to the appropriate
medium such as compact disc. Any error that occurs in a stagequires thafX; ,; throughX;.,,
stages are reworked from scratch. In addition, all stagest pecur for each and every sound file
created, and with multi-group experiments, creating thralaations takes months.

For example, in the current experiment, after a few monthgook on the auralization creation,
| discovered that a two way communication model betweenythesl layer and the cadential layer
would allow the lyrics layer to have more time to say long nensb However, a small change
like changing the communication model would have requiredtonthrow away months of work,
for a change that would only potentially make the lyrics lalgetter. Since | had no empirical
evidence suggesting one communication model was superadther, reworking the design may
have been wasted effort. If, however, a tool existed to aaterthe auralization creation process,
iterations on the design could be created, and tested, fee efficiently.

Thus, in my opinion, automating the auralization creatioocpss is by far the most important
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short term element of this research, as it will encourag@rageation and testing of new aural-
ization ideas. Unfortunately, not every element of auedion is trivial to automate. Automating
the auralization process will require several key compts)enparser, a music notation file writer,
and perhaps teaching a computer program to sing lyrics. til@gethese components may take
significant effort, but not creating them may take more.

Program auralization is in its infancy. A nominal amount ofp@rical work has been done,
virtually no sonified debuggers exist, and the auralizati@ation process itself is not well under-
stood. The next generation of research will need to createtste for generating these auraliza-
tions, create standard empirical tests for testing thécéfeness, and determine which elements

of runtime behavior programmers actually need to hear.
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APPENDIX A

CRASH COURSE IN MUSIC THEORY

This section enumerates the basic terminology used in nlusozy. This section is provided as a
crash course in common musical concepts, used for the dektbe current auralization system.
Subjects do not necessarily need to understand any of tleytidescribed here to potentially
benefit from the auralization system created, similarly triger not needing to understand the
engineering behind a car to drive it. However, for the puegpotenumerating the design, and
design decisions, an understanding of music theory tedogyois helpful. A comprehensive

overview of music theory is beyond the scope of this work.

A.1 Notes and Intervals

The simplest possible idea in music theory is probably thie.ndotes are graphically written onto
a musical staff, and these notes indicate pitch in a scorg¢atias are attached to notes which
indicate rhythms, and these rhythms indicate what fregesrare played over time, essentially
creating music. Notes can be combined, creating intecvedliationships between other notes.
While there are a huge variety of useful intervals, the mostrmon are listed in Table A.1, along
with an example pair of notes for that interval.

One of the easiest ways to think of particular interval ismalagy to a particular song. For
example, an octave is the “Somewhere” in “Somewhere oveR#irbow,” from the Wizard of
Oz, and a minor second is heard in the music to “Jaws” replyatéd course, it much easier to

understand intervals if they can also be heard.

A.2 Chords

Intervals are a useful construct because they give oneibgililock for creating larger musical

structures. Attempting to understand a concept like copotet without a firm knowledge of
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| Interval Name | Example Notes

Perfect Unison | C to C (The same note)
Minor second | Cto Db

Major second | CtoD

Minor third CtoEb

Major third CtoE

Perfect fourth | Cto F

diminished fifth| C to Gb

Perfect fifth CtoG

minor sixth Cto Ab

Major sixth CtoA

Minor seventh | C to Bb

Major seventh | Cto B

Octave C to C (The frequency of the original C * 2

N

Table A.1: The basic intervals

intervals is, at best, difficult. The idea of intervals bsildirther into the idea of chords. Chords
build up combinations of intervals. The most common chords@ajor and minor, which consist
respectively of a perfect fifth and major third, and a perfegttt and a minor third. Table A.2 gives
examples of some of the most common chords, although thershduld be aware that there are
thousands of others with fully qualified names. Furthergetheling on the musical genre, different
notations and naming conventions exist. For example, iciEssusicians tend to use names like

I7, pronounced one-seven, whereas jazz players tend to usesti&eC' Major 7 or C2.

A.3 Harmony

Chords can, again, be built up into larger conglomeratetésiover time, harmony. | limit the

discussion here, again, to the most common chord progressialassical music. Contemporary
developments in harmony, although incredibly interesiimgnd of themselves, are far beyond the
scope of this thesis. Harmony is typically written in classimusic as numbers related to a key. A
key is a focal point, like the note C, which all chords are cdeed relative too. For example, a C

Major chord in the key of C Major is called @ pronounced one, chord. If the key were C Minor,
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| Chord Name | Intervals involved | Example Noteg
Major chord Major third and Perfect fifth | C-E-G
Minor chord Minor third and Perfect fifth | C-Eb-G

Major Seventh chord

Major seventh

Major third, Perfect fifth, and C-E-G-B

Minor Seventh chord

Minor seventh

Minor third, Perfect fifth, and C-Eb-G-Bb

Fully diminished seventt

1 Minor third, diminished fifth,
and Diminished seventh

C-Eb-Gb-Bbb

Half diminished seventh

Minor third, diminished fifth,
and Minor seventh

C-Eb-Gb-Bb

Table A.2: A selection of basic chords

| Chord Number] Chord Name| Example Noteg

I C Major C-E-G
) D Minor D-F-A
110 E Minor E-G-B
v F Major F-A-C
V G Major G-B-D
vl A Minor A-C-E
v11° B diminished| B-D-F
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Table A.3: The chords in C Major

only contain notes that are in the key of C Major, and no others

the chord C minor would also be considereddnord, but the lettei would be lower case, as the
chord in that key is minor. Note thaexists only in a minor key, not a major key. Table A.3 shows

all of the typical chords considered to be in C Major in claasmusic. Notice that these chords

Using numbers to represent harmony is useful, as the exaitqoand relation of notes can
be abstracted. For example, the phraseV — I, in the key of C, would be the chord C Major
followed by G Major, followed by C Major again. The phrage- IV — V — [ is similar, but
with an F Major chord after the initial chord. Notice that if a key change occurs, perhaps to G,
the phrased — IV — V — I will sound essentially the same, except for a transpositidsing
numbers in this way is useful in an analogous way to usingées in mathematics. In the phrase

I — IV —V — I the exact key is an unknown, but the relationships betweerdstare important,



similarly toy = maz + b. In the last equation, the numbers are unknown, but it isefeionship
between the numbers that is what is important.

Leading further into harmony, secondary dominants areciflyi encountered. A secondary
dominant can be considered a temporary key change, whitbewliscussed in more detail next.
A secondary dominant is a V chord that is borrowed from anokieg. The easiest example of
a secondary dominant would have the notation V/V. For examph piece of music was in the
key of C, the V chord would have the notes G, B, and D. A secgndaminant for this V chord
temporarily changes the key to this chord, or G major. thedth/ in the key of C has the notes
D, F#, and A. A typical chord progression using a secondamyidant would bel —V/V —V —1,
taking note that th&/V' chord leads to the V chord, the most common case.

The next topic of interest is a cadential pattern. A cadep@tern, or cadence, is a well
defined, common, use of specific chords. These chords areagsendings to a phrase or piece
of music. These endings are used so often, and in so many cemrpworks, that they are given
special names to indicate their importance. The most impbdadences are the authentic cadence
and the plagal cadence. An authentic cadencelis-a I progression, by far considered to be
the most common cadential pattern in classical music. Agblegdence, or amen cadence, is an
ending with al'VV — [ pattern, and is often heard in hymns.

Lastly, key changes are used in the current program autializaystem | created, and thus
should be discussed. A key change is when the tonal centersefi@s of chord progressions
changes. For example, if | have the chord progresgienV — I in the key of C, the chords are
C-G and C respectively. If, however, | change keys to the Key,dhe chord progression will be
G-D-G. When classical music is written in 12-tone equal terament, the typical tuning system
used on modern pianos, every key sounds the same. Keep in Inoweaver, that historically this
was not always the case, including in such famous pieces @WWEl Tempered Clavier, by J.S.

Bach.
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APPENDIX B

SURVEYS

B.1 Pre-qualification survey: Part 1

1. Name:

2. What is your current GPA?
3. What is your current GPA in computer science?

4. List all previously taken computer science courses, aadeyreceived:

Grade:

Grade:

Grade:

Grade:

Grade:

Grade:

Grade:

Grade:

5. Have you ever used a debugger, if so, which ones?

How many years?

How many years?

How many years?

How many years?
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B.2 Pre-qualification survey: Part 2, Ear Training Exam

In this portion of the test you will be asked to identify théfeliences between specific musical
sounds. In each instance two sounds will be played, one thitgeother, and you will be asked to

circle the word you feel most appropriately defines your asrsw

1. Is the second note higher or lower than the first note? Higbeer/Don’t know
2. Is the second note higher or lower than the first note? Higberer/Don’t know
3. Is the second note higher or lower than the first note? Higberer/Don’t know
4. |s the second note higher or lower than the first note? Hibbeer/Don’t know
5. Is the second note higher or lower than the first note? Higberer/Don’t know

6. Is the first melody exactly the same as the second melodg?sdime/Not the same/Don’t

know

7. Is the first melody exactly the same as the second melodg?sdime/Not the same/Don’t

know

B.3 Pre-qualification survey: Part 2, Ear Training musicarples

Previously shown was the survey sheet given to participanite following are the musical ex-
amples played to participants. Note that the musical rmtathown here was not shown to any

subjects.

9 2
y 4 e}
’fﬂ\/ =

ANV
)

Figure B.1: Pre-Qualification survey: Part 2, Ear Traini@gestion 1
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Figure B.2: Pre-Qualification survey: Part 2, Ear TrainiQggestion 2

= 2

BN

Figure B.3: Pre-Qualification survey: Part 2, Ear TrainiQgestion 3

N>

Figure B.4: Pre-Qualification survey: Part 2, Ear TrainiQgestion 4

Q@?k)

=

Figure B.5: Pre-Qualification survey: Part 2, Ear TrainiQgestion 5

A1V X 1

© J Ty Ty = =1L

P  congracia

Figure B.6: Pre-Qualification survey: Part 2, Ear TrainiQgestion 6 [41]

1

o 7 T3 g ye= =

P congracia

Figure B.7: Pre-Qualification survey: Part 2, Ear TrainiQgestion 6, variation on [41]
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Figure B.8: Pre-Qualification survey: Part 2, Ear TrainiQgestion 7
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Figure B.9: Pre-Qualification survey: Part 2, Ear Traini@gestion 7
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APPENDIX C

GUIDEBOOK GIVEN TO SUBJECTS

In this section we give the guide students receive when béagrnthe experimental study. Note
that the introduction for this section was given in all thex@erimental sessions. In this thesis, to
save space, the introduction is not repeated. In the lasthesaddress book, the subjects were told
that bugs existed only in the AddressBook.cpp, AddressBodlnkedList.cpp, and LinkedList.h
files. Because the address book was so much larger, this wada&eep the amount of code they
were actually looking through to a manageable level, anéépkhe amount of code similar to the

other tests.

C.1 Introduction

The following is the study description given to the partanips.

Study Description:

Welcome to the CS223 study. In the following study, you wél &sked to debug a computer
program. Please do not turn the page until you are instraotéd so. You will be given 45 minutes
to complete this task.

Task description:

Imagine you are developing software for a startup companyu j¥st joined the team and
are told that the latest version of this software needs toheeled for errors. No one on your
development team knows how many errors exist in the codkeretare any at all. Your job is to
read the code, from a printout your manager gives you, ancandany errors as you can.

Method for notating a bug:

Please clearly mark any errors you find directly on the coaelbat you are given. In addition,
if you find an error, please write one or two short sentencés @y you think it is an error. Write

these sentences, again, directly on the code handout.
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Participation note:

Since this debugging study is based on participation owee tiour results depend on your
active participation. Reminder: You may drop an assignnieniis course if and only if you
attend all 3 debugging sessions, and we strongly encouragydo so.

If you drop the cour se:

We ask that if you drop the CS223 course that you continuetematall three debugging
sessions. While you are by no means obligated to do so, oard¥giends on your consistent
participation, and we would be grateful if you would contrfor the 3 sessions anyway.

Again, thank you for your willingness to participate in tkisidy, we appreciate it a great deal!

Please do not turn the page until you areinstructed to do so.

C.2 Roulette

C.2.1 Roulette Game description

Roulette:

In game of roulette a ball is put onto a spinning table. Pigiiats in the game place bets on
where the ball will land. The version of Roulette you are aldowanalyze is simplified from the
American casino game. In this version only two types of hgttire allowed.

Bet type 1: Red-Black

Description: The user decides whether to place a bet on ajedes or a black square. How to
win: The participant wins if they chose the correct coloryd win: You receive 2 times the bet
amount. If you had 500 dollars and you bet 50, you would novets0 dollars. 500 - 50 + (50 *
2).

Bet type 2: Number

Description: The user chooses a number to bet on, betweem B%&n How to win: The
participant wins if they chose the correct number. Payoat téceive 35 times the bet amount. If

you had 500 dollars and you bet 50 you would now have 500 - 5G+ &B), or 2200 dollars.
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C.2.2 Track Listings for V and M group

This list presents a series of program inputs. These inpdisate the current state of the computer
program at a particular point during execution. In additomput, track numbers are listed, which
correspond to the accompanying CD. Each track contain®dloai relates to the program you are
attempting to debug, although not all audio will illuminaédug. Each track/Input pair has the
following format:

Fhkkkkk kR By i kR

Track Number: 4

Input: 362, c

Starting position for audio: spinWheel

Fhkkkkbkk ks Ex qplie FHHHkkk kb

In this example, this means that for track 4, the program washaan initial input of 362, ¢ and
that the audio on track 4 begins at the top line of the spinWheethod. Not all methods have
sound associated with them. Specifically, only custom amitnethods have sound, not system
calls like cin, cout, or rand().

Track Number: 1

Input: 500, c, 5

Starting position for audio: spinWheel

Track Number: 2

Input: 361, c, 9

Starting position for audio: spinWheel

Track Number: 3

Input: 100, c, 5,

Starting position for audio: playNumber

Track Number: 4
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Input: 600, c, 5,

Starting position for audio: playNumber
Track Number: 5

Input: 600, c, O,

Starting position for audio: playNumber
Track Number: 6

Input: 600, n, r,

Starting position for audio: playRedBlack
Track Number: 7

Input: 600, q,

Starting position for audio: play

Track Number: 8

Input: 600, c, 5,

Starting position for audio: play

C.3 Bank

C.3.1 Bank Description

Bank:
The class you are about it analyze is a simple model of a stdrimknk’s automatic teller
machine, or ATM. There are several characteristics abas&fiM machine which you should be

aware to correctly debug this code.
1. Tologin the user must enter a username and password.
2. A blank name, the empty string, signifies that no one iséagg.

3. Any password is acceptable, real security was not impiéade and this is not considered a

bug.
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4. Bank users are allowed to withdraw a maximum of 300 doparsday.

5. Bank users are only allowed to transfer money to threelpe8pdy, Melissa, or Fitz.

C.3.2 Track Listings for V and M group

This list presents a series of program inputs. These inpdisate the current state of the computer
program at a particular point during execution. In addit@mput, track numbers are listed, which
correspond to the accompanying CD. Each track contain® aldi relates to the program you are
attempting to debug, although not all audio will illuminadug. Each track/Input pair has the
following format:

Fhkkkkk kR By i kR

Track Number: 4

Input: 6

Starting position for audio: logout

Fhkkkbk kR ks Ex qplie *HHRkkk kb

In this example, this means that for track 4, the program wasnhgan initial input of 6 and that
the audio on track 4 begins at the top line of the logout() fiomc Not all methods have sound
associated with them. Specifically, only member functidrie® Bank class have sound associated
with them.

Track Number: 1

Input: 6

Starting position for audio: logout

Track Number: 2

Input: 1

Bill

password

2
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500

Starting position for audio: deposit
Track Number: 3

Input: 1

Bill

password

2

500

6

1

Starting position for audio: login
Note: Audio for track starts on the SECOND call to login.
Track Number: 4

Input: 4

Starting position for audio: withdraw
Track Number: 5

Input: 1

Bill

password

2

500

4

400

yes

Starting position for audio: withdraw

Track Number: 6
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Input: 1

Bill

password

2

500

4

5134

Starting position for audio: withdraw
Track Number: 7

Input: 1

Bill

password

2

500

3

Andy

900

Starting position for audio: transfer
Track Number: 8

Input: 5

Starting position for audio: checkFunds

C.4 AddressBook

C.4.1 Address Book Description

Address Book:



The class you are about it analyze is a simple model of an sslth@k. There are a few traits

of this address book you should be aware of before debugging:

1. Only the AddressBook.cpp, LinkedList.cpp, AddressBboknd LinkedList.h files poten-

tially have bugs in them.

2. All other files besides those listed in 1 are supplied oatyybur reference, thepO NOT

contain bugs.

C.4.2 Track Listings for V and M group
This list presents a series of program inputs. These inpdisate the current state of the computer
program at a particular point during execution. In additomput, track numbers are listed, which
correspond to the accompanying CD. Each track contain®dloai relates to the program you are
attempting to debug, although not all audio will illuminaédug. Each track/Input pair has the
following format:

Fhkkkrbk kR ks Ex D@ FHHkkk kK

Track Number: 4

Input: 5

Starting position for audio: AddressBook.printAll

Kk kR Ex i kR

In this example, this means that for track 4, the program waesnhaan initial input of 5 and that
the audio on track 4 begins at the top line of the printAll(yd¢tion. Not all methods have sound
associated with them. Specifically, only member functionghe AddressBook and LinkedList
class have sound associated with them.

Track Number: 1

Input: 1

Bill
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122 N. Walnut St.

509-226-3476

Starting position for audio: LinkedList.add
Track Number: 2

Input: 1

Bill

122 N. Walnut St.

509-226-3476

2

Bill

Starting position for audio: LinkedList.remove
Track Number: 3

Input: 1

Bill

122 N. Walnut St.

509-226-3476

1

John

Blurft St.

555-555-5555

2

Bill

Starting position for audio: LinkedList.remove
Track Number: 4

Input: 1

Bill
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122 N. Walnut St.
509-226-3476

1

John

Blurft St.
555-555-5555

2

John

Starting position for audio: LinkedList.remove
Track Number: 5
Input: 1

Bill

122 N. Walnut St.
509-226-3476

1

John

Blurft St.
555-555-5555

1

Adam
HappyTown Rd.
645-938-3635

1

Andy
MustBeAStud St.
938-490-3749
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6

Starting position for audio: LinkedList.clear
Track Number: 6

Input: 1

Bill

122 N. Walnut St.

509-226-3476

4

John

Starting position for audio: AddressBook.findFriend
Track Number: 7

Input: 1

Bill

122 N. Walnut St.

509-226-3476

2

Bill

Starting position for audio: AddressBook.removeFriend
Track Number: 8

Input: 1

Bill

122 N. Walnut St.

509-226-3476

5

Starting position for audio: AddressBook.printAll
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APPENDIX D

COMPLETE CODE

In this section we give the full code for all debugging exaesplwithout bugs, and the bugs them-
selves are made explicit. If any bug has an obvious classdicawhen compared to [42], the

classification is given.

D.1 Roulette

D.1.1 Bugs for the Roulette game
1. Method Roulette::play() Line: 35, 38, playRedBlack(dgslayNumber() should be
swapped.

2. Method Roulette::play() Line: 42, If the user enters m&it’c’ nor 'n’, the program will

display an uninitialized variable. This is an output fragration bug.

3. Method Roulette::play() Line: 88, The boolean should &tet true, else the program will

never quit.

4. Method Roulette::play() Line: 78-81, The and < signs should be swapped, else they

display the reverse amount of money earned or gained.

5. Method Roulette::playRedBlack() Line: 103, This lin@sld be an AND, not an OR, else
the user will always choose black, regardless of whethgrgbkected red. This bug is similar

to an Or-for-and bug.

6. Method Roulette::playRedBlack() Line: 117, This lin@sld be wonLost -= currentBid. If
it were the other way, then the user would gain money wherhkedss supposed to lose.

This bug is similar to an Incorrect formula bug.
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7.

8.

Method Roulette::playNumber() Line: 132, This line skiblbe an OR, not an AND, else
the user will never have an error condition, regardless ddttver they choose an incorrect

number. This bug is similar to an Or-for-and bug.

Method Roulette::playNumber() Line: 138, tbeut statement should have the variable

sweroutput to the console, not wonLost. The way it is currentlytten, O is always output.

D.1.2 Roulette code

#include "Roulette.h”
%%
This program simulates a very simple version of roulette.|YOnwo types of bets
are allowed in this simple program, namely black/red and anrher.
*/
int main(int argc, int xargv[]) {
Roulette roulette;
roulette . play ();
return O;
}
#ifndef ROULETTEH
#define ROULETTEH
typedef struct spinValue {
int number;
char color;
}SpinValue;
class Roulette {
public:
Roulette () {}
“Roulette () {}
void play ();
private:
static const int STARTING.DOLLARS = 1000;
static const int RED.BLACK_BID = O0;
static const int NUMBERBID = 1;
static const int NUM_ROULETTENUMBERS = 38;
int currentMoney;
int currentBid;
int bidType;
void init();
int getBid();
char getColorFromNumberint num);
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23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46

int playRedBlack();

int playNumber();

SpinValue spinWheel();
+

#endif

#include "Roulette.h”
#include <iostream>
#include <windows. h>
#include <winbase .b
#include <stdlib .h>
#include <time .h>

using namespace std;

void Roulette::init() {

cout<< "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n " <<
sk ok sk sk sk ok sk ok ok ok o sk sk sk ks ok ok ok s sk sk sk ok sk ok sk ok sk sk ks sk ok skokskokok \N
cout<< "Welcome to Roulette. The house has given youX
" $1000 with which to try your luck. All bet amounts&<
" must be in whole dollars. To play, enter your be&k
" amount and then choose how you want to bet endl;
cout << ”**************************************************\n\n“;
currentMoney = STARTIN®OLLARS;
}

void Roulette::play(){
init();
bool quit = false;

char answer;

while(!quit) {
int amountWon;

currentBid = getBid();

cout<< "Would you like to bet on a color or a number? (Press c for

cin >> answer;

if (answer == 'c’) {

amountWon = playNumber();

}
else if (answer == 'n’) {
amountWon = playRedBlack();
}
cout<< "\n

if (amountWon< 0) {
cout<< "You lost " << amountWon *x —1 <<

}

else {

cout<< "You won " << amountWon<< " dollars.”;
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}
cout<< "\n \n";
cout<< "\nWould you like to play again? (Press y for yes and n for no)”;
cin >> answer;
if (answer == 'y’) {
cout<< "\n";
quit = false;
if (currentMoney == 0){
cout<< "Sorry, you can’'t continue to play, you're brokgn”;
quit = true;
}
else if (currentMoney< STARTING.DOLLARS) {
cout<< "Ok, you currently have "<< currentMoney<< ” dollars , having lost "<<
"a total of " << STARTING.DOLLARS — currentMoney<< " dollars.”;
}
else if ( currentMoney> STARTING.DOLLARS) {
cout << "Ok, you currently have "<< currentMoney<< " dollars , having won "<<
"a total of " << currentMoney— STARTING.DOLLARS << " dollars.”;
}
else {
cout << "Ok, you currently have "<< currentMoney<< " dollars.” <<
" So far you have broken even.”;
}
}
else {
if (currentMoney == 0){
cout << "Looks like you lost your shorts .\n";
}
if (currentMoney> STARTING.DOLLARS) {
cout << "Ok, you lost a total of "<< STARTING.DOLLARS — currentMoney<< "
}
else if ( currentMoney< STARTING.DOLLARS) {
cout << "Ok, you won a total of "<< currentMoney— STARTING.DOLLARS << "
}
else {
cout << "Ok, looks like you broke even today.”;
}
quit = false;
}
cout<< "\n";
}
}
/%*+ Returns the amount of money won or lost in this gamé.

int Roulette::playRedBlack (){

char

answer ;

int wonLost = O;
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99 bidType = REDBLACK.BID;

100 cout<< "Would you like to bet on Red or Black? (Press r for red and b fbtack)”;
101 cin>> answer;

102

103 if (answer != 'b’ || answer != 'r’) {

104 cout<< "Strange, choice, how about black instead<¥ endl;
105 answer = 'b’;

106 }

107

108 cout<< "\nYou chose "<< answer<< ".\n” << endl;
109

110 SpinValue val = spinWheel();

111 if (val.color == answer){

112 currentMoney += currentBid;

113 wonLost = currentBid;

114 }

115 else {

116 currentMoney—= currentBid;

117 wonLost = currentBid;

118 }

119

120 return wonlLost;

121 }

122

123 /%% Returns the amount of money won or lost in this gamé.

124 int Roulette::playNumber(){

125 int answer;

126 int wonLost = O;

127

128 bidType = NUMBERBID;

129 cout<< "What number do you wish to bet on? (Between 1 and 35)";
130 cin >> answer;

131

132 if (answer< 1 & answer > 35) {

133 cout<< "Strange, choice, how about 17 instead<X endl;
134

135 answer = 17;

136 }

137

138 cout<< "\nYou chose "<< wonLost<< ".\n” << endl;
139

140 SpinValue val = spinWheel();

141 if (val.number == answer }{

142 currentMoney—= currentBid;

143 currentBid %= 35;

144 currentMoney += currentBid;

145 wonLost = currentBid;

146 }

147 else {

148 currentMoney—= currentBid;

149 wonLost = currentBidx —1;

150 }
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151 return wonLost;

152 }

153

154 SpinValue Roulette::spinWheel({

155 SpinValue val;

156

157 COUTTRT ™ \ Mkt s s s ks sk s sk ok sk sk o sk ok sk sk s sk ok sk sk s sk ok sk sk kskokok \N 7 5
158 cout<< "Spinning wheel”;

159 for(int i = 0; i < 10; ++i) {

160 cout<< ",

161 Sleep (100);

162 }

163 COUT T ™\ Mok s ks ks ko ok sk sk ks ks ok ok ok sk sk sk ks ok s ok sk stk sk ok ook koo \ M\ N
164

165 srand( (nsigned)time( NULL ) );

166

167 int num = rand () % NUMROULETTENUMBERS;

168 val.color = getColorFromNumber(num);

169 if (num == 37) {

170 num = 0;

171 1

172 val.number = num;

173

174 if (val.color == 'g’) {

175 cout<< "The wheel landed on << val.number<< ”, green.” << endl;
176 }

177 else if (val.color == "r"){

178 cout<< "The wheel landed on << val.number<< ”, red.” << endl;
179 1

180 else if (val.color == 'b’){

181 cout<< "The wheel landed on << val.number<< ", black.” << endl;
182 1

183 else {

184 cout<< "Oops, the ball fell off the table.<< endl;

185 }

186

187 cout<< "\n";

188

189 return val;

190 }

191

192 char Roulette::getColorFromNumbeift num) {

193 char answer;

194 if(num == 1 || num == 3 || num == 5 || num == 7 || num == 9 || num == 12 ||

195 num == 14 || num == 16 || num == 18 || num == 19 || num == 21 ||

196 num == 23 || num == 25 || num == 27 || num == 30 || num == 32 ||

197 num == 34 || num == 36 ) {

198 answer = 'r’;

199 return answer;

200 }

201 else if(num == 2 || num == 4 || num == 6 || num == 8 || num == 10 || num == 11 ||
202 num == 13 || num == 15 || num == 17 || num == 20 || num == 22 || num == 24 ||
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203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

num == 26 || num == 28 || num == 29 || num == 31 || num == 33 || num == 35 ) {
answer = 'b’;
return answer;
¥
else if (num == 0 || num == 37) {
answer = 'g’;
return answer;
}
else {
cout<< "Invalid number in getColorFromNumber: < num<< endl;
return 'q’; //return something invalid
}
}
int Roulette::getBid () {
cout<< "Please enter your bet amount: ”
int bid;
cin>> bid;
if (bid < 1) {
cout<< "\nlnvalid Amount, setting bet to A.n” << endl;
bid = 1;
}
else if (bid > currentMoney) {
cout<< "\nlnvalid Amount, setting bet to << currentMoney<< ".\n" << endl;
bid = currentMoney;
¥
return bid;
}

D.2 Bank

In this case, all bugs existed in Bank.cpp.

D.2.1 Bugs for the Bank

1. Method Bank::useAtm() Line: 56, 59, transfer() and wrdwd() should be

swapped. The menu for the system indicates that withdrawtrandfer should be mapped

to different keys than is indicated in the switch statement.

2. Method Bank::logout() Line: 96, The logout method doesamually logout the user from

the system. To do this, it should set the user’'s name to “’nsmtey = 0, and set amoun-
tWithdrawn = 0. Another approach would be to call init(), Asstwould also logout the

current user.
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1
2
3
4
5
6
7
8
9

10
11

. Method Bank::deposit() Line: 106. A deposit should adth®ouser’s account, not subtract

from it. This line should be money += dep;

. Method Bank::withdraw() Line: 132. The output statermamdve this line suggests to type

“y” for yes, but the conditional statement expects the usdype yes.

. Method Bank::withdraw() Line: 125. Since totWith is noitialized to O, if (draw> money)

or if(draw < 0), the output statement on line 153 will print out garbage.

. Method Bank::withdraw() Line: 149. The line amountWitadn -= draw should be amoun-

tWithdrawn += draw, else the user can actually withdraw ntbes the maximum amount

allowed on the system.

. Method Bank::transfer() Line: 173. Melissa is spelleffedently in in this line, when com-

pared to the output statement. This bug is similar to an hecbiconstant bug.

. Method Bank::transfer() Line: 177. This bug would forbe user to transfer all money in

the account. This would in turn allow the user to transferemooney than is in the account.

This line should have if (amount money), not iflamoun& money).

D.2.2 Bank code

#include "Bank.h”

This program simulates a very simple version of of an ATM niaeh

int main(int argc, char =xargv[]) {

Bank bank;
bank.useAtm ();

return O;

1 #ifndef BANKH

2 #define BANKH

3

4 #include <string>

5
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using namespace std;

class Bank {

public:
Bank ();
“Bank ();
bool login();
bool logout ();
bool deposit();
bool withdraw ();
void checkFunds();
void useAtm ();
bool transfer ();
private:
static const int MAX WITHDRAW;
int showMenu();
void init();
string loggedin;
int money;
int amountWithdrawn;
}
#endif
#include "Bank.h”
#include <string>
#include <iostream>
const int Bank::MAXWITHDRAW = 300;
Bank::Bank () {
init();
}

Bank ::"Bank () {
}

bool Bank::login(){

string name,

pass;

if (loggedin 1= "") {

cout<< loggedin<< ” is currently logged

return

}

else {

in,

please X<

"logout before attempting to log someone else

false;

bool goodName =false;

while(!goodName) {

cout<< "Please enter your name:
getline (cin, name);

if (name = "") {
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28
29
30
31
32
33
34
35
36
37
38
39
40
a1

43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

void Bank::useAtm () {

while(!quit) {

}

else {

cout<< "Please Enter your password:
cin >> pass;
loggedin = name;
cout<< "\n\n";

return true;

cout<< "Welcome to BrokeAsSmoke banking.

false;

int choice = showMenu();

switch (choice) {

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

default :

goodName =true;

cout<< ”Invalid name, try again.’<< endl;

Please enter your bagkiohoice

cout<< "Invalid choice, try again."<< endl;

int Bank::showMenu () {

int input;
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80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

COUL T ™\ Motk sk sk sk skosioksior Menu \n\n";
cout<< 1. Login” << endl;
cout<< 2. Make a Deposit’<< endl;
cout<< "3, Make a withdrawal’<< endl;
cout<< "4, Transfer funds’<< endl;
cout<< "5. Check funds’<< endl;
cout<< "6. Logout” << endl;
cout<< "7. Exit” << endl;
cout << ”\n************************************************\n\n“;
cout<< "Your choice: ”;
cin>> input;
cin.ignore (1);
return input;
}
bool Bank::logout () {

cout<< "Thanks for banking."<< endl;
return true;

}

bool Bank::deposit(f

if (loggedin 1= "") {
if (amountWithdrawn>= MAX WITHDRAW) {
cout<< "Sorry, no more money can be withdrawn, you have<X
"reached your 300 dollar limit.<< endl;
}
else {
int draw = 0;
cout<< "Enter the amount you would like to withdraw: ”;
cin>> draw;
int totWith;
if (draw + amountWithdrawn> MAXWITHDRAW) {
cout << "You cannot withdraw that amount today, would you
"to withdraw " << MAXWITHDRAW — amountWithdrawn<< ”
"(y for yes, n for no) ”;
string answer;

cin >> answer;
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if (loggedin 1= "") {
int dep = 0;
cout<< "Please enter the amount you would like to deposit: ”;
cin>> dep;
money—= dep;
cout<< dep<< " deposited , giving you "<< money<< " dollars total.” << endl;
}
else {
cout<< "You must login before you can make a deposit<X endl;
}
return true;
}
bool Bank::withdraw ()

like <<
instead? "<<



132 if (answer == "yes”){

133 money —= (MAXWITHDRAW — amountWithdrawn);
134 amountWithdrawn = MAXNMTHDRAW;

135 totWith = MAXWITHDRAW;

136 }

137 else {

138 totWith = 0;

139 }

140 }

141 else if (draw > money) {

142 cout<< "Sorry, you do not have << draw<< " dollars in your account.”<< endl;
143 }

144 else if (draw < 0) {

145 cout<< "Sorry, you cannot withdraw a negative amount<X< endl;
146 }

147 else {

148 money —= draw;

149 amountWithdrawn—= draw;

150 totWith = draw;

151 }

152

153 cout<< "\n” << totWith << dollars withdrawn, leaving you with <<
154 money<< " dollars left in the bank\n”;

155 }

156 }

157 else {

158 cout<< "You must login before you can make a withdrawal<< endl;

159 }

160 return true;

161 }

162

163 bool Bank::transfer (Y

164 if (loggedin 1= "") {

165 string name;

166 cout<< "The following people can have money transfered to th&m® << endl;
167 cout<< "Andy” << endl;

168 cout<< "Melissa” << endl;

169 cout<< "Fitz\n” << endl;

170

171 cout<< "Type the name of the person you wish to transfer money to: ”;
172 cin>> name;

173 if (name == "Andy” || name == "Melisa” || name == "Fitz") {

174 cout<< "How much would you like to transfer: ";

175 int amount;

176 cin>> amount;

177 if (amount< money) {

178 cout << "You only have "<< money<< " dollars.” << endl;
179 cout << "Would you like to transfer all of your money?(y for yes, n fomo)”;
180 string answer;

181 cin >> answer;

182 if (answer == "y") {

183 cout << "Transfering " << money<<
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184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

" dollars, leaving you with 0 dollars.<< endl;
money = 0;
}
else {

cout << "Ok, stopping transfer.'<< endl;

}
else if ( amount< 0) {

cout << "Cannot transfer a negative amoun&< endl;

else {
money —= amount;
cout<< "Transfering " << amount<<

" dollars , leaving you with "<< money<< " dollars.” << endl;

else {

cout<< "No one by that name exists, sorry.2< endl;

}
else {

cout<< "You must login before you can transfer funds << endl;
¥

return true;

208 }

209
210
211
212
213
214
215
216

void Bank::checkFunds(){
if (loggedin != "") {
cout<< "You currently have "<< money<< " dollars.” << endl;
}
else {

cout<< "You must login before you can check your funds<< endl;

217 }

218
219
220
221
222
223

void Bank::init(){
loggedin = "";
amountWithdrawn = 0;
money = 0;

}
D.3 Address Book
In this test, bugs were located between two files, AddreskBpp and LinkedList.cpp.

D.3.1 Bugs for the Address Book

1. Method AddressBook::findFriend(), editFriend(), anchoseFriend() Line: 105, 117, 130.

These methods all assume that the value returned from thedlilirst will not be null, which
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is not the case if the key is not contained anywhere in the list

2. Method AddressBook::printFriend(Friend* fr) Line: 14Bhis method assumes that Friend*

fr is not null.

3. Method LinkedList::add(ListNode* node) Line: 15. Whehead node is created the number

of nodes is not incremented.

4. Method LinkedList::remove(string key) Line: 44. If thiement being removed is the lastin

the list, the number of nodes is not properly decremented.

5. Method LinkedList::remove(string key) Line: 51. Theyprehead line should be nested at
the end of the while block, not the end of the if(nodegetKey() == key) block.

6. Method LinkedList::remove(string key) Line: 55. The esfcthis method should return O,

not prev, because no node was found to remove.

7. Method LinkedList::clear() Line: 78. Deleting the Listle does not delete the friend. The

friend should also be deleted.

8. Method LinkedList::clear() Line: 80. Clear should seatie= 0, to clear the linked list after

deleting all of its elements.

D.3.2 Address Book code

#include "AddressBook.h”
IEES

1
2
3
4
5 This program simulates a very simple address book.
6 x/

7 int main(int argc, char =xargv[]) {

8 AddressBook book;

9 book.run();

10 return O;

1 }
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#ifndef ADDRESSBOOKH
#define ADDRESSBOOKH

#include "Linked

#include "Friend

List.h”
he

class AddressBook{

public:

AddressBook ();

“AddressBook ();

void run
private:

void ini

(0N

t(O);

void printFriend (Friend fr);

void pri

ntAll();

void addFriend();

void removeFriend ();

void edi

tFriend ();

void findFriend();

LinkedLi

st book;

int showMenu();

+

#endif

#include "Addres

sBook.h”

#include "ListNode.h”

#include "lIterator.h”

#include <iostream>

#include <string>

using std ::strin
using std ::cout;
using std::cin;

using std ::endl;

g

AddressBook:: AddressBook ({

}

AddressBook ::” AddressBook (X

}

void AddressBook::run(){

cout<< "Address book menu,

bool qui

while(!q

t = false;

uit) {

int choice = showMenu();

switch (choice) {

case 1:

addFriend();

please choose what you would
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28 break ;

29 case 2:

30 removeFriend ();
31 break ;

32 case 3:

33 editFriend ();
34 break ;

35 case 4:

36 findFriend ();
37 break ;

38 case 5:

39 printAll ();
40 break ;

41 case 6:

42 book.clear ();
43 break ;

44 case 7:

45 quit = true;
46 break ;

47 default :

48 cout<< "Invalid choice, try again."<< endl;
49 break ;

50 }

51 }

52 }

53

54 int AddressBook::showMenu (X

55 int input;

56 COUT T "\ Mkt sk skokoksk. Menu \n\n";
57 cout<< "1. Add a friend” << endl;

58 cout<<  "2. Delete a friend’<< endl;

59 cout<< "3. Edit information for a friend”"<< endl;

60 cout<< "4. Search for a friend’'<< endl;

61 cout<< "5. List all friends” << endl;

62 cout<< "6. Delete all friends”"<< endl;

63 cout<< 7. Exit” << endl;

64

65 COUT T ™ \ Mkt ks ok s ok sk sk sk ks ok ok ok sk sk sk sk ks ok sk sk stk skok ok \ M\ N
66 cout<< "Your choice: ”;

67 cin>> input;

68 cin.ignore (1);

69 return input;

70 }

71

72 void AddressBook::init () {

73 book.clear ();

74 }

75

76 void AddressBook::addFriend (X

7 string name, address, phone;
78 cout<< "Please type the name: ”;
79 getline (cin, name);
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80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

99
100
101
102
103
104
105
106
107
108
109
1

[

0
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

cout<< "Please type the address: ”;
getline (cin, address);
cout<< "Please type the phone number: ”;

getline (cin, phone);

Friend« obj = new Friend(name);
obj—>address = address;

obj—>phoneNumber = phone;

cout<< "\n”;
printFriend (obj);

ListNodex node =new ListNode (name, obj);

book.add (node);

void AddressBook:: findFriend (){

string name;

cout<< "Please type the name of the friend you wish to find: ”;

getline (cin, name);

ListNodex node = book.get(name);

Friend: fr = node=>getObject();

cout<< "\nFriend "<< name<< " found.” << endl;
printFriend (fr);

void AddressBook::removeFriend ()

string name;
cout<< "Please type the name of the friend you wish to remove:
getline (cin, name);
ListNodex node = book.remove(name);
Friend: fr = node=>getObject();
cout<< "\nFriend "<< name<< " found, deleting."<< endl;
delete(fr);
delete(node);
}
void AddressBook:: editFriend (){

string name, address, phone;

cout<< "Please type the name of the friend you wish to edit: ”;

getline (cin, name);

ListNode< node = book.get(name);

Friend: fr = node=>getObject();

cout<< "\nFriend "<< name<< " found.” << endl;
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134
135
136
137
138
139
140
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142
143
144
145
146
147
148
149
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151
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cout<< "Please type the new address: ”;

getline (cin,

cout<< "Please type the new phone number:

getline (cin,

address);

phone);

fr—address = address;

fr—phoneNumber =

phone;

cout<< "New Information for " << fr—>getName ()<< endl;

printFriend (fr);
}

void AddressBook:: printFriend (Friend fr) {

" << fr—=>getName ()<< endl;

" << fr—>address<< endl;

cout<< "Name:
cout<< "Address:
cout<< "Phone Number:
}
void AddressBook:: printAll () {

"<< fr—>phoneNumberx< endl;

cout<< "You have " << book.size ()<< " friends.” << endl;

Iterator

it(&book);

while(it.hasNext()) {

Friend« fr = (it.next())—>getObject();

cout<< fr—>getName ()<< endl;

#ifndef FRIENDH
#define FRIENDH

#include <string>

using std::string;

class Friend {

public:

Friend (string friendsName);

“Friend ();
string address;
string
string getName();
private:

string name;

#endif

#include "Friend.h”

phoneNumber;

Friend:: Friend (string friendsName{

92



© 00 N o o »

10
11
12
13

© 00 N o o B~ W N P

NNNRN N NNNR B B B B B op e
N o oA W N B O © N o ;s W N B O

© 0 N o o B~ W N P

R <
5~ w N B O

name = friendsName;

Friend ::" Friend () {

string Friend ::getName ()}

return name;

#ifndef LINKED_LIST_H

#define LINKED_LIST_H

#include "ListNode.h”

#include <string>

using std::string;

class LinkedList {

public:

LinkedList ();
“LinkedList ();

bool add(ListNode< node);

ListNodex remove (string key);

ListNodex getFirst();

ListNodex get(string key);

void clear ();

int size();

private:
int numNodes;

ListNodex head;

#endif

#include "LinkedList.h”

#include "Iterator.h”

LinkedList :: LinkedList () {
head = 0;

numNodes = 0;

LinkedList ::” LinkedList () {

clear ();

bool LinkedList::add(ListNode node) {

if (head) {
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57

59
60
61
62
63
64
65
66

head = node;

return true;

}

else {
node=>setNext(head);
++numNodes;
head = node;
return true;

}

ListNodex LinkedList::remove(string key){

Iterator it(this);
ListNode xprev = 0;
while(it.hasNext()) {
ListNodex node = it.next();
if (node=>getKey () == key) {
if (prev == 0) {
if (node=>getNext () == 0){
head = 0;
—numNodes;
}
else {
head = node>getNext ();
—numNodes;
}
}
else {
if (node=>getNext () == 0){
prev—setNext (0);
}
else {
prev—>setNext (node>getNext ());
—numNodes;
}
}
prev = node;
return node;
}
}
return prev;
ListNodex LinkedList::get(string key){
Iterator it(this);
while(it.hasNext()) {
ListNodex node = it.next();
if (node>getKey () == key) {

return node;

}

return O;
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ListNodex LinkedList::getFirst() {
return head;

}

void LinkedList::clear () {

Iterator it(this);
while(it.hasNext()) {
ListNodex node = it.next();
Friend« fr = node=>getObject();
delete(node);
¥
numNodes = 0;
}
int LinkedList::size () {
return numNodes;
}
#ifndef LIST_.NODE.-H
#define LIST_.NODE.-H
#include "Friend.h”
#include <string>
using std::string;
class ListNode{

Friendobj) {

public:
ListNode (string nodeKey, Friendobj);
“ListNode ();
ListNodex getNext ();
void setNext(ListNode nextNode);
Friend« getObject();
string getKey ();
private:
string key;
Friend xobject;
ListNode *next;
}s
#endif
#include "ListNode.h”
ListNode :: ListNode (string nodeKey ,
key = nodeKey;
object = obj;
next = 0;
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}

ListNode ::" ListNode () {

ListNodex ListNode ::getNext () {

return next;

void ListNode ::setNext(ListNode nextNode) {

next = nextNode;

}

Friend« ListNode :: getObject(){
return object;

}

string ListNode :: getKey (){
return key;

}

#ifndef ITERATORH

#define ITERATORH

#include "ListNode.h”

#include "LinkedList.h”

class Iterator {

public:
Iterator (LinkedList linkedList);
“lterator ();
ListNodex next();
bool hasNext();
void reset();

private:
LinkedListx list;
ListNodex current;

}

#endif

#include "lterator.h”
Iterator :: Iterator (LinkedLis% linkedList) {

list = linkedList;

current = list=>getFirst();

Iterator ::" Iterator () {}
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10 ListNodex Iterator::next() {

11 ListNodex returnMe = current;

12 if(current != 0) {

13 current = current>getNext ();
14 return returnMe;

15 }

16 else {

17 return O;

18 }

19 }

20

21 bool Iterator::hasNext(){
22 if(current == 0) {
23 return false;
24 }

25 else {

26 return true;
27 }

28 }

29

30 void Iterator::reset(){

31 current = list=>getFirst();
32 }
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