EFFECTS OF LONG DURATION EARTHQUAKES ON BRIDGE STRUCTURES

By
BLANDINE C. VALLE

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN CIVIL ENGINEERING

WASHINGTON STATE UNIVERSITY
Department of Civil and Environmental Engineering

To the faculty of Washington State University:
The members of the Committee appointed to examine the thesis of BLANDINE
VALLE find it satisfactory and recommend that it be accepted.

Chair

ACKNOWLEDGMENTS

This research was carried out in the Department of Civil and Environmental Engineering at Washington State University, Pullman, Washington. Funding was provided by The Washington State Department of Transportation (WSDOT).

I wish to express my gratitude to the chairman of my committee, Dr. McDaniel, for his patience, guidance and support throughout the project. Special thanks are extended to Drs. McLean and Cofer for serving on my committee. I would also like to thank Cody Cox for his generous help and advice.

I am thankful to Maureen Clausen and Vicky Ruddick for helping me with the administrative issues throughout the project.

Most of all, I would like to thank my family for supporting and encouraging me all through my studies and I am deeply grateful to Tom for his love, encouragement and advice throughout the past five years.

EFFECTS OF LONG DURATION EARTHQUAKES ON BRIDGE STRUCTURES

ABSTRACT
By Blandine C Valle, M.S.
Washington State University
December 2005

Chair: Cole C. McDaniel

The main objective of this research was to assess the response of multi-column bent bridges, with columns expected to behave primarily in shear, subject to longduration earthquake. Recent geological evidence indicates that the potential exists for large earthquakes resulting in long-duration ground motions in the Pacific Northwest due to rupturing of the locked interface between the Juan de Fuca and the North American Plate. Three Washington State Department of Transportation bridges were selected for this study, bridges $5 / 227,5 / 649$ and $512 / 29$. All three bridges are located in close proximity to Olympia and Seattle. Ten earthquake records with return periods ranging from 475 to 2475 years were used to study the effect of duration on bridge response; six long-duration and four short-duration.

Since the column aspect ratios were similar for the three bridges (approximately 3), other bridge characteristics were more influential on the variation of the bridge seismic responses. The bridge deck design, monolithic or non-monolithic, and the bridge geometry greatly influenced the behavior. Each bridge was unique enough that in order
to accurately assess the seismic vulnerability of each bridge, nonlinear time history analyses were needed rather than basing predictions merely on bridge member detailing, as is often the case due to limited resources.

In general, the 475-year return period earthquakes induced light to moderate cracking in the column plastic hinge regions for all bridges. The 975-year return period earthquakes created more severe cracking with bearing pad failures in one of the bridges. The 2475-year return period earthquakes induced failures in the center bent columns as well as numerous bearing pad failures for all three bridges. The damage estimations for each earthquake were based on damage recorded in experimental column testing.

Overall, long-duration earthquakes created more damage in the three bridges than short-duration earthquakes. For the smaller earthquakes, the duration had little effect on the bridge response since multiple cycles at low ductility demands did not lead to damage of the columns. As the intensity of the earthquake and the duration increased, damage in the columns increased. Therefore, both earthquake intensity and ground motion duration affect the bridge response; however, large intensity alone can lead to significant demand on the bridges, while duration is not influential on the bridge demand unless the intensity is high as well.

TABLE OF CONTENTS

Abstract iv
Table of Contents vi
List of Figures ix
List of Tables xvi
CHAPTER ONE 1
Introduction 1
1.1 Background 1
1.2 Objectives 1
1.3 Seismic Activity in the Pacific Northwest 2
CHAPTER TWO 7
Literature Review 7
2.1 Definition of Earthquake Duration 7
2.2 Damage Indices 11
2.3 Effect of Earthquake Duration on the Damage in Reinforced Concrete
Structures 13
CHAPTER THREE 15
Bridge Modeling 15
3.1 Bridge Descriptions 15
3.1.1 Bridge 5/227. 15

- Geographical Location 15
- Bridge Properties 15
- Bridge Material Properties 20
3.1.2. Bridge 5/649 21
- Geographical Location 21
- Bridge Properties 21
- Bridge Material Properties 25
3.1.3 Bridge 512/19 26
- Geographical Location 26
- Bridge Properties 26
- Bridge Material Properties 31
3.2 Bridge Calibration 31
3.2.1 Jaradat Specimens 31
3.2.2 Scaling 33
- Scaling the Forces and Moments: 34
- Scaling the Displacements 36
3.2.3 Modeling 39
- Calculating the Spring Values 41
CHAPTER FOUR 44
Seismic Analysis 44
4.1 Seismic Excitations 44
CHAPTER FIVE 57
Bridge 5/649 Skew Comparison 57
5.1 Bridge 5/649 Skew or Straight Model 57
5.1.1 Maximum Demands 58
5.1.2 Hysteresis Curves 61
5.1.3 Time History Comparison 64
CHAPTER SIX 67
Bridge Response 67
6.1 Bridge 5/227 67
6.2 Bridge 512/19 83
6.3 Bridge 5/649 93
CHAPTER SEVEN 103
Conclusions 103
References 107
APPENDICES 109
APPENDIX A-1 110
APPENDIX A-2 113
A-2-1 Ruaumoko 3D Input File Calculations 114
A-2-1 Bridge 5/227 Ruaumoko Input File 115
A-2-2 Bridge 512/19 Ruamoko Input File 125
A-2-3 Bridge 5/649 Ruaumoko Input File 132
APPENDIX A-3 141
APPENDIX A-4 142

LIST OF FIGURES

Figure 1.3-1 Cascadia Subduction Zone (from The Pacific Northwest Seismograph
Network) 3
Figure 1.3-2 Map of the Bridge Locations 5
Figure 2.1-1 Difference Between Rock Site and Soil Site Acceleration Spectra 9
Figure 2.1-2 Duration versus Magnitude for Rock Sites in the Western United States. 10
Figure 2.2-1 Reliability Index Versus Earthquake Duration from Lindt et al. (2004) 12
Figure 2.3-1 Expected Damage versus Normalized Duration for Representative Linear Reinforced Concrete Structure 14
Figure 3.1.1-1 Bridge 5/227 Location 15
Figure 3.1.1-2 Bridge 5/227 Plan View 16
Figure 3.1.1-3 Bridge 5/227 Elevation View. 16
Figure 3.1.1-4 Bridge 5/227 50 ft. Series Girder 17
Figure 3.1.1-5 Bridge 5/227 Column Detail 18
Figure 3.1.1-6 Bridge 5/227 Intermediate Bent Footings 19
Figure 3.1.1-7 Bridge 5/227 Expansion Joint Detail 19
Figure 3.1.1-8 Bridge 5/227 Abutment Sub-Ground Column and Footing. 20
Figure 3.1.2-1 Bridge 5/649 Location. 21
Figure 3.1.2-2 Bridge 5/649 Plan View 22
Figure 3.1.2-3 Bridge 5/649 Elevation View 22
Figure 3.1.2-4 Bridge 5/649 Girder Detail 23
Figure 3.1.2-5 Bridge 5/649 Column Detail 24
Figure 3.1.2-6 Bridge 5/649 Footing Detail. 24
Figure 3.1.2-7 Bridge 5/649 Abutment Footing detail: (a) Cross-section, (b) Elevation 25
Figure 3.1.3-1 Bridge 512/19 Intersection. 26
Figure 3.1.3-2 Bridge 512/19 Plan View 27
Figure 3.1.3-3 Bridge 512/19 Elevation View 27
Figure 3.1.3-4 Bridge 512/19 Girder Detail. 28
Figure 3.1.3-5 Bridge 512/19 Column Detail 29
Figure 3.1.3-6 Bridge 512/19 Abutment Cross-section 30
Figure 3.1.3-7 Bridge 512/19 Girder Stop : (a) Plan View and (b) Locations 30
Figure 3.2.1-1 Specimen T2 Lateral Load-Displacement Hysteresis Curve 32
Figure 3.2.1-2 Specimen T2 Force-Displacement Envelope of Specimen T2 33
Figure 3.2.2-1 Relationship Between "D-a/2" Experimental and Model 35
Figure 3.2.2-2 Bilinear Relationship Between Moment and Curvature 37
Figure 3.2.2-3 Linear Relationship Between Φ_{u} - Φ_{y} Factor 38
Figure 3.2.3-1 Column Reinforcement Pattern 39
Figure 3.2.3-2 Comparison Between Force-Displacement Curves with Strain Penetration
and Without 40
Figures 4.1-1 Time Histories for the Large Return Period Earthquakes: Chile 2475 45
Figures 4.1-2 Time Histories for the Large Return Period Earthquakes: Peru 2475 45
Figures 4.1-3 Time Histories for the Large Return Period Earthquakes: Kobe 975 45
Figures 4.1-4 Time Histories for the Large Return Period Earthquakes: Olympia 975 46
Figures 4.1-5 Time Histories for the Large Return Period Earthquakes: Mexico City 975

Figures 4.1-6 Time Histories for the Small Return Period Earthquakes: Chile 975......... 46
Figures 4.1-7 Time Histories for the Small Return Period Earthquakes: Peru 975 47
Figures 4.1-8 Time Histories for the Small Return Period Earthquakes: Kobe 475......... 47
Figures 4.1-9 Time Histories for the Small Return Period Earthquakes: Olympia 475 ... 47
Figures 4.1-10 Time Histories for the Small Return Period Earthquakes: Mexico City 475 .48

Figure 4.1-11 ARS and DRS for Chile 975 and 2475 Earthquakes.................................. 49
Figure 4.1-12 ARS and DRS for Peru 975 and 2475 Earthquakes................................... 50
Figure 4.1-13 ARS and DRS for Kobe 475 and 975 Earthquakes.................................... 51
Figure 4.1-14 ARS and DRS for Olympia 475 and 975 Earthquakes 52
Figure 4.1-15 ARS and DRS for Mexico City 475 and 975 Earthquakes 53
Figure 4.1-16 ARS for the 2001 Nisqually, Peru 2475 and Olympia 975 Earthquakes ... 56
Figure 5.1-1 5/649 Bridge Spine Model with Skew ... 57
Figure 5.1-2 5/649 Bridge Spine Model without Skew .. 58
Figure 5.1.2-1 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 Without Skew; Olympia 975 EQ; Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf)
\qquad
Figure 5.1.2-2 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 - With Skew; Olympia 975 EQ ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 62

Figure 5.1.2-3 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 Without Skew; Peru 2475 EQ; Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf) ... 63

Figure 5.1.2-4 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 - With Skew; Peru 2475 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 63

Figure 5.1.3-1 Displacement Versus Time for the Olympia 975 and Peru 2475 Earthquakes, 287.3 MPa Spring Models With Skew 64

Figure 5.1.3-2 Displacement Versus Time for the Olympia 975 and Peru 2475 Earthquakes, 287.3 MPa Spring Models Without Skew 65

Figure 5.1.3-3 Displacement Versus Time for the Olympia 975 and Peru 2475 Earthquakes, 861.9 MPa Spring Models With Skew 65

Figure 5.1.3-4 Displacement Versus Time for the Olympia 975 and Peru 2475 Earthquakes, 861.9 MPa Spring Models Without Skew. 66

Figure 6.1-1 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Chile 975 and Peru 975 EQ; Fixed Column Bases/Roller Abutment Boundary Conditions 73

Figure 6.1-2 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Kobe 975 EQ, Mexico City 975 EQ; Olympia 975 EQ; Chile 2475 EQ and Peru 2475 EQ; Fixed Column Bases/Roller Abutment Boundary Conditions 74

Figure 6.1-3 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Kobe 975 EQ; Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf) ... 75

Figure 6.1-4 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Mexico City $975 \mathrm{EQ} ; \mathrm{Es}=47.9 \mathrm{MPa}(1000 \mathrm{ksf})$; 861.9 MPa (18000 ksf) 75

Figure 6.1-5 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Olympia 975 EQ; Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf) 76

Figure 6.1-6 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Chile $2475 \mathrm{EQ} ;$ Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf) 76

Figure 6.1-7 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Peru 2475 EQ; Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf) 77

Figure 6.1-8 Center Bent, Center Column: Displacement Time History for Bridge 5/227; Peru 2475 EQ; Es=287.3 MPa 78

Figure 6.1-9 Center Bent, Center Column: Displacement Time History for Bridge 5/227;
\qquad
Figure 6.1-10 Specimen T2 Lateral Load-Displacement Hysteresis Curve 80

Figure 6.1-11 Spalling of the Concrete (Stapelton, 2004).. 80
Figure 6.1-12 Vertical Cracks at Tension Face (Stapelton, 2004).................................... 81
Figure 6.2-1 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Chile 975 EQ and Peru 975 EQ; Fixed Column Base/Roller Abutment Boundary Conditions 85

Figure 6.2-2 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Chile 975 EQ; Es=47.9 MN/m² (1000ksf); 861.9 MN/m² (18000 ksf) 86

Figure 6.2-3 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Peru 975 EQ; Es=47.9 MN/m² (1000ksf); 861.9 MN/m² (18000 ksf) 86

Figure 6.2-4 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Kobe 975 EQ, Mexico City 975 EQ, Olympia 975 EQ, Chile 2475 EQ and Peru 2475 EQ; Fixed Column Base/Roller Abutment Boundary Conditions................... 87

Figure 6.2-5 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Kobe $975 \mathrm{EQ} ; \mathrm{Es}=287.3 \mathrm{MN} / \mathrm{m}^{2}(6000 \mathrm{ksf}) ; 861.9 \mathrm{MN} / \mathrm{m}^{2}(18000 \mathrm{ksf}) ~ 88$

Figure 6.2-6 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Mexico City 975 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 88

Figure 6.2-7 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Olympia $975 \mathrm{EQ} ; \mathrm{Es}=287.3 \mathrm{MN} / \mathrm{m}^{2}(6000 \mathrm{ksf}) ; 861.89 \mathrm{MN} / \mathrm{m}^{2}(18000 \mathrm{ksf})$. 89

Figure 6.2-8 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Chile $2475 \mathrm{EQ} ; \mathrm{Es}=287.3 \mathrm{MN} / \mathrm{m}^{2}$ (6000 ksf); 861.9 MN/m² ${ }^{2} 18000 \mathrm{ksf}$)89

Figure 6.2-9 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Peru 2475 EQ; Es=287.3 MN/m² (6000 ksf); 861.9 Pa (18000 ksf) 90

Figure 6.2-10 Center Bent, Middle East Column: Displacement Time History for Bridge 512/19; Peru 2475 EQ; Es=287.3 MPa 91

Figure 6.2-11 Center Bent, Middle East Column: Displacement Time History for Bridge 512/19; Peru 2475 EQ; Es=861.9 MPa 91

Figure 6.3-1 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 E; Chile 975 EQ, Peru 975 EQ; Fixed Column Bases/Roller Abutment Boundary Conditions
\qquad 95

Figure 6.3-2 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Chile 975 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 95

Figure 6.3-3 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Peru 975 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 96

Figure 6.3-4 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 E; Kobe 975 EQ, Mexico City 975 EQ, Olympia 975 EQ, Chile 2475 EQ and Peru 2475 EQ; Fixed Column Base/Roller Abutment Boundary Conditions 97

Figure 6.3-5 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Kobe 975 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 98

Figure 6.3-6 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Mexico City 975 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 98

Figure 6.3-7 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Olympia 975 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 99

Figure 6.3-8 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Chile 2475 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 99

Figure 6.3-9 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Peru 2475 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf) 100

Figure 6.3-10 South Bent, Center Column: Displacement Time History for Bridge 5/649E; Peru 2475 EQ; Es=287.3 MPa 101

Figure 6.3-11 South Bent, Center Column: Displacement Time History Bridge 5/649E; Peru 2475 EQ; Es=861.9 MPa 101

Appendix A-1 Scaling calculations for the center column, center bent of Bridge 5/227.
\qquad 112

Appendix A-3 Spring values for all bridges in US units .. 141

LIST OF TABLES

Table 3.1.1-1 Bridge 5/227 Material Properties 20
Table 3.1.2-1 Bridge 5/649 Material Properties 25
Table 3.1.3-1 Bridge 512/19 Material Properties 31
Table 3.2.1-1 Jaradat Specimen and Existing Bridge Properties 31
Table 3.2.3-1 Calculation Factors for Estimating Soil Spring Stiffness 42
Table 3.2.3-2 Spring Values for Each Bridge 43
Table 4.1-1 Bridge Periods, Spectral Accelerations and Spectral Displacement Values . 54 54
Table 5.1.1-1 Bridge 5/649 Displacement and Shear Force Demands Due to the Olympia
975 Earthquake 59
Table 5.1.1-2 Bridge 5/649 Displacement and Shear Force Demands Due to the Peru
2475 Earthquake 60
Table 6.1-1 Maximum Earthquake Demands for Bridge 5/227 Subject to the Olympia975 Loading68
Table 6.1-2 Maximum Bearing Pad Displacements for Bridge 5/227 Subject to the
Olympia 975 Earthquake 69
Table 6.1-3 Maximum Earthquake demands for Bridge 5/227 Subject to the Peru 2475Loading70
Table 6.1-4 Maximum Bearing Pad Displacements for Bridge 5/227 Subject to the Peru
2475 Earthquake 71
Table 6.1-5 Pounding in the Deck and Abutments for Bridge $5 / 227$ with the 287.3 MPa
Soil Values 71

Table 6.1-6 Pounding in the Deck and Abutments for Bridge $5 / 227$ with the 861.9 MPa
\qquad
Soil Values 72

Table 6.1-7 Pounding in the Deck and Abutments for Bridge 5/227 with Fixed Column
\qquad
Table 6.2-1 Maximum Earthquake demands for Bridge 512/19 Subject to the Olympia
\qquad
Table 6.2-2 Maximum Earthquake Demands for Bridge 512/19 Subject to the Peru 2475
\qquad
Table 6.3-1 Maximum Earthquake demands for Bridge 5/649 Subject to the Olympia 975
Loading .. 93
Table 6.3-2 Maximum Earthquake demands for Bridge 5/649 Subject to the Peru 2475
Loading ... 94

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

Recent geological studies have shown that the Pacific Northwest region may be subjected to earthquakes of large-magnitude and long-duration as the result of rupturing of the locked interface between the Juan de Fuca and the North American Plate. Bridge design has evolved in the past forty years and existing bridges have been left potentially vulnerable due to limited funds for seismic upgrade. For example, transverse reinforcement was typically No. 3 or No. 4 hoops placed at 12 in (30.5 cm) on center in pre-1975 Washington State bridge columns. Today, the code requires a minimum of No. 3 reinforcement bars spaced at 4 in . $(10.2 \mathrm{~cm})$ on center. Also, lap splice length has greatly increased from values ranging between $25 \mathrm{~d}_{\mathrm{b}}$ and $45 \mathrm{~d}_{\mathrm{b}}$ for columns built before 1975 , to a $60 \mathrm{~d}_{\mathrm{b}}$ minimum splice length since 2003 .

1.2 OBJECTIVES

The main goals of this research were to assess multi-column bent, concrete bridges constructed prior to 1975, located in the Seattle/Olympia regions, under longduration seismic loading. A suite of earthquakes were used to simulate a range of possible earthquake excitation. The main objectives included:

- 3-D modeling of three existing multi-column bent, concrete bridges in the Seattle/Olympia region
- Non-linear time history analysis of the bridges under short-duration and longduration earthquake loading
- To assess the influence of soil-structure-interaction on the bridge response
- To draw conclusions on the effect of long duration earthquakes on pre-1975 Washington State bridges.

1.3 SEISMIC ACTIVITY IN THE PACIFIC NORTHWEST

Western Washington State lies above the intersection of two tectonic plates, the North America continental plate and the Juan de Fuca plate, colliding together at a rate of approximately 2 in. (about 5 cm) per year (from The Pacific Northwest Seismograph Network). In addition, the Pacific plate forces the Juan de Fuca plate north.

\square Deep Earthquakes (40 miles bekw the Earth's surface) are within the subducting cceanic plate as it bends beneath the cantinental plate. The largest deep Nor thwest earthquakes known were in 1949 (M7.1), 1965 (M6.5), and 2001 (M 6.8).

- Shalkw earthquakes (less than 15 miles deep) are caused by faults th the Ncrih American Continent. The Seattle fault produced a shalkow magnitude 7+ earthquake 1,100 years ago. Other magnitude 7+ ear hiquakes occurred in 1872, 1918 , and 1946.

Subduction Earthquakes are huge quakes that result when the boundary between the cceanic and contriental plates ruptures. In 1700, the most recent Cascadia Subaluction Zone earthquake sent a fsunamlas tar as Japan.
μ
Mt. St Helens/Other Cascade Volcancs

Figure 1.3-1 Cascadia Subduction Zone (from The Pacific Northwest Seismograph Network)

The most damaging earthquakes in Western Washington State in recent years have been the Nisqually Earthquake in 2001 (magnitude 6.8), Sea-Tac in 1965 (magnitude 6.5), and the 1949 Olympia earthquake (magnitude 7.1). They were respectively $52 \mathrm{~km}, 63 \mathrm{~km}$ and 53 km deep beneath the continent (PNSN, 2005). The largest earthquake in Western Washington State since 1790, when historical recording started, occurred in 1872 in the North Cascades with a magnitude of 7.4. Subduction zone earthquakes tend to be the rarest and strongest. Geological evidence shows that this type of earthquake occurred in the region about 300 years ago. Subduction zones around the
world have produced earthquakes of magnitude 8 and higher. Seismologists predict that an earthquake of this magnitude could occur again in the Pacific Northwest.

Since seismic recordings of large subduction zone earthquakes in the Pacific Northwest are not available, earthquakes from other regions of the world were used in this research and scaled to represent possible seismic activity in the Puget Sound region (Stapelton, 2004 and PanGEO Inc., 2005). These earthquakes were the Moquegua, Peru earthquake (2001), the Mexico City, Mexico earthquake (1985), the Kobe, Japan earthquake (1995), the Olympia, Washington earthquake (1949) and the Lloledo, Chile earthquake (1985).

Figure 1.3-2 Map of the Bridge Locations

Bridges $5 / 227$ and $512 / 19$ are located $24 \mathrm{~km}(15$ miles) south and $45 \mathrm{~km}(28$ miles) east respectively of Olympia and bridge $5 / 649$ is situated 56 km (35 miles) north of Seattle. Depending on the location of the bridges, the return periods for a given earthquake vary. The larger Peru and Chile records had a return period of 2475 years or greater and the smaller Peru and Chile records had a return period of 975 years or greater. We will refer to these earthquakes as Peru 2475, Chile 2475 for the large earthquakes and

Peru 975, Chile 975 for the smaller earthquakes throughout the following study. The return periods for the other earthquakes, Olympia, Kobe and Mexico City were determined by PanGeo Inc., a geotechnical subconsultant of WSDOT, and were found to be 975 years and 475 years. The origin of these records will be explained in greater depth in chapter four.

CHAPTER TWO

LITERATURE REVIEW

There are three parameters that are typically used to characterize earthquakes: the magnitude of shaking, the frequency content and the significant duration of motion. The first two have been researched more thoroughly than the last.

2.1 DEFINITION OF EARTHQUAKE DURATION

Several ways to define earthquake duration have been proposed over the last thirty years. Bolt (1973) defined "bracketed duration" as the time between the first and last accelerations of a magnitude higher than 0.05 g or 0.1 g . In this definition, earthquakes with a peak ground motion (PGA) smaller than 0.05 g are considered as having no duration. Other definitions focus on the shape of the record rather than on numerical values. Overall, a single definition of earthquake duration has not been accepted. The most widely accepted is Abrahamson and Silva’s (1996) "Arias Duration of Horizontal Strong Shaking Attenuation Relation":

$$
\begin{aligned}
& \operatorname{Ln}\left(\mathrm{D}_{0.05 _\mathrm{I}}\right)=\operatorname{Ln}\left[\frac{\left(\frac{\Delta \sigma(\mathrm{M})}{\left.10^{1.5 \mathrm{M}+16.05}\right)^{\frac{-1}{3}}}\right.}{4.9 \cdot 10^{6} \cdot \beta}+\mathrm{Sc}_{1}+\mathrm{c}_{2} \cdot\left(\mathrm{r}-\mathrm{r}_{\mathrm{c}}\right)\right]+\ln \left(\frac{\left.\mathrm{D}_{0.05 _\mathrm{I}}\right)}{\left.\mathrm{D}_{0.05 _0.75}\right)}\right. \\
& \begin{array}{l}
\text { for ruptures away from } \\
\text { fault (}>10 \mathrm{~km} \text { or } 6.2 \text { miles })
\end{array} \\
& \operatorname{Ln}\left(\mathrm{D}_{0.05 _\mathrm{I}}\right)=\operatorname{Ln}\left[\frac{\left(\frac{\Delta \sigma(\mathrm{M})}{\left.10^{1.5 \mathrm{M}+16.05}\right)}\right.}{4.9 \cdot 10^{6} \cdot \beta}+\mathrm{Sc}_{1}\right]+\ln \left(\frac{\left.\mathrm{D}_{0.05 _\mathrm{I}}\right)}{\left.\mathrm{D}_{0.05 _0.75}\right)}\right.
\end{aligned}
$$

Where :

```
    \(\mathrm{D}_{0.05 \text { I }}=\) Arias Duration (sec) from 0.05 to I Normalized Arias Itensity (typically, I=0.95)
    \(\Delta \sigma=\exp \left[\mathrm{b}_{1}+\mathrm{b}_{2} \cdot(\mathrm{M}-6)\right]\)
M = Moment Magnitude
    \(\mathrm{b}_{1}=5.204\)
    \(\mathrm{b}_{2}=0.851\)
    \(\beta=3.2\)
    \(\mathrm{S}=0\) for rock sites, or \(\mathrm{S}=1\) for soil sites
    \(\mathrm{c}_{1}=0.805\)
    \(c_{2}=0.063\)
\(r=\) closest distance to the effective fault rupture plane in km
\(\mathrm{r}_{\mathrm{c}}=10 \mathrm{~km}\)
    \(\ln \left(\frac{\mathrm{D}_{0.05 \_I}}{\left.\mathrm{D}_{0.05 \_0.75}\right)}=\mathrm{a}_{1}+\mathrm{a}_{2} \cdot \ln \left(\frac{\mathrm{I}-0.05}{\mathrm{I}-1}\right)+\mathrm{a}_{3} \cdot\left(\ln \left(\frac{\mathrm{I}-0.05}{\mathrm{I}-1}\right)\right)^{2}\right.\)
    \(a_{1}=-0.532\)
    \(a_{2}=0.552\)
    \(a_{3}=-0.262\)
    SE \(=\) standard error \(=0.493\) for \(\mathrm{I}=0.95\)
```

Duration also depends on soil conditions. R. Dobry, I. M. Idriss and E. NG (1978) studied the difference in the duration for the 1971 San Fernando horizontal strong ground motion records for a rock site and a soft-to-medium soil site. The following duration plots illustrate the differences between the two.

Figure 2.1-1 Difference Between Rock Site and Soil Site Acceleration Spectra

A correlation was found between the duration, D , and the magnitude, M , for rock motions, as illustrated below.

Figure 2.1-2 Duration versus Magnitude for Rock Sites in the Western United States.

The equation developed above is valid only for earthquake magnitudes of 4.5 to 7.6. For higher magnitudes, the duration of rupture at the source, d, increases much more rapidly than the significant duration of the earthquake, D , rendering the logarithmic correlation false. This study assumed a constant velocity of rupture, the dislocation at the source was considered to be an approximately continuous process (Bolt, 1970).

The following conclusion was obtained from the study: "Accelerograms at rock sites have more consistent and reasonably predictable durations, while durations of records on soil show much larger scatter, with the duration of rock being a lower bound."

2.2 DAMAGE INDICES

Lindt et al. (2004) studied the effect of earthquake duration on the reliability of structures, especially for the integration of reliability indices in the LRFD code. Lindt investigated the relationship between earthquake duration and very-low-cycle damage estimates through a combination of nonlinear structural dynamics and the theory of order statistics. A suite of ten earthquakes used for this research and were based on the earthquake spectra of three US cities: Los Angeles, Seattle and Boston. The return periods used for the earthquakes were 475 years and 2475 years which correspond to a probability of occurrence of 10% and 2% in 50 years. This research concluded that earthquake duration has a significant effect on the damage of a structure, as the duration increases the reliability index decreases as shown on figure 2.3-1 below.

Figure 2.2-1 Reliability Index Versus Earthquake Duration from Lindt et al. (2004)

2.3 EFFECT OF EARTHQUAKE DURATION ON THE DAMAGE IN

REINFORCED CONCRETE STRUCTURES

In 1988, Jeong et al. conducted a study on the damage observed in reinforced concrete and steel simple structures versus earthquake duration. The damage model used in this research was relatively crude but nevertheless qualitatively correct of the impact of damage on a structure as duration varies. The total damage for varying ductility levels was calculated with the following equations: $D=\sum_{i} D_{i}$ where $D_{i}=\frac{1}{C} n_{i} \cdot \mu_{i}^{s}$
and n_{i} : number of cycles

$$
\mu_{\mathrm{i}}: \text { ductility level of cycle i }
$$

C and s: positive empirical constants whose values were taken as 416 and 6 respectively for a reinforced concrete structure

Failure occurs when D reaches unity. This model was modified to take the maximum deformation and the absorbed hysteretic energy of the structure into account. Below is the final equation for the accumulative damage in a linear system for a specific earthquake duration.

$$
E\left[D\left(t_{d}\right)\right]=\frac{-1}{C} \cdot \int_{0}^{t_{d}} \int_{0}^{\infty} \mu^{s} \frac{\partial v(\mu, t)}{\partial \mu} d \mu \cdot d t
$$

where t_{d} is the duration of the excitation and $v(\mu, t)$ is the average frequency of up-crossings of the level μ.

Figure 2.4-1 below shows the plot of the previous equation for different values of ductility.

Figure 2.3-1 Expected Damage versus Normalized Duration for Representative Linear Reinforced Concrete Structure

It is clear from the above figure that total damage increases with duration. The slope of increase becomes steeper as the ductility level of the structure increases.

In 1975, Housner concluded that a large acceleration and spectral value but small duration earthquake will cause little structural damage (Housner, 1975). However, more recent studies have shown opposite trends. Jeong et al. (1988) showed that duration and ductility greatly affect structural damage and should therefore be taken into account when designing in seismic regions. Moreover, the study showed that for an increasing number of cycles for a given earthquake model, structural damage increases. Jeong et al.'s study was based on analytical excitations and not actual earthquake records.

CHAPTER THREE

BRIDGE MODELING

3.1 BRIDGE DESCRIPTIONS

3.1.1 Bridge 5/227

- Geographical Location

Cuyngte 1202 WsDOT TDO

NOT TOSCALE
Nat torvas for anyinsaing or other puppows raquing dimeresional accuracy

Figure 3.1.1-1 Bridge 5/227 Location

- Bridge Properties

The four span bridge has a total length of $53.24 \mathrm{~m}(184.50 \mathrm{ft})$. The outer spans are each $13.64 \mathrm{~m}(44.75 \mathrm{ft})$ long, the middle-west span is $15.7 \mathrm{~m}(51.50 \mathrm{ft})$ long and the
middle-east span is $13.26 \mathrm{~m}(43.50 \mathrm{ft})$ long. The bridge elevation and plan views are shown in figures 3.1.1-2 and 3.1.1-3.

Figure 3.1.1-2 Bridge 5/227 Plan View

Figure 3.1.1-3 Bridge 5/227 Elevation View
The deck is supported by six 50 ft series standard WSDOT I-girders running longitudinally under each span. The girders are $1.8 \mathrm{~m}(5 \mathrm{ft}, 11 \mathrm{in})$ on center and are preand post-tensioned (see figure 3.1.1-4). The girders support a $14 \mathrm{~cm}(5.5 \mathrm{in})$ thick reinforced concrete slab.

Figure 3.1.1-4 Bridge 5/227 50 ft. Series Girder

At each bent, a $91.44 \mathrm{~cm}(3 \mathrm{ft})$ by $1.22 \mathrm{~m}(4 \mathrm{ft})$ transverse crossbeam distributes the bridge loads to the three columns. The outer columns of each bent are of equal heights and the middle columns are slightly smaller. For the east bent, the outer columns are $5.68 \mathrm{~m}(18.64 \mathrm{ft})$ high and the middle columns are $5.53 \mathrm{~m}(18.14 \mathrm{ft})$ high. The middle bent outer and inner columns are $5.83 \mathrm{~m}(19.12 \mathrm{ft})$ and $5.68 \mathrm{~m}(18.62 \mathrm{ft})$ high respectively. The west bent is comprised of $5.92 \mathrm{~m}(19.42 \mathrm{ft})$ high outer columns, and a $5.77 \mathrm{~m}(18.92 \mathrm{ft})$ high inner column. The columns are $0.91 \mathrm{~m}(3 \mathrm{ft})$ in diameter with a cover of $9.2 \mathrm{~cm}\left(3^{5 / 8} \mathrm{in}\right)$, reinforced by No. 3 hoops spaced 30.48 cm (12 in) on center. Longitudinal reinforcement is comprised of eight equally spaced No. 10 bars. The lap splice length is $20 \mathrm{~d}_{\mathrm{b}}$ or $66 \mathrm{~cm}(2 \mathrm{ft}, 2 \mathrm{in})$ along the base of each column.

Figure 3.1.1-5 Bridge 5/227 Column Detail

The spread footings are supported by concrete piles. The exterior footings are $76.2 \mathrm{~cm}(2.5 \mathrm{ft})$ deep, $1.83 \mathrm{~m}(6 \mathrm{ft})$ wide (along the transverse direction of the bridge) and $3.66 \mathrm{~m}(12 \mathrm{ft})$ long. The interior footings are $91.44 \mathrm{~cm}(3 \mathrm{ft})$ deep, $2.74 \mathrm{~m}(9 \mathrm{ft})$ wide and $3.66 \mathrm{~m}(12 \mathrm{ft})$ long. The reinforcement for the exterior footings is a grillage of ten no. 9 bars spaced at $17.78 \mathrm{~cm}(7 \mathrm{in})$ on center along the length of the footing and twelve no. 6 bars spaced at 30.48 cm (12 in) on center along the width of the footing. For the interior footings, fourteen no. 9 bars spaced at 20.32 cm (8 in) on center longitudinally and twenty no. 6 bars spaced at $17.78 \mathrm{~cm}(7 \mathrm{in})$ on center in the transverse direction make up
the reinforcement. The piles form two rows of three along the length of the exterior footings, and three rows of three longitudinally as well under the interior footings as shown in figure 3.1.1-6 below.

Figure 3.1.1-6 Bridge 5/227 Intermediate Bent Footings

Rubber expansion joints are situated at each bent and at the abutments. They are $5.08 \mathrm{~cm}(2 \mathrm{in})$ wide and run the width of the roadway.

Figure 3.1.1-7 Bridge 5/227 Expansion Joint Detail

The end bents run across the width of the bridge, are 2 m ($6 \mathrm{ft}, 6.5 \mathrm{in}$) deep and $30.48 \mathrm{~cm}(1 \mathrm{ft})$ long for the top half and $91.44 \mathrm{~cm}(3 \mathrm{ft})$ long for the bottom half.

Transverse and longitudinal reinforcements are placed throughout the cross-section as displayed in figure 3.1.1-8. Sub-ground columns support the abutments and run about 6.1 $\mathrm{m}(20 \mathrm{ft})$ deep below the abutment. The columns are tapered along the depth and are anchored down by a $3.7 \mathrm{~m}(12 \mathrm{ft})$ by $4.6 \mathrm{~m}(15 \mathrm{ft})$ by $84 \mathrm{~cm}(2.75 \mathrm{ft})$ reinforced concrete block. Four rows of five concrete piles support the footings as detailed in figure 3.1.1-8.

Figure 3.1.1-8 Bridge 5/227 Abutment Sub-Ground Column and Footing

- Bridge Material Properties

Table 3.1.1-1 Bridge 5/227 Material Properties

Material Properties	
Steel Yield Strength	$44 \mathrm{ksi}(303.5 \mathrm{MPa})$
Steel Ultimate Strength	$75 \mathrm{ksi}(517.24 \mathrm{MPa})$
Concrete Strength after 28 days	$4 \mathrm{ksi}(27.58 \mathrm{MPa})$

3.1.2. Bridge 5/649

- Geographical Location

```
lol
```


Figure 3.1.2-1 Bridge 5/649 Location

Bridge $5 / 649$ is made up of two independent bridges. The east bridge is 4.88 m (16 ft) longer than the west bridge and therefore will be more prone to damage than the west bridge in the event of an earthquake, which is why the modeling was limited to the east bridge.

- Bridge Properties

Bridge $5 / 649$ is made up of two bents with three columns each, supported by treated timber pile footings. The deck is $74.68 \mathrm{~m}(245 \mathrm{ft})$ long divided into three spans:
the north ramp which is $23.5 \mathrm{~m}(77 \mathrm{ft})$ long, the middle span $29.3 \mathrm{~m}(96 \mathrm{ft})$ long and the south ramp $21.95 \mathrm{~m}(72 \mathrm{ft})$ long. The bridge carries a $22.5 \mathrm{~m}(73.8 \mathrm{ft})$ wide roadway (dimension taken along the back of the pavement seat). The bridge has a 45 degree skew and no curvature.

Figure 3.1.2-2 Bridge 5/649 Plan View

Figure 3.1.2-3 Bridge 5/649 Elevation View

The non-monolithic deck includes a 16.5 cm (6.50 in) thick reinforced concrete slab resting on a series of pre- and post-tensioned I-girders detailed in figure 3.1.2-4 below. The girder layout varies for each span. The south ramp is supported by six girders spaced at $4.3 \mathrm{~m}(14 \mathrm{ft}, 7 / 8 \mathrm{in})$ on center, the middle span counts seven girders spaced at 3 $\mathrm{m}(9 \mathrm{ft}, 11 \mathrm{in})$ on center and the north ramp has five girders spaced at $4.2 \mathrm{~m}(13 \mathrm{ft}, 8 \mathrm{in})$ on center. The girders are reinforced by no. 4 bars longitudinally and no. 4 stirrups in the transverse direction.

Figure 3.1.2-4 Bridge 5/649 Girder Detail

The girders rest on crossbeams that are $1.22 \mathrm{~m}(4 \mathrm{ft})$ by $1 \mathrm{~m}(3.25 \mathrm{ft})$ reinforced concrete rectangular beams than run $22.35 \mathrm{~m}(73.33 \mathrm{ft})$ across the width of the bridge.

The bridge has a downward slope creating a difference in the column heights. The north bent has three columns: the north-east column measuring $5.41 \mathrm{~m}(17.74 \mathrm{ft})$ high, the north-middle column at $5.23 \mathrm{~m}(17.15 \mathrm{ft})$ high and the north-west column at 5 m $(16.35 \mathrm{ft})$ high. The south bent has a similar configuration with slightly taller columns: the south-east column is $5.9 \mathrm{~m}(19.23 \mathrm{ft})$ high, the south-middle is $5.7 \mathrm{~m}(18.7 \mathrm{ft})$ high and the south-west is $5.5 \mathrm{~m}(17.98 \mathrm{ft})$ high. Each column is reinforced longitudinally by eleven evenly spaced no. 9 bars and in the traverse direction by no. 3 hoops spaced at 30.48 cm (12 in) on center. The lap splice length is $1 \mathrm{~m}(3 \mathrm{ft}, 4 \mathrm{in})$ which represents 35 d_{b}.

Figure 3.1.2-5 Bridge 5/649 Column Detail

Each column rests on concrete spread footings with treated timber piles. The footings are $2.9 \mathrm{~m}(9.5 \mathrm{ft})$ squares, $1 \mathrm{~m}(3.25 \mathrm{ft})$ deep. The timber piles are arranged in a grid of three rows of three.

Figure 3.1.2-6 Bridge 5/649 Footing Detail

The expansion joints at each bent and at the abutments contribute to a release of energy in the longitudinal direction during seismic activity. The rubber joints are 3.17 cm (1.25 in) wide.

The abutments are inverted T-beams about $22.25 \mathrm{~m}(73 \mathrm{ft})$ long, $1.98 \mathrm{~m}(6.5 \mathrm{ft})$ wide and $1.98 \mathrm{~m}(6.5 \mathrm{ft})$ high. The stems are cut-out to support the girders and provide
transverse girder stops in both directions for each girder. Two rows of ten concrete piles spaced in the transverse direction at $2.36 \mathrm{~m}(7.75 \mathrm{ft})$ on center, support each abutment.

Figure 3.1.2-7 Bridge 5/649 Abutment Footing detail: (a) Cross-section, (b) Elevation

- Bridge Material Properties

Table 3.1.2-1 Bridge 5/649 Material Properties

Material Properties	
Steel Yield Strength	$44 \mathrm{ksi}(303.5 \mathrm{MPa})$
Steel Ultimate Strength	$75 \mathrm{ksi}(517.24 \mathrm{MPa})$
Concrete Strength after 28 days	$4 \mathrm{ksi}(27.58 \mathrm{MPa})$

3.1.3 Bridge 512/19

- Geographical Location


```
imerchurge Vover: SA S12-Oryon Roat 5
```


Figure 3.1.3-1 Bridge 512/19 Intersection

- Bridge Properties

This bridge is the largest of all three bridges. The roadway is $23.5 \mathrm{~m}(77 \mathrm{ft})$ wide and 75.6 m (248 ft) long. The roadway rests on three bents of four columns each anchored into the ground by concrete spread footings. The deck is monolithic and has a slight skew of about 3 degrees.

Figure 3.1.3-2 Bridge 512/19 Plan View

Figure 3.1.3-3 Bridge 512/19 Elevation View

The bridge is made up of four spans: the north ramp is $15 \mathrm{~m}(49 \mathrm{ft})$ long, the two middle spans are $23.16 \mathrm{~m}(76 \mathrm{ft})$ long and the south ramp is $14.33 \mathrm{~m}(47 \mathrm{ft})$ long. The slab is $16.51 \mathrm{~cm}(6.5 \mathrm{in})$ thick and is supported by twelve I-girders spaced evenly at 2.23 $\mathrm{m}(7 \mathrm{ft}, 4 \mathrm{in})$ apart. The girders are $1.27 \mathrm{~m}(4 \mathrm{ft}, 2 \mathrm{in})$ tall. The bottom flange is reinforced by no. 4 bars and the top flange by no. 5 bars. The stirrups are no. 4 bars.

Figure 3.1.3-4 Bridge 512/19 Girder Detail

The girders rest on crossbeams at intermediate piers. These crossbeams are 1.1 m (3.5 ft) square reinforced concrete beams that run $23.47 \mathrm{~m}(77 \mathrm{ft})$ across the bridge. The crossbeams join the columns and form the bents supporting the bridge. The columns all have the same height of $6.13 \mathrm{~m}(20.1 \mathrm{ft})$. The columns are $91.44 \mathrm{~cm}(3 \mathrm{ft})$ in diameter and are reinforced longitudinally by eleven evenly spaced no. 9 bars and by no. 3 hoops spaced $30.48 \mathrm{~cm}(12 \mathrm{in})$ on center. Lap splice length is $35 \mathrm{~d}_{\mathrm{b}}$, which totals $1 \mathrm{~m}(3 \mathrm{ft}, 4 \mathrm{in})$.

Figure 3.1.3-5 Bridge 512/19 Column Detail

The abutments are reinforced concrete piers supported by sub-ground columns of different heights. The north abutment is the deepest one at $7 \mathrm{~m}(23 \mathrm{ft})$ deep from the top of the deck, and the south abutment is $4.88 \mathrm{~m}(16 \mathrm{ft})$ deep from the top of the deck. They are L-shaped beams $2.5 \mathrm{~m}(8 \mathrm{ft}, 2 \mathrm{in})$ high and $30.48 \mathrm{~cm}(1 \mathrm{ft})$ wide for the stem and 1.13 $\mathrm{m}(3 \mathrm{ft}, 9 \mathrm{in})$ for the seat. The abutments are anchored into the ground by spread footings that are $2.13 \mathrm{~m}(7 \mathrm{ft})$ by $3.66 \mathrm{~m}(12 \mathrm{ft})$ by $61 \mathrm{~cm}(2 \mathrm{ft})$ concrete blocks for the north abutment and $1.83 \mathrm{~m}(6 \mathrm{ft})$ by $3.05 \mathrm{~m}(10 \mathrm{ft})$ by $61 \mathrm{~cm}(2 \mathrm{ft})$ deep reinforced concrete blocks for the south abutment.

Figure 3.1.3-6 Bridge 512/19 Abutment Cross-section
The abutments were built to provide transverse support to the girders through girder stops. Four girder stops are positioned on both abutments, two in each direction. They are $45.72 \mathrm{~cm}(1.5 \mathrm{ft})$ by $50.8 \mathrm{~cm}(1 \mathrm{ft}, 8 \mathrm{in})$ by $22.86 \mathrm{~cm}(9 \mathrm{in})$ high concrete blocks poured once the girders are in place. Figure 3.1.3-7 illustrates the locations of the girder stops along the abutments as well as a plan view.

Figure 3.1.3-7 Bridge 512/19 Girder Stop : (a) Plan View and (b) Locations

- Bridge Material Properties

Table 3.1.3-1 Bridge 512/19 Material Properties

Material Properties	
Steel Yield Strength	$44 \mathrm{ksi}(303.5 \mathrm{MPa})$
Steel Ultimate Strength	$75 \mathrm{ksi}(517.24 \mathrm{MPa})$
Concrete Strength after 28 days	$4 \mathrm{ksi}(27.58 \mathrm{MPa})$

3.2 BRIDGE CALIBRATION

3.2.1 Jaradat Specimens

In order to model the bridge columns, it was necessary to compare the model to experimental data. A previous WSU graduate student, Jaradat (1996), tested several columns in the laboratory at $1 / 3$ scale. The one that best fit the existing bridges was specimen T2. The concrete compressive strength of the bridges is specified in the plans as 4000 psi. An increase of 1.5 was recommended by WSDOT and Priestley (1991) to account for the natural gain in strength over the last 40 to 50 years.

Table 3.2.1-1 below is a presentation of the test specimen's properties compared to the bridge column properties.

Table 3.2.1-1 Jaradat Specimen and Existing Bridge Properties

	Jaradat Specimen T2	Bridge5/649	Bridge 5/227	Bridge 512/19
Material Properties				
Steel Yield Strength	$371 \mathrm{MPa}(53.8 \mathrm{ksi})$	$303 \mathrm{MPa}(44 \mathrm{ksi})$	$303 \mathrm{MPa}(44 \mathrm{ksi})$	$303 \mathrm{MPa}(44 \mathrm{ksi})$
Steel Ultimate Strength	$578 \mathrm{MPa}(83.9 \mathrm{ksi})$	$517 \mathrm{MPa}(75 \mathrm{ksi})$	$517 \mathrm{MPa}(75 \mathrm{ksi})$	517 MPa (75 ksi)
Concrete Strength after 28 days	29 MPa (4.2 ksi)	41 MPa (6 ksi)	41 MPa (6 ksi)	41 MPa (6 ksi)
Geometric properties				
Column length	177.8 cm (70 in)	$\begin{aligned} & 5.2-6.1 \mathrm{~m} \\ & (204-240 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 5.4-5.9 \mathrm{~m} \\ & (211-233 \mathrm{in}) \end{aligned}$	6.1 m (241 in)
Column diameter	25.4 cm (10 in)	91.4 cm (36 in)	91.4 cm (36 in)	91.4 cm (36 in)
Reinforcement Properties				
Longitudinal reinforcement ratio	0.011	0.0113	0.011	0.0113
Transverse reinforcement ratio	0.00194	0.00194	0.00194	0.00194
Longitudinal bars	8 \#3	11 \#9	8 \#10	11 \#9
Hoops	9 gauge (3.2 in o.c.)	\#3 (12 in sp)	\#3 (12 in sp)	\#3 (12 in sp)
Lap splice	20 db	35 db	20 db	35 db

Specimen T2 was tested under cyclic loading with a peak lateral load of 35.6 kN (8.0 kips) and an axial load of 84.5 kN (19 kips) to represent the dead loads applied to the columns. Figure 3.2.1-1 shows the hysteresis curves obtained for specimen T 2 .

Figure 3.2.1-1 Specimen T2 Lateral Load-Displacement Hysteresis Curve

An envelope representing a force-displacement pushover curve for the specimen was extracted from this hysteresis. This envelope was used to calibrate each column of the existing bridges.

Figure 3.2.1-2 Specimen T2 Force-Displacement Envelope of Specimen T2

3.2.2 Scaling

Jaradat (1996) tested several columns under cyclic loading. These columns were scaled down to be conducted in a laboratory. Therefore, the results needed to be scaled up to fit the analytical assessment of the columns in the existing bridge. The material properties for the test and the bridge are different; therefore, each column of the bridge was modeled with the same material properties as the test column in order to compare the force-displacement prediction to the test results. Once the behavior of each column of the bridge approached the specimen's, the entire bridge model was run with the existing material properties of the bridge. In the following equations, subscript "ex" specifies the test specimen and "mod" the bridge model. Since the length and the diameter of the columns aren't scaled linearly, it is necessary to differentiate the two dimensions.

- Scaling the Forces and Moments:

The internal forces of the column can be defined as follows:

$$
\begin{aligned}
& F_{e x}=\frac{M_{e x}}{L_{e x}} \text { with } M_{e x}=A_{s . e x} f_{y}\left(D_{e x}-\frac{a}{2}\right) \quad \text { (For the test data) } \\
& F_{\mathrm{mod}}=\frac{M_{\mathrm{mod}}}{L_{\mathrm{mod}}} \text { with } M_{\mathrm{mod}}=A_{s . \bmod } f_{y}\left(D_{\mathrm{mod}}-\frac{a}{2}\right) \quad \text { (For the model data) }
\end{aligned}
$$

Therefore to scale the forces, the moments must be scaled. The first term is the steel reinforcement area, which can be scaled as follows:

$$
A_{s . \bmod }=\left(\frac{D_{\mathrm{mod}}}{D_{e x}}\right)^{2} \cdot A_{s . e x}
$$

The steel yield strength $\left(f_{y}\right)$ is identical for each column in the scaling process. The second term is a function of the column diameter and the distance to the neutral axis. To be as exact as possible in the scaling process, two moment-curvature analyses were run. Since the steel reinforcement area and yield strength of both the specimen and the bridge column are known, a plot of $\left(D_{e x}-\frac{a}{2}\right)$ vs. $\left(D_{\text {mod }}-\frac{a}{2}\right)$ was drawn.

Figure 3.2.2-1 Relationship Between "D-a/2" Experimental and Model

The graph clearly shows that both quantities vary linearly with a slope of 0.259 .
The ratio of column diameters in this case is: $\frac{D_{e x}}{D_{\text {mod }}}=\frac{10}{36}=0.278$

Therefore, the last term in the moment equation can be scaled as such:

$$
D_{\mathrm{mod}}-\frac{a}{2}=\frac{D_{\mathrm{mod}}}{D_{e x}} \cdot\left(D_{e x}-\frac{a}{2}\right)
$$

Using the two previous equations, the moment at the base of the model column can be expressed as a function of the moment at the base of the specimen.

$$
M_{\mathrm{mod}}=\left(\frac{D_{\mathrm{mod}}}{D_{e x}}\right)^{3} \cdot M_{e x}
$$

The same factor can be used to scale the forces, taking the column lengths into account:

$$
F_{\mathrm{mod}}=\left(\frac{D_{\mathrm{mod}}}{D_{e x}}\right)^{3} \cdot \frac{L_{e x}}{L_{\mathrm{mod}}} \cdot F_{e x}
$$

Therefore the moment varies with the diameter cubed and the force varies with the diameter cubed times the ratio of lengths.

- Scaling the Displacements

For the displacements, the following equations were used:

$$
\begin{aligned}
& \Delta_{y . e x}=\frac{\phi_{y . e x} \cdot L_{e x}^{2}}{6} \text { with } \phi_{y . e x}=2.25 \frac{\varepsilon_{y}}{D_{e x}} \\
& \Delta_{y . \bmod }=\frac{\phi_{y . \bmod } \cdot L_{\mathrm{mod}}^{2}}{6} \text { with } \phi_{y . \bmod }=2.25 \frac{\varepsilon_{y}}{D_{\mathrm{mod}}}
\end{aligned}
$$

These equations can be combined to express the model displacements as a function of the specimen displacements. The curvature will vary with the inverse of the diameter and the displacement will vary with the length squared.

$$
\Delta_{y . \bmod }=\frac{D_{e x}}{D_{\mathrm{mod}}}\left(\frac{L_{\mathrm{mod}}^{2}}{L_{e x}^{2}}\right) \cdot \Delta_{y . e x}
$$

However, for a displacement larger than the yield displacement, the equations differ. There is an additional term, Δ_{p} which can be calculated using the following equation:

$$
\Delta_{p}=\left(\frac{M_{u}}{M_{n}}-1\right) \cdot \Delta_{y}+L_{p} \cdot\left(\phi_{u}-\phi_{y}\right) \cdot\left(L-\frac{L_{p}}{2}\right)
$$

Where, M_{u} is the ultimate moment, M_{n} the moment at yield, Φ_{u} the ultimate curvature and L_{p} the plastic hinge length of the column :

In US units: $L_{p}=0.08 \cdot \frac{L}{2}+0.15 \cdot f_{y} \cdot d_{b}$

In metric units: $L_{p}=0.08 \cdot \frac{L}{2}+0.22 \cdot f_{y} \cdot d_{b}$

The deck is assumed to be infinitely rigid which makes the column react as if it were fixed at the base and constrained with a roller at the free end, making it behave in double bending. This is why half the length of the column is used to compute L_{p}.
Δ_{y} has already been factored. For the second term of the equation, the factored term is the following:

$$
\begin{array}{|c}
L_{p . \mathrm{mod}} \cdot\left(\phi_{u}-\phi_{y}\right)_{\mathrm{mod}} \cdot\left(L_{\mathrm{mod}}-\frac{L_{p . e x}}{2}\right) \\
L_{p . e x} \cdot\left(\phi_{u}-\phi_{y}\right)_{e x} \cdot\left(L_{e x}-\frac{L_{p . \mathrm{mod}}}{2}\right) \\
\hline
\end{array}
$$

Figure 3.2.2-2 Bilinear Relationship Between Moment and Curvature

To correctly determine how to scale $\Phi_{\mathrm{u}}-\Phi_{\mathrm{y}}$, a moment-curvature analysis was run, identical to the one used to determine the scaling factors for the moment values.

Figure 3.2.2-3 Linear Relationship Between $\Phi_{u}-\Phi_{y}$ Factor

The plot illustrates the linear relationship between both plastic curvatures. The slope in this case is of 3.593 , which is comparable to a scaling factor of: $\frac{D_{\text {mod }}}{D_{\text {ex }}}=\frac{36}{10}=3.6$ Therefore, to correctly scale up the displacements these are the equations used:

For $\Delta \leq \Delta_{y}$ use $\Delta_{\bmod }=\frac{D_{e x}}{D_{\mathrm{mod}}} \cdot\left(\frac{L_{\mathrm{mod}}^{2}}{L_{e x}^{2}}\right) \cdot \Delta_{e x}$

For $\Delta \geq \Delta_{y}$ use $\Delta_{\bmod }=\frac{D_{e x}}{D_{\bmod }} \cdot\left(\frac{L_{\bmod }^{2}}{L_{e x}^{2}}\right) \cdot \Delta_{e x}+\frac{L_{p . \bmod } \cdot D_{e x} \cdot\left(L_{\bmod }-\frac{L_{p . e x}}{2}\right)}{L_{p . e x} \cdot D_{\bmod } \cdot\left(L_{e x}-\frac{L_{p . \bmod }}{2}\right)} \cdot\left(\Delta_{e x}-\Delta_{y . e x}\right)$

The last component to factor is the axial load. The axial load varies with the cross-section of the column, therefore with the diameter squared:

$$
P_{\bmod }=\left(\frac{D_{\mathrm{mod}}}{D_{e x}}\right)^{2} \cdot P_{e x}
$$

See Appendix A-1 for an example of the scaling up of the center column of the center bent of Bridge $5 / 227$ fitted column to Jaradat T2 specimen scaled up.

3.2.3 Modeling

In order to determine the properties of the columns, a moment/curvature analysis was run to determine the values at actual yield, idealized yield and at failure.

With the values obtained the effective moment of inertia of the column can be determined: $\quad I_{e f f}=\frac{M_{n}}{E_{c} \Phi_{y}}$ where Mn is the moment at idealized yield and ϕ_{y} is the curvature at idealized yield.

However, this inertia value doesn't represent the inertia of the actual bridge columns. Longitudinal reinforcement of the column penetrates into the footing and in the deck as detailed in figure 3.2.3-3 below.

Figure 3.2.3-1 Column Reinforcement Pattern

The effect of the reinforcement penetration can be added to the clear height of the column: $L^{\prime}=L+2 \cdot L_{s p}$

Where L is the clear height, the strain penetration term is defined by $L_{s p}=0.15 \cdot f_{y} \cdot d_{b}$, f_{y} is the reinforcing steel yield strength and d_{b}, the diameter of the longitudinal bars.

Running a pushover analysis with these two different lengths shows how the strain penetration affects the yield force and the inertia of the column:

Figure 3.2.3-2 Comparison Between Force-Displacement Curves with Strain Penetration and Without

The stiffness of the column, k , can be found using the following equation:

$$
k=12 \cdot E_{c} \cdot \frac{I}{L^{3}} .
$$

To match the test data, the model column and the scaled test column must have approximately the same stiffness. Therefore, the final moment of inertia of the column can be calculated as follows: $I=k_{\text {test }} \cdot \frac{L^{\prime 3}}{12 \cdot E_{c}}$

See Appendix A-2 for a plot of a fitted column to Jaradat T2 specimen scaled up and the input files for each bridge.

- Calculating the Spring Values

The existing soil properties of each bridge are unknown. However, a previous WSU graduate student, Cody Cox (2005), has done an extensive study of the possible soil conditions in the Olympia region. The spring stiffness values for bridges 227, 512 and 649 were determined after comparison with Cody's bridges.

The soil properties for Bridge $5 / 227$ have already been calculated by Cody using several different programs.

Bridge $5 / 649$ presented similarities with bridge 826 . They both had timber pile footings and the abutments were approximately the same height, however, the overall width of the bridges differed. Soil properties depend mainly on soil pressure surrounding the footing. Soil pressure varies in a non-linear manner with the depth of the footing but is assumed to be constant throughout the width of the footing. Therefore the assumption that the soil stiffness values at the abutments varied linearly with the width of the abutment was made.

Bridge $512 / 19$ presented similarities with bridge 518 . Both bridges were built on spread footings, however the abutment height and overall width of the bridges varied. As for Bridge $5 / 649$, the spring values at the abutments were scaled linearly with the width
of the bridge. Regarding the abutment height, it is known that the deeper the footing, the stiffer the spring model should be. However, this relationship is not linear, nor does it follow any type of mathematical equation. Looking through Cody's work on abutment stiffness, the relationship was dependant on several factors: the dimensions of the spread footings, the material properties of the bridge as well as two factors alpha and beta different for each spring direction. These two factors varied with the ratio length by width of the footings.

Table 3.2.3-1 Calculation Factors for Estimating Soil Spring Stiffness

	Translation		Translation		Translation		Rocking		Rocking		Rotation	
	X Direction		Y Direction		Z Direction		about X Dir.		about Y Dir.		about Z Dir.	
L/B	alpha	beta										
0.194	1.025	1.420	1.025	1.420	1.035	1.125	1.050	1.700	1.050	1.150	1.050	1.150
1.263	1.030	1.480	1.030	1.480	1.035	1.100	1.050	1.700	1.050	1.750	1.050	1.750
1.412	1.040	1.500	1.025	1.500	1.040	1.100	1.060	1.700	1.060	1.750	1.060	2.100
1.600	1.050	1.520	1.060	1.520	1.060	1.110	1.060	1.740	1.060	1.760	1.060	2.200
1.667	1.055	1.480	1.060	1.480	1.060	1.100	1.060	1.700	1.060	1.750	1.060	1.900
0.600	1.025	1.450	1.025	1.450	1.035	1.100	1.050	1.700	1.050	1.380	1.050	1.380

With these values were calculated the spring stiffness at each abutment in all six directions. Since the spring values were calculated with approximate soil properties, a range of soil elastic modulus were used to model each bridge. These values are presented below in metric units (for US units see Appendix A-3) .

Table 3.2.3-2 Spring Values for Each Bridge

		Translational Springs			Rotational Springs		
Bridge 512/19	Es (MN/m2)	K11 (Trans) MN/m	K22 (Long.) MN/m	K33 (Vert.) MN/m	K44 (Trans.) MN/m/rad	K55 (Long.) MN/m/rad	K66 (Vert.) MN/m/rad
North Abut	47.88	$2.0427 \mathrm{E}+03$	2.0427E+03	$2.1346 \mathrm{E}+03$	5.9570E+04	1.6292E+05	$1.2418 \mathrm{E}+05$
	287.28	$1.2256 \mathrm{E}+04$	$1.2256 \mathrm{E}+04$	1.2807E+04	3.5742E+05	$9.7754 \mathrm{E}+05$	$7.4510 \mathrm{E}+05$
	861.84	$3.6768 \mathrm{E}+04$	$3.6768 \mathrm{E}+04$	3.8422E+04	$1.0723 \mathrm{E}+06$	$2.9326 \mathrm{E}+06$	$2.2353 \mathrm{E}+06$
North Pier	47.88	$2.3082 \mathrm{E}+02$	$2.3082 \mathrm{E}+02$	$2.3851 \mathrm{E}+02$	$1.0903 \mathrm{E}+04$	$6.6909 \mathrm{E}+03$	1.1950E+04
	287.28	$1.3849 \mathrm{E}+03$	$1.3849 \mathrm{E}+03$	$1.4311 \mathrm{E}+03$	6.5417E+04	4.0145E+04	7.1701E+04
	861.84	4.1547E+03	4.1547E+03	$4.2932 \mathrm{E}+03$	$1.9625 \mathrm{E}+05$	$1.2044 \mathrm{E}+05$	$2.1510 \mathrm{E}+05$
Center Pier	47.88	$2.3845 \mathrm{E}+02$	$2.3845 \mathrm{E}+02$	$2.5094 \mathrm{E}+02$	1.1739E+04	8.5124E+03	$1.1385 \mathrm{E}+04$
	287.28	1.4307E+03	1.4307E+03	1.5056E+03	7.0437E+04	5.1074E+04	6.8312E+04
	861.84	$4.2920 \mathrm{E}+03$	$4.2920 \mathrm{E}+03$	4.5169E+03	2.1131E+05	1.5322E+05	$2.0494 \mathrm{E}+05$
South Pier	47.88	$2.2182 \mathrm{E}+02$	$2.2182 \mathrm{E}+02$	$2.3043 E+02$	1.0159E+04	5.0775E+03	1.0759E+04
	287.28	$1.3309 \mathrm{E}+03$	$1.3309 \mathrm{E}+03$	$1.3826 \mathrm{E}+03$	6.0957E+04	3.0465E+04	$6.4554 \mathrm{E}+04$
	861.84	3.9927E+03	3.9927E+03	4.1477E+03	1.8287E+05	$9.1395 \mathrm{E}+04$	$1.9366 \mathrm{E}+05$
South Abut	47.88	$8.2237 \mathrm{E}+02$	$8.2237 \mathrm{E}+02$	8.5937E+02	$2.3983 \mathrm{E}+04$	$6.5593 \mathrm{E}+04$	$4.9996 \mathrm{E}+04$
	287.28	$4.9342 \mathrm{E}+03$	$4.9342 \mathrm{E}+03$	$5.1562 \mathrm{E}+03$	1.4390E+05	$3.9356 \mathrm{E}+05$	$2.9998 \mathrm{E}+05$
	861.84	$1.4803 \mathrm{E}+04$	1.4803E+04	1.5469E+04	4.3169E+05	1.1807E+06	8.9993E+05

Bridge 5/227	Es (MN/m2)	Translational Springs			Rotational Springs		
West Abut	0.24	$1.1485 \mathrm{E}+03$	$1.2372 \mathrm{E}+03$	4.6675E+03	$2.0087 \mathrm{E}+05$	$2.0096 \mathrm{E}+05$	$4.5472 \mathrm{E}+02$
	47.88	$2.0784 \mathrm{E}+03$	$2.1598 \mathrm{E}+03$	$5.6232 \mathrm{E}+03$	$2.5356 \mathrm{E}+05$	$2.7206 \mathrm{E}+05$	9.0945E+04
	287.28	$6.7512 \mathrm{E}+03$	6.7961E+03	$1.0426 \mathrm{E}+04$	$5.1836 \mathrm{E}+05$	$6.2934 \mathrm{E}+05$	$5.4567 \mathrm{E}+05$
	861.84	$1.7966 \mathrm{E}+04$	$1.7923 \mathrm{E}+04$	$2.1952 \mathrm{E}+04$	1.1539E+06	$1.4868 \mathrm{E}+06$	1.6370E+06
West Pier	0.24	$2.8936 \mathrm{E}+02$	$2.8936 \mathrm{E}+02$	$1.3613 \mathrm{E}+03$	7.7936E+03	$7.7740 \mathrm{E}+03$	$6.4175 \mathrm{E}+01$
	47.88	$5.3621 \mathrm{E}+02$	$5.3621 \mathrm{E}+02$	$1.6247 \mathrm{E}+03$	$1.9522 \mathrm{E}+04$	$1.5598 \mathrm{E}+04$	$1.2835 \mathrm{E}+04$
	287.28	$1.7766 \mathrm{E}+03$	$1.7766 \mathrm{E}+03$	$2.9486 \mathrm{E}+03$	7.8461E+04	5.4912E+04	7.7010E+04
	861.84	$4.7536 \mathrm{E}+03$	$4.7536 \mathrm{E}+03$	$6.1259 \mathrm{E}+03$	$2.1991 \mathrm{E}+05$	$1.4927 \mathrm{E}+05$	$2.3103 \mathrm{E}+05$
Center Pier	0.24	$2.8936 \mathrm{E}+02$	$2.8936 \mathrm{E}+02$	$1.3613 \mathrm{E}+03$	$7.7936 \mathrm{E}+03$	$7.7740 \mathrm{E}+03$	$6.4175 \mathrm{E}+01$
	47.88	$5.3621 \mathrm{E}+02$	$5.3621 \mathrm{E}+02$	$1.6247 \mathrm{E}+03$	$1.9522 \mathrm{E}+04$	$1.5598 \mathrm{E}+04$	$1.2835 \mathrm{E}+04$
	287.28	$1.7766 \mathrm{E}+03$	$1.7766 \mathrm{E}+03$	$2.9486 \mathrm{E}+03$	7.8461E+04	$5.4912 \mathrm{E}+04$	7.7010E+04
	861.84	$4.7536 \mathrm{E}+03$	$4.7536 \mathrm{E}+03$	$6.1259 \mathrm{E}+03$	$2.1991 \mathrm{E}+05$	$1.4927 \mathrm{E}+05$	$2.3103 \mathrm{E}+05$
East Pier	0.24	$2.8936 \mathrm{E}+02$	$2.8936 \mathrm{E}+02$	$1.3613 \mathrm{E}+03$	7.7936E+03	$7.7740 \mathrm{E}+03$	$6.4175 \mathrm{E}+01$
	47.88	$5.3621 \mathrm{E}+02$	$5.3621 \mathrm{E}+02$	$1.6247 \mathrm{E}+03$	$1.9522 \mathrm{E}+04$	$1.5598 \mathrm{E}+04$	$1.2835 \mathrm{E}+04$
	287.28	$1.7766 \mathrm{E}+03$	$1.7766 \mathrm{E}+03$	$2.9486 \mathrm{E}+03$	7.8461E+04	$5.4912 \mathrm{E}+04$	7.7010E+04
	861.84	$4.7536 \mathrm{E}+03$	$4.7536 \mathrm{E}+03$	$6.1259 \mathrm{E}+03$	2.1991E+05	$1.4927 \mathrm{E}+05$	$2.3103 \mathrm{E}+05$
East Abut	0.24	$1.1485 \mathrm{E}+03$	$1.2373 \mathrm{E}+03$	$4.6677 \mathrm{E}+03$	$2.0087 \mathrm{E}+05$	$2.0096 \mathrm{E}+05$	$4.5472 \mathrm{E}+02$
	47.88	$2.0784 \mathrm{E}+03$	$2.1598 \mathrm{E}+03$	$5.6232 \mathrm{E}+03$	$2.5356 \mathrm{E}+05$	$2.7206 \mathrm{E}+05$	9.0945E+04
	287.28	$6.7512 \mathrm{E}+03$	$6.7961 \mathrm{E}+03$	$1.0426 \mathrm{E}+04$	$5.1836 \mathrm{E}+05$	$6.2934 \mathrm{E}+05$	5.4567E+05
	861.84	$1.7966 \mathrm{E}+04$	$1.7923 \mathrm{E}+04$	$2.1952 \mathrm{E}+04$	$1.1539 \mathrm{E}+06$	$1.4868 \mathrm{E}+06$	$1.6370 \mathrm{E}+06$

Bridge 5/649	Es (MN/m2)	Translational Springs			Rotational Springs		
South Abut	47.88	1.0839E+03	$1.1804 \mathrm{E}+03$	$2.6482 \mathrm{E}+03$	$8.9691 \mathrm{E}+03$	$1.4740 \mathrm{E}+05$	1.1481E+05
	287.28	$2.7672 \mathrm{E}+03$	$2.8637 \mathrm{E}+03$	$4.6792 \mathrm{E}+03$	5.1353E+04	8.8195E+05	$6.8887 \mathrm{E}+05$
	861.84	$6.8071 \mathrm{E}+03$	$6.9036 \mathrm{E}+03$	$9.5536 \mathrm{E}+03$	$1.5308 \mathrm{E}+05$	$2.6449 \mathrm{E}+06$	$2.0666 \mathrm{E}+06$
South Pier	47.88	$4.9103 \mathrm{E}+02$	4.9103E+02	9.2741E+02	1.7840E+04	1.7840E+04	$2.4969 \mathrm{E}+04$
	287.28	$1.9461 \mathrm{E}+03$	$1.9461 \mathrm{E}+03$	$2.4257 \mathrm{E}+03$	$1.0666 \mathrm{E}+05$	$1.0666 \mathrm{E}+05$	$1.4981 \mathrm{E}+05$
	861.84	$5.4383 \mathrm{E}+03$	$5.4383 \mathrm{E}+03$	$6.0216 \mathrm{E}+03$	3.1984E+05	3.1984E+05	$4.4944 \mathrm{E}+05$
North Pier	47.88	$3.0897 \mathrm{E}+02$	$3.0897 \mathrm{E}+02$	$9.2741 \mathrm{E}+02$	1.7808E+04	$1.7808 \mathrm{E}+04$	$2.4969 \mathrm{E}+04$
	287.28	$1.7641 \mathrm{E}+03$	$1.7641 \mathrm{E}+03$	$2.4257 \mathrm{E}+03$	$1.0663 \mathrm{E}+05$	$1.0663 \mathrm{E}+05$	$1.4981 \mathrm{E}+05$
	861.84	$5.2563 \mathrm{E}+03$	$5.2563 \mathrm{E}+03$	$6.0216 \mathrm{E}+03$	3.1980E+05	$3.1980 \mathrm{E}+05$	$4.4944 \mathrm{E}+05$
North Abut	47.88	$1.2430 \mathrm{E}+03$	$1.3395 \mathrm{E}+03$	$2.8724 \mathrm{E}+03$	$9.0303 \mathrm{E}+03$	$1.4746 \mathrm{E}+05$	$1.1481 \mathrm{E}+05$
	287.28	$2.9263 \mathrm{E}+03$	$3.0228 \mathrm{E}+03$	$4.9034 \mathrm{E}+03$	5.1415E+04	$8.8201 \mathrm{E}+05$	$6.8887 \mathrm{E}+05$
	861.84	$6.9662 \mathrm{E}+03$	$7.0627 \mathrm{E}+03$	$9.7778 \mathrm{E}+03$	$1.5314 \mathrm{E}+05$	$2.6449 \mathrm{E}+06$	$2.0666 \mathrm{E}+06$

CHAPTER FOUR

SEISMIC ANALYSIS

4.1 SEISMIC EXCITATIONS

Ten seismic excitations were used to assess the bridges: four short-duration and six long-duration motions. The short-duration motions were the Olympia and Kobe excitations, with the Kobe excitation being also a near-fault motion. The long-duration motions were the Mexico, Peru and Chile excitations. Figures 4.1-1 to 4.1-10 show the time histories for the longitudinal and transverse directions of these earthquakes. The Peru and Chile earthquake time histories were generated by modifying the ground motions from South American, inter-plate, subduction zone earthquakes to fit a target acceleration spectrum for the Seattle area. The spectrum was derived from the Atkinson and Boore (2003) relationship which includes several terms including soil classification and a near-source saturation term.

The other six earthquakes (Olympia, Mexico and Kobe, both 475 and 975-year return periods), were provided by WSDOT. These three time histories were modified by PanGeo Inc., a geotechnical subconsultant of WSDOT for The Aurora Avenue bridge retrofit project in Seattle. Probalistic and deterministic approaches were used to develop the ground motion. They relied on several design requirement criteria (The current WSDOT (500-yr return period), CalTrans (1000 year), UBC (1000 year) and the 2000 IBC (2500 year)) for the probalistic approach.

Figures 4.1-1 Time Histories for the Large Return Period Earthquakes: Chile 2475

Figures 4.1-2 Time Histories for the Large Return Period Earthquakes: Peru 2475

Figures 4.1-3 Time Histories for the Large Return Period Earthquakes: Kobe 975

Figures 4.1-4 Time Histories for the Large Return Period Earthquakes: Olympia 975

Figures 4.1-5 Time Histories for the Large Return Period Earthquakes: Mexico City 975

Figures 4.1-6 Time Histories for the Small Return Period Earthquakes: Chile 975

Figures 4.1-7 Time Histories for the Small Return Period Earthquakes: Peru 975

Figures 4.1-8 Time Histories for the Small Return Period Earthquakes: Kobe 475

Figures 4.1-9 Time Histories for the Small Return Period Earthquakes: Olympia 475

Figures 4.1-10 Time Histories for the Small Return Period Earthquakes: Mexico City 475

A typical way of characterizing a bridge's response under seismic loading is to use acceleration and displacement spectra, which in this case were created using the software SPECTRA (Carr, 2004). The vertical excitation being a linear scaled version of the highest between the transverse and the longitudinal directions, it would be redundant to display it. Figures 4.1-11 to 4.1-16 show the acceleration and displacement spectra for each earthquake.

Figure 4.1-11 ARS and DRS for Chile 975 and 2475 Earthquakes

Figure 4.1-12 ARS and DRS for Peru 975 and 2475 Earthquakes

Figure 4.1-13 ARS and DRS for Kobe 475 and 975 Earthquakes

Figure 4.1-14 ARS and DRS for Olympia 475 and 975 Earthquakes

Figure 4.1-15 ARS and DRS for Mexico City 475 and 975 Earthquakes

It is interesting to note that the displacement spectra for the Olympia, Kobe and Mexico earthquake have a displacement that increases with the period. However, the Chile and Peru earthquakes reach a peak displacement at around 1.5 to 2.5 second periods and then displacement is reduced as the period increases.

Table 4.1-1 Bridge Periods, Spectral Accelerations and Spectral Displacement Values

		Lg Dir.	Tr Dir.	Longitudinal Dir.				Transverse Dir.			
Bridge model	Es (ksf - MPa)	Period (s)	$\begin{array}{\|c} \text { Period } \\ (\mathrm{s}) \end{array}$	Mean period (s)	$\mathrm{S}_{\text {A }}(\mathrm{g})$		$\begin{aligned} & \hline \mathrm{S}_{\mathrm{D}} \\ & (\mathrm{~cm}) \end{aligned}$	Mean period (s)	$\mathrm{S}_{\text {A }}(\mathrm{g})$		$\begin{aligned} & \mathrm{S}_{\mathrm{D}} \\ & (\mathrm{~cm}) \end{aligned}$
5/227				East-West Dir.				North-South Dir.			
	6000-287.3	0.33	0.39	0.37	Kobe 475	0.65	1.98	0.40	Kobe 475	0.73	2.90
					Kobe 975	0.86	2.74		Kobe 975	1.02	3.96
					Mexico 475	0.69	2.29		Mexico 475	0.68	2.74
	18000-861.8	0.33	0.39		Mexico 975	0.90	3.05		Mexico 975	0.92	3.51
					Olympia 475	0.73	2.29		Olympia 475	0.68	2.59
					Olympia 975	0.90	3.05		Olympia 975	1.00	3.96
	Fixed / Roller	0.53	0.38		Peru 975	0.65	4.88		Peru 975	0.66	5.49
					Peru 2475	1.30	4.27		Peru 2475	1.31	4.88
					Chile 975	0.65	1.83		Chile 975	0.65	2.44
					Chile 2475	1.30	4.27		Chile 2475	1.29	4.88
512/19				North-South Dir.				East-West Dir.			
	6000-287.3	0.53	0.27	0.58	Kobe 475	0.62	5.05	0.39	Kobe 475	0.66	2.59
					Kobe 975	0.84	7.47		Kobe 975	0.87	2.88
					Mexico 475	0.55	4.92		Mexico 475	0.68	2.69
	18000-861.8	0.53	0.27		Mexico 975	0.95	8.41		Mexico 975	0.86	3.66
					Olympia 475	0.62	4.88		Olympia 475	0.71	2.71
					Olympia 975	0.95	8.23		Olympia 975	0.94	3.72
	Fixed	0.69	0.62		Peru 975	0.63	4.93		Peru 975	0.62	2.59
					Peru 2475	1.22	10.42		Peru 2475	1.24	4.91
					Chile 975	0.62	5.52		Chile 975	0.65	2.59
					Chile 2475	1.20	10.40		Chile 2475	1.28	5.01
5/649 without skew					North-South	Dir.			East-West		
	6000-287.3	0.53	0.62	0.60	Kobe 475	0.62	5.49	0.62	Kobe 475	0.58	5.79
					Kobe 975	0.83	7.32		Kobe 975	0.89	8.53
					Mexico 475	0.55	4.72		Mexico 475	0.58	5.49
	18000-861.8	0.53	0.61		Mexico 975	0.92	8.23		Mexico 975	0.87	8.23
					Olympia 475	0.61	5.49		Olympia 475	0.60	5.79
					Olympia 975	0.92	8.23		Olympia 975	0.90	8.53
	Fixed / Roller	0.81	0.62		Peru 975	0.59	4.88		Peru 975	0.58	5.49
					Peru 2475	1.17	10.97		Peru 2475	1.15	10.67
					Chile 975	0.62	5.49		Chile 975	0.57	4.88
					Chile 2475	1.24	10.67		Chile 2475	1.13	10.36
5/649 with skew				North-South Dir.				East-West Dir.			
	6000-287.3	0.61	0.62	0.68	Kobe 475	0.49	6.40	0.62	Kobe 475	0.60	5.79
					Kobe 975	0.75	8.99		Kobe 975	0.94	8.53
					Mexico 475	0.47	5.79		Mexico 475	0.65	5.49
	18000-861.8	0.61	0.61		Mexico 975	0.75	8.53		Mexico 975	0.92	8.23
					Olympia 475	0.48	5.79		Olympia 475	0.65	5.79
					Olympia 975	0.73	8.53		Olympia 975	1.03	8.53
	Fixed / Roller	0.81	0.62		Peru 975	0.71	7.92		Peru 975	0.63	5.49
					Peru 2475	1.42	15.24		Peru 2475	1.25	10.67
					Chile 975	0.51	5.94		Chile 975	0.59	4.88
					Chile 2475	1.02	11.89		Chile 2475	1.17	10.36

Table 4.1-1 shows the spectral accelerations for all four bridge models for a mean period. Since the bridges are not oriented the same way, the east-west direction earthquakes correspond to the longitudinal direction for Bridge 5/227, and transverse
direction for Bridges 512/19 and 5/649. Similarly, the north-south direction earthquakes correspond to the transverse direction for Bridge 5/227 and longitudinal direction for Bridges $512 / 19$ and $5 / 649$. It can be seen that the Peru 2475 earthquake will pose the largest demand for all bridge models.

The Nisqually earthquake of 2001 had a moment magnitude of 6.8. Figure 4.1-16 shows the acceleration response spectra (ARS) for the Nisqually earthquake at two different locations as well as the acceleration spectra for the Peru 2475 and the Olympia 975 earthquakes. The Olympia DNR building was the location where the highest peak ground acceleration was recorded $\left(374.4 \mathrm{~cm} / \mathrm{s}^{2}\right)$. The SeaTac fire station is a better location for an estimate of the ground motions that loaded the three bridges modeled in this study. Based on the target acceleration spectra for the Seattle area, the Nisqually earthquake at the SeaTac fire station has a return period that can be estimated at approximately 475 years depending on the location and based on a structure with a period of 0.5 seconds. The ground motion recorded at the Olympia DNR building has a return period of approximately 975 years (based on the USGS target acceleration spectra for the Seattle and Olympia regions, 2003).

Figure 4.1-16 ARS for the 2001 Nisqually, Peru 2475 and Olympia 975 Earthquakes

CHAPTER FIVE

BRIDGE 5/649 SKEW COMPARISON

5.1 BRIDGE 5/649 SKEW OR STRAIGHT MODEL

Modeling a structure requires that simplifications be made in describing the elements. Cox (2005) compared the response of a spine bridge model and a grillage bridge model. He concluded that although the global bridge response varied between the two models, the changes were not significant when the deck was modeled as a spine versus a grillage. A similar study was conducted in this research to determine if the skew of a bridge deck significantly influenced the overall response of the bridge. Bridge 5/649 was modeled in two different ways as illustrated below. The existing bridge was built with a 45° skew. Dimensions were taken parallel to the skew so that the length of the bents in both models was identical.

Figure 5.1-1 5/649 Bridge Spine Model with Skew

Figure 5.1-2 5/649 Bridge Spine Model without Skew

5.1.1 Maximum Demands

To evaluate the difference in behaviors of the models, several parameters were studied: the maximum total shear in the columns (V), the maximum relative displacement at the top of the columns (Δ), the maximum moments at the top and at the bottom of he columns (M) and the maximum curvature at the top of the columns (Φ). Both models were run under two earthquakes, Olympia 975 and Peru 2475, for this comparison. Two different boundary conditions were used in the models: the spring values for an elastic modulus of 287.3 MPa (6000 ksf) and 861.9 MPa (18000 ksf). Tables 5.1.1-1 and -2 present the results obtained.

Table 5.1.1-1 Bridge 5/649 Displacement and Shear Force Demands Due to the Olympia 975 Earthquake

With skew			
Bent	$\mathbf{6 4 9}-\mathbf{O}-\mathbf{2 8 3 . 7}$	$\mathbf{6 4 9} \mathbf{- 0} \mathbf{- 8 6 1 . 9}$	$\mathbf{6 4 9}$ - O - fixed
Max $\Delta \mathbf{(c m)}$			
North - East	8.24	8.92	8.02
North - Center	7.38	7.49	8.02
North - West	7.33	7.35	8.02
South - East	8.28	8.55	10.05
South - Center	8.27	8.27	10.05
South - West	8.26	8.17	10.06
Max V (kN)			
North - East	271	272	331
North - Center	200	205	245
North - West	323	455	404
South - East	282	298	333
South - Center	170	225	263
South - West	315	316	402

Without skew					
Bent	$\mathbf{6 4 9 - 0} \mathbf{- 2 8 3 . 7}$	$\mathbf{6 4 9} \mathbf{- 0} \mathbf{- 8 6 1 . 9}$	$\mathbf{6 4 9}$ - O - fixed		
Max $\boldsymbol{\Delta} \mathbf{(c m)}$					
North - East	7.88	7.79	8.67		
North - Center	7.46	7.45	8.10		
North - West	7.08	7.15	7.56		
South - East	8.08	8.73	11.06		
South - Center	8.09	8.73	10.59		
South - West	8.09	8.74	10.15		
Max V (kN)					
North - East	282	282	353		
North - Center	203	200	257		
North - West	309	318	374		
South - East	287	294	359		
South - Center	183	188	267		
South - West	311	327	403		

The maximum variation in displacement demands between the skewed and the straight model occurred for the fixed model, at the east column of the south bent (9%).

The shear demands varied by 43% for the 861.9 MPa elastic soil modulus value model, between the skewed and the straight model at the west column of the north bent.

Table 5.1.1-2 Bridge 5/649 Displacement and Shear Force Demands Due to the Peru 2475 Earthquake

With skew			
Bent	$\mathbf{6 4 9}$ - P - 283.7	$\mathbf{6 4 9}$ - P - 861.9	$\mathbf{6 4 9}$ - P - fixed
Max $\Delta \mathbf{(c m)}$			
North - East	17.70	18.48	20.17
North - Center	17.54	17.37	20.08
North - West	17.41	16.61	19.99
South - East	16.46	17.14	22.32
South - Center	17.32	16.58	22.25
South - West	18.22	17.11	22.20
Max V (kN)			
North - East	522	537	715
North - Center	455	552	755
North - West	584	634	836
South - East	389	421	584
South - Center	377	420	613
South - West	509	487	759

Without skew			
Bent	$\mathbf{6 4 9} \mathbf{- P - 2 8 3 . 7}$	$\mathbf{6 4 9} \mathbf{- P} \mathbf{- 8 6 1 . 9}$	$\mathbf{6 4 9} \mathbf{- P} \mathbf{- f i x e d}$
Max $\mathbf{(c m})$			
North - East	17.11	18.13	23.13
North - Center	17.00	18.13	19.78
North - West	16.89	18.13	16.63
South - East	17.19	18.16	22.40
South - Center	17.00	17.61	21.39
South - West	17.10	17.27	20.39
Max V (kN)			
North - East	474	519	747
North - Center	453	568	699
North - West	568	640	773
South - East	428	458	622
South - Center	433	420	564
South - West	532	464	657

The variation in demands was larger for the Peru 2475 earthquake. There was an increase of 20%, approximately $3.3 \mathrm{~cm}(1.3 \mathrm{in})$, in displacement demands for the west column of the north bent, between the skew and straight models. There was a 15% increase, approximately 102 kN (23 kips), in the shear force demands between the skewed and straight fixed column base/roller abutment models at the south bent, west column.

5.1.2 Hysteresis Curves

Another way to compare the effect of the skew on the response of the bridge is to study the force versus displacement hysteresis curves for both models. Below are displayed the hysteresis curves for the bridge with two different soil types and two earthquakes. The column with the highest demand is displayed, the center column of the south bent.

Es - 287.3 MPa
South Bent, Middle Column

South Bent, Middle Column

Figure 5.1.2-1 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 - Without Skew; Olympia $975 \mathrm{EQ} ;$ Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf)

Es - 287.3 MPa
South Bent, Middle Column

South Bent, Middle Column

Figure 5.1.2-2 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 - With Skew; Olympia 975 EQ; Es=287.3 MPa (6000 ksf); $\mathbf{8 6 1 . 9 ~ M P a ~ (1 8 0 0 0 ~ k s f) ~}$

Es - 287.3 MPa
South Bent, Middle Column

Es - 861.9 MPa
South Bent, Middle Column

Figure 5.1.2-3 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 - Without Skew; Peru 2475 EQ; Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf)

Es - 287.3 MPa
South Bent, Middle Column

Es - 861.9 MPa
South Bent, Middle Column

Figure 5.1.2-4 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 - With Skew; Peru 2475 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf)

The general shape of the hysteresis curves is the same for both models.

5.1.3 Time History Comparison

Another way to compare the response of a bridge under earthquake loading is to investigate the relative displacement between the column tops and column bottoms versus time. Below are plotted the relative displacement versus time for the Olympia 975 and Peru 2475 earthquakes, for the middle column of the south bent, for the two soil spring elastic modulus values of 287.3 MPa and 861.9 MPa.

Figure 5.1.3-1 Displacement Versus Time for the Olympia 975 and Peru 2475 Earthquakes, 287.3 MPa Spring Models With Skew

Figure 5.1.3-2 Displacement Versus Time for the Olympia 975 and Peru 2475 Earthquakes, 287.3 MPa Spring Models Without Skew

Figure 5.1.3-3 Displacement Versus Time for the Olympia 975 and Peru 2475 Earthquakes, 861.9 MPa Spring Models With Skew

Figure 5.1.3-4 Displacement Versus Time for the Olympia 975 and Peru 2475 Earthquakes, 861.9 MPa Spring Models Without Skew

The plots of transverse and longitudinal displacement versus time show that the differences between the skew model and the non-skew model of Bridge 5/649 are not significant. However, the maximum displacement and shear demands are significant, approximately 20% and 40% variation respectively. For Bridge $5 / 649$, the skew affected the bridge response enough that modeling the skew is necessary to assess successfully the seismic response of the bridge. In addition, further investigations are needed to draw a general conclusion as to how important an existing bridge skew is to the overall behavior of the bridge.

CHAPTER SIX

BRIDGE RESPONSE

The main goal of this research was to assess the response of multicolumn bent prestressed concrete bridges subject to long-duration earthquake excitations. Ten earthquake records were used to evaluate the bridge response (see Chapter four). To avoid numerous pages of data, selected results will be displayed. However, conclusions will be drawn based on all the analyses. The maximum demands obtained and the forcedisplacement hysteresis curves are presented below. The following notations are used in the tables and figures in this chapter: $\Delta(\mathrm{cm})$ represents the relative displacement between the top and bottom of the column, $\mathrm{V}(\mathrm{kN})$ is the shear in the column, M top $(\mathrm{kN}-\mathrm{m})$ is the moment at the top of the column, M bot $(\mathrm{kN}-\mathrm{m})$ is the moment at the bottom of the column, and Φ top $(1 / \mathrm{m})$ is the curvature at the top of the column. When comparing analyses, the percentile indicates the variation between the considered model and the model with the lowest soil spring stiffnesses.

6.1 BRIDGE 5/227

Bridge 5/227 has three bents with three columns per bent, a non-monolithic deck and spread footings resting on concrete piles. In an effort to assess the bridge's seismic vulnerability, the maximum demands obtained during the analysis of Bridge 5/227 under the Olympia 975 earthquake and the Peru 2475 earthquake are presented in tables 6.1-1
and 6.1-3 for soil springs based on a soil modulus of elasticity of 287.3 MPa (6000 ksf), 861.9 MPa (18000 ksf) and fixed-column/roller-abutment boundary condition.

Table 6.1-1 Maximum Earthquake Demands for Bridge 5/227 Subject to the Olympia 975 Loading

Bent	227-O-283.7	227-O-861.9	227-O - fixed
$\operatorname{Max} \Delta(\mathrm{cm})$			
West - South	3.07	6.23	11.01
West - Center	2.70	5.99	10.88
West - North	2.38	5.79	10.80
Center - South	5.37	7.59	7.79
Center - Center	4.24	7.59	5.41
Center - North	3.92	7.59	7.73
East - South	1.72	5.06	3.00
East - Center	2.10	5.06	3.00
East - North	2.10	5.06	3.00
Max V (kN)			
West - South	378	307	652
West - Center	388	251	686
West - North	378	307	669
Center - South	391	321	628
Center - Center	412	274	685
Center - North	391	321	538
East - South	308	280	456
East - Center	334	291	496
East - North	308	280	456

The bridge displacements increased as the soil spring stiffness increased. There was a 144% (approximately $3.41 \mathrm{~cm}, 1.34 \mathrm{in}$) increase in the displacement demands between the two spring models at the west bent. Similarly, a 355% increase in displacement in the east bent occurred between the 287.3 MPa model and the fixed condition model, which corresponds to an increase of approximately 6.5 cm (2.6 in). There was approximately a 20% variation in the shear demands between both spring models and a 60% variation between the 861.9 MPa spring model and the fixed column base model.

The bearing pad displacements can be found in Table 6.1-2 below. Each gap between consecutive deck slabs at the intermediate bents is filled by a rubber bearing pad that was modeled as two springs with identical stiffnesses. Table 6.1-2 summarizes the relative displacements between the deck and the middle of the bearing pad for the intermediate bents and the relative displacement between the deck and the abutment. These results show a significant increase in the bearing pad displacement between the west bent and the west abutment ($+215 \%$) for the fixed model.

Table 6.1-2 Maximum Bearing Pad Displacements for Bridge 5/227 Subject to the Olympia 975 Earthquake

Bearing Pad disp (cm)			
	$\mathbf{2 2 7 - 0} \mathbf{- 2 8 3 . 7}$	$\mathbf{2 2 7} \mathbf{- \mathbf { O } - \mathbf { 8 6 1 . 9 }}$	$\mathbf{2 2 7} \mathbf{- \mathbf { O } - \mathbf { f i x e d }}$
West Abut	2.38	2.91	5.66
West bent west pad	1.28	1.15	1.79
West bent east pad	1.94	1.36	1.17
Center bent west pad	1.21	1.57	1.62
Center bent east pad	1.02	1.11	1.46
East bent west pad	2.16	1.76	1.40
East bent east pad	0.77	1.26	1.71
East Abut	1.93	2.33	5.47

Failure in the bearing pads was defined by a bearing pad displacement greater than 3.66 cm (1.44 in.) (Cox, 2005). Bridge $5 / 227$ bearing pads failed at the abutments under the Olympia 975 earthquake for the fixed column base boundary conditions.

Table 6.1-3 Maximum Earthquake demands for Bridge 5/227 Subject to the Peru 2475 Loading

Bent	227-P-283.7	227-P-861.9	227-P - fixed
Max Δ (cm)			
West - South	9.58	7.53	16.07
West - Center	9.58	7.53	13.95
West - North	9.58	7.53	13.88
Center - South	11.87	13.66	13.57
Center - Center	11.96	13.66	13.61
Center - North	12.06	13.66	14.72
East - South	8.13	4.43	12.85
East - Center	8.13	4.41	12.68
East - North	8.13	4.48	12.50
Max V (kN)			
West - South	364	355	431
West - Center	425	347	452
West - North	364	355	425
Center - South	403	380	436
Center - Center	422	414	476
Center - North	403	380	432
East - South	429	341	425
East - Center	422	481	440
East - North	429	369	431

The Peru 2475 earthquake is a larger magnitude and longer duration earthquake than Olympia 975. The displacements obtained during the analysis, were highest in the center bent. The displacements in the center bent increased by 45% ($+3.5 \mathrm{~cm}, 1.4 \mathrm{in}$) between the two spring models and by $55 \%(+4.4 \mathrm{~cm}, 1.7 \mathrm{in})$ between the lowest spring value and the fixed column base model. The base shear demands varied by approximately 15% between the two spring models, and 8% between the lowest spring model and fixed column base model.

Table 6.1-4 Maximum Bearing Pad Displacements for Bridge 5/227 Subject to the Peru 2475 Earthquake

Bearing Pad disp (cm)			
	227 - P - 287.3	$\mathbf{2 2 7} \mathbf{- \mathbf { P } - \mathbf { 8 6 1 . 9 }}$	$\mathbf{2 2 7} \mathbf{- P} \mathbf{- f i x e d}$
West Abut	3.07	3.81	15.01
West bent west pad	1.67	1.33	2.44
West bent east pad	2.87	2.59	1.76
Center bent west pad	2.07	1.63	2.53
Center bent east pad	2.12	1.86	1.81
East bent west pad	2.66	2.30	2.68
East bent east pad	1.62	1.15	2.45
East Abut	3.01	2.57	15.10

The bearing pad displacements were similar for both spring models and there was a slight increase in the displacements at the abutments versus the displacements at the bents. Failure occurs at the west abutment under Peru loading for the highest soil spring stiffness model. However in the fixed model, the displacements at the abutments increased by $400 \%(+12.5 \mathrm{~cm})$ between the bent bearing pad and the abutment bearing pad. This jump in values at the abutments for the fixed models indicates that there is failure of the bearing pad in the abutment and possibly pounding of the deck into the abutment. Below is the summary of the pounding of the deck for all three models under the Peru 2475 earthquake. The difference in displacement between the west side and the east side of each bearing pad was compared to the width of the bearing to determine if pounding occurred or not. Below is a table summarizing these results:

Table 6.1-5 Pounding in the Deck and Abutments for Bridge 5/227 with the 287.3 MPa Soil Values

Bent	disp end 1 (ft)	disp end 2 (ft)	time	max disp (ft)	max disp (cm)	
West abt	$-2.67 \mathrm{E}-03$	$-8.63 \mathrm{E}-02$	15.2	0.08632	2.6310336	
	$-3.74 \mathrm{E}-03$	$-1.17 \mathrm{E}-01$	17.8	0.1169	3.563112	
West bent	$-4.46 \mathrm{E}-02$	$-1.53 \mathrm{E}-01$	18.4	0.1525	4.6482	
Center bent	no pounding					
East bent	$1.14 \mathrm{E}-01$	$3.25 \mathrm{E}-02$	14.4	0.1135	3.45948	
East abt	$9.68 \mathrm{E}-02$	$2.73 \mathrm{E}-03$	18.6	0.09678	2.9498544	

Table 6.1-6 Pounding in the Deck and Abutments for Bridge 5/227 with the 861.9 MPa Soil Values

Bent	disp end 1 (ft)	disp end 2 (ft)	time	max disp (ft)	max disp (cm)	
West abt	$-3.11 \mathrm{E}-04$	$-8.29 \mathrm{E}-02$	15.2	0.08291	2.5270968	
	$-3.66 \mathrm{E}-04$	$-9.43 \mathrm{E}-02$	17.8	0.09429	2.8739592	
West bent	no pounding					
Center bent	no pounding					
East bent	$1.22 \mathrm{E}-01$	$3.46 \mathrm{E}-02$	14.4	0.1224	3.730752	
East abt	no pounding					

Table 6.1-7 Pounding in the Deck and Abutments for Bridge 5/227 with Fixed Column Base Boundary Conditions

Bent	times	disp end 1 (ft)	disp end 2 (ft)	time	max disp (ft)	max disp (cm)	
West abt	12 times	$0.00 \mathrm{E}+00$	$-4.32 \mathrm{E}-01$	24.6	0.4324	13.179552	
West bent		no pounding					
Center bent		no pounding					
East bent		no pounding					
East abt	43 times	$3.76 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	25	$3.76 \mathrm{E}-01$	11.472672	

For the spring models, pounding occurred only once or twice and at the outer bents and abutments. The maximum displacements reached by those two models were $4.65 \mathrm{~cm}(1.8 \mathrm{in})$ for the lowest spring value at the west bent, and $3.73 \mathrm{~cm}(1.5 \mathrm{in})$ at the east bent for the 861.9 MPa soil elastic modulus value. However, the fixed boundary condition model did result in numerous poundings in both abutments, the maximum displacements being $13.2 \mathrm{~cm}(5.2 \mathrm{in})$ for the west abutment and $11.5 \mathrm{~cm}(4.5 \mathrm{in})$ at the east abutment.

Figures 6.1-1 to 6.1-7 represent the force-displacement hysteresis curves for the column with the largest demands, the center column of the center bent, under different earthquake loadings. The dotted line located in the corners of the graphs represents the column shear capacity envelope. The capacity envelopes were calculated using equations developed by Kowalsky and Priestley (2000).

Chile 975 EQ - Fixed/roller
Center Bent, Center Column

Center Bent, Center Column

Figure 6.1-1 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Chile 975 and Peru 975 EQ; Fixed Column Bases/Roller Abutment Boundary Conditions

Kobe 975 EQ - Fixed/roller
Center Bent, Center Column

Olympia 975 EQ - Fixed/roller
Center Bent, Center Column

Chile 2475 EQ - Fixed/roller
Center Bent, Center Column

Peru 2475 EQ - Fixed/roller
Center Bent, Center Column

Figure 6.1-2 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Kobe 975 EQ, Mexico City 975 EQ; Olympia 975 EQ; Chile 2475 EQ and Peru 2475 EQ; Fixed Column Bases/Roller Abutment Boundary Conditions

Es - 47.9 MPa
Center Bent, Center Column

Figure 6.1-3 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Kobe 975 EQ; Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf)

Es - 47.9 MPa
Center Bent, Center Column

Center Bent, Center Column

Figure 6.1-4 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Mexico City 975 EQ; $\mathrm{Es}=47.9 \mathrm{MPa}(1000 \mathrm{ksf}) ; 861.9 \mathrm{MPa}(18000 \mathrm{ksf})$

Es - 47.9 MPa
Center Bent, Center Column

Es - 861.9 MPa
Center Bent, Center Column

Figure 6.1-5 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Olympia 975 EQ; $\mathrm{Es}=47.9 \mathrm{MPa}(1000 \mathrm{ksf}) ; 861.9 \mathrm{MPa}(18000 \mathrm{ksf})$

Es - 47.9 MPa
Center Bent, Center Column

Center Bent, Center Column

Figure 6.1-6 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Chile 2475 EQ; Es=47.9 МРa (1000ksf); 861.9 MPa (18000 ksf)

Figure 6.1-7 Center Bent, Center Column: Hysteresis Curves for Bridge 5/227; Peru 2475 EQ; Es=47.9 MPa (1000ksf); 861.9 MPa (18000 ksf)

The overall shape of the hysteresis curves did not vary significantly with the foundation spring stiffness values. The transverse direction of the bridge experienced a higher demand than that of the longitudinal, largely due to the non-monolithic deck. Yielding of the columns tended to occur at a smaller displacement for the fixed-column base/roller-abutment models than for the soil spring models for all excitations. This was due to the spring flexibility at the column base absorbing some of the rotational demand of the column for a given relative displacement demand.

Both the Peru 975 and 2475 earthquakes produce high demands in the center column of the center bent with fixed-column base/roller-abutment boundary conditions, coming relatively close to failing the column. The column almost fails under all three
boundary conditions when the bridge is subject to Peru 2475, and comes close to failing for the fixed-base column model, subject to Peru 975.

To estimate the potential damage in the columns, the number of cycles reaching a given ductility was determined and compared to test results obtained by Jaradat (1996). The maximum displacement demands were predicted for the center column of the center bent under the Peru 2475 earthquake. Figures 6.1-8 and 6.1-9 show the displacement time histories for this column with the soil spring boundary conditions.

Figure 6.1-8 Center Bent, Center Column: Displacement Time History for Bridge 5/227; Peru 2475 $\mathrm{EQ} ; \mathrm{Es}=287.3 \mathrm{MPa}$

Figure 6.1-9 Center Bent, Center Column: Displacement Time History for Bridge 5/227; Peru 2475 EQ; Es=861.9 MPa

The following damage was observed for Jaradat's test column. At a ductility level of $3 \Delta_{y}$, six half-cycles occurred. Vertical cracks in the bottom splice region and circumferential cracks in the top hinging region appeared. After six half-cycles at a ductility level of $4 \Delta_{y}$, spalling in both top and bottom hinging regions was observed and after six half-cycles at $5 \Delta_{y}$, longitudinal bar buckling in the top hinging region occurred.

Figure 6.1-10 Specimen T2 Lateral Load-Displacement Hysteresis Curve

Figure 6.1-11 Spalling of the Concrete (Stapelton, 2004)

Figure 6.1-12 Vertical Cracks at Tension Face (Stapelton, 2004)

For the center column of Bridge 5/227, approximately 20 half-cycles occurred at a ductility level of $3 \Delta_{\mathrm{y}}$, therefore damage in this column can be expected to include large vertical cracks in the bottom splice region and circumferential cracks in the top hinging region. 5 half-cycles at a ductility level of $4 \Delta_{y}$ would produce moderate spalling in both top and bottom hinging regions. Due to the numerous cycles at $3 \Delta_{y}$ coupled with the cycles at $4 \Delta_{y}$, failure of Bridge $5 / 227$ columns is likely under the Peru 2475 earthquake. Similar damage was predicted for the 861.9 MPa soil elastic modulus model.

The shear force demand in the girders at the abutments was also investigated. Bridge 5/227 has two girder stops at each bent and abutment, resisting displacements in the transverse direction. Due to previous problems with bridge girders, a check was made to determine if the shear forces coming into the girder stops would cause a shear failure
in the web of the prestressed I-girders supporting the deck. The results indicated that the shear capacity of the girder webs is approximately 1312 kN (295 kips) and the maximum shear force under Chile 2475 loading was approximately 338 kN (91 kips) in the west abutment for the lowest spring stiffness $(\mathrm{Es}=47.9 \mathrm{MPa})$. The shear force calculations can be found in Appendix 4.

The shear force demand/capacity ratio in the column footings was also investigated. The shear forces in the footing act as a combination of longitudinal and transverse forces, creating a resultant force acting at a given angle depending on the magnitudes of the forces. The shear force demand was studied independently for both directions in this research. The maximum shear demands in the footings for both the longitudinal and transverse directions were extracted from the analyses and can be found in Appendix 4. Longitudinal shear force demands for Bridge $5 / 227$ in the column footings were of 476 kN (107 kips). The footing capacity is 2185 kN (492 kips) or four times higher than the demands. Transverse shear force demands were maximum for a value 417 kN (94 kips) and the capacity in the transverse direction for the footing was 1641 kN (369 kips), sufficient to support the shear forces. However, studies have shown that the joint shear strength was often a cause of brittle failure in the column/footing connection (McLean, 1999). Due to the significantly low shear forces in the column footings, this failure mode was not investigated in this research but should however be taken into consideration as a potential governing failure mode for future studies.

6.2 BRIDGE 512/19

Bridge $512 / 19$ is the largest of all three bridges. It is made of three bents of four columns each, a 77 ft long monolithic deck, and it rests on spread footings without piles. The analysis showed that the two center columns were subjected to the most demands, the results will therefore concentrate on those two columns. Table $6.2-1$ presents the maximum values obtained in the analysis:

Table 6.2-1 Maximum Earthquake demands for Bridge 512/19 Subject to the Olympia 975 Loading

Bent	$\mathbf{5 1 2 - O} \mathbf{- 2 8 3 . 7}$	$\mathbf{5 1 2 - 0} \mathbf{- 8 6 1 . 9}$	$\mathbf{5 1 2} \mathbf{- 0}$ - fixed
Max $\Delta \mathbf{(c m)}$			
North - East	8.06	8.01	9.60
North - Middle East	6.61	6.53	7.91
North - Middle West	6.09	6.14	8.14
North - West	7.26	7.09	9.65
Center - East	9.10	9.43	9.87
Center - Middle East	9.13	9.42	9.84
Center - Middle West	9.16	9.41	9.81
Center - West	9.20	9.40	9.78
South - East	7.26	7.13	9.57
South - Middle East	6.08	6.16	8.07
South - Middle West	6.22	6.49	7.92
South - West	7.74	8.05	9.70
	Max V (kN)		
North - East	219	230	253
North - Middle East	198	230	305
North - Middle West	219	215	397
North - West	222	372	257
Center - East	241	239	227
Center - Middle East	238	244	229
Center - Middle West	250	243	227
Center - West	239	235	228
South - East	234	331	268
South - Middle East	211	215	253
South - Middle West	205	211	352
South - West	212	265	253

The maximum displacements were found at the center bent, center columns. The displacements were similar for the two spring models and increased for the fixed column base model (maximum increase of 30%). There was a slight increase in shear force demands between the 287.3 MPa soil modulus model and the fixed column base/roller abutment model, for the south bent, middle-east column.

Table 6.2-2 Maximum Earthquake Demands for Bridge 512/19 Subject to the Peru 2475 Loading

Bent	512 - P - 283.7	512 - P - 861.9	512 - P - fixed
Max $\boldsymbol{\Delta} \mathbf{(c m)}$			
North - East	15.07	14.24	22.19
North - Middle East	14.04	12.51	19.73
North - Middle West	13.02	12.04	17.30
North - West	15.60	14.88	16.88
Center - East	19.19	18.59	20.50
Center - Middle East	19.17	18.58	20.53
Center - Middle West	19.15	18.58	20.56
Center - West	19.12	18.57	20.58
South - East	15.35	14.63	16.83
South - Middle East	12.95	11.70	17.23
South - Middle West	14.06	12.47	19.72
South - West	15.18	13.93	22.24
	Max V (kN)		
North - East	359	334	450
North - Middle East	338	304	423
North - Middle West	352	334	370
North - West	409	375	350
Center - East	366	393	420
Center - Middle East	395	360	423
Center - Middle West	428	398	419
Center - West	418	372	421
South - East	416	305	352
South - Middle East	509	263	389
South - Middle West	400	306	419
South - West	380	322	434

Bridge 512/19 behaved similarly under Peru 2475 but with larger demands. Displacements were maximum in the center bent for all three models. The largest increase (approximately 45\%) in displacement occurred at the north and south bents, between the 287.3 MPa model and the fixed columns base/roller abutment model. There was a moderate increase in the shear force demands (25%) between the lowest spring model and fixed column base model. Pounding of the deck at the abutments was not an issue for this bridge. The hysteresis curves for Bridge 512/19 spring and fixed column base models under Chile 975, Peru 975, Kobe 975, Mexico City 975, Olympia 975, Chile 2475 and Peru 2475 can be found in figures 6.2-2 through 6.2-10 .

Figure 6.2-1 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Chile 975 EQ and Peru 975 EQ; Fixed Column Base/Roller Abutment Boundary Conditions

Es - 287.3 MPa
Center Bent, Middle East Column

Es - 861.9 MPa
Center Bent, Middle East Column

Figure 6.2-2 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Chile 975 EQ; Es=47.9 MN/m ${ }^{2}$ ($\mathbf{1 0 0 0 k s f}$); $861.9 \mathrm{MN} / \mathrm{m}^{2}$ ($\mathbf{1 8 0 0 0} \mathbf{k s f}$)

Es - 287.3 MPa
Center Bent, Middle East Column

Es - 861.9 MPa
Center Bent, Middle East Column

Figure 6.2-3 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Peru 975 EQ; Es=47.9 MN/m² (1000ksf); 861.9 MN/m ${ }^{2}(18000 ~ k s f)$

Kobe 975 EQ - Fixed/roller
Center Bent, Middle East Column

Peru 2475 EQ - Fixed/roller
Center Bent, Middle East Column

Figure 6.2-4 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Kobe 975 EQ, Mexico City 975 EQ, Olympia 975 EQ, Chile 2475 EQ and Peru 2475 EQ; Fixed Column Base/Roller Abutment Boundary Conditions

Es - 287.3 MPa
Center Bent, Middle East Column

Es - 861.9 MPa
Center Bent, Middle East Column

Figure 6.2-5 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Kobe 975 EQ; $\mathrm{Es}=287.3 \mathrm{MN} / \mathrm{m}^{2}(6000 \mathrm{ksf}) ; 861.9 \mathrm{MN} / \mathrm{m}^{2}(18000 \mathrm{ksf})$

Es - 287.3 MPa
Center Bent, Middle East Column

Es - 861.9 MPa
Center Bent, Middle East Column

Figure 6.2-6 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Mexico City 975 EQ; Es=287.3 MPa ($\mathbf{6 0 0 0} \mathbf{~ k s f) ; ~ 8 6 1 . 9 ~ M P a ~ (1 8 0 0 0 ~ k s f) ~}$

Es - 287.3 MPa
Center Bent, Middle East Column

Es - 861.9 MPa
Center Bent, Middle East Column

Figure 6.2-7 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Olympia 975 EQ; Es=287.3 MN/m² ($\mathbf{6 0 0 0 ~ k s f) ; ~} 861.89 \mathrm{MN} / \mathrm{m}^{2}(18000 \mathrm{ksf})$

Es - 287.3 MPa
Center Bent, Middle East Column

Es - 861.9 MPa
Center Bent, Middle East Column

Figure 6.2-8 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Chile 2475 EQ; Es=287.3 MN/m ${ }^{2}(6000 \mathrm{ksf}) ; \mathbf{8 6 1 . 9 ~ M N / m}{ }^{2}$ ($\mathbf{1 8 0 0 0} \mathbf{k s f}$)

Figure 6.2-9 Center Bent, Middle East Column: Hysteresis Curves for Bridge 512/19; Peru 2475 EQ; Es=287.3 MN/m ${ }^{2}$ (6000 ksf); 861.9 Pa (18000 ksf)

The column shear in the transverse direction comes very close to failure under Peru 2475 and Chile 2475 for all three stiffness values. The general shape of the hysteresis curves was not affected by the variation in spring values. Bridge 512/19's middle-east column of the center bent fails in shear under Peru 2475 and comes close to failing under Chile 2475 and Peru 975 for all boundary conditions.

As for Bridge 227, the damage in the columns was estimated based on Jaradat's (1996) test results. The maximum demands were predicted for the center bent, middleeast column under the Peru 2475 for all spring models. Below are presented the displacement time-histories for both soil spring boundary conditions under the Peru 2475 earthquake.

Figure 6.2-10 Center Bent, Middle East Column: Displacement Time History for Bridge 512/19; Peru $2475 \mathrm{EQ} ; \mathrm{Es}=287.3 \mathrm{MPa}$

Figure 6.2-11 Center Bent, Middle East Column: Displacement Time History for Bridge 512/19; Peru $2475 \mathrm{EQ} ; \mathrm{Es}=861.9 \mathrm{MPa}$

The soft soil spring model time history shows that one half-cycle nearly reaches a ductility level of $4 \Delta_{y}$, while a few half cycles nearly reach $3 \Delta_{y}$. Damage in the columns can be expected to include vertical cracks and spalling in the hinging regions. Due to the
small number of high ductility demand cycles, damage can be expected to be lighter than for Bridge 227. However, the proximity of the force/displacement hysteresis curves to the column shear capacity envelope highlights the probability of column failure.

Shear in the prestressed I-girders was investigated for Bridge 512/19. Four girder stops were constructed on each abutment, two in each direction. The shear capacity of the girder webs was 2096 kN (451 kips). The maximum shear force was at the north abutment under the Peru 2475 earthquake loading and was 1372 kN (308 kips) per girder stop. The shear in the footings was the highest in the fixed condition model under the Peru 2475 earthquake loading. The maximum value was approximately 404 kN (91 kips) in the transverse direction and 365 kN (82 kips) in the longitudinal direction. The shear capacity of the footing was calculated at 972 kN (219 kips), more than twice the highest shear demand. Shear failure in the girder webs and at the column footings is not an issue for Bridge 512/19. The shear demand calculations are detailed in Appendix 4. As for Bridge 227, the shear force demands in the column footings were low enough that column/footing joint failure was not studied.

The previous analyses show that spring values have a significant effect on the displacements in the bridge. The fixed column base model creates the highest shear and displacements demands for all earthquake loadings. Under the Peru 2475 and Chile 2475 earthquakes, Bridge 512/19 column hysteresis demands come to close to or exceed the shear failure envelope for all three spring models. The three 975-year return earthquakes, Olympia, Kobe and Mexico City, produced similar hysteresis responses, with Mexico City having slightly lower displacement demands than the other two.

6.3 BRIDGE 5/649

Bridge $5 / 649$ has a $74.7 \mathrm{~m}(245 \mathrm{ft})$ long non-monolithic deck, two bents with three columns per bent, resting on spread footings supported by timber piles. It was determined in chapter four that the skew had a significant effect on the behavior of the bridge and could not be neglected in the modeling process. The following maximum demands were obtained during the analysis of Bridge 5/649.

Table 6.3-1 Maximum Earthquake demands for Bridge 5/649 Subject to the Olympia 975 Loading

Bent	649-O-283.7	649-0-861.9	649-0-fixed
$\operatorname{Max} \Delta(\mathrm{cm})$			
North - East	8.24	8.92	8.02
North - Center	7.38	7.49	8.02
North - West	7.33	7.35	8.02
South - East	8.28	8.55	10.05
South - Center	8.27	8.27	10.05
South - West	8.26	8.17	10.06
Max V (kN)			
North - East	271	272	331
North - Center	200	205	245
North - West	323	455	404
South - East	282	298	333
South - Center	170	225	263
South - West	315	316	402

The displacement demands slightly varied with the increase of stiffness, the highest variation occurring between the 287.3 MPa elastic modulus value model and the fixed model for the east column of the south bent $(+22 \%$ or $+1.8 \mathrm{~cm}, 0.71 \mathrm{in})$. The shear demands followed the same trend as the displacements. A significant 82% increase was found in the longitudinal shear demands between the spring values for the east column of the south bent. However, in all other columns for all three models, the variation was not significant under the Olympia 975 earthquake.

Table 6.3-2 Maximum Earthquake demands for Bridge 5/649 Subject to the Peru 2475 Loading

Bent	$\mathbf{6 4 9}-\mathbf{P}-\mathbf{2 8 3 . 7}$	$\mathbf{6 4 9}-\mathbf{P}-\mathbf{8 6 1 . 9}$	$\mathbf{6 4 9}$ - P - fixed
Max $\Delta \mathbf{(c m)}$			
North - East	17.70	18.48	20.17
North - Center	17.54	17.37	20.08
North - West	17.41	16.61	19.99
South - East	16.46	17.14	22.32
South - Center	17.32	16.58	22.25
South - West	18.22	17.11	22.20
Max V (kN)			
North - East	522	537	715
North - Center	455	552	755
North - West	584	634	836
South - East	389	421	584
South - Center	377	420	613
South - West	509	487	759

The displacement demands under the Peru 2475 loading follows the same trends as for the Olympia 975 loading. There were small variations between the two spring models. The displacements increased by a maximum of 35% between the lowest spring model and the fixed column base model at the south bent, east column. Shear forces were highest for the columns that were fixed at the base, with an average increase of 60% between the spring soil conditions and the fixed column base/roller abutment boundary condition models.

Chile 975 EQ - Fixed/roller
South Bent, Middle Column

Peru 975 EQ - Fixed/roller
South Bent, Middle Column

Figure 6.3-1 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 E; Chile 975 EQ, Peru 975 EQ; Fixed Column Bases/Roller Abutment Boundary Conditions

Es - 287.3 MPa
South Bent, Middle Column

South Bent, Middle Column

Figure 6.3-2 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Chile 975 EQ; Es=287.3 МРа (6000 ksf); 861.9 МРа (18000 ksf)

Es - 287.3 MPa
South Bent, Middle Column

Es - 861.9 MPa
South Bent, Middle Column

Figure 6.3-3 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Peru 975 EQ; Es=287.3 МРa (6000 ksf); 861.9 МРа (18000 ksf)

Figure 6.3-4 South Bent, Center Column: Hysteresis Curves for Bridge 5/649 E; Kobe 975 EQ, Mexico City 975 EQ, Olympia 975 EQ, Chile 2475 EQ and Peru 2475 EQ; Fixed Column Base/Roller Abutment Boundary Conditions

Es - 287.3 MPa
South Bent, Middle Column

Figure 6.3-5 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Kobe 975 EQ; Es=287.3 МРa (6000 ksf); 861.9 МPa (18000 ksf)

Es - 287.3 MPa
South Bent, Middle Column

Es - 861.9 MPa
South Bent, Middle Column

Figure 6.3-6 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Mexico City 975 EQ; Es=287.3 МРа (6000 ksf); 861.9 MPa (18000 ksf)

Es - 287.3 MPa
South Bent, Middle Column

Es - 861.9 MPa
South Bent, Middle Column

Figure 6.3-7 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Olympia 975 EQ; Es=287.3 МРa (6000 ksf); 861.9 МРa (18000 ksf)

Es - 287.3 MPa
South Bent, Middle Column

South Bent, Middle Column

Figure 6.3-8 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Chile 2475 EQ; Es=287.3 MPa ($\mathbf{6 0 0 0} \mathbf{~ k s f) ; ~ 8 6 1 . 9 ~ M P a ~ (~} \mathbf{1 8 0 0 0} \mathbf{~ k s f) ~}$

Es - 287.3 MPa
South Bent, Middle Column

Es - 861.9 MPa
South Bent, Middle Column

Figure 6.3-9 South Bent, Center Column: Hysteresis Curves for Bridge 5/649E; Peru 2475 EQ; Es=287.3 MPa (6000 ksf); 861.9 MPa (18000 ksf)

The hysteresis curves show that column shear failure is likely to occur under the Chile 2475 earthquake for the 861.9 MPa elastic modulus value model, and comes close to failure for the other boundary conditions under the Chile 2475 earthquake as well as all models under the Peru 2475 earthquake. The hysteresis curves all have similar shapes with larger demands in the transverse direction than in the longitudinal direction.

Displacement time-histories for the Peru 2475 earthquake are shown in figures 6.3-10 and 6.3-11 below. A half cycle occurred at a ductility value almost reaching $4 \Delta_{y}$ indicating that moderate spalling in the hinging region is expected. In addition, the proximity of the force/displacement hysteresis curves to the column shear capacity envelope highlights the probability of column failure.

Figure 6.3-10 South Bent, Center Column: Displacement Time History for Bridge 5/649E; Peru 2475 $\mathrm{EQ} ; \mathrm{Es}=287.3 \mathrm{MPa}$

Figure 6.3-11 South Bent, Center Column: Displacement Time History Bridge 5/649E; Peru 2475 $\mathrm{EQ} ; \mathrm{Es}=861.9 \mathrm{MPa}$

The shear force demands in the girder webs at the abutments and in the column footings were investigated for this bridge. The abutments and intermediate bents were
built with girder stops on both sides of the I-girders; reducing the transverse force significantly in each girder stop compared to the other two bridges. Therefore, the shear accumulated in each girder web was low and shear failure of the I-girders was not predicted.

The maximum shear force in the column footings was reached for the Chile 2475 earthquake. The shear force demand value was 632 kN (142 kips) in the longitudinal direction and 452 kN (102 kips) in the transverse direction. The shear capacity of the footing is 1876 kN (422 kips) in both directions. Shear failure was not predicted in the column footings or at the abutments. In addition, column/footing joint failure was not investigated here due to the significantly low shear force demands in the footings.

CHAPTER SEVEN

CONCLUSIONS

Recent geological evidence indicates that the potential exists for large earthquakes in the Pacific Northwest as a result of rupturing of the locked interface between the Juan de Fuca and the North American Plate, resulting in long-duration ground motions. To investigate bridge response to long-duration motions, three multi-column bent prestressed concrete bridges, with columns expected to behave primarily in shear, were selected in consultation with the Washington State Department of Transportation (WSDOT). Each bridge is characteristic of pre-1975 WSDOT design specifications and is located in close proximity to Olympia or Seattle. Nonlinear time history analyses were performed using the finite element analysis program, RUAUMOKO 3D, to assess the seismic vulnerability of the bridges. Ten earthquake excitations, six long-duration (Mexico City, Mexico (1985), Lloledo, Chile (1985) and Moquegua, Peru (2001)) and four short duration (Olympia, Washington (1949) and Kobe, Japan (1995)) were modified to fit a target acceleration spectrum for the Seattle area. As a point of reference, the 2001 Nisqually ($M=6.8$) earthquake was estimated to have a return period between 475 and 2475 years depending on the location in the Puget Sound region and the structure period of interest.

In general, the three bridges experienced light cracking in the column plastic hinge regions under the 475-year return period earthquakes. The 975-year return period earthquakes increased the column damage. In addition, pounding of the expansion joints
led to bearing pad failures. Failure of the columns in the center bents of all bridges was predicted by the hysteretic analyses under the 2475 -year return period earthquakes, however, displacement time-histories showed that only a small number of cycles reached a ductility level that could lead to failure. For Bridge 5/227, damage was expected to be more significant than for the other two bridges due to a larger number of high-ductilitydemand cycles. The damage estimations were based on damage recorded in experimental column testing (Jaradat, 1996).

The column aspect ratios ranged from 2.7-3.2 for Bridge 5/649 to 3.4 for Bridge 512/19 to 3-3.2 for Bridge 5/227. The largest displacement demands occurred in Bridges 512/19 and 5/649; the lowest displacement demands occurred in Bridge 5/227. The shear demands in the columns were highest for Bridge $5 / 649$ and lowest for Bridge 5/227. Since the column aspect ratios were similar for the three bridges, other bridge characteristics were more influential on the variation of the bridge responses. The bridge deck design, monolithic or non-monolithic, and the bridge geometry greatly influenced the bridge responses. Despite the monolithic deck in Bridge 512/19, the transverse displacement demands were high, especially in the center bent, due to the large longitudinal stiffness of the bridge. Each bridge was unique enough in geometry and design that in order to accurately assess the bridge seismic vulnerability, nonlinear time history analyses were needed rather than basing predictions merely on bridge member detailing, as is often the case due to limited resources.

Shear force demands in the column footings was investigated in this research for all three bridges. It was predicted by the analyses that the footings would not fail in shear. However, studies have shown that the joint shear strength was often a cause of brittle
failure in the column/footing connection (McLean, 1999). Due to the significantly low shear forces in the column footings, this failure mode was not investigated in this research but should however be taken into consideration as a potential governing failure mode for future studies.

Modeling the soil-structure interaction was necessary to obtain realistic results and to accurately predict the behavior of the bridges. The trends in the displacement and shear force demands varied with each bridge as the soil-structure-interaction parameters varied. However, the global seismic assessment of the bridges was not altered due to variation in the soil-structure-interaction. Conversely, a significant difference in behavior occurred when the footing and abutment soil-structure-interaction conditions were changed from spring boundary conditions to fixed column base and roller abutment boundary conditions. Displacement and force demands changed for all three bridges, leading to inaccurate results that were either overly conservative or unconservative.

The effect of a 45 degree skew on the overall behavior of bridge $5 / 649$ was also investigated. There was a change of approximately 20% in the displacement and 40% in the shear force demands between the skew and non-skew models. The rest of the bridge response variables did not vary as significantly. Overall, the skew had a large enough effect on the bridge response that it needed to be considered in the modeling process. This particular study was based on the behavior of one bridge. Expanding the study to several bridges with different skew angles is needed to generalize the results and conclusions.

Overall, long-duration earthquakes created more damage in the three bridges than short-duration earthquakes. For the smaller earthquakes, the duration had little effect on
the bridge response since multiple cycles at low ductility demands did not lead to damage of the columns. Without significant ductility demands, the duration of the earthquake was of little significance. As the intensity of the earthquake increases, the duration tends to increase as well. Therefore, both earthquake intensity and ground motion duration affect the bridge response; however, large intensity alone can lead to significant demand on the bridges, while duration is not influential on the bridge demand unless the intensity is high as well.

REFERENCES

Abrahamson, N. and Silva, W.J, (1996) "Empirical Ground Motion Models". Draft Report Prepared for Brookhaven National Laboratory.

Bozorgnia, Y., Bertero, V. (2003). "Damage Spectra: Characteristics and Applications to Seismic Risk Reduction". Journal of Structural Engineering, ASCE, Vol. 129, No. 10, 1330-1340.

Cox, C.J. (2005). "Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges". Masters Thesis, Washington State University.

Dobry, R., Idriss, I. M., and NG, E. (1978). "Duration Characteristics of Horizontal Components of Strong-Motion Earthquake Records." Bulletin of the Seismology Society of America, Vol. 68, No. 5, 1487-1520.

Housner, G. W. (1975). "Measures of severity of earthquake ground shaking", Proc. Natl. Conf. Earthquake Engineering, Ann Harbor, Michigan.

Jeong, G.D., and Iwan, W.D. (1988) "Effect of Earthquake Duration on the Damage of Structures." Earthquake Engineering and Structural Dynamics, Vol. 16, No. 8, 1201-1211.

Jaradat, O.A. (1996). "Seismic Evaluation of Existing Bridge Columns". PhD Dissertation, Washington State University.

Kowalsky, M.J., Priestley, M.J.N. (2000). "Improved Analytical Model for Shear Strength of Circular Reinforced Concrete Columns in Seismic Regions." ACI Structural Journal, 97 (3), 388-397.

Lindt, J.W., Goh, G. (2004). "Earthquake Duration Effect on Structural Reliability." Journal of Structural Engineering, ASCE, Vol. 129, No.5, 821-826.

McLean, D.I., Marsh, M.L. (1999) "Seismic Retrofitting of Bridge Foundations." ACI Structural Journal, 96 (2), 174-182.

PanGEO Incorporated, geotechnical and earthquake engineering consultant firm in Seattle, WA. Information online at: http://pangeoinc.com/

PNSN (2005). "Deep Quakes in Washington and Oregon". Pacific Northwest Seismograph Network, University of Washington. Accessed online at: http://www.pnsn.org//INFO_GENERAL/platecontours.html

Priestley, M.J.N, Seible, F., Calvi, G.M (1996). Seismic Design and Retrofit of Bridges. New York. John Wiley \& Sons.

Priestley, M.J.N (2003). "Myths and Fallacies in Earthquake Engineering, Revisited." The Mallet Milne Lecture. Rose School, Pavia, Italy.

Stapleton, S.E. (2004) "Performance of Poorly Confined Reinforced Concrete Columns in Long-Duration Earthquakes." Masters Thesis, Washington State University.

Williamson, E. B. (2003). "Evaluation of Damages and P-Delta Effects for Systems under Earthquake Excitation." Journal of Structural Engineering, ASCE, Vol. 129, No. 8, 1036-1046.

Youngs, R.R., Chiou, S.J., Silva, W.J. and Humphrey, J.R. (1997). "Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes". Seismological Research Letter, 68 (1), 58-73.

APPENDICES

APPENDIX A-1

Bridge 5/227 - inner column, center bent:

Scaling from Experimental Data to Model:

aspect ratio of exp: $\quad \frac{\mathrm{L}_{\mathrm{ex}}}{\mathrm{D}_{\mathrm{ex}}}=\mathrm{a}_{\mathrm{ex}} \quad \mathrm{L}_{\mathrm{ex}}:=\frac{70}{24} \quad \mathrm{D}_{\mathrm{ex}}:=\frac{10}{12}$
aspect ratio of model: $\frac{\mathrm{L}_{\text {mod }}}{\mathrm{D}_{\text {mod }}}=\mathrm{a}_{\text {mod }} \quad \mathrm{L}_{\text {mod }}:=\frac{18.62}{2} \quad \mathrm{D}_{\text {mod }}:=3$

Forces and moments:

$F_{e x}=\frac{M_{e x}}{L_{e x}} \quad$ with $\quad M_{e x}=A_{\text {s.ex }} \cdot f_{y} \cdot\left(D_{e x}-\frac{a}{2}\right)$
$F_{\text {mod }}=\frac{M_{\text {mod }}}{L_{\text {mod }}} \quad$ with $\quad M_{\text {mod }}=A_{s . \bmod } \cdot f_{y} \cdot\left(D_{\bmod }-\frac{a}{2}\right)$
$A_{\text {s.mod }}=\left(\frac{D_{\text {mod }}}{D_{\text {ex }}}\right)^{2} \cdot A_{\text {s.ex }}$
$D_{\text {mod }}-\frac{\mathrm{a}}{2}=\frac{\mathrm{D}_{\text {mod }}}{\mathrm{D}_{\mathrm{ex}}}\left(\mathrm{D}_{\mathrm{ex}}-\frac{\mathrm{a}}{2}\right)$
$M_{\text {mod }}=\left(\frac{D_{\text {mod }}}{D_{\text {ex }}}\right)^{2} \cdot A_{\text {s.ex }} \cdot f_{y} \cdot\left[\frac{D_{\text {mod }}}{D_{\text {ex }}}\left(D_{\text {ex }}-\frac{a}{2}\right)\right]$
$M_{\text {mod }}=\left(\frac{D_{\text {mod }}}{D_{\text {ex }}}\right)^{3} \cdot A_{\text {s.ex }} \cdot \mathrm{f}_{\mathrm{y}} \cdot\left(\mathrm{D}_{\mathrm{ex}}-\frac{a}{2}\right)$
$M_{\text {mod }}=\left(\frac{D_{\text {mod }}}{D_{\text {ex }}}\right)^{3} \cdot M_{e x}$
Therefore

$$
\begin{aligned}
& F_{\text {mod }}=\frac{M_{\text {mod }}}{L_{\text {mod }}}=\left(\frac{D_{\text {mod }}}{D_{\text {ex }}}\right)^{3} \cdot \frac{M_{e x}}{L_{\text {mod }}} \\
& F_{\text {mod }}=\left(\frac{D_{\text {mod }}}{D_{e x}}\right)^{3} \cdot \frac{L_{e x}}{L_{\text {mod }}} \cdot F_{e x} \quad\left(\frac{D_{\text {mod }}}{D_{\text {ex }}}\right)^{3} \cdot \frac{L_{e x}}{L_{\text {mod }}}=14.617
\end{aligned}
$$

Displacements:

Use the actual clear height of the column for the scaling of the displacements. $\quad \mathrm{L}_{\text {mod }}:=\frac{18.62}{2}$
$\Delta_{\mathrm{y} . \mathrm{ex}}=\frac{\phi_{\mathrm{y} . \mathrm{ex}} \cdot \mathrm{L}_{\mathrm{ex}}{ }^{2}}{3} \quad \Delta_{\mathrm{y} . \bmod }=\frac{\phi_{\mathrm{y} . \bmod \cdot \mathrm{L}_{\bmod }{ }^{2}}^{3}}{3}$

$$
\phi_{y . \bmod }=\phi_{y . e x} \cdot \frac{D_{\text {ex }}}{D_{\text {mod }}}
$$

and $\quad \phi_{\mathrm{y} . \mathrm{ex}}=2.25 \cdot \frac{\varepsilon_{\mathrm{y}}}{\mathrm{D}_{\mathrm{ex}}} \quad \phi_{\mathrm{y} . \bmod }=2.25 \cdot \frac{\varepsilon_{\mathrm{y}}}{\mathrm{D}_{\text {mod }}}$

$$
\Delta_{\mathrm{y} \cdot \bmod }=\frac{\mathrm{D}_{\mathrm{ex}}}{\mathrm{D}_{\bmod }} \cdot\left(\frac{\mathrm{L}_{\mathrm{mod}}^{2}}{\mathrm{~L}_{\mathrm{ex}}{ }^{2}} \cdot \Delta_{\mathrm{y} \cdot \mathrm{ex}} \quad \frac{\mathrm{D}_{\mathrm{ex}}}{\mathrm{D}_{\bmod }} \cdot\left(\frac{\mathrm{L}_{\bmod }^{2}}{\mathrm{~L}_{\mathrm{ex}}^{2}}\right)=2.83\right.
$$

$$
\begin{aligned}
& \Delta_{\mathrm{p}}=\left(\frac{\mathrm{M}_{\mathrm{u}}}{\mathrm{M}_{\mathrm{n}}}-1\right) \cdot \Delta_{\mathrm{y}}+\mathrm{L}_{\mathrm{p}} \cdot\left(\phi_{\mathrm{u}}-\phi_{\mathrm{y}}\right) \cdot\left(\mathrm{L}-\frac{\mathrm{L}_{\mathrm{p}}}{2}\right) \\
& \mathrm{L}_{\mathrm{p}}=0.08 \cdot \frac{\mathrm{~L}}{2}+0.15 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{b}} \quad \mathrm{~L}_{\mathrm{p}}=0.08 \cdot \frac{\mathrm{~L}}{2}+0.022 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~d}_{\mathrm{b}}
\end{aligned}
$$

Test: $\quad \mathrm{L}_{\text {pex }}:=0.08 \cdot \mathrm{~L}_{\mathrm{ex}} \mathrm{ft}+0.15 \cdot 53.8 \cdot \frac{3}{8} \cdot \mathrm{in} \quad \mathrm{L}_{\mathrm{pex}}=5.826 \mathrm{in}$

$$
\left(\mathrm{L}_{\mathrm{ex}} \cdot \mathrm{ft}-\frac{\mathrm{L}_{\mathrm{pex}}}{2}\right)=32.087 \mathrm{in}
$$

Model : $\mathrm{L}_{\mathrm{pmod}}:=0.08 \cdot \mathrm{~L}_{\text {mod }} \cdot \mathrm{ft}+0.15 \cdot 53 \cdot 8 \cdot \frac{9}{8} \cdot \mathrm{in} \quad \mathrm{L}_{\mathrm{pmod}}=18.016 \mathrm{in}$

$$
\begin{aligned}
& \left(\mathrm{L}_{\mathrm{mod}} \cdot \mathrm{ft}-\frac{\mathrm{L}_{\mathrm{pmod}}}{2}\right) \\
\text { ratio : } & =102.712 \text { in } \\
& \frac{\left(\mathrm{L}_{\mathrm{mod}} \cdot \mathrm{ft}-\frac{\mathrm{L}_{\mathrm{pex}}}{2}\right)}{\left(\mathrm{L}_{\mathrm{ex}} \cdot \mathrm{ft}-\frac{\mathrm{L}_{\mathrm{pmod}}}{2}\right)}=4.186 \\
\quad \text { ratios for } \Delta \mathrm{p}: & \frac{\mathrm{L}_{\mathrm{pmod}} \cdot D_{\mathrm{ex}} \cdot\left(\mathrm{~L}_{\bmod } \cdot \mathrm{ft}-\frac{\mathrm{L}_{\mathrm{pex}}}{2}\right)}{\mathrm{L}_{\mathrm{pex}} \cdot \mathrm{D}_{\bmod } \cdot\left(\mathrm{L}_{\mathrm{ex}} \cdot \mathrm{ft}-\frac{\mathrm{L}_{\mathrm{pmod}}}{2}\right)}=3.596
\end{aligned}
$$

Finally, to scale displacements, use :

$$
\begin{array}{ll}
\Delta \leq \Delta_{\mathrm{y}} & \Delta_{\mathrm{mod}}=2.83 \cdot \Delta_{\mathrm{ex}} \\
\Delta \geq \Delta_{\mathrm{y}} & \Delta_{\mathrm{mod}}=2.83 \cdot \Delta_{\mathrm{yex}}+3.596\left(\Delta_{\mathrm{ex}}-\Delta_{\mathrm{yex}}\right)
\end{array}
$$

Axial load:

$$
P_{\mathrm{mod}}=\left(\frac{\mathrm{D}_{\mathrm{mod}}}{\mathrm{D}_{\mathrm{ex}}}\right)^{2} \cdot \mathrm{P}_{\mathrm{ex}} \quad\left(\frac{\mathrm{D}_{\mathrm{mod}}}{\mathrm{D}_{\mathrm{ex}}}\right)^{2}=12.96
$$

Appendix A-1 Scaling calculations for the center column, center bent of Bridge 5/227.

APPENDIX A-2

Appendix A-2 Model of the center column, center bent of Bridge $\mathbf{5 / 2 2 7}$ fitted to Jaradat $\mathbf{T} \mathbf{2}$ specimen scaled up and blind model without adjustments to fit T2.

A-2-1 Ruaumoko 3D Input File Calculations

Ruaumoko 3D is an "Inelastic Dynamic Analysis" software developed by Carr at the University of Canterbury, New Zealand in October 2004. The input file can be divided into six parts.

- Input parameters: These define the analysis options (Pushover, time-history), the control parameters (number of nodes, elements...), the iteration parameters (duration of analysis, time-step).
- The nodes: This is where the geometry of the structure is defined: the lengths of each element through nodal coordinates and boundary conditions.
- The elements: This is where the elements are defined by using the nodes determined in the previous section, the member property each element refers to and their orientation in space.
- Member properties: Ruaumoko 3D can model several different types of elements (frame, spring, tendon, masonry...). In this section, each specific property of the member is defined: inertia, cross-sectional area, weight. Also, for a frame member for example, the P-M interaction values must be defined, the plastic hinge lengths and a loss model can be input to account for a particular strength degradation behavior.
- The weights and loads on the structure for each node.
- The excitation: Ruaumoko 3D can run earthquakes as a separate text files with accelerations and time or a standard pushover loading can also be input.

Below are examples of input files for all three bridges.

A-2-1 Bridge 5/227 Ruaumoko Input File

```
227 BRIDGE MODEL; k-ft; Es=6000 ksf=287.3 MPa; Peru
2 0 1 3 2 0 0 ! Analysis Options
1 0 0 0 1 0 0 0 1 ! EQ Trans. (Mode Shapes
for 95% Mass Part.)
77 81 29 30 1 30 32.2 5 5 0.01 92 1.0 ! Frame Control Par
0 10 10 10 1 1 1 1 ! Output Control
-.866 . 866 0 . 5 . 5 1 ! Plot Axes Tran
100.001 ! Iteration Control
```

NODES 1

ELEMENTS 1

1	2	1	2	0	0	X
2	1	2	3	0	0	X
3	1	3	4	0	0	X
4	1	4	5	0	0	X
5	1	5	6	0	0	X
6	3	6	7	0	0	X
7	5	8	9	0	0	X
8	4	9	10	0	0	X
9	4	10	11	0	0	X

! Long Links: Western Ramp
! Long Links: Western Deck


```
6.358E5 2.54E5 33.54 3161 40.401 3161 33.54 33.54
E,G,A,J,Izz,Ixx,Asz,Asy (K,FT)
0.0 ! End Properties
7 \text { FRAME}
Deck Beams (east deck)
1 0 0 0 0 0 0
6.358E5 2.54E5 33.54 3161 40.401 3161 33.54 33.54 !
E,G,A, J,Izz,Ixx,Asz,Asy (K,FT)
0.0 ! End Properties
8 \text { FRAME ! Longitudinal}
Deck Beams (east deck)
1 1 1 0 0 0 0 0
6.358E5 2.54E5 33.54 3161 40.401 3161 33.54 33.54,
E,G,A, J,Izz,Ixx,Asz,Asy (K,FT)
0.0
9 FRAME
. Longitudinal
Deck Beams (east deck)
12 0 0 0 0 0 ! Moment releases
6.358E5 2.54E5 33.54 3161 40.401 3161 33.54 33.54 !
E,G,A, J,Izz,Ixx,Asz,Asy (K,FT)
0.0
10 FRAME
(Vert)
1 0 0 0 0 0 0 0
! Linear Elastic
1E7 1E7 1E3 1E5 1E3 1E6 1E3 1E3
E,G,A, J,Izz,Iyy,Asz,Asy (K,FT)
O
11 FRAME
1 0}000000000
1E7 1E7 1E3 1E5 1E3 1E6 1E3 1E3
E,G,A, J,Izz,Iyy,Asz,Asy (K,FT)
O
12 FRAME
1 0 0 0 0 0 0 0
1E7 1E7 1E3 1E5 1E3 1E6 1E3 1E3
E,G,A,J,Izz,Iyy,Asz,Asy (K,FT)
O
13 FRAME
! Cntr Pier (bent)
1 0 0 0 0 0 0 0
1E7 1E7 1E3 1E5 1E3 1E6 1E3 1E3
! Linear Elastic
!
E,G,A,J,Izz,Iyy,Asz,Asy (K,FT)
0
14 FRAME
! West Outer
Column
2 0 0 0 4 0 0 0
6.358E5 2.543E5 7.07 1.168 0.826 0.826 7.07 7.07
!
E,G,A,J,Izz,Iyy,Asz,Asy (.22*I) (K,FT)
0.0 0.0 0.0 0.0 ! Ends
0.04 0.04 0.04 0.04
! r0
```

```
1.464 1.464 1.464 1.464
Length
0.0 0.0 1.55 1.0 0.0 ! Interaction
-6612 -1575 1790 1790 445.9
Forces/Moments
! 4.2 11 0.3 15
Model
0.5 0.1 1 1
Hyst.
1 5 ~ F R A M E ~ ! ~ W e s t ~ I n n e r ~
Column
2 0 0 0 4 0 0 0
6.358E5 2.543E5 7.069 1.167 0.825 0.825 7.07 7.07
E,G,A,J,Izz,Iyy,Asz,Asy (.25*I) (K,FT)
0.0 0.0 0.0 0.0
0.04 0.04 0.04 0.04
1.444 1.444 1.444 1.444
Length
0.0 0.0 1.5 1.15 0.0
-6612 -1575 1790 1790 445.9
Forces/Moments
! 4.2 11 0.3 15
Model
0.5 0.1 1 1
Hyst.
1 6 ~ F R A M E ~ ! ~ M i d ~ O u t e r ~ C o l u m n ~
2 0 0 0 4 0 0 0
6.358E5 2.543E5 7.069 1.169 0.827 0.827 7.07 7.07
E,G,A, J,Izz,Iyy,Asz,Asy (.22*I) (K,FT)
0.0 0.0 0.0 0.0
0.04 0.04 0.04 0.04
1.452 1.452 1.452 1.452
Length
0.0 0.0 1.5 1.15 0.0 ! Interaction
-6612 -1575 1790 1790 445.9 ! Yield
Forces/Moments
! 4.2 11 0.3 15
Model
0.5 0.1 1 1
Hyst.
17 FRAME
2 0 0 0 4 0 0 0
6.358E5 2.543E5 7.069 1.169 0.827 0.827 7.07 7.07
E,G,A,J,Izz,Iyy,Asz,Asy (.25*I) (K,FT)
0.0 0.0 0.0 0.0 ! Ends
0.04 0.04 0.04 0.04 ! r0
1.432 1.432 1.432 1.432
Length
0.0 0.0 1.5 1.15 0.0 ! Interaction
-6612 -1575 1790 1790 445.9 ! Yield
Forces/Moments
! 4.2 11 0.3 15 ! Refined Loss
Model
```

! Plastic Hinge
! Interaction
! Yield
! Refined Loss
! Modified Takeda
! West Inner
!
!
! Ends
! r0
! Plastic Hinge
! Interaction
! Yield
! Refined Loss
! Modified Takeda
! Mid Outer Column
!
!
! Ends
! r0
! Plastic Hinge
! Interaction
! Yield
! Refined Loss
! Modified Takeda
! Mid Inner Column
!
!
! Ends
! r0
! Plastic Hinge
! Interaction
! Yield
! Refined Loss

```
0.5 0.1 1 1 ! Modified Takeda
Hyst.
1 8 \text { FRAME ! East Outer}
Column
```



```
6.358E5 2.543E5 7.069 1.169 0.826 0.826 7.07 7.07 !
E,G,A,J,Izz,Iyy,Asz,Asy (.21*I) (K,FT)
0.0 0.0 0.0 0.0 ! Ends
0.04 0.04 0.04 0.04 ! r0
1.393 1.393 1.393 1.393 ! Plastic Hinge
Length
0.0 0.0 1.5 1.15 0.0 ! Interaction
-6612 -1575 1790 1790 445.9 ! Yield
Forces/Moments
! 4.2 11 0.3 15 ! Refined Loss
Model
0.5 0.1 1 1 ! Modified Takeda
Hyst.
\begin{tabular}{|c|c|}
\hline 19 FRAME & East Inner \\
\hline Column & \\
\hline 200004000 & ! \\
\hline 6.358 E 52.543 E 57.0691 .1680 .8260 .8267 .077 .07 & ! \\
\hline E, G, A, J, Izz, Iyy, Asz,Asy (.23*I) (K, FT) & \\
\hline 0.00 .00 .00 .0 & Ends \\
\hline 0.040 .040 .040 .04 & ! r0 \\
\hline 1.4131 .4131 .4131 .413 & ! Plastic Hinge \\
\hline Length & \\
\hline 0.00 .01 .51 .150 .0 & ! Interaction \\
\hline -6612-1575 17901790445.9 & ! Yield \\
\hline Forces/Moments & \\
\hline ! 4.2110 .315 & ! Refined Loss \\
\hline Model & \\
\hline 0.50 .111 & ! Modified Takeda \\
\hline Hyst. & \\
\hline 20 SPRING & ! Bridge Deck \\
\hline Bearing Pads & \\
\hline 10000 & ! Control \\
\hline Parameters & \\
\hline 1479.6 2E7 3E6 8E7 8E4 8E4 0 . 3.3 & ! Section \\
\hline Properties & \\
\hline 21 MULTISPRING & ! Bridge Gap \\
\hline Elements & \\
\hline 1000102310 & ! Control \\
\hline Parameters & \\
\hline 3.265E3 00000.3 & ! Section \\
\hline Properties & \\
\hline \(0-9.265 E 900000000\) & ! Section Yield \\
\hline Prop. & \\
\hline 22 SPRING & ! SOIL SPRING WI \\
\hline 100000 & ! Control Par. \\
\hline 1.2177 E 51.2177 E 52.0210 E 5 5.3777E6 3.7637E6 5.2783E6 & 0.33 .33 ! \\
\hline Section Prop. & \\
\hline
\end{tabular}
```

```
2 3 \text { SPRING ! SOIL SPRING WO}
100 0 0 ! Control Par.
1.2177E5 1.2177E5 2.0210E5 5.3777E6 3.7637E6 5.2783E6 0 . 33 . 33 !
Section Prop.
2 4 ~ S P R I N G ~ ! ~ S O I L ~ S P R I N G ~ C I ~
100 0 0 ! Control Par.
1.2177E5 1.2177E5 2.0210E5 5.3777E6 3.7637E6 5.2783E6 0 . 33 . 33 !
Section Prop.
2 5 ~ S P R I N G ~ ! ~ S O I L ~ S P R I N G ~ C O
100 0 0 ! Control Par.
1.2177E5 1.2177E5 2.0210E5 5.3777E6 3.7637E6 5.2783E6 0 . 33 . 33 !
Section Prop.
2 6 ~ S P R I N G ~ ! ~ S O I L ~ S P R I N G ~ E I ~
10 0 0 0 ! Control Par.
1.2177E5 1.2177E5 2.0210E5 5.3777E6 3.7637E6 5.2783E6 0 . 33 . 33 !
Section Prop.
2 7 \text { SPRING ! SOIL SPRING EO}
10 0 0 0 ! Control Par.
1.2177E5 1.2177E5 2.0210E5 5.3777E6 3.7637E6 5.2783E6 0 . 33 . 33 !
Section Prop.
2 8 \text { SPRING ! Secant SOIL SPR}
W abt
100 0 0 ! Control Par.
4.6272E5 4.6580E5 7.1459E5 3.5529E7 4.3135E7 3.74E7 0 . 33 . 33 ! Section
Prop.
2 9 ~ S P R I N G ~ ! ~ S e c a n t ~ S O I L ~ S P R
E abt
100 0 0 ! Control Par.
4.6272E5 4.6580E5 7.1459E5 3.5529E7 4.3135E7 3.74E7 0 . 33 . 33 ! Section
Prop.
WEIGHTS 0
\begin{tabular}{llllll}
1 & 17.979 & 17.979 & 17.979 & ! West Ramp \\
2 & 35.958 & 35.958 & 35.958 & & \\
3 & 35.958 & 35.958 & 35.958 & & \\
4 & 35.958 & 35.958 & 35.958 & & \\
5 & 35.958 & 35.958 & 35.958 & & \\
6 & 35.958 & 35.958 & 35.958 & & \\
7 & 17.979 & 17.979 & 17.979 & U & West Deck \\
8 & 20.73 & 20.73 & 20.73 & U1.46 & \\
9 & 41.46 & 41.46 & 41.46 & & \\
10 & 41.46 & 41.46 & 41.46 & & \\
11 & 41.46 & 41.46 & 41.46 & & \\
12 & 41.46 & 41.46 & 41.46 & & \\
13 & 41.46 & 41.46 & 20.73 & & East Deck \\
14 & 20.73 & 20.73 & 17.496 & ! & \\
15 & 17.496 & 17.496 & 34.993 & & \\
16 & 34.993 & 34.993 & 34.993 & & \\
17 & 34.993 & 34.993 & & &
\end{tabular}
```

18	34.993	34.993	34.993	
19	34.993	34.993	34.993	
20	34.993	34.993	34.993	
21	17.496	17.496	17.496	
22	17.979	17.979	17.979 !	East Ramp
23	35.958	35.958	35.958	
24	35.958	35.958	35.958	
25	35.958	35.958	35.958	
26	35.958	35.958	35.958	
27	35.958	35.958	35.958	
28	17.979	17.979	17.979	
29	20.591	20.591	20.591 !	West Column (s)
30	20.061	20.061	20.061 !	(c)
31	20.591	20.591	20.591 !	(n)
32	20.273	20.273	20.273 !	Cntr Column (s)
33	19.743	19.743	19.743 !	(c)
34	20.273	20.273	20.273 !	(n)
35	19.764	19.764	19.764 !	East Column (s)
36	19.234	19.234	19.234 !	(c)
37	19.764	19.764	19.764 !	(n)
38	76.5	76.5	76.5 !	West Abutment
39	14.025	14.025	14.025 !	West X-beam
40	28.049	28.049	28.049	
41	14.025	14.025	14.025	
42	14.025	14.025	14.025 !	Cntr X-Beam
43	28.049	28.049	28.049	
44	14.025	14.025	14.025	
45	14.025	14.025	14.025 !	East X-Beam
46	28.049	28.049	28.049	
47	14.025	14.025	14.025	
48	76.5	76.5	76.5	East Abutment
77				
LOADS				
1	00	-17.9799	! West Ramp	
2	00	-35.958		
3	00	-35.958		
4	00	-35.958		
5	00	-35.958		
6	00	-35.958		
7	00	-17.979		
8	00	-20.73	! West Deck	
9	00	-41.46		
10	00	-41.46		
11	00	-41.46		
12	00	-41.46		
13	00	-41.46		
14	00	-20.73		
15	00	-17.496	! East Deck	
16	00	-34.993		
17	00	-34.993		
18	00	-34.993		
19	00	-34.993		
20	00	-34.993		
21	00	-17.496		
22	00	-17.979	! East Ramp	
23	00	-35.958		

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 24 & 0 & 0 & -35.958 & & \\
\hline 25 & 0 & 0 & -35.958 & & \\
\hline 26 & 0 & 0 & -35.958 & & \\
\hline 27 & 0 & 0 & -35.958 & & \\
\hline 28 & 0 & 0 & -17.979 & & \\
\hline 29 & 0 & 0 & -20.591 & ! & West Column (s) \\
\hline 30 & 0 & 0 & -20.061 & ! & (c) \\
\hline 31 & 0 & 0 & -20.591 & ! & ( n ) \\
\hline 32 & 0 & 0 & -20.273 & ! & Cntr Column (s) \\
\hline 33 & 0 & 0 & -19.743 & ! & (c) \\
\hline 34 & 0 & 0 & -20.273 & ! & ( n ) \\
\hline 35 & 0 & 0 & -19.764 & ! & East Column (s) \\
\hline 36 & 0 & 0 & -19.234 & ! & (c) \\
\hline 37 & 0 & 0 & -19.764 & \(!\) & ( n ) \\
\hline 38 & 0 & 0 & -76.5 & ! & West Abutment \\
\hline 39 & 0 & 0 & -14.025 & ! & West X-beam \\
\hline 40 & 0 & 0 & -28.049 & & \\
\hline 41 & 0 & 0 & -14.025 & & \\
\hline 42 & 0 & 0 & -14.025 & ! & Cntr X-Beam \\
\hline 43 & 0 & 0 & -28.049 & & \\
\hline 44 & 0 & 0 & -14.025 & & \\
\hline 45 & 0 & 0 & -14.025 & ! & East X-Beam \\
\hline 46 & 0 & 0 & -28.049 & & \\
\hline 47 & 0 & 0 & -14.025 & & \\
\hline 48 & 0 & 0 & -76.5 & & East Abutment \\
\hline
\end{tabular}
EQUAKE NSPeru9.txt
510.011 -1 ! File Parameters
EQUAKE EWPeru9.txt
51 0.01 1 -1 ! File Parameters
EQUAKE UPPeru9.txt
510.011 -1 ! File Parameters
```


A-2-2 Bridge 512/19 Ruamoko Input File

512-19 bridge with skew; units kip-ft; Es=6000 ksf=287.3 MPa; Peru-Half Data

20	2	22	23	0	0	X	
21	2	24	25	0	0	X	! south bent
22	2	25	26	0	0	X	
23	2	26	27	0	0	X	
24	2	27	28	0	0	X	
25	3	4	16	0	0	X	!vert link deck-bent (N)
26	3	14	29	0	0	X	!vert link cap-col (Ne)
27	5	29	30	0	0	X	! Col (Ne)
28	4	30	31	0	0	X	!vert link col-foot (Ne)
29	3	15	32	0	0	X	!vert link cap-col (Nme)
30	5	32	33	0	0	X	! Col (Nme)
31	4	33	34	0	0	X	!vert link col-foot (Nme)
32	3	17	35	0	0	X	!vert link cap-col (Nmw)
33	5	35	36	0	0	X	! Col (Nmw)
34	4	36	37	0	0	X	!vert link col-foot (Nmw)
35	3	18	38	0	0	X	!vert link cap-col (Nw))
36	5	38	39	0	0	X	! Col (Nw)
37	4	39	40	0	0	X	!vert link col-foot (Nw)
38	3	7	21	0	0	X	!vert link deck-bent (M)
39	3	19	41	0	0	X	!vert link cap-col (Me)
40	5	41	42	0	0	X	! Col (Me)
41	4	42	43	0	0	X	!vert link col-foot (Me)
42	3	20	44	0	0	X	!vert link cap-col (Mme)
43	5	44	45	0	0	X	! Col (Mme)
44	4	45	46	0	0	X	!vert link col-foot (Mme)
45	3	22	47	0	0	X	!vert link cap-col (Mmw)
46	5	47	48	0	0	X	! Col (Mmw)
47	4	48	49	0	0	X	!vert link col-foot (Mmw)
48	3	23	50	0	0	X	!vert link cap-col (Mw)
49	5	50	51	0	0	X	! Col (Mw)
50	4	51	52	0	0	X	!vert link col-foot (Mw)
51	3	10	26	0	0	X	!vert link deck-bent (S)
52	3	24	53	0	0	X	!vert link cap-col (Se)
53	5	53	54	0	0	X	! Col (Se)
54	4	54	55	0	0	X	!vert link col-foot (Se)
55	3	25	56	0	0	X	!vert link cap-col (Sme)
56	5	56	57	0	0	X	! Col (Sme)
57	4	57	58	0	0	X	!vert link col-foot (Sme)
58	3	27	59	0	0	X	!vert link cap-col (Smw)
59	5	59	60	0	0	X	! Col (Smw)
60	4	60	61	0	0	X	!vert link col-foot (Smw)
61	3	28	62	0	0	X	!vert link cap-col (Sw)
62	5	62	63	0	0	X	! Col (Sw)
63	4	63	64	0	0	X	!vert link col-foot (Sw)
64	12	65	1	0	0	X	!north abutment spring
65	13	66	13	0	0	X	!south abutment spring
66	6	31	67	0	0	X	!col footing spring
67	7	34	68	0	0	X	!col footing spring
68	7	37	69	0	0	X	!col footing spring
69	6	40	70	0	0	X	!col footing spring
70	8	43	71	0	0	X	!col footing spring
71	9	46	72	0	0	X	!col footing spring
72	9	49	73	0	0	X	!col footing spring
73	8	52	74	0	0	X	!col footing spring
74	10	55	75	0	0	X	!col footing spring
75	11	58	76	0	0	X	!col footing spring
76	11	61	77	0	0	X	!col footing spring


```
PROPS
M FRAME N
0
2 ~ F R A M E ~ ! ~ C a p . b e a m ~
1 0 0 0 0 0 0
6.358E5 2.54E5 1E10 1E10 1E10 1E10 ! E,G,A,J,Izz,Iyy (K,FT)
0
3 FRRAME 
1E10 1E10 1E4 2E7 1E7 1E2
0
4 ~ F R A M E ~ ! ~ v e r t i c a l ~ l i n k s ~ b t w ~
col+footing
1 0 0 0 0 0 0
1E10 1E10 1E4 2E7 1E7 1E2 ! E,G,A,J,Izz,Iyy (K,FT)
0
5 FRAME
2 0 0 4 0 0 !14a. Section Control
6.35E5 2.54E5 7.069 1.205 0.852 0.852 !14b. Section prop
E,G,A,J,Izz,Iyy
0.0
0.04 0.04 0.04 0.04
1.423 1.423 1.423 1.423
0 0 1.0 1.0 0
-4900 -1203 1475 1475 591.4
! 5.5 17 0.9 0
appendix A)
0.5 0.1 1 1
6 ~ S P R I N G ~ ! ~ S O I L ~ S P R I N G ~
NO
10 0 0 0 0 ! Control
Par.
9.4921E4 9.4921E4 9.8085E4 4.4837E6 2.7516E6 4.9144E6 0 . 33 . 33
Section Prop.
7 \text { SPRING ! SOIL SPRING}
NI
1 0 0 0 0 0 ! Control
Par.
9.4921E4 9.4921E4 9.8085E4 4.4837E6 2.7516E6 4.9144E6 0 . 33 . 33 !
Section Prop.
8 \text { SPRING ! SOIL SPRING}
CO
10 0 0 0 ! Control
Par.
```

```
9.8059E4 9.8059E4 1.0320E5 4.8277E6 3.5006E6 4.6821E6 0 . 33 . 33
```

Section Prop.

```
9 ~ S P R I N G ~ ! ~ S O I L ~ S P R I N G
CI
1 0 0 0 0 0 ! Control
Par.
9.8059E4 9.8059E4 1.0320E5 4.8277E6 3.5006E6 4.6821E6 0 . 33 . 33 !
Section Prop.
10 SPRING ! SOIL
SPRING SO
1 0 0 0 0 ! Control
Par.
9.1220E4 9.1220E4 9.4760E4 4.1780E6 2.0881E6 4.4245E6 0 . 33 . 33 !
Section Prop.
```

11 SPRING ! SOII
SPRING SI
100000 ! Control
Par.
9.1220E4 9.1220E4 9.4760E4 4.1780E6 2.0881E6 4.4245E6 0 . 33.33 !
Section Prop.
12 SPRING ! SOIL SPRING
N Abt.
10000 ! Control Par.
8.4002 E 5 8.4002E5 8.7782E5 2.4497E7 6.7001E7 5.1069E7 0 . 33 . 33 !
Section Prop.
13 SPRING ! SOIL SPRING
S Abt.
10000 ! Control Par.
3.3819 E 5 3.3819E5 3.5341E5 9.8626E6 2.6974E7 2.0560E7 0 .33 . 33 !
Section Prop.
Weights 0

1	1.767	1.767	1.767	! north
abutment				
2	88.359	88.359	88.359	! north ramp
3	173.184	173.184	173.184	
4	176.12	176.12	176.12	! north deck
5	179.051	179.051	179.051	
6	179.051	179.051	179.051	
7	179.051	179.051	179.051	!middle deck
8	179.051	179.051	179.051	!south deck
9	179.051	179.051	179.051	
10	172.584	172.584	172.584	!south ramp
11	166.116	166.116	166.116	
12	84.825	84.825	84.825	
13	1.767	1.767	1.767	! south
abutment				
14	165.881	165.881	165.881	! north bent
15	118.857	118.857	118.857	
16	107.97	107.97	107.97	
17	118.857	118.857	118.857	
18	165.881	165.881	165.881	

19	149.534	149.534	149.534	!middle bent
20	107.959	107.959	107.959	
21	97.071	97.071	97.071	
22	107.959	107.959	107.959	
23	149.534	149.534	149.534	
24	162.909	162.909	116.875	
25	116.875	116.875	105.988	
26	105.988	105.988	116.875	
27	116.875	116.875	162.909	
28	162.909	162.909	21.312	
30	21.312	21.312	21.312	
33	21.312	21.312	21.312	
36	21.312	21.312	21.312	
39	21.312	21.312	21.312	
42	21.312	21.312	21.312	
45	21.312	21.312	21.312	
48	21.312	21.312	21.312	
51	21.312	21.312	21.312	
54	21.312	21.312	21.312	
57	21.312	21.312	21.312	
60	21.312	21.312		

Loads

1	0	0	-1.767	! north abutment
2	0	0	-88.359	! north ramp
3	0	0	-173.184	
4	0	0	-176.118	! north deck
5	0	0	-179.051	
6	0	0	-179.051	
7	0	0	-179.051	!middle deck
8	0	0	-179.051	!south deck
9	0	0	-179.051	
10	0	0	-172.584	!south ramp
11	0	0	-166.116	
12	0	0	-84.825	
13	0	0	-1.767	!south abutment
14	0	0	-165.881	!north bent
15	0	0	-118.857	
16	0	0	-107.97	
17	0	0	-118.857	
18	0	0	-165.881	
19	0	0	-149.534	!middle bent
20	0	0	-107.959	
21	0	0	-97.071	
22	0	0	-107.959	
23	0	0	-149.534	
24	0	0	-162.909	! south bent
25	0	0	-116.875	
26	0	0	-105.988	
27	0	0	-116.875	
28	0	0	-162.909	
30	0	0	-21.312	! column bot
33	0	0	-21.312	
36	0	0	-21.312	
39	0	0	-21.312	

42	0	0	-21.312
45	0	0	-21.312
48	0	0	-21.312
51	0	0	-21.312
54	0	0	-21.312
57	0	0	-21.312
60	0	0	-21.312
63	0	0	-21.312

EQUAKE NSPERU9.TXT
510.011 -1 ! File Parameters

EQUAKE EWPERU9.TXT
$\begin{array}{lllll}5 & 1 & 0.01 & 1 & -1\end{array}$
! File Parameters

EQUAKE UPPERU9.TXT
$\begin{array}{lllll}5 & 1 & 0.01 & 1 & -1\end{array}$
! File Parameters

A-2-3 Bridge 5/649 Ruaumoko Input File

5-649E east bridge with skew; units kip-ft; Es=6000 ksf=287.3 MPa; Peru; Half Data

NODES 1

ELEMENTS 1

1	6	1	2	0	0	Y	!north deck
2	6	2	3	0	0	Y	!north deck
3	6	3	4	0	0	Y	!north deck
4	5	4	5	0	0	Y	!north deck
5	1	6	7	0	0	Y	! north ramp
6	3	7	8	0	0	Y	! north ramp
7	3	8	9	0	0	Y	!north ramp
8	2	9	10	0	0	Y	! north ramp
9	1	13	14	0	0	Y	!south ramp
10	3	14	15	0	0	Y	! south ramp
11	3	15	16	0	0	Y	! south ramp
12	2	16	17	0	0	Y	! south ramp
13	4	18	19	0	0	Y	! south deck
14	6	19	20	0	0	Y	! south deck
15	6	20	21	0	0	Y	! south deck
16	6	21	1	0	0	Y	!south deck
17	7	24	23	0	0	X	!south-west bent
18	7	23	22	0	0	X	
19	7	24	25	0	0	X	! south-east bent
20	7	25	26	0	0	X	
21	7	29	28	0	0	X	!north-west bent
22	7	28	27	0	0	X	
23	7	29	30	0	0	X	!north-east bent
24	7	30	31	0	0	X	
25	8	22	32	0	0	X	!vert link deck-col
26	10	32	33	0	0	X	!west col south bent
27	9	33	50	0	0	X	!vert link col-foot
28	8	24	35	0	0	X	!vert link deck-col
29	11	35	36	0	0	X	!mid col south bent
30	9	36	51	0	0	X	!vert link col-foot
31	8	26	38	0	0	X	!vert link deck-col
32	12	38	39	0	0	X	!east col south bent
33	9	39	52	0	0	X	!vert link col-foot
34	8	27	41	0	0	X	!vert link deck-col
35	13	41	42	0	0	X	!west col north bent


```
1 2 2 0 0 0 0
6.358E5 2.54E5 70.6 34330 34330 292.334 70.6 70.6
E,G,A, J,Izz,Iyy,Asy,Asz (K,FT)
0.0 0.0 0.0 0.0
6 FRAME lllll
6.358E5 2.54E5 70.6 34330 34330 292.334 70.6 70.6 !
E,G,A, J,Izz,Iyy,Asy,Asz (K,FT)
0.0 0.0 0.0 0.0
7 FRAME ! Capbeam
1 0 0 0 0 0 0
6.358E5 2.54E5 1E2 1E4 1E2 1E5 1E2 1E2
E,G,A,J,Izz,Iyy,Asy,Asz (K,FT)
0.0 0.0 0.0 0.0
FRAME ! Vertical links btw deck+col
10 0 0 0 0 ! linear elastic
1E7 1E7 1E3 1E5 1E3 1E6 1E3 1E3
E,G,A, J,Izz,Iyy,Asy,Asz (K,FT)
0.0 0.0 0.0 0.0
9 FRAME ! vertical links btw col+footing
1 0 0 0 0 0 0
1E7 1E7 1E3 1E5 1E3 1E6 1E3 1E3
E,G,A,J,Izz,Iyy,Asy,Asz (K,FT)
0.0 0.0 0.0 0.0
1 0 ~ F R A M E ~ ! S o u t h - w e s t ~ c o l u m n
20 0 0 4 0 0 0 !14a. Section Control
6.358E5 2.543E5 7.069 1.168 0.826 0.826 7.069 7.069 !14b. Section prop
E,G,A,J,Izz,Iyy
0.00.0 0.0 0.0 !14c. End Properties
0.07 0.07 0.07 0.07 !14d. Member bilinear factor
1.338 1.338 1.338 1.338 !14e. Plastic Hinge Length
0 1.0 1.1 0.0 !14l. Interaction param
-6556 -1555 1770 1770 483.7 !14m. P-M interaction
! 5 8 0.7 ! Loss Model(appendix A)
0.5 0.1 1 1 ! Modified Takeda
1 1 ~ F R A M E ~ ! S o u t h - m i d ~ c o l u m n ~
20 0 0 4 0 0 0 !14a. Section Control
6.358E5 2.543E5 7.069 1.168 0.826 0.826 7.069 7.069 !14b. Section prop
E,G,A,J,Izz,Iyy
0.0 0.0 0.0 0.0 !14c. End Properties
0.07 0.07 0.07 0.07
1.367 1.367 1.367 1.367
!14d. Member bilinear factor
!14e. Plastic Hinge Length
0 1.0 1.1 0.0 !141. Interaction param
-6556 -1555 1770 1770 483.7 !14m. P-M interaction
! 5 8 0.7 ! Loss Model(appendix A)
0.5 0.1 1 1 ! Modified Takeda
1 2 ~ F R A M E ~ ! ~ S o u t h - e a s t ~ C o l u m n ~
20 0 0 4 0 0 0 !14a. Section Control
```

```
6.358E5 2.543E5 7.069 1.168 0.826 0.826 7.069 7.069 !14b. Section prop
E,G,A,J,Izz,Iyy
0.0 0.0 0.0 0.0 !14c. End Properties
0.07 0.07 0.07 0.07
1.388 1.388 1.388 1.388
0 0 1.0 1.1 0.0
-6556 -1555 1770 1770 483.7
! 5 8 0.7
0.5 0.1 1 1
13 FRAME
2 0 0 0 4 4 0 0 0
6.358E5 2.543E5 7.069 1.168 0.826 0.826 7.069 7.069 !14b. Section prop
E,G,A,J,Izz,Iyy
0.0 0.0 0.0 0.0 !14c. End Properties
0.07 0.07 0.07 0.07 !14d. Member bilinear factor
1.273 1.273 1.273 1.273 !14e. Plastic Hinge Length
0 1.0 1.1 0.0 !141. Interaction param
-6556 -1555 1770 1770 483.7
! 5 8 0.7
0.5 0.1 1 1
1 4 \text { FRAME !North-Mid Column}
20 0 0 4 0 0 0 !14a. Section Control
6.358E5 2.543E5 7.069 1.168 0.826 0.826 7.069 7.069 !14b. Section prop
E,G,A,J,Izz,Iyy
0.0 0.0 0.0 0.0 !14c. End Properties
0.07 0.07 0.07 0.07
1.305 1.305 1.305 1.305
0 0 1.0 1.1 0.0
-6556 -1555 1770 1770 483.7
! 5 8 0.7
0.5 0.1 1 1
1 5 \text { FRAME !North-East Column}
2 0 0 0 4 0 0 0 !14a. Section Control
6.358E5 2.543E5 7.069 1.168 0.826 0.826 7.069 7.069 !14b. Section prop
E,G,A,J,Izz,Iyy
0.0 0.0 0.0 0.0
0.07 0.07 0.07 0.07
1.328 1.328 1.328 1.328
0 0 1.0 1.1 0.0
-6556 -1555 1770 1770 483.7
! 5 8 0.7
0.5 0.1 1 1 ! Modified Takeda
1 6 \text { SPRING ! Bridge Deck Bearing Pads}
!14c. End Properties
!14d. Member bilinear factor
!14e. Plastic Hinge Length
!141. Interaction param
!14m. P-M interaction
! Loss Model(appendix A)
1 0 0 0 0 0 \text { ! Control Parameters}
1479.6 2E7 3E6 8E6 8E4 8E4 0 . 3.3 ! Section Properties
1 7 \text { MULTISPRING}
! Bridge Gap Elements
10 0 0 10 2 31 0 ! Control Parameters
3.265E3 0 0 0 0 0 . 3 ! Section Properties
0-9.265E15 0 0 0 0 0 0 0 0 0
1 8 \text { SPRING ! SOIL SPRING NW}
10000 ! Control Par.
```

```
1.2091E5 1.2091E5 1.6626E5 7.3084E6 7.3084E6 1.0268E7 0 . 33 . 33
Section Prop.
1 9 \text { SPRING ! SOIL SPRING NM}
1 0 0 0 0 ! Control Par.
1.2091E5 1.2091E5 1.6626E5 7.3084E6 7.3084E6 1.0268E7 0 . 33 . 33
Section Prop.
2 0 ~ S P R I N G ~ ! ~ S O I L ~ S P R I N G ~ N E ~
100 0 0 ! Control Par.
1.2091E5 1.2091E5 1.6626E5 7.3084E6 7.3084E6 1.0268E7 0 . 33 . 33
Section Prop.
2 1 ~ S P R I N G ~ ! ~ S O I L ~ S P R I N G ~ S W
10 0 0 0 ! Control Par.
1.3339E5 1.3339E5 1.6626E5 7.3106E6 7.3106E6 1.0268E7 0 .33 .33 !
Section Prop.
2 2 ~ S P R I N G ~ ! ~ S O I L ~ S P R I N G ~ S M
100 0 0 ! Control Par.
1.3339E5 1.3339E5 1.6626E5 7.3106E6 7.3106E6 1.0268E7 0 . 33 .33
Section Prop.
2 3 \text { SPRING ! SOIL SPRING SE}
100 0 0 ! Control Par.
1.3339E5 1.3339E5 1.6626E5 7.3106E6 7.3106E6 1.0268E7 0 . 33 . 33
Section Prop.
2 4 \text { SPRING ! Secant SOIL SPRING BENT North}
10 0 0 0 ! Control Par.
2.0057E5 2.0718E5 3.3608E5 3.5240E6 6.0453E7 4.7215E7 0 . 33 . 33 !
Section Prop.
2 5 \text { SPRING ! Secant SOIL SPRING BENT South}
100 0 0 ! Control Par.
1.8966E5 1.9628E5 3.2071E5 3.5198E6 6.0449E7 4.7215E7 0 . 33 . 33 !
Section Prop.
WEIGHTS 1
\begin{tabular}{llll}
1 & 127.126 & 127.126 & 127.126 \\
2 & 127.126 & 127.126 & 127.126 \\
3 & 127.126 & 127.126 & 127.126 \\
4 & 127.126 & 127.126 & 127.126 \\
5 & 63.563 & 63.563 & 63.563 \\
6 & 91 & 91 & 91 \\
7 & 182.014 & 182.014 & 182.014 \\
8 & 182.014 & 182.014 & 182.014 \\
9 & 182.014 & 182.014 & 182.014 \\
10 & 91 & 91 & 91 \\
13 & 85.1 & 85.1 & 85.1 \\
14 & 170.195 & 170.195 & 170.195 \\
15 & 170.195 & 170.195 & 170.195 \\
16 & 170.195 & 170.195 & 170.195 \\
17 & 85.10 & 85.10 & 85.10 \\
18 & 63.563 & 63.563 & 63.563 \\
19 & 127.126 & 127.126 & 127.126 \\
20 & 127.126 & 127.126 & 127.126
\end{tabular}
```

21	127.126	127.126	127.126
22	13.65	13.65	13.65
23	27.3	27.3	27.3
24	27.3	27.3	27.3
25	27.3	27.3	27.3
26	13.65	13.65	13.65
27	13.65	13.65	13.65
28	27.3	27.3	27.3
29	27.3	27.3	27.3
30	27.3	27.3	27.3
31	13.65	13.65	13.65
32	19.064	19.064	19.064
35	19.827	19.827	19.827
38	20.389	20.389	20.389
41	17.336	17.336	17.336
44	18.184	18.184	18.184
47	18.81	18.81	18.81
56	321.294	321.294	321.294
57	309.244	309.244	309.244

LOADS			
1	0	0	-127.126
2	0	0	-127.126
3	0	0	-127.126
4	0	0	-127.126
5	0	0	-63.563
6	0	0	-91
7	0	0	-182.014
8	0	0	-182.014
9	0	0	-182.014
10	0	0	-91
13	0	0	-85.1
14	0	0	-170.195
15	0	0	-170.195
16	0	0	-170.195
17	0	0	-85.097
18	0	0	-63.563
19	0	0	-127.126
20	0	0	-127.126
21	0	0	-127.126
22	0	0	-13.65
23	0	0	-27.3
24	0	0	-27.3
25	0	0	-27.3
26	0	0	-13.65
27	0	0	-13.65
28	0	0	-27.3
29	0	0	-27.3
30	0	0	-27.3
31	0	0	-13.65
32	0	0	-19.064
35	0	0	-19.827
38	0	0	-20.389
41	0	0	-17.336
44	0	0	-18.184
47	0	0	-18.81

```
56 0 0 -321.294
57 0 0 -309.244
EQUAKE NSPeru9.txt
5 1 0.01 1 -1
EQUAKE EWPeru9.txt
5 1 0.01 1 -1 ! File Parameters
EQUAKE UPPeru9.txt
5 1 0.01 1 -1 ! File Parameters
```

Once Ruaumoko has been run a 'filename'.RAS is generated and another software is used to sort the data: pwave. This software was developed by Visual Numerics, Inc. in 1997. It reads a script (reader_'filename'.pro) which will read the unformatted data of the .RAS file and store it as a matrix in a .txt file. The .pro file can be modified to fit the geometry of the analyzed structure (Enter the node, member numbers that define the structure, enter the number defining the analyses to be run (1=X-disp, 27=Z-shear at top, etc...)). Two commands need to be entered to run pwave:

At the prompt: WAVE $>$
Type: .rnew reader_'filename' (without the .pro extension)
Type: 'filename' (without the .RAS extension)
This will execute the .pro file and create a 'filename'.txt file. After that, this text file can be used as a matrix of data in any program to plot and sort the data. S-Plus 2000 (MathSoft, Inc.) is a powerful software to plot numerous data variables at once, once an S-Plus script has been created.

APPENDIX A-3

Spring stiffness values for all bridges in US units.

		Translational Springs			Rotational Springs		
Bridge 512	Es (ksf)	K11 (Trans) k/ft	$\begin{gathered} \text { K22 (Long.) } \\ \mathrm{k} / \mathrm{ft} \end{gathered}$	$\begin{gathered} \hline \text { K33 (Vert.) } \\ \text { k/ft } \end{gathered}$	K44 (Trans.) k-ft/rad	K55 (Long.) k-ft/rad	K66 (Vert.) k-ft/rad
North Abut	1000	$1.40 \mathrm{E}+05$	1.40E+05	1.46E+05	$4.08 \mathrm{E}+06$	1.12E+07	8.51E+06
	6000	$8.40 \mathrm{E}+05$	$8.40 \mathrm{E}+05$	$8.78 \mathrm{E}+05$	$2.45 \mathrm{E}+07$	$6.70 \mathrm{E}+07$	$5.11 \mathrm{E}+07$
	18000	$2.52 \mathrm{E}+06$	$2.52 \mathrm{E}+06$	2.63E+06	7.35E+07	$2.01 \mathrm{E}+08$	1.53E+08
North Pier	1000	$1.58 \mathrm{E}+04$	$1.58 \mathrm{E}+04$	$1.63 \mathrm{E}+04$	7.47E+05	$4.59 \mathrm{E}+05$	$8.19 \mathrm{E}+05$
	6000	$9.49 \mathrm{E}+04$	$9.49 \mathrm{E}+04$	9.81E+04	$4.48 \mathrm{E}+06$	$2.75 \mathrm{E}+06$	$4.91 \mathrm{E}+06$
	18000	$2.85 \mathrm{E}+05$	$2.85 \mathrm{E}+05$	2.94E+05	$1.35 \mathrm{E}+07$	$8.25 \mathrm{E}+06$	$1.47 \mathrm{E}+07$
Center Pier	1000	$1.63 \mathrm{E}+04$	$1.63 \mathrm{E}+04$	$1.72 \mathrm{E}+04$	$8.05 \mathrm{E}+05$	$5.83 \mathrm{E}+05$	$7.80 \mathrm{E}+05$
	6000	9.81E+04	9.81E+04	$1.03 \mathrm{E}+05$	4.83E+06	$3.50 \mathrm{E}+06$	$4.68 \mathrm{E}+06$
	18000	$2.94 \mathrm{E}+05$	2.94E+05	$3.10 \mathrm{E}+05$	1.45E+07	$1.05 \mathrm{E}+07$	$1.40 \mathrm{E}+07$
South Pier	1000	$1.52 \mathrm{E}+04$	$1.52 \mathrm{E}+04$	$1.58 \mathrm{E}+04$	$6.96 \mathrm{E}+05$	$3.48 \mathrm{E}+05$	7.37E+05
	6000	9.12E+04	9.12E+04	$9.48 \mathrm{E}+04$	4.18E+06	$2.09 \mathrm{E}+06$	4.42E+06
	18000	$2.74 \mathrm{E}+05$	$2.74 \mathrm{E}+05$	$2.84 \mathrm{E}+05$	$1.25 \mathrm{E}+07$	$6.26 \mathrm{E}+06$	$1.33 \mathrm{E}+07$
South Abut	1000	$5.64 \mathrm{E}+04$	$5.64 \mathrm{E}+04$	$5.89 \mathrm{E}+04$	$1.64 \mathrm{E}+06$	$4.50 \mathrm{E}+06$	$3.43 \mathrm{E}+06$
	6000	$3.38 \mathrm{E}+05$	$3.38 \mathrm{E}+05$	3.53E+05	9.86E+06	$2.70 \mathrm{E}+07$	$2.06 \mathrm{E}+07$
	18000	$1.01 \mathrm{E}+06$	$1.01 \mathrm{E}+06$	$1.06 \mathrm{E}+06$	$2.96 \mathrm{E}+07$	8.09E+07	$6.17 \mathrm{E}+07$

Bridge 227	Es (ksf)	Translational Springs			Rotational Springs		
West Abut	5	$7.87 \mathrm{E}+04$	$8.48 \mathrm{E}+04$	$3.20 \mathrm{E}+05$	$1.38 \mathrm{E}+07$	$1.38 \mathrm{E}+07$	$3.12 \mathrm{E}+04$
	1000	$1.42 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$3.85 \mathrm{E}+05$	$1.74 \mathrm{E}+07$	$1.86 \mathrm{E}+07$	$6.23 \mathrm{E}+06$
	6000	$4.63 \mathrm{E}+05$	$4.66 \mathrm{E}+05$	$7.15 \mathrm{E}+05$	$3.55 \mathrm{E}+07$	$4.31 \mathrm{E}+07$	$3.74 \mathrm{E}+07$
	18000	$1.23 \mathrm{E}+06$	$1.23 \mathrm{E}+06$	$1.50 \mathrm{E}+06$	$7.91 \mathrm{E}+07$	$1.02 \mathrm{E}+08$	$1.12 \mathrm{E}+08$
	5	$1.98 \mathrm{E}+04$	$1.98 \mathrm{E}+04$	$9.33 \mathrm{E}+04$	$5.34 \mathrm{E}+05$	$5.33 \mathrm{E}+05$	$4.40 \mathrm{E}+03$
	1000	$3.68 \mathrm{E}+04$	$3.68 \mathrm{E}+04$	$1.11 \mathrm{E}+05$	$1.34 \mathrm{E}+06$	$1.07 \mathrm{E}+06$	$8.80 \mathrm{E}+05$
	6000	$1.22 \mathrm{E}+05$	$1.22 \mathrm{E}+05$	$2.02 \mathrm{E}+05$	$5.38 \mathrm{E}+06$	$3.76 \mathrm{E}+06$	$5.28 \mathrm{E}+06$
	18000	$3.26 \mathrm{E}+05$	$3.26 \mathrm{E}+05$	$4.20 \mathrm{E}+05$	$1.51 \mathrm{E}+07$	$1.02 \mathrm{E}+07$	$1.58 \mathrm{E}+07$
East Pier Pier	5	$1.98 \mathrm{E}+04$	$1.98 \mathrm{E}+04$	$9.33 \mathrm{E}+04$	$5.34 \mathrm{E}+05$	$5.33 \mathrm{E}+05$	$4.40 \mathrm{E}+03$
	1000	$3.68 \mathrm{E}+04$	$3.68 \mathrm{E}+04$	$1.11 \mathrm{E}+05$	$1.34 \mathrm{E}+06$	$1.07 \mathrm{E}+06$	$8.80 \mathrm{E}+05$
	6000	$1.22 \mathrm{E}+05$	$1.22 \mathrm{E}+05$	$2.02 \mathrm{E}+05$	$5.38 \mathrm{E}+06$	$3.76 \mathrm{E}+06$	$5.28 \mathrm{E}+06$
	18000	$3.26 \mathrm{E}+05$	$3.26 \mathrm{E}+05$	$4.20 \mathrm{E}+05$	$1.51 \mathrm{E}+07$	$1.02 \mathrm{E}+07$	$1.58 \mathrm{E}+07$
	5	$1.98 \mathrm{E}+04$	$1.98 \mathrm{E}+04$	$9.33 \mathrm{E}+04$	$5.34 \mathrm{E}+05$	$5.33 \mathrm{E}+05$	$4.40 \mathrm{E}+03$
	1000	$3.68 \mathrm{E}+04$	$3.68 \mathrm{E}+04$	$1.11 \mathrm{E}+05$	$1.34 \mathrm{E}+06$	$1.07 \mathrm{E}+06$	$8.80 \mathrm{E}+05$
	18000	$1.22 \mathrm{E}+05$	$1.22 \mathrm{E}+05$	$2.02 \mathrm{E}+05$	$5.38 \mathrm{E}+06$	$3.76 \mathrm{E}+06$	$5.28 \mathrm{E}+06$
East Abut +05	$3.26 \mathrm{E}+05$	$4.20 \mathrm{E}+05$	$1.51 \mathrm{E}+07$	$1.02 \mathrm{E}+07$	$1.58 \mathrm{E}+07$		
	5	$7.87 \mathrm{E}+04$	$8.48 \mathrm{E}+04$	$3.20 \mathrm{E}+05$	$1.38 \mathrm{E}+07$	$1.38 \mathrm{E}+07$	$3.12 \mathrm{E}+04$
	1000	$1.42 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$3.85 \mathrm{E}+05$	$1.74 \mathrm{E}+07$	$1.86 \mathrm{E}+07$	$6.23 \mathrm{E}+06$
	6000	$4.63 \mathrm{E}+05$	$4.66 \mathrm{E}+05$	$7.15 \mathrm{E}+05$	$3.55 \mathrm{E}+07$	$4.31 \mathrm{E}+07$	$3.74 \mathrm{E}+07$
	18000	$1.23 \mathrm{E}+06$	$1.23 \mathrm{E}+06$	$1.50 \mathrm{E}+06$	$7.91 \mathrm{E}+07$	$1.02 \mathrm{E}+08$	$1.12 \mathrm{E}+08$

Bridge 649	Es (ksf)	Translational Springs			Rotational Springs		
South Abut	1000	$7.43 \mathrm{E}+04$	$8.09 \mathrm{E}+04$	$1.82 \mathrm{E}+05$	$6.15 \mathrm{E}+05$	$1.01 \mathrm{E}+07$	$7.87 \mathrm{E}+06$
	6000	$1.90 \mathrm{E}+05$	$1.96 \mathrm{E}+05$	$3.21 \mathrm{E}+05$	$3.52 \mathrm{E}+06$	$6.04 \mathrm{E}+07$	$4.72 \mathrm{E}+07$
	18000	$4.67 \mathrm{E}+05$	$4.73 \mathrm{E}+05$	$6.55 \mathrm{E}+05$	$1.05 \mathrm{E}+07$	$1.81 \mathrm{E}+08$	$1.42 \mathrm{E}+08$
	1000	$3.37 \mathrm{E}+04$	$3.37 \mathrm{E}+04$	$6.36 \mathrm{E}+04$	$1.22 \mathrm{E}+06$	$1.22 \mathrm{E}+06$	$1.71 \mathrm{E}+06$
	6000	$1.33 \mathrm{E}+05$	$1.33 \mathrm{E}+05$	$1.66 \mathrm{E}+05$	$7.31 \mathrm{E}+06$	$7.31 \mathrm{E}+06$	$1.03 \mathrm{E}+07$
	18000	$3.73 \mathrm{E}+05$	$3.73 \mathrm{E}+05$	$4.13 \mathrm{E}+05$	$2.19 \mathrm{E}+07$	$2.19 \mathrm{E}+07$	$3.08 \mathrm{E}+07$
North Pier	1000	$2.12 \mathrm{E}+04$	$2.12 \mathrm{E}+04$	$6.36 \mathrm{E}+04$	$1.22 \mathrm{E}+06$	$1.22 \mathrm{E}+06$	$1.71 \mathrm{E}+06$
	6000	$1.21 \mathrm{E}+05$	$1.21 \mathrm{E}+05$	$1.66 \mathrm{E}+05$	$7.31 \mathrm{E}+06$	$7.31 \mathrm{E}+06$	$1.03 \mathrm{E}+07$
	18000	$3.60 \mathrm{E}+05$	$3.60 \mathrm{E}+05$	$4.13 \mathrm{E}+05$	$2.19 \mathrm{E}+07$	$2.19 \mathrm{E}+07$	$3.08 \mathrm{E}+07$
	1000	$8.52 \mathrm{E}+04$	$9.18 \mathrm{E}+04$	$1.97 \mathrm{E}+05$	$6.19 \mathrm{E}+05$	$1.01 \mathrm{E}+07$	$7.87 \mathrm{E}+06$
	6000	$2.01 \mathrm{E}+05$	$2.07 \mathrm{E}+05$	$3.36 \mathrm{E}+05$	$3.52 \mathrm{E}+06$	$6.05 \mathrm{E}+07$	$4.72 \mathrm{E}+07$
	18000	$4.77 \mathrm{E}+05$	$4.84 \mathrm{E}+05$	$6.70 \mathrm{E}+05$	$1.05 \mathrm{E}+07$	$1.81 \mathrm{E}+08$	$1.42 \mathrm{E}+08$

Appendix A-3 Spring values for all bridges in US units

APPENDIX A-4

1. Bridge $5 / 227$

Footings - Transverse Shear Force Demands					
Bridge 227-Ф Vn=1641 kN (369 kips)					
		Center bent - Center Column			
EQ	Spring Es values (MPa)	North dir. Shear (kips)	North dir. Shear (kN)	South dir. Shear	South dir. Shear (kN)
Kobe 475	47.9	65	289	-69	-309
	861.9	66	295	-77	-345
	fixed	65	290	-85	-377
Mexico 475	47.9	60	269	-64	-287
	861.9	56	249	-60	-268
	fixed	71	314	-59	-263
Olympia 475	47.9	43	191	-52	-232
	861.9	70	312	-72	-320
	fixed	67	296	-52	-230
Chile 475	47.9	59	263	-66	-292
	861.9	80	355	-67	-297
	fixed	41	181	-33	-145
Peru 475	47.9	47	207	-52	-230
	861.9	49	218	-59	-264
	fixed	94	417	-62	-276
Kobe 975	47.9	58	256	-68	-303
	861.9	63	278	-58	-258
	fixed	81	362	-80	-354
Mexico 975	47.9	66	292	-69	-308
	861.9	62	276	-66	-292
	fixed	71	315	-94	-418
Olympia 975	47.9	61	271	-65	-288
	861.9	58	259	-56	-251
	fixed	73	325	-60	-266
Chile 2475	47.9	66	295	-62	-275
	861.9	72	321	-68	-303
	fixed	45	199	-56	-249
Peru 2475	47.9	79	352	-75	-335
	861.9	89	395	-89	-394
	fixed	90	400	-75	-334

Longitudinal Shear Force Demands			
Cridge 227- Φ Vn = 2185 kN (492 kips) North dir. North dir. Center Column South dir. Shear (kips) South dir. Shear (kN) Shear (kips) Shear (kN)			
42	187	-36	-160
39	175	-40	-179
62	277	-60	-269
37	167	-44	-195
49	220	-50	-221
54	239	-42	-186
28	124	-37	-163
35	156	-47	-210
20	89	-57	-255
30	133	-36	-161
33	146	-38	-171
46	203	-50	-220
38	169	-48	-215
42	189	-47	-207
86	383	-44	-196
67	298	-75	-334
66	293	-66	-291
83	371	-56	-248
40	178	-30	-135
41	181	-66	-292
46	205	-89	-395
42	185	-47	-208
44	197	-46	-204
50	223	-54	-242
49	217	-51	-228
51	225	-52	-230
52	230	-54	-241
52	231	-53	-237
59	263	-62	-278
107	476	-62	-276

Transverse Shear Force in Girder-webs at the Abutments									
Bridge 227-Ф Vn = 1312 kN (295 kips)									
		West abut				East Abut.			
EQ	Spring Es values	North dir.		South dir.		North dir.		South dir.	
		kips	kN	kips	kN	kips	kN	kips	kN
Kobe975	47.9	51	227	-51	-225	55	243	-48	-215
	861.9	58	258	-56	-249	55	246	-39	-172
Mexico 975	47.9	39	174	-48	-214	52	229	-52	-230
	861.9	40	178	-48	-213	48	214	-54	-242
Olympia 975	47.9	51	226	-51	-228	53	235	-51	-227
	861.9	45	198	-54	-239	45	200	-43	-191
Peru 2475	47.9	72	322	-72	-320	70	313	-59	-262
	861.9	61	271	-53	-236	72	320	-64	-286
Chile 2475	47.9	76	338	-60	-266	72	320	-49	-219
	861.9	65	291	-52	-231	65	289	-54	-242

2. Bridge $512 / 19$

Footings - Transverse Shear Force Demands					
Bridge 512-Ф Vn=972 kN (219 kips)					
		Center bent - Middle-East Column			
EQ	Spring Es values (ksf)	West dir. Shear (kips)	West dir. Shear (kN)	East dir. Shear (kips)	East dir. Shear (kN)
Kobe 475	1000	57	252	-52	-231
	18000	48	214	-47	-207
	fixed	34	152	-37	-163
Mexico 475	6000	51	228	-49	-216
	18000	52	230	-47	-210
	fixed	37	165	-38	-170
Olympia 475	1000	54	239	-56	-251
	18000	45	201	-45	-198
	fixed	40	177	-32	-141
Chile 475	6000	51	226	-53	-237
	18000	51	226	-52	-233
	fixed	49	218	-40	-180
Peru 475	6000	52	229	-50	-223
	18000	50	224	-48	-215
	fixed	36	160	-60	-268
Kobe 975	6000	60	268	-58	-257
	18000	54	239	-53	-235
	fixed	49	218	-46	-205
Mexico 975	6000	53	237	-61	-270
	18000	51	225	-54	-239
	fixed	51	228	-32	-142
Olympia 975	6000	49	217	-65	-290
	18000	61	273	-51	-225
	fixed	34	152	-48	-214
Chile 2475	6000	62	276	-65	-288
	18000	65	291	-73	-326
	fixed	63	280	-63	-278
Peru 2475	6000	74	330	-79	-350
	18000	76	338	-83	-367
	fixed	79	350	-91	-404

Longitudinal Shear Force Demands			
Bridge 512-Ф Vn = 972 kN (219 kips)			
Center bent - Middle-East Column			
West dir. Shear (kips)	West dir. Shear (kN)	East dir. Shear (kips)	East dir. Shear (kN)
1	2	-1	-3
3	12	-2	-11
34	150	-36	-161
7	32	-1	-4
3	14	-4	-17
28	124	-37	-166
1	4	-1	-6
1	4	-9	-38
28	125	-41	-181
1	5	-1	-4
8	36	-1	-5
32	142	-41	-182
1	3	-1	-5
1	4	-1	-5
45	199	-58	-259
1	6	-12	-55
1	6	-2	-7
40	177	-31	-139
8	37	-7	-33
12	52	-9	-40
34	149	-39	-176
11	48	-2	-8
2	7	-8	-36
36	160	-39	-175
2	7	-23	-100
13	56	-15	-69
84	372	-64	-286
17	76	-10	-45
3	15	-13	-58
73	324	-82	-365

Transverse Shear Force in Girder-webs at the Abutments									
Bridge 512-Ф Vn = 2096 kN (471 kips)									
EQ		North abut				South Abut.			
	Spring Es values	West dir. Shear		East dir.		West dir.		East dir. Shear	
		kips	kN	kips	kN	kips	kN	kips	kN
Peru 2475	47.9	309	1372	-272	-1208	273	1213	-270	-1203
	861.9	304	1351	-282	-1254	261	1162	-269	-1198

3. Bridge $5 / 649$

Footings - Transverse Shear Force Demands						Longitudinal Shear Force Demands			
Bridge 649 with skew - Φ Vn = $1876 \mathrm{kN}(422 \mathrm{kips})$						Bridge 649 with skew - Φ Vn $=1876$ kN (422 kips)			
		South bent - Center Column (54-28)				South bent - Center Column (54-28)			
EQ	Spring Es values (ksf)	West dir. Shear (kips)	West dir. Shear (kN)	East dir. Shear (kips)	East dir. Shear (kN)	West dir. Shear (kips)	West dir. Shear (kN)	$\begin{array}{\|c\|} \hline \text { East dir. } \\ \text { Shear (kips) } \\ \hline \end{array}$	$\begin{gathered} \text { East dir. } \\ \text { Shear }(k N) \end{gathered}$
Kobe 475	6000	34	152	-24	-107	16	72	-13	-58
	18000	34	151	-21	-94	34	150	-23	-103
	fixed	42	188	-22	-96	21	93	-17	-77
Mexico 475	6000	27	122	-21	-95	19	85	-11	-49
	18000	24	108	-21	-91	30	135	-19	-85
	fixed	25	111	-37	-164	22	98	-14	-62
Olympia 475	6000	21	92	-29	-129	25	111	-8	-36
	18000	26	116	-26	-114	29	129	-31	-137
	fixed	31	136	-32	-141	12	53	-29	-130
Chile 475	6000	37	166	-42	-187	23	102	-22	-96
	18000	38	170	-33	-146	42	185	-77	-341
	fixed	45	198	-55	-245	42	184	-71	-341
Peru 475	6000	39	172	-41	-182	32	144	-21	-92
	18000	47	208	-30	-132	30	133	-25	-110
	fixed	46	206	-46	-203	54	238	-45	-201
Kobe 975	6000	45	199	-33	-145	28	126	-18	-80
	18000	42	189	-33	-147	28	122	-17	-75
	fixed	51	227	-35	-156	37	163	-34	-152
Mexico 975	6000	36	160	-29	-127	37	166	-20	-89
	18000	25	111	-37	-165	22	96	-32	-141
	fixed	25	112	-53	-237	50	223	-31	-136
Olympia 975	6000	34	153	-38	-170	27	122	-15	-64
	18000	48	215	-36	-161	25	109	-22	-98
	fixed	41	184	-48	-214	36	158	-39	-173
Chile 2475	6000	87	386	-91	-405	44	195	-55	-243
	18000	102	452	-60	-265	31	140	-57	-252
	fixed	89	395	-88	-391	106	471	-142	-632
Peru 2475	6000	83	371	-73	-322	57	253	-63	-281
	18000	81	360	-89	-396	56	251	-60	-265
	fixed	102	452	-83	-369	122	544	-91	-406

Transverse Shear Force in Girder-webs at the Abutments
Bridge 649-Ф Vn = 2041 kN (548.76 kips)

		North abut				South Abut.			
EQ	Spring Es values	West dir. Shear		East dir.		West dir.		East dir. Shear	
		kips	kN	kips	kN	kips	kN	kips	kN
Kobe975	47.9	32	144	-23	-102	41	182	-32	-143
	861.9	30	132	-22	-100	38	171	-31	-138
Mexico 975	47.9	20	91	-42	-186	18	80	-27	-118
	861.9	22	97	-40	-177	18	79	-27	-120
Olympia 975	47.9	33	146	-29	-131	33	148	-32	-143
	861.9	30	132	-27	-121	29	128	-29	-130
Peru 2475	47.9	34	149	-32	-141	37	162	-43	-192
	861.9	29	131	-27	-120	33	148	-38	-168
Chile 2475	47.9	35	156	-27	-120	38	167	-32	-143
	861.9	35	156	-27	-120	38	167	-32	-143

