
i

A PHYSICAL MODEL OF DRY RAVEL MOVEMENT

By

XIANGYANG FU

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING

WASHINGTON STATE UNIVERSITY

College of Engineering and Architecture

DECEMBER 2004

ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of XIANGYANG FU
 find it satisfactory and recommend that it be accepted.

Chair

iii

ACKNOWLEDGMENTS

I would like to thank all the people who have given me advice and helped me with

my degree. My sincere appreciation to my major professor Dr. Joan Q. Wu for her guidance,

patience, and support throughout my graduate program at Washington State University. I must

thank Dr. Peter R. Robichaud and Dr. Sunil Sharma, without their support and invaluable advice,

I would not have completed the research. I would like to acknowledge the staff in the Forest Fire

Laboratory, Pacific Southwest Research Station, USDA Forest Service, Riverside, CA. Peter

Wohlgemuth provided useful insights into the real world application of this research, and Lynne

Casal provided the topographic data of the San Dimas Experimental Forest. I am grateful to Mr.

Roger Nelson for his advice and assistant in developing the dry ravel model program. Funding

for this project was in part provided by the U.S. Department of Agriculture, Forest Service,

Rocky Mountain Research Station; and the U.S. Department of Interior, U.S. Department of

Agriculture, Forest Service Joint Fire Science Program through a Research Join Venture

Agreement.

Especially, I would like to acknowledge the assistance of my lovely wife, Jian Ling, to

prepare the manuscript for the thesis and publication during the last years. It was her love

encouraged me overcome all the difficulty of the research and finally complete my thesis.

iv

A PHYSICAL MODEL OF DRY RAVEL MOVEMENT

Abstract

by Xiangyang Fu, M.S.
Washington State University

December 2004

Chair: Joan Q. Wu

Dry ravel is a gravity-induced downslope surface movement of soil grains, aggregates, and

rock materials that commonly occurs on steep hillslopes after disturbances such as wildfires. A

quantitative analysis and model of dry ravel is needed to understand the behavior and effects of

dry ravel movement. In this study, a physical-based model is developed based on classic

mechanical laws and particle flow theory. The model predicts source locations, movement path,

and deposition areas of dry ravel produced after wildfires. The short-term dry ravel process is

computed with theoretical calculations, and the long-term effects are described with both

theoretical calculations and empirical functional characterization. The sensitivity of the input

coefficients, and provide a suitable range for these input coefficients are assessed. To calibrate

and validate the model, the estimation of dry ravel from a wildfire area in the San Dimas

Experimental Forest in southern California was compared with experimental results. The

comparison shows that the model is suitable for analyzing dry ravel on steep slope, with easily-

weathered parent material.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS... iii

ABSTRACT... iv

TABLE OF CONTENTS... v

LIST OF TABLES... vii

LIST OF FIGURES.. viii

CHAPTERS

1. INTRODUCTION... 1

1.1 Overview... 1

1.2 Relative Research.. 2

1.3 Objectives.. 3

2. METHODS.. 4

2.1 Model Conceptualization... 4

2.2 Assumptions... 7

2.3 Sources of Flowing Soil... 10

2.4 Governing Equations of Mass-flux Velocity and Mass in a Model Cell......... 16

2.4.1 Soil particles flowing in through the top boundary........................... 18

2.4.2 Soil particles flowing in through the side boundary 21

2.5 Long-term Fire Effects of Dry Ravel.. 22

2.6 Model Initialization and Boundary Conditions... 23

2.7 Code Development.. 24

vi

2.8 Model Evaluation.. 27

2.8.1 A previous laboratory experiments.. 27

2.8.2 A representative setting.. 28

2.8.3 Model application to the San Dimas Experimental Forest.................. 31

3. RESULTS AND DISCUSSIONS... 33

3.1 Sensitivity Analysis of Model Parameters.. 33

3.1.1 Vegetation size and density.. 33

3.1.2 Topography... 35

3.1.3 Static friction angle... 38

3.1.4 Fire impact depth.. 40

3.1.5 Kinetic friction angle.. 42

3.1.6 Cell size.. 45

3.2 Model Evaluation for a Representative Setting... 47

3.3 Model Evaluation for the San Dimas Experimental Forest................................ 50

3.4 Long Term Dry Ravel Prediction .. 55

3.5 Future Efforts... 55

4. SUMMARY.. 57

REFERENCES.. 58

APPENDICES... 60

A. Mass-flux Model Code ... 60

B. Statistical Analysis .. 96

vii

LIST OF TABLES

Table 1. The model inputs and the range of the input factors... 24

Table 2. Characteristics of the four small watersheds at the San Dimas Experimental

Forest.. 31

Table 3. The variation of the volume and mass of the dry ravel source held by plant stems

with different slope angles and soil static friction angles................................. 37

Table 4. Comparison of model prediction and field observation..................................... 50

Table 5. Observed and predicted means and standard deviations of dry ravel production

.. 52

Table 6. Observed and predicted means and standard deviations of dry ravel deposition

for individual collector measuring 30-cm wide ... 52

viii

LIST OF FIGURES

Figure 1. Conceptual model domain with a channel system.. 5

Figure 2. Model simplification of mass flux distribution.. 9

Figure 3. Two types of dry ravel sources... 12

Figure 4. Sketch of dry ravel held by plant stems... 13

Figure 5. Representative volume of dry ravel held by plant stems (3D)........................... 14

Figure 6. Representative volume of dry ravel held by plant stems (2D)........................... 15

Figure 7. Mass flux flow in top and side boundaries.. 17

Figure 8. Distribution of mass flux.. 20

Figure 9. Flowchart for the code of the mass-flux model... 26

Figure 10. Topography of the representative setting... 30

Figure 11. Relationship of the mass of dry ravel held by vegetation stems and the

vegetation size... 34

Figure 12. Relationship of the mass of dry ravel held by vegetation stems and slope

angle... 36

Figure 13. Model prediction of dry ravel production and deposition with static

friction angle.. 39

Figure 14. Model prediction of dry ravel production and deposition with fire impact

depth.. 41

Figure 15. Model prediction of dry ravel production and deposition with kinetic friction

angle... 44

Figure 16. Model prediction of dry ravel production and deposition with model cell

ix

size.. 46

Figure 17. Movement of dry ravel... 48

Figure 18. The deposition of dry ravel in representative setting.. 49

Figure 19. Experimental results and model simulation of long-term effects of dry ravel... 54

1

 CHAPTER ONE

INTRODUCTION

1.1. Overview

Dry ravel is a gravity-induced downslope surface movement of soil grains, aggregates, and rock

materials [Anderson et al., 1959]. It is a common form of hillslope erosion in semiarid regions with

steep topography [Wells, 1981]. When the land slope angle is greater than the kinetic friction angle

of soil particles, the soil particles will move (roll, slide, and bounce) downslope due to gravity [Rice,

1982]. Vegetation on the slope tends to obstruct the movement of the soil particles and can retain

a portion of these soil particles [Rice, 1982]. In most cases, soil particles held by vegetation on a

hillslope form the major source of dry ravel [Gabet, 2003].

After a wildfire, soil on a slope becomes dry and friable and soil particles initially held behind

the vegetation will likely flow downslope if a significant portion of the vegetation is removed due

to the fire [Wells, 1985]. Often, such downslope movement of dry ravel can also be activated by

other natural disturbances such as wind, earthquakes, or animal activities. Dry ravel tends to occur

over a long period of time (e.g., several months or one year before the vegetation regrowth) and

across large areas where wildfires frequently occur [Krammes, 1960]. Although the majority of dry

ravel movement occurs immediately after wildfires, the remnant process will continue until new

vegetation is established. Over a long time period, the individual particles collide and press each

other, and their movement is largely related to each other, resembling the behavior of a system.

Therefore, the complex dynamic processes of dry ravel may be viewed and described as the

mechanical behavior of a system comprised of a collection of irregular shaped soil particles.

2

1.2. Related Research

Many studies have been conducted to gain a better understanding of dry ravel processes. Most

of these studies, however, are focused on qualitative, rather than quantitative, analysis of dry ravel.

Anderson et al. [1959] conducted experiments to investigate the type, amount, and source of

downslope movement of debris in the Los Angeles River Watershed. They found that the main

source of the debris was from the south-facing slopes along the mountain front. They also observed

more debris deposition during the dry season than during the wet season. Krammes [1960] performed

an experiment to measure the amount of debris after a wildfire and found that most of the debris was

produced immediately after the fire and that the amount of postfire debris was much larger than the

amount of prefire debris. Wells [1981] investigated the causes of dry ravel occurrence in the

mountainous area of Southern California. He identified four important factors that combine to

facilitate dry ravel processes: steep slopes; easily-weathered parent material; highly flammable

vegetation; and the area’s Mediterranean climate typified by short wet winters and long dry summers.

He concluded that wildfires have played a significant role in sediment movement in the mountains

of Southern California.

Little effort has been made to quantify the dry ravel movement. Cundall and Stack [1979]

developed a discrete numerical model to calculate the movement of particles of granular materials.

The model was primarily based on Newton’s second law and a force-displacement law, and could

be used to calculate the velocity, position and interaction force of each individual particle of a

granular material. The model is useful for improving the understanding of dry ravel, yet the

applicability of the model has been limited primarily because field conditions often involve

extremely large quantities of soil particles and the calculation of the velocity and position of each

3

individual particle demands impractically long computer run time.

Gabet [2003] derived equations for calculating the downslope mass flux of dry ravel and

conducted flume experiments and field measurements to evaluate the derived equations. These

equations include most of the key factors controlling dry ravel, such as the slope angle, coefficient

of kinetic friction, amount of soil available to move and the characteristics of the disturbances(e.g.,

animal activities). Many other important conditions and factors, however, were not explicitly

represented, (e.g., the distribution of the initial velocities and the specific dry ravel sources). Instead,

these conditions were described using a single parameter, which was assumed to be invariant with

time and space. As the parameter has no explicit physical meaning and is difficult to determine, this

method is therefore of limited applicability.

1.3. Objectives

The main goal of this research is to develop a physical model for field-scale dry ravel

movement. The specific objectives are: (1) to develop a physical model that simulates the processes

of dry ravel movement after a wildfire within a typical watershed under natural topographic, soil and

vegetation conditions; and, (2) to evaluate the model performance by testing its adequacy under a

conceptual setting; and (3) to further evaluate and refine the model by testing it using field

experimental data.

4

CHAPTER TWO

METHODS

During the process of dry ravel, soil particles will translate, rotate, and collide with each other

while moving downslope. Mathematically, it is difficult to obtain the exact solution of these

mechanical movements due to the difficulties in accounting for (1) the dynamic and complicated

interactions among the large number of individual soil particles involved in the process, and (2) the

dynamic and complex ambient field and environmental conditions that can impact dry ravel. To

simplify the problem, the model in this study will calculate the quantity of soil moving downslope

as a whole and will not track the exact movements of individual soil particles. The simulation of

continuous propagation of the soil flux will depend largely on the topography within the model

domain, surface conditions (e.g., densely populated with vegetation versus bare soil), and the

mechanical properties of the soil (e.g., the kinetic friction coefficient). The model will hereafter be

referred to as a mass-flux model.

2.1. Model Conceptualization

In the mass-flux model, dry ravel movements are treated as a series of mass fluxes. The model

domain is divided into isometric square cells for calculation (Figure 1). The laws of conservation of

mass, momentum and energy are used to govern the magnitude and direction of the mass fluxes.

5

a) b)

Figure 1. Conceptual model domain with a channel system of a) the actual watershed, b)
The represented model domain with isometric cells.

6

After a wildfire, some cells within the model domain will become completely burned. Soil

particles in these cells are detached from the original position and move downslope. The occurrence

of soil particles being detached from a single cell due to one wildfire is defined as a ravel event, and

the burned cells are defined as fire-impact cells. We also define the fire-impact depth as the depth

within which the roots of the vegetation will be fully consumed by fire, therefore soil particles within

that layer available to move. The location of the fire-impact cells and fire-impact depth are required

as user input.

In the mass-flux model, we consider two types of ravel events: one is short-term ravel event, and

the other is long-term ravel event. Short-term ravel events occur within one day immediately after

a wildfire, in these cases the dry ravel primarily consists of the soil particles originally held by the

vegetation stems and the root systems of vegetation above the fire-impact depth. However, not all

of the soil particles held by the root systems of the vegetation are detached during and immediately

after the fire. Part of them may remain in place while becoming unstable. During a long period after

a wildfire (e.g., several months to one year before the vegetation is re-established), these remaining

soil particles are sporadically mobilized by natural disturbances, such as wind and animal activities,

thereby producing long-term ravel events.

For each short-term ravel event, soil particles detached from the original fire-impact cell will be

distributed to one, or at most, two neighboring cells depending on the elevation of the four nodes of

the cell. The soil mass flux entering and leaving a cell are called inflow and outflow velocities. Each

mass flux from an upslope cell will be again distributed to one, or at most two, neighboring cells,

and this process is repeated until there is no new mass flux produced, indicating that all dry ravel has

been deposited to some new locations within, or has reached, the boundary of the model domain.

7

After all of the ravel events are evaluated, the short-term simulation of dry ravel is completed.

For the long-term ravel events, an empirical function is used to estimate the temporal variation of

the source of dry ravel, and subsequently the dry ravel movement with time.

The production, deposition and net mass change of dry ravel in each cell and the paths of the

mass flux across the model domain are the main outputs of the model. The cumulative amount of

dry ravel moving out of the boundary of the model domain is also generated for both short- and long-

term ravel events.

2.2. Assumptions

The following assumptions are made in order to improve the computation efficiency of the mass-

flux model. Whenever an assumption may be in violation of the general field conditions or may lead

to serious errors, approaches to reducing potential errors are suggested and discussed.

Within each cell in the model domain, a planar surface is assumed and the slope angle and soil

bulk density are constants. This assumption may become inadequate when the size of the model cells

becomes large (e.g., 20 m) and the change in surface elevation within a individual cell is significant.

To reduce the model errors, the user should use small cell sizes (ranging from 1 to 10 m depending

on site-specific topographic conditions) although the smaller cell size will lead to increased total

number of cells and computation time. Reducing the size of the model domain when using small size

of cells is a compromise to avoid overly long computation time while assuring adequate accuracy.

The soil flux across a boundary of an individual cell is assumed to be constant along the

boundary, and the resultant velocity acts on the center of the boundary (Figure 2). In reality, the soil

flux varies along the boundary and the resultant velocity does not necessarily act on the center point.

8

This assumption is regarded reasonable when the size of the model cells is much smaller compared

to that of the whole model domain (e.g., less than 1% in size ratio), in which case the variation of

velocity along a cell’s boundary is typically insignificant.

Model Cell Model Cell

Arbitary Distribution of Mass Flux Simplified Distribution of Mass Flux

Figure 2. Model simplification of mass flux distribution.

9

Mass in

Mass out
Mass out

Mass in

Mass in

Mass inMass in

Mass in

10

2.3. Sources of Flowing Soil

Two major sources of dry ravel are considered: the soil particles initially held by the vegetation

stems, and those held by fine roots of the vegetation (Figure 3). These soil particles become mobile

after the vegetation is consumed by fire. For dry ravel held by stems in each cell (Figure 4), we can

determine the volume V using Equations (1).

(1)

 (1a)

 (1b)

where Vs (m
3) is the volume of the tetrahedron shaped pile of dry ravel held by stems (Figure 4 and

5), D (m) is the diameter of the plants, (m) is the height of the tetrahedron (Figure 6),

Hbs (m) is the height of the base of the tetrahedron, h (m) is the height of the side (assumed vertical)

of the tetrahedron that is in direct contact with the vegetation, " (°) is the slope angle which is

defined as the angle between the surface of a cell and the horizontal plane, and ((°) is the static

friction angle, the angle between the horizontal and the surface slope of the pile of dry ravel formed

by free falling soil particles.

The second dry ravel source comprises soil particles within the fire-impact depth. The total

volume of this portion of the dry ravel depends on the extent and thickness of the fine roots

consumed by the fire. In the mass-flux model, the fire-impact depth is assumed the same for all fire-

impact cells (Figure 6). The volume of dry ravel held by fine roots in each cell can be determined

11

by the product of the fire-impact depth and the surface area of the cell.

The total mass of dry ravel produced in each cell may be determined by Equation (2) and then

can be used with the governing equations for dry ravel transport as presented in the following

section.

(2)

where M (g) is the mass of dry ravel produced in each cell, and D (g m-3) is the bulk density of the

soil, and V (m3) is the volume of dry ravel produced in each cell.

The velocity of the mass flux flowing out of the original cell depends on the coefficient of kinetic

friction $, the size and the slope of cell, and can be determined by Equations (3) and (4)

(3)

 (3a)

(4)

 (4a)

where Vy (m s-1) is the surface velocity in y-direction, Vx (m s-1) is the surface velocity in x-direction,

Y is the cell size in y-direction, ax (m s-2) and ay (m s-2) are the accelerations in x- and y-directions,

respectively, g (m s-2) is the gravitational acceleration, " (°) is the slope angle, "x (°) and "y (°) are

the slope angles in x- and y- directions, respectively, and $ (°) is the kinetic friction angle of the soil.

Horizontal Surface

Plant Stem Slope SurfaceSoil Particles

Root Layer B
urned by wildfire

s

Fire-impact Depth

Soil Particles

Figure 3. Two types of dry ravel sources , the soil particles held by plant stems and those
held by fine plant roots.

12

Horizontal Surface

Slope Surface

Soil Particles

PlantStem

α

Figure 4. Sketch of dry ravel held by plant stems.

13

D/2

D/2

γ

γ

h

Hbs

A

E

D

C

B F

H

Figure 5. Representative volume of dry ravel held by plant stems. α is slope angle, γ is the
angle of repose, D (m) is the diameter of plant stems, h (m) is the height of dry ravel
accumulated behind plant stems.

14

α

h

α

Hbs
H

Plant Stem Slope Surface

Horizontal Surface

Root L
ayer B

urned by W
ildfire

s

Fire-
impact

 Depthα−γ

90+γ

α

γ

Figure 6. Representative volume of dry ravel held by plant stems (2D). α is slope angle, γ is
the soil static friction angle, D (m) is the diameter of plant stems, h (m) is the height of dry
ravel accumulated behind plant stems.

 15

16

2.4. Governing Equations of Mass-flux Velocity and Mass in a Model Cell

For each individual cell within the model domain, the velocity of the outflowing mass flux can

be determined by the inflow velocities, slope angle, coefficient of kinetic friction and vegetation

density of the cell. With the assumptions specified in the earlier section, the following governing

equations were developed to calculate the change in mass and velocities of mass flux in each model

cell for two scenarios. The two scenarios evaluated are: 1) soil particles flowing into the cell from

the top and 2) soil particles flowing into the cell from the side (Figure 7).

Model Cell

Inflow of Mass Flux
at Side Boundary

Outflow of Mass Flux
at Side Boundary

Outflow of Mass Flux
at Lower Boundary

Outflow of Mass Flux
at Side Boundary

Outflow of Mass Flux
at Lower Boundary

Inflow of Mass Flux
at Upper Boundary

Slope

Model Cell

Slope

a) b)

Figure 7. Mass flux entering a) the top and b) side boundaries. Each inflow mass flux is
divided into at most two mass fluxes depending on cell topography.

17

18

2.4.1. Soil particles flowing in through the top boundary

The first scenario evaluated is the case in which the soil particles are only flowing into a cell

through the top boundary. In this case, the outflow velocities across the bottom boundary (Figure 7A)

can be described by:

(5)

(6)

where vxout (m s-1) and vyout (m s-1) are the outflow velocities and vxin (m s-1) and vyin (m s-1) are the

inflow velocities in the x- and y-directions, respectively. The accelerations in the x- and y-directions,

ax (m s-2)and ay (m s-2), are defined as

 (5a)

 (6a)

The time, t, taken by the soil particles to flow through the cell is expressed as

 (7)

where Y (m) is the cell size in y-direction. The outflow velocities on the side boundary are given by:

(8)

(9)

19

 (10)

where the variables are as previously defined.

With the assumption that the resultant velocities act at the centers of the boundaries (Figure 8),

the mass Myout (g) flowing through the lower boundary is determined by Equation (11)

(11)

 (11a)

where Dx (m) is the distance between the center of outflow and the center of the cell’s lower

boundary, and X (m) is the cell size in x-direction. The mass Mxout flowing through the side boundary

is determined by Equation (12)

(12)

Dx

X

Mass Distribution of Inflow

Mass Distribution of Outflow

M
as

s
th

ro
ug

h
Si

de

Mass through Bottom

D
x

Mass Distribution of Inflow

x

y

Figure 8. Distribution of mass flux. a) actual situation, b) an model representation.

20

21

2.4.2. Soil particles flowing in through the side boundary

The second scenario evaluated is the case in which the soil particles are only flowing into a cell

through the side boundaries (Figure 7b). Under this condition, the outflow velocities on the lower

boundary are determined by:

 (13)

(14)

 (15)

The outflow velocities on the side boundary are determined by:

(16)

(17)

 (18)

The mass flowing through the lower boundary is determined by:

(19)

 (19a)

where Dx (m) is the distance between the center of the soil flow and the center of the cell’s lower

22

boundary. The mass flowing through the side boundary is determined by Equation (20).

 (20)

It should be noted that Equation (5) through (20) were developed for the cases in which

acceleration in the y-direction is greater than the acceleration in the x-direction ("y > "x). If "y < "x,

Equation (5) through (20) can be modified by simply interchanging the velocities in the x- and y-

directions to properly describe the actual conditions.

2.5. Long-term Fire Effects of Dry Ravel

In order to compute the production and deposition of dry ravel for a longer period of time (e.g.,

several months to one year before the vegetation is re-established), an empirical function was used

according to the field observations,

(21)

where ML (g) is the accumulated mass of dry ravel produced during time t, M0 (g) is the short-term

model results of dry ravel, t (days) is time after the wildfire, a and b are empirical coefficients

determined from a regression analysis of experimental data. The coefficient, a, is the ratio of the

difference between the amount of long-term and short-term dry ravel production, and the coefficient,

b, is a decay coefficient with a dimension of [T-1].

23

2.6. Model Initialization and Boundary Conditions

An important part of the model initialization is to define the model domain. Digital Elevation

Models (DEMs) can be processed in Geographic Information System (GIS) software to obtain a

discrete grid system. With the discrete grid system, the topography and boundary of the model

domain and the detailed topographic information of each model cell can be explicitly defined.

Other initial information, including the density and the average diameter of the vegetation stems

(dependent on vegetation type and conditions), the fire-impact depth (dependent on the fire severity

and vegetation), the angle of repose(dependent on soil properties), and the coefficient of kinetic

friction (dependent on both the soil and surface conditions). All of this information can be obtained

from field investigations and the literature. In this research, the results of laboratory experiments and

field observation are used to estimate the information [Wohlgemuth, 2004 unpublished data]. All of

the input parameters are regarded as spatially variant, and depending on the available data, the user

may provide constant average values for the entire model domain or use fully distributed values.

Here, we used the constant average values for the entire model domain. According to the fire severity

(which is one of the most important factors to evaluate after a fire), the fire-impact depth (frequently

ranging from 0–15 mm) can also be estimated by the user. The coefficient of kinetic friction, a

critical input to the model, can be obtained from the literature or through laboratory experiments.

Here the average slope angle of the entire model domain is used to approximate the angle of kinetic

friction in this case.

Typically, all the boundaries are no-flow boundary conditions. The exception to that is the

topographically low (or the lower) boundary which is set as a time-variant flow boundary allowing

dry ravel to leave the model domain.

24

2.7. Code Development

A computer program for the mass-flux model was developed in Microsoft® Visual Studio® .net

(version 2003). The program requires two input files. The first file contains the following input

parameters: general simulation information (simulation time (s), size of grid cell (m)); soil ‘s kinetic

friction coefficient; vegetation characteristics (vegetation density, average diameter of vegetation

stem); fire severity (location of impact cells, fire-impact depth). The second file contains the detailed

topographic information with elevations for each node of the model cells. Table 1 shows the

parameters needed in the first input file, including the angle of repose, kinetic friction angle,

diameter of plant stems, vegetation density, cell size, and simulation time. The values in Table 1

were estimated for the dry ravel applicable in Southern California. The input parameters need to be

adjusted according to the characteristics of the target domain.

Table 1. The model inputs and the range of the input factors

Fire-

impact

Depth

Static Friction

Angle

Kinetic Friction

Angle

Diameter of

Plant Stems

Vegetation

Density
Cell Size

Simulation

Time

Range
0-15

mm
29°-34° Slope angle±5° 5-25 cm

1-3

stems/m 2 1-10 m 1day-1year

Model

Inputs

0-1

mm
30°-34°

Average slope

angle
5 cm 1 stems/m2 1,2,5,10

m
1 day

25

The program uses an iterative algorithm to represent the dynamic behavior of dry ravel

movement. The iterative algorithm requires the repeated application of the governing equations (1)

to (20) to calculate the dry ravel mass and varying velocities for each fire-impact cell and the

subsequent distribution of the soil fluxes. Accordingly, the production, deposition, and the net

changes in dry ravel mass in each cell are also calculated. A flow chart illustrating the framework

of the model and the major algorithms is shown in Figure 9.

For a short-term simulation, each of the fire-impact cells is evaluated sequentially. At the first-

level of the iteration, the governing equations (1) to (4) are applied to a fire-impact cell to calculate

the dry ravel source. One, or at most two, mass fluxes entering the downslope neighboring cell(s)

are produced. The resultant mass fluxes are then evaluated by the second-level iterative algorithm

with different governing equations (5) to (20), and another group of mass fluxes entering more

downslope cells are produced. These mass fluxes are further evaluated with the same, second-level

iteration algorithm, and this iterative process is repeated until there is no new mass flux produced.

When this iterative process terminates, the mass fluxes of dry ravel produced from the original

source cell are fully simulated and the program proceeds to the computation for the second fire-

impact cell. Similarly, the first- and second-level iterations will be executed and this procedure is

repeated until all the fire-impact cells have been evaluated. After the short-term simulation is

complete, the long-term simulation of dry ravel may be performed depending on the user’s choice.

The long-term simulation is based on the short-term results and a user-parameterized function,

Equation (21), for long-term dry ravel production.

m=0; n=0

Start

Input data

Initialization

i=0; j=0

Calculate dry ravel
output of cell[i][j]

update matrix of
velocity and mass

m=number
of row

n=number
of column

n=n+1 m=m+1

i=number
of row

j=number
of column

j=j+1 i=i+1

Calculate dry ravel
output of cell[m][n]

update matrix of
velocity and mass

mass of out
flow is zero

Output

End

Figure 9. Flowchart for the code of the mass-flux model.

26

27

The computer program generates an output file containing (i) the production, deposition, and net

changes in dry ravel mass for each cell in the model domain, (ii) cell numbers representing the paths

of mass fluxes, and (iii) the total mass leaving the boundary of the model domain, for a short-term

simulation. Additionally, the program will generate a series of the deposition of dry ravel as a

function of time after the fire as specified by user for a long-term simulation.

2.8. Model Evaluation

2.8.1. A previous laboratory experiment

A previous laboratory experiment was conducted to better understand the mechanisms that

govern dry ravel by USDA Forest Service Pacific Southwest Research Station [Wohlgemuth, 2004

unpublished data]. Part results of the experiment are used here as the value of the model input

parameters.

In this laboratory experiment, the effects of soil texture, slope angle, and vegetation density on

dry soil movement were evaluated using a tilting table that consisted of a soil tray that was 1 m × 1

m in area and 5 cm deep and a supporting frame pivoted on upright posts, a cable and pulley system,

and a gutter fastened to the downhill end of the tray to catch the soil material as it rolled off the tray.

Five different soil materials were used in this study and all came from the surface soil layer of the

burn sites in the Southern California mountains. Among these five soil materials, one was obtained

from the USDA Forest Service San Dimas Experiment Forest (SDEF), the site where the model

predictions are evaluated with the field observation.

Soil properties, including the particle size distribution and dry bulk density, were measured first.

The static friction angle, which is the degree of the table inclination at which the soil started to move,

28

was then determined. The angle of repose and dry soil bulk density are inputs for estimating the dry

ravel source in the mass-flux model.

2.8.2. A representative setting

The performance of the mass-flux dry ravel model was first assessed using a representative

setting. A 1000 m × 1500 m rectangular model domain near the city of Glendora and vicinity in the

Riverside County was selected and clipped from the DEM (Figure 10). This model domain was

intended to be representative of the mountainous regions of Southern California prone to wildfire

and dry ravel. The topographic information used here was acquired from the USGS website

http://data.geocomm.com/catalog/US/61069/group4-3.html.

Simple spatial analysis was performed on the DEM data and the results indicated that the slopes

within the model domain were typically steep, with slope angle normally exceeding 45°. No rainfall

events were considered, and dry ravel was assumed to be the primary erosion process occurring

during the simulation time. The model domain was divided into 10 m × 10 m cells, producing a total

of 15,000 cells. Across the domain, chaparral was assumed to be the dominant vegetation, following

Wells [1981]. The density of vegetation was assumed to be one plant m-2 and the average diameter

of an individual plant was set to 10 cm.

For the first analysis, it was assumed that all the cells were burned by fire. For this analysis, the

model predicted the production, the paths, and the deposition of dry ravel. Based on the output

results, a figure showing the deposition in each cell is used to assessed the model prediction. For the

second analysis, twelve cells that were randomly chosen across the domain were picked out as the

source cells. The complete processes of detachment of dry ravel from these original source cells,

http://data.geocomm.com/catalog/US/61069/group4-3.html.

29

movement downslope, and deposition in the valley and flat areas were simulated. The source cells

and the paths of dry ravel are plotted to qualitatively evaluate the model prediction of movement of

dry ravel.

Figure 10. Topography of the representative setting, Riverside County, California.

30

0

900

700

500

300

100
Easti

ng (m
)

200

800
600

400

1000

1400
1200

Northing (m)

1500

3000

2500

2000

Elevation (m)

31

2.8.3. Model application to the San Dimas Experimental Forest

As mentioned earlier, the Riverside Fire Laboratory Pacific Southwest Research Station, USDA

Forest Service has been continually monitoring surface erosion processes in the SDEF for over seven

years (1996-2003) [Wohlgemuth, 2004 unpublished data]. Like many other areas in the Southern

California mountains, the SDEF is characterized by a Mediterranean climate, steep slopes frequently

exceeding 100%, and flammable chaparral vegetation cover, and easily weathered parent bedrock.

Table 2. Characteristics of the four small watersheds at the SDEFa

Watershed Nr. Position

Average

Slope (%)

Channel

Length (m) Vegetation

Fire

Characteristics

0507 117°45N56.19OW

34°12N13.70ON

97.2 782 Grass with sparse

sage and scrub

Wildfire

(Williams Fire)

0508 117°45N56.19OW

34°12N14.49ON

106.1 739 Woody chaparral Wildfire

0542 117°45N27.08OW

34°12N33.24ON

105.7 831 Woody chaparral Wildfire

0560 117°45N50.35OW

34°12N43.96ON

106.5 446 Woody chaparral Prescribed fire

aSoil texture at all four watersheds is loamy sand and the underlain bedrock is Precambrian crystalline.

 The monitoring site at the SDEF is centered on 34°12' 30"N and 117° 45' 45"W, covering about

one square mile. Four small watersheds (1–2 ha in size, Table 2) were monitored for surface erosion.

In each of these four watersheds, 25 sediment collectors (each with a 30 cm rectangular aperture)

were installed along fall line transects (perpendicular to slope contours) and another 50 were

installed along the hillslope and channel interfaces. The collectors catch all types of debris moving

down the slope. Yet the debris captured during the summer time of the field monitoring mainly

comprises dry ravel because contribution from other sources (e.g., water erosion, soil creep) during

this season is typically negligible [Anderson et al., 1959] and any rain-induced erosion would be

32

separated in the analysis [Wohlgemuth, personal communication]. The collectors were examined

periodically and samples were taken to the Riverside Fire Laboratory, Riverside, CA for weighing

and analysis of the contents.

Evaluations of the sensitivity of the input parameters were conducted for a range of values for

watershed 0508. The mass-flux model was applied to all four watersheds at the SDEF monitoring

site with the fire-impact depth (FDI), the most sensitive parameters in the mass-flux model,

calibrated first for dry ravel production on hillslopes (mass of dry ravel per unit area). Comparison

was then made between observed and predicted dry ravel deposition along the valley (mass per unit

length of valley) using analysis of variance (ANOVA) in SAS (SAS Institute, 2004). Finally, the

long-term accumulated dry ravel produced for a specific watershed (Watershed 0508) was evaluated.

33

CHAPTER THREE

RESULTS AND DISCUSSIONS

3.1. Sensitivity Analysis of Model Parameters

3.1.1. Vegetation size and density

The vegetation size and density are two important factors affecting the amount of dry ravel held

behind the vegetation stems (Figure 11). The dry ravel source mass increased cubically with the

increasing diameter of the vegetation stem, and linearly with the vegetation density. Theoretically,

there is no limitation on the dry ravel source mass when the vegetation size increases. In reality,

however, any specific vegetation has its specific ranges of size and density (in SDEF, the size and

density of chaparral are 5-20 cm and 1-3 stem m-2, respectively). Thus, the dry ravel source behind

a vegetation stem is physically limited by the vegetation size and density. Equation (1) can be used

to determine this limitation according to the vegetation factors specified by the users.

F igur e 11. R elationship of the mass of dr y r avel held by vegetation stems and the
vegetation size. T he differ ent cur ves r epr esent the differ ent vegetation density.
Soil kinetic fr iction angle and the slope angle ar e taken as 30o and 60o, r espectively.

V egetation stem diameter (cm)

6 8 10 12 14 16 18 20

M
as

s
of

 d
ry

 r
av

el
 h

el
d

 b
y

ve
ge

ta
ti

on
 s

te
m

s
(g

)

0

100

200

300

400

500

600

One plant m-2

T wo plants m-2

T hree plants m-2

34

35

3.1.2. Topography

For the mass-flux model, the topography within the model domain is one of the most important

factors that affect the amount of dry ravel. The amount of dry ravel source held by vegetation stems

decreases with an increase in slope angle (Figure 12). From Equation (1), the volume of dry ravel

held by vegetation stems depends on three factors, the diameter of the vegetation stem, the height

of the tetrahedron of dry ravel (Equation 1b), and the height of the base of the tetrahedron (Equation

1a) (Figure 5). The diameter of the vegetation stems is assumed to be a constant for all cells, while

the other two factors decrease with the increase in the slope angle. Hence, the volume of dry ravel

held by the vegetation stems decreases with increasing slope angle.

When the slope angle becomes close to the soil kinetic friction angle, the dry ravel mass held by

a vegetation stem increases dramatically and tends to be unlimited. In such a situation, the height of

the tetrahedron base increases greatly and approaches infinity (refer to Equation (1) and Table 3).

In reality, however, an upper limit of the dry ravel must be set due to the fact of an existing adjacent,

uphill vegetation, and the limited source of dry ravel. This limitation can be readily estimated

according to the vegetation density and model grid size. For example, if the vegetation density is 1

stem m-2, the upper limit of the height of the dry ravel tetrahedron base would be 1 m. Consequently,

the upper limit of the dry ravel held by a vegetation stem would be 186 g m-2 (refer to Equation (1)).

37

Table 3. The variation of the volume and mass of the dry ravel source held by plant stems with
different slope angles and soil static friction angles

Slope Angle,

" (°)

Soil Static

Friction Angle,

((°)

Height of Side

of Tetrahedron,

h (m)

Height of Base,

Hbs (m)

Height of

Tetrahedron, H

(m)

Volume of

Tetrahedron, V

(cm3)

Mass of Dry

Ravel Held by

Stem, M (g)

31 30 1.4 71.6 1.2 74 96

35 30 1.4 14.3 1.2 14 18

40 30 1.4 7.2 1.1 7 9

45 30 1.4 4.8 1.0 4 5

50 30 1.4 3.7 0.9 3 4

55 30 1.4 3.0 0.8 2 3

60 30 1.4 2.5 0.7 2 2

32 31 1.5 73.8 1.3 78 102

35 31 1.5 18.5 1.2 19 25

40 31 1.5 8.2 1.2 8 10

45 31 1.5 5.3 1.1 5 6

50 31 1.5 4.0 1.0 3 4

55 31 1.5 3.2 0.9 2 3

60 31 1.5 2.7 0.8 2 2

33 32 1.6 75.9 1.3 83 108

35 32 1.6 25.3 1.3 27 35

40 32 1.6 9.5 1.2 9 12

45 32 1.6 5.9 1.1 5 7

50 32 1.6 4.3 1.0 4 5

55 32 1.6 3.4 0.9 3 3

60 32 1.6 2.8 0.8 2 2

34 33 1.6 78.0 1.3 88 114

35 33 1.6 39.0 1.3 43 56

40 33 1.6 11.2 1.2 12 15

45 33 1.6 6.5 1.1 6 8

50 33 1.6 4.7 1.0 4 5

55 33 1.6 3.6 0.9 3 4

60 33 1.6 3.0 0.8 2 3

35 34 1.7 80.1 1.4 92 120

40 34 1.7 13.4 1.3 14 19

45 34 1.7 7.3 1.2 7 9

50 34 1.7 5.1 1.1 5 6

55 34 1.7 3.9 1.0 3 4

60 34 1.7 3.2 0.8 2 3
aDiameter (D) of plant stem is 5cm and soil bulk density is 1300 Kg m-3.

38

On the other hand, when the slope angle becomes larger than the soil kinetic friction angle, the

height of the dry ravel tetrahedron base decreases dramatically, resulting in a rapid decrease of the

dry ravel held by the vegetation stems. When the slope angle is greater than 45o, this part of dry ravel

source may become negligible. Furthermore, Figure 12 indicates that, for the different soil kinetic

friction angles, the mass of dry ravel held by vegetation varies considerably depending on the angle

of repose when the angle of repose is close to the slope angle. For example with a slope angle of 35°,

and angle of repose varying from 30° to 34°, dry ravel varies from 18 to 110 g, respectively. As the

slope angle increases, however, the dry ravel mass held by the vegetation stems decreases rapidly

in general and all the curves tend to converge.

3.1.3. Static friction angle

According to Equation (1), the angle of repose can only affect the amount of dry ravel held by

vegetation stems. To understand the effects of static friction angle, the dry ravel production and

deposition in watershed 0508 was calculated for different static friction angles. In this case, the fire-

impact depth was taken as 0 cm and thus the production of dry ravel was only due to the plant stems.

Both production and deposition of dry ravel increase with the increase of static friction angle. The

portion of dry ravel deposition on the production is constant because the angle of repose has no effect

on the transportation of dry ravel (Figure 13).

The angle of repose can be determined by the laboratory experiments or field investigation. For

the dry soil of mountainous Southern California, the angle of repose is generally within the range of

29o to 34o according to a previous laboratory test [Wohlgemuth, 2004 unpublished data].

40

3.1.4. Fire-impact depth

The amount of dry ravel held by vegetation roots can be determined by the product of the fire-

impact depth and the surface area while the amount of dry ravel held by vegetation stems is

independent of the fire-impact depth. When the fire-impact depth is greater than 0.1 mm, the amount

of dry ravel held by vegetation roots is much larger than the portion held by vegetation stems. Thus

the source of dry ravel held by the vegetation stems can usually be neglected if the fire-impact depth

is larger than 0.1 mm. Figure 14 shows an linear relationship between the dry ravel production and

fire-impact depth. Because the fire-impact depth has no effect on the movement of dry ravel, the

ratio of deposition to the production does not change with the fire-impact depth. And thus the dry

ravel deposition increased linearly with the increase of the fire-impact depth.

42

3.1.5. Kinetic friction angle

The kinetic friction angle is one of the most important factors that affect the movement of dry

ravel. The kinetic friction angle used in the mass-flux model is a modified coefficient from the

kinetic friction angle of soil materials. It depends not only on the soil properties, (e.g., particle size,

soil type, soil moisture), but also on the micro-topography in each cell, the vegetation density and

size, the obstacles (e.g., rocks, sticks) along the path of dry ravel movement, and the dry ravel

velocity. According to Figure 15, dry ravel production and deposition decreased with the increase

of kinetic friction angle. The decrease of production was caused by the reduction of the number of

source cells of dry ravel, because no dry ravel will be produced from a cell if the slope angle is less

than the kinetic friction angle. Some cells will become non-source cells as the kinetic friction angle

is increased and become larger than the slope angle of these cells.

The kinetic fiction angle affects the dry ravel deposition in two opposite ways. The decreasing

dry ravel production reduces the amount of dry ravel which is the potential source of the deposition.

When the kinetic friction angle is increased, the potential source of deposition decreased and

consequently caused the reduction of dry ravel deposition. On the other hand, the increase of kinetic

friction angle can lower the velocities of dry ravel, and leading to the reduction of the amount of off-

site dry ravel, and consequently the increase of the deposition within the domain. Comparing the two

effects of kinetic friction angle, dry ravel deposition is more sensitive to the effect of kinetic friction

angle than is dry ravel production. Dry ravel deposition decreases with the increase of kinetic friction

angle but the decrease rate is less than the decrease rate of dry ravel production (Figure 15). In this

figure, the small fluctuations from a linear trend are the effects of the topography because the cell

slope angles are randomly distributed within a range of 0° to 90° and there is a non-linear

43

distribution of cell slope angle within the domain.

The kinetic friction angle is difficult to determine due to the complexity of the influential factors.

Further field investigation is needed to obtain an accurate value of this coefficient. Here, we use the

average slope angle of the whole model domain to approximate the kinetic friction angle. This

approximation is based on the fact that the kinetic friction angle can not be much different from the

average slope angle of the whole model domain. Otherwise, the hillslope of the model domain is

unstable resulting from a change of the topography.

45

3.1.6. Cell size

Figure 16 shows the impact of cell size selections on predicted dry ravel. The average production

increased with the decrease of cell size. An approximate linear decrease relationship between the dry

ravel production and deposition and cell size was obtained with a regression method. This linear

decrease can be explained by the decrease of total surface area and the changes of slope angle within

each cell. In the mass-flux model, the planar surface was used for each cell through the model

domain. In reality, the cell surface is a curved surface and the area of the curve surface is larger than

the area of the planar surface. Therefore, the model under-estimates the surface area of the model

domain with the planar assumption. As the size of cell decreases, the model can more accurately

simulate the curved surface leading to an increase of the surface area, and consequently resulting in

the increase of both dry ravel production and deposition.

Additionally, the slope angle of each cell will change with cell size. Because the dry ravel will

be produced only if the slope angle is larger than the kinetic friction angle, the more cells with a

slope angle greater than kinetic friction angle will produce more dry ravel. A smaller cell size will

cause an increase of the average slope angle, that means the number of cells with larger slope angle

will increase. Therefore, the production of dry ravel increases as the cell size decreases.

Although the smaller cell size can predict the topography better than the larger cell size, a very

small cell size (less than 1 m) is not suitable in application. Since we assumed that all parameters

do not change within each cell and part of these parameters do not change through the whole domain,

a small cell size will cause obvious conflict with the assumption (e.g. the vegetation density and size

will be different for different cells if the cell size is close to the vegetation size). A cell size within

1 m to 10 m is recommended in the mass-flux model.

47

3.2. Model Evaluation for a Representative Setting

Figure 17 illustrates the paths of mass fluxes of dry ravel from 12 arbitrarily assigned source

cells. Most of these source cells are located on steep slopes, with a few exceptions that are on

relatively flat areas. For the latter sources, no mass flux was generated because the slope angle is

much less than the kinetic friction angle of the soil. From the former sources, the mass fluxes flow

along the steepest slope which is perpendicular to the contours and become dispersed over certain

areas according to the topography. In the processes of dry ravel movement, the mass fluxes of dry

ravel disperse more broadly on a convex slope, and tend to concentrate along a narrow path on a

concave slope, and eventually deposit on flat areas or move out the boundary of the model domain.

Figure 18 shows the predicted results of dry ravel deposition on the representative setting. Most

of the dry ravel deposits along the valley of the watershed or on flat areas. The area (cells) with high

deposition are in topographic lows (i.e., valleys and stream channels). The area (cells) with very high

deposition (spikes) occur in topographic lows that also have a large contribution.

Figure 17. Movement of dry ravel. The squares are the source cell and the circles
represent the path of dry ravel.

48

Easting (m)

N
or

th
in

g
(m

)

2000
0

1000800600400

1200

1400

1000

800

600

400

200

400 680
680

1020

Deposition (Kg)

East
(m)

North (m)

Figure 18. The deposition of dry ravel in representative setting for Figure 17.

49

50

3.3. Model Evaluation for the San Dimas Experimental Forest

The mass-flux model has been applied to the four small watersheds in the SDEF for a short-term

prediction of both dry ravel production and deposition. The comparison between the model

prediction of dry ravel and field observations at the four small watersheds over a short term (1 day)

at the SDEF is shown in Table 4. All observed productions and most depositions were within the

range predicted by the model.

Table 4. Comparison of model prediction and field observation

Nr. Fire Impact

Depth(mm)

Field Observation Model Predictiona

Production (g/m 2) Deposition(kg/m) Production (g/m 2) Deposition (kg/m)

0507 0-1 69 1.27 1-522 0.016-8.96

0508 0-1 100 39.0 1-516 0.010-5.80

0542 0-1 322 2.02 1-663 0.011-6.12

0560 0-1 131 2.26 1-791 0.016-9.28
aIn model prediction, the vegetation density is 1 stem/m 2 and diameter of plant stem is 5cm, respectively.

The watershed 0507 had the smallest production among the four watersheds because the

vegetation in this watershed mainly consists of the grass with sparse sage brush and shrubs. In

addition, the fire severity was less in watershed 0507 than the other watersheds. With chaparral

covering watershed 0508, the fire severity was higher, resulting in greater dry ravel production. The

watershed 0542 had the highest production of dry ravel caused by high fire severity and steeper

topography. The field data shows that the deposition of dry ravel along the valley had no obvious

relationship with the production. This is because the deposition is more dependent on the topography

rather than the production of dry ravel. The deposition in watershed 0508 is much greater than the

51

other watersheds because one of the collectors in the watershed has collected about 200 kg dry ravel

deposition while the other collectors can only collect about a few hundred grams of dry ravel

deposition. This collection limitation greatly affected the measurement of the average deposition for

the whole watershed.

The model prediction shows a range of dry ravel production and deposition along the valley.

Because the exact fire-impact depth was not available from the field observation, a range of the fire-

impact depth from 0 to 1 mm was used for model prediction. When the fire-impact depth is set at

0 , the dry ravel production is about 1 g m-2 for all four watersheds and the deposition of dry ravel

was also small. This is because only the source of dry ravel held by plant stems can contribute to the

total amount of dry ravel, while the source of dry ravel held by plant roots is 0. As mentioned in an

earlier section, the amount of dry ravel increased linearly with the increase of the fire-impact depth.

When the fire-impact depth is set at 1 mm, both of the production and deposition increase greatly.

For most watersheds, the amount of dry ravel deposition was consistent with the increase of the

production with the exception of the watershed 0507. In this watershed, there was a higher

deposition despite low production. This may be caused by the gentle topography of the watershed.

52

Table 5. Observed and predicted means and standard deviations (sample size 25) of dry ravel
production (mass per unit area). There is no significant difference between the observed and
predicted means at a significance level of 0.1 for all four watersheds.

Watershed FIDa (mm)

Means of Production (g/m2)

Observed Predicted

0507 1.1 167.7 (169.4)b 168.0 (80.9)

0508 1.2 234.9 (223.3) 235.0 (60.7)

0542 2.0 428.6 (616.2) 429.0 (180.5)

0560 1.0 172.2 (231.8) 172.3 (48.1)
aThe fire-impact depth (FID) was manually calibrated for the dry ravel production at each watershed.
bIncluded in parentheses is the standard deviation.

Table 6. Observed and predicted means and standard deviations (sample size 50) of dry ravel
deposition for individual collector measuring 30-cm wide.

Watershed FIDa (mm)

Means of Deposition (kg)

ANOVA

testObserved Predicted

0507 1.1 0.25 (0.40)b 0.48 (0.83) NSc

0508 1.2 6.09(28.50) 0.40 (0.55) NS

0542 2.0 049 (0.71) 0.58 (1.15) NS

0560 1.0 0.38 (0.83) 0.33 (0.40) NS

aThe fire-impact depth (FID) was calibrated for the dry ravel production as in Table 5.
bIncluded in parentheses is the standard deviation.
cThe effect of the factor “method” (observed and predicted) is not significant at a significance level 0.05.

The statistical comparisons between the observed and predicted dry ravel production on

hillslopes and deposition along the valley are shown in Table 5 and 6. Note that, the fire-impact

depth for each watershed was first calibrated for dry ravel production on hillslopes, and this fire-

impact depth indeed varied among the watersheds. Observed and predicted dry ravel deposition

along the valley at each watershed were then compared with the ANOVA test indicating no

significant difference at a significance level of 0.05. Although the observed mean of dry ravel

53

deposition in watershed 0508 is much higher than the predicted value, the two means do not differ

statistically due to the large standard deviation in the field observations. Among the fifty collectors

from watershed 0508, one collector (#725) collected 200 kg dry ravel over a 18-day time period

while all other collectors collected no more than 1 kg of dry ravel. Bare soil occurred on the hillslope

terracing immediately above the collector #725 in the 1960’s. Some revegetation took place with

time; however, the patchy bare soil appears to have always been a substantial source of dry ravel

with collector #725 consistently receiving larger amount of soil materials compared to other

collectors, even during the pre-burn time. It is therefore presumed that the wildfire further augmented

the instability of the bare soil, leading to an extreme case of post-fire dry ravel. Given the fact that

the model was able to quantify the amount of dry ravel which fits with the case of the field

observations with a variable, fire-impact depth.

55

3.4. Long-term dry ravel prediction

Figure 19 shows the prediction curve (Equation (21)) for long term dry ravel, which is based on

the field observed dry ravel for the small watershed 0560 at the SDEF over 200 days after the fire.

The curve is drawn according to Equation (21), and the curve parameters are M0 =3,151 g, and "

=34,420, and $ =0.0035.

3.5. Future Efforts

From the conceptual model assessment and application to the SDEF, continuous development

and improvement of the model is needed. First, more field tests and data are required to further

assess the model’s adequacy and reliability. This is particularly important for long-term dry ravel

prediction. For the SDEF, we only had field observation data for certain times after the fire. More

detailed temporal data with shorter time intervals (e.g., on a daily basis) are required to accurately

determine the coefficients of the empirical equation for long-term dry ravel production. Additionally,

the interrelationship between these coefficients and the environmental factors (e.g., wind,

earthquake, and animal movement) should be established through field investigation..

Second, additional field efforts are needed for evaluating the kinetic friction coefficient. During

the dry ravel transport, the friction force is not only controlled by the soil properties but also affected

by the micro-topography, vegetation characteristics, and other environmental factors. Field and

laboratory experiments may be designed to establish the relationships between the kinetic friction

coefficient and these factors.

Third, the interrelationship between the extent of the fire-impact depth and the fire severity,

vegetation characteristics, and soil properties should also be better understood in order to improve

56

the adequacy of the model parameters and thus the model predictions. The part of dry ravel held by

plant roots is typically much greater than the part held by the plant stems. Therefore, a proper

estimate of the depth of burned roots will directly improve adequacy of the model results.

Fourth, additional field observations are needed to calibrate the coefficients " and $ in Equation

(21). The coefficients, " and $, are a function of the topography, the fire severity, vegetation

properties, soil properties, and other environmental factors. Therefore, additional field investigations

and modeling efforts are needed to predict the influence of the two coefficients according to the

natural situation.

57

CHAPTER FOUR

SUMMARY

This paper describes the concepts and methods of a physical mass-flux model, for simulating the

processes of dry ravel and predicting the amount of source of dry ravel. In principle, this mass-flux

model applies the classic laws of mechanics to predict source area, movement paths, deposition

areas, and off-site transport of dry ravel produced after wildfires.

The short-term dry ravel process is computed with theoretical calculations, and the long-term

effects are described based on empirical relationships. The assessment of the model performance was

conducted by applying the mass-flux model to a conceptual setting as well as the San Dimas

Experimental Forest (SDEF) in southern California where wildfires and dry ravel frequently occur.

Compared to the experimental results, the model performed adequately in predicting the source

location, movement path, and deposition areas. On the other hand, the accuracy of predicting the

mass of dry ravel production and deposition, and the long-term ravel events of dry ravel is dependent

on the specific coefficients.

While the mass-flux model shows promise as an effective tool to predict dry ravel, the model has

certain limitations in practical application. These limitations are caused by the assumptions necessary

for simplifying the calculations, lack of information on spatially varying input data, the unclear

relationship of fire-impact depth and the fire severity, and limit knowledge of long-term effect of dry

ravel. These limitation need to be investigated in future studies.

58

REFERENCES

Anderson, H. W., G. B. Coleman, and P. J. Zinke (1959), Summer slides and winter scour—wet–dry
erosion in southern California mountains, Gen. Tech. Rep., PSW–36, Berkeley, CA.

Bardet, J. P. and Q. Huang (1992), Numerical modeling of micropolar effects in idealized granular
materials, Mech. Granular Matr. Powder Sys., 37, 85–92.

Bardet, J. P. and J. Proubet (1991), A numerical investigation of the structure of persistent shear
bands in granular media, Geotechnique, 41, 599–613.

Cundall, P. A. and O. D. L. Strack (1979), A discrete numerical model for granular assemblies,
Geotechnique, 29, 47–65.

Gabet, E. J. (2003), Sediment transport by dry ravel, J. Geophys. Res., 108(B1), 2049,
doi:10.1029/2001JB001686.

Goodman, L. E. (1962), Contact stress analysis of normally loaded rough spheres, J. Appl. Mech.,
30, 515–522.

Huhlhaus, H. B. and I. Vardoulakis (1987), The thickness of shear bands in granular materials,
Geotechnique, 37, 271–283.

Krammes, J. L. (1960), Erosion from mountain side slopes after fire in Southern California, Res.
Note, No. 171, 8p, Pacific Southwest Forest and Range Experiment Station, U. S. Dep. Agric., Forest
Service, Berkeley, CA.

Kalker, J. J. (1970), Transient phenomena in two elastic cylinders rolling over each other with dry
friction, J. Appl. Mech., 11, 677–688.

Rice, R. M. (1982), Sedimentation in the chaparral: How do you handle unusual events?, in Sediment
Budget and Routing in Forested Drainage Basins, edited by F. J. Wsanson et al., pp. 39–49, Forest
Service, U.S. Dep. Agric., Washington, D.C.

SAS Institute Inc. 2004. Base SAS 9.1 Procedures Guide, Volumes 1,2, and 3. Cary, NC.

Wells, W. G. and N. R. Palmer. (1979), Role of vegetation in sedimentation processes, in Sediment
Management for Southern California Moutains, Coastal Plains and Shoreline, EQL Rep. No. 16,
Environmental Quality Lab., Calif. Inst. of Tech. Pasadena, CA, Appendix D.

Wells, W. G. (1981), Some effects of brushfires on erosion processes in coastal southern California,
In: Erosion and Sediment Transport in Pacific Rim Steeplands. Christchurch, New Zealand: IASH
Publication No. 132:305–342.

59

Wells, W. G. (1985), The influence of fire on erosion rates in California chaparral, in Proc.
Chaparral Ecosystem Res. Conf., edited by J. J. Devries, Rep. 62, Calif. Water Resour. Cent., Santa
Barbara, CA.

APPENDIX

A. Mass-flux Model Code

// The file is a header file which indicate the c++ library files to be used
also define
// the constant numbers.

// Set the file to be compile only once
#pragma once

//Indicate the files of the standard c++ library used here
#include <iostream>
#include <fstream>
#include <cstring>
#include <cmath>

//Using the std namespace
using namespace std;

// Define constant pi
const double PI=3.14159265358979323846;

 60

#pragma once

//Include the header file "headerfile.h" to be used in this file
#include "headerfile.h"

//This part codes declare the class "node"
//the class "node" represents the node of the cell
class node
{
public:
 node(); //declare the public function
node()
 //which is used to initiate
the class "node"
 ~node(); //declare the public function
~node()

//declare three input functions
 void setx(double xvalue); //setx function set the x to be xvalue
 void sety(double yvalue); //sety function set the y to be yvalue
 void setz(double zvalue); //setz function set the z to be zvalue

//declare three output function
 double getx(); //getx return the x value
 double gety(); //gety return the y value
 double getz(); //getz return the z value

private:
// declare the parameters of node x, y, and z which are the coordination of
the node
 double x;
 double y;
 double z;
};

 61

#pragma once
#include "headerfile.h"

//declare the class "event" which represent the mass flux through a cell
boundary
class event
{
public:
 event(); //initial function
 ~event(); //terminal function

// declare the function of setting the total mass of a mass flux
 void settotalmass(double);

// declare the function of setting the starting time of a mass flux
 void setstarttime(double);

// declare the function of setting the x-direction velocity of a mass flux
 void setxvelocity(double);

// declare the function of setting the y-direction velocity of a mass flux
 void setyvelocity(double);

// declare the function of output the total mass of a mass flux
 double gettotalmass();

// declare the function of output the starting time of a mass flux
 double getstarttime();

// declare the function of output the x-velocity of a mass flux
 double getxvelocity();

// declare the function of output the y-velocity of a mass flux
 double getyvelocity();

private:
 double totalmass; // declare the variable of total mass of
a mass flux
 double starttime; // declare the variable of start time of
a mass flux
 double xvelocity; // declare the variable of x-velocity of
a mass flux
 double yvelocity; // declare the variable of y-velocity of
a mass flux
};

 62

#pragma once
#include "headerfile.h"
#include "node.h"
#include "event.h"

// Declare the class "element" which represents the cell of model domain.
// The "element" class mainly has two functions "eventproduct" and
"eventoccur".
// The function "eventproduct" calculate the total mass and velocities of
each mass flux
// flowing out the original cell;
// The function "eventoccur" calculate the total mass and veocities of each
mass flux
// flowing out any cell depending on the inflow mass flux and topography
class element
{
public:
//declare the initial function
 element(int elementno,double,double,double,double,int Size);
//declare the terminal function
 ~element();

// declare function "eventproduct" which is used to calculate total mass and
velocities
// of each mass flux flowing out the original cell, input parameters are the
vegetation
// size/diameter, vegetation density, the fire-impact depth, the friction
angle, and the
// kinetic friction angle
 void eventproduct(double vegetationsize, double vegetationdensity,
 double FireImpactDepth,double FrictionAngle,double
KineticFrictionAngle);

// declare the function "setmassflowin" to set the mass and velocities of
each mass flux
// flowing in the cell
 void setmassflowin(double mass[4],double velocity[4][2]);

// declare the function "eventoccur" which is used to calculate total mass
and veocities
// of each mass flux flowing out any cell depending on inflow mass flux and
topography,
// the input parameters are the minimun mass and kinetic friction angle
 void eventoccur(double, double KineticFrictionAngle);

//declare the array of inflow mass flux with type "event"
 event massflowin[4];

//declare the array of outflow mass flux with type "event"
 event massflowout[4];

private:
 int Size; //declare the cell size
 int elementno; //declare the cell number
 node elementnode[4]; //declare four node for each cell
 double slope[2]; //declare slope of cell in x and y
direction };

 63

// This part of code define the functions of class "node"
#include "node.h"

node::node(){} //define the initial function
node::~node(){} //define the terminal function

//define the function of setting x value
void node::setx(double xvalue) {x=xvalue;}

//define the function of setting y value
void node::sety(double yvalue) {y=yvalue;}

//define the function of setting z value
void node::setz(double zvalue) {z=zvalue;}

//define the function of outputting x value
double node::getx() {return x;}

//define the function of outputting y value
double node::gety() {return y;}

//define the function of outputting z value
double node::getz() {return z;}

 64

// This part of code is used to define the functions of class "event"
#include "event.h"

// define the initial function which set total mass, start time, x-velocity,
y-velocity
// of mass flux to be zero
event::event() { totalmass=0; starttime=0; xvelocity=0;
 yvelocity=0; }

//define the terminal function
event::~event() { }

//define the function to set the total mass value
void event::settotalmass(double value) { totalmass=value; }

//define the function to set the start time value
void event::setstarttime(double value) { starttime=value; }

//define the function to set the x-velocity
void event::setxvelocity(double vx) { xvelocity=vx; }

//define the function to set the y-velocity
void event::setyvelocity(double vy) { yvelocity=vy; }

//define the function to output the total mass
double event::gettotalmass() { return totalmass; }

//define the function to output the start time
double event::getstarttime() { return starttime; }

//define the function to output the x-velocity
double event::getxvelocity() { return xvelocity; }

//define the function to output the y-velocity
double event::getyvelocity() { return yvelocity; }

 65

// This part of code is use to define the functions of class "element"

// include the file element.h
#include "element.h"

//define the initial function setting the cell number, the elevation of cell
node,
//and the cell size
element::element(int number,double elevation0,double elevation1, double
elevation2,double elevation3,int size)
{
 this->elementno=number; //set the cell number as
"number"
 this->Size=size; //set the cell size
 elementnode[0].setz(elevation0); //set the elevation of upper-left
node of cell
 elementnode[1].setz(elevation1); //set the elevation of upper-right
node of cell
 elementnode[2].setz(elevation2); //set the elevation of lower-right
node of cell
 elementnode[3].setz(elevation3); //set the elevation of lower-left
node of cell

//set all the variables of four mass flux to be 0
 for(int i=0;i<4;i++)
 {
 massflowout[i].setstarttime(0);
 massflowout[i].settotalmass(0);
 massflowout[i].setxvelocity(0);
 massflowout[i].setyvelocity(0);

 massflowin[i].setstarttime(0);
 massflowin[i].settotalmass(0);
 massflowin[i].setxvelocity(0);
 massflowin[i].setyvelocity(0);
 }

//calculate the slope of a cell in x and y direction (slope[0] and slope[1]
respectively)
 if(Size!=0)
 {
 slope[1]=((elementnode[0].getz()+elementnode[1].getz())/2-
(elementnode[2].getz()+elementnode[3].getz())/2)/Size;
 slope[0]=((elementnode[0].getz()+elementnode[2].getz())/2-
(elementnode[1].getz()+elementnode[3].getz())/2)/Size;
 }
 else
 {
 cout << "Error!!! Size is 0!!!";
 }
}

// Define the terminal function
element::~element() { }

//define the function calculating the mass flux produced from an original
cell

 66

void element::eventproduct(double vegetationsize, double vegetationdensity,
double FireImpactDepth,double FrictionAngle,double KineticFrictionAngle)
{
//declare and initialize the variables and arrayes
 double xsurfaceangle=fabs(atan(slope[0])); // declare slope angle
in x-direction
 double ysurfaceangle=fabs(atan(slope[1])); // declare slope angle
in y-direction
 double slopeangle=atan(sqrt(slope[0]*slope[0]+slope[1]*slope[1]));
 // declare slope angle

 double outputtime1=0; //declare the shorter time of mass flux
flowing out cell
 double outputtime2=0; //declare the longer time of mass flux
flowing out cell

 double outputmass=0; // outputmass is the total mass produced
from this cell

 double acceleration=0; // declare the acceleration
 double xacceleration=0; // declare the acceleration component in
x-direction
 double yacceleration=0; // declare the acceleration component in
y-direction

 double validheight=vegetationsize*tan(FrictionAngle)/sqrt(2);
 // declare the valid height to which soil particles accumulate just
behind vegetation

 double divergence=0; // declare the divergence of mass flux

 double length; // length is height of base of the
soil particles pile

 // for the case that slope angle is not same as the friction angle
 if (slopeangle!=FrictionAngle)
 {
 length=validheight*sin(PI/2+FrictionAngle)/sin(slopeangle-
FrictionAngle);
 }
 // for the case that slope angle equal to the friction angle
 else
 {
 cout << "Error!!! Slope angle is equal to friction angle";
 }

 double maxlength; // declare the upper limit of length

 // if there is vegetation on the cell, calculate the maximun length
between the two vegetation
 if (vegetationdensity!=0)
 {
 maxlength=1/sqrt(vegetationdensity);
 }
 // if there is no vegetation in the cell
 else
 {

 67

 maxlength=1;
 }

// Calculate the total mass of dry ravel produced from the cell
 if(length<maxlength && slopeangle!=(PI/2))

outputmass=1000*Size*Size*(FireImpactDepth/cos(slopeangle)+vegetationdensity*
vegetationsize*validheight*length*sin(PI/2-slopeangle)/6);
 else if(slopeangle!=PI/2)

 outputmass=1000*Size*Size*(FireImpactDepth/cos(slopeangle)+vegetationde
nsity*vegetationsize*validheight*maxlength*sin(PI/2-slopeangle)/6);
 else
 {
 outputmass=0;
 cout << "Error!!! Slope angle is 90";
 }

// calculate the surface acceleration within a cell
 acceleration=9.8*(sin(slopeangle)-
tan(KineticFrictionAngle)*cos(slopeangle));
 if(acceleration<0) acceleration=0;

// calculate the x- and y- acceleration
 if (sqrt(slope[0]*slope[0]+slope[1]*slope[1])!=0)
 {

xacceleration=acceleration*fabs(slope[1]/sqrt(slope[0]*slope[0]+slope[1]*slop
e[1]));

yacceleration=acceleration*fabs(slope[0]/sqrt(slope[0]*slope[0]+slope[1]*slop
e[1]));
 }
 else
 { xacceleration=0; yacceleration=0; }

// if the acceleration is zero, there is no mass flux produced
 if(acceleration==0) {outputmass=0;}

// if the acceleration is not zero, calculate the output mass from a cell
 else
 {

// this sentence is use to judge which mass flux (from side or bottom
boundary) is faster
 if(xacceleration*cos(xsurfaceangle) >=
yacceleration*cos(ysurfaceangle))
 // here, mass flux in x-direction is faster
 {
// calculate the time of mass flux flowing out in x-direction
 if(xacceleration!=0)
outputtime1=sqrt(Size)/sqrt(cos(xsurfaceangle)*xacceleration);

// calculate the time of mass flux flowing out in y-direction
 if(yacceleration!=0)
outputtime2=sqrt(Size)/sqrt(cos(ysurfaceangle)*yacceleration);

 68

// calculate the divergence of mass flux (the "Dx" in the
paper)

 divergence=fabs(cos(ysurfaceangle)*yacceleration*outputtime1*outputtime
1/(2*Size));

// calculate the output mass and velocity
 if(slope[0]>=0 && slope[1]>=0) // judge the slope
direction, here, the slope
 //
directions is positive x- y- direction
 {

 // set the mass flux flowing through the boundary "2"
 massflowout[2].setstarttime(outputtime1); //set the
starting time of the mass flux
 massflowout[2].settotalmass(outputmass*(1-
divergence));

 //set the total mass of the mass flux

 massflowout[2].setxvelocity(fabs(xacceleration*outputtime1)>0.1? 0.1 :
xacceleration*outputtime1);

 //set the x-direction velocity

 massflowout[2].setyvelocity(fabs(0.01*yacceleration*outputtime1)>0.1?
0.1 : 0.01*yacceleration*outputtime1);

 // set the y-direction velocity

 // set the mass flux flowing through the boundary "3"
 massflowout[3].setstarttime(outputtime2);//set the
starting time of the mass flux

 massflowout[3].settotalmass(outputmass*divergence);//set the total mass
of the mass flux

 massflowout[3].setxvelocity(fabs(0.01*xacceleration*outputtime2)>0.1?
0.1 : 0.01*xacceleration*outputtime2);//set the x-direction velocity

 massflowout[3].setyvelocity(fabs(yacceleration*outputtime2)>0.1? 0.1 :
yacceleration*outputtime2);// set the y-direction velocity

 }
 else if(slope[0]>=0 && slope[1]<0) //x-slope is on the
positive x-direction
 //y-
slope is on the negative y-direction
 {
 massflowout[2].setstarttime(outputtime1);//set the
starting time of the mass flux
 massflowout[2].settotalmass(outputmass*(1-
divergence));//set the total mass of the mass flux

 69

 massflowout[2].setxvelocity(fabs(xacceleration*outputtime1)>0.1? 0.1 :
xacceleration*outputtime1);//set the x-direction velocity
 massflowout[2].setyvelocity(fabs(-
0.01*yacceleration*outputtime1)>0.1? 0.1 : -
0.01*yacceleration*outputtime1);// set the y-direction velocity

 massflowout[0].setstarttime(outputtime2);//set the
starting time of the mass flux

 massflowout[0].settotalmass(outputmass*divergence);//set the total mass
of the mass flux

 massflowout[0].setxvelocity(fabs(0.01*xacceleration*outputtime2)>0.1?
0.1 : 0.01*xacceleration*outputtime2);//set the x-direction velocity
 massflowout[0].setyvelocity(fabs(-
yacceleration*outputtime2)>0.1? 0.1 : -yacceleration*outputtime2);// set the
y-direction velocity

 }
 else if(slope[0]<0 && slope[1]>=0) //x-slope is on the
negative x-direction
 //y-
slope is on the positive y-direction
 {
 massflowout[1].setstarttime(outputtime1);//set the
starting time of the mass flux
 massflowout[1].settotalmass(outputmass*(1-
divergence));//set the total mass of the mass flux
 massflowout[1].setxvelocity(fabs(-
xacceleration*outputtime1)>0.1? 0.1 : -xacceleration*outputtime1);//set the
x-direction velocity

 massflowout[1].setyvelocity(fabs(0.01*yacceleration*outputtime1)>0.1?
0.1 : 0.01*yacceleration*outputtime1);// set the y-direction velocity

 massflowout[3].setstarttime(outputtime2);//set the
starting time of the mass flux

 massflowout[3].settotalmass(outputmass*divergence);//set the total mass
of the mass flux
 massflowout[3].setxvelocity(fabs(-
0.01*xacceleration*outputtime2)>0.1? 0.1 : -
0.01*xacceleration*outputtime2);//set the x-direction velocity

 massflowout[3].setyvelocity(fabs(yacceleration*outputtime2)>0.1? 0.1 :
yacceleration*outputtime2);// set the y-direction velocity
 }
 else //x-slope
is on the negative x-direction
 //y-
slope is on the negative y-direction
 {
 massflowout[1].setstarttime(outputtime1);//set the
starting time of the mass flux

 70

 massflowout[1].settotalmass(outputmass*(1-
divergence));//set the total mass of the mass flux
 massflowout[1].setxvelocity(fabs(-
xacceleration*outputtime1)>0.1? 0.1 : -xacceleration*outputtime1);//set the
x-direction velocity
 massflowout[1].setyvelocity(fabs(-
0.01*yacceleration*outputtime1)>0.1? 0.1 : -
0.01*yacceleration*outputtime1);// set the y-direction velocity

 massflowout[0].setstarttime(outputtime2);//set the
starting time of the mass flux

 massflowout[0].settotalmass(outputmass*divergence);//set the total mass
of the mass flux
 massflowout[0].setxvelocity(fabs(-
0.01*xacceleration*outputtime2)>0.1? 0.1 : -
0.01*xacceleration*outputtime2);//set the x-direction velocity
 massflowout[0].setyvelocity(fabs(-
yacceleration*outputtime2)>0.1? 0.1 : -yacceleration*outputtime2);// set the
y-direction velocity
 }
 }
 else // here, mass flux in y-direction is
faster
 {
 if(yacceleration!=0)
outputtime1=sqrt(Size)/sqrt(cos(ysurfaceangle)*yacceleration);
 if(xacceleration!=0)
outputtime2=sqrt(Size)/sqrt(cos(xsurfaceangle)*xacceleration);

 divergence=fabs(cos(xsurfaceangle)*xacceleration*outputtime1*outputtime
1/(2*Size));

 if(slope[0]>=0 && slope[1]>=0)
 {
 massflowout[3].setstarttime(outputtime1);//set the
starting time of the mass flux
 massflowout[3].settotalmass(outputmass*(1-
divergence));//set the total mass of the mass flux

 massflowout[3].setxvelocity(fabs(0.01*xacceleration*outputtime1)>0.1?
0.1 : 0.01*xacceleration*outputtime1);//set the x-direction velocity

 massflowout[3].setyvelocity(fabs(yacceleration*outputtime1)>0.1? 0.1 :
yacceleration*outputtime1);// set the y-direction velocity

 massflowout[2].setstarttime(outputtime2);//set the
starting time of the mass flux

 massflowout[2].settotalmass(outputmass*divergence);//set the total mass
of the mass flux

 massflowout[2].setxvelocity(fabs(xacceleration*outputtime2)>0.1? 0.1 :
xacceleration*outputtime2);//set the x-direction velocity

 71

 massflowout[2].setyvelocity(fabs(0.01*yacceleration*outputtime2)>0.1?
0.1 : 0.01*yacceleration*outputtime2);// set the y-direction velocity
 }
 else if(slope[0]>=0 && slope[1]<0)
 {
 massflowout[0].setstarttime(outputtime1);//set the
starting time of the mass flux
 massflowout[0].settotalmass(outputmass*(1-
divergence));//set the total mass of the mass flux

 massflowout[0].setxvelocity(fabs(0.01*xacceleration*outputtime1)>0.1?
0.1 : 0.01*xacceleration*outputtime1);//set the x-direction velocity
 massflowout[0].setyvelocity(fabs(-
yacceleration*outputtime1)>0.1? 0.1 : -yacceleration*outputtime1);// set the
y-direction velocity

 massflowout[2].setstarttime(outputtime2);//set the
starting time of the mass flux

 massflowout[2].settotalmass(outputmass*divergence);//set the total mass
of the mass flux

 massflowout[2].setxvelocity(fabs(xacceleration*outputtime2)>0.1? 0.1 :
xacceleration*outputtime2);//set the x-direction velocity
 massflowout[2].setyvelocity(fabs(-
0.01*yacceleration*outputtime2)>0.1? 0.1 : -
0.01*yacceleration*outputtime2);// set the y-direction velocity
 }
 else if(slope[0]<0 && slope[1]>=0)
 {
 massflowout[3].setstarttime(outputtime1);//set the
starting time of the mass flux
 massflowout[3].settotalmass(outputmass*(1-
divergence));//set the total mass of the mass flux
 massflowout[3].setxvelocity(fabs(-
0.01*xacceleration*outputtime1)>0.1? 0.1 : -
0.01*xacceleration*outputtime1);//set the x-direction velocity

 massflowout[3].setyvelocity(fabs(yacceleration*outputtime1)>0.1? 0.1 :
yacceleration*outputtime1);// set the y-direction velocity

 massflowout[1].setstarttime(outputtime2);//set the
starting time of the mass flux

 massflowout[1].settotalmass(outputmass*divergence);//set the total mass
of the mass flux
 massflowout[1].setxvelocity(fabs(-
xacceleration*outputtime2)>0.1? 0.1 : -xacceleration*outputtime2);//set the
x-direction velocity

 massflowout[1].setyvelocity(fabs(0.01*yacceleration*outputtime2)>0.1?
0.1 : 0.01*yacceleration*outputtime2);// set the y-direction velocity
 }
 else
 {

 72

 massflowout[0].setstarttime(outputtime1);//set the
starting time of the mass flux
 massflowout[0].settotalmass(outputmass*(1-
divergence));//set the total mass of the mass flux
 massflowout[0].setxvelocity(fabs(-
0.01*xacceleration*outputtime1)>0.1? 0.1 : -
0.01*xacceleration*outputtime1);//set the x-direction velocity
 massflowout[0].setyvelocity(fabs(-
yacceleration*outputtime1)>0.1? 0.1 : -yacceleration*outputtime1);// set the
y-direction velocity

 massflowout[1].setstarttime(outputtime2);//set the
starting time of the mass flux

 massflowout[1].settotalmass(outputmass*divergence);//set the total mass
of the mass flux
 massflowout[1].setxvelocity(fabs(-
xacceleration*outputtime2)>0.1? 0.1 : -xacceleration*outputtime2);//set the
x-direction velocity
 massflowout[1].setyvelocity(fabs(-
0.01*yacceleration*outputtime2)>0.1? 0.1 : -
0.01*yacceleration*outputtime2);// set the y-direction velocity
 }
 }
 }
}

// define the mass flux changing when it flow through a cell
void element::eventoccur(double MinMassOut,double KineticFrictionAngle)
{
 int noutputside=0; //declare the boundary of outflow mass flux in
normal direction
 int soutputside=0; //declare the boundary of outflow mass flux in
shear direction
 // 0-top boundary 3-buttom boundary 1-
left side 2-right side

 double ssurfaceangle=0; //declare the slope angle in normal direction
 double nsurfaceangle=0; //declare the slope angle in shear direction
 double slopeangle=0; //declare the slope angle of a cell

 double noutputtime=0; //declare time of mass flux flowing out in
normal direction
 double soutputtime=0; //declare time of mass flux flowing out in
shear direction

 double nstoptime=0; //time in which mass flux stop within cell in
normal direction
 double sstoptime=0; //time in which mass flux stop within cell in
shear direction

 double ns=Size; //size of cell in normal direction
 double ss=Size; //size of cell in shear direction

 double nslope=0; //slope in normal direction
 double sslope=0; //slope in shear direction

 73

 double nacceleration=0; //acceleration in normal direction
 double sacceleration=0; //acceleration in shear direction

 double nbacceleration=0; //acceleration in normal direction if
flux turn back
 double sbacceleration=0; //acceleration in shear direction if flux
trun back

 double divergence=0; //divergence of flux, same as "Dx" in the paper

 double massin=0; //total mass of inflow mass flux
 double nmassout=0; //total mass of outflow mass flux in normal
direction
 double smassout=0; //total mass of outflow mass flux in shear
direction

 double nvin=0; //velocity of inflow mass flux in normal direction
 double svin=0; //velocity of inflow mass flux in shear direction
 double nnvout=0;//velocity of outflow in normal direction through
normal boundary
 double nsvout=0;//velocity of outflow in shear direction through normal
boundary
 double snvout=0;//velocity of outflow in normal direction through shear
boundary
 double ssvout=0;//velocity of outflow in shear direction through shear
boundary

 double ndircoef=0;//the direction coefficient in normal direction which
is used to
 //determine the direction of friction
 double sdircoef=0;//the direction coefficient in shear direction

 double outputmass[4]={0}; //array of mass of flux flowing out the
each boundary
 double outputvelocity[4][2]={0}; //velocity array of each flux

 for(int i=0;i<4;i++) // do a loop for each boundary
 {
 massin=massflowin[i].gettotalmass(); // set initial mass of
inflow mass flux

 if(massin==0) continue; // there is no outflow if the
inflow mass is 0

// choose and set the mass flux direction
 if(i==0 || i==3) // inflow through the top or bottom boundary
 {
// calculate the surface angle of the cell in the shear
direction
 ssurfaceangle=fabs(atan(slope[0]));
// calculate the surface angle of the cell in the normal
direction
 nsurfaceangle=fabs(atan(slope[1]));

// calculate the inflow velocity of the cell in the shear
direction
 svin=massflowin[i].getxvelocity();

 74

// calculate the inflow velocity of the cell in the normal
direction
 nvin=massflowin[i].getyvelocity();

// calculate the slope in shear direction and normal direction
 nslope=slope[1];
 sslope=slope[0];

 noutputside=(i==0)? 3:0; //determine the normal boundary of
outflow

 //determine the shear boundary of outflow
 if(svin>0) soutputside=2;
 else if(svin==0 && sslope >0) soutputside=2;
 else soutputside=1;
 }

 else //inflow through the side boundary
 {
// calculate the surface angle of the cell in the shear
direction
 ssurfaceangle=fabs(atan(slope[1]));
// calculate the surface angle of the cell in the normal
direction
 nsurfaceangle=fabs(atan(slope[0]));

// calculate the inflow velocity of the cell in the shear
direction
 nvin=massflowin[i].getxvelocity();
// calculate the inflow velocity of the cell in the normal
direction
 svin=massflowin[i].getyvelocity();

// calculate the slope in shear direction and normal direction
 nslope=slope[0];
 sslope=slope[1];

 noutputside=(i==1)? 2:1 ;//determine the normal boundary of
outflow

// determine the shear boundary of outflow
 if(svin>0) soutputside=3;
 else if(svin==0 && sslope >0) soutputside=3;
 else soutputside=0;
 }

// calculate the slope angle
 slopeangle=atan(sqrt(slope[0]*slope[0]+slope[1]*slope[1]));

// calculate the normal and shear direction coefficient
 ndircoef=fabs(nvin/sqrt(nvin*nvin+svin*svin));
 sdircoef=fabs(svin/sqrt(nvin*nvin+svin*svin));

 // calculate the surface size of cell in shear and normal
direction
 ss=Size/(2*cos(ssurfaceangle));
 ns=Size/cos(nsurfaceangle);

 75

 nstoptime=0; // initialization
 sstoptime=0; // initialization

// this part of code is used to determine mass and velocity of outflow in
each boundary
 if((nvin*nslope)>=0 && (svin*sslope)>=0)//the x- and y- velocity
of inflow flux
 //are same
as the x- and y- slope direction
 {
 // calcualte the acceleration in normal direction
 nacceleration=9.8*(sin(nsurfaceangle)-
ndircoef*cos(slopeangle)*tan(KineticFrictionAngle));
 // calcualte the acceleration in shear direction
 sacceleration=9.8*(sin(ssurfaceangle)-
sdircoef*cos(slopeangle)*tan(KineticFrictionAngle));

 // calcualte the acceleration in normal direction
 nbacceleration=-
9.8*(sin(nsurfaceangle)+ndircoef*cos(slopeangle)*tan(KineticFrictionAngle));
 // calcualte the acceleration in shear direction
 sbacceleration=-
9.8*(sin(ssurfaceangle)+sdircoef*cos(slopeangle)*tan(KineticFrictionAngle));

 // determine the time of flux flowing out the cell in
normal direction
 if(nacceleration>0) // when the mass flux is
accelerated in normal direction
 {
 noutputtime=(-
fabs(nvin)+sqrt(nvin*nvin+2*nacceleration*ns))/nacceleration;
 }
 else if(nacceleration<0 &&
fabs(nvin)>sqrt(2*fabs(nacceleration)*ns))
 // when the mass flux is slow down
but can move out the cell
 {
 noutputtime=(-
fabs(nvin)+sqrt(nvin*nvin+2*nacceleration*ns))/nacceleration;
 }
 else if(nacceleration==0 && nvin!=0) //when the
velocities of mass flux

 // keep constant
 {
 noutputtime=ns/fabs(nvin);
 }
 else // when the mass flux can not move out the cell
 {
 noutputtime=-1;

 if(nacceleration!=0) nstoptime=-
fabs(nvin)/nacceleration;
 else nstoptime=-1;
 }

 76

 // determine the time of flux flowing out the cell in shear
direction
 if(sacceleration>0)// when the mass flux is accelerated in
normal direction
 {
 soutputtime=(-
fabs(svin)+sqrt(svin*svin+2*sacceleration*ss))/sacceleration;
 }
 else if(sacceleration<0 &&
fabs(svin)>sqrt(2*fabs(sacceleration)*ss))
 // when the mass flux is slow down but can move out
the cell
 {
 soutputtime=(-
fabs(svin)+sqrt(svin*svin+2*sacceleration*ss))/sacceleration;
 }
 else if(sacceleration==0 && svin!=0)//when the velocities
of mass flux

 // keep constant
 {
 soutputtime=ss/fabs(svin);
 }
 else
 {
 soutputtime=-1;

 if(sacceleration!=0) sstoptime=-
fabs(svin)/sacceleration;
 else sstoptime=-1;
 }
 }

 else if((nvin*nslope)>=0 && (svin*sslope)<0)//the velocity
direction is same as
 // slope direction in x-direction and
opposite in y-direction
 {
 // calcualte the acceleration in normal direction
 nacceleration=9.8*(sin(nsurfaceangle)-
ndircoef*cos(slopeangle)*tan(KineticFrictionAngle));
 // calcualte the acceleration in shear direction
 sacceleration=-
9.8*(sin(ssurfaceangle)+sdircoef*cos(slopeangle)*tan(KineticFrictionAngle));

 // calcualte the acceleration in normal direction
 nbacceleration=-
9.8*(sin(nsurfaceangle)+ndircoef*cos(slopeangle)*tan(KineticFrictionAngle));
 // calcualte the acceleration in shear direction
 sbacceleration=9.8*(sin(ssurfaceangle)-
sdircoef*cos(slopeangle)*tan(KineticFrictionAngle));

 // determine the time of flux flowing out the cell in
normal direction
 if(nacceleration>0)// when the mass flux is accelerated in
normal direction
 {

 77

 noutputtime=(-
fabs(nvin)+sqrt(nvin*nvin+2*nacceleration*ns))/nacceleration;
 }
 else if(nacceleration<0 &&
fabs(nvin)>sqrt(2*fabs(nacceleration)*ns))
 // when the mass flux is slow down but can move out
the cell
 {
 noutputtime=(-
fabs(nvin)+sqrt(nvin*nvin+2*nacceleration*ns))/nacceleration;
 }
 else if(nacceleration==0 && nvin!=0)//when the velocities
of mass flux

 // keep constant
 {
 noutputtime=ns/fabs(nvin);
 }
 else
 {
 noutputtime=-1;

 if(nacceleration!=0) nstoptime=-
fabs(nvin)/nacceleration;
 else nstoptime=-1;
 }

 soutputtime=-1;
 sstoptime=-1;
 }

 else if((nvin*nslope)<0 && (svin*sslope)>=0)//the x- and y-
velocity of inflow flux
 //are same
in the y- and opposite in x- slope direction
 {
 // calcualte the acceleration in normal direction
 nacceleration=-
9.8*(sin(nsurfaceangle)+ndircoef*cos(slopeangle)*tan(KineticFrictionAngle));
 // calcualte the acceleration in shear direction
 sacceleration=9.8*(sin(ssurfaceangle)-
sdircoef*cos(slopeangle)*tan(KineticFrictionAngle));

 // calcualte the acceleration in normal direction
 nbacceleration=9.8*(sin(nsurfaceangle)-
ndircoef*cos(slopeangle)*tan(KineticFrictionAngle));
 // calcualte the acceleration in shear direction
 sbacceleration=-
9.8*(sin(ssurfaceangle)+sdircoef*cos(slopeangle)*tan(KineticFrictionAngle));

 noutputtime=-1;
 nstoptime=-1;

 // determine the time of flux flowing out the cell in
normal direction
 if(sacceleration>0)// when the mass flux is accelerated in
shear direction

 78

 {
 soutputtime=(-
fabs(svin)+sqrt(svin*svin+2*sacceleration*ss))/sacceleration;
 }
 else if(sacceleration<0 &&
fabs(svin)>sqrt(2*fabs(sacceleration)*ss))
 // when the mass flux is slow down but can move out
the cell
 {
 soutputtime=(-
fabs(svin)+sqrt(svin*svin+2*sacceleration*ss))/sacceleration;
 }
 else if(sacceleration==0 && svin!=0)//when the velocities
of mass flux

 // keep constant
 {
 soutputtime=ss/fabs(svin);
 }
 else
 {
 soutputtime=-1;

 if(sacceleration!=0) sstoptime=-
fabs(svin)/sacceleration;
 else sstoptime=-1;
 }
 }

 else //the x- and y-
velocity of inflow flux
 //are
opposite in the x- and y- slope direction
 {
 // determine the time of flux flowing out the cell in
normal direction
 noutputtime=-1;
 soutputtime=-1;
 nstoptime=-1;
 sstoptime=-1;
 }

 if(sbacceleration<0) sbacceleration=0;// calculate the shear
acceleration

 // this part of code is used to calculate the mass and velocity
of outflow

 // if there is no mass flowing out a cell
 if(noutputtime<=0 && soutputtime<=0)
 {
 nmassout=0;
 smassout=0;

 nnvout=0;
 nsvout=0;
 snvout=0;

 79

 ssvout=0;
 // add code for mass accumulated limitation
 }

 // if the mass flowing out the cell in normal direction is
dominant
 else if(noutputtime>0 && soutputtime<=0)
 {
 nmassout=massin;
 smassout=0;
 snvout=0;
 ssvout=0;

 // calculate the normal velocity
 if(nvin>=0)
 {
 nnvout=nvin+nacceleration*noutputtime;
 }
 else
 {
 nnvout=nvin-nacceleration*noutputtime;
 }

 //calculate the shear velocity
 if(svin>=0)
 {
 if(sstoptime>noutputtime)
nsvout=svin+sacceleration*noutputtime;
 else
nsvout=svin+sacceleration*sstoptime+sbacceleration*(noutputtime-sstoptime);
 }
 else
 {
 if(sstoptime>noutputtime) nsvout=svin-
sacceleration*noutputtime;
 else nsvout=svin-sacceleration*sstoptime-
sbacceleration*(noutputtime-sstoptime);
 }
 }

 // if the mass flowing out the cell in shear direction is
dominant
 else if(noutputtime<=0 && soutputtime>0)
 {
 smassout=massin;
 nmassout=0;
 nnvout=0;
 nsvout=0;

 //calculate the shear velocity
 if(svin>=0)
 {
 snvout=svin+sacceleration*soutputtime;
 }
 else
 {
 snvout=svin-sacceleration*soutputtime;

 80

 }

 //calculate the normal velocity
 if(nvin>=0)
 {
 if(nstoptime>soutputtime)
ssvout=nvin+nacceleration*soutputtime;
 else
ssvout=nvin+nacceleration*nstoptime+nbacceleration*(soutputtime-nstoptime);
 }
 else
 {
 if(nstoptime>soutputtime) ssvout=nvin-
nacceleration*soutputtime;
 else ssvout=nvin-nacceleration*nstoptime-
nbacceleration*(soutputtime-nstoptime);
 }

 }

 //if mass flowing out a cell in both shear and normal direction
 else
 {
 // calculate the mass outflow a cell in shear and normal
direction
 if(noutputtime<=soutputtime)
 {

 divergence=fabs((fabs(svin)*noutputtime+sacceleration*noutputtime*noutp
uttime/2)/(2*ss));
 if(divergence<0) divergence=0;
 nmassout=massin*(1-divergence);
 smassout=massin*divergence;
 }
 else
 {

 divergence=fabs((fabs(nvin)*soutputtime+nacceleration*soutputtime*soutp
uttime/2)/ns);
 if(divergence<0.5) divergence=0.5;
 nmassout=massin*(divergence-0.5);
 smassout=massin*(1.5-divergence);
 }

 // calculate the normal and shear velocity of outflow
massflux
 if(nvin>=0)
 {
 nnvout=nvin+nacceleration*noutputtime;
 ssvout=nvin+nacceleration*soutputtime;
 }
 else
 {
 nnvout=nvin-nacceleration*noutputtime;

 ssvout=nvin-nacceleration*soutputtime;
 }

 81

 if(svin>=0)
 {
 snvout=svin+sacceleration*soutputtime;
 nsvout=svin+sacceleration*noutputtime;
 }
 else
 {
 snvout=svin-sacceleration*soutputtime;
 nsvout=svin-sacceleration*noutputtime;
 }

 if(nnvout>0.1)nnvout=0.1;
 if(nsvout>0.1)nsvout=0.1;
 if(snvout>0.1)snvout=0.1;
 if(ssvout>0.1)ssvout=0.1;
 }

 // if the mass flowing out a cell is less than the minimun
tolerance, ignore this part of mass and set the mass outflowing a cell to be
zero
 if(nmassout<=MinMassOut)
 {
 nmassout=0;
 nnvout=0;
 nsvout=0;
 }

 // if the mass flowing out a cell is less than the minimun
tolerance, ignore this part of mass and set the mass outflowing a cell to be
zero
 if(smassout<=MinMassOut)
 {
 smassout=0;
 snvout=0;
 ssvout=0;
 }

 // this part of code is used to put the mass and velocity of
outflow into the global matrix
 if(i==0 || i==3) // if the mass flow in the top or bottom
boundary
 {
 if(outputmass[noutputside]==0) // if the mass flow out
through the top boundary
 {
 outputvelocity[noutputside][0]=nsvout;
 outputvelocity[noutputside][1]=nnvout;
 outputmass[noutputside]=nmassout;
 }
 else // if the mass flow out through the bottom boundary
 {

 outputvelocity[noutputside][0]=(nmassout*nsvout+outputvelocity[noutputs
ide][0]*

 outputmass[noutputside])/(nmassout+outputmass[noutputside]);

 82

outputvelocity[noutputside][1]=(nmassout*nnvout+outputvelocity[noutputside][1
]*

 outputmass[noutputside])/(nmassout+outputmass[noutputside]);;
 outputmass[noutputside]+=nmassout;
 }

 if(outputmass[soutputside]==0) // if the mass flow out
through the top boundary
 {
 outputvelocity[soutputside][0]=snvout;
 outputvelocity[soutputside][1]=ssvout;
 outputmass[soutputside]=smassout;
 }
 else // if the mass flow out through the bottom boundary
 {

 outputvelocity[soutputside][0]=(smassout*snvout+outputvelocity[soutputs
ide][0]*

 outputmass[soutputside])/(smassout+outputmass[soutputside]);

outputvelocity[soutputside][1]=(smassout*ssvout+outputvelocity[soutputside][1
]*

 outputmass[soutputside])/(smassout+outputmass[soutputside]);;
 outputmass[soutputside]+=smassout;
 }
 }

 else // if the mass flow in the side boundary
 {
 if(outputmass[noutputside]==0) // if the mass flow out
through the top boundary
 {
 outputvelocity[noutputside][0]=nnvout;
 outputvelocity[noutputside][1]=nsvout;
 outputmass[noutputside]=nmassout;
 }
 else // if the mass flow out through the bottom boundary
 {

 outputvelocity[noutputside][0]=(nmassout*nnvout+outputvelocity[noutputs
ide][0]*

 outputmass[noutputside])/(nmassout+outputmass[noutputside]);

outputvelocity[noutputside][1]=(nmassout*nsvout+outputvelocity[noutputside][1
]*

 outputmass[noutputside])/(nmassout+outputmass[noutputside]);;
 outputmass[noutputside]+=nmassout;
 }

 if(outputmass[soutputside]==0) // if the mass flow out
through the top boundary

 83

 {
 outputvelocity[soutputside][0]=ssvout;
 outputvelocity[soutputside][1]=snvout;
 outputmass[soutputside]=smassout;
 }
 else // if the mass flow out through the bottom boundary
 {

 outputvelocity[soutputside][0]=(smassout*ssvout+outputvelocity[soutputs
ide][0]*

 outputmass[soutputside])/(smassout+outputmass[soutputside]);

outputvelocity[soutputside][1]=(smassout*snvout+outputvelocity[soutputside][1
]*

 outputmass[soutputside])/(smassout+outputmass[soutputside]);;
 outputmass[soutputside]+=smassout;
 }
 }
 }

 // put the mass and velocity of outflow into the global matrix
 for(int i=0;i<4;i++)
 {
 massflowout[i].settotalmass(outputmass[i]);
 massflowout[i].setxvelocity(outputvelocity[i][0]);
 massflowout[i].setyvelocity(outputvelocity[i][1]);
 }
}

// define the function setmassflowin which is used to set the mass and
velocity of inflow
void element::setmassflowin(double mass[4],double velocity[4][2])
{
 for(int i=0;i<4;i++)
 {
 this->massflowin[i].settotalmass(mass[i]); // set the inflow mass
 this->massflowin[i].setxvelocity(velocity[i][0]); // set the
inflow velocity in x-direction
 this->massflowin[i].setyvelocity(velocity[i][1]); // set the
inflow velocity in y-direction
 }
}

 84

// This program is used to calculate the amount mass of dry ravel
// produced by wild fire
// Include the head file
// headerfile.h include the namespace and files used in program
// headerfile.h also include the definition of constant
#include "headerfile.h"
// node.h declare the class node
// node.cpp define the class node
#include "node.h"
// element.h declare the class element
// element.cpp define the class element
#include "element.h"
// event.h declare the class event
// event.cpp define the class event
#include "event.h"
// the main program begin
int main()
{
// char fire;
//define the number of the row and column of the
//calculation domain
 int NumberofRow=100;
 int NumberofColumn=100;
// define the size of each cell
 int Size=1;
// int numberoffire=0;
// define the minimun mass flowing out one cell.
// if the mass flowing out the cell less than MinMassOut,
// the program will ignore this part of mass
 double MinMassOut=0.001;
 double vegetationsize=0.1; //average diameter of vegetation
 double vegetationdensity=20; //amount of vegetation in 1 square meter
 double averageproduction=0; //declare the average dry ravel
production in each cell
 double averagedeposition=0; //declare the average dry ravel
deposition in each cell
 double averagevariation=0; //declare the average dry ravel variation
in each cell
 double FireImpactDepth=0;

 //Define the friction angle
 double FrictionAngle;
 double KineticFrictionAngle;

// open the file which including the input parameters
 ifstream paraminput("paraminput.txt", ios::in);

// input parameters from the file "paraminput.txt"
 paraminput >> NumberofRow >> NumberofColumn >> Size >> MinMassOut
 >> vegetationsize >> vegetationdensity >>
FireImpactDepth >> FrictionAngle >> KineticFrictionAngle;

// calculate the static friction angle (repose angle) of soil
 FrictionAngle=FrictionAngle*PI/180;
// calculate the kinetic friction angle of soil
 KineticFrictionAngle=KineticFrictionAngle*PI/180;

 85

// close the file which including the input parameters
 paraminput.close();

// declare a pointer "nodeelevation" which point to array
// storing the elevation of node point
 double **nodeelevation = new double * [NumberofRow+1];
 for (int i = 0; i < NumberofRow+1; i++)
 nodeelevation[i] = new double [NumberofColumn+1];

// declare a pointer "massvariationation" which point to array
// storing the information of mass changes in each cell
 double **massvariation = new double * [NumberofRow];
 for(int i=0;i<NumberofRow;i++)
 massvariation[i] = new double [NumberofColumn];

// declare a pointer "massloss" which point to array
// storing the information of mass loss from each cell
 double **massloss = new double * [NumberofRow];
 for(int i=0;i<NumberofRow;i++)
 massloss[i]= new double [NumberofColumn];

// declare a pointer "elementmassin" which point to array
// storing the information of mass flowing in each cell
 double **elementmassin = new double * [NumberofRow];
 for(int i=0;i<NumberofRow;i++)
 elementmassin[i]= new double [NumberofColumn];

// declare a pointer "elementmassout" which point to array
// storing the information of mass flowing out from each cell
 double **elementmassout= new double * [NumberofRow];
 for(int i=0;i<NumberofRow; i++)
 elementmassout[i]= new double [NumberofColumn];

// declare a pointer "massin" which point to array
// storing the information of in-flow mass of mass flux on each side of
cells
 double *** massin = new (double ** [NumberofRow]);
 for(int i=0;i<NumberofRow;i++)
 {
 massin[i]=new (double * [NumberofColumn]);
 for(int j=0;j<NumberofColumn;j++)
 massin[i][j]=new (double [4]);
 }

// declare a pointer "massout" which point to array
// storing the information of out-flow mass of mass flux on each side of
cells
 double *** massout = new (double ** [NumberofRow]);
 for(int i=0;i<NumberofRow;i++)
 {
 massout[i]=new (double * [NumberofColumn]);
 for(int j=0;j<NumberofColumn;j++)
 massout[i][j]=new (double [4]);
 }

// declare a pointer "xinvelocity" which point to array

 86

// storing the information of in-flow x-velocity of mass flux on each side
of cells
 double *** xinvelocity =new (double ** [NumberofRow]);
 for(int i=0;i<NumberofRow;i++)
 {
 xinvelocity[i]=new (double * [NumberofColumn]);
 for(int j=0;j<NumberofColumn;j++)
 xinvelocity[i][j]=new (double [4]);
 }

// declare a pointer "yinvelocity" which point to array
// storing the information of in-flow y-velocity of mass flux on each side
of cells
 double *** yinvelocity =new (double ** [NumberofRow]);
 for(int i=0;i<NumberofRow;i++)
 {
 yinvelocity[i]=new (double * [NumberofColumn]);
 for(int j=0;j<NumberofColumn;j++)
 yinvelocity[i][j]=new (double [4]);
 }

// declare a pointer "xoutvelocity" which point to array
// storing the information of out-flow y-velocity of mass flux on each
side of cells
 double *** xoutvelocity =new (double ** [NumberofRow]);
 for(int i=0;i<NumberofRow;i++)
 {
 xoutvelocity[i]=new (double * [NumberofColumn]);
 for(int j=0;j<NumberofColumn;j++)
 xoutvelocity[i][j]=new (double [4]);
 }

// declare a pointer "youtvelocity" which point to array
// storing the information of mass of mass flux on each side of cells
 double *** youtvelocity =new (double ** [NumberofRow]);
 for(int i=0;i<NumberofRow;i++)
 {
 youtvelocity[i]=new (double * [NumberofColumn]);
 for(int j=0;j<NumberofColumn;j++)
 youtvelocity[i][j]=new (double [4]);
 }

// Input elevation of every node point
 for(int i=0;i<NumberofRow+1;i++)
 {
 for(int j=0;j<NumberofColumn+1;j++)
 {
 nodeelevation[i][j]=0;
 }
 }

// set the initial value of the arraies to be zero
 for(int i=0;i<NumberofRow;i++)
 {
 for(int j=0;j<NumberofColumn;j++)
 {
 massvariation[i][j]=0;

 87

 massloss[i][j]=0;
 elementmassin[i][j]=0;
 elementmassout[i][j]=0;
 for(int k=0;k<4;k++)
 {
 massin[i][j][k]=0;
 massout[i][j][k]=0;
 xinvelocity[i][j][k]=0;
 yinvelocity[i][j][k]=0;
 xoutvelocity[i][j][k]=0;
 youtvelocity[i][j][k]=0;
 }
 }
 }

// open the file pointinput.txt which store the elevation
// of node point
 ifstream pointinput("pointinput.txt", ios::in);

// input the elevation of each node
 for(int i=0;i<NumberofRow+1;i++)
 {
 for(int j=0;j<NumberofColumn+1;j++)
 {
 pointinput >> nodeelevation[i][j];
 }
 }

// close the elevation file
 pointinput.close();

// open the file pointoutput.txt for output data
 ofstream pointoutput("pointoutput.xls", ios::out);

// start the loop to calculate the dry ravel movement of each fire impact
cell
 for(int i=0;i<NumberofRow;i++)
 {
 for(int j=0;j<NumberofColumn;j++)
 {

 // output some imformation of program running processes
 cout << endl << i << ' ' << j;

// declare a pointer pointing to the class element, and build
the object of the class
 element *peventproduct=new
element(i*NumberofColumn+j,nodeelevation[i][j],nodeelevation[i][j+1]

 ,nodeelevation[i+1][j],nodeelevation[i+1][j+1],Size);

// conduct the function eventproduct which represent the fire
occurs in the cell
 peventproduct-
>eventproduct(vegetationsize,vegetationdensity,
 FireImpactDepth,FrictionAngle,KineticFrictionAngle);

 88

// update the informations of mass and velocity on the cell
 for(int k=0;k<4;k++)
 {
 massout[i][j][k]=peventproduct-
>massflowout[k].gettotalmass();
 xoutvelocity[i][j][k]=peventproduct-
>massflowout[k].getxvelocity();
 youtvelocity[i][j][k]=peventproduct-
>massflowout[k].getyvelocity();

 massvariation[i][j]-=peventproduct-
>massflowout[k].gettotalmass();
 massloss[i][j]-=peventproduct-
>massflowout[k].gettotalmass();
 elementmassout[i][j]-=peventproduct-
>massflowout[k].gettotalmass();
 }

// clear the object and memory
 delete peventproduct;

// if there is no mass flowing out the cell, go to next fire
impact cell
 if(massout[i][j][0]==0 && massout[i][j][1]==0 &&
massout[i][j][2]==0 && massout[i][j][3]==0)
 continue;

// if there is mass flowing out, continue calculate the
information of other cells
 double massmove=1;

// start a new loop, if there is mass flux exists the loop
will continue
 while(massmove!=0)
 {
 //set that there is no mass flux
 massmove=0;

// start a loop which will calculate dry ravel movement
of each cell of the domain
 for(int x=0;x<NumberofRow;x++)
 {
 for(int y=0;y<NumberofColumn;y++)
 {
// set the initial value of array massin,
xinvelocity,and yinvelocity
 if(x==0) //for the case that the cell
is on the lefe boundary
 {
 massin[x][y][0]=0;
 xinvelocity[x][y][0]=0;
 yinvelocity[x][y][0]=0;
 }
 else // for the case that the cell is
not on the boundart
 {

 89

 massin[x][y][0]=massout[x-1][y][3];

 xinvelocity[x][y][0]=xoutvelocity[x-1][y][3];

 yinvelocity[x][y][0]=youtvelocity[x-1][y][3];
 }

 if(x==NumberofRow-1)//for the case that
the cell is on the right boundary
 {
 massin[x][y][3]=0;
 xinvelocity[x][y][3]=0;
 yinvelocity[x][y][3]=0;
 }
 else // for the case that the cell is not
on the boundart
 {
 massin[x][y][3]=massout[x+1][y][0];

 xinvelocity[x][y][3]=xoutvelocity[x+1][y][0];

 yinvelocity[x][y][3]=youtvelocity[x+1][y][0];
 }

 if(y==0)//for the case that the cell is
on the upper boundary
 {
 massin[x][y][1]=0;
 xinvelocity[x][y][1]=0;
 yinvelocity[x][y][1]=0;
 }
 else // for the case that the cell is not
on the boundart
 {
 massin[x][y][1]=massout[x][y-1][2];

 xinvelocity[x][y][1]=xoutvelocity[x][y-1][2];

 yinvelocity[x][y][1]=youtvelocity[x][y-1][2];
 }

 if(y==NumberofColumn-1)//for the case
that the cell is on the lower boundary
 {
 massin[x][y][2]=0;

 xinvelocity[x][y][2]=0;

 yinvelocity[x][y][2]=0;
 }
 else // for the case that the cell is not
on the boundart
 {
 massin[x][y][2]=massout[x][y+1][1];

 xinvelocity[x][y][2]=xoutvelocity[x][y+1][1];

 90

 yinvelocity[x][y][2]=youtvelocity[x][y+1][1];
 }

// update the mass change
 for(int k=0;k<4;k++)
 {

 massvariation[x][y]+=massin[x][y][k];

 elementmassin[x][y]+=massin[x][y][k];
 }
 }
 }

// set mass, velocity of out-flow to be zero
 for(int m=0;m<NumberofRow;m++)
 {
 for(int n=0;n<NumberofColumn;n++)
 {
 for(int k=0;k<4;k++)
 {
 massout[m][n][k]=0;
 xoutvelocity[m][n][k]=0;
 youtvelocity[m][n][k]=0;
 }
 }
 }

// update the mass change and velocity change
 for(int m=0;m<NumberofRow;m++)
 {
 for(int n=0;n<NumberofColumn;n++)
 {
// if there is not mass flow in the cell
 if(massin[m][n][0]==0 &&
massin[m][n][1]==0 && massin[m][n][2]==0 && massin[m][n][3]==0)
 {
 for(int k=0;k<4;k++)
 {
 massout[m][n][k]=0;
 xoutvelocity[m][n][k]=0;
 youtvelocity[m][n][k]=0;
 }
 continue;
 }

// initial the new object of class element
 element * peventoccur=new
element(m*NumberofColumn+n,nodeelevation[m][n],

 nodeelevation[m][n+1],nodeelevation[m+1][n],nodeelevation[m+1][n+1],Siz
e);

// declare the total mass flowing in the
cell

 91

 double
totalmass[4]={massin[m][n][0],massin[m][n][1],massin[m][n][2],massin[m][n][3]
};
// declare the velocity matrix of mass flux
 double
veolociy[4][2]={xinvelocity[m][n][0],yinvelocity[m][n][0],

xinvelocity[m][n][1],yinvelocity[m][n][1],

xinvelocity[m][n][2],yinvelocity[m][n][2],

xinvelocity[m][n][3],yinvelocity[m][n][3]};

// set the in-flow mass and velocity
 peventoccur-
>setmassflowin(totalmass,veolociy);

// call the function eventoccur to calculate
the mass flux changes
 peventoccur-
>eventoccur(MinMassOut,KineticFrictionAngle);

// update the massout, x- and y- velocity,
and mass variation in each element
 for(int k=0;k<4;k++)
 {
 massmove+=fabs(peventoccur-
>massflowout[k].gettotalmass());

 massout[m][n][k]=peventoccur-
>massflowout[k].gettotalmass();

 xoutvelocity[m][n][k]=peventoccur-
>massflowout[k].getxvelocity();
 youtvelocity[m][n][k]=peventoccur-
>massflowout[k].getyvelocity();

 massvariation[m][n]-
=massout[m][n][k];
 elementmassout[m][n]-
=massout[m][n][k];
 }

// clear the object "peventoccur"
 delete peventoccur;
 }
 }

// reset massin, x- and y- velocity for next calculation
cycle
 for(int m=0;m<NumberofRow;m++)
 {
 for(int n=0;n<NumberofColumn;n++)
 {
 for(int k=0;k<4;k++)
 {
 massin[m][n][k]=0;

 92

 xinvelocity[m][n][k]=0;
 yinvelocity[m][n][k]=0;
 }
 }
 }
 }

// reste mass and velocity matrix for next calculation
 for(int m=0;m<NumberofRow;m++)
 {
 for(int n=0;n<NumberofColumn;n++)
 {
 for(int k=0;k<4;k++)
 {
 massin[m][n][k]=0;
 massout[m][n][k]=0;
 xinvelocity[m][n][k]=0;
 yinvelocity[m][n][k]=0;
 xoutvelocity[m][n][k]=0;
 youtvelocity[m][n][k]=0;
 }
 }
 }

// output the results

// output mass flowing out from each element
 pointoutput << "Mass flow out from each cell" << endl;
 for(int i=0;i<NumberofRow;i++)
 {
 for(int j=0;j<NumberofColumn;j++)
 {
 pointoutput << elementmassout[i][j] << "\t";
 }
 pointoutput << endl;
 }

// output mass flowing into the element during the whole process
 pointoutput << "Mass flow into each cell" << endl;
 for(int i=0;i<NumberofRow;i++)
 {
 for(int j=0;j<NumberofColumn;j++)
 {
 pointoutput << elementmassin[i][j] << "\t";
 }
 pointoutput << endl;
 }

// output the mass lossed from each element
 pointoutput << "Mass loss from each cell" << endl;
 for(int i=0;i<NumberofRow;i++)
 {

 for(int j=0;j<NumberofColumn;j++)
 {
 pointoutput << massloss[i][j] << "\t";
 averageproduction+=massloss[i][j];

 93

 }
 pointoutput << endl;
 }
 averageproduction=averageproduction/(NumberofRow*NumberofColumn);

// output the mass variation of each element
 pointoutput << "Mass variation for each cell" << endl;
 for(int i=0;i<NumberofRow;i++)
 {
 for(int j=0;j<NumberofColumn;j++)
 {
 pointoutput << massvariation[i][j] << "\t";
 averagevariation+=massvariation[i][j];
 }
 pointoutput << endl;
 }
 averagevariation=averagevariation/(NumberofRow*NumberofColumn);

// output mass deposition in each element
 pointoutput << "Mass deposition for each cell" << endl;
 for(int i=0;i<NumberofRow;i++)
 {
 for(int j=0;j<NumberofColumn;j++)
 {
 pointoutput << (massvariation[i][j]-massloss[i][j]) <<
"\t";
 averagedeposition+=(massvariation[i][j]-massloss[i][j]);
 }
 pointoutput << endl;
 }
 averagedeposition=averagedeposition/(NumberofRow*NumberofColumn);

// output the average value of dry ravel production, mass variation of dry
ravel in each element,
// and the dry ravel deposition in each element.
 pointoutput << averageproduction << '\t' << averagevariation << '\t' <<
averagedeposition << endl;

 pointoutput.close();

// clear the objects, close the output file, and release the memory
 for (int i = 0; i < NumberofRow+1; i++)
 delete [] nodeelevation[i];
 delete [] nodeelevation;

 for(int i=0;i<NumberofRow;i++)
 {
 delete [] massvariation[i];
 delete [] massloss[i];
 delete [] elementmassin[i];
 delete [] elementmassout[i];

 for(int j=0;j<NumberofColumn;j++)
 {
 delete [] massin[i][j];
 delete [] massout[i][j];
 delete [] xinvelocity[i][j];

 94

 delete [] yinvelocity[i][j];
 delete [] xoutvelocity[i][j];
 delete [] youtvelocity[i][j];
 }

 delete [] massin[i];
 delete [] massout[i];
 delete [] xinvelocity[i];
 delete [] yinvelocity[i];
 delete [] xoutvelocity[i];
 delete [] youtvelocity[i];
 }

 delete [] massvariation;
 delete [] massloss;
 delete [] elementmassin;
 delete [] elementmassout;
 delete [] massin;
 delete [] massout;
 delete [] xinvelocity;
 delete [] yinvelocity;
 delete [] xoutvelocity;
 delete [] youtvelocity;

 return 0;
}

 95

B. Statistical Analysis

ANOVA codes

Watershed 0507 Production
DATA A;
INFILE 'c:\stat\prod507.prn';
INPUT PROD METHOD $ WATSHD;
PROC GLM;
CLASS METHOD WATSHD;
MODEL PROD = METHOD;
MEANS METHOD/TUKEY ALPHA=0.01;
MEANS METHOD/TUKEY;
MEANS METHOD/TUKEY ALPHA=0.1;
RUN;

Watershed 0508 Production
DATA A;
INFILE 'c:\stat\prod508.prn';
INPUT PROD METHOD $ WATSHD;
PROC GLM;
CLASS METHOD WATSHD;
MODEL PROD = METHOD;
MEANS METHOD/TUKEY ALPHA=0.01;
MEANS METHOD/TUKEY;
MEANS METHOD/TUKEY ALPHA=0.1;
RUN;

Watershed 0542 Production
DATA A;
INFILE 'c:\stat\prod542.prn';
INPUT PROD METHOD $ WATSHD;
PROC GLM;
CLASS METHOD WATSHD;
MODEL PROD = METHOD;
MEANS METHOD/TUKEY ALPHA=0.01;
MEANS METHOD/TUKEY;
MEANS METHOD/TUKEY ALPHA=0.1;
RUN;

Watershed 0560 Production
DATA A;
INFILE 'c:\stat\prod560.prn';
INPUT PROD METHOD $ WATSHD;
PROC GLM;
CLASS METHOD WATSHD;
MODEL PROD = METHOD;
MEANS METHOD/TUKEY ALPHA=0.01;
MEANS METHOD/TUKEY;
MEANS METHOD/TUKEY ALPHA=0.1;
RUN;

 96

Watershed 0507 Deposition
DATA A;
INFILE 'c:\stat\dep507.prn';
INPUT PROD METHOD $ WATSHD;
PROC GLM;
CLASS METHOD WATSHD;
MODEL PROD = METHOD;
MEANS METHOD/TUKEY ALPHA=0.01;
MEANS METHOD/TUKEY;
MEANS METHOD/TUKEY ALPHA=0.1;
RUN;

Watershed 0508 Deposition
DATA A;
INFILE 'c:\stat\dep508.prn';
INPUT PROD METHOD $ WATSHD;
PROC GLM;
CLASS METHOD WATSHD;
MODEL PROD = METHOD;
MEANS METHOD/TUKEY ALPHA=0.01;
MEANS METHOD/TUKEY;
MEANS METHOD/TUKEY ALPHA=0.1;
RUN;

Watershed 0542 Deposition
DATA A;
INFILE 'c:\stat\dep542.prn';
INPUT PROD METHOD $ WATSHD;
PROC GLM;
CLASS METHOD WATSHD;
MODEL PROD = METHOD;
MEANS METHOD/TUKEY ALPHA=0.01;
MEANS METHOD/TUKEY;
MEANS METHOD/TUKEY ALPHA=0.1;
RUN;

Watershed 0560 Deposition
DATA A;
INFILE 'c:\stat\dep560.prn';
INPUT PROD METHOD $ WATSHD;
PROC GLM;
CLASS METHOD WATSHD;
MODEL PROD = METHOD;
MEANS METHOD/TUKEY ALPHA=0.01;
MEANS METHOD/TUKEY;
MEANS METHOD/TUKEY ALPHA=0.1;
RUN;

 97

ANOVA Results

Watershed 0507 Production

The GLM Procedure
Class Level Information

Class Levels Values
METHOD 2 OBS PRED

WATSHD 1 507
Number of observations 50
Dependent Variable: PROD

Sum of Source DF Squares Mean Square F Value Pr > F
Model 1 0.7200 0.7200 0.00 0.9949

Error 48 845766.0000 17620.1250
Corrected Total 49 845766.7200

R-Square Coeff Var Root MSE PROD Mean
0.000001 79.08771 132.7408 167.8400

Source DF Type I SS Mean Square F Value Pr > F
METHOD 1 0.72000000 0.72000000 0.00 0.9949
Source DF Type III SS Mean Square F Value Pr > F

METHOD 1 0.72000000 0.72000000 0.00 0.9949
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.01
Error Degrees of Freedom 48
Error Mean Square 17620.13

Critical Value of Studentized Range 3.79322
Minimum Significant Difference 100.7

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 167.96 25 OBS
A

A 167.72 25 PRED
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 48
Error Mean Square 17620.13

Critical Value of Studentized Range 2.84352
Minimum Significant Difference 75.49

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 167.96 25 OBS
A

A 167.72 25 PRED
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.1
Error Degrees of Freedom 48
Error Mean Square 17620.13

Critical Value of Studentized Range 2.37195
Minimum Significant Difference 62.971

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 167.96 25 OBS
A

A 167.72 25 PRED

 98

Watershed 0508 Production

The GLM Procedure

Class Level Information
Class Levels Values

METHOD 2 OBS PRED
WATSHD 1 508

Number of observations 50
Dependent Variable: PROD

Sum of Source DF Squares Mean Square F Value Pr > F
Model 1 0.180 0.180 0.00 0.9979

Error 48 1284614.640 26762.805
Corrected Total 49 1284614.820

R-Square Coeff Var Root MSE PROD Mean
0.000000 69.63200 163.5934 234.9400

Source DF Type I SS Mean Square F Value Pr > F
METHOD 1 0.18000000 0.18000000 0.00 0.9979
Source DF Type III SS Mean Square F Value Pr > F

METHOD 1 0.18000000 0.18000000 0.00 0.9979
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.01
Error Degrees of Freedom 48
Error Mean Square 26762.81

Critical Value of Studentized Range 3.79322
Minimum Significant Difference 124.11

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 235.00 25 PRED
A

A 234.88 25 OBS
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 48
Error Mean Square 26762.81

Critical Value of Studentized Range 2.84352
Minimum Significant Difference 93.036

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 235.00 25 PRED
A

A 234.88 25 OBS
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.1
Error Degrees of Freedom 48
Error Mean Square 26762.81

Critical Value of Studentized Range 2.37195
Minimum Significant Difference 77.607

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 235.00 25 PRED
A

A 234.88 25 OBS

 99

Watershed 0542 Production

The GLM Procedure
Class Level Information

Class Levels Values
METHOD 2 OBS PRED

WATSHD 1 542
Number of observations 50
Dependent Variable: PROD

Sum of Source DF Squares Mean Square F Value Pr > F
Model 1 1.280 1.280 0.00 0.9980

Error 48 9894376.720 206132.848
Corrected Total 49 9894378.000

R-Square Coeff Var Root MSE PROD Mean
0.000000 105.8812 454.0186 428.8000

Source DF Type I SS Mean Square F Value Pr > F
METHOD 1 1.28000000 1.28000000 0.00 0.9980
Source DF Type III SS Mean Square F Value Pr > F

METHOD 1 1.28000000 1.28000000 0.00 0.9980
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.01
Error Degrees of Freedom 48
Error Mean Square 206132.8

Critical Value of Studentized Range 3.79322
Minimum Significant Difference 344.44

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 429.0 25 OBS
A

A 428.6 25 PRED
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 48
Error Mean Square 206132.8

Critical Value of Studentized Range 2.84352
Minimum Significant Difference 258.2

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 429.0 25 OBS
A

A 428.6 25 PRED
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.1
Error Degrees of Freedom 48
Error Mean Square 206132.8

Critical Value of Studentized Range 2.37195
Minimum Significant Dfference 215.38

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 429.0 25 OBS
A

A 428.6 25 PRED

 100

Watershed 0560 Production

The GLM Procedure
Class Level Information

Class Levels Values
METHOD 2 OBS PRED

WATSHD 1 560
Number of observations 50
Dependent Variable: PROD

Sum of Source DF Squares Mean Square F Value Pr > F
Model 1 0.080 0.080 0.00 0.9987

Error 48 1344919.040 28019.147
Corrected Total 49 1344919.120

R-Square Coeff Var Root MSE PROD Mean
0.000000 97.18370 167.3892 172.2400

Source DF Type I SS Mean Square F Value Pr > F
METHOD 1 0.08000000 0.08000000 0.00 0.9987
Source DF Type III SS Mean Square F Value Pr > F

METHOD 1 0.08000000 0.08000000 0.00 0.9987
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.01
Error Degrees of Freedom 48
Error Mean Square 28019.15

Critical Value of Studentized Range 3.79322
Minimum Significant Difference 126.99

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 172.28 25 PRED
A

A 172.20 25 OBS
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 48
Error Mean Square 28019.15

Critical Value of Studentized Range 2.84352
Minimum Significant Difference 95.195

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 172.28 25 PRED
A

A 172.20 25 OBS
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

lpha 0.1
Error Degrees of Freedom 48
Error Mean Square 28019.15

Critical Value of Studentized Range 2.37195
Minimum Significant Difference 79.408

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 172.28 25 PRED

A
A 172.20 25 OBS

 101

Watershed 0507 Deposition

The GLM Procedure
Class Level Information

Class Levels Values
METHOD 2 OBS PRED

WATSHD 1 507
Number of observations 100
Dependent Variable: PROD

Sum of Source DF Squares Mean Square F Value Pr > F
Model 1 1382505.64 1382505.64 3.23 0.0754

Error 98 41964973.60 428214.02
Corrected Total 99 43347479.24

R-Square Coeff Var Root MSE PROD Mean
0.031894 179.9034 654.3806 363.7400

Source DF Type I SS Mean Square F Value Pr > F
METHOD 1 1382505.640 1382505.640 3.23 0.0754

Source DF Type III SS Mean Square F Value Pr > F
METHOD 1 1382505.640 1382505.640 3.23 0.0754

Tukey's Studentized Range (HSD) Test for PROD
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type

II error rate than REGWQ.
Alpha 0.01

Error Degrees of Freedom 98
Error Mean Square 428214

Critical Value of Studentized Range 3.71512
Minimum Significant Difference 343.81

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 481.3 50 PRED
A

A 246.2 50 OBS
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 98
Error Mean Square 428214

Critical Value of Studentized Range 2.80646
Minimum Significant Difference 259.72

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 481.3 50 PRED
A

A 246.2 50 OBS
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.1
Error Degrees of Freedom 98
Error Mean Square 428214

Critical Value of Studentized Range 2.34837
Minimum Significant Difference 217.33

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 481.3 50 PRED
B 246.2 50 OBS

 102

Watershed 0508 Deposition

The GLM Procedure
Class Level Information

Class Levels Values
METHOD 2 OBS PRED

WATSHD 1 508
Number of observations 100

dependent Variable: PROD
Sum of Source DF Squares Mean Square F Value Pr > F

Model 1 809078202 809078202 1.99 0.1614
Error 98 39822270778 406349702

Corrected Total 99 40631348981
R-Square Coeff Var Root MSE PROD Mean

0.019913 621.4870 20158.12 3243.530
Source DF Type I SS Mean Square F Value Pr > F

METHOD 1 809078202.5 809078202.5 1.99 0.1614
Source DF Type III SS Mean Square F Value Pr > F

METHOD 1 809078202.5 809078202.5 1.99 0.1614
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.01
Error Degrees of Freedom 98
Error Mean Square 4.0635E8

Critical Value of Studentized Range 3.71512
Minimum Significant Difference 10591

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 6088 50 OBS
A

A 399 50 PRED
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 98
Error Mean Square 4.0635E8

Critical Value of Studentized Range 2.80646
Minimum Significant Difference 8000.6

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 6088 50 OBS
A

A 399 50 PRED
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.1
Error Degrees of Freedom 98
Error Mean Square 4.0635E8

Critical Value of Studentized Range 2.34837
Minimum Significant Difference 6694.7

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 6088 50 OBS
A

A 399 50 PRED

 103

Watershed 0542 Deposition

The GLM Procedure
Class Level Information

Class Levels Values
METHOD 2 OBS PRED

WATSHD 1 542
Number of observations 100
Dependent Variable: PROD

Sum of Source DF Squares Mean Square F Value Pr > F
Model 1 188964.09 188964.09 0.21 0.6490

Error 98 88817839.70 906304.49
Corrected Total 99 89006803.79

R-Square Coeff Var Root MSE PROD Mean
0.002123 177.4828 952.0003 536.3900

Source DF Type I SS Mean Square F Value Pr > F
METHOD 1 188964.0900 188964.0900 0.21 0.6490

Source DF Type III SS Mean Square F Value Pr > F
METHOD 1 188964.0900 188964.0900 0.21 0.6490

Tukey's Studentized Range (HSD) Test for PROD
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type

II error rate than REGWQ.
Alpha 0.01

Error Degrees of Freedom 98
Error Mean Square 906304.5

Critical Value of Studentized Range 3.71512
Minimum Significant Difference 500.18

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 579.9 50 PRED
A

A 492.9 50 OBS
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 98
Error Mean Square 906304.5

Critical Value of Studentized Range 2.80646
Minimum Significant Difference 377.84

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 579.9 50 PRED
A

A 492.9 50 OBS
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.1
Error Degrees of Freedom 98
Error Mean Square 906304.5

Critical Value of Studentized Range 2.34837
Minimum Significant Difference 316.17

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 579.9 50 PRED
A

A 492.9 50 OBS

 104

Watershed 0560 Deposition

The GLM Procedure
Class Level Information

Class Levels Values
METHOD 2 OBS PRED

WATSHD 1 560
Number of observations 100
Dependent Variable: PROD

Sum of Source DF Squares Mean Square F Value Pr > F
Model 1 77896.81 77896.81 0.18 0.6705

Error 98 41927197.30 427828.54
Corrected Total 99 42005094.11

R-Square Coeff Var Root MSE PROD Mean
0.001854 184.9425 654.0860 353.6700

Source DF Type I SS Mean Square F Value Pr > F
METHOD 1 77896.81000 77896.81000 0.18 0.6705

Source DF Type III SS Mean Square F Value Pr > F
METHOD 1 77896.81000 77896.81000 0.18 0.6705

Tukey's Studentized Range (HSD) Test for PROD
NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type

II error rate than REGWQ.
Alpha 0.01

Error Degrees of Freedom 98
Error Mean Square 427828.5

Critical Value of Studentized Range 3.71512
Minimum Significant Difference 343.66

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 381.6 50 OBS
A

A 325.8 50 PRED
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 98
Error Mean Square 427828.5

Critical Value of Studentized Range 2.80646
Minimum Significant Difference 259.6

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 381.6 50 OBS
A

A 325.8 50 PRED
Tukey's Studentized Range (HSD) Test for PROD

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type
II error rate than REGWQ.

Alpha 0.1
Error Degrees of Freedom 98
Error Mean Square 427828.5

Critical Value of Studentized Range 2.34837
Minimum Significant Difference 217.23

Means with the same letter are not significantly different.
Tukey Grouping Mean N METHOD

A 381.6 50 OBS
A

A 325.8 50 PRED

 105

	thesis1.pdf
	thesis.pdf
	majorpart-new1.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59

	cover.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

	figures.pdf
	figure12.pdf
	figure12.pdf
	Page 1
	Page 2

	figure13.pdf
	Page 1

	figure14.pdf
	Page 1

	figure15.pdf
	Page 1

	figure16.pdf
	Page 1

	figure19.pdf
	Page 1

	prepart-1.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

	prepart-2.pdf
	Page 3

