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EXPLORING POTENTIAL IMPROVEMENTS TO TERM-BASED

CLUSTERING OF WEB DOCUMENTS

Abstract

by Damir Aračić, MSCS
Washington State University

December 2007

Chair: Scott Wallace

With the size and diversity of the information content on the Web growing at un-

fathomable pace, retrieval of desired or pertinent information becomes an increasingly

difficult task. Particularly difficult is the problem of associating intended meanings

of queries to their textual representation in those domains where different meanings

might have nearly identical textual representation. This motivates the search for

document features, other than words, that are able to express semantic relationships.

We present a method for using character patterns in the space of non-words as a

document feature to aids in distinguishing semantics of Web documents.

We test the value of such a concept by devising non-word patterns through obser-

vation. We then develop an automated method for learning non-word patterns from a

corpus of documents. Finally, through a series of document classification experiments,

we are able to show the pertinence of non-word patterns in document classification.
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Chapter 1

Introduction

1.1 Problem statement

The rapidly increasing volume of documents on the World Wide Web makes the

classification of those documents and the retrieval of desired content from the Web

increasingly difficult. Text-based search engines perform in a satisfactory manner for

most queries — namely, those queries where the desired meaning has a unique map-

ping to the entered query. However, when there are several different meanings, or

concepts, associated with the same query (for instance, the way there are at least two

meanings associated with the query “jaguar”), the search results will include docu-

ments that belong to different concepts, without distinction. If a text-based search

engine made an attempt to deliver the search results in a manner that considered

all the potential meanings that map to the particular textual query, it would meet

with limited success, for the simple reason that it is not always possible to uniquely

map classes of meaning to sets of words without overlap; that is to say that identical

words might be found represented in significant volume in documents that represent

differing concepts.
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Thus the problem we are attempting to address is how to improve on classifying

documents that are similar text-wise, but distinct in their subject (such as documents

about the car Jaguar and documents about the animal jaguar). Our approach is to

use features of document text, other than words, that are distinct in their quality

from one class of meaning to another. It is our hypothesis that there are patterns of

text that exist outside of the realm of words such that distinct sets of these non-word

patterns can be isolated for every class of meaning, and that using these patterns of

text will improve the classification precision.

Performances of current Web search engines are most often supported by extensive,

large database-driven statistics, as well as domain-specific a priori information, such

as topic hierarchies. In contrast, our approach concentrates on improving ad hoc

information retrieval methods.

1.1.1 Contributions of the thesis

As it concerns information retrieval, we contribute the realization that there is rea-

sonable semantic value in the space of non-words. We substantiated with experiments

that observing content of text documents can result in regular expressions in the space

of non-words that improve precision of document classification. In conjunction with

this, we also contribute a method for automated extraction of such patterns from

text. This supervised pattern learning method is all the more valuable as it does not

require any ontological knowledge of the domain it is being applied to. Furthermore,

we support our automated approach with experimental results that demonstrate its

viability. More generally, as part of our automated pattern learning method, we con-

tribute a dynamic programming algorithm for generalization of regular expressions.
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1.2 Information retrieval

The problem of information discovery, or information retrieval, is one of finding de-

sired content amidst quantities of information. In the context of the World Wide Web

as a source of widely available information, the problem of information discovery can

be rephrased more precisely: given a user attempting to obtain information from the

Web, the information discovery problem is the problem of retrieving those web pages

that contain the information the user is looking for.

To be able to retrieve information from an information source, the user has to be

able to:

• express the nature of the content sought, and

• explore the entirety of the content in the information source.

Expressing the sought content is commonly called forming a query ; the process

of exploring the information source is referred to as conducting search. The ability

to apply search to some query, as well as all the intricacies involved in executing the

search process over the space of the information source, is incorporated into a search

engine. For any query that the user forms and commits to the search engine, the user

will receive a result. In the context of the web, the result will be a set of web pages.

Whether the web pages in the result contain the desired information will depend

on the several factors, namely:

• expressiveness of the query,

• completeness of the search, and

• semantic relevance of the search to the query.
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While expressiveness of queries and completeness of search are important, they are

not as complex as the issue of semantic relevance. Semantic relevance of the search

to the query measures how well the user-formed query is interpreted by the search.

It answers the question how often will the search engine, having ingested the query,

return the information the user is trying to obtain, as opposed to information that is

irrelevant to the user. The issue of semantic relevance is what concerns us the most

and what prompts us to develop our approach throughout this thesis.

1.2.1 Naive approach

Let us consider approaching the problem of information discovery from the simplest

perspective: a person (user) needs information about jaguars and inquires some source

(another person, information service, the Delphi Oracle, etc.), but this user can only

submit the inquiry in written form. Thus the user verbalizes the intent and records

it in text:

“I want to find out about jaguars.”

Now apply this reasoning to a scenario where the user knows the answer is stored

within a corpus of documents, but there is no mediator to provide it. The most

obvious approach would be to read all the documents in the corpus and observe

which documents are about jaguars. To convert this process into an automated one,

a user would build a search engine that examined every document in the corpus and

answered the question

“Does this document talk about jaguars?”

for every examined document, thus compiling a list of jaguar-related documents.

It is clear that the most difficult question at hand at this point is how does the search

engine decide when to answer “yes” and when to answer “no”.
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The most obvious answer to this question is: whenever there is a sentence found

in the document that reads

“This document reads about jaguars.”,

answer “yes”; if that sentence is not found, answer “no”.

Assuming the users accept the fact that the topic-defining sentence approach is

not feasible, they are left with the realization that instead of deciding unmistakably,

the search engine will be forced to hypothesize, to some degree of certainty, whether

to answer “yes” or “no”. In other words, the search engine will need to devise a way

to measure its degree of certainty about the document’s topic.

1.2.2 Vector space model

The simplest assumption to make about a document on the topic of jaguars is that

the text of the document contains the word “jaguar”. Furthermore, any two jaguar-

related documents will most likely both contain identical jaguar-related words. Thus,

for some set of words, two documents both containing that word set are more likely

similar than two documents that don’t contain it. Also, two documents containing a

larger subset of words from that set are likely more similar to one another than to

those documents that contain a smaller subset of words.

These observations lead to the formalized representations of documents as vectors.

For any set of documents, any document can be expressed as an n-dimensional vector,

where n is the size of the entire document set in words (or, the number of unique

words across all documents of the set). Two such vector-documents can then be

compared using vector operations. For instance, the cosine of the angle between

them can be calculated as a direct measurement of their similarity: the more similar
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I like love that dog flowers
d1 1 1 0 0 0 1
d2 1 0 2 1 1 0

Table 1.1: Term-document matrix built from corpus D.

two documents in n-dimensional space are, the smaller the angle between them and

the larger the cosine of that angle.

The vector representation of a set of documents assumes the form of a term-

document matrix: a matrix with documents as rows and terms (the set of words across

the document set) as columns. Every cell of the term-document matrix corresponds

to the occurrence count of a particular term in a particular document. Table 1.1

illustrates the term-document matrix for corpus D containing two documents, d1 and

d2, with contents “I like flowers” and “I love, love that dog”, respectively.

Tf-idf

Consider the mention of jaguar in these two contexts - in this document about melanis-

tic jaguars: “Melanistic jaguars are popularly known as ’black panthers’.”, as opposed

to this document about the ancient Maya: “The Maya worshiped jaguars.” It is ob-

vious that the question arising is how to distinguish a document focusing on jaguars

from a document that mentions jaguars casually.

Earliest approaches attempting to answer this question concentrated on the fre-

quency of occurrence of particular keywords (i.e. words, phrases, keyphrases - in

general, terms) in the document, reasoning that a higher keyword frequency indi-

cated a higher significance to the document content, i.e. a stronger relation to the

document’s meaning. This term frequency of a term ti in document dj is defined as

tfi,j =
ni,j∑kj

i=1 ni,j

,(1.1)
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I like love that dog flowers
d1 0.33 0.33 0.0 0.0 0.0 0.33
d2 0.25 0.0 0.5 0.25 0.25 0.0

Table 1.2: Term-document matrix built from corpus D and weighted with tf .

where ni,j is the number of occurrences of the term ti in document dj and kj is

the total number of unique terms in dj. Table 1.2 shows the term-document matrix

from Table 1.1 weighted with tf.

Consider, however, the scenario where “jaguar” is equally often mentioned in all

documents, i.e., where the search engine assigns all documents in the corpus an equal

value for term frequency of “jaguar”. This, in fact, means that the search result

contains the entire corpus of documents, implying that the user needs to read all

the documents himself/herself - a practically useless solution that was rejected in

the beginning of the discussion. The imminent conclusion is that the goal of the

search should not only be to produce the result, but to produce a result that is

both manageable in volume and organized in relevance. In fact, solving the problem

of organizing the search results with respect to their relevance effectively solves the

problem of the result volume, since it directs the user in his/her interpretation of the

search result.

The key to relevance ordering of documents in a corpus is the realization that the

importance of a term is not only measured by how often it occurs in an individual

document, but also how seldom it occurs in the entire corpus as a whole. To illustrate

this point, let the user query q consist of terms “jaguar” and “dog”. Frequencies for

each term in every document will be computed by the search engine. Assume the

corpus contains 1) documents that refer to only dogs, and 2) documents that refer to

dogs and jaguars (in some joint context); there might or might not be other documents

7



I like love that want a dog and jaguar this not just any flowers
d1 1 1 0 0 0 0 0 0 0 0 1 0 0 0
d2 1 0 2 1 0 0 1 0 0 0 0 0 0 0
d3 1 0 0 0 1 1 1 1 1 0 0 0 0 0
d4 1 0 0 0 1 0 3 0 0 1 1 1 1 0

Table 1.3: Term-document matrix built from corpus D′.

RANK DOCUMENT OCCURRENCES
1 d4 3
2 d3 2
3 d2 1
4 d1 0

Table 1.4: Order of salience of documents in corpus D′ to query q according to the
simple occurrence matrix.

that don’t refer to either. Further assume there are such documents from 1) where

the term frequency of “dog” is higher than the highest combined term frequencies

for some document in 2). This is illustrated in the term-document matrix built from

corpus D′ = {d3, d4}, where d3 = ”I want a dog and a jaguar.” and d4 = ”I want this

dog; not just any dog, this dog.” in Table 1.3).

Assuming that the ordering function sorts the documents in the result from highest

term frequency to lowest, this effectively means that the top-ranked result of the

search will be a document that doesn’t mention any jaguar. However, our intuition

suggests that since the number of documents referring to dogs is larger than the

number of those referring to jaguars, “jaguar” must be the more important term

in the query. Conversely, since “dog” is the term found more often in the entire

corpus, its general importance across all documents in the corpus should be smaller.

We express this property with inverse document frequency ; for a document corpus

comprising documents dj, 1 < j < N , inverse document frequency for term ti is given

8



as

idfi = log
N

|{dj : ti ∈ dj}|
,(1.2)

where the numerator is the total number of documents in the corpus, and the

denominator is the number of documents containing term ti (i.e. total number of

documents where ni > 0).

Since tf grows as the frequency count of a term in a document grows, and idf

grows as the frequency count of a term in the corpus diminishes, their product is used

to filter out common terms — effectively, to give more significance to more unique

terms:

tfidfi,j = tfi,j · idfj(1.3)

Using tf-idf to measure relevance prevents the previous issue of “dog” documents

coming up as most relevant: even though its tf term is large, it is offset by the idf

term, which is considerably smaller than its “jaguar” counterpart. Thus the word

that is less common in the entire corpus is assigned more significance, which is the

desired effect.

The tf-idf is applied to the cells of the term-document matrix as a weight. That

way the importance of terms is either amplified or muffled with respect to their tf-idf

value.

Stopwords

The observation of the importance of inverse-document-frequency as a relevance mea-

surement can be extended further: some words may be so common in any reasonable

corpus of documents that they should not be considered as terms at all. As it’s shown
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above, a term that is common across the entire corpus doesn’t contribute to establish-

ing relevance ordering within the corpus; if a list of words that make for such terms

could be compiled, then the items on that list could be ignored by the search engine

all together. Such words are commonly dubbed stopwords. In the English language

entire types of words are especially convenient stopwords, namely articles, adverbs,

conjunctions and prepositions, but also some less obvious kinds of words, like pro-

nouns and auxiliary verbs, especially the verb “be” and its forms; “and”, “around”,

“both”, “I”, “of”, “so”, “was” are examples of some common stopwords. Although

lists of common stopwords have been compiled many times over, the list of stopwords

for any two applications might be different: any word that is found with a uniform

term frequency across the entire corpus is a candidate for the stopword list and can

be included as a stopword without loss of relevance information.

Latent semantic analysis

Known in the context of information retrieval under the alias latent semantic indexing

(LSI), LSA is a vector space model technique that attempts to represent semantic re-

lationships of document-vectors through dimensional reduction of the term-document

matrix into a concept space of the desired size. It assumes the existence of an under-

lying (hence “latent”) structure in word usage that is obscured by variability in word

choice, and attempts to eliminate from this variability the semantically irrelevant

terms, also known as noise. [1]

At the heart of LSA is a particular matrix decomposition, known as the singular

value decomposition (SVD). SVD is the decomposition of the matrix X, comprising

n-dimensional vectors, into matrices U , S and V , such that

X = USV T ,(1.4)
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where U and V are orthonormal matrices and S is a diagonal matrix [2]. (The

details of how this is achieved for any particular matrix is beyond the level of detail

appropriate to this thesis; see [3] or [1].)

Selecting k largest values from the diagonal matrix S will result in a k-rank ap-

proximation of X, reducing all n-dimensional document-vectors to k-dimensions. Re-

markably, this statistical reduction corresponds to a semantic interpretation, as LSA

effectively reduces the document corpus into a k-sized concept space. However, the

reduction will sometimes result in dimensions that have no clear semantic interpre-

tation (e.g. given a corpus D′′ comprising documents d6 = {“dog”, “jaguar”, “cat”}

and d7 = {“phone”, “line”}, after a 2-rank reduction it is possible a resulting vector

might look like this: d = {(0.75*“dog”, 0.40*“phone”), “cat”}, the meaning of the

which is simply not interpretable within natural language semantics).

Similar to tf-idf weighting, LSA is able to overcome the often conflicting issues

of keyword frequency and relevance. Like no other method, LSA can associate docu-

ments with queries on the concept level, even when a relevant document contains no

keywords the actual query comprises [4]. Especially interesting is the success of LSA

in the field of cognitive science: by empirically choosing k 300, LSA is able to achieve

results that are curiously similar to human performance when performing tasks such

as identifying synonyms [5], deducing the semantics of words that it hasn’t been ex-

posed to [6], and even interpreting metaphors [7]. It has also been successfully used

in a broad range of applications, from grading essays, to evaluating performance of

flight simulators [8].

Stemming

Another improvement to the classification process is stemming. Stemming is merely

the process of establishing a given word’s morphological stem. Absence of a key-
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word in its entirety from a document doesn’t necessarily mean the absence of some

other morphological form of the keyword: it is plausible that if the user’s keyword is

“cheese”, the search should also match occurrences of “cheeses” and “cheesy”. Hence

stemming is used to semantically empower term comparisons: instead of attempting

to match “cheese” with “cheesy” (which would result in failure), the stem of “cheese”

and the stem of “cheesy” (both of which are “chees”) are compared — and the match-

ing succeeds. It is clear that use of stemming can aid the search process by reducing

the number of false negatives in term comparisons and by limiting the dimension

growth of the term-document matrix resulting from these false negatives.

Stemming is a particularly interesting improvement. Unlike tf-idf and LSA, which

are statistical methods, and stopword removal, which is merely an extension of the

principles of tf-idf weighting, stemming doesn’t utilize statistical relationships of

terms, documents and corpus as a whole, but attempts to capture semantic rela-

tionships expressed through morphological properties of terms.

However, there are always two types of inevitable stemming errors that arise from

the inherent irregularity of morphological ties in natural languages: understemming

occurs when two words that should be reduced to a common stem aren’t conflated;

similarly, overstemming occurs when two words that don’t have a common stem are

conflated [9]. Stemmers fail to capture proper morphological relationships between

words because they do not use a lexicon; thus the result of stemming two words is

not their linguistic root, but an artificial stem, which leads to misconflations [10]. In

addition to the detachment from linguistics, the utility of stemming can be hindered

by polysemy; in our example, “cheesy” could relate to the concept of poor quality (e.g.

“cheesy acting”), in which case performing stemming is not a good choice [10, 11].

An even better example: stemming the words “gravitation” and “gravity” is only

desirable if the meaning behind “gravity” is within the concept of attraction force, as

12



opposed to the concept of seriousness [10].

1.2.3 Improvements on the vector-space model

Concepts and methods presented so far in this work represent the general development

of the field, i.e. the development of solutions to the problem of discovering content

that is relevant with respect to some query. However, further inspection reveals

that there is often a disparity between the meaning carried by the query from the

perspective of the user and the approach of aforementioned methods to discovering

similar content. Consider our original user query, “jaguars”; perhaps the majority

of objective observers would agree that the user intention is to inquire about the

South American feline predator; a slightly fewer number would say that the query

is actually about the British luxury automobile; football fans would say the inquiry

is actually about the Jacksonville Jaguars of the NFL; Mac users with good recall

would immediately associate the query with the codename of Mac OS X v.10.2; etc.

Different minds might differ on the presumed meaning of the query; a great majority

might interpret it as one meaning, and only a small minority as another meaning; yet

this doesn’t say anything about the user’s intent.

What this means is that, given a user query and a corpus of documents, inter-

preting which document is relevant in terms of the words with which the user query

is described is a much easier problem than interpreting which document contains

information about the meaning of the user query.

This latter problem in particular is very difficult. Somewhat of a converse to the

statement of the problem perhaps rings more true: given several different meanings

of “jaguars”, there is no way to distinguish from the query which one exactly is

the one user was referring to. The first reaction might be to attempt to narrow
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the query down - include words “animal”, or “car” in the query; however, the more

abstract the meaning of the user query is (i.e. the more difficult it is to express

its exact meaning in words), the more difficult will it be for information retrieval

techniques described so far to produce a satisfying result. Stated more correctly, the

more abstract the meaning of the query is, the more often a satisfactory result will

be absent, as long as only words are used to establish relevance. A more important

difficulty to this problem is that the user might not be familiar with the various

meanings of the keyword — perhaps not even familiar with a single meaning, or with

the exact number of meanings the keyword represents.

If the meaning of the query can’t be described with words, the solution that

imposes itself is that the query needs to contain more than words, i.e. the meaning

of the query must be more than the sum of the keywords that comprise it. As the

previous section of this paper has mentioned, keywords have been successfully used to

establish relevance on the level of textual tokens, so it makes more sense to keep using

keywords than abandoning their use altogether. However, the keyword query needs

to be augmented with data that transcends textual information in the document.

The assumption essential to solving this problem is that the meaning of the doc-

ument is reflected in more than what its content reads, i.e. that a document contains

characteristics other than text that give information about its meaning. The assump-

tions are, hence, that characteristics can be extracted from documents such that these

characteristics

• are something other than text keywords,

• represent some form of valuable information about the semantics of the docu-

ment.

Such a document characteristic is a document feature. The space of viable so-
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lutions to the problem of associating one semantic concept with a query when the

concepts share a textual representation varies with the choice of document features

to augment the query with. Candidate features with respect to their treatment in

academic literature on information retrieval can be classified as follows:

1. domain-independent approaches:

(a) natural language features

(e.g. sentence-based summarization)

(b) structural features

(e.g. document tag structure representation)

(c) visual features

i. image features

(e.g. histograms of pictures within documents)

ii. layout features

(e.g. paragraph size)

2. domain-dependent approaches:

(a) ontologies

Natural language features

One of the problems of the term-document matrix is the “semantic noise” introduced

into the matrix by both its sparseness and the sheer number of keywords prior to

dimension reduction. Summarization on the sentence level using natural-processing

techniques has been shown to reduce semantic noise and improve precision of docu-

ment classification. [12] It is plausible to think that summarization can be combined

with LSI for even better results.
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Structural features

Despite the existence of better structured alternatives, a large majority of documents

on the Web are still written in HTML. Representing a document as a DOM tree, in

a hierarchical fashion based on HTML tags, is a very common occurrence in the field

of wrapper induction. [13–15] One application of DOM trees uses LSI as the primary

approach, but the keyword frequencies are weighted with respect to the position of

the word inside or outside specific tags, or the proximity of the word to specific tags

(e.g. the image tag). [16]

Visual features

Because of the multimedia character of today’s Web, document semantics are not

conveyed exclusively by text. Images, video streams and audio streams are all very

common content types, both in scenarios where they serve to support the document

text, and in scenarios where the document text supports them. In an existing system,

characteristics of document images, namely color histograms and anglograms, are

used as additional dimensions to the document-vectors, which are then submitted

to latent semantic analysis. [17] In another system, image features were used along

textual keywords to create association hypergraphs; hypergraph partitioning resulted

in more precise classification than when only keywords were used. [18] There has also

been work in discovering similarity between documents containing multimedia objects

such as video files by applying different graph traversal techniques in the attribute

space of the multimedia objects [19]. Statistical modeling approaches have been

applied to the problem of automatic linguistic indexing of pictures for the purpose

of image retrieval, where categorized images have been used to train a dictionary of

hundreds of concepts automatically [20].
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Apart for visual features extracted from objects embedded in document text, there

are visual features that stem from the layout of the text itself inside a document.

Spacing, font characteristics, paragraph length, number of paragraphs have all been

shown learnable with supervision [21], and able to carry semantic value and assist in

document classification [22].

Ontologies

All the previous types of approaches use document features without regard for the

subject of the document; they are domain-independent. Ontologies, on the other

hand, are quite the opposite: they are user-defined schemas that define semantic re-

lations within particular topics. Ontologies define hierarchical relationships between

semantic tokens (words, group of words, sentences) and associate them with their

domain-specific synonyms via a lexicon particular to the topic. Ontology-based ap-

proach to clustering has been shown to improve on text-based approaches when the

two are combined [23]. It has also been used for discovering similarity between web

services inside a web service repository and has shown improvement on the baseline

semantic-based approach when the two are combined [24].

To the aforementioned document features used to improve document classifica-

tion, our aim is to add another one: non-word patterns. Our quest for document

feature extraction takes off in the direction of the principles of morphological analysis

of terms, not unlike stemming. In the following chapter we define our non-word pat-

terns, discuss how to observe them within documents and extract them, and measure

their impact on document clustering precision. Finally, we present an approach to

supervised learning of such patterns from documents and measure the improvement

of our approach to the precision of document classification.
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Chapter 2

Discovering Patterns

2.1 Introduction

Any corpus of documents, such as a collection of web pages, can be partitioned

according to the various topics represented in those documents. Elements of such a

partition are classes — groups of documents that are conceptually related (most likely,

they share a common topic). While this is true for any collection of documents, it

is particularly interesting for such collections where different classes map to identical

textual representations. For instance, the concepts of Jaguar, the automobile and

jaguar, the feline predator, both map to the textual representation “jaguar”. These

are the cases we are interested in exploring.

2.1.1 Space of non-words

In any document, two types of text are quickly distinguishable: words, which are easy

to recognize and associate with concepts because their meanings are retrievable via a

dictionary; and non-words, or everything else that does not satisfy the above criteria.

In this space of non-words, meanings of individual tokens of text are most often not
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immediately clear. However, some tokens gradually reveal their meaning through

repetition — that is, their distribution with respect to the words in a document gives

indication of their meaning. Most often these tokens are not mutually identical, but

vary in quantity and quality of text that describes (or, characters they comprise).

Nevertheless, they are recognizable as similar, because they can be aggregated to

take shapes that encompass this variation of quantity and quality that they express.

We call these shapes patterns.

This idea did not materialize in vacuum, but shares roots with some established

methods. In our discussion of stemming as an improvement method to a simple vector-

space model, we mentioned that stemming takes advantage of semantic relationships

expressed through morphological variations. While stemming limits the extent of

analysis of these relationships to (a small set of) rules dictated by spoken language

grammars, there is no inherent reason why the principle cannot be extended with

new sets of rules, similar to those that govern grammatical correctness.

2.1.2 Pattern properties

Much like certain words are associated with certain meanings, our expectation is

that there exist patterns in the space of non-words that are associated with a certain

class of documents and not associated with other classes. Thus the patterns that

would be considered relevant in the classification process must satisfy two criteria:

mutuality and distinction. Given pattern is said to satisfy the mutuality criterion

when that pattern is characteristic of the entire class of documents — that is, when

the pattern occurs in significant capacity in most documents of the class. The criterion

of distinction is satisfied when there is zero (or negligible) occurrences of the given

pattern across classes — that is, when all the documents containing that pattern in
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a significant capacity belong to the same class.

Our pattern detection and selection method is based on visual observation of the

documents. We attempted to identify tokens inside the text found in the space of

non-words, such that these patterns a) can be generalized into patterns, and b) these

patterns are characteristic of one class of document and not any others. When a

candidate pattern was observed in a document, other documents of the same class

were inspected to verify mutuality. If mutuality was established, documents of the

other class were inspected to guarantee distinction. If both mutuality and distinction

were established, the candidate pattern became a representative pattern of its class.

Consider, for example, a document pertaining to the ’car’ meaning of “jaguar”.

This document will contain the following and similar strings: “XJR-15”, “XJ220”,

“XJ12”, “XF” (they happen to represent model numbers). It is clear that these

strings can be generalized with a relatively simple regular expression: “[XJRF]2,3-

0,1[1250]0,3”. Upon inspecting the documents pertaining to the ‘animal’ meaning of

“jaguar”, similar strings will not be found. Therefore, we’ve isolated generalizable

pieces of text that are specific to only one class of meaning. Similarly, looking at a

document from the ’animal’ class of meaning, we might notice strings “cm”, “m”,

“kg”, “lbs”, generalizable simply as a disjunction: “lbs—kg—cm—m”. Although

some of these strings (in particular, “m”) might be found in the documents from the

other class of meaning, their appearance would be sufficiently infrequent within a

single document and sporadic across all the documents of that class of meaning that

we may conclude we have another meaning-specific pattern. Patterns extracted from

our corpus are shown in Table 2.1.
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animal car
lbs mph
cm [IVX]+

in?̇\.? [2-5]\.[0-9]L\.∗
ft\.? \[1-9][0-9]∗([,][0-9]3)∗

k?g\.? [CJKRSX]+-∗[0-9]∗

V-∗[12468]+

Table 2.1: Patterns in both classes of meaning.

2.2 Experiments

The aim of our experiments is to observe whether employing relevant non-word pat-

terns, found in the documents of our corpus, has an effect on the classification pre-

cision of our statistical method. To this end we collect a corpus of web documents,

process the documents to increase importance of the natural language content, rep-

resent the corpus with the vector space model, and perform clustering based on the

document/vector similarities.

2.2.1 Data set

The documents comprising our corpus were all collected from a Google search results

page for the query jaguar. The first 50 documents were stored and manually labeled

according to their topic. While this partition resulted in 12 different classes of mean-

ing, two were dominant (’animal’ and ’car’), comprising 35 out of the 50 documents;

these would become the effective corpus which our experiments would be performed

on. The documents collected were first 50 search results, as displayed by Google, with

the exception of the very sparse documents (documents with less than 150 words),

which were skipped as they did not contain enough text to facilitate meaningful and

consistent classification.
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2.2.2 Preparing the document test bed

In our document classification experiments we used the established vector space

model, where documents are represented as n-dimensional vectors, where n is the

total count of all distinct terms (tokens of text) in the corpus. Value of a particular

dimension of a particular vector corresponds to the occurrence count of the term rep-

resenting that dimension in the given document represented by that vector. The entire

corpus is thus represented as a term-document matrix - a matrix with documents for

rows and terms for columns (see Table 1.1 for an example). Several steps precede

the building of the term-document matrix, namely tag removal, lowercase conver-

sion, stopword removal, and stemming. To make the classification process sensitive

to patterns, we added another preprocessing step: all terms recognized as instances

of a certain pattern were aggregated into a single, class-specific term, as opposed

to representing individual terms. Following the creation of the term-document ma-

trix, term-frequency-inverse-document-frequency (tf-idf) weighting was performed, its

goals being the trivialization of those terms characteristic of individual documents, as

opposed to individual classes, as well as those terms common to all documents (and

classes ).

Tag removal

The tag removal steps, as the name indicates, parses the documents and removes

HTML/XML tags from consideration as terms. For tags that embed text within

opening and closing tag bounds, the embedded text was extracted and treated like any

other body of simple text; this was deemed especially necessary for HTML comment

tags.
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Lowercase conversion

This step included a simple transformation of any term into a semantically equiv-

alent term with all the uppercase letters converted into lowercase. Unlike other

preprocessing steps, this conversion was not performed indiscriminately, because a

lowercase conversion of a pattern term is not necessarily semantically equivalent to

the original pattern term, or, conversely, semantically significant pattern doesn’t al-

ways have a semantically significant lowercase version. For instance, consider the

pattern [CJKRSX]+-∗[0-9]∗; it will recognize terms starting with some number of

uppercase characters. If a term that is matched by this pattern (e.g. ”XJ-40”) was

converted into lowercase (i.e. into ”xj-40”), it would no longer be matched by the pat-

tern. The caveat is to always perform lowercase conversion after pattern recognition

has already been performed.

Stemming

Stemming was performed with a Python implementation of a Porter Stemmer, the

commonly used, de facto standard stemmer of the English language, originally de-

signed by Martin Porter in 1979 and described in [25]. Besides stemming all terms

that build the term-document matrix, the stemmer was used to reduce to stem all

words in the dictionaries/word lists that were used in stopword removal and removal

of more arbitrary content from documents.

Stopword removal

Which document terms were considered stopwords was determined by what was

deemed a reasonably comprehensive list of stopwords in the English language by the

information retrieval faculty of the computing science department of the University
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of Glasgow [26]. It includes 319 common words - by in large, pronouns, prepositions,

adverbs, numbers and auxiliary verbs.

Removal of arbitrary content

Due to the variety in structure of web documents, preprocessing steps mentioned so

far do not thoroughly remove all tokens of text that would intuitively be undesirable

for consideration of semantic value. Observation of terms that trickle down through

the above preprocessors provides insight on what these tokens might be: embedded

Javascript method calls, file path references, HTML non-tag keywords, etc. - they are

all removed. Additionally, as we attempt to create the space of non-words discussed

at the beginning of this chapter, we will eventually include all words (as recognized

by local dictionaries of English words) in this list.

Pattern recognition

Pattern recognition consists of four steps:

1. compiling pattern strings into regular expressions

2. associating regular expressions with document classes

3. matching terms against regular expressions of all classes

(a) entering the term in the term-document matrix, if not matched

(b) throwing away the term and increasing the count of the class-representative

term in the term-document matrix by the appropriate weight matrix, if

matched

The differences between a term-matrix built with pattern sensitivity and a simple

term-document matrix are illustrated in Figure 2.1. The mentioned weight w is the
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arbitrary significance ratio of pattern-recognized terms to other terms. Whenever a

regular term is matched, its occurrence count is increased by one; whenever a pattern

term is matched, however, the occurrence count of the unique term representative of

the document class associated with that pattern is increased by w.

The function of the pattern recognition is to polarize document semantics —

reduce the importance of most term-document matrix dimensions by accumulating

the bulk of term occurrences, that would normally register as numerous individual

dimensions in the vector, into c large dimensions, where c is the number of document

classes. The consequences of this, simply interpreted, are that, for high enough values

of w, the answer to the question which document class a document-vector belongs

to is reduced from n choices, where n is the number of distinct terms in the entire

corpus (cca. 4,000), to c choices (i.e. 2). Naturally, this assumption only holds if our

patterns have been chosen correctly (i.e. as prescribed in the discussion about origin

and nature of patterns at the beginning of this chapter).

2.2.3 Results

Experiment format

Every experiment in this chapter makes use of some form of patterns. The basic

independent variable that experiments differ on is whether our patterns originated in

the space of words or the space of non-words.

The experiments can be summarized in the following steps:

1. building a simple term-document matrix (TDMs),

2. building a pattern-sensitive term-document matrix (TDMp), and

3. clustering documents using TDMs and TDMp.

25



At the end of each test run, the clustering achieved using the simple term-

document matrix and the pattern-sensitive term-document matrix (both refered to

as the result) is compared to the actual distribution of documents across the concept

space (known as the ground truth or reference). The correctness of the result in re-

lation to the reference is expressed as the clustering precision. The relationship of

the precisions achieved with TDMs and with TDMp for different parameters of the

experiment is then graphed.

While our interest lies in the space of non-words, we perform some experiments in

the cumulative space of words and non-words (i.e. in the original space of document

content). When we look at the space of non-words we are effectively looking at

documents that have been pre-processed to exclude terms found in lists of stemmed

words in the English language.

Experiment 0.0: Testing the value of patternizing

To begin, we concentrated on verifying the validity of the concepts of mutuality and

distinction: if it is possible to extract sets of non-word patterns with the properties

of mutuality and distinction, surely an easier task would be to extract sets of words

with the same properties. We consider this task easier because the source of these

sets need not only be observation, but also a priori knowledge of the confronted

semantics. If two sets of words — two word accumulations — can be obtained, one

for each class of meaning, such that those two sets of words satisfied the properties of

mutuality and distinction, increasing the relative importance of the words in these sets

should, ultimately, polarize the document space in accordance with each document’s

association with one of the classes. From the low-level perspective, the dimensions in

the term-document matrix, represented by words in one of these sets, will be reduced

to one dimension. Increasing the importance of this dimension by higher weighting
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Figure 2.1: Equivalent portions of term-document matrices for the same document
corpus: simple (up) and sensitive to the illustrated word accumulations (down).

will result in the increase of the classification precision. Figure 2.1 contrasts the

appearance of two term-document matrices, one simple, the other sensitive to word

accumulations. The word accumulations in the figure are exactly those used in this

experiment.

Results of the experiment are shown in Figure 2.2. Weighted patterns line rep-

resents the clustering precision achieved when each word accumulation was reduced

to a single term in the term-document matrix and weighted; the x-axis represents

the ratio of the word accumulation weight to regular terms. No patterns line is the

precision achieved without any term accumulation — that is, with every word in the

corpus representing a single term in the term-document matrix.

The graph confirms that the concepts of mutuality and distinction, when applied
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Figure 2.2: Clustering precision increases as more significance is associated with sets
of words satisfying the properties of mutuality and distinction.

to the space of words, bear a direct relation to the precision of clustering. Rephrased,

in the space of words it is possible to distinguish words related only to one meaning

from those related only to the other meaning. This, however, does not come as such a

surprise - it is the essence of the ontological approach to information retrieval. What

we are interested in next is to find out whether the same applies in the space of

non-words.

Experiment 0.1: Testing non-word patterns in non-word space

Our second experiment tests the utility of employing non-word patterns to improve

clustering precision. The non-word patterns we use are exactly those described in
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Table 2.1. We are expecting results similar to those from our original experiment:

the patterns will, because they satisfy the conditions of mutuality and distinction,

improve the precision of classification when their significance is amplified over the

significance of the rest of the terms.

Before we proceed to testing non-word patterns on our document corpus, we pause

to test the fundamental soundness of our non-word patterns. Because these patterns

exist in the space of non-words (which is to say that none of the terms that are

aggregated into patterns exist in the standard English dictionary), we preprocessed

the documents to exclude all words. Every document was effectively reduced to

a version stripped of entries that would be found in a standard English dictionary;

also excluded were any word compounds, such as hyphenates. The main reason for

performing this step is to check whether our patterns indeed fully exist in the space

of non-words. We are specifically concerned that the regular expressions representing

our patterns might inadvertently match some terms that we would consider to reside

in the space of words. If we tested the non-word patterns on the corpus as it is (in the

cumulative space of words and non-words) and achieved some increase in clustering

precision, we wouldn’t be able to say whether that occurred because our patterns

did what we expected them, or if the patterns actually accidentally amplified the

significance of some words, due to some oversight in our formulation of patterns. On

the other hand, if we are able to achieve precision when clustering documents in the

non-words space, we would be satisfied that our patterns indeed reside in the space

of non-words.

Results of our second experiment are presented in Figure 2.3. Weighted patterns

in this case pertain not to word accumulations, but to non-word patterns. More

specifically, they pertain to those terms from the corpus that are matched by the

regular expressions representing the extracted non-word patterns (see Table 2.1 for
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Figure 2.3: The precision of clustering documents residing in the space of non-words
increases as more significance is associated with non-word patterns satisfying the
properties of mutuality and distinction.

the exact non-word patterns used in this experiment).

This experiments confirms that we can indeed apply concepts of mutuality and

distinction in the space of non-words to observe a relationship to classification preci-

sion. It also confirms that our patterns reside in the space of non-words to a degree

that is sufficient to achieve classification improvements. The last experiment of this

chapter extends our idea to its natural conclusion, as we examine whether our non-

word patterns have an effect on clustering precision of documents that predominantly

comprise words.
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Experiment 0.2: Testing the value of non-word patterns

We finally attempt to discover whether applying the non-word patterns to the orig-

inal corpus, comprising fully-worded documents, as retrieved from the web, yields a

classification precision benefit. We know, from the previous experiment, that these

patterns with properties of mutuality and distinction can have an impact on the

classification precision of non-word documents — now we need to find out whether

the volume of words and their semantic capacity is overwhelming for the non-word

patterns to again affect the clustering precision, or if we will achieve positive results

again.

Considering the lessons of our previous experiment, we expected to see precision

improvement in this experiment as well. However, having also in mind our assumption

about relative semantic value of words compared to non-words, in this experiment

we expected the highest precision achievable to be lower than the highest precision

achievable in our original experiment. As can be seen from Figure 2.4, our expec-

tations are realized: the clustering precision grows with the weight until it reaches

the highest possible precision. When we compare the highest possible precisions of

Figure 2.2 and Figure 2.4, we see that the highest precision achieved using word ac-

cumulations is higher than the highest precision achieved using non-word patterns.

This confirms our assumptions about the semantic values of words and non-words.
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Figure 2.4: Clustering precision increases as more significance is associated with non-
word patterns, but does not increase as high as when word aggregations are used (as
they were in the original experiment).
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Chapter 3

Pattern Learning

3.1 Introduction

We have established that our non-word patterns aid in classifying documents in our

corpus closer to the ground truth. However, consider the way we created the patterns:

we had to visually examine most, if not all, document in each document class and

attempt to identify candidate patterns by first observing the text of the document and

then comparing it to other documents. Obviously, this approach does not scale well

for large corpora, especially if the concept space is large. We would like to automate

the pattern creation process, so that it doesn’t require any a priori knowledge of

patterns. As the end result, we would like to be able to collect a corpus of documents,

estimate its ground truth through uninformed clustering (clustering on the simple

term-document matrix), process the documents in a way that allows us to infer a

set of non-word patterns for each concept, and use those patterns in the document

clustering. Finally, we hope that the learned non-word patterns will have a similar

effect to their hand-made counterparts and improve the clustering precision.
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3.2 Overview

The approaches of this chapter and the previous chapter share the common thread of

operating in the space of non-words; all the documents are stripped of dictionary-like

entries. When we talk about documents, terms or patterns from now on, we are

talking exclusively about constructs that reside in the space of non-words.

Because we met with success using hand-made patterns in the previous chapter,

we feel that the fundamental principles behind our rationale for building the hand-

made patterns were sound. Thus it would be beneficial to our automated process of

learning patterns if we were able to quantitatively express these principles and apply

them in our implementation. In fact, these quantitative descriptions constitute the

essence of our pattern learning approach.

Devising our hand-made patterns required two key ingredients: observation and

intuition.

Intuition

In the process of deciding what terms should be included in the forming of our ob-

served patterns we relied on the intuition that some terms were more important than

others for distinguishing documents of different classes one from another - that is,

that some terms carried more semantic value than others. We speculated that such

terms

• occurred with relatively high frequency within the majority of documents of a

single document class, and

• occurred with negligible (or at least less significant) frequency in other classes

of documents.
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We called these properties mutuality and distinction, respectively. To quantita-

tively describe our intuition about mutuality and distinction, we implemented mea-

sures of term salience. We generally assumed that the salience of a term for a par-

ticular document class was related to the probability of that term occurring in that

document class and not occurring in others. Once we are able to measure a term’s

salience to any document class, we would be able to dictate which terms could and

couldn’t participate in the pattern learning process for a given document class.

Observation

When we first set out looking at the corpus documents, we were observing text tokens

that weren’t immediately interpretable like words are, but formed meaning through

1) repetition (they were found throughout individual documents and throughout in-

dividual document classes) and 2) mutual similarity (they comprised a small set of

characters, had similar length, similar distribution of lowercase to uppercase charac-

ters, etc.). This is, for instance, how we identified textual representations of Jaguar

models in the documents within the concept of car : we observed repeated occur-

rences of strings featuring the set of characters {‘X’, ‘J’, ‘R’, ‘C’, ‘S’, ‘K’}, followed

by two or three numeric characters that are sometimes preceded by a hyphen. We

can summarize the cumulative intricacies of what we observed as

1. observing the character-wise similarity of tokens, and

2. observing how this similarity was reflected in non-identical tokens.

These similarities mostly pertained to the variety of type of characters and their

distribution within tokens. Observing this led us to describing these similar, non-

identical strings of characters with regular expressions. We attempted to emulate
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our imprecise observation by implementing an aggregation process, the purpose of

which is to join strings of text (i.e. document terms) into aggregate representations.

Assuming that the patterns of our aggregation implementation are at least as nearly

as good as the patterns of our observation, we expect that submitting a set of terms

that satisfy mutuality and distinction properties to the aggregation process will result

in an aggregate representation that engulfs this set of terms (in our case, a regular

expression) and itself satisfies the same properties.

We can now define what we understand by the phrase “pattern learning” in terms

of salience and aggregation. Pattern learning is the process in which regular expres-

sions are inferred from the lists of document class-specific salient terms through the

process of joining the terms into aggregate representations.

3.3 Aggregation

In the process of aggregation, an aggregate term is created from two simple terms;

the aggregate term represents the two participant strings in the form of a regular

expression. The aggregation occurs on character level: given a set of character trans-

formations, obtained by comparing two simple strings with some string metric, simple

characters are molded into aggregate characters. In the context of aggregation, aggre-

gate characters, or aggregate atoms, sustain an is-part-of relationship with aggregate

terms ; this relationship corresponds to the is-part-of relationship of characters to

strings.

There are two basic character transformations: union and iteration. The union

is characterized by a transformation of one character into another (e.g. ’s’ → ’t’

= ’s’ OR ’t’) and interpreted as the choice between the two characters. The string

representation of union is ’[]’ (i.e. s → t = [st]). The iteration, in the narrowest
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Figure 3.1: Cumulative aggregate term of several simple terms.

meaning, is characterized by a transformation of one character into a non-character

(e.g. ’s’→ ’ ’ = ’s’ OR ’ ’). The string representation of such an iteration is particularly

interesting: s→ None = s{0,1}, or s? for short. The meaning of this aggregate atom

can be thought of as a choice between presence and absence of the simple character

’s’. Iteration, in its broader meaning, is any repetition of characters. For example, the

transformation s{2} → s = s{1,2} comprises two iterations in the broader sense, s{2},

which represents no more and no less than two repetitions of the simple character

’s’; and s{1,2}, which represents the choice between one or two iterations of ’s’. Of

course, s itself is an implicit iteration of ’s’ (s = s{1,1}). Iterations can comprise not

just simple characters, but unions as well; for instance, the interpretation of aggregate

atom [kbr]{1,2} is the choice between one or two characters from the set {’k’, ’b’,

’r’}.

3.3.1 Edit distance

We now gain insight into the genesis of character transformations presented in 3.3.

The learning of non-word patterns occurs through a process of aggregation, where

pairs of non-word terms are replaced by minimal regular expressions that match the

pairs’ terms. In making the decision which pairs are good aggregation candidates and
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which aren’t, the choice of a good term similarity metric is essential, as aggregating

overly diverse terms would lead to an overly high degree of generalization. Figure 3.1

shows aggregation sequences of some good (left) and bad (right) candidate terms.

As we mentioned earlier, our knowledge of patterns comes from observing character-

wise diversity, or similarity, of terms. Through our observation, we established a hi-

erarchy of important character-wise properties that shape our understanding of term

similarity:

1. number and distribution of identical characters,

2. number and distribution of case-equivalent characters, and

3. ratio and distribution of characters of particular type.

We believe that these properties, in the given order of relevance, contain the

essence of term similarity. Hence we adopt them as foundation for our term similarity

metric, making certain that they are addressed in this order of importance.

We start with the number and distribution of identical characters. It is convenient

to look at this property from the standpoint of edit distance. Edit distance is a string

metric that expresses string similarity through edit operations required to transform

one string into another. One explanation of our property of number and distribution

of identical characters is this: if we are trying to transform one term into another

by inserting, deleting and substituting characters, the less insertions, deletions and

substitutions we need to make, the more similar the terms are. Using edit distance

as our basic approach we can still pay attention to the rest of our important term

similarity properties by introducing operation selection bias that is related to case-

equivalence, character type and term length.
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x j - 4 0
0 1 2 3 4 5

x 1 0 1 2 3 4
k 2 1 1 2 3 4
- 3 2 2 1 2 3
r 4 3 3 2 2 3

Table 3.1: Sample edit distance matrix for two simple strings.

We adopted the Levenshtein distance [27,28] as the preferred metric for calculating

the edit distance between two terms. After implementing the commonly-used Leven-

shtein distance algorithm, we make significant modifications that allow the metric to

consider all aforementioned properties of term similarity.

Unmodified Levenshtein distance

This edit distance algorithm utilizes a bottom-up, dynamic programming approach. It

examines two strings, s and t, and makes use of a m-by-n matrix d, where m = l(s)+1,

n = l(t) + 1, and l(x) is the length of term x. It performs a character-by-character

examination between the strings, and at each step (i.e. for each character pair)

makes decisions about the appropriate (i.e. lowest cost) edit operation for that pair

of characters: deletion, insertion, or substitution. [27,28]

At any step of the algorithm, d[i][j] contains the minimal number of edit operations

to transform the substring s[1. . . i] into the string t[1. . . j]. For any i, j, the contents

of cell d[i][j] are reached by selecting the minimum of three values: d[i−1][j] + cost of

deletion; d[i][j− 1] + cost of insertion; and d[i− 1][j− 1] + cost of substitution. The

completion of the main loop leaves the answer — the minimal edit distance between

s and t — at t[m][n]. [27, 28]
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Figure 3.2: Gradually building the edit distance matrix.

Edit operations history

When making the selection of the minimum value to assign to d[i][j], the (relative)

”direction” of the selected edit operation (i.e. the indices of the cell that corresponds

to the selected edit operation) must be recorded. For instance, if substitution was

the lowest cost operation, d[i− 1][j − 1] should be stored as the direction of the edit

operation). When the algorithm has finished, the edit operation history makes it pos-

sible to retrace the sequence of edit operations for any cell. When the edit operations

history is extracted for cell d[m][n] what is obtained is the lowest-cost sequence of

edit operations required to transform one string into the other. [28] This lowest-cost

sequence is directly related to the format of the aggregate string: a substitution sig-

nals that the necessary aggregate form to match both characters is a union, while
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Figure 3.3: Gradually building the edit operation trace matrix.

deletion or insertion signal that the aggregate should be an iteration of the character

in s or t, respectively, with a lower iteration bound of zero.

Treatment of aggregate terms

The pattern learning is a multiple iteration process, where the following steps occur

on each iteration:

1. edit distances are calculated between all candidate term pairs,

2. the single term pair with the lowest edit distance is aggregated,

3. the aggregate term is added to the term candidate list and pair terms are

removed from consideration in subsequent iterations.
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This means that the edit distance algorithm must be able to properly treat ag-

gregated terms as input as well as terms that have a simple string representation. To

facilitate this, we considered how our dynamic programming algorithm should behave

differently when encountering aggregate terms as opposed to simple terms.

We made a general observation that it is sufficient to consider the lower bounds of

iteration as relevant in considering the costs of insertion and deletion of an aggregate

character. To illustrate this point, consider the aggregate character 1{0,1} as it is

being examined by the edit distance algorithm: the cost of inserting/deleting this

character is 0, because its lower iteration bound indicates that the simple character

1 can occur once or not occur at all in the term. Similarly, for the aggregate term

$19{2}, the cost of inserting/deleting is four, the sum of the lower iteration bounds

of all the aggregate characters (1+1+2); in contrast, for the term $19{1,2}, the cost

is only three (1+1+1).

While the lower iteration bound rule applies universally to insertion and deletion,

we need a more detailed explanation of how to deal with substitution. For aggregate

atoms a and b, such that they comprise differing simple characters, the substitution

cost is equivalent to the sum of the costs of deletion of one and insertion of the other

atom:

costsubstitution(a, b) = costdeletion(a) + costinsertion(b).(3.1)

For aggregate atoms that comprise identical simple characters, we observe that

• for overlapping ranges, substitution costs nothing;

• for non-overlapping ranges, we must calculate the cost by considering all itera-

tion bounds.
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The notions of overlapping and non-overlapping ranges pertain to the iteration

ranges spanned by the iteration bounds. Two aggregate atoms, a and b, are said to

have overlapping ranges if

{a.l. . . a.u} ⊂ {b.l. . . b.u},

where x.l and x.u are the lower and upper iteration bounds, respectively, of atom

x. When this is not the case, the atoms are said to have non-overlapping ranges. An

example of overlapping range is y{1,2} and y{0,3}; a similar non-overlapping range

is g{1,2} and g{3}.

We calculate the substitution cost as the difference of the higher lower iteration

bound and the lower upper iteration bound between the two atoms, or:

costsubstitution = min(|a.u− b.l|, |b.u− a.l|).(3.2)

Because the interpretation of any iteration atom it is the choice in the range

r = it.u− it.l iterations of the comprised character it.c, we reason that for two atoms,

a and b, and their ranges, ra and rb, where ra < rb, any choice of a.c with ra iterations

is already anticipated by some choice of b.c with rb iterations. Thus we consider that

an appropriate estimate of the substitution cost of the two atoms is the number of

edit operations required to bring their iteration ranges into overlap. Certainly this

is least expensively done by expanding the narrower range on the side closest to the

lower iteration bound of the atom with the broader range, or collapsing the broader

range on the side closest to the upper iteration bound of the atom with the narrower

range. This is exactly what formula 3.2 tells us.

Character type and case consideration

When applying intuition to reasoning about patterns, it becomes clear that it is not

sufficient to merely consider the number of edit operations as a measure of similarity.
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x j - 4 0
0 1 2 3 4 5

x 1 0 1 2 3 4
k 2 1 1 2 3 4
- 3 2 2 1 2 3

r{2} 5 4 4 3 3 4

Table 3.2: Sample edit distance matrix for two aggregate concatenations.

Also important is to consider the overall quality of the string with respect to the

types of characters it comprises. (Character type, in this context, refers to property

of being alphabetic, numeric or something else.)

Our observed, hand-made patterns, (intuitively) always have one of the following

characteristics:

• patterns comprise characters of a single type, or

• patterns are composed of (non-trivial) substrings that comprise characters of a

single type.

Patterns that observe the first characteristic are simple to understand (e.g. “lbs”,

“[IVX]+”, “[12][09][1-9]2”); examples of patterns with the second characteristic are

the following: “[CJKRSX]+-*[0-9]*”, “V-*[12468]+”, “[2-5][̇0-9]L’̇’. Essentially, our

observed patterns can always be divided into non-trivial substrings of a single charac-

ter type. Thus we assumed that the learned patterns should have the same property.

In terms of our aggregates, common substrings correspond to union atoms: at

a particular character in a string, union atoms reflect commonness between terms,

while zero-iteration atoms reflect their disparity. That is why we believe that the best

way to ensure that our learned patterns possess the properties mentioned above is to

heavily favor union atoms to comprise characters of the same type. We conclude one

more thing from the knowledge about our hand-made patterns: alphabetic or numeric
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characters account for substrings of identical character types, while non-alphanumeric

characters appear as substring delimiters.

To direct the aggregation process into producing such aggregates, we implemented

a type-sensitive substitution cost as part of our edit distance algorithm. Thus, when

the substitution cost of two aggregate terms is considered, not merely their bounds of

iteration are considered, but the quality of the characters they comprise. The basic

principles guiding our hierarchy of bias toward creation of union atoms are that

1. creation of unions of alphanumeric characters with non-alphanumeric characters

should be highly prohibitive, and

2. creation of unions between alphabetic and numeric characters should be dis-

couraged.

The details of our implementation decisions, as they pertain to character type and

case, can be summarized as follows, in the decreasing order of union creation bias:

1. characters are identical

2. characters are lowercase identical

3. characters are of the same type

(a) characters are alphabetic or numerical

(b) characters are neither alphabetic or numerical

4. characters are of different types

(a) characters are alphabetic and numerical

(b) characters are alphabetic/numerical and other
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3.3.2 Term salience

As we have shown in previous experiments, some non-words carry more semantic

significance than others. Generally, the more concentrated the occurrences of the

non-word are within one cluster, the more that non-word is semantically salient. In

particular, we assume that the salience of a particular non-word is directly related to

the probability of that non-word appearing in one document class and not appearing

in other classes. This probability is expressed with the formula

Qi = Pi/(Pn − Pi),(3.3)

where Qi is the salience of the non-word for document class i, Pi is the probability

of the non-word appearing in class i, and Pn is the probability of the non-word

appearing in any class (i.e. of the non word appearing at all in the document corpus).

This measure of significance allows us to compile a list of most salient terms per

document class; our assumption is that the best candidate non-words for learning

patterns will be found in this list.

An important property of the salient terms lists is that the terms are sorted by

their alphabetness, which is to say that they are sorted by the inverse ratio of the

number of alphabetical characters they comprise to the length of the term. Because

we are working in the space of non-words, we reason that “better” non-words are

those non-words with less alphabetic characters, as alphabetic characters are the

single constituent type of dictionary words. It is our expectation that this inverse

alphabetness sorting will polarize the terms in a way where the most interesting non-

words - in our minds, those non-words that don’t contain alphabetical characters -

will be pushed to the top of the list.

As we described earlier, to create patterns out of salient non-word terms, our

aggregation process is used: it transforms a pair of similar terms into the regular
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expression form that represents both of those terms; both terms are matched by

this aggregate term. The main concern of the aggregation is the question of an

appropriate aggregation level. In our first attempt at learning patterns (referred to

as Experiment 1.0), we used salient terms lists of variable length s and allowed the

aggregation process to run over the entire list, iteratively choosing pairs of terms to

aggregate, until a chosen number of iterations was complete. Since we could not detect

any improvement in document clustering, we turned to analysis of the created salient

terms lists and the learned patterns for hints on improvement. Our conclusion was

that the learned patterns entertained a very high degree of generalization, effectively

matching an overwhelming number of terms, regardless of document class.

To minimize this risk in future experiments, we consider the string/character

differences between different salient non-word terms within a single document class

and attempt to group similar terms together prior to aggregating them. We use edit

distance as the measurement of inter-non-word similarity within a document class.

Given an edit distance threshold, nearest neighbor clustering is performed on the set

of salient non-words within each document class; the clustering results in an arbitrary

number of non-word clusters for each document class. Because each cluster contains

non-words that are much more similar to each other than to non-words in other

clusters, we estimate that the danger of over-generalizing with our aggregation process

is smaller, and, equally important, that the risk of under-generalizing is negligible.

Thus we proceed to run the aggregation within each cluster, until all terms within

the cluster have been reduced to a single regular expression.

Length consideration

We return briefly to the discussion of edit distance. In the original implementation of

the Levenshtein distance, edit distances of very short strings would result in very low
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edit distances. Because we believe that term length is related to term salience, and

that longer terms are more salient than shorter terms, we addressed this by adjusting

the implementation of the edit distance algorithm to include scaling the edit distance

by the sum of the lengths of the strings. To illustrate this point, consider s1 = “1”, t1

= “2”, and s2 = ‘truck”, t2 = “track”. In the original implementation, edit distances

of both pairs are equal: d(s1, t1) = d(s2, t2) = 1; in the scaled implementation,

however, d(s1, t1) = 0.5, while d(s2, t2) = 0.1.

Nearest neighbor clustering

The clustering of salient terms is performed with an implementation of the k-nearest

neighbor (kNN) algorithm. In kNN, a data point (i.e. term) is classified based on the

simple vote of k already classified data points. The vote in this context is the cluster

associated with each of the k classified points; simple means that simple majority rule

applies (one point, one vote). Given an unclassified data point p, first its proximity to

all other classified points (i.e. points already associated with a cluster) is calculated;

then the information about cluster association of the closest k of these points is

collected. Finally, whichever cluster is associated with the most points in this k-sized

set is the cluster to associate p with. [29]

We alter the basic implementation of kNN, so that k is actually variable within a

single run of the algorithm, as all classified data points participate in the vote. When

considering a data point p, instead of polling the votes of the closest k neighbors, the

distance of existing clusters from p is calculated; p is then added to the cluster with

the lowest distance from p. For cluster c with data points pi, 1 < i < n, the distance

of c from p is the average of distances between p and pi:

d(c, p) =

∑n
i=0 d(pi, p)

n
(3.4)
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We label this altered implementation of k-nearest neighbors kNNavg. Figure 3.4

illustrates the repositioning of the cluster centroid as new points are added; this is

the desired consequence of using the average of edit distances of points currently in

the cluster to the newly added point.
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Algorithm 3.3.1: Nearest Neighbor Clustering(terms, metric, threshold)

clusters← {}

clustercount← 1

clusters[clustercount].add(terms[0])

terms.remove(terms[0])

for each term ∈ terms

do



eds← {}

for each c ∈ clusters

do



eds[c]← 0.0

ed← 0, count← 0

for each otherterm ∈ clusters[c]

do


ed← ed + metric(term, otherterm)

count← count + 1

if ed/count ≤ threshold

then eds[c]← ed/count

if eds = EMPTY

then


clustercount← clustercount + 1

clusters[clustercount].add(term)

else cluster ← minimum(eds)

clusters[cluster].add(term)

The pseudocode of our nearest neighbor approach is illustrated in Algorithm 3.3.1.
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Figure 3.4: Nearest neighbor clustering using average edit distance.

3.4 Experiments

3.4.1 Expectations

When patterns have been learned for all document classes, they can be used in term-

document matrix construction to make it document class-sensitive - just like our

observed, hand-made patterns were used in our original set of experiments. The

expected result is that the precision of the document clustering process will increase

to some degree when compared to the clustering precision of not using any patterns.

Because the pattern clustering is unsupervised (the number of resulting clusters is

unknown), different edit distance thresholds t will result in different cluster arrange-

ments. For practical (runtime) purposes, not all salient non-words are selected to be
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considered for pattern learning; instead, only a subset of s salient non-words repre-

sents each document class (we can afford to do this because the salient non-words list

is sorted in what we believe to be a grouping-friendly manner).

These variables, s and t, become the parameters of our experiment: our document

clustering is conducted for varying values of these variables. We expect that most

choices of s and t will result in overly generalized patterns that will not improve

the document clustering precision. We also expect that there will be a small subset

of parameter values that will result in useful aggregations and aid in the document

clustering. We speculate that most of the useful patterns will be produced for smaller

values of t and larger values of s. We expect useful patterns for smaller values of t

because the possibility of overly generalizing is minimized in those instances. Why

we expect larger values of s to be more useful requires a closer look at the end of this

section.

The pseudo-code for the experiment is described in Algorithm 3.4.1. There are

defined sets of possible values for every variable in each experiment. Namely, C is a

dictionary where each key represents a document classes c and value of each key is the

list of all terms in that class, sorted by salience; S is a fixed set of integer values that

salient terms list size s might be assigned; T is a fixed set of floating point values that

salient terms clustering threshold t might take on; and W is a fixed set of floating

point values allowed for pattern weight w. For every document class c, s top salient

terms are selected and clustered with our nearest neighbor algorithm, the result of

which are salient terms clusters lpcs. Each cluster lpc in lpcs is fully aggregated to

produce a single pattern lp, which is then added to the dictionary of patterns lpc

under the key c. We use this dictionary of patterns to build the pattern-sensitive

term-document matrix tdm and perform clustering of document-vectors in tdm.
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Algorithm 3.4.1: Precision w/ Learned Patterns(C, S, T, W )

global classes, salientwords

for each w ∈ W

do



for each s ∈ S

do



for each t ∈ T

do



for each c ∈ C

do



salients[c]← c[1...s]

lpcs← nearestneighbor(salients[c])

for each lpc ∈ lpcs

do


lp← aggregatefully(lpc)

lps[c].add(lp)

tdm← buildtdm(lps)

clusters← kmeans(tdm)

precision← compare(classes, clusters)

output (precision)

Expectation of useful values of s

In general, we believe it nearly impossible to predict the improvements to the docu-

ment clustering by the choice of s: because some values of s might correspond better

to natural groups of salient terms, as it pertains to our model of edit distance, we

are prepared that there might be no obvious pattern to predicting useful values of

s. However, we do have an intuitive notion of the consequences of sorting the salient

terms list by alphabetness as it pertains to distribution of alphabetic characters in the
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entire body of non-words. We expect a Gaussian distribution of terms with respect to

ratio of alphabetic characters; on the other hand, we sort the salient terms by inverse

ratio of alphabetic characters. This means that between selecting a smaller value si

and the larger si+1, the similarity of newly introduced terms of size sj = si+1 − si

will contribute more significantly to the overall similarity of the salient terms set the

larger si is. Effectively, for larger s, we expect the salient terms set to become more

compact in terms of character similarity as measured by our implementation of edit

distance.

3.4.2 Results

Experiment format

Each of the following experiments consists of four steps:

1. building a simple term-document matrix (TDMs),

2. learning patterns from TDMs,

3. building a pattern-sensitive term-document matrix (TDMp), and

4. clustering documents using both TDMs and TDMp.

At the end of each test run, the clustering achieved using the simple term-

document matrix and the pattern-sensitive term-document matrix (both known as

the result) is compared to the actual distribution of documents across the concept

space (known as the ground truth or reference). As our goal for this thesis is a proof

of concept regarding non-word patterns, we simplified the process to use informed

ground truth (the actual distribution of documents across classes, collected with the

corpus) rather than a simple clustering estimate. The correctness of the result in
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VARIABLE SYMBOL VALUES
pattern clustering algorithm kNN {None, avg, agg}
secondary sorting key ssk {None, abic, abness}

Table 3.3: Experiment variables and their allowed values.

relation to the reference is expressed as the clustering precision. Finally, we graph

the relationship of the precisions achieved with TDMs and with TDMp for different

parameters of the experiment.

Our patterns are learned exclusively from the space of non-words, as we exclude

terms found in the standard English dictionary from participating in building TDMs.

We, however, test the effectiveness of the learned patterns in the natural space of

document text tokens (which is the cumulative space of words and non-words); in

other words, TDMp is built from words and non-words alike. This is consistent with

our approach in experiments 0.0 and 0.2.

There is a limited set of properties that are varied across the experiment space.

At the highest abstraction level, experiments differ on whether we employed pattern

clustering prior to aggregation, or not. Furthermore, in experiments that employ pat-

tern clustering, the clustering method slightly varies between experiments. Secondary

sorting key to the salient terms list is another variable: some experiments employ it,

some don’t; those that do possibly employ different keys. Table 3.3 illustrates these

variables and their possible values.

As we mentioned earlier, the size of the salient terms list, s, is varied within every

experiment, and the pattern clustering threshold, t, is varied within every experiment

that employs pattern clustering; in experiments without pattern clustering, there is

variable aggregation limit, l. We add to these the pattern weighting, w, already

used in our experiments with observed patterns; it dictates the participation ratio of

pattern-recognized terms to other terms in the term-document matrix.
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Finally, our general expectation from the set of experiments to follow is that we

will be able to reproduce, to some degree, the effect that our hand-made patterns had

on document clustering. In more abstract terms, we hope to confirm that it makes

sense seeking out the semantic value of text tokens in the space of non-words and

contemplating class-specific patterns of non-words.

The following is the look at the body of pattern learning experiments we con-

ducted. To begin, we present our original attempt at pattern learning, for complete-

ness and to motivate many of our implementation decisions.

Experiment 1.1: Verifying the value of learning by using controlled salient

terms lists

To stifle the over-generalization of our learned patterns, we introduced two new steps

to the experiment: secondary sorting key to the salient terms lists, and clustering of

salient terms. To verify the general sanity of these new implementation decisions, we

add a preprocessing step to the creation of salient terms lists: we only include those

terms that are matched by our observed patterns.

Setup: Since we have shown (in experiments 0.0–0.2) that our observed patterns

(Table 2.1) contribute to the precision of document clustering, we expect that patterns

learned from a list of terms that are matched by those observed patterns will more

likely improve document clustering than patterns learned from a more diverse list of

terms. Showing this to be incorrect would force an adjustment in what we expect

from our approach.

The problem with our salience ordering is that an overwhelming number of terms

are exclusive to one document class, effectively tying their salience probability at

Q = 1.0. The secondary sorting key aims to break those ties. The key is consistent
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with our thinking in the space of non-words, as we believe that, within the space of

non-words, terms that are less similar to words are more salient. The main attribute

of words (think dictionary entries) is that they consist solely of alphabetic characters;

hence, we measured a non-word term’s dissimilarity to a word by the ratio of its

alphabetic characters to its non-alphabetic characters: the smaller this ratio, the

more salient the term. Since only the s top terms are selected to make the salient

terms lists, it’s important that the most salient terms are at the very top of the list;

our belief was that this secondary sorting key will ensure exactly that.

Second, clustering of the salient terms was applied in the pattern learning pro-

cess. Instead of cutting the aggregation off after a fixed number of iterations and

aggregating over the entire salient terms list, salient terms are first clustered and the

aggregation is performed over each cluster. As we said earlier, because the clustering

is cut off at a given edit distance threshold, t, we are able to control the degree of

generalization.

Results: As we expected, filtering the salient terms lists to only include terms

matched by our observed patterns resulted in patterns that achieved a higher clus-

tering precision (69%) than was achieved by clustering with a simple term-document

matrix (54%). While the standard deviations of both precisions were very high (7%

and 10%, respectively), we believed the experiment to be an encouraging result to

continue in similar fashion.

Experiment 1.2: Measuring the value of learned patterns, part I

Setup: We followed by extending experiment 1.1 to its natural conclusion: omitting

the step of filtering salient terms that are not matched by observed patterns. The

salient terms lists include top s salient terms (in particular, s ∈ {25, 50, 75, 100, 125,
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150, 200, 250}); salient terms clustering is performed for edit distance threshold t (in

particular, t ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0}); and terms matched by the

learned patterns are added to the term-document matrix with weight w (in particular,

w ∈ 1000000; w stands so high to ensure that any impact on the precision of document

clustering, however small it might be, is observed).

Results: We observed statistically relevant increases in document clustering pre-

cision for several couplings of s and t (in particular, s ∈ {150, 200}, t ∈ {0.15, 0.2};

see graphs in Figure 3.5). Consistent with the expectations discussed at the begin-

ning of this section, most couplings of s and t did not afford worthwhile increases in

document clustering precision; however, as we expected, there were couplings that

did. Furthermore, as we expected, most couplings occurred for the lowest values of

t, confirming our suspicion that over-generalization prevents utility for larger values

of t. Our expectations that useful values of s will be larger rather than smaller is

partially confirmed; we discuss the anomalies to our expectations regarding the choice

of s in section 4.2.1.

Experiment 1.3: Measuring the value of learned patterns, part II

Setup: This experiment builds on the success of experiment 1.2. We attempt to

find out if slight changes in our pattern learning process can expand the space of

useful couplings of s and t. The changes consist in details of our k-nearest neighbors

algorithm implementation: instead of performing aggregation over each cluster once

the salient terms have been clustered, the aggregation is performed gradually, as every

cluster is represented by the intermediate aggregation of its current terms - a cluster

centroid of sorts. Whenever a new term is added to a cluster, it is aggregated with the

centroid and this new aggregate term effectively becomes the new cluster centroid.
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Figure 3.5: Statistically relevant improvements to document clustering precision for
various values of s. Notice the peaks for t = 0.1, 0.15, 0.2.
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The distance of any cluster c with centroid ci from the term/point p is thus the edit

distance of p to cc:

d(c, p) = d(ci, p),(3.5)

where ci is the aggregate term of i terms associated with cluster c so far. We label

this implementation of k-nearest neighbors kNNagg.

Results: Again we observe statistically relevant increases in document clustering

precision. While all the couplings of s and t from experiment 1.2 are repeated, we

discover one new coupling (see Figure 3.6). We discuss these particular results in the

future work section of the last chapter.

Experiment 1.4: Finding the minimal significant pattern weights

Setup: In all of our previous experiments we used weight w = 1000000, as we

deemed it high enough to reveal even the slightest clustering precision improvement

our patterns would cause. For our last experiment we set out to empirically establish

minimum weights w for which our learned patterns affect the document clustering

precision. We varied s and t within the values of useful couplings discovered in

experiments 1.2 and 1.3. Starting from w = 1000000, we decreased and increased w

as we saw fit, observing the impact of the weight on the document clustering precision.

Results: Finally, we determined the range of values of w between which the docu-

ment clustering precision is positively affected before it reaches a plateau (see graphs

in Figure 3.7). This is consistent with the behavior we recorded in experiments 0.0–

0.2; however, the maximum achieved precisions are significantly lower than in those

experiments, indicating that our learned patterns, although good enough to show

statistically relevant improvement, are not as good as our hand-made patterns.
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Figure 3.6: Statistically relevant improvements to document clustering precision for
various values of s, now using a slightly different implementation of the nearest neigh-
bor algorithm.
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Figure 3.7: Precision of document clustering using learned patterns. As the sig-
nificance weight of pattern-matched terms is increased, precision increases, until it
reaches a plateau.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In our quest for a new document feature to aid in term-based clustering of web docu-

ments, we turned to examining semantic value of text through analysis of its morpho-

logical properties. We were determined to utilize parts of document text that are not

directly linked with meaningful interpretations, like words are, but can be semanti-

cally interpreted by observing their repetition and variability throughout the content

whole. We analyzed text tokens in this space of non-words in order to obtain some

generalized knowledge about how we can decide which non-word tokens are useful for

distinguishing between textually related, but semantically different concepts.

As the result, we developed a process that allows us to learn such patterns of non-

words that can be successfully used in aiding document classification. We verified,

through a series of experiments, that the conclusions of our learning indeed brought

intermediate success, as they accounted for statistically relevant increases in clustering

precision for certain values of our experiment parameters.
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4.2 Future work

The most obvious future direction to take with our general approach is expanding the

analysis to several larger morphologically related and semantically diverse corpora of

web documents; as of now, we’ve only demonstrated the existence of useful non-word

patterns for one concept space.

4.2.1 Unexpectedly useful values of s

What remains to be addressed is a couple of particular couplings of our experiment

parameters. In figures 3.5 (s = 150) and 4.1 isolated peaks in precision can be

observed — peaks that are not preceded by high precision for smaller values of t

(on their immediate left). We expected the improvements to clustering precision to

come for the smaller values of t, because that is where the risk of overly generalizing

is smaller. However, in these two graphs we see the precision increase for smallest

values of t, then diminish, and then rise again for a single value of t. When discussing

expectations related to the choice of our parameters, s and t, we anticipated that

predicting the behavior of our pattern learning as a function of s would be difficult.

We then offered the reason for this: particular values of s might correspond better

to natural edit distance-wise grouping of salient terms than others. If a particular

s didn’t correspond well to this grouping, some resulting salient term clusters might

create useless patterns, or, even worse, detrimental patterns — patterns that match

significant volume of terms across document class boundaries. Future work should

include inspecting the differences in the number and size of salient term clusters in

the pattern learning process for anomalous values of s, as well as smaller and larger

values in its vicinity. This would provide answers to the question what the properties

are of salient terms clusters between two experiment runs, where one run shows
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Figure 4.1: Precision peak anomaly. We would expect precision utility only for small
and continuous values of t.

precision improvement and the other one doesn’t — namely, do the added salient

terms reinforce clusters from the previous run, or do they create new clusters, some

of which are possibly detrimental, due to across-class aggregation.

Another issue that future work might inspect is the absence of precision peaks for

values larger than s = 200. From the pattern of precision peaks in the graphs, we

would expect that at s = 250 we might find a peak for values of t smaller than 0.1.

This, however, does not occur. Examining even larger sizes of salient terms lists than

s = 250 should be conducted; we were discouraged from using such large values by

the computational cost.
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