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DYNAMIC CHARACTERIZATION OF A MICRO HEAT ENGINE  

Abstract 
by Hamzeh Khalid Bardaweel, M.S. 

Washington State University 
December 2007 

 
 
 
Chair:  Cill D. Richards 

           Micro heat engines have been proposed by different researchers to be used in the 

growing MEMS field. Such energy conversion devices are complex systems.         

Understanding the behavior of these devices is crucial to predict the optimization of the 

device parameters for the best performance.  A complete mathematical model has been 

developed to capture the dynamic behavior of a micro heat engine, thus predicting the 

forces and displacements produced by addition of the heat to the engine.  Newton’s 

second law, conservation of energy, and mass and heat transfer equations are used to 

develop the model.  The model has been validated against two engines, the “cantilever 

engine”, and the “enclosed engine”.   In comparing the model prediction to the measured 

data the least squares method was used to estimate the unknown free parameters in the 

model.  A favorable agreement between model prediction and experimental 

measurements is observed in both engines.            

          The results of the cantilever engine, in practice an actuator, showed that the 

displacement of the cantilever is maximized for low frequency operation.  A resonant 

peak in the displacement occurred at fp=200.0 Hz.  Moreover, the results showed that the 

heat loss coefficient U, was most strongly correlated to bubble diameter.  An engine with 

smaller bubbles experienced higher heat loss.  The thermal inertia CT was also correlated 



v

with bubble size.  An engine with bigger bubbles showed higher thermal inertia CT.  

However, the vaporization coefficient β did not correlate with bubble size or cavity 

thickness.  In addition to the displacement measurements, the voltage across the 

cantilever terminals was measured at different load resistances RL, and then used to 

estimate the thermal to electric efficiency at those load resistances.   

          The results of the enclosed engine showed a linear behavior over a wide range of 

frequencies, up to 100 Hz.   However, a departure from linearity started to appear at 

higher frequencies as the input energy to the engine increased.  

          The parameters, found to minimize the squares of the error between the model 

prediction and the measured data were the vaporization coefficient β =0.0003, frictional 

damping bf=1.25 N.s/m, and heat loss coefficient U=0.0352 kJ/kg.K.  Since the measured 

data showed no resonant peak in displacement up to 2.0 kHz , the effective mass of the 

engine was set 
_
mm + =0.  The effect of the heat pulse duration T on the engine 

performance was examined.  The results showed that, the amplitude of the velocity 

components Uk was maximized for the shorter heat pulse.  Moreover, the amplitude of 

the velocity components Uk declined rapidly as frequency increased for the longer heat 

pulse duration.  A short pulse duration is desirable, because the heat rate amplitudes Qk 

have larger values over a wider frequency spectrum. 
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CHAPTER 1 

LITERATURE  REVIEW 

 
         The need for micro-power sources to be used in the rapidly growing micro-

electromechanical systems (MEMS) technology has led to the development of a micro-

scale combustion engine field.  This includes internal and external combustion heat 

engines, fuel cells, and microbatteries.  In this work, two external combustion engines are 

presented.  The first one is called a “cantilever engine” where the mechanical work is done 

on a PZT cantilever.  This device is most suited to actuator applications.  The other one is 

called an“enclosed micro heat engine” where the mechanical work is done on 2 µm thick 

silicon nitride membrane.   

         In the following sections, a literature review is presented.  The review will focus on 

different methods of actuation as well as heat engines.    

1.1 Actuation Mechanisms 

          Recently, there has been much interest in developing actuation mechanisms that can 

be fabricated reproducibly and can deliver relatively large displacements and forces [1].  

Micro-actuators are used as the driving forces for different microsystems including 

microvalves, micropumps, and grippers.  Different materials and actuation mechanisms 

have been proposed in development of micro-actuators [15].  Each actuation mechanism 

has its own advantages and disadvantages, in terms of displacement, forces, operating 

speed, dynamic response and performance stability.  

            In the literature different kinds of actuators are found: electrically driven actuators, 

including electromagnetic [2], electrostatic [3], and piezoelectric [4].  Thermally driven 
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actuators includes, thermal bimorphs [5], thermo- pneumatic [6] , and phase change 

actuators [7].  Each actuation mechanism is constrained by specific advantages and 

disadvantages.  

 

1.1.1 Electrically Driven Actuators 

         A magnetic field can be used to produce force, torque or displacement of a 

microstructure. This phenomenon has been used as an actuation mechanism.  In reference 

[2], integrated permanent magnet microactuators have been fabricated using 

micromachined polymer magnets.  The magnets had the shape of thin disks with 4 mm 

diameter and 90 µm thicknesses.  The disks were magnetized in the thickness direction.  A 

cantilever beam-type magnetic actuator carrying the magnet disks on their free ends was 

fabricated on an epoxy board.  A planar coil on the opposite side of the substrate was then 

used to drive the beams vertically.  A driving current of 100mA used to generate a 

magnetic field.  The maximum deflection of the beam was 15 µm.  The difficulty to form 

on-chip, high efficiency solenoids [8] , in addition to the large driving currents required 

compared to other electrically driven actuators, are the main drawback of this technology 

[2]. 

          The idea behind electrostatic actuation is that an electrostatic force develops between 

two conductors if a voltage is applied between them.  Electrostatically driven micromotors 

were one of the earliest MEMS actuators [9].  A group at the university of Tokyo [10]  

constructed a large stepwise motion electrostatic actuator for a wireless microrobot 

application.  Simulations showed that up to 240 nm displacements in the x-direction are 

achievable.  Remote actuation of an array of actuators supporting 0.25 mm2 and 380 µm 
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thick pieces of silicon was successfully demonstrated with an 80 V pull-in voltage.  The 

main advantage of  electrostatic actuators is their fast dynamic response [2].  However, the 

high voltage required for static actuators operation is considered a drawback. A high 

voltage introduces electronic complexity and material compatibility issues [8].  Also, they 

are difficult to adapt with many microvalve applications. Electrostatic actuators are 

environmentally sensitive for moisture and particulates and they require narrow gaps for 

large forces [1]. 

            The ability of some materials to deform when an electric field is applied on it is 

known as the inverse effect of piezoelectricity.  This phenomenon has been implemented as 

actuation mechanism.  The Alps Corporation developed a small linear motor system using 

multilayered piezoelectric actuators, producing 3.6 N sliding force [11].  Friend et al [12] 

developed a linear piezoelectric actuator with a maximum force 1.86 N.  A linear 

piezoelectric actuator using a cantilever bimorphs was constructed [13].  The cantilever 

was vibrated in both the fundamental axial mode and high order flexural mode.  The force 

and the sliding velocity achieved were 0.09N and 27.7 cm/s respectively.  An approximate 

efficiency of 1% was obtained from an actuator composed of four closely- matched 

bimorphs.  A major drawback of common piezoelectrics is that they contain lead which is 

not compatible with the complementary metal oxide semiconductor( CMOS ) process.  

Also, piezoelectric actuators provide relatively small displacements when solid stacks are 

used  and small forces when bimorphs are used[1].   

1.1.2 Thermally Driven Actuators  

          Actuation of a microscale devices can be achieved by adding and removing heat.  A 

change in the temperature profile of a microstructure results in displacement or force 
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output.  Adding heat to a microstructure can be achieved by ohmic heating, conduction, 

convection and absorption of electromagnetic waves.  Cooling the microstructure can be 

achieved by conduction, convection and radiation dissipation [14].   

           As a thermal actuation method, a thermal bimorph actuator consists of two materials 

joined together along their longitudinal axis. Upon heating, the structure bends with 

different thermal coefficients of expansion to produce a displacement.   A thermal vertical 

bimorph actuator fabricated of silicon beams side-coated with aluminum was constructed  

[8].  The fabricated device was 600 µm in length and the thicknesses of the silicon and 

aluminum layers were 4.2 µm, and 3.1 µm respectively.  An input power to the actuator of 

3.2 mW resulted in 4.8 µm deflection.  The time constant was measured to be 0.5 ms.  The 

main disadvantages of the thermal bimorph actuators are the slow response, large power 

consumption and sensitivity to environmental temperature changes.  

        Another kind of thermal actuation is thermo-pneumatic actuation. A thermo-

pneumatic actuator consists of a sealed cavity filled with fluid, usually fluorinert liquid, and 

a flexible diaphragm on the boundary of the cavity [15].   Once the cavity is heated, the 

pressure increases and the diaphragm deflects.  A thermopneumatic actuator based on 

printed circuit board (PCB) technology was developed at the University of 

Rostock,Germany [16].  The PCB used was 800 µm thick, connected to membrane 

consisting of polymeric foil of 8 µm thick.  A special adhesive technique was utilized to 

connect the PCB with the membrane.  A copper heater was used to facilitate the heat 

transfer to the actuator cavity.   The measurements showed high volume displacement rates, 

up to 1000 µL/min, with large membrane deflection and moderate power consumption.  

However, neither the deflection nor the consumed power was mentioned in [16].  The main 
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advantages of a thermo-pneumatic actuator are the compatibility with MEMS fabrication, 

and the ability to produce large forces and deflection given very small volume [15] . 

         Phase change actuators are based on solid-solid [17] , solid-liquid [18] , and liquid-

vapor [19 ] phase actuator.  Generally, phase change actuators are characterized by the 

ability to produce high forces and displacements.  The main drawback for those actuators is 

the slow response times [7].   

          The Shape Memory Alloy micro-actuators, (SMA) are considered superior in solid-

solid actuation technology.  The actuation mechanism of SMA , is the motion of those 

alloys  due to phase transition between an austenite phase and a martensite phase [17].  

This phase transition is governed by the temperature of the alloy.  In [17], an SMA actuator  

[10 x  2  x  0.8 ] mm was built.  A thermoelectric system was used to control the 

temperature of the SMA in the range -10 to 90 oC.  The results showed that (4-6 % ) strain 

is achievable. The main problem with SMA actuators is the cooling, especially when the 

environment temperature is not constant.  Moreover, the dynamic response of  SMA 

actuators is low and highly dependent on cooling abilities.  In addition to that , SMA 

actuators are typically difficult to fabricate due to film stoichiometry or inherent  stress 

problem [18].  

        The second kind of phase change actuators is solid-liquid phase change actuators.  In 

this kind of actuator as the actuation layer is heated to its melting point, a volumetric 

expansion of that layer occurs.  The volumetric expansion of that layer creates hydrostatic 

pressure which is translated to the output of the actuator.  Paraffin is one of the most 

commonly used materials as the actuation layer in solid-liquid phase actuators due to its 

chemical stability and low viscosity [18].  In [18] paraffin microactuators were fabricated. 
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The actuators consisted of circularly patterned paraffin layers, 9 µm thick and 200-400 µm 

diameter, all covered with a 4 µm thick metallized sealing diaphragm.  The actuators were 

constructed on both glass and silicon substrates.  To achieve 2.7 µm peak deflection 100 

mW power was input to a 200 µm radius actuator and 150 mW was input to 400 µm radius 

actuator.  As it appears in this work, the main draw back of this kind of actuators is the 

large amount of  power required to drive the actuator.   

         A similar actuation mechanism to solid- liquid phase change is the one due to phase 

change caused by liquid evaporation (liquid-vapor phase change).  The volume expansion 

caused by liquid evaporation can generate considerable forces in small volume.  In the  

literature many researchers have been investigating liquid-vapor phase change actuators.  

Paul et al [1] developed a thermally driven liquid- vapor phase change actuator in a 

partially filled- sealed cavity [900 x 900 x 300 µm in size].  A heater located on the floor of 

the cavity and elevated 8 µm above the cavity was 600 µm long and 800 µm wide.  The 

heater was composed of diamond-shaped unit cells, 12 µm wide and 3 µm thick bulk 

silicon beams. Methanol was used to fill the cavity.  An input power to the actuator of 10 

mW caused a pressure rise in the cavity of 1.2 Atm.  In a different reported measurement 

for an input power of 100 mW the pressure response time was around 100 ms.   

        Liwei Lin et al. [20] used 80 mW to generate a thermal bubble from FC-43 liquid.  

The bubble was demonstrated to actuate a mechanical plate 70 x  60 x 2  µm with a 

maximum displacement of 140 µm and a maximum actuation force of 2 µN.  

       A comprehensive model for a thermo-pneumatic actuator was developed by Albert K. 

[19].  In this model, the change of phase from liquid to liquid-vapor, to vapor and back 

again was modeled.  The thermodynamic model was coupled thermally and mechanically a 
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to silicon membrane microstructure.  To define the initial thermodynamic state of the 

actuator the deflection of the midpoint of the membrane was assumed to be monotonic, the 

cavity was isobaric, isothermal under fill conditions, the vapor in the cavity obeyed the 

ideal gas law, and the external pressure on the membrane was uniform.  

          In addition to those assumptions, it was assumed that the deflection of the membrane 

was linear, and the working fluid in the cavity did not absorb any gas in the filling process. 

Based on those assumptions, the pressure on the membrane, the volume of the cavity, 

liquid density, vapor density and the total mass inside the cavity were estimated.   

         Under the assumption that the actuation occurs at constant temperature, the 

conservation of the mass inside the cavity, the conservation of volume in conjunction with 

the liquid pressure and densities were used to separate the volume into two parts, the 

volume occupied by the liquid and the one occupied by the vapor. The mechanical motion 

of the membrane and the pressure were then used to relate the membrane position to the 

valve flow.  The model predictions showed good agreement with the measured data. 

1.2   Micro Heat Engines 

          Several micro engines are proposed in the literature.  One of those micro engines is 

the P3 micro heat engine designed at Washington state university.  The design of the P3 

micro heat engine is slightly different from all other micro engines.  Other micro engines 

are based on miniaturization an internal combustion engine concept, while the P3 micro 

heat engine is developed totally from the micro scale.  The P3 micro heat engine is an 

external combustion engine.  The P3 micro heat engine consists of two membranes 

separated by a thin cavity filled with a two-phase working fluid.  The upper membrane is 

patterned with PZT to convert the mechanical work into electrical work.  Heat is added to 
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the engine via a thermal switch.  Once the heat is applied to the lower membrane the liquid 

inside the cavity evaporates. The volume expansion of the fluid in the cavity strains the 

upper membrane which results in the generation of electrical charge from the PZT.  Heat is 

then removed with the thermal switch.  The upper membrane cools and condensation 

occurs.  The volume is decreased and the upper membrane deflects inward.  The repetition 

of the cycle results in continuous process and charge generation.   

         A silicon-based micro rotary engine is being produced at U.C. Berkeley’s 

microfabrication laboratory [21].  The ultimate goal of the work is to miniaturize a Wankel 

internal combustion engine to a micro engine that produces 10-100 mW while the size of 

the chamber is 1 cm3 and the engine displacement is 0.08 m3.  As a pre-step the Wankel 

internal combustion engine was reduced to 1 cm3 engine made of steel using electron 

discharge machining (EDM).  The engine was operated using H2-air mixture as the fuel at 

10,000 rpm. The results showed that only 3.0 W output from the engine with efficiency less 

than 0.5%.  The tests also showed that around 20% leakage happened while running the 

engine.   

       Later on, a micro heat engine consisting of three main parts, rotor, housing, and shaft, 

was fabricated.  Each component was fabricated separately using different masks to 

simplify the fabrication process and to allow testing various engine parameters and designs.  

The engine housing consisted of 300 µm high housing with a spur gear ¼ to ½ the over all 

height of the housing wall.  The rotor design consisted of gear sets ranging from 3-54 teeth.  

Deep Reactive Ion Etching (DRIE) was used to etch the spur gear and housing.  The 

significant lateral etching in spur gear and the non uniform etch rate in the wafer reduced 

the number of usable parts and caused sealing problems.  The work up to the moment on 
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this engine demonstrates that the sealing problem and friction losses are significant in this 

micro engine and a big challenge for miniaturization of Wankel internal combustion 

engine.   

        A MEMS-based gas turbine generator is being developed by researchers at MIT [22].  

In this work, they try to scale the Brayton power cycle (gas turbine) down to the micro 

scale.  The proposed engine is 1.0 cm diameter by 3.0 mm thick SiC and  capable of 

producing 10-20 W of electric power while consuming 10.0 grams/hr of Hydrogen.  The 

engine consists of conventional engine parts; compressor, combustion chamber and turbine.  

The efficiency of the combustion is estimated to be around 50% , and the mechanical to 

electrical conversion efficiency is 40%.  Taking all the efficiencies in account, the 

estimated over all efficiency is around 5%.   Many challenges for the design of this engine 

are currently under investigation.  First, the complexity of geometry results in fabrication 

problems, for example, the tolerance of the bearing structures needs to be in the order of 1 

µm.  The journal bearings are required to be 300 µm deep and 10-20 µm wide with vertical 

taper less than 1 µm.  The next challenge is the pressure and temperature of combustion.  

The operational temperature of the chamber is around 1000 oC. The pressure is going to be 

significant percentage of the bulk strength of silicon, and appreciable stresses are also 

generated in rotors due to the high spin speed [23].  More details about the history and 

development of micro heat engines is in [15, 21].      
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1.3 Objective of the work  
  

         The main objective of this work is to develop and validate a coupled dynamic, heat 

and mass transfer mathematical model to provide better understanding of the micro heat 

engine dynamic behavior.  Understanding the dynamic behavior of the engine will allow 

minimizing the energy losses in the engine by optimizing the engine parameters.  Those 

parameters include cavity thickness, bubble size, the upper and lower membrane size, and 

the heat rate delivered to the engine.  Optimizing those parameters will increase the 

efficiency of the engine, and define the best conditions to operate the engine at, in terms of 

the duration of the heat pulse, and the cycle frequency.  

        Once the model is developed, it is validated against the experimental results.  The 

validation of the model against the experimental results is important to ensure that the 

model captures the real physics of the engine.  The model can then be used to predict the 

performance of the engine operated at different conditions and engine parameters.  

       To accomplish these goals, a device with a simplified geometry is modeled and 

characterized experimentally.   This device, the cantilever engine, provides a valuable 

platform for model validation and also serves as a generic phase-change actuator.   

    Once the model is validated with experiments on the cantilever engine, the model is 

tested on the enclosed engine configuration.  This configuration represents more closely the 

geometry of an actual micro heat engine.  
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CHAPTER 2 

FABRICATION AND INSTRUMENTATION 

 

         Two different engines are presented in this work; the enclosed engine and the 

cantilever engine.  In both engines, an evaporator is used to transfer the heat to the working 

fluid.  However, the mechanical work is done on a silicon nitride membrane in the enclosed 

engine while it is done on a cantilever in the cantilever engine. 

        In the following sections, a detailed discussion of the engines fabrication is presented.  

The equipment used to test the engines is described, and the testing procedure for each 

engine is detailed. 

2.1 Overall discussion of the cantilever engine  

         A cantilever engine basically consists of a cavity filled with a saturated, two-phase 

working fluid, bounded on the top by a microscope glass cover slip and on the bottom by a 

membrane patterned with a gold resistance heater to facilitate the heat transfer to the 

working fluid.  The cover slip is bonded to a cantilever to provide additional mass and 

control the displacement of the cover slip. A schematic of the engine is shown in figure 2.1. 

The heater membrane is fabricated in the WSU –clean room facility as described in section 

2.1.2. 

 

        

 

 

Fig 2.1: Cantilever Engine configuration. 
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The bottom membrane, which acts as an evaporator, is either 5 or 8 mm on a side. The gold 

layer is 300nm thick. A capillary wick structure is patterned over the heater to control the 

layer of liquid – phase working fluid.  The wicks channels are 5 µm thick, 10 µm deep and 

70 µm wide. The wicks and the heater cover the entire area of the bottom membrane.  

Figure 2.2 shows the heater and wick structure used in the cantilever engine.  

     The cavity is formed by adding very thin semiconductor tape layers together.  Each 

layer is approximately 75 µm thick.  The side length of each layer is almost the same as the 

side length of the bottom membrane. 

         

 

 

 

 

      The cantilever consists of a thin copper electrode (0.6 mm) covered with upper and 

lower PZT layers to convert the mechanical work into electrical work. The resonant 

Wick structure

Gold heater 
resistance 

Fig 2.2: bottom membrane structure. 

1.7 mm  
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frequency of the cantilever is altered by changing the free length of the cantilever. For the 

work done here, the free length was kept constant 40 mm. 

2.1.1 Fabrication of the heater membrane   

         First a 3 inch wafer is oxidized in a high temperature wet oxidation process (T=1050 

oC) for 80 min to grow 500 nm thick oxide layer. Next, boron is diffused at 1125 oC for 90 

min.  The importance of  Boron is that, it slows down the etch rate of the anisotropic 

etching process by  factor of 50 if the concentration of the boron is more than  5 x 1019 cm-3 

.  This is important to define the thickness of the membrane when etched. Then, subsequent 

minor steps are carried out to remove the borosilicate glass layer formed as result of Boron 

doping.  Removal of this film includes a Buffer Oxide Etch (BOE) etching, sacrificial 

oxide growth, and a second BOE etch.  A thin oxide layer which serves as an etch mask, is 

grown in a low temperature wet oxidation process (T=850 oC) for 80min.  Then a 5 nm 

adhesion layer of TiW is sputtered on the silicon wafer followed by 300 nm and 500 nm Au 

layers sputtered on the front and back side of the wafer respectively.  Next, both sides of 

the wafer are patterned using standard contact photolithography.  The front side is 

patterned into a resistance heater.  The back side is patterned into a silicon window 

membrane, it is important to keep the unpatterned gold on the backside protected when 

gold etchant is used to etch the front side.  Later on, the remaining gold layer on the back 

side of the wafer serves as an etch mask.  A SU-8 layer is spun over the resistance heater 

and patterned into wick structures.  The wafer is etched in KOH at 80 oC for 6-8 hours. 

Figure 2.3 describes the general steps of heater fabrication 

 

 



14

 

  

 
          
           Grow the oxide layer                                      
                                                                                     

 
                                                                                
 
 
           
 
 
 
 
 
 
                                
 
 
                                                                                  
 

 

 

2.1.2  Engine Assembly    

        Once the heater with the desired size is fabricated in the clean room the cantilever 

engine is assembled.  First, the heater die is fixed on a carrier plate.  Semiconductor tape is 

cut out in two concentric square shapes and centered around the heater. Each 

semiconductor layer is 75 µm thick so the thickness of the engine is changed by changing 

the number of the layers attached to the top of the heater, when the layers are added 

 
Sputter 5 nm TiW layer 

 
 

 Sputter 300,500nm Au layer on front 
and Back side respectively 

 

 

   Pattern and etch the oxide in BOE

 

 

Etch the Silicon wafer in KOH 

 

 

           Spin SU-8 on the front side of the 
wafer 

 

 

Pattern the SU-8  

 

 

                                                    
Pattern and etch the Au layer 

 

 

Fig 2.3: Heater membrane fabrication. 
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together it is important to ensure that there is no air gap between any two layers or between 

the first layer and the heater.  This is important to keep the working fluid inside the engine 

during the whole experiment.  Next, the cantilever is clamped to a holder and fixed onto a 

Z-stage.  Since the quality factor (Q) is highly affected by the clamping conditions, Q 

should be characterized before running the experiment using an impedance analyzer. 

          Once both the cantilever and the heater are fixed on the stage.  The working fluid  

FC-77 is flooded into the cavity and the cantilever is placed over the semiconductor layers 

by moving the Z position of the stage down.  At this point a bubble is generated. The size 

of the bubble is controlled by the amount of time that the working fluid is allowed to 

evaporate before the engine is sealed by the liquid layer formed between the semiconductor 

tape and the cantilever. 

 

2.1.3 Testing Procedure  

         Once the cantilever engine is sealed well, the operator can start the test. The 

resistance of the heater is measured.  Figure 2.4 shows the experimental setup for testing 

the cantilever engine.  The main parameters to be measured in the experiment are the size 

of the bubble, the vibration response of the cover slip, the open circuit voltage, and  the 

output voltage across a load resistance when the PZT cantilever is hooked up to it. The size 

of the bubble is measured relative to the size of the heater membrane.  The gold rings 

patterned on the heater membrane serve as good reference lines for bubble size 

measurements. 
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Fig . 2.4: Cantilever Engine experimental setup. 

         The vibration response of the cover slip is measured using a laser vibrometer.  The 

settings of the laser vibrometer are chosen to yield in high sensitivity and low noise level.  

The vibration response is viewed on an oscilloscope screen.  The oscilloscope outputs 2500 

points for each screen capture. The settings of the oscilloscope are chosen to capture an 

integer number of cycles. For the highest resolution one cycle is the best. For example, if 

the engine is pulsed at 10 Hz, the number of the divisions on the oscilloscope is 10 

divisions then 10msec/div is the setting on the oscilloscope to capture one cycle (2500 

point on the oscilloscope screen). Capturing a non integer number of cycles on the 

oscilloscope screen results in wrong Fourier amplitude coefficients when analyzing the 

data.  

 

 

Load resistance  
RL 
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2.2 EQUIPMENT 

2.2.1 Laser Vibrometer  

        A laser Vibrometer is used to measure the displacement of the cover slip.  The 

vibrometer used here is a Polytec OFV-5000.  The operating principle of the laser 

vibrometer is Doppler shift of the laser light being reflected off the object.  A beam of a 

helium neon laser is directed at the vibrating object and scattered back from it.  The phase 

∆Ø , and frequency ∆f information of the reflected beam are then recovered in signal 

processing unit using velocity and displacement decoders.  The displacement signal is 

reconstructed from the phase information, while the velocity information is recovered from 

the frequency information.  Figure 2.5 shows the working principle of the laser vibrometer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor head

Displacement 
decoder 

Object 

X(t) 
V(t)= dx/dt 

Doppler 
signal ,∆f 
∆Ø Velocity 

decoder 

V(t)

X(t)

∆f

∆Ø

 

Fig 2.5: Working principle of Laser vibrometer [25]. 
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2.2.2 TTL Circuit  

         A transistor-transistor logic (TTL) circuit [15] controls the voltage across the heater 

resistance based on trigger signal from arbitrary function generator (AFG).  A schematic 

diagram of the TTL circuit is shown in figure 2.6, [15].    Detailed description of the TTL 

circuit is found in [15]. 

 

 

Fig. 2.6: TTL circuit [15]. 

2.2.3 Impedance Analyzer  

        The impedance and phase information are important to obtain the equivalent circuit 

parameters of the PZT cantilever, the quality factor, the electromechanical coupling 

coefficient and the natural frequency. 

        An Agilent A4294A impedance analyzer is used to measure the impedance and the 

phase of the cantilever engine.  The frequency range of the Impedance analyzer is 40.0 Hz -
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110.0 GHz, [26].  The input voltage level starts with few mvolts up to a maximum level of 

1.0 volt. 

2.2.4 Spectrum Analyzer  

     The Spectrum Analyzer used here is an Agilent 35670A.  It is able to view the output 

signal form the laser vibrometer and analyze it directly.  That is done by defining the signal 

as an independent variable and using it to write a mathematical function that describes the 

physical quantity the operator would like to see on the screen.  An example for that is to 

define the electrical power across a resistor using the output voltage signal from the PZT 

cantilever. 

     Also, the spectrum analyzer has many built-in functions that help to understand the 

captured signal on the screen, one of the most useful functions is the Fast Fourier 

transformation (FFT) function used for frequency domain analysis. 

2.2.5 Digital Oscilloscope  

         The main purpose of the oscilloscope is to view the output signal from the laser 

vibrometer and the output voltage from the cantilever.  Once the desired signal is captured 

on the oscilloscope, it is saved on a volatile memory disk until the operator hits the start 

button again.  The oscilloscope used here, TDS 420A, had 8 bit vertical resolution , 

maximum sampling rate of  200 MS/s , and 200 MHz bandwidth.   

         One of the important settings for these experiments is the COUPLING setting on the 

oscilloscope, that is, AC and DC coupling.  When the engine is pulsed at a frequency 

higher than the cut-off frequency of the oscilloscope (8.0 Hz), use of the AC coupling 

won’t affect the output signal that appears on the screen. However, if the engine is pulsed 

at a frequency lower than the cut-off frequency, it is important to set the oscilloscope to DC 
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coupling, otherwise all the frequency components lower than the cut-off frequency are 

filtered out and won’t appear in the frequency domain analysis. 

2.3 MEASUREMENT OF THE ENGINE PROPERTIES  

2.3.1 Impedance test  

         The impedance analyzer is used to measure the impedance and the phase curves of 

the cantilever.  A MATLAB program [24] is used to calculate the values of the equivalent 

circuit parameters from the impedance curve, including the natural frequency, the quality 

factor, and the electromechanical coupling coefficient. 

         To run an impedance test for a cantilever, first the impedance analyzer is calibrated 

by two tests, open and short compensation data measurement tests.  Once it is calibrated, 

the cantilever is connected to the test fixture device contacts.  The frequency bandwidth on 

the impedance analyzer screen should be chosen to capture the resonant frequency of the 

cantilever.  For the experiments reported here the bandwidth was chosen to be 50.0 Hz-

300.0 Hz, the voltage level used was 500 mvolts and 800 points were used to sample the 

impedance data.  More detailed information on how to use the impedance analyzer is given 

in [24]. 

 2.3.2 Stiffness measurement of the cantilever  

          The free vibration response of the cantilever in conjunction with the equivalent 

circuit parameters determined from an impedance test are used to calculate the stiffness of 

the cantilever.  Since the impedance information is used in stiffness calculations, it is 

important to run the free vibration test under the same clamping conditions used to generate 

the impedance information. 
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      For the free vibration test, the cantilever is pulsed for time duration much shorter than 

the natural period of the cantilever, the response of the cantilever is then captured by the 

laser vibrometer. 

2.4 ENCLOSED ENGINE  

     An enclosed engine is defined by two membranes separated by a cavity filled with a 

two-phase working fluid. The upper membrane is usually a 2 µm thick silicon nitride 

membrane and the lower membrane is a bare silicon membrane.  The lower membrane 

features are very similar to those used in the cantilever engine; that is, there is a wicking 

structure and a resistance heater.  

      The configuration of both the lower membrane and the semiconductor tape is the same 

as the one mentioned in section 2.1.1. The silicon nitride membrane used here is a bare 

membrane to allow the operator to see the bubble inside the engine.  More generally, an 

energy converter, usually PZT , is patterned on the upper membrane to convert the 

mechanical work into electrical work. 

       The working fluid used to fill the cavity is PF-5060 by 3M®, which is characterized by 

a low boiling temperature (56o C).  The fact that PF-5060 starts evaporation at room 

temperature helps to generate the bubble as soon as PF-5060 is flooded into the engine.  

2.4.1 Fabrication of Silicon Nitride membranes  

         A similar procedure to that described in section 2.1.2 is used to dope the boron to the 

silicon wafer.  Consequently, a silicon nitride layer is grown on the front side of the silicon 

wafer.  The silicon nitride is then patterned using the standard photolithography process 

and developed using KZ-400 solution.  Figure 2.7 shows the oxide mask used to pattern 5 

mm silicon nitride membranes.  Then the nitride layer is patterned using Deep Reactive Ion 
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Etching (DRIE).  Lastly, the wafer is etched in KOH solution to get 2 µm thick silicon 

nitride membranes. 

 

 

EP slug v1.0 08-05-2005 KOH – LWW  

 

Fig. 2.7: 5mm silicon nitride membrane oxide mask. 

2.4.2 Engine Assembly  

        Once the silicon nitride membrane and the heater membrane are fabricated, the engine 

can be assembled.  The engine is defined by the thickness of the cavity, the size of the 

bubble, the size of both the heater membrane and the upper membrane and lastly, the wick 

structure patterned on the heater membrane. 

        First the heater membrane is fixed on a carrier plate.  Then an o-ring is fixed on 

another plate, the upper membrane placed on the o-ring and taped to the plate.  Next the   

semiconductor tape is cut out as two concentric squares and centered around the heater 

membrane.  To build a thick engine, more layers of the semiconductor tape are cut out and 

placed on the top of each other.  A heat sink compound may be used between the layers to 
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ensure good sealing.  The PF-5060 is flooded to fill the cavity and the upper membrane is 

slid over the cavity.  At this point the bubble is generated.  The size of the bubble is 

determined by the amount of time PF-5060 is allowed to evaporate before the engine is 

sealed.  Lastly, the upper carrier is screwed to the lower one and the plates are tightened 

good enough to seal the engine.  If the carriers are tightened too much that might crack the 

engine.  On the other hand, poor tightness might cause the engine to leak.  

2.4.3 Measurement of the Upper membrane Stiffness 

         The stiffness of the upper membrane is measured experimentally by applying a 

uniform force over all the membrane area.  A static bulge tester is used as the pressure 

source and the laser vibrometer is used to measure the peak deflection of the membrane. 

       First, the membrane die edges are carefully glued to a circular aluminum plate with a 

centered hole in it.  Next, the plate is fixed on the static bulge tester and the laser beam is 

focused on the midpoint of the membrane.  Then the pressure is applied.  Both the pressure 

and the deflection are saved and plotted using a LabView program.  The voltage signal 

from the laser vibrometer is converted directly to micrometers in this program; each volt 

from the laser vibrometer is interpreted as a deflection of 16 micrometer. For this reason, 

when running this experiment, it is important to use 16µm/volt on the laser vibrometer 

displacement settings.   

2.4.4 Testing Procedure   

         Once a well sealed engine is assembled it is ready to be operated. The steps to operate 

the enclosed engine are generally the same as those used to operate the cantilever engine.  

The function generator is used to generate a square wave at the desired frequency and duty 

cycle.  The TTL circuit controls the voltage across the heater resistance and the power 
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supply provides the engine with the required amount of energy.  Figure 2.8 shows the 

experimental setup for the enclosed engine   

 

 

Fig. 2.8: Enclosed engine experimental setup. 
 

 
         The laser vibrometer is used to detect the deflection of the upper membrane.  For the 

cases where the engine is excited at frequency lower than the cut–off frequency of the 

oscilloscope (8.0 Hz); a DC coupling should be used on the oscilloscope settings. 

         The time duration of the pulse is different from one experiment to another.  For 

example, it is known that the response of the enclosed engine is slow.  The roll-off 

frequency is around 2.0Hz.  To capture the behavior of the engine around the roll off 

frequency the engine was excited at 0.2 Hz, 1% duty.  In a different experiment the engine 

was excited at frequencies 10.0 Hz -100.0 Hz and the duty cycle range 1% -50% while the 

input energy was kept the same in all cases, to capture the amplitude distribution of the 

input heat spectrum over different bandwidths. 
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CHAPTER 3 

MATHMATICAL MODELING OF A MICRO HEAT ENGINE 
 

3.1 Introduction to the Model  

       Understanding the behavior of a designed device is crucial to predict the optimization 

of the device parameters for the best performance.  In this work the energy conservation 

equations, Newton’s second law and the conservation of mass equation are used to model a 

micro heat engine. 

       A mathematical model is developed to predict the deflection of the upper membrane, 

the temperature of the liquid, the pressure of the engine vapor and the output voltage from a 

mechanical to electrical energy converter. 

        The use of the energy and mass conservation equations in this model results in a 

nonlinear model.  A linearized version is obtained by assuming the departures from the 

static values are very small. 

         A complex number analysis is used to solve the linearized model.  A MATLAB 

program is used to implement this system of the linearized equations.  In the following 

sections both the nonlinear and the linearized model are developed.  

3.2 Geometry  

      A model schematic of the engine is shown in figure 3.1.  The cavity of the engine is 

cylindrical in shape with radius ro  and nominal thickness h.  In the cavity there is a central 

vapor bubble of radius ri .   Liquid occupies the remaining annulus.  There is a film of small 

thickness at the bottom of the bubble.  Liquid and vapor are at saturated equilibrium.  
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       The top of the bubble is bounded by a movable rigid diaphragm of mass m constrained 

to move by a spring of stiffness s and a damper with coefficient b.  From the bottom the 

bubble is bounded by a movable rigid heater constrained by the spring sh.   The motion of 

the upper and lower diaphragms is measured by the displacement x and xh respectively. 

To+∆T, Po+∆P, ρo+∆ρ are the instantaneous temperature, pressure and density of the 

bubble.  The instantaneous temperature of the liquid layer is given by To+∆Tl . 

 

Fig. 3.1: Model engine schematic 

  3.3 Governing equations  

        The governing equations of the simplified version of the device shown in figure 3.1 

are obtained by applying Newton’s law for the motion of the upper and lower diaphragms, 

the conservation of the energy for the liquid layer and the bubble and conservation of mass 

in the bubble. 

        Applying the conservation laws results in nonlinear model of six equations with six 

unknowns.  A linearized model is then obtained by making the assumption that the 

departures ∆ from the static positions are negligible.  For the dynamic analysis of the 
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system an electrical circuit analogy is used to represents the system of the linearized 

equations.  A MATLAB program is then used to solve the linear system of equations using 

matrix and complex number analysis. 

 3.3.1 Mass transfer into the bubble  

             For a control volume bounding the bubble, shown in figure 3.2, conservation of 

mass requires   

( )( )[ ] mVVV
dt
d

hgoo &=Δ+Δ+Δ+ ρρ ,                                                                         (3.1) 

where ρρ Δ+o  , hgo VVV Δ+Δ+  are the instantaneous vapor density and bubble volume 

respectively and m&  is the rate of mass transfer to the vapor bubble caused by evaporation 

and condensation of the liquid.  The subscript “o” indicates an ambient and/or static 

component, while Δ indicates a departure from the ambient value.  For the bubble volume 

the static volume Vo was Vo=πro
2h, and ΔVg and ΔVh are contributions from the motion of 

the upper diaphragm and moveable heater respectively to the bubble volume.   

            For evaporation and condensation of the vapor.  The Langmuir-Knudsen model is 
used [27] 
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Here M is the molecular weight of the vapor, Ru=8.31 J/mol•K is the universal gas 

constant, lo TT Δ+  is the temperature of the liquid, pl is the saturation pressure of the liquid, 

β is the vaporization/condensation coefficient, and S=πri
2 is the area of the bottom surface 

of the vapor bubble.  In this model, β is same for evaporation and condensation.  In figure 

3.2 mi represents the mass of the evaporated liquid, while the mass of the condensed vapor 

is represented by mo.  The difference between these masses, given by 3.2, added to the 
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original mass of the vapor in the bubble is the actual mass of the bubble, represented by ms 

in the graph.   

   

 

 

  

  

 

 3.3.2 Conservation of energy 

             For a control volume bounding the bubble, shown in figure 3.3, conservation of the 

energy requires 
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 where u is the internal energy of mass transport associated with evaporation and 

condensation, and UB is an overall heat transfer coefficient intended to account for heat 

transfer from the bubble to its surroundings.  The internal energy flows into the bubble due 

to mass transfer is given by um& .  The flow work to account for transport of vapor into the 

bubble is given by  m&
ρρ Δ+

Δ+

o

o pP , and denoted by W1 in figure 3.3.  The boundary work 

done by the upper membrane ( ) ( )
dt

VVVd
pP hgo

o

Δ+Δ+
Δ+  is denoted by W2 in figure 3.3.  

The heat lost by bubble to the environment is given by TU BΔ .  The vapor in the bubble is 

assumed to be governed by the ideal gas law 

Fig . 3.2: Mass transfer into the bubble. 

m

mi mo 
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where R=Ru/M is the mass-specific gas constant [28]. 

 

        For the liquid layer between the vapor bubble and the bottom membrane, conservation 

of energy is given by  

mhTUtqTC fgllT && −Δ−=Δ )(    ,                                                                                   (3.5)   

where CT  is the modeled thermal inertia, U is an overall heat transfer coefficient intended 

to account for heat conduction loss from the heater to its immediate surroundings, hfg is the 

latent heat of the liquid, and q(t) is the heat added and removed from the engine. 

 

 

 

 

 

 

      

3.3.3 Newton’s second law of the upper membrane  

          Applying Newton’s law to the upper membrane, results in 

( ) 2)( orpsxxbbxmm πΔ=+Δ++Δ+
•••

       ,                                                                          (3.6-a) 

substituting for 2
o

g

r
V

x
π
Δ

=  in (3.6-a) gives 

 

Control volume of the bubble 

UB∆T 

W1
ρρ Δ+o , TTo Δ+ ,

hgo VVV Δ+Δ+ , u

W2

Bubble

Fig. 3.3: Conservation of the energy in the bubble. 
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 where m  and b  are the effective mass and damping caused by liquid movements added to 

the upper diaphragm.  

          In a similar way, applying Newton’s law to the bottom membrane, one obtains 
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where hs is the stiffness of the bottom membrane, and ir is the radius of the bottom 

membrane.  For simplicity, the damping and material effects of the bottom membrane have 

been neglected in this equation. This is valid only if the frequency of the bottom membrane 

is much higher than the frequency of the upper membrane.  

          If a piezoelectric element is coupled to the flexible upper membrane, Newton’s 

second law is modified to   
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 where V is the voltage across the electrodes of the generator membrane, and ψ  is the 

electrical-mechanical coupling (NV-1).  The deflection of the upper membrane is related to 

the voltage across the electrodes, given by  
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where Co is the capacitance of the piezoelectric element and RL is the load resistance 

hooked up to the engine electrodes.  In these formulas, it is assumed that there is a load 

resistance RL between the electrodes of the piezoelectric element. 

3.4 Development of Nonlinear Model 

       A nonlinear model of the engine is developed using set (3.1-3.8).  The mass 

conservation law of the bubble is simplified by combining (3.1) and (3.2) , and eliminating 

∆Vh  using (3.7) to obtain 
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       For the energy conservation of the bubble taking the derivative of (3.3) yields  

( ) ( )[ ] [ ]

( ) ( )
TU

dt
VVVd

pPumpPm

TTc
dt
dVVVVVV

dt
dTTc

B
hgo

o
o

o

ovhgoohgooov

Δ−
Δ+Δ+

Δ+−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+
Δ+

=

Δ+Δ+Δ+Δ++Δ+Δ+Δ+Δ+

••

ρρ

ρρρρ )())(()(
   .                            

                                                                                                                                      (3.10) 

Then (3.1) is used to eliminate m&  from (3.10) to result in 
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Eliminating 
•

m and ∆Vh from (3.11) using (3.1) and (3.7) respectively results in 



32

( ) TU
pP

p
s
r

VVTcp
s
r

VV B
o

o

h

i
gov

h

i
goo Δ−=Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ+
Δ+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ+Δ+−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛Δ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ+Δ+Δ+

••

ρ
ρρ

ππ
ρρ

2222 )()(
  .    (3.12)                               

Eliminating 
•

m from (3.5) using (3.2) results in the following form of the energy equation of 

the liquid layer between the bubble and the heater 
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        For the ideal gas, taking the derivative of (3.4) results in 
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Newton’s law for the upper membrane is given by 
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The piezoelectric material electrical-mechanical coupling is given by  
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The set (3.8,3.9, & 3.12,3-14) represent the complete nonlinear model of six equations and 

six unknowns ∆p, ∆T, gVΔ , lTΔ ,V and ρΔ . 

3.5 Linearization of the model  

         A linear version of the model is obtained if the departures ∆ of each quantity from 

their static values are very small.  A linearized form of the Langmuir evaporation 

condensation model in (3.2) is obtained using Taylor series expansion, and applying 

Antoine correlation give by     
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where Â , B̂ , and Ĉ are constants for the particular working medium.  The linearized form 

of Langmuir evaporation condensation model in (3.2) is given by  
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 where B is given by            
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 A linearized version of (3.1) is: 
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    For the ideal gas (3.14) a linear approximation is given by 
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Substitution of (3.15) in (3.17) and using the linearized version of the ideal gas (3.18), 

results in a linearized version of the mass conservation of the bubble given by  
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         A linearized version of the energy conservation for the liquid layer is give by  
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        A linearized version of the energy conservation for the bubble is given by  
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        The set (3.8 a & b, & 3.19-3.21) represent a linear set of five equations for five 

unknowns (∆Vg  ,  ∆p, ∆T , V and ∆Tl  ).  The set of the nonlinear and linear model are now 

given by    
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b- Linear set  
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3.6 Reduced Linearized Model, no heat transfer from the bubble (UB =0)  

     The linearized model can be further reduced if the heat transfer from the bubble is 

neglected.  For the case where UB =0 , (3.21) is reduced to  

••

Δ=Δ pTcvoρ .                                                                                                            (3.22) 
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Equation (3.22) is then used to eliminate the temperature ∆T from (3.19), which results in 

the following set of linear equations 
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 The set (3.6, 3.8, 3.20, 3.24) represent a linear set of four equations for four unknowns 

(∆Vg ,  ∆p,  V and ∆Tl  ). 

 
3.7 Electrical circuit analogy 

      Mechanical and electrical systems are considered to be analogous if both are described 

by the same differential equation.  In most cases the goal is to represent the mechanical 

system by an equivalent electrical circuit.  The benefit of such representation is that it is 
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easier to analyze and compute the dynamic behavior of a mechanical system using its 

equivalent circuit. 

       In general, two different analogies between electrical and mechanical systems are used, 

the impedance analogy and the mobility analogy  

      In the impedance analogy a force is the analog to a voltage (potential) and a velocity is 

an analog to the current (flux).  In the mobility analogy a force is an analog to a current 

(flux) and a velocity is an analog to a voltage (Potential).  Table 3.1 summarizes the 

analogous quantities for both methods.   For the work presented here the impedance 

analogy was used to represent the mechanical system described by the linear set of 

equations mentioned in section 3.5.  In the following sections the electrical circuit analogy 

is developed for the model. 

 

 

 

                  

 

 

 

                                  Table 3.1: Electrical-Mechanical systems analog. 

Electrical  

Quantity   

Mobility 

Analogy/Mech 

Impedance 

Analogy/Mech 

Voltage Velocity Force 

Current Force Velocity 

Resistance Lubricity 

(inverse damping) 

Damping  

Capacitance Mass Compliance 

Inductance Compliance Mass 
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 3.7.1 Electrical circuit analogy of the model with PZT 

        The equivalent circuit of the linearized model described in 3.5 is shown in figure 3.3.  

In this model, the thermal storage and the energy losses from the bubble are neglected CT , 

UB = 0 respectively.  The unit of the current is volume flow rate (m3 /sec) and the unit of 

the equivalent volts is pressure (N.m-2), the product of the two quantities has units of 

power. 

 

 

 

 

 

 

 

 

  

       In figure 3.3 , R,L,and C  are the mechanical resistance, inductance ,and capacitiance 

respectivly.  The mechanical resisitance R is dependent on  the total damping characterstic 

(
_

bb + ) of the engine.  The mechanical inductace L is proportional to the effective mass of 

Fig . 3.3:Equivalent circuit of the linearized model with PZT energy converter. 
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I  pΔ  

RLV



39

the engine, given by (
_

mm + ), while the stiffness s sets the mechanical capactiance C.   The 

capacitance oC
_

 is proportional to the shunt capacitance of the PZT element and given by 
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o
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22_
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=  .  The linear set ( 3.8 & 3.19-3.21 ) are used to obtain the equivalent 

circuit of the linear model. The right circuit branch, given by the mechanial compnents 

RLC , and the shunt resistance oC
_

 is obtained dirctly from 3.8-a. The load resistance 
_

LR  

represents  an external resistance connected across the cantilever  to measure the output 

voltage.   Equation (3.19) is used to obtain the branch of 
_
R  and 

_
C , where 
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.   The flow rate 

•

∇V  (m3 /sec) is split into 
•

∇ 1V  which goes into 
_
R  ,  

•

∇ 2V  which goes into
_
C , and 

•

∇ gV  

which is the volume rate change in the generator membrane.   The current source is given 

by l
o

TBI Δ=
ρ

. 

   The power dissipated across the load resistance LR
_

, is given by 

2

_
2 L

RL
Rl

R

V=∏ ,                                                                                                            (3.25) 

where ∏RL
 is the power dissipated in LR

_
,  V RL

 is the voltage across the load 

resistance LR
_

given by 
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3.7.2 Electrical circuit analogy of the model without PZT  

         Fig 3.4 shows the equivalent circuit of the model without PZT.  The power dissipated 

in R is used to simulate an energy conversion device.     

The power across R is given by:  
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where RV is the voltage across R given by  
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And the admittance Ym , and YT are given by  
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3.8 Solution of the linear system of equations  

       For the linear system of equations described in section 3.5, a state space representation 

of the six state equations are given by: 

[ ] [ ]{ } { } )(tqCXBXA +=
⎭
⎬
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⎩
⎨
⎧ •

  ,                                                                                 (3.27) 

where the state variables are given by  

Fig  3.4: Equivalent circuit of the linearized model without PZT. 
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The coefficient matrices [ ]A and [ ]B are the coefficient matrices of the unknowns column 

vectors { }X  and 
⎭
⎬
⎫

⎩
⎨
⎧ •

X respectively, and the column vector{ }C  represents the coefficients 

of the input heat to the system )(tq .  The solution of the system is assumed to be in the 

form of  tj
ii eXX ω

∧

=        ,                                                                                (3.28) 

and then the derivative of the column vector { }X  is given by  

tjeXjX ωω
⎭
⎬
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∧•

   .                                                                                        (3.29) 

For more details on the solution of the system of linear equations described in 3.5 see 

Appendix A. 
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CHAPTER 4 

DATA ANALYSIS 
 

          Once the experimental data are collected, a fast Fourier transform (FFT) algorithm is 

used to analyze them.  The least squares method (LSM) is then used to predict the unknown 

modele parameters and fit the model with the experimental data.  The effect of the pulse 

duration, and the input heat rate distribution over the frequency components on the engine 

performance is predicted by Pareseval’s theorem.  In this chapter, a brief description of the 

FFT algorithm, LSM, and Pareseval’s theorem are presented. 

4.1 Fast Fourier Transformation (FFT)  

      Fourier transform, named after the French mathematician Joseph Fourier, is a 

mathematical tool to write any periodic function by decomposing such function into a 

weighted sum of a sinusoidal component functions referred to as modes [30].  For a 

continuous signal a Fourier transform is given by 

                              dtftjtxfX ∫
+∞

∞−

∧

−= )2exp()()( π                                                    (4.1) 

where x(t) is a continuous-time signal and  f is  the transform variable with the units of Hz. 

        In most applications, the signal to be processed is sampled with a finite number of 

points (N), called discrete signal, the corresponding Discrete Fourier Transform (DFT) is 

given by  

               )2exp(.
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0 N
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n
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     , n , k=0,1,2,…….,N-1 ,                                 (4.2) 
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the coefficients kX
∧

 are in general complex valued, and known as the DTF coefficients, nx  

are the sampled data points, and ∆t is the sampling interval.  In this case, the fundamental 

data period Tp = N.∆t is the reciprocal of the fundamental frequency fp  with units of Hz. 

        If the number of the data points (N) is an even power of P2 ( P is an integer) the DFT 

coefficients are determined using algorithm known as a fast Fourier Transform(FFT).  

Because of the fact that the coefficients 1)2/( +

∧

NX  through )1( −

∧

NX  are complex conjugates of 

the coefficients 1
∧

X  through 1)2/( −

∧

NX , only the coefficients 0
∧

X  through 2/NX
∧

are needed for 

the analysis of the real data.  

       Once the DFT coefficients are determined, the signal x(t) can be expressed in terms of 

a sum of sinusoidal components given by 

 )...2cos(2)...2cos(.11)(
1

2

122
2 kkk

N

k
NN

No tfX
N

tfX
N

X
N

tx Φ++Φ++=
∧

−

=

∧∧

∑ ππ  ,          (4.3) 

 

where kX
∧

, kΦ are the amplitude the phase of x(t) spectrum respectively, kk X
∧

∠=Φ .  The 

harmonic frequencies  fk  are given by fk
tN

k
T
kf

p
k .

.
=

Δ
== . 

        For the work presented here, a MATLAB program was written to implement the FFT 

method.  In this program, the experimental data were loaded and read by MATLAB and 

then analyzed using an FFT.  For more details about the MATLAB code used in this work 

see the appendix B.  Once the FFT data were obtained a transfer function argument was 

used to interpret the behavior of the engine.  
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4.2 Transfer Function Analysis  
 
       A transfer function is defined as a mathematical representation of the relation between 

the input and the output of a linear time invariant system [30].   For a continuous- time 

input signal x(t) and output y(t), the transfer function is the linear mapping of the Laplace 

transform of the input X(s) , to the output Y(s) , given by  

                                             ( )
( ))(

)(
)(
)()(

txL
tyL

jwX
jwYjwH == ,                                                (4.4) 

where H(s) is the transfer function of the linear system.  For a discrete-time system, the 

transfer function H(z) is give by 
)(
)()(

zX
zYzH = , where Y(z) and X(z)  are obtained by 

converting the time domain signal into complex frequency domain representation.[Z-

transform]. 

      The transfer function analysis was used to interpret the experimental data in the 

frequency domain.  For the cantilever engine experiments, the fundamental time period was 

Tp =100 ms with fundamental frequency f=10.00 Hz.  The duration of the pulse was T=10 

ms.  The periodic motion x(t) of the cover slip and the heater voltage Vh(t) were recorded 

on a digital oscilloscope.  The number of sampling points on the oscilloscope was N=2500 

points.  Given that the heater voltage Vh(t) was  periodic.  The heat rate delivered to the 

engine given by 2

2 )(
)(

h

h

R
tV

tq =  ,  can be represented by Fourier series  as follows  
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where Qk and kθ are the amplitude and the phase of the heat rate spectrum at each harmonic 

frequency fk .   A similar analysis was performed on the motion of the cover slip x(t), i.e., 

amplitude Xk and phase kγ  in the Fourier series are given by  

                              )..2cos(.)(
1

2

1
kk

N

k
ko fXXtx γπ ++= ∑

−

=

.                                               (4.6) 

 
        In the measurement of the heater voltage Vh(t) and the motion of the cover slip x(t) 

care was taken to insure that the sampling interval ∆t used with the digital oscilloscope 

captured one exact period of motion so that the FFT output corresponded to the right 

Fourier amplitudes.    

        The cantilever engine performance was then interpreted using the transfer function  Γ  

between the coefficients Qk  and Xt  at frequencies fk . According to the linear model 

described in sections 3.5 and 3.6, the amplitudes and phases for heat input Qk, θk  and 

motion of the cover slip Xk , γk , will be related by  

                                          ( ) ( )pkkkpk kfQkfX φθγ +=Γ= , ,                                       (4.7) 

where Γ(kfp) and φ(kfp) are the transfer function magnitude and phase determined from the 

experiment at frequencies kfp.  In this case, the heat rate q(t), given by (4.5) , delivered to 

the engine was the input to the system, while the displacement of the cover slip x(t),given 

by (4.6) was the output from the system. 

        For the enclosed engine, the engine was operated at frequencies f =0.2 Hz, 4.0 Hz and 

10.0 Hz respectively.  The pulse duration T at each frequency  f  was =50, 2.5 and 1.0 ms 

respectively.  The input to the system was the heat rate q(t), given by 4.5, delivered to the 



47

engine, while the output from the system was the velocity of the upper membrane u(t), 

given  by  

                                      ( )kp
k

k kfUUtu ϕπ ++= ∑ 2cos)( 0    ,                                       (4.8) 

where Uk and kϕ  are the amplitudes and phases of the velocity spectrum u(t).  The 

amplitudes and the phase of the upper membrane velocity are given by  

                                    ( ) ( )pkkkpk kfQkfU ϕθϕ +=Γ= ,                                               (4.9) 

where ( )pkfΓ  is the transfer function of the velocity spectrum. 

4.3 Least Squares Method  

      The least squares method (LSM) is used to compute estimations of parameters and to fit 

data.  The method of least squares assumes that the best fit curve for a set of data points is 

the one with the minimal sum of the deviations, i.e., the squares of the error, where the 

error measured as the difference between the measured data and model prediction.   

      In the least squares method, the goal is to adjust a model function to best fit the data 

points obtained experimentally.  This is done by adjusting free parameters in the model to 

minimize the squares of the error.  For example, let the model function is given by  

),( cxFY = , where Y is the dependent variable, x is the independent variable and c are the 

free parameters.  The lease squares method minimizes the sum of the squares of the error 

equation described by  2

1
)),(.( cxFYS

nk

k
i −= ∑

=

=

 , by adjusting the free parameters c, where 

the measured data are given by Yi . 

      For the work presented here, the least squares method was used to fit the mathematical 

model described in sections 3.5 and 3.6 to the data points obtained experimentally. For the 

cantilever engine, the evaporator diameter 2ro , bubble diameter 2ri , thickness of the cavity 
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h , cantilever stiffness s, mass m, damping b, PF-77 fluid properties and environment 

parameters, given in Table 4.1,  were fixed model parameters.  However, since there was 

no a prior estimation of the heat loss coefficient U , thermal inertia CT , vaporization 

coefficient β, liquid mass 
_
m , liquid damping 

_
b  and evaporator stiffness sh , those 

parameters were set to be free parameters used to minimize the square error between the 

model and measured transfer functions  Γ . 

         For the enclosed engine a similar procedure was used to fit curve the mathematical 

model compared to the measured data.  In this case, the fixed parameters were the 

evaporator diameter 2ro, bubble diameter 2ri  , thickness of the cavity h , upper membrane 

stiffness s , lower membrane stiffness sh , PF-5060 fluid properties and environment 

parameters given in Table 4.2.  Thermal losses U, the evaporation coefficient β and the 

viscose damping bf were set to be the free parameters that were determined by the least 

squares method. 

 

 

 

 

 

 

 

 

Liquid density(kg/m3) , ρ 1780 
Vapor density(kg/m3) , ρo 0.55 
Molecular weight(kg/mol), M 0.416
Saturated pressure(kpa) , Po  3.13 
Specific heat (J/kg.K), Cp 841 
Gas constant(J /kg.K)  , R 19.35
Enthalpy(J/kg),  hfg 93.0 
A^ 10.76
B^ 2138 
C^ 0 
To(K) 294 

 
Table 4.1: PF-77 properties/cantilever engine configuration 
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4.4 Parseval’s Theorem  

      Parseval’s theorem is often written as  

                                    dffXdttx
22
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= ,                                                          (4.10) 

where )( fX
∧

 represents the continuous Fourier transform of x(t) and f represents the 

frequency component.  The interpretation of Parseval’s theorem is that the sum of the total 

energy contained in a waveform x(t) over all the time t equals to the total energy of the 

waveform’s Fourier transform )( fX
∧

summed across the continuous spectrum [30] 

       For a discrete Fourier transform, the relation becomes 
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where kX
∧

 are the discrete Fourier transform of nx , and ∫=
T

dttx
T

x
0

2 )(1 .  

        Using Parseval’s theorem, a prediction of the effect of heat pulse duration on the 

engine performance is possible.  Consider a heat rate q(t), delivered to the engine.  Subject 

Liquid density(kg/m3) , ρ 1775 
Vapor density(kg/m3) ,ρo 3.53 
Molecular weight(kg/mol)  ,M 0.338 
Saturated pressure(kpa),Po 25.097
Specific heat (J/kg.K), Cp 755 
Gas constant(J /kg.K), R 24.18 
Enthalpy(J/kg) ,  hfg 94.0 
A^ 9.73 
B^ 1562 
C^ 0 
 

Table 4.2: PF-5060 properties/ Enclosed engine configuration 
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the heat rate q(t) to the constraint that there is a fixed energy E delivered to the engine per 

cycle, and q(t) is unipolar pulse, given by  
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where T is the duration of the pulse,
o
Q is the magnitude of the pulse.  The energy delivered 

to the engine per cycle is given by TQE
o

= .   The Fourier coefficients Qk of the heat 

impulse given by 4.5 are then given by 
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Using Parseval’s theorem, the energy delivered to the engine per cycle is rewritten in terms 

of  E ,T ,Tp and given by   
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Equation 4.14 shows that for a fixed amount of energy E delivered to the engine, 

the DC energy component, i.e.
2

⎟
⎟
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pT
TE in (4.14)  depends on the ratio ⎟
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T .  For example, 

if the ratio 5.0=
PT

T , then the DC component,
2
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pT
TE represents 25% of the total energy 
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delivered to the engine.  Meanwhile, if the ratio 01.0=
PT

T , then the DC component 

represents only 1x 10-4E.   Based on this argument, a short heat rate pulse ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

pT
T  is optimal 

for transfer of energy to the engine.  Given that a short heat rate impulse is desirable, one 

can determine other properties in the limit T/Tp→0.  In this limit for a finite frequency 

bandwidth the heat rate coefficients Qk from 4.5 become 
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so in the limit T/Tp→0 , the heat rate amplitudes Qk are proportional to the fundamental 

frequency fp .  That means running the engine at higher frequencies is desirable.  However, 

increasing the operating frequency fp will place fewer components of the heat rate spectrum 

Qk in the frequency bandwidth with large Γ(kfp).  

4.5 Stiffness Measurement of the Cantilever  

      The stiffness of the cantilever is determined using the free vibration response and the 

equivalent circuit parameters obtained from the impedance information.  The free vibration 

response of a PZT cantilever, is governed by the second order differential equation  

                                    0=+++
•••

Vsxxbxm ψ                                                           (4.16) 

where m,b,s are the equivalent mass, damping and stiffness of the cantilever respectively, 

ψ  is the electrical-mechanical coupling factor (N.V-1), and x is the deflection of the 

cantilever tip.  Equation 4.16 could also be written in terms of the equivalent circuit 

parameters ,L,C,R , i.e.  
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                               0
2
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Vx
C

xRxL ψψψψ       ,                                        (4.17) 

where L= 2ψ
m , C=

s

2ψ , R= 2ψ
b  determined from the impedance information, the pulse  V is 

given by  
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where T is the pulse duration.  For the derivation made here, 
nw

T π2
<< , where 
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is the resonant frequency of the cantilever.  

Solving 4.16, results in                                   
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where ξ  is the damping ratio, ξ =

C
L

R
12

,  and 
ψ

TV
I o= .  Figure 4.1 shows the free 

vibration response of the cantilever, the point (
∗∗

tx, ) represents the peak deflection 
∗

x  of the 

cantilever at time 
∗

t  measured experimentally.  Substitute for (
∗∗

tx, ) in 4.18 and simplify, 

results in  
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simplifying (19) and solving forψ , results in 
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Once ψ  is determined , the stiffness of the cantilever is calculated using 
C

s
2ψ

= .  

 

 

 

 
4.6 Correction of the Stiffness of  Silicon Nitride Membrane 
 
        In the stiffness measurement of the silicon nitride membrane described in 2.4.3, the 

peak deflection of the silicon nitride membrane x was measured.  In the mathematical 

model described in 3.3-3.6, the average deflection of the silicon nitride membrane 
_
x  was 

used to describe the stiffness of the membrane. A correlation between the peak deflection x 

, and the average deflection 
_
x  should be established to calculate the stiffness of the 

membrane based on 
_
x  value.   

          Fig. 4.1 :Free vibration response of the cantilever  

( t*, x*) 
    ◊ 
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        Figure 4.2 describes both, x and 
_
x .  In the figure, 2a is the side length of the 

membrane, 
_
F  is the force distributed over the membrane area.  The volume under the 

membrane , 1,mem∀  based on the peak deflection value x, is determined by the equation [15]  

                       

                                              
45

)52(16 2
1,

+
=∀

Rxamem ,                                                (4.21) 

where R=0.34 is a constant determined by matching the deflection profile of the equation to 

the experimental data.  For more details on calculations of the volume under the membrane 

see [15]. 

 

         The virtual volume under the membrane based on the corrected value 
_
x  is given by 

( )
_

2
2, 2 xamem =∀ .  Constrain the volume to be constant for both cases, i.e. 1,2, memmem ∀=∀  

and solving for 
−

x  results in  

                                            xx 505.0
_

= ,                                                                        (4.22) 

_
x

x

_
F

2a 

Fig. 4.2: Membrane stiffness correction  
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assuming the stiffness of the membrane is linear.  
__

98.1 xaxaF oo == , where oa , 

1.98 oa are the stiffness of the membrane based on x and 
_
x values respectively. 

        For the silicon nitride membrane used in this work, the side length of the membrane 

was 2a=5 mm, the stiffness of the membrane, calculated using the peak deflection x was 

oa =750 N.m-1, the corrected stiffness used in the model, based on 
_
x ,was 1485 N.m-1.  The 

pressure deflection curve of the silicon nitride membrane is shown in figure 4.3.  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 : Pressure- deflection of silicon nitride membrane (5 mm side 
length) 
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CHAPTER 5 

RESULTS  

 

        The main goal of this chapter is to address the results of the experiments carried out  

to understand the dynamic behavior of both the cantilever engine and the enclosed engine.  

Better understanding of the engine behavior will result in determination of the main 

parameters that affect the performance of the engine; mainly heat losses, frictional losses, 

evaporation efficiency, heat pulse intensity & duration, cycle frequency, and materials.    

        In the following sections, the assumption of the linear behavior of the engine made in 

chapter 3 is verified, and the mathematical model for the engine is validated 

experimentally.  In comparing the model predictions to the experimental results, the least 

squares method is implemented and used to minimize the squares of the error between the 

model and the data obtained experimentally.  

 
5.1 Cantilever engine configuration  
 
5.1.1 Stiffness of the cantilever  

         The method described in section [4.5] was used to determine the stiffness of the 

cantilever.  The cantilever used in this work was 40 mm in length, 18 mm wide and 600 µm 

thick. The cantilever was covered with PZT layers on both sides.  The impedance 

measurements of the cantilever are shown in Figure 5.1.   The resonant frequency of the 

cantilever was ωn = 138.0 Hz, the electrical quality factor Qe=45.0, and the coupling factor 

k 2=0.1047. 

 

 



57

 

 

 
 
 

 

 

 

 

 

 

 

 

 

Once the equivalent circuit parameters were determined, the cantilever was then 

pulsed at 10.0 Hz for a duration of T=1.0 ms and a voltage amplitude of Vo=1.0 volt.  The 

pulse duration T, was chosen to satisfy the condition
nw

T π2
<< .   Figure 5.2 shows the free 

vibration response of the cantilever.  The point (t*, x*), shown in Figure 5.2, was used to 

estimate the unknown parameters of the cantilever.  It was determined that the cantilever 

assembly had lumped parameter mass, damping , and stiffness relative to the cover-slip 

displacement  of m=482mg, b=9.28N•s/mm, and s=362N/m respectively. 

 

 

 

 

 

Co=180.077 nF       Cm=21.14 nF 
 Rm =1.203 kΩ        Lm=62.88 H 

Fig .5.1: Impedance curve of the cantilever. 

, k
Ω
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5.1.2 Engine Model Comparison with Experimental Measurements  

         Experiments were conducted for a parametric variation of bubble diameter 2ri and 

cavity thickness h.  The engine consisted of an 8.00 mm side length square lower 

membrane, patterned with a 300 nm thick gold heater resistance.  The capillaries of the 

wick structure were 70 µm wide, 10 µm high and 5.00 µm thick.  The cantilever had the 

same dimensions described in [5.1.1].  A voltage pulse was applied to the heater and the 

resulting deflection of the cover slip attached to the cantilever measured with the laser 

vibrometer.  The engine was operated at fp= 10.0 Hz with pulse duration of T=10.0 ms.  

Both the displacement of the cover slip and the voltage output from the cantilever were 

measured and recorded. Experimental cover-slip displacement amplitude transfer function 

Xk/Qk and phase θk-γk ,  were compared to the model predictions Γ(fk) and φ(fk) from (3.8, 

3.19-3.21 ).  The experimental conditions were fixed parameters in the model.  The 

following values were used: engine diameter 2ro=8.00 mm, bubble diameter 2ri=7.2, and 

4.8 mm respectively, cavity thickness h=75.0, 225.0, and 450.0 µm respectively, cantilever 

( t*, x*) 
    ◊ 

Fig .5.2: Free vibration response of the cantilever. 
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stiffness s=362 N/m, mass m=482.0 mg, and damping b=9.28 N.s/mm.  There was no a 

prior-estimate of the heat loss coefficient U, thermal inertia CT, vaporization coefficient β, 

liquid mass m , liquid damping coefficient b , and evaporator stiffness sh. These 

parameters were determined by minimizing the squares of the error between predicted and 

measured displacement amplitude while holding the fixed parameters constant.  For more 

details on the least squares method used to minimize the square of the error see Appendix 

C. 

An example for the comparison that was done between the measured transfer 

function and the model prediction is the case shown in figure 5.3.  In Figure 5.3-a 

Displacement transfer function and phase versus frequency are shown.  In this case, the 

bubble diameter was 2ri=7.2mm, and the thickness of the cavity was h=75μm.  

Experimental data are shown as square symbols and the heavy red solid line is a model 

prediction of cover-slip displacement amplitude transfer function Γ(f).  In this comparison, 

the parameters U=18.8W/K, CT=0.0 mJ/K, β=0.0029, b =0.023 Ns/m, and sh=559 N/m 

were found to minimize the squares of the error between the model prediction Γ(fk) and 

experimental measurements of cover-slip displacement amplitude Xk/Qk.  The agreement 

between experimental and modeled results is quite good.  In Figure 5.3-b and c, model 

predictions and experimental measurements of the phase, and open circuit voltage, Voc 

across the cantilever are plotted versus frequency.  Although neither phase data nor voltage 

measurements were used to determine the floating parameters U, CT, β, m ,b , and sh, there 

was favorable agreement between model prediction and experimental measurements of 

phase and voltage.  This agreement means that the model described in [3.5] is likely a 

unique lumped-parameter dynamic model for the engine.  
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Fig. 5.3: Model & measured transfer functions.  a) Displacement amplitude   
b) Phase    c) Voltage Amplitude.  Case # 3, Table 1. 

a-

b-

c-
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5.1.3 Parametric Study  

             Multiple experiments were performed to investigate the performance of the engine 

as the thickness h and bubble size ri were changed.  In each experiment, cover-slip 

displacement amplitude Xk , and the output voltage amplitude Vk were measured.  The least-

squares procedure was then applied to determine the parameters U, CT, β, m ,b , and sh for 

each thickness and bubble size combination.  The results of these measurements and 

analyses are shown in Table 1.  A statistical analysis of variance (ANOVA) method was 

used to determine trends in the parametric study.   

Bubble 
Dia ri 

Thickness 
h 

Heat 
Loss 

Coeff U 

Thermal 
Inertia CT 

Vaporization 
Coeff β 

 Liquid 
Mass 
mb  

Liquid 
Damping 

bb 

Heater 
Stiffness 

sh 

(mm) (μm) (W/K) (mJ/K) - (mg) (Ns/m) (N/m) 
3.6 450 12.38 50.2 0.00960 21.70 0.06 555 
3.6 225 14.1 15.6 0.00370 125.00 0.00 925 
3.6 75 18.8 0.0 0.00290 0.00 0.05 559 
2.4 450 48.76 0.0 0.00320 384.00 0.14 740 
2.4 225 16.32 0.1 0.00420 832.00 0.00 555 
2.4 75 27.07 0.0 0.01260 0.00 0.00 249 

 

 

The results show that, the heat loss coefficient U, ranged from 12.38-48.76W/K, was most 

strongly correlated to bubble diameter.  An engine with smaller bubbles experienced higher 

heat loss.  The heat loss coefficient is an indication of the portioning of the heat input.  That 

is when heat is added to the engine, a portion of it is stored in the membrane and wick 

structure, a portion is conducted away to the bulk structure, a portion is conducted into the 

liquid, and a portion vaporizes working fluid.  High values of U indicate that only a small 

fraction of the heat goes into evaporating liquid.  The thermal inertia CT, ranged from 0-

Table 1: Model parameters obtained using the least square method 
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50.2 mJ/K, was also correlated with bubble size.  An engine with thicker bubbles 

experienced higher thermal inertia CT.  Lastly, the vaporization coefficient β , ranged from 

0.0029<β<0.0126, and did not correlate with bubble size or cavity thickness.   

          Figure 5.4 contain displacement amplitude versus frequency for the case 

corresponding to the second row of Table 1. For this case the bubble diameter was 2ri=7.2, 

and the cavity thickness was h=225μm.  The data show that a maximum displacement of 

2.0 µm/W occurred at 10.0 Hz and then it rolled off at higher frequencies.  Two lines, 

labeled xDC and xf1 , are shown in Figure 5.4.  The line denoted by xf1 represents the 

displacement amplitude at resonant frequency f1, while the displacement amplitude at low 

frequency is denoted by xDC.  A resonance peak in displacement amplitude Xk was observed 

in Figure 5.4 at a frequency of 200 Hz .  In general, an expression for the displacement 

amplitude xf1 can be derived from the model [3.6], under the assumption of CT=0.  This 

expression is given by  
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because CT=15.6mJ/K was small for this engine, the prediction of xf1 was accurate. Also, in 

the limit of f→0, it is possible to derive from section [3.6] the following expression for the 

displacement amplitude xDC 

                  )(
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2)(
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tq
UT

h
s
r

tx
o

fgoo
DC

ρ
γ

γπ
+

≈   ,                                                                        (5.2) 

where it is assumed that q(t) is slowly varying.  The DC displacement amplitude xDC is 

proportional to the area πro
2, latent heat hfg and  power input q(t), while inversely 

proportional to the stiffness s and heat loss coefficient U.  This prediction indicates that 

displacement at low frequency is independent of the evaporation coefficient β.   

 

 

 

 

 

 

 

 

 

 

 

         Figures 5.5 and 5.6 contain displacement amplitude versus frequency for the cases 

correspond to the first and fourth rows respectively in Table 1.  For these two cases the 

bubble diameter was 2ri=7.2 and 4.8 mm, while the cavity thickness was fixed at 

h=450μm.  Case one had a relatively large thermal storage CT =50.2 mJ/K; whereas, case 

Fig. 5.4: Amplitude  response. Case#2 , Table 1 .
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four had a small thermal storage CT =0 mJ/K.   Figure 5.5 shows that in general, the effect 

of large thermal storage CT is to limit high frequency motions of the engine. 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

         

 
Fig. 5.6: Amplitude response high U /low CT. Case #4 in 
Table (1). 

Fig. 5.5: Amplitude response for low U/high CT. Case #1 in 
Table (1). 
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   Also, since the model prediction for the displacement amplitude xf1 at resonant frequency 

f1 is made with the assumption that CT=0, the displacement amplitude at the resonant peak 

f1 was over-predicted in Figure 5.5, where CT =50.2 mJ/K is relatively large. However, in 

Figure 5.6, the thermal inertia coefficient had a value of CT=0.0mJ/K, the displacement 

amplitude at the peak frequency f1 was not over-predicted. 

         The effect of heat loss coefficient U can be seen by comparing the low frequency 

displacement amplitudes in Figures 5.5 and 5.6.  Case one had a relatively small heat loss 

coefficient U =12.38 W/K; whereas, case four had a relatively large heat loss coefficient U 

=48.76 W/K.  In Figure 5.5, the amplitude at a frequency of 10 Hz was 2.01 μm/W, while 

the amplitude at a frequency of 10 Hz was 0.37 μm/W in Figure 5.6.  A large value of heat 

loss coefficient U was associated with small low-frequency amplitude. 

5.1.4 Measurement of Thermal to Electrical Efficiency  

         In addition to the measurement of the open circuit voltage Voc, a variable load 

resistance RL , was hooked up to the cantilever terminals and the voltage was measured. 

Later this voltage was used in electrical power and efficiency calculations.  Moreover, the 

obtained parameters from the least squares method were used to compare the model 

predictions of the voltage and efficiency to the experimental data.   

         Figure 5.7 shows both the displacement and open circuit voltage Voc transfer 

functions versus the frequency for the case corresponding to the fifth row in Table 1.  For 

this case the bubble diameter was 2ri= 4.8 mm and the cavity thickness was h=225 μm.  

Once the open circuit voltage Voc was obtained, the cantilever was hooked up to variable 

load resistance, and the voltage across the cantilever was measured.   
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        In Figure 5.7-a and b , the measured transfer functions of both the displacement and  

voltage Voc , are denoted by squares , while the solid lines represent the modeled transfer 

functions of the displacement and voltage,Voc respectively.  Only the displacement 

information was used to fit the model.  The parameters obtained by minimizing the squares 

of the error between the model and the measured displacement data were then used to 

predict the transfer function of the voltage  Voc shown in Figure 5.7-b.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5.7: a) Displacement amplitude  b) Open circuit voltage 
amplitude .  Case # 5, Table (1). 

a- 

b- 
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          Figure 5.8 shows the thermal to electric efficiency obtained from the experimental 

measurements of the voltage across different load resistances, RL.  In Figure 5.8 four 

different efficiency curves are shown.  The values of the load resistance are, RL  =10.0 , 

50,0 , 90.0 , 990.0 KΩ respectively.  The data show that, a maximum thermal to electric 

efficiency of 2.6 x 10-7 % was achieved at load resistance RL=10.0 KΩ.  Efficiency 

decreases as the load resistance increases.  Moreover, the data show that for the cases of  

off-the optimal load, RL=50.0, 90.0, 990.0 KΩ, efficiency was maximum at low frequency, 

f=10.0 Hz, and rolled off at higher frequencies.  However, for the case where the load 

resistance was optimum ,RL=10.0 KΩ, the peak efficiency occurred at f = 60.0 Hz , which 

is lower than the displacement resonance of the engine fp =200.0 Hz.  

 

 

 

 

 

 

 

 

 

 

 

  Fig. 5.8: Measured thermal to electric efficiency. 
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         The parameters obtained from fitting the displacement transfer function shown in 

Figure  5.7-a were then used to predict the efficiency of the engine.  Figure 5.9 shows both 

the efficiency calculated using the measured voltage at RL=10.0 KΩ, and the predicted 

efficiency at that load.  A maximum predicted efficiency of the engine, for the specified 

parameters, was 2.8 x 10-7 % compared well with the measured efficiency 2.6 x 10-7 %.  

The peak efficiency in both cases, occurred at frequency lower than the displacement 

resonance  fp=200 Hz.  However, there was a shift in the frequency at which the peak 

efficiency occurred.  The peak in the predicted efficiency occurred at a lower frequency, 

f=40.0 Hz compared to f=60.0 Hz for the measured one.  Moreover, the predicted 

efficiency at the displacement resonant fp was higher than the measured efficiency at that 

resonant.  Generally speaking, the predicted efficiency had the same trend as the measured 

one, and a favorable agreement between the predicted efficiency and the measured 

efficiency was observed.   

 

 

 

 

 

 

 

 

 

 Fig. 5.9: Modeled & measured efficiency comparison at RL=10.0 kΩ. 
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5.2 Enclosed Engine Configuration 

       In the following sections, the enclosed engine results are presented. The demonstration 

of the linear behavior of the engine is discussed first, next the validation of the model 

against the experimental data is shown, and then the effect of the heat pulse duration on the 

engine performance is presented. 

5.2.1 Linearity Test  

              To demonstrate the linear behavior approximation made in [2.4.4] a separate 

experiment was conducted.  In this experiment the input energy to the engine was varied 

gradually.  This was done by changing the voltage amplitude oV   of the heat pulse 

delivered to the engine.  The engine was constructed of silicon nitride upper membrane 

with a 5.00 mm side length, and a thickness of 2 µm.  The lower membrane was a bare 

silicon membrane 5.00 mm on a side and 2 µm thick patterned with a 300 nm gold 

resistance heater.  The capillaries of the wick structure patterned on the heater were 5 µm 

thick, 10 µm wide and 90 µm high.  The cavity was 75 µm thick and was filled with PF-

5060 3M working fluid.  Once the engine was assembled a bubble with approximately a 4.5 

mm diameter was generated.  To capture the behavior of the engine over a wide range of 

frequencies, the engine was operated at two different cycle frequencies fp =2.0 and 10.0 Hz.  

The heat pulse durations were chosen to be T = 5.0 and 1.0 ms respectively.  The choice of 

these frequencies fp  and the pulse duration T, allowed the collection of data down to 2.0 Hz 

and up to 1.0 kHz.  The engine was then operated and the displacement of the upper 

membrane X(t)  was measured using the laser vibrometer.   The amplitude and 

phase kX , kQ , θk ,and γk  were computed from the measured displacement X(t) and the heat 
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rate 
h

h

R
V

tq
2

)( =  using  an FFT algorithm.  The transfer function Γ(kfp) was then computed 

as the ratio between the velocity amplitudes Uk and the heat rate amplitudes Qk  at 

frequencies fk. , i.e., 
k
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Fig. 5.10: Linearity test of the engine. a) Displacement transfer function 
b) velocity transfer function.   
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          Displacement & velocity transfer functions Γ(kfp) versus the frequency are shown in 

Figure 5.9 .  In the Figure, three energy levels per cycle E=2.2 ,4.0 & 10.0 mJ are shown.  

The data show that the energy delivered to the engine is increased by a factor of 5 , the 

engine behaves linearly at low frequencies.  A departure from linearity starts to appear at 

higher frequencies, where growth in the transfer function appears for the energy levels 

E=4.2 &10.0 mJ.  However, the observed nonlinear behavior of the engine at higher 

frequencies is quite small and does not appear to compromise the overall success of the 

model.   

5.2.2 Validation of the Model  

          In the experiment conducted to validate the model, the same engine specifications 

described in [5.2.1] were used.  To capture the roll-off frequencies f1 & f2, shown in 

Figure 5.10, the engine was operated at cycle frequencies, fp = 0.1, 1.0, 10.0 Hz 

respectively.   The heat pulse durations were chosen to be, T= 100 , 10 , and 1.0 ms for 

each cycle frequency, respectively.  The choice of frequencies fp  and pulse duration T, 

allowed data collection down to 0.1 Hz and up to 1.0 kHz.  Over all the experiments, the 

input energy per cycle was held constant at E=11.0 mJ.  Holding the input energy per cycle 

constant over the experiments is important in later steps.  That is, when the data collected at 

each cycle frequency fp  are combined together for the purpose of FFT analysis. 

            The engine was then operated, and the displacement of the upper membrane X(t)  

was measured using the laser vibrometer.  The collected data at each cycle frequency; i.e fp 

= 0.1, 1.0, 10.0 were then combined together and an FFT algorithm was used to decompose 

the displacement X(t),  the velocity of the upper membrane )(tu ,and the heat rate pulse q(t) 

into their amplitudes and phases Xk , kU , kQ , kθ , kϕ and γk respectively .  The use of the 
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FFT analysis allows the direct comparison between the measured data and the modeled 

one. Experimental measurements of the transfer function Γ(kfp) for the engine are shown in 

Figure 5.10.  Experimental measurements are indicated by the squares while the predictions 

are shown with solid line.  For the engine tested here, the model parameters were the 

engine side length 2ro=5 mm, the thickness of the cavity h = 75 µm, the radius of the 

bubble 2ri = 4.5 mm, the vapor density oρ =3.53 kg/m3, the specific heat of the working 

fluid cp=7552 J/kg.K and cv=731 J/kg•K  , the saturated pressure Po =25.097 kPa, the 

enthalpy hfg =94 kJ/kg, Antoine parameters 0,1562,73.9 ===
∧∧∧

CBA , the molecular 

weight M =0.338 kg/mol ,the upper membrane stiffness, s= 1485 N/m , the ambient 

temperature To=25 oC , and the lower membrane stiffness sh=2475 N/m .  Since the 

experimentally measured transfer function Γ showed no resonant frequency peak below 

2.00 KHz, the effective mass of the engine was set 
_

mm + =0.  Since there was no prior 

estimation for the thermal losses U, the evaporation coefficient β, and the viscous damping 

bf, the least squares procedure was used to determine their values.  Values of U=0.0034 

kJ/kg.K, β=0.0003, and bf =1.43 N.s/m were found to minimize the squares of the error.  A 

quite good agreement between the model prediction and the experimental data is seen 

there, in spite of the fact that only three free parameters were used to minimize the square 

of the error.   For more details on the least squares method used to minimize the square of 

the error see Appendix D. 
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Fig. 5.10 : Model Vs measured data a)-Displacement transfer 
function b)-phase of the displacement transfer function c)- 
Velocity transfer function. 
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          In general, the transfer function Γ is a band pass filter, consistting of successive high 

-and low pass sections.  The high pass frequency f1= 6.0 Hz, the low pass frequency 

f2=400.00 Hz and the band pass amplitude Ѓ=7.0 mm/s/Watt are denoted by solid lines in 

the figure. The value of f1 is set by the thermal losses U and the evaporation coefficient β.  

The total damping b+bf sets the value of f2.  For the best performance, kQ  should fall 

between f1 and f2.  The low-and high pass cut-off frequencies f1, f2   are given by 
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5.2.3 Heat Pulse duration  

         The heat pulse duration has a major effect on the performance of the engine. To 

examine this factor, an engine with the same specifications described in [5.2.1] was 

operated at cycle frequency fp=10.0 Hz.  The engine then was pulsed for duration of T=1.00 

ms , and 50.00 ms respectively.  The energy per cycle delivered to the engine was kept 

constant in both cases to allow for direct comparison, E=7.5 mJ.  Both the displacement of 

the upper membrane X(t), and the input heat delivered to the engine q(t) were recorded and 

then decomposed using the transfer function analysis described in [4.3].   Figure 5.11-a 

shows the heat rate amplitudes Qk for pulse durations of T=1.00, and 50.00 ms.  For a pulse 

duration of T=50ms, there were nonzero heat rate components Qk at odd multiples of the 

engine cycle frequency, the largest occurring at a frequency f1=10Hz of amplitude 

Q1=10.6E.  The amplitude of the components Qk declined rapidly as frequency increased.  
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For a pulse duration of T=1.00 ms, the amplitude of the first heat rate component was 

Q1=20E, and the components at higher frequencies declined very little.  This value obtained 

for Q1 compares well with the value obtained using Parseval’s theorem.  That is for a short 

heat rate impulse, i.e. limit T/Tp→0, the heat rate coefficients Qk  are given by  

                                Ef
T
TkEfQ

TT p
p

pk
p

212
0/

lim
2
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 For fp=10.0 Hz, and T/Tp =0.01. The calculated value of Q1 =20E is the same as the 

measured value.    

          Figure 5.11-b shows the velocity components Uk, of the upper membrane at 1.00 ms 

and 50.00 ms.  The data show that, a maximum velocity of the upper membrane, u= 700 

µm/s happened when the engine was operated at fp=10.0 Hz and pulsed at 1.00 ms 

compared to a maximum velocity of  400 µm/s when the engine was operated at 10.0 Hz 

and pulsed for 50.0 ms.   Also, for the case where the engine was pulsed for 50.0 ms, the 

data show that the amplitude of the velocity components Uk declined rapidly as frequency 

increased.   
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Fig. 5.11: a)-Heat pulse spectrum   b)- Velocity Spectrum. 
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CHAPTER 6 

CONCLUSIONS  

 

        A lumped parameter model was developed to capture the dynamic behavior of a micro 

heat engine, thus predicting the forces and displacements produced by addition of the heat 

to the engine.  Newton’s second law, conservation of energy, and mass and heat transfer 

equations were used to develop the model.   The model was validated experimentally 

against two different engines; the enclosed, and the cantilever engines.  A favorable 

agreement between the model predictions and the experimental results was observed.   

         The results of the cantilever engine showed that the displacement of the cantilever 

was maximized for low frequency operation.  As the frequency increased, the displacement 

decreased.  A resonant peak in the displacement occurred at fp=200.0 Hz.  For the cases 

reported here, the amplitude of the resonant peak was always less than the amplitude of the 

displacement obtained at low frequency operation.  

        A parametric study was performed to investigate the performance of the cantilever 

engine as the thickness h and bubble size ri were changed.  The results showed that the heat 

loss coefficient U, was most strongly correlated to bubble diameter.  An engine with 

smaller bubbles experienced higher heat loss.  Moreover, the thermal inertia CT was also 

correlated with bubble size.  An engine with bigger bubbles showed higher thermal inertia 

CT.  However, the vaporization coefficient β did not correlate with bubble size or cavity 

thickness.  The model predicts that increasing the area or decreasing the stiffness of the 

actuator will increase the displacement at low frequencies.  The model also predicts that 
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small values of the heat loss coefficient, U will increase the displacement amplitude at low 

frequency.   

        In addition to the displacement measurements, the voltage across the cantilever 

terminals was measured at different load resistances RL, and then used to estimate the 

thermal to electric efficiency at those load resistances.  A maximum efficiency of 2.6 x 10-7 

% was achieved at load resistance RL=10.0 KΩ.  In those measurements, although only the 

displacement data were used to minimize the squares of the errors, thus determining the 

free parameters in the model, a good agreement between the predicted voltage and the 

measured one was observed.   In conclusion, the cantilever engine was associated with 

large values of heat loss coefficients and low thermal-electrical efficiency.    

       As a next step, an enclosed engine was examined.  The enclosed engine showed a 

linear behavior over a wide range of frequencies, up to 100 Hz.   However, as the input 

energy to the engine increased, a departure from linearity started to appear at higher 

frequencies.   

       The model was then validated against the experimental results. The parameters, found 

to minimize the squares of the error between the model prediction and the measured data 

were the vaporization coefficient β =0.0003, frictional damping bf=1.43 N.s/m, and heat 

loss coefficient U=0.034 kJ/kg.K.  Since the measured data showed no resonant peak in 

displacement up to 2.0 kHz , the effective mass of the engine was set 
_

mm + =0.  The 

results from the velocity transfer function showed that, In general, the transfer function Γ is 

a band pass filter, consisted of successive high -and low pass sections.  The high pass 

frequency f1, is set by the thermal losses U and the evaporation coefficient β, while the 
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total damping b+bf  sets the value of the low pass frequency,f2.   For the best performance, 

the heat rate amplitudes kQ  should fall between f1 and f2.   

        The effect of the heat pulse duration,T on the engine performance was examined.  The 

results showed that, the amplitude of the velocity components Uk was maximized for the 

shorter heat pulse.  Moreover, the amplitude of the velocity components Uk declined 

rapidly as frequency increased for the longer heat pulse duration.  In conclusion, short 

pulse duration is desirable, because the heat rate amplitudes Qk have larger values over a 

wider frequency spectrum. 
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APPENDIX A 

SOLUTION OF THE LINEAR SYSTEM OF EQUATIONS 

       For the linear system of equations described in section 3.5, a state space representation 

of the six equations is given by: 
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Assume the solution to be in the form 
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APPENDIX B 

MATLAB CODE FOR FFT ANALYSIS OF THE MEASURED DATA  

%FFT Analysis of the measured data and transfer function analysis. 
%Input to the system is the heat delivered to the engine. 
%Output from the system is the deflection of the cantilever  
%===================================== 
clear all   
close all 
clc 
%===================================== 
load m5u.txt -ascii                 ; %LOADING THE DATA FILE TO BE READ 
BY MATLAB. 
x=m5u(:,7)                          ; %STORE THE 7th COL IN THE IMPUT 
FILE AS VARIABLE "X". 
t=m5u(:,1)                          ; 
N=2500                              ; %N IS THE NUMBER OF TH SAMPLING 
POINTS. 
dt=t(2)-t(1)                        ; 
fs=1/dt                             ;  
fn=fs/2                             ; 
y1=fft(x)                           ;                 
y1=y1(1:(N/2)+1)                    ; 
m1=abs(y1)                          ;    
p1=angle(y1)*(180/pi)               ; 
m1=(2/N)*m1                         ; 
f=linspace(0,fn,(N/2)+1)            ; 
%===================================== 
v=m5u(:,6)                          ;  
v1=21.2-v                           ; %STORE THE VOLTAGE ACROSS THE 
HEATER AS VARIABLE "V1". 
R1=8.0                              ; 
y2=fft(v1.^2/(R1))                  ;                 
y2=y2(1:(N/2)+1)                    ; 
m2=abs(y2)                          ;    
m2=(2/N)*m2                         ; 
p2=angle(y2)*(180/pi)               ; 
f=linspace(0,fn,(N/2)+1)            ; 
%===================================== 
x3=m5u(:,2)                         ;  
y3=fft(x3)                          ;                 
y3=y3(1:(N/2)+1)                    ; 
m3=abs(y3)                          ;    
p3=angle(y3)*(180/pi)               ; 
m3=(2/N)*m3                         ; 
f=linspace(0,fn,(N/2)+1)            ; 
g=angle(y1./y2)*(180/pi)            ; %g is the phase of the transfer 
function of the cantilever 
g=angle(y3./y2)*(180/pi)            ;  
%===================================== 
figure 
subplot(2,1,1)                       
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loglog(f',m1./m2,'r')                
grid on                              
ylabel('Y1/Y2') 
xlabel('Frequency(Hz)') 
title('Displacement Transfer function of the cantilever') 
%            
subplot(2,1,2) 
semilogx(f',g,'y') 
grid on  
xlabel('Frequency(Hz)') 
ylabel('angel(Y1./Y2)*180/pi') 
title('Phase spectrum of the displacement transfer function of the 
cantilever ') 
% 
figure 
subplot(2,1,1) 
loglog(f',m3./m2,'r') 
grid on; 
ylabel('Y3./Y2') 
xlabel('Frequency(Hz)') 
title('Voltage Transfer function of the cantilever') 
% 
subplot(2,1,2) 
semilogx(f,g,'m') 
grid on; 
xlabel('frequency(Hz)') 
ylabel('angel(Y3./Y2)*180/pi') 
title('Phase spectrum of the voltage transfer function of the 
cantilever') 
%==================================== 
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 APPENDIX C 

MATLAB CODE FOR LEAST SQUARE METHOD (CANTELEVER 

CONFIGURATION)   

%THIS FILE STORES THE DEFAULT PARAMETERS OF THE CANTILEVER 
ENGINE,INCLUDING FC-77 
%WROKING FLUID PROPETIES 
%============================================ 
clear all;  
close all; 
clc      ; 
%============================================ 
% Properties of the fluid 
P.rhov=0.55                      ; 
P.rhol=1780                      ; 
P.mul=1.3e-3                     ; 
P.M=416/1000                     ; 
P.Ru=8.31                        ; 
P.Ah=10.768                      ; 
P.Bh=2138.9                      ; 
P.Ch=0                           ; 
P.cp=841                         ; 
Psat=3.13                        ; 
P.R=(Psat*1000)/(P.rhov*(273+21)); 
P.cv=P.cp-P.R                    ; 
P.g=P.cp/P.cv                    ; 
P.hfg=98.381e03                  ; 
%=========================================== 
% Properties of the engine 
P.Q=45                        ;  
P.fn=138                      ;  
P.s=362                       ;  
P.m=P.s/((2*pi*P.fn)^2)       ;  
P.b=sqrt(P.m*P.s)/P.Q         ;   
P.Co=1.8077e-7                ;   
P.psi=2.77e-3                 ;  
P.ro=(8e-3)/2                 ; 
P.ri=(9/10)*P.ro              ; 
P.L=75e-6                     ; 
P.S=pi*P.ri^2                 ; 
P.Vo=P.S*P.L                  ; 
P.beta=0.5                    ; 
P.betab=P.beta*P.S            ; 
P.sh=1*P.s                    ; 
P.CT=1e-1                     ; 
P.hB=1e-6                     ; 
%========================================== 
%  Environmental parameters 
P.To=294                         ; 
P.Po=10^(P.Ah-(P.Bh/(P.To+P.Ch))); 
%========================================= 
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%  Computed parameters 
P.B=P.betab*sqrt(P.M/(2*pi*P.Ru))                              ;                       
P.B=P.B*(10^(P.Ah-(P.Bh/(P.To+P.Ch))))/sqrt(P.To)              ;                       
P.B=P.B*( ((P.Bh*log(10))/(P.To+P.Ch)^2)-(1/(2*P.To)) )        ;                       
P.U=1*P.B*P.hfg                                                ;                       
P.wo=2*pi*100                                                  ;                    
P.lv=sqrt((2*P.mul)/(P.wo*P.rhol))                             ;                       
P.al=pi*(P.ro^4)*( log(P.ro/P.ri)-(1/4)*(3-(P.ri/P.ro)^2)*(1-
(P.ri/P.ro)^2) )                                               ; 
P.mb=(P.rhol/(2*P.L))*(1+(P.lv/P.L))*P.al                      ;                       
P.mb=P.mb*1                                                    ;                       
P.bb=((P.rhol*P.wo)/(2*P.L))*((P.lv/P.L)*P.al)                 ;                       
P.fn=(1/(2*pi))*sqrt(P.s/(P.m+P.mb))                           ;                       
P.Cob=((pi*P.ro^2)^2/P.psi^2)*P.Co                             ;                       
P.RL=1/(2*pi*P.fn*P.Co)                                        ;                       
P.RL=P.RL*1e6                                                  ;                       
% Mag factor for RL 
P.RLb=(P.psi^2/(pi*P.ro^2)^2)*P.RL                             ;                       
P.Rb=(P.U/P.hfg)/((P.U/P.hfg)+P.B)                             ;                   
P.Rb=P.Rb*(P.betab/P.rhov)*sqrt(P.M/(2*pi*P.Ru))*(P.g+1)/(2*P.g*sqrt(P.To
))                                                             ; 
P.Rb=1/P.Rb                                                    ;                  
P.Cb=(P.Vo/(P.g*P.rhov*P.R*P.To))+(((pi*P.ri^2)^2)/P.sh)       ;                   
P.fRbCb=(1/(2*pi))*(1/(P.Rb*P.Cb))                             ;                   
P.R1=(P.b+P.bb)/((pi*P.ro^2)^2)                                ;                   
P.C1=((pi*P.ro^2)^2)/P.s                                       ;                  
P.L1=(P.m+P.mb)/((pi*P.ro^2)^2)                                ;                   
P.f1=P.Cb/(1+(P.Cb/P.C1))                                      ;                   
P.f1=(1/(2*pi))*sqrt(1/(P.f1*P.L1))                            ;                   
P.fRbR=(P.Rb)/((P.b+P.bb)/(pi*P.ro^2)^2)                       ;                  
P.CbC=(P.Cb)/(((pi*P.ro^2)^2)/P.sh)                            ; 
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%=========================================== 
%THIS SUBROTUINE IS USED TO CONSTRUCT THE MODEL OF THE CANTILEVER ENGINE 
CONFIG  
%===================================================== 
function X=freqres1(w,P) 
% 
%  X(1)= Delta V 
%  X(2)= Delta Vdot 
%  X(3)= Delta p 
%  X(4)= Delta rhov 
%  X(5)= Delta T 
%  X(6)= (psi/pi*ro^2)*V 
%  X(7)= Delta Tl 
% 
A1=zeros(7,7);B1=zeros(7,7); C1=zeros(7,1); 
%===================================================== 
% Row 1 Newtons Law for Diaphragm 
A1(1,1)=1                                ; 
% Row 2 Newtons Law for Diaphragm 
A1(2,2)=(P.m+P.mb)/(pi*P.ro^2)^2         ; 
% Row 3 Conservation of Mass 
A1(3,1)=P.rhov                           ; 
A1(3,3)=P.rhov*((pi*P.ri^2)^2)/P.sh      ; 
A1(3,4)=P.Vo                             ; 
% Row 4 Conservation of Energy 
A1(4,4)=-(P.Vo*P.Po)/P.rhov              ; 
A1(4,5)=P.rhov*P.Vo*P.cv                 ; 
% Row 5 Ideal Gas 
A1(5,3)=-1/(P.R*P.To)                    ; 
A1(5,4)=1                                ; 
A1(5,5)=P.Po/(P.R*P.To^2)                ; 
% Row 6 Circuit for piezoelectric element 
A1(6,1)=-1                               ; 
A1(6,6)=P.Cob                            ; 
% Row 7 Energy Conservation for liquid layer 
A1(7,7)=P.CT                             ; 
%==================================================== 
% Row 1 Newtons Law for Diaphragm 
B1(1,2)=1                                                          ; 
% Row 2 Newtons Law for Diaphragm 
B1(2,1)=-P.s/(pi*P.ro^2)^2                                         ; 
B1(2,2)=-(P.b+P.bb)/(pi*P.ro^2)^2                                  ; 
B1(2,3)=1                                                          ; 
B1(2,6)=-1                                                         ; 
% Row 3 Conservation of Mass 
B1(3,3)=-P.betab*sqrt(P.M/(2*pi*P.Ru))*(1/sqrt(P.To))              ; 
B1(3,5)=P.betab*sqrt(P.M/(2*pi*P.Ru))*((P.rhov*P.R)/(2*sqrt(P.To))); 
B1(3,7)=P.B                                                        ; 
% Row 4 Conservation of Energy 
B1(4,5)=-P.hB                                                      ; 
% Row 5 Ideal Gas 
% B(:,5)=0 
% Row 6 Circuit for piezoelectric element 
B1(6,6)=-1/P.RLb                                                          
; 
% Row 7 Energy Conservation for liquid layer 
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B1(7,3)=P.hfg*P.betab*sqrt(P.M/(2*pi*P.Ru))*(1/sqrt(P.To))              ; 
B1(7,5)=-
P.hfg*P.betab*sqrt(P.M/(2*pi*P.Ru))*((P.rhov*P.R)/(2*sqrt(P.To)))       ; 
B1(7,7)=-(P.hfg*P.B+P.U)                                                ; 
%====================================================== 
% Row 7 Energy Conservation for liquid layer 
C1(7,1)=1                                                               ; 
%SOLVING THE SYSTEM OF EQUATIONS USING COMPLEX NUMBER ANALYSIS. 
X=(i*w*A1-B1)\C1                                                        ; 
%===================================================== 
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%THIS FUNCTION CALCULATES THE SQUAR OF THE ERROR TO BE MINIMIZED 
LATER/CANTILEVER ENGINE. 
%============================= 
function K=squarederrorfcn(X,P1,M)  
%M is the experimental data . 
%P is the model parameter. 
%X is the floating parameters in the model. 
%============================= 
%P,M passed to the funcion form the lstsqrmthd file. 
%Define the floating parameters. 
P1.mb   =X(1); 
P1.beta =X(2); 
P1.U    =X(3); 
P1.CT   =X(4); 
P1.sh   =X(5); 
P1.bb   =X(6); 
P1.betab=P1.beta*P1.S                                            ; 
P1.B    =P1.betab*sqrt(P1.M/(2*pi*P1.Ru))                        ; 
P1.B    =P1.B*(10^(P1.Ah-(P1.Bh/(P1.To+P1.Ch))))/sqrt(P1.To)     ; 
P1.B    =P1.B*( ((P1.Bh*log(10))/(P1.To+P1.Ch)^2)-(1/(2*P1.To)) ); 
%============================ 
f =M(:,1);% loading the first col in the data file ,f:frequency. 
xm=M(:,2);% loading the 2nd  col in the data file ,DTF:Displacement 
Transfer function. 
xp=M(:,3);% loading the 3rd col in the data file ,DTFP: Displacement 
Transfer function phase angle.. 
vm=M(:,4);% loading the 4th col in the data file ,VTF:Voltage Transfer 
function.. 
vp=M(:,5);% loading the 5th col in the data file ,VTFP:Vltage Transfer 
function Phase angle.. 
%============================= 
%Compute the predicted data from the model parameters 
%============================= 
for j1=1:P1.Nfit 
     warning off                    ; 
     Y(:,j1)=freqres1(2*pi*f(j1),P1); 
     warning on                     ; 
end 
%============================ 
Y1=(Y(1,:)/(pi*P1.ro^2))*1e6        ; %Y1 is the deflection in 
micrometers 
%============================ 
%Compute the square of the error for each data point ,sum it to the 
%previuos error value and store it in J 
%============================ 
K=0                                    ; %initialize the error to be 
zero. 
for i1=1:P1.Nfit 
    K=K+((xm(i1)-abs(Y1(i1)))/xm(i1))^2;  
end 
 
 
 
 
%THIS PROGRAM IS TO IMPLEMENT THE LEAST SQURE METHOD IN MODEL 
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%FITTING/CANTILEVER ENGINE 
%===================================== 
clear all ; 
close all ; 
clc       ; 
%===================================== 
%Least square method 
%===================================== 
EnginePars8mmCantilever ;  
P1=P                    ; 
%Calling the Specified MATLAB file (enginePars8mmCantilever)  
%===================================== 
load testopencir.dat; 
M=testopencir       ; 
M=M(2:end,:)        ; 
%========================================= 
%Define the floating parameters 
%Initial guess for the floating parameters 
%========================================= 
X0(1)=P1.mb*20         ;%THE EFFECTIVE MASS OF THE LIQUID              
X0(2)=P1.beta          ;%EVAPORATION COFFICIENT             
X0(3)=1000*P1.U        ;%HEAT LOSS COFFICIENT 
X0(4)=P1.CT            ;%THERMAL INERTIA 
X0(5)=P1.s*1.5         ;%HEATER STIFFNESS 
X0(6)=P1.bb*1          ;%EFFECTIVE DAMPINF 
%========================================== 
%set the conditions on each variable. 
lb(1)=0;    ub(1)=1000        ;   
lb(2)=0;    ub(2)=1           ;   
lb(3)=0;    ub(3)=1000        ; 
lb(4)=1e-9; ub(4)=1e-1        ; 
lb(5)=0;    ub(5)=1000*P.s    ;     
lb(6)=0;    ub(6)=1000*P.bb   ;   
%========================================= 
%calling the Minimizer function to perform the optimization. 
%========================================= 
P.Nfit=35                                               ;%THE NUMBER OF 
POINTS TO BE USED IN FITTING THE DATA 
P1.Nfit=P.Nfit                                          ; 
OPTIONS = OPTIMSET('MaxFunEvals ',5000,'MaxIter',1000)  ;  
Xd = fmincon(@(X) 
squarederrorfcn(X,P1,M),X0,[],[],[],[],lb,ub,[],OPTIONS) 
Xd                                                      ; 
%ASSIGNE THE OBTAINED PARAMETERS FROM THE OPTIMIZER TO THE FREE 
PARAMETERS 
P1.mb  =Xd(1)                                           ; 
P1.beta=Xd(2)                                           ; 
P1.U   =Xd(3)                                           ; 
P1.CT  =Xd(4)                                           ; 
P1.sh  =Xd(5)                                           ; 
P1.bb  =Xd(6)                                           ; 
%=========================================== 
%LOADING THE MEASURED DATA  
%=========================================== 
f =M(:,1); 
xm=M(:,2); 
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xp=M(:,3);% loading the 3rd col in the data file ,DTFP: Displacement 
Transfer function phase spectrum 
vm=M(:,4);% loading the 4th col in the data file ,VTF:Voltage Transfer 
function 
vp=M(:,5);% loading the 5th col in the data file ,VTFP:Vltage Transfer 
function Phase spectrum 
%=========================================== 
%UPDATE THE MODEL PARAMETERS WITH THE NEW VALUES OF THE FREE PARAMETERS 
%========================================== 
P1.betab=P1.beta*P1.S                                                   ; 
P1.B=P1.betab*sqrt(P1.M/(2*pi*P1.Ru))                                   ; 
P1.B=P1.B*(10^(P1.Ah-(P1.Bh/(P1.To+P1.Ch))))/sqrt(P1.To)                ; 
P1.B=P1.B*( ((P1.Bh*log(10))/(P1.To+P1.Ch)^2)-(1/(2*P1.To)) )           ;             
P1.fn=(1/(2*pi))*sqrt(P1.s/(P1.m+P1.mb))                                ;              
P1.Cob=((pi*P1.ro^2)^2/P1.psi^2)*P1.Co                                  ;              
P1.Rb=(P1.U/P1.hfg)/((P1.U/P1.hfg)+P1.B)                                ;              
P1.Rb=P1.Rb*(P1.betab/P1.rhov)*sqrt(P1.M/(2*pi*P1.Ru))*((P1.g+1)/(2*P1.g*
sqrt(P1.To)))                                                           ; 
P1.Rb=1/P1.Rb                                                           ;              
P1.Cb=(P1.Vo/(P1.g*P1.rhov*P1.R*P1.To))+(((pi*P1.ri^2)^2)/P1.sh)        ;              
P1.fRbCb=(1/(2*pi))*(1/(P1.Rb*P1.Cb))                                   ;              
P1.R1=(P1.b+P1.bb)/((pi*P1.ro^2)^2)                                     ;              
P1.C1=((pi*P1.ro^2)^2)/P1.s                                             ;              
P1.L1=(P1.m+P1.mb)/((pi*P1.ro^2)^2)                                     ;              
P1.f1=P.Cb/(1+(P.Cb/P.C1))                                              ;              
P1.f1=(1/(2*pi))*sqrt(1/(P1.f1*P1.L1))                                  ;              
P1.fRbR=(P1.Rb)/((P1.b+P1.bb)/(pi*P1.ro^2)^2)                           ;              
P1.CbC=(P1.Cb)/(((pi*P1.ro^2)^2)/P1.sh)                                 ;              
%============================================== 
%Calculate the DC calue of the transfer function 
VolDC=((P1.Rb*P1.C1)/P1.U)*(P1.B/P1.rhov)                               ;           
P1.XDC=VolDC/(pi*P1.ro^2)                                               ;             
%Verify the calcualtions using the following realtionship 
VolDC1=((P1.Rb*P1.C1)/P1.U)*(P1.betab*sqrt(P1.M/(2*pi*P1.Ru*P1.To))*(P1.h
fg/P1.To))                                                              ; 
P1.XDC2=VolDC1/(pi*P1.ro^2)                                             ;             
%Calcualting the transfer function value at frequency=P1.f1. 
Xf1=(1/(pi*P1.ro^2))*(1/P1.U)*(P1.B/P1.rhov)                            ;             
P1.Xf1=Xf1*(P1.L1/(1+(P1.Cb/P1.C1)))*(1/(P1.R1+P1.Rb*(P1.fRbCb/P1.f1)^2))         
Xf2=(1/(pi*P1.ro^2))*(1/P1.U)*(P1.betab*sqrt(P1.M/(2*pi*P1.Ru*P1.To))*(P1
.hfg/P1.To))                                                            ; 
P1.Xf2=Xf2*(P1.L1/(1+(P1.Cb/P1.C1)))*(1/(P1.R1+P1.Rb*(P1.fRbCb/P1.f1)^2))             
%============================================== 
for j1=1:P1.Nfit 
     warning off                     ;                                     
     Y(:,j1)=freqres1(2*pi*f(j1),P1) ;                                      
     warning on                      ;                                      
end 
%============================================= 
R=((Y(1,:)/(pi*P1.ro^2))*1e6)'        ;                                     
R=abs(R)                              ;                                     
Ph=angle(Y(1,:))'*(180/pi)            ;                                     
%============================================= 
subplot(2,1,1) 
h1=loglog(f(1:P1.Nfit),abs((Y(1,:)/(pi*P1.ro^2))*1e6'),'g-'... 
,f,xm,'bs',f(1:P1.Nfit),xm(1:P1.Nfit),'rs'        ) 
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legend(h1,'Model \Gamma','Measured X_{k}/Q_{k}')                                      
% 
title([ 'mb=',num2str(P1.mb/P.mb),'mb'             ... 
       ,'  beta=',num2str(P1.beta)                 ... 
       ,'  U=',num2str(P1.U/(P1.hfg*P.B)),'*hfg*B' ... 
       ,'  CT=',num2str(P1.CT)                     ... 
       ,'  sh=',num2str(P1.sh/P.s),'s'             ... 
       ,'  bb=',num2str(P1.bb/P.bb),'bb'           ... 
       ,'  bb=',num2str(P1.bb)]) 
xlabel([ 'fn=',num2str(P1.fn)                      ... 
       ,'  f1=',num2str(P1.f1)                     ... 
       ,'  fRbCb=',num2str(P1.fRbCb)               ... 
       ,'  Rb=',num2str(P1.Rb)                     ... 
       ,'  Cb=',num2str(P1.Cb)                     ... 
       ,'  R1=',num2str(P1.R1)                     ... 
       ,'  C1=',num2str(P1.C1)                     ... 
       ,'  U=' ,num2str(P1.U)                      ... 
       ,'  mb=' ,num2str(P1.mb)]) 
% 
subplot(2,1,2);  
h2=semilogx(f(1:P1.Nfit),angle(Y(1,:))*(180/pi),'g-'     ... 
                        ,f,xp,                'bs' )     ... 
legend(h2,'Model \Gamma','Measured X_{k}/Q_{k}')                                        
xlabel(['Frequency (kHz)'])                                                 
ylabel(['Phase (deg)'])                                                     
grid on                                                                     
% Vapor Pressure 
figure                                                                      
subplot(2,1,1); loglog(f(1:P1.Nfit),abs(Y(3,:)),'g-')...                                
title(['Vapor Pressure'])                                                   
xlabel(['Frequency (kHz)'])                                                 
ylabel(['Press (Pa/W)'])                                                    
grid on                                                                     
subplot(2,1,2)                                                              
semilogx(f(1:P1.Nfit),angle(Y(3,:))*(180/pi),'g-' )                            
xlabel(['Frequency (kHz)'])                                                 
ylabel(['Phase (deg)'])                                                    
grid on                                                                     
% Vapor Temperature 
figure                                                                      
subplot(2,1,1); loglog(f(1:P1.Nfit),abs(Y(5,:)),'g-' ) ... 
                      
title(['Vapor Temperature'])                                                
xlabel(['Frequency (kHz)'])                                                 
ylabel(['Temp (K/W)'])                                                      
grid on                                                                     
subplot(2,1,2); semilogx(f(1:P1.Nfit),angle(Y(5,:))*(180/pi),'g-' )   ...               
xlabel(['Frequency (kHz)'])                                                 
ylabel(['Phase (deg)'])                                                     
grid on                                                                     
% Voltage 
Y(6,:)=Y(6,:)*((pi*P.ro^2)/P.psi)                                           
figure                                                                      
subplot(2,1,1); h3=loglog(f(1:P.Nfit),abs(Y(6,:)),'g-'  ... 
                      ,f,vm,     'ks' )                 ... 
                      legend(h3,'Model \Gamma','Measured X_{k}/Q_{k}')                  
title(['Voltage'])                                                          
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xlabel(['Frequency (kHz)'])                                                 
ylabel(['Voltage (V)'])                                                     
grid on                                                                     
subplot(2,1,2); h4=semilogx(f(1:P.Nfit),angle(Y(6,:))*(180/pi),'g-'   ... 
                        ,f,vp                              ,'bs' )    ... 
                        legend(h4,'Model \Gamma','Measured X_{k}/Q_{k}')                
xlabel(['Frequency (kHz)'])                                                 
ylabel(['Phase (deg)'])                                                     
grid on                                                                     
%Save the plots in txt file. 
data=[f,xm,xp]                                                              
save expreults.dat  data –ascii   
data=[R,Ph]                                                                 
save fitresults.dat data –ascii   
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APPENDIX D 

MATLAB CODE FOR LEAST SQUARE METHOD (ENCLOSED ENGINE 

CONFIGURATION)   

 
 
%%THIS FILE STORES THE DEFAULT PARAMETERS OF THE ECLOSE ENGINE,INCLUDING 
%PF5060 WROKING FLUID PROPETIES 
clear all;  
close all; 
clc      ; 
% Default parameters 
%======================================== 
% Properties of the fluid 
%======================================== 
P.rhov=3.53                           ; 
P.rhol=1775                           ; 
P.mul=467.04e-6                       ; 
P.M=338/1000                          ; 
P.Ru=8.31                             ; 
P.Ah=9.73                             ; 
P.Bh=1562                             ; 
P.Ch=0                                ; 
P.cp=755.2                            ; 
Psat=25.097                           ; 
P.R=(Psat*1000)/(P.rhov*(273+21))     ; 
P.cv=P.cp-P.R                         ; 
P.g=P.cp/P.cv                         ; 
P.hfg=94.05e03                        ; 
%===================================== 
% Properties of the engine 
%===================================== 
P.s    =1485             ;  
P.ro   =(5e-3)/2         ; 
P.ri   =P.ro             ; 
P.L    =75e-6            ; 
P.S    =pi*P.ri^2        ; 
P.Vo   =P.S*P.L          ; 
P.beta=0.0003            ; 
P.betab=P.beta*P.S       ; 
P.sh   =1740             ; 
P.b    =1.0              ; 
  
%====================================== 
%  Environmental parameters 
%====================================== 
P.To=294                         ; 
P.Po=10^(P.Ah-(P.Bh/(P.To+P.Ch))); 
%====================================== 
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%  Computed parameters 
%====================================== 
P.B=P.betab*sqrt(P.M/(2*pi*P.Ru))                                      ;    
P.B=P.B*(10^(P.Ah-(P.Bh/(P.To+P.Ch))))/sqrt(P.To)                      ;   
P.B=P.B*( ((P.Bh*log(10))/(P.To+P.Ch)^2)-(1/(2*P.To)) )                ;  
P.U=1*P.B*P.hfg                                                        ;    
P.Rb=(P.U/P.hfg)/((P.U/P.hfg)+P.B)                                     ;    
P.Rb=P.Rb*(P.betab/P.rhov)*sqrt(P.M/(2*pi*P.Ru))*(P.g+1)/(2*P.g*sqrt(P.To
)) 
P.Rb=1/P.Rb                                                             ;   
P.R1=((P.b)/((pi*P.ro^2)^2))                                            ;  
P.Cb=(P.Vo/(P.g*P.rhov*P.R*P.To))+(((pi*P.ri^2)^2)/P.sh)                ;   
P.C1=((pi*P.ro^2)^2)/P.s                                                ;   
P.fRbCb=(1/(2*pi))*(1/(P.Rb*(P.Cb+P.C1)))                               ;    
P.Ib=((P.U/(P.hfg*P.B))+1)                                              ;      
P.Ib=((P.Ib)*(P.rhov*P.hfg))                                            ;   
P.Ib=1/(P.Ib)                                                           ;  
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%THIS SUBROTUINE IS USED TO CONSTRUCT THE MODEL OF THE CANTILEVER ENGINE 
CONFIG  
function X=freqres1(w,P1) 
%===================================================== 
Z=(1./(P1.Rb*P1.C1))-(P1.R1*P1.Cb*(w.^2))         ; 
Z=Z+(((P1.R1./P1.Rb)+(P1.Cb./P1.C1)+1)*(i*w))     ; 
Z=(1./Z)                                          ; 
X=(P1.Ib)*(Z)                                     ; 
%===================================================== 
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%THIS FUNCTION CALCULATES THE SQUAR OF THE ERROR TO BE MINIMIZED 
LATER/ENCLOSED ENGINE. 
%============================= 
function K=squarederrorfcn(X,P1,M) 
%M is the experimental data . 
%P is the model parameter. 
%X is the floating parameters in the model. 
%============================= 
%P,M passed to the funcion form the lstsqrmthd file. 
%Define the floating parameters. 
P1.beta =X(1); 
P1.U    =X(2); 
P1.b    =X(3); 
% 
P1.betab  =P1.beta*P1.S                                               ;                
P1.B      =P1.betab*sqrt(P1.M/(2*pi*P1.Ru))                           ;               
P1.B      =P1.B*(10^(P1.Ah-(P1.Bh/(P1.To+P1.Ch))))/sqrt(P1.To)        ;                
P1.B      =P1.B*( ((P1.Bh*log(10))/(P1.To+P1.Ch)^2)-(1/(2*P1.To)) )   ;                 
% 
P1.Ib     =((P1.U/(P1.hfg*P1.B))+1)          ;    
P1.Ib     =((P1.Ib)*(P1.rhov*P1.hfg))        ; 
P1.Ib     =1/(P1.Ib)                         ; 
% 
P1.Cb     =(P1.Vo/(P1.g*P1.rhov*P1.R*P1.To))+(((pi*P1.ri^2)^2)/P1.sh)  ;               
P1.Rb     =(P1.U/P1.hfg)/((P1.U/P1.hfg)+P1.B)                          ;               
P1.Rb=P1.Rb*(P1.betab/P1.rhov)*sqrt(P1.M/(2*pi*P1.Ru))                 ;  
*(P1.g+1)/(2*P1.g*sqrt(P1.To))                                         ; 
P1.Rb     =1/P1.Rb                                                     ;               
% 
P1.fRbCb  =(1/(2*pi))*(1/(P1.Rb*(P1.Cb+P1.C1)))                        ; 
% 
P1.R1     =(P1.b)/((pi*P1.ro^2)^2)                                     ; 
%============================ 
f =M(:,1); % loading the first col in the data file ,f:frequency. 
xm=M(:,2);% loading the 2nd  col in the data file ,DTF:Displacement 
Transfer function. 
xm=xm'   ; 
xp=M(:,3);% loading the 3rd col in the data file ,DTFP: Displacement 
Transfer function phase angle.. 
%============================= 
%Compute the predicted data from the model parameters 
%============================= 
for j1=1:P1.Nfit 
     warning off                    ; 
     Y(:,j1)=freqres1(2*pi*f(j1),P1); 
     warning on                     ; 
end 
Y1=(Y(1,:)/(pi*P1.ro^2))*1e6        ;  
%============================ 
%Compute the square of the error for each data point ,sum it to the 
%previuos error value and store it in J 
%============================ 
K=0; %initialize the error to be zero. 
for i1=1:P1.Nfit 
    K=K+((xm(i1)-abs(Y1(i1)))/xm(i1))^2;  
end 
%THIS PROGRAM IS TO IMPLEMENT THE LEAST SQURE METHOD IN MODEL 
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%FITTING/ENCLOSED ENGINE CONFIG 
clear all; 
close all; 
clc 
%Engine specifications : 
%5 mm Heater ,5 mm SiNx membrane. 
%95% vapor 
%75mic thick 
%Rh=13.0 ohm 
%FC5060 
%data collected on 06/27/07 for 1Hz and 10Hz 1% duty cyc 
%This programme is modified to consider the damping effect(R in th 
electrical 
%circut analogy) not to be zero. 
%===================================== 
%Least square method 
%===================================== 
EnginePars8mmCantilever;  
P1=P                   ; 
%Calling the Specified MATLAB file (enginePars8mmCantilever)  
%===================================== 
load testopencir.dat; 
M=testopencir       ; 
M=M(2:end,:)        ; 
%========================================= 
%Define the floating parameters; 
%Initial guess for the floating parameters; 
%=========================================            
X0(1)=P1.beta*1    ;          %floating parameter. 
X0(2)=P1.U*30      ; 
X0(3)=P1.b*1       ;  
%set the conditions on each variable. 
lb(1)=1e-5      ;       ub(1)=1         ;   
lb(2)=1e-9      ;       ub(2)=1000      ; 
lb(3)=1e-9      ;       ub(3)=100*P.b   ;   
%========================================= 
%calling the Minimizer function to perform the optimization. 
%========================================= 
%OPTIONS(1)=1; 
P.Nfit  =35                                                                        
P1.Nfit =P.Nfit                                                                    
OPTIONS = OPTIMSET('MaxFunEvals ',5000,'MaxIter',1000)                             
Xd      = fmincon(@(X) 
squarederrorfcn(X,P1,M),X0,[],[],[],[],lb,ub,[],OPTIONS)   ; 
Xd                                                                                 
% 
P1.beta  =Xd(1); 
P1.U     =Xd(2); 
P1.b     =Xd(3); 
% 
P1.betab =P1.beta*P1.S                                            ; 
% 
P1.B     =P1.betab*sqrt(P1.M/(2*pi*P1.Ru))                        ; 
P1.B     =P1.B*(10^(P1.Ah-(P1.Bh/(P1.To+P1.Ch))))/sqrt(P1.To)     ; 
P1.B     =P1.B*( ((P1.Bh*log(10))/(P1.To+P1.Ch)^2)-(1/(2*P1.To)) ); 
% 
P1.Ib    =((P1.U/(P1.hfg*P1.B))+1)  ;    
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P1.Ib    =((P1.Ib)*(P1.rhov*P1.hfg)); 
P1.Ib    =1/(P1.Ib)                 ; 
P1.Cb=(P1.Vo/(P1.g*P1.rhov*P1.R*P1.To))+(((pi*P1.ri^2)^2)/P1.sh)        ;           
P1.Rb   =(P1.U/P1.hfg)/((P1.U/P1.hfg)+P1.B)                             ;              
P1.Rb   =P1.Rb*(P1.betab/P1.rhov)*sqrt(P1.M/(2*pi*P1.Ru)) 
*(P1.g+1)/(2*P1.g*sqrt(P1.To))                                          ; 
P1.Rb   =1/P1.Rb                                                        ;              
% 
P1.C1=((pi*P1.ro^2)^2)/P1.s                                             ;             
P1.R1=(P1.b)/((pi*P1.ro^2)^2)                                           ;             
% 
P1.fRbCb=(1/(2*pi))*(1/(P1.Rb*(P1.Cb+P1.C1)))                           ;              
%======================================= 
f  =M(:,1); 
xm =M(:,2); 
xp =M(:,3); 
% 
P1.Rb=(P1.U/P1.hfg)/((P1.U/P1.hfg)+P1.B)                              ;               
P1.Rb=P1.Rb*(P1.betab/P1.rhov)*sqrt(P1.M/(2*pi*P1.Ru))*((P1.g+1)/(2*P1.g*
sqrt(P1.To))); 
P1.Rb=1/P1.Rb                                                         ;               
P1.Cb=(P1.Vo/(P1.g*P1.rhov*P1.R*P1.To))+(((pi*P1.ri^2)^2)/P1.sh)      ;               
P1.fRbCb=(1/(2*pi))*(1/(P1.Rb*(P1.Cb+P1.C1)))                         ;               
P1.C1=((pi*P1.ro^2)^2)/P1.s                                           ;               
P1.CbC=(P1.Cb)/(((pi*P1.ro^2)^2)/P1.sh)                               ;               
% 
%===================================== 
for j1=1:P1.Nfit 
     warning off                    ; 
     Y(:,j1)=freqres1(2*pi*f(j1),P1); 
     warning on                     ; 
end 
%==================================== 
R=((Y(1,:)/(pi*P1.ro^2))*1e6)'; 
R=abs(R)                      ; 
Ph=angle(Y(1,:))*(180/pi)     ; 
%==================================== 
figure 
subplot(2,1,1) 
h1=loglog(f(1:P1.Nfit),abs((Y(1,:)/(pi*P1.ro^2))*1e6'),'g-'  ... 
                   ,f,xm,'bs') 
ylabel('Disp amp(µm/w)') 
% 
title([ '  beta=',num2str(P1.beta)                   ... 
       ,'  U =',num2str(P1.U/(P1.hfg*P1.B)),'*hfg*B' ... 
       ,'  sh=',num2str(P1.sh/P1.s),'s']) 
    
xlabel(['  Rb =',num2str(P1.Rb)                     ... 
       ,'  C1 =',num2str(P1.C1)                     ... 
       ,'  U  =',num2str(P1.U )                     ... 
       ,'  b =' ,num2str(P1.b )                     ... 
       ,'  fRbCb=',num2str(P1.fRbCb) ]) 
legend(h1,'Model \Gamma','Measured X_{k}/Q_{k}')   
grid on  
subplot(2,1,2)                                  
semilogx(f(1:P1.Nfit),Ph ,'g-'  ... 
                        ,f,xp ,'bs' )  
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xlabel(['Frequency (kHz)']) 
ylabel(['Phase (deg)'])                         
title('Phase of the dispalcment tranfer function')                   
 grid on 
 figure 
 subplot(2,1,1)                               
h2=loglog(f(1:P1.Nfit),abs((2*pi*f(1:P1.Nfit)').*(Y(1,:)/(pi*P1.ro^2))*1e
6')*1e-3,'g-'...                                                   
,f,abs((2*pi*f).*xm)*1e-3,'bs') 
legend(h2,'Model \Gamma','Measured X_{k}/Q_{k}') 
ylabel(' \Gamma[kfp] (mm/s/W)') 
title('Velocity transfer function ')                       
grid on 
%================================================================== 
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