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Stressors in aquaculture can interfere with efficient fish production.  Chronic 

stress decreases immune response, inhibits growth and negatively affects reproduction 

through various physiological pathways.  It has been shown that stress response can be 

under strong genetic control, indicating the possibility for vast improvements in 

aquaculture broodstocks through breeding programs.  Doubled haploids were created in a 

cross of our highly domestic Arlee (AR) and wild Whale Rock (WR) clonal lines.  After 

6 weeks on exogenous feed, seventy six doubled haploid progeny were individually 

exposed to a handling stressor and whole body cortisol levels were measured at 30 min. 

after termination of the stressor.  Fish showing high cortisol response exhibited decreased 

body length ( r2=0.131, p=0.001) and mass (r2=0.099, p=0.005).   A total of 453 

polymorphic AFLP markers were used to create a genetic linkage map revealing 32 

rainbow trout linkage groups at a marker density of one marker every 8.0cM.  Composite 

interval mapping revealed 5 significant QTL, two for whole body cortisol levels, two for 

body length, and one for body mass.  QTL for increased cortisol and short body length 

associated with the WR allele mapped to the same location on linkage group WA-XIV.   

A second cortisol QTL identified on the rainbow trout sex chromosome (WA-I) mapped 
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in close association to the gene coding for carbonyl reductase, the analogue of a 20beta-

hydroxysteroid dehydrogenase in rainbow trout, which is known to contribute to cortisol 

clearance.  The identification of these regions influencing cortisol response may lead to 

mapping of stress-related genes, or marker assisted selection leading to a reduction in 

stress response and its associated negative effects. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Animals have developed a number of mechanisms to maintain homeostasis and 

defend against unfavorable environmental conditions.  In natural environments, response 

to acute stressors is advantageous; however chronic stress can have detrimental effects.  

The effects and metabolic regulation of stress have been the subject of study in many 

domestic species as the transition from natural environments to those of intensive animal 

culture often results in a chronically-elicited stress response.  Long term captive rearing 

exposes populations to natural and artificial selection that results in physiological, 

behavioral and genetic changes (Price, 1999).  These changes often include reduction in 

stress response, which has effects on important survival, growth and reproductive 

processes (Wendelaar Bonga, 1997).   The study of stress physiology and its genetic 

control may lead to better understanding of the domestication process and, through 

marker-assisted breeding, production of fish better suited for captive environments.    

Conversely, fish intended for release or supplementation of wild populations may benefit 

by retaining natural levels of stress responsiveness.  Understanding the genetics of stress 

response may lead to accelerated domestication for aquaculture, and domestication 

prevention for conservation as well as an overall understanding of the genetic control of 

stress.       

Stress response has three main levels: perception of a stressor, response, and the 

effects of the response (Moberg, 1985).  The perception of stress is recognition of 

anything chemical, physical or perceived that elicits a stress response.  
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In the wild, stressors can be invasion of the territory by a conspecific, competition 

for food, or predators.  The stressors in aquaculture setting include constant crowding, 

handling, exposure to humans, poor water quality, and confinement.   

The response itself has been further broken down into primary and secondary 

responses, which in turn have effects on the whole organism.  Like many other terrestrial 

vertebrates the physiological response to a stressor in fish involves two different 

pathways.  The first is the rapid release and effects of catecholamines by the sympathetic 

pathways, and the second is the release and effects of corticosteroids including cortisol.  

Rather than having an adrenal medulla, teleost fish possess chromaffin cells located in the 

head kidney.  When a stressor is perceived by the brain hypothalamus, sympathetic nerve 

fibers stimulate the chromaffin cells to produce and release catecholamines including 

epinephrine and norepinephrine (Wendelaar Bonga, 1997).  These catecholamines are 

identified with the fight or flight response in vertebrates, which includes increases in 

ventilation and oxygen uptake, blood oxygen transport, and blood glucose levels 

(Wendelaar Bonga, 1997).  Heart rate in rainbow trout is controlled by adrenergic and 

cholinergic stimuli.  Therefore increased circulation of epinephrine produces increased 

heart rate (Wendelaar Bonga, 1997).  It has also been shown that epinephrine increased 

Na+/H+ exchange and decreases Cl-/HCO3
- exchange across the membrane of 

erythrocytes, thus causing changes in the pH and hemoglobin affinity for oxygen.   Both 

epinephrine and norepinephrine lead to increased blood glucose.  It is thought that they 

stimulate glycogen phosphorylase which induces glycogenolysis in the liver, in turn 

causing increased blood glucose levels (Wendelaar Bonga, 1997).  Although no 
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conclusive evidence has been found, it has been suggested that catecholamines also play 

a role in increased blood free fatty acid levels.   

Corticosteroids, the second highly influential stress hormones are regulated via 

the Hypothalamic-pituitary-interrenal axis.  When a stressor is perceived the 

hypothalamus releases a complex mixture of hormones and neurotransmitters into the 

blood including but not limited to corticotrophin releasing hormone (CRH), dopamine, 

neuropeptide Y, and arginine vasotocin and isotocin, which all have a stimulatory effect 

on the pituitary gland.  Once stimulated, the pituitary gland releases adrenocorticotropic 

hormone (ACTH), melanophore-stimulating hormone (MSH) and β-endorphin (β-END) 

into the blood.  These then stimulate the interrenal cells to produce cortisol.  Once in 

circulation, cortisol acts as a negative feedback directly on the interrenal cells, and also 

on the pituitary gland and hypothalamus (Wendelaar Bonga, 1997).   

 Elevated blood levels of corticosteroids then cause secondary responses.  

Components of the secondary response include alterations of metabolic, osmoregulatory 

and hematological functions and changes in growth.  As previously mentioned a change 

occurs from energy storage (anabolic state) to energy utilization (catabolic state).  

Elevated cortisol levels have been shown to increase levels of all key enzymes 

controlling gluconeogenesis (6-phosphatase, fructose1,6-bisphosphates and PEPCK) 

(Mommsen et al., 1999).  In the liver, these enzymes promote gluconeogenesis which 

results in increased blood glucose levels.   

Cortisol also has osmoregulatory effects as it is influential in adaptation from 

freshwater to salt water in salmonids. This is thought to occur by expression of the α-
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subunit mRNA of Na+/K+-ATPase, causing increased Na+/K+-ATPase function in the 

gills (Mommsen et al., 1999).        

During times of stress, energy is diverted from growth and reproduction and made 

available for processes leading to restoration of homeostasis.  The effect of chronically 

elicited stress on rainbow trout has been the topic of considerable study (Barton, Iwama, 

1991; Jentoft et al., 2005; Pickering, 1992; Van Weerd, Komen, 1998; Weil et al., 2001).  

Decreased growth has been associate with both increased longevity of (Weil et al., 2001), 

and peak (Jentoft et al., 2005) cortisol levels.  Likewise, increased cortisol levels are 

commonly associated with decreased reproductive success (Barton, Iwama, 1991) and 

offspring quality(Schreck et al., 2001).  Among aquaculture species elevated stress levels 

have also been shown to repress immune function (Davis et al., 2003; Maule et al., 1989) 

and increased disease and mortality (Pickering, Pottinger, 1989).      

Many factors involved with stress response are under genetic control (Barton, 

2002), and have a significant heritable component (Fevolden et al., 1999; Pottinger, 

Carrick, 1999; Pottinger et al., 1992).  Quantitative trait locus (QTL) analysis is a 

powerful way of detecting genomic regions influencing heritable traits.  Complex traits 

such as stress response are under the control of many different genetic loci.  QTL analysis 

provides a way to identify the number, and effect of loci controlling various traits.  In 

some instances, QTL detection can lead to identification of specific genes controlling 

trait variation (Oliver et al., 2005; Van Laere et al., 2003) however this process is 

complex (Glazier et al., 2002).  Alternatively, identification of specific nucleotides can be 

associated with trait variances can be identified (Grisart et al., 2004; Ron, Weller, 2007) 

and applied to marker-assisted selection.    
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Behavioral and phenotypic variations between wild and domestic salmonids 

populations have been identified.  Captive-bred populations have been shown to exhibit 

reduced predator avoidance (Johnsson et al., 1996; Yamamoto, Reinhardt, 2003), 

increased aggression and dominance (Metcalfe et al., 2003) and less time under cover 

(Fleming, Einum, 1997) than their wild counterparts.  Domesticated salmonids also tend 

to show reduced stress responsiveness to handling and crowding (Mazur, Iwama, 1993; 

Shrimpton et al., 1994; Woodward, Strange, 1987).   

The doubled haploid design is more powerful for detecting QTL than a backcross 

design (Carbonell et al., 1993).  Clonal rainbow trout produced by androgenesis and 

gynogenesis provide the foundation for producing doubled haploids form QTL analysis 

(Parsons, Thorgaard, 1984).  As described above, numerous behavioral and physiological 

differences have been seen between wild and domestic salmonids.  In this study, QTL 

analysis is applied to a doubled haploid population derived from wild (WR) x domestic 

(AR) hybrid rainbow trout.  QTL identified for post stress cortisol levels will be 

evaluated for co-localization with body length and body mass.  This will allow testing for 

genetic linkage between stress response and growth.    
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Abstract 
 
 Stressors in aquaculture can interfere with efficient fish production.  Chronic 

stress decreases immune responses, inhibits growth and negatively affects reproduction 

through various physiological pathways.  It has been shown that the hormonal stress 

response can be under strong genetic control, indicating the possibility for vast 

improvements in aquaculture broodstocks through breeding programs.  Doubled haploids 

were created in a cross of our wild Whale Rock (WR) and highly domesticated Arlee 

(AR) clonal lines.  After 6 weeks on commercial starter feed, seventy six doubled haploid 

progeny were individually exposed to handling stress and whole body cortisol levels were 

measured at 30 min. post onset of the stressor.  Fish showing high cortisol response 

exhibited decreased body length ( r2=0.131, p=0.001) and mass (r2=0.099, p=0.005).   A 

total of 453 polymorphic AFLP markers were used to create a genetic linkage map 

revealing 32 rainbow trout linkage groups at a marker density of one marker every 

8.0cM.  Composite interval mapping revealed 5 significant quantitative trait loci (QTL), 

two for whole body cortisol concentrations, two for body length, and one for body mass.  

QTL for increased body cortisol and short body length associated with the WR allele 

mapped to the same location on linkage group WA-XIV.   A second cortisol QTL 

identified on the rainbow trout sex chromosome (WA-I) mapped in close association to 

the gene coding for carbonyl reductase, and enzyme analogous to 20beta-hydroxysteroid 

dehydrogenase in rainbow trout, which is known to contribute to cortisol clearance in the 

liver.  The identification of these regions influencing cortisol body concentrations may 

lead to mapping of stress-related genes, or marker assisted selection leading to a 

reduction in hormonal stress responsiveness and its associated negative effects. 
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1. Introduction: 

In aquaculture, chronic stress plays a significant role in animal health and overall 

yield (Davis, 2006).  Minimizing stress through various methods can potentially be 

extremely beneficial to the efficiency of fish production as it has been with many 

domesticated species.  Environments differ dramatically between native and farm 

environments for example with regard to density, competition for food, and disease 

exposure.  The process of domestication produces animals that are best adapted for 

survival in human-controlled environments.   

The endocrine stress response in fish is controlled through the Hypothalamic-

pituitary-interrenal (HPI) axis.  Following perception of a stressor the hypothalamus 

releases corticotropin releasing hormone (CRH) which stimulates the release of 

melanophore-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) 

from the pituitary gland (reviewed by Wendelaar Bonga, 1997).  ATCH and α-MSH 

stimulate the interrenal cells in the head kidney to synthesize and release cortisol into the 

bloodstream to act on a number of osmoregulatory, hematological and metabolic 

functions that serve to restore the fish to a pre-stress homeostatic state (Wendelaar 

Bonga, 1997).  This is primarily achieved by diverting energy investment from growth 

and reproduction to activities such as locomotion, respiration, and tissue repair 

(Wendelaar Bonga, 1997).  During short term acute stress, diversion of energy from 

growth and reproduction can be beneficial to fish survival.  Chronic stress, on the other 

hand, such as those experienced in aquaculture settings can prolong cortisol secretion 

resulting in negative effects on fish health.  Because of its consistent post stress presence 
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in the bloodstream cortisol is generally considered the a good indicator of the stress 

response due to its (Barton, 2002).   

In an aquaculture setting, fish experience chronic stressors including crowding, 

handling and human interaction (Davis et al., 1993), exposure to poor water quality and 

toxins (Schlenk et al., 1999), aggression from conspecifics (Mommsen et al., 1999) and 

competition for food.  Although there are conflicting data about the relationship of stress 

and various measures of fish performance (Davis, 2006), studies reveal a negative 

correlation between cortisol levels and growth (Jentoft et al., 2005; Weil et al., 2001), 

immune responses and disease resistance (Davis et al., 2003; Maule et al., 1989) and 

reproduction (Schreck et al., 2001).   

The process of domestication has produced animals that are better suited for 

rearing and breeding in captive environments.  Among the most profound changes in wild 

versus domesticated animals are an increased threshold for behavioral and physiological 

responses to environmental challenges (Price, 1999).  One of the major physiological 

changes from wild to domestic animals is a reduction in the endocrine stress response.  

Reduced stress response of domesticated vs. wild animals has been seen in a number of 

species including salmonids fishes(Mazur, Iwama, 1993; Shrimpton et al., 1994), mice 

(Treiman, Levine, 1969) and guinea pigs (Kunzl, Sachser, 1999).  In these and other 

species, genetics manipulation has been associated with the reduction of stress response.  

Observed variations in stress response have been shown to have a genetic component in 

many species including rainbow trout (Drew et al., 2007), pigs (Desautes et al., 2002), 

cattle (Gauly et al., 2002) and chickens (Buitenhuis et al., 2003).  Variations in chicken 
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egg corticosterone concentrations have also been shown to influence various behaviors in 

offspring, indicating a non-genetic effect of corticosterone (Janczak et al., 2007).   

In rainbow trout, variation in stress responsiveness has been the subject of much 

study by several research groups.  In general it has been shown that stress responsiveness 

has a heritable component (Fevolden et al., 1999; Pottinger, Carrick, 1999) and can be 

altered by selective breeding (Pottinger, Carrick, 1999).  This lays the foundation for 

potential improvements in broodstock through advanced selective breeding procedures 

supplemented by genetic understanding of the endocrine system.  Marker-assisted 

selection has the potential to increase efficiency of fish production by allowing selection 

based entirely upon genotype rather than waiting for grow out and measurement of 

phenotypic characteristics such as cortisol body concentrations.  Genetic understanding 

of the stress responsiveness may also be beneficial for raising fish intended for release 

into the wild.  In this case, retention of an appropriate stress response may increase 

chances of survival in the natural environment thereby increasing the impacts of hatchery 

conservation efforts.   

Our lab has shown considerable differences in body cortisol stress responsiveness 

among several clonal rainbow trout lines (Drew et al., 2007).  Although direct correlation 

between domestication and a reduced stress response was not found, these lines offer 

promising study system for identifying genetic loci affecting the stress response and other 

quantitative traits.  The clonal lines represent genetically identical individuals created 

through two generations of either gynogenesis or androgenesis.  The clonal lines 

encompass a broad geographic distribution, large variation in domestication, and 

variation in behavioral characteristics (Lucas et al., 2004), development rate (Nichols et 
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al., 2007; Robison et al., 1999) stress response (Drew et al., 2007), disease resistance 

(Nichols et al., 2003a) and various meristic traits (Nichols et al., 2004; Zimmerman et al., 

2005).   QTL analysis has revealed loci influencing development rate (Robison et al., 

2001), meristic traits (Nichols et al., 2004), immune function (Zimmerman et al., 2004) 

and the stress response (Drew et al., 2007).   

In this paper we employ methods previously utilized to quantify the interrenal 

stress response differences in a doubled haploid cross.  The wild Whale Rock (WR) 

female clonal line from central California was crossed with the highly domesticated Arlee 

line to produce hybrids.  The hybrids were then used to produce doubled haploids by 

androgenesis.  The domestic AR line has previously been shown to have a reduced stress 

response (Drew et al., 2007), therefore our hypothesis is that the WR x AR doubled 

haploids will show large variations in individual stress responses that will reveal QTL 

influencing the trait.  Comparisons of these QTL can then be made with those found to 

influence the stress response in the OSUxAR cross (Drew et al., 2007).   

2. MATERIALS AND METHODS 

2.1 Parental lines  

 Two clonal rainbow trout lines were used to create doubled haploid individuals.  

In 2000, the milt of wild rainbow trout (landlocked steelhead) from the Whale Rock 

Reservoir in central California was collected and used to create an androgenetic 

population.  From the resulting offspring a female was selected and eggs were fertilized 

with UV-irradiated sperm and diploidy was restored by heat shock treatment to create a 

homozygous XX female line.  In order to maintain wild characteristics and try to prevent 

domestication, the WR line has been kept in hatchery environment that imitates a natural 
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stream environment and had minimal human interaction.  It is predicted that these fish 

maintain much of their natural physiological and behavioral adaptations as clones were 

produced from gametes of wild fish.  The Arlee (AR) is a clonal (YY) line derived from 

the Arlee Hatchery in Montana.  Initial propagation of this line is thought to have 

originated from wild rainbow trout populations of the McCloud River (California) over 

100 years ago.  Studies done previously with the AR clonal line revealed comparatively 

low cortisol levels in response to stressors and other behavioral characteristics observed 

in highly domesticated fishes (Drew et al., 2007; Lucas et al., 2004).   

2.2 Mapping population 

Clonal WR and AR individuals described above were spawned to create hybrid 

offspring.  Upon sexual maturity, a hybrid male was used to produce doubled haploids by 

the process of androgenesis (Parsons, Thorgaard, 1984).  Eggs were obtained from a 

single outbred hatchery female (Trout Lodge, Inc., Summer, WA) and divided into three 

groups.  Each group was then exposed to γ-radiation to destroy maternal DNA and then 

fertilized with sperm from a WR x AR hybrid male.  Heat shock treatment was used to 

block cell cleavage and restore the gametes to diploidy (Young et al., 1998).  This 

process produced doubled haploids, homozygous at all loci.  Incubation of fertilized eggs 

occurred in a 10°C cold room using a Heath-Style incubator.  Fish were disturbed as little 

as possible during development to minimize disease contamination and developmental 

disruptions.  Upon hatch and absorption of the yolk sac, fish were transferred to a single 

19L tank (30-cm diameter) in an indoor recirculation style hatchery and given 

commercial starter feed. 

2.3 Stress treatment 
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 Stress treatments took place 6 weeks after the fish were transferred to commercial 

feed and occurred on 6 consecutive days between July 12-17 2006.  Treatment was done 

in a 10°C cold room fitted with 15 individual compartments.  Compartments were 

visually isolated from one another and the experimenter by dividing walls and dark 

curtains to minimize stress response induced by unwanted visual disturbances.  

Compartments contained a plastic aquarium (26.5cm L x 16.0cm W x 17cm H) painted 

white on three sides to further minimize visual stimulation, an air supply and an 

incandescent light source.  Each tank was lined with a clear plastic bag that was removed 

after each test to minimize carryover of anesthetics or other chemicals from one trial to 

the next.  The day before the scheduled testing, between 1400 and 1530 hours, fish were 

transferred from the hatchery tank to the cold room.  Single fish were randomly assigned 

to a tank and allowed to acclimate overnight with the same photoperiod as experienced in 

the hatchery.  Stress treatments took place the following morning between 900 and 1200 

hours.  The time of the stress event was randomly assigned to each compartment.  At the 

assigned time the dividing curtain was lifted and the fish was caught in a small mesh net, 

held above the water for 30 seconds and returned to the water.  Previous studies revealed 

that body cortisol levels in response to this stressor was greatest after 30 minutes; 

therefore all fish were given 30 minutes to recover before collection (Drew et al., 2007).   

 To minimize further induction of stress, anesthesia was delivered remotely via 

thin tubes from behind the dividing curtain, a method shown to have minimal effect on 

cortisol levels (Gerwick et al., 1999).   Twenty five ml of tricaine methanosulfate 

(MS222) in a concentration of 44mg/ml was injected into the aquarium for a final 

concentration of 200mg/L, the manufactures suggested concentration for rapid 
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anesthesia.  After injection of MS222, the line was immediately flushed with 30mL of 

water to ensure all the anesthetic was flushed into the tank.  Once the fish stopped all 

movement (usually within 1-2 min) they were netted, measured for length, flash frozen in 

liquid nitrogen and then stored at -20°C until cortisol extraction.  The water was then 

dumped, the plastic bag from each aquarium was removed and replaced with a fresh one.  

Air stones were rinsed clean of anesthesia and tanks were refilled with de-chlorinated 

water for the next stress treatment.   

2.4 Cortisol extraction and assay  

The procedure for cortisol extraction was modified by Drew et al. (2007) from that 

described by Hiroi (Hiroi et al., 1997).  Before cortisol extraction, wet body mass was 

measured and the caudal and dorsal fins were removed and stored for DNA extraction.  

Fish were then diced, placed in glass culture tubes (12 x 75mm) and homogenized in 5 

volumes (w/v) PBS.  Homogenization was done using a Tissue-Tearor homogenizer 

(Biospec Products, Bartlesville, OK) on the highest setting for approximately 1 minute.   

Samples were vortexed for 30 sec and 300ul of the homogenate was transferred to a 

16 x 150 mm glass tube.  Steroids were extracted twice with 3mL of diethyl ether and 

combined extracts were then evaporated in a 37°C water bath until dry.  Lipids were 

removed from the samples with 300ul of tetrachloromethane.  Samples were vortexed for 

4 min and 500ul of assay buffer was added before vortexing another 2 min.  Samples 

were then centrifuged at 4°C and 3000rpm for 10 min and transferred to a clean glass test 

tube.  A 1:10 dilution was made and cortisol concentration was assayed with the Cortisol 

Enzyme Immunoassay kit (Cayman Chemical Co., Ann Arbor, MI)   according to the 

provided protocol.  Each sample was assayed in triplicate to control for inter-assay 
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variability.  For control, 100pg/ml cortisol was added to selected samples and extraction 

efficiency was calculated to be 92.6%.   

2.5 Genotyping 

The fin clips removed before homogenization provided tissue for DNA extractions.  

Extraction of genomic DNA was done according to manufacturer’s protocol for Purgene 

Genomic DNA Purification Kit (Gentra Systems, Minneapolis, MN).  Amplified 

fragment length polymorphism (AFLP) method was used for genotyping of doubled 

haploid individuals (Vos et al., 1995).  The protocol summarized here was adapted by 

Robison et al for linkage mapping (Robison et al., 2001).  A total of 500ug of DNA was 

digested with EcoR1 and MSE1 restriction enzymes and adapters were ligated onto the 

produced sticky ends.  Primers recognizing the adapters, restriction site and one specified 

nucleotide were used for selective +1 amplification.  Selective +3 amplifications were 

then done with a Cy-5 labeled primer recognizing EcoR1, and an unlabeled MSE1 

primer.  The PCR product was run on a 6% acrylamide gel and scanned with a Typhoon 

9400 imager (Amerisham Biosciences, Piscataway, NJ).  Polymorphic markers were 

named beginning with “E” for Eco followed by the 3 nucleotide recognition sequence of 

the +3 primer for Eco first then MSE.  The number following the primer sequence 

represents size from smallest (01) to largest.  Markers were also designated “w” or “a” 

indicating WR or AR markers.  Markers matched to previously published maps (Nichols 

et al., 2003b) were given the same name as previously published.  Microsatellite markers 

(OMM 1026, OMM 1046, OMM1048 and OMM1131) were used to confirm linkage 

group correspondence between maps.  In total, 53 AFLP and 4 microsatellite primer 

combinations provided marker data for mapping.  
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2.6 Linkage analysis 

 Linkage analysis was done using MAPMAKER/EXP version 3.0b (Dr. Scott 

Tingey, Dupont Experimental Station, Wilmington, DE, U.S.A).  Markers that were 

scored for less than 70% of individuals were removed from the analysis and remaining 

markers were tested for linkage disequilibrium using χ2 analysis with Yates correction for 

continuity.  The genotypes of markers showing deviation from Mendelian segregation 

were checked for errors and if found to be unreliable were removed from further analysis.  

Markers remaining in the analysis showing greater than expected WR genotypes were 

labeled with ^ and those showing greater than expected AR genotypes were labeled with 

* at the end of the marker name.  Markers having identical genotypes for all individuals 

were identified as clusters and the marker with the largest number of individuals 

genotyped was selected to represent the cluster.  Markers were initially linked using 

Mapmaker’s “group” command with a LOD of 3 and maximum distance of 37.2cm 

(Kosambi Map function).  Large groups were further divided by increasing the LOD 

score to 5.  Mapmaker’s “compare” command was then used to determine initial marker 

order for 6 to 7 markers in each linkage group and subsequent markers were added using 

the “try” command.  Genotypes identified as having high probability of error by 

Mapmaker’s error detection were double checked.  If the marker had been miss-scored, 

the appropriate corrections were made.  Linkage group marker order was then tested 

using the “ripple” command to determine final order.     

2.7 QTL Analysis 

 Composite interval mapping (CIM) was used to detect significance and position 

of QTL throughout the genome at intervals of 2.0cM (Basten et al., 1994; Zeng, 1994).  
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Analysis was done with Windows QTL Cartographer Version 2.5 (Wang et al., 2005).  

Background markers were added through stepwise linear regression with forward 

addition and backward elimination using model 6.  To reduce over-parameterization of 

the model, the type I error rate was set at 0.05 for inclusion and 0.10 for elimination. The 

model retained the 5 most significant background markers outside a 10cM window.   

QTL significance thresholds for each trait were calculated by the permutation method 

with 1000 replications at the 5% significance level (Churchill, Doerge, 1994; Doerge, 

Churchill, 1996).  Composite interval mapping was used to test for QTL associated with 

cortisol levels, body weight and body length.  QTL were considered significant if they 

reached the calculated threshold with a significance level of 0.05.   

3. Results 

3.1 QTL analysis in doubled haploids: 

Pearson correlation coefficient was positive for body mass and body length 

(0.943) and negative for cortisol and body length (-0.362) and mass (-0.312).  Linear 

regression analysis also detected a negative relationship between cortisol levels and body 

length (r2=0.131, F=11.3, p=0.001) and cortisol and body mass (r2=0.099, F=8.29, 

p=0.005) (fig 3a,b).   

Individual cortisol responses among doubled haploids varied greatly ranging from 

4.5 to 94.4 ng/g with an average of 23.0ng/g (Fig 1).  Body length and mass also showed 

significant variation.  A ten fold difference was seen in body mass with an average of 

0.45g and a minimum and maximum of .13 and 1.3g respectively.  Overall body length 

ranged from 25 to 47mm with a mean of 33.4mm.  
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The 53 AFLP and 4 microsatellite primer sets produced 512 markers polymorphic 

between the parental lines.  Of those, 457 were used to create a genetic linkage map.  The 

remaining 54 markers were either removed from the analysis due to deviations from 

expected Mendelian segregation, inconsistencies in scoring or simply remained unlinked.  

Linkage mapping revealed 32 rainbow trout linkage groups covering a total of 1378.4cM 

with an average marker interval distance of 8.0cM. A microsatellite marker was placed 

on each of the 4 linkage groups having significant QTL in order to confirm 

correspondence with previously published maps.     

CIM revealed two significant (p < 0.05) QTL for post-stress body cortisol levels 

(linkage groups WA-I, WA-XIV) (Fig 2 and Table 1).  Together the two QTL identified 

for cortisol explained 23.9% of the overall variation in cortisol levels.  Opposing additive 

effects were seen as the wild WR allele was associated with decreased cortisol levels at 

cort-1, and increased levels at cort-2.  Linkage group WA-XIV also showed a significant 

body length QTL (bodylength-1) at the same locus at cort-2.  This QTL together with 

bodylength-2 found on WA-XXVII explained 26.8% of the body length variance in the 

doubled haploids.   Each of the body length QTL has negative additive effect, meaning 

the WR allele was associated with shorter body length.  A final QTL (bodymass-1) was 

found on WA-VI and explained 14.3% of the body weight variation. 

4. Discussion 

  The WR x AR doubled haploid population showed a wide range in phenotypic 

variation for post-stress body cortisol concentrations (fig 1a).  The highly domesticated 

AR parental line has been previously characterized as having a reduced stress response 

with an average cortisol concentration of approximately 10ng/g (Drew et al., 2007).  The 
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WR x AR doubled haploid population here had an average of 23.0ng/g likely indicating 

presence of high stress response in the wild WR parental line.  Broad phenotypic 

distributions were also seen in body mass (fig 1b) and body length (fig 1c).  A negative 

relationship between cortisol levels and growth has been previously reported (Jentoft et 

al., 2005; Weil et al., 2001).  Linear regression analysis of the WR x AR doubled haploid 

population is consistent with those findings (Figure 3a,b).  High post-stress cortisol levels 

were associated with decreased body length (r2=0.131, p=0.001) and body mass 

(r2=0.099, p=0.005).  Pearson correlation analysis also revealed a negative correlation 

between cortisol and body length (-0.362) and mass (-0.312).    

 Domesticated rainbow trout and other salmonids commonly have reduced stress 

responses to crowding and handling compared to their wild counterparts (Mazur, Iwama, 

1993; Shrimpton et al., 1994; Woodward, Strange, 1987).  Three QTL were identified for 

size traits, two for body length (bodylength-1 and 2) and one for body mass (bodymass-

1).  In all three cases the allele of the wild WR line showed association with smaller body 

size.  Two significant QTL for post-stress cortisol levels were identified (Table 1).   QTL 

cort-2 on WA-XIV had a large positive additive effect, meaning the allele of the wild 

WR clone is associated with increased stress response.  Strikingly the cort-2 QTL 

associated with increased cortisol in WR and the bodylength-1 QTL associated with 

decreased body length in WR mapped to the same location on WA-XIV (Figure 2 and 

Table 1).   Each of these QTL explained approximately 14% of the respective trait 

variation (Table 1).  This is not the first study to detect co-localization of cortisol and 

growth QTL in rainbow trout.  Drew et al. identified QTL for both body mass and post-
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stress log transformed cortisol levels on a common locus on rainbow trout linkage group 

XXVII, however the correlation between the two traits was positive (Drew et al., 2007).   

QTL for rainbow trout cortisol and growth-related traits have been identified in a 

number of studies (Drew, 2006; Drew et al., 2007; Martyniuk et al., 2003; O'Malley et 

al., 2003; Perry et al., 2005; Robison et al., 2001).  Many of the QTL identified fall on 

analogous linkage groups.  Table 2 describes all QTL localized to the same linkage group 

as those in this study.   This correspondence of growth-related and cortisol QTL 

localizing to common linkage groups among these studies is interesting.  Exact QTL 

location cannot be determined due to lack of common markers.  Traits such as body 

length, body mass and specific growth rate are undoubtedly under complex control of 

many genes.  Therefore it is not unexpected to identify many QTL associated with these 

traits.  The association of cortisol QTL with these traits suggests that stress response may 

be a contributing factor to growth variation.  To our knowledge, the co-localization of 

stress and growth QTL having a negative correlation is among the first strong evidence 

supporting genetic linkage between stress and growth in rainbow trout.  This result along 

with the correlations of QTL to common linkage groups described in table 2 contributes 

to the growing body of evidence for underlying genetic factors linked to both variation in 

body size and stress responsiveness.  

The major objective of QTL studies is to identify regions of the genome 

influencing a trait (Mackay, 2001).  Once identified, these regions can be searched for 

specific genes, single nucleotide polymorphisms, promoter sequences or other underlying 

genetic factors controlling phenotypic variation.  Close marker association with such 

genetic differences can be applied in marker assisted selection (Thorgaard et al., 2006).  
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In rainbow trout one study has reported localization of a candidate gene with QTL 

location, but these instances are rare (Leder et al., 2006).   

The peak LOD score for cort-1 fell in very close proximity to AFLP marker 

Eaccagt121a (figure 2).  In a previously published rainbow trout map Eaccagt121a 

mapped within 3.4cM of the carbonyl reductase (CBR1) gene, a distance well within the 

1-LOD interval for cort-1 (Nichols et al., 2003b).  In rainbow trout the carbonyl 

reductase enzyme has some analogous functions to 20beta-hydroxysteroid 

dehydrogenase.  Although very little is known about factors involved with cortisol 

metabolism and clearance in fish, 20beta-hydroxysteroid dehydrogenase has been 

consistently identified with the process (Mommsen et al., 1999; Truscott, 1979) and to 

date is the only gene known to be involved with the cortisol pathway that has been 

mapped in rainbow trout.  Metabolism and degradation of cortisol removes it from 

circulation.  Once removed from circulation and metabolized, cortisol can no longer have 

the detrimental effects discussed above.  In fact, rainbow trout with faster metabolism 

(quicker reduction) of post stress cortisol levels have been shown to exhibit increased 

growth rate compared to those with slower cortisol clearance  (Weil et al., 2001).  This 

makes the CBR1 gene a highly attractive candidate for pursuit in understanding the 

genetic control of stress response. 

The cort-1 QTL found to be in close association with CBR1 gene had a negative 

additive effect.  This means that, contrary to prediction, the AR allele was associated with 

an increase in stress response.  A precursor for selection is availability of alleles 

associated with variance in phenotype.  We must remember that clonal populations 

represent only a single haploid genome of one individual from a population.  If multiple 
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alleles still exist at the cort-1 locus in the AR hatchery population, the individual used to 

create the clonal line may possess the allele for high stress response.  

       Like all complex traits, stress response is undoubtedly controlled by many 

contributing genetic loci.  Therefore the probability of finding one or two loci with major 

effect on the traits may be low.  Although the doubled haploid design is powerful for 

detecting QTL (Martinez et al., 2002), the small sample size in this experiment may have 

limited the ability to detect QTL of low to moderate effect (Melchinger et al., 1998). 

 

5. Conclusion 

 Our results suggest a negative correlation between stress-induced cortisol levels 

and size in phenotypic and genetic analyses.  These results are in accordance with a 

number of previously published works in rainbow trout (Jentoft et al., 2005; Weil et al., 

2001).  Genetic loci influencing on both the cortisol stress response and body size , as 

well as those associated with stress-related genes offer avenues for continued research.  

Traditional selective breeding methods or marker-assisted selective breeding may allow 

production of broodstocks with reduced stress response and increased growth.  However 

this outcome is not certain.  In one study, rainbow trout selectively bred for high stress 

response displayed higher body mass compared to low stress response fish (Pottinger, 

Carrick, 2000).  The management of stress in aquaculture is complex and many 

inconsistencies have been reported for the association of stress and performance 

characteristics (for review see Davis 2006).  Stress response and other important 

aquaculture characteristics have shown heritable components (Fevolden et al., 1999; 

Pottinger, Carrick, 1999).  Continued use of genetics as a tool for decreasing stress 
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response is likely to result in increased performance characteristics and thus benefit fish 

production (Davis, 2006).   
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QTL Linkage Group Positiona LODb ac r2d

cort-1 WA-I  (Eaccagt121a) 36.7 2.6 -5.151 0.099 
bodymass-1 WA-VI  (OMM1046) and cluster 11.0 3.0 -0.153 0.143 
cort-2 WA-XIV  (Eaccaca14a) 83.0 3.5 6.312 0.140 
bodylength-1 WA-XIV  (Eaccaca14a) 78.7 2.9 -2.044 0.146 
bodylength-2 WA-XXVII  (Eacgaga05w) 9.7 2.8 -1.869 0.122 

 
Table 1 List of QTL identified in WR x AR doubled haploid rainbow trout at a 

significance level of p<0.05.   

a Position is the QTL distance form the top of the linkage group in kosambi cM.  Markers 

corresponding to QTL are listed in parentheses.   

b LOD is the log of odds that the additive effect is significantly different from zero.  

Permutations were calculated with 1000 replications and QTL were significant (P < 0.05) 

c Additive effect, or effect caused by presence of the WR allele at the locus.  

d r2 is the percentage of the total trait variance explained by the QTL.    
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Rainbow trout 
linkage group 

Linkage group 
name 

Trait Source 

OA-XXVII log cortisol (Drew et al., 2007) 
OA-XXVII body mass (Drew et al., 2007) 
OS-27 body mass  (Drew, 2006) 
15 body mass (O'Malley et al., 2003) 

27 
 

WA-XXVII body length this study 
WA-I cortisol this study 1 
OS-1 specific growth rates (Drew, 2006) 
WA-VI body mass this study 6 
S body masss (O'Malley et al., 2003) 
WA-XVI cortisol this study 
WA-XVI body length this study 
OS-14 body mass (Drew, 2006) 
OS-14 condition factor (Drew, 2006) 

14 

OS-14 specific growth rate (Drew, 2006) 
 
Table 2  Rainbow trout cortisol and growth QTL comparison among 4 independent 

studies.  Linkage group symmetry for this study and O’Malley et al. 2003 was determined 

by microsatellite markers common to (Sakamoto et al., 2000) or Nichols et al. 2003.  

Drew 2006 and Drew et al. 2007 confirmed linkage by matched AFLP markers to 

Nichols et al. 2003.  Suggested QTL are followed labeled with s, significant QTL are 

unlabeled.     
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Figure 1 Histograms of (a) whole body cortisol levels (b) body mass and (c) body length 

WR x AR doubled haploids. 
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Figure 2 WR x AR linkage groups with significant QTL for cortisol, body weight and 

body length.  Linkage group names correspond to those in the rainbow trout reference 

map (Nichols et al., 2003).  Interval distances in (kosambi cM) are shown on the right of 

the linkage group along with QTL name and position (dark bars) and 1-LOD significance 

interval (wiskers). 
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Figure 3 Relationship between cortisol and (a) body length and (b) body mass for WR x 

AR doubled haploids.  Linear regression equations are shown in the figures. The r2 values 

and associated p-values are (a) r2 = 0.131, p = 0.001 and (b) r2 = 0.099, p = 0.005.  
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CHAPTER THREE 

FUTURE DIRECTIONS   

A QTL study is used to identify regions of the genome having influence on a 

particular trait.  Traits of interest in intensive animal culture are typically those 

influencing production efficiency including meat quality, reproduction, immune 

response, food conversion efficiency and stress response.  Conducting QTL studies 

locating genomic regions influencing such traits is one step toward the ultimate goal of 

modifying trait prevalence through selective breeding.  Once QTL have been identified, 

the regions can be searched for the underlying causes of variation.  This primarily 

includes searching for and identifying genes involved with the trait.  This approach has 

been successful in identifying loci underlying disease traits in humans and pigs (see 

Rothschild 1996).  Genes can then be searched for mutations in coding regions which 

may be responsible for phenotypic variations.  Development of efficient genotyping 

methods for such polymorphisms could then lead to marker assisted-selection, a method 

used to create broodstocks exhibiting desirable traits.               

This study focused on identification of QTL for post-stress body cortisol levels in 

rainbow trout.  Negative correlations with cortisol levels and traits of economic 

importance have been reported by Jentoft et al., 2005; Weil et al., 2001 and this study.  

Here, two cortisol QTL were identified in a wild by domestic rainbow trout cross.  One of 

the QTL (cort-1) was found on the rainbow trout linkage group 1, and the other (cort-2) 

on linkage group 14.      

With regard to stress response in rainbow trout only one gene, carbonyl reductase 

1 (CBR1), has been mapped to date (Nichols et al., 2003) .  Carbonyl reductase is 
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analogous to 20β-hydroxysteroid dehydrogenase and is know to be involved with cortisol 

metabolism and clearance (Mommsen et al., 1999; Truscott, 1979).  In our study, the 

cort-1 QTL mapped in close association to the CBR1 gene.   

In pigs, the estrogen receptor (ER) gene is known to have influence on litter size 

(Rothschild et al., 1996).  Investigations revealed a map-able polymorphism within the 

gene between the Meishan and Large White breeds of pigs and allelic association was 

made to litter size (Rothschild et al., 1996).  The AA homozygote pigs produced on 

average 2.3 more pigs in their first litter than the homozygote BB individuals (Rothschild 

et al., 1996).  Identification of mutational polymorphisms on genes, such as the one 

described above, do not conclusively mean that that gene is responsible for the observed 

phenotypic changes.  They do, however, provide a valuable tool for increasing the 

prevalence or magnitude of desirable traits.   

The same principle can be applied to the CBR1 gene for stress response in 

rainbow trout.  Mutational changes in the CBR1 gene coding region can be detected by 

cDNA sequencing of the WR and AR parental lines.  If mutations are detected, the 

doubled haploid mapping population can be genotyped.  Once scoring of the mapping 

population is complete, a correlation can be made between an allele and phenotype.  If 

one allele is strongly associated with decreased stress response it can then be 

implemented in marker-assisted selection to create a low stress line of fish.  It has been 

reported that body mass in rainbow trout is more closely associated with prolonged 

elevation of cortisol levels rather than with peak post stress levels (Weil et al., 2001).  

Fish with variations in the CBR1 gene may also display variations in cortisol clearance 

after a stress event.  Identification of alleles associated with more rapid cortisol decreases 
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may be possible.  Using marker-assisted selection, lines divergent in cortisol metabolism 

rate could be created.  Cortisol clearance rates could be tested by exposing fish to a 

stressor and measuring cortisol levels at various times post stress .  This would allow 

testing for associations of cortisol clearance rate and economically important traits.  

To date, 4 QTL for post stress cortisol levels have been identified in rainbow 

trout, two in this study and two by Drew et al. (2007).  Only one of these (cort-1 

mentioned above) has been associated with a gene.  For the others, the candidate gene 

method should be employed to identify genes associated with stress response.  In essence 

“the candidate gene approach is an educated guess based on physiological knowledge of 

the underlying biology of a trait” (p233) (Silverstein et al., 2006).  This approach is based 

on understanding the physiology behind an important trait, and identifying genes 

important in the process.  Stress response is a highly complex trait involving many genes 

and regulatory steps, see (Wendelaar Bonga, 1997).  In fishes, after perception of a 

stressor, corticotrophin releasing hormone (CRH) is released from the hypothalamus and 

stimulates the pituitary gland to release adrenocorticotropic hormone (ACTH), α-

melanophore-stimulating hormone (α-MSH) and β-endorphin (β-end).  These then 

stimulate the interrenal cells to produce and release cortisol.  Many other genes coding 

for cortisol production and inactivation are also potential candidate genes.  The ones 

listed would be of top priority for testing association with QTL loci.   

For continued research on the control and effects of stress response in fish, 

production of two lines divergent for stress response would be invaluable.  Identifying 

easily scoreable markers, such as microsatellites, that track with the cortisol QTL found 

in this study and Drew et al (2007) would allow marker-assisted selection and creation of 
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divergent lines.  Fish divergent for stress response would allow testing for any number of 

traits that may be influenced by stress.  Traits of main interest may include body mass, 

immune response, reproduction, disease resistance and food conversion efficiency.   

The detection of QTL influencing stress response in a commercially important 

aquaculture species has large potential benefits.  The intensive culture of fishes is 

relatively new compared to other forms of animal husbandry practices.  The process of 

domestication involves evolution of metabolic, physiological and behavioral traits best 

suited for the new environment.  Persistence of strong stress response in intensive culture 

environments has reported negative effects.  Understanding the underlying genetics of 

stress response has potential for drastic improvements in the efficiency of production.  

The QTL study performed here is one of many steps leading to the understanding needed 

for the enhancement of rainbow trout culture.  Co-localization of candidate genes with 

QTL would is the next step in understanding the complex control of stress response.  

Eventual creation of lines divergent for longevity of, or peak stress response would be a 

powerful system for understanding the relationship of stress and economically important 

traits.     
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