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LEAST ACTION PRINCIPLE FOR REAL-TIME 

MITIGATION OF ANGLE INSTABILITY IN POWER 

SYSTEMS 

 

 

 

ABSTRACT 

 
By Michael Sherwood, M.S. 
Washington State University 

December 2007 
 
 
 

Chair:  Vaithianathan Venkatasubramanian 
 
 The use of synchrophasors in power systems has been increasing due to the 

necessity in real-time monitoring of critical areas in a system.  The advantages of 

synchrophasors are evident in their use in the Wide Area Monitoring System where 

monitoring the voltage magnitudes and angles in real-time is critical in maintaining 

operational reliability.  Problems arising from deregulation combined with excessive 

loading have made power systems less secure.  To help alleviate these issues, it is 

essential that the reliability status of a system can be assessed as quickly as possible.  

Synchrophasors combined with a high speed communication network can allow 

development of automatic control actions, which in turn give operators more time to take 

preventive actions to keep the system from collapsing. 
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 The use of synchrophasors or Phasor Measurement Units in automatic generation 

shedding schemes, as well as load shedding schemes have been proposed in the past.  

When such an action is initiated, it is extremely important to know that it is the correct 

one to take since load shedding results in customer inconvenience and lost revenue.  On 

the other hand the total loss of a system such as from blackouts leads to an adverse 

impact on society.  One method for determining the stability is the transient energy 

function.  The use of transient energy functions in determining stability has shown 

potential in determining load or generation shedding.  The computation of transient 

energy functions using real-time data from synchrophasors is therefore an attractive 

solution to mitigating stability. 

Least action principle is proposed in theoretical physics for abstract modeling.  Here, 

the concepts of least action principle are applied for assessing and mitigating angle 

instability in power systems.  From the computation of potential and kinetic energy, a 

different quantity known as the Lagrangian is formed.  The Effort, which is the time 

integral of the Lagrangian, is then calculated and is used in determining the critical 

generators for initiating generation shedding.  The IEEE New England 39 bus test system 

is used to test the algorithms.  From the results it appears that the use of Effort of each 

machine is reliable in determining the set of critical generators following a disturbance. 
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CHAPTER 1 INTRODUCTION 

1.1 OVERVIEW 

Operational reliability of large power systems has received much attention in the 

past decade because of deregulation and ever increasing loads.  One of the more recent 

events was the August 2003 blackout which occurred in the North Eastern United States, 

it was estimated to have cost roughly 6 billion USD in lost revenue alone, apart from the 

societal impact [3].  In determining corrective actions to prevent such events from 

occurring, it was found that providing better real-time tools for operators was a top 

priority [4].  The emergence of synchrophasors in monitoring power system conditions 

seems to be an attractive solution for monitoring real-time operational reliability status.  

Knowing the voltages at each bus in real-time is only part of the solution.  From the point 

of view of angle stability, we also need to know whether or not a generator or group of 

generators will become unstable based on interactions with other components in the 

system. 

In transient stability of power systems, it is critical that the operating frequency and 

voltage levels stay within an adequate level. Voltage stability is relatively slower 

phenomenon since we typically know that the areas with the lowest voltage levels and 

reactive power reserves are the critical areas where corrective actions will have the 

greatest impact on mitigating voltage stability.  Angle stability on the other hand is not as 

easy to analyze.  Although it is defined as the ability for the generators in a system to 

remain in synchronism, it is a much faster phenomenon and is not as clearly understood. 

In some cases, a system may not go angle unstable on the first swing.  In such a case it is 

 1



not as apparent which modes or mechanisms are causing the system to lose synchronism.  

Whether or not the system is heavily loaded at the time of disturbance is also important 

since under such stressed conditions the swings can not be easily distinguished as being 

stable or unstable right away [5].  When this happens, generators that may initially appear 

stable will later follow the other unstable generators rather then staying in synchronism 

with the rest of the system.  Being able to prevent such an event is beneficial in 

maintaining stability. 

Looking again at the August 2003 blackout we see that eventual loss of generators 

and transmission lines rapidly lead to the loss of synchronism between different areas [3].  

From the data given in the August 14th blackout report we see that the loss of 

synchronism happens in the order of seconds whereas the voltage declines that preceded 

took minutes.  An approach that seems well suited for real-time stability assessment is the 

transient energy function and the angle algorithm proposed earlier by Dongchen Hu [7]. 

The use of transient energy functions is one method used for determining stability.  

With recent advances in data acquisition using synchrophasors, the estimation of 

frequency and rotor angle can be accomplished in less then a second.  This is a significant 

time reduction when comparing with traditional state estimation that takes minutes to 

complete.  To see how synchrophasors apply to transient energy functions a brief 

description of how they are computed is in order. 

Transient energy functions are computed by using the kinetic energy and potential 

energy of a machine.  In previous attempts to use the energy function the energy 

dissipated in the transmission network was estimated [1].  In the use of transient energy 

functions applied in this dissertation it is assumed that this dissipated energy is negligible.  
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What we then have is the kinetic energy as a function of rotor frequencies and the 

potential energy as a function of rotor angle displacements.  The summation of these two 

terms for each machine gives the total energy of that machine.  Since the total energy is a 

function of quantities easily measured by synchrophasors it is obvious that the total 

energy can be computed almost as quickly as the data becomes available. By studying the 

total energy of each machine we can see how much energy each machine can produce or 

absorb from the system before losing synchronism with the grid. 

Several new approaches to using the individual energy functions are proposed.  The 

Lagrangian, which is based upon the difference rather then the sum of the kinetic and 

potential energy, can be used in determining dynamic stability in the same way as the 

total energy.  There are several advantages to using the Lagrangian over the total energy 

which will be discussed in the later chapters.  The physical meaning of the Lagrangian is 

somewhat vague since it is used in Classical Physics as a modeling principle to determine 

the equations of motion of a system.  Conceptually we can visualize the Lagrangian as an 

indication in which way the energy is being converted between the kinetic and potential 

energy.  The Lagrangian is treated in the same way as the total energy by noticing that a 

maximum amount can be obtained by each machine before instability occurs.  The 

Lagrangian is shown in this thesis to indicate instability faster then by using the total 

energy.   

A new approach in detecting instability is the use of Effort for the individual 

machines.  In classical physics, Effort is known as the Action.  Effort, or Action, is given 

by the integral of the Lagrangian over time.  Interestingly enough, the minimum of the 

action, known as the principle of least action, gives us to determine a set of equations 

 3



which describe the motion of the system.  Newton’s laws of motion are the more 

commonly used alternate method fore deriving the dynamic equations.  In this Thesis, 

Least Action Principle is applied in the context of real-time stability. 

Since the Lagrangian is being computed in real-time, it makes computing the Effort 

a straightforward procedure.  To find the limiting amount of Effort that a generator can 

assert, we integrate the Lagrangian along the trajectories corresponding to the fault 

scenario, with duration equal to the critical clearing time, near the given generator.  For 

disturbances dealing with only faults, we calculate the Effort for the fault duration, and if 

the Effort exceeds the maximum amount needed for maintaining stability we take 

preventive action to maintain synchronism.  Since it is difficult to know that there is a 

fault until it has been detected and cleared, we will also look at cases where the sum of 

the Lagrangians over all machines is used as a trigger to start computation of the Effort. 

By looking at the rotor angle alone we can also determine generators that are losing 

synchronism with the system.  This method was proposed recently in [19] and by 

Dongchen Hu [7].  The algorithm works by taking the estimated rotor angle and 

comparing with a set threshold.  Once the threshold is exceeded the rotor angle is 

integrated and if the integral exceeds a set amount before the rotor angle begins 

decreasing then control action is taken.  The advantage of this is it takes away from the 

over sensitivity of only looking at the rotor angle, which can change depending on the 

modes of instability.  The results of Dongchen’s algorithm, which will be called the angle 

algorithm from this point on, are compared with the transient energy function, 

Lagrangian and Effort to determine accuracy between algorithms. 
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The terms rotor angle and rotor frequency used in this dissertation represent the 

aproximate rotor angle and frequency.  This refers to the synchrophasors measurements 

taken at the generator terminal bus.  The bus voltage angle is approximately equivalent to 

the rotor angle with regards to its use in the preceding work.  This assumption is made 

based on the premise that the bus is located electrically near the generator, in other words 

the only impedance between the bus and the internal voltage is the synchronous 

reactance.  From simulations on the 39 bus a difference ranging from 1 to 20 degrees was 

observed but this is an irrelevant difference since we are referring the bus voltage angle 

on a center of inertia frame, not to mention that the critical energy is calculated using the 

bus voltage angle.  The frequency on the other hand is not measured directly.  It is 

computed from the bus voltage angle and noting the change in angle with respect to time.  

This can be accomplished easily since each data point has a time stamp associated with it. 

The structure of this dissertation is as follows.  In Chapter 2, we discuss the 

transient energy function that has been proposed with only the individual machine energy 

being computed.  The model is modified to be used with synchrophasors data referenced 

on a system wide center of inertia frame of reference.  The use of center of inertia is 

implemented on both rotor angle and frequency estimates.   In Chapter 3, the Lagrangian 

and Effort are introduced.  Since the computation of Effort follows from the Lagrangian it 

seems fitting to include them both in the same chapter.  The angle algorithm is introduced 

in Chapter 4 with its formulation given in [7].  In Chapter 5 the algorithms are tested on 

two variations of the 39 bus system.  In the first setup, we treat each generator as a 

separate area making the plant modes more prevalent then the inter-area modes.  The 

loading was varied to make the system more or less stressed.  For the second setup 
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several transmission lines are removed from the system and the impedances of the tie-

lines between areas are increased (i.e. the line length increased) in order to test the 

algorithms more thoroughly.  The severity of the loading in the system is then varied to 

determine the accuracy of each algorithm with regards to different thresholds, taken at 

light, medium and heavy loading. 

A few remarks regarding the dynamic data used in the simulations should be stated.  

First off the original dynamic data included power system stabilizers.  These have been 

removed from the models.  Governor models have been added on all generators except 

for Generator 10 located at bus 39.  The droops on each generator governors vary from 

15% to 30%.  The classical model was used for Generator 10 and the two axis model for 

the rest of the generators. 

1.2 LOAD SHEDDING 

From conducting simulations the proposed algorithms discussed so far have been 

shown to be well suited for determining generation shedding.  Load shedding has been 

difficult to determine just from using these algorithms.  From the 39 bus 3 area test 

system, we can see that area 2 is significantly more loaded then the other two areas.  As a 

consequence we see that area two is importing a significant amount of power from the 

other two areas.  We would then expect that shedding load in area 2 would have a greater 

effect on mitigating angle instability then for shedding load in the other two areas.  

Looking at the center of inertia for with respect to rotor angle and frequency we cannot 

tell at the time when control action is taken if load shedding should occur.  This is 

because if a fault occurs in the heavily loaded area then the machines will accelerate for a 

short time while the transmission line is still faulted.  Although in the long term we would 
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see the frequency to decay in this area, we can not predict it for certain by using the 

proposed algorithms.  In the following simulations, a simple algorithm is proposed to 

determine the most suitable area for load shedding. 

This indexing for each area is based on the load to generation ratio for that area.  

More specifically we take the total load in the area and divide by the total generation of 

the system, shown in equation 1-1. 

/

1

                      (1.1)i i
L G k

i
i

LoadR
Gen

=

=

∑
 

Equation 1.1 is evaluated at the time of control action and the area with the highest ratio 

is the candidate area for load shedding.  For simplicity, we shed the same amount of load 

as generation. 
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CHAPTER 2       TRANSIENT ENERGY FUNCTIONS 

2.1 INTRODUCTION 

The use of transient energy functions in determining stability has shown promise 

as seen from previous research [1].  Transient energy functions are a means of estimating 

the energy in a system. Knowing the energy allows us to understand the behavior of a 

system without having to run time-domain simulations to determine if the trajectories are 

stable.  Since the trajectories, rotor angle and frequency, are referenced on a center of 

inertia then the energy is also referenced the same.  This makes identifying the critical 

generators significantly easier since we can directly see if they are accelerating or 

decelerating away from the rest of the system.  We will further assume that the energy of 

each generator is initially zero for the start of each simulation.  This has been shown to be 

a reasonable assumption in previous work [1][5].  Simulations on the 39 bus system have 

also shown that the energy changes insignificantly from load changes compared to the 

energy from sustained faults making any small deviations from the initial energy from 

zero irrelevant. 

2.2 FORMULATION 

To start off the definition of center of inertia is re-stated here.  The definition of 

center of angle using the generator inertia H is given by the following, 

∑

∑

=

=

−

= N

i
i

i

N

i
i

COA

H

H

1

1
δ

δ  
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In theory the inertia H is computed for each generator and is therefore ready to use for 

real-time computation.  However the generator at a given bus might represent an 

equivalent group of many generators, in this case making the exact calculation of H for 

that equivalent generator difficult to compute.  A scenario that makes using H difficult is 

where generators within a plant are committed or de-committed as load changes through 

out the day.  A new approach using the scheduled power output is used as a weighting in 

the center of angle was proposed in [19].  The new center of inertia is given in equation 

2.1, 

1

1

         (2.1)
i

COA

i

N

i T
k i

N

T
i

P

P

δ
δ

−

=

=

=
∑

∑
 

In 2.1 iδ is the bus voltage angle estimate of the rotor angle for the ith generator in area k.  

For a system represented as one single area, the center of inertia is computed using all the 

generators online.  Once the center of inertia is computed, we then reference the rotor 

angles to it as shown in 2.2. 

        (2.2)
COA

k k k
i iθ δ δ= −  

The rotor frequency is computed on the center of inertia frame of reference in the same 

way.  This is shown in 2.3 and 2.4, 

1

1

         (2.3)
i

COA

i

N

i T
k i

N

T
i

P

P

ω
ω

−

=

=

=
∑

∑
 

        (2.4)
COA

k k k
i iω δ δ= −& &%  
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 To understand the transient energy function better, let us look at the swing 

equations of the synchronous generator defined on the center of inertia given in [1], 

i         (2.5)i i mi ei iP P Dω ωΜ = − −&% %  

Equation 2.5 tells us the acceleration, or deceleration, due to the mismatch between 

mechanical power on the shaft and the electrical power  which opposes it.  The 

damping  is assumed to have a negligible effect on the first swing and therefore is set 

to zero. Another term appearing on the right hand side of 2.5,  is used in [1][5] 

which relates the power mismatch to the center of inertia power mismatch, however the 

swing equations used in this research will neglect this. 

miP eiP

iD

COA

kP−

 To relate the swing equation 2.5 to energy it is necessary to describe the 

fundamental relation between work, energy and power.  Knowing the force acting on a 

body tells us the acceleration of that body by Newton’s equation F m a= ∗ .  The torque 

that causes a body to rotate is proportional to the force by the distance from the center of 

mass.  Noting that the swing equation essentially tells us the net torque on the generator 

shaft we can then state that it is proportional to a net force.  Taking the first integral of 

motion of the swing equation then gives us work.  Work is merely the change in kinetic 

energy of the system, and since energy is conserved this is also equal to the change in 

potential energy.   

 The mathematical derivation given in [5] is similar but instead of multiplying 2.5 

by δ to get Work, i.e.W τ θ= ∗ , we use the time derivative of delta δ&  giving us power 

instead of work.  This is done to make the integration easier.  Integrating with respect to 

time gives us the work, which is equivalent to energy.  Deriving the energy in this fashion 

makes integration easier since we know that δ& is equivalent to ω.  Integrating 2.5, 
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( ) ( )i mi ei i mi ei
d dP P dt dt P P dt
dt dt
ω δω δ ωΜ − + ∗ = Μ ∗ − − ∗∫ ∫ ∫& &%  

Looking at the first integral term on the right hand side, we see that this is merely the 

chain rule used in differentiation so integrating this gives us 21
2 iωΜ % .  For the second term 

we see that cancels out so we are left with the integration with respect to angular 

displacement δ.  At this point it, should be mentioned that Equation 2.5 was arranged 

such that . Integrating the term (zero) gives us a constant representing 

the total energy of the system which satisfies the theory of energy conservation.  The 

transient energy function representing a single machine is given by equation 2.6, 

dt

0 (i miP Pω=Μ − −&% )ei

21 ( )          (2.6)
2

s

i i i mi eiTE P P d
δ

δ

ω δ= Μ − −∫%  

2.3 LYAPUNOV’S SECOND THEOREM 

The premise that transient energy functions are suitable for determining stability 

of a system is based on Lyapunov’s Theorems of stability.  In particular interest is 

Lyapunov’s second method.  The second method is based on finding an equation that tells 

us the behavior of the trajectories without explicitly integrating the differential equations 

which is computationally tedious.  From the point of angle stability this means that the 

Lyapunov equation gives sufficient conditions on when the rotor angle and rotor 

frequency trajectories are asymptotically stable in the sense that they return to a stable 

equilibrium point.  The Lyapunov function will be denoted as  in keeping with the 

traditional notation.  For a function to be considered as a Lyapunov function it must be 

shown that the following characteristics apply [2], 

( )V x
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1. ( )V x  and its first derivative with respect to time, ( )V x& , are continuous 

within a bounded region Ω. 

2. (0) 0 , ( )V x& <0 (negative definite V =

3. ( )V x  is positive and bounded within a region Ω surrounding the origin. 

It has been shown in [1], [5], that the transient energy function satisfies these 

conditions making it a suitable Lyapunov function.  The third criterion has been shown to 

be true through simulation results as stated in [5].  The second criterion is easily verified 

by inserting the equilibrium points i sω ω= and i sδ δ= into 2.6.  The main problem is 

verifying the first criterion, that the estimated rotor angle and frequency are continuous.  

Any type of network changes will cause discontinuities in bus voltage angles and 

magnitudes.  For instance a line tripping can show a difference especially if it is a main 

tie-line.  Faults close to any generator will lead to an even larger discontinuity.  As a 

solution to this problem a low pass filter is used on the synchrophasor’s output. 

 

2.4 IMPLEMENTATION 

The online implementation of the transient energy function is assumed to be done 

through SCADA (Supervisory Control and Data Acquisition).  SCADA gives the control 

operators a way to monitoring the power flows and voltage levels in a system.  

Traditionally this was done with state estimators but for convenience we will assume that 

the synchrophasor’s measurements monitoring the output of each generator are used 

instead.  This is a reasonable assumption since the generator output is metered anyways. 

When implementing the transient energy function we compare the computed 

energy with the known critical amount of energy.  If the maximum energy for a given 
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disturbance is less then the critical energy required for the machine to lose synchronism 

then it is stable.  If the machine goes above this limit then it is unstable.  For the case 

where a group of machines beginning to lose synchronism we take the machine that takes 

the shortest amount of time to go beyond its critical energy limit as the candidate machine 

where generation shedding should occur. 

The critical energy is found through simulating a sustained fault with duration 

equal to the critical clearing time near the generator of interest.  The following example 

shows the calculation of the critical energy for Generator 4 on the 39-bus 3 Area power 

system under heavy loading conditions.  The maximum total energy for the generator is 

shown in Figure 2-1, 

Figure 2- 1: TE Threshold Gen4 
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The total energy of Generator 4 is depicted in Figure 2-1 as the dotted line.  The 

maximum total energy that is reached is 2.41pu.  Looking at Figure 2-1 we see that the 

total energy does not go to zero.  The reason for this is that we are integrating from the 

pre-fault equilibrium point, not the post-fault equilibrium point.  To know the post fault 
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equilibrium point, we would need to do transient simulations for all possible faults, which 

is impractical for any reasonably sized system.  We can see that the total energy remains 

bounded so it is considered stable even though the second Lyapunov condition is not 

entirely met.  Examining the kinetic energy, we see that it does go to zero as shown in 

Figure 2-2, 

Figure 2- 2: Kinetic Energy Gen 4 
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When all of the kinetic energy is converted to potential energy, we can say that 

the system is stable.  This can be misleading since in power systems we consider a 

generator to be unstable when pole slipping occurs.  Pole slipping is a phenomenon that 

we wish to avoid since it causes damage to the synchronous machine and other 

equipment.  In reality there are protection schemes to prevent the machine from pole-

slipping, so assuming the machine will trip we need to determine at what point we need 

to shed generation to prevent the generator from going offline completely. 

In Figure 2-3 it is evident that the potential energy stops increasing as the kinetic 

energy is converted into potential energy. 
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Figure 2- 3: Potential Energy Gen4 
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 Let us look at the case where Generator 4 remains in synchronism with the system 

but other generators do not. In Figure 2-4, we observe that the total energy of Generator 4 

does not exceed 2 pu, or come close to it.   

Figure 2- 4: Gen 4 Total Energy, Fault Bus 29 
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Generators 2, 3, and 10 diverge from the rest of the system where Generator 4 remains in 

synchronism.  Another point that should be made is that the total energy of Generator 4 

settles down to a value less than zero where as the unstable generators do not.  In this 
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case, the unstable generators, those located in Area 2 in Figure A-1, decelerate since the 

Generation in Area 2 is not sufficient to supply the entire load in that area. 

2.5 CONCLUSIONS 

Determining the stability of a power system using total energy has its limitations.  

The most notable is that it is slow in determining the critical generators.  The results 

section of this dissertation compares the total energy algorithm with the angle, 

Lagrangian, and Effort.  Here we see that the angle algorithm proposed in [19] is more 

suitable for use in determining the critical generators since it is much faster then the total 

energy algorithm.   

Compared with the Lagrangian we see that it is slower to respond.  One of the major 

differences lies in the fact that the kinetic energy is at a maximum on the largest swing 

when the potential energy is at its highest absolute value.  Since the kinetic energy is 

squared, it doesn’t tell us if the generator is speeding up or slowing down.  So looking at 

the potential energy we see that when it is most negative, it must be at a higher rotor 

angle, thus accelerating.  Thus negating the potential would mean the Lagrangian would 

be greater at this point then the total energy.  At this point the Lagrangian would be at a 

maximum where as the total energy is not, making the Lagrangian a faster algorithm for 

detecting the instability.  Looking at the case where the fault is near the generator we see 

that the kinetic energy plays a much more significant role then the potential energy 

during the fault on case.  For faults electrically farther away this is not the case. 
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CHAPTER 3 LAGRANGIAN AND EFFORT 

3.1 INTRODUCTION 

The Lagrangian gives us the difference rather then the sum of the energy 

components.   By integrating this difference over time, we find the Action, or Effort.  

Apart from its use as a clever way to find the Newtonian equations of motion, it has no 

other physical meaning.  Since we integrate it to find the Effort, we can simply think of it 

as the density or intensity of Effort.  The Lagrangian is applied in the same manner as the 

total energy and as such we treat it as a Lyapunov function.  

The Effort on the other hand represents the minimal amount of action that the 

system takes from one point in time to another.  This is difficult to determine since data 

on whether or not a line was tripped due to a fault may not be available.  We first test the 

system assuming we know these times, and then we implement a new approach by 

comparing the Lagrangian of the whole system. 

 

3.2 FORMULATION 

Looking at the difference between the kinetic energy, and potential energy we form 

the Lagrangian as shown in 3.1, 

              (3.1)i i iL KE PE= −  

Where KE and PE are the kinetic and potential energy of the ith generator computed in 

real-time as in 2.6.  The Effort is then computed by 3.2, 

2

1

                 (3.2)
t

fforti i
t

E L dt= ∫  
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The integration limits from t1 to t2 represent the time frame in which the Effort of the 

system is of interest.  This time frame is represented as the fault on time for transients 

dealing with faults.   

 A new way of determining t1 and t2 is by looking at the system wide Lagrangian, 

which is simply the sum of the Lagrangians evaluated for each machine.  From 

simulations it is obvious that small changes in load, say +/- 5%, have little effect on the 

total energy of the system.  The effects on the Lagrangian are therefore negligible.  A 

good question to ask is at what point we should declare the system to be in a state of 

emergency.  The short answer to this lies in good engineering judgment at this point 

rather then mathematical formulation.  Further research is needed for theoretical analysis.  

From simulation on the 39 bus test system, it was found that a value of around 0.2 pu 

energy indicated severe problems with the system. A justification of using 0.2 pu of 

energy is shown below where we examine an unstable fault scenario and a stable case 

where load is changed in the system. 

Figure 3- 1: System Lagrangian, Unstable Fault Case 
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In Figure 3-1 we see that the Lagrangian reaches a maximum of about 8 pu indicating a 

large disturbance has occurred.  For a load change in the system we see in Figure 3-2 that 

0.2 pu is a more conservative threshold. 

Figure 3- 2: Computation of Lagrange for each generator, no fault simulated 
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From Figure 3-2, we observe that the Lagrangian for the most effected generator goes to 

about 0.15. Looking at the sum of Li over all the individual machines, we see that this 

sum stays close to zero as shown in Figure 3-3. 

Figure 3- 3: Sum of Lagrangians for Cont1, Stable 
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 Knowing t1 allows us to define the starting point for the Effort.  Let us call this 

sum TL.  Let TL be computed as follows in equation 3.3, 

( ) ( )                (3.3)i
i

TL t L t=∑  

Equation 3.3 is the same as finding the total energy of a system as described in [7] except 

we use the Lagrangian.   

To determine the ending time t2 we look at the behavior of TL.  If TL is decreasing 

then the phase angle and frequency must be decreasing.  At this point, we can conclude 

that the critical generators are regaining synchronism with the system.  If the Effort of the 

critical machine exceeds the critical amount needed to lose synchronism within the time 

frame from t1 to t2 then the generator is unstable.  If Equation 3.3 begins decreasing 

before the maximum amount of Effort has been exceeded then we can not say for certain 

whether the machine will lose synchronism. 

3.3 IMPLEMENTATION 

To determine the efficiency of the Lagrangian and Effort algorithms we will look at 

two cases.  The first case will include a fault and the other an overloaded system will be 

simulated with no fault.  For the faulted cases the system is stable with regard to +/- 5% 

load fluctuations.  The fault is applied long enough for the system to lose synchronism.  

The method described above in determining t1 and t2 for use in 3.2 is compared with the 

method were we assume we know t1 and t2 for a given fault.  For simplicity, let us refer 

to these as method 1 and method 2 respectively.  The overloaded system will be analyzed 

using method 1.  A thorough investigation of the Lagrangian and Effort algorithms is left 

for the results and comparisons section of this dissertation. 
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 For the following fault case, a three phase fault is simulated at bus 4 in the system 

shown in Figure A-1.  Observing the estimated rotor angle, defined on the COI reference 

frame, in Figure 3-3 below we observe that Generator 3 is the critical generator. 

Figure 3- 4: Estimated Rotor Angle from Bus Voltage Angle Measurement 
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At about 2 seconds, we see that Generators 2 and 10 begin to decelerate from the 

center of inertia.  Area 2, shown in Figure A-1, is clearly losing synchronism with the rest 

of the system.  Computing the load ratio for each area in the system we see that Area 2 

has the highest, as shown in Table 3-1 below, thus we shed load at Area 2. 

Table 3- 1: Load to Generation Ratio, 39 Bus 3-Area System 

Load To Generation Ratio: 39 Bus 3-Area System
  Area1 Area2 Area3 

Loadi (MW) 1647.8 3433 2011.97

Geni  (MW) 2094.7 2496 2674.3

Loadi / Geni  0.787 1.375 0.752

RL/G 0.2268 0.4725 0.2769
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Determining how much load and generation to trip to make the system stable 

depends on several factors.  Being able to trip generation and load quickly helps in 

mitigating the angle instability thus the control action time at which each algorithm picks 

up has a significant effect on how much load should be tripped.  For longer control times 

we need to trip more load and generation to make the system stable. Further research is 

needed on these important issues.  Another factor has to do with the tie-line transfer 

limits.  If, for instance, we decide to trip generation and load at Area 2 but the amount of 

generation is more then the load then the tie-line connecting Area 2 to the grid becomes 

more stressed.  This problem can be overcome by simply shedding the same amount of 

load as generation. Using Method 1, the Effort is computed as shown in Figure 3-5. 

Figure 3- 5: Effort Computed for method 1 
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At 0.324 seconds, the Effort of Generator 3 exceeds its critical limit.  Generators 2 and 10 

begin to pull away from the rest of the system but since Generator 3 was the first to be 

picked up by the Effort algorithm we shed generation there instead of the other 

 22



generators.  If we assume we know the fault duration as described in Method 2 we 

observe a close approximation with the first method.  This is shown in Figure 3-6, 

Figure 3- 6: Effort Using Method 2 
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Comparing Figure 3-5 to 3-6 we see that the time difference in picking up Generator 3 is 

about 0.01 seconds.  Figure 3-7 shows the Effort computation for Generator 3 for both 

methods. 

Figure 3- 7: Effort Comparison Between Methods 
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From Figure 3-7 we see graphically that the two methods give almost identical results 

with little time delay between the two.  Comparing the results from the two methods for 

calculating Effort with those obtained from the other algorithms we see that Effort 

initiates control action the quickest, as shown in Table 3-2. 

Table 3- 2: Control Times Comparisons For Fault At Bus 4 

Fault Bus 4, Gen 3 Pickup 

  
Control 
Time(sec) 

Method 1 0.324
Method 2 0.314
Lagrange 1.057
TE 1.887
Angle 0.657

 

3.4 DETERMINING STABILITY LIMITS 

For the Lagrangian the limits are determined in exactly the same way as with the total 

energy.  A sustained fault is simulated up until the critical clearing time and we find the 

maximum value that the machine can withstand.  This process is shown in Figure 3-8. 

Figure 3- 8: Gen 3 Lagrangian Stability Limit 

0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (sec)

L i

Stability Limit For Gen 3 Using Lagrangian

X: 0.2833
Y: 2.4

Gen1
Gen2
Gen3
Gen4
Gen5
Gen6
Gen7
Gen8
Gen9
Gen10

 

 24



To find the stability limits as given by the Effort, we use the second method.  Since we 

are looking at the simulations to find the limits we can easily determine t1 and t2.  For the 

following simulation shown in Figure 3-9, t1 is 0.05 seconds and t2 is the critical clearing 

time at 0.283 seconds. 

Figure 3- 9: Gen 3 Stability Limit Using Effort 
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To find the critical Effort for each generator, we look at the Effort computed for the fault 

on time duration.  For Generator 3 we would set this limit to 0.233 as shown in Figure 3-

9.  This procedure is fairly accurate in determining the limits as long as the loading in the 

system stays within a reasonable level for which the thresholds were computed on.  For 

changes as much as 20 percent of the total load demand, we need to find a new set of 

thresholds.  In the results section, we look at three load levels, light, medium and heavy 

and compare the results between each. 

3.5 CONCLUSIONS 

The Lagrangian appears to be a good measure of stability.  Its use in determining 

instability seems to be comparable to the other algorithms and even indicates instability 
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faster then the total energy.  Since both frequency and estimated rotor angle data is 

available in real-time from PMU’s, it can be quickly computed.  For the computation of 

the energy components, it is necessary that the data be continuous.  Any discontinuities 

can have an impact on the computations resulting in incorrect control actions.  Filtering 

the data using a low pass filter helps in reducing the effects of any discontinuities and has 

been shown to have only a minor impact on the speed of detecting angle instability. 

Although tripping the same amount of generation as load is a good way to insure 

that the transfer limits are not exceeded, it may not be optimal in terms of lost revenue.  

After all, tripping less load while shedding more generation would lead to less revenue 

being lost.  A sensible question to ask is how we can lower the amount of load tripped 

and at the same time maximize the amount of generation tripped in order to keep the 

system stable.  Load shedding schemes developed in [9][10][11][12] along with countless 

others deal with optimizing load shedding.  A lot of these schemes are well suited for 

special cases but not for large power grids like the eastern interconnection.   

Overvoltage is also a key issue in load shedding.  In the August 2003 blackout 

load shedding actually made the situation worse due to the over voltage conditions 

causing over voltage relays to trip.  By tripping less load or by splitting up the amount to 

trip over a period of time would have alleviated the over voltage conditions.  For 

simplicity, it is assumed that over voltage is not a problem with regards to testing the 

algorithms.  In future research, this issue should be studied in greater detail. 
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CHAPTER 4 ANGLE MITIGATION ALGORITHM 

4.1 INTRODUCTION 

The angle algorithm uses a heuristic approach to predicting angle instability based 

upon observations of the angle trajectories during stable and unstable contingencies.  

When the rotor angle trajectory exceeds the critical angle θc, w.r.t. center of inertia, we 

then integrate over time the rotor angle.  If this integral remains bounded by some 

predefined quantity then we say that the system is transient stable [19].  Four thresholds, 

two for the acceleration and deceleration critical angles and two for their time integrals 

are required for each generation unit.  The physical interpretation of the integral is that it 

represents the generation reserve.  Knowing if this reserve is used up during a disturbance 

is a good indication of the angle stability of the system.  Generators with a higher reserve 

are generally more stable following disturbances [13]. 

Several advantages from using the angle algorithm include speed of instability 

detection as well as ease of implementation.  Since all trajectories are measured in real-

time through PMU’s, we can use the algorithm in real-time as well.  The estimation of 

spinning reserve can be updated by noting the change in active power output which can 

be computed easily from the synchrophasor measurements.  For simulations on the New 

England 39 bus test systems, we use a fixed threshold for the rotor angle θc and it’s 

integral denoted as Ω. 

Although the angle algorithm is fast, it has shown to be over sensitive as we will 

see from the simulations.  This may be because of the fact that the thresholds need better 

tuning and because the generation reserves have not been computed accurately enough.  
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For systems of reasonable size, say 50k buses, we would have to use more sophisticated 

methods to determine the thresholds. 

4.2 FORMULATION 

The trigger for initiating the computation of the angle algorithm is given by the 

maximum deviation from the center of inertia in Equation 2.2.  The integral of the rotor 

angle is denoted by Ωa and Ωd for acceleration and deceleration respectively and is 

computed when the critical angle deviation of Equation 2.2 is exceeded. If θi starts 

decreasing (decelerating) before Ωa is exceeded then we reset the integral to zero. 

Conversely if θi increases before Ωd is exceeded then Ω is reset.  For the simulations in 

this dissertation we set Ωa=2.5 and Ωd=-2.5. 

4.3 IMPLEMENTATION 

The implementation on the New England 39 bus system compared with the other 

algorithms is covered in greater detail in the Results and Comparisons section.  Here we 

will look at the case for a fault at bus 4 with the transmission line connecting bus 4 to bus 

14 disconnected to clear the fault.  Let us first examine the estimated rotor angles defined 

on the COI given in Equation 2.2, shown if Figure 4-1 below, simulated on the 3 area 

New England system shown in Figure A-1.  Load shedding is initiated as described in 

Chapter 3 where Area 2 is given as the best candidate. 
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Figure 4- 1: Estimated Rotor Angle From Voltage Angle 
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The Generators in Area 2 are at first accelerating from the center of inertia however 

Generators 2 and 3 stay in synchronism with the system for a longer time.  Clearly we 

need to shed load and generation in Area 2 as Figure 4-1 shows.  The area where load 

shedding should occur is not as obvious until about 1.75 seconds.  Looking at the load to 

generation ratio, given in Table 3-1, at the time of generation shedding gives us a good 

idea of what area to shed load at will have a highest impact on transient stability. 

 

4.4 CONCLUSIONS 

One of the main issues arising from using the angle algorithm is being able to 

properly determine the spinning reserves, and thus properly setting the maximum integral 

limit.  This can be accomplished using the operating the real power output and estimating 

the maximum generation output through offline studies.   
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Determining the critical groups of generators during a disturbance has been shown 

for the most part to be one of the strong points of using the angle algorithm, as the results 

in Chapter 5 will show.  The tendency of the angle algorithm to over react is another 

issue that needs to be addressed in future research. 
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CHAPTER 5 RESULTS AND COMPARISONS 

5.1 NEW ENGLAND 39 BUS TEST SYSTEM FAULT CASE 

The following tests were done on the original 39 bus system shown in Figure A-2 in the 

appendix.  The thresholds for each algorithm for this case are given in Table 5-1.  The 

maximum limits are given in per unit.  In several cases the energy and Lagrange limits 

are almost identical.  For these cases the energy is largely kinetic thus the energy and 

Lagrangian are almost the same.  The spinning reserve integration bounds used in the 

angle algorithm were set to 2pu. 

Table 5- 1: Unmodified 39 Bus System Thresholds 

Thresholds For Unmodified 39 Bus System 
  Lagrangian Effort Energy Angle(deg) Output(MW) 
gen1 11.7463 0.407 12.0478 +/-80° 317.82 
gen2 2.5737 0.328 2.5935 +/-80° 760.16 
gen3 3.4679 0.428 3.147 +/-80° 826.33 
gen4 2.9997 0.476 4.2065 +/-80° 803.45 
gen5 1.5347 0.303 1.0928 +/-80° 645.81 
gen6 2.101 0.45 2.3051 +/-80° 826.33 
gen7 2.589 0.592 1.4071 +/-80° 711.92 
gen8 2.6268 0.517 1.5786 +/-80° 686.49 
gen9 2.8042 0.156 2.1467 +/-80° 1055.17 
gen10 15.8196 1.198 20.0394 +/-80° 1271.28 

 
Table 5-2, shown below, compares the algorithms between different fault 

scenarios.  Between the Lagrangian, Effort, and angle algorithm we see a strong 

correlation between algorithms with regards to correctly indicating the most severe 

generator.  In most cases all four algorithms correctly picked up the candidate generator.  

We can see from the control times that the Lagrangian and energy algorithms are the 

slowest while the Effort is comparable with the angle algorithm. 
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Table 5- 2: Control Times For Unmodified 39 Bus System 

39 Bus Original System Fault Cases 
Unstable Cases Stable Cases 

Bus 4 4-14      Bus 4 4-14    
Li Angle Alg Effort Energy Li Angle Alg Effort 

2 1.954 2 1.3761 2 1.665 2 2.164 gen2 INF gen2 INF 2 INF
3 1.885 3 1.3661 3 1.665 3 2.074 gen3 INF gen3 INF 3 INF

Bus 14 4-14      Bus 14 4-14    
Li Angle Alg Effort Energy Li Angle Alg Effort 

8 1.083 1 0.7752 9 0.378 5 1.333 2 INF 1 INF 9 INF
9 0.825 8 0.4969     6 1.443 3 INF 8 INF     

    9 0.6261   7 1.373 8 0.33 9 INF    
          8 1.333 9 INF        

Bus 5 5-6      Bus 5 5-6    
Li Angle Alg Effort Energy Li Angle Alg Effort 

2 1.421 2 0.7951 2 1.034 2 1.63 2 0.75 2 INF 2 INF
3 1.65 3 1.5703     3 1.829 3 INF 3 INF     

Bus 25 2-25      Bus 25 2-25    
Li Angle Alg Effort Energy  Li Angle Alg Effort 

4 2.333 4 0.339 4 0.568 4 2.773 6 INF 6 INF 6 INF
5 2.333 5 0.688      7 INF 7 0.88 7 INF

Bus 2 2-25            
Li Angle Alg Effort Energy       

6 1.566 6 1.1567 6 1.396 6 1.815       
7 2.014 7 0.8177   7 1.954       

Bus 16 16-21            
Li Angle Alg Effort Energy       

8 2.473 8 0.2985 8 0.995 5 2.333       
9 0.597 9 0.5473 9 0.328 9 0.796       

 

With the stable cases we need to make sure that the algorithms do not initiated 

control actions.  The control times are denoted as infinite to indicate that the algorithms 

correctly classify the system as stable.  To be sure that we do not prematurely take control 

action we compare the Lagrangian, Effort, and angle algorithms to see if all three 

determine the same generator.  Some of the stable cases do pick up stable generators as 

being unstable but since the other two algorithms did not pick up that generator we do not 

initiate generation shedding.  Let us examine this case.  A stable system following a fault 

at bus 8 with transmission line connecting bus 8 to 9 tripped shows an unstable generator 

at bus 2.  Assuming we know nothing about the stability of the system at that time we 
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check the output for the other two algorithms and since neither one has confirmed that 

Generator 2 is unstable we do nothing.  Using the control times given in Table 5-2, we 

see that the critical clearing times improve, shown in Table 5-3. 

Table 5- 3: Critical Clearing Time Using Effort Control Times 

Fault 
Line 

Removed 

CCT 
(cycles) 

No 
Controls  

CCT 
Effort 

CCT 
Angle 

CCT 
Lagrangian 

CCT 
Energy 

4 4to14 50 50.8 52.3 51.3 51 

14 4to14 32 38.2 38.4 34 34.9 

4 4to5 50 50.8 53.1 48 47.6 

3 3to4 97 101.12 99 98.2 96.1 

4 3to4 50 50.8 52.3 50.6 50.5 

5 5to6 41 46.6 45.7 42.7 41.2 

6 5to6 37 42.8 43.34 41.1 39.7 

2 2to25 51 53.4 54.2 51.9 52 

25 2to25 27 39 35 33.2 31 

16 16to21 76 76.4 78 76.2 76 

 
 

The critical clearing time improvement various significantly between different generators 

as shown in Table 5-3.  One reason for this is that the amount of generation shed was set 

to 50% of the generation active power output which varies by as much as 500 MW as can 

be seen in Table 5-1.  Naturally, the more load and generation removed from the system 

the less stressed the transmission network becomes.  Shedding too much load on the other 

hand can lead to instability as well so should be avoided. 

5.1.1 NEW ENGLAND 39 BUS TEST SYSTEM OVERLOADED CASE 

Here we examine contingencies involving high loading in the system along with 

transmission line and generator outages due to over heating.  The unstable cases are 

examined first.  The contingencies where arbitrarily chosen to test the algorithms on 

various operating conditions.  Refer to Table A-1 in the appendix for exact contingencies 
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details.  For the first contingency only load increases with line outages are simulated.  In 

these cases, we increase the loading in one area and generation in a different area to 

simulate an increase in tie-line transfers.  Generator 3 is the first to go unstable as can be 

seen from examining the estimated rotor angles in Figure 5-1 below, 

Figure 5- 1: Rotor Angle Estimated From Bus Voltage Angle 
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The angle of Generator 3 is the first to increase beyond 90°s and the angle algorithm 

detects instability at about 28 seconds.  Generator 2 stays in synchronism with Generator 

10 for about 1 second indicating that the load shedding should occur near Generators 10 

and 2.  We now look at the other algorithms to determine stability.  The Effort isn’t 

computed until the total system energy or Lagrangian exceeds 0.2 pu so to determine 

stability using Effort we must wait a minimum of 27 sec as shown in Figure 5-2. 
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Figure 5- 2: Total System Lagrangian for Unstable Cont2 
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At 27, seconds we begin computing the Effort until the total energy decreases which 

occurs at 28.25 seconds.  The Effort computed within this time period is shown in Figure 

5-3. 

Figure 5- 3: Effort for Unstable Cont2 
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The Effort of the other 9 generators is negligible compared with Generators 2, 3, and 10.  

Since Generator 3 exceeds its stability threshold first, we shed generation at that unit.  

The system Lagrangian and total energy are shown in Figure 5-4 and 5-5 respectively. 

Figure 5- 4: Lagrange Computation for Unstable Cont1 
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Figure 5- 5 Energy for Unstable Cont1 
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In this case, we see that all four algorithms detected the correct critical set of generators 

however, since Generators 2 and 3 are electrically close to each other it becomes difficult 

to tell which one is the most critical. 

 
Table 5- 4: Unstable Cont 1 Algorithm Comparisons 

Unstable Cont 1 
  Gen Time (sec) 

Effort 3 27.49 
Energy 2 27.73 

Lagrange 2 27.65 
Angle 2 27.74 

 
Table 5- 5: High Loading Level Comparisons 

Unstable Cont 1 Stable Cont 1 
  Gen Time (sec)   Gen Time (sec) 

Effort 9 7.7 Effort - INF 
Energy 5 23.02 Energy - INF 

Lagrange 9 9.27 Lagrange - INF 
Angle 8 5.69 Angle - INF 

Unstable Cont 2 Stable Cont 2 
  Gen Time (sec)   Gen Time (sec) 

Effort 3 27.49 Effort - INF 
Energy 2 27.73 Energy - INF 

Lagrange 2 27.65 Lagrange - INF 
Angle 2 27.74 Angle - INF 

Unstable Cont 3 Stable Cont 3 
  Gen Time (sec)   Gen Time (sec) 

Effort 9 20.63 Effort - INF 
Energy 2 25.36 Energy - INF 

Lagrange 3 25.52 Lagrange - INF 
Angle 8 6.04 Angle - INF 

Unstable Cont 4 Stable Cont 4 
  Gen Time (sec)   Gen Time (sec) 

Effort 9 24.870001 Effort - INF 
Energy 5 50.23 Energy - INF 

Lagrange 9 30.93 Lagrange - INF 
Angle 8 21.11 Angle - INF 

 

In the previous case, we see that the Effort, energy, and Lagrangian indicated 

instability quickly and at almost the same time.  The Lagrangian is actually the quickest 

to indicate the critical generator where as in the fault case we saw that Effort and the 
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angle algorithm were the quickest.  One important aspect of using energy is that both 

angle and frequency is used making it more flexible in determining stability among many 

different scenarios.  Table 5-5 shows the comparisons of 4 stable and unstable 

Contingencies. 

The stable cases show that none of the algorithms initiated a false trip.  Since 

neither the total energy of the system or total Lagrangian of the system exceeded 0.2 pu 

an event was not detected thus Effort was not computed for any of the four stable 

contingencies.  Other algorithms are used in power systems to detect when an event is 

occurring, such as frequency decline, however since we are calculating energy it is easy 

to check and see if it is changing significantly which would indicate an event.  The 

Lagrangian shown in Figure 5-6 clearly shows that each generator settles down to its 

stable equilibrium.   

Figure 5- 6: Lagrangian for Stable Cont 4 
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5.2 39 BUS 3 AREA SYSTEM FAULT CASE 

The simulations for the 39 bus test system separated into 3 areas connected through 

long transmission tie-lines as shown in Figure A-1 in the appendix.  As with the previous 

test system, we look at cases where faults cause instability and also for heavy loading 

scenarios. Tables 5-6, 5-7, and 5-8 show the thresholds for various loading levels of the 

system.  These correspond with maximum loading with decrements of 20% of the 

maximum.   

Table 5- 6: Max Loading Thresholds 

  Thresholds, Max Loading 
  Effort Lagrange Energy Angle(deg) Output(MW) 
gen1 0.15 1.5971 1.6644 +/-90° 496.19 
gen2 0.5 2.1816 2.8869 +/-90° 608.92 
gen3 0.23 2.4005 2.6179 +/-90° 698.81 
gen4 0.37 2.1046 2.4125 +/-90° 666.65 
gen5 0.35 1.125 1.1854 +/-90° 535.85 
gen6 0.34 2.1156 2.4022 +/-90° 685.69 
gen7 0.46 1.7097 1.9052 +/-90° 590.70 
gen8 0.15 2.0554 2.1241 +/-90° 674.58 
gen9 0.07 1.4012 1.5821 +/-90° 770.45 
gen10 1.02 9.3675 11.4086 +/-90° 1054.41 

 
Table 5- 7: Thesholds For 20% Less Load 

  Thresholds, Minus 20% Load/Generation 
  Effort Lagrange Energy Angle(deg) Output(MW) 
gen1 0.28 1.0468 1.045 +/-90° 396.93 
gen2 0.48 1.9945 2.4465 +/-90° 440.91 
gen3 0.29 2.0464 2.237 +/-90° 559.06 
gen4 0.41 1.3643 2.2027 +/-90° 533.26 
gen5 0.34 0.7266 0.7782 +/-90° 428.65 
gen6 0.44 1.3996 1.6653 +/-90° 548.49 
gen7 0.47 1.0812 1.3529 +/-90° 472.51 
gen8 0.4 1.9316 1.9916 +/-90° 539.65 
gen9 0.28 2.5159 2.745 +/-90° 616.33 
gen10 1.56 10.9976 14.1353 +/-90° 843.57 
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Table 5- 8: Thresholds For 40% Less Load 

  Thresholds, Minus 40% Load/Generation 
  Effort Lagrange Energy Angle(deg) Output(MW) 
gen1 0.27 0.5547 0.9211 +/-90° 297.65 
gen2 0.35 1.9453 2.386 +/-90° 309.75 
gen3 0.35 1.6131 2.3881 +/-90° 419.22 
gen4 0.47 1.214 2.3556 +/-90° 399.88 
gen5 0.25 0.4158 0.4527 +/-90° 321.43 
gen6 0.52 1.3773 2.201 +/-90° 411.27 
gen7 0.34 1.5521 2.1847 +/-90° 354.33 
gen8 0.42 1.0989 1.621 +/-90° 404.68 
gen9 0.53 2.2245 2.4637 +/-90° 462.17 
gen10 1.34 8.3141 13.9735 +/-90° 632.61 

 
Generation has been scaled by the same amount as the load.  It should be noted that the 

angle algorithm thresholds were increased to 90° for simulations on the 3 area 39 bus 

system to reduce its sensitivity to false instability indication. 

 The tests on the 39 bus 3-area power system include testing three different 

thresholds, calculated at the 3 loading levels, to determine the algorithms effectiveness in 

correctly indicating instability with regards to moderate and large load changes.  The 

thresholds used are indicated in the first column of Tables 5-9, 5-10, and 5-11.  The 

actual loading level is indicated in the header of each table.  The angle algorithm 

thresholds are held at 90° for all loading cases. 

Table 5- 9: Unstable Cases Using Maximum Loading 

Unstable Cases: Max Loading 
  Bus 4 4-14      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 1.887 3 0.657 2 2.047 3 0.34 
  3 1.267 10 0.119 3 1.057    
                

-20% 2 1.887     2 2.037 3 0.37 
  3 1.257     3 0.637    
                

-40% 3 1.267     2 2.037 2 0.6 
  5 1.087     3 0.304 3 0.4 
  Bus 5 5-6      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 0.897 3 0.579 2 0.393 2 0.44 
  3 0.867 10 0.109 3 0.314 3 0.29 
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-20% 2 0.877     2 0.314 2 0.43 

  3 0.837     3 0.265 3 0.32 
                

-40% 2 0.877     2 0.304 2 0.36 
  3 0.847     3 0.216 3 0.34 
  5 0.747        
  Bus 12 12-11      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 2.197 3 0.969 2 2.307 3 0.43 
  3 2.187 10 0.129 3 1.977    
                

-20% 2 2.187     2 2.307 3 0.48 
  3 2.177     3 1.957    
                

-40% 3 2.177     2 2.307 2 1.13 
  5 1.107     3 1.917 3 0.54 
  Bus 21 21-22      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 1.737 2 0.195 6 0.388 6 0.37 
  3 1.577 10 0.108 7 3.448    
                

-20% 2 1.727     6 0.224 6 0.42 
  3 1.547     7 0.233    
                

-40% 2 1.717     5 0.388 7 0.44 
  3 1.557     6 0.224    
  Bus 23 23-24      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 1.747 2 0.195 6 3.518 6 0.4 
  3 1.587 10 0.108 7 0.195 7 0.37 
           

-20% 2 1.737     6 0.253 6 0.45 
  3 1.557     7 0.127 7 0.38 
           

-40% 2 1.737     6 0.253 7 0.32 
  3 1.567     7 0.175    
  Bus 24 24-16      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 1.62 2 0.21 2 1.53 6 0.41 
  3 1.48 10 0.11 3 1.44 7 0.5 
           

-20% 2 1.61     6 0.29 6 0.47 
  3 1.45     7 0.22 7 0.51 
           

-40% 2 1.61     5 0.45 6 0.51 
  3 1.46     6 0.29 7 0.42 
  Bus 26 26-28      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 3 1.547 1 0.166 1 0.233 8 0.28 
  9 0.262 8 0.146 9 0.195 9 0.2 
           

-20% 3 1.427     1 0.166 1 0.34 
  9 0.339     9 0.262 9 0.31 
           

-40% 1 0.233     1 0.118 1 0.33 
  9 0.32     8 0.195 9 0.39 
  Bus 26 26-29      
Threshold Energy Function Angle Alg Lagrange Effort 
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Max 9 0.262 8 0.146 1 0.233 1 0.26 
      10 0.118 9 0.195 9 0.2 
           

-20% 9 0.339     1 0.166 1 0.34 
          9 0.262 9 0.31 
           

-40% 1 0.233     1 0.118 1 0.33 
  9 0.32     8 0.195 9 0.39 
  Bus 29 29-28      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 9 0.243 8 0.166 9 0.156 1 0.33 
      10 0.127    9 0.18 
           

-20% 9 0.301     1 0.497 9 0.27 
          9 0.224    
           

-40% 9 0.282     1 0.156 1 0.45 
          9 0.204 9 0.34 

Table 5- 10: Unstable Cases Using 20% Less Load Of Maximum 

Unstable Cases: -20% Load/Generation 
  Bus 4 4-14      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 2.25 2 2.18 3 1.53 3 0.42 
  3 1.43 3 0.75         
                  

-20% 2 2.23     3 1.52 3 0.47 
  3 1.42             
                  

-40% 2 2.23     3 1.51 3 0.52 
  3 1.43             
  Bus 5 5-6      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 1.25 3 0.63 2 1.07 2 0.67 
  3 1.19 10 0.39 3 1.02 3 0.35 
                  

-20% 2 1.24     2 1.06 2 0.64 
  3 1.17     3 1 3 0.39 
                  

-40% 2 1.24     2 1.06 2 0.52 
  3 1.18     3 0.39 3 0.42 
             
  Bus 12 12-11      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 3.317 2 2.127 2 3.517 2 2.03 
  3 2.567 3 1.411 3 2.307 3 0.61 
                  

-20% 2 3.297     2 3.507 2 1.97 
  3 2.547     3 2.267 3 0.75 
                  

-40% 2 3.297     2 3.507 2 1.68 
  3 2.557     3 2.107 3 0.89 
  Bus 21 21-22      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 3 1.537 2 0.373 - - 6 0.46 
      6 0.422 - - 7 0.69 
      10 0.304         
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-20% 3 1.467     - - 6 0.53 
          - - 7 0.7 
                  

-40% 3 1.497     1 1.237 6 0.59 
          5 1.367 7 0.56 
  Bus 23 23-24      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 3 1.577 7 0.314 - - 6 0.5 
      10 0.314 - - 7 0.46 
           

-20% 3 1.507     7 0.167 6 0.58 
              7 0.46 
           

-40% 3 1.537     5 1.437 6 0.65 
          7 0.295 7 0.38 
  Bus 24 24-16      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 3 1.757 2 0.393 - - 6 0.55 
      7 0.432 - - 7 0.7 
      10 0.324         
           

-20% 3 1.677     - - 6 0.65 
          - -     
           

-40% 3 1.707     1 1.627 7 0.56 
          5 1.497     
  Bus 26 26-28      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 1 0.827 1 0.285 1 0.737 1 0.3 
  9 0.324 8 0.246 9 0.246 9 0.23 
      9 0.353         
           

-20% 1 0.777     1 0.226 1 0.42 
  9 0.539     9 0.363 9 0.36 
           

-40% 1 0.767     1 0.138 1 0.41 
  9 0.451     9 0.334 9 0.46 
  Bus 26 26-29      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 1 0.847 1 0.285 1 0.747 1 0.3 
  9 0.324 8 0.246 9 0.246 9 0.23 
      9 0.353         
           

-20% 1 0.787     1 0.226 1 0.42 
  9 0.539     9 0.363 9 0.36 
           

-40% 1 0.767     1 0.138 1 0.41 
  9 0.451     9 0.334 9 0.46 
  Bus 29 29-28      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 1 0.887 1 0.383 1 0.807 1 0.46 
  9 0.285 8 0.334 9 0.207 9 0.2 
      9 0.314         
           

-20% 1 0.837     1 0.727 9 0.32 
  9 0.402     9 0.295     
           

-40% 1 0.827     1 0.667 1 0.69 
  9 0.373     9 0.275 9 0.4 
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Table 5- 11: Unstable Cases With 40% Less Load From Maximum 

Unstable Cases: -40% Load/Generation 
  Bus 4 4-14      
Threshold Energy Function Angle Alg Lagrange Effort 

Max - - 2 1.637 - - 2 1.74 
  - - 3 1.178 - - 3 0.55 
                  

-20% - -     - - 2 1.7 
  - -     - - 3 0.65 
                  

-40% 1 2.854     3 3.513 2 1.45 
  5 2.126         3 0.78 
  Bus 5 5-6      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 2 1.407 3 0.781 2 1.257 2 0.85 
  3 1.387 10 0.169 3 1.257 3 0.4 
                  

-20% 2 1.397     2 1.247 2 0.81 
  3 1.377     3 1.237 3 0.46 
                  

-40% 2 1.387     2 1.227 2 0.63 
  3 1.357     3 1.177 3 0.51 
  Bus 12 12-11      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 3 5.16 3 3.44 2 5.34 3 0.94 
      10 5.6 3 4.96 10 2.22 
                  

-20% 3 5.15     2 5.32 2 2.21 
          3 4.9 3 1.13 
                  

-40% 3 5.14     2 5.28 2 1.74 
          3 4.67 3 1.3 
  Bus 21 21-22      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 9 1.37 2 0.36 9 1.34 6 0.6 
  1 1.45 10 0.22     7 0.92 
      6 0.48         
                  

-20% 1 1.28     1 1.31 6 0.72 
  3 1.45         7 0.93 
                  

-40% 1 1.2     5 1.04 6 0.82 
  2 1.48     1 1.19 7 0.75 
  Bus 23 23-24      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 1 1.63 2 0.4 - - 6 0.71 
  3 1.67 7 0.34 - - 7 0.57 
      10 0.24         
           

-20% 1 1.45     1 1.49 6 0.85 
  3 1.61     7 0.28 7 0.58 
           

-40% 1 1.36     4 1.16 6 0.96 
  3 1.57     5 1.11 7 0.46 
  Bus 24 24-16      
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Threshold Energy Function Angle Alg Lagrange Effort 
Max 3 1.69 2 0.42 - - 6 0.83 

      7 0.51 - - 7 0.98 
      10 0.28         
           

-20% 1 1.62     - - 6 0.99 
  3 1.64     - - 7 0.99 
           

-40% 1 1.43     1 1.35 7 0.79 
  3 1.59     5 1.54     
  Bus 26 26-28      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 1 1.07 8 0.19 1 1.03 1 0.36 
  9 0.55 9 0.33 9 0.36 9 0.27 
           

-20% 1 1.06     1 1.02 1 0.56 
  8 1.24     8 1.09 9 0.43 
           

-40% 1 1.05     1 0.17 1 0.53 
  5 0.66     9 0.44 9 0.56 
  9 1.49          
  Bus 26 26-29      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 1 1.07 8 0.19 1 1.03 1 0.36 
  9 0.55 9 0.33 9 0.36 9 0.27 
           

-20% 1 1.06     1 1.02 1 0.56 
  8 1.25     8 1.1 9 0.43 
           

-40% 1 1.05     1 0.17 1 0.53 
  5 0.66     9 0.44 9 0.56 
  8 1.2          
  Bus 29 29-28      
Threshold Energy Function Angle Alg Lagrange Effort 

Max 1 1.81 8 0.27 1 1.75 1 0.45 
  9 1.52 9 0.28 9 0.13 9 0.14 
           

-20% 1 1.8     1 1.06 1 0.74 
  9 1.55     9 0.3 9 0.26 
           

-40% 1 1.79     1 0.25 1 0.7 
  9 1.53     9 0.2 9 0.36 

 
 

The following tables show some interesting correlations between thresholds and 

loading levels.  For the maximum loading case shown in Table 5-9 the thresholds 

computed on each of the load levels produced similar results.  However, using thresholds 

computed at a lower loading level on a system with increased load causes the algorithms 

to be less sensitive.  Conversely, if we use thresholds computed on a system that has a 

greater loading amount then what is actually being used in the system then the algorithm 
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generally tends to be more sensitive in detecting instability.  For load fluctuations that are 

small, say +/-5% of total load demand, we wouldn’t need to update the thresholds.  Load 

fluctuations in excess of +/-20% would mean that a new set of thresholds would need to 

be used in order to correctly identify critical generators.  This should be a concern only in 

systems operating near maximum loading since faults are usually cleared in much less 

time than the c.c.t. for lightly loaded systems. 

We now compare the improvements in c.c.t. shown in Tables 5-12, 5-13, and 5-

14. 

Table 5- 12: CCT at Max Loading Using Different Threshold Sets 

Simulations At Max Loading 
Simulations Using Thresholds From Max Loading 

Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 33.29 33.43 33.72 33.44 34.6 
bus 5 5-6 23.91 24.61 24.9 25.19 25.19 
bus12 12-11 63.05 63.06 87.93 63.06 66.82 
bus26 26-29 9.80 18.98 16.38 20.14 20.14 
bus29 29-28 9.95 19.56 15.34 20.28 20.14 
bus26 26-28  10.82 19.13 16.96 20.28 20.28 
bus21 21-22 17.80 18.11 30.68 19.7 20 
bus23 23-24 17.80 18.26 29.96 21 20 
bus24 24-16 22.17 22.59 34.15 22.59 26 

Simulations Using Thresholds From -20% Loading 
Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 33.29 33.81 33.72 33.5 33.94 
bus 5 5-6 23.91 24.24 24.9 24 24.89 
bus12 12-11 63.05 63.1 87.93 64.22 65.94 
bus26 26-29 9.80 17.8 16.38 19.54 19.86 
bus29 29-28 9.95 18.9 15.34 19.81 19.37 
bus26 26-28  10.82 18.5 16.96 19.81 19.34 
bus21 21-22 17.80 17.2 30.68 19.2 18.11 
bus23 23-24 17.80 18.03 29.96 20.34 19.93 
bus24 24-16 22.17 22.25 34.15 21.27 25.52 

Simulations Using Thresholds From -40% Loading 
Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 33.29 33.06 33.72 34.95 34.01 
bus 5 5-6 23.91 24.14 24.9 24.39 25.24 
bus12 12-11 63.05 64.2 87.93 66.9 66.87 
bus26 26-29 9.80 17.2 16.38 18.31 19.73 
bus29 29-28 9.95 16.76 15.34 18.02 19.24 
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bus26 26-28  10.82 18.53 16.96 17.36 18.96 
bus21 21-22 17.80 18.9 30.68 17.22 17.94 
bus23 23-24 17.80 18.47 29.96 18.92 19.17 
bus24 24-16 22.17 23.66 34.15 23 24.78 

 
 
 

Table 5- 13: CCT at -20% Loading Using Different Threshold Sets 

Simulations At -20% Loading 
Simulations Using Thresholds From Max Loading 

Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 51.94 52 52.08 52.11 53.11 
bus 5 5-6 34.54 35.94 34.04 34.53 34.97 
bus12 12-11 104.67 104.11 104.7 104.45 106.1 
bus26 26-29 17.95 23.23 21.87 18.11 23.54 
bus29 29-28 18.24 23.19 24.04 22.74 23.74 
bus26 26-28  18.67 23.99 24.47 24 25.62 
bus21 21-22 24.94 25.14 28.38 - 28.67 
bus23 23-24 25.52 25.34 33 - 32.11 
bus24 24-16 29.59 30.27 32.86 - 32.64 

Simulations Using Thresholds From -20% Loading 
Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 51.94 51.93 52.08 51.93 52.65 
bus 5 5-6 34.54 34.59 34.04 34.59 34.88 
bus12 12-11 104.67 104.54 104.7 104.54 104.98 
bus26 26-29 17.95 24.47 21.87 18.11 23.17 
bus29 29-28 18.24 22.74 24.04 22.74 22.74 
bus26 26-28  18.67 24.62 24.47 19.27 24.62 
bus21 21-22 24.94 24.76 28.38 - 28.09 
bus23 23-24 25.52 25.48 33 32.28 29.82 
bus24 24-16 29.59 29.53 32.86 - 31.56 

Simulations Using Thresholds From -40% Loading 
Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 51.94 51.5 52.08 51.89 52.45 
bus 5 5-6 34.54 35.13 34.04 34.25 34.29 
bus12 12-11 104.67 104.3 104.7 104.61 104.72 
bus26 26-29 17.95 23.92 21.87 18.96 23.33 
bus29 29-28 18.24 22.47 24.04 21.49 23.12 
bus26 26-28  18.67 24.31 24.47 19.31 24.51 
bus21 21-22 24.94 25.1 28.38 26.1 28.23 
bus23 23-24 25.52 25.82 33 32.06 32.43 
bus24 24-16 29.59 30.75 32.86 31.68 31.97 
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Table 5- 14: CCT at -40% Loading Using Different Threshold Sets 

Simulations At -40% Loading 
Simulations Using Thresholds From Max Loading 

Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 167.80 - 132.88 - 135 
bus 5 5-6 49.30 51.05 52.56 50.03 5.22 
bus12 12-11 264.90 217.99 218.9 217.69 221.03 
bus26 26-29 24.40 30.62 34.8 33.41 32.77 
bus29 29-28 26.40 34.19 33.5 35.22 35.82 
bus26 26-28  25.00 33.89 35.1 31.76 34.27 
bus21 21-22 35.69 49.43 49.5 48.36 49.07 
bus23 23-24 39.96 51.97 53.44 - 55.82 
bus24 24-16 44.05 58.2 58.97 - 59.34 

Simulations Using Thresholds From -20% Loading 
Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 167.80 132.59 132.88 133.01 133.21 
bus 5 5-6 49.30 52.36 52.56 50.87 52.67 
bus12 12-11 264.90 218.76 218.9 218.32 218.5 
bus26 26-29 24.40 30.94 34.8 33.09 32.23 
bus29 29-28 26.40 32.37 33.57 35.97 36.9 
bus26 26-28  25.00 33.32 35.15 34.11 34.1 
bus21 21-22 35.69 46.9 49.5 46.38 49.16 
bus23 23-24 39.96 53.54 53.44 52.74 55.89 
bus24 24-16 44.05 54.73 58.97 57.35 57.51 

Simulations Using Thresholds From -40% Loading 
Contingency CCT Energy Angle Lagrange Effort 
bus 4 4-14 167.80 132.9 132.88 132.88 134 
bus 5 5-6 49.30 51.98 52.56 51.98 52.3 
bus12 12-11 264.90 218.9 218.9 218.88 218.9 
bus26 26-29 24.40 31.7 34.8 32.77 32.77 
bus29 29-28 26.40 32.63 33.5 35.68 36 
bus26 26-28  25.00 32.48 35.1 33.35 33.36 
bus21 21-22 35.69 48.49 49.5 48.64 49.36 
bus23 23-24 39.96 52.41 53.44 52.7 55.47 
bus24 24-16 44.05 58.09 58.97 58.1 58.82 

 
 

In the each of the previous tables the loading in the system is held constant while 

the threshold sets are varied.  The results indicate that each algorithm performs 

differently between areas as the loading changes.  This could be from the stress on the 

system at high loading being reduced as the loading is reduced.  As an example let us 

examine Table 5-12.  The last three cases with faults in Area 1 show that the angle 
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algorithm has the greatest improvement in critical clearing time, where as in Area 3, the 

Effort shows a greater improvement over the angle algorithm.  The effects load changes 

have on the thresholds are not clearly understood and further research is needed. 

 

5.2.1 39 BUS 3 AREA SYSTEM HEAVY LOADING CASE 

For the heavy loading cases simulated on the 39 bus 3 area system we look at the 

maximum loaded system as the base load demand.  Four stable and unstable cases are 

shown in Table 5-15.  The thresholds computed using offline transient simulations are 

given in Table 5-6, using the heaviest loading scenario. 

Table 5- 15: Excessive Loading, 3-Area System 

Unstable Cont 1 Stable Cont 1 
  Gen Time (sec)   Gen Time (sec) 

Effort 3 29.28 Effort NAN INF 
Energy 3 29.56 Energy NAN INF 

Lagrange 3 29.28 Lagrange NAN INF 
Angle 3 29.68 Angle NAN INF 

Unstable Cont 2 Stable Cont 2 
  Gen Time (sec)   Gen Time (sec) 

Effort 3 26.52 Effort NAN INF 
Energy 3 26.84 Energy NAN INF 

Lagrange 3 26.6 Lagrange NAN INF 
Angle 3 26.88 Angle NAN INF 

Unstable Cont 3 Stable Cont 3 
  Gen Time (sec)   Gen Time (sec) 

Effort 3 41 Effort NAN INF 
Energy 3 41.36 Energy NAN INF 

Lagrange 3 41 Lagrange NAN INF 
Angle 3 41.36 Angle NAN INF 

Unstable Cont 4 Stable Cont 4 
  Gen Time (sec)   Gen Time (sec) 

Effort 3 10.56 Effort NAN INF 
Energy 3 10.8 Energy NAN INF 

Lagrange 3 10.52 Lagrange NAN INF 
Angle 3 10.92 Angle NAN INF 

 
 

The stable cases all indicate that the system remains stable as predicted from all four 

algorithms.  Looking at the unstable cases we see that the four algorithms detect the 
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critical generators with control times almost identical to each other.  It also appears that 

in the three area system the angle algorithm detects instability better.  This could be due 

to the fact that with higher loading the system in the 3 area case the system is beyond 

marginally unstable where as in the unmodified system the loading leads to marginal 

instability with only one generator losing synchronism.  The excessive loaded cases do 

cause the system to break apart as seen from the rotor angle measurements shown in 

Figure 5-7 below, 

Figure 5- 7: Rotor Angle For 3-Area Over Load Case 
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In fact, we see that area 2 loses synchronism from the rest of the system with Generators 

2 and 3 accelerating and Generator 10 decelerating.  Examining the Lagrangian and 

Effort we see that both Generator 2 and 3 would be candidates for tripping since they 

remain in synchronism with each other.  The Lagrangian, Energy, and Effort are shown in 

Figures 5-8, 5-9, and 5-10 respectively. 
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Figure 5- 8: Lagrangian Computation for Unstable Cont4 
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For the Lagrangian, we see little difference between Generator 2 and 3 between 28 and 

29.25 seconds.  Generator 3 losses synchronism the fastest as you can see from the dotted 

line in Figure 5-8. 

Figure 5- 9: Energy Computation for Unstable Cont4 

26.5 27 27.5 28 28.5 29 29.5 30 30.5 31

0

2

4

6

8

10

12

14

16

t(sec)

TE
(p

u)

 

 

Gen1
Gen2
Gen3
Gen4
Gen5
Gen6
Gen7
Gen8
Gen9
Gen10

 

 51



The total energy in Figure 5-9 shows that Generator 2 is the critical generator, rather then 

Generator 3.  This error is due to the kinetic energy not being corrected as explained in 

[5], were the energy not contributing to the instability should be subtracted out.  Without 

correcting the kinetic energy, we end up with a phase shifted signal as can be observed in 

Figure 5-9.  Correcting for the non contributing kinetic energy is not easily accomplished 

in real-time since it requires the trajectories to be computed. 

Figure 5- 10: Effort Computation Unstable Cont4 
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The Effort computed in Figure 5-10 indicates that both Generator 2 and 3 are critical 

generators thus generation shedding should be initiated at both of them.  This agrees with 

the results from the angle and Lagrangian algorithms. 

 To make the previous cases stable, it is necessary to shed a significant amount of 

load.  From results on the 39 bus 3-area system it was required to shed at least half the 

load in that area to regain stability, with regards to the excessive loading cases.  The 

problem with shedding this much load is that voltage levels tend to spike excessively.  In 
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real life applications this can be a serious issue since over voltage protection equipment 

may cause unnecessary tripping of transformers and lines. 

 As an example, let us look at the unstable case 2 in Table 5-15.  For the control 

action we shed the same percentage of real power demand as with the reactive power. 

The control time for the Effort in this case is 26.52 seconds.  To make the system stable 

we need to shed loading at the following busses, 

Figure 5- 11: Load Shedding For Contingency 2 

 Cont. 2 Load Shed Area 2 
 active (MW) reactive (MVAR) 
bus 39 998.27 209.72
bus 4 546 106
bus 7 244 84
bus 15 344 115
Total 2132.27 514.72
Load Shed % 62.1%   

 

In this case, it was necessary to disconnect Generators 2 and 3 from the system 

thus causing a huge deficit in MVAR output in Area 2.  To compensate for this it was 

required that over 2000 MW of load needed to be shed.  Looking at the rotor angle in 

Figure 5-11 we see that Generator 10 stays in synch with the system.  The frequency 

observed in Figure 5-12 indicates that Generator 10 has some damping issues with some 

large oscillations.  The oscillations do damp out however the frequency goes beyond 60.5 

Hz. With frequency relays set to operate at 0.2 Hz deviations we see that Generator 10 

would have been disconnected from the system leading to a complete isolation of Area 2. 
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Figure 5- 12: Unstable Cont. 2 Rotor Angle 
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Figure 5- 13: Unstable Cont. 2 Rotor Frequency 
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Since we would expect frequency relays to operate sooner then what the control times 

indicate we could find the energy of each machine are 60.2 Hz and use it as a threshold 

instead of looking at the maximum stability limit.  This of course would make the 

algorithm more sensitive but we would gain more time in implementing the control action 
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thus reducing the amount of load shed needed to keep the system synchronized.  The 

other issue is over/under voltage relays.  Figure 5-14 shows the voltage magnitude during 

the transients. At the control time near 26 seconds we see that the voltage spikes to 

almost 1.2 pu.  In some instances this may be enough to trigger voltage relay devices. 

Figure 5- 14: Voltage Magnitude, Unstable Cont 2 
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IEEE standards indicate that voltage protection should have a delay of 1s when the spikes 

are between 1.1 pu and 1.2 pu [15] so for this system we would see some of the relays 

operate.  The following table indicating average voltage protection relay settings was 

taken from [15], 

Table 5- 16:  Recommended Voltage Protection Delay Times 
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Table 5-17 [15] tells us that for abnormal frequencies we would also expect Generator 10 

to trip since its frequency stays above 60.5 Hz for a greater amount of time than 0.16 

seconds.  Since Generators 2 and 3 clearly exceed 60.5 Hz as seen in Figure 5-13 they 

would be disconnected before the control actions could be initiated.  Future research is 

recommended. 

Table 5- 17:  Frequency Relay Delay Times 

 

The previous tables were based on connections between transmission systems and 

distribution level machines.  Such an example would be the WSU steam plant.  Plants 

connected through transmission networks in general require tighter tolerances so the 

values in Tables 5-16 and 5-17 may be under estimated. 

 

5.3 COMMUNICATION DELAY EFFECT 

One of the issues of concern in power systems is the time it takes for a measurement to be 

sent from the PMU to the communication center.  Computations are made to determine 

the control action which also takes time.  The control action decided at the 

communications center is then sent to the corresponding plants where generation 

shedding/disconnection are required.  Using high speed communications the total time 

delay between the time data is collected and control action initiated is less then 100 ms, 
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or about 6 cycles.  This estimate is made assuming perfect operation, as well as open 

communication channels at all times.  PMU’s constitute a new technology so it is difficult 

to guess how they will be used in the future.  So taking into account these issues we 

simulate the results from the 39 bus 3 Area system using a time delay of 5, 10, and 15 

cycles.  To judge the effects that the time delay has on the security of the system, we 

compute the critical clearing time and determine how many cycles it decreases for the 

given contingency.  The impact on algorithm performance is evaluated by comparing the 

critical clearing time for the base case with the case where delay is added. The critical 

clearing times for the added communication delays are shown in the Tables 5-18, 5-19,   

5-20, and 5-21. 

Table 5- 18: Time Delay, Effort Algorithm 

  Communication Delay: Effort 
  Critical Clearing Time (Cyc) 

Cont. No Delay 5 
Cyc. 10 Cyc. 15 Cyc. 

4 4-14  34.88 34.45 34.16 34.00 
5 5-6  25.34 25.20 25.20 25.11 
12 12-11  67.26 66.39 65.81 65.33 
26 26-29  21.15 19.56 18.12 16.79 
29 29-28  20.72 19.85 18.84 17.37 
26 26-28  21.29 19.70 18.55 16.99 
21 21-22  20.14 19.85 21.73 21.63 
23 23-24  20.14 19.99 21.29 21.63 
24 24-16  26.04 25.90 25.32 24.84 

 
 

Table 5- 19: Time Delay, Lagrangian Algorithm 

  Communication Delay: Lagrangian 
  Critical Clearing Time (Cyc) 
Cont. No Delay 5 Cyc. 10 Cyc. 15 Cyc. 
4 4-14  40.08 39.79 39.65 39.51 
5 5-6  30.25 31.70 29.53 29.24 
12 12-11  69.86 69.86 69.86 69.86 
26 26-29  20.28 18.84 17.53 16.38 
29 29-28  22.01 20.43 18.98 17.54 
26 26-28  20.43 18.98 17.68 16.53 
21 21-22  20.28 19.85 19.42 19.13 
23 23-24  22.31 21.44 20.86 20.43 
24 24-16  20.73 20.73 20.87 20.87 
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Table 5- 20: Time Delay, Angle Algorithm 

  Communication Delay: Angle Alg. 
  Critical Clearing Time (Cyc) 

Cont. No Delay 5 
Cyc. 10 Cyc. 15 Cyc. 

4 4-14  33.87 33.72 33.58 33.58 
5 5-6  25.05 24.91 24.76 24.76 
12 12-11  63.93 63.64 63.49 63.35 
26 26-29  19.27 18.11 17.10 16.24 
29 29-28  17.97 17.39 16.67 15.80 
26 26-28  19.42 18.41 17.39 16.38 
21 21-22  20.57 19.85 19.27 18.84 
23 23-24  20.57 20.00 19.42 18.98 
24 24-16  23.31 22.74 22.45 22.02 

 

Table 5- 21: Time Delay, Energy Algorithm 

  Communication Delay: Energy 
  Critical Clearing Time (Cyc) 

Cont. No Delay 5 
Cyc. 10 Cyc. 15 Cyc. 

4 4-14  33.44 33.44 33.43 33.29 
5 5-6  24.76 24.62 25.48 25.48 
12 12-11  63.06 63.06 63.06 63.06 
26 26-29  19.85 18.41 17.10 15.95 
29 29-28  20.00 19.13 17.83 16.53 
26 26-28  20.00 18.55 17.25 16.24 
21 21-22  17.68 17.83 17.97 17.97 
23 23-24  17.97 18.11 18.11 18.26 
24 24-16  22.59 22.59 22.59 22.59 

 

The largest decrease in critical clearing times occur at the first five cycles of time delay. 

At 10 and 15 cycles, the delay effect is less severe for most of the cases.  Looking at the 

previous tables, we see that this change is on average only a few tenths of a cycle.  The 

critical clearing time decreases by about 1 cycle on average for a time delay of 10 cycles.  

This would suggest that the maximum effectiveness of the algorithms can be achieved if 

the communications delay is less then 10 cycles.  In some of the cases, we can even see 

an increase in critical clearing time as the time delay increases as is evident in Table 5-21.  

Since power systems are nonlinear, it is important to consider the state of the system 

when initiating control action. 
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CHAPTER 6 CONCLUSIONS 

From the simulations on the New England 39 bus system we see that the algorithms 

are beneficial in maintaining angle stability.  With the exception of the individual 

machine total energy functions, the Angle, Lagrangian, and Effort algorithms were 

capable of determining the critical generators for both fault and excessive loading cases, 

most notably the Effort algorithm.  Transient disturbances where low voltages lead to 

angle instability are of more significant importance since local protection of critical lines 

and transformers fail to operate only rarely, even then there are redundancy schemes to 

protect against such a case.  Under such circumstances it may not be possible to prevent 

blackouts entirely, but there severity can be reduced.  The algorithms presented here 

show promise in reducing the severity of blackouts. 

The use of Effort in determining the real-time status of a disturbed system is a new 

technique proposed in this thesis. Its use as an indicator of system stability need not be 

the only use.  With more research, it may be possible to implement it into load shedding 

schemes.  Other possible uses may include spin reserve estimation, dynamic security 

assessment, or generation re-scheduling.  Out of the four algorithms presented here, the 

Effort and Angle algorithms have been shown to be well suited to mitigating angle 

stability. 

The time it takes for data to be measured and be ready for use at control centers is 

one of the main limitations in real-time implementation.  With new advances in 

communications, it is possible to limit this delay to less then 100 milliseconds.  Since 

power systems are highly nonlinear, no assumption can be made on whether the angle 

instability gets worse from delays up to 100 ms.  Simulations have shown that in some 
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cases the system is more stable by including the communications delay.  Further research 

is needed. 
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CHAPTER 8 APPENDIX 

Figure A- 1: 39 Bus 3 Area Test Case 
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Figure A- 2:  Original New England 39 Bus System 
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Table A- 1: 39 Bus Overload Contingencies 

  39 Bus Overload Contingencies 
  Unstable Contingencies  Stable Contingencies 
Cont 
1 At Time 5 Seconds 

Cont 
1 At Time 5 Seconds 

  Remove Line 16 to 17    Remove Line 17 to 15 

        
Cont 
2 At Time 5 Seconds 

Cont 
2 At Time 5 Seconds 

  Ramp Load bus 4 15%   Ramp Load bus 4 15% 

  
Change Governor Reference bus 35 
40MW   

Change Governor Reference bus 35 
40MW 

  Remove Line 4 to 14   At Time 10 Seconds 
  At Time 10 Seconds   Remove Line 10 to 13 
  Remove Line 10 to 13   

  Remove Line 7 to 8     

        
Cont 
3 At Time 5 Seconds 

Cont 
3 At Time 5 Seconds 

  
Change Governor Reference bus 38 
60MW   

Change Governor Reference bus 38 
60MW 

  Ramp Load bus 16 10%   Ramp Load bus 16 10% 
  At Time 20 Seconds   At Time 20 Seconds 

  Remove Line 15 to 16   Remove Line 17 to 15 

        
Cont 
4 At Time 5 Seconds 

Cont 
4 At Time 5 Seconds 

  
Change Governor Reference bus 36 
40MW   

Change Governor Reference bus 36 
40MW 

  
Change Governor Reference bus 34 
40MW   

Change Governor Reference bus 34 
40MW 

  Ramp Load bus 15 40%   Ramp Load bus 15 40% 
  At Time 15 Seconds   At Time 15 Seconds 
  Remove Line 13 to 14   Remove Line 13 to 14 
  Remove Line 10 to 13    Remove Line 10 to 13  
  At Time 20 Seconds   

  Remove Line 16 to 17     

 
Table A- 2: Exciter Parameters 

39 Bus Exciter Data 

IBUS KA TA VRMAX VRMIN KE TE KF TF E1 SE(E1) E2 SE(E2) 
MVA 
Base 

38 5 0.06 3 -3 1 0.25 0.04 1 3.55 0.08 4.73 0.26 100 
37 40 0.02 10.5 -10.5 1 1.4 0.03 1 4.26 0.62 5.68 0.85 100 
36 5 0.02 4 -4 1 0.528 0.0854 1.26 3.19 0.072 4.26 0.282 100 
35 40 0.02 6.5 -6.5 1 0.73 0.03 1 2.8 0.53 3.74 0.74 100 
34 5 0.02 5 -5 1 0.471 0.0754 1.25 3.59 0.064 4.78 0.251 100 
33 40 0.02 10 -10 1 0.785 0.03 1 3.93 0.07 5.24 0.91 100 
32 5 0.06 3 -3 1 0.5 0.08 1 2.87 0.08 3.82 0.314 100 
31 5 0.06 3 -3 1 0.5 0.08 1 2.34 0.13 3.12 0.34 100 

30 6.2 0.05 3 -3 0 0.405 0.057 0.5 3.03 0.66 4.05 0.88 100 
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Table A- 3: 39 Bus Governor Parameters 

Governor Parameters 
IBUS PFL R T1 T2 T3 VMIN Dt Pgen Pmax 

38 100 0.35 0.1 0 0 0 0 770.3 9999
37 100 0.26 0.1 0 0 0 0 674.5 9999
36 100 0.24 0.1 0 0 0 0 590.5 9999
35 100 0.24 0.1 0 0 0 0 685.5 9999
34 100 0.2 0.1 0 0 0 0 535.7 9999
33 100 0.25 0.1 0 0 0 0 666.5 9999
32 100 0.3 0.1 0 0 0 0 698.8 9999
31 100 0.3 0.1 0 0 0 0 631.1 9999
30 100 0.22 0.1 0 0 0 0 535.1 9999

 
 
Table A- 4: Generator 1 to 9 Parameters 

Two Axis Model Parameters for Generators 1 to 9 

IBUS T'do T''do T'qo T''qo H D Ra Xd Xq X'd X'q Xl 
MVA 
Base 

38 4.79 0 1.96 0 34.5 1 0.0015 0.211 0.205 0.057 0.059 0.03 100 
37 6.7 0 0.41 0 24.3 1 0.0015 0.29 0.28 0.057 0.091 0.028 100 
36 5.66 0 1.5 0 26.4 1 0.0015 0.295 0.292 0.049 0.186 0.032 100 
35 7.3 0 0.4 0 34.8 1 0.0015 0.254 0.241 0.05 0.081 0.022 100 
34 5.4 0 0.44 0 26 1 0.0015 0.67 0.62 0.132 0.166 0.054 100 
33 5.69 0 1.5 0 28.6 1 0.0015 0.262 0.258 0.044 0.166 0.03 100 
32 5.7 0 1.5 0 35.8 1 0.0015 0.25 0.237 0.053 0.088 0.03 100 
31 6.56 0 1.5 0 30.3 1 0.0015 0.295 0.282 0.07 0.17 0.035 100 

30 5.3 0 1.5 0 20 1 0.0015 0.262 0.258 0.044 0.166 0.03 100 

 
Table A- 5: Generator 10 Classical Model Parameters 

Generator 10 Parameters 

IBUS MVA Ra X'd H KD 
39 100 0 0.02 70 0 
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